
IBM i
Version 7.2

Database
Performance and Query Optimization

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
647.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 1998, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Performance and query optimization..1
What's new for IBM i 7.2..1
Print PDF...5
Query engine overview...6

SQE and CQE engines... 6
Query dispatcher.. 7
Statistics manager.. 8
Global Statistics Cache...9
Plan cache...9

Data access methods...11
Permanent objects & access methods.. 12
Temporary objects & access methods...26
Objects processed in parallel...53
Spreading data automatically.. 54

Processing queries: Overview... 54
Query optimizer.. 55
Query optimization tips.. 55
Access plan validation..55
Single table optimization..56
Solid State Drives... 57
Memory preference controls..58
Join optimization.. 59
Distinct optimization.. 69
Grouping optimization..70
Ordering optimization...76
View implementation... 77
MQT optimization... 79
Recursive query optimization.. 88
Adaptive Query Processing.. 97
Row and column access control.. 101

Tools...108
Health Center... 108
Database Monitor...129
Navigator monitors...140
Index advisor..145
Visual Explain... 152
SQL Plan Cache.. 156
Verify performance...169
View debug messages..170
Print SQL Information.. 171
Tool comparison...171
Change query attributes.. 172
Statistics manager..196
Display MQT columns...201
Check pending constraints.. 203

Creating an index strategy...204
Binary radix indexes...204
Encoded vector indexes...211
Compare radix & EVIs.. 220
Indexes & the optimizer...220
Indexing strategy... 231

 iii

Coding for effective indexes...233
Indexes with sort sequence...236
Index examples..237

Application design tips.. 245
Live data... 245
Reduce open operations.. 247
Retain cursor positions.. 249

Programming techniques.. 251
Use the OPTIMIZE clause.. 251
Use FETCH FOR n ROWS..253
Use INSERT n ROWS.. 253
Control database manager blocking..254
Optimize columns selected... 255
PREPARE considerations... 255
REFRESH(*FORWARD) considerations..256
Improve concurrency...256

Performance considerations... 257
Long object names... 257
Precompile options.. 257
ALWCPYDTA... 258
VARCHAR and VARGRAPHIC... 259
Field procedures.. 261

DB2 for i Services...264
Application Services...264
Performance Services.. 270
Utility Services..278

IBM i Services.. 301
Application Services...301
Communication Services... 311
Java Services..339
Journal Services...341
Librarian Services...360
Message Handling Services... 363
Product Services.. 371
PTF Services... 375
Security Services..384
Spool Services.. 399
Storage Services...416
System Health Services... 429
Work Management Services.. 436

SYSTOOLS.. 490
Using SYSTOOLS...490

Database monitor formats...492
SQL table.. 492
SQL view... 498

Messages reference...601
Performance information...601
Open data paths...626
PRTSQLINF...632

Notices..647
Programming interface information..648
Trademarks.. 649
Terms and conditions.. 649

iv

Database performance and query optimization
The goal of database performance tuning is to minimize the response time of your queries by making the
best use of your system resources. The best use of these resources involves minimizing network traffic,
disk I/O, and CPU time. This goal can only be achieved by understanding the logical and physical structure
of your data, the applications used on your system, and how the conflicting uses of your database might
affect performance.

The best way to avoid performance problems is to ensure that performance issues are part of your
ongoing development activities. Many of the most significant performance improvements are realized
through careful design at the beginning of the database development cycle. To most effectively optimize
performance, you must identify the areas that yield the largest performance increases over the widest
variety of situations. Focus your analysis on these areas.

Many of the examples within this publication illustrate a query written through either an SQL or an
OPNQRYF query interface. The interface chosen for a particular example does not indicate an operation
exclusive to that query interface, unless explicitly noted. It is only an illustration of one possible query
interface. Most examples can be easily rewritten into whatever query interface that you prefer.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 645.

What's new for IBM i 7.2
The following information was added or updated in this release of the information:

• Support for Row and column access controls:

– “Row and column access control (RCAC)” on page 101
– QAQQINI options for RCAC: “QAQQINI query options” on page 176

• DB2 for i services outlines many system-provided views, procedures, and functions. “DB2 for i Services”
on page 264

• IBM i Services outlines many system services that can be accessed through system-provided SQL views,
procedures, and functions. “IBM i Services” on page 301

• Improved query identification matching advised indexes with existing Plan Cache queries.

– “Index advisor” on page 145
– “Displaying index advisor information” on page 147

• Allow for host variable selectivity checks at pseudo open time:

– “Reducing the number of open operations” on page 247
– “QAQQINI query options” on page 176

• “Controlling queries dynamically with the query options file QAQQINI” on page 172
• Temporary indexes as a source of optimizer statistics: “Temporary index” on page 44
• Improved query optimization I/O cost estimates based on IPL determined disk I/O analysis: “Single

table optimization” on page 56
• Support for Solid State Drives: “Solid State Drives” on page 57
• “Index advisor column descriptions” on page 150
• “Database manager indexes advised system table” on page 148
• New system limit for index size 1.7 Terabytes: “QSYS2.Health_Size_Limits ()” on page 121
• Index advice generation now handles OR predicates: “Index advice and OR predicates” on page 145
• SQE Plan Cache default auto sizing vs explicit size designation:

© Copyright IBM Corp. 1998, 2013 1

– “Plan cache” on page 9
– “Accessing the SQL plan cache with SQL stored procedures” on page 163

• EVI INCLUDE supports grouping set queries “Recommendations for EVI use” on page 217

What’s new

The following revisions or additions have been made to the Performance and query optimization
documentation since the first 7.2 publication:

• April 2019 update

– The maximum table size has been added as a tracked system limit and as a limit that sends alerts:
“System Health Services” on page 429, “System limit alerts” on page 431

• August 2018 update

– New services

- GENERATE_SQL_OBJECTS procedure: “GENERATE_SQL_OBJECTS procedure” on page 292
- JOB_DESCRIPTION_INFO view: “JOB_DESCRIPTION_INFO view” on page 449
- OUTPUT_QUEUE_ENTRIES_BASIC view: “OUTPUT_QUEUE_ENTRIES_BASIC view” on page 409

– Updated services

- ACTIVE_JOB_INFO table function optionally returns more detailed information:
“ACTIVE_JOB_INFO table function” on page 436

- NETSTAT_INFO view and NETSTATE_JOB_INFO view return port names from service table entries:
“NETSTAT_INFO view” on page 311 and “NETSTAT_JOB_INFO view” on page 326

- PARSE_STATEMENT table function supports some DDL references: “PARSE_STATEMENT table
function” on page 266

• October 2017 update

– New services

- ASP_INFO view: “ASP_INFO view” on page 417
- ASP_VARY_INFO view: “ASP_VARY_INFO view” on page 423
- JOB_QUEUE_INFO view: “JOB_QUEUE_INFO view” on page 470
- STACK_INFO table function: “STACK_INFO table function” on page 306

– Updated services

- DISPLAY_JOURNAL and HISTORY_LOG_INFO include syslog information: “DISPLAY_JOURNAL
table function” on page 342 and “HISTORY_LOG_INFO table function” on page 363

- OVERRIDE_QAQQINI procedure has been fully documented: “OVERRIDE_QAQQINI procedure” on
page 265

- System limit notifications: “System limit alerts” on page 431
• March 2017 update

– New services

- AUTHORIZATION_LIST_INFO view: “AUTHORIZATION_LIST_INFO view” on page 384
- AUTHORIZATION_LIST_USER_INFO view: “AUTHORIZATION_LIST_USER_INFO view” on page 386
- OBJECT_PRIVILEGES view: “OBJECT_PRIVILEGES view” on page 390
- MESSAGE_QUEUE_INFO view: “MESSAGE_QUEUE_INFO view” on page 369
- LICENSE_EXPIRATION_CHECK procedure: “LICENSE_EXPIRATION_CHECK procedure” on page

372
- SET_PASE_SHELL_INFO procedure: “SET_PASE_SHELL_INFO procedure” on page 305

– Updated services

2 IBM i: Database Performance and Query Optimization

- USER_INFO has new columns for supplemental group profile information and the PASE shell:
“USER_INFO view” on page 394

- LICENSE_INFO view has a new column indicating the install status: “LICENSE_INFO view” on page
372

- RESET_TABLE_INDEX_STATISTICS procedure has a new option to remove rows from the index
advice tracking table: “RESET_TABLE_INDEX_STATISTICS procedure” on page 276

• November 2016 update

– STATEMENT DETERMINISTIC option has been added for functions: “QAQQINI query options” on
page 176

– New services

- HISTORY_LOG_INFO table function: “HISTORY_LOG_INFO table function” on page 363

- JOB_INFO table function: “JOB_INFO table function” on page 457

- PARSE_STATEMENT table function: “PARSE_STATEMENT table function” on page 266
– Updated services

- DISPLAY_JOURNAL table function honors row and column access control: “DISPLAY_JOURNAL
table function” on page 342

- GET_JOB_INFO table function has new columns for prestart job information: “GET_JOB_INFO table
function” on page 456

- GROUP_PTF_CURRENCY view returns a new value to indicate PTFs will be current with the next IPL:
“GROUP_PTF_CURRENCY view” on page 375

- GROUP_PTF_CURRENCY and GROUP_PTF_DETAILS views have been updated to access a new XML
feed: “GROUP_PTF_CURRENCY view” on page 375 and “GROUP_PTF_DETAILS view” on page 376

- OBJECT_STATISTICS table function added an option to efficiently return a list of libraries:
“OBJECT_STATISTICS table function” on page 360

• April 2016 update

– New services

- ENVIRONMENT_VARIABLE_INFO view: “ENVIRONMENT_VARIABLE_INFO view” on page 302
- OUTPUT_QUEUE_INFO view: “OUTPUT_QUEUE_INFO view” on page 411
- SERVICES_INFO table and DB2 PTF Group level dependency information: “SERVICES_INFO table”

on page 303
– Updated services

- DISPLAY_JOURNAL table function accepts ending values as input parameters to limit the entries
returned: “DISPLAY_JOURNAL table function” on page 342

- NETSTAT_INFO view has been updated to return more information: “NETSTAT_INFO view” on page
311

- NETSTAT_INTERFACE_INFO view has been updated to return more information:
“NETSTAT_INTERFACE_INFO view” on page 318

- NETSTAT_JOB_INFO view has been updated to return more information: “NETSTAT_JOB_INFO
view” on page 326

- NETSTAT_ROUTE_INFO view has been updated to return more information:
“NETSTAT_ROUTE_INFO view” on page 327

- SERVER_SBS_ROUTING view shows information about more servers: “SERVER_SBS_ROUTING
view” on page 337

- SET_SERVER_SBS_ROUTING procedure allows you to configuring more servers:
“SET_SERVER_SBS_ROUTING procedure” on page 334

- SYSLIMITS view returns more information about each object: “SYSLIMITS view” on page 433

Database performance and query optimization 3

- An additional limit is tracked: Maximum extended dynamic package size: “System Health Services”
on page 429

• October 2015 update

– New services

- GROUP_PTF_DETAILS view: “GROUP_PTF_DETAILS view” on page 376
- LICENSE_INFO view: “LICENSE_INFO view” on page 372
- MEDIA_LIBRARY_INFO view: “MEDIA_LIBRARY_INFO view” on page 425
- MEMORY_POOL table function: “MEMORY_POOL table function” on page 474
- MEMORY_POOL_INFO view: “MEMORY_POOL_INFO view” on page 476
- NETSTAT_INFO view: “NETSTAT_INFO view” on page 311
- NETSTAT_INTERFACE_INFO view: “NETSTAT_INTERFACE_INFO view” on page 318
- NETSTAT_JOB_INFO view: “NETSTAT_JOB_INFO view” on page 326
- NETSTAT_ROUTE_INFO view: “NETSTAT_ROUTE_INFO view” on page 327
- OBJECT_LOCK_INFO view: “OBJECT_LOCK_INFO view” on page 478
- OUTPUT_QUEUE_ENTRIES table function: “OUTPUT_QUEUE_ENTRIES table function” on page 399
- OUTPUT_QUEUE_ENTRIES view: “OUTPUT_QUEUE_ENTRIES view” on page 404
- RECORD_LOCK_INFO view: “RECORD_LOCK_INFO view” on page 480
- SYSTEM_STATUS table function: “SYSTEM_STATUS table function” on page 485
- SYSTEM_STATUS_INFO view: “SYSTEM_STATUS_INFO view” on page 487

– Updated services

- ACTIVE_JOB_INFO table function has been updated to return elapsed time: “ACTIVE_JOB_INFO
table function” on page 436

- DATABASE_MONITOR_INFO view has been updated to describe new filter values:
“DATABASE_MONITOR_INFO view” on page 271

- ENV_SYS_INFO view has been updated to return the total configured memory: “ENV_SYS_INFO
view” on page 311

- GET_JOB_INFO table function has been updated to return the client IP address: “GET_JOB_INFO
table function” on page 456

- SET_SERVER_SBS_ROUTING procedure allows you to configuring the remote command server:
“SET_SERVER_SBS_ROUTING procedure” on page 334

• May 2015 update

– Additional information was added to QQI1 - Insert unique count in the database monitor 1000
record. For details, see: “Database monitor view 1000 - SQL Information” on page 498

– Additional options were added to the QAQQINI query option Memory_Pool_Preference. For details,
see: “QAQQINI query options” on page 176

– CLEAR_PLAN_CACHE procedure. For details, see: “CLEAR_PLAN_CACHE” on page 169
– New services

- ACTIVE_JOB_INFO table function: “ACTIVE_JOB_INFO table function” on page 436
- DATABASE_MONITOR_INFO view: “DATABASE_MONITOR_INFO view” on page 271
- DRDA_AUTHENTICATION_ENTRY_INFO view: “DRDA_AUTHENTICATION_ENTRY_INFO view” on

page 388
- JVM_INFO view: “JVM_INFO view” on page 339
- SCHEDULED_JOB_INFO view: “SCHEDULED_JOB_INFO view” on page 481
- SERVER_SBS_ROUTING view: “SERVER_SBS_ROUTING view” on page 337
- SET_JVM procedure: “SET_JVM procedure” on page 341

4 IBM i: Database Performance and Query Optimization

- SET_SERVER_SBS_ROUTING procedure: “SET_SERVER_SBS_ROUTING procedure” on page 334
– Updated services

- GET_JOB_INFO table function has been updated to return additional SQL information for a job:
“GET_JOB_INFO table function” on page 456

- OBJECT_STATISTICS table function has a new optional parameter to specify the name of the object
to return. It will also return the long SQL name for an object and has new columns to return the
text, the long schema name, and the SQL type of an object: “OBJECT_STATISTICS table function”
on page 360

- System Health Services has been updated to track index limits: “System Health Services” on page
429

• October 2014 update

– Updates to the QAQQINI query options topic

For details, see “QAQQINI query options” on page 176.
– Memory preference controls enhanced for SQL

For details, see “Memory preference controls” on page 58
– The database monitor topic has been updated: “Monitoring your queries using the Database

Monitor ” on page 129
– The SQL Plan Cache topic has been updated: “Optimizing performance using the Plan Cache” on page

156
– New services

- LIBRARY_LIST_INFO view: “LIBRARY_LIST_INFO view” on page 360
- REPLY_LIST_INFO view: “REPLY_LIST_INFO view” on page 371
- JOURNAL_INFO view: “JOURNAL_INFO view” on page 351
- GROUP_PTF_CURRENCY view: “GROUP_PTF_CURRENCY view” on page 375
- JOBLOG_INFO table function: “JOBLOG_INFO table function” on page 367

– Tracking of additional file system limits

For details, see “System Health Services” on page 429

How to see what's new or changed

To help you see where technical changes have been made, this information uses:

• The image to mark where new or changed information begins.
• The image to mark where new or changed information ends.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for Database performance and query optimization
View and print a PDF of this information.

To view or download the PDF version of this document, select Database performance and query
optimization.

Other information

You can also view or print any of the following PDF files:

• Preparing for and Tuning the SQL Query Engine on DB2® for i5/OS

• SQL Performance Diagnosis on IBM® DB2 Universal Database for iSeries

Database performance and query optimization 5

http://www.redbooks.ibm.com/abstracts/sg246598.html
http://www.redbooks.ibm.com/abstracts/sg246654.html

.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the preceding link).
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDF files. You can download a free
copy from Adobe (http://get.adobe.com/reader/) .

Query engine overview
IBM DB2 for i provides two query engines to process queries: Classic Query Engine (CQE) and SQL Query
Engine (SQE).

The CQE processes queries originating from non-SQL interfaces: OPNQRYF, Query/400, and QQQQry API.
SQL-based interfaces, such as ODBC, JDBC, CLI, Query Manager, Net.Data®, RUNSQLSTM, and embedded
or interactive SQL, run through the SQE. For ease of use, the routing decision for processing the query by
either CQE or SQE is pervasive and under the control of the system. The requesting user or application
program cannot control or influence this behavior. However, a better understanding of the engines and
process that determines which path a query takes can give you a better understanding of query
performance.

Within SQE, several more components were created and other existing components were updated.
Additionally, new data access methods are possible with SQE that are not supported under CQE.

Related information
Embedded SQL programming
SQL programming
Query (QQQQRY) API
Open Query File (OPNQRYF) command
Run SQL Statements (RUNSQLSTM) command

SQE and CQE engines
It is important to understand the implementation differences of query management and processing in
CQE versus SQE.

The following figure shows an overview of the IBM DB2 for i architecture. It shows the delineation
between CQE and SQE, how query processing is directed by the query dispatcher, and where each SQE
component fits. The functional separation of each SQE component is clearly evident. This division of
responsibility enables IBM to more easily deliver functional enhancements to the individual components
of SQE, as and when required. Notice that most of the SQE Optimizer components are implemented below
the MI. This implementation translates into enhanced performance efficiency.

6 IBM i: Database Performance and Query Optimization

http://get.adobe.com/reader/

As seen in the previous graphic, the query runs from any query interface to the optimizer and the query
dispatcher. The query dispatcher determines whether the query is implemented with CQE or SQE.

Query dispatcher
The function of the dispatcher is to route the query request to either CQE or SQE, depending on the
attributes of the query. All queries are processed by the dispatcher. It cannot be bypassed.

Currently, the dispatcher routes queries to SQE unless it finds that the query references or contains any of
the following:

• INSERT WITH VALUES statement or the target of an INSERT with subselect statement
• Tables with Read triggers
• Read-only queries with more than 1000 dataspaces, or updatable queries with more than 256

dataspaces.
• DB2 Multisystem tables
• QQQQry API

For other non-SQL queries, for example Query/400 or OPNQRYF, the routing of the query can be
controlled by the QAQQINI SQE_NATIVE_ACCESS option. See "table 46".

Related reference
MQT supported function

Database performance and query optimization 7

Although an MQT can contain almost any query, the optimizer only supports a limited set of query
functions when matching MQTs to user specified queries. The user-specified query and the MQT query
must both be supported by the SQE optimizer.

Statistics manager
In CQE, the retrieval of statistics is a function of the Optimizer. When the Optimizer needs to know
information about a table, it looks at the table description to retrieve the row count and table size. If an
index is available, the Optimizer might extract information about the data in the table. In SQE, the
collection and management of statistics is handled by a separate component called the statistics
manager. The statistics manager leverages all the same statistical sources as CQE, but adds more sources
and capabilities.

The statistics manager does not actually run or optimize the query. Instead, it controls the access to the
metadata and other information that is required to optimize the query. It uses this information to answer
questions posed by the query optimizer. The statistics manager always provides answers to the optimizer.
In cases where it cannot provide an answer based on actual existing statistics information, it is designed
to provide a predefined answer.

The Statistics manager typically gathers and tracks the following information:

Cardinality of values
The number of unique or distinct occurrences of a specific value in a single column or multiple
columns of a table.

Selectivity
Also known as a histogram, this information is an indication of how many rows are selected by any
given selection predicate or combination of predicates. Using sampling techniques, it describes the
selectivity and distribution of values in a given column of the table.

Frequent values
The top nn most frequent values of a column together with a count of how frequently each value
occurs. This information is obtained by using statistical sampling techniques. Built-in algorithms
eliminate the possibility of data skewing. For example, NULL values and default values that can
influence the statistical values are not taken into account.

Metadata information
Includes the total number of rows in the table, indexes that exist over the table, and which indexes are
useful for implementing the particular query.

Estimate of IO operation
An estimate of the amount of IO operations that are required to process the table or the identified
index.

The Statistics manager uses a hybrid approach to manage database statistics. Most of this information
can be obtained from existing indexes. In cases where the required statistics cannot be gathered from
existing indexes, statistical information is constructed on single columns of a table and stored internally.
By default, this information is collected automatically by the system, but you can manually control the
collection of statistics. Unlike indexes, however, statistics are not maintained immediately as data in the
tables change.

Related reference
Collecting statistics with the statistics manager
The collection of statistics is handled by a separate component called the statistics manager. Statistical
information can be used by the query optimizer to determine the best access plan for a query. Since the

8 IBM i: Database Performance and Query Optimization

query optimizer bases its choice of access plan on the statistical information found in the table, it is
important that this information is current.

Global Statistics Cache
In SQE, the DB2 Statistics Manager stores actual row counts into a Global Statistics Cache. In this
manner, the Statistics Manager refines its estimates over time as it learns where estimates have deviated
from actual row counts.

Both completed queries and currently executing queries might be inspected by the “Adaptive Query
Processing” on page 97 (AQP) task, which compares estimated row counts to actual row counts. If there
are any significant discrepancies, the AQP task notifies the DB2 Statistics Manager (SM). The SM stores
this actual row count (also called observed row count) into a Global Statistics Cache (GSC).

If the query which generated the observed statistic in the GSC is reoptimized, the actual row count
estimate is used in determining a new query plan. Further, if a different query asks for the same or a
similar row count, the SM could return the stored actual row count from the GSC. Faster query plans can
be generated by the query optimizer.

Typically, observed statistics are for complex predicates such as with a join. A simple example is a query
joining three files A, B, and C. There is a discrepancy between the estimate and actual row count of the
join of A and B. The SM stores an observed statistic into the GSC. Later, if a different join query of A, B, and
Z is submitted, the SM recalls the observed statistic of the A and B join. The SM considers that observed
statistic in its estimate of the A, B, and Z join.

The Global Statistics Cache is an internal DB2 object, and the contents of it are not directly observable.

Plan cache
The plan cache is a repository that contains the access plans for queries that were optimized by SQE.

Access plans generated by CQE are not stored in the plan cache; instead, they are stored in SQL packages,
the system-wide statement cache, and job cache. The purposes of the plan cache are to:

• Facilitate the reuse of a query access plan when the same query is re-executed
• Store runtime information for subsequent use in future query optimizations
• Provide performance information for analysis and tuning

Once an access plan is created, it is available for use by all users and all queries, regardless of where the
query originates. Furthermore, when an access plan is tuned, for example, when creating an index, all
queries can benefit from this updated access plan. This updated access plan eliminates the need to
reoptimize the query, resulting in greater efficiency.

The following graphic shows the concept of reusability of the query access plans stored in the plan cache:

Database performance and query optimization 9

As shown in the previous graphic, statements from packages and programs are stored in unique plans in
the plan cache. If Statement 3 exists in both SQL package 1 and SQL package 2, the plan is stored once in
the plan cache. The plan cache is interrogated each time a query is executed. If an access plan exists that
satisfies the requirements of the query, it is used to implement the query. Otherwise a new access plan is
created and stored in the plan cache for future use.

The plan cache is automatically updated with new query access plans as they are created. When new
statistics or indexes become available, an existing plan is updated the next time the query is run. The plan
cache is also automatically updated by the database with runtime information as the queries are run.

Each plan cache entry contains the original query, the optimized query access plan, and cumulative
runtime information gathered during the runs of the query. In addition, several instances of query runtime
objects are stored with a plan cache entry. These runtime objects are the real executable objects and
temporary storage containers (hash tables, sorts, temporary indexes, and so on) used to run the query.

By default the SQE Plan Cache will auto adjust from an initial threshold size of 512 MB to an internally
managed maximum. Automatic management of the SQL Plan Cache Threshold Size by the system will not
take effect if the plan cache threshold size is explicitly set on the system. See the SQL plan cache
properties topic for more information: rzajqplancacheprops.dita

• When processing is initiated to remove plans in the cache due to size constraint, the efficiency rating of
the cache is checked. If the rating is too low, the database will automatically increase the plan cache
size.

• The plan cache auto-sizing maximum size will not exceed a small percentage of free storage on the
system.

• The plan cache auto-sizing will decrease the size if the temporary storage on the machine exceeds a
certain percentage.

• The auto-sized adjusted threshold value does not survive an IPL. The default plan cache size is used
after an IPL and auto sizing begins again.

• To reset an explicitly set plan cache size in order to allow auto-sizing to take effect, set the plan cache
size to zero.

10 IBM i: Database Performance and Query Optimization

Example:

CALL qsys2.change_plan_cache_size(0)

When the plan cache exceeds its designated size, a background task is automatically scheduled to
remove plans from the plan cache. Access plans are deleted based upon age, how frequently it is used,
and how much cumulative resources (CPU/IO) were consumed.

The total number of access plans stored in the plan cache depends largely upon the complexity of the SQL
statements that are being executed. The plan cache is cleared when a system Initial Program Load (IPL) is
performed.

Multiple access plans for a single SQL statement can be maintained in the plan cache. Although the SQL
statement is the primary key into the plan cache, different environmental settings can cause additional
access plans to be stored. Examples of these environmental settings include:

• Different SMP Degree settings for the same query
• Different library lists specified for the query tables
• Different settings for the share of available memory for the job in the current pool
• Different ALWCPYDTA settings
• Different selectivity based on changing host variable values used in selection (WHERE clause)

Currently, the plan cache can maintain a maximum of three different access plans for the same SQL
statement. As new access plans are created for the same SQL statement, older access plans are
discarded to make room for the new access plans. There are, however, certain conditions that can cause
an existing access plan to be invalidated. Examples of these conditions include:

• Specifying REOPTIMIZE_ACCESS_PLAN(*YES) or (*FORCE) in the QAQQINI table or in Run SQL Scripts
• Deleting or recreating the table that the access plan refers to
• Deleting an index that is used by the access plan

Related reference
Effects of the ALWCPYDTA parameter on database performance
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.
Changing the attributes of your queries
You can modify different types of query attributes for a job with the Change Query Attributes
(CHGQRYA) CL command. You can also use the System i Navigator Change Query Attributes interface.
Optimizing performance using the Plan Cache
The SQL Plan Cache contains a wealth of information about the SQE queries being run through the
database. Its contents are viewable through the System i Navigator GUI interface. Certain portions of the
plan cache can also be modified.

Data access methods
Data access methods are used to process queries and access data.

In general, the query engine has two kinds of raw material with which to satisfy a query request:

• The database objects that contain the data to be queried
• The executable instructions or operations to retrieve and transform the data into usable information

There are only two types of permanent database objects that can be used as source material for a query
— tables and indexes. Indexes include binary radix and encoded vector indexes.

In addition, the query engine might need to create temporary objects to hold interim results or references
during the execution of an access plan. The DB2 Symmetric Multiprocessing feature provides the
optimizer with additional methods for retrieving data that include parallel processing. Finally, the
optimizer uses certain methods to manipulate these objects.

Database performance and query optimization 11

Permanent objects and access methods
There are three basic types of access methods used to manipulate the permanent and temporary
database objects -- Create, Scan, and Probe.

The following table lists each object and the access methods that can be performed against that object.
The symbols shown in the table are the icons used by Visual Explain.

Table 1. Permanent object data access methods

Permanent objects Scan operations Probe operations

Table Table scan Table probe

Radix index Radix index scan Radix index probe

Encoded vector index Encoded vector index symbol
table scan

Encoded vector index probe

Table
An SQL table or physical file is the base object for a query. It represents the source of the data used to
produce the result set for the query. It is created by the user and specified in the FROM clause (or
OPNQRYF FILE parameter).

The optimizer determines the most efficient way to extract the data from the table in order to satisfy the
query. These ways could include scanning or probing the table or using an index to extract the data.

Visual explain icon:

Table scan
A table scan is the easiest and simplest operation that can be performed against a table. It sequentially
processes all the rows in the table to determine if they satisfy the selection criteria specified in the query.
It does this processing in a way to maximize the I/O throughput for the table.

A table scan operation requests large I/Os to bring as many rows as possible into main memory for
processing. It also asynchronously pre-fetches the data to make sure that the table scan operation is
never waiting for rows to be paged into memory. Table scan however, has a disadvantage in it has to
process all the rows in order to satisfy the query. The scan operation itself is efficient if it does not need to
perform the I/O synchronously.

