IBM i
7.2

Networking
Domain Name System

IBM
Note
Before using this information and the product it supports, read the information in “Notices” on page 49.

This edition applies to IBM i 7.2 (product number 5770-SS1) and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is licensed to you under the terms of the IBM License Agreement for Machine Code.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Domain Name System

- What's new for IBM i 7.2...1
- PDF file for Domain Name System..2
- DNS concepts..2
 - Understanding zones...3
 - Understanding DNS queries...4
 - DNS domain setup...6
 - Dynamic updates..6
 - BIND 9 features...7
 - DNS resource records..9
 - Mail and MX records...14
 - DNS Security Extensions (DNSSEC) Introduction........................15
- DNS...15
 - Example: Single DNS server for an intranet.................................15
 - Example: Single DNS server with Internet access........................17
 - Example: DNS and DHCP on the same IBM i................................19
- DNS requirements..27
 - Determining if DNS is installed..27
 - Installing DNS..28
- Configuring DNS...28
 - Accessing DNS in IBM Navigator for i...28
 - Configuring name servers..28
 - Creating a name server instance...29
 - Editing DNS server properties...29
 - Configuring zones on a name server..29
 - Configuring views on a name server..30
 - Configuring DNS to receive dynamic updates............................30
 - Configuring DNSSEC...31
 - Configuring Trusted-keys/Managed-keys................................31
 - Configuring DNSSEC options..31
 - Signing a primary zone..31
 - Re-signing a primary zone..32
 - Un-signing a primary zone...32
 - Configuring DNSSEC...32
 - Configuring the allow-update option..................................32
 - Configuring the update-policy option.................................32
 - Configuring the auto-dnssec option.................................33
 - Importing DNS files..33
 - Record validation...33
 - Accessing external DNS data..34
 - Managing DNS..34
 - Verifying the DNS function is working................................35
 - Managing security keys...35
 - Managing DNS keys...35
 - Managing dynamic update keys..36
Domain Name System

Domain Name System (DNS) is a distributed database system for managing host names and their associated Internet Protocol (IP) addresses.

With DNS, people can use simple names, such as www.jkltoys.com to locate a host, rather than using the IP addresses, for example, 192.168.12.88 in IPv4, or 2001:D88::1 in IPv6. A single server might be responsible only for knowing the host names and IP addresses for a small part of a zone, but DNS servers can work together to map all domain names to their IP addresses. DNS servers that work together allow computers to communicate across the Internet.

For IBM i 7.2, DNS services are based on the industry-standard DNS implementation, known as Berkeley Internet Name Domain (BIND) version 9. For previous IBM i releases, DNS services were based on older BIND version 9 or BIND version 8. To use the new BIND version 9 DNS server in V7R2, you must have IBM i option 31 (DNS) and option 33 (Portable Application Solutions Environment (PASE)) and 5733-SC1 option 1 (OpenSSH, OpenSSL, zlib) installed on your IBM i. Starting from IBM i V6R1, for security reasons, BIND 4 and 8 has been replaced with BIND 9. Thus, the migration to BIND 9 is required for your DNS server.

What's new for IBM i 7.2

Read about new or significantly changed information for the Domain Name System (DNS) topic collection. DNS for i5/OS® supports DNSSEC in this release. New commands and configuration options are added.

New DNSSEC commands

The following commands are added for DNSSEC configuration and maintenance.

Generate DNSSEC Key (GENDNSKEY)

The Generate DNS Key (GENDNSKEY) command generates keys for DNSSEC (Secure DNS), as defined in RFC 2535 and RFC 4034. It can also generate keys for use with TSIG (Transaction Signatures) as defined in RFC 2845, or TKEY (Transaction Key) as defined in RFC 2930. By default, the generated files would be stored in the directory of /QIBM/UserData/OS400/DNS/_DYN.

Add DNSSEC Signature (ADDDNSSIG)

The Add DNS Signature (ADDDNSSIG) command signs a zone. It generates NSEC and RRSIG records and produces a signed version of the zone. The security status of delegations from the signed zone (that is, whether the child zones are secure or not) is determined by the presence or absence of a keyset file for each child zone.

Generate DNSSEC DS RR (GENDNSDSRR)

The Generate DNSSEC DS RR (GENDNSDSRR) command generates the Delegation Signer (DS) resource record (RR).

Set DNSSEC REVOKE Bit (SETDNSRVK)

The Set DNSSEC REVOKE Bit (SETDNSRVK) command reads a DNSSEC key file, sets the REVOKED bit on the key, and creates a new pair of key files containing the now-revoked key.

New configuration commands

The following commands are added to create the configuration of DDNS and print the contents of a zone journal file.

Create DDNS Configuration (CRTDDNSCFG)

The Create DDNS Configuration (CRTDDNSCFG) command generates a key for use by NSUPDATE command and Dynamic DNS (DDNS) server. It simplifies configuration of dynamic zones by generating a key and providing the NSUPDATE command and named.conf syntax that will be needed to use it, including an example update-policy statement. Note that DNS server itself can configure a local DDNS
key for use with NSUPDATE LOCALHOST(*YES). This command is only needed when a more elaborate configuration is required: for instance, if NSUPDATE is to be used from a remote system.

Dump DNS Journal File (DMPDNSJRNF)
The Dump DNS Journal File (DMPDNSJRNF) command dumps the contents of a zone journal file in a human-readable form.

Related concepts
DNS Security Extensions (DNSSEC) Introduction
DNSSEC is a suite of IETF RFC specifications which add security extensions to DNS.

PDF file for Domain Name System
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select Domain Name System (about 625 KB).

Saving PDF files
To save a PDF on your workstation for viewing or printing:
1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click **Save**.

Downloading Adobe Reader
You need Adobe Reader installed on your system to view or print these PDFs. You can download a free copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html).

Related reference
Related information for Domain Name System
IBM Redbooks publications, Web sites, and other information center topic collections contain information that relates to the Domain Name System (DNS) topic collection. You can view or print any of the PDF files.

Domain Name System concepts
Domain Name System (DNS) is a distributed database system for managing host names and their associated Internet Protocol (IP) addresses. With DNS, you can use simple names, such as www.jkltoys.com, to locate a host, rather than using the IP addresses, for example, 192.168.12.88 in IPv4, or 2001:D88::1 in IPv6.

A single server might be responsible only for knowing the host names and IP addresses for a small part of a zone, but DNS servers can work together to map all domain names to their IP addresses. DNS servers that work together allows computers to communicate across the Internet.

DNS data is broken up into a hierarchy of domains. Servers are responsible to know only a small portion of data, such as a single subdomain. The portion of a domain for which the server is directly responsible is called a zone. A DNS server that has complete host information and data for a zone is authoritative for the zone. An authoritative server can answer queries about hosts in its zone, using its own resource records. The query process depends on a number of factors. Understanding DNS queries explains the paths that a client can use to resolve a query.
Understanding zones

Domain Name System (DNS) data is divided into manageable sets of data called zones. And each of these sets is a specific zone type.

Zones contain name and IP address information about one or more parts of a DNS domain. A server that contains all of the information for a zone is the authoritative server for the domain, called a parent zone. Sometimes it makes sense to delegate the authority for answering DNS queries for a particular subdomain to another DNS server, called a child zone. In this case, the DNS server for the domain can be configured to refer the subdomain queries to the appropriate server.

For backup and redundancy, zone data is often stored on servers other than the authoritative DNS server. These other servers are called secondary servers, which load zone data from the authoritative server. Configuring secondary servers allows you to balance the demand on servers and also provides a backup in case the primary server goes down. Secondary servers obtain zone data by doing zone transfers from the authoritative server. When a secondary server is initialized, it loads a complete copy of the zone data from the primary server. The secondary server also reloads zone data from the primary server or from other secondaries for that domain when zone data changes.

DNS zone types

You can use IBM i DNS to define several types of zones to help you manage DNS data:

Primary zone
A primary zone loads zone data directly from a file on a host. It can contain a subzone, or child zone. It can also contain resource records, such as host, alias (CNAME), IPv4 address (A), IPv6 address (AAAA), or reverse mapping pointer (PTR) records.

Note: Primary zones are sometimes referred to as master zones in other BIND documentation.

Subzone
A subzone defines a zone within the primary zone. Subzones allow you to organize zone data into manageable pieces.

Child zone
A child zone defines a subzone and delegates responsibility for the subzone data to one or more name servers.

Alias (CNAME)
An alias defines an alternate name for a primary domain name.

Host
A host object maps A and PTR records to a host. Additional resource records can be associated with a host.

Secondary zone
A secondary zone loads zone data from a zone’s primary server or another secondary server. It maintains a complete copy of the zone for which it is a secondary.

Note: Secondary zones are sometimes referred to as slave zones in other BIND documentation.

Stub zone
A stub zone is similar to a secondary zone, but it only transfers the name server (NS) records for that zone.

Forward zone
A forward zone directs all queries for that particular zone to other servers.

Related concepts
Understanding Domain Name System queries
Domain Name System (DNS) clients use DNS servers to resolve queries. The queries might come directly from the client or from an application running on the client.

Related tasks
Configuring zones on a name server
After you configure a Domain Name System (DNS) server instance, you need to configure the zones for the name server.

Related reference

Example: Single Domain Name System server for an intranet
This example depicts a simple subnet with a Domain Name System (DNS) server for internal use.

Domain Name System resource records
Resource records are used to store data about domain names and IP addresses. You can use the Resource record lookup table to look into the resource records supported for the IBM i operating system.

Understanding Domain Name System queries

Domain Name System (DNS) clients use DNS servers to resolve queries. The queries might come directly from the client or from an application running on the client.

The client sends a query message to the DNS server that contains a fully qualified domain name (FQDN), a query type, such as a particular resource record the client requires, and the class for the domain name, which is typically the Internet (IN) class. The following figure depicts the sample network from the Single DNS server with Internet access example.
Suppose that host `dataentry` queries the DNS server for `graphics.mycompany.com`. The DNS server uses its own zone data and responds with the IP address 10.1.1.253.

Now suppose `dataentry` requests the IP address of `www.jkl.com`. This host is not in the DNS server's zone data. Two paths can be followed: **recursion** or **iteration**. If a DNS server is set to use **recursion**, the server can query or contact other DNS servers on behalf of the requesting client to fully resolve the name, and then send an answer back to the client. Additionally, the requesting server stores the answer into its cache so that the answer can be used the next time that the server receives that query. If a DNS server is set to use **iteration**, a client can attempt to contact other DNS servers on its own to resolve a name. In this process, the client uses separate and additional queries based on referral answers from servers.

Related reference
- Understanding zones
Domain Name System (DNS) data is divided into manageable sets of data called zones. And each of these sets is a specific zone type.

Example: Single Domain Name System server with Internet access
This example depicts a simple subnet with a Domain Name System (DNS) server connected directly to the Internet.

Domain Name System domain setup
Domain Name System (DNS) domain setup requires domain name registration to prevent others from using your domain name.

DNS allows you to serve names and addresses on an intranet, or internal network. It also allows you to serve names and addresses to the rest of the world through the Internet. If you want to set up domains on the Internet, you are required to register a domain name.

If you are setting up an intranet, you are not required to register a domain name for internal use. Whether to register an intranet name depends on whether you want to ensure that no one else can ever use the name on the Internet, independent of your internal use. Registering a name that you are going to use internally ensures that you will never have a conflict if you later want to use the domain name externally.

Domain registration can be performed by direct contact with an authorized domain name registrar, or through some Internet Service Providers (ISPs). Some ISPs offer a service to submit domain name registration requests on your behalf. The Internet Network Information Center (InterNIC) maintains a directory of all domain name registrars that are authorized by the Internet Corporation for Assigned Names and Numbers (ICANN).

Related reference
Example: Single Domain Name System server with Internet access
This example depicts a simple subnet with a Domain Name System (DNS) server connected directly to the Internet.

Related information
Internet Network Information Center (InterNIC)

Dynamic updates
IBM i Domain Name System (DNS) that is based on BIND 9 supports dynamic updates. Outside sources, such as Dynamic Host Configuration Protocol (DHCP), can send updates to the DNS server. In addition, you can also use DNS client tools, such as Dynamic Update Utility (NSUPDATE), to perform dynamic updates.

