IBMi
7.5

Programing
IBM i globalization

—

—

- - .

- Y E————
[—— -
- - . .
I S S W E—
I 7 E—

Note

Before using this information and the product it supports, read the information in “Notices” on page
461.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM® License Agreement for Machine Code.

© Copyright International Business Machines Corporation 1998, 2022.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

IBMi globalization.......ccccuiieiiniiniiniieiieiieiieiieiiiiiiiiiieiiesiesiesiescescsscssssssssssassassasssssans b

What's NEW FOr IBM i 7.5, . ettt ettt et e et e e e te e e et e e eabae e sateeeeataeessbaeesnsaeesnsaeeansaeesnsasesnseeans 1
PDF file for IBM i lobaliZation........ccuuiieiieeciieceieeete ettt ee e e stre e e ae e e s aae e e sae e e aaeeesaeeenneeeennes 2
(€1 0e) o T 12 4[] a I e 1V/=T RV L= USSR 2
MULLIPLE LANGUAZE SUPPOI ... eiieiciiieieieeectie et e ecteeeetee e eteeestee s ateesssteesssseesssaeesssaeenssaeansseesnsseesnsseesnnseen 3
NatioNal lANGUAZE VEISION.....iiiciiieeiie ettt eete ettt eetre e ette e e rtte e e aeeeetee e e taeeesaeeessesensaeeansseeensaeeensseeasreean 3
BT I (=Y Ty - 1T o =TT 3
National language deSign iN IBM i......ccuii ittt sette e setre e sevt e e sbae e sebaeesraeessaeesseeesans 3
(01 F- Y= Toa =Y g LY o] Y=Y a Y €= N4 o] VOSSR 4

[gt o [T Y=t =Yod a =10 1 U=V 4
Conversion of CharaCter data.......ciecciee e e be e e e e e e e aee e 4
Coded character set identifier ValUES.......c.uiivciei ettt 5
Character data iINtEEIITY..cuii ettt e et e et e et e e e rae e e st e e s nteeesteesnseesnseean 5

(01 F= Y= o3 =Y gl o Lo Yol =To1] [= PSS 6

(01 F- Y= o3 =Y g o (=Y - U o) o TSRS 7
Globalization hardware sUpPPOrt iN IBM i....cccuiiccieeiiiiecceeecee et 7
Character data translation........ecceee ettt te e e ate e e ate e e rte e e rae e esaeeennes 7

[Tor= Y LTS OO PSPPSR SRRPRRTURUPRRRINE 7
LiNUIStIC anNd CULLUIAL VALUES.......ieiiiiectee ettt ettt ettt e e tte e e te e e s ate e e stae s ntee e ssaeennsaeennseean 8
O oY g o1] 1] £= USRS 8

YU Lo F3) (=] o 0 =TSRSS 9
Creating a sUbSYStemM deSCriPLION.....cciciie ettt e eere e et e e s ebaeeseaaeesereeeeans 9
SUDSYSEEM AttIDULES..eeiiieeie e e e e e st e e e abe e e abe e eeabee e nraeenans 10

Ao T] = YA o] TR =Ta 1 2SR 10

Y €= L] == W] 0 1oV 2] =Y o o USRS 11

o] J= 1] o TUL (=TT OO U PSR RRTRROPRR 11
Coded character set identifier job attribute.......ccccueeecieiiciieeecce e 12

Job default coded character set identifier.......occueeicieecceee e 12

N[o 3N 1] o =TV £ ST 13
SYSEEIM VALUBS. .. tee ettt ettt et ete e et e et e st e e s ateeeeasee e sbee s ssaesassesaanseesssaeeanseeennseeanssasannseean 13
Century (QCENTURY) SYStEM VALUE....ccuviieiieeeieeeiiee et et e erte e ete e e e e e eate e e teeeentee s aaaeennaeas 13
Character identifier (QCHRID) SYStemM VAlUE.....ccccueieeiieieiieecieeecite ettt evee e evee e vee e svae e 14
Character identifier control (QCHRIDCTL) system value........cccceeeeueeeiieecciee e 14
Coded character set identifier (QCCSID) System ValU€.........ceecueeeeiieeeiieecrieeccieeeeveeeeivee e 15
Coordinated universal time offset (QUTCOFFSET) system value......ccccceeeeueeeeveeeecieeecieeennen. 15
Country or region identifier (QCNTRYID) system valUue.......ccceeveeeeecieeecieeeceeeeee e 16
Currency symbol (QCURSYM) SYSteM VAlUE.......ccccuieieiieecieeccieeeeiee et veeeve e e veeesveeesavee s 16
System date (QDATE) SYSIEM VALUE......cccuiiieiee ettt te e et e e tee e tee e e taeesataeenes 16

Date format (QDATFMT) SYStEM VAlUE....ccueiieiiieeiieeciieeetee ettt eee e e svre e s re e s aae e e aaeeenaeean 17

Date separator (QDATSEP) SYStemM ValUE.......ccccueeeeiieiiiiieeieecciee et ee e aee e e 17

Day of the month (QDAY) SYStemM VAlUE......cccuveieiiieciieecte et e e 18

Day of week (QDAYOFWEEK) SYStEM VAlUE........eeeciieieiieeeieeceieeeeieeeeiee et eeevee et e esaveeesavee s 18

DBCS system indicator (QIGC) SyStem ValUB........cccceieeiiiieiiieeciee ettt e 18

DBCS font name (QIGCCDEFNT) SYSteM VAlUE....cccuveeeuiieeiiieeiieecieeeseeeecteeeeiveeeeeveeeeaeee e 19
Decimal format (QDECFMT) SYStemM VAlUE.......ccecuiiiciieeciieeciee ettt e e e etee e vee e svae e 19
Language identifier (QLANGID) SYStem VAlUE.....cccuveeecuiieeciieeeireeeiie et eere e ere e vre e are e 20
Language indicator for keyboard type (QKBDTYPE) system value.......cccceeeecveeecvieeecieeeeieennns 21

Leap year adjustment (QLEAPADJ) System ValUe.......ccccuveeeieeeiieeecieeecree et ecvee et 21
Locale (QLOCALE) SYStEM VAlUE........ueiiiiecieee ettt ettt e e vee e vee e s aae e s bae e s vaeeeaaeas 21
Month of the year (QMONTH) SYStEM VALUE.....ccccieeiciieecieecctee ettt ere e seveeeeevaee e 22

Set job attributes (QSETIJOBATR) SYStemM VAlUE.......ccccuiereieeecieeeciee et eevee e e e 22

Sort sequence (QSRTSEQ) SYSTEM VAlUE......ccccuiieeciiieeiiecctee ettt eeeeeeareeeeareeeaaeeeneeean 23

System library list (QSYSLIBL) SYSteM VAlUE......ccccuvieecuiieeiieeeieeeetee ettt e eare e e 24

Time separator (QTIMSEP) SYStEM VAlUE......cccvieeciieeeiie et ettt et et e e e e e e eeeaneean 24

Year (QYEAR) SYSTEM VALUE........ccciieeeiieceeeeeetee ettt ecte e e e cte e e e etae e eteeeeteeesbaeesasaeeenseaans 25
DA Tol =W e [=TTod o] A o] o ISR 25

D ITS] o1 b= AV A=Y a o I o] T 0 C=T ol 1] (=SS 26
DAtADASE TILES..uiiiiieiiiet ittt st st e st e e st e s bt e e s bte e s bae e s reee s beeesraeesaneeenan 26
UIM MENUS aNd PANEL SrOUPS..ciicuieireieeriieeiiieereiieeseteeserteeserteesereeessstessaseesssssessaseesssseesssseesssseessns 27
Setting up IBM i with a national langUage VEIrSION......c..eiiiiieriiiiiiieeeiee sttt st e e e see e s e s eeesaeee s 27
How a language is displayed for IBM i fUNCIIONS.......ciiiiiiiiiiiiitecee ettt 28
Installation preparation and National laNGUAZES.cviiriiiiiriiieie ettt e s seee e 29
Checklist: GLobalization PlanNiNG.......cciccie ittt sre e e sre e s sbe e s sbeeessbeessssaesnnne 30
Hardware installation and national langUages.......ccueruieiriieiniieeeieeesre e see e s see e s 31
(600] aE-To] (=X e L=N Vo T OO PPR 31
WOrkStation CONSIAEIATIONS. ..cciiiiiiiiieiriieeriteeree sttt et e s sre e s s bee e s e e e sbeeessbeeessbeeesneeesanens 32
Considerations for ChangiNg PriNTEIS......iu ittt ettt e s e s sbeessabe e s beessasees 32
Software installation and National laNGUAZES.coccviiiiiiiriieerce e saee e seaeeesane 33
Configuring a national lanNgUAZE VEISION.....cicciiircieeeie ettt eette et ere e sre e s sre e e s tee s sbeessbaesssaeesssaesnns 34
User profile Name CONSIAEIATIONS.uiiiieciieeeceitee e cecree et e e e erre e e e e e e e e eebee e e e eebeeeeesenseneeeens 34

1= Vol oo] PSPPSR 34

YV G- Uae MU ET=T ol T =T o = ot =T F U 34
Automatic device CONTIGUIATION.....uii ittt re e s e e e s ba e s sbae s sraeesane 35
Automatic character set and code Page CONVEISION......cccuiiirieeiriieeirieeerreeeeteeseeeesseeesseeeenns 35
Printer file CONVEISION .. ettt ettt e s e e e st e e s be e e sbae s sabeeesaneas 35
Configuring the Primary LlANGUAEE.cuvi ittt ettt s e e s s be e s sbe e s sbaessbeeesaraesnnns 35
Configuring SECONAArY LANGUAEES.ccvvitiriiieiiiteeiitesrrte st e st e s st e s sbeessbeessbeessbeessabeesssseessnsens 37
Notes on secondary languages when you require English as the primary language.............. 38
Enabling the secondary langUage........cocuiiiieiiiiei ettt see s saee st e s sbee e 38

UL R AT U] = (U = LR U] o] o Lo o RPN 40
Installing and enabling LOCALES.cccuiiiiiiiiieereeee et e e s s e s 41
Scenarios: Setting up IBM i with a national language VErsion.......ccccvceerrcieinieeinceeeneee e svee e 42
Scenario: A single system suUppPOrting SPaniSh.......cocciiiiieiiiierieeceere e 43
Scenario: A single system supporting Spanish and an existing EBCDIC database.........cccccue..... 44
Scenario: A single system supporting English, Japanese, and German........cccccceeveveeerveeesneennnnn. 46
Developing globalized appliCatioNS.......ciciiiiiiiiiieeie et re e s s e e e ae e e s baeesbeeesbeeean 47
(CTo =1 E3: T [o [o] o o= T-T=1=1-J0 USRS 48
Globalization developmeENnt 0alS.......covciiiiciiiiiieiie et s 48
MaArKEt FESEAICH PrOCESS. .. uiiie ittt eeeiite e e e ecttee e e e cbte e e e s btee e e e s s teeeeeeesateeeseenntaeesaessanessennsseeeeeassenes 48

D LEAZY (o] o] paT=Y o) o] o Tod= 11 F USSR 50
DOCUMENTATION PrOCESS. .. uiiieeieciiteeeieiiteeeeeeiteeeeeetteeeeeeiateeeeeeasseeeeseastesessaassaseesassseneesesnssnsessanssenees 50

R a 1S = LA To] T o o Lo o] ST 50
TS AT o oo =TT SO TP 51
Packaging and inStallation ProCESS.....cuiiiiiiiiiiieiriierree sttt sttt s e e s e e s sbe e ssabe e s abeessasee s 52
Application MaiNTENANCE PrOCESS. ...utiiiecrieeeeeeiireeeeeitreeeeestreeeeeestreeeessseeeeessasseseessassseeessssssesessanns 52
Designing globalized appliCatiONS.....cccuiiiiiiiiiiieiriieerte sttt see s e s s e e s sbee s s beessbeessaneas 53
Checklist: APPLICATION AESIZN..ciiciiiiciiiiiee ittt sttt sree s sree st e s sbe e s sbee e sbeessabeessans 53
Globalization and LoCaliZAtION.......ccuiiiiiiiieieeeeee e e e s e s e bae s 54
Application arrangement and arChitECTUME......cciiiviiiiiiie it 56
Program module SEPAratioN.......ciccieieciiiieieeete ettt esbae e s bae e s baeesanee s 57

PAY o] o] 1 Tot= N o] oI o F= Y al T U V=TSSR 58
SPECITICATION FEFEIENCES. ... utiiiie ettt e e e e e e tee e e e e ree e e e s eabe e e e senbeeeesennseaeeas 60
Database defiNITIONS....c.uii ittt e s sa e e s are e s rte e s aaeesneee s 60

LT T =Y o - Tl F OO PSPRPP 61
Checklist: User interface deSiZN....cuiiiciiiiiiiiiiieenite ettt s st e s see e ssae e s saeessbeessabeessnsee s 61

TeXt 1ranslation ESISN. ...ttt st e s e s s e e e e e s bae e sanes 62
Textual data CoOAE AESISN....uiii ittt e s e e s sae e e s bee e sssaeesbaeesseaessenenn 64

0L T (=Y o = (ol ol g g T T P == T S PP 68
Program MESSAZE AESIEN...cccuiiiiieiiiieeiiieeretee sttt e sttt e see e ssteeessbeesseaeessbeessbeeesseessseessnseessssees 71

=T o TU I 6 LT 1= o OO OO RSPTSPR 72

(076 T 0 a1 aF=1aTe I (=77 =1 o TSRS 74
Cultural-dependent dESISN.....ciuccii ittt e sbee s s bee e sbee e sbee s sbeeesaneas 75
D] o] =NV 11 C= e (=TT =1 o DO OO USROS 84
Printer file design and translation ... 87
SOUICE TILE ESIEN ettt ettt e e s sate e s ate e sate e s bee e saeeesneeesseeesnnens 89
Character data representation architecture deSign.......cccvvvieeirieiiriieeiniee et 89
Handling languages With NO NLV SUPPOI.....c.uiiiiiiiiiieiecieertee sttt siee s siee s svee e s iee s 91
Programming considerations in globalized application desSign.......ccceceevrieerriieiniienneeeeee e 91
Coding globalized applications with high-level languages........ccccoevveirrvieiiiiiiiniieecciecee e 92
Language COMPILErS CCSID.....uiiiiiiiiiiieeriieeriiee sttt e sriteesireesreeesraeesstessseeessseessasaesssseesssseassnne 92
SESSION MANAEET . eeiiureeietreeretteereteeaetteesateesesteesartessaseessastessastessaseessaseesssseesssseesssseesssseesssseesssees 94

L O oo T g 3o (=T - VAT o 1T TP 95

J I o S o] o A =T=To [U =Y o ol TSP 95

JL I S 6{0] =10] Yo E=T=Ta [U]=T o Lol UUPPRRRRRRN 97

DB2 and SQL SOM SEOUENCE......eeeieeiiieeeeeciieeeeeciteeeeeecrtreeeessseseeeesstaesseesssessssessseseesssnssseesssnsees 98

IBM i ACCESS SOIT SEUUEINCE. .. .uvieeieecitiieeeeitteeeeeitteeeeeeerteeeeeeasseeeeseasseessessssesessssnsensessnsssneessnnsees 99
Coding globalized applications that use bidirectional data.......ccccccevevieirviiiniiiiniecrec e, 100
USING MESSAZE CAtAlOZS.ciiicuiiiiiiieiiiieiiite ettt siee st e e st e s ste e s s te e s s aeessabeessateessaseessssaesnssnesnnes 102
SoUrCe fOr MESSAZE CATAlOZS...iiiiiiirciieiiiieeetie ettt ere e sre e s s e e e sbe e s sbeessasaeens 102
Opening, extracting, and closing message Catalogs......cccvvvuierrviiriniieeinieennieesrieessieesseeesnee 105
Delivering globalized appliCatioNS......ccuiiiiieiiiiie ittt see e e e e s bee s sbeeesnees 105
Handling data in globalized appliCatioNS.......ucciiiriiiiiiieieeecete ettt see e s sre e s sbe e s sbaesnane 106
WOIKING WIth UNICOTE....ciiiiiiiie ittt ettt site e saee e saee e st e s sbee e sbeeesabeessseessneeesnsens 106
WRY USE UNICOUE. ... ittt ettt e e s e tte e e s e et te e e e s enba e e e senbaeeeeeeasseeeeeennseneesennsenes 107
Different encodings Of UNICOUE.......iiiiiiiiiiiiiiieieiteee sttt ettt s e e s ae e s saee s 107

U I TSRS PR 107

UTF L6 ettt ettt ettt st et s e st e st e st esae e e bt e sae e e beesaeesabeesneesaseebeesneeereesnneans 108

U F =3 2 ettt ettt st ettt et st e bt e st e bt e sae e e b e e sae e e bt e s he e e bt e Re e e b e e abeeeneeereenneeea 108
UTF-EBCDIC....ceiutieieeiteeeie ettt et ete sttt see e seesee e bt e s e s beesseesabeesseesaseeseesaeeeseesneesaneesneenns 108
UCS-2 and its relationship to UNicode (UTF-16)......cccceeeeiieecieeeciee e et e eteeeeeee e vee e 109
How Unicode relates to prior standards such as ASCII and EBCDIC........ccccceeeecvveeeeecciveeeeeenns 109
International Components fOr UNICOAE.......uiiiiiiiiiiicciieee ettt et e e st e e s e aae e e e e enaae s 111

[N E=T o] o1 aT=3e) la - 1 - TSSO 112
Example: Displaying data Without UnIiCOAE.....ccccuviiiiiiiiiiiiiiiiieecitecete et seee e 112
Example: Displaying data wWith UniCOde........ciiviiiiiiiiiiiiiiiicciee et e e 113

8 Lo oloTa (=l o] o I =] N TP 114
Database files and fUNCIIONS.....c.uiiiiiiiiiee ettt sree e s eaee e ssaee e ssneeesans 115

3] o)N (o] o T TP 116

O] 71 o] (=TSRSS RPN 117

(O T01Y oV 1= T3R= Ta T I (o o] £ ST 118

Data description SPECITICATIONS.......uiiii et e e e e e e s e ebae e e e e e nsaeeesennns 118
Display files and Panel SrOUPS.....cocuiiiiiieiiiierieeertee ettt e s e s be e s s e e s s bee s s bee s sans 118
Unicode variables in user interface Manager.....c.occvivvieiriieiniieinieeeree et ee e 120
GB18030: The Chinese StaNdard.........cceirciieriieeiiieesiee sttt e sre e ssee e ssiee e ssbeeesaeeessseeessseeesaraeesane 120
WOPKING WITN CCSIDS...cccutiiiitieieiieeeiiee st e ettt e sttt e sttt esssteessateessteesstaessaeessaeesasseesasseesssnessenesnnseenn 121
Recommendations and guidelines for USiNg CCSIDS......cccciiirviierriieeriieeinieessieessieesseeessneeesnee 121
IBM i function SUPPOIt fOr CCSIDS..cciiiuiiiiiieiiieeececiiee e e ecttee e e eetee e e eenre e e e seabaeeeseesaeeeeesnseseseannes 122
Database Man@gemMENT......ccii ettt sttt eee e s e e st e s s e e e sbee e sbee e sraeesareas 125

WOIK MaN@EEMENT...iiiiiiiiieeeiteeete ettt sraee e st ee e st e e s bee e s saeeessbeesseeesnseaesnssnesnnenas 127
Workstation funCtion ManagemMENt.......c.ciiviii ittt see e s ssee e saeas 127
CCSID SUPPOIT fOr MESSAZES. ceiuvieiurieriieeieieeseteereieesseeessteessteesseeesssseesssseessssesssssesssssessanes 131
Changing the CCSID of @ PhySiCal file....ciiuiiiiiiieiieeecrecee e s 148

(04 PV = Toi (=Y g =Yo T (] ¥~ OO PP PRRPRRRR 149
IBM i SOt SEQUENCE SUPPOIM . uiiiiiieciiieeeeeiteeeeeeetteeeeeetreeeseessseeeeeeasstseeessnseeaesssassssessssssnesssnnne 150

O U oT-1-Y=Te IE=Yo T d= U] o] o Yo} o S5 RS 165
Working with bidireCtional data.......coeciieeiiiiniiieeiicee e s s 167
Bidirectional appliCation SUPPOIT........uuieiieciiiieei et et eeiee e e ee e e e e esbre e e s e beeee s e enseeeeesennens 168

Checklist: Bidirectional SUPPOrt SUIAELINES.....ccuiiiiiiiiiieieieeeee e sre e 169

WOrKing With DBCS data...c.ueeiciiiiiiieiiiieiiieessite st ssie st e st s e e s sre e s s e e s ssbeessbaesssbaeesasaessasaessanes 170
Checklist: DBCS appliCation deSiZN......ciiiuieiiiieiniieiniiessieessieessseeessee s s sreessseesssaeesssseessssensssnens 171
Developing applications that process DBCS data.......cceeccveeriiieriiieniiieniieeniieesseeesseeessieeessneeens 171

U= o) e [o10] o] (=T o)A (=N b= - USSR 171
DBCS cOdiNg CONSIAEIATIONS. ... viiiiiieeeiieirite e sttt esite e siee e sree e st e s sree s sbee s sbeessaseessnaeessasaesnnes 172
Processing double-byte CharaCters.......ccccvviiiiciiiriii e 175
D1y o] =Y o] o] SR 176
Making printer files DBCS Capable... ..ottt 177
Copying spooled and Nonspooled DBCS fileS.....cuiiviiiiiiiiriiienieesitessree e e e sseee e 178
Changing alphanumeric programs t0 DBCS programs.......cccceeceeerieernieesnseeenseesssneesssneessnnes 179
Entering DBCS text in CL COMMANGS......ciiiiiiiriieiiiieenieeeeieeeeieessieessteesseeesseeessseeesssenessneas 179
D] 20 YoToT 1 1Y/=T =1 o] PP 180
SQL ANA DBCS....neiieieecieeieeete et e eeete e bt eete s te e s ee e beesnteebeesssessseesseesnseasseesnseesseesnseeseesssesnses 183
DBCS COUE SCNEMES. .. cuiiiiiiieeciee ettt ettt e s ree e sbt e s s bt e s sbee e s bt e e sabeeesabeeesaseessaseessasens 186
3] 2] O T {o] a1 =Y o] L3RR 187
Copying a DBCS fONT table...iiiiiiiiiiiiiiete ettt e s s e s be e e saeas 188
Deleting @ DBCS fONt table...ii ittt e s s e s 189
(D] 2] OS] a1 1 1= SRR 189
3] 2 O S T i -1 o] 1= J OO PSPPSR 190
Saving and restoring a DBCS sOrt table.....iuiiiieiiiiiiciecciecee e 191
Deleting a DBCS SOM 1able.. ittt ettt ee e e sbe e s sba e s svaeeeas 192
[B] 2] 0 SR iT=10e Io =) 113 14T] o O PSPPSR 192

WOIKING WITH LOCALES...ccuviiiiiieiiiieecte ettt sbe e e s bee s s be e e sbae e sabaeesabaeesasaeessaeenns 193
(o Tor 1L =T (ot Ao < F T PP RRUPPTRROPRRINt 193
(o Tor- 1Ll o= L (=Y oY =T TP TSRS TRUSPRPT 194

LC _COLLATE CatBEOIY e iuueteeieeiteeeeeiietee e ettt e e sttt e e s et ee e s e eseeeesesuneteessenreeessenseeeesesansaeeeanan 196

LC _CTYPE CA@BOIY .eeiiiiiiiieeieiiteee ettt ettt e e ettt e e sttt e e s et e e s e nee e e e s e st eeeseaseeeeeesnsaeeennan 199
LC_MESSAGES CalBBOIY e iuuiiiieieittie ettt ettt e et te e st e e s e st e e e e s st e e e s snneteeeesnreeeesennes 201
LC_MONETARY CAt@BOIY ...eiiiieiitiiiiiiiteee ettt e e ettt e e e ette s s et e e s esssee e e e snneeeessaneeeeeesansaeeesnn 203
LC_NUMERIC Cat@gOrY ... ueeteiieitieeeeeietteeeeeitee e e ettt e e sttt e s ssaseteesseuneeeesseneeeessennsseeesesanseeesann 206

LC _TIME CatOgOrY . uueeieeieitteeeeeiitee e e ettt e e ettt e e e st e e e e s e et e e s mbe e e e seeussteeeesnneeeeeeanneaeeeaanneaeas 207
LC_TOD CABEOIY.ceeiieuitieeeeeietee e ettt e ettt e e ettt e e st e e s s se e e e e senee e e s s st teeaeansbeeeseannreeeeesnneees 210

[oTor=Y LoI1Y o] o Yo Lol F=Ya =TSRt 212
Examples: Locale ProgrammMing.......coceeeieernieerniieennieessieessseesssseesssseesssseesssseesssseesssseessssesssssens 213
EXample: HOW LOCALES WOIK...iiii i eiieee ettt ee ettt ettt tree e e te e e e et e e e e e abr e e e e e nbaae e e eeanaaeeas 213
Example: Creating and enabling @ loCale.....cccuiiviiiiiiiiiiieieieceie e 216
Example: Producing unique monetary formats.......ccucvieviiierniienniieeneeesee e sseessee e 221
Example: Locales as part of a multilingual environment........cocccvvivvieiiiieencieeecieeceeeeieeene 221
EXaMPLe: POSIX LOCALE. . ciiiieiiie ettt ettt ettt ecrte e e ree e e e e eate e e e s ree e e e sensaeeesennsaneeaennnes 224
EXaMPLe: EN_US LOCALE... .ttt ettt e e tte e e e e ete e e s e et e e e e e e nbaae e e eennanee s 228
Globalization reference INfOrMatioN.t e ee s ee s sbee e s nes 236

National language version feature COUES.....cuiiiiiiiiiiiirteete et e s e s ee e s sarae s 236

Country and regioN IdENTITIEIS. .. .uiiiciiieiee ettt te e e sbe e s s be e e sbaeesbaeesaseeenas 238

Default system values for national language VErSiONS.......cucuiiviiieriiieniiieecie e e s e ssaeee s 245
ALDanian (FEAtUIE 2995) ... i eieeieeeieesteeeteesteesee e steesae e ste e seesee s beesseeesbeesseesaseesseesnseeseesssesnses 246
ArabiC (FEAtUIE 2954).....uiiiii it et este et e e e et e st e e e e ree s ae e be e srte e seesssessbeesseesnseeseesnseensennes 247
Belgian DUtCh MNCS (FEAtUIE 2963)..cccuiiiiiicieiciecieecees et e seesteeseeste e teesaeesseesseesseessaesnsaens 247
Belgium English (FEAtUure 2909).....cuuiiiieiieeieecieeieecteeteecteeseesteesreeste e seesseesseesneeeseessaeeseenns 247
Belgian French MNCS (FEATUIE 2966).....cc.ueecueieeeeieeiieeieeseeeieeseeseessseeseesseesseessseesseesssssssennns 248
Brazilian Portuguese (Feature 2980).......c.uecieriercienieeieeeteeseeseeestesseeesaeesseesseesseesssesnseesnsesnnes 248
BULZArian (FEATUIE 2974)....uiiiiieeeeeeeeerte e e et e s teesteeseeste e reeste e beessseeseessaeeseesseesnseenseesnsennnes 248
Canadian French MNCS (FEAtUIE 298L)...cccuiiieeeieecieeieeeeeeieesteesseesreeseeesreesreesseessaesnseessaesaeas 248
Croatian (FEAtUE 2902)...c.uuiiciieeieeieecte et e ste et esee st e ste e s te e seesraeebeesaseeseesseeeseessseenseasseeensennnes 249
CZECH (FEALUINE 2975) . i itieiieeeeeeieecee et e stte ettt e s te e te e aee s te e s e e snteesseeenseeseesneeeseesnseenseessseenseennes 249
DaniSh (FEATUIE 2926).....ccceeeiieteeeieeciee et eseeste et e seeesteesseeeteesseessseesseessseesseesnseeseessseenseesssesnses 249
Dutch Netherlands (FEAtUre 2923)...ccuiiiiieiieceeie ettt ettt e et e et e st e e reeeneeennes 250

English Uppercase and Lowercase (FEature 2924)........ccoeueeceeeeeeceeneesieesiee e eseeeseseseesseeenns 250

English Uppercase DBCS (FEAtUre 2938)...cccuiiiieicierieeieereeeieesreeseessieesseesseesseesseesseesnaesnsessns 250

English Uppercase and Lowercase DBCS (Feature 2984).......cooveceeeeeeieeneeeieeeeseeeseeesee e 251
ESTONian (FEAtUIE 2902).....uiiiiieieieieeeeete et este st e seesrteeseeste e seesreeeseesrseeseesssessseesseesnsessseesnses 251
Farsi (FEAtUIE 2998)...ciuiiiiieceieiiecteeeteeseeste et e s teste e st e s teesae e saaeebeesneeeseessseenseessseenseesseesnseenses 252
FIiNNiSh (FEAtUIE 2925)....ciiicieeieeie ettt ettt et s e e s e be e sateesreesrae e seessaeenbeesnaeenseesanennses 252
French (FEATUIE 2928).....ui i iiiciieciiecee sttt te et e te et e st e e ste e st eete e aa e ente e seesseeeseesssesnsaesneeenseennes 252
French MNCS (FEAtUIE 2940)......ciiieecieeeeeeieeeee et eseeste st e seessseeseesteesseesseesseessseesseesssssssessssenn 252
GErman (FEAtUIE 2929)...c i iiieieeeeeee et erte ettt e s rae e be e s te et esrte s beesaaeenteesseesnseesseesnseeseesnseenses 253
German MNCS (FEAUIE 2939)...iiiiieeceeeieecieeete et esreeste et esteesbeesrtesbeessaeeseesseesnseenseesnsessennns 253
GIEEK (FEATUIE 2957).ciuiiiiieeieecieeie et ee et et e s te st e s reeste e s e e s eeesseesateeseesraeeseesneeenseessseenseesssennses 253
HEDIEW (FEALUINE 296L)..ccuuiieiiiiieeieeiteeteete et et este et esate s teesaeesteesseesate e seesnseeseessteenseesseeensenn 254
HUNZAriaN (FEALUIE 2976)....ccuiieieeeeeeteeteectte et e ste st e steesteeseesaeesaeesnteesseesseeeseessseenseesneeensennnes 254
IcelandiC (FEATUIE 2958).....uiiciiiiiiiecieeieeste st este s te et e s te et e s te e teesaae e beessaeenseessaeenseesseeensesnnes 254
Ttalian (FEALUME 2932) i iiiiicieeceeeie et este et e st ee e ste et e e te e be e s te e be e ssae s beesseesnseesseesaseeseesnsesnseanns 254
Italian MNCS (FEAtUIE 2942)....cciiieeeeieeceeeieestte et et e e e ste e s e e teessee s teesaaeeteesseesntaeseesneesnsnennes 255
Japanese Universal (FEAtUre 2930)....ciiiiie e eciieeciieeeteeeeteeeeteeestteeeeseeesasesesssesesssesesssesssnseenns 255
Japanese (Katakana) (FEAtUre 2962).....ccuuiicciieicieeeiee et e et ee e e e tee e e eaee e e eaee e e eaee e e bee e s raeeenneas 255
KOr@an (FEATUIE 2986).....iccuiiiieecieeieeeieeieeeieesteeseeesteesseesseesseessseesseesssesseesssesseesseessesssessnsesses 256
LAotian (FEATUIE 2906)......iccieceeeieeetieecieesteereeesttestessseestessseesseesseesseessseesseesssessseesssessseesseesnsensns 256
LatVvian (FEALUIE 2904).. . iiiieceeeee et eete et e teste st e s te e be e sree s beessaeebeesseessseesseesaseenseesnseeseesneenn 256
Lithuanian (FEAtUre 2903)...iiiiicieeieeceeeieeceeeee et e s testeeseesae e reesteesseesreeeseessseesseesseesseesseesnsenn 256
Macedonian (FEATUIE 29713) ... ieieeieecieeste et esteeteestee s te s seesraeesseesraesseesseesnseesseessseeseesnsennses 257
NOrwegian (FEAtUIE 2933) ... ccieieeeeerieeie et ee et e ee e te e reesteesreesteesbeesaseeseesssesnseesseesnseanns 257
POLISH (FEALUIE 297 8)..ccueeieieecie ettt sttt e sttt te s te e s ae s te e saa e e teesaaeenteesaesntaenseesnseenseennes 257
POrtuguese (FEAtUIE 2922)....cuuiiiieeieeieeeieeceee e et estee st esaee s teesseesaeesseessseesseesssesnseesseesnseassnenns 258
Portuguese MNCS (FEATUIE 2996).....c.uiecuieiieeieeieeeieesieeseessieeseessteesseesaeesseesssessseesseesnseessessnnes 258
RoManian (FEAtUIE 2992)....cuii ettt et e te st et esae e te e s teeste e srae e be e sraeebeessaeenseessaesnseesseesnses 258
RUSSIAN (FEALUIE 2979)..uiieieeieeeieeeeste ettt e ste st e st e e e s te e te e saa e e beesaaesrteesseesnseesseesnseeseesnseenses 259
SErbian (FEATUIE 29L4)....i ittt ettt e ste e st e e te e b e e s te e be e s naeebeesseeenseesseesnseeseesneeennes 259
Simplified Chinese (FEAtUIrE 2989)......uui ettt ettt ree e e ree e et e e e aee e e be e e e saeeenneas 259
SLOVaKiaN (FEALUIE 2994)...cc iiieeeieecee et ete ettt e ste e te e s teeste e s e e steesbeesaee e seesnteeseesssesnseasseeensenn 260
Slovenian (FEALUIE 291 L)......ciiiieieeceeeieecieeete et e etesste e st e s steesseesee e seessseeseesssessseasssesnseesseessennns 260
SPANISN (FEATUIE 293 L) ..uiiiiieceiieeciee et et et e ee e e e e teeeeteeeebeeeeabaeeessaeeessaeeessaseensaseensaeennsaeannes 260
SWEAISH (FEALUINE 293 7).ueieiieieeeieceeeee ettt et e et et e s te e e e sra e e be e saaeebeesreeenteesseesnteeseesnseennes 260
Thai (FEATUIE 2972) .uuiiiieeeieeceeeee et ettt e e eeste et e s te e ste e st e e be e sateesteesateeseesseeenseesseeenseesseeansesnes 261
Traditional Chinese (FEAtUIE 2987)......uiciiicieeieeiteeieceesee st esreesae e e see e e s aesbeesraeebeesneeenes 261
TUPKISH (FEATUIE 2956)....ciiiiictieeiieiee et eeteeste st e s teste e st e s steesraeste e aeesnte e seesneeesaesnseenseesnseenseennes 261
VietNamese (FEAtUIE 2905).. . i iieieiieeieeceeeie et e seessteesree s aeesseesseesseessseeseesseesnseesseesnsesnsensnes 262
System values for other languages with no national language Version........cccccevvceeinceeieseeenseeennnne 262
Keyboard reference iNfOrmMation..........iccuiiee et s e ete e e e eeare e e e e e b e e e e e e aae e e e e ennrens 264
(Yo To T= 1 o I Eo Yo TU £ USSR 264
Albanian IBM Enhanced Keyboard...........ooo ittt e e e 264
Arabic IBM Enhanced KeYbOoard.........ccuuiiiiicciiiee ettt e e ecvte e e s vaae e e naae s 264
Austrian German IBM Enhanced Keyboard........cccccuiieiiecciiieeicccieee et eee e 265
Belgian Multinational IBM Enhanced Keyboard.........ccoccuiiriviiiiiiiiniieniiiesccieecciecsieesiie e 265
Brazilian Portuguese IBM Enhanced Keyboard.......ccocccevriiiiriieiniiienniiennieesnieessieessveessneens 265
Bulgarian Cyrillic IBM Enhanced Keyboard........cccevirieiiiiiniieiieeceecriee e 266
Canadian French IBM Enhanced Keyboard...........ccuueiieiciiieeiccieee ettt 266
Croatian IBM Enhanced Keyboard..........cco oottt e e et 266
Czech IBM Enhanced KeYbOoard........cucuiiie et ceceee e settee e s eeree e s e e vee e e s e vrae e s s nnan s 267
Danish IBM Enhanced Keyboard........ ..ottt e s vee e e e naee e 267
Dutch IBM Enhanced KeYbOoard..........ccuuiie ettt eeteee e ttee e s vre e e et e e e e 267
Farsi IBM Enhanced KeYbOoard..........uuieieeiiiiicccies ettt ecee e eetee e e e vae e s e e snane e e e e 268
Finnish/Swedish IBM Enhanced Keyboard..........ccccocciiiiiieciiiee et cetnee e e cvree e 268
French (AZERTY) IBM Enhanced Keyboard........cceeeciieeecieeeciieeereeeetee ettt 268
Greek IBM Enhanced Keyboard.........cuuiee it eetree e vtee e e evree e e e nree e 268
Hebrew IBM Enhanced Keyboard........couiiiiiiciiiee ettt e e evree e e evrae e s e 269
Hebrew, Latin IBM Enhanced Keyboard..........ueeeeiiiii ettt 269

vii

viii

Hungarian IBM Enhanced Keyboard.........ccuiiiiiiiieiiiieniieesrieeesieessiee st e ssveessreessvee s e 269

Italian IBM Enhanced Keyboard..........occuiiii ittt ecvree e e eree e e e ennae e e s s 270
Japanese IBM Enhanced Keyboard..........couuiiieiicciieie ettt e e e vaee e e 270
Korean IBM Enhanced KeYDOard...........eeeiciiiiii ittt e s evtee e s e enrae e e s e enrnee e 270
Macedonian IBM Enhanced Keyboard............oueiiiiie ittt eeree e 270
Norwegian IBM Enhanced Keyboard.......c.cciiiiiniieiniee ittt sseee e esee e ssee e s see e s 271
Polish IBM Enhanced Keyboard...........uuee ittt e e et e e eree e e e enan e e 271
Portuguese IBM Enhanced Keyboard........occeiiiieiiiiiiieeirieeseieessieessreesseeesseee s eeesseeesnes 271
Romanian IBM Enhanced Keyboard........c..ueui ittt vtee e e envee e 272
Russian IBM Enhanced Keyboard..........oouuieeieeiiiieecccieee ettt s e ettee e e ve e e s vane e e 272
Serbian Cyrillic IBM Enhanced Keyboard..........oo ettt 272
Slovakian IBM Enhanced Keyboard.......cccuieiieciiee ettt eeveee s e svree e e vaae e 273
Slovenian IBM Enhanced Keyboard...........ooo ittt st e e e vtee e e 273
Spanish-Speaking IBM Enhanced Keyboard........ccoccviviiiiiiieiiieenieecieceeec e svee e siee e 273
Spanish IBM Enhanced Keyboard.........coouiieiieciiieecctees ettt e e e vtee e e s aae e e 274
Swiss-Bilingual-French IBM Enhanced Keyboard........c.ccvveeiriieiiiieiniieineecsee e 274
Swiss-Bilingual-German IBM Enhanced Keyboard........cccceveiiiiniieeniieeniieneieceee e 274
Traditional Chinese IBM Enhanced Keyboard........ccccccuuieiieciiieiiciiee st eeeee e 275
Turkish IBM Enhanced KeYhOoard..........coo ittt veee e e vee e e e evaee e e 275

U.K. English IBM Enhanced Keyboard.........cocuiiriiiiiiiieiieinieccieesee st 275

U.S. English IBM Enhanced Keyboard.........cccoovueiiiiiiiiiiiiiiecciec et 276
Special-character KEYD0Ard SEt.....cccuuiiiiieciiie e e e e e e e e e e e e e e e e naees 276
National language keyboard types and SBCS COAE PAZES......cevvvrirrieiriireniireeiieesireesiereessaeeens 278
(000 o [l o= T= LT OO SO SRTOTSRRTPTR 281
(0 g F= Y= Tor (=T 1= £ TSRO P USRS 282
Country extended character SEt Q0697uuriiei ittt e e et e e e e rree e e eennes 282
Graphic character CONVErsion tableS......uuiiii i 283
International DP 94 00103 (ASCII)...cccciiecieeeieerieeseeetessreeseeesseeseessseesseeeseesseesssesssessssssnsesssesanes 301
Character set 01169 (International Alphabet 5).......occvieieiieecieeeee et et 301
Invariant character set (and itS EXCEPHIONS)..uiiiiiiiiiiii ettt e et e e e ree e 302
MONOCASE TADLES. .. eieiiiiei ettt sbe e st e e s bt e e st e e e s be e e sabae s s baessabaeenaes 305
POrtable CharaCter ST ..ttt te e s ae e s s be e s saee e s aaeesaeas 306
Syntactic/invariant character et 00640........ccocccriieeeecieee e e eerrre e e sree e e e e e sare e e e e enreeas 307
T.61 Character SET 01252, . ..uiiiicieeeiieeeciite sttt et s e essae e ssaee e ssate e s ssteessseeesssteesasseesssaesanseenn 308
T.61 Character REPErtoire OL253... oo cccieee ettt e eectee e e e erree e e e e bee e e s sentaeeesenseaesesensreeeanan 309
T.61 graphic CharaCter CONVEISIONS.iiiiiiiiiieerite ettt e s e s s e e s bee s s beessaneas 309
CCSID referenCe iNfOrMAtiON.....cui ittt e st e s st e s st e s s bee e s beeessseeesseeesnnens 312
CCSID values defined 0N IBM iiiiicuiiiciiiiiiesieesciee sttt e st s st essiveessbe e s te e ssnse e s sbaessasaesnnsaess 312
Bidirectional SENSITIVE CCSIDS.....uiiiciiiiiiiieiieeeiieeeiee s eite e siee e stee s sre e s sre e e ssbaessbaessbaesssaessssaeenns 320
Bidirectional Language String Types and Associated Attributesccceccevvveeiniienniiensieceeen, 321
SUPPOITEd CCSID MAPPINES..eetictrerrareerarieeraieesatteesaeeesarteesaseeesaseesssseeesaseessassesssseesssseesssssessssessns 322
ASSOCIATEA CCSIDS...uiiiitieieiieieiie ettt e sttt e st e e sttt e ste e e sbeeesbaesssbaeesbaesssbeesssaesssaesssaessssaessssansnnes 340
Encoding sChemes fOr the CCSIDS......cuiiiiiiiiiieeiiesrie sttt e st e s e s sre e s e e s e e s s beessbaessans 346
Language identifiers and associated default CCSIDS......ccccviiiirriiierniieeniieeerieeeneeeeseeesseee s 346
Locale referenCe INfOrMAatioN......cuii ittt st e ssaee e ssate e ssbeesseeesaeaesn 349
System-supplied locales and recommended CCSIDS......cciucviiieieeciieeeeecieee et e e crre e e e 349
Mapping of locale SYMbDOLIC NAMES......ccuiiiriiiiiereeere et e s ste e s see e s sareesnnee 355
UCS-2 level-1 Mapping tables. .. .ottt see s st e e st e s s e e e sbee s sabaessans 367
Unicode uppercase to lowercase conversion mapping table......ccciviieinvieinceeincieecciee e 367
Unicode lowercase to uppercase conversion mapping table ..o 389
Unicode Private Use Area mapping 0N IBM i....cociiiiiiiiiiiiiieiisiecsieessiee st e s s 410
Implementing Custom PUA Mapping SUPPOIT....ccccuieirieeiriieirieessieessreesseeesseeesseeesssesssseesnnee 411
CopYing the SAMPLE SOUICE....ciiiiiiiciieeiee ettt st see e s e e s srte e ssnteessseaesnes 411
Modifying the sample SOUICE fIlES....cuiiiiiiiiiieeeecee e s s aee s 411
Create *TBL objects to Modify PUA MaPPINgS....cceeceeeierreenierieeseeereesieesseeseeeseessseessneenees 413
Activate the system CCSID SUPPOIt ChangES....cccuuiirciiiriiieriiieerit st essire e s sireessiaeessaeeessneeens 413

Reset the system CCSID support to default state......cccueeeeeeciiiiiicciiee e 414
Release upgrade considerations for system CCSID SUPPOIt.....cccerrcvierriieerrieeeinireeesieessneeens 414

o O Qo =T T (o] e AT U= Lot (=T 2T 414

REXX/400 extension characters: AXXXXXXX GCGIDS.......uuuuuuumiiiiieeiieeiieeeeeeeeeeeeeeeeeeeeeeeeessasnasaaans 414
REXX/400 extension characters: BXXXXXXX GCGIDS.......uuuuuuuiiiieeeeieeiiieeieeeeeeeeeeeeeeeeeeeeevsasnaanaanes 419
REXX/400 extension characters: GXXXXXXX GCGIDS.......ccooiiiiieimeermieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennes 421
REXX/400 extension characters: HXXXXXXX GCGIDS.......ccuuueeruummumiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeesvasssanes 423
REXX/400 extension characters: IXXXXXXX GCGIDS........cccouiiiiiiiiiieeiieeiiiieeees e e e e e e e e e eeeeeens 424
REXX/400 extension characters: KXXXXXXX GCGIDS......c.couvuiireurmmmiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseanes 426
REXX/400 extension characters: LXXXXXXX GCGIDS........cccouiiiiiiiiiieeiieeriiieees e e e e e e e e e e eeeeeeens 429
REXX/400 extension characters: NXXXXXXX GCGIDS.......ccuuuuruuuuummiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeesansnaaes 434
REXX/400 extension characters: OXXXXXXX GCGIDS.......ccuuuuueuummuuiiiieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeevaasaaaes 436
REXX/400 extension characters: SXXXXXXX GCGIDS....cccccoiiiiiiiiiiiiiiiiieeeeeeeeee e e e e e e e e e e eees 437
Default character data conversion that can use substitUtioN......cccvvveveeieiiiiiieieeee e 441
Alternative CCSID 1399 CONVEISION......uuuueeeeeieeeeeeieeiiitrrreeereeeeeeeeeeaessssrseseesseseessesesssssssssssssseseessennnns 444
CCSID 1377 CONVEISION UPAAtE....uueiiieiieciiiieeceiiiee e eecitteeeeettee e e s s sttee e e s snbeeeesesnsaaeesesssesesesnnssnnessnnssens 444
CCSID 1388 CONVEISION UPAALE.....uuiiieeieciiiieeeeiiiee e eecttre e e eettee e e s e nreeeeseabeeeesssnsaaeeeesssssesessnssesssennseens 457
GLODALIZATION ChECKLISTS...iiiiiiieetttetee e e e e e e e e bbb e e e e eesese s e sssssraeareereeeens 458
Related information for IBM i globalization......c..cevciiiiiiiiiiiiiiieccieccte et se e s sve e 459

[\ 0] o =Y - TR | . |

Programming interface iNfOrmMation. ... e e 462
= o (=100 =T OO OO URROPPRRUPRPRNt 462
BT g 0TS TaTo oleTaTe L1 AT] o T3S PRSP 463

Terms and CONAItIONS...ccvceieieiirieierieietereererereererereeceressesessssesessssesessssessssesessscesesees 30D

IBM i globalization

The IBM i operating system is designed to support the culture and languages of many countries around
the world. As companies integrate e-commerce on a global scale into their fundamental business
processes, their prospective customers, established customers, and active partners can take advantage
of increased revenue and decreased expenses through software globalization.

Globalizing your e-business is no longer a luxury; it is a necessity. As the Internet transcends national and
geographical boundaries, the concept of doing business within a single country is quickly giving way to the
need to compete in an international marketplace.

Globalized software gives you the following advantages:

- Increased customer satisfaction that can increase sales

« Enhanced customer support communications

« Enhanced global information dissemination

« A better return on Information Technology (IT) investments

This information shows you how to:
« Create an application efficiently and at minimal expense.

- Retrofit existing applications for globalization and create new applications designed for globalization.
Designing an application for globalization, however, is usually less expensive than retrofitting an existing
application.

 Ensure that the application design does not interfere with the current or planned design of other
internationalized applications.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 460.

Related information
Globalize your On Demand Business Web site
IBM i Globalization Web site

What's new for IBMi 7.5

Read about new or significantly changed information for the IBM i globalization topic collection.

IBMi 7.5 updates

« Added support for CCSID 1379. This CCSID adds more support for Traditional Chinese and includes
some Simplified Chinese support.

« Updated the mapping support for CCSID 1377 to and from Unicode to support Hong Kong Traditional
Chinese mixed host enhancements for HKSCS (Mapping is HKSCS-2008 to Unicode 38064 (Unicode
5.2) level).

For information on the characters that changed in the new mapping, see “CCSID 1377 conversion
update” on page 444.

« Updated mapping support for CCSID 1388 to and from Unicode to support Simplified Chinese DBCS-
GB 18030 Host with UDCs and Uygur extension (Mapping is GBK-2015 to Unicode 50352 (Unicode 8.0)
level)

For information on the characters that changed in the new mapping, see “CCSID 1388 conversion
update” on page 457.

» Added CCSID 5473 support (which supports the previous mappings for 1377 to and from Unicode).
« Added CCSID 13676 support (which supports the previous mappings for 1388 to and from Unicode).

© Copyright IBM Corp. 1998, 2022 1

http://www.ibm.com/software/globalization/index.jsp
http://www.ibm.com/systems/power/software/i/globalization/

« Added CCSID 1210 to provide limited support for UTF-EBCDIC. For more information, see “UTF-
EBCDIC” on page 108.