Table 2. Table scan attributes

Data access method Table scan

Description Reads all the rows from the table and applies the selection criteria to
each of the rows within the table. The rows in the table are processed
in no guaranteed order, but typically they are processed sequentially.

Advantages • Minimizes page I/O operations through asynchronous pre-fetching of
the rows since the pages are scanned sequentially

• Requests a larger I/O to fetch the data efficiently

12 IBM i: Database Performance and Query Optimization

Table 2. Table scan attributes (continued)

Data access method Table scan

Considerations • All rows in the table are examined regardless of the selectivity of the
query

• Rows marked as deleted are still paged into memory even though
none are selected. You can reorganize the table to remove deleted
rows.

Likely to be used • When expecting many rows returned from the table
• When the number of large I/Os needed to scan is fewer than the

number of small I/Os required to probe the table

Example SQL statement
SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01'AND 'E01'
OPTIMIZE FOR ALL ROWS

Messages indicating use • Optimizer Debug:

CPI4329 — Arrival sequence was used for file EMPLOYEE

• PRTSQLINF:

SQL4010 — Table scan access for table 1.

SMP parallel enabled Yes

Also referred to as Table Scan, Preload

Visual Explain icon

Related concepts
Nested loop join implementation
Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Table probe
A table probe operation is used to retrieve a specific row from a table based upon its row number. The row
number is provided to the table probe access method by some other operation that generates a row
number for the table.

This can include index operations as well as temporary row number lists or bitmaps. The processing for a
table probe is typically random. It requests a small I/O to retrieve only the row in question and does not
attempt to bring in any extraneous rows. This method leads to efficient processing for smaller result sets
because only rows needed to satisfy the query are processed, rather than scanning all rows.

However, since the sequence of the row numbers is not known in advance, little pre-fetching can be
performed to bring the data into main memory. This randomness can result in most of the I/Os associated
with table probe to be performed synchronously.

Database performance and query optimization 13

Table 3. Table probe attributes

Data access method Table probe

Description Reads a single row from the table based upon a specific row number. A
random I/O is performed against the table to extract the row.

Advantages • Requests smaller I/Os to prevent paging rows into memory that are
not needed

• Can be used with any access method that generates a row number
for the table probe to process

Considerations Because of the synchronous random I/O the probe can perform poorly
when many rows are selected

Likely to be used • When row numbers (from indexes or temporary row number lists) are
used, but data from the underlying table is required for further
processing of the query

• When processing any remaining selection or projection of the values

Example SQL statement CREATE INDEX X1 ON Employee (LastName)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Messages indicating use There is no specific message that indicates the use of a table probe.
These example messages illustrate the use of a data access method
that generates a row number used to perform the table probe.

• Optimizer Debug:

CPI4328 — Access path of file X1 was used by query

• PRTSQLINF:

SQL4008 — Index X1 used for table 1.

SQL4011 — Index scan-key row positioning (probe)
 used on table 1.

SMP parallel enabled Yes

Also referred to as Table Probe, Preload

Visual Explain icon

Radix index
An SQL index (or keyed sequence access path) is a permanent object that is created over a table. The
index is used by the optimizer to provide a sequenced view of the data for a scan or probe operation.

The rows in the tables are sequenced in the index based upon the key columns specified on the creation
of the index. When the optimizer matches a query to index key columns, it can use the index to help
satisfy query selection, ordering, grouping, or join requirements.

14 IBM i: Database Performance and Query Optimization

Typically, using an index also includes a table probe to provide access to columns needed to satisfy the
query that cannot be found as index keys. If all the columns necessary to satisfy the query can be found
as index keys, then the table probe is not required. The query uses index-only access. Avoiding the table
probe can be an important savings for a query. The I/O associated with a table probe is typically the more
expensive synchronous random I/O.

Visual Explain icon:

Radix index scan
A radix index scan operation is used to retrieve the rows from a table in a keyed sequence. Like a table
scan, all the rows in the index are sequentially processed, but the resulting row numbers are sequenced
based upon the key columns.

The sequenced rows can be used by the optimizer to satisfy a portion of the query request (such as
ordering or grouping). They can also be used to provide faster throughput by performing selection against
the index keys rather than all the rows in the table. Since the index I/Os only contain keys, typically more
rows can be paged into memory in one I/O than rows in a table with many columns.

Table 4. Radix index scan attributes

Data access method Radix index scan

Description Sequentially scan and process all the keys associated with the index.
Any selection is applied to every key value of the index before a table
row

Advantages • Only those index entries that match any selection continue to be
processed

• Potential to extract all the data from the index key values, thus
eliminating the need for a Table Probe

• Returns the rows back in a sequence based upon the keys of the
index

Considerations Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/O associated
with the Table Probe.

Likely to be used • When asking for or expecting only a few rows to be returned from
the index

• When sequencing the rows is required for the query (for example,
ordering or grouping)

• When the selection columns cannot be matched against the leading
key columns of the index

Example SQL statement CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
ORDER BY LastName
OPTIMIZE FOR 30 ROWS

Database performance and query optimization 15

Table 4. Radix index scan attributes (continued)

Data access method Radix index scan

Messages indicating use • Optimizer Debug:

 CPI4328 -- Access path of file X1 was used by query.

• PRTSQLINF:

 SQL4008 -- Index X1 used for table 1.

SMP parallel enabled Yes

Also referred to as Index Scan

Index Scan, Preload

Index Scan, Distinct

Index Scan Distinct, Preload

Index Scan, Key Selection

Visual Explain icon

Related reference
Effects of the ALWCPYDTA parameter on database performance
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

Radix index probe
A radix index probe operation is used to retrieve the rows from a table in a keyed sequence. The main
difference between the radix index probe and the scan is that the rows returned are first identified by a
probe operation to subset them.

The optimizer attempts to match the columns used for some or all the selection against the leading keys
of the index. It then rewrites the selection into a series of ranges that can be used to probe directly into
the index key values. Only those keys from the series of ranges are paged into main memory.

The resulting row numbers generated by the probe can then be further processed by any remaining
selection against the index keys or a table probe operation. This method provides for quick access to only
the rows of the index that satisfy the selection.

The main function of a radix index probe is to provide quick selection against the index keys. In addition,
the row sequencing can be used to satisfy other portions of the query, such as ordering or grouping. Since
the index I/Os are only for rows that match the probe selection, no extraneous processing is performed on
rows that do not match. This savings in I/Os against rows that are not a part of the result set is one of the
primary advantages for this operation.

Table 5. Radix index probe attributes

Data access method Radix index probe

Description The index is quickly probed based upon the selection criteria that were
rewritten into a series of ranges. Only those keys that satisfy the
selection are used to generate a table row number.

16 IBM i: Database Performance and Query Optimization

Table 5. Radix index probe attributes (continued)

Data access method Radix index probe

Advantages • Only those index entries that match any selection continue to be
processed

• Provides quick access to the selected rows
• Potential to extract all the data from the index key values, thus

eliminating the need for a Table Probe
• Returns the rows back in a sequence based upon the keys of the

index

Considerations Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/O associated
with the Table Probe.

Likely to be used • When asking for or expecting only a few rows to be returned from the
index

• When sequencing the rows is required the query (for example,
ordering or grouping)

• When the selection columns match the leading key columns of the
index

Example SQL statement CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Messages indicating use • Optimizer Debug:

 CPI4328 -- Access path of file X1 was used by query.

• PRTSQLINF:

SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning used
 on table 1.

SMP parallel enabled Yes

Also referred to as Index Probe

Index Probe, Preload

Index Probe, Distinct

Index Probe Distinct, Preload

Index Probe, Key Positioning

Index Scan, Key Row Positioning

Visual Explain icon

Database performance and query optimization 17

The following example illustrates a query where the optimizer might choose the radix index probe access
method:

 CREATE INDEX X1 ON Employee (LastName, WorkDept)

 SELECT * FROM Employee
 WHERE WorkDept BETWEEN 'A01' AND 'E01'
 AND LastName IN ('Smith', 'Jones', 'Peterson')
 OPTIMIZE FOR ALL ROWS

In this example, index X1 is used to position to the first index entry that matches the selection built over
both columns LastName and WorkDept. The selection is rewritten into a series of ranges that match all
the leading key columns used from the index X1. The probe is then based upon the composite
concatenated values for all the leading keys. The pseudo-SQL for this rewritten SQL might look as follows:

 SELECT * FROM X1
 WHERE X1.LeadingKeys BETWEEN 'JonesA01' AND 'JonesE01'
 OR X1.LeadingKeys BETWEEN 'PetersonA01' AND 'PetersonE01'
 OR X1.LeadingKeys BETWEEN 'SmithA01' AND 'SmithE01'

All the key entries that satisfy the probe operation are used to generate a row number for the table
associated with the index (for example, Employee). The row number is used by a Table Probe operation to
perform random I/O on the table to produce the results for the query. This processing continues until all
the rows that satisfy the index probe operation have been processed. In this example, all the index entries
processed and rows retrieved met the index probe criteria.

Additional selection might be added that cannot use an index probe, such as selection against columns
which are not leading key columns of the index. Then the optimizer performs an index scan operation
within the range of probed values. This process still allows for selection to be performed before the Table
Probe operation.

Related concepts
Nested loop join implementation
Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.
Related reference
Effects of the ALWCPYDTA parameter on database performance
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

Encoded vector index
An encoded vector index is a permanent object that provides access to a table. This access is done by
assigning codes to distinct key values and then representing those values in a vector.

The size of the vector matches the number of rows in the underlying table. Each vector entry represents
the table row number in the same position. The codes generated to represent the distinct key values can
be 1 byte, 2 bytes, or 4 bytes in length. The key length depends upon the number of distinct values that
need to be represented in the vector. Because of their compact size and relative simplicity, the EVI can be
used to process large amounts of data efficiently.

An encoded vector index is used to represent the values stored in a table. However, the index itself cannot
be used to directly gain access to the table. Instead, the encoded vector index can only be used to
generate either a temporary row number list or a temporary row number bitmap. These temporary objects
can then be used with a table probe to specify the rows in the table that the query needs to process.

The main difference in the table probe using an encoded vector index vs. a radix index is that the I/O
paging can be asynchronous. The I/O can now be scheduled more efficiently to take advantage of groups
of selected rows. Large portions of the table can be skipped over where no rows are selected.

Visual explain icon:

18 IBM i: Database Performance and Query Optimization

Related concepts
Encoded vector indexes
An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting
environments.
EVI maintenance
There are unique challenges to maintaining EVIs. The following table shows a progression of how EVIs are
maintained, the conditions under which EVIs are most effective, and where EVIs are least effective, based
on the EVI maintenance characteristics.

Encoded vector index probe
The encoded vector index (EVI) is quickly probed based upon the selection criteria that were rewritten
into a series of ranges. It produces either a temporary row number list or bitmap.

Table 6. Encoded vector index probe attributes

Data access method Encoded vector index probe

Description The encoded vector index (EVI) is quickly probed based upon the
selection criteria that were rewritten into a series of ranges. It produces
either a temporary row number list or bitmap.

Advantages • Only those index entries that match any selection continue to be
processed

• Provides quick access to the selected rows
• Returns the row numbers in ascending sequence so that the Table

Probe can be more aggressive in pre-fetching the rows for its
operation

Considerations EVIs are usually built over a single key. The more distinct the column is
and the higher the overflow percentage, the less advantageous the
encoded vector index becomes. EVIs always require a Table Probe to be
performed on the result of the EVI probe operation.

Likely to be used • When the selection columns match the leading key columns of the
index

• When an encoded vector index exists and savings in reduced I/O
against the table justifies the extra cost. This cost includes probing
the EVI and fully populating the temporary row number list.

Example SQL statement CREATE ENCODED VECTOR INDEX EVI1 ON
 Employee (WorkDept)
CREATE ENCODED VECTOR INDEX EVI2 ON
 Employee (Salary)
CREATE ENCODED VECTOR INDEX EVI3 ON
 Employee (Job)

SELECT *
FROM Employee
WHERE WorkDept = 'E01' AND Job = 'CLERK'
AND Salary = 5000
OPTIMIZE FOR 99999 ROWS

Database performance and query optimization 19

Table 6. Encoded vector index probe attributes (continued)

Data access method Encoded vector index probe

Messages indicating use • Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
 EMPLOYEE.
CPI4338 -– 3 Access path(s) used for bitmap
 processing of file EMPLOYEE.

• PRTSQLINF:

SQL4010 -- Table scan access for table 1.
SQL4032 -- Index EVI1 used for bitmap processing
 of table 1.
SQL4032 -- Index EVI2 used for bitmap processing
 of table 1.
SQL4032 -- Index EVI3 used for bitmap processing
 of table 1.

SMP parallel enabled Yes

Also referred to as Encoded Vector Index Probe, Preload

Visual Explain icon

Using the example above, the optimizer chooses to create a temporary row number bitmap for each of the
encoded vector indexes used by this query. Each bitmap only identifies those rows that match the
selection on the key columns for that index.

These temporary row number bitmaps are then merged together to determine the intersection of the rows
selected from each index. This intersection is used to form a final temporary row number bitmap used to
help schedule the I/O paging against the table for the selected rows.

The optimizer might choose to perform an index probe with a binary radix tree index if an index existed
over all three columns. The implementation choice is probably decided by the number of rows to be
returned and the anticipated cost of the I/O associated with each plan.

If few rows are returned, the optimizer probably chooses the binary radix tree index and performs the
random I/O against the table. However, selecting more rows causes the optimizer to use the EVIs,
because of the savings from the more efficiently scheduled I/O against the table.

Encoded vector index index-only access
The encoded vector index can also be used for index-only access.

The EVI can be used for more than generating a bitmap or row number list to provide an asynchronous I/O
map to the desired table rows. The EVI can also be used by two index-only access methods that can be
applied specific to the symbol table itself. These two index-only access methods are the EVI symbol table
scan and the EVI symbol table probe.

These two methods can be used with GROUP BY or DISTINCT queries that can be satisfied by the symbol
table. This symbol table-only access can be further employed in aggregate queries by adding INCLUDE
values to the encoded vector index.

The following information is a summary of the symbol table-only scan and probe access methods.

Use the following links to learn in-depth information.

20 IBM i: Database Performance and Query Optimization

Related concepts
Encoded vector indexes
An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting
environments.
How the EVI works
EVIs work in different ways for costing and implementation.
Related reference
Index grouping implementation
There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.

Encoded vector index symbol table scan
An encoded vector index symbol table scan operation is used to retrieve the entries from the symbol table
portion of the index.

All entries (symbols) in the symbol table are sequentially scanned if a scan is chosen. The symbol table
can be used by the optimizer to satisfy GROUP BY or DISTINCT portions of a query request.

Selection is applied to every entry in the symbol table. The selection must be applied to the symbol table
keys unless the EVI was created as a sparse index, with a WHERE clause. In that case, a portion of the
selection is applied as the symbol table is built and maintained. The query request must include matching
predicates to use the sparse EVI.

All entries are retrieved directly from the symbol table portion of the index without any access to the
vector portion of the index. There is also no access to the records in the associated table over which the
EVI is built.

Encoded vector index INCLUDE aggregates

To enhance the ability of the EVI symbol table to provide aggregate answers, the symbol table can be
created to contain additional INCLUDE values. These are ready-made numeric aggregate results, such as
SUM, COUNT, AVG, or VARIANCE values requested over non-key data. These aggregates are specified
using the INCLUDE keyword on the CREATE ENCODED VECTOR INDEX request.

These included aggregates are maintained in real time as rows are inserted, updated, or deleted from the
corresponding table. The symbol table maintains these additional aggregate values in addendum to the
EVI keys for each symbol table entry. Because these are numeric results and finite in size, the symbol
table is still a desirable compact size.

These included aggregates are over non-key columns in the table where the grouping is over the
corresponding EVI symbol table defined keys. The aggregate can be over a single column or a derivation.

Table 7. Encoded vector index symbol table scan attributes

Data access method Encoded vector index symbol table scan

Description Sequentially scan and process all the symbol table entries associated
with the index. When there is selection (WHERE clause), it is applied to
every entry in the symbol table. An exception is made in the case of a
sparse EVI, where the selection is applied as the index is created and
maintained. Selected entries are retrieved directly without any access
to the vector or the associated table.

Database performance and query optimization 21

Table 7. Encoded vector index symbol table scan attributes (continued)

Data access method Encoded vector index symbol table scan

Advantages • Pre-summarized results are readily available
• Only processes the unique values in the symbol table, avoiding

processing table records.
• Extract all the data from the index unique key values or INCLUDE

values, thus eliminating the need for a Table Probe or vector scan.
• With INCLUDE, provides ready-made numeric aggregates, eliminating

the need to access corresponding table rows to perform the
aggregation

Considerations Dramatic performance improvement for grouping queries where the
resulting number of groups is relatively small compared to the number
of records in the underlying table. Can perform poorly when there are
many groups involved such that the symbol table is large. Poor
performance is even more likely if a large portion of the symbol table
has been put into the overflow area.

Dramatic performance improvement for grouping queries when the
aggregate is specified as an INCLUDE value of the symbol table.

Likely to be used • When asking for GROUP BY, DISTINCT, COUNT, or COUNT DISTINCT
from a single table and the referenced columns are in the key
definition.

• When the number of unique values in the columns of the key
definition is small relative to the number of records in the underlying
table.

• When there is no selection (WHERE clause) within the query or the
selection does not reduce the result set much.

• When the symbol table key satisfies the GROUP BY, and requested
aggregates, like SUM or COUNT, are specified as INCLUDE values.

• when the query is run with commitment control *NONE or *CHG.

22 IBM i: Database Performance and Query Optimization

Table 7. Encoded vector index symbol table scan attributes (continued)

Data access method Encoded vector index symbol table scan

Example SQL statement
CREATE ENCODED VECTOR INDEX EVI1 ON Sales (Region)

Example 1

SELECT Region, count(*)
FROM Sales
GROUP BY Region
OPTIMIZE FOR ALL ROWS

Example 2

SELECT DISTINCT Region
FROM Sales
OPTIMIZE FOR ALL ROWS

Example 3

SELECT COUNT(DISTINCT Region)
FROM Sales

Example 4 uses the INCLUDE option. The sums of revenue and cost of
goods per sales region is maintained in real time.

CREATE ENCODED VECTOR INDEX EVI2 ON Sales(Region)
INCLUDE(SUM(Revenue), SUM(CostOfGoods))

SELECT Region, SUM(Revenue), SUM(CostOfGoods)
FROM Sales
GROUP BY Region

Messages indicating use • Optimizer Debug:

CPI4328 -- Access path of file EVI1 was used by query.

• PRTSQLINF:

SQL4008 -- Index EVI1 used for table 1.SQL4010

Also referred to as Encoded Vector Index Table Scan, Preload

Visual Explain icon

Related concepts
Encoded vector indexes
An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting
environments.
How the EVI works
EVIs work in different ways for costing and implementation.
Related reference
Index grouping implementation

Database performance and query optimization 23

There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.
Related information
SQL INCLUDE statement

Encoded vector index symbol table probe
An encoded vector index symbol table probe operation is used to retrieve entries from the symbol table
portion of the index. Scanning the entire symbol table is not necessary.

The symbol table can be used by the optimizer to satisfy GROUP BY or DISTINCT portions of a query
request.

The optimizer attempts to match the columns used for some or all the selection against the leading keys
of the EVI index. It then rewrites the selection into a series of ranges that can be used to probe directly
into the symbol table. Only those symbol table pages from the series of ranges are paged into main
memory.

The resulting symbol table entries generated by the probe operation can then be further processed by any
remaining selection against EVI keys. This strategy provides for quick access to only the entries of the
symbol table that satisfy the selection.

Like an encoded vector symbol table scan, a symbol table probe can return ready-made aggregate results
if INCLUDE is specified when the EVI is created.

All entries are retrieved directly from the symbol table portion of the index without any access to the
vector portion of the index. In addition, it is unnecessary to access the records in the associated table
over which the EVI is built.

Table 8. Encoded vector index symbol table probe attributes

Data access method Encoded vector index symbol table probe

Description

Advantages Probe the symbol table entries associated with the index. When there is
selection (WHERE clause), it is applied to every entry in the symbol
table that meets the probe criteria. If there are sparse EVIs, the
selection is applied as the EVI is created and maintained. Selected
entries are retrieved directly without any access to the vector or the
associated table.

Considerations • Pre-summarized results are readily available
• Only processes the unique values in the symbol table, avoiding

processing table records.
• Extracts all the data from the index unique key values or include

values, or both, thus eliminating the need for a table probe or vector
scan

• With INCLUDE, provides ready-made numeric aggregates, eliminating
the need to access corresponding table rows to perform the
aggregation

24 IBM i: Database Performance and Query Optimization

Table 8. Encoded vector index symbol table probe attributes (continued)

Data access method Encoded vector index symbol table probe

Likely to be used • When asking for GROUP BY, DISTINCT, COUNT, or COUNT DISTINCT
from a single table and the referenced columns are in the key
definition.

• When the number of unique values in the columns of the key
definition is small relative to the number of records in the underlying
table.

• When there is selection (WHERE clause) that reduces the selection
from the Symbol Table and the WHERE clause involves leading,
probable keys.

• When the symbol table key satisfies the GROUP BY and the WHERE
clause reduces selection to the leading keys, and aggregates are
specified as INCLUDE values.

• When the query is run with commitment control *NONE or *CHG.

Example SQL statement CREATE ENCODED VECTOR INDEX EVI1 ON Sales (Region)

Example 1

SELECT Region, COUNT(*)
FROM Sales
WHERE Region in ('Quebec', 'Manitoba')
GROUP BY Region
OPTIMIZE FOR ALL ROWS

Example 2

CREATE ENCODED VECTOR INDEX EVI2 ON Sales(Region)
INCLUDE(SUM(Revenue), SUM(CostOfGoods))

SELECT Region, SUM(Revenue), SUM(CostOfGoods)
FROM Sales
WHERE Region = 'PACIFIC'
GROUP BY Region

Messages indicating use • Optimizer Debug:

CPI4328 -- Access path of file EVI1 was used by query.

• PRTSQLINF:

SQL4008 -- Index EVI1 used for table 1.SQL4010

Also referred to as Encoded Vector Index Table Probe, Preload

Visual Explain icon

Related concepts
Encoded vector indexes

Database performance and query optimization 25

An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting
environments.
How the EVI works
EVIs work in different ways for costing and implementation.
Related reference
Index grouping implementation
There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.
Related information
SQL INCLUDE statement

Temporary objects and access methods
Temporary objects are created by the optimizer in order to process a query. In general, these temporary
objects are internal objects and cannot be accessed by a user.

Table 9. Temporary object data access methods

Temporary create objects Scan operations Probe operations

Temporary hash table Hash table scan Hash table probe

Temporary sorted list Sorted list scan Sorted list probe

Temporary distinct sorted list Sorted list scan N/A

Temporary list List scan N/A

Temporary values list Values list scan N/A

Temporary row number list Row number list scan Row number list probe

Temporary bitmap Bitmap scan Bitmap probe

Temporary index Temporary index scan Temporary index probe

Temporary buffer Buffer scan N/A

Queue N/A N/A

Array unnest temporary table Temporary table scan N/A

Temporary hash table
The temporary hash table is a temporary object that allows the optimizer to collate the rows based upon a
column or set of columns. The hash table can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary hash table is an efficient data structure because the rows are organized for quick and easy
retrieval after population has occurred. The hash table remains resident within main memory to avoid any
I/Os associated with either the scan or probe against the temporary object. The optimizer determines the
optimal hash table size based on the number of unique column combinations used as keys for the
creation.

Additionally the hash table can be populated with all the necessary columns to satisfy any further
processing. This population avoids any random I/Os associated with a table probe operation.

However, the optimizer can selectively include columns in the hash table when the calculated size
exceeds the memory pool storage available for the query. In these cases, a table probe operation is
required to recollect the missing columns from the hash table before the selected rows can be processed.

The optimizer also can populate the hash table with distinct values. If the query contains grouping or
distinct processing, then all the rows with the same key value are not required in the hash table. The rows
are still collated, but the distinct processing is performed during the population of the hash table itself.
This method allows a simple scan on the result in order to complete the grouping or distinct operation.

26 IBM i: Database Performance and Query Optimization

A temporary hash table is an internal data structure and can only be created by the database manager

Visual explain icon:

Hash table scan
During a hash table scan operation, the entire temporary hash table is scanned and all the entries
contained within the hash table are processed.

The optimizer considers a hash table scan when the data values need to be collated together, but
sequencing of the data is not required. A hash table scan allows the optimizer to generate a plan that
takes advantage of any non-join selection while creating the temporary hash table.

An additional benefit is that the temporary hash table data structure will typically cause the table data to
remain resident within main memory after creation. Resident table data reduces paging on the
subsequent hash table scan operation.

Table 10. Hash table scan attributes

Data access method Hash table scan

Description Read all the entries in a temporary hash table. The hash table can
perform distinct processing to eliminate duplicates. Or the temporary
hash table can collate all the rows with the same value together.

Advantages • Reduces the random I/O to the table associated with longer running
queries that might otherwise use an index to collate the data

• Selection can be performed before generating the hash table to
subset the number of rows in the temporary object

Considerations Used for distinct or group by processing. Can perform poorly when the
entire hash table does not stay resident in memory as it is being
processed.

Likely to be used • When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA)

• When the data is required to be collated based upon a column or
columns for distinct or grouping

Example SQL statement SELECT COUNT(*), FirstNme FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
GROUP BY FirstNme

Database performance and query optimization 27

Table 10. Hash table scan attributes (continued)

Data access method Hash table scan

Messages indicating use There are multiple ways in which a hash scan can be indicated through
the messages. The messages in this example illustrate how the SQL
Query Engine indicates a hash scan was used.

• Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
 EMPLOYEE.

• PRTSQLINF:

SQL4010 -- Table scan access for table 1.
SQL4029 -- Hashing algorithm used to process
 the grouping.

SMP parallel enabled Yes

Also referred to as Hash Scan, Preload

Hash Table Scan Distinct

Hash Table Scan Distinct, Preload

Visual Explain icon

Hash table probe
A hash table probe operation is used to retrieve rows from a temporary hash table based upon a probe
lookup operation.

The optimizer initially identifies the keys of the temporary hash table from the join criteria specified in the
query. When the hash table is probed, the values used to probe into the hash table are extracted from the
join-from criteria specified in the selection.

These values are sent through the same hashing algorithm used to populate the temporary hash table.
They determine if any rows have a matching equal value. All the matching join rows are then returned to
be further processed by the query.

Table 11. Hash table probe attributes

Data access method Hash table probe

Description The temporary hash table is quickly probed based upon the join
criteria.

Advantages • Provides quick access to the selected rows that match probe criteria
• Reduces the random I/O to the table associated with longer running

queries that use an index to collate the data
• Selection can be performed before generating the hash table to

subset the number of rows in the temporary object

Considerations Used to process equal join criteria. Can perform poorly when the entire
hash table does not stay resident in memory as it is being processed.

28 IBM i: Database Performance and Query Optimization

Table 11. Hash table probe attributes (continued)

Data access method Hash table probe

Likely to be used • When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA)

• When the data is required to be collated based upon a column or
columns for join processing

• The join criteria was specified using an equals (=) operator

Example SQL statement
SELET * FROM Employee XXX, Department YYY
WHERE XXX.WorkDept = YYY.DeptNbr
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a hash probe can be indicated
through the messages. The messages in this example illustrate how
the SQL Query Engine indicates a hash probe was used.

• Optimizer Debug:

 CPI4327 -- File EMPLOYEE processed in join
 position 1.
 CPI4327 -- File DEPARTMENT processed in join
 position 2.

• PRTSQLINF:

 SQL4007 -- Query implementation for join
 position 1 table 1.
 SQL4010 -- Table scan access for table 1.
 SQL4007 -- Query implementation for join
 position 2 table 2.
 SQL4010 -- Table scan access for table 2.

SMP parallel enabled Yes

Also referred to as Hash Table Probe, Preload

Hash Table Probe Distinct

Hash Table Probe Distinct, Preload

Visual Explain icon

The hash table probe access method is considered when determining the implementation for a secondary
table of a join. The hash table is created with the key columns that match the equal selection or join
criteria for the underlying table.

The hash table probe allows the optimizer to choose the most efficient implementation in selecting rows
from the underlying table, without regard for join criteria. This single pass through the underlying table
can now use a table scan or existing index to select the rows needed for the hash table population.

Since hash tables are constructed so that most of the hash table remains resident within main memory,
the I/O associated with a hash probe is minimal. Additionally, if the hash table was populated with all
necessary columns from the underlying table, no additional table probe is required to finish processing
this table. This method causes further I/O savings.