DHCP is a TCP/IP standard that uses a central server to manage IP addresses and other configuration details for an entire network. A DHCP server responds to requests from clients, dynamically assigning properties to them. DHCP allows you to define network host configuration parameters at a central location and automate the configuration of hosts. It is often used to assign temporary IP addresses to clients for networks that contain more clients than the number of IP addresses available.

In the past, all DNS data was stored in static databases. All DNS resource records had to be created and maintained by the administrator. But, DNS servers that are based on BIND 8, or later, can be configured to accept requests from other sources to update zone data dynamically.

You can configure your DHCP server to send update requests to the DNS server each time it assigns a new address to a host. This automated process reduces DNS server administration in rapidly growing or changing TCP/IP networks, and in networks where hosts change locations frequently. When a client using DHCP receives an IP address, that data is immediately sent to the DNS server. Using this method, DNS can continue to successfully resolve queries for hosts, even when their IP addresses change.

You can configure DHCP to update address mapping (A for IPv4 or AAAA for IPv6) records, reverse-lookup pointer (PTR) records, or both on behalf of a client. The address mapping record (A or AAAA) maps a machine’s host name to its IP address. The PTR record maps a machine's IP address to its host name. When a client's address changes, DHCP can automatically send an update to the DNS server so other hosts in the network can locate the client through DNS queries at the client's new IP address. For each
record that is updated dynamically, an associated Text (TXT) record is written to identify that the record was written by DHCP.

Note: If you set DHCP to update only PTR records, you must configure DNS to allow updates from clients so that every client can update its A record if the client uses IPv4 address, or update its AAAA record if the client uses IPv6 address. Not all DHCP clients support making their own A or AAAA record update requests. Consult the documentation for your client platform before choosing this method.

Dynamic zones are secured by creating a list of authorized sources that are allowed to send updates. You can define authorized sources using individual IP addresses, whole subnets, packets that have been signed using a shared secret key (called a *Transaction Signature*, or TSIG), or any combination of those methods. DNS verifies that incoming request packets are coming from an authorized source before updating the resource records.

Dynamic updates can be performed between DNS and DHCP on a single IBM i platform, between different IBM i platforms, or between a IBM i platform and other systems that are capable of dynamic updates.

Note: The dynamic Update DNS (*QTOBUPDT*) API is required on servers that are sending dynamic updates to DNS. It is installed automatically with IBM i Option 31, DNS. However, in BIND 9, the *NSUPDATE* command is the preferred method to make the updates on the IBM i platform.

Related concepts

Dynamic Host Configuration Protocol

Related tasks

Configuring Domain Name System to receive dynamic updates

Domain Name System (DNS) servers running BIND 9 can be configured to accept requests from other sources to update zone data dynamically. This topic provides instructions for configuring the allow-update option so DNS can receive dynamic updates.

Configuring the DHCP to send dynamic updates to DNS

Re-signing a zone

For a signed primary zone, if there are new changes made to the resource records of the zone, the zone then needs a re-signing.

Related reference

Example: Domain Name System and Dynamic Host Configuration Protocol on the same IBM i

This example depicts Domain Name System (DNS) and Dynamic Host Configuration Protocol (DHCP) on the same IBM i platform.

Domain Name System resource records

Resource records are used to store data about domain names and IP addresses. You can use the Resource record lookup table to look into the resource records supported for the IBM i operating system.

QTOBUPDT

BIND 9 features

BIND 9 is similar to BIND 8; however, it provides several features to enhance performance of your Domain Name System (DNS) server, such as views.

BIND 9 features

BIND 9 is similar to BIND 8; however, it provides several features to enhance performance of your Domain Name System (DNS) server, such as views.

Views on a single IBM i DNS server

The *view* statement allows a single DNS instance to answer a query differently depending on where the query comes from, such as the Internet or an intranet.

One practical application of the view feature is to split DNS setups without having to run multiple DNS servers. For example, in a single DNS server, you can define a view to answer queries from an internal network, while define another view to answer queries from external network.
New client commands

The following client commands enhance the management capability of your DNS server:

Dynamic Update Utility (NSUPDATE)
The Dynamic Update Utility (NSUPDATE) command is used to submit Dynamic DNS Update requests as defined in Request for Comments (RFC) 2136 to a DNS server. This allows resource records to be added or removed from a zone while the DNS server is running. Thus, you do not need to update records by manually editing the zone file. A single update request can contain requests to add or remove multiple resource records, but the resource records that are dynamically added or removed with the NSUPDATE command should be in the same zone.

Note: Do not manually edit zones that are under dynamic control by using the NSUPDATE command or through a DHCP server. Manual edits might conflict with dynamic updates and cause data to be lost.

Start DIG Query (DIG)
Domain Information Groper (DIG) is a more powerful query tool, compared with the Name Server Lookup (NSLOOKUP) command, that you can use to retrieve information from a DNS server or test the response of a DNS server. The NSLOOKUP command is deprecated and is only provided for compatibility with earlier versions. You can use DIG to verify that a DNS server is responding correctly before you configure your system to use it. You can also retrieve DNS information about hosts, domains, and other DNS servers by using DIG.

You can use the Start DIG Query (STRDIGQRY) command or its alias DIG to start the Domain Information Groper tool.

Start HOST Query (HOST)
The Start HOST Query (HOST) command is used for DNS lookups. You can use it to convert domain names to IP addresses (either IPv4 or IPv6) and vice versa.

Remote Name Daemon Control (RNDC)
The Remote Name Daemon Control (RNDC) command is a powerful utility that allows a system administrator to control the operation of a name server. It reads a configuration file, called rndc.conf, to determine how to contact the name server and to determine what algorithm and key it should use. If no rndc.conf file is found, then, by default, an rndc-key._KID file that is created during installation is used, which automatically grants access through the loopback interface.

IPv6 support
BIND 9 supports name-to-address and address-to-name lookups in all currently defined forms of IPv6. For forward lookups, BIND 9 supports both AAAA and A6 records, but A6 records are now deprecated. For IPv6 reverse lookups, it supports the traditional "nibble" format used in the ip6.arpa domain, as well as the older, deprecated ip6.int domain.

Journal files
Journal files are used to hold dynamic updates for a zone. It is automatically created when the first dynamic update from a client is received, and does not disappear. This is a binary file and should not be edited.

With the journal file, when a server is restarted after a shutdown or crash, it replays the journal file to incorporate into the zone any updates that took place after the last zone dump. Journal files are also used to store updates for the incremental zone transfers (IXFR) method.

DNS for IBM i has been redesigned to use BIND 9. To run BIND 9 DNS on your system, your system must meet certain software requirements.

Related concepts
Domain Name System requirements
Consider these software requirements to run Domain Name System (DNS) on your IBM i platform.
IBM i Domain Name System (DNS) that is based on BIND 9 supports dynamic updates. Outside sources, such as Dynamic Host Configuration Protocol (DHCP), can send updates to the DNS server. In addition, you can also use DNS client tools, such as Dynamic Update Utility (NSUPDATE), to perform dynamic updates.

Related reference
Example: Splitting DNS over firewall by setting up two DNS servers on the same IBM i
This example depicts a Domain Name System (DNS) server that operates over a firewall to protect internal data from the Internet, while allowing internal users to access data on the Internet. This configuration accomplishes this protection by setting up two DNS servers on the same IBM i platform.

Planning security measures
Domain Name System (DNS) provides security options to limit outside access to your server.

Domain Name System resource records
Resource records are used to store data about domain names and IP addresses. You can use the Resource record lookup table to look into the resource records supported for the IBM i operating system.

A DNS zone database is made up of a collection of resource records. Each resource record specifies information about a particular object. For example, address mapping (A) records map a host name to an IP address, and reverse-lookup pointer (PTR) records map an IP address to a host name. The server uses these records to answer queries for hosts in its zone. For more information, use the table to view DNS resource records.

Note: The entries in the resource record lookup table might be added or removed according to the change of the BIND document. Also, this is not a comprehensive list of all resource records listed in BIND.

<table>
<thead>
<tr>
<th>Resource record</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Mapping records</td>
<td>A</td>
<td>The A record specifies the IP address of this host. A records are used to resolve a query for the IP address of a specific domain name. This record type is defined in Request for Comments (RFC) 1035.</td>
</tr>
<tr>
<td>Andrew File System Database records</td>
<td>AFSDB</td>
<td>The AFSDB record specifies the AFS or DCE address of the object. AFSDB records are used like A records to map a domain name to its AFSDB address; or to map from the domain name of a cell to authenticated name servers for that cell. This record type is defined in RFC 1183.</td>
</tr>
<tr>
<td>Canonical Name records</td>
<td>CNAME</td>
<td>The CNAME record specifies the actual domain name of this object. When DNS queries an aliased name and finds a CNAME record pointing to the canonical name, it then queries that canonical domain name. This record type is defined in RFC 1035.</td>
</tr>
<tr>
<td>Resource record</td>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>DNSSEC Lookaside Validation record</td>
<td>DLV</td>
<td>The DLV record specifies DNSSEC trust anchors outside of the DNS delegation chain. It uses the same format as the DS record. This record type is defined in RFC 4431.</td>
</tr>
<tr>
<td>DNS Key record</td>
<td>DNSKEY</td>
<td>The DNSKEY record specifies the DNSSEC key record. A zone signs its authoritative RRsets by using a private key and stores the corresponding public key in a DNSKEY RR. This record type is defined in RFC 4034.</td>
</tr>
<tr>
<td>DS record</td>
<td>Delegation signer</td>
<td>The DS record specifies the DNSSEC signing key of a delegated zone. This record type is defined in RFC 4034.</td>
</tr>
<tr>
<td>Host Information records</td>
<td>HINFO</td>
<td>The HINFO record specifies general information about a host. Standard CPU and operating system names are defined in the Assigned Numbers RFC 1700. However, use of the standard numbers is not required. This record type is defined in RFC 1035.</td>
</tr>
<tr>
<td>Integrated Services Digital Network records</td>
<td>ISDN</td>
<td>The ISDN record specifies the address of this object. This record maps a host name to the ISDN address. They are used only in ISDN networks. This record type is defined in RFC 1183.</td>
</tr>
<tr>
<td>IP Version 6 Address records</td>
<td>AAAA</td>
<td>The AAAA record specifies the 128-bit IPv6 address of a host. AAAA records, which are similar to A records, are used to resolve queries for the IPv6 address of a specific domain name. This record type is defined in RFC 1886.</td>
</tr>
<tr>
<td>Location records</td>
<td>LOC</td>
<td>The LOC record specifies the physical location of network components. These records can be used by applications to evaluate network efficiency or map the physical network. This record type is defined in RFC 1876.</td>
</tr>
</tbody>
</table>
Table 1. Resource record lookup table (continued)