« The IBM default mapping support for CCSID 1399 to and from Unicode converts 5 characters differently
than Microsoft does in its default support. This can cause problems for customers that have both
operating systems in their environment. For more information on how to address this, see “Alternative
CCSID 1399 conversion” on page 444.

How to see what's new or changed
To help you see where technical changes have been made, the information center uses:

« The ¥ image to mark where new or changed information begins.
« The % image to mark where new or changed information ends.

In PDF files, you might see revision bars (|) in the left margin of new and changed information.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for IBM i globalization

You can view and print a PDF file of this information.

To view or download the PDF version of this document, select IBM i globalization .

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)-'-{s'.

Globalization overview

The IBM i operating system supports many languages, thus working as you expect it to work from both a
linguistic and a cultural point of view. You can work in the language of your choice. The IBM i operating
system also ensures that the data you send to and receive from the system appears in the form and order
you expect.

The IBM i operating system uses a common set of program code, regardless of which language you use on
the system. For example, the program code on a U.S. English system and the program code on a Spanish
system are identical. Different sets of textual data are used, however, for different languages.

Textual data is a collective term for menus, displays, lists, prompts, options, online help information, and
messages. This means that you see Help for the description of a function key for online help information
about a U.S. English system, while you see Ayuda on a Spanish system. Using the same program code with
different sets of textual data allows the IBM i operating system to support more than one language on a
single system.

2 IBMi: IBMi globalization

http://www.adobe.com/products/acrobat/readstep.html

Multiple language support

The IBM i operating system provides the tools and functions you need to make your applications deliver
your business information, such as dates and numbers, in formats that conform to the expectations of
users in multiple cultures using multiple languages.

You can enable your system to translate, present, and process data in a global environment.

When you install secondary languages on your system, you can set up your system with user interfaces
(that is, textual data) for any of the national language versions (NLVs) provided for the system. To support
multiple languages concurrently, you must have adequate storage to install all the necessary secondary
languages. You must also install the necessary hardware to support each language.

National language version

A national language version (NLV) is a version of the IBM i operating system that contains translated text
and a predefined set of language-dependent values, such as date format, time format, and sort sequence,
for a particular language.

When you order an IBM i licensed program, you identify the national language version you want by
specifying a language feature code. If you want to use more than one national language version of a
licensed program, you can order additional languages. For example, if you are a German customer, you
might need support for both German and French on one system. You can order a national language
version for German and a national language version for French.

When you order more than one national language version for a system, you designate one of the versions
as the primary language. The primary language you designate is the feature code identified when you
ordered the operating system. You designate all other national language versions as secondary languages.

You must order some of the licensed programs for your system with the same language feature code

as the primary language of the system. If the language feature code of a licensed program differs from
the language feature code of the primary language of the system, the licensed program might not install
correctly. Licensed programs with different feature codes as the primary language can be installed as a
secondary language.

Related concepts

National language version feature codes

This table lists the available national language version feature codes on the IBM i operating system. When
you order an IBM i licensed program, you identify the national language version you want by specifying a
language feature code.

Setting up IBM i with a national language version

The steps to install and configure a national language version on the IBM i operating system include
selecting and installing hardware, installing software, and configuring your environment to runin a
globalized setting.

IBM i translations

IBM i licensed programs, or portions of IBM i licensed programs, are translated into languages. Not all
portions of IBM i licensed programs are translated into every language. For more information about the
languages translated, see “National language version feature codes” on page 236.

National language design in IBM i

The national language design in IBM i defines the functions your application software can use to support
national languages.

IBM i globalization 3

Character representation

Character representation in the system is controlled by the Character Data Representation Architecture
(CDRA).

CDRA identifies characters by encoding scheme identifier (ESid), character set, pairs of character sets and
code pages (as needed), and additional coding-related information (as necessary). This identification is
established by a system of tags. The tags are handled by the IBM i operating system in a way that ensures
character set integrity.

The overall objective of CDRA is to define a method of assigning and preserving the meaning of coded
graphic characters through various stages of processing and interchanging.

Encoding scheme
The Character Data Representation Architecture (CDRA) system of tags uses an encoding scheme to
specify many rules.

The rules include:

The coding space (number and allowable value of code points in a code page)

Rules for sharing the coding space between control and graphic characters

Rules related to specific options, such as the number bytes required for each character (single-byte,
double-byte, or mixed-byte) permitted in that scheme

Rules related to code extension techniques (if used)

The rules for encoding schemes are followed when code points are assigned to graphic characters in a
particular code page. Some common encoding schemes are Extended Binary Coded Decimal Interchange
Code (EBCDIC) and American Standard Code for Information Interchange (ASCII).

Conversion of character data
The Character Data Representation Architecture (CDRA) system of tags ensures that you can convert
character data in a predictable, repeatable way.

Conversion pertains to converting the code points assigned to one or more characters in one code page
to their corresponding code points in another code page. The conversion might cause a single character
to map to a sequence of characters, or a sequence of characters to map to a single character. Conversion
should not be equated to translating from one language to another.

Conversion methods
The following methods are used for conversion:

« Round-trip conversion. The integrity of all character data is maintained from the source coded character
set identifier (CCSID) to the target CCSID and back to the source.

When performing a round-trip conversion, you might see incorrect representation of the characters
displayed in the target CCSID. The integrity is preserved, however. When the characters are converted
back to the source CCSID, they regain their original hexadecimal values and representation.

« Enforced subset match conversion (substitution). Characters that exist in both the source and target
CCSID have their integrity maintained. Characters in the source CCSID but not in the target CCSID are
replaced. Replaced values are also referred to as substitution characters. For EBCDIC encoding, these
appear on most display stations as a solid block. For ASCII encoding, these substitution characters
appear differently.

This substitution is permanent when converting back to the source CCSID because it is not possible to
retrieve the original hexadecimal values.

For a list of CCSID conversions that result in substitution characters, see the Default conversion that
might use substitution table.

- Linguistic conversion. Also known as best-fit conversion, a partial mapping is done from the source
code page to the target code page. The integrity of characters that are in both the target CCSID and

4 IBMi: IBMi globalization

the source CCSID are preserved. Characters that are not in the target CCSID are mapped to the most
culturally acceptable alternative for that character.

For example, the source CCSID might support an A grave character ("J"‘). The target CCSID might

not support this character. During the conversion, the most linguistically acceptable character (a Latin
capital A) is substituted for the A grave. After the conversion, characters that are not included in the
target CCSID are presented to the user as the most linguistically acceptable substitution characters.
This substitution is permanent. Any loss of character integrity is permanent.

Through an application programming interface (API), linguistic conversion is available from any
supported single-byte CCSID to any other supported single-byte CCSID.

Related concepts

Recommendations and guidelines for using CCSIDs
These recommendations are useful when you write globalized applications.

Related reference

Default character data conversion that can use substitution

The default CCSID conversions use substitution because the character sets within the CCSIDs are
different. The table shows which CCSIDs (From CCSID column) can be substituted by other CCSIDs (To
CCSID column).

Related information
Character Conversion APIs

Coded character set identifier values
CDRA defines the range of values for CCSIDs (coded character set identifiers).

The values include:

CCSID value Purpose or meaning

00000 Use next higher hierarchical CCSID

00001 through 65533 IBM-registered CCSIDs

65534 Refer to lower hierarchical CCSID

65535 No automatic conversion of data between this
CCSID and any other CCSID. (This is the default
setting of the QCCSID system value.)

CDRA uses a tag field to hold a CCSID value to identify the meaning of coded graphic characters. The
tag field might be in a data structure that is logically associated with the data object (explicit tagging),
or it might be inherited from the tag field associated with the other objects within the operating system
(implicit tagging).

Related concepts

CCSID values defined on IBM i
This table lists the coded character set identifiers (CCSIDs) that are defined on the IBM i operating
system.

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETIJOBATR) system value sets job attributes at job startup time.

Character data integrity
The Character Data Representation Architecture (CDRA) system of tags uses coded character set
identifiers (CCSIDs) to maintain data integrity when character data is passed from system to system

IBM i globalization 5

or from user to user. CCSIDs assign a value that uniquely identifies the coded graphic character
representation used for character data.

Data integrity is not maintained using CCSID 65535 across countries

The following table shows the meaning of maintaining data integrity. A database file created by a U.S. user
contains a dollar sign and is read by a user in the United Kingdom and in Denmark. If the application does
not assign CCSID tags that are associated with the data to the file, users see different characters.

Country Keyboard type | Code page CCSID Code point Character
u.s. usB 037 65535 X'5B' $
U.K. UKB 285 65535 X'5B' £
Denmark DMB 277 65535 X'5B" A

Data integrity is maintained by using CCSID tags

If the application assigns a CCSID associated with the data to a file, the application can use IBM i CCSID
support to maintain the integrity of the data. When the file is created with CCSID 037, the user in the
United Kingdom (job CCSID 285) and the user in Denmark (job CCSID 277) see the same character.

Database management takes care of the mapping.

Country Keyboard type |Code page CCSID Code point Character
u.s. UsB 037 00037 X'5B' $
U.K. UKB 285 00285 X'4A' $
Denmark DMB 277 00277 X'67' $

CCSID support is particularly important when:

« Multiple national language versions, keyboards, and display stations are installed on the IBM i operating
system.

« Multiple systems are sharing data between systems with different national language versions.

« The correct keyboard support for a language is not available when you want to encode data in another
language.

Related concepts

CCSID reference information

Coded character set identifier (CCSID) is a 16-bit number that includes a specific set of encoding scheme
identifiers, character set identifiers, code page identifiers, and other information that uniquely identifies
the coded graphic-character representation.

Character processing

Character processing on the IBM i operating system is controlled by specific coding rules and guidelines
that ensure consistent processing of character data.

The rules and guidelines cover tasks such as:

« Converting character data to all uppercase or to all lowercase data

Folding data (substituting printable or displayable characters for those that cannot be printed or
displayed on a particular device)

Processing character data strings

Classifying characters
- Naming objects

6 IBMi: IBMi globalization

- Determining data, file, and field lengths

Related concepts

Developing globalized applications

Globalized applications are applications that have national language support. National language support
allows users to enter, store, process, retrieve, print, and display data in their chosen language. It also
allows users to see and enter commands, prompts, messages, and documentation in their chosen
language, in formats matching their cultural expectations.

Character presentation

Character presentation on the IBM i operating system is controlled by coding rules and algorithms that
ensure consistent presentation of character data.

These rules and algorithms cover tasks such as:

 Shaping characters
« Truncating characters
« Handling substrings of character data

These rules and algorithms are described in detail in “Developing globalized applications” on page 47.

Globalization hardware support

Hardware, in this context, means the physical keyboards, displays, printers, and controllers that make up
a IBMi product. The extent to which this hardware supports national languages might impose limitations
on the degree of support that you can provide with an application.

You must refer to the reference manuals for non-IBM hardware to determine what limitations, if any, are
imposed by that hardware.

Character data translation

Translating is changing the meaning of character data from a set of concepts, ideas, and statements in
one human language to a culturally similar meaning in another human language.

You can follow the user interface subset of these rules as guidelines to ensure translation goes smoothly.
A subset of these rules is provided in “User interfaces” on page 61.

Locales
A locale is an object that can determine how data is processed, printed, and displayed.

Locales are made up of categories that define language, cultural data, and character sets. The locale
support is provided to supplement the job value options that the IBM i operating system previously has
provided.

Many locales are included with the IBM i operating system. In addition, locale definition source files are
provided for locale customization. A locale definition source file contains one or more categories that
describe (or make up) a locale.

Related concepts

Installing and enabling locales

If you are installing a new release, you can request that library QSYSLOCALE be installed on the system at
that time.

Working with locales

IBM i globalization 7

Locales are used primarily in ILE-based application programs. Additionally, the Retrieve Locale
Information (OPM, QLGRTVLC; ILE, QlgRetrieveLocaleInformation) API retrieves one or all categories of a
locale.

Linguistic and cultural values

Linguistic and cultural conventions include any system values, attributes, or settings that can be altered to
suit a country or language.

Examples of linguistic and cultural conventions on the system include date formats and currency symbols.

Some linguistic and cultural conventions might vary by language within a country. For example, language
conventions vary in Canada. One set of linguistic conventions apply for French and another set of linguistic
conventions apply for English.

Where you can change linguistic and cultural values on IBM i

Settings of cultural and linguistic conventions are supported at different levels in the IBM i operating
system.

The system is structured in the following way:

Table 1. System with subsystem A and subsystem B

System

Subsystem A Subsystem B
Job Al Job B1

Job A2 Job B2

Some linguistic and cultural conventions can be set or changed at the system level, some at the
subsystem level, some at the user profile level, and some at job run time. In addition, some cultural

and linguistic settings can be set or changed in device descriptions. For example, keyboard types can be
changed when creating or changing a display device description.

Related tasks

Enabling the secondary language
You must ensure that secondary languages can be used after they have been installed on the system.

User profiles
Individual users can store customized cultural and linguistic values in their user profiles.

These customized values can differ from the system default values and can be used by the IBM i
operating system when you set job attributes and object attributes for an individual user. Job attributes
can also be used as defaults for setting object attributes that are created or changed under the control of
that job.

If you have a single system supporting multiple languages, you should change the user profile to
use language and cultural-appropriate values. When you change the character set identifier (CCSID)
parameter in the user profile, ensure that the CCSID is set as follows:

« Is setto an SBCS CCSID or to CCSID 65535 for SBCS users
« Is set to a mixed CCSID or to CCSID 65535 for DBCS users
« Is settoa SBCS CCSID for SBCS users on a DBCS system

You can use the Create User Profile (CRTUSRPRF) and the Change User Profile (CHGUSRPRF) commands
to customize a user profile.

Related reference
Create User Profile (CRTUSRPRF) command

8 IBMi: IBMi globalization

Change User Profile (CHGUSRPRF) command

Subsystems

A subsystem is a single, predefined operating environment through which the system coordinates the
work flow and resource use.

The system can contain several subsystems, all operating independently of each other. Subsystems
manage resources. The runtime characteristics of a subsystem are defined in an object called a subsystem
description.

You can use subsystems to support users in a multilingual environment. You should create a separate
subsystem for each set of users with differing needs.

Subsystem descriptions for secondary language users

You can create and use a subsystem description in a multilingual environment. For example, you can
create a subsystem for secondary language users (such as QGPL/GERMAN for German language users).

A subsystem description defines how, where, and how much work enters a subsystem, and which
resources the subsystem uses to perform the work. An active subsystem takes on the simple name of
the subsystem description.

A subsystem description consists of three parts:

« Subsystem attributes
« Workstation entry
« Routing entries

Notes:

1. You can work with existing work entries while the subsystem is active.

2. An IBM-supplied subsystem on a DBCS system is included with a workstation entry to support DBCS
display devices.

Related concepts

Work management

Packaging and installation process

You need to consider the running code, translated textual data, and installation documents when
packaging applications. Here are some suggestions for simplifying the packaging and installation of your
application.

Creating a subsystem description

IBM-supplied subsystem descriptions have been provided as examples and as backup for user-created
subsystem descriptions. Therefore, you should not change the subsystem descriptions in libraries QSYS
and QGPL. You should make copies of the subsystem descriptions from these libraries and make changes
to the copies.

You can create a subsystem description in two ways. You can either copy and then change an existing
subsystem description, or create an entirely new description.

To copy an existing subsystem description, follow these steps:

1. On acommand line, type CRTDUPOBJ to create a duplicate object of an existing subsystem
description.

2. Change the sign-on display file and the system part of the library list for the secondary language.

To create an entirely new subsystem description, follow these steps:

1. Create a subsystem description (CRTSBSD). Specify a sign-on file from the national language version
library and specify the national language version library (QSYSnnnn) as the system-library list entry.

IBM i globalization 9

2. Create a job description (CRTJOBD).
3. Add work entries to the subsystem description.

a. ADDWSE (Add work station entry)
b. ADDJOBQE (Add job queue entry)
c. ADDCMNE (Add communications entry)
d. ADDAJE (Add autostart job entry)
e. ADDPJE (Add prestart job entry)
4. CRTCLS (Create a class).
5. ADDRTGE (Add routing entries to the subsystem description).

Related reference

Create Duplicate Object (CRTDUPOBJ) command
Create Subsystem Description (CRTSBSD) command
Add Work Station Entry (ADDWSE) command

Add Job Queue Entry (ADDJOBQE) command

Add Communications Entry (ADDCMNE) command
Add Autostart Job Entry (ADDAJE) command

Add Prestart Job Entry (ADDPJE) command

Create Class (CRTCLS) command

Add Routing Entry (ADDRTGE) command

Subsystem attributes
Subsystem attributes provide the overall characteristics of the subsystem. Attributes include the system-
library list entry and a text description of the subsystem description.

For example, you can specify subsystem attributes to support secondary language users:
1. Specify the national language version for the subsystem library entry parameter.

By creating a subsystem for each secondary language on your system, you can ensure that secondary
language users have access to textual data in their own language. Within each subsystem, you can
arrange the order of libraries in the library list so the textual data for the appropriate secondary
language is at the top of the system library list. For example, if you have a primary language of Danish,
and a secondary language of German, you can add a library at the top of the system library list in

the German subsystem. Jobs running in the German subsystem then use the library at the top of the
system part of the library list and a search for German textual data is successful.

If you add a subsystem-library list entry for a national language version library:

« Do not add the library to the QSYSLIBL system value.

« Be sure that there are no more than 14 libraries in the QSYSLIBL list before adding your additional
library entry. (The maximum number of list entries for the system part of the library is 15.)

2. Specify the signon display using the national language version library.

3. Create or duplicate objects that all users of the secondary national language version need in the
national language version library.

4. Add workstation entries for these workstations that are specifically configured for this national
language version.

Workstation entry
A workstation entry, which is an entry in the subsystem description, specifies the workstations from which
users can sign on to the subsystem or from which interactive jobs can transfer to the subsystem.

Here are the items that you can specify in a workstation entry. Parameter names are given in parentheses.

« Workstation name or type (WRKSTN or WRKSTNTYPE)
« Job description to be used for jobs started through this workstation entry

10 IBMi: IBMi globalization

« Maximum number of interactive jobs that can be active at the same time through the entry (MAXACT)

« When the work stations are to be allocated, either when the subsystem is started or when an interactive
job enters the subsystem through the Transfer Job (TFRJOB) command.

Adding, changing, or removing workstation entries

The following commands allow you to add, change, or remove workstation entries from a subsystem
description.

To add a workstation entry to a subsystem description, use the Add Work Station Entry (ADDWSE)
command. Here is an example of adding a workstation entry:

ADDWSE SBSD(USERLIB/ABC) WRKSTN(DSP12)
JOBD (USERLIB/WSE)

To specify a different job description for a previously defined workstation entry, use the Change Work
Station Entry (CHGWSE) command. Here is an example of changing a workstation entry:

CHGWSE SBSD(USERLIB/ABC) WRKSTN(DSP12)
JOBD (USERLIB/NEWJD)

To remove a workstation entry from a subsystem description, use the Remove Work Station Entry
(RMVWSE) command. Here is an example of removing a workstation entry:

RMVWSE SBSD(USERLIB/ABC) WRKSTN(DSP12)

Related reference

Transfer Job (TFRIOB) command

Add Work Station Entry (ADDWSE) command
Change Work Station Entry (CHGWSE) command
Remove Work Station Entry (RMVWSE) command

Starting a subsystem
After you have created a subsystem that meets your needs, you need to start the subsystem.

To start a subsystem, use the Start Subsystem (STRSBS) command:
STRSBS SBSD('library name/subsystem name')

For example:
STRSBS USERLIB/ABC

Related reference
Start Subsystem (STRSBS) command

Job attributes
Job attributes are set at the time a job starts.

Some job attributes are set from the user profile. Other job attributes come from system values, from
locales, from a Submit Job (SBMJOB) command, a job description, and the Change Job (CHGJOB)
command (from which you can change values for attributes while the job is running).

Related concepts

Database management
Database management support provides default coded character set identifier (CCSID) values for
database files on the system. All database files are assigned a CCSID. At file creation time, the CCSID

IBM i globalization 11

is either explicitly assigned through DDS, SQL, or IDDU, or implicitly assigned the job default CCSID
(DFTCCSID).

Related reference

Submit Job (SBMJOB) command

Change Job (CHGJOB) command

Coded character set identifier job attribute

When an interactive job is started on the IBM i operating system, the job CCSID value is taken from the
user profile. When a batch job is started, the current job CCSID is used unless a CCSID is specifically
entered on the SBMJOB command.

For every mixed-byte coded character set CCSID, there is a corresponding SBCS CCSID that is valid. If
you specify a mixed-byte coded character set CCSID for an SBCS system, the job CCSID is changed to the
corresponding SBCS CCSID.

If a job CCSID is specified as an SBCS CCSID, the job cannot handle DBCS data. If a job CCSID is specified
as a mixed CCSID, the job can handle DBCS data. You must use a DBCS-capable display device, though,
for the DBCS data in a job to display correctly. You can specify a mixed-byte CCSID for a job only if

the DBCS system value (QIGC) value is set to 1 (on). A QIGC value of 1 indicates that a DBCS national
language version is installed on the system.

Job default coded character set identifier
A job attribute, job default CCSID (DFTCCSID), is created for jobs with a CCSID of 65535. The DFTCCSID
value is used by a system code when a CCSID other than 65535 is needed.

The DFTCCSID attribute can only be retrieved or displayed. The value of this attribute is determined as
follows:

« If the job CCSID is not 65535, the DFTCCSID equals the job CCSID.

« Ifthe job CCSID is 65535, the DFTCCSID value is based on an appropriate value derived from the job
language identifier (LANGID).

When the job is running, the system determines the default CCSID for a job using the following logic (you
can find the corresponding CCSID for LANGID in default CCSID table):

1. If the job CCSID is set to a value, it uses that value.

. If the job CCSID is set to *USRPRF, then the system checks the user profile for the value.
. If the user profile is set to a value, it uses that value.

. If the user profile is set to *SYSVAL, the system checks the system value.

. If the system value for QCCSID is set to a value, it uses that value.

. If the system value is set to 65535, the system checks the job's language ID.

. If the job's LANGID is set to a value, the QTQ_DEFAULT_CCSID environment variable is checked
for that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value for that
LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If the
QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system
converts that LANGID to a CCSID.

8. If the job's LANGID is set to *USRPRF, the system checks the user profile's language ID.

9. If the user profile's LANGID is set to a value, the QTQ_DEFAULT_CCSID environment variable is
checked for that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value
for that LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If
the QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system
converts that LANGID to a CCSID.

10. If the user profile's LANGID is set to *SYSVAL, the QTQ_DEFAULT_CCSID environment variable is
checked for that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value
for that LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If
the QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system
converts that LANGID to a CCSID.

N oo AN

12 IBMi: IBMi globalization

Related concepts

Database management

Database management support provides default coded character set identifier (CCSID) values for
database files on the system. All database files are assigned a CCSID. At file creation time, the CCSID
is either explicitly assigned through DDS, SQL, or IDDU, or implicitly assigned the job default CCSID
(DFTCCSID).

Graphic character conversion tables
Table (*TBL) objects support non-CCSID conversions from one code page to another. The system-
supplied table objects are located in the QUSRSYS library.

Language identifiers and associated default CCSIDs
This table shows the language identifiers and the job default CCSID (DFTCCSID) values associated with
those identifiers.

Job library list
The language used for textual data (displays, messages, printed output, and online help information) is
controlled by the library list for the job.

Users can place their national language library, before QSYS (the primary language library) and any other
national language libraries in their library lists. In this way, users can customize which national language
versions of information are presented to them.

Related concepts

System library list (QSYSLIBL) system value

The system library list (QSYSLIBL) system value is used as the first part of the library list associated with a
job.

Packaging and installation process

You need to consider the running code, translated textual data, and installation documents when
packaging applications. Here are some suggestions for simplifying the packaging and installation of your
application.

System values

The system values of the primary language on the system are used as system-wide cultural and linguistic
defaults. Therefore, if you change the primary language on the system, each varying system value resets
to the default system value of the new primary language.

The following list shows the cultural and linguistic system values. To display or change these values, use
the Work with System Value (WRKSYSVAL) command. A subset of language-dependent default system
values (QCCSID, QCHRID, QCNTRYID, QCURSYM, QDATFMT, QDATSEP, QDECFMT, QKBDTYPE, QLANGID,
and QTIMSEP) are shown in Default system values in the Reference section.

Related concepts

Default system values for national language versions
Jobs and functions on the IBM i operating system use system values as default values.

System values

Configuring the primary language

A primary language consists of program code, textual data for each licensed program ordered, and default
national language cultural values.

Related reference
Work with System Value (WRKSYSVAL) command

Century (QCENTURY) system value
The century (QCENTURY) system value specifies the century. It is used with the system values QDATE and
QYEAR to determine the specific date currently used by the system.

The possible values are:
0 (the years from 1928 t0 1999)

IBM i globalization 13

« 1 (the years from 2000 to 2053)

Note: 1900 to 1927 and 2054 to 2099 are not supported years for system time. Applications can,
however, support year date ranges from 0001 to 9999.

You can set the value of QCENTURY with the century indicator, or the system sets the value of QCENTURY
based on the following two situations:

At the time of the first IPL, the system sets the initial value of QCENTURY based on the following rules:

— If QYEAR is equal to or greater than 40, the system assigns a value of 0 to QCENTURY.
— If QYEAR is less than 40, the system assigns a value of 1 to QCENTURY.
« When QYEAR or the year in QDATE is changed:

— QCENTURY is set to 0 if QYEAR is 54 t0 99
— QCENTURY issetto 1 if QYEAR is 00 to 27

For example, if you change QYEAR from 95 to 13, the system changes QCENTURY from O to 1, indicating
ayear of 2013. However, if you change QYEAR from 95 to 45, the system will not change QCENTURY,
because both 1945 and 2045 are valid dates.

If you change this value, the change takes effect immediately. Changing this value also affects the system
value QDATE.

Note: The 21st century begins at 0000 hours, 1 January 2001. However, for purposes of common
understanding, the 20th/21st century boundary is defined to be between 2400 hours, 31 December 1999
and 0000 hours, 1 January 2000. This allows a discussion of the 21st century to include all dates with a
20xx format inclusive of the year 2000.

Related concepts
System date (QDATE) system value
The system date (QDATE) system value indicates the year, the month, and the day on the system.

Year (QYEAR) system value
The year (QYEAR) system value specifies the last 2 digits of the year on the system.

Character identifier (QCHRID) system value

The character identifier (QCHRID) system value specifies the character set and code page
CHRID(*SYSVAL) for the CL commands that create, change, or override display files, display device
descriptions, user interface (UIM) menus, panel groups, and printer files.

You can change this value if the system QCCSID system value is set to CCSID 65535. You can also change
the QCHRID value if the code page portion of the new QCHRID value is the same as the code page portion
of the QCCSID value.

Related concepts

Object-level coded character set identifier 65535
CCSID 65535 is the default object-level CCSID for message files and message queues.

Character identifier control (QCHRIDCTL) system value
The character identifier control (QCHRIDCTL) system value controls the type of CCSID conversion that
occurs for display files, printer files, and panel groups.

You must specify the *CHRIDCTL special value on the CHRID parameter of the create, change, or override
command for display files, printer files, and panel groups before this attribute can be used.

Possible values are:

*DEVD
The support provided by the *DEVD special value on the CHRID parameter for display files, printer
files, and panel groups.

14 IBMi: IBMi globalization

*JOBCCSID
The support provided by the *¥JOBCCSID special value on the CHRID parameter for display file, printer
files, and panel groups.

Related concepts

Display files

When a display file object is created, it is tagged with the coded character set identifier (CCSID) of the
source file.

Coded character set identifier (QCCSID) system value
The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

As shipped, the CCSID is set to CCSID 65535. CCSID 65535 means that all character data tagging support
on the system is turned off, which is not generally recommended.

If you use Java™ or WebSphere®, or if you plan to transfer data between the IBM i operating system and
another client, then this value (or the corresponding value on the user profile) should be set to match the
CCSID of your data. If the value is 65 535, then the encoding of the data on the system is unknown.

If you leave this value at 65535, then you cannot get the results you expect when working from a client on
the IBM i operating system, or the connection might not work at all.

You can change the coded character set identifier (QCCSID) system value. When you change this value,
the default character set and code page system value (QCHRID) is changed to match the character set
and code page of the coded character set identifier.

If a job is started with a single byte CCSID, (from either this value or the user profile value) then that job
will not support double-byte language (DBCS) users.

Related concepts

Country or region identifier (QCNTRYID) system value
The country or region identifier (QCNTRYID) system value indicates the default country or region identifier
for the system.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Database file attributes
Database attributes, such as coded character set identifier (CCSID), sort sequence (SRTSEQ), and
language identifier (LANGID), are cultural dependent.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Coordinated universal time offset (QUTCOFFSET) system value
The coordinated universal time offset (QUTCOFFSET) system value specifies the number of degrees, in
hours and minutes, by which your local system differs from the zero meridian.

This value is used by the system when processing alerts that are sent to other systems, as well as by other
parts of the system. If systems in a network cross time zones, the QUTCOFFSET value is sent in the alert.

This value is 5 characters long. The first character is a plus (+) sign or minus (-) sign. The next 2 characters
specify hours ranging from 00 through 24. The last two characters specify minutes ranging from 00
through 59.

For example, you have a network with one system in Brisbane, Queensland, Australia (Eastern Australia
standard time zone) and one system in Caracas, Venezuela. You can set QUTCOFFSET to +1000 for the
Brisbane system and to -0400 for the Caracas system.

IBM i globalization 15

The Brisbane system value should be changed each time the daylight saving time begins or ends. Caracas,
Venezuela does not observe a daylight saving time, and its system value remains constant.

If you change this value, the change takes effect immediately.

Country or region identifier (QCNTRYID) system value
The country or region identifier (QCNTRYID) system value indicates the default country or region identifier
for the system.

Setting this system value, along with the QLANGID system value, allows you to choose the correct
language dictionary, encoding of data, and advanced linguistics for successful document indexing. There
is no validity checking between the QCNTRYID system value and the QCCSID system value.

Related concepts

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Coded character set identifier (QCCSID) system value
The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

Country and region identifiers
This table lists the country and region identifiers.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Coding globalized applications with high-level languages
Your major goal must be to have only one general set of running code that is common for all language
versions and to make your programs table-driven as much as possible.

Currency symbol (QCURSYM) system value
The currency symbol (QCURSYM) system value verifies the currency symbols specified in the DDS
keywords Edit Word (EDTWRD) and Edit Code (EDTCDE).

You can change the currency symbol to correctly reflect the monetary symbol used in your country or
location. If you change this system value, the change takes effect immediately.

Related concepts

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Related reference
EDTWRD (Edit Word) keyword for display files
EDTCDE (Edit Code) keyword for display files

System date (QDATE) system value
The system date (QDATE) system value indicates the year, the month, and the day on the system.

This value is made up of the QYEAR, QMONTH, and QDAY system values. The format in which QDATE
appears is specified by the QDATFMT system value. You can change the system date. If you change
QDATE, the change might affect the system values for QCENTURY, QYEAR, QMONTH, QDAY, and
QDAYOFWEEK. Any change you make to QDATE takes effect immediately.

Related concepts
Century (QCENTURY) system value

16 IBMi: IBMi globalization

The century (QCENTURY) system value specifies the century. It is used with the system values QDATE and
QYEAR to determine the specific date currently used by the system.

Year (QYEAR) system value
The year (QYEAR) system value specifies the last 2 digits of the year on the system.

Month of the year (QMONTH) system value
The month of the year (QMONTH) system value indicates the month of the year on the system.

Day of the month (QDAY) system value
The day of the month (QDAY) system value indicates the day of the month on the system. This value must
be a valid day of the month or of the year if you are using the Julian date format.

Day of week (QODAYOFWEEK) system value
The day of week (QDAYOFWEEK) system value specifies the day of the week on the system.

Date format (QDATFMT) system value

The date format (QDATFMT) system value is used for the default value for the DATFMT job attribute. This
system value also determines the format in which a date can be specified on the initial program load (IPL)
options prompt.

This system value can be:
« YMD (year, month, day)
« MDY (month, day, year)
« DMY (day, month, year)
« JUL (Julian format, which is year, day of year)

You can change the date format to reflect the format in which months, days, and years are represented in
your country or location. If you change this system value, the change takes effect for new jobs that enter
the system after you make the change.

Related concepts

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Date separator (QDATSEP) system value

The date separator (QDATSEP) system value is used as the date separator for the default value of the
DATSEP job attribute. It is also used as the date separator you can specify on the initial program load (IPL)
options prompt.

You can change the date separator to reflect the character used to separate days, months, and years for
your country or location. You can change the date separator to any one of the following values:

« Aslash (/) as a date separator

A hyphen (-) as a date separator

A period (.) as a date separator

A comma (,) as a date separator

A blank () as a date separator

If you change this value, the change takes effect for new jobs that enter the system after you make the
change.

Related concepts
Job attributes

IBM i globalization 17

Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Day of the month (QDAY) system value
The day of the month (QDAY) system value indicates the day of the month on the system. This value must
be a valid day of the month or of the year if you are using the Julian date format.

You can change the day of the month to reflect the current day of the month in your country or location. If
you change QDAY, you also change the value for QDATE. A change to this value takes place immediately.

Related concepts

System date (QDATE) system value
The system date (QDATE) system value indicates the year, the month, and the day on the system.

Day of week (QDAYOFWEEK) system value
The day of week (QDAYOFWEEK) system value specifies the day of the week on the system.

This value can be:

« *SUN (Sunday)

« *MON (Monday)

« *TUE (Tuesday)

« *WED (Wednesday)
« *THU (Thursday)

« *FRI (Friday)

« *SAT (Saturday)

This value cannot be changed. It is set by the system. The value of QDATE determines the value of
QDAYOFWEEK.

This value cannot be set correctly if your system is not using the Gregorian calendar.

Related concepts

System date (QDATE) system value
The system date (QDATE) system value indicates the year, the month, and the day on the system.

Leap year adjustment (QLEAPADJ) system value
The Leap year adjustment (QLEAPADJ) system value adjusts the system algorithms for the leap year in
different calendar systems.

DBCS system indicator (QIGC) system value

The DBCS system indicator (QIGC) system value specifies whether a double-byte character set (DBCS)
national language version (NLV) is installed. This value is set when the primary national language version
is installed.

If QIGC is set to 0, no DBCS national language version is installed on the system. When QIGC is set to O,
the coded character set system identifier (QCCSID) must be set to an SBCS coded character set identifier.

If QIGC is set to 1, a DBCS national language version is installed as the primary language on the system.
When QIGC is set to 1, the coded character set system identifier (QCCSID) system value should be set to a
mixed CCSID (such as 05026) or to CCSID 65535.

Beginning with IBM i V5R3, any NLV can support DBCS. Therefore, QIGC is always set to 1 (or on). If you
have applications that check this value, update them to use the job level DBCS indicator. You can use the
Retrieve Job Information (QUSRJOBI) API to get the job's IGC value.

You cannot change this value.

18 IBMi: IBMi globalization

Related concepts

Recommendations and guidelines for using CCSIDs
These recommendations are useful when you write globalized applications.

Related information
Retrieve Job Information (QUSRJOBI) API

DBCS font name (QIGCCDEFNT) system value

The DBCS font name (QIGCCDEFNT) system value is used when the system transforms SNA character
string (SCS) data with shift in/shift out (SI/SO) characters into a spooled file that is composed of
Advanced Function Presentation data stream (AFPDS).

QIGCCDEFNT is a 20-character list of up to 2 values. The first 10 characters contain the font name. The
last 10 characters contain the library name. The font name can be only 8 characters. The possible values
for the DBCS font name are:

*NONE
No font is identified to the system.

Coded font name
The name of the DBCS font.

The possible values for the library are:

*LIBL
The library list is used to locate the font.

*CURLIB
The current library is used to locate the font. If no library is specified, library QGPL is used.

Library name
The library containing the font.

Decimal format (QDECFMT) system value

The decimal format (QDECFMT) system value determines the type of zero suppression and decimal point
character used by DDS edit codes 1 through 4 and A through M. It also determines the decimal point
character for decimal input fields in the interface.

You can change the decimal format to reflect the way decimals are formatted for your country or location.
You can change the decimal format to any one of the following values:

(blank)
If you specify a blank, the system uses a period for a decimal point, a comma for a 3-digit grouping
character, and zero suppression to the left of the decimal point. For example,

One thousand is formatted as 1,000
and
Four one-hundredths is formatted as .04

J
If you specify a J, the system uses a comma for a decimal point, a period for a 3-digit grouping
character, and zero suppression at the second character to the left of the decimal point. For example,
One thousand is formatted as 1.000
and
Four one-hundredths is formatted as 0,04
I

If you specify an I, the system uses a comma for a decimal point, a period for a 3-digit grouping
character, and zero suppression to the left of the decimal point. For example,

One thousand is formatted as 1.000
and
Four one-hundredths is formatted as ,04

A change to this value takes effect immediately.

IBM i globalization 19

Related concepts

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETJOBATR) system value sets job attributes at job startup time.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Decimal formats
You can change the decimal format with the QDECFMT system value to reflect the way decimals are
presented for your country or location.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

This value also determines the sort sequence table to be used for sorting character data when the
QSRTSEQ system value is set to *LANGIDSHR or *LANGIDUNQ.

Note: This value is not used to determine the sort sequence table when QSRTSEQ is set either to *HEX or
to a user-specified table.

You can change this system value to reflect the default language identifier for your country or location.
There is no validity checking between the QLANGID system value and the QCCSID system value.

Related concepts

Country or region identifier (QCNTRYID) system value

The country or region identifier (QCNTRYID) system value indicates the default country or region identifier
for the system.

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

Coded character set identifier (QCCSID) system value
The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

Database file attributes
Database attributes, such as coded character set identifier (CCSID), sort sequence (SRTSEQ), and
language identifier (LANGID), are cultural dependent.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Coding globalized applications with high-level languages
Your major goal must be to have only one general set of running code that is common for all language
versions and to make your programs table-driven as much as possible.

Session manager
For all applications that use a session manager, you must ensure that the output data stream has no X'3F'
values in it. The IBM i operating system uses X'3F' values to make a screen blank.

ILE RPG sort sequence

20 IBMi: IBMi globalization

The ILE RPG feature, an option of the IBM Rational Development Studio for i licensed program, provides
the possibility for a user to specify a sort sequence table and to use the table in comparison operations
that are performed with nonnumeric data.

DB2 and SQL sort sequence
For Interactive SQL, the SRTSEQ and LANGID parameters can be specified on the STRSQL command. You
can change these parameters by using the session services for interactive displays.

IBM i Access sort sequence
You can specify the sort sequence in IBM i Access functions. When performing queries on the system
databases and SQL tables, you can specify the system-supplied or user-supplied sort sequence tables.

Language indicator for keyboard type (QKBDTYPE) system value
The language indicator for the keyboard type (QKBDTYPE) system value specifies the language character
set for the keyboard.

This value is used as the default keyboard type when you create a display device description.
You can change this value to reflect the language of your keyboard.

Related concepts

National language keyboard types and SBCS code pages

This table lists the keyboard types and code pages for each national language supported by the IBM i
operating system. The Create Device Display (CRTDEVDSP) command uses the KBDTYPE parameter.

Leap year adjustment (QLEAPADJ) system value
The Leap year adjustment (QLEAPADJ) system value adjusts the system algorithms for the leap year in
different calendar systems.

This system value is set by the operating system. If your system observes the Gregorian calendar, this
system value should be zero. You cannot edit this system value.

For more information about the Leap year adjustment (QLEAPADJ) system value, see Date and time
system values: Leap year adjustment.

Related concepts

Day of week (QDAYOFWEEK) system value
The day of week (QDAYOFWEEK) system value specifies the day of the week on the system.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Locale (QLOCALE) system value

The locale (QLOCALE) system value specifies a locale object that can determine how data is processed,
printed, and displayed. Locales can define the language used by the system, cultural data of that
language, and the type of characters displayed or printed.

The locale path name must be a path name that specifies a locale. A locale is made up of the language,
territory, and code set combination used to identify a set of language conventions. The maximum path

length allowed for the locale path name on the Change System Value (CHGSYSVAL) command is 1024

bytes.

The allowed values are:

Value Indication

*NONE: There is no locale for the QLOCALE system value.
*C: The C locale is to be used.

*POSIX: The POSIX locale is to be used.

path-name The path name of the locale to be used.

IBM i globalization 21

Related concepts

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETJOBATR) system value sets job attributes at job startup time.

Month of the year (QMONTH) system value

The month of the year (QMONTH) system value indicates the month of the year on the system.

This value must be a number from 1 (January) through 12 (December) if your system date format uses the
Gregorian calendar. This value cannot be displayed or changed if your system date format uses the Julian
format (year, day of year).

You can change the month to reflect the current month in your country or location. If you change
QMONTH, you also change the value for QDATE. A change to this value takes place immediately.

Related concepts

System date (QDATE) system value
The system date (QDATE) system value indicates the year, the month, and the day on the system.

Set job attributes (QSETIOBATR) system value
The set job attributes (QSETIJOBATR) system value sets job attributes at job startup time.

This system value has the following attributes that can be assigned values:
« Coded character set identifier (CCSID)

« Date format (DATFMT)

« Date separator (DATSEP)

Decimal format (DECFMT)

« Sort sequence (SRTSEQ)

« Time separator (TIMSEP)

The system sets the initial values for these attributes from the locale (QLOCALE) system value.

Note: Since the locale structure does not map one to one for all supported values for decimal format
(DECFMT) a system level environment variable, QTQ_LOCALE_DECFMT, was created. This environment
variable can be used to set the DECFMT option during job initialization based on a locale if needed.

The QTQ_LOCALE_DECFMT environment variable value consists of a string of one or more token pairs.
Each pair contains a decimal format choice followed by the locale choice. Use one or more spaces to
separate tokens. When no match is found, the job is set as if no QTQ_LOCALE_DECFMT environment
variable exists. Valid DECFMT choices are a capitalized entry of either I, J or *BLANK. Valid locale
choices are specified in this format: '/QSYS.LIB/DE_DE.LOCALE' Users can also specify *DEFAULT as
a locale choice to apply the decimal format choice to all locales. Specify *DEFAULT to be the last
entry if a *DEFAULT is wanted because processing of the environment variable stops when the first
match is found. When invalid input is encountered, the decimal format option for the job is set as if no
QTQ_LOCALE_DECFMT environment variable exists and no error messages are sent.

The following examples describe use of QTQ_LOCALE_DECFMT:
e ADDENVVAR ENVVAR('QTQ_LOCALE_DECFMT') VALUE('J /QSYS.LIB/DE_DE_E.LOCALE') LEVEL (*SYS)

Apply DECMFT option J only when the locale that is specified in the user profile is '/QSYS.LIB/
DE_DE_E.LOCALE".

e ADDENVVAR ENVVAR('QTQ_LOCALE_DECFMT') VALUE('I /QSYS.LIB/DE_DE_1.LOCALE J /QSYS.LIB/
DE_DE_2.LOCALE') LEVEL(*SYS)

Apply DECMFT option I for the job if the locale specified in the user profile matches '/QSYS.LIB/
DE_DE_1.LOCALE' If the locale specified in the user profile matches '/QSYS.LIB/DE_DE_2.LOCALE/,
then option J is applied to the job. If the locale is not a match for either, then no action is taken.

Related concepts
Coded character set identifier values

22 IBMi: IBMi globalization

CDRA defines the range of values for CCSIDs (coded character set identifiers).

Date formats

There is no worldwide standard for the presentation of dates. Therefore, the date format should always be
stored externally as part of the textual data.

Date separators

The date separator for presentation should always be stored externally as part of the textual data.

Decimal format (QDECFMT) system value

The decimal format (QDECFMT) system value determines the type of zero suppression and decimal point
character used by DDS edit codes 1 through 4 and A through M. It also determines the decimal point
character for decimal input fields in the interface.

Sort sequences

The IBM i operating system supports sort sequence. By using one of the listed options, you can order your
data according to cultural-dependent requirements for specific applications.

Time separators

The IBM i operating system allows several valid time separators.

Locale (QLOCALE) system value

The locale (QLOCALE) system value specifies a locale object that can determine how data is processed,
printed, and displayed. Locales can define the language used by the system, cultural data of that
language, and the type of characters displayed or printed.

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

You can change QSRTSEQ to any one of the following values:

Value

Meaning

*HEX

No sort sequence table is used. The hexadecimal values of the
graphic characters are used to determine the sort sequence (a
binary sort). This is the only sort sequence available for DBCS
data.

Note: When you specify values other than *HEX for mixed-byte
character data, SBCS character data is sorted according to

the sort sequence specified. DBCS character data is sorted by
hexadecimal values (binary sort).

*LANGIDSHR

The sort sequence table can use the same weight for multiple
graphic characters. The shared-weight sort table associated with
the language specified in the LANGID parameter is used. This sort
applies only to SBCS data.

*LANGIDUNQ

The sort sequence table contains uniquely weighted graphic
characters. The unique-weight sort table associated with the
language specified in the LANGID parameter is used. This sort
applies only to SBCS data.

Qualified sort sequence table name

The name and library of the sort sequence table to be used. This
value allows you to specify a sort sequence table other than those
associated with the language specified in the LANGID parameter.
This sort sequence table can be used to sort Unicode and SBCS
data.

Related concepts

Language identifier (QLANGID) system value

IBM i globalization 23

The language identifier (QLANGID) system value specifies the default language identifier for the system.

Sort sequence tables

A sort sequence table is an object that contains the weight of each single-byte graphic character within

a specified coded character set identifier (CCSID). The system-recognized identifier for the sort sequence
table object type is *TBL.

Database file attributes
Database attributes, such as coded character set identifier (CCSID), sort sequence (SRTSEQ), and
language identifier (LANGID), are cultural dependent.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

ILE RPG sort sequence

The ILE RPG feature, an option of the IBM Rational Development Studio for i licensed program, provides
the possibility for a user to specify a sort sequence table and to use the table in comparison operations
that are performed with nonnumeric data.

DB2 and SQL sort sequence
For Interactive SQL, the SRTSEQ and LANGID parameters can be specified on the STRSQL command. You
can change these parameters by using the session services for interactive displays.

IBM i Access sort sequence
You can specify the sort sequence in IBM i Access functions. When performing queries on the system
databases and SQL tables, you can specify the system-supplied or user-supplied sort sequence tables.

Sort sequence support in work management
Work management involves the assigning of the SRTSEQ value at the job level, the user profile level, and
the system value level.

System library list (QSYSLIBL) system value

The system library list (QSYSLIBL) system value is used as the first part of the library list associated with a
job.

The libraries in the system part of the library list of a job are searched before any other libraries in the

library list of a job. The list can contain as many as 15 names. You cannot delete or rename a library
specified as part of the system library list, because libraries in this library list are locked.

You can change the system library list (QSYSLIBL). If you change QSYSLIBL, the change takes place
immediately for new jobs entering the system. The change does not affect running jobs, unless the
application in the job accesses the system library list directly.

Related concepts

Job library list
The language used for textual data (displays, messages, printed output, and online help information) is
controlled by the library list for the job.

Time separator (QTIMSEP) system value
The time separator (QTIMSEP) system value specifies the character separator for time.

This value is used as the time separator for the default value of the TIMSEP job attribute. This value is also
used as the time separator that you can specify on the IPL options prompt.

You can change the time separator to reflect the character used to separate hours and minutes for your
country or location. You can change the time separator to any one of the following values:

« Acolon (:) as a time separator

A period (.) as a time separator

A comma (,) as a time separator

A blank () as a time separator

24 IBMi: IBMi globalization

If you change this value, the change takes effect for new jobs that enter the system after you make the
change.

Related concepts

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Year (QYEAR) system value
The year (QYEAR) system value specifies the last 2 digits of the year on the system.

This value ranges from 0 through 99. The system assigns the first two digits for the year based on the
current setting for the QCENTURY system value. If the calculated year falls outside the range of dates
supported by the system (1928 to 2053), the QCENTURY system value is changed so that the calculated
year is within the supported range.

If you change this system value:

« QCENTURY is set to O if QYEAR is 54 to 99
« QCENTURY is set to 1 if QYEAR is 00 to 27

For example, if you change QYEAR from 95 to 13, the system changes QCENTURY from 0 to 1, indicating
a year of 2013. However, if you change QYEAR from 95 to 45, the system will not change QCENTURY,
because both 1945 and 2045 are valid dates.

If you change this value, the change takes effect immediately. Changing this value also affects the system
value QDATE.

Related concepts

Century (QCENTURY) system value

The century (QCENTURY) system value specifies the century. It is used with the system values QDATE and
QYEAR to determine the specific date currently used by the system.

System date (QDATE) system value
The system date (QDATE) system value indicates the year, the month, and the day on the system.

Device descriptions

These control language (CL) command parameters can be used to change cultural and linguistic
conventions for some display and printer devices.

Note: Some printer device descriptions do not allow you to specify a CHRID.