Database performance and query optimization 29

Related concepts
Nested loop join implementation
Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Temporary sorted list
The temporary sorted list is a temporary object that allows the optimizer to sequence rows based upon a
column or set of columns. The sorted list can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary sorted list is a data structure where the rows are organized for quick and easy retrieval after
population has occurred. During population, the rows are copied into the temporary object and then a
second pass is made through the temporary object to perform the sort.

In order to optimize the creation of this temporary object, minimal data movement is performed while the
sort is processed. It is not as efficient to probe a temporary sorted list as it is to probe a temporary hash
table.

Additionally, the sorted list can be populated with all the necessary columns to satisfy any further
processing. This population avoids any random I/Os associated with a table probe operation.

However, the optimizer can selectively include columns in the sorted list when the calculated size
exceeds the memory pool storage available for this query. In those cases, a table probe operation is
required to recollect the missing columns from the sorted list before the selected rows can be processed.

A temporary sorted list is an internal data structure and can only be created by the database manager.

Visual explain icon:

Sorted list scan
During a sorted list scan operation, the entire temporary sorted list is scanned and all the entries
contained within the sorted list are processed.

A sorted list scan is considered when the data values need to be sequenced. A sorted list scan allows the
optimizer to generate a plan that can take advantage of any non-join selection while creating the
temporary sorted list.

An additional benefit is that the data structure will usually cause the table data within the sorted list to
remain resident within main memory after creation. This resident data reduces paging on the subsequent
sorted list scan operation.

Table 12. Sorted list scan attributes

Data access method Sorted list scan

Description Read all the entries in a temporary sorted list. The sorted list can
perform distinct processing to eliminate duplicate values or take
advantage of the temporary sorted list to sequence all the rows.

Advantages • Reduces the random I/O to the table associated with longer running
queries that would otherwise use an index to sequence the data.

• Selection can be performed prior to generating the sorted list to
subset the number of rows in the temporary object

30 IBM i: Database Performance and Query Optimization

Table 12. Sorted list scan attributes (continued)

Data access method Sorted list scan

Considerations Used to process ordering or distinct processing. Can perform poorly
when the entire sorted list does not stay resident in memory as it is
being populated and processed.

Likely to be used • When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA)

• When the data is required to be ordered based upon a column or
columns for ordering or distinct processing

Example SQL statement
CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
ORDER BY FirstNme
OPTIMZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a sorted list scan can be indicated
through the messages. The messages in this example illustrate how
the SQL Query Engine indicates a sorted list scan was used.

• Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4325 -- Temporary result file built for query.

• PRTSQLINF:

SQL4008 -- Index X1 used for table 1.
SQL4002 -- Reusable ODP sort used.

SMP parallel enabled No

Also referred to as Sorted List Scan, Preload

Sorted List Scan Distinct

Sorted List Scan Distinct, Preload

Visual Explain icon

Sorted list probe
A sorted list probe operation is used to retrieve rows from a temporary sorted list based upon a probe
lookup operation.

The optimizer initially identifies the temporary sorted list keys from the join criteria specified in the query.
The values used to probe into the temporary sorted list are extracted from the join-from criteria specified
in the selection. Those values are used to position within the sorted list in order to determine if any rows
have a matching value. All the matching join rows are then returned to be further processed by the query.

Table 13. Sorted list probe attributes

Data access method Sorted list probe

Description The temporary sorted list is quickly probed based upon the join criteria.

Database performance and query optimization 31

Table 13. Sorted list probe attributes (continued)

Data access method Sorted list probe

Advantages • Provides quick access to the selected rows that match probe criteria
• Reduces the random I/O to the table associated with longer running

queries that otherwise use an index to collate the data
• Selection can be performed before generating the sorted list to

subset the number of rows in the temporary object

Considerations Used to process non-equal join criteria. Can perform poorly when the
entire sorted list does not stay resident in memory as it is being
populated and processed.

Likely to be used • When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA)

• When the data is required to be collated based upon a column or
columns for join processing

• The join criteria was specified using a non-equals operator

Example SQL statement SELECT * FROM Employee XXX, Department YYY
WHERE XXX.WorkDept > YYY.DeptNo
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a sorted list probe can be indicated
through the messages. The messages in this example illustrate how the
SQL Query Engine indicates a sorted list probe was used.

• Optimizer Debug:

CPI4327 -- File EMPLOYEE processed in join position 1.
CPI4327 -- File DEPARTMENT processed in join
 position 2.

• PRTSQLINF:

SQL4007 -- Query implementation for join
 position 1 table 1.
SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join
 position 2 table 2.
SQL4010 -- Table scan access for table 2.

SMP parallel enabled Yes

Also referred to as Sorted List Probe, Preload

Sorted List Probe Distinct

Sorted List Probe Distinct, Preload

Visual Explain icon

The sorted list probe access method is considered when determining the implementation for a secondary
table of a join. The sorted list is created with the key columns that match the non-equal join criteria for
the underlying table. The optimizer chooses the most efficient implementation to select the rows from the

32 IBM i: Database Performance and Query Optimization

underlying table without regard to any join criteria. This single pass through the underlying table can use a
Table Scan or an existing index to select the rows needed to populate the sorted list.

Since sorted lists are constructed so that most of the temporary object remains resident within main
memory, the sorted list I/O is minimal. If the sorted list was populated with all necessary table columns,
no additional Table Probe is required to finish processing the table, causing further I/O savings.

Related concepts
Nested loop join implementation
Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Temporary distinct sorted list
A temporary distinct sorted list combines the features of the temporary hash table and the temporary
sorted list.

Like the hash table, the temporary distinct sorted list allows the optimizer to collate the rows based on a
column or set of columns. Like the sorted list, the temporary distinct sorted list also allows the optimizer
to sequence the rows.

A temporary distinct sorted list contains a hash table data structure set up for efficient access to
aggregate rows during population. In addition, a binary tree data structure is maintained over the hash
table data structure so that the data can be accessed in sequence. The sorted aspect of the data structure
allows for the efficient computation of super-aggregate rows in SQL statements that contain GROUP BY
ROLLUP.

A temporary sorted aggregate hash table is an internal data structure and can only be created by the
database manager.

Visual explain icon:

Sorted list scan
During the sorted list scan, the entire temporary distinct sorted list is scanned and all the entries
contained within the temporary are processed.

The optimizer uses the sorted list scan when the data values need to be aggregated and sequenced. The
optimizer generates this plan that can take advantage of any non-join selection while creating the
temporary distinct sorted list. The data structure of the temporary distinct sorted list will typically cause
the table data to remain resident within main memory after creation. This memory-resident data reduces
paging on the subsequent sorted list scan.

Table 14. Sorted list scan attributes

Data access method Sorted list scan

Description Reads all the entries in a temporary distinct sorted list

Advantages • Allows efficient computation of ROLLUP super-aggregate rows.
• Reduces the random I/O to the table associated with longer running

queries that might otherwise use an index to collate the data.
• Selection can be performed before generating the distinct sorted list

to subset the number of rows in the temporary object.

Database performance and query optimization 33

Table 14. Sorted list scan attributes (continued)

Data access method Sorted list scan

Considerations Used for GROUP BY ROLLUP processing, Can perform poorly when the
entire temporary object does not stay resident in memory as it is being
processed.

Likely to be used • When the use of temporary results is allowed in the query
environmental parameter (ALWCPYDTA)

• When a GROUP BY ROLLUP is in the SQL statement

Messages indicating use N/A

SMP parallel enabled Yes

Also referred to as N/A

Visual Explain icon

Temporary list
The temporary list is a temporary object that allows the optimizer to store intermediate results of a query.
The list is an unsorted data structure that is used to simplify the operation of the query. Since the list does
not have any keys, the rows within the list can only be retrieved by a sequential scan operation.

The temporary list can be used for various reasons, some of which include an overly complex view or
derived table, Symmetric Multiprocessing (SMP) or to prevent a portion of the query from being processed
multiple times.

A temporary list is an internal data structure and can only be created by the database manager.

Visual explain icon:

List scan
The list scan operation is used when a portion of the query is processed multiple times, but no key
columns can be identified. In these cases, that portion of the query is processed once and its results are
stored within the temporary list. The list can then be scanned for only those rows that satisfy any
selection or processing contained within the temporary object.

Table 15. List scan attributes

Data access method List scan

Description Sequentially scan and process all the rows in the temporary list.

34 IBM i: Database Performance and Query Optimization

Table 15. List scan attributes (continued)

Data access method List scan

Advantages • The temporary list and list scan can be used by the optimizer to
minimize repetition of an operation or to simplify the optimizer logic
flow.

• Selection can be performed before generating the list to subset the
number of rows in the temporary object.

Considerations Used to prevent portions of the query from being processed multiple
times when no key columns are required to satisfy the request.

Likely to be used • When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

• When DB2 symmetric multiprocessing is used for the query.

Example SQL statement
SELECT * FROM Employee XXX, Department YYY
WHERE XXX.LastName IN ('Smith', 'Jones', 'Peterson')
AND YYY.DeptNo BETWEEN 'A01' AND 'E01'
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a list scan can be indicated through
the messages. The messages in this example illustrate how the SQL
Query Engine indicates a list scan was used.

• Optimizer Debug:

CPI4325 -- Temporary result file built for query.
CPI4327 -- File EMPLOYEE processed in join
 position 1.
CPI4327 -- File DEPARTMENT processed in join
 position 2.

• PRTSQLINF:

SQL4007 -- Query implementation for join
 position 1 table 1.
SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join
 position 2 table 2.
SQL4001 -- Temporary result created
SQL4010 -- Table scan access for table 2.

SMP parallel enabled Yes

Also referred to as List Scan, Preload

Visual Explain icon

Using the example above, the optimizer chose to create a temporary list to store the selected rows from
the DEPARTMENT table. Since there is no join criteria, a Cartesian product join is performed between the
two tables. To prevent the join from scanning all the rows of the DEPARTMENT table for each join
possibility, the selection against the DEPARTMENT table is performed once. The results are stored in the
temporary list. The temporary list is then scanned for the Cartesian product join.

Database performance and query optimization 35

Temporary values list
The temporary values list allows the optimizer to store rows of data specified in a VALUES clause of a
SELECT or CREATE VIEW statement.

The list is an unsorted data structure that is used to simplify the operation of the query. Since the list does
not have any keys, the rows within the list can only be retrieved by a sequential scan operation.

A temporary values list is an internal data structure and can only be created by the database manager.

Visual explain icon:

Values list scan
During a values list scan operation, the entire temporary values list is scanned and all the rows of data are
processed.

Table 16. Values list scan attributes

Data access method Values list scan

Description Sequentially scan and process all the rows of data in the temporary
values list.

Advantages The temporary values list and values list scan can be used by the
optimizer to simplify the optimizer logic flow.

Likely to be used When a VALUES clause is specified in the from-clause of an SQL
fullselect

Example SQL statement SELECT EMPNO, 'empprojact'
FROM EMPPROJACT
WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
UNION
VALUES ('NEWAAA', 'new'), ('NEWBBB', 'new')

Messages indicating use There are multiple ways in which a values list scan can be indicated
through the messages. The messages in this example illustrate how the
SQL Query Engine indicates a values list scan was used.

• Optimizer Debug:

CPI4329 -- Arrival sequence was used for file *VALUES.

• PRTSQLINF:

SQL4010 -- Table scan access for table 1.

SMP parallel enabled Yes

Also referred to as Values List, Preload

Visual Explain icon

Temporary row number list
The temporary row number list is a temporary object that allows the optimizer to sequence rows based
upon their row address (their row number). The row number list can be either scanned or probed by the
optimizer to satisfy different operations of the query.

A temporary row number list is a data structure where the rows are organized for quick and efficient
retrieval. The row number list only contains the row number for the associated row. Since no table data is

36 IBM i: Database Performance and Query Optimization

present, a table probe operation is typically associated with it in order to retrieve the underlying table
data. Because the row numbers are sorted, the random I/O associated with the table probe operation is
performed more efficiently. The database manager performs pre-fetch or look-ahead logic to determine if
multiple rows are located on adjacent pages. If so, the table probe requests a larger I/O to bring the rows
into main memory more efficiently.

A temporary row number list is an internal data structure and can only be created by the database
manager.

Visual explain icon:

Row number list scan
The entire temporary row number list is scanned and all the row addresses contained within the row
number list are processed. The optimizer considers this plan when there is an applicable encoded vector
index or if the index probe or scan random I/O can be reduced. The random I/O can be reduced by first
preprocessing and sorting the row numbers associated with the Table Probe.

The use of a row number list scan allows the optimizer to generate a plan that can take advantage of
multiple indexes to match up to different portions of the query.

An additional benefit is that the data structure of the temporary row number list guarantees that the row
numbers are sorted. It closely mirrors the row number layout of the table data, ensuring that the table
paging never visits the same page of data twice. This results in increased I/O savings for the query.

A row number list scan is identical to a bitmap scan operation. The only difference is that the list scan is
over a list of row addresses while the bitmap scan is over a bitmap representing the addresses.

Table 17. Row number list scan

Data access method Row number list scan

Description Sequentially scan and process all the row numbers in the temporary
row number list. The sorted row numbers can be merged with other
temporary row number lists or can be used as input into a Table Probe
operation.

Advantages • The temporary row number list only contains address, no data, so the
temporary can be efficiently scanned within memory.

• The row numbers contained within the temporary object are sorted to
provide efficient I/O processing to access the underlying table.

• Selection is performed as the row number list is generated to subset
the number of rows in the temporary object.

Considerations Since the row number list contains only the addresses of the selected
rows in the table, a separate Table Probe fetches the table rows.

Likely to be used • When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

• When the cost of sorting of the row number is justified by the more
efficient I/O that can be performed during the Table Probe operation.

• When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Database performance and query optimization 37

Table 17. Row number list scan (continued)

Data access method Row number list scan

Example SQL statement
CREATE INDEX X1 ON Employee (WorkDept)
CREATE ENCODED VECTOR INDEX EVI2 ON
 Employee (Salary)
CREATE ENCODED VECTOR INDEX EVI3 ON
 Employee (Job)

SELECT * FROM Employee
WHERE WorkDept = 'E01' AND Job = 'CLERK'
AND Salary = 5000
OPTIMIZE FOR 99999 ROWS

Messages indicating use There are multiple ways in which a row number list scan can be
indicated through the messages. The messages in this example
illustrate how the SQL Query Engine indicates a row number list scan
was used.

• Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
 EMPLOYEE.
CPI4338 -– 3 Access path(s) used for bitmap
 processing of file EMPLOYEE.

• PRTSQLINF:

SQL4010 -- Table scan access for table 1.
SQL4032 -- Index X1 used for bitmap
 processing of table 1.
SQL4032 -- Index EVI2 used for bitmap
 processing of table 1.
SQL4032 -- Index EVI3 used for bitmap
 processing of table 1.

SMP parallel enabled Yes

Also referred to as Row Number List Scan, Preload

Visual Explain icon

Using the example above, the optimizer created a temporary row number list for each of the indexes used
by this query. These indexes included a radix index and two encoded vector indexes. Each index row
number list was scanned and merged into a final composite row number list representing the intersection
of all the index row number lists. The final row number list is then used by the Table Probe to determine
which rows are selected and processed for the query results.

Row number list probe
A row number list probe is used to test row numbers generated by a separate operation against the
selected rows of a temporary row number list. The row numbers can be generated by any operation that
constructs a row number for a table. That row number is then used to probe into a temporary row number
list to determine if it matches the selection used to generate the list.

The use of a row number list probe operation allows the optimizer to generate a plan that can take
advantage of any sequencing provided by an index, but still use the row number list to perform additional
selection before any Table probe operations.

38 IBM i: Database Performance and Query Optimization

A row number list probe is identical to a bitmap probe operation. The only difference is that the list probe
is over a list of row addresses while the bitmap probe is over a bitmap representing the addresses.

Table 18. Row number list probe

Data access method Row number list probe

Description The temporary row number list is quickly probed based upon the row
number generated by a separate operation.

Advantages • The temporary row number list only contains a row address, no data,
so the temporary can be efficiently probed within memory.

• The row numbers represented within the row number list are sorted
to provide efficient lookup processing to test the underlying table.

• Selection is performed as the row number list is generated to subset
the number of selected rows in the temporary object.

Considerations Since the row number list contains only the addresses of the selected
rows in the table, a separate Table Probe fetches the table rows.

Likely to be used • When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

• When the cost of creating and probing the row number list is justified
by reducing the number of Table Probe operations that must be
performed.

• When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Example SQL statement CREATE INDEX X1 ON Employee (WorkDept)
CREATE ENCODED VECTOR INDEX EVI2 ON
 Employee (Salary)
CREATE ENCODED VECTOR INDEX EVI3 ON
 Employee (Job)

SELECT * FROM Employee
WHERE WorkDept = 'E01' AND Job = 'CLERK'
 AND Salary = 5000
ORDER BY WorkDept

Messages indicating use There are multiple ways in which a row number list probe can be
indicated through the messages. The messages in this example
illustrate how the SQL Query Engine indicates a row number list probe
was used.

• Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4338 -– 2 Access path(s) used for bitmap
 processing of file EMPLOYEE.

• PRTSQLINF:

SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning
 used on table 1.
SQL4032 -- Index EVI2 used for bitmap
 processing of table 1.
SQL4032 -- Index EVI3 used for bitmap
 processing of table 1.

SMP parallel enabled Yes

Also referred to as Row Number List Probe, Preload

Database performance and query optimization 39

Table 18. Row number list probe (continued)

Data access method Row number list probe

Visual Explain icon

Using the example above, the optimizer created a temporary row number list for each of the encoded
vector indexes. Additionally, an index probe operation was performed against the radix index X1 to satisfy
the ordering requirement. Since the ORDER BY requires that the resulting rows be sequenced by the
WorkDept column, the row number list cannot be scanned for the selected rows.

However, the temporary row number list can be probed using a row address extracted from the index X1
used to satisfy the ordering. By probing the list with the row address extracted from the index probe, the
sequencing of the keys in the index X1 is preserved. The row can still be tested against the selected rows
within the row number list.

Temporary bitmap
The temporary bitmap is a temporary object that allows the optimizer to sequence rows based upon their
row address (their row number). The bitmap can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary bitmap is a data structure that uses a bitmap to represent all the row numbers for a table.
Since each row is represented by a separate bit, all the rows within a table can be represented in a fairly
condensed form. When a row is selected, the bit within the bitmap that corresponds to the selected row is
set on. After the temporary bitmap is populated, all the selected rows can be retrieved in a sorted manner
for quick and efficient retrieval. The temporary bitmap only represents the row number for the associated
selected rows.

No table data is present within the temporary bitmap. A table probe operation is typically associated with
the bitmap in order to retrieve the underlying table data. Because the bitmap is by definition sorted, the
random I/O associated with the table probe operation can be performed more efficiently. The database
manager performs pre-fetch or look-ahead logic to determine if multiple rows are located on adjacent
pages. If so, the table probe requests a larger I/O to bring the rows into main memory more efficiently.

A temporary bitmap is an internal data structure and can only be created by the database manager.

Visual explain icon:

Bitmap scan
During a bitmap scan operation, the entire temporary bitmap is scanned and all the row addresses
contained within the bitmap are processed. The optimizer considers this plan when there is an applicable
encoded vector index or if the index probe or scan random I/O can be reduced. The random I/O can be
reduced by first preprocessing and sorting the row numbers associated with the Table Probe.

The use of a bitmap scan allows the optimizer to generate a plan that can take advantage of multiple
indexes to match up to different portions of the query.

40 IBM i: Database Performance and Query Optimization

An additional benefit is that the data structure of the temporary bitmap guarantees that the row numbers
are sorted. It closely mirrors the row number layout of the table data, ensuring that the table paging never
visits the same page of data twice. This results in increased I/O savings for the query.

A bitmap scan is identical to a row number list scan operation. The only difference is that the list scan is
over a list of row addresses while the bitmap scan is over a bitmap representing the addresses.

Table 19. Bitmap scan attributes

Data access method Bitmap scan attributes

Description Sequentially scan and process all the row numbers in the temporary
bitmap. The sorted row numbers can be merged with other temporary
bitmaps or can be used as input into a Table Probe operation.

Advantages • The temporary bitmap only contains a reference to a row address, no
data, so the temporary can be efficiently scanned within memory.

• The row numbers represented within the temporary object are sorted
to provide efficient I/O processing to access the underlying table.

• Selection is performed as the bitmap is generated to subset the
number of selected rows in the temporary object.

Considerations Since the bitmap contains only the addresses of the selected rows in
the table, a separate Table Probe fetches the table rows.

Likely to be used • When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

• When the cost of sorting of the row numbers is justified by the more
efficient I/O that can be performed during the Table Probe operation.

• When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Example SQL statement CREATE INDEX X1 ON Employee (WorkDept)
CREATE ENCODED VECTOR INDEX EVI2 ON
 Employee (Salary)
CREATE ENCODED VECTOR INDEX EVI3 ON
 Employee (Job)

SELECT * FROM Employee
WHERE WorkDept = 'E01' AND Job = 'CLERK'
AND Salary = 5000
OPTIMIZE FOR 99999 ROWS

Messages indicating use There are multiple ways in which a bitmap scan can be indicated
through the messages. The messages in this example illustrate how the
Classic Query Engine indicates a bitmap scan was used.

• Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
 EMPLOYEE.
CPI4338 -– 3 Access path(s) used for bitmap
 processing of file EMPLOYEE.

• PRTSQLINF:

SQL4010 -- Table scan access for table 1.
SQL4032 -- Index X1 used for bitmap
 processing of table 1.
SQL4032 -- Index EVI2 used for bitmap
 processing of table 1.
SQL4032 -- Index EVI3 used for bitmap
 processing of table 1.

Database performance and query optimization 41

Table 19. Bitmap scan attributes (continued)

Data access method Bitmap scan attributes

SMP parallel enabled Yes

Also referred to as Bitmap Scan, Preload

Row Number Bitmap Scan

Row Number Bitmap Scan, Preload

Skip Sequential Scan

Visual Explain icon

Using the example above, the optimizer created a temporary bitmap for each of the indexes used by this
query. These indexes included a radix index and two encoded vector indexes. Each index temporary
bitmap was scanned and merged into a final composite bitmap representing the intersection of all the
index temporary bitmaps. The final bitmap is then used by the Table Probe operation to determine which
rows are selected and processed for the query results.

Bitmap probe
A bitmap probe operation is used to test row numbers generated by a separate operation against the
selected rows of a temporary bitmap. The row numbers can be generated by any operation that
constructs a row number for a table. That row number is then used to probe into a temporary bitmap to
determine if it matches the selection used to generate the bitmap.

The use of a bitmap probe operation allows the optimizer to generate a plan that can take advantage of
any sequencing provided by an index, but still use the bitmap to perform additional selection before any
Table Probe operations.

A bitmap probe is identical to a row number list probe operation. The only difference is that the list probe
is over a list of row addresses while the bitmap probe is over a bitmap representing the addresses.

Table 20. Bitmap probe attributes

Data access method Bitmap probe attributes

Description The temporary bitmap is quickly probed based upon the row number
generated by a separate operation.

Advantages • The temporary bitmap only contains a reference to a row address, no
data, so the temporary can be efficiently probed within memory.

• The row numbers represented within the bitmap are sorted to
provide efficient lookup processing to test the underlying table.

• Selection is performed as the bitmap is generated to subset the
number of selected rows in the temporary object.

Considerations Since the bitmap contains only the addresses of the selected rows in
the table, a separate Table Probe fetches the table rows.

42 IBM i: Database Performance and Query Optimization

Table 20. Bitmap probe attributes (continued)

Data access method Bitmap probe attributes

Likely to be used • When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

• When the cost of creating and probing the bitmap is justified by
reducing the number of Table Probe operations that must be
performed.

• When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Example SQL statement
CREATE INDEX X1 ON Employee (WorkDept)
CREATE ENCODED VECTOR INDEX EVI2 ON
 Employee (Salary)
CREATE ENCODED VECTOR INDEX EVI3 ON
 Employee (Job)

SELECT * FROM Employee
WHERE WorkDept = 'E01' AND Job = 'CLERK'
AND Salary = 5000
ORDER BY WorkDept

Messages indicating use There are multiple ways in which a bitmap probe can be indicated
through the messages. The messages in this example illustrate how the
Classic Query Engine indicates a bitmap probe was used.

• Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4338 -– 2 Access path(s) used for bitmap
 processing of file EMPLOYEE.

• PRTSQLINF:

SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning
 used on table 1.
SQL4032 -- Index EVI2 used for bitmap
 processing of table 1.
SQL4032 -- Index EVI3 used for bitmap
 processing of table 1.

SMP parallel enabled Yes

Also referred to as Bitmap Probe, Preload

Row Number Bitmap Probe

Row Number Bitmap Probe, Preload

Visual Explain icon

Using the example above, the optimizer created a temporary bitmap for each of the encoded vector
indexes. Additionally, an index probe operation was performed against the radix index X1 to satisfy the
ordering requirement. Since the ORDER BY requires that the resulting rows be sequenced by the
WorkDept column, the bitmap cannot be scanned for the selected rows.

Database performance and query optimization 43

However, the temporary bitmap can be probed using a row address extracted from the index X1 used to
satisfy the ordering. By probing the bitmap with the row address extracted from the index probe, the
sequencing of the keys in the index X1 is preserved. The row can still be tested against the selected rows
within the bitmap.

Temporary index
A temporary index is a temporary object that allows the optimizer to create and use a radix index for a
specific query. The temporary index has all the same attributes and benefits as a radix index created
through the CREATE INDEX SQL statement or Create Logical File (CRTLF) CL command.

Additionally, the temporary index is optimized for use by the optimizer to satisfy a specific query request.
This optimization includes setting the logical page size and applying any selection to the index to speed
up its use after creation.

The temporary index can be used to satisfy various query requests:

• Ordering
• Grouping/Distinct
• Joins
• Record selection

Generally a temporary index is a more expensive temporary object to create than other temporary
objects. It can be populated by a table scan, or by one or more index scans or probes. The optimizer
considers all the methods available when determining which method to use to produce the rows for the
index creation. This process is like the costing and selection of the other temporary objects used by the
optimizer.

One significant advantage of the temporary index over other temporary objects is that it is the only
temporary object maintained if the underlying table changes. The temporary index is identical to a radix
index in that any inserts or updates against the table are reflected immediately through normal index
maintenance.

SQE usage of temporary indexes is different from CQE usage in that SQE allows reuse. References to
temporary indexes created and used by the SQE optimizer are kept in the system Plan Cache. A temporary
index is saved for reuse by other instances of the same query or other instances of the same query
running in a different job. It is also saved for potential reuse by a different query that can benefit from the
use of the same temporary index.

By default, an SQE temporary index persists until the Plan Cache entry for the last referencing query plan
is removed. With the SQE Plan Cache auto sizing capability, there is the potential for SQE temporary
indexes to persist longer. You can control this behavior by setting the CACHE_RESULTS QAQQINI value.
The default for this INI value allows the optimizer to keep temporary indexes around for reuse.

Changing the INI value to '*JOB' prevents the temporary index from being saved in the Plan Cache; the
index does not survive a hard close. The *JOB option causes the SQE optimizer use of temporary indexes
to behave more like the CQE optimizer. The temporary index has a shorter life, but is still shared as long as
there are active queries using it. This behavior can be desirable in cases where there is concern about
increased maintenance costs for temporary indexes that persist for reuse.

A SQE temporary index can also be used as a source of statistics.

A temporary index is an internal data structure and can only be created by the database manager.

Visual explain icon:

44 IBM i: Database Performance and Query Optimization

Temporary index scan
A temporary index scan operation is identical to the index scan operation that is performed upon the
permanent radix index. It is still used to retrieve the rows from a table in a keyed sequence; however, the
temporary index object must first be created. All the rows in the index are sequentially processed, but the
resulting row numbers are sequenced based upon the key columns.

The sequenced rows can be used by the optimizer to satisfy a portion of the query request (such as
ordering or grouping).

Table 21. Temporary index scan attributes

Data access method Temporary index scan

Description Sequentially scan and process all the keys associated with the
temporary index.

Advantages • Potential to extract all the data from the index key values, thus
eliminating the need for a Table Probe

• Returns the rows back in a sequence based upon the keys of the
index

Considerations Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/O associated
with the Table Probe.

Likely to be used • When sequencing the rows is required for the query (for example,
ordering or grouping)

• When the selection columns cannot be matched against the leading
key columns of the index

• When the overhead cost associated with the creation of the
temporary index can be justified against other alternative methods
to implement this query

Example SQL statement SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
ORDER BY LastName
OPTIMIZE FOR ALL ROWS

Messages indicating use • Optimizer Debug:

CPI4321 -- Access path built for file EMPLOYEE.