<table>
<thead>
<tr>
<th>Resource record</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mail Exchanger records</td>
<td>MX</td>
<td>The MX records defines a mail exchanger host for mail sent to this domain. These records are used by Simple Mail Transfer Protocol (SMTP) to locate hosts that processes or forwards mail for this domain, along with preference values for each mail exchanger host. Each mail exchanger host must have a corresponding host address (A) records in a valid zone. This record type is defined in RFC 1035.</td>
</tr>
<tr>
<td>Mail Group records</td>
<td>MG</td>
<td>The MG records specifies the mail group domain name. This record type is defined in RFC 1035.</td>
</tr>
<tr>
<td>Mailbox records</td>
<td>MB</td>
<td>The MB records specifies the host domain name which contains the mailbox for this object. Mail sent to the domain is directed to the host specified in the MB record. This record type is defined in RFC 1035.</td>
</tr>
<tr>
<td>Mailbox Information records</td>
<td>MINFO</td>
<td>The MINFO records specifies the mailbox that should receive messages or errors for this object. The MINFO record is more commonly used for mailing lists than for a single mailbox. This record type is defined in RFC 1035.</td>
</tr>
<tr>
<td>Mailbox Rename records</td>
<td>MR</td>
<td>The MR records specifies a new domain name for a mailbox. Use the MR record as a forwarding entry for a user who has moved to a different mailbox. This record type is defined in RFC 1035.</td>
</tr>
<tr>
<td>Name Server records</td>
<td>NS</td>
<td>The NS record specifies an authoritative name server for this host. This record type is defined in RFC 1035.</td>
</tr>
<tr>
<td>Next-Secure record</td>
<td>NSEC</td>
<td>The NSEC record specifies data that is used to prove a name does not exist. This record type is defined in RFC 4034.</td>
</tr>
<tr>
<td>Resource record</td>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>NSEC record version 3</td>
<td>NSEC3</td>
<td>The NSEC3 record specifies data for the authenticated denial of existence for DNS Resource Record Sets. This record type is defined in RFC 5155.</td>
</tr>
<tr>
<td>NSEC3 parameters</td>
<td>NSEC3PARAM</td>
<td>The NSEC3PARAM specifies parameters for use with NSEC3. This record type is defined in RFC 5155.</td>
</tr>
<tr>
<td>Network Service Access Protocol</td>
<td>NSAP</td>
<td>The NSAP record specifies the address of a NSAP resource. NSAP records are used to map domain names to NSAP addresses. This record type is defined in RFC 1706.</td>
</tr>
<tr>
<td>Public Key records</td>
<td>KEY</td>
<td>The KEY record specifies a public key that is associated with a DNS name. The key can be for a zone, a user, or a host. This record type is defined in RFC 2065.</td>
</tr>
<tr>
<td>Responsible Person records</td>
<td>RP</td>
<td>The RP record specifies the internet mail address and description of the person responsible for this zone or host. This record type is defined in RFC 1183.</td>
</tr>
<tr>
<td>Reverse-lookup Pointer records</td>
<td>PTR</td>
<td>The PTR record specifies the domain name of a host for which you want a PTR record defined. PTR records allow a host name lookup, given an IP address. This record type is defined in RFC 1035.</td>
</tr>
<tr>
<td>DNSSEC signature</td>
<td>RRSIG</td>
<td>The RRSIG record specifies digital signatures which are used in the DNSSEC authentication process. This record type is defined in RFC 4034.</td>
</tr>
<tr>
<td>Route Through records</td>
<td>RT</td>
<td>The RT record specifies a host domain name that can act as a forwarder of IP packets for this host. This record type is defined in RFC 1183.</td>
</tr>
</tbody>
</table>
| Services records | SRV | The SRV record specifies the hosts that support the defined services in the record. This record type is defined in RFC 2782. }
Table 1. Resource record lookup table (continued)

<table>
<thead>
<tr>
<th>Resource record</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of Authority records</td>
<td>SOA</td>
<td>The SOA record specifies that this server is authoritative for this zone. An authoritative server is the best source for data within a zone. The SOA record contains general information about the zone and reload rules for secondary servers. There can be only one SOA record per zone. This record type is defined in RFC 1035.</td>
</tr>
<tr>
<td>Text records</td>
<td>TXT</td>
<td>The TXT record specifies multiple strings of text, up to 255 characters long each, to be associated with a domain name. TXT records can be used along with responsible person (RP) records to provide information about who is responsible for a zone. This record type is defined in RFC 1035. TXT records are used by IBM i DHCP for dynamic updates. The DHCP server writes an associated TXT record for each PTR and an A record update that is done by the DHCP server. DHCP records have a prefix of AS400DHCP.</td>
</tr>
<tr>
<td>Well-Known Services records</td>
<td>WKS</td>
<td>The WKS record specifies the well-known services supported by the object. Most commonly, WKS records indicate whether tcp or udp or both protocols are supported for this address. This record type is defined in RFC 1035.</td>
</tr>
<tr>
<td>X.400 Address Mapping records</td>
<td>PX</td>
<td>The PX records is a pointer to X.400/RFC 822 mapping information. This record type is defined in RFC 1664.</td>
</tr>
<tr>
<td>X25 Address Mapping records</td>
<td>X25</td>
<td>The X25 record specifies the address of an X25 resource. This record maps a host name to the PSDN address. They are used only in X25 networks. This record type is defined in RFC 1183.</td>
</tr>
</tbody>
</table>

Related concepts

Mail and Mail Exchanger records

Domain Name System 13
Domain Name System (DNS) supports advanced mail routing through the use of Mail and Mail Exchanger (MX) records.

Related reference
- Example: Single Domain Name System server for an intranet
 This example depicts a simple subnet with a Domain Name System (DNS) server for internal use.

Understanding zones
Domain Name System (DNS) data is divided into manageable sets of data called zones. And each of these sets is a specific zone type.

Mail and Mail Exchanger records

Domain Name System (DNS) supports advanced mail routing through the use of Mail and Mail Exchanger (MX) records.

Mail and MX records are used by mail routing programs, such as Simple Mail Transfer Protocol (SMTP). The lookup table in DNS resource records contains the types of mail records that IBM i DNS supports.

DNS includes information for sending electronic mail by using mail exchanger information. If the network is using DNS, an SMTP application does not deliver mail addressed to host TEST.IBM.COM by opening a TCP connection to TEST.IBM.COM. SMTP first queries the DNS server to find out which host servers can be used to deliver the message.

Deliver mail to a specific address

DNS servers use resource records that are known as mail exchanger (MX) records. MX records map a domain or host name to a preference value and host name. MX records are generally used to designate that one host is used to process mail for another host. The records are also used to designate another host to deliver mail to, if the first host cannot be reached. In other words, they allow a mail that is addressed to one host to be delivered to a different host.

Multiple MX resource records might exist for the same domain or host name. When multiple MX records exist for the same domain or host, the preference (or priority) value of each record determines the order in which they are tried. The lowest preference value corresponds to the most preferred record, which is tried first. When the most preferred host cannot be reached, the sending mail application tries to contact the next, less preferred MX host. The domain administrator, or the creator of the MX record, sets the preference value.

A DNS server can respond with an empty list of MX resource records when the name is in the DNS server’s authority but has no MX assigned to it. When this occurs, the sending mail application might try to establish a connection with the destination host directly.

Note: Using a wildcard (example: *.mycompany.com) in MX records for a domain is not suggested.

Example: MX record for a host

In the following example, the system, by preference, delivers mail for fsc5.test.ibm.com to the host itself. If the host cannot be reached, the system might deliver the mail to psfred.test.ibm.com or to mvs.test.ibm.com (if psfred.test.ibm.com also cannot be reached). This is an example of what these MX records will look like:

```plaintext
fsc5.test.ibm.com   IN MX 0  fsc5.test.ibm.com
                   IN MX 2  psfred.test.ibm.com
                   IN MX 4  mvs.test.ibm.com
```

Related reference
- Domain Name System resource records
Resource records are used to store data about domain names and IP addresses. You can use the Resource record lookup table to look into the resource records supported for the IBM i operating system.

DNS Security Extensions (DNSSEC) Introduction

DNSSEC is a suite of IETF RFC specifications which add security extensions to DNS.

The original DNS protocol does not support security. DNS data can be spoofed and corrupted between a master server and a resolver, since DNS does not provide a mechanism to validate responses. This makes DNS vulnerable to these types of attacks.

DNSSEC provides authenticated communications between servers which support TSIG/SIG0. A Trust chain can be established to verify data authenticity and integrity.

In a DNS zone, DNS zone data will be signed by a Zone Signing Keys (ZSK), and the ZSK is signed by a Key Signing Key (KSK). A Delegation Signer (DS) resource record (RR), which is derived from the KSK, can be copied to the parent zone to form a trust chain. So a secured zone’s RRsets will contain: DNSKEY (ZSK and KSK) RRs, RRSIG (Resource Record Signature) RRs, Next Secure (NSEC) RRs, and (optionally) DS RRs of the child zone.

When a security aware DNS resolver gets an answer to a query, it will try to validate the RRSIG RRs with the DNSKEY RR of the zone. It will then validate the DNSKEY RR with the DS RR which can be obtained from the parent zone, and so forth, until the DNSKEY RR or DS RR matches the trust anchor which is configured in the resolver.

For more information about DNSSEC, please refer to RFCs 4033, 4034 and 4035.

Related concepts
What’s new for IBM i 7.2
Read about new or significantly changed information for the Domain Name System (DNS) topic collection.
Managing Domain Name System
Managing a Domain Name System (DNS) server includes verifying that the DNS function is working, maintaining DNSSEC, monitoring performance, and maintaining DNS data and files.
Managing DNSSEC
This topic introduces the maintenance of DNSSEC on your IBM i platform.

Examples: Domain Name System

You can use these examples to understand how to use Domain Name System (DNS) in your network.

DNS is a distributed database system for managing host names and their associated IP addresses. The following examples help to explain how DNS works, and how you can use it in your network. The examples describe the setup and reasons it will be used. They also link to related concepts that you might find useful to understand the pictures.

Example: Single Domain Name System server for an intranet

This example depicts a simple subnet with a Domain Name System (DNS) server for internal use.

The following figure depicts DNS running on a IBM i platform for an internal network. This single DNS server instance is set up to listen for queries on all interface IP addresses. The system is a primary name server for the mycompany.com zone.
Each host in the zone has an IP address and a domain name. The administrator must manually define the hosts in the DNS zone data by creating resource records. Address mapping records (A for IPv4 or AAAA for IPv6) map the name of a machine to its associated IP address. This allows other hosts on the network to query the DNS server to find the IP address assigned to a particular host name. Reverse-lookup pointer (PTR) records map the IP address of a machine to its associated name. This allows other hosts on the network to query the DNS server to find the host name that corresponds to an IP address.

In addition to A, AAAA, and PTR records, DNS supports many other resource records that might be required, depending on what other TCP/IP-based applications you are running on your intranet. For example, if you are running internal e-mail systems, you might need to add mail exchanger (MX) records so that SMTP can query DNS to find out which systems are running the mail servers.

If this small network were part of a larger intranet, it might be necessary to define internal root servers.

Secondary servers

Secondary servers load zone data from the authoritative server. Secondary servers obtain zone data by doing zone transfers from the authoritative server. When a secondary name server starts, it requests all
data for the specified domain from the primary name server. A secondary name server requests updated
data from the primary server either because it receives notification from the primary name server (if
the NOTIFY function is being used) or because it queries the primary name server and determines that
the data has changed. In the figure above, the mysystem1 server is part of an intranet. Another system,
mysystem2, has been configured to act as a secondary DNS server for the mycompany.com zone. The
secondary server can be used to balance the demand on servers and also to provide a backup in case the
primary server goes down. It is a good practice to have at least one secondary server for every zone.

Related reference
Domain Name System resource records
Resource records are used to store data about domain names and IP addresses. You can use the
Resource record lookup table to look into the resource records supported for the IBM i operating system.

Understanding zones
Domain Name System (DNS) data is divided into manageable sets of data called zones. And each of these
sets is a specific zone type.

Example: Single Domain Name System server with Internet access
This example depicts a simple subnet with a Domain Name System (DNS) server connected directly to the
Internet.

Example: Single Domain Name System server with Internet access
This example depicts a simple subnet with a Domain Name System (DNS) server connected directly to the
Internet.

The following figure depicts the same example network from the single DNS server for intranet example,
but now the company has added a connection to the Internet. In this example, the company is able to
access the Internet, but the firewall is configured to block Internet traffic into the network.
To resolve Internet addresses, you need to do at least one of the following tasks:

- **Define Internet root servers**

 You can load the default Internet root servers automatically, but you might need to update the list. These servers can help to resolve addresses outside of your own zone. For instructions for obtaining the current Internet root servers, see Accessing external Domain Name System data.

- **Enable forwarding**

 You can set up forwarding to pass queries for zones outside of mycompany.com to external DNS servers, such as DNS servers run by your Internet service provider (ISP). If you want to enable searching by both forwarding and root servers, you need to set the `forward` option to `first`. The server first tries forwarding and then queries the root servers only if forwarding fails to resolve the query.
The following configuration changes might also be required:

- **Assign unrestricted IP addresses**

 In the example above, 10.x.x.x addresses are shown. However, these are restricted addresses and cannot be used outside of an intranet. They are shown below for example purposes, but your own IP addresses is determined by your ISP and other networking factors.

- **Register your domain name**

 If you are visible to the Internet and have not already registered, you need to register a domain name.

- **Establish a firewall**

 It is not suggested that you allow your DNS to be directly connected to the Internet. You need to configure a firewall or take other precautions to secure your IBM i platform.

Related concepts

- **Domain Name System domain setup**

 Domain Name System (DNS) domain setup requires domain name registration to prevent others from using your domain name.

- **System i and Internet security**

 Understanding Domain Name System queries

 Domain Name System (DNS) clients use DNS servers to resolve queries. The queries might come directly from the client or from an application running on the client.