« Character identifier (CHRID) parameter. You can change the character identifier when you create or
change device descriptions for printers and displays. Change the character identifier for a printer or
display device using one of the following commands:

- The Create Device Description (Display) (CRTDEVDSP)
— The Change Device Description (Display) (CHGDEVDSP)
— The Create Device Description (Printer) (CRTDEVPRT)
— The Change Device Description (Printer) (CHGDEVPRT)

« Keyboard type (KBDTYPE) parameter. You can set the keyboard language type for a keyboard when you
create a device description. Set the keyboard language type using the CHGDEVDSP command.

« Workstation customization (WSCST) parameter. You can set the workstation customization parameter
when creating a device to specify the use of a customized keyboard layout. To set this parameter, the
display device must be varied off. You can specify the WSCST parameter when using the CRTDEVDSP
command.

IBM i globalization 25

« Language type (LNGTYPE) parameter. When you create an ASCII printer using the CRTDEVPRT
command, the LNGTYPE parameter describes the default country or region keyboard language identifier
for the printer. When you specify the *SYSVAL value, the QKBDTYPE system value is used.

Related concepts

Packaging and installation process

You need to consider the running code, translated textual data, and installation documents when
packaging applications. Here are some suggestions for simplifying the packaging and installation of your
application.

Related reference

Create Device Description (Display) (CRTDEVDSP) command
Change Device Description (Display) (CHGDEVDSP) command
Create Device Description (Printer) (CRTDEVPRT) command
Change Device Description (Printer) (CHGDEVPRT) command

Display and printer files

These keywords and command parameters can be used to change cultural and linguistic values for
display files and printer files.

« The Create Display File (CRTDSPF), Change Display File (CHGDSPF), Create Printer File (CRTPRTF),
Change Printer File (CHGPRTF), and Override Printer File (OVRPRTF) commands. You can specify a
character identifier explicitly:

— As the QCHRID system value (*SYSVAL)

— As a device description or a device default of the output device (*DEVD)
— With the *JOBCCSID value

— As using the *CHRIDCTL system value (*SYSVAL)

« Character identifier (CHRID) keyword in DDS. Use this field-level keyword to identify fields that should
be converted to the character identifier (CHRID) of the device. Use this keyword in conjunction with
the CHRID parameter on the CRTDSPF, CHGDSPF, CRTPRTF, CHGPRTF, and OVRPRTF commands. This
keyword is ignored, however, when the CHRID parameter of these commands is set to *JOBCCSID.

« The SRTSEQ parameter and LANGID parameter on the CRTDSPF command. These parameters can be
used to specify a sort sequence and a language identifier for a display file.

Note: If *JOBCCSID is not specified for the CHRID parameter of a display file (either directly or indirectly
with CHRIDCTL), the CHRID parameter of the display file must be compatible with the job CCSID.
Otherwise, unpredictable results might occur when data is displayed or when data is stored in a database
file.

Related reference

Create Display File (CRTDSPF) command

Change Display File (CHGDSPF) command

Create Printer File (CRTPRTF) command

Change Printer File (CHGPRTF) command

Override with Printer File (OVRPRTF) command

Database files

These command parameters and the DDS keywords can be used to change language-dependent values
for database files.

You can use the following command parameters:

« The SRTSEQ, LANGID, and CCSID parameters on the Create Physical File (CRTPF) command
« The SRTSEQ, LANGID, and CCSID parameters on the Change Physical File (CHGPF) command
« The parameters on the Copy File (CPYF) command

26 IBMi: IBMi globalization

« The SRTSEQ parameter and LANGID parameter on the Create Logical File (CRTLF) command

These parameters can be used to specify a sort sequence and language for a database file.

DDS keywords for database files

You can use the following DDS keywords for database files:

« The CCSID keyword. This keyword can be used to tag character data stored in a database. By default,
the CCSID value is taken from the job creating the database file.

« DATFMT, DATSEP, TIMFMT, and TIMSEP keywords in DDS.
The format of the data type Time (T) field is described by DDS with the TIMFMT keyword that can have

*JOB specified for a value. Similarly, the format of the data type Date (L) is described by DDS with the
DATFMT keyword that can have *JOB specified for a value.

Use the TIMSEP and DATSEP keywords to specify date and time separators.

Related reference

Create Physical File (CRTPF) command
Change Physical File (CHGPF) command
Copy File (CPYF) command

Create Logical File (CRTLF) command
DDS keywords and parameters

UIM menus and panel groups

You can use the CHRID parameter on the Create Menu (CRTMNU) or Create Panel Group (CRTPNLGRP)
command to specify a *JOBCCSID for a menu or a panel group.

The CHRID parameter on the Create Menu (CRTMNU) command for creating menus can be used to specify
a *JOBCCSID value for a menu. Conversion is automatically done between the CHRID parameter of the
device and the CCSID value of the menu.

The CHRID parameter on the Create Panel Group (CRTPNLGRP) command for creating panel groups can
be used to specify a *JOBCCSID value for panel groups. Conversion is automatically done between the
CHRID of the device and the CCSID of the panel group and the CCSID of the job.

Related reference
Create Menu (CRTMNU) command
Create Panel Group (CRTPNLGRP) command

Setting up IBM i with a national language version

The steps to install and configure a national language version on the IBM i operating system include
selecting and installing hardware, installing software, and configuring your environment to run in a
globalized setting.

You can use this information as you install your own systems, and you can apply the principles when you
develop applications for customers who are installing their own national language version on IBMi.

The feature code identified when you order an IBM i operating system is the language of your textual
data and is called the primary language of the system. Any other language versions that you have ordered
are called secondary languages. For secondary languages, the national language version consists of only
the textual data for all licensed programs ordered. The program code is not contained in the secondary
language version.

The primary language is the language in which the system is serviced and from which all language-
dependent or cultural-dependent system values are initialized. In addition, other system objects and
functions assume attributes based on the primary language. For example, messages appearing in the
history log always appear in the primary language.

IBM i globalization 27

Related concepts

National language version

A national language version (NLV) is a version of the IBM i operating system that contains translated text
and a predefined set of language-dependent values, such as date format, time format, and sort sequence,
for a particular language.

National language version feature codes

This table lists the available national language version feature codes on the IBM i operating system. When
you order an IBM i licensed program, you identify the national language version you want by specifying a
language feature code.

Configuring the primary language
A primary language consists of program code, textual data for each licensed program ordered, and default
national language cultural values.

Configuring secondary languages
A secondary language consists of textual data for all licensed programs supported for a national language
version.

Related information
Installing, upgrading, or deleting IBM i and related software

How a language is displayed for IBM i functions

If you want information presented in a language other than the primary language of the system, you must
first have a secondary language loaded. When a secondary language is loaded, you have three ways to
display information in that language.

Method 1: Placing the language you want at the top of your library list

One way to display information in a secondary language is to change the system part of your library list so
the library of the national language you want is positioned before all other libraries in the system library
list that contain national language information.

For example, to present the French version of textual data, you can enter the following command to place
French information at the top of the library list:

CHGSYSLIBL LIB(QSYS2928) OPTION(*ADD)
To remove a library from the library list enter:
CHGSYSLIBL LIB(QSYS2928) OPTION(*REMOVE)

Note: The authority included with the CHGSYSLIBL command does not allow all users to run the
command. As included, you must have *ALLOBJ and *SECADM special authority to use the Change
System Library List (CHGSYSLIBL) command.

Method 2: Creating a subsystem for the language you want
A second way to present information in a different language is to follow these steps:

1. Create a subsystem for the secondary language.

2. Define the subsystem system part of the library list entry with the national language version library for
the secondary language.

All jobs running in the subsystem use textual data from the secondary language. All jobs that you submit
as batch jobs have the national language version library as the first library on the system part of the library
list.

28 IBMi: IBMi globalization

Method 3: Changing the library list for your job so that the national language version
library for the secondary language is the first library on the system part of the
library list

A third way to present information in a different language is to change the library list for your job so that
the national language version library for the secondary language is the first library on the system part of
the library list. All jobs running in the subsystem use textual data from the secondary language. All jobs
that you submit as batch jobs have the national language version library as the first library on the system
part of the library list.

How a language of your choice is displayed for licensed programs

Libraries for licensed programs are either added automatically, or must be added by the user, when
needed. For example, when a licensed program does not provide a translation for the primary language of
the system, you need to choose a secondary language that is supported to interface with that program.
After you install the secondary language, the text is found in the appropriate QSYS29xx library. After the
secondary language is installed, you can use the one of the three methods that are described to change
all system interfaces to the secondary language to use this licensed program. If you want to leave the
rest of the interfaces in the default language and enable the secondary language for only this licensed
program, you can add the QSYS29xx library to the users part of the library list. These steps enable the
licensed program's translation to be found.

An example of French as a secondary language would have the text in library QSYS2928. For more
information about the numbers that are used, see National language version feature codes. If you want to
add libraries for other licensed programs to your library list, use the CHGLIBL command.

Related concepts

Configuring secondary languages

A secondary language consists of textual data for all licensed programs supported for a national language
version.

Related reference
Change System Library List (CHGSYSLIBL) command
Change Library List (CHGLIBL) command

Installation preparation and national languages

IBM periodically creates program temporary fixes (PTF) to correct existing problems or potential
problems within a particular IBM licensed program.

PTFs are designed to fully replace one or more objects in the licensed program. Primary and secondary
languages can have language-sensitive online information PTFs.

If the primary language of your system is changed at any time for reasons other than a new release
update, the cumulative PTF package of the new primary language should be at the same level as

the previous primary national language. PTFs that were associated with the primary language and any
secondary language must be applied again. In addition, primary language and secondary language PTFs
for the online information need to be ordered by the customer.

For systems running IBM i V6R1, or later, you can set the system service language (the dedicated service
tools (DST) language) to a language different from the operating system language. For more information,
see Installing, upgrading, or deleting IBM i and related software.

Related concepts

Configuring the primary language

A primary language consists of program code, textual data for each licensed program ordered, and default
national language cultural values.

Configuring secondary languages

IBM i globalization 29

A secondary language consists of textual data for all licensed programs supported for a national language

version.

Checklist: Globalization planning

When planning to install a multilingual IBM i operating system, start by completing the Globalization
planning checklist for globalization and multilingual support. The checklist consists of two parts, which
should be completed sequentially.

Globalization checklist: Part 1

Before you work with a national language, answer the questions in the following table. After you have
answered the questions in this table, you can then use “Globalization checklist: Part 2” on page 30 for
planning for multilingual support.

Check off

Question

Response

What national language version for the
primary language are you going to install?
(Refer to “Setting up IBM i with a national
language version” on page 27.)

What program library can it be ordered from?
(Refer to “National language version feature
codes” on page 236.)

Are you going to use a DBCS national
language version as a secondary language?

Are you aware that the latest 5250 PC
emulation is necessary to support graphics
data format (GDF) type?

What national language version for the
secondary language are you going to install, if
any?

Do you want to change your subsystem to
change the language of your initial sign-on
display?

What release level of the national language
version for the primary language are you
ordering? (Refer to “Configuring the primary
language” on page 35.)

Are the release levels of the national
language version for the secondary language
the same as the primary language you
ordering?

Globalization checklist: Part 2

When you have completed “Globalization checklist: Part 1” on page 30 of the checklist, answer the
additional questions in part 2.

Check off

Question

Response

What printers support your language from a
remote location?

30 IBMi: IBMi globalization

Check off | Question Response

What applications support your languages on
the local system? (Contact your marketing
support representative in your country.)

What applications support your languages on
the remote system? (Contact your marketing
support representative in your country.)

Do you want all your database files with the
CCSID of the primary language? (Refer to
“Database management” on page 125.)

Do you want to work with sort sequence
tables in your applications? (Refer to “Sort
sequence support in programs” on page
161)

When creating user profiles (user IDs) only
certain characters are allowed.

You can use any of the following characters in
the user profile name:

« Any letter (A through Z)
« Any number (0 through 9)

« These special characters: pound (#), dollar
($), underscore (), at (@). However, these
characters should be avoided for globalized
application systems. See “User profile
name considerations” on page 34 for
more information.

See User profiles for more
detailed information about user profile
considerations.

Hardware installation and national languages

When installing or changing a device on your system, you must make sure that the device is configured
correctly to reflect the keyboard ID that matches the character set and code page of the job CCSID.

Changing the keyboard configuration of a device results in different behavior, similar to adding a new
display or printer to the system.

Panels, menus, and messages used by the installation process do not support right-to-left presentation
of data. Therefore, online information for the installation appears left to right, in English, for bidirectional
languages (such as Arabic and Hebrew).

Related concepts

Configuring secondary languages
A secondary language consists of textual data for all licensed programs supported for a national language
version.

Console device

You should make sure that your console device is configured to support the default code page of the
primary language you are going to install on the IBM i operating system.

If the console device supports the code page of the new primary language, panels, messages, and online
help will display properly after you change the primary language.

IBM i globalization 31

You must change the console device to one that supports the code page of the new primary language
before doing the IPL that activates the new primary language. Make sure that autoconfig is on before
doing this IPL.

Scenario: Console configured as a single-byte device

Your system has a primary language of English Uppercase DBCS (feature 2938). You decide to change the
primary language to Japanese DBCS (feature 2962).

The existing console device on your system is configured as a single-byte-only English device using a
code page of 00037. While a single-byte English device supports the installation of all other single-byte
national language versions, it does not support the installation of double-byte national language versions
like Japanese or Chinese. You must change the console device to one that supports the Japanese DBCS
code page before doing the activation IPL.

If you do not change the console device to one that supports the Japanese DBCS code page, the IPL
cannot complete.

Workstation considerations
In a multilingual environment, different workstations support different languages on the same system.

Any data that is not tagged with CCSIDs should be stored in separate objects, unless the CCSID for each
language is the same. Data that is tagged with CCSIDs (such as message files and database files) do not
have to be stored in separate objects.

To correctly retrieve, process, and display data that is not tagged with CCSIDs, the application being used

needs to be aware of the language differences, and how they relate to the following items:

« Programmable workstations through IBM i Access programs

« Nonprogrammable workstations
Note: The 3486, 3487, 3488 model V, and 3489 displays support all languages (except Thai) listed in
3486, 3487, 3488 Model V, and 3489 Keyboard and Display Part Numbers by Language.

« Keyboards

« Telnet or pass-through implications
The characters shown on your workstation depend on the keyboard type defined on your source system.
If you pass through to the target system and use a virtual device with a different keyboard type, you
might not see the same characters as if you were directly attached to the target system, because the
target system uses another language.

Related concepts

Keyboard layouts
These keyboard layout samples are provided for your information. The special-character keyboard set is
available only with the enhanced keyboard.

Considerations for changing printers

When changing printers, consider the areas of data interchange, data stream, fonts, and host printer
emulation.

« Interchange (z/OS® operating systems sending Advanced Function Presentation (AFP) data for DBCS to
IBMi.)

AFP data containing DBCS data can be generated on the IBM i operating system. In addition, the system
can receive AFP-generated data from the z/OS system containing DBCS data and print the data on
Intelligent Printer Data Stream (IPDS) printers attached to the IBM i platform. The IPDS printers must
be configured with *YES specified for the AFP parameter.

« Data stream

Printers consist of SNA character string (SCS) and IPDS printers.

32 IBMi: IBMi globalization

SNA character string (SCS) is a data stream composed of EBCDIC controls, optionally intermixed with
end-user data, which is carried within a request/response unit. Host-attached SCS printers can be
configured by the systems engineer or by the customer, using a diskette or selection of keys on the
printer. The appropriate printer operator's guide should be used to determine how to configure the SCS
printer for the language you are using.

One of the strengths of IPDS is that independent applications can create source data. The source data
from independent applications is merged at the printer to create an integrated mixed data page. For
example, text data can be produced on an editor, image data can be the output of a scanner stored in a
folder, and graphics data be produced by the Business Graphics Utility program. IPDS makes it possible
to integrate application output rather than requiring the use of integrated applications.

« Fonts

Font types for IPDS printers can be configured through the use of the Create Device Description
(Printer) or Change Device Description (Printer) (CRTDEVPRT or CHGDEVPRT) commands. Fonts can be
downloaded from the host or can be saved in printer storage.

For a list of the character identifier (CHRID values) supported by the various printers and languages, see
the Printer Device Programming PDF.

« IBMi Access printer to emulate host printer

The IBM i Access programs support multiple languages on a single system. A IBM i Access user (except
for host emulation) can use any single language of choice that is installed on the attached IBM i
platform. If a IBM i Access user has a host emulation session with five different systems, the user can
view a different language on each session. However, the same personal computer ASCII code page
must be on all the systems.

See IBM i Access of your environment for information about installing and configuring attached PC
printers.

Related concepts

Advanced Function Presentation

Related reference

Create Device Desc (printer) (CRTDEVPRT) command
Change Device Desc (printer) (CHGDEVPRT) command

Software installation and national languages

If your system communicates with systems using different languages, you need to be careful when
specifying configuration names that are exchanged with the remote system.

Do not use characters that might not be available on the keyboard used by the remote system; for
example, characters such as a dollar sign ($), pound sign (#), and an at sign (@). For an illustration of the
characters that you can use in configuration names, see “Invariant character set (and its exceptions)” on
page 302.

You should limit support of configuration names that use characters outside of the invariant character set
to those already in use on existing systems.

Configuration names that might be exchanged with remote systems include:

« Network identifiers
Location names

Control point names
« Mode description names
« Class-of-service description names

User IDs (from the directory entry)

For more information about software installation, see the appropriate software product books.

IBM i globalization 33

Related information
Installing, upgrading, or deleting IBM i and related software

Configuring a national language version

You must configure the national language version on your system before the system can meet your
business needs in the multilanguage environment.

User profile name considerations

The user profile name identifies the user to the system. This user profile name is also known as the user
ID. It is the name that the user types in the User prompt on the Signon display.

The user profile name can be a maximum of 10 characters. The characters can be:

« Any letter (A through Z)
« Any number (0 through 9)

« In addition to these characters, three special codepoints are allowed (x'5B', x'7B', x'7C"). For many
CCSIDs, including 37, these code points are interpreted as $, #, and @. For other CCSIDs, however,
these code points represent other characters. Although these code points are allowed, you should
avoid using them because of the potential misinterpretation when multiple CCSIDs are used on a single
system. For example, a Spanish-speaking person using CCSID 284 might create a user profile with the

name ESPA ™ OL, but an English-speaking person using CCSID 37 might see this name as ESPA#OL.
The user profile name cannot begin with a number.

Note: You can create a user profile such that when a user signs on, the user ID is only numerals. To create
a profile like this, specify a Q as the first character, such as Q12345. A user can then sign on by entering
12345 or Q12345 for the User prompt on the Signon display.

Related concepts

Packaging and installation process

You need to consider the running code, translated textual data, and installation documents when
packaging applications. Here are some suggestions for simplifying the packaging and installation of your
application.

Related information
User profiles

Service tools

Panels, messages, and online help information for service tools are typically shown in the primary
language of the system. Therefore, the workstation from which the system is being serviced must be
configured to support the primary language, and the keyboard for the primary language must be attached
to that workstation.

Panels, menus, and messages used by the service tools do not support right-to-left presentation of
data. Therefore, online information for the service tools appears left to right, in English, for bidirectional
languages (such as Arabic and Hebrew).

System and user interfaces
The system interfaces and user interfaces are presented through a workstation or printer.

The workstation controller interprets keystrokes on keyboards according to the mapping determined

by the KBDTYPE parameter in the device description. The display presents the data to the user,
depending on the code page mapping located in the workstation controller. This code page mapping in the
workstation controller is determined by the CHRID parameter in the device description. Each supported
keyboard type has a character identifier assigned to it, and the default setting of CHRID in the device
description (*KBDTYPE) refers to that character identifier. Ensure the code page of the emulator is set to
match the language of the system. For more information, see the help provided by the emulator.

34 IBMi: IBMi globalization

Automatic device configuration
Automatic configuration defines the local devices and some remote devices to the system.

This means that the devices attached to your system are available for use when the system is running
and has a powered-on display. You do not have to use manual configuration to create configuration
descriptions for the devices before you can use them. For devices that are able to send configuration
information to the workstation controller, the KBDTYPE parameter is set according to the keyboard
attached. If the device cannot send KBDTYPE information to the system, the QKBDTYPE keyboard system
value is used.

Note: If you use manual configuration to set up a device with a different keyboard type than the hardware
reports, automatic configuration changes the device description to match the keyboard attached. To avoid
this, each time the device is powered on; you can switch automatic configuration off by setting QAUTOCFG
system value to 0 (Off).

Related information
Local Device Configuration PDF

Automatic character set and code page conversion
The IBM i operating system provides automatic conversion between character set and code pages for all
applications that are enabled for national language support.

This automatic conversion can be controlled in the display, menu, or panel source, or through the CHRID
parameter on the control language (CL) commands that create these displays. The character set and code
page of the device used by the user is determined by the CHRID parameter in the device description. The
CHRID value is normally set to *KBDTYPE.

When the data to be presented is in a character set and code page different from the language of the user,
automatic data conversion might occur.

Related concepts

Working with CCSIDs

Using the system implementation of Character Data Representation Architecture (CDRA), you can achieve
consistent representation, processing, and interchange of coded characters (data) on the IBM i operating
system and across IBM Systems. The primary implementation of CDRA on the IBM i operating system is
through coded character set identifier (CCSID) support.

CCSID reference information

Coded character set identifier (CCSID) is a 16-bit number that includes a specific set of encoding scheme
identifiers, character set identifiers, code page identifiers, and other information that uniquely identifies
the coded graphic-character representation.

Printer file conversion

The printer provides printed output to the user. IBM i printer support does not do any conversion between
the different character sets. For the data to be printed, the user must make sure that the proper character
set and code page are specified in the printer and the fonts are in the printer.

If the CHRID value of the printer file is set to *JOBCCSID, the printer joins the CHRID value of the job
CCSID to the data to be printed. For externally described printer files, constants within your DDS (data
description specification) are converted from the DDS source file CCSID to the character identifier of the
job CCSID value.

Configuring the primary language
A primary language consists of program code, textual data for each licensed program ordered, and default
national language cultural values.

The primary language is the language in which the system is serviced and from which all language-
dependent or cultural-dependent system values are initialized. In addition, other system objects and
functions assume attributes based on the primary language. For example, messages appearing in the
history log always appear in the primary language.

IBM i globalization 35

https://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415121.pdf

For each licensed program installed on the system, the national language version for the primary language
is in the product library. For example, the IBM i operating system ordered in Spanish is installed in library
QSYS as the primary language.

The system provides default system values for each of the primary languages. If some of the defaults do
not meet the needs of your users, you can change some language-dependent system values.

Selecting and changing the primary language

Choosing your primary language is important. The IBM i operating system allows you to change

your primary language to accommodate your business needs based on the country in which you are
operating. Keep in mind, however, that changing the primary language can take several hours or longer to
accomplish.

To change a primary language on your system, you can order a different primary language from IBM. If
you have a secondary language tape for the language you want as your new primary language, you can
change the primary language from that tape. For example, if you have a primary language of U.S. English,
and a secondary language of Canadian French, you can use the Canadian French secondary language tape
to change your primary language to Canadian French.

When you change a primary or secondary language, and want to continue receiving software and
documentation updates for future releases of licensed programs that you are currently using, contact
your IBM representative.

Selecting and changing a primary language affects the following operational characteristics of your
system:
« Cultural values of the user.

« Language used to communicate with the system through user interfaces presented through a
workstation or printer. See the figure in “Example: How locales work” on page 213.

« Implied character identifier (CHRID) of the character data stored in objects other than database files,
message files, and message queues on the system.

All user-created database files have an implicit CCSID and are tagged with the job default CCSID
(DFTCCSID) unless you provide a CCSID at creation time.

« If you change the primary language and the CCSID for the data remains the same, there is no effect
on your system. An example is to change the primary language from the German MNCS to the Italian
MNCS, of which both use CCSID 00500. The multinational character set refers to character set 00697
and code page 00500.

- If changing the primary language includes changing the CCSID value, the character data in objects
other than database files might not be presented properly through the system and user interfaces.
The database manager automatically converts character data unless conversion is suppressed by the
application that processes the file. Data in objects other than database files are displayed correctly if
the CHRID value of the display file, panel group, or menu is *JOBCCSID.

Because some of the system values are set based on the installed primary language, you should record
your current system value settings before you change the primary language of your system. Then, after
you change the primary language, you can compare the current system values with the previous system
value settings.

When you change the primary language of your system, the CCSID of the text fields in the system-
supplied output files might also change. This is because the CCSID is dependent on the installed primary
language.

Related concepts

Setting up IBM i with a national language version

The steps to install and configure a national language version on the IBM i operating system include
selecting and installing hardware, installing software, and configuring your environment to runin a
globalized setting.

Installation preparation and national languages

36 IBMi: IBMi globalization

IBM periodically creates program temporary fixes (PTF) to correct existing problems or potential
problems within a particular IBM licensed program.

Default system values for national language versions
Jobs and functions on the IBM i operating system use system values as default values.

System values

The system values of the primary language on the system are used as system-wide cultural and linguistic
defaults. Therefore, if you change the primary language on the system, each varying system value resets
to the default system value of the new primary language.

Related information
Changing the primary language of your system or logical partition

Configuring secondary languages

A secondary language consists of textual data for all licensed programs supported for a national language
version.

When you install a secondary language, the textual data for licensed programs installed on your system
is copied into the secondary language library. See the chapter called "Installing a Secondary Language" in
the Software Installation PDF for instructions on installing secondary languages.

The program code is not included in the secondary language version.

Secondary language environments

Some multilingual environments have more than one national language version installed. To have a single
system support multiple languages, you must have the associated hardware installed. You must also
have sufficient disk storage space available to contain all of the system and application textual data

for the secondary languages. The amount of disk storage space that is required varies by language and
application, but it is typically somewhere in the range of 50 to 300 MB.

The languages currently supported on IBM i as either primary or secondary languages can be found in
National Language Version (NLV) feature codes. Listed are the national language versions, their feature
codes, and the program libraries from which they are available.

Each of the national language versions available from the program library (primary or secondary) include
cultural- and language-dependent system values for that particular language. Date format, date and
time separators, code page and character set, and keyboard types are examples. The system values are
initially set to the cultural values of the primary language. By setting up a subsystem, however, you can
ensure that the cultural values for the secondary languages are set properly for users of the secondary
languages.

Applications can use language values that are available in message CPX8416, in file QCPFMSG, accessed
using the library list. Message CPX8416 gives the correct values for the primary or secondary language,
depending on the library list.

Except for logical partitioning (LPAR), when you use a multilingual environment, the primary language
version and any secondary languages must be at the same release level. You must also order and install
the correct devices (workstation controllers, display stations, and printers) to support your languages.

Related concepts

Setting up IBM i with a national language version

The steps to install and configure a national language version on the IBM i operating system include
selecting and installing hardware, installing software, and configuring your environment to run in a
globalized setting.

How a language is displayed for IBM i functions

If you want information presented in a language other than the primary language of the system, you must
first have a secondary language loaded. When a secondary language is loaded, you have three ways to
display information in that language.

Installation preparation and national languages

IBM i globalization 37

IBM periodically creates program temporary fixes (PTF) to correct existing problems or potential
problems within a particular IBM licensed program.

Hardware installation and national languages
When installing or changing a device on your system, you must make sure that the device is configured
correctly to reflect the keyboard ID that matches the character set and code page of the job CCSID.

National language version feature codes

This table lists the available national language version feature codes on the IBM i operating system. When
you order an IBM i licensed program, you identify the national language version you want by specifying a
language feature code.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

Notes on secondary languages when you require English as the primary language
These considerations are important when you require English as the primary language and want to install
DBCS secondary languages.

If Japanese, Simplified Chinese, Traditional Chinese, or Korean is used as a
secondary language and English is required as the primary language

If Japanese, Simplified Chinese, Traditional Chinese, or Korean is used as a secondary language and
English is required as the primary language, use English Uppercase and Lowercase (2984) as a primary
language.

In other cases

In cases other than those described in this topic, use English (2924) as a primary language.

Enabling the secondary language
You must ensure that secondary languages can be used after they have been installed on the system.

To enable the secondary language, follow these steps:

1. Add the secondary language library to the beginning of the user's system part of the library list.
To do this, use one of the following ways:

« Use the Change System Library List (CHGSYSLIBL) command to add the national language library you
want to the top of the library list.

The command can be in an initial program specified in the user profile so that the user does not have
to enter the command at every sign-on.

The authority included with the CHGSYSLIBL command does not allow all users to run the command.
To enable a user to run the CHGSYSLIBL command without granting the user rights to the command,
you can write a CL program containing the command. The program is owned by the security officer
and adopts the security officer's authority when the program is created. Any user with authority to
run the program can use it to change the system part of the library list in the user's job.

- Use a separate subsystem for a secondary language. To do this, follow these steps:

a. Create a subsystem description for secondary language users (for example, QGPL/DANISH).

b. Specify the secondary language library for the Subsystem library (SYSLIBLE) attribute (for
example, QSYS2926).

c. Specify the sign-on display file from the secondary language library for the Sign-on display file
(SGNDSPF) attribute (for example, QSYS2926/QDSIGNON).

d. Use the Remove Work Station Entry (RMVWSE) command to remove the appropriate display
devices from the interactive subsystem, and then use the Add Work Station Entry (ADDWSE)
command to add these devices to the secondary language subsystem.

38 IBMi: IBMi globalization

When you use these commands, no one can be signed on to the devices that you are removing.

e. If you want to use separate job queues (JOBQ) and output queues (OUTQ) for a secondary
language, you can create these queues in the secondary language library (for example,
QSYS2926). Attach the job queue to the secondary language subsystem (for example, QGPL/
DANISH).

= You might have licensed programs that have secondary language libraries and that are not on the
IBM i secondary language tape. You should add those secondary language libraries to the library
list before the primary language product libraries. Use the Change System Library List (CHGSYSLIBL)
command to add the secondary language libraries to the library list if the product libraries are in the
system part of the library list.

2. Specify the keyboard ID for the secondary language in the device description for the display station.
a) Turn off your device.

b) Use the Change Device Description Display (CHGDEVDSP) command to specify the keyboard ID for
the secondary language in the device description.

c) Use the Vary Configuration (VRYCFG) command to turn on the device.
3. Change the date format to reflect the date format of your language.

The date format, date separator, and time separator can only be changed using the CHGJOB command
for secondary language users. If you use the CHGSYSVAL command to change these values, all primary
language users and all secondary language users have this information changed. The following table
illustrates this and shows the ways the date and other NLS-related job attributes should be specified
for secondary language users.

CHGJOB CRTJOBD CHGJOBD CRTUSRPRF CHGUSRPRF
Date X X X
Date format X
Date separator | X
Time separator | X
Characterset [X X X
identifier
Language X X X
identifier
Sort sequence | X X X
Country or X X X
region
identifier

Note: The following commands are used in this table:

« Change Job (CHGJOB) command
« Create Job Description (CRTJOBD) command
« Change Job Description (CHGJOBD) command
« Create User Profile (CRTUSRPRF) command
« Change User Profile (CHGUSRPRF) command
4. Change the CCSID value to reflect the CCSID of the secondary language that you want to use.

You can set the CCSID value for all jobs to run under your user profile by using the Change User Profile
(CHGUSRPRF) command. This change takes effect for any jobs that enter the system using your profile
after you have made the change.

IBM i globalization 39

You can set the CCSID value for a batch job to be run using the CCSID parameter on the Submit Job
(SBMJOB) command. You can change the CCSID of a job that is running by using the Change Job
(CHGJOB) command.

5. Ensure that your data in objects other than database files and message files prints correctly.

To do this, you might want to direct all of your printed output to a print queue that contains printer
output only for the character identifier of your language.

a) Use the Create Output Queue (CRTOUTQ) command to create a printer queue.
b) Use the OUTQ parameter of the Change Job (CHGJOB) command to change your job output queue.

CHGJOB 0UTQ(output_queue)

Note: You can use the Change User Profile (CHGUSRPRF) command instead to make a more
permanent change to the OUTQ parameter. Then, each time you sign on to the system, the correct
output queue is used.

If the printer supports changing the code page, you can use the *JOBCCSID value in the printer file.

6. Change other cultural- and language-dependent values to the secondary language you want to use if
you do not want to use the system values.

Use the Change Job (CHGJOB) command to change the cultural- and language-dependent values.

Related concepts

Working with CCSIDs

Using the system implementation of Character Data Representation Architecture (CDRA), you can achieve
consistent representation, processing, and interchange of coded characters (data) on the IBM i operating
system and across IBM Systems. The primary implementation of CDRA on the IBM i operating system is
through coded character set identifier (CCSID) support.

Linguistic and cultural values
Linguistic and cultural conventions include any system values, attributes, or settings that can be altered to
suit a country or language.

Related reference

Change System Library List (CHGSYSLIBL) command
Create Output Queue (CRTOUTQ) command

Change Job (CHGJOB) command

Multilingual support
Multilingual support on the IBM i operating system is the support that includes more than one language
on one system.

A system that works in multiple languages must be able to handle a variety of cultural and linguistic
characteristics such as the following:

- Graphic characters, such as an e accent grave (%)

Currency symbols, such as the Pound Sterling symbol

- Date formats, such as 24.06.93

« Time formats, such as 23:59

» Sort sequences, such as a, b, c....

The system must also handle differences, such as the direction in which text prints and displays. For
example, all text of Latin-based languages, such as French and Spanish, displays from left to right across
a display. However, the general direction of Arabic and Hebrew text is from right to left across a display.

The system displays text, prints text, and allows data entry left to right for some languages and right to
left for other languages.

Printing and displaying text left to right for some languages and right to left for others is not enough,
though. Numbers and Latin character phrases that are included in Arabic and Hebrew text display and
print from left to right. For example, Hebrew text generally flows from right to left across a display. When

40 IBMi: IBMi globalization

Hebrew text includes a street address, the street name flows right to left, but the address number flows
left to right. Similarly, if Hebrew text includes a Latin name, such as John Smith, the Latin name flows
from left to right. Because this text flows both right to left and left to right (bidirectionally), the system
displays and prints text bidirectionally.

Multilingual network

Two or more systems, each using a different primary language, can interchange data. Because data is
flowing between systems with different primary languages, the data must have a CCSID assigned. When
data has a CCSID assigned, data integrity is maintained. Thus, character data is correctly displayed for the
receiving user.

Installing and enabling locales

If you are installing a new release, you can request that library QSYSLOCALE be installed on the system at
that time.

To install library QSYSLOCALE at a later time, type GO LICPGM and press the Enter key. Scroll until you
find Extended NLS Support. Select option 1 to install Extended NLS Support.

Locales can be enabled on the system by using system values or user profiles.

Enabling locales with system values

Two system values are related to locales:

QLOCALE
The system value specifying the locale object. The default is *SYSVAL. Other possible values are:

L] *C
The C locale is assigned for this user (same result as using *POSIX)
« *POSIX

The POSIX (Portable Operating System Interface for Computer Environments) locale path name is
assigned for this user.

« locale path name
The path name of the locale to be assigned for this user.

QSETJOBATR
A system value that sets job attributes at job start time. The default is *SYSVAL. The following values
indicate the job attributes that are to be set from the locale object specified by QLOCALE:

« *CCSID (Coded character set identifier)
The CCSID associated with a locale when the locale object is created.
« *DATFMT (Date format)
The date format is determined from the locale object.
« *DATSEP (Date separator)
The date separator is determined from the locale object.
*SRTSEQ (Sort sequence)

The sort sequence is determined from the locale object
*TIMSEP (Time separator)

The time separator is determined from the locale object.
*DECFMT (Decimal format)

The decimal format is determined from the locale object.

IBM i globalization 41

Enabling locales with user profiles
Two parameters on the user profile are related to locales:

LOCALE
The parameter value specifying the locale object to use for the LANG environment variable. The
default is *NONE. Other possible values are:

« *SYSVAL

The system value QLOCALE is used to determine the locale path name to be assigned for this user.
. *C

The C locale is assigned for this user (same result as using *POSIX).
« *POSIX

The POSIX locale path name is assigned for this user.
« locale path name

The path name of the locale to be assigned for this user.

SETJOBATR
The parameter value that sets job attributes at job start time. The default is *NONE. If *SYSVAL
is specified, then the attributes are set from the QSETIOBATR value. The same attributes (*CCSID,
*TIMSEP, *DATFMT, *DATSEP, *DECFMT, *SRTSEQ) that can be specified on the system value
QSETJOBATR can be specified on the SETJOBATR parameter of the user profile.

If you want all users on the system to use locales, setting system values accomplishes this. Alternatively,
the user profile is an ideal mechanism if you want to provide locale function to a limited or specific group
of users.

Related concepts

Locales
A locale is an object that can determine how data is processed, printed, and displayed.

System-supplied locales and recommended CCSIDs

The system-supplied locale source definition file members are in the optionally installable library
QSYSLOCALE in the QLOCALESRC source file. The source file members are encoded in CCSID 37 and
are read only.

Working with locales

Locales are used primarily in ILE-based application programs. Additionally, the Retrieve Locale
Information (OPM, QLGRTVLC; ILE, QlgRetrieveLocaleInformation) API retrieves one or all categories of a
locale.

Scenarios: Setting up IBM i with a national language version
These scenarios demonstrate how you can enable multilingual support on the IBM i operating system.
Note: For more information about the details described in the scenarios, see the following topics:

 For Unicode database information relating to DDS, see DDS for physical and logical files.

« For Unicode display information with DDS, see DDS for display files.

 For Unicode printing information with DDS, see DDS for printer files.

- Forinformation about using the subsystem description, see Enabling the secondary language.

Related concepts
Working with Unicode

42 IBMi: IBMi globalization

Unicode is a standard that precisely defines a character set as well as a small number of encodings for it.
It enables you to handle text in any language efficiently. It allows a single application to work for a global
audience.

Scenario: A single system supporting Spanish
In this scenario, a single system supports Spanish users and applications.

The primary language of the system is Spanish (NLV 2931). Because 2931 is the primary language, the
default system settings and IBM i localization preference are set to Spanish.

The user has also created a database file where the fields of interest are defined to contain Unicode,
because they plan to use this same database file for both 5250 applications and Java applications.

The following example shows the SQL statement used to create a database containing a Unicode field
named PART_NAME and a non-Unicode field named STOCK_NUMBER:

CREATE TABLE SAMPLE (PART_NAME GRAPHIC (10) CCSID 1200
NOT NULL WITH DEFAULT, STOCK_NUMBER INT NOT NULL WITH DEFAULT 0)

If the user wants to display this data with a web service or Unicode enabled application, then Unicode is
the natural encoding for web use, and no conversion is needed. To get the correct localization preference
for the Java application, the user sets the Java locale to sp_SP for Spanish in Spain.

If the user wants to display this data with a 5250 session, then the Unicode field must be converted to
the CCSID of the display device. The user only has to set the user profiles's CCSID value to 284 to tell
the system that this user is on a Spanish display. This service is provided automatically by the system if
requested with the CCSID keyword and the *CONVERT parameter in DDS.

To print the Unicode data, the user specifies the *NOCONVERT parameter of the CCSID keyword, and uses
the FONTNAME keyword to specify a TrueType font. The unconverted Unicode data can be printed with
PSF or with Host Print Transform.

The following figure illustrates this scenario.

IBM i globalization 43

£ Yy Fa —
Fe Interface Web or Java application \
5250 licati
ol W NLV text support Interface Data
Spanish 5250 Spanish primary : .
“martilla™ J ‘(language Ba Spanish martille
| -
Localization Localization
| Mon-Unicode prefarance preference
| data . W, L oy
!
¥ DDS automatic Unicode Unicode
COnversion data data
el Unicode databasa
Part_Name Stock_Number

martillo 1001
Part Name
Unicode ;
martillo
data
Host print N
transferm or PSF / Brinter

Scenario: A single system supporting Spanish and an existing EBCDIC
database

In this scenario, a single system supports Spanish users and applications and an existing EBCDIC
database.

The primary language of the system is Spanish (NLV 2931). Because 2931 is the primary language, the
default system settings and IBM i localization preference is set to Spanish.

The user has also created a database file where the fields of interest are defined to contain Unicode,
because they plan to use this same database file for both 5250 applications and Java applications. They
also have an existing database in which the fields are defined in EBCDIC.

The following example shows the SQL statement used to create the EBCDIC database:

CREATE TABLE SAMPLE (PART_NAME CHAR (10) CCSID 284 NOT NULL WITH DEFAULT,
STOCK_NUMBER INT NOT NULL WITH DEFAULT 0)

The following example shows the SQL statement used to create a database containing a Unicode field
named PART_NAME and a non-Unicode field named STOCK_NUMBER:

CREATE TABLE SAMPLE (PART_NAME GRAPHIC (10) CCSID 1200 NOT NULL WITH DEFAULT,
STOCK_NUMBER INT NOT NULL WITH DEFAULT 0)

When using the Unicode file

If the user wants to display this data with a web service or Unicode enabled application, then Unicode is
the natural encoding for web use, and no conversion is needed. To get the correct localization preference
for the Java application, the user sets the Java locale to sp_SP for Spanish in Spain.

44 IBMi: IBMi globalization

If the user wants to display this data with a 5250 session, then the Unicode field must be converted to
the CCSID of the display device. The user only has to set the user profiles's CCSID value to 284 to tell
the system that this user is on a Spanish display. This service is provided automatically by the system if
requested with the CCSID keyword and the *CONVERT parameter in DDS.

To print the Unicode data, the user specifies the *NOCONVERT parameter of the CCSID keyword and uses
the FONTNAME keyword to specify a TrueType font. The unconverted Unicode data can be printed with
PSF or with Host Print Transform.

When using the EBCDIC file

If the user wants to display this data with a web service, then the file first must be converted to
Unicode. This can be done with the JDBC connector. To get the correct localization preference for the
Java application, the user sets the Java locale to sp_SP for Spanish in Spain.

If the user wants to display this data with a 5250 session, EBCDIC is the natural encoding for the 5250
device and no conversion is needed. To print the EBCDIC data, the user sends the data to the printer.
Because EBCDIC is the default encoding for the printer, no conversion is needed.

Logical file support

One of the unique features of IBM i is the ability to use the system's logical file support to have either the
EBCDIC file appear to the application as a Unicode file, or to have a Unicode file appear to the application
as an EBCDIC file. This might be of use if you want to move your database to Unicode, but do not want to
update your existing applications.

If the majority of your application's use of the database involves Unicode, you can have the data stored as
Unicode, and create a logical view of the file in EBCDIC. You can then have your EBCDIC programs access
this logical file and they do not need to be updated to handle Unicode.

If the majority of your application's use of database involves EBCDIC, you can have the data stored as
EBCDIC, and create a logical view of the file in Unicode. You can then have your Unicode programs access
this logical file and they do not need to be updated to handle EBCDIC. However, because EBCDIC encodes
a smaller set of characters than Unicode does, some character loss might occur.

The following figure illustrates this scenario.

IBM i globalization 45

P oy P —
Fe Interface Web or Java application
5250 licati
ol NLV text support Interface Data
Spanish 5250 Jspﬁgi:;u’;';:““' o | Spanish martillo
| L Unicode
f Ly Localization | data Localization
I % preference preference
;o . ' J ~ A ~
IIIE‘:{I;—U nic&:d& Unicode Unicode database - ¥
= dat
J i a1 Part Name Stock_Number JDBC
DDS automatic = = | converter
CONVersion martillo 1001 |
]
"\‘ '
|
Legical file support :
* " | Part Name
EECHN martilla
\‘* Part_Name Stock_MNumber A
!
martilla 1001 \
Host print } Printer

transform or PSF /

Scenario: A single system supporting English, Japanese, and German
In this scenario, a single system supports English, Japanese, and German users and applications.

The primary language of the system is English (NLV 2924). The system has also been loaded with
secondary languages of Japanese (NLV 2962) and German (2929). Because 2924 is the primary language,
the default system settings and IBM i localization preference is set to English. Because these three NLVs
are installed, each user can work with the system in English, German, or Japanese.

The users see their language of choice and IBM i localization preference from the initial sign-on screen by
the use of a subsystem description for each secondary language.

The user has also created a database file in which the fields of interest are defined to contain Unicode.
Because Unicode provides a unique number for every character on any platform, in any program,and in
any language, one field can contain English, German, and Japanese.

The following example shows the SQL statement used to create a database containing a Unicode field
named "PART_NAME" and a non-Unicode field named "STOCK_NUMBER":

CREATE TABLE SAMPLE (PART_NAME GRAPHIC (10) CCSID 1200
NOT NULL WITH DEFAULT, STOCK_NUMBER INT NOT NULL WITH DEFAULT 0)

If the user wants to display this data with a web service or Unicode enabled application, then Unicode
is the natural encoding for web use and no conversion is needed. To get the correct localization and
interface preference for the Java application, the user needs to set the Java locale to the correct value:
en_US for English, Jp_JA for Japanese, and de_DE for German.

If the user wants to display this data with a 5250 session, then the Unicode field must be converted to the
CCSID of the display device. The user only has to set the user profile's CCSID value to the correct value
(37 for English, 1399 for Japanese, and 278 for German) to tell the system what the user's preference is
for the display. This service is provided automatically by the system if requested with the CCSID keyword
and the *CONVERT parameter in DDS.

46 IBMi: IBMi globalization

To print the Unicode data, the user specifies the *NOCONVERT parameter of the CCSID keyword and uses
the FONTNAME keyword to specify a TrueType font. The unconverted Unicode data can be printed with
PSF or with Host Print Transform.

The following figure illustrates this scenario.

s N ™ e ion)
- Interface Web or Java application
licatio
5250 App " NLV text support Interface Data
- ' Hammer
English 5250 English _ .
"Hammer" subsystem English +hE

Hammern

Localization
preference

f

!

German 5250 German Unicode
"Himmarn® subsystem data [
A Localization
Jr’r preference
.Japfnas:a ,?ESD r Jalf:nat:a Japanese %KE
'ﬁ‘:l:ﬁ.E subsysiem Hammern
."I ! Localization
s preference
1/ 4 J
[
I|," T Unicode database -
il Part Name | Stock_Number
* | INen-Unicode :
' J dat Unicode | [Hammer 1001
ﬁ y data data I proves Part Name
DDS automatic . Hammer
conversion Hammern 1003 .
EhE
Hammern
Unicode i
data| o Host print
o \\trunsfnrm or PSF Printer

Developing globalized applications

Globalized applications are applications that have national language support. National language support
allows users to enter, store, process, retrieve, print, and display data in their chosen language. It also
allows users to see and enter commands, prompts, messages, and documentation in their chosen
language, in formats matching their cultural expectations.

Here are some guidelines for designing, developing, and delivering globalized applications:

- Designing functions that are sensitive to national languages
 Supporting various types of hardware

« Translating the textual data in your application

« Making your application available worldwide

Although your reasons might differ, most internationalized applications are created because:

IBM i globalization 47

« The market demands globalized software products that have a local feel
« The application is used in a community that represents multiple cultures
« Revenue opportunities are expanded

Related concepts

Character processing
Character processing on the IBM i operating system is controlled by specific coding rules and guidelines
that ensure consistent processing of character data.

Handling data in globalized applications

The IBM i operating system enables you to handle data in a globalized environment. This topic collection
describes Unicode and Unicode data, the Chinese standard GB18030, how to use CCSIDs to integrate
multiple language environments consistently, and how to use bidirectional data, DBCS data, and locales.

Goals and processes

Before you invest your time and money in the development of globalized applications, you should set up a
planning process to consider how to serve your users well.

Globalization development goals

This information assumes certain goals and provides you with recommendations for developing globalized
applications.

The recommendations in this topic assume that your basic goals are:

« To create an application efficiently.

« To create an application at minimal expense. You can retrofit existing applications for globalization and
create new applications designed for globalization. Designing an application for globalization, however,
is typically less expensive than retrofitting an existing application.

« To ensure that the application design does not interfere with the current or planned design of other
internationalized applications.

- When creating an application with national language support, you must plan for or put into effect the
following tasks:

Designing functions that are sensitive to national languages

Supporting various types of hardware support

Translating the textual data in your application

Making your application available worldwide.

Globalization development planning processes

A globalized application should be well planned at every stage in order to save time, effort, and money.
You should not have to recompile programs nor repackage data objects. Your product might, however, be
required to use a different data object based on the language version you are using. You should have one
set of program code and different sets of cultural- and text-dependent code, as needed.

Consider these processes when planning for a globalized application.

Market research process

In the market research process, you must determine for whom you are designing and developing
globalized applications. To find the answer, you can ask yourself and your potential customers these
types of questions.

What are my target markets for today and tomorrow?

The answer to this question makes a significant difference if you define your market place in different
countries or only in the area of your own language, or if you decide to include countries speaking

48 IBMi: IBM i globalization

other languages. For example, if you are coding an application from a Latin-based language, application
complexity increases when you decide to include countries using non-Latin languages such as Hebrew,
Chinese, or Japanese. The application complexity increases because you need to deal with incompatible
characters sets and more complex input methods.

Along with the language problem, there are other areas to consider. You need to understand the culture,
habits, ways of doing business, and laws of the target markets. You need to understand the customers'
ways of life for you to be accepted as a business partner, to be able to get into the market, and to support
them in their countries.

These factors can affect:

The skills that you need (technical, cultural, language, laws)
- The environments to consider
« Your company structure and support organization

Your relationship to other companies

The resources that you need (people, time, and money)

Who are the users of my application?