• PRTSQLINF:

SQL4009 -- Index created for table 1.

SMP parallel enabled Yes

Also referred to as Index Scan

Index Scan, Preload

Index Scan, Distinct

Index Scan Distinct, Preload

Index Scan, Key Selection

Database performance and query optimization 45

Table 21. Temporary index scan attributes (continued)

Data access method Temporary index scan

Visual Explain icon

Using the example above, the optimizer chose to create a temporary index to sequence the rows based
upon the LastName column. A temporary index scan might then be performed to satisfy the ORDER BY
clause in this query.

The optimizer determines where the selection against the WorkDept column best belongs. It can be
performed as the temporary index itself is being created or it can be performed as a part of the temporary
index scan. Adding the selection to the temporary index creation has the possibility of making the open
data path (ODP) for this query non-reusable. This ODP reuse is considered when determining how
selection is performed.

Temporary index probe
A temporary index probe operation is identical to the index probe operation that is performed on the
permanent radix index. Its main function is to provide quick access against the index keys of the
temporary index. However, it can still be used to retrieve the rows from a table in a keyed sequence.

The temporary index is used by the optimizer to satisfy the join portion of the query request.

Table 22. Temporary index probe attributes

Data access method Temporary index probe

Description The index is quickly probed based upon the selection criteria that
were rewritten into a series of ranges. Only those keys that satisfy the
selection is used to generate a table row number.

Advantages • Only those index entries that match any selection continue to be
processed. Provides quick access to the selected rows

• Potential to extract all the data from the index key values, thus
eliminating the need for a Table Probe

• Returns the rows back in a sequence based upon the keys of the
index

Considerations Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/O associated
with the Table Probe.

Likely to be used • When the ability to probe the rows required for the query (for
example, joins) exists

• When the selection columns cannot be matched against the leading
key columns of the index

• When the overhead cost associated with the creation of the
temporary index can be justified against other alternative methods
to implement this query

46 IBM i: Database Performance and Query Optimization

Table 22. Temporary index probe attributes (continued)

Data access method Temporary index probe

Example SQL statement
SELET * FROM Employee XXX, Department YYY
WHERE XXX.WorkDept = YYY.DeptNo
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a temporary index probe can be
indicated through the messages. The messages in this example
illustrate one example of how the Classic Query Engine indicates a
temporary index probe was used.

• Optimizer Debug:

CPI4321 -- Access path built for file DEPARTMENT.
CPI4327 -- File EMPLOYEE processed in join
 position 1.
CPI4326 -- File DEPARTMENT processed in join
 position 2.

• PRTSQLINF:

SQL4007 -- Query implementation for join
 position 1 table 1.
SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join
 position 2 table 2.
SQL4009 -- Index created for table 2.

SMP parallel enabled Yes

Also referred to as Index Probe

Index Probe, Preload

Index Probe, Distinct

Index Probe Distinct, Preload

Index Probe, Key Selection

Visual Explain icon

Using the example above, the optimizer chose to create a temporary index over the DeptNo column to
help satisfy the join requirement against the DEPARTMENT table. A temporary index probe was then
performed against the temporary index to process the join criteria between the two tables. In this
particular case, there was no additional selection that might be applied against the DEPARTMENT table
while the temporary index was being created.

Temporary buffer
The temporary buffer is a temporary object that is used to help facilitate operations such as parallelism. It
is an unsorted data structure that is used to store intermediate rows of a query. The difference between a
temporary buffer and a temporary list is that the buffer does not need to be fully populated before its
results are processed.

The temporary buffer acts as a serialization point between parallel and non-parallel portions of a query.
The operations used to populate the buffer cannot be performed in parallel, whereas the operations that
fetch rows from the buffer can be performed in parallel.

Database performance and query optimization 47

The temporary buffer is required for SQE because the index scan and index probe operations are not SMP
parallel-enabled for this engine. Unlike CQE, which performs these index operations in parallel, SQE does
not subdivide the index operation work to take full advantage of parallel processing.

The buffer is used to allow a query to be processed under parallelism by serializing access to the index
operations. Any remaining work within the query is processed in parallel.

A temporary buffer is an internal data structure and can only be created by the database manager.

Visual explain icon:

Buffer scan
The buffer scan is used when a query is processed using DB2 Symmetric Multiprocessing, yet a portion of
the query is unable to be parallel processed. The buffer scan acts as a gateway to control access to rows
between the parallel enabled portions of the query and the non-parallel portions.

Multiple threads can be used to fetch the selected rows from the buffer, allowing the query to perform any
remaining processing in parallel. However, the buffer is populated in a non-parallel manner.

A buffer scan operation is identical to the list scan operation that is performed upon the temporary list
object. The main difference is that a buffer does not need to be fully populated before the start of the scan
operation. A temporary list requires that the list is fully populated before fetching any rows.

Table 23. Buffer scan attributes

Data access method Buffer scan

Description Sequentially scan and process all the rows in the temporary buffer.
Enables SMP parallelism to be performed over a non-parallel portion of
the query.

Advantages • The temporary buffer can be used to enable parallelism over a
portion of a query that is non-parallel

• The temporary buffer does not need to be fully populated in order to
start fetching rows

Considerations Used to prevent portions of the query from being processed multiple
times when no key columns are required to satisfy the request.

Likely to be used • When the query is attempting to take advantage of DB2 Symmetric
Multiprocessing

• When a portion of the query cannot be performed in parallel (for
example, index scan or index probe)

Example SQL statement CHGQRYA DEGREE(*OPTIMIZE)
CREATE INDEX X1 ON
 Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

48 IBM i: Database Performance and Query Optimization

Table 23. Buffer scan attributes (continued)

Data access method Buffer scan

Messages indicating use • Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4330 -- 8 tasks used for parallel index scan
 of file EMPLOYEE.

• PRTSQLINF:

SQL4027 -- Access plan was saved with DB2
 SMP installed on the system.
SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning
 used on table 1.
SQL4030 -- 8 tasks specified for parallel scan
 on table 1.

SMP parallel enabled Yes

Also referred to as Not applicable

Visual Explain icon

Using the example above, the optimizer chose to use the existing index X1 to perform an index probe
operation against the table. In order to speed up the remaining Table Probe operation for this query, DB2
Symmetric Multiprocessing is used to perform the random probe into the table. Since the index probe is
not SMP parallel-enabled for SQE, it is placed within a temporary buffer to control access to the selected
index entries.

Queue
The Queue is a temporary object that the optimizer uses to feed recursion by putting data values needed
for the recursion on it. This data typically includes those values used on the recursive join predicate, and
other recursive data accumulated or manipulated during the recursive process.

The Queue has two operations allowed:

• Enqueue: puts data on the queue
• Dequeue: takes data off the queue

A queue is an efficient data structure because it contains only the data needed to feed the recursion or
directly modified by the recursion process. Its size is managed by the optimizer.

Unlike other temporary objects created by the optimizer, the queue is not populated all at once by the
underlying query node tree. It is a real-time temporary holding area for values feeding the recursion. In
this regard, a queue is not considered temporary, as it does not prevent the query from running if
ALWCPYDTA(*NO) was specified. The data can flow from the query at the same time the recursive values
are inserted into the queue and used to retrieve additional join rows.

A queue is an internal data structure and can only be created by the database manager.

Visual explain icon:

Database performance and query optimization 49

Enqueue
During an enqueue operation, an entry is put on the queue. The entry contains key values used by the
recursive join predicates or data manipulated as a part of the recursion process. The optimizer always
supplies an enqueue operation to collect the required recursive data on the query node directly above the
Union All.

Table 24. Enqueue Attributes

Data Access Method Enqueue

Description Places an entry on the queue needed to cause further recursion

Advantages • Required as a source for the recursion. Only enqueues required
values for the recursion process. Each entry has short life span, until
it is dequeued.

• Each entry on the queue can seed multiple iterative fullselects that
are recursive from the same RCTE or view.

Likely to be used A required access method for recursive queries

Example SQL statement WITH RPL (PART, SUBPART, QUANTITY) AS
 (SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
 FROM PARTLIST ROOT
 WHERE ROOT.PART = '01'
 UNION ALL
 SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
 FROM RPL PARENT, PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART
)
SELECT DISTINCT PART, SUBPART, QUANTITY
 FROM RPL

Messages indicating use There are no explicit messages that indicate the use of an enqueue

SMP parallel enabled Yes

Also referred to as Not applicable

Visual Explain icon

Use the CYCLE option in the definition of the recursive query if the data reflecting the parent-child
relationship could be cyclic, causing an infinite recursion loop. CYCLE prevents already visited recursive
key values from being put on the queue again for a given set of related (ancestry chain) rows.

Use the SEARCH option in the definition of the recursive query to return the results of the recursion in the
specified parent-child hierarchical ordering. The search choices are Depth or Breadth first. Depth first
means that all the descendents of each immediate child are returned before the next child is returned.
Breadth first means that each child is returned before their children are returned.

50 IBM i: Database Performance and Query Optimization

SEARCH requires not only the specification of the relationship keys, the columns which make up the
parent-child relationship, and the search type of Depth or Breadth. It also requires an ORDER BY clause in
the main query on the provided sequence column in order to fully implement the specified ordering.

Dequeue
During a dequeue operation, an entry is taken off the queue. Those values specified by recursive
reference are fed back in to the recursive join process.

The optimizer always supplies a corresponding enqueue, dequeue pair of operations for each recursive
common table expression or recursive view in the specifying query. Recursion ends when there are no
more entries to pull off the queue.

Table 25. Dequeue Attributes

Data Access Method Dequeue

Description Removes an entry off the queue. Minimally, provides one side of the
recursive join predicate that feeds the recursive join and other data
values that are manipulated through the recursive process. The
dequeue operation is always on the left side of the inner join with
constraint, where the right side is the target child rows.

Advantages • Provides quick access to recursive values
• Allows for post selection of local predicate on recursive data values

Likely to be used • A required access method for recursive queries
• A single dequeued value can feed the recursion of multiple iterative

fullselects that reference the same RCTE or view

Example SQL statement WITH RPL (PART, SUBPART, QUANTITY) AS
 (SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
 FROM PARTLIST ROOT
 WHERE ROOT.PART = '01'
 UNION ALL
 SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
 FROM RPL PARENT, PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART
)
SELECT DISTINCT PART, SUBPART, QUANTITY
 FROM RPL

Messages indicating use There are no explicit messages that indicate the use of the dequeue
operation.

SMP parallel enabled Yes

Also referred to as Not applicable

Visual Explain icon

Array unnest temporary table
The array unnest temporary table is a temporary object that holds the output of an UNNEST of an array or
a list of arrays. It can be viewed vertically, with each column of array values having the same format. The

Database performance and query optimization 51

temporary table contains one or more arrays specified by the user in an UNNEST clause of a SELECT
statement.

UNNEST creates a temporary table with the arrays specified as columns in the table. If more than one
array is specified, the first array provides the first column in the result table. The second array provides
the second column, and so on.

The arrays might be of different lengths. Shorter arrays are primed with nulls to match the length of the
longest array in the list.

If WITH ORDINALITY is specified, an extra counter column of type BIGINT is appended to the temporary
table. The ordinality column contains the index position of the elements in the arrays.

The array unnest temporary table is an internal data structure and can only be created by the database
manager.

Visual explain icon:

Related reference
QAQQINI query options
There are different options available for parameters in the QAQQINI file.
Related information
Array support in SQL procedures
Debugging an SQL routine
table-reference

Array unnest temporary table scan
During an array unnest temporary table scan operation, the temporary table is processed one row at a
time.

Table 26. Array unnest temporary table scan operation

Data access method Array unnest temporary table scan

Description Sequentially scan and process all the rows of data in the unnest
temporary table.

Advantages The array unnest temporary table and temporary table scan can be
used to simplify the logic flow of the optimizer for processing arrays.

Likely to be used When an UNNEST clause is specified in the from-clause of an SQL
fullselect.

Example SQL statement CREATE PROCEDURE processCustomers()
BEGIN
DECLARE ids INTARRAY;
DECLARE names STRINGARRAY;
set ids = ARRAY[5,6,7];
set names = ARRAY['Ann', 'Bob', 'Sue'];
INSERT INTO customerTable(id, name, order)
(SELECT Customers.id, Customers.name, Customers.order
FROM UNNEST(ids, names) WITH ORDINALITY
AS Customers(id, name, order));
END

CALL processCustomers()

52 IBM i: Database Performance and Query Optimization

Table 26. Array unnest temporary table scan operation (continued)

Data access method Array unnest temporary table scan

Messages indicating use There are multiple ways in which an array unnest temporary table scan
can be indicated through the messages. The messages in this example
illustrate how the SQL Query Engine indicates an array unnest
temporary table scan was used.

• Optimizer Debug:

CPI4329 -- Arrival sequence was used for file *UNNEST_1.

• PRTSQLINF:

SQL4010 -- Table scan access for table 1.

SMP parallel enabled Yes

Also referred to as

Visual Explain icon

Objects processed in parallel
The DB2 Symmetric multiprocessing feature provides the optimizer with additional methods for retrieving
data that include parallel processing. Symmetrical multiprocessing is a form of parallelism achieved on a
single system where multiple CPU and I/O processors sharing memory and disk work simultaneously
toward a single result.

This parallel processing means that the database manager can have more than one (or all) of the system
processors working on a single query simultaneously. The performance of a CPU-bound query can be
improved with this feature on multiple-processor systems by distributing the processor load across more
than one processor.

The preceding tables indicate what data access methods are enabled to take advantage of the DB2
Symmetric Multiprocessing feature. An important thing to note, however, is that the parallel
implementation differs for both the SQL Query Engine and the Classic Query Engine.

Processing requirements

Parallelism requires that SMP parallel processing must be enabled by one of the following methods:

• System value QQRYDEGREE
• Query option file
• DEGREE parameter on the Change Query Attributes (CHGQRYA) command
• SQL SET CURRENT DEGREE statement

Once parallelism has been enabled, a set of database system tasks or threads is created at system
startup for use by the database manager. The database manager uses the tasks to process and retrieve
data from different disk devices. Since these tasks can be run on multiple processors simultaneously, the
elapsed time of a query can be reduced. Even though the tasks do much of the parallel I/O and CPU
processing, the I/O and CPU resource accounting is transferred to the application job. The summarized
I/O and CPU resources for this type of application continue to be accurately displayed by the Work with
Active Jobs (WRKACTJOB) command.

Database performance and query optimization 53

The job must be run in a shared storage pool with the *CALC paging option, as this method causes more
efficient use of active memory.

Related concepts
Nested loop join implementation
Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.
Related reference
Changing the attributes of your queries
You can modify different types of query attributes for a job with the Change Query Attributes
(CHGQRYA) CL command. You can also use the System i Navigator Change Query Attributes interface.
Related information
SET CURRENT DEGREE statement
Performance system values: Parallel processing for queries and indexes
Adjusting performance automatically
Work with Active Jobs (WRKACTJOB) command
Change Query Attributes (CHGQRYA) command
DB2 Symmetric Multiprocessing

Spreading data automatically
Db2 for i automatically spreads the data across the disk devices available in the auxiliary storage pool
(ASP) where the data is allocated. This process ensures that the data is spread without user intervention.

The spreading allows the database manager to easily process the blocks of rows on different disk devices
in parallel. Even though Db2 for i spreads data across disk devices within an ASP, sometimes the
allocation of the data extents (contiguous sets of data) might not be spread evenly. This unevenness
occurs when there is uneven allocation of space on the devices, or when a new device is added to the ASP.
The allocation of the table data space could be spread again by saving, deleting, and then restoring the
table.

Maintaining an even distribution of data across all the disk devices can lead to better throughput on query
processing. The number of disk devices used and how the data is spread across them is considered by the
optimizer while costing the different plan permutations.

Processing queries: Overview
This overview of the query optimizer provides guidelines for designing queries that perform and use
system resources more efficiently.

This overview covers queries that are optimized by the query optimizer and includes interfaces such as
SQL, OPNQRYF, APIs (QQQQRY), ODBC, and Query/400 queries. Whether you apply the guidelines, the
query results are still correct.

Note: The information in this overview is complex. You might find it helpful to experiment with an IBM i
product as you read this information to gain a better understanding of the concepts.

When you understand how Db2 for i processes queries, it is easier to understand the performance
impacts of the guidelines discussed in this overview. There are two major components of Db2 for i query
processing:

• How the system accesses data.

These methods are the algorithms that are used to retrieve data from the disk. The methods include
index usage and row selection techniques. In addition, parallel access methods are available with the
DB2 Symmetric Multiprocessing operating system feature.

• Query optimizer

54 IBM i: Database Performance and Query Optimization

The query optimizer identifies the valid techniques which can be used to implement the query and
selects the most efficient technique.

How the query optimizer makes your queries more efficient
Data manipulation statements such as SELECT specify only what data the user wants, not how to retrieve
that data. This path to the data is chosen by the optimizer and stored in the access plan. Understand the
techniques employed by the query optimizer for performing this task.

The optimizer is an important part of Db2 for i because the optimizer:

• Makes the key decisions which affect database performance.
• Identifies the techniques which can be used to implement the query.
• Selects the most efficient technique.

General query optimization tips
Here are some tips to help your queries run as fast as possible.

• Create indexes whose leftmost key columns match your selection predicates to help supply the
optimizer with selectivity values (key range estimates).

• For join queries, create indexes that match your join columns to help the optimizer determine the
average number of matching rows.

• Minimize extraneous mapping by specifying only columns of interest on the query. For example, specify
only the columns you need to query on the SQL SELECT statement instead of specifying SELECT *. Also,
specify FOR FETCH ONLY if the columns do not need to be updated.

• If your queries often use table scan, use the Reorganize Physical File Member (RGZPFM)
command to remove deleted rows from tables, or the Change Physical File (CHGPF) REUSEDLT
(*YES) command to reuse deleted rows.

Consider using the following options:

• Specify ALWCPYDTA(*OPTIMIZE) to allow the query optimizer to create temporary copies of data so
better performance can be obtained. The IBM i Access ODBC driver and Query Management driver
always use this mode. If ALWCPYDTA(*YES) is specified, the query optimizer attempts to implement the
query without copies of the data, but might create copies if required. If ALWCPYDTA(*NO) is specified,
copies of the data are not allowed. If the query optimizer cannot find a plan that does not use a
temporary, then the query cannot be run.

• For SQL, use CLOSQLCSR(*ENDJOB) or CLOSQLCSR(*ENDACTGRP) to allow open data paths to remain
open for future invocations.

• Specify DLYPRP(*YES) to delay SQL statement validation until an OPEN, EXECUTE, or DESCRIBE
statement is run. This option improves performance by eliminating redundant validation.

• Use ALWBLK(*ALLREAD) to allow row blocking for read-only cursors.

Related information
Reorganize Physical File Member (RGZPFM) command
Change Physical File (CHGPF) command

Access plan validation
An access plan is a control structure that describes the actions necessary to satisfy each query request. It
contains information about the data and how to extract it. For any query, whenever optimization occurs,
the query optimizer develops an optimized plan of how to access the requested data.

To improve performance, an access plan is saved once it is built (see following exceptions), to be available
for potentially future runs of the query. However, the optimizer has dynamic replan capability. This means
that even if a previously built (and saved) plan is found, the optimizer could rebuild it if a more optimal
plan is possible. This process allows for maximum flexibility while still taking advantage of saved plans.

Database performance and query optimization 55

• For dynamic SQL, an access plan is created at prepare or open time. However, optimization uses the
host variable values to determine an optimal plan. Therefore, a plan built at prepare time could be
rebuilt the first time the query is opened (when the host variable values are present).

• For an IBM i program that contains static embedded SQL, an access plan is initially created at compile
time. Again, since optimization uses the host variable values to determine an optimal plan, the compile-
time plan could be rebuilt the first time the query is opened.

• For Open Query File (OPNQRYF), an access plan is created but is not saved. A new access plan is
created each time the OPNQRYF command is processed.

• For Query/400, an access plan is saved as part of the query definition object.

In all the preceding cases where a plan is saved, including static SQL, dynamic replan can still apply as
the queries are run over time.

The access plan is validated when the query is opened. Validation includes the following:

• Verifying that the same tables are referenced in the query as in the access plan. For example, the tables
were not deleted and recreated or that the tables resolved by using *LIBL have not changed.

• Verifying that the indexes used to implement the query, still exist.
• Verifying that the table size or predicate selectivity has not changed significantly.
• Verifying that QAQQINI options have not changed.

Single table optimization
At run time, the optimizer chooses an optimal access method for a query by calculating an implementation
cost based on the current state of the database. The optimizer uses two costs in its decision: an I/O cost
and a CPU cost. The goal of the optimizer is to minimize both I/O and CPU cost.

Improved query optimization I/O cost estimates

The time it takes to perform an disk I/O operation can vary according to the connecting infrastructure, the
external or internal nature of the media and media type, spinning disk or Solid State Disk. Consequently,
the total I/O cost associated with a particular query access method may vary from system to system.

In order to more accurately estimate these costs, the optimizer considers the performance of each disk
unit individually. It does this by measuring the time it takes for read operations to complete across a
sample of pages across the disk. This analysis is done at each IPL for disks in the system and user ASPs
and at vary-on time for independent ASPs. With this information and with the additional knowledge about
how database objects are spread across various disk units, the optimizer can make a reasonable estimate
about the time it takes to perform I/O against a given database object. This means that no matter where
your data resides, and even as it moves around, the optimizer can choose the most efficient plan to
execute your queries.

Optimizing Access to each table

The optimizer uses a general set of guidelines to choose the best method for accessing data in each table.
The optimizer:

• Determines the default filter factor for each predicate in the selection clause.
• Determines the true filter factor of the predicates by key range estimate when the selection predicates

match the index left-most keys, or by available column statistics.
• Determines the cost of table scan processing if an index is not required.
• Determines the cost of creating an index over a table if an index is required. This index is created by

performing either a table scan or creating an index-from-index.
• Determines the cost of using a sort routine or hashing method if appropriate.
• Determines the cost of using existing indexes using Index Probe or Index Scan

56 IBM i: Database Performance and Query Optimization

– Orders the indexes. For SQE, the indexes are ordered in general such that the indexes that access the
smallest number of entries are examined first. For CQE, the indexes are ordered from mostly recently
created to oldest.

– For each index available, the optimizer does the following:

- Determines if the index meets the selection criteria.
- Determines the cost of using the index by estimating the number of I/Os and CPU needed to Index

Probe or Index Scan, and possible Table Probes.
- Compares the cost of using this index with the previous cost (current best).
- Picks the cheaper one.
- Continues to search for best index until the optimizer decides to look at no more indexes.

SQE orders the indexes so that the best indexes are examined first. Once an index is found that is
more expensive than the previously chosen best index, the search is ended.

For CQE, the time limit controls how much time the optimizer spends choosing an implementation.
The time limit is based on how much time was spent so far and the current best implementation cost
found. The idea is to prevent the optimizer from spending more time optimizing the query than it
takes to actually execute the query. Dynamic SQL queries are subject to the optimizer time
restrictions. Static SQL query optimization time is not limited. For OPNQRYF, if you specify
OPTALLAP(*YES), the optimization time is not limited.

For small tables, the query optimizer spends little time in query optimization. For large tables, the
query optimizer considers more indexes. For CQE, the optimizer generally considers five or six
indexes for each table of a join before running out of optimization time. Because of this processing, it
is normal for the optimizer to spend longer lengths of time analyzing queries against the tables.

• Determines the cost of using a temporary bitmap

– Order the indexes that can be used for bit mapping. In general the indexes that select the smallest
number of entries are examined first.

– Determine the cost of using this index for bit mapping and the cost of merging this bitmap with any
previously generated bitmaps.

– If the cost of this bitmap plan is cheaper than the previous bitmap plan, continue searching for
bitmap plans.

• After examining the possible methods of access the data for the table, the optimizer chooses the best
plan from all the plans examined.

Solid State Drives
Solid State Drives (SSDs) offer a number of advantages over traditional hard disk drives (HDDs)

Solid State Drives

Solid State Drives (SSDs) offer a number of advantages over traditional hard disk drives (HDDs). With no
seek time or rotational delays, SSDs can deliver substantially better I/O performance than HDDs. Capable
of driving tens of thousands of I/O operations per second as opposed to hundreds for HDDs, SSDs break
through performance bottlenecks of I/O-bound applications. Applications that require dozens and dozens
of “extra” HDDs for performance can meet their I/O performance requirements with far fewer SSDs,
resulting in energy, space, and cost savings.

As IBM i has it’s own storage manager and DB2 for i built in, the integration of SSDs on IBM i is a fairly
simple task. The functions provided for management of SSDs and adjusting their impact on Applications
and Database are very simple and easy to use.

There are three basic methodologies to place data on SSD.

• ASP Balancer – Enhanced for SSDs
• Library and SSD Integration
• DB2 and SSD Integration

Database performance and query optimization 57

To compare and contrast these methodologies see the IBM i white paper:

http://www-03.ibm.com/systems/resources/ssd_ibmi.pdf

To allow you to specify what data should be allocated on SSD, DB2 has provided the capability to specify a
“media preference” as an attribute of a database table, partition, or index. It should be noted that this
attribute specifies that storage allocations on SSD are preferred, but if no SSD disks are available or if the
SSD disks do not have enough space left to allocate the entire object, at least some part of the object will
be allocated on traditional disks. See the UNIT parameter on CRTPF and CRTLF or the media-preference
clause (UNIT SSD) on the CREATE TABLE, DECLARE GLOBAL TEMPORARY TABLE, CREATE INDEX, and
ALTER TABLE SQL statements.

You should consider SSDs if your I/O demands have outpaced the performance capabilities of traditional
HDDs, latencies associated with spinning platters and moving arms limit the speed of HDD data access.
SSDs near instantaneous data access removes this I/O bottleneck, creating a paradigm shift in I/O
performance. Applications throttled by poor I/O performance can benefit greatly from SSDs.

Memory preference controls
Memory preference controls can be used as a technique to maximize performance and utilization of
resources.

Memory preference controls

Memory preference controls can be used against performance critical database tables, indexes, physical
files, and logical files as a technique to maximize performance and utilization of resources. Several
approaches are available for controlling the memory preference:

1. Set Object Access (SETOBJACC) command

One benefit of SETOBJACC is that you can carve out a separate memory pool that is not used by from
any running applications or MEMORY_POOL_PREFERENCE and those objects will then not get paged
out because neither applications nor SQE will be using that pool. If the target objects are primarily
accessed using Native database I/O,SETOBJACC is the preferred approach.SETOBJACC uses a single
thread to bring the object into memory.

2. Change Physical File (CHGPF) and Change Logical File (CHGLF) commands - Keep in
memory (KEEPINMEM) parameter

When an object is changed to have Keep in memory set to *YES, the database will bring the object into
memory and attempt to keep it in memory when it is accessed using SQL via SQE. Native database I/O
(for example RPG CHAIN, READ, etc.) does not do this.KEEPINMEM has the ability to use parallel I/O
to bring the object into memory.

• CHGPF KEEPINMEM(*YES|*NO)
• CHGLF KEEPINMEM(*YES|*NO)

3. The SQL memory-preference can be used as an alternative to the KEEPINMEM command parameter.

The behavior of SQL configured in memory objects matches the behavior described in theKEEPINMEM
section.

KEEP IN MEMORY <NO/YES> is available on the following SQL statements:

• ALTER TABLE
• CREATE INDEX
• CREATE TABLE
• DECLARE GLOBAL TEMPORARY TABLE

Note: The QSYS2/SYSPARTITIONSTAT and SYSPARTITIONINDEXSTAT catalogs can be queried to
determine the memory-preference for specific objects. When a memory-preference is specified for an
object, the MEMORY_POOL_PREFERENCE QAQQINI option can be used to influence where we attempt to
page objects. There is no guarantee that objects will remain in memory.

58 IBM i: Database Performance and Query Optimization

http://www-03.ibm.com/systems/resources/ssd_ibmi.pdf

Join optimization
A join operation is a complex function that requires special attention in order to achieve good
performance. This section describes how Db2 for i implements join queries and how optimization choices
are made by the query optimizer. It also describes design tips and techniques which help avoid or solve
performance problems.

Nested loop join implementation
Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

The nested loop is implemented either using an index on secondary tables, a hash table, or a table scan
(arrival sequence) on the secondary tables. In general, the join is implemented using either an index or a
hash table.

Index nested loop join implementation

During the join, Db2 for i:

1. Accesses the first primary table row selected by the predicates local to the primary table.
2. Builds a key value from the join columns in the primary table.
3. Chooses the access to the first secondary table:

• If using an index, Radix Index Probe is used to locate the first row satisfying the join condition for the
secondary table. The probe uses an index with keys matching the join condition or local row
selection columns of the secondary table.