Related reference

- **Example: Single Domain Name System server for an intranet**

 This example depicts a simple subnet with a Domain Name System (DNS) server for internal use.

Example: Domain Name System and Dynamic Host Configuration Protocol on the same IBM i

 This example depicts Domain Name System (DNS) and Dynamic Host Configuration Protocol (DHCP) on the same IBM i platform.

 The configuration can be used to update DNS zone data dynamically when DHCP assigns IP addresses to hosts.

 The following figure depicts a small subnet network with one IBM i platform that acts as a DHCP and DNS server to four clients. In this work environment, suppose that the inventory, data entry, and executive clients create documents with graphics from the graphics file server. They connect to the graphics file server by a network drive to its host name.
Previous versions of DHCP and DNS were independent of each other. If DHCP assigned a new IP address to a client, the DNS records had to be manually updated by the administrator. In this example, if the graphics file server's IP address changes because it is assigned by DHCP, then its dependent clients will be unable to map a network drive to its host name because the DNS records will contain the file server's previous IP address.

With the IBM i DNS server based on BIND 9, you can configure your DNS zone to accept dynamic updates to DNS records in conjunction with intermittent address changes through DHCP. For example, when the graphics file server renews its lease and is assigned an IP address of 10.1.1.250 by the DHCP server, the associated DNS records are updated dynamically. This allows the other clients to query the DNS server for the graphics file server by their host names without interruption.

To configure a DNS zone to accept dynamic updates, complete the following tasks:

• Identify the dynamic zone

 You cannot manually update a dynamic zone while the server is running. Doing so might cause interference with incoming dynamic updates. Manual updates can be made when the server is stopped, but you will lose any dynamic updates sent while the server is down. For this reason, you might want to configure a separate dynamic zone to minimize the need for manual updates. See Determining domain structure for more information about configuring your zones to use the dynamic update function.

• Configure the allow-update option

 Any zone with the allow-update option configured is considered a dynamic zone. The allow-update option is set on a per-zone basis. To accept dynamic updates, the allow-update option must be enabled.
for this zone. For this example, the mycompany.com zone has allow-update data, but other zones defined on the server can be configured to be static or dynamic.

• Configure DHCP to send dynamic updates
 You must authorize your DHCP server to update the DNS records for the IP addresses it has distributed.

• Configure secondary server update preferences
 To keep secondary servers current, you can configure DNS to use the NOTIFY function to send a message to secondary servers for the mycompany.com zone when zone data changes. You should also configure incremental zone transfers (IXFR), which enables IXFR-enabled secondary servers to track and load only the updated zone data, instead of the entire zone.

If you run DNS and DHCP on different servers, there are some additional configuration requirements for the DHCP server.

Related concepts

Dynamic updates
IBM i Domain Name System (DNS) that is based on BIND 9 supports dynamic updates. Outside sources, such as Dynamic Host Configuration Protocol (DHCP), can send updates to the DNS server. In addition, you can also use DNS client tools, such as Dynamic Update Utility (NSUPDATE), to perform dynamic updates.

Related tasks

Configuring the DHCP to send dynamic updates to DNS

Related reference

Example: DNS and DHCP on different System i platforms

Example: Splitting DNS over firewall by setting up two DNS servers on the same IBM i

This example depicts a Domain Name System (DNS) server that operates over a firewall to protect internal data from the Internet, while allowing internal users to access data on the Internet. This configuration accomplishes this protection by setting up two DNS servers on the same IBM i platform.

The following figure depicts a simple subnet network that uses a firewall for security. Suppose that the company has an internal network with reserved IP space and an external section of a network that is available to the public. The company wants its internal clients to be able to resolve external host names and to exchange mail with people on the outside. The company also wants its internal resolvers to have access to certain internal-only zones that are not available at all outside of the internal network. However, they do not want any outside resolvers to be able to access the internal network.

With IBM i DNS based on BIND 9, you can use two ways to accomplish this. The first way is that the company sets up two DNS server instances on the same IBM i platform, one for the intranet and another for everything in its public domain, which is described in this example. Another way is to use the view function that is provided in BIND 9, which is described in the example about splitting DNS over firewall by using a view.
Figure 5. Splitting DNS over a firewall by setting up two DNS servers on the same System i

The external server, DNSB, is configured with the primary zone mycompany.com. This zone data includes only the resource records that are intended to be part of the public domain. The internal server, DNSA, is configured with the primary zone mycompany.com, but the zone data defined on DNSA contains intranet resource records. The forwarder option is defined as 10.1.2.5. This forces DNSA to forward queries it cannot resolve to the DNSB server.

If you are concerned about the integrity of your firewall or other security threats, you have the option of using the listen-on option to help protect internal data. To do this, you can configure the internal server to only allow queries to the internal mycompany.com zone from internal hosts. In order for all this to work correctly, internal clients need to be configured to query only the DNSA server. You need to consider the following configuration settings to split DNS:

- Listen-on
In other DNS examples, only one DNS server is on an IBM i platform. It is set to listen on all interface IP addresses. Whenever you have multiple DNS servers on an IBM i platform, you must define the interface IP addresses that each one listens on. Two DNS servers cannot listen on the same address. In this case, assume that all queries that come in from the firewall are sent in on 10.1.2.5. These queries should be sent to the external server. Therefore, DNSB is configured to listen on 10.1.2.5. The internal server, DNSA, is configured to accept queries from anything on the 10.1.x.x interface IP addresses except 10.1.2.5. To effectively exclude this address, the address match list must have the excluded address listed before the included address prefix.

- Address match list order

The first element in the address match list that a given address matches is used. For example, to allow all addresses on the 10.1.x.x network except 10.1.2.5, the ACL elements must be in the order (!10.1.2.5; 10.1/16). In this case, the address 10.1.2.5 is compared to the first element and is immediately denied.

If the elements are reversed (10.1/16; !10.1.2.5), the IP address 10.1.2.5 is allowed access because the server compares it to the first element that matches, and allows it without checking the rest of the rules.

Related reference
BIND 9 features
BIND 9 is similar to BIND 8; however, it provides several features to enhance performance of your Domain Name System (DNS) server, such as views.

Example: Splitting DNS over firewall by using view
This example depicts a Domain Name System (DNS) server that operates over a firewall to protect internal data from the Internet, while allowing internal users to access data on the Internet by using the view feature that BIND 9 provides.

Example: Splitting DNS over firewall by using view
This example depicts a Domain Name System (DNS) server that operates over a firewall to protect internal data from the Internet, while allowing internal users to access data on the Internet by using the view feature that BIND 9 provides.

The following figure depicts a simple subnet network that uses a firewall for security. Suppose that the company has an internal network with reserved IP space and an external section of a network that is available to the public. The company wants its internal clients to be able to resolve external host names and to exchange mail with people outside the network. The company also wants its internal resolvers to have access to certain internal-only zones that are not available outside of the internal network. However, the company does not want any outside resolvers to be able to access the internal network.

With IBM i DNS based on BIND 9, you can use two ways to accomplish this. The way described in this example is that you can configure the DNS server with two different views to listen on various queries, one for the intranet and another for everything in its public domain. Another way is to set up two DNS server instances on the same IBM i platform, which is described in the example about splitting DNS over a firewall by using two DNS servers.
The DNS server, DNSC, defines two views, called *external* and *internal*. The *external* view is configured with a primary zone mycompany.com that includes only the resource records that are intended to be part of the public domain, while the *internal* view is configured with a primary zone mycompany.com that contains intranet resource records.

If you are concerned about the integrity of your firewall or other security threats, you have the option of using the match-clients substatement to help protect internal data. To do this, you can configure the internal view to only allow queries to the internal mycompany.com zone from internal hosts. You need to consider the following configuration settings to set up split DNS:

- **Match-clients**

 The match-clients in a view statement takes an address match list as an argument. Only a query's IP address that matches the address match list can see the configuration values defined in the enclosing

Figure 6. Splitting DNS over a firewall by using view
view. If a query's IP address matches multiple match-clients entries in various view statements, the first view statement is the one that applies. In this case, assume that all queries that come from the firewall are sent in 10.1.2.5. These queries should be handled by the zone data in the external view. Therefore, 10.1.2.5 is set to be the match-clients of the external view. The internal view is configured to accept queries from anything on the 10.1.x.x interface IP addresses except 10.1.2.5. To effectively exclude this address, the address match list must have the excluded address listed before the included address prefix.

- Address match list order

 The first element in the address match list that a given address matches is used. For example, to allow all addresses on the 10.1.x.x network except 10.1.2.5, the ACL elements must be in the order (!10.1.2.5; 10.1/16). In this case, the address 10.1.2.5 is compared to the first element and is immediately denied.

 If the elements are reversed (10.1/16; !10.1.2.5), the IP address 10.1.2.5 is allowed access because the server compares it to the first element that matches, and allow it without checking the rest of the rules.

 Related reference

 Example: Splitting DNS over firewall by setting up two DNS servers on the same IBM i

 This example depicts a Domain Name System (DNS) server that operates over a firewall to protect internal data from the Internet, while allowing internal users to access data on the Internet. This configuration accomplishes this protection by setting up two DNS servers on the same IBM i platform.

Planning for Domain Name System

Domain Name System (DNS) offers a variety of solutions. Before you configure DNS, it is important to plan how it works within your network. Subjects, such as network structure, performance, and security, should be assessed.

Determining Domain Name System authorities

There are special authorization requirements for the Domain Name System (DNS) administrator. You should also consider security implications of authorization.

When you set up DNS, you should take security precautions to protect your configuration. You need to establish which users are authorized to make changes to the configuration.

A minimum level of authority is required to allow your administrator to configure and administer DNS. Granting all object access ensures that the administrator is capable of performing DNS administrative tasks. It is suggested that users who configure DNS have security officer access with all object (*ALLOBJ) authority. Use System i® Navigator to authorize users. If you need more information, refer to the Granting authority to the DNS administrator topic in the DNS online help.

Note: If an administrator's profile does not have full authority, specific access and authority to all DNS directories and related configuration files must be granted.

Related reference

Maintaining Domain Name System configuration files

You can use IBM i® DNS to create and manage DNS server instances on your IBM i platform. The configuration files for DNS are managed by IBM Navigator for i. You must not manually edit the files. Always use IBM Navigator for i to create, change, or delete DNS configuration files.

Determining domain structure

If you are setting up a domain for the first time, you should plan for demand and maintenance before creating zones.

It is important to determine how you divide your domain or subdomains into zones, how to best serve network demand, access to the Internet, and how to negotiate firewalls. These factors can be complex...
and must be dealt with case-by-case. Refer to authoritative sources such as the O'Reilly DNS and BIND book for in-depth guidelines.

If you configure a Domain Name System (DNS) zone as a dynamic zone, you cannot make manual changes to zone data while the server is running. Doing so might cause interference with incoming dynamic updates. If it is necessary to make manual updates, stop the server, make the changes, and then restart the server. Dynamic updates sent to a stopped DNS server will never be completed. For this reason, you might want to configure a dynamic zone and a static zone separately. You can do this by creating entirely separate zones, or by defining a new subdomain, such as dynamic.mycompany.com, for those clients that will be maintained dynamically.

IBM i DNS provides a graphical interface for configuring your systems. In some cases, the interface uses terminology or concepts that might be represented differently in other sources. If you refer to other information sources when you are planning for your DNS configuration, it might be helpful to remember the following items:

- All zones and objects defined on a IBM i platform are organized within the folders Forward Lookup Zones and Reverse Lookup Zones. Forward lookup zones are the zones that are used to map domain names to IP addresses, such as A and AAAA records. The reverse lookup zones are the zones that are used to map IP addresses to domain names, such as PTR records.
- IBM i DNS refers to primary zones and secondary zones.
- The interface uses subzones, which some sources refer to as subdomains. A child zone is a subzone for which you have delegated responsibility to one or more name servers.

Planning security measures

Domain Name System (DNS) provides security options to limit outside access to your server.

Address match lists

DNS uses address match lists to allow or deny outside entities access to certain DNS functions. These lists can include specific IP addresses, a subnet (using an IP prefix), or using Transaction Signature (TSIG) keys. You can define a list of entities to which you want to allow or deny access in an address match list. If you want to be able to reuse an address match list, you can save the list as an access control list (ACL). Then whenever you need to provide the list, you can call the ACL and the entire list will be loaded.