You must understand the requirements that future users of your application will have. For example, do
they want to:

- Work with separate databases for different languages?
« Work with a shared database for all languages?
- Exchange or consolidate data?

Work with different languages dependent on the user, the company, or the company's customers?
« Use end-user database tools to do their own inquiries on the application database?

All these factors affect the design you choose, the way your application is able to switch from one
language environment to another, and how data presentation and conversion take place.

How much globalization support is needed?

After you understand the requirements for your customers and their end users, you can decide what kind
of cultural-sensitive information you need to store and maintain, the type of data presentation, which
parts you need to translate, and how your application must be able to be integrated in the different
environments.

What is the cost of the effort?

To estimate the expected revenue, analyze the places you have chosen as your target market. After you
know the requirements, you should be able to determine the effort and costs. This amount allows you to
compare the costs against the expected revenue.

Which costs more, enabling or retrofitting an application?

The initial cost of enabling an application for national language support might be higher. But consider
that the enabling steps are based more on normal modular and data-driven design techniques, which
improve the quality of your application even without NLS enabling. Because a good design helps people
to understand and describe the application system, you will receive a certain return on the investment. A
good design helps to improve productivity of development and maintenance. You have the additional
effort of designing and implementing the application only once, even for many different language
versions. Compared to retrofitting an existing application, it is much less expensive to plan and design

it from the very beginning.

IBM i globalization 49

Development process

Before you start to develop NLS-enabled applications, you need to consider initial education and the
implementation of internationalized applications.

Education for developing internationalized applications

When you intend to develop NLS-enabled applications, you need to consider additional initial education.
The following topics are important to learn about:

« General globalization concepts

- Available globalization support on the IBM i operating system

« Available globalization support on other systems and applications with which your application operates
« Isolation of different parts of an application

- Data presentation corresponding to cultural conventions

« Design and coding for textual data parts

« Translation process

« Product and system integration

« Packaging, installation, and setup

« Product support and maintenance

Based on the globalization enabling guidelines, first prepare a prototype application and test the chosen
way of implementing the application for your specific environment. Afterward include the globalization
enabling guidelines in your general application development processes, guidelines, and standards.

Implementing internationalized applications

When implementing an internationalized application, the most important objective is to produce only
one set of running code. You must differentiate consistently between running code and textual data.
It is essential that you standardize the chosen approach throughout the whole application. Work with
unique and clearly defined naming conventions. To understand and to maintain this information in the
application, handle parameters called from a program in a consistent way.

Documentation process

Documentation should provide information for the end users of the application system in their own
language. The documentation should also include installation, setup, and customization information for
the user, the system operator, and the application system manager.

The user documentation should be textual data that can be easily translated. Whenever possible,
combine the online help information and user documentation to reduce the volume of text to translate.
Any example displays or print layouts should be produced by the application and included in the
documentation.

Translation process

Translating the textual data is a time-consuming process. The textual data should be available to
translators early at the development stage, even before the code is stable. When planning for translation,
you need to consider translation tools, education, guidelines, instructions, and the glossary as well as
physical equipment.

Physical equipment

Each translator should have equipment compatible with the language being translated. The display
stations and keyboards should have all the characters needed to translate, and the printers should be
able to print the translated text.

50 IBMi: IBMi globalization

Translation tools

Provide the translators with tools that increase productivity and that prevent translation of non-textual
application data. When purchasing or developing a translation tool, the following features should be
included:

« An editor that provides the ability to show displays that can be seen by the user, and the ability to
translate the textual data on the system but still protect the parts of the application that are not textual
data. The editor should also include functions such as scan and replace, find, copy, move, and delete.

A dictionary function to provide consistency of words and phrases throughout the product.

A validation process to check translation errors that might cause the application to malfunction.

- A merge function that provides the ability to merge the translated text into a new version of the original
text. This merge function allows for translating only new text, and saves time and effort.

« A print function for validation purposes.

Translation education

Itis important that translators are familiar with the product they are translating and also with the
tools they are using. The translation process is not the replacement of one word with another, but the
formation of concepts in another language. Knowledge of the product being translated provides more
understandable products to the user. Time and resources for educating translators should be planned
well in advance.

Translation guidelines and instructions

Translation guidelines and instructions should be provided to ensure correct translation. For example, to
translate an error message properly, it is important to know in what context this message is displayed. A
note to translators telling them what error caused the message to be displayed also helps.

Translation glossary

To ensure accurate translation, use terminology based on definitions in standard, widely available,
dictionaries. If your application uses terms not found in standard dictionaries or terms that are used
differently from standard definitions, provide a glossary of non-standard terms to the translators. Avoid
using abbreviations and acronyms in your application. If you must use abbreviations or acronyms in your
application, define them in the glossary. Remember, abbreviations and acronyms that are obvious in your
language might not be obvious in another language.

Testing process

The testing of a globalization-enabled product involves testing the running code, checking the textual
data, and integrating the running code and textual data.

1. Test the running code

The running code should be tested in a globalization support environment in order to check all the
possible language-dependent combinations. Translators should not test the product functionality.

2. Check the textual data

The textual data should be tested to check correct translation and consistency throughout the product.
3. Integrate the running code and textual data

After the textual data and the code have been tested separately, an integration test should be
performed to test if the application has taken into account all the globalization-related processing,
and that the translation of the textual data has not caused a malfunction in the product.

If your application will also run on a multinational or multilingual system, a separate test that includes
more than one set of textual data should be planned.

IBM i globalization 51

Packaging and installation process

You need to consider the running code, translated textual data, and installation documents when
packaging applications. Here are some suggestions for simplifying the packaging and installation of your
application.

« Store the running code and textual data separately.

« Package the textual data so that customers receive only the textual data in the languages that are
ordered. (If the textual data for all languages is sent to all customers, it will waste system resources and
lead to maintenance problems.)

» Provide comprehensive installation documents (translated to the language of the person installing the
product) to avoid unnecessary operator-related problems and also to avoid the wrong impression right
at the beginning that the application is not reliable.

Installation documentation should cover the following topics:

— What is needed to install and run the application, such as hardware and software requirements.
— How to install the application, and how to recover when things go wrong.
— What changes need to be made regarding:

- Subsystem definitions
- Device descriptions
- User profiles
- System values
- Library lists
— What are the application limitations?

Related concepts

Subsystems
A subsystem is a single, predefined operating environment through which the system coordinates the
work flow and resource use.

Device descriptions
These control language (CL) command parameters can be used to change cultural and linguistic
conventions for some display and printer devices.

User profile name considerations
The user profile name identifies the user to the system. This user profile name is also known as the user
ID. It is the name that the user types in the User prompt on the Signon display.

Default system values for national language versions
Jobs and functions on the IBM i operating system use system values as default values.

Job library list
The language used for textual data (displays, messages, printed output, and online help information) is
controlled by the library list for the job.

Delivering globalized applications
As you prepare to deliver your globalized application, you should consider how globalization issues might
affect the ways that your customers install and use your application.

Application maintenance process
Consider these points when planning for the maintenance of a multilingual application.

e The running code must be maintained separately from the textual data. These separate components
must be fully synchronized. A redesign in one component might cause a redesign to be made in another.

« Whenever textual data is changed, be sure that it is incorporated in all the languages to which your
textual data was translated. In this way, you can ensure a single maintenance level for the complete
product.

52 IBMi: IBMi globalization

- Be sure to test the running code for each textual data change that you distribute.

Designing globalized applications

Your goal in designing international application components is to create components that support
national languages independently.

The support of one language should not interfere with the support of another language. The support of
one language should not force any reduction in the function of the product for another language.

Your application should be able to support multiple languages simultaneously. For example, support for
a double-byte coded character set (DBCS) language should not exclude support for single-byte coded
character set (SBCS) languages. When you set up your libraries, consider using multiple textual data
libraries, which can be dynamically allocated for testing, packaging, and delivery.

As you develop a globalized application for the IBM i operating system, you must consider these and other
unique design considerations that will affect the way you build and code your application.

Related concepts

Developing applications that process DBCS data

You should design your application programs for processing double-byte data in the same way you design
application programs for processing alphanumeric data.

Checklist: Application design

The checklist provides some guidelines that you can follow when you create an application with national
language support.

Complies Not applicable |Rule

The existence of a specific character set within a system or its
components must not be assumed.

Converting character case must be definable for each language and
code page.

Folding must be definable for each language and code page.

Folding is the process in which characters that can be printed
or displayed are substituted for those that cannot be printed or
displayed on a particular device.

The use of a graphic character for software control purposes must
not preclude the use of the same character in the text of messages,
menus, prompts, input fields, or output fields.

The set of characters allowed for use in the entry of data must be
definable by the system operator, a user, or an application.

Graphic symbols and icons must be translatable.

All characters on the active code page must be accessible.

Language-dependent parts of a product must be isolated from non-
language-dependent parts for easy modification.

The design of a product must allow for the national language support
of the various components of the product to be independent of each
other.

National language exits must be provided at strategic points.

Diagnostics must be enabled.

IBM i globalization 53

Complies Not applicable |Rule

Logical layouts different from a given physical keyboard layout must
be available to the user.

All user interface text and presentation control information must be
isolated from the running code.

Functions dependent on display field length and display field
position, or display field position alone, must not be designed in such
a way that they are affected by user-interface text expansion.

A method must be provided to allow for the identification and
tracking of panels and messages during the translation process.

Variables must be permitted to assume any location and order within
a display field.

Messages and other displayed words or phrases must be complete
entities and must not be constructed from individual words or
phrases.

Entry of end-user commands, keywords, or responses must be
possible without regard to uppercase or lowercase characters.

A product with national language-dependent functions must be
designed to facilitate the addition of other countries or national
languages.

Lowercase alphabets should not be assumed to be invariant.

Character sets should be definable by the operator, a user, or an
application.

Special characters, including punctuation marks, should be definable
and not program dependent.

User-interface text modules should be packaged separately from the
running code.

Globalization and localization

National language support enables users to interact with the IBM i operating system in the language of
their choice, with results that are culturally acceptable. National language support consists of two parts:
globalization and localization.

The IBM i operating system controls the operation of programs and provides services such as

controlling resources, scheduling jobs, controlling input and output, and managing data. It is designed

to complement and extend the capabilities of the system to provide fully integrated support for interactive
and batch applications.

Many functions of the operating system apply directly to interactive data processing. Some of the
functions are listed as follows:

« Database support to make up-to-date business data available for rapid retrieval from any workstation
« Work management support to schedule the processing of requests from all work station users

 Application development support that allows online development and testing of new application
programs to run at the same time as normal production activities

« System operation support that allows the user responsible for system operations to perform work from
the display station using a single control language, complete with prompting and help for all commands

« Help and index search support that allows users to request online information about a wide variety of
topics

54 IBMi: IBMi globalization

- Message handling support that allows communication among the system, the user responsible for
systems operations, workstation users, and programs running in the system

« Security support to protect data and other system resources from unauthorized access

In addition to these functions, the operating system provides national language support. National
language support allows users to interact with the system in the language of their choice, with results that
are culturally acceptable. National language support consists of two parts: globalization and localization.

Globalization allows an application to operate in all language environments without any change to the
application. This type of design is also known as enabling an application for national language support. A
globalized application, shown in the following figure, is culturally neutral.

Inte mationali zec
Application

Culture-Independent Code

1

Aninternationalized application
iz designed so you can add support for
any language, courtry, or culturs.

By contrast, localization allows an application to operate in a specific language, country, or culture.
Localization of an application goes a step beyond globalization of the application, as shown in the
following figure.

Code witten to
support one

armaore
cultural features
Culture & - J p | Culture B

When localized code is integrated with globalized code at run time, the resulting application appears to
the user with full national language support. The processing environment defines which localization code
is combined with the globalized code at run time, as shown in the following figure.

IBM i globalization 55

Internati onalized
application

Cutture-inclependent code

Localized
codle ‘ ‘
Localization ®| (processing environment is
determined at run time)

l I

Application Application
with full national with full national
lunguage support language support
for Language & for Language B
Code localized Code localized
for language A forlanguage B

Application arrangement and architecture

When you design an international application, consider organizing and structuring your application in ways
that enable it to be used in an international environment.

In particular, consider the following strategies:

- Separate program modules at appropriate places

- Name application parts appropriately for a multilingual environment

- Refer to specifications whenever possible

 Provide multiple sets of logical files in separate libraries when working with database definitions

The following figure shows you the recommended way to organize the parts of your application.

56 IBMi: IBMi globalization

APPTHDzzz AFPPPGMzzZ APPCSlzzz
APPTXDyyy APPPGMyyy APPCSIyyy |
APPTADxxx *LIB APPPGMxxx *LIB APPCSlkxx *LIB
Message files Mational Culture-
Display files language sensitive
Panel groups version information
User commands
Data areas with Dependent Datahase files B
program M essage files |
textual data modules
AFPPPGM *LIE
Frogram library
(Globalization Independent)

APPDTA

-

Fays

APPDTAYYY

APFPDTAXxX

*UE

Logical files with globalz ation
dependeant text, formatting,
and sequencing

APPDTA

*LIE

Database library
(Phy sical files)

REAGSS060

Program module separation

You can separate cultural-dependent parts from your running code and set up cultural-dependent

environments. You can do this using system values, user profile attributes, job attributes, and object
attributes.

When it is impossible to separate national language and cultural-dependent parts from the running code,
you must provide national language exits or calls at all points where functions dependent on national
language support are required. The following figure shows a national language exit.

IBM i globalization 57

Fragram

Execl Greek
Execl French
Call Exect Exec1 Spanish
Frogram
FREAGZES04-0

Application part names
When you want to enable your application for different languages and countries, consider the
environments of the target systems in your naming conventions.

Use characters that are available, can be displayed, and can be printed in all the target environments. Use
only characters of the invariant character set for:

Object names
Object text
« Record format names

« Field names

For more information on invariant character sets, see “Invariant character set (and its exceptions)” on
page 302.

To create an internationalized application, you need to divide your application objects into related parts
that are textual data and nontextual data. Your naming conventions should be able to distinguish between
these parts. You should also be able to distinguish between the textual data of different languages. You
can do this by separating the objects into different libraries.

Scenario: Library naming convention

Your library naming convention can look like this:

AAATTTLL

where: AAA is the application identification; TTT is the type of objects; and LLL is the language code.

This naming convention allows you to have all libraries that belong to an application grouped together
because you have a unique identifier (AAA) at the beginning.

The second part (TTT) allows you to distinguish between different types of objects:
Textual data

 Display files

« Printer files

« Message files

« Help panels

« User command

e Cultural values

« Database files with NLS-sensitive information and specifications

58 IBMi: IBMi globalization

« NLS-dependent program modules

Nontextual data
Programs

Data
Database files

The third part (LLL) allows you to specify the national language version for all the textual data parts.
This allows you to use the same names for objects of the different national language versions within
the different libraries. Your program is able to use different objects by just rearranging the library list

accordingly when the job is run.

The initial library list can be taken from the job description. You can build a new library list by specifying
the library list in the INLLIBL parameter of the Create Job Description (CRTJOBD) command for a new job
description, or of the Change Job Description (CHGJOBD) command for an existing job description. The
following figure shows an example of this.

Enaglish user

Textual data

French user

Textual data

in English in French
Frogram
Code

¥ h 4

Exits for Exits for
English user French user
¥ h J
Logical files Logical files

for English user

for French user

.

Database
Files

RE&GES0S-0

Related concepts

Invariant character set (and its exceptions)

An invariant character set is a character set, such as the syntactic character set, whose code point
assignments do not change from code page to code page. The table illustrates the invariant character set
(character set 00640) on the IBM i operating system.

Database definitions

IBM i globalization 59

You can define a file to specify certain facts. The specifications are then used in database files.

Specification references

You should define all your fields first in the field reference file of your application and refer to them
wherever you can, in the database specifications, in device file specifications, and in the high-level
language programs. This technique helps you to define the field specifications once and use them again.

If you need to distinguish between the same field of different sources, you can rename or qualify

them. Whenever you need to change the definition of a specific field, you just need to change the
attributes of that field in the field reference file and create the objects again. Then the changes take place
automatically in all the different places where the field is used.

For example:

T A R S N S TN - SAUAr R - DA AR AN T
A REF (field-ref-file-name)
A R record
A field R line pos
or
A field R line pos REFFLD (ref-field-name)

Database definitions
You can define a file to specify certain facts. The specifications are then used in database files.

Here are some examples of such specifications:

« The object description text of the file

« The explanation text (TEXT keyword) on record formats and field descriptions
« The column headings (COLHDG keyword) on field descriptions

« Date and time formats and separators

- Sort sequence

Language identifier

The object description text is shown by many database tools, such as Db2° for i SQL, IBM i Access, and
data file utility (DFU), on the file selection display.

The column headings are shown by the database tools on the output field definition display. Column
headings are also used on screen design aid (SDA) and report layout utility (RLU) as the proposed
field-prompting text or heading.

Data management handles date- and time-type fields in the format specified at file-creation time, unless
your application or database tool does a conversion to present it according to your request or job demand.

When you want to present all this information according to the language and culture of the user, you
need to provide multiple sets of logical files in separate libraries. Along with the translated text, you can
specify different date and time formats or different sort sequence and let data management perform the
conversion. A similar technique can also be used for numeric-type date fields (unless they are packed),
using the substring (SST) function. The user can access the data only through the designated logical
views. When you are defining logical files with different sort sequences, avoid using a unique index with
a shared-weight table. Although this is possible, a unique index prevents using keys that differ only in
characters with the same weight.

The information about Application part names includes a scenario that uses different sets of logical files
for different users.

Related concepts
Application part names

60 IBMi: IBMi globalization

When you want to enable your application for different languages and countries, consider the
environments of the target systems in your naming conventions.

User interfaces
A user interface is the part of a software product that your customer actually sees.

A user interface may include the layout of display screens or printed output, displayed or printed text,
commands, online help, and messages. A user interface is also the part of a software product that you
must either translate or make cultural changes to for users in other countries or cultures.

The operating system provides specific software functions to help you organize text from your user
interface and store that text in a library for easy translation. The operating system also provides you with
a user interface manager that provides a consistent user interface. The user interface manager provides
comprehensive support for defining and running panels such as displays and online help.

This section provides guidelines that you can follow when designing a user interface for an international
application. You should apply these guidelines early in the design process.

Related concepts

Command design
The IBM i operating system allows users to define and create their own commands.

Delivering globalized applications
As you prepare to deliver your globalized application, you should consider how globalization issues might
affect the ways that your customers install and use your application.

Checklist: User interface design
When creating a user interface with globalized support, you should follow some rules and guidelines.

The rules and guidelines are shown in the following table:

Complies Not applicable |Rule

The use of a graphic character for software control purposes must
not preclude the use of the same character in the text of messages,
menus, prompts, input fields, or output fields.

Graphic symbols and icons must be translatable.

Language-dependent parts of a product must be isolated from
nonlanguage-dependent parts for easy modification.

All user interface text and presentation control information must be
isolated from the running code.

Sufficient space must be available for user-interface text expansion
caused by translation.

Functions dependent on display field length and display field
position, or display field position alone, must not be designed in such
a way that they are affected by user-interface text expansion.

A method must be provided to allow for the identification and
tracking of panels and messages during the translation process.

Variables must be permitted to assume any location and order within
a display field.

Messages and other displayed words or phrases must be complete
entities and must not be constructed from individual words or
phrases.

Entry of end-user commands, keywords, or responses must be
possible without regard to uppercase or lowercase characters.

IBM i globalization 61

Complies Not applicable

Rule

Date and time formats must be selectable.

Numeric punctuation must be selectable.

Number rounding and mathematical formats must be selectable.

Monetary format must be definable.

The default currency symbol and its abbreviations must be
selectable.

The currency symbol position must be selectable.

Field sizes for monetary values must be selectable.

The measurement system must be selectable.

Lowercase alphabets should not be assumed to be invariant.

Special characters, including punctuation marks, should be definable
and not program dependent.

User-interface text modules should be packaged separately from the
running code.

User-interface text modules for single-byte coded character set
systems should be loaded separately from the running code.

A consistent convention should be used throughout the product for
denoting variables and input fields.

Words should not be used in place of numbers.

The terminology in user interface text should be consistent
throughout a product.

Abbreviations should be avoided.

Slang, jargon, and humor should not be used.

Trademarks should be identified and explained.

Ambiguous words should not be used.

Proper style and sentence structure should be used in user interface
text.

Negative questions should be avoided.

Text translation design

These general tips help simplify the translation of your textual material.

Isolating textual data from running code

To allow easier translation and to avoid translating the running code, you should separate all textual data
from the running code. Only one set of running code is needed, but many translations of the textual data

can be done.

Providing expansion space

The space needed to translate text from one language to another varies by language. To ensure that the
translated version preserves the concept and keeps usability, allow sufficient presentation space for the
textual data expansion. The following table shows recommended expansion space for user interfaces

designed using U.S. English.

62 IBMi: IBMi globalization

Number of characters in text Additional space required
Up to 10 100 to 200%

11to 20 80 to 100%

21to30 60 to 80%

31to 50 40 to 60%

51to 70 31to 40%

Over 70 30%

Variable placement of an object on the display

Because the position of one display element often is influenced by the position and size of others, some
of the elements on the translated version of a display might need to be relocated. The program must
continue to respond properly, despite this relocation.

Flexible order of variables

In order to contain dynamic information, messages typically employ substitution variables. However,
each spoken language has its own syntax (order of arrangement of parts of speech). When a message is
translated into another language, the position and order of substitution variables might need to change to
meet the syntax requirements in the translated language.

Complete textual data entities

If the final form of the constant text relies on the composition of various parts, it might be untranslatable.
This is because the translator might not know which form of the word to use or because there is no
combination of parts that work for a different language.

For example, you should define column headings for display screens as complete entities. You should not
combine words or parts of words to define column headings. Assume that you are writing an application
for scheduling jobs between Monday and Friday. You are creating your application in French. You decide to
create column headings for reports and screen displays by combining the first part of the name of the day
with the constant DI. Throughout the application, the column and report headings are assembled like this:

First Part of the

Name of the Day: Combine With: Result:
LUN DI LUNDI

MAR DI MARDI
MERCRE DI MERCREDI
JEU DI JEUDI
VENDRE DI VENDREDI

When you translate your application from French to German, you cannot combine two parts to create the
names of the days: MONTAG, DIENSTAG, MITTWOCH, DONNERSTAG, and FREITAG.

Treating commands, responses, and keywords like textual data

Commands, responses, and keywords should be translated into the language normally spoken by the
user. For example, an English application has been translated into German. If the response is still in
English as Yes and No, the German users might feel unfamiliar and uncomfortable in using the program
because the responses they are familiar with are Ja and Nein.

Expressing all text as simply and clearly as possible

« Use simple phrases and sentences and avoid compound phrases. Simple words allow easy translation.
- Make terminology consistent throughout the product.

IBM i globalization 63

If consistent terminology is not being adopted throughout the product, translators will waste time trying
to determine the appropriate word to be used in translation.

« Include notes to translators in your information for correct word use to prevent any misunderstandings.
- Avoid abbreviations.
Rules for abbreviations vary from language to language. Abbreviations of words can lead to
misunderstandings by the translator and by the user.
 Avoid slang, jargon, and humor.
Slang, jargon, and humor are specific for a particular language and cannot be easily translated into
another language.
- Avoid negative questions.

Negative questions are often misunderstood by the user. When asking questions, ask them in a positive
way.

Textual data code design
You can use different techniques to specify, store, and use constant text. You can use each technique for
specific types of textual data components. Each technique has its advantages and disadvantages.

Application displays, printer file specifications, and user-created commands typically contain a large
amount of constant text. Application displays, printer file specifications, and user-created commands
also contain input and output fields such as headings, field prompts, instruction lines, and function key
descriptions.

Related concepts

Constant text strings

When designing your panels, keep in mind that different languages have different space needs for the
same expression.

Printer file design and translation

Program-described printer files and externally described printer files are two types of printer files. When
you design printer files to be translated into a national language version, you should follow some specific
guidelines.

Early message binding
Text can be stored externally from the source code in a separate message file but is bound into the object
when it is created.

This technique can be used for:

Display files
Constants such as titles, instruction lines, option definitions, headings, field prompts, command key
descriptions

Printer files
Constants such as titles, headings, total line descriptions

User commands
Prompt descriptions on the command definition statements

For device files (display and printer), the message is referred to by the Message Constant (MSGCON)
keyword in the DDS source specifications.

For example:

A line pos MSGCON(length message-ID[x1ibl/]message-file-name)
N

includes expansion space

For user commands, the message identifier xxxnnnn is specified on the PROMPT keyword instead of a
literal. The message file is referred to on the Create Command (CRTCMD) command.

64 IBMi: IBMi globalization

For example:
CMD PROMPT (xxxnnnn)
The message file name message-file-name is in a source file referred to by the following command.

CRTCMD CMD(command-name) PGM(library-name/program-name) +
PMTFILE ([*1ibl/]Imessage-file-name)

Before the object can be created, you must enter the message description into the specified message file.
Enter the message description using the Add Message Description (ADDMSGD) command.

For example:

ADDMSGD MSGID(xxxnnnn) MSGF(library-name/message-file-name) +
MSG('Text ")

where xxxnnnn is the message identifier.

This technique allows you to create any number of objects in different languages and to put them into
different libraries using the same source code by just assigning another message file at object creation
time.

The message file is needed only during the creation of the object. Consider specifying the appropriate
length for different languages on the MSGCON keyword. Then make the length information available to
the translator.

The following figure shows how early message binding works:

Dhject

Display fila

Frinter file Message

Command file
Frogram #— Language A M4 Source 4— Language A
source and Display file
object are not Printer file
language Dhject Commanid Message
dependent [% + * file

Display file

Frinter file Language B

Command

Language B

REAGEZS0T-0

At file creation time, you can choose the appropriate textual data of the language version you want to
work with by setting up the library list with the specific library containing the textual data and the program
library.

Related concepts

MSGCON (Message Constant) keyword for display files

MSGCON (Message Constant) keyword in printer files

Related reference

Create Command (CRTCMD) command

IBM i globalization 65

Add Message Description (ADDMSGD) command

Late message binding
Text can be stored externally from the DDS source code in a message description and is bound only to the
display format at run time.

This technique can be used for:

Display files only
Constants such as titles, instruction lines, option definitions, headings, field prompts, command key
descriptions (MSGID keyword)

Default values on input fields (MSGID keyword)
Field validation specifications (CHKMSGID keyword)
Error messages (ERRMSGID and SFLMSGID keywords)
In the DDS for the display file, the message is specified through the MSGID (Message Identifier) keyword.

The message has to be entered into the specified message file using the ADDMSGD (Add Message
Description) command.

For example:

A FLD-name 1length 1line pos MSGID(message-ID [x1libl/Imessage-filename)
N

includes expansion space
ADDMSGD MSGID(xxxnnnn) MSGF(library-name/message-file-name) +
MSG('Text 1)

This technique allows you to create any number of message files in different languages and different
libraries, with one DDS source code and display file object. During run time, you assign another message
file by setting the library list accordingly. The following figure is an example.

Message file
Message file B
Language &
Frogram Objec —
Source
Source and Digplay l |
;L:nject are) file is not Display
not language language file
tlependeant dependert

Note: This technique requires the application to perform all editing based on the cultural convention.

Direct coding as an unnamed output field

The most common way to define constant text is to specify the text directly in the source code as a
literal. While this method is the most common way to define constant text, it is the most difficult to
translate. Avoid using this method whenever coding an application, even if the application is not planned
for translation.

If you are coding an application that will not be translated, you might want to use this technique for:

Display files
Constants such as titles, instruction lines, option definitions, headings, field prompts, command key
descriptions

66 IBMi: IBMi globalization

Default values on input fields (DFT keyword)
Error messages (ERRMSG/SFLMSG keyword)

Printer files
Constants such as titles, headings, total line descriptions

User commands
Prompt descriptions on the command definition statements.

For device files, specify the text as an unnamed field, indicating the starting line and column and the
constant text itself.

For example:

A line pos 'Text

A similar rule applies to user-created commands. Define the text directly on the keywords of your
command source statements.

For example:
CMD PROMPT (' Command description ")

When defining the text directly on the keywords, standardize the sizes of the different elements in a large
literal, rather than specifying many small single ones as single words. This makes the source code more
readable and more flexible for translation.

Consider that the space needed for explanation text can vary from language to language. To have enough
room after translation, remember to reserve space initially. The source members need to be translated
and the objects need to be created for different languages as shown in the following figure:

Ohjed Ohjed
Digplay file Display file
Frirter file Frinter file
Command Command

Program 4— Language A M—— Language A

Source and object

are not language

dependent | Objed e | Object
Display file Display file
P rinter file Prirter file
Cammand Carmimand
Language B Language B

Each national language version has one set of programs, but can have multiple sets of source members
and data objects. When the application is run, you can choose the appropriate textual data of the
language version that you want to work with. This can be done if you set up the system part of the library
list with the specific library that contains both the textual data and the program library.

IBM i globalization 67

Text stored in database files
Text can be stored externally from the source code in a database file, retrieved by the application
program, and then moved to the display or print format at run time.

Instead of coding constants on the DDS, you can specify output fields that can be filled by the program.
Consider specifying the appropriate length for different languages on the output fields and making that
available to the translator.

This technique can be used for:
Display files

All constant text
Default values on input fields
Error messages

Printer files
All constant text

Programs
All constants like compare values, scan characters, and tables.

This technique allows you to create any number of database files in different languages and different
libraries, with only one DDS source code and display file object. During run time, you assign the
corresponding database file by setting the library list accordingly.

Note: This technique requires the application to perform all editing based on the cultural convention.

User interface manager
The IBM i user interface manager (UIM) is a part of the system that allows you to define panels and
dialogs for your application.

UIM provides the following support:

- Atag-based language for describing data and panels.
« A compiler to create panel group objects and menu objects by using the tag-based language.

« A set of application programming interfaces (APIs) to use as panel group objects to display and print
panels.

The UIM also provides the following functions:

- Dialog commands for screen management

« Contextual online help

« Pop-up windows

= Menu bars

« Command line for entering CL commands

« Tailoring of the contents of a panel for different users or environments
« Fast paths through menu networks

« Double-byte character set (DBCS) languages

- Bidirectional (BIDI) language support

UIM supports common panel types, such as menus, information displays, list displays, and entry displays.
When all display types and interfaces are consistent, users adapt more quickly to new applications.

UIM applications can coexist with and share the requester display device with other open display files
that are not under UIM control. However, a UIM panel and a DDS-defined record format cannot appear
on the display at the same time. When a UIM panel either replaces a DDS panel or vice versa, the system
suspends operations of one file or panel group and restores the display as needed.

68 IBMi: IBMi globalization

Online help design

You can define online help by using panel groups or records. By using panel groups, you can define online
help as objects into which user interface manager (UIM) source is entered. By using records, you can
define online help as a set of DDS keywords contained in a source file member.

If the user interface manager is used for defining online help, the panel groups are defined either in place
of DDS or in the display file. In either case, the encoding of the data to be displayed must be indicated

by the CHRID value in the display file or the panel group. A panel group is an object that can be used

to contain help information. The operating system uses *PNLGRP as an identifier for the object type that
contains a collection of help information.

Guidelines: Online help

When defining online help information to be translated into national language versions, keep in mind the
following considerations about panel groups and records:

« Records do not have word processing available (functions such as spell check and word wrap though
system APIs exist to provide spell checking).

« Various IBM i messages and panel groups determine the national language conventions and
translations. Not all countries have a national language version available for the operating system. Not
all national language versions are completely translated, with many parts still in English. The messages
and panel groups that are not translated do not reflect the national language cultural conventions. The
command design information includes an example of a translated panel in which part of the panel has
remained in English because not all parts of the NLV were translated.

« Allow for translation expansion.

Guidelines: DDS online help design

When multiple languages are installed on one system, the help documents are stored in different folders.
The DDS source file needs to be copied, changed, and compiled again for each language on the system.

Related concepts

Command design
The IBM i operating system allows users to define and create their own commands.

Index search tags
Help panel groups can contain index search modules. Index search supplements the help information
that is provided for each display.

To use the information in help panel groups for the index search function, you need to add the appropriate
UIM tags to your help modules.

Users can access the index search function from any display help that specifies that the index search
function is available.

The ISCH tag

The ISCH tag defines the title of a topic in the index and specifies the root words that serve as the link
between the topic and the search words (synonyms) entered by the user. The tag appears immediately
after the HELP tag to which it refers. There can only be one ISCH tag within a single help module.

For each ISCH tag, there can be several lines of root words, provided that the total number of root
words is no more than 50. If more than one line of root words is used, ROOTS= must be repeated at the
beginning of the second line and subsequent lines.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 460.

:PNLGRP.

:HELP name=entryl.

:ISCH ROOTS='rootl root2 root3 rootd rooth5'
ROOTS='rooté6 root7 root8 root9 rootlOd'

IBM i globalization 69

ROOTS='rootll rootl2 rootl3 ... root50'.
Title of First Topic

This is the first index search module in this panel group.
:EHELP.
:EPNLGRP.

The root words on all lines must be enclosed in apostrophes and a period must be placed only at the end
of the last line of root words. The topic title follows the period on the ISCH tag and can be placed on the
line immediately following the period.

The ISCHSYN tag

The ISCHSYN tag defines the words (synonyms) that, if entered by a user, match a specific root word. If a
word that is entered by a user is a synonym for a root word, then a match is found for each topic whose
ISCH tag contains that root.

If you want a word that is used as a root word to be used as a synonym as well, you must include the word
as a synonym on the ISCHSYN tag. For example:

:ISCHSYN ROOT='ocean'.ocean water sea

The synonyms for the ISCHSYN tag must be entered on one line, and at least one ISCHSYN tag must exist
for each root word. If more than one line is needed, more ISCHSYN tags can be entered for the same root
word.

UIM does not differentiate between synonyms entered in uppercase, lowercase, or mixed case. For this
reason, it is not necessary to repeat synonyms to cover all the different cases.

You can use alphabetic or numeric characters for synonyms; however, the following characters (including
their hexadecimal equivalents) are not allowed to be used as a synonym or part of a synonym:

- . (period)

((left parenthesis)
) (right parenthesis)
« ; (semicolon)

« , (comma)
« ? (question mark)
« :(colon)

The ISCHSYN tags can be placed anywhere in the panel group, but to make maintenance and translation
easier, place them all in one area (such as at the beginning of your panel group or in a panel group object
that contains only ISCHSYN tags).

Example: ISCH and ISCHSYN usage
The following example shows some ISCHSYN tags and the ISCH tags that use them:

:PNLGRP.

:ISCHSYN ROOT='ocean'.ocean water sea

:ISCHSYN ROOT='lake'.lake water pond

:ISCHSYN ROOT='definition'.definition define description what
:ISCHSYN ROOT='definition'.summary concept information explanation
:HELP name='defocean'.

:ISCH ROOTS='definition ocean'.

Definition of ocean

An ocean is one of the five large bodies of salt water, which
together cover nearly three-fourths of the world.

:EHELP.

:HELP name='deflake'.

:ISCH ROOTS='definition lake'.

Definition of lake

A lake is a body of standing water that is enclosed by land.

70 IBMi: IBMi globalization

:EHELP.
:EPNLGRP.

Index search and double-byte character set

The index search function can be used with either double-byte character set (DBCS) or single-byte
character set (SBCS) data. When DBCS data is used, the device from which it is requested must be
capable of entering and presenting the data in DBCS.

The object that contains the index search data is marked as containing DBCS data. The system
determines if the device is capable of handling the DBCS data.

When the data is being prepared for DBCS format and the index search function is used with that data,
consider the following information:

« When the index search data is prepared for a DBCS system, the synonyms entered on the ISCHSYN tag
must be in double-byte character mode. That is, the first byte after the tag must be a shift-out character
and the last byte of the data must be a shift-in character. The system does not convert data on the
ISCHSYN tag to double-byte character data.

- Words must be separated by a single-byte blank. From 1 to 19 double-byte characters can be combined
to form a word. Intervening shift-out and shift-in characters are allowed, but are ignored by index
search.

« The words that are used to link the ISCH and ISCHSYN tags (the ROOTS attribute of the ISCH tag and
the ROOT attribute of ISCHSYN tag) must be identical and should not be entered in DBCS.

« Search words can be entered in either single-byte mode or double-byte mode. Single-byte blanks can
be entered to separate the words.

When the search words are shown on the screen, the double-byte character representation (the character
that was actually used in the search) is shown. Special processing takes place so that index search

is not case sensitive. The search words from the ISCHSYN tag are converted to uppercase using a
conversion table for the code page that is specified with the TXTCHRID attribute of the PNLGRP tag. If

the search words are DBCS, they are not converted to uppercase. Shift-out and shift-in characters are
treated as blanks during parsing; leading and trailing blanks are removed. All SBCS words are converted
to uppercase using a conversion table for the code page of the device description.

Program message design
A message can be predefined orimmediate.

Consider the following information when you design and code:

- Do not use immediate messages. They are created by the sender or program at the time they are sent
and are not stored in a message file. Therefore, they cannot be translated by the translator.

« Use predefined message descriptions that can both:
— Exist outside of the program that uses them.
— Be stored in a message file.

« Do not specify the maximum size for a message file. When the message file becomes full, you cannot
change the size of the message file. You need to create another message file and add the message
description again.

Use the Create Message File (CRTMSGF) command to create a message file to hold the predefined
message description. The contents of the predefined message description can be put into a message
file by the Add Message Description (ADDMSGD) command.

« Use substitution variables with care. Different languages have different orders for substitution variables.
For example, in the English message:

File &1 in Library &2 not found.

&1; and &2; are the substitution variables. Those substitution variables can appear in different positions
for different languages.

IBM i globalization 71

- Make your design and coding able to understand a reply code for different languages. For example,

English Y
Danish J

Yes
Ja (means Yes)

The following figure shows the creation of different NLV messages from message files.

- LIse display file
D'E?Ela? to access message
inmessage file
e essage file
iLanguage 1)
ABCO001. ..
Call display file ABCOOOZ. .
Frogram to >
output message | CLprograms use
to display SHODPGMMSG
ar SNDUSEMSG to access
message in message file
Display message REAGEE0-0

A program can directly access the message file for program messages, or it can indirectly access the
message file through display files for program messages.

Related concepts

CCSID support for messages

You can use CCSID support for handling messages and message catalogs on the IBM i operating system
by using commands and application programming interfaces. You can send messages tagged with one
CCSID to users with a different CCSID.

Related reference

Create Message File (CRTMSGF) command

Add Message Description (ADDMSGD) command
Control language

Menu design
You can define your own menus on the system. The types of user-defined menus include display file
menus, UIM (reference) menus, and program menus.

To use an application system, users need to deal with a lot of menus and displays. When an application
is being translated from one language to another, a large portion of the literal text to be translated comes
from menus.

Display file menu

A display file menu uses a display defined by DDS to present a menu format. The menu functions are
controlled by a menu object that contains the commands used to run each of the menu options. The
following figure shows how display file menus are created for different national language versions.

72 IBMi: IBMi globalization

Display file
iLanguage 3)

Display file
(Language 2)

Call message

Display file to handle

iLanguage 1)

aption selection
P

Use CRTMML to
create menu object

M enu
iLanguage 3)

Menu
(Language 2)

Menu
(Language 1)

Program menu

Message file
Holding option
Functions

RB&AGES10-0

A program menu uses programs to present the menu format (defined by DDS) and to provide functions
necessary to run the menu options. The following figure shows how program menus are created in

different national language versions.

IBM i globalization 73

Display file
iLanguage 3)

Display file
Frogram tq _ _ (Language 23
handle aption | Call display file
selection for for menu output Display file
Mmenu > (Language 1)
lse programto create menus
M enu
iLanguage 3)
Menu
(Language 2)
Menu
(Language 1)
FEAGSS13-0

Menu translation
To allow for easy translation into national language versions of your menus:

- Keep the literal text of menus external by holding the constant text as externally defined message
descriptions in a message file and by incorporating the text into a menu file when the program is run.

- Be aware of the expansion space needed when a menu is translated from one language to the next.
Leave space for translation expansion when you design your menus.

- Be aware of cultural conventions when date, time, or edited fields are displayed on the menu.

« Use numerals 0 through 9, instead of uppercase and lowercase English letters (A through Z), as the
option fields for selection. Numeric characters are more standard among different languages.

Command design
The IBM i operating system allows users to define and create their own commands.

To create a command, you must first define the command through command definition statements. Then
use the Create Command (CRTCMD) command to process the command definition statements to create
the command definition object.

When you define and create a command, take into consideration the following information:

« Use help panel groups to provide online help information for the command.

« Use message identifiers instead of literal text for the PROMPT keyword on the CL CMD, PARM, ELEM,
and QUAL command definition statements.

- Translate the text that is displayed to the right of the prompt line of each parameter on the prompt
display. This text is specified by the CHOICE parameter of the PARM command definition statements, so
the appearance of the command prompt display maintains its coherency.

74 IBMi: IBMi globalization

« Compile command-prompt text into separate command definition object versions for each national
language. Use the Change System Library List (CHGSYSLIBL) command before creating the command to
get the national language version prompt text from the correct national language version library.

« The function keys of the command prompt display are provided by the operating system. If the NLV
of the operating system is different from the NLV of the command, two different languages appear on
the command prompt display. For example, when translating an English display into German, both the
English and German appear on the command prompt display.

The Control language information includes additional information about creating and defining
commands.

Related concepts

Online help design

You can define online help by using panel groups or records. By using panel groups, you can define online
help as objects into which user interface manager (UIM) source is entered. By using records, you can
define online help as a set of DDS keywords contained in a source file member.

User interfaces

A user interface is the part of a software product that your customer actually sees.
Related reference

Create Command (CRTCMD) command

Change System Library List (CHGSYSLIBL) command

Control language

Cultural-dependent design

Different countries might have different standards, which you must consider when developing an NLS-
enabled application. This culturally sensitive information must be placed outside the program the same
way as the textual data is handled.

Many languages have characters (such as common-usage vowels essential to the correct spelling of a
word) outside of the A-Z alphabet that must be considered for collating purposes.

Through system values, the system supplies linguistic support, cultural support, and the ordering of data.

Related concepts

Default system values for national language versions
Jobs and functions on the IBM i operating system use system values as default values.

Field editing specifications
For the edit specification of your numeric, date, and time fields, you must consider the different cultural
conventions of the users.

Database file attributes
Database attributes, such as coded character set identifier (CCSID), sort sequence (SRTSEQ), and
language identifier (LANGID), are cultural dependent.

The CCSID attribute applies only to physical files. The SRTSEQ and LANGID attributes can be used with
both physical files and logical files. A logical file can have a CCSID value only when it has taken the CCSID
from the physical file. The database attributes are stored with the data. They are static in the sense that
they cannot be dynamically altered by the process of accessing the data.

Related concepts

Coded character set identifier (QCCSID) system value
The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

Language identifier (QLANGID) system value

IBM i globalization 75

The language identifier (QLANGID) system value specifies the default language identifier for the system.

Job attributes
Some job attributes are cultural dependent. Through cultural-dependent attributes, the system provides
linguistic support, cultural support, and the ordering of data.

« Coded character set identifier (CCSID)
« Sort sequence (SRTSEQ)

 Language identifier (LANGID)

« Country or region identifier (CNTRYID)
« Date format (DATFMT)

« Date separator (DATSEP)

« Decimal format (DECFMT)

« Time separator (TIMSEP)

The default values for CCSID, SRTSEQ, LANGID, and CNTRYID attributes are set from the user profile
when the job starts. The values for CCSID, DATFMT, DATSEP, DECFMT, SRTSEQ, and TIMESEP can be set
from the LOCALE and SETJOBATR attributes associated with the user profile. When you use the Change
Job (CHGJOB) command, you can override the values specified for any of the listed job attributes.

Related concepts

Coded character set identifier (QCCSID) system value

The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Country or region identifier (QCNTRYID) system value
The country or region identifier (QCNTRYID) system value indicates the default country or region identifier
for the system.

Date format (QDATFMT) system value

The date format (QDATFMT) system value is used for the default value for the DATFMT job attribute. This
system value also determines the format in which a date can be specified on the initial program load (IPL)
options prompt.

Date separator (QDATSEP) system value

The date separator (QDATSEP) system value is used as the date separator for the default value of the
DATSEP job attribute. It is also used as the date separator you can specify on the initial program load (IPL)
options prompt.

Decimal format (QDECFMT) system value

The decimal format (QDECFMT) system value determines the type of zero suppression and decimal point
character used by DDS edit codes 1 through 4 and A through M. It also determines the decimal point
character for decimal input fields in the interface.

Time separator (QTIMSEP) system value
The time separator (QTIMSEP) system value specifies the character separator for time.

Related reference
Change Job (CHGJOB) command

76 IBMi: IBMi globalization

Program attributes
The SRTSEQ and LANGID parameters can be specified as program attributes belonging to a *PGM object

type.

The LANGID parameter is used together with the SRTSEQ parameter only when the SRTSEQ value is set to
*LANGIDUNQ or *LANGIDSHR. Otherwise, the LANGID parameter is not used.

If a program explicitly refers to a sort sequence or a language identifier, then those attributes stored in the
program object take effect. The *JOBRUN value for these parameters is used to refer to the attributes of
the job running the program. *JOBRUN makes it possible to use a single set of programs processing data
according to different sort sequences. The *JOBRUN value affects only the processing of data, however,
not the retrieval sequence of data. The retrieval sequence is determined by the database attributes. To
retrieve data in a sort sequence different than what is defined in the database, use logical files that are
built separately.

Information in message CPX8416

If your application is translated into other languages, use message CPX8416 from the QCPFMSG message
file to get the correct setting for some cultural values for the other languages. The message exists for your
primary language and all installed secondary language libraries.

The system message contains these values:

« Code page and character set
« Currency symbol

 Date format

« Date separator

« Decimal format

» Leap year adjustment

« Coded character set identifier
« Time separator

- Language identifier

« Country or region identifier

Cultural-dependent fields in the panel or display should not contain hard-coded values. These fields
should be defined with the maximum length permitted for the field on the display.

If your application is to support users in languages other than the primary language, the callable routines
should use the CPX8416 message values. A callable routine uses the cultural values for the primary
language to determine the contents of the field (for example, date format) and places these values on the
display. NLS system values maintained in message CPX8416 determine the format of the cultural values
appearing in the cultural-dependent fields.

Your application can use the details from the system message.

The following table shows the layout for message CPX8416. This example shows the values in the text
column using the English uppercase and lowercase NLV (feature 2924).

Field Start Length Justify
Description QCHRID 0001 10 L
value 697 37 0012 21 L
Description QCURSYM 0034 10 L
value $ 0045 01 L
Description ODATFMT 0047 10 L
value MDY 0058 03 L

IBM i globalization 77

Field Start Length Justify
Description QDATSEP 0062 10 L
value / 0073 01 L
Description QDECFMT 0075 10 L
value 0086 01 L
Description QLEAPADJ 0088 10 L
value 0 0099 01 L
Description QCCSID 0101 10 L
value 37 0112 05 L
Description QTIMSEP 0118 10 L
value : 0129 01 L
Description QLANGID 0131 10 L
value ENU 0142 03 L
Description QCNTRYID 0146 10 L
value us 0157 02 L
Description QIGCCDEFNT 0160 10 L
value *NONE 0171 21 L

Related concepts

Configuring secondary languages
A secondary language consists of textual data for all licensed programs supported for a national language
version.

Currency symbol (QCURSYM) system value
The currency symbol (QCURSYM) system value verifies the currency symbols specified in the DDS
keywords Edit Word (EDTWRD) and Edit Code (EDTCDE).

Date format (QDATFMT) system value

The date format (QDATFMT) system value is used for the default value for the DATFMT job attribute. This
system value also determines the format in which a date can be specified on the initial program load (IPL)
options prompt.

Date separator (QDATSEP) system value

The date separator (QDATSEP) system value is used as the date separator for the default value of the
DATSEP job attribute. It is also used as the date separator you can specify on the initial program load (IPL)
options prompt.

Decimal format (QDECFMT) system value

The decimal format (QDECFMT) system value determines the type of zero suppression and decimal point
character used by DDS edit codes 1 through 4 and A through M. It also determines the decimal point
character for decimal input fields in the interface.

Leap year adjustment (QLEAPADJ) system value
The Leap year adjustment (QLEAPADJ) system value adjusts the system algorithms for the leap year in
different calendar systems.

Coded character set identifier (QCCSID) system value

78 IBMi: IBMi globalization

The coded character set identifier (QCCSID) system value specifies the CCSID for the IBM i operating
system.

Time separator (QTIMSEP) system value
The time separator (QTIMSEP) system value specifies the character separator for time.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Country or region identifier (QCNTRYID) system value
The country or region identifier (QCNTRYID) system value indicates the default country or region identifier
for the system.

English Uppercase and Lowercase (Feature 2924)
The table shows the default system values for the English Uppercase and Lowercase (Feature 2924)
national language version.

Date formats
There is no worldwide standard for the presentation of dates. Therefore, the date format should always be
stored externally as part of the textual data.