• Applies bitmap selection, if applicable.

All rows that satisfy the join condition from each secondary dial are located using an index. Rows are
retrieved from secondary tables in random sequence. This random disk I/O time often accounts for a
large percentage of the processing time of the query. Since a given secondary dial is searched once
for each row selected from the primary and the preceding secondary dials that satisfy the join
condition for each of the preceding secondary dials, many searches could be against the later dials.
Any inefficiencies in the processing of the later dials can significantly inflate the query processing
time. This reason is why attention to performance considerations for join queries can reduce the run
time of a join query from hours to minutes.

If an efficient index cannot be found, a temporary index could be created. Some join queries build
temporary indexes over secondary dials even when an index exists for all the join keys. Because
efficiency is important for secondary dials of longer running queries, the optimizer could build a
temporary index containing only entries with local row selection for that dial. This preprocessing of
row selection allows the database manager to process row selection in one pass instead of each time
rows are matched for a dial.

• If using a Hash Table Probe, a hash temporary result table is created containing all rows from local
selection against the table on the first probe. The structure of the hash table is such that rows with
the same join value are loaded into the same hash table partition (clustered). The location of the
rows for any given join value can be found by applying a hashing function to the join value.

A nested loop join using a Hash Table Probe has several advantages over a nested loop join using an
Index Probe:

– The structure of a hash temporary result table is simpler than the structure of an index. Less CPU
processing is required to build and probe a hash table.

– The rows in the hash result table contain all the data required by the query. There is no need to
access the dataspace of the table with random I/O when probing the hash table.

– Like join values are clustered, so all matching rows for a given join value can typically be accessed
with a single I/O request.

– The hash temporary result table can be built using SMP parallelism.

Database performance and query optimization 59

– Unlike indexes, entries in hash tables are not updated to reflect changes of column values in the
underlying table. The existence of a hash table does not affect the processing cost of other
updating jobs in the system.

• If using a Sorted List Probe, a sorted list result is created containing all the rows from local selection
against the table on the first probe. The structure of the sorted list table is such that rows with the
same join value are sorted together in the list. The location of the rows for any given join value can be
found by probing using the join value.

• If using a Table Scan, locate the first row that satisfies the join condition or local row selection
columns of the secondary table. The join could be implemented with a table scan when the
secondary table is a user-defined table function.

4. Determines if the row is selected by applying any remaining selection local to the first secondary dial.

If the secondary dial row is not selected then the next row that satisfies the join condition is located.
Steps 1 through 4 are repeated until a row that satisfies both the join condition and any remaining
selection is selected from all secondary tables

5. Returns the result join row.
6. Processes the last secondary table again to find the next row that satisfies the join condition in that

dial.

During this processing, when no more rows satisfying the join condition can be selected, the
processing backs up to the logical previous dial. It attempts to read the next row that satisfies its join
condition.

7. Ends processing when all selected rows from the primary table are processed.

Note the following characteristics of a nested loop join:

• If ordering or grouping is specified, and all the columns are over a single table eligible to be the primary,
then the optimizer costs the join with that table as the primary table, performing the grouping and
ordering with an index.

• If ordering and grouping is specified on two or more tables or if temporary objects are allowed, Db2 for i
breaks the processing of the query into two parts:

1. Perform the join selection, omitting the ordering or grouping processing, and write the result rows to
a temporary work table. This method allows the optimizer to consider any table of the join query as a
candidate for the primary table.

2. Perform the ordering or grouping on the data in the temporary work table.

Queries that cannot use hash join

Hash join cannot be used for queries that:

• Hash join cannot be used for queries involving physical files or tables that have read triggers.
• Require that the cursor position is restored as the result of the SQL ROLLBACK HOLD statement or the

ROLLBACK CL command. For SQL applications using commitment control level other than *NONE, this
method requires that *ALLREAD be specified as the value for the ALWBLK precompiler parameter.

• Hash join cannot be used for a table in a join query where the join condition something other than an
equals operator.

• CQE does not support hash join if the query contains any of the following:

– Subqueries unless all subqueries in the query can be transformed to inner joins.
– UNION or UNION ALL
– Perform left outer or exception join.
– Use a DDS created join logical file.

Related concepts
Objects processed in parallel

60 IBM i: Database Performance and Query Optimization

The DB2 Symmetric multiprocessing feature provides the optimizer with additional methods for retrieving
data that include parallel processing. Symmetrical multiprocessing is a form of parallelism achieved on a
single system where multiple CPU and I/O processors sharing memory and disk work simultaneously
toward a single result.
Related reference
Table scan
A table scan is the easiest and simplest operation that can be performed against a table. It sequentially
processes all the rows in the table to determine if they satisfy the selection criteria specified in the query.
It does this processing in a way to maximize the I/O throughput for the table.
Sorted list probe
A sorted list probe operation is used to retrieve rows from a temporary sorted list based upon a probe
lookup operation.
Hash table probe
A hash table probe operation is used to retrieve rows from a temporary hash table based upon a probe
lookup operation.
Radix index probe
A radix index probe operation is used to retrieve the rows from a table in a keyed sequence. The main
difference between the radix index probe and the scan is that the rows returned are first identified by a
probe operation to subset them.

Join optimization algorithm
The query optimizer must determine the join columns, join operators, local row selection, dial
implementation, and dial ordering for a join query.

The join columns and join operators depend on the following situations:

• Join column specifications of the query
• Join order
• Interaction of join columns with other row selection

Join specifications not implemented for the dial are deferred until a later dial or, if an inner join, processed
as row selection.

For a given dial, the only join specifications which are usable as join columns are those being joined to a
previous dial. For example, the second dial can only use join specifications which reference columns in the
primary dial. Likewise, the third dial can only use join specifications which reference columns in the
primary and the second dials, and so on. Join specifications which reference later dials are deferred until
the referenced dial is processed.

Note: For OPNQRYF, only one type of join operator is allowed for either a left outer or an exception join.
That is, the join operator for all join conditions must be the same.

When looking for an existing index to access a secondary dial, the query optimizer looks at the left-most
key columns of the index. For a given dial and index, the join specifications which use the left-most key
columns can be used. For example:

 DECLARE BROWSE2 CURSOR FOR
 SELECT * FROM EMPLOYEE, EMP_ACT
 WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
 AND EMPLOYEE.HIREDATE = EMP_ACT.EMSTDATE
 OPTIMIZE FOR 99999 ROWS

For the index over EMP_ACT with key columns EMPNO, PROJNO, and EMSTDATE, the join operation is
performed only on column EMPNO. After the join is performed, index scan-key selection is done using
column EMSTDATE.

The query optimizer also uses local row selection when choosing the best use of the index for the
secondary dial. If the previous example had been expressed with a local predicate as:

 DECLARE BROWSE2 CURSOR FOR
 SELECT * FROM EMPLOYEE, EMP_ACT

Database performance and query optimization 61

 WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
 AND EMPLOYEE.HIREDATE = EMP_ACT.EMSTDATE
 AND EMP_ACT.PROJNO = '123456'
 OPTIMIZE FOR 99999 ROWS

The index with key columns EMPNO, PROJNO, and EMSTDATE are fully utilized by combining join and
selection into one operation against all three key columns.

When creating a temporary index, the left-most key columns are the usable join columns in that dial
position. All local row selection for that dial is processed when selecting entries for inclusion into the
temporary index. A temporary index is like the index created for a select/omit keyed logical file. The
temporary index for the previous example has key columns of EMPNO and EMSTDATE.

Since the optimizer tries a combination of join and local row selection, you can achieve almost all the
advantages of a temporary index by using an existing index. In the preceding example, using either
implementation, an existing index could be used or a temporary index could be created. A temporary
index is built with the local row selection on PROJNO applied during the index creation. The temporary
index has key columns of EMPNO and EMSTDATE to match the join selection.

If, instead, an existing index was used with key columns of EMPNO, PROJNO, EMSTDATE (or PROJNO,
EMP_ACT, EMSTDATE), the local row selection can be applied at the same time as the join selection. This
method contrasts to applying the local selection before the join selection, as happens when the
temporary index is created. Or applying the local selection after the join selection, as happens when only
the first key column of the index matches the join column.

The existing index implementation is more likely to provide faster performance because join and selection
processing are combined without the overhead of building a temporary index. However, the existing index
could have slightly slower I/O processing than the temporary index because the local selection is run
many times rather than once. In general, create indexes with key columns for the combination of join and
equal selection columns as the left-most keys.

Join order optimization
The SQE optimizer allows join reordering for a join logical file. However, the join order is fixed if CQE runs a
query that references a join logical file. The join order is also fixed if the OPNQRYF JORDER(*FILE)
parameter is specified. In addition, the join order is fixed if the query options file (QAQQINI)
FORCE_JOIN_ORDER parameter is *YES

Otherwise, the following join ordering algorithm is used to determine the order of the tables:

1. Determine an access method for each individual table as candidates for the primary dial.
2. Estimate the number of rows returned for each table based on local row selection.

If the join query with ordering or grouping is processed in one step, the table with the ordering or
grouping columns is the primary table.

3. Determine an access method, cost, and expected number of rows returned for each join combination
of candidate tables as primary and first secondary tables.

The join order combinations estimated for a four table inner join would be:

1-2 2-1 1-3 3-1 1-4 4-1 2-3 3-2 2-4 4-2 3-4 4-3

4. Choose the combination with the lowest join cost and number of selected rows or both.
5. Determine the cost, access method, and expected number of rows for each remaining table joined to

the previous secondary table.
6. Select an access method for each table that has the lowest cost for that table.
7. Choose the secondary table with the lowest join cost and number of selected rows or both.
8. Repeat steps 4 through 7 until the lowest cost join order is determined.

Note: After dial 32, the optimizer uses a different method to determine file join order, which might not be
the lowest cost.

62 IBM i: Database Performance and Query Optimization

When a query contains a left or right outer join or a right exception join, the join order is not fixed.
However, all from-columns of the ON clause must occur from dials previous to the left or right outer or
exception join. For example:

FROM A INNER JOIN B ON A.C1=B.C1
LEFT OUTER JOIN C ON B. C2=C.C2

The allowable join order combinations for this query would be:

1–2–3, 2–1–3, or 2–3–1

Right outer or right exception joins are implemented as left outer and left exception, with files flipped. For
example:

FROM A RIGHT OUTER JOIN B ON A.C1=B.C1

is implemented as B LEFT OUTER JOIN A ON B.C1=A.C1. The only allowed join order is 2–1.

Related information
Open Query File (OPNQRYF) command
Change Query Attributes (CHGQRYA) command

Full outer join
Full outer join is supported by the SQE optimizer. Just as right outer and right exception join are rewritten
to the supported join types of inner, left outer or left exception, a full outer join is also rewritten.

A full outer join of A FULL OUTER JOIN B is equivalent to a (A LEFT OUTER JOIN B) UNION ALL (B LEFT
EXCEPTION JOIN A). The following example illustrates the rewrite.

 SELECT EMPNO, LASTNAME, DEPTNAME
 FROM CORPDATA.EMPLOYEE XXX
 FULL OUTER JOIN CORPDATA.DEPARTMENT YYY
 ON XXX.WORKDEPT = YYY.DEPTNO

This query is rewritten as the following:

 SELECT EMPNO, LASTNAME, DEPTNAME
 FROM CORPDATA.EMPLOYEE XXX
 LEFT OUTER JOIN CORPDATA.DEPARTMENT YYY
 ON XXX.WORKDEPT = YYY.DEPTNO
 UNION ALL
 SELECT EMPNO, LASTNAME, DEPTNAME
 FROM CORPDATA.DEPARTMENT YYY
 LEFT EXCEPTION JOIN CORPDATA.EMPLOYEE XXX
 ON XXX.WORKDEPT = YYY.DEPTNO

A query with multiple FULL OUTER JOIN requests, such as A FULL OUTER JOIN B FULL OUTER JOIN
C can quickly become complicated in this rewritten state. This complication is illustrated in the following
example.

If not running in live data mode, the optimizer could facilitate performance both during optimization and
runtime by encapsulating intermediate results in a temporary data object. This object can be optimized
once and plugged into both the scanned and probed side of the rewrite. These shared temporary objects
eliminate the need to make multiple passes through the specific tables to satisfy the request.

In this example, the result of the (A FULL OUTER JOIN B) is a candidate for encapsulation during its FULL
OUTER join with C.

A FULL OUTER JOIN B FULL OUTER JOIN C

This query is rewritten as the following:

 ((A LEFT OUTER JOIN B) UNION ALL (B LEFT EXCEPTION JOIN A)) LEFT OUTER JOIN C)
 UNION ALL
 (C LEFT EXCEPTION JOIN ((A LEFT OUTER JOIN B) UNION ALL (B LEFT EXCEPTION JOIN A))

Database performance and query optimization 63

FULL OUTER implies that both sides of the join request can generate NULL values in the resulting answer
set. Local selection in the WHERE clause of the query could result in the appropriate downgrade of the
FULL OUTER to a LEFT OUTER or INNER JOIN.

If you want FULL OUTER JOIN behavior and local selection applied, specify the local selection in the ON
clause of the FULL OUTER JOIN, or use common table expressions. For example:

 WITH TEMPEMP AS (SELECT * FROM CORPDATA.EMPLOYEE XXX WHERE SALARY > 10000)
 SELECT EMPNO, LASTNAME, DEPTNAME
 FROM TEMPEMP XXX
 FULL OUTER JOIN CORPDATA.DEPARTMENT YYY
 ON XXX.WORKDEPT = YYY.DEPTNO

Join cost estimation and index selection
As the query optimizer compares the various possible access choices, it must assign a numeric cost value
to each candidate. The optimizer uses that value to determine the implementation which consumes the
least amount of processing time. This costing value is a combination of CPU and I/O time

In steps 3 and 5 in “Join order optimization” on page 62, the optimizer estimates cost and chooses an
access method for a given dial combination. The choices made are like the choices for row selection,
except that a plan using a probe must be chosen.

The costing value is based on the following assumptions:

• Table pages and index pages must be retrieved from auxiliary storage. For example, the query optimizer
is not aware that an entire table might be loaded into active memory as the result of a Set Object
Access (SETOBJACC) CL command. Use of this command could significantly improve the
performance of a query. However, the optimizer does not change the query implementation to take
advantage of the memory resident state of the table.

• The query is the only process running on the system. No allowance is given for system CPU utilization or
I/O waits which occur because of other processes using the same resources. CPU-related costs are
scaled to the relative processing speed of the system running the query.

• The values in a column are uniformly distributed across the table. For example, if 10% of the table rows
have the same value, then on average, every 10th row in the table contains that value.

• The column values are independent from any other column values in a row, unless there is an index
available whose key definition is (A, B). Multi-key field indexes allow the optimizer to detect when the
values between columns are correlated.

For example, a column named A has a value of 1 in 50% of the rows in a table. A column named B has a
value of 2 in 50% of the rows. It is expected that a query which selects rows where A = 1, and B = 2
selects 25% of the rows in the table.

The main factors in the join cost calculation for secondary dials are:

• the number of rows selected in all previous dials
• the number of rows which match, on average, each of the rows selected from previous dials.

Both of these factors can be derived by estimating the number of matching rows for a given dial.

When the join operator is something other than equal, the expected number of matching rows is based on
the following default filter factors:

• 33% for less-than, greater-than, less-than-equal-to, or greater-than-equal-to
• 90% for not equal
• 25% for BETWEEN range (OPNQRYF %RANGE)
• 10% for each IN list value (OPNQRYF %VALUES)

For example, when the join operator is less-than, the expected number of matching rows is 0.33 *
(number of rows in the dial). If no join specifications are active for the current dial, the Cartesian product
is assumed to be the operator. For Cartesian products, the number of matching rows is every row in the
dial, unless local row selection can be applied to the index.

64 IBM i: Database Performance and Query Optimization

When the join operator is equal, the expected number of rows is the average number of duplicate rows for
a given value.

Related information
Set Object Access (SETOBJACC) command

Transitive closure predicates
For join queries, the query optimizer could do some special processing to generate additional selection.
When the set of predicates that belong to a query logically infer extra predicates, the query optimizer
generates additional predicates. The purpose is to provide more information during join optimization.

See the following examples:

SELECT * FROM EMPLOYEE, EMP_ACT
 WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
 AND EMPLOYEE.EMPNO = '000010'

The optimizer modifies the query to:

SELECT * FROM EMPLOYEE, EMP_ACT
 WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
 AND EMPLOYEE.EMPNO = '000010'
 AND EMP_ACT.EMPNO = '000010'

The following rules determine which predicates are added to other join dials:

• The dials affected must have join operators of equal.
• The predicate is isolatable, which means that a false condition from this predicate omits the row.
• One operand of the predicate is an equal join column and the other is a constant or host variable.
• The predicate operator is not LIKE (OPNQRYF %WLDCRD, or *CT).
• The predicate is not connected to other predicates by OR.

The query optimizer generates a new predicate, whether a predicate exists in the WHERE clause
(OPNQRYF QRYSLT parameter).

Some predicates are redundant. Redundant predicates occur when a previous evaluation of other
predicates in the query already determines the result that predicate provides. Redundant predicates can
be specified by you or generated by the query optimizer during predicate manipulation. Redundant
predicates with operators of =, >, >=, <, <=, or BETWEEN (OPNQRYF *EQ, *GT, *GE, *LT, *LE, or %RANGE)
are merged into a single predicate to reflect the most selective range.

Look ahead predicate generation (LPG)
A special type of transitive closure called look ahead predicate generation (LPG) might be costed for joins.
In this case, the optimizer tries to minimize the random I/O of a join by pre-applying the query results to a
large fact table. LPG is typically used with a class of queries referred to as star join queries. However, it
can possibly be used with any join query.

Look at the following query:

SELECT * FROM EMPLOYEE,EMP_ACT
 WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
 AND EMPLOYEE.EMPNO ='000010'

The optimizer could decide to internally modify the query to be:

WITH HT AS (SELECT *
 FROM EMPLOYEE
 WHERE EMPLOYEE.EMPNO='000010')

SELECT *
 FROM HT, EMP_ACT
 WHERE HT.EMPNO = EMP_ACT.EMPNO
 AND EMP_ACT.EMPNO IN (SELECT DISTINCT EMPNO
 FROM HT)

Database performance and query optimization 65

The optimizer places the results of the "subquery" into a temporary hash table. The hash table of the
subquery can be applied in one of two methods against the EMP_ACT (fact) table:

• The distinct values of the hash tables are retrieved. For each distinct value, an index over EMP_ACT is
probed to determine which records are returned for that value. Those record identifiers are normally
then stored and sorted (sometimes the sorting is omitted, depending on the total number of record ids
expected). Once the ids are determined, the subset of EMP_ACT records can be accessed more
efficiently than in a traditional nested loop join processing.

• EMP_ACT can be scanned. For each record, the hash table is probed to see if the record joins at all to
EMPLOYEE. This method allows for efficient access to EMP_ACT with a more efficient record rejection
method than in a traditional nested loop join process.

Note: LPG processing is part of the normal processing in the SQL Query Engine. CQE only considers the
first method, requires that the index in question by an EVI and also requires use of the STAR_JOIN and
FORCE_JOIN_ORDER QAQQINI options.

Tips for improving performance when selecting data from more than two tables
The following suggestion is only applicable to CQE and is directed specifically to select-statements that
access several tables. For joins that involve more than two tables, you might want to provide redundant
information about the join columns. The CQE optimizer does not generate transitive closure predicates
between two columns. If you give the optimizer extra information to work with when requesting a join, it
can determine the best way to do the join. The additional information might seem redundant, but is
helpful to the optimizer.

If the select-statement you are considering accesses two or more tables, all the recommendations
suggested in “Creating an index strategy” on page 204 apply. For example, instead of coding:

 EXEC SQL
 DECLARE EMPACTDATA CURSOR FOR
 SELECT LASTNAME, DEPTNAME, PROJNO, ACTNO
 FROM CORPDATA.DEPARTMENT, CORPDATA.EMPLOYEE,
 CORPDATA.EMP_ACT
 WHERE DEPARTMENT.MGRNO = EMPLOYEE.EMPNO
 AND EMPLOYEE.EMPNO = EMP_ACT.EMPNO
 END-EXEC.

Provide the optimizer with a little more data and code:

 EXEC SQL
 DECLARE EMPACTDATA CURSOR FOR
 SELECT LASTNAME, DEPTNAME, PROJNO, ACTNO
 FROM CORPDATA.DEPARTMENT, CORPDATA.EMPLOYEE,
 CORPDATA.EMP_ACT
 WHERE DEPARTMENT.MGRNO = EMPLOYEE.EMPNO
 AND EMPLOYEE.EMPNO = EMP_ACT.EMPNO
 AND DEPARTMENT.MGRNO = EMP_ACT.EMPNO
 END-EXEC.

Multiple join types for a query
Multiple join types (inner, left outer, right outer, left exception, and right exception) can be specified in the
query using the JOIN syntax. However, the Db2 for i can only support one join type of inner, left outer, or
left exception join for the entire query. The optimizer determines the overall join type for the query and
reorders the files to achieve the correct semantics.

Note: This section does not apply to SQE or OPNQRYF.

The optimizer evaluates the join criteria, along with any row selection, to determine the join type for each
dial and the entire query. Then the optimizer generates additional selection using the relative row number
of the tables to simulate the different types of joins that occur within the query.

Null values are returned for any unmatched rows in either a left outer or an exception join. Any isolatable
selection specified for that dial, including any additional join criteria specified in the WHERE clause,
causes all the unmatched rows to be eliminated. (The exception is when the selection is for an IS NULL
predicate.) This elimination causes the dial join type to change to an inner join (or an exception join) if the
IS NULL predicate was specified.

66 IBM i: Database Performance and Query Optimization

In the following example, a left outer join is specified between the tables EMPLOYEE and DEPARTMENT.
In the WHERE clause, there are two selection predicates that also apply to the DEPARTMENT table.

 SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO
 FROM CORPDATA.EMPLOYEE XXX LEFT OUTER JOIN CORPDATA.DEPARTMENT YYY
 ON XXX.WORKDEPT = YYY.DEPTNO
 LEFT OUTER JOIN CORPDATA.PROJECT ZZZ
 ON XXX.EMPNO = ZZZ.RESPEMP
 WHERE XXX.EMPNO = YYY.MGRNO AND
 YYY.DEPTNO IN ('A00', 'D01', 'D11', 'D21', 'E11')

The first selection predicate, XXX.EMPNO = YYY.MGRNO, is an additional join condition that is evaluated
as an "inner join" condition. The second is an isolatable selection predicate that eliminates any
unmatched rows. Either of these predicates can cause the join type for the DEPARTMENT table to change
from a left outer join to an inner join.

Even though the join between the EMPLOYEE and DEPARTMENT tables was changed to an inner join, the
entire query remains a left outer join to satisfy the join condition for the PROJECT table.

Note: Care must be taken when specifying multiple join types since they are supported by appending
selection to the query for any unmatched rows. The number of rows satisfying the join criteria can
become large before selection that either selects or omits the unmatched rows based on that individual
dial join type is applied.

Sources of join query performance problems
The optimization algorithms described earlier benefit most join queries, but the performance of a few
queries might be degraded.

This occurs when:

• An index is not available which provides average number of duplicate values statistics for the potential
join columns.

• The optimizer uses default filter factors to estimate the number of rows when applying local selection to
the table when indexes or column statistics do not exist over the selection columns.

Creating indexes over the selection columns allows the optimizer to make a more accurate filtering
estimate by using key range estimates.

• The particular values selected for the join columns yield a greater number of matching rows than the
average number of duplicate values for all values of the join columns in the table. For example, the data
is not uniformly distributed.

Database performance and query optimization 67

Join performance tips
If you have a join query performing poorly, or you are creating an application which uses join queries,
these tips could be useful.

Table 27. Checklist for Creating an Application that Uses Join Queries

What to Do How It Helps

Check the database design.
Make sure that there are
indexes available over all the
join columns and row selection
columns or both. The optimizer
provides index advice in several
places to aid in this process:

• the index advisor under
System i Navigator - Database

• the advised information under
Visual Explain

• the advised information in the
3020 record in the database
monitor

The query optimizer can select an efficient access method because it can
determine the average number of duplicate values. Many queries could use
the existing index and avoid the cost of creating a temporary index or hash
table.

Check the query to see whether
some complex predicates could
be added to other dials to allow
the optimizer to get better
selectivity for each dial.

The query optimizer does not add predicates for predicates connected by OR
or non-isolatable predicates, or predicate operator LIKE. Modify the query by
adding additional predicates to help.

Specify
ALWCPYDTA(*OPTIMIZE) or
ALWCPYDTA(*YES)

The query is creating a temporary index or hash table, and the processing
time could be better if the existing index or hash table was used. Specify
ALWCPYDTA(*YES).

The query is not creating a temporary index or hash table, and the processing
time could be better if a temporary index was created. Specify
ALWCPYDTA(*OPTIMIZE).

Alternatively, specify OPTIMIZE FOR n ROWS to inform the optimizer that the
application reads every resulting row. Set n to a large number. You can also
set n to a small number before ending the query.

For OPNQRYF, specify
OPTIMIZE(*FIRSTIO) or
OPTIMIZE(*ALLIO)

Specify the OPTIMIZE(*FIRSTIO) or OPTIMIZE(*ALLIO) option to accurately
reflect your application. Use *FIRSTIO, if you want the optimizer to optimize
the query to retrieve the first block of rows most efficiently. This biases the
optimizer toward using existing objects. If you want to optimize the retrieval
time for the entire answer set, use *ALLIO. This option could cause the
optimizer to create temporary indexes or hash tables to minimize I/O.

68 IBM i: Database Performance and Query Optimization

Table 27. Checklist for Creating an Application that Uses Join Queries (continued)

What to Do How It Helps

Star join queries A join in which one table is joined with all secondary tables consecutively is
sometimes called a star join. If all secondary join predicates contain a
column reference to a particular table, place that table in join position one. In
Example A, all tables are joined to table EMPLOYEE. The query optimizer can
freely determine the join order. For SQE, the optimizer uses Look Ahead
Predicate generation to determine the optimal join order. For CQE, the query
could be changed to force EMPLOYEE into join position one by using the
query options file (QAQQINI) FORCE_JOIN_ORDER parameter of *YES. In
these examples, the join type is a join with no default values returned (an
inner join.). The reason for forcing the table into the first position is to avoid
random I/O processing. If EMPLOYEE is not in join position one, every row in
EMPLOYEE can be examined repeatedly during the join process. If
EMPLOYEE is fairly large, considerable random I/O processing occurs
resulting in poor performance. By forcing EMPLOYEE to the first position,
random I/O processing is minimized.

Example A: Star join query

DECLARE C1 CURSOR FOR
 SELECT * FROM DEPARTMENT, EMP_ACT, EMPLOYEE,
 PROJECT
 WHERE DEPARTMENT.DEPTNO=EMPLOYEE.WORKDEPT
 AND EMP_ACT.EMPNO=EMPLOYEE.EMPNO
 AND EMPLOYEE.WORKDEPT=PROJECT.DEPTNO

Example B: Star join query with order forced using FORCE_JOIN_ORDER

 DECLARE C1 CURSOR FOR
 SELECT * FROM EMPLOYEE, DEPARTMENT, EMP_ACT,
 PROJECT
 WHERE DEPARTMENT.DEPTNO=EMPLOYEE.WORKDEPT
 AND EMP_ACT.EMPNO=EMPLOYEE.EMPNO
 AND EMPLOYEE.WORKDEPT=PROJECT.DEPTNO

Specify
ALWCPYDTA(*OPTIMIZE) to
allow the query optimizer to use
a sort routine.

Ordering is specified and all key columns are from a single dial. The optimizer
can consider all possible join orders with ALWCPYDTA(*OPTIMIZE).

Specify join predicates to
prevent all the rows from one
table from being joined to every
row in the other table.

Improves performance by reducing the join fan-out. It is best if every
secondary table has at least one join predicate that references one of its
columns as a 'join-to' column.

Distinct optimization
Distinct is used to compare a value with another value.

There are two methods to write a query that returns distinct values in SQL. One method uses the
DISTINCT keyword:

SELECT DISTINCT COL1, COL2
 FROM TABLE1

The second method uses GROUP BY:

SELECT COL1, COL2
 FROM TABLE1
 GROUP BY COL1, COL2

Database performance and query optimization 69

All queries that contain a DISTINCT, and are run using SQE, rewritten into queries using GROUP BY. This
rewrite enables queries using DISTINCT to take advantage of the many grouping techniques available to
the optimizer.