Address match list item order

The first item in an address match list that a given address matches is used. For example, to allow all addresses on the 10.1.1.x network except 10.1.1.5, the match list items must be in the order (10.1.1.5; 10.1.1/24). In this case, the address 10.1.1.5 will be compared to the first item and will immediately be denied.

If the elements are reversed (10.1.1/24; !10.1.1.5), the IP address 10.1.1.5 will be allowed access because the server will compare it to the first item, which matches, and allow it without checking the rest of the rules.

Access control options

DNS allows you to set limitations such as who can send dynamic updates to the server, query data, and request zone transfers. You can use ACLs to restrict access to the server for the following options:

- **allow-update**
 - In order for your DNS server to accept dynamic updates from any outside sources, you must enable the allow-update option.

- **allow-query**
 - Specifies which hosts are allowed to query this server. If not specified, the default is to allow queries from all hosts.
allow-transfer
Specifies which hosts are allowed to receive zone transfers from the server. If not specified, the default is to allow transfers from all hosts.

allow-recursion
Specifies which hosts are allowed to make recursive queries through this server. If not specified, the default is to allow recursive queries from all hosts.

blackhole
Specifies a list of addresses that the server does not accept queries from or use to resolve a query. Queries from these addresses will not be responded to.

Securing your DNS server is essential. In addition to the security considerations in this topic, DNS security and IBM i security are covered in a variety of sources including the IBM i platform and the Internet topic collection. The book *DNS and BIND* also covers security related to DNS.

Related concepts
System i and Internet security

Related reference
BIND 9 features
BIND 9 is similar to BIND 8; however, it provides several features to enhance performance of your Domain Name System (DNS) server, such as views.

Domain Name System requirements

Consider these software requirements to run Domain Name System (DNS) on your IBM i platform.

The DNS feature, Option 31, cannot be installed automatically with the operating system. You must specifically select DNS for installation. The DNS server added for IBM i is based on the industry-standard DNS implementation known as BIND 9.

After DNS is installed, you are required to migrate and configure the DNS server from BIND 4 or 8 to BIND 9. You must also have IBM Navigator for i PASE (Option 33 of i5/OS) and OpenSSH, OpenSSL, zlib(5733-SC1, option 1) installed. After these two software programs are installed, IBM Navigator for i automatically handles configuring the current BIND implementation.

If you want to configure a Dynamic Host Configuration Protocol (DHCP) server on a different platform to send updates to this DNS server, Option 31 must be installed on that DHCP server as well. The DHCP server uses programming interfaces provided by Option 31 to perform dynamic updates.

Related concepts
i5/OS PASE
Configuring Domain Name System
You can use IBM Navigator for i to configure name servers and to resolve queries outside of your domain.

Related reference
BIND 9 features
BIND 9 is similar to BIND 8; however, it provides several features to enhance performance of your Domain Name System (DNS) server, such as views.

Determining if Domain Name System is installed

To determine if Domain Name System (DNS) is installed, follow these steps.

1. At the command line, type `GO LICPGM` and press Enter.
2. Type `10` (Display installed licensed programs) and press Enter.
3. Page down to **5770SS1 Domain Name System** (Option 31). If DNS is installed successfully, the Installed Status is `*COMPATIBLE`, as shown here:

<table>
<thead>
<tr>
<th>LicPgm</th>
<th>Installed Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5770SS1</td>
<td>*COMPATIBLE</td>
<td>Domain Name System</td>
</tr>
</tbody>
</table>

4. Press F3 to exit the display.

Installing Domain Name System

To install Domain Name System (DNS), follow these steps.

1. At the command line, type `GO LICPGM` and press Enter.
2. Type `11` (Install licensed programs) and press Enter.
3. Type `1` (Install) in the **Option** field next to Domain Name System and press Enter.
4. Press Enter again to confirm the installation.

Note: Domain Name System (DNS) also requires following production options, you must have them installed on the system if they are not installed.

- Portable App Solutions Environment (PASE) (5770-SS1, option 33)
- OpenSSH, OpenSSL, zlib (5733-SC1, option 1)

Configuring Domain Name System

You can use IBM Navigator for i to configure name servers and to resolve queries outside of your domain.

Before you work with your Domain Name System (DNS) configuration, see DNS system requirements to install the necessary DNS components.

Related concepts

Domain Name System requirements
Consider these software requirements to run Domain Name System (DNS) on your IBM i platform.

Accessing Domain Name System in IBM Navigator for i

These instructions guide you to the DNS configuration interface in IBM Navigator for i.

If you are using IBM i PASE, you will be able to configure DNS servers based on BIND 9.

If you are configuring DNS for the first time, follow these steps:

1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. Click Actions drop down list and select **New Name Server** menu item.

Related concepts

Getting to know System i Navigator

Configuring name servers

Domain Name System (DNS) allows you to create multiple name server instances. This topic provides instructions for configuring a name server.

IBM i DNS based on BIND 9 supports multiple name server instances. The following tasks guide you through the process of creating a single name server instance, including its properties and zones.

If you want to create multiple instances, repeat these procedures until all instances you want have been created. You can specify independent properties, such as debug levels and autostart values, for each name server instance. When you create a new instance, separate configuration files are created.

Related reference

Maintaining Domain Name System configuration files
You can use IBM i DNS to create and manage DNS server instances on your IBM i platform. The configuration files for DNS are managed by IBM Navigator for i. You must not manually edit the files. Always use IBM Navigator for i to create, change, or delete DNS configuration files.

Creating a name server instance

The New DNS Name Server Configuration wizard can guide you through the process of defining a DNS server instance.

To start the New DNS Configuration wizard, follow these steps:

1. In IBM Navigator for i, expand Network > Servers > DNS Servers.
2. In the left navigation tree, select Create DNS Server.
3. Follow the wizard’s instructions to complete the configuration process.

The wizard requires the following input:

DNS server name:
Specify a name for your DNS server. It can be up to 5 characters long and must begin with an alphabetic character (A-Z). If you create multiple servers, each must have a unique name. This name is referred to as the DNS server instance name in other areas of the system.

Listen-on IP addresses:
Two DNS servers cannot listen on the same IP address. The default setting is to listen on all IP addresses. If you are creating additional server instances, they cannot be configured to listen on all IP addresses. Otherwise, they cannot be run at the same time. You must specify the IP addresses for each server.

Root servers:
You might load the list of default Internet root servers or specify your own root servers, such as internal root servers for an intranet.

Note: You should only consider loading the default Internet root servers if you have access to the Internet and expect your DNS to be able to fully resolve Internet names.

Server startup:
You can specify whether the server should autostart when TCP/IP is started. When you operate multiple servers, individual instances can be started and ended independently of each other.

Editing Domain Name System server properties

After you create a name server, you can edit properties such as allow-update and debug levels. These options apply only to the server instance you change.

To edit the properties of the Domain Name System (DNS) server instance, follow these steps:

1. In IBM Navigator for i, expand Network > Servers > DNS Servers.
2. In the right pane, right-click *your DNS server* and select Configuration.
3. In the DNS Configuration page, select DNS Server and select File > Properties.
4. Edit the corresponding properties you’d like to.

Configuring zones on a name server

After you configure a Domain Name System (DNS) server instance, you need to configure the zones for the name server.

To configure zones on your server, follow these steps:

1. In IBM Navigator for i, expand Network > Servers > DNS Servers.
2. In the right pane, right-click *your DNS server* and select Configuration.
3. In the DNS Configuration page, select the zone type that you want to create by clicking either the Forward Lookup Zone or the Reverse Lookup Zone folder.
4. Select File > New > Primary/Secondary/Stub/Forward Zone.
5. Follow the wizard’s instructions to complete the creation process.

Related concepts

Accessing external Domain Name System data
When you create Domain Name System (DNS) zone data, your server will be able to resolve queries to that zone.

Related tasks

Configuring Domain Name System to receive dynamic updates
Domain Name System (DNS) servers running BIND 9 can be configured to accept requests from other sources to update zone data dynamically. This topic provides instructions for configuring the allow-update option so DNS can receive dynamic updates.

Importing Domain Name System files
Domain Name System (DNS) can import existing zone data files. Follow these time-saving procedures for creating a new zone from an existing configuration file.

Related reference

Understanding zones
Domain Name System (DNS) data is divided into manageable sets of data called zones. And each of these sets is a specific zone type.

Configuring views on a name server

One of the features that BIND 9 offers is the view statement, which allows a single Domain Name System (DNS) instance to answer a query differently depending on where the query is coming from, such as the Internet or an intranet. One practical application of view is to split DNS setups without having to run multiple DNS servers.

To configure views on your server, follow these steps:

1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. In the right pane, right-click **your DNS server** and select **Configuration**.
3. In the DNS Configuration page, click **Views** and select **File > New > View**.
4. Follow the wizard’s instructions to complete the creation process.

Configuring Domain Name System to receive dynamic updates

Domain Name System (DNS) servers running BIND 9 can be configured to accept requests from other sources to update zone data dynamically. This topic provides instructions for configuring the allow-update option so DNS can receive dynamic updates.

When creating dynamic zones, you should consider your network structure. If parts of your domain still requires manual updates, you might want to consider setting up separate static and dynamic zones. If you need to make manual updates to a dynamic zone, you must stop the dynamic zone server and restart it after you have completed the updates. Stopping the server forces it to update the zone database with all dynamic updates that have been made since the server first loaded its zone data from the zone database. If you do not stop the server, you will lose any manual updates to the zone database because they will be overwritten by the running server. However, stopping the server to make manual updates means you might miss dynamic updates that are sent while the server is down.

DNS indicates that a zone is dynamic when objects are defined in the allow-update statement. To configure the allow-update option, follow these steps:

1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. In the right pane, right-click **your DNS server** and select **Configuration**.
3. In the DNS Configuration page, expand **Forward Lookup Zone** or **Reverse Lookup Zone**.
4. Click the primary zone that you want to edit and select **File > Properties**.
5. In the Primary Zone Properties page, click the **Options** tab.
6. On the Options page, expand **Access Control > allow-update**.
7. DNS uses an address match list to verify authorized updates. To add an object to the address match list, select an address match list item type and click Add. You can add an IP Address, IP Prefix, Access Control List, or Key.

8. When you have finished updating the address match list, click OK to close the Options page.

Related tasks
Configuring zones on a name server
After you configure a Domain Name System (DNS) server instance, you need to configure the zones for the name server.

Configuring the DHCP to send dynamic updates to DNS
Making manual updates to a dynamic zone
Special consideration should be given to manual updates in IBM Navigator for i (e.g. adding resource records) to a dynamic zone if the DNS server instance is running since there might be conflicts between manual changes and dynamic updates.

Configuring DNSSEC
Domain Name System (DNS) allows you to configure DNSSEC for a domain server. This topic provides instructions for configuring DNSSEC.

IBM i DNS based on BIND 9 supports DNSSEC. The following tasks guide you through the process of configuring DNSSEC for a domain server.

Configuring Trusted-keys/Managed-keys
The following instructions can guide you through the process of configuring Trusted-keys/Managed-keys.

To configure Trusted-keys/Managed-keys, follow these steps:
1. In IBM Navigator for i, expand Network > Servers > DNS Servers.
2. Right click your DNS server and select Configuration
3. Click the DNS server node in the tree and select File > Properties.
4. Click the Trusted keys/Managed keys tab, Add/Edit/Delete/View the keys.
5. Click OK

Configuring DNSSEC options
The following instructions can guide you through the process of configuring DNSSEC options.

To enable the DNSSEC options, follow these steps:
1. In IBM Navigator for i, expand Network > Servers > DNS Servers.
2. Right click your DNS server and select Configuration
3. Click the DNS server node in the tree and select File > Properties.
4. Click the Options tab, expand Options > Boolean Options.
5. Click the dnssec-enable option and check the enable checkbox to enable it.
6. Click the dnssec-validation option and check the enable checkbox to enable it.
7. Click OK

Signing a primary zone
The following instructions can guide you through the process of signing a zone on a DNS server.

To sign a zone, follow these steps:
1. In IBM Navigator for i, expand Network > Servers > DNS Servers.
2. Right click your DNS server and select Configuration
3. Expand DNS Server > Forward Lookup Zones/Reverse Lookup Zones, select the primary zone you want to sign.
4. Select **File > DNSSEC > Sign**.
5. Follow the wizard’s instructions to complete the signing process.