The valid date formats on the operating system are:
« *MDY (Month, day, year)

*DMY (Day, month, year)

« *YMD (Year, Month, Day)

« *JUL (yy/ddd)

« *ISO (YYYY-MM-DD)

« *USA (MM/DD/YYYY)

« *EUR (DD.MM.YYYY)

« *JIS (YYYY-MM-DD)

Note: Some operating system functions do not support all of the previous date formats.

In database files, dates can be stored as:

« Normal numeric data fields
« SAA date data-types

When you store dates as numeric data, your application needs to specify the format in which it is stored
and presented.

When you store dates as data type DATE (L), you can specify the format with the DDS keyword DATFMT
on the database file. The date is shown in this predefined format as character data, including the date
separators.

If date sorting and other processing is needed, the date should be stored in *ISO format (YYYY-MM-DD)
and converted to another format during the input and output operations. Write a high-level language
routine to convert dates.

Related concepts

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETIOBATR) system value sets job attributes at job startup time.

Related information
DATFMT (Date Format) keyword for physical and logical files

Date separators
The date separator for presentation should always be stored externally as part of the textual data.

The following list shows valid date separators:
« / (slash)

IBM i globalization 79

« - (dash)

« . (period)
., (comma)
« (blank)

When you use decimal fields for dates, not only must your application specify the format, but it also must
handle the date separators during the input operation and presentation.

When you use date-type fields, the date separators are always included in the date. To change the date
separator, you can write a high-level language routine to convert dates.

Related concepts

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETJOBATR) system value sets job attributes at job startup time.

Edit date presentation
You need to handle the presentation of dates in display and printer files differently, depending on how
they are stored.

« As a normal decimal data field

Your application program has responsibility for the way the date is entered, stored, and presented. The
application must check to see that the date is entered in the right format, remove any date separators,
convert the date to another format when necessary, and edit it on the display file or printer file.

The DDS keyword DATE is used as an output-only field. DATE uses the job attributes DATE, DATFMT, and
DATSEP. You can edit DATE using the edit code keyword, EDTCDE, for 6- and 8-digit date fields.

Editing with EDTCDE includes the following changes to the appearance of displayed fields, depending on
which edit code is specified:

— Leading zeros are suppressed.
— Zero values can be displayed as zero or blanks.
— The field can be further edited using a user-defined edit code.

For all other types of fields using the EDTCDE Y keyword, the program has to specify the format, and the
system uses the date separator of the job that created the device file. The date separator is integrated in
the object, and you are not able to change it dynamically at run time.

« As an SAA data type DATE (L) field
The DDS date format (DATFMT) keyword allows you to specify different date formats, including default
date separators, at the database field level. For the *MDY, *DMY, *YMD, and *JUL parameters, the
default date separator can be changed with the date separator (DATSEP) keyword. The *ISO, *USA,
*EUR, and *JIS values have a fixed separator, and the DATSEP keyword is not allowed with these values.

The DATFMT and DATSEP keywords allow you to specify the format and editing characters for storing
date fields. The date is shown as a character string, including the separators.

Any format conversion between the date input and the format the database asks for can be done by:

— Application program routines
— Field mapping through logical files that define different date formats and separators

For example, you can provide a date conversion that is dependent on the actual job attributes by using
the following CL program:

PGM PARM (&fromfmt &fromfld &tofld);
DCL VAR (&fromfmt); TYPE(*CHAR) LEN(4)
DCL VAR (&fromfld); TYPE(*CHAR) LEN(10)
DCL VAR (&tofld); TYPE(*CHAR) LEN(10)

CVTDAT DATE (&fromfld); TOVAR(&tofld);
FROMFMT (&fromfmt); TOFMT(xJOB) TOSEP(%xJOB)
ENDPGM

80 IBMi: IBMi globalization

Your application program has to pass the format of the date you want to convert and the date itself to
the CL program. The CL program assumes that the job attributes represent the way the user expects to
see date fields edited. It retrieves these values and does the conversion, conforming to these values,
and passes back the date in that way. The *ISO, *USA, *EUR, and *J1IS values have a fixed separator that
cannot be changed. If the TOFMT parameter contains one of these values, the TOSEP value is ignored.

Related information

DATE (Date) keyword for display files

DATFMT (Date Format) keyword for display files
DATSEP (Date Separator) keyword for display files

Time formats
The IBM i operating system supports several time formats.

* *HMS (hh:mm:ss)

*ISO (hh.mm.ss)

« *USA (hh:mm AM or hh:mm PM)
*EUR (hh.mm.ss)

*JIS (hh:mm:ss)

The system value QTIME has one format (hhmmess). The time separator value is determined by the
QTIMSEP system value.

The time format for presentation should always be stored externally as part of the textual data.
In database files, times can be stored as:

« Normal numeric data fields
« SAA time data-types

When you store the time as numeric data, your application needs to specify the format in which it is
stored and presented.

When you store the time as data type TIME (T), you can specify the format with the DDS keyword TIMFMT
on the database file. The time is sorted in this predefined format as character data, including the time
separators. To convert time fields from one format to another, write a CL program or high-level language
routine to do the conversion.

Time separators
The IBM i operating system allows several valid time separators.

: (colon)

. (period)
(blank)
« , (comma)

The time separator for presentation should always be stored externally as part of the textual data.

When you use decimal-data fields for time fields, your application needs to specify the format and time
separators on the input and presentation operations.

When you use time-type fields, the time separators are always included in the time field. To change the
time separators, write a CL program or high-level language routine to do the conversion.

Related concepts
Set job attributes (QSETJOBATR) system value

IBM i globalization 81

The set job attributes (QSETJOBATR) system value sets job attributes at job startup time.

Edit time presentation
You need to handle the presentation of times in display files and printer files differently, depending on the
way they are stored.

« As a decimal data field

Your application program has responsibility for the way the value is entered, stored, and presented. The
program must check for the correct format, eliminate the time separators, convert the time to another
format when necessary, and edit it on the display file or printer file.

The editing can be done by specifying the edit word (EDTWRD) for the field. The TIME keyword is an
output-only field. Both the edit word and TIME keyword use the information available at creation time.
The time separators are integrated in the device file object.

Both ways force you to have different copies of the source and objects for different editing
requirements.

« As an SAA data type TIME (T) field

The operating system allows you to specify different time formats and time separators on the database
file level. The TIME keywords allow you to specify the format and editing characters for storing time
fields. The time type field is shown as a character string that includes the separators.

As an SAA data type, you can specify such time fields as normal character fields on the display file

or printer file. On an input operation, your program has to check entered values for the correct format
and separators and move them over to the database field. On an output operation, you just move the
character string from the database file field to the device file field, including the separators. Any format
conversion between the input and output format and the format that the database asks for can be done
by either of the following two ways:

— Application program routines
— Field mapping through logical files that define different time format and separators

Decimal formats

You can change the decimal format with the QDECFMT system value to reflect the way decimals are
presented for your country or location.

Related concepts

Decimal format (QDECFMT) system value

The decimal format (QDECFMT) system value determines the type of zero suppression and decimal point
character used by DDS edit codes 1 through 4 and A through M. It also determines the decimal point
character for decimal input fields in the interface.

Sort sequences
The IBM i operating system supports sort sequence. By using one of the listed options, you can order your
data according to cultural-dependent requirements for specific applications.

« Hexadecimal sorting (sort sequence tables not used). This is the default.

« A user-supplied or system-supplied shared-weight sort sequence table or unique-weight sort sequence
table, determined by the SRTSEQ parameter.

The following example shows how to use one DDS source file to create database files with different sort
sequences. The following steps can be performed:

CRTxF FILE (*CURLIB/NAME)
SRTSEQ(*JOB)
LANGID(*JOB)

You can then change the job attributes to create files with different sort sequences.

The CL program and high-level language programs can be created by specifying either early binding or
late binding of a sort sequence. With early binding of a sort sequence, the sort sequence table to be used

82 IBMi: IBMi globalization

is determined at compile time. With late binding of a sort sequence, the sort sequence table to be used is
determined at run time.

Late binding makes it possible to use one set of programs in different national language environments.

The following figure illustrates using different sort sequences for different jobs with one set of physical
files and program code. The sort sequence table defined for the job and used by the program should be
the same as (or compatible with) the sort sequence table assigned to the logical files accessed through
the library list.

Job for LS. English user Job for German user
SETSEQ *LANGIDSHE) SRETSEQ*LAMNGIDSHRE)
LAMGID (EML LAMGID (DELN

Frogram code created with

SETSEQIJOBRLUMN) and LANGID (*JOBRLIM

Logical filesfor LS. English user Logical files for German user
SRTSEQ *LANGIDSHRE]) SRTSEQ*LANGIDSHR)
LAMGID (EMLY LAMGID (DEL)

Fhysical files
REAGES11-0

Designing for running with different sort sequences:
If your program is expected to run with different sort sequences, consider the following conditions:

» Presenting the data in different order.
 Processing different records.

Specifying selection criteria such as less than or greater than can result in selecting different records.
The selection criteria equal to can result in selecting a different number of records when the shared-
weight sort sequence table is used.

 Processing of a conditional branch may be different.

Note: System lists (such as the output from the WRKOBJ command) are not affected by sort sequence
support.

You can use the DDS file-level keyword alternate sequence (ALTSEQ) to specify the sequencing table and
the library in which it is contained. The system-supplied sort sequence tables with shared and unique
weight can be used for defining the alternative collating sequence.

The alternative collating sequence table is inserted into the file at compile time and is not needed at run
time. You can have different files containing different collating sequences using one set of DDS.

IBM i globalization 83

Note: The alternative collating sequence defined in your database files must also be defined in your
application programs; otherwise, you might get unexpected results.

The DDS ALTSEQ keyword provides limited support for sequencing. It has no effect on select/omit logic.
The ALTSEQ keyword can only be used with the SRTSEQ(*SRC) parameter on the Create Physical File
(CRTPF) and Create Logical File (CRTLF) commands.

Related concepts

Set job attributes (QSETJOBATR) system value
The set job attributes (QSETJOBATR) system value sets job attributes at job startup time.

ALTSEQ (Alternate Collating Sequence) keyword

Character sorting

Traditionally, information is displayed in sorted order to enable users to easily find the items they are
looking for. However, users of different languages might have very different expectations of what a sorted
list should look like.

Related reference
Create Physical File (CRTPF) command
Create Logical File (CRTLF) command

Display file design
Application panels typically consist of major elements, such as constant text strings, input and output
fields, and cursor positioning specifications.

Note: You can handle these either as a program-described or an externally described file using DDS. The
information found in this topic is based on the externally described technique using DDS.

Constant text strings
When designing your panels, keep in mind that different languages have different space needs for the
same expression.

Do not place many fields on the same line, except for a list panel that has column headings instead of field
prompts. Do not overload the panels with information. Choose one of the techniques described under
Textual data code design to make your panels.

Related concepts

Textual data code design

You can use different techniques to specify, store, and use constant text. You can use each technique for
specific types of textual data components. Each technique has its advantages and disadvantages.

Input and output fields
You must define fields according to the needs of the different languages, countries, cultures, currencies,
and laws that you want to address with your application.

For example, assume that you want to store the British pound and the Japanese yen in the same field as
the United States dollar. You must set the field size to accommodate the higher number of digits needed
for the British pound.

Field editing specifications
For the edit specification of your numeric, date, and time fields, you must consider the different cultural
conventions of the users.

Do not code the format and editing instructions in your application program in a way that requires
program modification when another convention is needed.

Related concepts
Cultural-dependent design

84 IBMi: IBMi globalization

Different countries might have different standards, which you must consider when developing an NLS-
enabled application. This culturally sensitive information must be placed outside the program the same
way as the textual data is handled.

Cursor positioning specifications
Do not specify cursor positioning values to fixed locations on the screen, because different languages
have different space requirements.

When you work with different display files, you can adjust them with the translation process. When you
need to work with field-independent cursor locations, store the positional information outside of your
code and retrieve the variable values for the keyword within your program.

For example:
A record-name CSRLOC(field-name-1 field-name-2)

Cursor positioning on the field level is more useful in an NLS environment. For normal records, this is done
by specifying the DSPATR(PC) keyword on a specific field. For subfiles, the cursor can be positioned using
SFLRCDNBR(CURSOR) keyword on a special positioning field. In addition, the subfile record number must
be stored in that field before the format is written.

For example:
A field-name 4S OB 1line pos SFLRCDNBR(CURSOR)

Note: The name of the record and field where the cursor is positioned, the subfile relative record number,
and subfile fold/truncate indicator can be returned to your application program. This function is provided
by hidden fields on the DDS keywords RTNCSRLOC, SFLCSRRRN, and SFLMODE.

Related information

RTNCSRLOC (Return Cursor Location) keyword for display files

SFLCSRRRN (Subfile Cursor Relative Record Number) keyword for display files
SFLMODE (Subfile Mode) keyword for display files

Input field default values
You can use these methods to put default values into the input fields of your display. Users can override
the default values with their own data.

 Getting information from program

Never hard code the values as a literal if they are language or cultural-dependent values. Use values you
can get from the system-provided information, such as system or job date, or get the values from a data
object, such as a database file or data area from outside of the program.

« Using DDS keywords DFT (Default) or DFTVAL (Default Value)

Specify the default input value directly on the DDS after the keyword. The DDS keyword DFT is for
input-only (I) fields. For output-only (O) or input-output (B) fields, use the keyword DFTVAL.

For example:

A field-name length type I line pos DFT('default ")
or
A field-name length type 0/B line pos DFTVAL('default value ')

« Using DDS keyword MSGID (Message Identification)

Using the Message Identification (MSGID) keyword allows you to retrieve the content of a specified
message description when the program is run and to put that value as a default in your display file field.
The field must be input-output capable (B) for you to use this technique.

For example:

A field-name length type B line pos MSGID(message-id [xlibl/message-file)

IBM i globalization 85

This allows you to use different message files for each national language version by setting the library
list accordingly when the program is run.

Related information

DFT (Default) keyword for display files

DFTVAL (Default Value) keyword for display files
MSGID (Message Identifier) keyword for display files

Field validation specifications
Some DDS keywords provide validation checks on input-capable fields on your display.

« RANGE (Range checking)

« VALUES (Values checking)

« CMP and COMP (Comparison)

« CHECK (Check validity, keyboard control and cursor control)

Using the DDS keywords with any hard-coded values that are language, country, or cultural-dependent
makes duplication and modification of the DDS and the application program necessary.

Example: Validation checks

An example of field validation checks on input-capable fields on your display using the DDS keywords
VALUES, COMP, and CHECK follows:

A field-name length type usage line pos VALUES('Y' 'N')
or

A field-name length type usage line pos COMP(EQ 'US$')

or

A field-name length type usage line pos CHECK(M10 or M11)
(Modulus checking)

or

A field-name length type usage line pos CHECK(RL)

(Right-to-left support)

Validation checks are provided according to the sort sequence defined for the display file at creation time.
You can use the same DDS source file to create objects for different languages. For example, the following
command creates a display object tagged with the Latin 1 sort sequence table:

CRTDSPF FILE(name) SRTSEQ(*LANGIDSHR) LANGID(DEU)
The following specification:
A field-name length type usage line pos COMP(EQ 'a')
accepts all lowercase, uppercase, and accented characters, as defined by the shared-weight in the Latin 1

sort sequence

In addition, note that all the checks specified using those DDS keywords are done by the data
management function of the operating system. Any error message caused by wrong input or handling
by the user appears in the language of the operating system. This can be the primary language or a
secondary language, depending how the library list of the job is set up.

You can override this when you use the additional DDS keyword CHKMSGID (Check Message Identifier).
This keyword allows you to specify your own customized messages and message file to be used by the
checking routines of the operating system.

For example:

A field-name length type usage RANGE(1 999)

A CHKMSGID(USR1234 [%1ibl/]APPMSGF [&MSGFLD1])
A MSGFLD1 length type P TEXT('Message data field')

and

86 IBMi: IBMi globalization

ADDMSGD MSGID(USR1234) MSGF (APPTXDENU/APPMSGF)
MSG('Value &1; is out of range 1 to 999')
and

ADDMSGD MSGID(USR1234) MSGF (APPTXDDEU/APPMSGF)

MSG('Wert &1; ist ausserhalb des g ﬁltigen Bereichs 1 bis 999')

To use different message files of different library names, do not specify a fixed library name. You can use a
message file for different languages by setting the library list when you run the program.

Related information

RANGE (Range) keyword for display files

VALUES (Values) keyword for display files

CMP (Comparison) keyword for display files

CHECK (Check) keyword for display files

CHKMSGID (Check Message Identifier) keyword for display files

Error messages
You can provide error messages in a display file by specifying text as constant, or by using predefined
messages.

- Specifying text as constant on ERRMSG or SFLMSG keywords

Specify the text directly as a constant on the DDS keyword. When you want to have more than
one language, you must duplicate the DDS source code and translate constants within the DDS
specifications. You can then create a separate display file object for each language.

« Using predefined messages on ERRMSGID or SFLMSGID keyword
When using predefined messages instead of constants, you need to have multiple display files.

Instead of using different display files, exchange only the used message file by setting the library
according to the language that you want to use.

For example:
A field-name length type usage EDTCDE(x)
A 61 ERRMSGID (USR3456 [%1ibl/]APPMSGF [&MSGFLD2])
A MSGFLD2 length type P TEXT('Message data field')
and

ADDMSGD MSGID(USR3456) MSGF (APPTXDENU/APPMSGF)
MSG('Delivery date &1; is earlier than production end date &2')
and

ADDMSGD MSGID (USR3456) MSGF (APPTXDDEU/APPMSGF)
MSG('Lieferdatum &1; ist . . .')

Related information
ERRMSG (Error Message) and ERRMSGID (Error Message Identifier) keywords for display files
SFLMSG (Subfile Message) and SFLMSGID (Subfile Message Identifier) keywords for display files

Printer file design and translation

Program-described printer files and externally described printer files are two types of printer files. When
you design printer files to be translated into a national language version, you should follow some specific
guidelines.

« Program-described printer files

Program-described files rely on the high-level language program to define records and fields to be
printed.

- Externally described printer files

IBM i globalization 87

Externally described printer files use DDS rather than the high-level language to define records and
fields to be printed.

The following figure shows how externally described printer files are used in creating reports for a
different national language version.

Brodram t Call printer file
rogram to far report manual Report
process data * (language n
forreporing
Feport
(language 2)
Generate —
report Feport
(language 1)
Feport
(language n)

Report
(language 2)

Fepaort
(language 1)

Fi B&GS505-0

Printer file translation

When you design printer files to be translated into a national language version, consider these guidelines:

Use externally described printer files to define records and fields to be printed. Avoid using program-
described printer files. Program-described printer files are described inside the high-level language
program. Translators trying to translate text imbedded within the program can mistakenly translate
literals that are within your program.

Print data in one national graphic character set on devices that support the corresponding character
sets and code pages. Not all printers support all CHRID parameters.

Use the MSGCON keyword to access the constant text described in the message file. A printer file does
not have the MSGID keyword. However, the techniques of direct coding as unnamed output field (literal)
and storing text in a database file can be used to specify the constant text in a printer file.

Take culture conventions into consideration when bar codes are being described in the printer file.
Different countries have different standards for bar codes.

When entering data, consider these parameters on the Create Printer File (CRTPRTF) command.
— PAGESIZE (page size)
Different countries have different page-size standards.
— OVRFLW (overflow line number)
The overflow line number must be less than or equal to the page length.
— CHRID (character set and code page)

If the CHRID parameter of the printer file is set to *DEVD, the printer uses the character identifier that
was set on the control panel or specified in the device description.

88 IBMi: IBMi globalization

If the CHRID parameter of the printer file is set to a specific value, this value determines the code
page and character set used to print the data. For externally described printer files, the CHRID
parameter is used only for fields that also have the CHRID DDS keyword specified. For all other fields,
the code page and character set used is the same as if *DEVD was specified.

If the CHRID parameter of the printer file is set to *JOBCCSID, constant text from an externally
described printer file is converted to the CCSID of the job. The printer data stream is tagged with
the CHRID taken from the job CCSID, using this CHRID value to print the data. When using the
*JOBCCSID value on the CHRID parameter, the CHRID DDS keyword is ignored.

Note: All code pages and character sets cannot be handled by all printers.

Related concepts

Textual data code design
You can use different techniques to specify, store, and use constant text. You can use each technique for
specific types of textual data components. Each technique has its advantages and disadvantages.

Related reference
Create Printer File (CRTPRTF) command

Source file design

Database source files are implicitly assigned the CCSID of the job when they are created, unless they have
been explicitly assigned a CCSID value through the CCSID parameter on the Create Physical File (CRTPF)
or Create Source Physical File (CRTSRCPF) command.

If the job CCSID is 65535, the job default CCSID (DFTCCSID) is used as the implicitly assigned CCSID.
The job default CCSID is determined by the system language identifier value and the job DBCS-capable
indicator.

Related reference

Create Physical File (CRTPF) command

Create Source Physical File (CRTSRCPF) command

Character data representation architecture design

To enable your application for a multilingual environment, avoid coding CCSID values directly in your DDS
for physical files. When database sharing takes place, you need to define your files with the CCSID of the
primary language or use Unicode.

« Avoid coding CCSID values directly in your DDS for physical files. When creating different physical files
for different languages, change the CCSID for your job (using the CHGJOB command). Only one set of
DDS source code needs to be maintained.

Conversions between all CCSIDs might not make sense in all cases. For example, if you access a Greek
database with a CCSID of 00875 from a German display station with a job CCSID of 00273, you see
garbled data on your display.

Countries outside the Latin-1 character set use character sets that include non-Latin characters. No
meaningful conversion is possible between the non-Latin code points and the Latin code points. Arabic,
Greek, Hebrew, and Turkish are SBCS languages with non-Latin characters.

- When database sharing takes place, define your files with the CCSID of the primary language being
used. Make sure that all users have the CCSID of the language that they use defined in their user profile.

Related concepts

Working with CCSIDs

Using the system implementation of Character Data Representation Architecture (CDRA), you can achieve
consistent representation, processing, and interchange of coded characters (data) on the IBM i operating
system and across IBM Systems. The primary implementation of CDRA on the IBM i operating system is
through coded character set identifier (CCSID) support.

Working with Unicode

IBM i globalization 89

Unicode is a standard that precisely defines a character set as well as a small number of encodings for it.
It enables you to handle text in any language efficiently. It allows a single application to work for a global
audience.

Related reference
Change Job (CHGJOB) command

Use of the Send Network File command

When you use the Send Network File (SNDNETF) command, the data (if the command is sending a
member only) is assumed to be in the CCSID of the job that is running the command. Therefore, no
conversion takes place.

When the data is received, you should store the member in a file with the same CCSID as the originating
file.

If the receiver does not know the CCSID of the incoming file member, it can be received into a file with a
CCSID of 65535, which indicates that no conversion takes place.

Related reference
Send Network File (SNDNETF) command

Scenario: Multilingual single system
This scenario shows a multilingual single system with German as the primary language and English and
French as secondary languages. All users enter data into the same database file.

French
display job —
CCSID 00297

German
depiagjo | V%" | Database | fEEESH
CCSID 00273 QCCSID= 9 00273

00273

UK English
display job —
DDSID 00285

RBAGS502-1

On this multilingual system, all users are entering character data into a single file with CCSID 00273
(German), and character data entered from the English and French display stations is being mapped into
the German file.

To preserve correct mapping, fields defined as character fields should be actual character fields. If the
fields contain application development values (for example, control characters or fields that are not used
as real character fields), the fields either should be specified as hexadecimal fields or assigned a CCSID
value of 65535.

Using CCSIDs, characters that cannot be converted between different code pages are replaced with a
substitution code. If you are using a user-defined data stream (UDDS) to format and lay out your display
(instead of using DDS), you might get substitution codes returned after the system reads and inserts
that data in your user-defined data stream. Substitution codes might cause unpredictable results on the
display.

Scenario: Multilingual network
This scenario shows a multilingual network with three systems located in three different countries, each
with a different language.

In this example, the application on the Danish system is using distributed relational database. All national
characters (regardless of the language that the data is stored in) are displayed correctly at the Danish
display. When the CCSID of the language is used by the database, the integrity of the database is

90 IBMi: IBMi globalization

preserved. The conversion of data between the different code pages is completely automatic and part of
the database management.

French UK English
system system
Danish
system
Database Database
file CCSID file CCSID
00297 00285
v v
Database Danish g
file CCSID display job 2
00277 CCSID 00277 %
o

Handling languages with no NLV support
If you need to support a language that does not have a supported national language version, follow these
steps.

1. Study the available national language versions. Find out which national language version most closely
resembles your language in character representation.

2. Install the most appropriate national language version as your primary language.

3. Modify the system values to meet your cultural needs. For example, set date and time formats to meet
those of the culture that you are supporting.

4. Configure your workstations and printers to match your primary language. Then, handle discrepancies
between support for the installed NLV and your own language.

Note: The workstation customization functions can support only those capabilities built into your
hardware. You cannot support functions through workstation customization that your hardware is
unable to support.

5. Use the Create Table (CRTTBL) command to create a sort sequence table based on the existing table
that most nearly matches the appropriate sorting sequence for your language.

6. If your language is a DBCS language, create your own characters (UDC) to represent missing
characters in the code page associated with the NLV you installed. UDC is an acronym for a user-
defined character that is created through the character generator utility (CGU). CGU is an extension of
the code page with special user-defined ideographic characters, symbols, or logos.

Related concepts

System values for other languages with no national language version

Some of the system values are associated with languages and countries that do not have a national
language version. You should set these values immediately after initially installing the IBM i operating
system.

Related reference
Create Table (CRTTBL) command

Programming considerations in globalized application design

As you develop your globalized applications, the national language version environment often requires
that you pay additional attention to how you prepare and compile your code.

IBM i globalization 91

Coding globalized applications with high-level languages

Your major goal must be to have only one general set of running code that is common for all language
versions and to make your programs table-driven as much as possible.

You should do as follows:

« Base validity checks on database accesses and message files rather than on hard-coded literals or
tables.

- Base calculations on variable factors retrieved from a file rather than coding them inline.

 Place cultural-dependent functions into separate modules of the application and call them when you
cannot code them flexibly.

Do not use hard-coded values unless they are fully language and cultural independent on comparison,
scan, replace, or call operations. In addition, do not use uppercase or lowercase-sensitive values. For
example, never hard code Yes and No (Y or N) responses in your program, because these values are
different for every language, and should be part of the textual data.

For literals and constants in source code, use characters only from the invariant character set. If input
data is checked for validity in the program, make sure that the characters checked belong to the invariant
character set; otherwise you might get a situation where the user is requested to enter a character that

is not even on his keyboard. For example, the left brace ({) and right brace (}) do not appear on Arabic
keyboards.

Do not use compile-time arrays to hold messages or any other language or cultural-sensitive data.

For better performance, when you need to call external NLS-dependent modules, call them by a fixed
name as a literal (but based on the library list) rather than by a variable field containing the program
name. This allows your application to call the modules of different libraries based on the associated
library list.

To allow users to work with an application in the language and habits of their culture, specify the editing
values (for example, date, time, and date separators) as dependent on the language and country or
region. You can then retrieve them according to the information in the user profile. The parameters

are LANGID (language identifier) and CNTRYID (country or region identifier). You need to retrieve the
cultural-sensitive information only once at program initiation. You can do this by an initial CL program or
by the high-level language program and prepare them as:

« Parameters on the call operation
« Parameters on the local data area (LDA)
« Program load tables

Using an initial program allows you to set the user's job attributes to present a consistent application.

Related concepts

Invariant character set (and its exceptions)

An invariant character set is a character set, such as the syntactic character set, whose code point
assignments do not change from code page to code page. The table illustrates the invariant character set
(character set 00640) on the IBM i operating system.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Country or region identifier (QCNTRYID) system value
The country or region identifier (QCNTRYID) system value indicates the default country or region identifier
for the system.

Language compilers CCSID
Some language compilers expect syntactical operators and the naming convention for the source code to
be in CCSID 00037.

You can refer to the documentation for the language compiler you use.

92 IBMi: IBMi globalization

For these compilers, incorrect mapping occurs if the source is compiled with a CCSID other than 00037
or 65535. You must ensure that these compilers receive any variant characters used in language syntax in
CCSID 00037.

ILE language compilers

When an ILE C, ILE RPG, or ILE COBOL program is compiled, source from database source files is
converted to the CCSID of the primary source file.

Compilers for these languages can handle syntactical operators in most CCSIDs. These compilers can also
handle naming conventions for the source code in most CCSIDs.

Non-ILE language compilers

When a non-ILE CL, non-ILE RPG, or non-ILE COBOL program is compiled, source from database source
files is converted to the CCSID of the job.

If you do not want your names, constants, or literals converted to the CCSID of the job, you can change
your job CCSID to 65535. Your constants, literals and names then remain intact.

Note: REXX/400 procedures and the literal data coded within them are not converted to the job CCSID.

Example 1

The following example shows a sample non-ILE RPG program. This example shows English source on a
system in the United States.

* RPG Source (Source file created using CCSID 00037 but tagged
* with CCSID 65535)

FFILE1 IF E DISK 80
© READ FILE1

Cx Test char

Cx

© FLD1 IFEQ '$!

© e

Cx Move char

Cx*

© MOVE FLD1 FLD$

© 555

Cx*

© SETON LR

Example 2

In Finland, the program in the first example does not compile because the field name FLD$ contains a
variant character (the dollar sign). The variant character represents a different code point in a code page
other than 00037. This figure shows the same sample non-ILE RPG program as English (U.S.) source on a
system in Finland (CCSID 278).

* RPG Source (Source file created with CCSID 00037, but tagged

* with 65535)

FFILE1L IF E DISK 80
C READ FILE1

Cx Test char

C*

C FLD1 IFEQ '@

C
Cx Move char
C*

IBM i globalization 93

C MOVE FLD1 FLD &

©
C*
© SETON LR

Example 3

You can correct this error by changing the file CCSID to 00037 and setting the job CCSID to 00278 (for
Finland). The following example shows the changed file as seen English source in Finland.

* RPG Source (Source file created using CCSID 00037 and tagged
* with CCSID 00037)

FFILE1 IF E DISK 80
© READ FILE1

Cx Test char

Cx

© FLD1 IFEQ '$!

© c.

Cx Move char

Cx*

© MOVE FLD1 FLD$

© 555

Cx*

© SETON LR

Session manager
For all applications that use a session manager, you must ensure that the output data stream has no X'3F'
values in it. The IBM i operating system uses X'3F' values to make a screen blank.

General sort sequence

The sort sequence used by a program might influence the program logic. The following figure shows an
example of this.

Using the Latin 1 shared-weight sort sequence, character test 3 is equivalent to character test 4 (not
all characters are shown). When using hexadecimal or unique sorting, they are completely different. The
following example shows an RPG program using different sort sequences.

* RPG Source (Program created with Latin 1 sort sequence)
*

Cx Test char 3

C*

C FLD1 IFEQ 'a’
C ...

Cx Test char 4

C*

C FLD1 IFEQ 'a'
© FLD1 OREQ 'A'

r

C FLD1 OREQ ' &'

C FLD1 OREQ ' %'

C
Cx
© SETON LR

If you compile the program with *JOBRUN specified for the SRTSEQ parameter and *JOBRUN specified for
the LANGID parameter, the sort sequence table used at run time is not known at compile time.

The IBM Db2 Query Manager and SQL Development Kit for i licensed program and ILE C have additional
special considerations.

94 IBMi: IBMi globalization

Related concepts

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

ILE C considerations
When you compile programs with ILE C, consider this information.

 You can compile a source file in any EBCDIC code page except code page 00290.
« If the CCSID of the primary source file is 65535, code page 00037 is assumed.
« All secondary source files are converted to the CCSID of the primary source file.

Note: While most secondary source files are converted to the CCSID of the primary source file, some
conversions are not supported. Contact your IBM service representative if you require support for an
unsupported CCSID conversion.

« If the CCSID of the secondary source files is 65535, no conversion takes place.

« Any modules are created in the code page of the primary source file. A module is an operating system
object that can be a collection of one or more procedures and one or more definitions for external or
internal variables. A module is compiled from source code.

« When binding modules of different CCSIDs, no conversion takes place and unpredictable results might
occur.
 You can use the trigraph support for the C characters that are not available on all keyboards. Trigraph

support generally uses invariant characters to represent variant characters. For example, the left
bracket ([) is represented by ??(.

The ILE C runtime library functions that parse strings containing variant characters use the variant
character code point value associated with the CCSID of the job.

ILE RPG sort sequence

The ILE RPG feature, an option of the IBM Rational Development Studio for i licensed program, provides
the possibility for a user to specify a sort sequence table and to use the table in comparison operations
that are performed with nonnumeric data.

For each of the supported languages, two tables (a shared-weight table and a unique-weight table) are
included with the system. With sort sequence support, you can create sort sequence tables based on the
existing ones.

The control specifications provide the ILE RPG compiler with information about your program and your
system. The sort sequence used in ILE RPG programs is controlled by all of the following items:

« The control specifications.

« The SRTSEQ (sort sequence table) parameter on the Create RPG Module and the Create Bound RPG
Program commands.

« The LANGID (language identifier) parameter on the Create RPG Module and the Create Bound RPG
Program commands.

The alternative collating sequence field (ALTSEQ) in the control specifications allows the following values:

blank
No alternative collating sequence is used in the RPG program. The normal collating sequence is used
in the RPG program. The compile options SRTSEQ and LANGID are ignored.

*NONE
No alternative collating sequence is used in the RPG program. The normal collating sequence is used
in the RPG program. The compile options SRTSEQ and LANGID are ignored.

*SRC
The alternative collating sequence is used in the RPG program, according to the tables entered at
the end of the RPG program. The alternative collating sequence table is loaded at compile time, and
ordering, sorting, comparing, and match field processing is done according to that table.

IBM i globalization 95

The SORTA and LOOKUP operation codes do not use specified alternative collating sequence tables.

The SRTSEQ and LANGID parameters on the Create RPG Module and Create Bound RPG Program
commands are ignored.

*EXT
The alternative collating sequence is specified outside of the RPG program. RPG compiler imports
an external sort sequence table, based on the SRTSEQ and LANGID parameters on the Create RPG
Module and the Create Bound RPG Program commands.

The SORTA and LOOKUP function with the arrays and tables at compile time and processing time take
effect only when you specify D in the control specifications.

The sort sequence table to be used by the program can be determined at compile time or when the job is
run. If the SRTSEQ parameter of the Create RPG Module and Create Bound RPG Program commands:

« Is set to *HEX, no sort sequence table is used.

« Specifies a table name, then that table is stored with the program object to be used when the job is run.
For system-supplied default sort sequence tables for the supported languages, refer to Sort sequence
tables.

« Is set to *LANGIDSHR or *LANGIDUNQ, the shared-weight or unique-weight table for the language
determined by the LANGID parameter is stored with the program object. For a list of valid language
identifiers, refer to Language and country and region identifiers.

« Is set to *JOB, the SRTSEQ parameter of the compile time job is used to determine the sort sequence.
The table is stored with the program object.

« Is set to *JOBRUN, the attributes of the job running the compiled program determine the sort sequence
to be used. If the SRTSEQ attribute of the job refers to the LANGID, the LANGID stored with the program
object is used. If the LANGID stored with the program is also *JOBRUN, the LANGID of the runtime job
is used.

Notes:

1. If the table to be stored with the program object at compile time does not exist, a table defining
hexadecimal sort sequence and tagged with a CCSID value of 65535 is used.

2. If the sort sequence table and the CCSID of the job running the program differ, the table is converted
to the CCSID of the job.

SORTA and LOOKUP operation codes

The implementation of compare operation codes, match field and control field processing with the sort
sequence tables is the same for the alternative collating sequence and for the sort sequence support.
Compare operation codes are ANDxx, COMP, CABxx, CASxx, DOUxx, DOWxx, IFxx, ORxx, and WHxx.
Additional functions provided with the SORTA and LOOKUP operation codes follow:

SORTA
The data in the array is sorted according to the sort sequence table.

LOOKUP
To provide proper table searching, the sort sequence table is used with the search arguments in the
arrays and tables.

The search argument and either the table or array element are compared using the sort sequence
table.

The array and table data are checked using the sort sequence table, whenever ascending or descending
sequence is specified. If the SRTSEQ and LANGID parameter values resolve to retrieve the sort sequence
table again at run time, then the array and table elements are loaded without a sequence check at the
compile time. The sequence checks are performed at run time, according to the sort sequence table.

Related concepts
Sort sequence (QSRTSEQ) system value

96 IBMi: IBMi globalization

The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Sort sequence tables

A sort sequence table is an object that contains the weight of each single-byte graphic character within

a specified coded character set identifier (CCSID). The system-recognized identifier for the sort sequence
table object type is *TBL.

Country and region identifiers
This table lists the country and region identifiers.

ILE COBOL sort sequence
The ILE COBOL feature, an option of the IBM Rational Development Studio for i licensed program, uses
the sort sequence support in several ways.

« Create COBOL Module command

« Create Bound COBOL Program command
« PROCESS clause

« ALPHABET clause

The ILE COBOL licensed program uses sort sequence tables that are system supplied or user supplied.

Creating COBOL module and creating bound COBOL program commands

These CL commands have two compiler options relating to sort sequence support: the SRTSEQ parameter
and LANGID parameter. The SRTSEQ parameter allows the user to specify any of the system-supplied

or user-supplied sort sequence tables residing in a specified library. You can specify whether the sort
sequence table should be taken at compile time or run time. Also, you can choose between the shared-
weight and unique-weight tables.

With the LANGID parameter, you can specify one of the system-defined language identifiers, or leave that
parameter to be defined at the run time.

The meanings of the SRTSEQ and LANGID parameters on the Create COBOL Module and Create Bound
COBOL Program commands are the same as on the Create RPG Module and Create Bound RPG Program
commands as described in “ILE RPG sort sequence” on page 95.

PROCESS statement

Sort sequence support options can be supplied in the PROCESS statement. The syntax for that command
is like that for the Create COBOL Module and Create Bound COBOL program commands. The only
exception to this is that the values for the parameters in the PROCESS statement are entered without

an asterisk (%) for the predefined values. Any options specified in the PROCESS statement override the
corresponding options on the Create COBOL Module and Create COBOL program commands.

ALPHABET clause

The alphabet-name in the ALPHABET clause of the SPECIAL-NAMES paragraph can use the NLSSORT
option. Use the SRTSEQ and LANGID parameters of the compiler for alternative collating sequence
options. Otherwise, it means the same as the NATIVE option.

The following COBOL lines are affected by the NLSSORT option:
« PROGRAM COLLATING SEQUENCE phrase of OBJECT-COMPUTER paragraph

When evaluating the result of nonnumeric comparisons, the alphabet name has to be referenced in this
phrase to enable the program to use the specified sort sequence options. This option also applies to the
nonnumeric sort or merge operation. Otherwise, the hexadecimal collating sequence is used.

« ALPHABET CLAUSE in the SPECIAL-NAMES paragraph

IBM i globalization 97

This clause should specify the NLSSORT option.
COLLATING SEQUENCE in the MERGE (or SORT) statement

This phrase is used to specify the collating sequence to be used for nonnumeric comparisons for the
KEY data name in the MERGE or SORT operation. If omitted, the PROGRAM COLLATING SEQUENCE
clause in the OBJECT-COMPUTER paragraph defines the collating sequence to be used. If neither is
specified, hexadecimal collating sequence is used.

Nonnumeric relation names and condition names

The selected sort sequence table affects the result of certain statements, using nonnumeric relation
names and condition names: EVALUATE, IF, PERFORM...UNTIL, SEARCH and START. The truth values of
the nonnumeric comparisons depend on the corresponding weights of the characters in the selected
sort sequence table. For example, if you specify unique-weight table (LANGIDUNQ) for French (Latin 1),
the following statement is true for the single value of the variable ITEM-1,e.

IF ITEM-1 = "e"

If you specify a shared-weight table (LANGIDSHR) for French (Latin 1), the same statement is true for
several values of the variable ITEM-1. All have the same shared weight of 77:

lowercase e (e), uppercase e (E),

lowercase e acute (é), uppercase e acute (E),
lowercase e grave (é), uppercase e grave (E),
lowercase e caret (é), uppercase e caret (E),

lowercase e umlaut (é), uppercase e umlaut (E)

DB2 and SQL sort sequence
For Interactive SQL, the SRTSEQ and LANGID parameters can be specified on the STRSQL command. You
can change these parameters by using the session services for interactive displays.

Sort sequence tables are used for all string comparisons. String comparisons are performed in the
following SQL statements:

ORDER BY clause

WHERE clause

GROUP clause

HAVING clause

UNION and UNION ALL clauses
DISTINCT clause

BETWEEN predicate

IN predicate

LIKE predicate

MIN and MAX scalar functions
MIN and MAX column functions

In addition, any indexes or views that are created using the CREATE INDEX or the CREATE VIEW
statements are created with the specified sort sequence table.

98 IBMi: IBM i globalization

IBM Db2 Query Manager and SQL Development Kit for i

The IBM Db2 Query Manager and SQL Development Kit for i licensed program does not assume a
particular CCSID when precompiling source. Any variant characters in the language syntax, such as the
not (=) symbol, are assumed to be encoded in the CCSID of the source file.

For example, if the source file has a CCSID of 00037, the ! not symbol is correctly interpreted to be

at code point X'5F". If the source file has a CCSID of 00500, however, the ! not symbol is correctly
interpreted to be at code point X'BA'

A literal is stored in the CCSID of the source file.

The IBM Db2 Query Manager and SQL Development Kit for i licensed program calls the appropriate
language compiler to create an SQL program; therefore, you must consider the general guidelines for
high-level languages.

Related concepts

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

IBM i Access sort sequence
You can specify the sort sequence in IBM i Access functions. When performing queries on the system
databases and SQL tables, you can specify the system-supplied or user-supplied sort sequence tables.

Remote SQL support

You can specify the way the selected data has to be sorted when performing the query. For that purpose,
sort fields must be specified in the ORDER BY clause. The following clauses also use the specified sort
sequence:

« WHERE clause

- GROUP BY clause
« HAVING clause

- JOIN BY clause

« UNION clause

« DISTINCT clause
« IN predicate

« LIKE predicate

« BETWEEN predicate
« RANGE predicate
« MAX function

« MIN function

The actual sort sequence table is retrieved from the job attributes of the user. The SRTSEQ and LANGID
parameters can be affected through changing the user profile or changing the job attributes.

Data transfer support

When transferring data from the system to the workstation, you can specify the sort sequence to be
applied on selected data. The sort sequence table is also used in the following string comparison
operations:

« WHERE clause

IBM i globalization 99

- GROUP BY clause
« HAVING clause
- JOIN BY clause
« IN predicate
« LIKE predicate
« BETWEEN predicate
« MAX function
« MIN function
You can specify in the OPTION statement the following parameters related to sort sequence:
« SRTSEQ (sort sequence table)
- *JOB
— *HEX
— *LANGIDSHR
— *LANGIDUNQ
— *LIBL/sort-seq-table-name
— *CURLIB/sort-seqg-table-name
— library-name/sort-seq-table-name
« LANGID (language identifier)
- *JOB
— language-identifier
You can choose the appropriate sort sequence through options on IBM i Access displays.

Related concepts

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

Language identifier (QLANGID) system value
The language identifier (QLANGID) system value specifies the default language identifier for the system.

Coding globalized applications that use bidirectional data

When you are developing NLV-enabled applications, you should consider some specific restrictions on
bidirectional languages.

- Bidirectional language display layout

The presentation of data should have a right-to-left orientation. Literals should appear on the right
side of the fields that they describe. The following examples illustrate a U.S. English display with a
left-to-right orientation and the same display in a right-to-left orientation.

Left-to-right layout of a U.S. English display

100 IBMi: IBM i globalization

Display employee record (DSPEMPRCD)
Type choices, press enter.

Employee code _. Code, "ALL
Field name _......._ .. Mame, *ALL
Fllename ._......._.. MName

Library name Mame, *LIBL
Qutputto . ._....... .. *CONS, *PRINT

Right-to-left layout of a U.S. English display

(DSPEMPRCD) drocer eeyolpme yalpsiD
retne sserp seciohc epyT

*AlLedoC ... edoc eeyolpmE
*ALL emah —— _eman dieiF
gmah — L eman aliF

*LIBL emaM ——— 7 — eman yrarbil
*CONS *PRINT —— ot tuptud

« Long fields in bidirectional languages

Avoid defining input fields that span more than one line. When the field is displayed or printed as one
entity, the result for bidirectional languages is not what the user intended.

« Variable positioning in bidirectional languages
Your application must allow for variables to be in any order. For example, consider the following
message in English:
File &1 in library &2 not found
When translated to another language, the message might look like this:

dnuof ton &2 yrarbil ni &1 eliF

In this case, variable 2 is positioned before variable 1.
« CHECK(RL) and CHECK(RB) keywords with bidirectional languages

These options are valid only for display stations capable of right-to-left movement, and have the
following restrictions:

— Option indicators are not valid with cursor control codes.

CHECK(RZ) and CHECK(RB) are not valid with these keywords.

A field that spans more than one line gives a warning message.

The check digit for modulus checking is the farthest-right byte in the field.
CHECK(RL) applies to character fields only.

 Online information for bidirectional languages

The special bidirectional tags have a restriction. When combining online help information from several
panel groups that do not have the same value for the BIDI tag, the user must use the hot key sequence
to read the opposite orientation of the online help information.

« CCSIDs for bidirectional languages

IBM i globalization 101

As bidirectional languages have special character sets that are unique, no exchange of data into other
languages is feasible. You might need to use data mapping between EBCDIC and ASCII data streams,
however. For example, you need data mapping between EBCDIC and ASCII data streams if you are
using Distributed Relational Database Architecture™ (DRDA).

When exchanging data in a language that uses Latin characters and when special characters that are
not part of the invariant character set are needed, use CCSID 00424 for Hebrew and CCSID 00420 for
Arabic for data mapping to take place.

Related concepts

CCSID reference information

Coded character set identifier (CCSID) is a 16-bit number that includes a specific set of encoding scheme
identifiers, character set identifiers, code page identifiers, and other information that uniquely identifies
the coded graphic-character representation.

Working with bidirectional data

Arabic and Hebrew languages use an alphabet written and read from right to left. Numerics and Latin text
embedded in the right-to-left text are written and read from left to right. Therefore, these languages are
called bidirectional languages. These languages have some unique properties to be aware of.

Related reference

Checklist: Bidirectional support guidelines
When you create an application with bidirectional support, follow the guidelines in this table.

Using message catalogs

The IBM i operating system can use message catalogs to store messages. Messages in a message catalog
are grouped as sets. Each message has a unique number within a set.

You can create a message catalog as a stream file, a source file member, or a user space object type from
one or more source files.

Because you can store message catalogs as stream files, you can use directories to isolate messages for
specific products or national language versions.

Creating or updating a message catalog with the GENCAT and MRGMSGCLG
commands

You can use both the Generate Message Catalog (GENCAT) command or the Merge Message Catalog
(MRGMSGCLG) command to create or update a message catalog. When a message catalog exists,
continued use of these commands updates a catalog by comparing the original messages to the
messages in the source. New message text replaces specific messages without changing the other
messages within the set. With these commands, you can add or delete messages from an existing set of
messages. You can also delete sets of messages from an existing message catalog.

Related concepts

CCSID support for messages

You can use CCSID support for handling messages and message catalogs on the IBM i operating system
by using commands and application programming interfaces. You can send messages tagged with one
CCSID to users with a different CCSID.

Related reference
Generate Message Catalog (GENCAT) command
Merge Message Catalog (MRGMSGCLG) command

Source for message catalogs
The source for a message catalog is either a source physical file, a stream file, or multiple files. The source
contains fields to define set numbers, message numbers, message text, or to specify sets to delete.

The following information provides additional information and examples relating to message catalogs.

102 IBMi: IBM i globalization

Message catalog source format

A message catalog contains five fields of message text source lines. A single blank character separates
each of the five fields. Any other blank characters are considered as part of the subsequent field data. See
“Special characters and escape sequences” on page 104 for additional information.

Note: Enter the key fields exactly as in the following list, using the dollar sign ($) and lowercase
characters. Definitions for maximum and minimum values are stored in QSYSINC/QSYS/LIMITS.

- $ comment

A line that begins with $ that is followed by one or more blank characters is treated as a comment line.
A omment line should be placed directly beneath the message to which it refers. Place comments for an
entire set directly below the $set directive in the source file.

» $quote C

This line specifies an optional quote character C that is used to surround message text. This character
enables trailing spaces or null (empty) messages to be visible in a message source line. By default, or if
an empgy $quote directive is supplied, no quoting of message text is recognized.

- $set n comment
This line specifies the set identifier of the messages to follow until the next $set or end-of-file appears.
The N denotes the set identifier that is defined by a number between 1 and NL_SETMAX. Place set

identifiers in ascending order within a single source file. They do not need to be contiguous. A character
string that follows a set identifier is treated as a comment and ignored.

- $delsetncomment

This line deletes message set n from an existing message catalog. The n specifies the set number. Data
that follows the set number is treated as a comment. The $set and $delset identifiers can both be in the
message catalog source or the field tags.

* m message text

The m specifies the message identifier that is defined by a number between 1 and NL_SETMAX.