Distinct to Grouping implementation

The following example query has a DISTINCT:

SELECT DISTINCT COL1, COL2
 FROM T1
 WHERE COL2 > 5 AND COL3 = 2

The optimizer rewrites it into this query:

SELECT COL1, COL2
 FROM T1
 WHERE COL2 > 5 AND COL3 = 2
 GROUP BY COL1, COL2

Distinct removal

A query containing a DISTINCT over whole-file aggregation (no grouping or selection) allows the
DISTINCT to be removed. For example, look at this query with DISTINCT:

SELECT DISTINCT COUNT(C1), SUM(C1)
 FROM TABLE1

The optimizer rewrites this query as the following:

SELECT COUNT(C1), SUM(C1)
 FROM TABLE1

If the DISTINCT and the GROUP BY fields are identical, the DISTINCT can be removed. If the DISTINCT
fields are a subset of the GROUP BY fields (and there are no aggregates), the DISTINCTs can be removed.

Grouping optimization
Db2 for i has certain techniques to use when the optimizer encounters grouping. The query optimizer
chooses its methods for optimizing your query.

Hash grouping implementation
This technique uses the base hash access method to perform grouping or summarization of the selected
table rows. For each selected row, the specified grouping value is run through the hash function. The
computed hash value and grouping value are used to quickly find the entry in the hash table
corresponding to the grouping value.

If the current grouping value already has a row in the hash table, the hash table entry is retrieved and
summarized (updated) with the current table row values based on the requested grouping column
operations (such as SUM or COUNT). If a hash table entry is not found for the current grouping value, a
new entry is inserted into the hash table and initialized with the current grouping value.

The time required to receive the first group result for this implementation is most likely longer than other
grouping implementations because the hash table must be built and populated first. Once the hash table
is populated, the database manager uses the table to start returning the grouping results. Before
returning any results, the database manager must apply any specified grouping selection criteria or
ordering to the summary entries in the hash table.

Where the hash grouping method is most effective

The hash grouping method is most effective when the consolidation ratio is high. The consolidation ratio
is the ratio of the selected table rows to the computed grouping results. If every database table row has
its own unique grouping value, then the hash table becomes too large. The size in turn slows down the
hashing access method.

70 IBM i: Database Performance and Query Optimization

The optimizer estimates the consolidation ratio by first determining the number of unique values in the
specified grouping columns (that is, the expected number of groups in the database table). The optimizer
then examines the total number of rows in the table and the specified selection criteria and uses the
result of this examination to estimate the consolidation ratio.

Indexes over the grouping columns can help make the ratio estimate of the optimizer more accurate.
Indexes improve the accuracy because they contain statistics that include the average number of
duplicate values for the key columns.

The optimizer also uses the expected number of groups estimate to compute the number of partitions in
the hash table. As mentioned earlier, the hashing access method is more effective when the hash table is
well-balanced. The number of hash table partitions directly affects how entries are distributed across the
hash table and the uniformity of this distribution.

The hash function performs better when the grouping values consist of columns that have non-numeric
data types, except for the integer (binary) data type. In addition, specifying grouping value columns that
are not associated with the variable length and null column attributes allows the hash function to perform
more effectively.

Index grouping implementation
There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.

Ordered grouping

This implementation uses the Radix Index Scan or the Radix Index Probe access methods to perform the
grouping. An index is required that contains all the grouping columns as contiguous leftmost key columns.
The database manager accesses the individual groups through the index and performs the requested
summary functions.

Since the index, by definition, already has all the key values grouped, the first group result can be
returned in less time than the hashing method. This index performance is faster because the hashing
method requires a temporary result. This implementation can be beneficial if an application does not
need to retrieve all the group results, or if an index exists that matches the grouping columns.

When the grouping is implemented with an index and a permanent index does not exist that satisfies
grouping columns, a temporary index is created. The grouping columns specified within the query are
used as the key columns for this index.

Pre-summarized processing

This SQE-only implementation uses an Encoded Vector Index to extract the summary information already
in the symbol table of the index. The EVI symbol table contains the unique key values and a count of the
number of table records that have that unique value. The grouping for the columns of the index key is
already performed. If the query references a single table and performs simple aggregation, the EVI might
be used for quick access to the grouping results. For example, consider the following query:

SELECT COUNT(*), col1
 FROM t1
 GROUP BY col1

If an EVI exists over t1 with a key of col1, the optimizer can rewrite the query to access the precomputed
grouping answer in the EVI symbol table.

This rewrite can result in dramatic improvements when the number of table records is large and the
number of resulting groups is small, relative to the size of the table.

This method is also possible with selection (WHERE clause), as long as the reference columns are in the
key definition of the EVI.

For example, consider the following query:

SELECT COUNT(*), col1
 FROM t1

Database performance and query optimization 71

 WHERE col1 > 100
 GROUP BY col1

This query can be rewritten by the optimizer to use the EVI. This pre-summarized processing works for
DISTINCT processing, GROUP BY and for column function COUNT. All columns of the table referenced in
the query must also be in the key definition of the EVI.

So, for example, the following query can be made to use the EVI:

SELECT DISTINCT col1
 FROM t1

However, this query cannot:

SELECT DISTINCT col1
 FROM t1
 WHERE col2 > 1

This query cannot use the EVI because it references col2 of the table, which is not in the key definition of
the EVI. If multiple columns are defined in the EVI key, for example, col1 and col2, it is important to use
the left-most columns of the key. For example, if an EVI existed with a key definition of (col1, col2), but
the query referenced only col2, it is unlikely the EVI is used.

EVI INCLUDE aggregates

A more powerful example of pre-summarized processing can be facilitated by the use of the INCLUDE
keyword on the index create. By default, COUNT(*) is implied on the creation of an EVI. Additional
numeric aggregates specified over non-key data can further facilitate pre-determined or ready-made
aggregate results during query optimization.

For example, suppose the following query is a frequently requested result set, queried in whole or as part
of a subquery comparison.

SELECT AVG(col2)
FROM t1
GROUP BY col1

Create the following EVI to predetermine the value of AVG(col2).

CREATE ENCODED VECTOR INDEX eviT1 ON t1(col1) INCLUDE(AVG(col2))

eviT1 delivers distinct values for col1 and COUNT(*) specific to the group by of col1. eviT1 can be used to
generate an asynchronous bitmap or RRN list for accessing the table rows for specific col1 values. In
addition, eviT1 computes an additional aggregate, AVG(col2), over the same group by column (col1) by
specifying the INCLUDE aggregate.

INCLUDE aggregates are limited to those aggregates that result in numeric values: SUM, COUNT, AVG,
STDDEV, and so on. These values can be readily maintained as records are inserted, deleted, or updated
in the base table.

MIN or MAX are two aggregates that are not supported as INCLUDE aggregates. Deleting the current row
contributing to the MIN or MAX value would result in the need to recalculate, potentially accessing many
rows, and reducing performance.

INCLUDE values can also contain aggregates over derivations. For example, if you have a couple of
columns that contribute to an aggregate, that derivation can be specified, for example, as
SUM(col1+col2+col3).

It is recommended that EVIs with INCLUDE aggregates only contain references to columns or column-
specific derivations, for example, SUM(salary+bonus).

In many environments, queries that contain derivations using constants convert those constants to
parameter markers. This conversion allows a much higher degree of ODP reuse. However, it can be more
difficult to match the parameter value to a literal in the index definition.

72 IBM i: Database Performance and Query Optimization

The optimizer does attempt to match constants in the EVI with parameter markers or host variable values
in the query. However, in some complex cases this support is limited and could result in the EVI not
matching the query.

Pre-summarized processing can also take advantage of EVIs with INCLUDE in a JOIN situation.

For example, see the following aggregate query over the join of two tables.

EVI INCLUDE aggregate example

SELECT deptname, sum(salary)
FROM DEPARTMENT, EMPLOYEE
WHERE deptno=workdept
GROUP BY deptname

By providing an EVI with INCLUDE index, as follows, and with optimizer support to push down aggregates
to the table level when possible, the resulting implementation takes advantage of the ready-made
aggregates already supplied by EVI employeeSumByDept. The implementation never needs to touch or
aggregate rows in the Employee table.

CREATE ENCODED VECTOR INDEX employeeSumByDept ON employee(workdept)
INCLUDE(sum(salary))

Aggregate pushdown results in a rewrite with EVI INCLUDE implementation, conceptually like the
following query.

SELECT deptname, sum(sum(salary))
FROM department,
 (SELECT workdept, sum(salary) FROM employee group by workdept) employee_2
WHERE deptno=workdept

Instead of department joining to all the rows in the employee table, it now has the opportunity to join to
the predetermined aggregates, the sum of salary by department number, in the EVI symbol table. This
results in significant reduction in processing and IO.

Related concepts
How the EVI works
EVIs work in different ways for costing and implementation.
Related reference
Encoded vector index symbol table scan
An encoded vector index symbol table scan operation is used to retrieve the entries from the symbol table
portion of the index.
Related information
SQL INCLUDE statement

Optimizing grouping by eliminating grouping columns
All the grouping columns are evaluated to determine if they can be removed from the list of grouping
columns. Only those grouping columns that have isolatable selection predicates with an equal operator
specified can be considered. This guarantees that the column can only match a single value and does not
help determine a unique group.

This processing allows the optimizer to consider more indexes to implement the query. It also reduces the
number of columns that are added as key columns to a temporary index or hash table.

The following example illustrates a query where the optimizer might eliminate a grouping column.

 DECLARE DEPTEMP CURSOR FOR
 SELECT EMPNO, LASTNAME, WORKDEPT
 FROM CORPDATA.EMPLOYEE
 WHERE EMPNO = '000190'
 GROUP BY EMPNO, LASTNAME, WORKDEPT

Database performance and query optimization 73

OPNQRYF example:

OPNQRYF FILE(EMPLOYEE) FORMAT(FORMAT1)
 QRYSLT('EMPNO *EQ ''000190''')
 GRPFLD(EMPNO LASTNAME WORKDEPT)

In this example, the optimizer can remove EMPNO from the list of grouping columns because of the
EMPNO = '000190' selection predicate. An index that only has LASTNAME and WORKDEPT specified as
key columns could implement the query. If a temporary index or hash is required then EMPNO is not used.

Note: Even though EMPNO can be removed from the list of grouping columns, the optimizer might use a
permanent index that exists with all three grouping columns.

Optimizing grouping by adding additional grouping columns
The same logic that is applied to removing grouping columns can also be used to add additional grouping
columns to the query. Additional grouping columns are added only when you are trying to determine if an
index can be used to implement the grouping.

The following example illustrates a query where the optimizer might add an additional grouping column.

 CREATE INDEX X1 ON EMPLOYEE
 (LASTNAME, EMPNO, WORKDEPT)

 DECLARE DEPTEMP CURSOR FOR
 SELECT LASTNAME, WORKDEPT
 FROM CORPDATA.EMPLOYEE
 WHERE EMPNO = '000190'
 GROUP BY LASTNAME, WORKDEPT

For this query request, the optimizer can add EMPNO as an additional grouping column when considering
X1 for the query.

Optimizing grouping by using index skip key processing
Index Skip Key processing can be used when grouping with the keyed sequence implementation
algorithm which uses an existing index. It is a specialized version of ordered grouping that processes few
records in each group rather than all records in each group.

The index skip key processing algorithm:

1. Uses the index to position to a group and
2. finds the first row matching the selection criteria for the group, and if specified the first non-null MIN

or MAX value in the group
3. Returns the group to the user
4. "Skip" to the next group and repeat processing

This algorithm improves performance by potentially not processing all index key values for a group.

Index skip key processing can be used:

• For single table queries using the keyed sequence grouping implementation when:

– There are no column functions in the query, or
– There is only a single MIN or MAX column function and the MIN or MAX operand is the next index key

column after the grouping columns. There can be no other grouping functions in the query. For the
MIN function, the key column must be an ascending key; for the MAX function, the key column must
be a descending key. If the query is whole table grouping, the operand of the MIN or MAX must be the
first key column.

Example 1, using SQL:

CREATE INDEX IX1 ON EMPLOYEE (SALARY DESC)

74 IBM i: Database Performance and Query Optimization

DECLARE C1 CURSOR FOR
 SELECT MAX(SALARY) FROM EMPLOYEE;

The query optimizer chooses to use the index IX1. The SLIC runtime code scans the index until it
finds the first non-null value for SALARY. Assuming that SALARY is not null, the runtime code
positions to the first index key and return that key value as the MAX of salary. No more index keys are
processed.

Example 2, using SQL:

CREATE INDEX IX2 ON EMPLOYEE (WORKDEPT, JOB, SALARY)

DECLARE C1 CURSOR FOR
 SELECT WORKDEPT, MIN(SALARY)
 FROM EMPLOYEE
 WHERE JOB='CLERK'
 GROUP BY WORKDEPT

The query optimizer chooses to use Index IX2. The database manager positions to the first group for
DEPT where JOB equals 'CLERK' and returns the SALARY. The code then skips to the next DEPT group
where JOB equals 'CLERK'.

• For join queries:

– All grouping columns must be from a single table.
– For each dial, there can be at most one MIN or MAX column function operand that references the dial.

No other column functions can exist in the query.
– If the MIN or MAX function operand is from the same dial as the grouping columns, then it uses the

same rules as single table queries.
– If the MIN or MAX function operand is from a different dial, then the join column for that dial must

join to one of the grouping columns. The index for that dial must contain the join columns followed by
the MIN or MAX operand.

Example 1, using SQL:

CREATE INDEX IX1 ON DEPARTMENT(DEPTNAME)

CREATE INDEX IX2 ON EMPLOYEE(WORKDEPT, SALARY)

DECLARE C1 CURSOR FOR
 SELECT DEPARTMENT.DEPTNO, MIN(SALARY)
 FROM DEPARTMENT, EMPLOYEE
 WHERE DEPARTMENT.DEPTNO=EMPLOYEE.WORKDEPT
 GROUP BY DEPARTMENT.DEPTNO;

Optimizing grouping by removing read triggers
For queries involving physical files or tables with read triggers, group by triggers always involve a
temporary file before the group by processing. Therefore, these queries slow down.

Note: Read triggers are added when the Add Physical File Trigger (ADDPFTRG) command has
been used on the table with TRGTIME (*AFTER) and TRGEVENT (*READ).

The query runs faster if the read trigger is removed (RMVPFTRG TRGTIME (*AFTER) TRGEVENT (*READ)).

Related information
Add Physical File Trigger (ADDPFTRG) command

Grouping set optimization
The optimizer uses all the previously mentioned grouping optimizations for individual grouping sets
specified in the query.

If multiple temporary result sets are needed to implement all the grouping sets, they can all be populated
using one pass through the data. This one-pass population occurs even if different types of temporary
result sets are used to implement various grouping sets.

Database performance and query optimization 75

A temporary result type called sorted distinct list is used specifically for ROLLUP implementations. This
temporary result set is used to compute the aggregate rows: the grouping set that includes all
expressions listed in the ROLLUP clause. Hash grouping is used internally to quickly find the current
grouping value. The entries in the temporary result sets are also sorted. This sorting allows the aggregate
results to be used to compute the super-aggregate rows in the rollup result set without creating additional
temporary result sets.

ROLLUPs can also be implemented using a radix index over the columns in the rollup without creating a
temporary result set.

The optimizer can compute all the grouping sets in a given ROLLUP using at most one temporary result
set. Therefore, it is advantageous for the optimizer to look for the rollup pattern in grouping set queries.

The optimizer tries to find the ROLLUP pattern in a list of individual grouping sets. For example, the
following GROUP BY clause:

 GROUP BY GROUPING SETS ((A, B, C), (B, D), (A, B), (A), ())

is rewritten to:

 GROUP BY GROUPING SETS ((ROLLUP(A, B, C)), (B, D))

This rewrite allows the query to be implemented using at most two temporary results sets rather than 4.

Queries containing a CUBE clause is broken down into a union of ROLLUPs and grouping sets. For
example:

 CUBE(A, B, C)

is equivalent to:

 (ROLLUP(A, B, C)), (ROLLUP'(B, C)), (ROLLUP'(C, A))

The ROLLUP' notation is an internal representation of a ROLLUP operation that does not include a grand
total row in its result set. So, ROLLUP'(B, C) is equivalent to GROUP BY GROUPING SETS ((B,C), (B)). This
CUBE rewrite implements at most three temporary result sets, rather than the 8 that might be needed
had the query not been rewritten.

Ordering optimization
This section describes how Db2 for i implements ordering techniques, and how optimization choices are
made by the query optimizer. The query optimizer can use either index ordering or a sort to implement
ordering.

Sort Ordering implementation

The sort algorithm reads the rows into a sort space and sorts the rows based on the specified ordering
keys. The rows are then returned to the user from the ordered sort space.

Index Ordering implementation

The index ordering implementation requires an index that contains all the ordering columns as contiguous
leftmost key columns. The database manager accesses the individual rows through the index in index
order, which results in the rows being returned in order to the requester.

This implementation can be beneficial if an application does not need to retrieve all the ordered results, or
if an index exists that matches the ordering columns. When the ordering is implemented with an index,
and a permanent index does not exist that satisfies ordering columns, a temporary index is created. The
ordering columns specified within the query are used as the key columns for this index.

Optimizing ordering by eliminating ordering columns

76 IBM i: Database Performance and Query Optimization

All the ordering columns are evaluated to determine if they can be removed from the list of ordering
columns. Only those ordering columns that have isolatable selection predicates with an equal operator
specified can be considered. This guarantees that the column can match only a single value, and does not
help determine in the order.

The optimizer can now consider more indexes as it implements the query. The number of columns that
are added as key columns to a temporary index is also reduced. The following SQL example illustrates a
query where the optimizer might eliminate an ordering column.

DECLARE DEPTEMP CURSOR FOR
 SELECT EMPNO, LASTNAME, WORKDEPT
 FROM CORPDATA.EMPLOYEE
 WHERE EMPNO = '000190'
 ORDER BY EMPNO, LASTNAME, WORKDEPT

Optimizing ordering by adding additional ordering columns

The same logic that is applied to removing ordering columns can also be used to add additional grouping
columns to the query. This logic is done only when you are trying to determine if an index can be used to
implement the ordering.

The following example illustrates a query where the optimizer might add an additional ordering column.

CREATE INDEX X1 ON EMPLOYEE (LASTNAME, EMPNO, WORKDEPT)

DECLARE DEPTEMP CURSOR FOR
 SELECT LASTNAME, WORKDEPT
 FROM CORPDATA.EMPLOYEE
 WHERE EMPNO = '000190'
 ORDER BY LASTNAME, WORKDEPT

For this query request, the optimizer can add EMPNO as an additional ordering column when considering
X1 for the query.

View implementation
Views, derived tables (nested table expressions or NTEs), and common table expressions (CTEs) are
implemented by the query optimizer using one of two methods.

These methods are:

• The optimizer combines the query select statement with the select statement of the view.
• The optimizer places the results of the view in a temporary table and then replaces the view reference in

the query with the temporary table.

View composite implementation
The view composite implementation takes the query select statement and combines it with the select
statement of the view to generate a new query. The new, combined select statement query is then run
directly against the underlying base tables.

This single, composite statement is the preferred implementation for queries containing views, since it
requires only a single pass of the data.

See the following examples:

CREATE VIEW D21EMPL AS
 SELECT * FROM CORPDATA.EMPLOYEE
 WHERE WORKDEPT='D21'

Using SQL:

 SELECT LASTNAME, FIRSTNME, SALARY
 FROM D21EMPL
 WHERE JOB='CLERK'

Database performance and query optimization 77

The query optimizer generates a new query that looks like the following example:

SELECT LASTNAME, FIRSTNME, SALARY
 FROM CORPDATA.EMPLOYEE
 WHERE WORKDEPT='D21' AND JOB='CLERK'

The query contains the columns selected by the user query, the base tables referenced in the query, and
the selection from both the view and the user query.

Note: The new composite query that the query optimizer generates is not visible to users. Only the
original query against the view is seen by users and database performance tools.

View materialization implementation
The view materialization implementation runs the query of the view and places the results in a temporary
result. The view reference in the user query is then replaced with the temporary, and the query is run
against the temporary result.

View materialization is done whenever it is not possible to create a view composite. For SQE, view
materialization is optional. The following types of queries require view materialization:

• The outermost view select contains grouping, the query contains grouping, and refers to a column
derived from a column function in the view HAVING or select-list.

• The query is a join and the outermost select of the view contains grouping or DISTINCT.
• The outermost select of the view contains DISTINCT, and the query has UNION, grouping, or DISTINCT

and one of the following:

– Only the query has a shared weight NLSS table
– Only the view has a shared weight NLSS table
– Both the query and the view have a shared weight NLSS table, but the tables are different.

• The query contains a column function and the outermost select of the view contains a DISTINCT
• The view does not contain an access plan. Occurs when a view references a view, and a view composite

cannot be created because of one of the previous listed reasons. Does not apply to nested table
expressions and common table expressions.

• The Common table expression (CTE) is referenced more than once in the query FROM clause. Also, the
CTE SELECT clause references a MODIFIES or EXTERNAL ACTION UDF.

When a temporary result table is created, access methods that are allowed with ALWCPYDTA(*OPTIMIZE)
could be used to implement the query. These methods include hash grouping, hash join, and bitmaps.

See the following examples:

CREATE VIEW AVGSALVW AS
 SELECT WORKDEPT, AVG(SALARY) AS AVGSAL
 FROM CORPDATA.EMPLOYEE
 GROUP BY WORKDEPT

SQL example:

 SELECT D.DEPTNAME, A.AVGSAL
 FROM CORPDATA.DEPARTMENT D, AVGSALVW A
 WHERE D.DEPTNO=A.WORKDEPT

In this case, a view composite cannot be created since a join query references a grouping view. The
results of AVGSALVW are placed in a temporary result table (*QUERY0001). The view reference
AVGSALVW is replaced with the temporary result table. The new query is then run. The generated query
looks like the following:

SELECT D.DEPTNAME, A.AVGSAL
 FROM CORPDATA.DEPARTMENT D, *QUERY0001 A
 WHERE D.DEPTNO=A.WORKDEPT

78 IBM i: Database Performance and Query Optimization

Note: The new query that the query optimizer generates is not visible to users. Only the original query
against the view is seen by users and database performance tools.

Whenever possible, isolatable selection from the query, except subquery predicates, is added to the view
materialization process. This results in smaller temporary result tables and allows existing indexes to be
used when materializing the view. This process is not done if there is more than one reference to the same
view or common table expression in the query. The following is an example where isolatable selection is
added to the view materialization:

SELECT D.DEPTNAME,A.AVGSAL
 FROM CORPDATA.DEPARTMENT D, AVGSALVW A
 WHERE D.DEPTNO=A.WORKDEPT AND
 A.WORKDEPT LIKE 'D%' AND AVGSAL>10000

The isolatable selection from the query is added to the view resulting in a new query to generate the
temporary result table:

SELECT WORKDEPT, AVG(SALARY) AS AVGSAL
 FROM CORPDATA.EMPLOYEE
 WHERE WORKDEPT LIKE 'D%'
 GROUP BY WORKDEPT
 HAVING AVG(SALARY)>10000

Materialized query table optimization
Materialized query tables (MQTs) (also referred to as automatic summary tables or materialized views)
can provide performance enhancements for queries.

This performance enhancement is done by precomputing and storing results of a query in the materialized
query table. The database engine can use these results instead of recomputing them for a user specified
query. The query optimizer looks for any applicable MQTs. The optimizer can implement the query using a
given MQT, provided it is a faster implementation choice.

Materialized Query Tables are created using the SQL CREATE TABLE statement. Alternatively, the ALTER
TABLE statement could be used to convert an existing table into a materialized query table. The REFRESH
TABLE statement is used to recompute the results stored in the MQT. For user-maintained MQTs, the
MQTs could also be maintained by the user using INSERT, UPDATE, and DELETE statements.

Related information
Create Table statement

MQT supported function
Although an MQT can contain almost any query, the optimizer only supports a limited set of query
functions when matching MQTs to user specified queries. The user-specified query and the MQT query
must both be supported by the SQE optimizer.

The supported function in the MQT query by the MQT matching algorithm includes:

• Single table and join queries
• WHERE clause
• GROUP BY and optional HAVING clauses
• ORDER BY
• FETCH FIRST n ROWS
• Views, common table expressions, and nested table expressions
• UNIONs
• Partitioned tables

There is limited support in the MQT matching algorithm for the following:

• Scalar subselects
• User Defined Functions (UDFs) and user-defined table functions

Database performance and query optimization 79

• Recursive Common Table Expressions (RCTE)
• The following scalar functions:

– ATAN2
– DAYNAME
– DBPARTITIONNAME
– DECRYPT_BIT
– DECRYPT_BINARY
– DECRYPT_CHAR
– DECRYPT_DB
– DIFFERENCE
– DLVALUE
– DLURLPATH
– DLURLPATHONLY
– DLURLSEVER
– DLURLSCHEME
– DLURLCOMPLETE
– ENCRYPT_AES
– ENCRYPT_RC2
– ENCRYPT_TDES
– GENERATE_UNIQUE
– GETHINT
– IDENTITY_VAL_LOCAL
– INSERT
– MONTHNAME
– MONTHS_BETWEEN
– NEXT_DAY
– RAND
– RAISE_ERROR
– REPEAT
– REPLACE
– ROUND_TIMESTAMP
– SOUNDEX
– TIMESTAMP_FORMAT
– TIMESTAMPDIFF
– TRUNC_TIMESTAMP
– VARCHAR_FORMAT
– WEEK_ISO

It is recommended that the MQT only contain references to columns and column functions. In many
environments, queries that contain constants have the constants converted to parameter markers. This
conversion allows a much higher degree of ODP reuse. The MQT matching algorithm attempts to match
constants in the MQT with parameter markers or host variable values in the query. However, in some
complex cases this support is limited and could result in the MQT not matching the query.

Related concepts
Query dispatcher

80 IBM i: Database Performance and Query Optimization

The function of the dispatcher is to route the query request to either CQE or SQE, depending on the
attributes of the query. All queries are processed by the dispatcher. It cannot be bypassed.
Related reference
Details on the MQT matching algorithm
What follows is a generalized discussion of how the MQT matching algorithm works.

Using MQTs during query optimization
Before using MQTs, you need to consider your environment attributes.

To even consider using MQTs during optimization the following environmental attributes must be true:

• The query must specify ALWCPYDTA(*OPTMIZE) or INSENSITIVE cursor.
• The query must not be a SENSITIVE cursor.
• The table to be replaced with an MQT must not be update or delete capable for this query.
• The MQT currently has the ENABLE QUERY OPTIMIZATION attribute active
• The MATERIALIZED_QUERY_TABLE_USAGE QAQQINI option must be set to *ALL or *USER to enable use

of MQTs. The default setting of MATERIALIZED_QUERY_TABLE_USAGE does not allow usage of MQTs.
• The timestamp of the last REFRESH TABLE for an MQT is within the duration specified by the

MATERIALIZED_QUERY_TABLE_REFRESH_AGE QAQQINI option. Or *ANY is specified, which allows
MQTs to be considered regardless of the last REFRESH TABLE. The default setting of
MATERIALIZED_QUERY_TABLE_REFRESH_AGE does not allow usage of MQTs.

• The query must be run through SQE.
• The following QAQQINI options must match: IGNORE_LIKE_REDUNDANT_SHIFTS, NORMALIZE_DATA,

and VARIABLE_LENGTH_OPTIMIZATION. These options are stored at CREATE materialized query table
time and must match the options specified at query run time.

• The commit level of the MQT must be greater than or equal to the query commit level. The commit level
of the MQT is either specified in the MQT query using the WITH clause. Or it is defaulted to the commit
level that the MQT was run under when it was created.

• The field procedure encoded comparison (QAQQINI FIELDPROC_ENCODED_COMPARISON option) level
of the MQT must be greater than or equal to the query specified field procedure encoded comparison
level.

MQT examples
The following are examples of using MQTs.

Example 1

The first example is a query that returns information about employees whose job is DESIGNER. The
original query:

SELECT D.deptname, D.location, E.firstnme, E.lastname, E.salary+E.comm+E.bonus as total_sal
FROM Department D, Employee E
WHERE D.deptno=E.workdept
AND E.job = 'DESIGNER'

Create a table, MQT1, that uses this query:

CREATE TABLE MQT1
 AS (SELECT D.deptname, D.location, E.firstnme, E.lastname, E.salary, E.comm, E.bonus,
E.job
FROM Department D, Employee E
WHERE D.deptno=E.workdept)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

Database performance and query optimization 81

Resulting new query after replacing the specified tables with the MQT.