Note: A zone should be signed with ZSK and KSK keys. Create ZSK and KSK keys used for signing with the “NEW” option.

Re-signing a primary zone

The following instructions can guide you through the process of re-signing a zone on a DNS server.

To re-sign a zone, follow these steps:

1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. Right click your DNS server and select **Configuration**
3. Expand DNS Server > Forward Lookup Zones/Reverse Lookup Zones, select the primary zone you want to re-sign.
4. Select **File > DNSSEC > ReSign**.
5. Follow the wizard’s instructions to complete the re-signing process.

Note: A zone can be re-signed with new ZSK or KSK keys. Create the keys used for re-signing with the “NEW” option.

Related tasks

Re-signing a zone

For a signed primary zone, if there are new changes made to the resource records of the zone, the zone then needs a re-signing.

Un-signing a primary zone

The following instructions can guide you through the process of un-signing a zone on a DNS server.

To un-sign a zone, follow these steps:

1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. Right click your DNS server and select **Configuration**
3. Expand DNS Server > Forward Lookup Zones/Reverse Lookup Zones, select the primary zone you want to un-sign.
4. Select **File > DNSSEC > UnSign**.
5. Follow the wizard’s instructions to complete the un-signing process.

Configuring DNSSEC for a dynamic zone

This topic provides instructions for configuring DNSSEC for a dynamic zone.

For a secure (signed) zone, you can also configure the allow-update or update-policy options to make it to be a dynamic zone. Note that the allow-update and update-policy options have similar function, so configuring one of them is enough. You can also configure the auto-dnssec option to let that zone perform automatic zone signing.

Configuring the allow-update option

Domain Name System (DNS) servers running BIND 9 can be configured to accept requests from other sources to update zone data dynamically. This topic provides instructions for configuring the allow-update option so DNS can receive dynamic updates.

Please refer to the “Configuring Domain Name System to receive dynamic updates” on page 30 section.

Configuring the update-policy option

The following instructions can guide you through the process of configuring the update-policy option.

To configure the update-policy option, follow these steps:
1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. Right click your DNS server and select **Configuration**.
3. Expand DNS Server > Forward Lookup Zones/Reverse Lookup Zones, select the primary zone you want to configure.
4. Select **File > Properties**.
5. Click the Options tab, expand **Options > Boolean Options**.
6. Click the update-policy option, specify using the local update policy rules or click Add to add one.
7. Click OK.

Configuring the auto-dnssec option
The following instructions can guide you through the process of configuring the auto-dnssec option.

To configure the auto-dnssec option, follow these steps:
1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. Right click your DNS server and select **Configuration**
3. Expand DNS Server > Forward Lookup Zones/Reverse Lookup Zones, select the primary zone you want to configure.
4. Select **File > Properties**.
5. Click the Options tab, expand **Options > Others**.
6. Click the auto-dnssec option, select Allow/Maintain/Off
7. Click OK.

Importing Domain Name System files
Domain Name System (DNS) can import existing zone data files. Follow these time-saving procedures for creating a new zone from an existing configuration file.

You can create a primary zone by importing a zone data file that is a valid zone configuration file based on BIND syntax. The file should be located in an Integrated file system directory. When imported, DNS verifies that it is a valid zone data file and adds it to the named.conf file for the specified server instance.

To import a zone file, follow these steps:
1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. In the right pane, right-click your DNS server and select **Configuration**
3. In the DNS Configuration page, Select **File > Import Zone**.
4. Follow the wizard’s instructions to import the primary zone.

Related tasks
Configuring zones on a name server
After you configure a Domain Name System (DNS) server instance, you need to configure the zones for the name server.

Record validation
The Import domain data function reads and validates each record of the file that is being imported.

After the Import domain data function has finished, any records in error can be examined individually on the Other Records property page of the imported zone.

Notes:
1. Importing a large primary domain might take several minutes.
2. The import domain data function does not support the $include directive. Import domain data's validity checking process identifies lines that contain the $include directive as lines in error.
Accessing external Domain Name System data

When you create Domain Name System (DNS) zone data, your server will be able to resolve queries to that zone.

Root servers are critical to the function of a DNS server that is directly connected to the Internet or a large intranet. DNS servers must use root servers to answer queries about hosts other than those that are contained in their own domain files.

To reach out for more information, a DNS server has to know where to look. On the Internet, the first place that a DNS server looks is the root servers. The root servers direct a DNS server toward other servers in the hierarchy until an answer is found, or it is determined that there is no answer.

The default root servers list for IBM Navigator for i

You should use Internet root servers only if you have an Internet connection and you want to resolve names on the Internet if they are not resolved on your DNS server. A default list of Internet root servers is supplied in IBM Navigator for i. The list is current when IBM Navigator for i is released. You can verify that the default list is current by comparing it to the list on the InterNIC site. Update your configuration’s root server list to keep it current.

Getting Internet root server addresses

The top-level root server’s addresses change from time to time, and it is the DNS administrator’s responsibility to keep them current. InterNIC maintains a current list of Internet root server addresses. To obtain a current list of Internet root servers, follow these steps:

1. Log on the InterNIC server by using File Transfer Protocol (FTP) in the anonymity method:
 FTP.INTERNIC.NET or RS.INTERNIC.NET
2. Download this file: /domain/named.root
3. Store the file in the following directory path: /QOpenSys/QIBM/ProdData/OS400/DNS/ROOT.FILE

A DNS server behind a firewall might have no root servers defined. In this case, the DNS server can resolve queries only from entries that exist in its own primary domain database files, or its cache. It might forward off-site queries to the firewall DNS. In this case, the firewall DNS server acts as a forwarder.

Intranet root servers

If your DNS server is part of a large intranet, you might have internal root servers. If your DNS server will not be accessing the Internet, you do not need to load the default Internet servers. However, you should add your internal root servers so that your DNS server can resolve internal addresses outside of its domain.

Related tasks
Configuring zones on a name server
After you configure a Domain Name System (DNS) server instance, you need to configure the zones for the name server.

Managing Domain Name System

Managing a Domain Name System (DNS) server includes verifying that the DNS function is working, maintaining DNSSEC, monitoring performance, and maintaining DNS data and files.

Related concepts
DNS Security Extensions (DNSSEC) Introduction
DNSSEC is a suite of IETF RFC specifications which add security extensions to DNS.

Verifying the Domain Name System function is working

The domain information grooper (DIG) tool can help you collect information from and test response of a Domain Name System (DNS) server. You can use DIG to verify if a DNS server is working correctly.

Request the host name that is associated with the loopback IP address (127.0.0.1). It should respond with the host name (localhost). You can also query specific names that are defined in the server instance that you are trying to verify. This confirms that the specific server instance you are testing is functioning correctly.

To verify DNS function with DIG, follow these steps:

1. At the command line, type `DIG HOSTNAME('127.0.0.1') REVERSE(*YES)`.

 This information should display, including the loopback host name:

   ```
   ;; global options: printcmd
   ;; Got answer:
   ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id:865
   ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL:1
   
   ;; QUESTION SECTION:
   ;;1.0.0.127.in-addr.arpa.                         IN            PTR
   
   ;; ANSWER SECTION:
   1.0.0.127.in-addr.arpa.        86400            IN                PTR        localhost.

   ;; AUTHORITY SECTION:
   0.0.127.in-addr.arpa.            86400            IN                NS
   ISA2LP05.RCHLAND.IBM.COM.

   ;; ADDITIONAL SECTION:
   ISA2LP05.RCHLAND.IBM.COM.    38694            IN                A            9.5.176.194

   Query time: 552 msec
   SERVER: 9.5.176.194#53(9.5.176.194)
   WHEN: Thu May 31 21:38:12 2007
   MSG SIZE rcvd: 117
   ```

 The DNS server is responding correctly if it returns the loopback host name: `localhost`.

2. Press Enter to quit the session.

 Note: If you need help using DIG, type `?DIG` and press Enter.

Managing security keys

Security keys allow you to limit access to your Domain Name System (DNS) data.

There are two types of keys related to DNS, which are DNS keys and dynamic update keys. They each play a different role in securing your DNS configuration. The following descriptions explain how each relates to your DNS server.

Managing Domain Name System keys

The Domain Name System (DNS) keys are keys defined for BIND and used by the DNS server as part of the verification of an incoming update.

You can configure a key and assign it a name. Then, when you want to protect a DNS object, such as a dynamic zone, you can specify the key in the Address Match List.

To manage DNS keys, follow these steps:

1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. In the right pane, right-click the DNS server instance that you want to manage and select **Configuration**.
3. In the DNS Configuration page, select **File > Manage Keys**.
In the Manage Keys page, you can perform the corresponding management tasks.

Managing dynamic update keys

Dynamic update keys are used for securing dynamic updates by the Dynamic Host Configuration Protocol (DHCP) server.

These keys must be present when Domain Name System (DNS) and DHCP are on the same IBM i platform. If DHCP is on a different IBM i platform, you must distribute the same dynamic update key files to each remote IBM i platform that needs them to send dynamic updates to the authoritative servers. You can distribute them through FTP, e-mail, and so forth.

To manage dynamic update keys, follow these steps:

1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. Select **Manage DNS Dynamic Update Keys**.

You can then perform the corresponding management tasks in the Manage Dynamic Update Keys page.

Making manual updates to a dynamic zone

Special consideration should be given to manual updates in IBM Navigator for i (e.g. adding resource records) to a dynamic zone if the DNS server instance is running since there might be conflicts between manual changes and dynamic updates.

If you need to add, edit or delete a resource record for a dynamic zone, it's recommended that you should use the RUNDNSUPD or NSUPDATE command in the character-based interface to submit dynamic update requests to the DNS server. As an example, the following commands add an A record with IP address 192.168.1.100 for myhost.mycompany.com.

```
RUNDNSUPD BCHFILE(*NONE)
> update add myhost.mycompany.com 86400 A 192.168.1.100
> send
> quit
```

Note: The lines that begin with `>' are interactive commands that were issued after running RUNDNSUPD.

If you have to make manual changes in IBM Navigator for i, you can use the RNDC command in the character-based interface to synchronize the zone file before making changes. Note that you might miss dynamic updates that are sent during your manual changes.

To make manual changes, follow these steps (assume the DNS server is running):

1. Close all opened DNS configuration pages in IBM Navigator for i.
2. In the character-based interface, type the command `RNDC RNDCCMD(freeze zonename)` at the command line where `zonename` is the name of the dynamic zone. This command causes the zone to get frozen and dynamic updates (stored in the journal file) to be synchronized into the zone file. For a frozen zone, dynamic updates will not be accepted any more. Note that the zone's journal file will be removed after this command is run.
3. Stop the server instance in IBM Navigator for i; Or in the character-based interface, type the command `RNDC RNDCCMD(stop)` at the command line.
4. Make manual changes to the zone in IBM Navigator for i, e.g. adding resource records.
5. Restart the server instance in IBM Navigator for i; Or type `STRTCPVR SERVER(*DNS) DNSSVR(instancename)` at the command line to restart the server where `instancename` is the name of the server instance.
6. In the character-based interface, type the command `RNDC RNDCCMD(thaw zonename)` at the command line where `zonename` is the name of the dynamic zone. This command causes the zone to be reloaded and dynamic updates to be accepted again for the zone.

Related tasks

- Configuring Domain Name System to receive dynamic updates
Domain Name System (DNS) servers running BIND 9 can be configured to accept requests from other sources to update zone data dynamically. This topic provides instructions for configuring the allow-update option so DNS can receive dynamic updates.

Managing DNSSEC

This topic introduces the maintenance of DNSSEC on your IBM i platform.

Related concepts

DNS Security Extensions (DNSSEC) Introduction

DNSSEC is a suite of IETF RFC specifications which add security extensions to DNS.

Verifying the DNSSEC function is working

You can use the DIG (domain information groper) tool to verify if the DNSSEC function is working correctly. Suppose you have a signed zone named example.com on your DNS server and inside that zone there is an A record 192.168.1.101 for host1.example.com.