The message text is stored in the message catalog with message identifier m with the set identifier
that is specified in the last $set directive. If the message text is empty and a blank character

field separator is present, it stores an empty string in the message catalog. Existing messages get
deleted from the catalog if the message line does not have a field separator or MESSAGE TEXT and a
NEWLINE or carriage return follows the message line. Message identifiers must be in ascending order,
noncontiguous, and within a single set. The length of the MESSAGE TEXT must be in the range of 0 to
NL_TEXTMAX.

Note: Empty lines in a message text source file will be ignored.

Messages programming format
MESSAGES should follow these recommendations:

 The last line of all messages should end with \n.
« The second and remaining lines of a message should begin with \t, indicating a tab.

« All lines of messages that continue to the next line should end with \n\, indicating that the message
continues to the next line.

« The quotation mark at the end or beginning of a line should be omitted. The quotation mark delineates
the beginning and end of a complete message.

Using multiple source files

You can specify multiple source files for the source file parameter. The messages that are contained in
all of the files must follow the same rules for sets and messages as defined in a single source file. For
example, the first source file contains messages in sets 1 through 3. The next source file must begin with
set 3 and have a message number greater than the last message number in the first source file. If not, it

IBM i globalization 103

must contain sets that begin with a number higher than the highest number (set 3) in the previous source
file.

Replacing messages

Messages in an existing message catalog can be replaced by specifying a source file that contains the
same set number and message number as the message text you want to change. All other messages in
the source file remain the same. To update a value for the $QUOTE in a catalog, use the same $QUOTE
character in subsequent source files.

Example source for a message catalog

Here is a sample format for the source that is used to create a message catalog. A quotation mark
delineates each message. The message text that is stored in the message catalog has had the extraneous
blank characters removed. This example describes three sets of messages. Set 2 is deleted while sets 1
and 3 remain stored in the message catalog.

$ Messages for my new product
$quote "

$set 1

1 "Error occurred.\n"

$ The next message is continued on the next line.
2 "This is a very long message \n\

\t that requires another line to display. \n"

3 "Specify a value greater than %d.\n"

4 "File %c cannot be used at this time.\n"

$set 2

1 "Error %d occurred. \n"

2 "Flag not set.\n"

3 "Number of arguments must be %d.\n"

$set 4

1 "Before using this command, you must \

set the correct values in the %c box.\n"

2 "You have not properly NLS enabled this function.\n"
10 "Messages should end with a %c.\n"

$delset 2
Note: Message 2 in set 1 will be displayed in two lines. Message 1 in set 4 will display as a one line
message.

Here is an example for using the MRGMSGCLG command to create a message catalog.

MRGMSGCLG CLGFILE('/MYPRODUCT/MESSAGES?US"')
SRCFILE('QSYS.LIB/MYLIB.LIB/MYSOURCE.FILE/US.MBR")
CLGCCSID(*SRCCCSID) SRCCCSID(*SRCFILE)
TEXT('Message catalog for USA')

This example creates a message catalog into the stream file US in directory /MYPRODUCT/MESSAGES
using the source from MYLIB library in file MYSOURCE and member US. The CCSID of the data in the
message catalog is the same as the CCSID tag of the source file.

Special characters and escape sequences

Text strings can contain special characters and escape sequences as defined in the following table.

Description of special characters Sequence
\ \\
backspace \b
carriage return \r

104 IBMi: IBM i globalization

Description of special characters Sequence

form feed \f
horizontal tab \t
NEWLINE \n
octal bit pattern \ddd

Note: The escape sequence \ddd consists of a
backslash followed by up to three octal digits that
specify the value of the required character. If the
character following the backslash is not an octal
digit, the backslash and data following are included
as part of the text.

Opening, extracting, and closing message catalogs
After you have created a message catalog, you can use these functions: CATOPEN(), CATGETS(), and
CATCLOSEQ().

CATOPEN()
Opens a message catalog

CATGETS()
Extracts a message from a message catalog, given a set identifier and a message identifier

CATCLOSE()
Closes the message catalog

The C function CATOPEN opens the message catalog. If no slash (/) characters are found in the name, the
NLSPATH environment variable and the LC_MESSAGES category are used to find the specified message
catalog. If the name contains one or more slash (/) characters, the name is interpreted as a path name of
the catalog to open.

A default path is used if there is no NLSPATH environment variable or a message catalog cannot be found
in the NLSPATH path specified. If the value of oflag is NO_CAT_LOCALE the environment variable setting
of LC_MESSAGES may affect the default path. If the value of oflag is zero the LANG environment variable
may affect it also.

Related information
WebSphere Development Studio: ILE C/C++ Language Reference PDF

Delivering globalized applications

As you prepare to deliver your globalized application, you should consider how globalization issues might
affect the ways that your customers install and use your application.

Hardware support for multilingual systems

Hardware, in this context, means the physical keyboards, displays, printers, and controllers that make up
a IBMi platform. The extent to which this hardware supports national languages might impose limitations
on the degree of support that you can provide with an application. You must refer to the reference
manuals for non-IBM hardware to determine what limitations, if any, are imposed by that hardware.

Character data translation

Translating is changing the meaning of character data from a set of concepts, ideas, and statements in
one human language to a culturally similar meaning in another human language. You can follow some
basic rules to ensure translation goes smoothly. A subset of these rules is provided in the User interfaces
topic.

IBM i globalization 105

Delivering your globalized application to customers

Delivering your application to customers includes the processes of packaging, servicing, supporting, and
educating users about your application. You must consider various tasks when following these processes
in different countries and cultures throughout the world.

Related concepts

User interfaces
A user interface is the part of a software product that your customer actually sees.

Packaging and installation process

You need to consider the running code, translated textual data, and installation documents when
packaging applications. Here are some suggestions for simplifying the packaging and installation of your
application.

Handling data in globalized applications

The IBM i operating system enables you to handle data in a globalized environment. This topic collection
describes Unicode and Unicode data, the Chinese standard GB18030, how to use CCSIDs to integrate
multiple language environments consistently, and how to use bidirectional data, DBCS data, and locales.

One of the most critical challenges you might encounter as you work with globalized systems and
applications is the effective interaction with data. The operating system provides a wide range of options
that you can use to ensure that data is viewed and processed seamlessly across national languages.

Related concepts

Developing globalized applications

Globalized applications are applications that have national language support. National language support
allows users to enter, store, process, retrieve, print, and display data in their chosen language. It also
allows users to see and enter commands, prompts, messages, and documentation in their chosen
language, in formats matching their cultural expectations.

Working with Unicode

Unicode is a standard that precisely defines a character set as well as a small number of encodings for it.
It enables you to handle text in any language efficiently. It allows a single application to work for a global
audience.

Before Unicode, the encoding systems that existed did not cover all the necessary numbers, characters,
and symbols in use. Different encoding systems might assign the same number to different characters. If
you used the wrong encoding system, your output might not have been what you expected to see.

Unicode provides a unique number for every character, regardless of platform, language, or program.
Using Unicode, you can develop a software product that works with various platforms, languages, and
countries. Unicode also allows data to be transported through many different systems. Modern systems
provide Internationalization solutions based on Unicode.

Unicode was developed as a single-coded character set that contains support for the common languages
around the world. The first version of Unicode used 16-bit numbers, which allowed for encoding 65 536
characters without complicated multibyte schemes. With the inclusion of more characters, and following
implementation needs of many different platforms, Unicode was extended to allow more than one million
characters. In addition, other encoding schemes were added, such as UTF-8, UTF-16, and UTF-32. This
introduced more complexity into the Unicode standard, but far less than managing a large number of
different encodings.

The original Unicode repertoire covered all major languages commonly used in computing. Unicode
continues to grow and to include more scripts.

The design of Unicode differs in several ways from traditional character sets and encoding schemes:

- Its repertoire enables users to include text efficiently in almost all languages within a single document.

106 IBMi: IBM i globalization

- It can be encoded in a byte-based way with one or more bytes per character, but the default encoding
scheme uses 16-bit units that allow much simpler processing for all common characters.

« Many characters, such as letters with accents and umlauts, can be combined from the base character
and accent or umlaut modifiers. This combining reduces the number of different characters that need to
be encoded separately. Precomposed variants for characters that existed in common character sets at
the time were included for compatibility. For example, Latin small letter A used with a combining tilde

results in €,

Characters and their usage are well-defined and described. Traditional character sets typically provide
only the name or a picture of a character and its number and byte encoding; Unicode has a
comprehensive database of properties available. It also defines a number of processes and algorithms for
dealing with many aspects of text processing to make it more interoperable.

The early inclusion of all characters of commonly used character sets makes Unicode a useful mechanism
for converting between traditional character sets, and makes it feasible to process non-Unicode text by
first converting the text into Unicode, processing the text, and then converting it back to the original
encoding without loss of data.

Related concepts

Scenarios: Setting up IBM i with a national language version
These scenarios demonstrate how you can enable multilingual support on the IBM i operating system.

Character data representation architecture design

To enable your application for a multilingual environment, avoid coding CCSID values directly in your DDS
for physical files. When database sharing takes place, you need to define your files with the CCSID of the
primary language or use Unicode.

Related information
Unicode Home Page

Why use Unicode
Unicode has many advantageous functions.

The operating system provides multilingual support. Unicode provides the means to store and retrieve
data in the user's national language of choice in a single file, and therefore provides for one database file
to support all text needs, regardless of the language of the input device. For example, the same parts file
can have Greek, Russian, and English descriptions and names in it.

Related concepts

GB18030: The Chinese standard
GB 18030-2000 is a Chinese standard that specifies an extended code page for use in the Chinese
market.

Different encodings of Unicode

The Unicode standard has several main ways in which a Unicode value can be encoded. They are UTF-8,
UTF-16, UTF-32, and UTF-EBCDIC. Unicode Transformation Format (UTF) is the algorithmic mapping
from every Unicode value to a unique byte sequence.

UTF-8

UTF-8 converts Unicode data through a mathematical algorithm so that UTF-8 uses 8 data bits to encode
the data, keeps all ASCII codes from 00 to 7F encoded as themselves, and contains nulls only when they
are the intended characters.

For example, the string "ABC" in Unicode is "004100420043"x. However, in UTF-8 it is "414243",

Because UTF-8 allows Unicode data to flow over an 8-bit network without the network needing to know
that it is Unicode, UTF-8 is used to store Unicode on several UNIX platforms and is used as the default
encoding for most new internet standards.

IBM i globalization 107

http://www.unicode.org

UTF-8 is used mainly as a direct replacement for older MBCS encodings, which all use 8-bit code units,
but it takes some more code to process it. It is a good encoding if 90% of your data is English, because all
English letters use only one byte.

The IBM i operating system supports UTF-8 encoding with CCSID 1208. Beginning with IBM i V5R3,
CCSID 1208 is supported in database.

UTF-16
UTF-16 is an encoding of Unicode in which each character is composed of either one or two 16-bit
elements.

Unicode was originally designed as a pure 16-bit encoding, aimed at representing all modern scripts.
Over time, and especially after the addition of over 14 500 composite characters for compatibility with
established sets, it became clear that 16 bits were not sufficient for most users. Out of this arose UTF-16.

UTF-16 allows access to about 60 000 characters as single Unicode 16-bit units. It can access an
additional 1 000 000 characters by a mechanism known as surrogate pairs.

Two ranges of Unicode code values are reserved for the high (first) and low (second) values of these
pairs. Highs are from 0xD800 to OxDBFF, and lows from O0xDCOO to OxDFFF. Because the most common
characters have already been encoded in the first 64 000 values, the characters requiring surrogate pairs
are relatively rare.

UTF-16 is extremely well designed as the best compromise between handling and space, and all
commonly used characters can be stored with one code unit per code point. This is the default encoding
for Unicode.

The IBM i operating system supports UTF-16 encoding with CCSID 1200 (and CCSID 13488). Beginning
with IBM i V5R3, CCSID 1200 is supported in database. CCSID 13488 has been supported in database for
several releases.

Related concepts

UCS-2 and its relationship to Unicode (UTF-16)

The UCS-2 standard, an early version of Unicode, is limited to 65 535 characters. However, the data
processing industry needs over 94 000 characters; the UCS-2 standard has been superseded by the
Unicode UTF-16 standard.

Related information

Unicode Home Page

UTF-32
UTF-32 is an encoding of Unicode in which each character is composed of 4 bytes.

The IBM i operating system does not support UTF-32 encoding with a CCSID value.

Unicode was originally designed as a pure 16-bit encoding, aimed at representing all modern scripts.
Over time, and especially after the addition of over 14 500 composite characters for compatibility with
established sets, it became clear that 16 bits were not sufficient for many users. Out of this arose UTF-32.

UTF-32 allows characters to be encoded as 4 bytes at any code point from 00000000 to 0010FFFF. For
example, the string ABC in UTF-32 is encoded as x"000000410000004200000043".

Related information
Unicode Home Page

UTF-EBCDIC
UTF-EBCDIC is an encoding of Unicode that is friendly to EBCDIC data. It transforms Unicode characters
to a form that is safe for EBCDIC systems for the control characters and invariant character ranges.

UTF-EBCDIC support can allow legacy applications running on IBM i to process Unicode data that contain
variant characters without losing those characters, while it is still able to read and analyze the control

and base EBCDIC characters. The base EBCDIC characters and control characters in UTF-EBCDIC are the
same single byte codepoint as EBCDIC CCSID 1047 while all other characters are represented by multiple

108 IBMi: IBM i globalization

http://www.unicode.org
http://www.unicode.org

bytes where each byte is not one of the invariant EBCDIC characters. Therefore, legacy applications could
simply ignore codepoints that are not recognized. UTF EBCDIC is defined by Unicode technical report 16.
For more information, see http://unicode.org/reports/tr16/tr16-7.2.html.

IBM i supports the UTF-16 encoding with CCSID 1210. Support for CCSID 1210 is only provided on the
iconv_open() and QtgIconvOpen() conversion APIs and not across the operating system.

Related information
Unicode Home Page

UCS-2 and its relationship to Unicode (UTF-16)

The UCS-2 standard, an early version of Unicode, is limited to 65 535 characters. However, the data
processing industry needs over 94 000 characters; the UCS-2 standard has been superseded by the
Unicode UTF-16 standard.

The IBM i operating system supports CCSID 13488, defined as UCS-2, and CCSID 1200, defined as
UTF-16. The system treats both CCSID 13488 and CCSID 1200 as UTF-16 encodings.

Using either scheme, you will have the same results for almost all system operations. However, certain
SQL functions that operate on a character boundary defined by the SQL standard can produce different
results. For instance, the SQL functions of CHARACTER, LENGTH, POSITION, and SUBSTRING distinguish
UTF-16 and UCS-2, and therefore you get different results. See the SQL reference for more information
about these functions.

Related concepts

UTF-16

UTF-16 is an encoding of Unicode in which each character is composed of either one or two 16-bit
elements.

Related information
SQL reference

How Unicode relates to prior standards such as ASCII and EBCDIC

The Unicode standard is advantageous to other standards. It can reduce the complexity of handling
character data in globalized applications.

Evolving standards based on limited platforms

The representation of character data in modern computer systems can be fairly complicated, depending
on the needs of your globalized application. One of the reasons for this complexity is that the methods
for handling this data have evolved from early methods that served less complicated environments and
hardware platforms.

In fact, many early decisions about how to encode characters on a system were guided by the functional
requirements of specific devices, such as the early Telex (TTY) terminals and punch card technologies. For
example, the Delete character (with an ASCII value of x'7F') was required in order to punch out all of the
holes in a column of a punch card to signify that the column should be ignored. The storage capacities of
these early computing systems placed additional limitations on system and application designers.

The character encoding schemes that have grown out of these early systems were built on this historical
foundation:

« The ASCII (American Standard Code for Information Interchange) character set uses 7-bit units, with a
trivial encoding designed for 7-bit bytes. It is the most important character set in use today, despite its
limitation to very few characters, because its design is the foundation for most modern character sets.
ASCII provides only 128 numeric values, and 33 of those are reserved for special functions.

- The EBCDIC (Extended Binary-Coded Decimal Interchange Code) character set and a number of
associated character sets, designed by IBM for its mainframes, uses 8-bit bytes. It was developed
at a similar time as ASCII, and shares the same set of base characters and has other similar properties.
Unlike ASCII, the Latin letters are not combined in two blocks for upper- and lower-case. Instead, the

IBM i globalization 109

http://unicode.org/reports/tr16/tr16-7.2.html
http://www.unicode.org

letters are arranged so that their hexadecimal values have second digits of 1 through 9 (another punch
card-friendly design).

Historical simplicity creates modern complexity

The physical and functional limitations of the early character sets gave way to rapidly expanding hardware
and functional capabilities. Character representation on computing systems became less dependent on
hardware; instead, software designers used the existing encoding schemes to accommodate the needs of
an increasingly global community of computer users.

Character sets for many characters

The most common encodings (character encoding schemes) use a single byte per character, and they
are often called single-byte character sets (SBCS). They are all limited to 256 characters. Because of
this, none of them can even cover all of the accented letters for the Western European languages.
Consequently, many different such encodings were created over time to fulfill the needs of different user
communities. The most widely used SBCS encoding today, after ASCII, is ISO-8859-1. It is an 8-bit
superset of ASCII and provides most of the characters necessary for Western Europe.

However, East Asian writing systems needed a way to store over 10 000 characters, and so double-
byte character sets (DBCS) were developed to provide enough space for the thousands of ideographic
characters in East Asian writing systems. Here, the encoding is still byte-based, but each two bytes
together represent a single character.

Even in East Asia, text contains letters from small alphabets like Latin or Katakana. These are represented
more efficiently with single bytes. Multi-byte character sets (MBCS) provide for this by using a variable
number of bytes per character, which distinguishes them from the DBCS encodings. MBCSs are often
compatible with ASCII; that is, the Latin letters are represented in such encodings with the same bytes
that ASCII uses. Some less often used characters may be encoded using three or even four bytes.

An important feature of MBCSs is that they have byte value ranges that are dedicated for lead bytes
and trail bytes. Special ranges for lead bytes, the first bytes in multibyte sequences, make it possible to
decide how many bytes belong together to encode a single character. Traditional MBCS encodings are
designed so that it is easy to go forwards through a stream of bytes and read characters. However, it is
often complicated and very dependent on the properties of the encoding to go backwards in text: going
backwards, it is often hard to find out which variable number of bytes represents a single character, and
sometimes it is necessary to go forward from the beginning of the text to do this.

Examples of commonly used MBCS encodings are Shift-JIS and EUC-JP (for Japanese), with up to 2 or 3
bytes per character.

Stateful encodings

Some encodings are stateful; they have bytes or byte sequences that switch the meanings of the following
bytes. Simple encodings, like mixed-byte EBCDIC, use Shift-In and Shift-Out control characters (bytes)

to switch between two states. Sometimes, the bytes after a Shift-In are interpreted as a certain SBCS
encoding, and the bytes after a Shift-Out as a certain DBCS encoding. This is very different from an MBCS
encoding where the bytes for each character indicate the length of the byte sequence.

The most common stateful encoding is ISO 2022 and its language-specific variations. It uses Escape
sequences (byte sequences starting with an ASCII Escape character, byte value 27) to switch between
many different embedded encodings. It can also announce encodings that are to be used with special
shifting characters in the embedded byte stream. Language-specific variants like ISO-2022-JP limit the
set of embeddable encodings and specify only a small set of acceptable Escape sequences for them.

Such encodings are very powerful for data exchange but hard to use in an application. Their flexibility
allows you to embed many other encodings, but direct use in programs and conversions to and from
other encodings are complicated. For direct use, a program has to keep track not only of the current
position in the text, but also of the state--which embeddable encoding is currently active--or must be
able to determine the state for a position from considerable context. For conversions to other encodings,
converting software might need to have mappings for many embeddable encodings, and for conversions

110 IBMi: IBM i globalization

from other encodings, special code must figure out which embeddable encoding to choose for each
character.

Why Unicode?

Hundreds of encodings have been developed, each for small groups of languages and special purposes.
As aresult, the interpretation of text, input, sorting, display, and storage depends on the knowledge of all
the different types of character sets and their encodings. Programs are written to either handle one single
encoding at a time and switch between them, or to convert between external and internal encodings.

Part of the problem is that there is no single, authoritative source of precise definitions of many of the
encodings and their names. Transferring of text from one machine to another one often causes some loss
of information. Also, if a program has the code and the data to perform conversion between a significant
subset of traditional encodings, then it carries several megabytes of data around.

Unicode provides a single character set that covers the languages of the world, and a small number of
machine-friendly encoding forms and schemes to fit the needs of existing applications and protocols. It is
designed for best interoperability with both ASCII and ISO-8859-1, the most widely used character sets,
to make it easier for Unicode to be used in applications and protocols.

Unicode is in use today, and it is the preferred character set for the Internet, especially for HTML and
XML. It is slowly being adopted for use in e-mail, too. Its most attractive property is that it covers all the
characters of the world (with exceptions, which will be added in the future). Unicode makes it possible to
access and manipulate characters by unique numbers (that is, their Unicode code points) and use older
encodings only for input and output, if at all.

International Components for Unicode

The International Components for Unicode (ICU) is a C library that provides a full-featured, industrial
strength, Unicode support.

The library provides:

« Calendar support

 Character set conversions

« Collation (language-sensitive)

- Date and time formatting

« Locales

« Message catalogs (resources)

« Message formatting

« Normalization

« Number and currency formatting
- Time zones

« Transliteration

- Word, line, and sentence breaks

ICU is open source. For more information about ICU license, see the International Components for
Unicode Web site.

Related information
International Components for Unicode

IBM i globalization 111

https://icu.unicode.org/

Mapping of data

The IBM i operating system uses the EBCDIC encoding scheme. However, not all clients attached to the
system use an EBCDIC encoding scheme to store, retrieve, and process data. Therefore, some clients use
Unicode as an exchange mechanism that is safe across all platforms.

Some clients might use ASCII, PC DATA, or other encoding schemes. They can using Unicode to prevent
the loss of data due to incomplete conversion between encoding schemes and code pages.

Example: Displaying data without Unicode

This example highlights two users on the same system, one English and the other Greek. The English user
has the display device CCSID set to 37, and the Greek user has the display device CCSID set to 875. Both
users query, update, and replace data in the DATABASE1 database.

DATABASE1 is tagged with CCSID 37.

Problems with data integrity develop because users are operating with CCSIDs that have varied character
support. That is, not all characters in CCSID 37 are available in CCSID 875 and vice versa.

Assume that the following names are to be entered by the English-speaking user (display device supports
a CCSID of 37):

. Malson
« Gifford

When these entries are stored, the data integrity remains intact. That is, an 4 is stored as an “*. This is
because the display device CCSID and the database CCSID are both 37.

Assume the following names are also input into DATABASE1 by the Greek-speaking user (display device
CCSID of 875):

R ."1'1.]'[1':1,'
Aprpa

DATABASEL now consists of the following logical entries:

« Malson
« Gifford

CMuiy

Aprpa

The Greek characters that make up the name are stored as those characters only if the same character
exists within CCSID 37. If the character does not exist, the system converts the characters using a
predetermined algorithm to a code point from code page 37. The algorithm converts 0 to -‘1".

The following list shows the code point used to store the first character of each name in DATABASEL.
(Using only the first character makes the example easier by eliminating long strings of code points which
are shown if the code point is presented for each character in the name.)

Name
CCSID 37 Stored Code Point (Hexadecimal)

A alson
67...

Gifford
C7...

112 IBMi: IBM i globalization

M]'[T:v
53...

QpLpa

67...
The next step in this example is to show how data can be incorrectly selected due to the character
conversion when it was stored in the database.

Assume that the Greek user wants to find all names beginning with Q . The following SQL statement can

provide two names: 2 p 1 paand A alson
Select from DATABASE1l where name LIKE ' 0 %'

The search yielded an unexpected name (“* alson). This is because the first character in “* alson is
stored with the same code point as the first character in Qpipa

Related concepts

Example: Displaying data with Unicode

This example highlights two users on the same system, one English and the other Greek. The English user
has the display device CCSID set to 37, and the Greek user has the display device CCSID set to 875. Both
users query, update, and replace data in the DATABASE1 database.

Example: Displaying data with Unicode

This example highlights two users on the same system, one English and the other Greek. The English user
has the display device CCSID set to 37, and the Greek user has the display device CCSID set to 875. Both
users query, update, and replace data in the DATABASE1 database.

DATABASE1 is tagged with CCSID 13488.

This example, using unicode as the CCSID of DATABASEZ, shows how data integrity is maintained both in
storing and retrieving data.

As in the example of Displaying data without Unicode information, one user is English using CCSID 37 and
the other user is Greek using CCSID 875.

DATABASE1 is used as in the previous example. However DATABASE1 is now defined with CCSID 13488.
(13488 is a unicode CCSID.)

. -'ialson
« Gifford

Muiw
Lpripa

The key difference in using unicode as the CCSID of DATABASEL1 is that data integrity is maintained
for each user who inputs data to the database. That is each character, regardless of the CCSID of the
inputting device, is stored with a unique code point. (Remember that in this example the CCSID of
DATABASE1 is 13488.)

Name

CCSID 13488 Stored Code Point (Hexadecimal)
A alson

00C5...

Gifford
0047...

IBM i globalization 113

Marxé
03A9...

QpLpa
039C...
Assume that the Greek user wants to find all names beginning with Q . The following SQL statement can

provide one name, QOpLpe compared to two in the previous example:

Select from DATABASE1l where Substr(name,1,1) = ' A

The reason for this is that each character stored in a unicode tagged database has a unique code point.
This contrasts to the example of Display data without Unicode information that had the first character in

“alson stored with the same code point as the first character in Rpipa

Related concepts

Example: Displaying data without Unicode

This example highlights two users on the same system, one English and the other Greek. The English user
has the display device CCSID set to 37, and the Greek user has the display device CCSID set to 875. Both
users query, update, and replace data in the DATABASE1 database.

Unicode on IBMi

The IBM i operating system provides support for Unicode.

Unicode cannot be specified as a value for:

« The system CCSID

« A user profile CCSID

« Ajob CCSID

The IBM i operating system provides external support for Unicode in the following parts of the system:

- Database files and functions

« Db2 fori

- DDS

- Display file and panel groups

 ILE high-level languages such as RPG

« Message handling and message catalogs
» Query files and tools

« SQL tables

« Unicode variables in UIM

Several other IBM i functions use Unicode internally so that character data integrity is maintained for
users across multilingual platforms.

Note: These topics do not give detailed information about application development as it relates to the

implementation of Unicode. Rather, they provide highlights of IBM i support for Unicode. Where possible,
these topics provide reference to a book that provides detailed information for unicode implementation.
You need to have the information about the Unicode standard available and understand the information.

Related information
Unicode Home Page

114 IBMi: IBMi globalization

http://www.unicode.org

Database files and functions
When you create Unicode database applications, you need to consider the implications for creating
physical files, creating logical files, and for database input/output.

Creating physical files

Unicode graphic fields can be created in physical files. This is done by specifying a G data type and a
Unicode CCSID for the CCSID keyword.

The following example shows the DDS for a physical file containing four fields, and the command for
creating the file:

A R FMT1

A EMPNO 6A

A NAME 30G CCSID(1200)

A DESCR1 500G CCSID(1200) VARLEN
A DESCR2 500A

CRTPF FILE(UNICODEPF) SRCFILE(CLR/QDDSSRC)

In the example:

« The first field, EMPNO, is a character field of length 6. The CCSID of the EMPNO field is the SBCS CCSID
of the job. The decision was made to use a character field because the EMPNO field contains only
numerics and Unicode support is not needed.

« The NAME and DESCRL1 fields are both Unicode fields. Both of these fields may need to contain data from
more than one EBCDIC code page so the decision was made to make these fields Unicode graphic.

- The DESCR2 field is the SBCS CCSID of the job. This field is used as illustration of mapping to a logical
field in Creating logical files.

You can specify the default (DFT) keyword for Unicode graphic fields. The default value can be specified
as SBCS, bracketed-DBCS, or bracketed-DBCS-graphic character strings. If you do not specify the DFT
keyword, the default value for fixed-length Unicode fields is the Unicode blank (hexadecimal 0020). For
varying-length Unicode fields, the default is the empty string.

Creating logical files

You can use logical files to map Unicode data to and from character, DBCS-open, or DBCS-graphic. This
allows Unicode graphic data to be manipulated in a character based form.

The following example shows the DDS for a logical file containing 4 character fields. The Unicode graphic
data is converted to character data when reading from the logical file, and character data is converted to
Unicode graphic data when writing to the file.

R FMT1 PFILE (UNICODEPF1)

A EMPNO

A NAME A CCSID(37)

A DESCR1 A CCSID(37)

A DESCR2 G CCSID(1200)

Database input/output

Whenever reading or writing data from or to a field tagged with a Unicode CCSID to the job physical files,
the data is passed as Unicode data without any conversions occurring. Regardless of the job CCSID, data
is passed as Unicode data. When writing data to a logical file, the from CCSID is the job CCSID; however, if
the job CCSID is 65535, the from CCSID is the CCSID of the field in the logical file.

Here are some scenarios from the previous physical and logical files. For the scenarios, the job CCSID is
297.

Scenario 1. When reading the data from the physical file:
- EMPNO is converted from its CCSID to 297.

IBM i globalization 115

NAME is not converted but is left as Unicode data.
DESCR1 is not converted but is left as Unicode data.
DESCR2 is converted from its CCSID to 297.

Scenario 2. When writing the data to the physical file:

EMPNO is converted from 297 to its CCSID.

NAME is not converted but is left as Unicode data.
DESCR1 is not converted but is left as Unicode data.
DESCR2 is converted from 297 to its CCSID.

Scenario 3. When reading the data from the logical file:

EMPNO is converted from its CCSID to 297.

NAME is converted from Unicode data to character data with a CCSID of 297.

DESCR1 is converted from Unicode data to character data with a CCSID of 297.

DESCR2 is converted from character data to Unicode data and not converted to the job CCSID.

Scenario 4. When writing the data to the logical file:

EMPNO is converted from 297 to its CCSID.

NAME is converted from 297 to Unicode data.

DESCR1 is converted from 297 to Unicode data.

DESCR2 is converted from Unicodeto its CCSID in the physical file.

Scenario 5. If the job was 65535, the conversions for the previous fields are:

EMPNO is not converted.

NAME is converted from 37 to Unicode data.

DESCR1 is converted from 37 to Unicode data.

DESCR2 is converted from Unicode to its CCSID in the physical file.

Related concepts
Object-level coded character set identifier 65535

CCSID 65535 is the default object-level CCSID for message files and message queues.

Db2 for i

When using Db2 for i applications, you need to be aware of some restrictions of Unicode and some
commands.

Implicit conversion when comparing Unicode fields with character/IGC/graphic fields as well as with
literals and host variables can occur.

Physical and logical files with Unicode fields cannot have their CCSIDs changed with the Change
Physical File (CHGPF) command.

A Unicode CCSID is not allowed on the CHGPF command.

The Copy File (CPYF) and Copy From Query File (CPYFRMQRYF) commands with FMTOPT(*MAP)
specified is not allowed when copying from or to a Unicode graphic field unless:

— The corresponding field is a Unicode or DBCS-graphic field.

— The corresponding field is a character, DBCS-open, DBCS-either, or DBCS-only field with a CCSID
other than 65535.

The Copy File (CPYF) command supports copying of SBCS character, DBCS-open, DBCS-only, DBCS-
either, and DBCS-graphic fields to and from Unicode graphic fields. There is limited support for Unicode
on the FROMKEY, TOKEY, INCCHAR, and INCREL parameters.

Related concepts
Object-level coded character set identifier 65535

116 IBMi: IBM i globalization

CCSID 65535 is the default object-level CCSID for message files and message queues.

Related reference

Change Physical File (CHGPF) command

Copy File (CPYF) command

Copy From Query File (CPYFRMQRYF) command

SOL tables
SQL supports tables that contain Unicode graphic columns by specifying a Unicode CCSID for the
GRAPHIC and VARGRAPHIC data types.

The following SQL example creates the table U_TABLE. U_TABLE contains one character column called
EMPNO, and two Unicode graphic columns. NAME is a fixed-length Unicode graphic column and
DESCRIPTION is a variable-length Unicode graphic column. The decision was made to use a character
field because the EMPNO field only contains numerics and Unicode support is not needed. The NAME and
DESCRIPTION fields are both Unicode fields. Both of these fields may contain data from more than one
EBCDIC code page.

CREATE TABLE U_TABLE (EMPNO CHAR(6) NOT NULL,
NAME GRAPHIC(30) CCSID 1200,
DESCRIPTION VARGRAPHIC(500) CCSID 1200)

Inserting data

SBCS character, mixed character, and DBCS graphic data can be inserted into Unicode graphic columns
using the SQL INSERT statement. Db2 for i SQL converts the data to Unicode graphic data. In SQL
programs, the DECLARE VARIABLE statement can be used to attach a Unicode CCSID to graphic host
variables.

The following SQL example converts character data to Unicode graphic data for the NAME and
DESCRIPTION columns and inserts the row into the U_TABLE.

INSERT INTO U_TABLE VALUES('000001','3John Doe', 'Engineer')

Selecting Unicode data
Implicit conversion of Unicode graphic data is supported on a FETCH or select INTO and CALL.

In the following example, the EMPNO column is returned in empno_hv as character data. The NAME
column is returned in name_hv as Unicode graphic data because name_hv is a Unicode variable. It is not
converted to character, mixed character, or DBCS graphic.

éﬁér empno_hv[7];
wchar_t name_hv[31];
EXEC SQL DECLARE :name_hv VARIABLE CCSID 13488;

EXEC SQL SELECT EMPNO, NAME
INTO :empno_hv, :name_hv
_FROM U_TABLE;

To return Unicode graphic data as EBCDIC data, the prior example can be changed to return the Unicode
data as character data, EMPNO and NAME are returned in the job CCSID.

éﬁér empno_hv[7];
char name_hv[31];

EXEC SOL SELECT EMPNO, NAME

INTO :empno_hv, :name_hv
FROM U_TABLE;

IBM i globalization 117

When doing selection, implicit conversions are done when comparing Unicode graphic data and character
or DBCS graphic data.

The following example converts the character string 'John Doe' to Unicode graphic and then selects the
rows where the NAME column is 'John Doe'.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT *

FROM U_TABLE

WHERE NAME = 'John Doe';

The SQL Reference information includes additional information about using SQL with Unicode graphic
data.

Related concepts
SQL reference

Query files and tools
The Open Query File (OPNQRYF) command can retrieve or perform the selection of Unicode data. IBM
Query for i, DB2° Query Manager, and IBM i DB2 Query Management all have Unicode support.

Open query file (OPNQRYF) command considerations

The Open Query File (OPNQRYF) command, shown as follows, can retrieve or perform selection of
Unicode data. Using the MAPFLD parameter, data can be mapped to or from Unicode.

OPNQRYF FILE(U_TABLE)
QRYSLT (' NAME=MAPNAME ')
MAPFLD ((MAPNAME '3John Doe' *GRAPHIC xN %N 1200))

Interactive query tools considerations

IBM Query for i, DB2 Query Manager, and IBM i DB2 Query Management all have Unicode support.
Unicode data can be displayed or printed on a report by implicitly converting to either character or mixed
art.

Related reference

Open Query File (OPNQRYF) command
Related information

Query Manager Use PDF

Query Management Programming PDF

Data description specifications

In data description specifications (DDS), you use the CCSID file-, record-, or field-level keyword to specify
that a G-type field supports Unicode data instead of DBCS-graphical data.

Related concepts

CCSID (Coded Character Set Identifier) keyword for physical and logical files

Display files and panel groups

The 5250 data stream has an option to support Unicode. Some 5250 emulators like IBM i Access Client
Solutions or IBM Rational Host On-Demand support the sending of Unicode to the device. Other 5250
emulators, like IBM Personal Communication do not support Unicode in the data stream.

It is suggested that all Unicode capable fields be initialized in the output buffer before writing the fields to
the screen. Unpredictable results can occur if default initialization is allowed to take place.

118 IBMi: IBM i globalization

https://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415212.pdf
https://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415703.pdf

Unicode not supported

If Unicode data is not supported, conversions between the Unicode data and EBCDIC are necessary
during input and output operations. On output, the Unicode data is converted to the CCSID of the device.
On input, the data is converted from the device CCSID to the Unicode CCSID.

Because the device CCSID, which is determined from the device configuration, determines what the
Unicode data is converted to, the converted data can appear differently on different devices since some
devices may not support some scripts.

Note: Display devices do not have a 'CCSID' parameter, rather, they use the Character identifier (CHRID)
parameter to determine the device CCSID. This means the CHRID configured must map to a supported
CCSID and not all CCSIDs defined on the system are supported.

Using the *LEN or *MIN option on the CCSID keyword in DDS.

If you are not dealing with Japanese, Chinese or Korean data it may be possible to use *MIN with the
CCSID keyword since this will show a smaller field on most screens.

For example if we define a field to be 10
A fieldl 106 B 7 32CCSID(13488)
The Latin characters of "abcdefghij" will be displayed as:

abcdefghij

and there will be 10 empty screen positions after the text. Using *MIN, like CCSID(13488, *MIN) will
result in only showing the 10 screen positions as in:

abcdefghij

(See the note on *MIN below for Unicode supported devices)

If you are dealing with Japanese, Chinese or Korean data it may be necessary to use the length keyword
in DDS so as to provide more space in order to hold shift-in and shift-out characters used to show those
characters on the EBCDIC device.

Unicode is supported

For the case where Unicode is sent to the device, one potential issue to be aware of is the screen space
needed for a Unicode field. Different characters in different scripts can display as different widths in the
same Unicode field. Some take 1 screen space whereas others can take 2. This means a user can type
more data into the field than will be returned to the application.

For example if we define a field to be 10
A fieldl 106 B 7 32CCSID(13488)
The Latin characters of "abcdefghij" will be displayed as:

abcdefghij

and there will be 10 empty screen positions after the text. This may look like the user could add more
characters since the field shows as 20 screen positions, 10 of which are blank, however since each
character takes 2 bytes in storage you can only enter 10. Any character entered after 10 will be discarded
when the screen is returned to the program

The same field showing 10 ideographic characters will need 20 screen positions since each ideographic
character needs 2 screen spaces to be displayed. The ideographic characters of "i#X £ # 2= J& 52 & £ 5
%" will be displayed as:

B Bk P 2 A S 0B T i PR

IBM i globalization 119

and there will be no empty screen positions after the text.

Note: Using *MIN with the CCSID keyword can cause problems since *MIN will restrict the data sent

to the device or subfile to the smallest size, in our example 10 screen positions. As show above the
ideographic text needs 20 screen positions so the use if *MIN is not recommended for Unicode capable
devices.

Related concepts
Unicode considerations for database files

Unicode variables in user interface manager
This example shows how to define a Unicode variable in user interface manager (UIM).

:class name=example basetype='graphic 6 13488' width=10,

rwNpR

:class name=example2 basetype='graphic 10 13488' width=20.

Line 1 defines a class for variables that will contain 6 Unicode characters and is to be displayed in a field
that is 10 bytes long.

Line 3 defines a class for variables that will contain 10 Unicode characters and is to be displayed in a field
that is 20 bytes long.

Related reference

DDS concepts

Related information

Application Display Programming PDF

GB18030: The Chinese standard

GB 18030-2000 is a Chinese standard that specifies an extended code page for use in the Chinese
market.

The IBM i operating system supports this encoding with CCSID 1392. Generally, you should use Unicode
instead of CCSID 1392 for complete national language support. CCSID 1392 is provided if you need to
handle or interchange GB18030 encoded data.

A brief history of major GB code pages

A common base code page standard for Chinese is GB 2312-1980. It encodes more than 6000 frequently
used Chinese ideographs. With the growing importance of Unicode and the parallel standard ISO 10646
(which was adopted by China as GB 13000), an extension of GB 2312-1980 was created. This extension
was called GBK; it encoded all 20 902 unified ideographs that are assigned in Unicode 2.1. GBK is not a
formal standard, but is a widely implemented specification.

Unicode 3.0 added more than 6000 ideographs, and version 3.1 added about 42 000 additional
ideographs.

GB 18030 was created as an update of GBK for Unicode 3.0 with an extension that covers all of Unicode.
It has the following general features:

« GB 18030 character assignments are compatible with the GB 2312-1980 standard and the GBK
specification.

« The mapping table between GB 18030 and Unicode is compatible with the one between GB 2312-1980
and Unicode. With some exceptions (with the one between GBK and Unicode), most of the changes
compared to the GBK mapping table are due to updates for Unicode 3.0.

- GB 18030 specifies a mapping table that covers all Unicode code points. It is functionally similar to a
UTF (Unicode Transformation Format) while maintaining compatibility of GB-encoded text with GBK and
GB 2312-1980.

120 IBMi: IBM i globalization

https://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415715.pdf

Related concepts

Why use Unicode
Unicode has many advantageous functions.

Related information
Unicode Home Page

Working with CCSIDs

Using the system implementation of Character Data Representation Architecture (CDRA), you can achieve
consistent representation, processing, and interchange of coded characters (data) on the IBM i operating
system and across IBM Systems. The primary implementation of CDRA on the IBM i operating system is
through coded character set identifier (CCSID) support.

Related concepts

Automatic character set and code page conversion

The IBM i operating system provides automatic conversion between character set and code pages for all
applications that are enabled for national language support.

Character data representation architecture design

To enable your application for a multilingual environment, avoid coding CCSID values directly in your DDS
for physical files. When database sharing takes place, you need to define your files with the CCSID of the
primary language or use Unicode.

Sort sequence tables

A sort sequence table is an object that contains the weight of each single-byte graphic character within

a specified coded character set identifier (CCSID). The system-recognized identifier for the sort sequence
table object type is *TBL.

Related tasks

Enabling the secondary language
You must ensure that secondary languages can be used after they have been installed on the system.

Recommendations and guidelines for using CCSIDs
These recommendations are useful when you write globalized applications.

« Because the system is included with a default CCSID of 65535, character data conversions do not
normally occur in applications. You should look over the CCSID information in this topic, however,
because the system might need to participate in a multilingual environment, a network, or exchanging
data at a later time.

 Applications implementing their own mapping scheme should use CCSID 65535, where a CCSID
assignment is necessary. For example, depending on what an application does, it might need to use
CCSID 65535 for the files, or it might need to use CCSID 65535 for the jobs. Because other applications
may require CCSIDs other than 65535, consider changing such applications by replacing the mapping
scheme with CCSID support.

« Correctly define fields based on their usage. If fields contain application-dependent values (for
example, control characters or fields that are not used as real character fields), define the fields as
hexadecimal data or character fields with CCSID 65535.

- Avoid using characters that are not in the invariant character set for names and literals in programs.

Follow these guidelines when using CCSIDs:

Use CCSIDs in multilingual applications to maintain character integrity in database files, displays, and
printed data.

You can find a suggested CCSID for a language in Language identifiers and associated default CCSIDs.
If the QIGC system value is set on, set QCCSID as a mixed CCSID or 65535.

If you use DBCS support, set the job CCSID to a mixed CCSID. If you do not, set the job CCSID to a
single-byte CCSID.

IBM i globalization 121

http://www.unicode.org

 Ensure that the QCHRID code page is compatible with the character set and code page of the QCCSID
value, unless the QCCSID value is 65535. If the QCCSID value is changed to a value that is incompatible
with the current QCHRID value, the QCHRID value is changed to a compatible value by the system.

« If you use a user-defined data stream (UDDS), remove any X'3F' values inserted by CCSID conversions.
Otherwise, your data can cause the system to blank out a screen. Some CCSID conversions use a X'3F'
value for a substitution character.

- If you are using any interactive jobs, such as Application Development ToolSet/400, ensure that the
code page of the job CCSID matches the code page of the keyboard type. If these CCSID values do not
match, or the job CCSID is 65535, unpredictable results might occur.

« Be aware that the *JOBCCSID support is not used by any system-supplied displays or panel groups,
although CHRIDCTL support is used.

« Be aware of character data that has been defined or specified as control information. For new database

files, fields that contain control information should be defined as hexadecimal data type or use CCSID
65535 instead of another CCSID.

- Because of workstation hardware restrictions, you might not see all of the characters on displays other
than 3486, 3487, 3488, or Personal System/2 (PS/2) displays when CCSID conversion occurs. However,
the character data is retained in the system.

« Be aware that when a CCSID conversion is performed, substitution characters might cause a loss of
data. The situation occurs if enforced subset match conversion is performed.

Related concepts

Object-level coded character set identifier 65535
CCSID 65535 is the default object-level CCSID for message files and message queues.

Language identifiers and associated default CCSIDs
This table shows the language identifiers and the job default CCSID (DFTCCSID) values associated with
those identifiers.

DBCS system indicator (QIGC) system value

The DBCS system indicator (QIGC) system value specifies whether a double-byte character set (DBCS)
national language version (NLV) is installed. This value is set when the primary national language version
is installed.

National language keyboard types and SBCS code pages
This table lists the keyboard types and code pages for each national language supported by the IBM i
operating system. The Create Device Display (CRTDEVDSP) command uses the KBDTYPE parameter.

Conversion of character data
The Character Data Representation Architecture (CDRA) system of tags ensures that you can convert
character data in a predictable, repeatable way.

IBM i function support for CCSIDs

The system provides CCSID support in the functions as shown in the table.

Function Description of support

CL commands Some control language (CL) commands have
internal functions that support CCSID conversions.
For more information about CL commands that
support CCSID conversions, see the CL Reference
topic.

122 IBMi: IBM i globalization

Function

Description of support

Copy

Coded character set identifier (CCSID) support

is built into the copy function. The Copy File
(CPYF) and Copy from Query File (CPYFRMQRYF)
commands support CCSIDs. To use the CPYF
command to change a physical file, see Changing
the CCSID of a physical file. The Copy Source File
(CPYSRCF) command supports CCSID conversion.

Database management

Database management support provides default
coded character set identifier (CCSID) values for
database files on the system.

DDM

Coded character set identifier (CCSID) support is
built into distributed data management (DDM).
DDM provides support to pass CCSID tags in
homogeneous environments. DDM passes a CCSID
parameter when sending files. With DDM, you can
also specify a CCSID when creating files on a
remote system. DDM only converts data to the job
CCSID of the source system when:

- The IBM i operating system is running on both
the source and target systems.

« The source and target systems are at an
operating system level of Version 2 Release 1.1
or later.

Program-described files are always created with a
CCSID of 65535 if they are created:

« On atarget system running a release level from
0S/400° Version 2 Release 1.1 through 0S/400
Version 2 Release 3

- From a source system that is not running the IBM
i operating system

« From a source system that is a system at a
release level before 0S/400 Version 2 Release
1.1

You can use the Submit Remote Command
(SBMRMTCMD) command on a source system
to change the file CCSID (externally described
files only) by specifying the Change Physical File
(CHGPF) command and the CCSID parameter.

DDS

Coded character set identifier (CCSID) support is
built into data description specifications (DDS).
DDS supports file-level and field-level CCSID
keywords for all character fields in physical

files. DDS also supports file-level and field-level
keywords for all DBCS fields in physical files.

IBM i globalization 123

Function

Description of support

Distributed relational database

Coded character set identifier (CCSID) support

is built into distributed relational database.
Distributed relational database passes the CCSID
of an application requester (AR) job to an
application server (AS) job and vice versa

during connect processing. Distributed relational
database also performs a conversion of error
information and text-describing fields according to
the job CCSID.

Distributed relational database uses CCSID
information to determine how to build data
exchanged between application requester jobs
and application server jobs. It also uses CCSID
information to describe data exchanged between
application requester jobs and application server
jobs (for example, a format description).

IDDU

Coded character set identifier (CCSID) support is

built into interactive data definition utility (IDDU).
Interactive data definition utility provides support
to specify a CCSID for a character field or a DBCS

field.

Open Query File (OPNQRYF)

Coded character set identifier (CCSID) support is
built into IBM i query. You can use the Open Query
File (OPNQRYF) command to specify a CCSID on
the MAPFLD parameter. The MAPFLD parameter
specifies the definition of query fields that are
either mapped to, or derived from, other fields.

IBM i query supports CCSID conversion on CHAR,
OPEN, EITHER, and UCS-2 graphic field operators
for join, record selection, group-by, and minimum
or maximum values functions. CCSID conversion is
performed whenever fields do not have the same
CCSID value. After the query is opened, database
management support converts data read or written
to the database files as described in the Database
Management topic.

IBM i query does not support CCSID conversion if
at least one of the fields is assigned a CCSID of
65535.

Query management

Coded character set identifier (CCSID) support is
built into query management. Query management
assigns a CCSID to queries and forms. Query
management:

« Converts queries to the job CCSID.

» Presents data to the display device using the job
CCsSID.

« Assigns a CCSID to the files it creates.

124 IBMi: IBM i globalization

Function

Description of support

SNA

Coded character set identifier (CCSID) support

is built into SNA Distributed Services (SNADS).
SNADS supports CCSIDs by any user ID, system
name, or destination queue name. However, other
SNADS services such as SNDNETF do not provide
CCSID conversion.

Work management

Work management support provides the function
to assign or change coded character set identifier
(CCSID) values at three different levels. See the
Work management topic for details.

Workstations

The workstation management function provides
support for display files, printer files, and panel
groups. See Workstation function management for
details.