SELECT M.deptname, M.location, M.firstnme, M.lastname, M.salary+M.comm+M.bonus as total_sal
FROM MQT1 M
WHERE M.job = 'DESIGNER'

In this query, the MQT matches part of the user query. The MQT is placed in the FROM clause and
replaces tables DEPARTMENT and EMPLOYEE. Any remaining selection not done by the MQT query
(M.job= 'DESIGNER') is done to remove the extra rows. The result expression, M.salary+M.comm
+M.bonus, is calculated. JOB must be in the select-list of the MQT so that the additional selection can be
performed.

Visual Explain diagram of the query when using the MQT:

Example 2

Get the total salary for all departments that are located in 'NY'. The original query:

SELECT D.deptname, sum(E.salary)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept AND D.location = 'NY'
GROUP BY D.deptname

Create a table, MQT2, that uses this query:

CREATE TABLE MQT2
 AS (SELECT D.deptname, D.location, sum(E.salary) as sum_sal
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept
GROUP BY D.Deptname, D.location)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

82 IBM i: Database Performance and Query Optimization

Resulting new query after replacing the specified tables with the MQT:

SELECT M.deptname, sum(M.sum_sal)
FROM MQT2 M
WHERE M.location = 'NY'
GROUP BY M.deptname

Since the MQT could potentially produce more groups than the original query, the final resulting query
must group again and SUM the results to return the correct answer. Also, the selection M.location='NY'
must be part of the new query.

Visual Explain diagram of the query when using the MQT:

Details on the MQT matching algorithm
What follows is a generalized discussion of how the MQT matching algorithm works.

The tables specified in the query and the MQT are examined. If the MQT and the query specify the same
tables, then the MQT can potentially be used and matching continues. If the MQT references tables not
referenced in the query, then the unreferenced table is examined to determine if it is a parent table in
referential integrity constraint. If the foreign key is non-nullable and the two tables are joined using a
primary key or foreign key equal predicate, then the MQT can still be potentially used.

Example 3

The MQT contains fewer tables than the query:

SELECT D.deptname, p.projname, sum(E.salary)
FROM DEPARTMENT D, EMPLOYEE E, EMPPROJACT EP, PROJECT P
WHERE D.deptno=E.workdept AND E.Empno=ep.empno
AND ep.projno=p.projno
GROUP BY D.DEPTNAME, p.projname

Create an MQT based on the preceding query:

CREATE TABLE MQT3
 AS (SELECT D.deptname, sum(E.salary) as sum_sal, e.workdept, e.empno

Database performance and query optimization 83

FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept
GROUP BY D.Deptname, e.workdept, e.empno)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

The rewritten query:

SELECT M.deptname, p.projname, SUM(M.sum_sal)
FROM MQT3 M, EMPPROJACT EP, PROJECT P
WHERE M.Empno=ep.empno AND ep.projno=p.projno
GROUP BY M.deptname, p.projname

All predicates specified in the MQT, must also be specified in the query. The query could contain
additional predicates. Predicates specified in the MQT must match exactly the predicates in the query.
Any additional predicates specified in the query, but not in the MQT must be able to be derived from
columns projected from the MQT. See previous example 1.

Example 4

Set the total salary for all departments that are located in 'NY'.

SELECT D.deptname, sum(E.salary)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept AND D.location = ?
GROUP BY D.Deptname

Create an MQT based on the preceding query:

CREATE TABLE MQT4
 AS (SELECT D.deptname, D.location, sum(E.salary) as sum_sal
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept AND D.location = 'NY'
GROUP BY D.deptnamet, D.location)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
 ENABLE QUERY OPTIMIZATION
 MAINTAINED BY USER

In this example, the constant 'NY' was replaced by a parameter marker and the MQT also had the local
selection of location='NY' applied to it when the MQT was populated. The MQT matching algorithm
matches the parameter marker and to the constant 'NY' in the predicate D.Location=?. It verifies that the
values of the parameter marker are the same as the constant in the MQT; therefore the MQT can be used.

The MQT matching algorithm also attempts to match where the predicates between the MQT and the
query are not the same. For example, if the MQT has a predicate SALARY > 50000, and the query has the
predicate SALARY > 70000, the MQT contains the rows necessary to run the query. The MQT is used in the
query, but the predicate SALARY > 70000 is left as selection in the query, so SALARY must be a column of
the MQT.

Example 5

SELECT D.deptname, sum(E.salary)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept AND D.location = 'NY'
GROUP BY D.deptname

Create an MQT based on the preceding query:

CREATE TABLE MQT5
 AS (SELECT D.deptname, E.salary
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

84 IBM i: Database Performance and Query Optimization

In this example, since D.Location is not a column of the MQT, the user query local selection predicate
Location='NY' cannot be determined, so the MQT cannot be used.

Example 6

SELECT D.deptname, sum(E.salary)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D.deptno=E.workdept
GROUP BY D.deptname

Create an MQT based on the preceding query:

CREATE TABLE MQT6(workdept, sumSalary)
AS (SELECT workdept, sum(salary)
 FROM EMPLOYEE
 GROUP BY workdept)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER

In this example, the SUM(salary) aggregation is pushed down through the join to the EMPLOYEE table,
allowing for a match and substitution of MQT6. A regrouping to (sum(sum(salary))) is defined at the top of
the query to compensate for the grouping pushdown.

Instead of department joining to all the rows in the employee table, it now has the opportunity to join to
the predetermined aggregates in MQT6. This type of MQT substitution can result in significant reduction of
processing and IO.

If the MQT contains grouping, then the query must be a grouping query. The simplest case is where the
MQT and the query specify the same list of grouping columns and column functions.

In some cases, if the MQT specifies group by columns that are a superset of query group by columns, the
query can be rewritten to do regrouping. This regrouping reaggregates the groups of the MQT into the
groups required by the query. When regrouping is required, the column functions need to be recomputed.
The following table shows the supported regroup expressions.

The regrouping expression/aggregation rules are:

Table 28. Expression/aggregation rules for MQTs

Query MQT Final query

COUNT(*) COUNT(*) as cnt SUM(cnt)

COUNT(*) COUNT(C2) as cnt2 (where c2 is
non-nullable)

SUM(cnt2)

COUNT(c1) COUNT(c1) as cnt SUM(cnt)

COUNT(C1) (where C1 is non-
nullable)

COUNT(C2) as cnt2 (where C2 is
non-nullable)

SUM(cnt2)

COUNT(distinct C1) C1 as group_c1 (where C1 is a
grouping column)

COUNT(group_C1)

COUNT(distinct C1) where C1 is not a grouping
column

MQT not usable

COUNT(C2) where C2 is from a
table not in the MQT

COUNT(*) as cnt cnt*COUNT(C2)

COUNT(distinct C2) where C2 is
from a table not in the MQT

Not applicable COUNT(distinct C2)

SUM(C1) SUM(C1) as sm SUM(sm)

Database performance and query optimization 85

Table 28. Expression/aggregation rules for MQTs (continued)

Query MQT Final query

SUM(C1) C1 as group_c1, COUNT(*) as cnt
(where C1 is a grouping column)

SUM(group_c1 * cnt)

SUM(C2) where C2 is from a table
not in the MQT

COUNT(*) as cnt cnt*SUM(C2)

SUM(distinct C1) C1 as group_c1 (where C1 is a
grouping column)

SUM(group_C1)

SUM(distinct C1) where C1 is not a grouping
column

MQT not usable

SUM(distinct C2) where C2 is
from a table not in the MQT

Not applicable SUM(distinct C2)

MAX(C1) MAX(C1) as mx MAX(mx)

MAX(C1) C1 as group_C1 (where C1 is a
grouping column)

MAX(group_c1)

MAX(C2) where C2 is from a table
not in the MQT

Not applicable MAX(C2)

MIN(C1) MIN(C1) as mn MIN(mn)

MIN(C1) C1 as group_C1 (where C1 is a
grouping column)

MIN(group_c1)

MIN(C2) where C2 is from a table
not in the MQT

Not applicable MIN(C2)

GROUPING(C1) GROUPING(C1) as grp grp

GROUPING(C2) where C2 is from
a table not in the MQT

Not applicable GROUPING(C2)

MQT matching does not support ARRAY_AGG, XMLAGG, and XMLGROUP grouping functions. AVG,
STDDEV, STDDEV_SAMP, VARIANCE_SAMPand VAR_POP are calculated using combinations of COUNT
and SUM. If AVG, STDDEV, or VAR_POP are included in the MQT and regroup requires recalculation of
these functions, the MQT cannot be used. It is recommended that the MQT only use COUNT, SUM, MIN,
and MAX. If the query contains AVG, STDDEV, or VAR_POP, it can be recalculated using COUNT and SUM.

If FETCH FIRST N ROWS is specified in the MQT, then FETCH FIRST N ROWS must also be specified in the
query. Also, the number of rows specified for the MQT must be greater than or equal to the number of
rows specified in the query. It is not recommended that an MQT contain the FETCH FIRST N ROWS clause.

The ORDER BY clause on the MQT can be used to order the data in the MQT if a REFRESH TABLE is run. It
is ignored during MQT matching and if the query contains an ORDER BY clause, it is part of the rewritten
query.

Related reference
MQT supported function

86 IBM i: Database Performance and Query Optimization

Although an MQT can contain almost any query, the optimizer only supports a limited set of query
functions when matching MQTs to user specified queries. The user-specified query and the MQT query
must both be supported by the SQE optimizer.

Determining unnecessary MQTs
You can easily determine which MQTs are being used for query optimization. However, you can now easily
find all MQTs and retrieve statistics on MQT usage as a result of System i Navigator and IBM i functionality.

To assist you in tuning your performance, this function produces statistics on MQT usage in a query. To
access through the System i Navigator, navigate to: Database > Schemas > Tables. Right-click your table
and select Show Materialized Query Tables. You can also view MQT usage information by right-click on
Tables or Views folder and select Show Materialized Query Tables. This action displays usage
information for MQTs created over all the tables or view in that schema.

Note: You can also view the statistics through an application programming interface (API).

In addition to all existing attributes of an MQT, two fields can help you determine unnecessary MQTs.

These fields are:

Last Query Use
States the timestamp when the MQT was last used by the optimizer to replace user specified tables in
a query.

Query Use Count
Lists the number of instances the MQT was used by the optimizer to replace user specified tables in a
query.

The fields start and stop counting based on your situation, or the actions you are currently performing on
your system. A save and restore procedure does not reset the statistics counter if the MQT is restored
over an existing MQT. If an MQT is restored that does not exist on the system, the statistics are reset.

Related information
Retrieve member description (QUSRMBRD) command

Summary of MQT query recommendations
Follow these recommendations when using MQT queries.

• Do not include local selection or constants in the MQT because that limits the number of user-specified
queries where the optimizer can use the MQT.

• For grouping MQTs, only use the SUM, COUNT, MIN, and MAX grouping functions. The query optimizer
can recalculate AVG, STDDEV, and VAR_POP in user specified queries.

• Specifying FETCH FIRST N ROWS in the MQT limits the number of user-specified queries where the
query optimizer can use the MQT. Not recommended.

• If the MQT is created with DATA INITIALLY DEFERRED, consider specifying DISABLE QUERY
OPTIMIZATION to prevent the optimizer from using the MQT until it has been populated. When the MQT
is populated and ready for use, the ALTER TABLE statement with ENABLE QUERY OPTIMIZATION
enables the MQT.

In addition, consider using a sparse index or EVI INCLUDE additional aggregates rather than an MQT if you
are concerned with stale data.

MQT tables need to be optimized just like non-MQT tables. It is recommended that indexes are created
over the MQT columns used for selection, join, and grouping, as appropriate. Column statistics are
collected for MQT tables.

The database monitor shows the list of MQTs considered during optimization. This information is in the
3030 record. If MQTs have been enabled through the QAQQINI file, and an MQT exists over at least one of
the tables in the query, there is a 3030 record for the query. Each MQT has a reason code indicating that it
was used or if it was not used, why it was not used.

Related concepts
How the EVI works

Database performance and query optimization 87

EVIs work in different ways for costing and implementation.
Related reference
Sparse index optimization
An SQL sparse index is like a select/omit access path. Both the sparse index and the select/omit logical
file contain only keys that meet the selection specified. For a sparse index, the selection is specified with
a WHERE clause. For a select/omit logical file, the selection is specified in the DDS using the COMP
operation.

Recursive query optimization
Certain applications and data are recursive by nature. Examples of such applications are a bill-of-
material, reservation, trip planner, or networking planning system. Data in one results row has a natural
relationship (call it a parent, child relationship) with data in another row or rows. The kinds of recursion
implemented in these systems can be performed by using SQL Stored Procedures and temporary results
tables. However, the use of a recursive query to facilitate the access of this hierarchical data can lead to a
more elegant and better performing application.

Recursive queries can be implemented by defining either a Recursive Common Table Expression (RCTE)
or a Recursive View.

Recursive query example
A recursive query is one that is defined by a Union All with an initialization fullselect that seeds the
recursion. The iterative fullselect contains a direct reference to itself in the FROM clause.

There are additional restrictions as to what can be specified in the definition of a recursive query. Those
restrictions can be found in SQL Programming topic.

Functions like grouping, aggregation, or distinct require a materialization of all the qualifying records
before performing the function. These functions cannot be allowed within the iterative fullselect itself.
The functions must be placed in the main query, allowing the recursion to complete.

The following is an example of a recursive query over a table called flights, that contains information
about departure and arrival cities. The query returns all the flight destinations available by recursion from
the two specified cities (New York and Chicago). It also returns the number of connections and total cost
to arrive at that final destination.

This example uses the recursion process to also accumulate information like the running cost and number
of connections. Four values are put in the queue entry. These values are:

• The originating departure city (either Chicago or New York) because it remains fixed from the start of the
recursion

• The arrival city which is used for subsequent joins
• The incrementing connection count
• The accumulating total cost to reach each destination

Typically the data needed for the queue entry is less than the full record (sometimes much less) although
that is not the case for this example.

CREATE TABLE flights
 (
 departure CHAR (10) NOT NULL WITH DEFAULT,
 arrival CHAR (10) NOT NULL WITH DEFAULT,
 carrier CHAR (15) NOT NULL WITH DEFAULT,
 flight_num CHAR (5) NOT NULL WITH DEFAULT,
 ticket INT NOT NULL WITH DEFAULT)

WITH destinations (departure, arrival, connects, cost) AS
 (
 SELECT f.departure,f.arrival, 0, ticket
 FROM flights f
 WHERE f.departure = 'Chicago' OR
 f.departure = 'New York'
 UNION ALL
 SELECT
 r.departure, b.arrival, r.connects + 1,

88 IBM i: Database Performance and Query Optimization

 r.cost + b.ticket
 FROM destinations r, flights b
 WHERE r.arrival = b.departure
)
SELECT DISTINCT departure, arrival, connects, cost
FROM destinations

The following is the initialization fullselect of the preceding query. It seeds the rows that start the
recursion process. It provides the initial destinations (arrival cities) that are a direct flight from Chicago or
New York.

SELECT f.departure,f.arrival, 0, ticket
FROM flights f
WHERE f.departure='Chicago' OR
 f.departure='New York'

The following is the iterative fullselect of the preceding query. It contains a single reference in the FROM
clause to the destination recursive common table expression. It also sources further recursive joins to the
same flights table. The arrival values of the parent row (initially direct flights from New York or Chicago)
are joined with the departure value of the subsequent child rows. It is important to identify the correct
parent/child relationship on the recursive join predicate or infinite recursion can occur. Other local
predicates can also be used to limit the recursion. For example, for a limit of at most 3 connecting flights,
a local predicate using the accumulating connection count, r.connects<=3, can be specified.

SELECT
 r.departure, b.arrival, r.connects + 1 ,
 r.cost + b.ticket
FROM destinations r, flights b
WHERE r.arrival=b.departure

The main query is the query that references the recursive common table expression or view. It is in the
main query where requests like grouping, ordering, and distinct are specified.

SELECT DISTINCT departure, arrival, connects, cost
FROM destinations

Implementation considerations

To implement a source for the recursion, a new temporary data object is provided called a queue. As rows
meet the requirements of either the initialization fullselect or the iterative fullselect, they are pulled up
through the union all. Values necessary to feed the continuing recursion process are captured and placed
in an entry on the queue: an enqueue operation.

At query runtime, the queue data source then takes the place of the recursive reference in the common
table expression or view. The iterative fullselect processing ends when the queue is exhausted of entries
or a fetch N rows limitation has been met. The recursive queue feeds the recursion process and holds
transient data. The join between dequeuing of these queue entries and the rest of the fullselect tables is
always a constrained join, with the queue on the left.

Database performance and query optimization 89

Multiple initialization and iterative fullselects
The use of multiple initialization and iterative fullselects specified in the recursive query definition allows
for a multitude of data sources and separate selection requirements to feed the recursion process.

For example, the following query allows for final destinations accessible from Chicago by both flight and
train travel.

WITH destinations (departure, arrival, connects, cost) AS
(
 SELECT f.departure, f.arrival, 0 , ticket
 FROM flights f
 WHERE f.departure='Chicago'
 UNION ALL
 SELECT t.departure, t.arrival, 0 , ticket
 FROM trains t
 WHERE t.departure='Chicago'
 UNION ALL

90 IBM i: Database Performance and Query Optimization

 SELECT
 r.departure,b.arrival, r.connects + 1 ,
 r.cost + b.ticket
 FROM destinations r, flights b
 WHERE r.arrival=b.departure
 UNION ALL
 SELECT
 r.departure,b.arrival, r.connects+1 ,
 r.cost+b.ticket
 FROM destinations r, trains b
 WHERE r.arrival=b.departure)

SELECT departure, arrival, connects,cost
FROM destinations;

All rows coming out of the RCTE/View are part of the recursion process and need to be fed back in. When
there are multiple fullselects referencing the common table expression, the query is rewritten by the
optimizer to process all non-recursive initialization fullselects first. Then, using a single queue feed, those
same rows and all other row results are sent equally to the remaining iterative fullselects. No matter how
you order the initialization and iterative fullselects in the definition of the RCTE/view, the initialization
fullselects run first. The iterative fullselects share equal access to the contents of the queue.

Database performance and query optimization 91

Predicate pushing
When processing most queries with non-recursive common table expressions or views, local predicates
specified on the main query are pushed down so fewer records need to be materialized. Pushing local
predicates from the main query into the defined recursive part of the query (through the Union ALL),
however, could considerably alter the process of recursion itself. So as a rule, the Union All specified in a
recursive query is currently a predicate fence. Predicates are not pushed down or up, through this fence.

The following is an example of how pushing a predicate in to the recursion limits the recursive results and
alter the intent of the query.

The intent of the query is to find all destinations accessible from 'Chicago', not including the final
destination of 'Dallas'. Pushing the "arrival<>'Dallas'" predicate into the recursive query alters the output
of the intended results. It prevents the output of final destinations where 'Dallas' was an intermediate
stop.

WITH destinations (departure, arrival, connects, cost) AS
(
 SELECT f.departure,f.arrival, 0, ticket
 FROM flights f
 WHERE f.departure='Chicago'
 UNION ALL
 SELECT
 r.departure, b.arrival, r.connects + 1 ,
 r.cost + b.ticket
 FROM destinations r, flights b
 WHERE r.arrival=b.departure
)
SELECT departure, arrival, connects, cost
FROM destinations
WHERE arrival != 'Dallas'

Conversely, the following is an example where a local predicate applied to all the recursive results is a
good predicate to put in the body of the recursive definition because it could greatly decrease the number
of rows materialized from the RCTE/View. The better query request here is to specify the r.connects <=3
local predicate with in the RCTE definition, in the iterative fullselect.

WITH destinations (departure, arrival, connects, cost) AS
(
 SELECT f.departure,f.arrival, 0, ticket
 FROM flights f
 WHERE f.departure='Chicago' OR
 f.departure='New York'
 UNION ALL
 SELECT
 r.departure, b.arrival, r.connects + 1 ,
 r.cost + b.ticket
 FROM destinations r, flights b
 WHERE r.arrival=b.departure
)
SELECT departure, arrival, connects, cost
FROM destinations
WHERE r.connects<=3

Placement of local predicates is key in recursive queries. They can incorrectly alter the recursive results if
pushed into a recursive definition. Or they can cause unnecessary rows to be materialized and then
rejected, when a local predicate could legitimately help limit the recursion.

Specifying SEARCH consideration
Certain applications dealing with hierarchical, recursive data could have a requirement in how data is
processed: by depth or by breadth.

Using a queuing (First In First Out) mechanism to track the recursive join key values implies the results
are retrieved in breadth first order. Breadth first means retrieving all the direct children of a parent row
before retrieving any of the grandchildren of that same row. This retrieval is an implementation
distinction, however, and not a guarantee.

92 IBM i: Database Performance and Query Optimization

Applications might want to guarantee how the data is retrieved. Some applications might want to retrieve
the hierarchical data in depth first order. Depth first means that all the descendents of each immediate
child row are retrieved before the descendents of the next child are retrieved.

The SQL architecture allows for the guaranteed specification of how the application retrieves the resulting
data by the use of the SEARCH DEPTH FIRST or BREADTH FIRST keyword. When this option is specified,
name the recursive join value, identify a set sequence column, and provide the sequence column in an
outer ORDER BY clause. The results are output in depth or breadth first order. Note this ordering is
ultimately a relationship sort and not a value-based sort.

Here is the preceding example output in depth first order.

WITH destinations (departure, arrival, connects, cost) AS
(
 SELECT f.departure, f.arrival, 0 , ticket
 FROM flights f
 WHERE f.departure='Chicago' OR f.departure='New York'
 UNION ALL
 SELECT
 r.departure,b.arrival, r.connects+1 ,
 r.cost+b.ticket
 FROM destinations r, flights b
 WHERE r.arrival=b.departure)

SEARCH DEPTH FIRST BY arrival SET depth_sequence

 SELECT *
 FROM destinations
 ORDER BY depth_sequence

If the ORDER BY clause is not specified in the main query, the sequencing option is ignored. To facilitate
the correct sort there is additional information put on the queue entry during recursion. With BREADTH
FIRST, it is the recursion level number and the immediate ancestor join value, so sibling rows can be
sorted together. A depth first search is a little more data intensive. With DEPTH FIRST, the query engine
needs to represent the entire ancestry of join values leading up to the current row and put that
information in a queue entry. Also, because these sort values are not coming from an external data
source, the sort implementation is always a temporary sorted list (no indexes possible).

Do not use the SEARCH option if you do not need your data materialized in a depth or breadth first
manner. There is additional CPU and memory overhead to manage the sequencing information.

Specifying CYCLE considerations
Recognizing that data in the tables used in a recursive query might be cyclic in nature is important to
preventing infinite loops.

The SQL architecture allows for the optional checking for cyclic data and discontinuing the repeating
cycles at that point. This additional checking is done by the use of the CYCLE option. The correct join
recursion value must be specified on the CYCLE request and a cyclic indicator must be specified. The
cyclic indicator could be optionally output in the main query and can be used to help determine and
correct errant cyclic data.

WITH destinations (departure, arrival, connects, cost , itinerary) AS
 (
 SELECT f.departure, f.arrival, 1 , ticket, CAST(f.departure||f.arrival AS VARCHAR(2000))
 FROM flights f
 WHERE f.departure='New York'
 UNION ALL
 SELECT r.departure,b.arrival, r.connects+1 ,
 r.cost+b.ticket, cast(r.itinerary||b.arrival AS varchar(2000))
 FROM destinations r, flights b
 WHERE r.arrival = b.departure)
CYCLE arrival SET cyclic TO '1' DEFAULT '0' USING Cycle_Path

SELECT departure, arrival, itinerary, cyclic
FROM destinations

When a cycle is determined to be repeating, the output of that cyclic sequence of rows is stopped. To
check for a 'repeated' value however, the query engine needs to represent the entire ancestry of the join

Database performance and query optimization 93

values leading up to the current row in order to look for the repeating join value. This ancestral history is
information that is appended to with each recursive cycle and put in a field on the queue entry.

To implement this history field, the query engine uses a compressed representation of the recursion
values on the ancestry chain. The query engine can then do a fixed length, quicker scan through the
accumulating ancestry to determine if the value has been seen before. This compressed representation is
determined by the use of a distinct node in the query tree.

Do not use the CYCLE option unless you know your data is cyclic, or you want to use it specifically to help
find the cycles for correction or verification purposes. There is additional CPU and memory overhead to
manage and check for repeating cycles before a given row is materialized.

SMP and recursive queries
Recursive queries can benefit as much from symmetric multiprocessing (SMP) as do other queries on the
system.

Recursive queries and parallelism, however, present some unique requirements. The initialization
fullselect of a recursive query is the fullselect that seeds the initial values of the recursion. It is likely to
produce only a small fraction of the ultimate results that cycle through the recursion process. The query
optimizer does not want each of the threads running in parallel to have a unique queue object that feeds

94 IBM i: Database Performance and Query Optimization

only itself. This results in some threads having way too much work to do and others threads quickly
depleting their work.

The best way to handle this work is to have all the threads share the same queue. This method allows a
thread to enqueue a new recursive key value just as a waiting thread is there to dequeue that request. A
shared queue allows all threads to actively contribute to the overall depletion of the queue entries until no
thread is able to contribute more results.

Having multiple threads share the same queue, however, requires some management by the Query
runtime so that threads do not prematurely end. Some buffering of the initial seed values might be
necessary. This buffering is illustrated in the following query, where there are two fullselects that seed the
recursion. A buffer is provided so that no thread hits a dequeue state and terminates before the query has
seeded enough recursive values to get things going.

The following Visual Explain diagram shows the plan for the following query run with CHGQRYA
DEGREE(*NBRTASKS 4). It shows how the results of the multiple initialization fullselects are buffered
up. The multiple threads, illustrated by the multiple arrow lines, are acting on the enqueue and dequeue
request nodes. As with all SMP queries, the multiple threads, in this case 4, put their results into a
Temporary List object which becomes the output for the main query.

cl:chgqrya degree(*nbrtasks 4);

WITH destinations (departure, arrival, connects, cost)AS
 (
 SELECT f.departure, f.arrival, 0 , ticket
 FROM flights f WHERE f.departure='Chicago'
 UNION ALL
 SELECT t.departure, t.arrival, 0 , ticket
 FROM trains t WHERE t.departure='Chicago'
 UNION ALL
 SELECT
 r.departure,b.arrival, r.connects+1 ,
 r.cost+b.ticket
 FROM destinations r, flights b
 WHERE r.arrival=b.departure
 UNION ALL
 SELECT
 r.departure,b.arrival, r.connects+1 ,
 r.cost+b.ticket
 FROM destinations r, trains b
 WHERE r.arrival=b.departure)
SELECT departure, arrival, connects,cost
FROM destinations;

Database performance and query optimization 95

96 IBM i: Database Performance and Query Optimization

Adaptive Query Processing
Adaptive Query Processing analyzes actual query run time statistics and uses that information for
subsequent optimizations.

With rapidly increasing amounts of data, the price of miscalculating complex plans can result in dramatic
performance problems. These problems might be measured in minutes or hours instead of seconds or
minutes. Traditionally, optimizer architecture has attempted to overcome potential plan problems in
several ways. The most common technique is to increase the amount of time spent optimizing a query,
searching for safe alternatives. While additional time reduces the likelihood of a failed plan, it does not
fundamentally avoid the problem.

The DB2 optimizer relies on statistical estimates to optimize a query. These estimates can be inaccurate
for a number of reasons. The reasons include a lack of statistical metadata for the query tables, complex
join conditions, skewed or rapidly changing data within the tables, and others.

The SQE query engine uses a technique called Adaptive Query Processing (AQP). AQP analyzes actual
query run time statistics and uses that information to correct previous estimates. These updated
estimates can provide better information for subsequent optimizations.

Related reference
Adaptive Query Processing in Visual Explain
You can use Visual Explain to request a new plan.

How AQP works
There are three main parts to AQP support.

• Global Statistics Cache (GSC): The “Global Statistics Cache” on page 9 is a system-side repository of
statistical information gathered from actual query runs. When the SQE query engine observes a
discrepancy between record count estimates and actual observed values, an entry might be made in the
GSC. This entry provides the optimizer with more accurate statistical information for subsequent
optimizations.

• AQP Request Support: This support runs after a query completes. The processing is done in a system
task so it does not affect the performance of user applications. Estimated record counts are compared
to the actual values. If significant discrepancies are noted, the AQP Request Support stores the
observed statistic in the GSC. The AQP Request Support might also make specific recommendations for
improving the query plan the next time the query runs.