To verify DNSSEC function with DIG, follow these steps:

1. At the command line, type DIG HOSTNAME(host1.example.com) DMNNAMSVR('127.0.0.1') DNSSEC(*YES).

The DNS server is responding correctly if the status code is NOERROR and there are A and RRSIG records in the ANSWER section like following:

```
+----------+----------+
|          |          |
| global   | cmd      |
| answer   |          |
| -        | >>HEADER<< opcode: QUERY, status: NOERROR, id: 64408 |
| flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 1 |
|          |          |
| OPT      | PSEUDOSECTION: |
| EDNS:    | version: 0, flags: do; udp: 4096 |
| QUESTION | QUESTION SECTION: |
| SECTION: | ;host1.example.com. IN A |
|          | ; ANSWER SECTION: |
| host1.example.com. | 172800 IN A 192.168.1.101 |
| host1.example.com. | 172800 IN RRSIG A 5 3 172800 20131116055306 20131017055306 11643 example.com. i4xLG5ZIc+ifzdUe91jjPlys2tjM3f1KFSa6H/iDnQfUnWas6aEDPY Tpr5ir6xs72mqJYepKSuAwaxDZAZ a86yI70jRI+9ab7t360+099DRGT qS3G/8JfyZIFeck1QSYT6Hm3JCdaWMWPeT+t1/sYf3H1YDdN9RziXMN 5I0= |
|          | ; AUTHORITY SECTION: |
| example.com. | 172800 IN NS ... |
| example.com. | 172800 IN RRSIG NS ... |
|          |          |

2. Press Enter to quit the session.

Re-signing a zone

For a signed primary zone, if there are new changes made to the resource records of the zone, the zone then needs a re-signing.

Consider the following cases:

- New resource records (A, MX resource records, etc.) are added to a signed zone or existing records are changed.
- ZSK/KSK keys are changed or will be expired.
Dynamic update requests are received for a dynamic zone

For a static zone, if ZKS/KSK keys or other resource records are changed, you need to perform a manual zone re-signing for that zone. For a dynamic zone, a zone re-signing will be performed automatically by the server instance after dynamic updates are received, so a manual re-signing is not needed.

**Related concepts**

**Dynamic updates**

IBM i Domain Name System (DNS) that is based on BIND 9 supports dynamic updates. Outside sources, such as Dynamic Host Configuration Protocol (DHCP), can send updates to the DNS server. In addition, you can also use DNS client tools, such as Dynamic Update Utility (NSUPDATE), to perform dynamic updates.

**Related tasks**

**Re-signing a primary zone**

The following instructions can guide you through the process of re-signing a zone on a DNS server.

**Key rollover consideration**

For security reasons, KSK/ZSK keys should be rolled over periodically.

It's recommended that KSK keys should be replaced every 12 months and ZSK keys should be replaced every month or quarterly.

**Managing DNSSEC for a dynamic zone**

This topic introduces the DNSSEC maintenance for a dynamic zone.

**DNSSEC and dynamic updates**

If a dynamic zone deploys DNSSEC, the zone will be re-signed periodically by the DNS server to make sure un-signed records due to dynamic updates will be also signed.

**Note:** The DNS server needs to know the location of the ZSK/KSK private keys to sign the zone, so you need to configure a key-directory option for a dynamic zone which uses DNSSEC.

**Maintain DNSSEC using NSUPDATE command**

You can use the NSUPDATE command to perform DNSSEC related operations for a dynamic zone. For example, you can use it to add ZSK/KSK keys to a dynamic zone to sign the zone or perform key rollover.

The following shows the steps to sign a dynamic zone by adding ZSK/KSK keys to that zone:

1. Prepare the batch file (batch.file) to be executed. The content of the batch file might look as follows. Note that there is a blank line at the end of the file.

   
   

   | ttl 3600 |
   | update add domainname DNSKEY 256 3 7 AwEAA... |
   | update add domainname DNSKEY 257 3 7 AwEAA... |
   | send |

2. In the character-based interface, type the command `NSUPDATE BCHFILE(batch.file)` at the command line and press Enter.

**Automatic zone signing/automatic key rollover for a dynamic zone**

By configuring the auto-dnssec option to “maintain”, you can make the dynamic zone be signed automatically and the ZSK/KSK keys rolled over automatically. What you need to do is just to provide the corresponding ZSK/KSK keys for the zone maintenance. Follow these steps to prepare the keys:

1. Prepare the proper ZSK/KSK keys used to sign the zone. These keys can be generated using the command `GENDNSKEY` in the character-based interface.

2. Grant user QTCP access privilege to the ZSK/KSK keys and zone files.

   In the character-based interface, for each public key, type the command `CHGAUT OBJ('/QIBM/UserData/OS400/DNS/_DYN/K<key-id-n>.aaa+nnnnn.key') USER(QTCP) DTAAUT(*RWX)`
For each private key, type the command:

```
OBJAUT(*ALL); For each private key, type the command CHGAUT OBJ('/QIBM/UserData/OS400/DNS/_DYN/K<key-id-n>._aaa+nnnnn.private') USER(QTCP) DTAAUT(*RWX)
```

For the zone file being used, type the command:

```
OBJAUT(*ALL); For the zone file being used, type the command CHGAUT OBJ('/QIBM/UserData/OS400/DNS/<instance>/zonefile') USER(QTCP) DTAAUT(*RWX)
```

**Note:** You can refer to “Configuring DNSSEC for a dynamic zone” on page 32 for configuration steps for auto-dnssec option.

### Accessing Domain Name System server statistics

Database dump and statistics tools can help you review and manage server performance.

Domain Name System (DNS) provides several diagnostic tools. They can be used to monitor performance of your server.

**Related reference**

Maintaining Domain Name System configuration files

You can use IBM i DNS to create and manage DNS server instances on your IBM i platform. The configuration files for DNS are managed by IBM Navigator for i. You must not manually edit the files. Always use IBM Navigator for i to create, change, or delete DNS configuration files.

### Accessing server statistics

The server statistics summarize the number of queries and responses the server received since the last time the server restarted or reloaded its database.

Domain Name System (DNS) allows you to view the statistics for a server instance. Information is continually appended to this file until you delete the file. This information might be useful in evaluating how much traffic the server receives, and in tracking down problems. More information about server statistics is available in the DNS online help topic Understanding DNS server statistics.

To access server statistics, follow these steps:

1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. In the right pane, right-click your DNS server and select **Configuration**.
3. In the DNS configuration page, select **View > Server Statistics**.

You can also use the Remote Name Daemon Control (RNDC) command to display the server statistics information in the named.stats file. The corresponding command is as follows.