Message management

Coded character set identifier (CCSID) support
is built into the system's message support.
Use CCSID support for handling messages and
message catalogs on IBM i:

 You can send messages tagged with one CCSID
to users with a different CCSID.

» You can use CCSID support to handle
messages by using commands and application
programming interfaces.

Related concepts

Changing the CCSID of a physical file

Related reference

Control language (CL)

Copy File (CPYF) command

Copy From Query File (CPYFRMQRYF) command
Copy Source File (CPYSRCF) command

Submit Remote Command (SBMRMTCMD) command

Change Physical File (CHGPF) command
Open Query File (OPNQRYF) command

Database management

Database management support provides default coded character set identifier (CCSID) values for
database files on the system. All database files are assigned a CCSID. At file creation time, the CCSID
is either explicitly assigned through DDS, SQL, or IDDU, or implicitly assigned the job default CCSID

(DFTCCSID).

Database files support for CCSIDs

IBM system files and licensed program database files are created with the CCSID of choice for each of
the national language versions. Only the customer files are automatically assigned the CCSID of the job
creating the file. You can use the Display File Description (DSPFD) command to view the CCSID of a file.

Program-described files are assigned CCSID 65535. If a CCSID is not explicitly specified on the CRTPF or
CRTSRCPF command, database source files default to the job default CCSID at file creation.

If a database logical file is defined over several physical files, it is assigned a CCSID at the field level and
assumes the CCSID value of the physical file. Logical files cannot be explicitly assigned a CCSID value.

IBM i globalization 125

Database fields and support for CCSIDs

Except for numeric database fields, database fields are supported by CCSIDs. You can use the Display File
Field Description (DSPFFD) command to view the CCSID of the fields in a file.

Hexadecimal fields are assigned CCSID 65535.

An implicit CCSID value is assigned to the following fields if a CCSID was not explicitly assigned through
DDS, SQL, or IDDU at file creation:

« Physical-file character

- DBCS-open

- DBCS-only

- DBCS-either

« Graphic

The implicitly assigned CCSID is the job default CCSID, or a CCSID associated with the job default CCSID.

« A character field is assigned the single-byte character set (SBCS) CCSID that is associated with the job
default CCSID.

- A DBCS-open, DBCS-only, and DBCS-either field is assigned the mixed byte CCSID.

« A Graphic field is assigned the double-byte character set (DBCS) CCSID that is associated with the job
default CCSID.

For example, if the job default CCSID is 5026 (which is a CCSID that identifies mixed data), an SBCS
character field is assigned the SBCS CCSID associated with 5026. Thus, the CCSID for that field is 290. If
there is no CCSID of the required character set type then a CCSID of 65535 is used.

Database logical-file fields are assigned a CCSID value based on their data type and the data type of the
underlying physical file field.

Database management and conversion support for CCSIDs

Database management support converts non-graphic character data read from, or written to, database
files using the file CCSID and the job CCSID.

- If datais being read from a database file and the CCSID of the file is the same as the job CCSID, no
conversion is done.

- If data is being read from a database file and the CCSID of the file and the job CCSID are different, the
data is converted to the CCSID of the job.

« If data is being written to a database file and the CCSID of the file is the same as the job CCSID, no
conversion is done.

- If datais being written to a database file and the CCSID of the file and the job CCSID are different, the
data is converted to match the CCSID of the file.

No conversion is performed if either the CCSID of the job or the CCSID of the database file is equal to
65535.

Related concepts
Job attributes
Job attributes are set at the time a job starts.

Language identifiers and associated default CCSIDs

This table shows the language identifiers and the job default CCSID (DFTCCSID) values associated with
those identifiers.

Related tasks

Job default coded character set identifier

126 IBMi: IBM i globalization

A job attribute, job default CCSID (DFTCCSID), is created for jobs with a CCSID of 65535. The DFTCCSID
value is used by a system code when a CCSID other than 65535 is needed.

Related reference

Display File Description (DSPFD) command

Display File Field Description (DSPFFD) command

Work management
The job's coded character set identifier (CCSID) value is assigned or changed at any one of these levels:
job level, user profile level, or system level.

All jobs run with a CCSID value established at one of these levels:

« Job level. A CCSID is assigned to a job.

 User profile level. A CCSID is specified in a user profile and the value is assigned to all jobs run under
that user profile. The CCSID can be set or changed with the Create User Profile (CRTUSRPRF) and
Change User Profile (CHGUSRPRF) commands.

- System level. The system value QCCSID is the default CCSID for all jobs running on the system. QCCSID
can be set or changed with the CHGSYSVAL and WRKSYSVAL commands.

Work management support initializes the job CCSID for an interactive job to the CCSID on the user profile
when the job starts. If *SYSVAL is specified for the CCSID on the user profile, work management support
gets the CCSID from the system value (QCCSID). For batch jobs, the CCSID of the current job is used as
the default CCSID for the submitted job.

You can change the CCSID of a job by using the Change Job (CHGJOB) command. Make a note of the
current job CCSID. You can use it later to reset the job CCSID to its original value, if necessary. The new
CCSID value is reflected in the job immediately. The job DFTCCSID cannot be changed. To retrieve the
CCSID or DFTCCSID for a job, use the Retrieve Job Attributes (RTVJOBA) command or the Retrieve Job
Information QUSRJOBI application programming interface (API). Interactively, use the Work with Job
(WRKJOB) command and select the Display Job Definition Attributes option on the Work with Job display.

Related reference

Create User Profile (CRTUSRPRF) command
Change User Profile (CHGUSRPRF) command
Change System Value (CHGSYSVAL) command
Work with System Value (WRKSYSVAL) command
Retrieve Job Attributes (RTVJOBA) command
Retrieve Job Information (QUSRJOBI) API

Work with Job (WRKJOB) command

Workstation function management
Workstation function management involves working with display files, printer files, as well as panel group
objects and user interface manager (UIM) menus.

Note: All source files on the system are tagged with a coded character set identifier (CCSID).
Display files

When a display file object is created, it is tagged with the coded character set identifier (CCSID) of the
source file.

At compile time:

« All character data is read from the primary source file without any character conversion being
performed.

« User message text (identified by the MSGCON keyword in DDS) remains the same because it is assumed
to be in the same CCSID as the primary source file.

At run time, the constant data is converted based on the CHRID parameter value used to create the
display file object. This conversion is optional and can occur only when the CHRID is set to *JOBCCSID

IBM i globalization 127

or indirectly with CHRIDCTL. This conversion is from the display file CCSID to the character identifier
(CHRID) of the device. The field-level keyword NOCCSID (no coded character set identifier) allows the
user to specify fields within the DDS that are never to be converted.

Note: To use data management support of CCSIDs, you must change source physical files tagged with
CCSID 65535 to a CCSID value that is associated with the data.

CHRID parameter on the Create Display File command

The CHRID parameter on the Create Display File (CRTDSPF) command affects the conversion that occurs
for the display file.

If the *JOBCCSID value is specified on the CHRID parameter of the CRTDSPF command:

« Input characters are converted from the device character identifier (CHRID) to the job CCSID.
« Character data is sent to output-capable fields and converted from the job CCSID to the device CHRID.

« Constant text from the display file is converted from the CCSID of the display file to the CHRID of the
device.

« All message files are tagged with a CCSID. Message text is converted from the CCSID of the message file
to the CHRID of the device. When message files are tagged with a CCSID of 65535 (the system default),
it is assumed that the contents of the message files are already in the CHRID of the device. To ensure
that appropriate conversions occur, you can enable CCSID support for messages.

« Message replacement data is converted from the CCSID of the job, or from the CCSID of the display file,
to the CHRID of the device.

« All status messages that are tagged with a CCSID other than 65535 are converted to the CHRID of the
device.

« Message text for messages on a message line or in a message subfile (identified by the ERRMSG,
ERRMSGID, SFLMSG, and SFLMSGID keywords in DDS) is converted from the message file CCSID to the
device CHRID.

If a specific value is specified for the CHRID parameter on the CRTDSPF command, conversion is done
between the CHRID specified on the CRTDSPF command and the CHRID of the device. This conversion
affects only fields defined with the CHRID DDS keyword.

If the *DEVD value is specified on the CHRID parameter of the CRTDSPF command, no conversion is
performed. This is the default setting.

Migration of display files with CCSID 65535

All source files in Version 3 of the IBM i licensed program have an implicit CCSID value of 65535. To have
appropriate CCSID support, display files must be recompiled with a source file that has a CCSID value
other than 65535 if either of the following conditions are true:

- The display file was originally compiled from a source file with a CCSID value of 65535.

« The display file was originally compiled before Version 2 Release 3 Modification 0 of the 0S/400
licensed program.

By recompiling, the display file object is tagged and all necessary conversions take place when needed.

No conversions take place if the source files are explicitly tagged CCSID 65535.

Related concepts

Character identifier control (QCHRIDCTL) system value

The character identifier control (QCHRIDCTL) system value controls the type of CCSID conversion that
occurs for display files, printer files, and panel groups.

Changing the CCSID of a physical file
You can use the Change Physical File (CHGPF) command to change the coded character set identifier
(CCSID) of a physical file. However, the physical file cannot be changed under certain conditions.

CCSID support for messages

128 IBMi: IBM i globalization

You can use CCSID support for handling messages and message catalogs on the IBM i operating system
by using commands and application programming interfaces. You can send messages tagged with one
CCSID to users with a different CCSID.

Related reference

Create Display File (CRTDSPF) command

Related information

MSGCON (Message Constant) keyword for display files

ERRMSG (Error Message) and ERRMSGID (Error Message Identifier) keywords for display files

SFLMSG (Subfile Message) and SFLMSGID (Subfile Message Identifier) keywords for display files

Printer files

When a printer file object is created, it is tagged with the coded character set identifier (CCSID) of the
source file. Processing of the source files for printer files is the same as for display files. At compile time,
all character data is read from the primary source file without any character conversion being performed.

When printing to the device, if the *JOBCCSID value is specified on the CHRID parameter of the CRTPRTF
command:

« Constant text from an externally described printer file is converted from the CCSID of the printer file to
the CCSID of the job.

« Character data sent to output fields is assumed to be already converted to the job CCSID.

If the printer data stream is tagged with the character identifier (CHRID) derived from the CCSID of the

job, the CHRID value is used by the printer to interpret the data. The CHRID value is ignored for printers
not supporting this function.

If a specific value is set for the CHRID parameter on the CRTPRTF command:

 For externally described printer files, fields that specify the CHRID DDS keyword use the CHRID value
specified on the printer file. The remainder of the file is printed as if *DEVD was specified for the CHRID
parameter on the CRTPRTF command.

« For program-described printer files, the printer data stream uses the CHRID value specified on the
printer file.

If the *DEVD parameter is specified on the CHRID parameter of the CRTPRTF command, no conversion is
performed.

The CHRID information is determined by either the printer hardware or by the device description. If the
CHRID information is obtained from the device description, it is then sent to the printer.

Related reference
Create Printer File (CRTPRTF) command

User interface manager menus and panel groups

Like display files and printer files, panel group objects and user interface manager (UIM) menus are
tagged with the CCSID of the primary source file. The contents of embedded source members are
converted to this CCSID.

When the panel group or UIM menu is created with *JOBCCSID specified for the CHRID parameter,
conversion is performed at run time. Conversion is performed between the CCSIDs of the panel group or
menu, the job, and the CHRID of the display or printer.

CCSID conversions of user interface manager menu and panel groups
The following CCSID conversions occur for displays of panel groups and UIM menus:

 Text in the panel group is converted from the panel group CCSID to the device CHRID.

« Text in the UIM menu is converted from the UIM menu CCSID to the CHRID of the device.
« Variables from the user job are converted from the job CCSID to the device CHRID.

« Variables from the job are converted from the CHRID of the device to the job CCSID.

IBM i globalization 129

 Online help information imported from a different panel group is converted from the imported panel
group CCSID to the device CHRID.

CCSID conversions when printing UIM menus and panel groups

CCSID conversions for printed UIM menus and panel groups are shown in the following table. In this
table, xxx and yyy are explicitly assigned CCSID values. For example, a printer file CHRID is explicitly
assigned a value of 00697 00037. The panel group is set to *JOBCCSID. The panel group constant text
is converted from the panel group primary source file tagged with CCSID 00500 to the printer file CHRID

00697 00037.

Printer file CHRID is And the panel group or |or *JOBCCSID or *DEVD
menu CCSID is xxx

yyy No conversion occurs Panel group constant No conversion occurs
for panel group constant | text is converted from for panel group constant
text. panel group primary text.

source file CCSID to yyy.
Variables with Variables with No conversion occurs
CHRID=PNLGRP on CHRID=PNLGRP on for variables with
class tag are converted |class tag are converted | CHRID=PNLGRP on
from xxx to yyy. from job CCSID to yyy. class tag.
No conversion occurs Variables without No conversion occurs
for variables without CHRID=PNLGRP on for variables without
CHRID=PNLGRP on class tag are converted | CHRID=PNLGRP on
class tag. from job CCSID to YYY. |class tag.

*JOBCCSID No conversion occurs Panel group constant Panel group constant
for panel group constant | text is converted from text is converted from
text. panel group primary panel group primary

source file CCSID to job |source file CCSID to job
CCsID. CCsID.
Variables with No conversion occurs No conversion occurs
CHRID=PNLGRP on for variables with for variables with
class tag are converted | CHRID=PNLGRP on CHRID=PNLGRP on
from XXX to job CCSID. |class tag. class tag.
No conversion occurs No conversion occurs No conversion occurs
for variables without for variables without for variables without
CHRID=PNLGRP on CHRID=PNLGRP on CHRID=PNLGRP on
class tag. class tag. class tag.

*DEVD No conversion occurs Panel group constant No conversion occurs
for panel group constant | text is converted for panel group constant
text. from panel group text.

primary source file

CCSID to job CCSID.

This conversion occurs

because variables are

in the job CCSID and

the device CHRID is

unknown.
No conversion occurs No conversion occurs No conversion occurs
for variables with for variables with for variables with
CHRID=PNLGRP on CHRID=PNLGRP on CHRID=PNLGRP on
class tag. class tag. class tag.

130 IBMi: IBM i globalization

Printer file CHRID is And the panel group or |or *JOBCCSID or *DEVD
menu CCSID is xxx

No conversion occurs No conversion occurs No conversion occurs
for variables without for variables without for variables without
CHRID=PNLGRP on CHRID=PNLGRP on CHRID=PNLGRP on
class tag. class tag. class tag.

CCSID support for messages

You can use CCSID support for handling messages and message catalogs on the IBM i operating system
by using commands and application programming interfaces. You can send messages tagged with one
CCSID to users with a different CCSID.

Note: You do not need a multinational character set (MNCS) when using CCSIDs for handling messages.

For example, if you do not set CCSID support on, the following message, encoded in CCSID 00037:
Joe, I need to see you right away!

appears to a user with CCSID 00500 as
Joe, I need to see you right away]

Instead of seeing an exclamation mark (!), Joe sees a right square bracket (]). If you set CCSID support on,
the text in a message encoded in CCSID 00037 is converted to CCSID 00500. Both the person sending the
message and the person receiving the message see identical text.

CCSID support helps preserve data integrity in messages. As you read through this information, you will
see other advantages to using CCSID support for messages.

Message-handling commands for CCSIDs
The following message handling commands support CCSIDs:

« CRTMSGF (Create Message File)

« CRTMSGQ (Create Message Queue)

« CHGMSGQ (Change Message Queue)

« ADDRPYLE (Add Reply List Entry)

« CHGRPYLE (Change Reply List Entry)

« CHGMSGD (Change Message Description)
« RTVMSG (Retrieve Message)

« RCVMSG (Receive Message)

« SNDBRKMSG (Send Break Message)

+ SNDMSG (Send Message)

« SNDPGMMSG (Send Program Message)
« SNDRPY (Send Reply)

« SNDUSRMSG (Send user Message)

Related concepts

Program message design
A message can be predefined orimmediate.

Display files
When a display file object is created, it is tagged with the coded character set identifier (CCSID) of the
source file.

Using message catalogs

IBM i globalization 131

The IBM i operating system can use message catalogs to store messages. Messages in a message catalog
are grouped as sets. Each message has a unique number within a set.
Related reference

Create Message File (CRTMSGF) command

Create Message Queue (CRTMSGQ) command

Change Message Queue (CHGMSGQ) command

Add Reply List Entry (ADDRPYLE) command

Change Reply List Entry (CHGRPYLE) command

Change Message Description (CHGMSGD) command

Retrieve Message (RTVMSG) command

Receive Message (RCVMSG) command

Send Break Message (SNDBRKMSG) command

Send Message (SNDMSG) command

Send Program Message (SNDPGMMSG) command

Send Reply (SNDRPY) command

Send User Message (SNDUSRMSG) command

Handling messages with a specific object-level CCSID
These listed objects support CCSIDs. Each of them has an object-level CCSID.

» Message files
« Message queues
- Job message queues

System reply lists

History log
The object-level CCSID is the CCSID in which all the messages in that object are encoded.

Object-level coded character set identifier 65535
CCSID 65535 is the default object-level CCSID for message files and message queues.

If an object has a CCSID of 65535, no conversions occur when adding messages to that object or when
receiving messages from that object. Use CCSID 65535 if you do not want CCSID processing to occur.

CCSID 65535 is also known as *HEX.

Object-level coded character set identifier 65534

CCSID 65534 is the default object-level CCSID for job message queues, system reply lists, and the history
log. If the CCSID of an object is 65534, each message in the object has its own CCSID. No conversion
occurs when a message is added to the object. When a message is received, it is converted based on the
CCSID stored with the message.

CCSID 65534 is also known as *MSG or *MSGD.

CCSID 65534 is the preferred setting for object-level CCSIDs. An object-level CCSID of 65534 requires
fewer CCSID conversions. Fewer CCSID conversions of text result in better performance and improved
data integrity.

Related concepts

Character identifier (QCHRID) system value

The character identifier (QCHRID) system value specifies the character set and code page
CHRID(*SYSVAL) for the CL commands that create, change, or override display files, display device
descriptions, user interface (UIM) menus, panel groups, and printer files.

Database files and functions

132 IBMi: IBM i globalization

When you create Unicode database applications, you need to consider the implications for creating
physical files, creating logical files, and for database input/output.

Db2 fori
When using Db2 for i applications, you need to be aware of some restrictions of Unicode and some
commands.

Recommendations and guidelines for using CCSIDs
These recommendations are useful when you write globalized applications.

Using a specific object-level CCSID for handling messages
If the CCSID of an object is any value other than 65535 or 65534, all messages in that object are
considered encoded in that CCSID. The object-level CCSID overrides the CCSID stored with the messages.

Use this type of object-level CCSID if both of the following conditions are true:

« You expect the object to be sent messages or have message descriptions added in a CCSID different
from the CCSID in which you will receive the messages or retrieve the message descriptions.

 You intend to receive the same message or retrieve the same message description many times.

If these conditions are true, set the object-level CCSID to the CCSID in which you will receive or retrieve
the messages. When the system uses this type of object-level CCSID, the message text or data is
converted at the time the message is sent or is added to the object. No conversion occurs when the
message is received or retrieved because the text and data are already in the CCSID requested on the
receive operation or retrieve operation.

Do not change system-supplied message files to use this type of object-level CCSID. Each system-
supplied message description is tagged separately. No one object-level CCSID value can represent all
of the message descriptions in the message file. Changing the object-level CCSID of a system-supplied
message file to anything other than CCSID 65535 or CCSID 65534 might cause unpredictable results.

Message-level support

When a message is sent to a message queue, you must communicate the CCSID of the replacement data
or the immediate message text to the IBM i operating system. Use the CCSID parameter on any of the
send message commands or APIs to communicate this CCSID to the system.

The default CCSID setting in the send message commands and APIs indicate that the replacement data or
immediate message text is in the CCSID of the job that is running the command or APL. You can override
the job default CCSID value by specifying a different CCSID value.

If the replacement data or immediate message text supplied is not in the CCSID specified, incorrect
conversion results may occur. See Can I correct the CCSID of a message? if this occurs.

Determining the CCSID of a message file
To determine the CCSID of a message file, follow these steps:
1. Type
WRKMSGD MSGF (MYLIB/MYMSGF)
where MYLIB is the library in which the message file is stored and MYMSGF is the name of the

message file.
2. Press F22 (Display list details).

Note: You can also use the Retrieve Message File Attributes (QMHRMFAT) application programming
interface (API) to determine the CCSID of a message file.

For job message queues, system reply lists, and the history log, the object-level CCSID is always 65534.
You cannot change nor display object-level CCSIDs for job message queues, system reply lists, and the
history log.

Related concepts

Can I correct the CCSID of a message?

IBM i globalization 133

You cannot correct the message-level CCSID of a message. You can change the message queue CCSID
to match the message-level CCSID. You can also delete the message and send it again with the correct
message-level CCSID.

Message-level CCSID with a message queue CCSID of 65535 or 65534
When a message is sent to the message queue and the CCSID of the message queue is 65535 or 65534,
no conversion occurs on the message. The message-level CCSID is set to the CCSID specified.

For example, message queue MYMSGQ has a CCSID of 65534. You enter the following Send Message
command:

SNDMSG MSG('MSG #1') CCSID(37) TOMSGQ(MYLIB/MYMSGQ)

The immediate message text, MSG #1, is not converted when added to the message queue. The message
is tagged with CCSID 00037.

Message-level CCSID with a specific message queue CCSID

When a message is sent to the message queue and the CCSID of the message queue is something other
than 65535 or 65534, the replacement data or immediate message text is converted to the CCSID of the
message queue. The message is then tagged with the CCSID of the message queue.

For example, message queue MYMSGQ has a CCSID of 00277. The replacement data for TST0002 is
defined as *CCHAR data. You enter the following Send Program Message command:

SNDPGMMSG MSGDTA(X'0006D4E2C7407BF2') MSGID(TSTOO02) MSGF (MYMSGF)
CCSID(37) TOMSGQ(MYLIB/MYMSGQ)

The replacement data is converted from CCSID 00037 to CCSID 00277 before it is sent to the message
gueue. X'0006' is the length required for variable-length fields. X'D4E2C7407BF2" is MSG #2 on code
page 00037. The number sign (#), X'7B' on code page 00037, is converted to a number sign, X'4A' on
code page 00277. All other code points do not change during the conversion because they are the same
on both code page 00037 and code page 00277.

When the replacement data or immediate message text of a message is 65535 and it is sent to a message
queue with a CCSID other than 65535 or 65534, no conversion occurs. However, the message is tagged
with the CCSID of the message queue. Therefore, messages can be tagged with an incorrect CCSID when
you send them to a message queue with a CCSID that overrides the message-level CCSID.

For example, message queue MYMSGQ has a CCSID of 00277. You enter the following Send Message
command:

SNDMSG MSG('MSG #2') TOMSGQ(MYLIB/MYMSGQ) CCSID (*HEX)

The immediate message text MSG #2 is not converted before it is sent to the message queue. Although
the immediate message text is not converted to CCSID 00277, it is displayed using CCSID 00277. Unless
you entered the Send Message command from a device configured to support code page 00277, you lost
the integrity of the immediate message text.

Message-level CCSID when a message queue CCSID conversion error occurs
If a conversion error occurs while sending a message to a message queue, the message is still sent to the
message queue. However, the immediate text or data of the message is not converted.

A diagnostic message is sent and the message is tagged with the message-level CCSID specified on the
send command or API, not with the CCSID of the message queue.

You can recover the replacement data or immediate message text with the proper CCSID setting. First,
set the message queue CCSID to 65534. Then use the Receive Message command or API to return the
correct message-level CCSID.

134 IBMi: IBM i globalization

Message-level CCSID when a message is a stored message
If a message is a stored message, the message-level CCSID applies only to *CCHAR replacement data.
The CCSID of the first- and second-level text of the message is retrieved from the message file.

Replies to stored messages are never converted from one CCSID to another. Only replies to immediate
messages are affected by CCSID processing.

Message description-level support
When a message description is added to a message file, the CCSID of the message text must be
communicated to the IBM i operating system.

You can use the CCSID parameter on the Add Message Description (ADDMSGD) or the Change Message
Description (CHGMSGD) command to communicate this CCSID to the operating system.

The default settings of these commands indicate that the message text is in the CCSID of the job that
is running the command. You can change this value by specifying a different CCSID value. You can

also change this value by indicating that no CCSID processing should occur. You indicate that no CCSID
processing should occur on the message text by specifying a CCSID value of 65535 (*HEX).

If you set CCSID processing on, system-supplied display files and printer files that display or print
message descriptions convert the CCSID of the message file to the CCSID of the job before displaying
them or printing them. To print and display the messages correctly, your job CCSID setting must be the
same as the code page portion of your device CHRID setting.

All message descriptions that existed in a message file that was created before V3R1 are tagged with
CCSID 65535 on the first use or handling of that message description.

If the text of a message is not in the CCSID specified, incorrect conversion results might occur. See Can I
correct the CCSID of a message description? if this occurs.

Related concepts

Can I correct the CCSID of a message?

You cannot correct the message-level CCSID of a message. You can change the message queue CCSID
to match the message-level CCSID. You can also delete the message and send it again with the correct
message-level CCSID.

Related reference
Add Message Description (ADDMSGD) command
Change Message Description (CHGMSGD) command

Message file with a CCSID of 65535 or 65534

If the CCSID of the message file is 65535 or 65534, no conversion occurs on the message description
when it is added to the file. The message description CCSID is set to the CCSID specified on the
ADDMSGD or CHGMSGD command.

For example, a message file MYMSGF has a CCSID of 65534. The job that is running is in CCSID 00037.
You enter an ADDMSGD command, as follows:

ADDMSGD MSG('MSG #1') MSGID(TSTGOO1) MSGF(MYMSGF)

The message text, MSG #1, is not converted when added to the message file. The message text is tagged
00037 because the CCSID parameter was not coded on the ADDMSGD command and the default CCSID
parameter is *JOB.

Related reference
Add Message Description (ADDMSGD) command
Change Message Description (CHGMSGD) command

IBM i globalization 135

Message file with a specific CCSID

If the CCSID of the message file is something other than 65535 or 65534, the first- and second-level text
of the message description is converted from the CCSID specified to the CCSID of the message file. It is
then tagged with the CCSID of the message file.

For example, message file MYMSGF has a CCSID of 00277. The job that is running is in CCSID 00037. You
enter the following command:

ADDMSGD MSG('MSG #2') MSGID(TSTGO02) MSGF(MYMSGF) CCSID(37)

Message 'MSG #2' is converted from CCSID 00037 to CCSID 00277 before it is added to the message file.
The number sign (#), X'7B' on code page 00037, is converted to the number sign (#), X'4A', on code page
00277. No other code points change during the conversion because they are the same on both code page
00037 and code page 00277.

When the text of a message description is specified as 65535 and it is added to a message file, no
conversion occurs. If the CCSID of the message file is not 65535 or 65534, the message text is tagged
with the CCSID of the message file.

When the message file CCSID is not 65535 or 65534, the message file CCSID overrides message
description CCSIDs. Keep this rule in mind when adding and changing message descriptions to a
message file with a CCSID other than 65535 or 65534. Otherwise, a message description can be marked
incorrectly.

For example, message file MYMSGF has a CCSID of 00277. You enter the following command:
ADDMSGD MSG('MSG #2') MSGID(TSTO002) MSGF (MYMSGF) CCSID(*HEX)

Message text 'MSG #2' is not converted before it is added to the message file. Because the CCSID of the
message file is 00277, the message text is tagged with CCSID 00277.

If the command was run in a job CCSID where the number sign (#) occupies a code point different than
the code point for the number signon code page 00277, the message is displayed incorrectly.

A conversion error may occur while adding or changing a message description in a message file. If a
conversion error occurs, the message description is still either added to or changed in the message file.
The text of the message description, however, is not converted. A diagnostic message is sent and the
message description is tagged with the CCSID specified, not with the CCSID of the message file.

When a conversion error occurs, you can recover the correct CCSID tagging for the message description
by setting the message file CCSID to 65534. Then you can retrieve the correct CCSID for the message
description using the Retrieve Message (RTVMSG) command or the Retrieve Message (QMHRTVM) API.

The CCSID of a message description applies only to first- and second-level message text.

Related reference
Retrieve Message (RTVMSG) command
Retrieve Message (QMHRTVM) API

Changing the CCSID of a message description

When you take the option to change a message description from the Work with Message Descriptions
display, all current values for the selected message description are retrieved and placed on the prompt
display.

The first- and second-level text are converted from the CCSID of the message file to the CCSID of the job
before they are put on the prompt display.

*JOB is displayed for the CCSID keyword and has two different meanings depending on what you do on
the prompt display. If you change any part of the first- or second-level text, *JOB means that the text is
converted from the CCSID of the job to the CCSID of the message file when you press the Enter key. If the
text is unchanged, *JOB works like *SAME, and none of the following texts are changed:

 The first-level message text
« The second-level message text

136 IBMi: IBM i globalization

« The CCSID of the message description

Both the first- and second-level text of a message description must be in the same CCSID. If you change
the CCSID of one level, the system automatically converts the other level to match.

Example: Changing a message description

The CCSID of message file MYMSGF is 65534. The CCSID of the job that is running WRKMSGD is 00277.
The CCSID of the message description is 00037.

Select option 2 to change a message description. The text of the message description is converted from
CCSID 00037 to 00277 before being placed on the prompt display.

If only the first-level text is changed, the 00277-tagged text is stored in the message file. The CCSID of
the message description is changed to 00277. The 00277-tagged second-level text is also stored in the
message file to keep both the first- and second-level text in the same CCSID.

Message queues

If you set CCSID processing on, system-supplied display files and printer files that display or print
messages convert the CCSID of the message queue to the CCSID of the job before displaying or printing
the messages.

To print and display the messages correctly, your job CCSID setting must be the same as the code page
portion of your device CHRID setting.

All messages that existed on a message queue that was created in a release before V3R1 of the operating
system are assigned CCSID 65535 on the first use of that message.

Determining the CCSID of a message queue
To determine the CCSID of a message queue, follow these steps:

1. Type
DSPMSG MSGQ(MYLIB/MYMSGQ) ASTLVL (*BASIC)

where MYLIB is the library in which the message queue is stored and MYMSGQ is the name of the
message queue.

2. Press F22 (Display list details).

Note: You can also use the Retrieve Message Queue Attributes (QMHRMQAT) application programming
interface (API) to determine the CCSID of a message queue.

For job message queues, system reply lists, and the history log, the object-level CCSID is always 65534.
You cannot change nor display object-level CCSIDs for job message queues, system reply lists, and the
history log.

Related concepts

Job message queues

The CCSID for all job message queues is 65534. You cannot change or display this value. A job message
queue CCSID of 65534 requires fewer CCSID conversions. Fewer CCSID conversions of text result in
better performance and improved data integrity.

System reply list
The system reply list has a CCSID of 65534. You cannot change or display this value.

Related tasks

History log
The history log is a database file that is tagged with CCSID 65535. You cannot change the CCSID of the

history log. No conversions occur when you do database retrievals from the history file.

Related reference
Retrieve Nonprogram Message Queue Attributes (QMHRMQAT) API

IBM i globalization 137

Job message queues

The CCSID for all job message queues is 65534. You cannot change or display this value. A job message
queue CCSID of 65534 requires fewer CCSID conversions. Fewer CCSID conversions of text result in
better performance and improved data integrity.

The CCSID of each message in the job log is used for CCSID processing. No conversion occurs when a
message is sent to the job log.

Note: Request messages are always tagged with a CCSID of 65535 and are never converted.

If you set CCSID processing on, system-supplied display files and printer files that display or print job logs
convert the CCSID of the messages to the CCSID of the job before displaying or printing the messages.

To print and display the messages correctly, your job CCSID setting must be the same as the code page
portion of your device CHRID setting. Status messages that appear on line 24 of a display are converted to
the CCSID of the device before they are shown.

Related concepts

Message queues

If you set CCSID processing on, system-supplied display files and printer files that display or print
messages convert the CCSID of the message queue to the CCSID of the job before displaying or printing
the messages.

Related tasks
History log

The history log is a database file that is tagged with CCSID 65535. You cannot change the CCSID of the
history log. No conversions occur when you do database retrievals from the history file.

System reply list
The system reply list has a CCSID of 65534. You cannot change or display this value.

The only part of the system reply list that is affected by CCSID processing is the Compare data field. If
the Compare data field references replacement data that is defined as *CCHAR, the data being compared
must be in a common CCSID before the comparison is done.

Any reply list entry that has compare data is tagged with the CCSID supplied on the ADDRPYLE or
CHGRPYLE commands. When the system reply list is used, the replacement data is converted to the
CCSID of the compare data before the comparison is made and before the message is sent to the
message queue. This ensures that the data is in a common CCSID before the comparison is done.

Example: System reply list and converted-character compare data
Enter the following Add Reply List Entry command:

ADDRPYLE SEQNBR(101) MSGID(TST0010) CMPDTA(X'GG017B') RPY(*DFT) +
CCSID(37)

X'7B'" is the number sign (#) on code page 00037. X'0001' is the length required for variable-length fields.
The compare data is not converted when added to the system reply list. It is tagged with CCSID 00037.
Message TST0010 has one replacement data field that is defined as *CCHAR with (*VARY 2) for its length.
Message queue MYMSGQ has a CCSID of 00278.

Send message TST0010 in a job that has the system reply list turned on using the following Send Program
Message command:

SNDPGMMSG MSGID(TST0010) MSGF(MYLIB/MYMSGF) MSGTYPE(*INQ) +
TOMSGQ (MYLIB/MYMSGQ) MSGDTA(X'G0014A') CCSID(277)

The replacement data is converted from CCSID 00277 to CCSID 00037 and then compared with the
compare data. The conversion results in replacement data X'00017B". A match is found and the default
reply is sent when this message is added to the message queue.

When the message is added to the message queue, the replacement data is converted from CCSID 00277
to CCSID 00278. The message queue CCSID does not matter when trying to match the compare data.

138 IBMi: IBM i globalization

The replacement data is converted to X'000163"' when it is sent to the message queue and tagged 00278.
X'63'is the code point for the number sign (#) in code page 00278.

Related concepts

Message queues

If you set CCSID processing on, system-supplied display files and printer files that display or print
messages convert the CCSID of the message queue to the CCSID of the job before displaying or printing
the messages.

Related reference
Add Reply List Entry (ADDRPYLE) command
Change Reply List Entry (CHGRPYLE) command

History log
The history log is a database file that is tagged with CCSID 65535. You cannot change the CCSID of the
history log. No conversions occur when you do database retrievals from the history file.

You can use CCSID processing when working with the history log. The CCSID of the replacement data
or immediate message text is added to the history log record. If the history log record is for a stored
message, CCSID processing occurs only for the *CCHAR replacement data in that record.

You can retrieve a message from the history log and convert it into a specific CCSID by following these
steps:

1. Obtain the input variables &MSGFL, &MSGF, &MSGID, &MSGDTA, and &MDTACCSID, from the history
log record. (See the CL Programming PDF for the layout of the history log record.)

2. Enter the following Retrieve Message command:

RTVMSG MSGF (&MSGFL/&MSGF) ; MSGID(&MSGID); MSGDTA(&MSGDTA); +
MDTACCSID (&MDTACCSID); MSG(&MSG) ;

If you set CCSID processing on, system-supplied display files and printer files that display or print history
log records convert the CCSID of the messages to the CCSID of the job before displaying or printing the
messages. To print and display the messages correctly, your job CCSID setting must be the same as the
code page portion of your device CHRID setting.

Related concepts

Message queues

If you set CCSID processing on, system-supplied display files and printer files that display or print
messages convert the CCSID of the message queue to the CCSID of the job before displaying or printing
the messages.

Job message queues

The CCSID for all job message queues is 65534. You cannot change or display this value. A job message
queue CCSID of 65534 requires fewer CCSID conversions. Fewer CCSID conversions of text result in
better performance and improved data integrity.

Related information
CL Programming

Setting up CCSID support for message handling
The default setting of the CCSID for creating message queues and message files is 65535. Most message
files delivered with the operating system have a CCSID of 65535.

Most message descriptions in system-supplied message files are tagged with a CCSID that corresponds to
the national language version with which they are included.

Some message descriptions are not assigned a CCSID that corresponds to the national language version.
These message descriptions are tagged 65535 and are not converted when used.

Messages sent to a message queue that has a CCSID of 65535 are not converted when placed on the
gueue. Message descriptions added to a message file that has a CCSID of 65535 are not converted when
placed in the file. These messages and message descriptions are tagged with a CCSID associated with

IBM i globalization 139

their text or data. By tagging them with a CCSID associated with their text or data, they are given the
correct CCSID if the object-level CCSID is changed to 65534,

You can set CCSID support on for handling a specific message queue. For example, to set CCSID handling
on for message queue MYMSGQ in library MYLIB, type:

CHGMSGQ MSGQ(MYLIB/MYMSGQ) CCSID(65534)
The Change Message Queue (CHGMSGQ) command also allows you to turn on CCSID support for more
than one message queue at a time.

You can set CCSID support on for handling a specific message file. For example, to set CCSID handling on
for message file MYMSGF in library MYLIB, type:

CHGMSGF MSGF (MYLIB/MYMSGF) CCSID(65534)

The Change Message File (CHGMSGF) command also allows you to turn on CCSID support for more than
one message file at a time.

Related reference
Change Message Queue (CHGMSGQ) command
Change Message File (CHGMSGF) command

CCSID support for message catalogs
The Message catalog CCSID (CLGCCSID) parameter allows you to specify the CCSID for storing data in a
message catalog.

The Source file CCSID (SRCCCSID) parameter allows you to specify the CCSID of a source file. Data from
the source is converted to the CCSID of the message catalog if the CCSIDs for both are not the same. This
is also the default action. The source can be in any CCSID that supports conversion to any other CCSID.

The CCSID of the original message catalog is used to update the message catalog. It can be single or
mixed and in extended binary-coded decimal interchange code (EBCDIC), American National Standard
Code for Information Interchange (ASCII), or UCS-2. If the catalog is a QSYS source file member that
does not exist, the CCSID of the existing file is used. The value that is specified on the CLGCCSID
parameter is used if the CCSID of the file is 65535.

Converted character replacement data type field

A replacement data type field supports CCSID processing. This replacement data type field is called a
convertible character field (*CCHAR). A *CCHAR replacement data type field is a variable-length field, and
therefore the field might increase or decrease in length when it is converted.

Example: Adding a message description with CCSID support

The following example shows how to add the message description TSTO006 to message file MYMSGF. The
message description has 2 replacement data type fields. One field is a character field length 10. The other
field is a convertible character field with varying length. Use the ADDMSGD command as follows:

ADDMSGD MSG('This is *CHAR &1; This is *CCHAR &2;') MSGID(TST0006) +
MSGF (MYLIB/MYMSGF) FMT ((*CHAR 10) (*CCHAR *VARY 2))

Related reference
Add Message Description (ADDMSGD) command

Retrieving messages

The Retrieve Message (RTVMSG) command and retrieve message (QMHRTVM) application programming
interface (API) have a CCSID-to-convert-to parameter. This parameter determines which CCSID the first-
and second-level text is converted to before the text is returned to the user.

The Retrieve Message command and the Retrieve Message API also have a replacement data CCSID
parameter. This parameter communicates the CCSID of the replacement data to the system. The

140 IBMi: IBM i globalization

replacement data CCSID applies only to the parts of the replacement data that correspond to *CCHAR
type data. No other replacement data is converted.

The Retrieve Message command and Retrieve Message API convert the first- and second-level text from
the CCSID of the message file to the CCSID on the CCSID-to convert-to parameter. Any replacement data
that is *CCHAR data is converted from the replacement data CCSID to the CCSID-to-convert-to CCSID
before being substituted into the correct replacement variables. The default for both parameters is *JOB,
which means that the CCSID of the job is used.

Retrieve Message command CCSID return fields
Three CCSID return fields are supported by the Retrieve Message (RTVMSG) command:

« TXTCCSID
« TXTCCSTA
+ MDTACCSTA

Example 1: Retrieving a message with CCSID support

Message file MYMSGF has a CCSID of 65534. The CCSID of the message description is used to determine
the CCSID from which to convert the message text. The CCSID of the message description (TST0003) is
00037. The first-level text is:

'MSG #3 is &1;'

&1 is defined as a *CCHAR variable field with a length of (*VARY 2). Enter the following RTVMSG (Retrieve
Message) command:

RTVMSG MSGF (MYMSGF) MSGID(TST®O03) MSG(&MSG); CCSID(277) +
MDTACCSID(277) MSGDTA(X'0G002D6D2"')

In the message data, the first 2 bytes are a length field with a value of 2. All *VARY fields begin with a
length. The next 2 characters are the actual *CCHAR data with a value of X'D6D2". X'D6D2' represents the
characters O and K on code page 00277.

The first-level text is converted from CCSID 00037 to CCSID 00277. The replacement data is not
converted before it is substituted for &1; because the replacement data CCSID matches the CCSID-to-
convert-to parameter. As a result, the text returned in the variable &MSG is:

'MSG #3 is OK.'

The code point for the number sign (#) is the only change that occurred in the conversion. The number
sign was converted from code point X'7B' in code page 00037 to code point X'4A" in code page 00277. All
other code points in the text of the message matched in code page 00037 and code page 00277.

Note: If the CCSID of a message file is 65535, no conversion occurs, even though the message
description CCSID is 00037. The CCSID of the message file always takes precedence over the message
description CCSID.

Example 2: Using return fields and converted character data
Message description TSTO005 has the following first-level text:

This is *CHAR &1; This is *CCHAR &2;

The message description is defined in message file MYMSGF, which has a CCSID of 65535. &1; is defined
as a *CHAR field of length 1. &2; is defined as a *CCHAR field (*VARY 2) in length. The CCSID of the

IBM i globalization 141

message description does not matter because the CCSID of the message file is not 65534. You enter the
following RTVMSG command:

RTVMSG MSGF (MYMSGF) MSGID(TSTOGO5) MSG(&MSG); CCSID(260) +
MDTACCSID(37) MSGDTA(X'5A00015A"') TXTCCSID(&TXTCCSID);

Note: X'5A' is the exclamation point (!) on code page 00037.
These are the returned values from the RTVMSG command:
« &MSG = 'This is *CHAR. This is *CCHAR !\

The EBCDIC value of the *CHAR character is X'5A". X'5A" appears as an acute accent (J) on code page
00260. The *CHAR data did not convert because only *CCHAR data supports CCSID processing. The
'&1' stayed at X'5A", while '&2' converted to X'4F'. X'4F' is the exclamation point on code page 00260.

« &TXTCCSID = 65535

The TXTCCSID variable is set to 65535 because no conversion occurred. When no conversion occurs,
the CCSID (if it is not 65534) of the message file is returned.

Related reference
Retrieve Message (RTVMSG) command
Retrieve Message (QMHRTVM) API

CCSID of the text returned (TXTCCSID) return field
TXTCCSID is the CCSID of the text returned.

If a conversion occurs and is successful, this value is always equal to the CCSID-to-convert-to value. If

a conversion occurs and is not successful, this is the CCSID of the message file unless the CCSID of the
message file is 65534. If the CCSID of the message file is 65534, the CCSID of the message description is
returned.

For example, message file MYMSGF has a CCSID of 65534. Your program needs to know the CCSID of
message description TSTO004. Specify the RTVMSG command as follows:

RTVMSG MSGF (MYMSGF) MSGID(TST0004) CCSID(*HEX)
TXTCCSID(&TXTCCSID) ;

The CCSID of the message description is returned in the variable &TXTCCSID because you specified *HEX
for the CCSID-to-convert-to parameter. *HEX means no conversion is to occur. If no conversion occurs
and the message file CCSID is 65534, the message description CCSID is returned.

You can also obtain the message description CCSID from the Work with Message Descriptions
(WRKMSGD) display.

1. On the WRKMSGD display, select option 5 to display details.

2. From the Select Message Details to Display menu, select option 5 to display message attributes.
3. Page forward to the CCSID value.

The message description CCSID is shown if the CCSID of the message file is 65534. If the CCSID of the
message file is not 65534, the CCSID of the message file is shown.

Related reference
Work with Message Descriptions (WRKMSGD) command

CCSID conversion status indicator (TXTCCSTA) return field
TXTCCSTA is the text CCSID conversion status indicator. Return codes help you determine what happened
when the system converted your message text to the CCSID-to-convert-to parameter.

Positive return code numbers indicate that your conversion was successful. A successful return code does
not always indicate that a conversion occurred. Negative return code numbers indicate that a conversion
error occurred.

The following list shows the available return codes:

142 IBMi: IBM i globalization

No conversion was necessary. The CCSID of the text matched the CCSID that you wanted the text
converted to.

1
No conversion occurred. Either the text was 65535 or the CCSID that you wanted the text converted
to was 65535.

2
No conversion occurred. You did not ask for any text to be returned.

3
The text was converted to the CCSID specified. The conversion operation used the linguistic
conversion tables.

4
A conversion error occurred when the conversion operation used the linguistic conversion tables. The
conversion operation then used a default conversion table. The default conversion completed without
error.

-1

An error occurred on both the linguistic and default conversions. The text was not converted.

Related concepts

Replacement data CCSID conversion status indicator (MDTACCSTA) return field

MDTACCSTA is the replacement data CCSID conversion status indicator. Return codes help you determine
what happened when the system converted your replacement data to the CCSID-to-convert-to parameter.

Replacement data CCSID conversion status indicator (MDTACCSTA) return field
MDTACCSTA is the replacement data CCSID conversion status indicator. Return codes help you determine
what happened when the system converted your replacement data to the CCSID-to-convert-to parameter.

Positive return code numbers indicate that your conversion was successful. A successful return code does
not always indicate that a conversion occurred. Negative return code numbers indicate that a conversion
error occurred. These return codes are similar to the TXTCCSTA return codes. The return codes apply to
the conversion that takes place on any *CCHAR replacement data being converted from the replacement
data CCSID to the CCSID-to-convert-to value.

The following list shows the available return codes:

0
No conversion was necessary. The CCSID of the replacement data matched the CCSID that you
wanted the text converted to.

1
No conversion occurred. Either the replacement data was 65535 or the CCSID that you wanted the
replacement data converted to was 65535.

2
No conversion occurred. Either you did not ask for any replacement data to be returned or no *CCHAR
replacement data fields were defined for the message description being retrieved.

3
The replacement data was converted to the CCSID specified. The conversion operation used the
linguistic conversion tables.

4
A conversion error occurred when the conversion operation used the linguistic conversion tables. The
conversion operation then used a default conversion table. The default conversion completed without
error.

-1
An error occurred on both the linguistic and default conversions. The replacement data was not
converted.

Related concepts
CCSID conversion status indicator (TXTCCSTA) return field

IBM i globalization 143

TXTCCSTA is the text CCSID conversion status indicator. Return codes help you determine what happened
when the system converted your message text to the CCSID-to-convert-to parameter.

Receiving messages

The Receive Message (RCVYMSG) command, the Receive Nonprogram Message (QMHRCVM) API, and

the Receive Program Message (QMHRCVPM) API have a CCSID-to-convert-to parameter. This parameter
determines which CCSID the text or data is converted to before it is returned to the user.

The Receive Message command and APIs convert the text or data from the CCSID of the message queue
or message file to the CCSID supplied on the CCSID-to-convert-to parameter. When replacement data

is returned, only the *CCHAR data is converted from the CCSID of the message queue to the CCSID-to-
convert-to value.

If the CCSID of the message file or message queue is 65534, the text or data is converted from the CCSID
of the message description or message to the CCSID supplied on the CCSID-to-convert-to parameter.

The default for the CCSID-to-convert-to parameter is *JOB, which means that the CCSID of the job
performing the receive operation is used.

Receive Message command CCSID return fields
Two CCSID return fields are supported by the Receive Message (RCYMSG) command:

« TXTCCSID
« DTACCSID

Receive Message API CCSID return fields

The Receive Message (QMHRCVM) API and the Receive Program Message (QMHRCVPM) API support the
return fields defined in TXTCCSID return field for receive message command and DTACCSID return field
for receive message command. The Receive Message API and the Receive Program Message API also
support two additional return fields.

Example 1: Using the CCSID return fields
Message description TSTO005 has the following first-level text:

This is &CHAR &1; This is *CCHAR &2;

'&1'is defined as a *CHAR field of length 1. '&2'" is defined as a *CCHAR field (*VARY 2) in length.

Message file MYMSGF has a CCSID of 65534, TSTO005 is defined in message file MYMSGF. The message
description CCSID is 65535. The CCSID of message queue MYMSGQ is 65534.

You enter the following Send Program Message command:

SNDPGMMSG MSGF (MYMSGF) MSGID(TSTO005) CCSID(37) TOMSGQ(MYLIB/MYMSGQ) +
MSGDTA(X'7B0OO0O17B")

The message is not converted when it is sent to message queue MYMSGQ because the message queue
CCSID is 65534. The message is tagged with CCSID 00037.

You enter the following Receive Message command to receive the message just sent:

RCVMSG MSGQ(MYLIB/MYMSGQ) MSG(&MSG); DTACCSID(&DTACCSID); +
CCSID(277) MSGDTA(&MSGDTA); TXTCCSID(&TXTCCSID) ;

Note: X'7B' is the number sign (#) on code page 00037.

Because the message description is tagged 65535, no conversion is performed when retrieving the
message text of TSTO005. The replacement data is tagged 00037. The *CCHAR part of the message
data is converted from CCSID 00037 to CCSID 00277 before being inserted for &2; *CHAR data is never
converted.

144 IBMi: IBM i globalization

The following table shows the returned values after the Receive Message command runs:

Value Description

&MSG = e
This is &CHAR <%=, This is *CCHAR #.

The *CHAR data was not converted when
substituted for &1; The *CHAR data remains X'7B'".
X'"7B' is the code point on code page 00277 for A

ligature (“E).

The *CCHAR data was converted to X'4A' before it
was substituted for &2; X'4A' is the code point on
code page 00277 for the number sign (#).

&TXTCCSID = 65535 The &TXTCCSID variable was set to 65535
because no conversion occurred. When no
conversion occurs, the CCSID of the message
description is returned if the CCSID of the message
file is 65534.

&DTACCSID = 00277 The &DTACCSID variable was set to 00277
because a conversion occurred.

Example 2: Receiving a message with CCSID support

Message file MYMSGF has a CCSID of 00037. Message queue MYMSGQ has a CCSID of 65534. The
message being received has a message-level CCSID of 00277. CCSID 65534 uses the message-level
CCSID when determining the CCSID the replacement data is to be converted from.

The message being received is a stored message. The stored message has *CCHAR replacement data. The
CCSID of the job is 00278. You enter the following Receive Message command:

RCVMSG MSGQ(MYMSGQ) MSG(&MSG); MSGDTA(&MSGDTA) ;

The first-level text of the stored message that you receive is converted from CCSID 00037 to CCSID
00278. The replacement data of the message that you receive is converted from CCSID 00277 to CCSID
00278. Then the replacement data is substituted into the first-level text and returned in &MSG.

Both the first-level text and the replacement data of the message that you received are converted to the
CCSID of the job because the CCSID of the job is the default for the CCSID-to-convert-to parameter.

Two different conversions must occur because only the replacement data is stored in the message queue
for stored messages. The text of a stored message must be retrieved from the message file. If the
message contained other replacement data type fields that were not defined as *CCHAR, the non-*CCHAR
data is not converted before being returned.

Note: If the CCSID of the message queue is 00278, no conversion occurs on the replacement data before
the message is returned, even though the message CCSID is 00277. Remember that the message queue
CCSID takes precedence over the message-level CCSID.

Related reference

Receive Message (RCVMSG) command

Receive Nonprogram Message (QMHRCVM) API
Receive Program Message (QMHRCVPM) API

IBM i globalization 145

CCSID of the message text returned (TXTCCSID) return field
TXTCCSID is the CCSID of the message text returned. If a conversion occurs and the conversion is
successful, this value is always the same as the CCSID-to-convert-to value.

For immediate text, if the conversion is not successful, TXTCCSID is the CCSID of the message queue,
unless the message queue is 65534. If the message queue is 65534, TXTCCSID is the message-level
CCSID of the immediate text.

For a stored message, if the conversion is not successful, TXTCCSID is the CCSID of the message file that
contains the stored message, unless the message file is 65534. If the CCSID of the message file is 65534,
TXTCCSID is the CCSID of the message description for the stored message.

CCSID of the replacement data returned (DTACCSID) return field
DTACCSID is the CCSID of the replacement data returned. DTACCSID applies only to those parts of the
replacement data defined as *CCHAR.

If the message being received is an immediate message, a value of 0 is returned. If a conversion occurs
and the conversion is successful, this value is the same as the CCSID-to-convert-to value.

If the conversion is not successful, the DTACCSID returned is the CCSID of the message queue, unless
the CCSID of the message queue is 65534. If the CCSID of the message queue is 65534, the DTACCSID
returned is the CCSID of the message.

For example, a stored message TST0004 from message file MYMSGF is sent to message queue
YOURMSGQ with replacement data. TST0004 is defined with *CCHAR replacement data. Message file
MYMSGF is 65534. Message queue YOURMSGQ has a CCSID of 00037.

Your program needs to know the CCSID of the message description and the replacement data sent to
message queue YOURMSGQ. You enter the following Receive Message command:
RCVMSG MSGQ(YOURMSGQ) CCSID(*HEX) TXTCCSID(&TXTCCSID); DTACCSID(&DTACCSID);

The message description CCSID is returned in the variable &TXTCCSID. The message description CCSID
is returned because you specified *HEX for the CCSID-to-convert-to parameter. *HEX means that no
conversion is to occur. If no conversion occurs and the message file CCSID tag is 65534, the CCSID of the
message description is returned.

The CCSID of message queue YOURMSGQ (00037) is returned in the variable &DTACCSID. The message
queue CCSID is returned because it is not 65534.

You can also obtain the message-level CCSID using the Display Messages (DSPMSG) display.

1. From the Display Messages display, press Help to display the Additional Message Information display.
2. Press F9 (Display Message Details).

This displays the message-level CCSID when the CCSID of the message queue that this message is on
is 65534. Otherwise, the CCSID of the message queue is displayed.

Common questions about CCSID support for handling messages
Here are some common questions asked about CCSID support for handling messages.

When is the job default CCSID used for handling messages?
A job default CCSID is always a CCSID with an encoding scheme of 1100 (single-byte EBCDIC) or 1301
(mixed-byte EBCDIC).

The job default CCSID is used whenever both of the following conditions are true:

« A conversion occurs from a CCSID with an encoding scheme other than 1100 or 1301 to a job CCSID.
« The job CCSID is 65535.

For example, ASCII data must be converted to a CCSID associated with the data when asked to convert to
the CCSID of a job. The job default CCSID is used because it is never CCSID 65535.

146 IBMi: IBM i globalization

How can I determine if a message description is defined with *CCHAR?

You can use the Work with Message Description (WRKMSGD) command to determine if a message
description is defined with *CCHAR data. You can also use the Retrieve Message (QMHRTVM) API to
return the replacement data format fields.

Related reference

Work With Message Description (WRKMSGD) command

Application programming interfaces (APIs)

Can the length of *CCHAR replacement data change?
The length of *CCHAR replacement data can change. This is why *CCHAR replacement data is required to
be a variable-length field.

The length of the field grows when converting from an SBCS CCSID to the UCS-2 Level-1 CCSID. The
length of the field shrinks when converting from the UCS-2 Level-1 CCSID to an SBCS CCSID.

For example, you define message description TSTO011 as 'Printer &1; has error &2;' in message file
MYMSGF that has a CCSID of 65535. '&1' is defined as *CCHAR data (*VARY 2) in length. This is the name
of the printer. &2; is defined as a *CHAR data with a length of 1. This is an error code. Enter the following
Send Program Message command to send this message to message queue MYMSGQ:

SNDPGMMSG MSGID(TST0O11) MSGF(MYLIB/MYMSGF) TOMSGQ(MYLIB/MYMSGQ) +
MSGDTA (X' 000400500030F1') CCSID(61952)

X'0004' is the length of the variable *CCHAR data. X'00500030' represents the characters PO in CCSID
61952. If message queue MYMSGQ has a CCSID of 00037, the replacement data is converted to
X'0002D7FOF1' before it is sent to the message queue. If message queue MYMSGQ has a CCSID of
65535, the data is not converted when it is sent to the message queue.

Your application programs cannot hard-code the position of the return code in this example. When
message queue MYMSGQ has a CCSID of 00037, the return code is 5 bytes into the message text. When
message queue MYMSGQ has a CCSID of 65535, the return code is 7 bytes into the message text.

Can I correct the CCSID of a message queue?

You might have a message queue that has a CCSID that does not match the CCSID of the messages on it.
This typically results from sending messages with a message-level CCSID of 65535 to a message queue
with a CCSID that is not 65534 or 65535.

If all of the messages on a message queue have the same message-level CCSID and you know the
message-level CCSID, you can enter the following command:
CHGMSGQ MSGQ(MYMSGQ) CCSID(nnnnn)

In this example, MYMSGQ is the name of the message queue and nnnnn is the message-level CCSID.

If you do not know the CCSID of all the messages on the queue or if the messages on the queue have
different CCSIDs, the message queue should have a CCSID of 65535 or 65534. You can change the
message queue CCSID to 65535. Or, you can follow these steps:

1. Delete all of the messages.

2. Change the CCSID of the message queue to 65534.

3. Send all of the messages again.

Can I correct the CCSID of a message file?

You might have a message file that has a CCSID that does not match the CCSID of the message
descriptions in it. This typically results from adding message descriptions with a message-level CCSID
of 65535 to a message file with a CCSID that is not 65534 or 65535.

If all of the message descriptions in a message file have the same message-level CCSID, and you know
the message-level CCSID, you can enter the following command:

CHGMSGF MSGF (MYMSGF) CCSID(nnnnn)

IBM i globalization 147

In this example, MYMSGF is the name of the message file and nnnnn is the message-level CCSID.

If you do not know the CCSID of all the message descriptions in the file or if the message descriptions in
the file have different CCSIDs, the message file should have a CCSID of 65535 or 65534. You can handle
this situation in either of the following ways:

« Change the CCSID of the message file to 65535.

« Follow these steps:

1. Change the CCSID of the message file to 65534.
2. Change the message-level CCSID of each message description to the correct value.

Related concepts

Can I correct the CCSID of a message description?

You can use the Change Message Description (CHGMSGD) command to change the CCSID of a message
description. If you do not change the first- or second-level text at the same time that you change the
message description CCSID, the text remains unchanged. Only the CCSID changes.

Can I correct the CCSID of a message?

You cannot correct the message-level CCSID of a message. You can change the message queue CCSID
to match the message-level CCSID. You can also delete the message and send it again with the correct
message-level CCSID.

Related concepts

Message-level support

When a message is sent to a message queue, you must communicate the CCSID of the replacement data
or the immediate message text to the IBM i operating system. Use the CCSID parameter on any of the
send message commands or APIs to communicate this CCSID to the system.

Message description-level support
When a message description is added to a message file, the CCSID of the message text must be
communicated to the IBM i operating system.

Can I correct the CCSID of a message description?

You can use the Change Message Description (CHGMSGD) command to change the CCSID of a message
description. If you do not change the first- or second-level text at the same time that you change the
message description CCSID, the text remains unchanged. Only the CCSID changes.

For example, you can enter the following Change Message Description command to correct the CCSID of a
message description without changing any of the first- or second-level message text:

CHGMSGD MSGF (MYLIB/MYMSGQ) MSGID(TST0G01) CCSID(37)

Related tasks

Can I correct the CCSID of a message file?

You might have a message file that has a CCSID that does not match the CCSID of the message
descriptions in it. This typically results from adding message descriptions with a message-level CCSID
of 65535 to a message file with a CCSID that is not 65534 or 65535.

Related reference
Change Message Description (CHGMSGD) command

Changing the CCSID of a physical file

You can use the Change Physical File (CHGPF) command to change the coded character set identifier
(CCSID) of a physical file. However, the physical file cannot be changed under certain conditions.

A physical file cannot be changed if one or more of the following conditions exist when working with a
logical file defined over a physical file:

« The logical file has a sort sequence table associated with the CCSID of the physical file and the CCSID
you want to change to is incompatible. That is, conversion between the original CCSID and the CCSID

148 IBMi: IBM i globalization

you want to change to is not allowed because all the characters of the original CCSID are not in the new
CCSID.

 The logical file has a sort sequence table associated with the CCSID of the physical file and the CCSID
you want to change to is incompatible. Additionally, the logical file has fields defined with CCSIDs that
are not compatible to the new CCSID you want to change the physical file to. Again, conversion between
the original CCSID and the CCSID you want to change to is not allowed because all the characters of the
original CCSID of the logical file or the fields with specific CCSIDs are not in the new CCSID.

- A select/omit or join logical file, or both that performs select/omits or joins between physical file fields
that have different CCSIDs.

- Ajoin logical file with a sort sequence table such that the CCSID of the logical file's secondary access
path is different than the CCSID to which the physical file is being changed.

Related concepts

Display files

When a display file object is created, it is tagged with the coded character set identifier (CCSID) of the
source file.

Related reference

Change Physical File (CHGPF) command

Character sorting

Traditionally, information is displayed in sorted order to enable users to easily find the items they are
looking for. However, users of different languages might have very different expectations of what a sorted
list should look like.

Not only does the alphabetical order vary from one language to another, but it also can vary from
document to document within the same language. For example, phonebook ordering might be different
than dictionary ordering. String comparison is one of the basic functions most applications require, and
yet implementations often do not match local conventions.

For example, here are some of the ways languages vary in the ordering of strings:

« The letters A through Z can be sorted in a different order than in English. For example, in Lithuanian, the
lettery is sorted between the letters i and k.

« Accented letters can be treated as distinct letters. For example, A in Danish is treated as a separate
letter that sorts just after the letter Z.

« Unaccented letters that are considered distinct in one language can be indistinct in another. For
example, the letters v and w are two different letters according to English. However, v and w are
considered variant forms of the same letter in Swedish.

IBM i lets you customize the sequence in which characters are sorted. You can use any of the following
methods to do this:

- IBM i sort sequence support
« ICU-based sort support

- Locale sort support. If your application uses locales, you can use the sorting support provided by the
LC_COLLATE locale category.

Related concepts

Sort sequences
The IBM i operating system supports sort sequence. By using one of the listed options, you can order your
data according to cultural-dependent requirements for specific applications.

LC_COLLATE category

IBM i globalization 149

The LC_COLLATE category defines character or string collation information. Within LC_COLLATE you can
specify a sort sequence to use using the cpysyscol keyword. The cpysyscol keyword value is used in place
of the LC_COLLATE category definitions.

IBM i sort sequence support

IBM i sort sequence support is the sort support that the system has provided for multiple releases. Using
this support, users can create their own defined sort tables. However, the sort is limited to a single weight
for each individual character.

IBM i sort sequence also provides full support only for single-byte character set (SBCS) and CCSID 13488.
These sort sequences are supported over most of the system.

Sort sequence tables

A sort sequence table is an object that contains the weight of each single-byte graphic character within

a specified coded character set identifier (CCSID). The system-recognized identifier for the sort sequence
table object type is *TBL.

Depending on your requirements, you can define a table to have either a unique weight for each graphic
character or shared weights for some graphic characters. If you define a table that contains unique
weights for each character within the character set, your table is known as a unique-weight table. If you
define a table that contains some graphic characters that share the same weight, your table is known as a
shared-weight table. For example, if you want to sort the graphic character capital letter A and the graphic
character small letter a together, you can define a shared-weight table. If you want to sort these graphic
characters separately, you can define a unique-weight table.

A set of sort sequence tables is included with the system. This set of tables defines both unique-weight
and shared-weight sort sequences for all single-byte character set (SBCS) languages.

Sort sequence table implementation notes
Sort sequence support does not take into consideration the following information:

« Special cases of single characters that should be handled as multiple characters (such as the German
characters sharp).

« Sequences of characters that should be treated as a single character (such as the Danish aa, Hungarian
ly, Serbian lj, Spanish Ll).

« Nonalphanumeric characters that should be ignored because they are embedded in alphanumeric
strings (such as the hyphen in co-op).

- Prefixes that should be ignored (such as Van der in the name Van der Pool).
« Program-described files.
- DBCS code pages.

If a sort sequence table has a weight other than hexadecimal 40 assigned to the blank character,
unpredictable results can occur when strings of unequal lengths are compared.

Sort sequence tables included with the system

You can use the Work with Tables (WRKTBL) command to view the contents of the sort sequence tables
that are included with the IBM i operating system. The tables are located in the QSYS library.

When looking at these tables, consider the following information:

« Several tables included with the system represent a single sort sequence, each encoded with a different
coded character set identifier (CCSID) value. Not all of the characters in a given sort sequence exist in
every CCSID in which the sort sequence is encoded.

« Use the language identifier (LANGID) parameter and the sort sequence (SRTSEQ) parameter to access
the unique-weight tables (*LANGIDUNQ) or the shared-weight tables (*LANGIDSHR).

- When using the sort sequence, the relative weights shown in these tables differ from the actual weights
in the sort sequence table on the system. The relative weights shown in these tables are examples only.

150 IBMi: IBM i globalization

- The relative unique weight of a character is shown by the order of the characters in the sort sequence
table. The relative unique weight is determined by assigning a weight of 1 to the first character in the
sort sequence table and incrementing by 1 for each of the following characters until the end of the table
is reached.

« GCGID is the graphic character global identifier.

For example, the Arabic sort sequence table shows the relative sort sequence weights for characters that
are sorted using the Arabic sort sequence table.

How to build sort sequence tables

To create a user-defined sort sequence table, copy an existing sort sequence table using the Create Table
(CRTTBL) command, and then modify the copy of the table. Table functions allow you to perform the
following tasks:

« Use a definition stored in a source member.
» Create a table based on another sort sequence table using an interactive interface.

You can create a sort sequence table (MYTEST) from a copy of an existing table using the following
CRTTBL command:

CRTTBL TBL(MYTEST) SRCFILE(%PROMPT) TBLTYPE (*SRTSEQ)
BASESRTSEQ (QSYS/QLA10025S) CCSID(037)

This command displays a sort sequence table that you can modify. Your table is created from a function
key on this display. Your resulting table has a coded character set identifier (CCSID) value of 00037. The
table is named MYTEST and is stored in the current library.

The following table shows one way in which the resulting characters may be shown on the first display
of the MYTEST sort sequence table. The actual panel shows characters instead of text descriptions. For
example, the character shown for sequence 0100 is a question mark (?), and the character shown for
sequence 0070 is a colon ().

Note: The characters that you actually see on the first display of the MYTEST sort sequence table might
vary, depending on the device that you use.

Sequence Character

0010 Equal sign

0020 Overline

0030 (SHY)

0040 Hyphen

0050 Comma

0060 Semi-colon

0070 Colon

0080 Exclamation mark
0090 Inverted exclamation mark
0100 Question mark

0110 Inverted question mark
0120 Slash

0130 Period

0140 Acute accent mark

IBM i globalization 151

Sequence Character

0150 Grave accent mark
0160 Caret

0170 Right square bracket
0180 Tilde

0190 Small multiply dot
0200 Comma

You can make changes to the tables to move characters in each code page to the preferred position for
the national language sort sequence table. The ordering is done by increments of 10. Therefore, the first
value is 10, then 20, and so on. If some characters have a shared weight, these groups of characters have
the same sequenced weight.

Related concepts

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

ILE RPG sort sequence

The ILE RPG feature, an option of the IBM Rational Development Studio for i licensed program, provides
the possibility for a user to specify a sort sequence table and to use the table in comparison operations
that are performed with nonnumeric data.

Working with CCSIDs

Using the system implementation of Character Data Representation Architecture (CDRA), you can achieve
consistent representation, processing, and interchange of coded characters (data) on the IBM i operating
system and across IBM Systems. The primary implementation of CDRA on the IBM i operating system is
through coded character set identifier (CCSID) support.

Code pages
Several IBM code pages match the International Standard ISO/IEC 8859. The IBM i operating system
supports parts of the ISO Standard with equivalent IBM code pages.

Related reference
Create Table (CRTTBL) command

Sort sequence for Arabic
The Arabic sort sequence table is used with the Arabic language.

GCGID Character Shared weight Unique weight
SP010000 - 1 1
SP090000 2 2
SP320000 - 3 3
EHY]
SP100000 . 4 4
SP080000 . 5 5
SP080007 . 6 6
SP140000 : 7 7

152 IBMi: IBM i globalization

GCGID Character Shared weight Unique weight
SP140007 8 8

‘.

L
SP130000 9 9
SP020000 i 10 10
SP150000 ¢ 11 11
SP150007 12 12

Q

L
SP120000 / 13 13
SP110000 14 14
SD130000 . 15 15
SD190000 - 16 16
SP050000 . 17 17
SP040000 " 18 18
SP060000 [19 19
SP070000 | 20 20
SM060000 [21 21
SM080000] 22 22
SM110000 [23 23
SM140000 | 24 24
SM050000 (&0 25 25
SC010000 o 26 26
SC040000 § 27 27
SC030000 g 28 28
SM040007 * 29 29

IBM i globalization 153

GCGID Character Shared weight Unique weight
SM070000 \ 30 30
SM030000 & 31 31
SM010000 4 32 32
SM020007 ., 33 33
SA010000 n 34 34
SA060000 - 35 35
SA070000 ” 36 36
SA030000 & 37 37
SA040000 - 38 38
SA050000 - 39 39
SM660000 - 40 40
SM130000 | 41 41
SM650000 | 42 42
SP300000 _— 43 43
SP310000 — 43 44
SM870000 . 43 45
ND100000 i) 44 46
ND100001 44 47
ND010000 1 45 48
ND010001 i 45 49
ND020000 2 46 50
ND020001 Ly 46 51
ND030000 3 47 52
ND030001 v 47 53
ND040000 4 48 54

154 IBMi: IBM i globalization

GCGID Character Shared weight Unique weight
ND040001 § 48 55
ND050000 5 49 56
ND050001 a 49 57
ND060000 & 50 58
ND060001 ! 50 59
ND070000 7 51 60
ND070001 W 51 61
ND080000 b 52 62
ND080001 A 52 63
ND090000 0 53 64
ND090001 i 53 65
LA010000 a4 54 66
LA020000 A 54 67
LB010000 b 55 68
LB020000 B 55 69
LC010000 c 56 70
LC020000 C 56 71
LD010000 d 57 72
LD020000 5] 57 73
LE010000 8 58 74
LE020000 E 58 75
LF010000 § 59 76
LF020000 F 59 77
LG010000 £ 60 78
LG020000 s 60 79

IBM i globalization 155

GCGID Character Shared weight Unique weight
LH010000 h 61 80
LH020000 H 61 81
LI010000 i 62 82
LI020000 I 62 83
LJ010000] 63 84
LJ020000 I 63 85
LK010000 k 64 86
LK020000 K 64 87
LLO20000 1 65 88
LLO20000 L 65 89
LM010000 m 66 90
LM020000 66 91
LN010000 n 67 92
LN020000 N 67 93
LO010000 0 68 94
LO020000 0 68 95
LP010000 p 69 96
LP020000 P 69 97
LQ010000 q 70 98
LQ020000 Q 70 99
LR0O10000 r 71 100
LR0O20000 R 71 101
LS010000 5 72 102
LS020000 g 72 103
LT0210000 | 73 104

156 IBMi: IBM i globalization

GCGID Character Shared weight Unique weight
LT020000 T 73 105
LU010000 u 74 106
LU020000 N 74 107
LV010000 v 75 108
Lv020000 Vv 75 109
LW010000 w 76 110
LW020000 76 111
LX010000 X 77 112
LX020000 ¥ 77 113
LY010000 y 78 114
LY020000 b 78 115
LZ010000 7 79 116
LZ020000 F 79 117
AX300000 2 80 118
AA210000 il 80 119
AA210001 N 80 120
AA210002 1 80 121
AA210006 5 80 122
AA310000 1 80 123
AA310001 5 80 124
AA310002 L 80 125
AA310006 5 80 126
AW310000 H 80 127
AA310401 I:. 80 128
AA310406 4 80 129

IBM i globalization 157

GCGID Character Shared weight Unique weight
AY310001 g 80 130
AY310000 = 80 131
AA010000 | 81 132
AA010001 Y 81 133
AA010002 81 134
AA010006 A 81 135
AB010000 - 82 136
AB010003 o 82 137
AT020000 B 83 138
AT010000 N 83 139
AT010003 3 83 140
AT470000 o 84 141
AT470003 e 84 142
AG230000 - 85 143
AG230003 a 85 144
AH450000 r 86 145
AH450003 - 86 146
AH470000 - 87 147
AH470003 i 87 148
AD010000 3 88 149
AD470000 y 89 150
AR010000 E 90 151
AZ010000 Y 91 152
AS010006 L= 92 153
AS010000 - 92 154

158 IBMi: IBM i globalization

GCGID Character Shared weight Unique weight
AS010003 - 92 155
AS230006 L 93 156
AS230000 ~ 93 157
AS230003 2 93 158
AS450006 U 94 159
AS450000 - 94 160
AS450003 . 94 161
AD450006 B 95 162
AD450000 = 95 163
AD450003 A 95 164
AT450000 L 96 165
AZ450000 L 97 166
AC470000 F 98 167
AC470002 - 98 168
ACA470003 - 98 169
AC470004 . 98 170
AG310000 : 99 171
AG310002 - 99 172
AG310003 5 99 173
AG310004 i 99 174
AF010000 i 100 175
AF010003 3 100 176
AQ010000 g 101 177
AQ010003 3 101 178
AK010000 Af 102 179

IBM i globalization 159

GCGID Character Shared weight Unique weight
AK010003 [y 102 180
AL010000 J 103 181
AL010003 N 103 182
AL220000 B 104 183
AL220003 = 104 184
AL320000 b 104 185
AL320003 N 104 186
AL020000 o 104 187
AL020003 ., 104 188
AM010000 ¢ 105 189
AM010003 y 105 190
AN010000 O 106 191
AN010003 & 106 192
AH010000 8 107 193
AH010003 & 107 194
AH010007 A 107 195
AH010004 ¢ 107 196
AW010000 P 108 197
AA020000 T 109 198
AA020001 @ 109 199
AA020002 . 109 200
AY010000 ¥ 109 201
AY010001 o 109 202
AY010002 - 109 203
AY010003 109 204

160 IBMi: IBM i globalization

GCGID Character Shared weight Unique weight
AA070000 ’ 110 205
AU070000 # 111 206
AI070000 . 112 207
AA050000 - 113 208
AA050004 - 113 209
AU050000 . 114 210
AU050004 - 114 211
AI050000) 115 212
AIO50004 - 115 213
AE050000 - 116 214
AE050004 : 116 215
AX100000 W 117 216
AX100004] 117 217
SM860000 _ 118 218
Sort sequence support

The sort sequence support is provided in these IBM i functions.

A user interface for creating new tables based on system-supplied sort sequence tables
« The Work with Tables (WRKTBL) command for creating and displaying tables

The Create Table (CRTTBL) command for creating tables

CL, ILE RPG1V, and ILE COBOL for compilers.

« Program support

- Work management support

- Database management support

= Other system components support
Related reference

Work with Tables (WRKTBL) command
Create Table (CRTTBL) command

Sort sequence support in programs
You can assign a sort sequence to a program that is used for ordering and comparing data by specifying
the sort sequence to be used at compilation time.

Specify the sort sequence to be used with the sort sequence (SRTSEQ) parameter and language identifier
(LANGID) parameters of the create program commands. Valid SRTSEQ parameter values are:

« SRTSEQ(*HEX) means that no sort sequence should be used (hexadecimal sorting).

IBM i globalization 161

« SRTSEQ(*LANGIDUNQ) or SRTSEQ(*LANGIDSHR) means that the unique- or shared-weight sort
sequence, determined by the LANGID parameter, should be used.

« A name for the system-supplied or user-supplied sort sequence name can be specified explicitly on the
SRTSEQ parameter. If you explicitly specify a sort sequence name, the LANGID parameter is ignored.

« SRTSEQ(*JOB) or LANGID(*JOB) means that the sort sequence to be used is determined by the value
associated with the job when the program is created.

« SRTSEQ(*JOBRUN) or LANGID(*JOBRUN) means that the sort sequence to be used is determined by the
values from the job when the program is run.

The first three options assign the sort sequence to the program object at creation time. This sequence is
always used when the program is run. Using the *JOBRUN value on the SRTSEQ or LANGID parameters,
however, provides the possibility for dynamically assigning sort sequence to the program.

Sort sequence support in work management
Work management involves the assigning of the SRTSEQ value at the job level, the user profile level, and
the system value level.

Sort sequence support at the job level: A sort sequence (SRTSEQ) value is assigned to a job. It is

valid on the Submit Job (SBMJOB), Batch Job (BCHJOB), and the Change Job (CHGJOB) commands. If a
program is created with SRTSEQ(*JOB), the sort sequence is set from the job sort sequence. If a program
is created with SRTSEQ(*JOBRUN), the sort sequence is set from the job sort sequence at run time.

Sort sequence support at the user profile level: The user profile assigns a SRTSEQ value to a user and,
by default, to all jobs running under this user profile. The user profile SRTSEQ value defaults to the sort
sequence system value (QSRTSEQ).

Sort sequence support at the system value level: The QSRTSEQ system value defines a sort sequence
that can be referred to by other objects. The QSRTSEQ system value should be set according to the
requirements of the primary language used on the system.

Related concepts

Sort sequence (QSRTSEQ) system value
The sort sequence (QSRTSEQ) system value, along with the QLANGID system value, determines the sort
sequence table to be used for sorting character data.

Sort sequence support in database management
Database management supports the SRTSEQ and LANGID parameters on the Create Physical File (CRTPF)
and Create Logical File (CRTLF) commands.

The LANGID and SRTSEQ parameters determine a sort sequence table. The sort sequence table is
captured at file creation time and is stored as an attribute of the file. The SRTSEQ job attribute has no
effect on the processing of an existing database file. The sort sequence table associated with the file is
used for key sequencing, select logic fields and omit logic fields, and for join field functions.

The ALTSEQ keyword in DDS can also be used to specify a sort sequence table. The ALTSEQ keyword
applies only to the key fields, not to the select logic fields and the omit logic fields. If the SRTSEQ
parameter is specified on the CRTPF command or the CRTLF commands and the ALTSEQ keyword in the
DDS source file specify a sort sequence table, an error message is sent and the file is not created.

The default SRTSEQ parameter on CRTPF and CRTLF commands is *SRC, which indicates that the sort
sequence table on the ALTSEQ keyword should be used. If ALTSEQ is not used in DDS, the SRTSEQ
attribute of the job determines the file attributes when creating or changing the file.

How sort sequences are specified for database management
Sort sequence tables can be specified in the following areas:
« IBM Query for i support

External sort sequence tables (including those included with the system) and user-defined tables can
be specified.

162 IBMi: IBM i globalization

- IBM Db2 Query Manager and SQL Development Kit for i

The Create Structured Query Language xxx (CRTSQLxxx) commands and the Start Structured Query
Language (STRSQL) command support the SRTSEQ and LANGID parameters.

A sort sequence table can be specified when a query object is being defined with the Work with Queries
display. The sort sequence (SRTSEQ) value and language identifier (LANGID) value are specified on the
Specify Sort Sequence display.

« Db2 for i Query Management

The Create Query Management Query (CRTOMQRY) command supports the SRTSEQ and LANGID
parameters.

Related concepts

Database programming

Related reference

Create Physical File (CRTPF) command

Create Logical File (CRTLF) command

Start SQL Interactive Session (STRSQL) command

Create Query Management Query (CRTOMQRY) command
Related information

Arranging key fields using the SRTSEQ parameter

Sort sequence support in other system components
Sort sequence support is found in these components of the system.

« CRTCLPGM (Create Control Language Program) command

The LANGID and SRTSEQ parameters are supported.
« DSPPGM (Display Program) command

The LANGID and SRTSEQ values that were specified when the program was created are displayed.
« CRTDSPF (Create Display File) command

The LANGID and SRTSEQ parameters are supported. The values of the RANGE, VALUES, and COMP
keywords are validated when the display file is compiled.

« High-level languages

Using ILE COBOL and ILE RPG IV languages, you can specify SRTSEQ and LANGID values directly

on the Create Bound Program (CRTBNDXXX) commands. Original Program Model RPG and COBOL
compilers use the Create Program (CRTXXXPGM) commands. With ILE C, you can also specify SRTSEQ
and LANGID values when you create a locale. You can then associate the locale with a program.

« IBMi Access

The transfer function allows a sort sequence table to be specified when you perform queries on
database files and SQL tables.

Related reference

Display Program (DSPPGM) command
Create Display File (CRTDSPF) command
Related information

Create CL Program (CRTCLPGM) command
System i Access

IBM i globalization 163

Sort sequence scenarios

This table shows characters you can sort using a binary, a shared-weight, and a unique-weight sort
sequence for the Danish code page 00277.

Character name Character Code point in code | Shared sort Unique sort
illustration page 277 weight weight

AE ligature I X'78' 96 183

O slash 5 X'7C' 97 187

A overcircle A X'6B' 98 191

Latin capital N N X'D5' 83 132

Latin capital Z 7 X'E9' 95 181

O umlaut 'S X'EC' 97 189

Latin capital A A X'c1 70 77

Using the information in the previous table, the characters are sorted in ascending order as shown in the

following table.

Position in ascending Binary sort Shared weight sort Unique weight sort
order

First A overcircle Latin capital A Latin capital A
Second AE ligature Latin capital N Latin capital N
Third O slash Latin capital Z Latin capital Z
Fourth Latin capital A AE ligature AE ligature

Fifth Latin capital N O umlaut O slash

Sixth Latin capital Z O slash O umlaut

Seventh O umlaut A overcircle A overcircle

The following table shows an example of a shared-weight sort sequence, a unique weight sort sequence,
and the binary sort sequence for English code page 00037.

Binary sort sequence

Shared-weight sort sequence
using LANGID(ENU) and
SRTSEQ(*LANGIDSHR)

Unique-weight sort sequence
using LANGID(ENU) and
SRTSEQ(*LANGIDUNQ)

Jones, Mary JOHNSON, JOHN JOHNSON, JOHN
JOHNSON, JOHN JONES, MARTIN Jones, Mary
JONES, MARTIN Jones, Mary JONES, MARTIN
Smith, Ron SMITH, ROBERT Smith, Ron

SMITH, ROBERT

Smith, Ron

SMITH, ROBERT

164 IBMi: IBM i globalization

Sort sequence types
The IBM i operating system provides a set of shared-weight and unique-weight sort sequence tables for
SBCS languages.

A shared-weight sequence is a sort sequence in which some graphic characters may have the same
weight as some other characters in the sequence. Those with the same weight sort together as though
they were the same character. For example, the letters a and A might both have the same value 24. This
ensures that words such as able and Able are kept together in a list. In a simple sort table, a and A might
share the value 24, and b and B might share the value 25 and so on.

A unique-weight sequence is a sort sequence in which each graphic character has a weight different from
the weight of every other graphic character in the sequence.

ICU-based sort support
International Components for Unicode (ICU) based sort support is based on the ICU collation services,
which provide a multiple-weight (tertiary level) sort support.

ICU-based sort supports the sorting of data in most CCSIDs supported by the operating system. It
also provides a multiple-weight sort based on strings. ICU-based sort support does not allow users to
generate additional sort tables.

ICU-based sort sequence types
An ICU locale sequence is a sort sequence in which a tertiary level sort is used in determining a sort key
based on the text string.

In tertiary level sorting, upper and lower case differences in characters are distinguished (for example,
"ao" < "Ao" < "a "-::'“). In addition, a variant of a letter differs from the base form on the tertiary level (such

as IIaII and n ﬁll).

ICU locales and sort tables provided by the system

The ICU locale data covers 82 different languages, further divided into 197 regions and variants. For each
language, data such as days of the week, months, and their abbreviations are defined. The sort sequence

tables for ICU that are defined on the system are based on these locales and regions, as listed in the table
in this topic.

The system provides a table (*TBL) object for each of these locales for you to use when you specify an
ICU-based sort. For example, the table object QSYS/ES_MX directs the database to use the 2.6 version of
the ICU sort for Spanish in Mexico. The table object QSYS/I34ES_MX directs the database to use the 3.4
version of the ICU sort for Spanish in Mexico. ICU provides over 100 locale choices that you can use. See
the following example table for a list of the Spanish choices. For the full list of locales that you can use for
sort choices, see the IBM Globalization - ICU Web page.

For systems running IBM i V6R1, or later, the system ICU sort support has been updated to ICU 3.4. For
systems running IBM i V5R4, or earlier, this support is based on ICU 2.6. The ICU 3.4 tables follow the
naming of I34xx_yy. You can see these choices by looking at the table objects on the operating system.
Use the following command to see the ICU 3.4 tables: WRKTBL TBL (QSYS/I34x%)

If your applications use ICU sort support, you need to update them to use the 3.4 version of the support
for better performance.

Example locale name Language or variant Region

ES Spanish

ES_AR Spanish Argentina
ES_BO Spanish Bolivia
ES_CL Spanish Chile
ES_CO Spanish Colombia
ES_CR Spanish Costa Rica

IBM i globalization 165

http://www.ibm.com/software/globalization/icu/index.jsp

Example locale name Language or variant Region
ES_DO Spanish Dominican Republic
ES_EC Spanish Ecuador
ES_ES Spanish Spain
ES_ES_PREE Spanish Pre-Euro Spain

ES_GT Spanish Guatemala
ES_HN Spanish Honduras
ES_MX Spanish Mexico
ES_NI Spanish Nicaragua
ES_PA Spanish Panama
ES_PE Spanish Peru

ES_PR Spanish Puerto Rico
ES_PY Spanish Paraguay
ES_SV Spanish El Salvador
ES_US Spanish United States
ES_UY Spanish Uruguay
ES_VE Spanish Venezuela
ES__TRADIT Spanish Traditional

Sort sequence scenarios
This table shows an example of the results you might obtain, given the same input data but different ICU
locales specified on the sort request. The two locales used are EN_US and FR_FR.

en_us ICU locale sort sequence using fr_fr ICU locale sort sequence using
SRTSEQ(EN_US) SRTSEQ(FR_FR)
cote cote
cot c
é &)
te
o cot
0 é
te
C o
0 0
t t
é é

Related concepts
ICU sort sequence

166 IBMi: IBM i globalization

ICU-based sort sequence support

IBM i support for ICU sort sequence is provided in IBM i functions in the Work management and Database
management topics.

Related concepts

Work management
Related information
Database

Working with bidirectional data

Arabic and Hebrew languages use an alphabet written and read from right to left. Numerics and Latin text
embedded in the right-to-left text are written and read from left to right. Therefore, these languages are
called bidirectional languages. These languages have some unique properties to be aware of.

Visual and logical storage of text

When Arabic and Hebrew support was added to the IBM i originally, the system was used in a stand-alone
environment. The designers of this support decided to store the bidi data in a visual form. The data is
stored in memory as it is seen on the display. No special processing is needed to format the data for
presentation, since it is already in presentation form. Since the data only existed on the IBM i, it did not
matter what form was used. When Arabic and Hebrew support was added to PC and UNIX systems, the
designers of this support decided to store the bidi data in a logical way. The data is stored in memory

in the order it is typed, not how it is displayed. This method had the advantage that bidi data looked

to non-bidi applications as "normal"” data. The disadvantage was that the system needs to format the
data for presentation. Since the data only existed on that box, it did not matter what form was used.
However, as time went on, customers began to interchange data back and forth between the IBM i and
other applications. They then discovered that even though the same characters were used, the data was
not the same. The data needed both a encoding change and also to be logically reordered.

To solve this situation, several CCSIDs were created to allow the customer to tell the system what type
of action they want to occur. Multiple CCSIDs allow the system to "do the correct processing" of the bidi
data. For this list, see Bidirectional sensitive CCSIDS.

The terms left and right

Because bidirectional languages are written and read from right to left, you should avoid using the terms
left and right. For example, right margin in Hebrew or Arabic documents is the beginning of the line and
not the end. Use the words start and end in place of the words right and left.

Case-sensitive characters

Hebrew and Arabic have no case-sensitive characters. To avoid the incorrect presentation of characters,
no case-sensitive checking or substitution should be performed. In addition, the Arabic language does not
use abbreviations, therefore, you should use only complete words.

Related concepts
Coding globalized applications that use bidirectional data

IBM i globalization 167

When you are developing NLV-enabled applications, you should consider some specific restrictions on
bidirectional languages.

Bidirectional application support

Workstations, display files, and the user interface manager (UIM) provide support for bidirectional
applications.

Workstation support

Workstations that have the ability to display Arabic and Hebrew character sets also have the ability of
right-to-left cursor movement. Right-to-left cursor movement on input fields can be achieved in one of the
following ways:

 Pressing a special function key available on Hebrew and Arabic keyboards called the reverse key. This is
a toggle function that moves the cursor to the other side of the field, allows for cursor movement in the
opposite direction, and also changes the language layer from Latin to Hebrew or Arabic and back again.

« Using the DDS cursor control codes for display files. When the CHECK keyword is used with a cursor-
controlled code, it specifies that the cursor is to move from right to left. The following parameters are
valid cursor control codes:

— CHECK (RL): Moves the cursor from right to left in specified nonnumeric input fields or in all
nonnumeric input fields on the display.

— CHECK (RLTB): Moves the cursor from right to left between fields.
When using these parameters, consider the following information:

— Modulus check digit verification is supported, but the check digit is the byte to the extreme right of
the field.

— Afield for which right-to-left cursor movement is specified can occupy more than one line on the
display. However, the cursor still moves from the top of the display to the bottom.

— You cannot use right-to-left cursor movement with user-defined data streams.

Note: If no cursor positioning is specified in the display file or by the program, the cursor is placed in the
input-capable field to the extreme left of the top line.

Display file support

The system does not check to make sure that all display files that open to the display station are capable
of right-to-left cursor movement. Therefore, it is the responsibility of application programmers to ensure
that the appropriate display files are used.

User interface manager support

The user interface manager gives the following bidirectional support for creating online information and
panels:

« BIDI= NONE | RTL|LTR
This attribute controls the directional orientation of the panels in the panel group.

RTL indicates that the panel in the panel group is bidirectional and should be displayed with a right-to-
left orientation.

LTR indicates that the panel in the panel group is bidirectional and should be displayed with a left-to-
right orientation.

« :RT and :ERT

Reverse-direction-text tags indicate that the enclosed text has an orientation that is opposite to the
orientation of the panel group.

For a list of UIM tags, see the Application Display Programming PDF.

168 IBMi: IBM i globalization

Related reference

DDS concepts

Related information
Application Display Programming PDF

Checklist: Bidirectional support guidelines

When you create an application with bidirectional support, follow the guidelines in this table.

Complies

Not
applicable

Rule

Software design must allow for bidirectional data to be passed to
applications in the same order that a speaker of the language can spell it
out.

The product design must allow for the implementation of the correct
handling of bidirectional keyboard and presentation functions.

Designing of a function that implies logical movement of cursor or
characters must permit mirroring of that function.

Keys or operations labeled with directional icons or symbols must
perform according to the icon or symbol.

Keyboard nomenclature for mirrored functions must be independent of
the direction of data or text entry.

Display functions must not assume a left-to-right orientation.

Field attributes must contain room for directional information.

Indicator location must be reserved for the current direction of the cursor
(direction of input).

The design must allow for independent handling of graphic and text
orientation.

Provision must be made to allow shape determination to be performed.

The deshaping must be definable.

Provision must be made to allow the selection of the appropriate
presentation shape for the numerals.

Characters must be allowed to touch each other on printers and displays.

Indicator locations should be reserved for screen and field orientation,
current level of nesting, status of push (nesting mechanism), and status of
symmetric swapping.

The design should provide for a method to indicate to the user the nesting
structure of a string.

A system-wide method of deshaping Arabic characters or character
strings should be provided.

An indicator location should be provided for the status of shape
determination.

A method should be provided so that proportional spacing can be
provided.

A method should be provided to allow alignment of the baseline of Arabic
and Latin characters (including Hindi and Arabic shapes for numerals).

IBM i globalization 169

https://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415715.pdf

Related concepts

Coding globalized applications that use bidirectional data

When you are developing NLV-enabled applications, you should consider some specific restrictions on
bidirectional languages.

Working with DBCS data

A DBCS file is a file that contains double-byte data or a file that is used to process double-byte data, for
example, Japanese, Chinese, or Korean. Other files are called alphanumeric files. You can view DBCS files
on display, printer, tape, diskette, and ICF devices.

A more modern method to support DBCS data is to use Unicode instead of DBCS fields. (IBM suggests
that you use Unicode to develop new applications.)

You use data description specifications (DDS) to describe DBCS-capable device files.
You should indicate that a file is DBCS in one or more of the following situations:

« The file receives input, or displays or prints output, which has double-byte characters.
« The file contains double-byte literals.

The file has double-byte literals in the DDS that are used in the file at processing time (such as constant
fields and error messages).

The DDS of the file includes DBCS keywords.
The file stores double-byte data (database files).

DBCS strings in a mixed data stream

Typically, both single-byte characters and double-byte characters are used in a DBCS environment. For
example, an accounting firm in Japan uses both English and Japanese for the spreadsheet. If both English
and Japanese are being encoded as mixed SBCS and DBCS, the product must be able to understand a
mixed character set that contains both single-byte coded characters and double-byte coded characters.

In IBM systems that use EBCDIC, a DBCS string is bracketed in a mixed data stream by a shift-out (SO)
control character and a shift-in (SI) control character.

The following example shows the coding for a mixed string:
sss (SO) D1D2D (SI) ssss
The following example shows the coding for a mixed hexadecimal string:

818283 OE 41424143 OF 818283

Supported code ranges

The IBM i operating system supports Japanese, Korean, Simplified Chinese, and Traditional Chinese
character-set code ranges.

Using the IBM i Access Family of products, the systems also provide support for these non-IBM personal
computer DBCS code pages:

« Republic of Korea National Standard graphic character set (KS)

« Taiwan Industry Standard graphic character set (Big5)

« The People's Republic of China National Standard graphic character set (GB)
Related concepts

DDS concepts

Related information

System i Access

170 IBMi: IBM i globalization

Checklist: DBCS application design

When you create an application with double-byte coded character set (DBCS) support, follow these
guidelines.

A complete list of these guidelines, as well as a full description of each guideline, is included in Volume 1
Designing Enabled Products, Rules and Guidelines (SE09-8001). For your convenience, a subset of these
guidelines is provided in the following table.

Complies Not Rule
applicable

Double-byte coded character set code points in the graphic character
range must be used only for graphic characters and must not be used for
control purposes.

Single-byte meaning must not be drawn from either byte of double-byte
coded data.

Double-byte coded character set character generators must be capable of
producing user-accessible graphic characters.

The ability to switch between single-byte coded character set and
double-byte coded character set and the coexistence of single-byte
coded character set and double-byte coded character set in the same
session must be possible.

User-interface text modules for double-byte coded character set systems
must be loaded separately from the running code.

Developing applications that process DBCS data

You should design your application programs for processing double-byte data in the same way you design
application programs for processing alphanumeric data.

Here are some additional considerations:

« Make sure that the double-byte data is always processed in a double-byte unit and does not split a
double-byte character.

« Identify double-byte data used in the database files.
- Design display and printer formats that can be used with double-byte data.

« If needed, provide DBCS conversion as a means of entering double-byte data for interactive
applications. Use the DDS keyword for DBCS conversion (IGCCNV) to specify DBCS conversion in display
files. Because DBCS workstations provide a variety of double-byte data entry methods, you are not
required to use the IBM i DBCS conversion function to enter double-byte data.

 Create double-byte messages to be used by the program.
- Specify extended character processing so that the system prints and displays all double-byte data.

« Determine whether additional double-byte characters need to be defined. User-defined characters can
be defined and maintained using the character generator utility (CGU). Information about CGU can be
found in the ADTS/400: Character Generator Utility, book SC09-1769-00.

Related concepts

Designing globalized applications
Your goal in designing international application components is to create components that support
national languages independently.

Use of double-byte data
You can use double-byte data in several ways.

« As datain files:

IBM i globalization 171

Data in database files.

Data entered in input-capable and data displayed in output-capable fields of display files.

Data printed in output-capable fields in printer files.

Data used as literals in display files and printer files.

« As the text of messages.

« As the text of object descriptions.

- As literals and constants, and as data to be processed by high-level language programs.

Double-byte data can be displayed only at DBCS displays and printed only on DBCS printers. Double-byte
data can be written onto diskette, tape, disk, and optical storage.

Where you cannot use double-byte data:
You cannot use double-byte data in the following ways:
- As IBM i object names.

« As command names or variable names in control language (CL) and other high-level languages.
« As displayed or printed output on alphanumeric workstations.

Double-byte character size:
When displayed or printed, double-byte characters typically are twice as wide as single-byte characters.

Consider the width of double-byte characters when you calculate the length of a double-byte data field
because field lengths are typically identified as the number of single-byte character positions used. The
DDS concepts information includes more information about calculating the length of fields containing
double-byte data.

Related reference

DDS concepts

Related information

Application Display Programming PDF

DBCS coding considerations
If the application will be used in a DBCS environment, ensure that it is DBCS-enabled. Here are some
suggestions to consider when you develop the general product design.

« Reserve more expansion space for DBCS textual data translation than you reserve for SBCS textual
data translation. (It is possible, however, that the number of bytes used may be reduced when a SBCS
sentence is being translated into DBCS.)

« Ensure programs can understand shift-out and shift-in delimiters. Otherwise, EBCDIC mixed-byte
character strings cannot be handled.

« Do not enable short responses for DBCS. For short responses, it is difficult to shift in and out of DBCS.
The yes and no are examples of short responses.

- Remember to use the graphic data type G where appropriate.
« Remember that the 5494 remote controller supports the graphic data type.

« Be careful when converting mixed data between DBCS-host code and DBCS-PC code, because the
transition may change the data length. Losing and gaining SO and SI character pairs can upset field-
length calculations.

« Make sure the double-byte data is always processed in a double-byte unit. Do not split a double-byte
character.

« Design the display as well as the print format to avoid the problem of truncation of a double-byte
character into two single-byte units.

172 IBMi: IBM i globalization

ht