```
RNDC RNDCMD('stats')
```

### Accessing an active server database

The active server database contains zone and host information, including some zone properties, such as start of authority (SOA) information, and through host properties, such as mail exchanger (MX) information, which might be useful in tracking down problems.

Domain Name System (DNS) allows you to view a dump of the authoritative data, cache data, and hints data for a server instance. The dump includes the information from all of the server’s primary and secondary zones (forward and reverse mapping zones), as well as information that the server has obtained from queries.

You can view the active server database dump using IBM Navigator for i. If you need to save a copy of the files, the database dump file name is named_dump.db in your IBM i directory path: /QIBM/UserData/OS400/DNS/<server instance>/, where <server instance> is the name of the DNS server instance. More information about the active server database is available in the DNS online help topic Understanding the DNS server database dump.

To access the active server database dump, follow these steps:

1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. In the right pane, right-click your DNS server and select **Configuration**.
3. In the DNS configuration page, select View > Active Server Database.
You can also use the Remote Name Daemon Control (RNDC) command to display the active server database information in the named_dump.db file. The corresponding command is as follows.
RNDC RNDCCMD('dumpdb -all')

**Maintaining Domain Name System configuration files**

You can use IBM i DNS to create and manage DNS server instances on your IBM i platform. The configuration files for DNS are managed by IBM Navigator for i. You must not manually edit the files. Always use IBM Navigator for i to create, change, or delete DNS configuration files.

DNS configuration files are stored in the integrated file system paths listed below.

**Note:** The file structure below applies to DNS running on BIND 9.

In the following table, files are listed in the hierarchy of paths shown. Files with a save icon ▼ should be backed up to protect data. Files with a delete icon □ should be deleted on a regular basis.

<table>
<thead>
<tr>
<th>Name</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/QIBM/UserData/OS400/DNS/</td>
<td></td>
<td>Starting point directory for DNS.</td>
</tr>
<tr>
<td>/QIBM/UserData/OS400/DNS/&lt;instance-n&gt;/</td>
<td></td>
<td>Starting point directory for a DNS instance.</td>
</tr>
<tr>
<td>ATTRIBUTES</td>
<td></td>
<td>DNS uses this file to determine which BIND version you are using.</td>
</tr>
<tr>
<td>BOOT.AS400BIND4</td>
<td></td>
<td>BIND 4.9.3 server configuration and policies file that is converted to the BIND 8 named.conf file for this instance. This file is created if you migrate a BIND 4.9.3 server to BIND 9. It serves as a backup for migration, and can be deleted when the BIND 9 server is working properly.</td>
</tr>
<tr>
<td>named.ca</td>
<td></td>
<td>List of root servers for this server instance.</td>
</tr>
<tr>
<td>named.conf</td>
<td></td>
<td>This file contains configuration data. It tells the server what specific zones it is managing, where the zone files are, which zones can be dynamically updated, where its forwarding servers are, and other option settings.</td>
</tr>
<tr>
<td>named_dump.db</td>
<td>□</td>
<td>Server data dump created for the active server database.</td>
</tr>
<tr>
<td>named.memstats</td>
<td>□</td>
<td>Server memory statistics (if configured in named.conf).</td>
</tr>
<tr>
<td>Name</td>
<td>Icon</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>named.pid</td>
<td></td>
<td>Holds Process ID of running server. This file is created each time the DNS server is started. It is used for the Database, Statistics, and Update server functions. Do not delete or edit this file.</td>
</tr>
<tr>
<td>named.random</td>
<td></td>
<td>Server generated entropy file.</td>
</tr>
<tr>
<td>named.recurising</td>
<td></td>
<td>Servers queries that are recursive (if requested by IBM Navigator for i).</td>
</tr>
<tr>
<td>named.run</td>
<td></td>
<td>Default debug log (if requested). It can roll over as named.run.0, named.run.1, and so on.</td>
</tr>
<tr>
<td>named.stats</td>
<td></td>
<td>Server statistics.</td>
</tr>
<tr>
<td>&lt;primary-zone-n&gt;.db</td>
<td></td>
<td>It is the primary zone file for a particular domain on this server. The file contains all of the resource records for this zone. Each zone has a separate .db file.</td>
</tr>
<tr>
<td>&lt;primary-zone-n&gt;.jnl</td>
<td></td>
<td>Journal file that holds dynamic updates for a zone. It is created when the first dynamic update is received. When a server is restarted after a shutdown or crash, it replays the journal file to incorporate into the zone any updates that took place after the last zone dump. This file is also used for incremental zone transfers (IXFR). These log files do not disappear. This is a binary file and should not be edited.</td>
</tr>
<tr>
<td>&lt;primary-zone-n&gt;.db+&lt;YYYYMMDDHHMMSS&gt;.signed</td>
<td></td>
<td>It is the signed version of the primary zone file for a particular domain. It also contains resource records used for DNSSEC(RRSIG resource record, etc.).</td>
</tr>
<tr>
<td>db.&lt;secondary-zone-n&gt;</td>
<td></td>
<td>Secondary zone file for a particular domain on this server. Contains all of the resource records for this zone. This file is used to initially load the secondary server at startup if the primary server is unreachable. Each zone has a separate .db file.</td>
</tr>
<tr>
<td>/QIBM/UserData/OS400/DNS/_DYN/</td>
<td></td>
<td>Directory that holds files required for dynamic updates.</td>
</tr>
<tr>
<td>Name</td>
<td>Icon</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>&lt;key_id-n&gt;._KEY</td>
<td></td>
<td>.Symlink to DNSSEC key with the &lt;key_id-n&gt; key. It always points to the last K&lt;key_id-n&gt;+.aaa+nnnnn.key key that is created.</td>
</tr>
<tr>
<td>&lt;key_id-x&gt;._DUK. &lt;zone-a&gt;</td>
<td></td>
<td>Dynamic update key required to initiate a dynamic update request to &lt;zone-a&gt; using the &lt;key_id-x&gt; key.</td>
</tr>
<tr>
<td>&lt;key_id-x&gt;._KID</td>
<td></td>
<td>File containing a key statement for the key_id named &lt;key_id-x&gt;</td>
</tr>
<tr>
<td>&lt;key_id-y&gt;._DUK. &lt;zone-a&gt;</td>
<td></td>
<td>Dynamic update key required to initiate a dynamic update request to &lt;zone-a&gt; using the &lt;key_id-y&gt; key.</td>
</tr>
<tr>
<td>&lt;key_id-y&gt;._DUK. &lt;zone-b&gt;</td>
<td></td>
<td>Dynamic update key required to initiate a dynamic update request to &lt;zone-b&gt; using the &lt;key_id-y&gt; key.</td>
</tr>
<tr>
<td>&lt;key_id-y&gt;._KID</td>
<td></td>
<td>File containing a key statement for the key_id named &lt;key_id-y&gt;</td>
</tr>
<tr>
<td>k&lt;key_id-n&gt;+.aaa+nnnnn.key</td>
<td></td>
<td>DNSSEC public/private key pair, using the &lt;key_id-n&gt;: K{name}+.{algorithm}+.{identifier}.key K{name}+.{algorithm}+.{identifier}.private If the key pair for this &lt;key_id-n&gt; already exists, a new key pair with a different identifier part is created.</td>
</tr>
<tr>
<td>k&lt;key_id-n&gt;+.aaa+nnnnn.private</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsset-primary-zone-n.</td>
<td></td>
<td>The file is used to provide the parent zone administrators with the corresponding DS records</td>
</tr>
<tr>
<td>keyset-primary-zone-n.</td>
<td></td>
<td>The file is used to provide the parent zone administrators with the DNSKEYs.</td>
</tr>
<tr>
<td>rndc-confgen.random.nnnnn</td>
<td></td>
<td>Entropy files for various commands that require them. The nnnnn part is the job number of the job that created the file. These are only left behind if the command cancels for some reason and does not clean up.</td>
</tr>
<tr>
<td>dnssec-keygen.random.nnnnn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dnssec-signzone.random.nnnnn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;instance-n&gt;/session.key</td>
<td></td>
<td>Generated when the server is started up, and is used for the dynamic update from the local host. Do not delete or edit this file.</td>
</tr>
</tbody>
</table>
Related concepts
Determining Domain Name System authorities
There are special authorization requirements for the Domain Name System (DNS) administrator. You should also consider security implications of authorization.

Accessing Domain Name System server statistics
Database dump and statistics tools can help you review and manage server performance.

Related tasks
Configuring name servers
Domain Name System (DNS) allows you to create multiple name server instances. This topic provides instructions for configuring a name server.

Advanced Domain Name System features
This topic explains how experienced administrators can use Domain Name System (DNS) advanced features to manage a DNS server more easily.

DNS in IBM Navigator for i provides an interface with advanced features for configuring and managing your DNS server. The following tasks are provided as shortcuts for administrators who are familiar with the IBM i graphical interface. They provide fast methods for changing server status and attributes for multiple instances simultaneously.

Related tasks
Changing Domain Name System debug settings
The Domain Name System (DNS) debug function can provide information that can help you determine and correct DNS server problems.

Starting or stopping Domain Name System servers
If Domain Name System (DNS) in the IBM Navigator for i interface does not allow you to start or stop multiple server instances simultaneously, you can use the character-based interface to change these settings for multiple instances simultaneously.

To use the character-based interface to start all DNS server instances at once, type STRTCPSVR SERVER(*DNS) DNSSVR(*ALL) at the command line. To stop all DNS servers at once, type ENDTCPsvr SERVER(*DNS) DNSSVR(*ALL) at the command line.

Changing debug values
It is useful to change the debug level for administrators who have large zones and do not want the large amount of debug data collected when the server is first starting up and loading all of the zone data.

Domain Name System (DNS) in the IBM Navigator for i interface does not allow you to change the debug level while the server is running. However, you can use the character-based interface to change the debug level while the server is running. To change the debug level using the character-based interface, follow these steps, replacing nnnnn in the command with the name of the server instance:

1. At the command line, type ADDLIBLE QDNS and press Enter.
2. Change the debug level:
   • To turn debugging on or to increase the debug level by 1, type RNDC RNDCCMD('trace') and press Enter.
   • To turn debugging off, type RNDC RNDCCMD('notrace') and press Enter.

Troubleshooting Domain Name System
Domain Name System (DNS) logging and debugging settings can help you resolve problems with your DNS server.

DNS operates much the same as other TCP/IP functions and applications. Like SMTP or FTP applications, DNS jobs run under the QSYSPWRK subsystem and produce job logs under the user profile QTCP with
information associated with the DNS job. If a DNS job ends, you can use the job logs to determine the cause. If the DNS server is not returning the expected responses, the job logs might contain information that can help with problem analysis.

The DNS configuration consists of several files with several different types of records in each file. Problems with the DNS server are generally the result of incorrect entries in the DNS configuration files. When a problem occurs, verify that the DNS configuration files contain the entries you expect.

**Identifying jobs**

If you look in the job log to verify DNS server function (using WRKACTJOB, for example), consider the following naming guidelines:

- If you are running servers based on BIND 9, there will be a separate job for each server instance you are running. The job name is five fixed chars (QTOBD) followed by the instance name. For example, if you have two instances, INST1 and INST2, their job names will be QTOBDINST1 and QTOBDINST2.

**Logging Domain Name System server messages**

Domain Name System (DNS) provides numerous logging options that can be adjusted when you are trying to find the source of a problem. Logging provides flexibility by offering various severity levels, message categories, and output files so that you can fine-tune logging to help you find problems.

BIND 9 offers several logging options. You can specify what types of messages are logged, where each message type is sent, and what severity of each message type to log. In general, the default logging settings are suitable, but if you want to change them, it is suggested that you refer to other sources of BIND 9 documentation for information about logging.

**Logging channels**

The DNS server can log messages to different output channels. Channels specify where logging data is sent. You can select the following channel types:

- **File channels**
  
  Messages logged to file channels are sent to a file. The default file channels are i5os_debug and i5os_QPRINT. By default, debug messages are logged to the i5os_debug channel, which is the named.run file, but you can specify to send other message categories to this file as well. Message categories logged to i5os_QPRINT are sent to a QPRINT spooled file for user profile QTCP. You can create your own file channels in addition to the default channels provided.

- **Syslog channels**
  
  Messages logged to this channel are sent to the server’s job log. The default syslog channel is i5os_joblog. Logging messages routed to this channel are sent to the job log of the DNS server instance.

- **Null channels**
  
  All messages logged to the null channel are discarded. The default null channel is i5os_null. You can route categories to the null channel if you do not want the messages to appear in any log file.

**Message categories**

Messages are grouped into categories. You can specify what message categories should be logged to each channel. The categories are as follows:

- **client**
  
  Processing of client requests.

- **config**
  
  Configuration file parsing and processing.

- **database**
  
  Messages relating to the databases that are used internally by the DNS server to store zone and cache data.
default
Definitions of the logging options for those categories where no specific configuration has been defined.

delegation-only
Delegation only. It logs queries that have been forced to NXDOMAIN as the result of a delegation-only zone or a delegation-only in a hint or stub zone declaration.

dispatch
Dispatching of incoming packets to the server modules where they are to be processed.

dnssec
DNS Security Extensions (DNSSEC) and Transaction Signature (TSIG) protocol processing.

general
The catch-all category that is used for those things that are not classified into any other categories.

lame-servers
Lame servers that are misconfigurations in remote servers, discovered by BIND 9 when trying to query those servers during resolution.

network
Network operations.

notify
The NOTIFY protocol.

resolver
DNS resolution, such as the recursive lookups, that is performed on behalf of clients by a caching name server.

security
Approval and denial of requests.

xfer-in
Zone transfers that the server is receiving.

xfer-out
Zone transfers that the server is sending.

unmatched
Messages that are named was unable to determine the class of or for which there was no matching view. A one-line summary is also logged to the client category. This category is best sent to a file or stderr. By default, it is sent to the null channel.

update
Dynamic updates.

update-security
Approval and denial of update requests. Queries specify where queries should be logged. At startup, specifying the category queries enables query logging unless the querylog option is specified.

The query log entry reports the client’s IP address and port number, the query name, class, and type. It also reports whether the Recursion Desired flag was set (+ if set, - if not set), EDNS was in use (E), or if the query was signed (S).

Log files can become large and can be deleted on a regular basis. All contents in the DNS log file are cleared when the DNS server is stopped and started.

Message severity
Channels allow you to filter by message severity. For each channel, you can specify the severity level for which messages are logged. The following severity levels are available:

• Critical
• Error
• Warning
• Notice
• Info
• Debug (specify debug level 0-11)
• Dynamic (inherit the server startup debug level)

All messages of the severity you select and any levels above it in the list are logged. For example, if you select Warning, the channel logs Warning, Error, and Critical messages. If you select Debug level, you can specify a value from 0 to 11 for which you want debug messages to be logged.

**Changing logging settings**

To access logging options, follow these steps:

1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. In the right pane, right-click your DNS server and select **Configuration**.
3. In the DNS configuration page, right-click **DNS server** and select **Properties**.
4. In the Server Properties page, select the **Channels** tab to create new file channels or properties of a channel, such as the severity of messages logged to each channel.
5. In the Server Properties page, select the **Logging** tab to specify which message categories are logged to each channel.

**Troubleshooting tip about the severity level**

The i5os_joblog channel default severity level is set to Error. This setting is used to reduce the volume of informational and warning messages, which can otherwise degrade performance. If you are experiencing problems but the job log is not indicating the source of the problem, you might need to change the severity level. Follow the procedure above to access the Channels page and change the severity level for the i5os_joblog channel to Warning, Notice, or Info so you can view more logging data. After you have resolved the problem, reset the severity level to Error to reduce the number of messages in the job log.

**Changing Domain Name System debug settings**

The Domain Name System (DNS) debug function can provide information that can help you determine and correct DNS server problems.

DNS offers 12 levels of debug control. Logging typically provides an easier method of finding problems, but in some cases debugging might be necessary. Under normal conditions, debugging is turned off (value = 0). It is recommended that you first use logging to attempt to correct problems.

Valid debug levels are 0 through 11. Your IBM service representative can help you determine the appropriate debug value for diagnosing your DNS problem. Values of 1 or higher write debug information to the named.run file in your IBM i directory path: /QIBM/UserData/OS400/DNS/<server instance>, where <server instance> is the name of the DNS server instance. The named.run file continues to grow as long as the debug level is set to 1 or higher, and the DNS server continues to run. You can also use the Server Properties - Channels page to specify preferences for the maximum size and the number of versions of the named.run file.

To change the debug value for a DNS server instance, follow these steps:

1. In IBM Navigator for i, expand **Network > Servers > DNS Servers**.
2. In the right pane, right-click your DNS server and select **Configuration**.
3. In the DNS configuration page, right-click the DNS server and select **Properties**.
4. On the Server Properties - General page, specify the server startup debug level.
5. If the server is running, stop and restart the server.

**Note:** Changes to the debug level do not take effect while the server is running. The debug level set here will be used the next time the server is fully restarted. If you need to change the debug level while the server is running, see Advanced DNS features.
Related concepts
Advanced Domain Name System features
This topic explains how experienced administrators can use Domain Name System (DNS) advanced features to manage a DNS server more easily.

Related information for Domain Name System
IBM Redbooks publications, Web sites, and other information center topic collections contain information that relates to the Domain Name System (DNS) topic collection. You can view or print any of the PDF files.

IBM Redbooks

AS/400 TCP/IP Autoconfiguration: DNS and DHCP Support (5181 KB)
This Redbooks publication describes the Domain Name System (DNS) server and Dynamic Host Configuration Protocol (DHCP) server support that are included in IBM i. It can help you install, tailor, configure, and troubleshoot DNS and DHCP support through examples.

Web sites

• The Internet Software Consortium Web site contains news, links, and other resources for BIND. It also provides a listing of DNS related RFCs
• The InterNIC site maintains a directory of all domain name registrars that are authorized by the Internet Corporation for Assigned Names and Numbers (ICANN).

Related reference
PDF file for Domain Name System
You can view and print a PDF file of this information.
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.
Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_.

Programming interface information

This Domain Name System publication documents intended Programming Interfaces that allow the customer to write programs to obtain the services of IBM i.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative works of these publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
Product Number: 5770-SS1