• AQP Handler: The AQP Handler runs in a thread parallel to a running query and observes its progress.
The AQP handler wakes up after a query runs for at least 2 seconds without returning any rows. Its job
is to analyze the actual statistics from the partial query run, diagnose, and possibly recover from join
order problems. These join order problems are due to inaccurate statistical estimates.

The query can be reoptimized using partial observed statistics or specific join order recommendations
or both. If this optimization results in a new plan, the old plan is terminated and the query restarted
with the new plan, provided the query has not returned any results.

AQP looks for an unexpected starvation join condition when it analyzes join performance. Starvation join is
a condition where a table late in the join order eliminates many records from the result set. In general, the
query would perform better if the table that eliminates the large number of rows is first in the join order.
When AQP identifies a table that causes an unexpected starvation join condition, the table is noted as the
'forced primary table'. The forced primary table is saved for a subsequent optimization of the query.

That subsequent optimization with the forced primary recommendation can be used in two ways:

• The forced primary table is placed first in the join order, overriding the join order implied by the
statistical estimates. The rest of the join order is defined using existing techniques.

• The forced primary table can be used for LPG preselection against a large fact table in the join.

Related reference
Adaptive Query Processing in Visual Explain

Database performance and query optimization 97

You can use Visual Explain to request a new plan.

AQP example
Here is an example query with an explanation of how AQP could work.

SELECT * from t1, t2, t3, t4
WHERE t1.c1=t2.c1 AND t1.c2=t3.c2
AND t1.c3 = CURRENT DATE - t4.c3
AND t1.c5 < 50 AND t2.c6 > 40
AND t3.c7 < 100 AND t4.c8 - t4.c9 < 5

The WHERE clause of the preceding query contains a predicate, t1.c3 = CURRENT DATE - t4.c3,
that is difficult to estimate. The estimation difficulty is due to the derivation applied to column t4.c3 and
the derivation involving columns t4.c8 and t4.c9. For the purposes of this example, the predicate
t1.c3 = CURRENT DATE - t4.c3 actually eliminates all or nearly all records in the join.

Due to characteristics of the columns involved in that predicate, the statistical estimate has many rows
returned from the join. The optimizer selects join order t1, t3, t2, t4 based on the following record
count estimates.

• Join t1 to t3 produces 33,000,000 rows.
• Join t1, t3 result to t2 produces 1,300,000 rows.
• Join t1, t3, t2 result to t4 (final result set) produces 5 million rows.

The join order is reasonable assuming that the final result set actually produces 5 million rows, but the
estimate is incorrect. The query performs poorly since tables t1, t3, t2 are joined first, producing
1,300,000 rows. These rows are all rejected by table t4 and the t1.c3 = CURRENT DATE - t4.c3
predicate (join starvation).

AQP identifies t4 as the forced primary table. The optimizer would choose t1 as the second table in the
join order since there are no join conditions between t4 and t2 or t3. Since the join condition between
tables t4 and t1 selects few rows, this plan is likely many orders of magnitude faster than the original
plan.

Related reference
Adaptive Query Processing in Visual Explain
You can use Visual Explain to request a new plan.

AQP join order
Adaptive Query Processing analyzes actual query run time join statistics and uses that information for
subsequent join optimizations.

The SQE engine implements AQP join order recommendations in the following ways:

Subsequent to run

When each query completes, a fast check is done on key points of the query execution to compare actual
selected records with the estimates. If there is a significant discrepancy, then a stand-alone task is
notified to do a deeper analysis of the query execution.

The query plan and the execution statistics are passed to the task. A separate task is used for the in-
depth analysis so the user job is not impacted while the deep analysis is done. Each step of the join is
analyzed, looking for characteristics of starvation join. Starvation join shows a significant reduction in the
number of rows produced compared to the previous step. The definition of what is considered significant
depends on a number of factors.

If the criteria for starvation join are met, the actual number of records selected at key points of the query
are compared to estimates. If there is a significant discrepancy between the actual and estimated record
counts, the table at that join position is identified as a 'forced primary table'. This table is saved with the
query plan in the system plan cache. When the query runs in the future, the optimizer retrieves the
original plan from the system plan cache. The optimizer sees the forced primary table recommendation,
and optimizes the query using this recommendation.

The forced primary recommendation is used in two ways by the optimizer:

98 IBM i: Database Performance and Query Optimization

• The forced primary table is placed first in the join order by the join order optimization strategy.
• The forced primary table is used by the strategy for LPG optimization. The preceding example is a star

join since table T1 is joined to the other tables in the query. t1.c3 is the column used to join T1 to T4. If
an index exists over this join column, then it might be advantageous to do preselection against table T1
using the records selected from table T4. The forced primary table recommendation is used as a hint for
the optimizer to consider this technique.

Concurrent to run

The preceding logic to identify starvation join can also run in a thread in parallel to the executing query.
The AQP handler thread is created for longer running queries. The thread monitors the query execution
and can run the same logic described earlier against partial data from the query execution.

If the partial results show starvation join and significant differences with the record count estimates, the
query is reoptimized in the thread. When the new plan is ready, the execution of the original plan is
stopped and the new plan started. This scheme for correcting join problems 'on the fly' can only be
carried out before any records are selected for the final result set.

Note: AQP can help correct query performance problems, but it is not a substitute for a good database
design coupled with a good indexing strategy.

Related reference
Adaptive Query Processing in Visual Explain
You can use Visual Explain to request a new plan.

Database Monitor additions for AQP
Additional information is logged in the database monitor when the AQP handler code replaces an
executing plan.

A new set of 30xx records is written to the database monitor reflecting the replaced plan. The user needs
to be able to distinguish between records produced for the first plan iteration and records produced for
subsequent optimization. To distinguish these records, an unused short integer column of the database
monitor record is used as a ‘plan iteration counter'.

Column QQSMINTF is used for this purpose. For the original optimization of the query, the 30xx records
have this field set to 1. Subsequent reoptimization done by AQP processing will increment the value by 1.

The following is an example of how DB monitor output might look like when a is replaced ‘on the fly'. The
example query is the following two-file join with an ORDER BY clause over one of the tables:

SELECT a.orderkey,b.orderkey
FROM rvdstar/item_fact3 a, rvdstar/item_fact b
WHERE a.quarter – 8 = b.quarter
ORDER BY b.orderkey

Assume that an order by pushdown plan is chosen, then replaced using AQP while the query is running.
The following is an example of what the DB monitor records might look like. The columns shown for the
purposes of explaining the changes are QQRID, QQUCNT, QQSMINTF, and QQRCOD. The other fields in
the monitor are not affected by AQP processing.

Table 29. Database monitor records for example query

QQRID QQUCNT QQSMINTF QQRCOD

3010 14 - -

3006 14 1 A0

3001 14 1 I2

3000 14 1 T1

3023 14 1 -

3007 14 1 -

Database performance and query optimization 99

Table 29. Database monitor records for example query (continued)

QQRID QQUCNT QQSMINTF QQRCOD

3020 14 1 I1

3014 14 1 -

5005 14 1 -

5002 14 1 -

5004 14 1 -

5007 14 1 -

3006 14 2 B6

3000 14 2 T1

3000 14 2 T3

3023 14 2 -

3003 14 2 F7

3007 14 2 -

3020 14 2 I1

3014 14 2 -

5005 14 2 -

5002 14 2 -

5004 14 2 -

1000 14 2 -

5007 14 2 -

3019 14 - -

1000 14 - -

Notes on the preceding table:

• There is a full set of optimizer-generated records that reflect the first choice of the optimizer: an order
by pushdown plan. These records have the QQSMINTF column value set to 1. There is a 3001 record
indicating an index was used to provide the ordering. There are 3000 and 3023 records indicating a
Table Scan of the second table and a temporary hash table built to aid join performance. The remaining
records, including the 3014 and the 500x records, have QQSMINTF set to 1 to reflect their association
with the original order by pushdown plan.

• There is a second full set of optimizer-generated records that reflect the second choice of the optimizer:
a sorted temporary plan to implement the ORDER BY. These records have the QQSMINTF column value
set to 2. This time there are two 3000 records indicating table scan was used to access both tables.
There is a 3023 record indicating a temporary hash table was built and a 3003 record indicating the
results were sorted. The remaining records, including the 3014 and the 500x records, have QQSMINTF
set to 2 to reflect their association with the replacement plan.

• Both sets of optimizer records have the same unique count (QQUCNT value).
• There is a 3006 (Access Plan Rebuilt) record generated for each replacement plan (QQSMINTF > 0). The

QQRCOD (reason code) value is set to a new value, ‘B6'. The ‘B6' value indicates the access plan was
rebuilt due to AQP processing. In the example, there is a 3006 record with QQSMINTF = 1 and a
QQRCOD value of ‘A0'. The 1 indicates that the original optimization built the plan for the first time.

100 IBM i: Database Performance and Query Optimization

There might not be a 3006 record associated with the original optimization if the optimizer was able to
reuse a plan from the plan cache.

• The 1000, 3010 and 3019 records are produced by XPF at open or close time. These records are not
generated by the optimizer so there are no changes due to AQP. There are one set of the records, as in
previous releases, regardless of whether AQP replaced the plan. The QQSMINTF value is NULL for these
records.

• The replacement plan is the plan that runs to completion and returns the results. To retrieve the DB
monitor records from the plan that actually returns the records, it is necessary to query the DB monitor
file using a subquery. Retrieve the records where the QQSMINTF value is equal to the maximum
QQSMINTF value for a given QQUCNT.

Related concepts
Database monitor formats
This section contains the formats used to create the database monitor SQL tables and views.
Related reference
Monitoring your queries using the Database Monitor
Start Database Monitor (STRDBMON) command gathers information about a query in real time and
stores this information in an output table. This information can help you determine whether your system
and your queries are performing well, or whether they need fine-tuning. Database monitors can generate
significant CPU and disk storage overhead when in use.
Adaptive Query Processing in Visual Explain
You can use Visual Explain to request a new plan.
QAQQINI query options
There are different options available for parameters in the QAQQINI file.

Row and column access control (RCAC)
Db2 for i introduces row and column access control (RCAC) as an additional layer of data security. RCAC
controls access to a table at the row level, column level, or both. RCAC can be used to complement the
existing table privileges model.

Indexing Strategy and RCAC
This section focuses on the consequence of RCAC to your SQL query performance when indexing is used.

Row and column access control (RCAC) places access control at the table level around the data itself. SQL
rules, which are known as row permissions or column masks, created on rows and columns are the basis
of the implementation of this capability.

You can use row and column access control to ensure that your users have access to only the data that is
required for their work. For example, tellers in a bank can access customer rows in the CUSTOMER table
only from their own branch. All tellers are members of the group user profile TELLER. Customer service
representative or telemarketers are members of other groups and allowed to see all rows. A row
permission is created by a user who is authorized to the QIBM_DB_SECADM function usage ID.

These SQL rules add additional predicates to any queries or data access requests over tables with defined
and activated RCAC permissions. In this example, SQL rules are added to queries over the CUSTOMER
table to enforce the following access rules. Depending on the nature of the rules, additional indexes might
be advised or existing indexes might need to be enhanced or altered to accommodate the additional
predicates enforcing the access. For example, when the TELLER_ROW_ACCESS permission is enabled,
additional index advise might include the BRANCH_INFO table and key EMP_ID. In this particular
example, index only access can be facilitated by creating an index over BRANCH_INFO that includes
EMP_ID and HOME_BRANCH as key fields. The first to facilitate the probe, the second to prevent
unnecessary access to the BRANCH_INFO table.

CREATE PERMISSION TELLER_ROW_ACCESS ON CUSTOMER

-- Teller information:
-- Group TELLER is allowed to access customer data only
-- in their branch.
--

Database performance and query optimization 101

FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER, 'TELLER') = 1
AND
BRANCH = (SELECT HOME_BRANCH FROM BRANCH_INFO WHERE EMP_ID = SESSION_USER)
ENFORCED FOR ALL ACCESS
ENABLE;

ALTER TABLE CUSTOMER ACTIVATE ROW ACCESS CONTROL;

In the example below, not only are you verifying certain user groups for access to particular patient
records but also masking certain data based on whether the patient has participated in a clinical trial.
Extra security is that physicians can see only patient records for whom they are the primary care provider.

CREATE PERMISSION PCP ON patient

-- Primary Care Physician Access
-- Group PCP is allowed to access patient data only
-- AND the Primary Care Physician must be assigned to patient
-- Group RESEARCH are allowed to access patient data for those patients
-- that opted in to a clinical trial
--
FOR ROWS WHERE
(VERIFY_GROUP_FOR_USER(SESSION_USER, 'PCP') = 1
AND
PCPID = (SELECT PCPID FROM PHYSICIAN WHERE PCPUSER = SESSION_USER))
OR
(VERIFY_GROUP_FOR_USER(SESSION_USER, 'RESEARCH') = 1
AND
(SELECT 1 FROM PATIENTCHOICE C
WHERE PATIENT.patientid = C.patientid
AND C.CHOICE = 'clinical trial'
AND C.VALUE = 'opt-in')=1
)
ENFORCED FOR ALL ACCESS
ENABLE;

CREATE MASK PHARMACY_MASK ON PATIENT FOR
--
-- Medical information:
-- Group PCP is allowed to access the full information in column PHARMACY.
-- For the purposes of drug research, Role DRUG_RESEARCH can
-- conditionally see a patient's medical information
-- provided that the patient has opted-in.
-- In all other cases, null values are rendered as column
-- values.
--
COLUMN PHARMACY RETURN
 CASE WHEN
 VERIFY_GROUP_FOR_USER(SESSION_USER,'PCP') = 1 OR
 (VERIFY_GROUP_FOR_USER(SESSION_USER,'DRUG_RSRCH')=1
 AND
 (SELECT 1 FROM PATIENTCHOICE C
 WHERE PATIENT.patientid = C.patientid
 AND C.CHOICE = 'drug-research'
 AND C.VALUE = 'opt-in')= 1
)
 THEN PHARMACY
 ELSE NULL
END
ENABLE;

ALTER TABLE PATIENT ACTIVATE ROW ACCESS CONTROL ACTIVATE COLUMN ACCESS CONTROL;

The query in the next example, before the introduction of RCAC policies would have accessed only the
PATIENT table. Now it accesses the PATIENT table and the supporting tables that are associated with the
row and column permissions.

The next graphic is the Visual Explain for the next example query. As you can see, the PATIENT table is
accessed along with any other tables mentioned in the ROW and COLUMN access control.

SELECT * FROM PATIENT WHERE PATIENTID = ?

102 IBM i: Database Performance and Query Optimization

By clicking the index advised icon that is shown in the next graphic:

You get the resulting index advice depicted in the next graphic that shows that it is not only over the
PATIENT table that is explicitly specified in the query, but also over the supporting RCAC tables.

Database performance and query optimization 103

Not considering additional advice per the introduction of RCAC SQL rules can affect query
performance.

Materialized query tables and RCAC
This section focuses on the consequence of RCAC to your SQL query performance when MQTs are used.

Materialized Query Tables (MQTs) are heavily relied upon by data warehousing applications for better
query performance. RCAC and MQTs coexist in harmony. This means:

1. MQTs must continue to provide their added performance benefit to data warehousing applications.
2. MQTs cannot become a means for gaining access to data protected through RCAC rules that are

specified in the dependent base tables, either through direct access to the MQT or by MQT matching
and substitution.

If a materialized query table that depends on the table (directly or indirectly through a view) for which
access control is being activated and that materialized query table does not already have its own access
control activated, row level access control is implicitly activated for the materialized query table. This
restricts direct access to the contents of the materialized query table. A query that explicitly references
the MQT table before such a row permission is defined returns Row Not Found as if there was no data in
the table.

In this example MQT:

CREATE TABLE MQT1
AS (SELECT patientid, patientname,pcpid,pharmacy
FROM patient
WHERE diagnosis is not null)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER;

To provide access to this materialized query table, an appropriate row permission can be created, or an
ALTER TABLE DEACTIVATE ROW ACCESS CONTROL on the materialized query table can be issued to
remove the row level protection if that is appropriate. If the query optimizer substitutes one or more
tables in a query with this materialized query table via MQT substitution, the row and column access
controls on the replaced (base) tables remain in effect, and the access controls, if any, on the materialized
query table do not apply.

SELECT * FROM MQT1

results in no rows because it does not have its own RCAC policy and therefore it cannot expose rows per
the PATIENT table.

104 IBM i: Database Performance and Query Optimization

The following query however can be satisfied by the MQT1

SELECT patientid, patientname, pharmacy FROM patient WHERE patientid>4 and diagnosis is not
null;

Row and column level access control does not affect the REFRESH TABLE statement. The table is
refreshed as if row and column level access controls do not exist.

REFRESH TABLE mqt1;

The graphic below shows the Visual Explain that reflects the MQT match and substitution. Note that had
the MQT1 not surfaced a required value of PCPID for the existing RCAC SQL Rules, it would not be able to
satisfy the query request as an MQT match, even though that field is not in the required select list. In this
example Visual Explain, you can see the MQT1 substituted but also inherited the RCAC rules of the base
table PATIENT.

Database performance and query optimization 105

Index advice of the originating query, which is depicted in the graphic below, includes advice over the
main query table, over the MQT and over the RCAC required tables.

106 IBM i: Database Performance and Query Optimization

As many MQTs, such as the one below, provide ready made aggregation values so aggregating queries in a
data warehousing environment perform quickly, these MQTs are now likely not to match query requests
with aggregated selection via MQT substitution.

The aggregation is based on the REFRESH TABLE with no RCAC applied and yet the matching is based on
the underlying base table and all its RCAC requirements.

CREATE TABLE MQT_AGG
AS (SELECT pcpid, count(*) patientcnt
FROM patient group by pcpid
)
DATA INITIALLY IMMEDIATE REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER;

The following query, although it appears to be a match for the above MQT_AGG, will not substitute the
MQT per RCAC rules.

SELECT pcpid, count(*) FROM PATIENT WHERE pcpid in (1, ...) GROUP BY pcpid

All existing MQTs should be analyzed before deploying RCAC policy on base tables to make sure that
performance does not unexpectedly start to suffer because MQTs are no longer available to facilitate
the request.

Because most aggregating queries are not dealing with 'details' and so possibly less sensitive to the
requirements of RCAC, aggregating MQT over base tables with RCAC might be best deployed by direct
substitution in the query and restriction through table privileges and disabling the default RCAC rule,
restricting all rows, as follows.

ALTER TABLE MQT_AGG DEACTIVATE ROW ACCESS CONTROL;

This deactivates the default RCAC applied due to base tables with RCAC and allows direct access to the
MQT in a warehousing environment.

Database performance and query optimization 107

Optimizing query performance using query optimization tools
Query optimization is an iterative process. You can gather performance information about your queries
and control the processing of your queries.

DB2 for IBM i – Health Center
Use the DB2 for IBM i Health Center to capture information about your database. You can view the total
number of objects, the size limits of selected objects, the design limits of selected objects, environmental
limits, and activity level.

Navigator view of Health Center
The System i Navigator provides a robust graphical interface to capture, view, and interact with the Health
Center.

To start the health center, follow these steps:

1. In the System i Navigator window, expand the system that you want to use.
2. Expand Databases.
3. Right-click the database that you want to work with and select Health Center.

You can change your preferences by clicking Change and entering filter information. Click Refresh to
update the information.

To save your health center history, do the following:

1. In the System i Navigator window, expand the system you want to use.
2. Expand Databases.
3. Right-click the database that you want to work with and select Health Center.
4. On the health center dialog, select the area that you want to save. For example, if you want to save the

current overview, click Save on the Overview tab. Size limits and Design limits are not saved.
5. Specify a schema and table to save the information. You can view the contents of the selected table by

clicking View Contents. If you select to save information to a table that does not exist, the system
creates the table for you.

Health Center SQL procedures
The Health Center is implemented upon several DB2 for i SQL procedures.

IBM i users can call the Health Center SQL procedures directly.

QSYS2.Health_Database_Overview ()
The QSYS2.Health_Database_Overview() procedure returns counts of all the different types of DB2 for i
objects within the target schema or schemas. The counts are broken down by object type and subtype.

Procedure definition:

CREATE PROCEDURE QSYS2.HEALTH_DATABASE_OVERVIEW(
 IN ARCHIVE_OPTION INTEGER,
 IN OBJECT_SCHEMA VARCHAR(258),
 IN NUMBER_OF_ITEMS_ARCHIVE INTEGER,
 IN OVERVIEW_SCHEMA VARCHAR(258),
 IN OVERVIEW_TABLE VARCHAR(258))
 DYNAMIC RESULT SETS 1
 LANGUAGE C
 SPECIFIC QSYS2.HEALTH_DATABASE_OVERVIEW
 NOT DETERMINISTIC
 MODIFIES SQL DATA
 CALLED ON NULL INPUT
 EXTERNAL NAME 'QSYS/QSQHEALTH(OVERVIEW)'
 PARAMETER STYLE SQL;

Service Program Name: QSYS/QSQHEALTH

108 IBM i: Database Performance and Query Optimization

Default Public Authority: *USE

Threadsafe: Yes

IBM i release

This procedure was added to IBM i in V5R4M0.

Parameters
Archive_Option

(Input) The type of operation to perform for the DB2 for i Health Center overview detail.

The supported values are:

• 1 = Query only, no archive action is taken
• 2 = Archive only
• 3 = Create archive and archive
• 4 = Query the archive

Note: Option 1 produces a new result set. Options 2 and 3 simply use the results from the last Query
option. Option 3 fails if the archive exists.

Object_Schema
(Input) The target schema or schemas for this operation. A single schema name can be entered. The
‘%' character can be used to direct the procedure to process all schemas with names that start with
the same characters which appear before the ‘%'. When this parameter contains only the ‘%'
character, the procedure processes all schemas within the database.

Number_Of_Items_Archive
(Input) The number of rows to archive.

The archive can be used to recognize trends over time. To have meaningful historical comparisons,
choose the row count size carefully. This argument is ignored if the Archive_Option is 1.

Overview_Table
(Input) The table that contains the database overview archive.

This argument is ignored if the Archive_Option is 1.

Authorities

To query an existing archive, *USE object authority is required for the Overview_Schema and
Overview_Table. To create an archive, *CHANGE object authority is required for the Overview_Schema. To
add to an existing archive, *CHANGE object authority is required for the Overview_Table and *USE object
authority is required for the Overview_Schema.

Result Set

When Archive_Option is 1 or 4, a single result set is returned.

The format of the result is as follows.

QSYS2.Health_Database_Overview () result set format:

"TIMESTAMP" TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
SCHEMAS BIGINT NOT NULL ,
GRP01 CHAR(1) DEFAULT NULL ,
TABLES BIGINT NOT NULL ,
PARTITIONED_TABLES FOR COLUMN TABLESRT BIGINT NOT NULL ,
DISTRIBUTED_TABLES FOR COLUMN TABLES_DST BIGINT NOT NULL ,
MATERIALIZED_QUERY_TABLES FOR COLUMN TABLES_MAT BIGINT NOT NULL ,
PHYSICAL_FILES FOR COLUMN TABLESHY BIGINT NOT NULL ,
SOURCE_FILES FOR COLUMN TABLES_SRC BIGINT NOT NULL ,
GRP02 CHAR(1) DEFAULT NULL ,
VIEWS BIGINT NOT NULL ,
LOGICAL_FILES FOR COLUMN VIEWS_LGL BIGINT NOT NULL ,

Database performance and query optimization 109

GRP03 CHAR(1) DEFAULT NULL ,
BINARY_RADIX_INDEXES FOR COLUMN INDEXES_BI BIGINT NOT NULL ,
EVI_INDEXES FOR COLUMN INDEXES_EV BIGINT NOT NULL ,
GRP04 CHAR(1) DEFAULT NULL ,
PRIMARY_KEY_CONSTRAINTS FOR COLUMN CSTSRI BIGINT NOT NULL ,
UNIQUE_CONSTRAINTS FOR COLUMN CSTS_UNQ BIGINT NOT NULL ,
CHECK_CONSTRAINTS FOR COLUMN CSTS_CHK BIGINT NOT NULL ,
REFERENTIAL_CONSTRAINTS FOR COLUMN CSTS_RI BIGINT NOT NULL ,
GRP05 CHAR(1) DEFAULT NULL ,
EXTERNAL_TRIGGERS FOR COLUMN TRGS_EXT BIGINT NOT NULL ,
SQL_TRIGGERS FOR COLUMN TRGS_SQL BIGINT NOT NULL ,
INSTEAD_OF_TRIGGERS FOR COLUMN TRGS_INSTD BIGINT NOT NULL ,
GRP06 CHAR(1) DEFAULT NULL ,
ALIASES BIGINT NOT NULL ,
DDM_FILES BIGINT NOT NULL ,
GRP07 CHAR(1) DEFAULT NULL ,
EXTERNALROCEDURES FOR COLUMN PROCS_EXT BIGINT NOT NULL ,
SQLROCEDURES FOR COLUMN PROCS_SQL BIGINT NOT NULL ,
GRP08 CHAR(1) DEFAULT NULL ,
EXTERNAL_SCALAR_FUNCTIONS FOR COLUMN FUNCS_EXTS BIGINT NOT NULL ,
EXTERNAL_TABLE_FUNCTIONS FOR COLUMN FUNCS_EXTT BIGINT NOT NULL ,
SOURCE_SCALAR_FUNCTIONS FOR COLUMN FUNCS_SRCS BIGINT NOT NULL ,
SOURCE_AGGREGATE_FUNCTIONS FOR COLUMN FUNCS_SRCA BIGINT NOT NULL ,
SQL_SCALAR_FUNCTIONS FOR COLUMN FUNCS_SQLS BIGINT NOT NULL ,
SQL_TABLE_FUNCTIONS FOR COLUMN FUNCS_SQLT BIGINT NOT NULL ,
GRP09 CHAR(1) DEFAULT NULL ,
SEQUENCES BIGINT NOT NULL ,
SQLACKAGES FOR COLUMN SQLPKGS BIGINT NOT NULL ,
USER_DEFINED_DISTINCT_TYPES FOR COLUMN UDTS BIGINT NOT NULL ,
JOURNALS BIGINT NOT NULL ,
JOURNAL_RECEIVERS FOR COLUMN JRNRCV BIGINT NOT NULL ,
"SCHEMA" VARCHAR(258) ALLOCATE(10) NOT NULL

LABEL ON COLUMN <result set>
("TIMESTAMP" IS 'Timestamp' ,
 SCHEMAS IS 'Schemas' ,
 GRP01 IS 'Tables' ,
 TABLES IS 'Non-partitioned tables' ,
 PARTITIONED_TABLES IS 'Partitioned tables' ,
 DISTRIBUTED_TABLES IS 'Distributed tables' ,
 MATERIALIZED_QUERY_TABLES IS 'Materialized query tables' ,
 PHYSICAL_FILES IS 'Physical files' ,
 SOURCE_FILES IS 'Source files' ,
 GRP02 IS 'Views' ,
 VIEWS IS 'Views' ,
 LOGICAL_FILES IS 'Logical files' ,
 GRP03 IS 'Indexes' ,
 BINARY_RADIX_INDEXES IS 'Binary radix indexes' ,
 EVI_INDEXES IS 'Encoded vector indexes' ,
 GRP04 IS 'Constraints' ,
 PRIMARY_KEY_CONSTRAINTS IS 'PRIMARY KEY constraints' ,
 UNIQUE_CONSTRAINTS IS 'UNIQUE constraints' ,
 CHECK_CONSTRAINTS IS 'CHECK constraints' ,
 REFERENTIAL_CONSTRAINTS IS 'Referential constraints' ,
 GRP05 IS 'Triggers' ,
 EXTERNAL_TRIGGERS IS 'External triggers' ,
 SQL_TRIGGERS IS 'SQL triggers' ,
 INSTEAD_OF_TRIGGERS IS 'INSTEAD OF triggers' ,
 GRP06 IS 'Aliases' ,
 ALIASES IS 'Aliases' ,
 DDM_FILES IS 'DDM files' ,
 GRP07 IS 'Procedures' ,
 EXTERNALROCEDURES IS 'External procedures' ,
 SQLROCEDURES IS 'SQL procedures' ,
 GRP08 IS 'Functions' ,
 EXTERNAL_SCALAR_FUNCTIONS IS 'External scalar functions' ,
 EXTERNAL_TABLE_FUNCTIONS IS 'External table functions' ,
 SOURCE_SCALAR_FUNCTIONS IS 'Source scalar functions' ,
 SOURCE_AGGREGATE_FUNCTIONS IS 'Source aggregate functions' ,
 SQL_SCALAR_FUNCTIONS IS 'SQL scalar functions' ,
 SQL_TABLE_FUNCTIONS IS 'SQL table functions' ,
 GRP09 IS 'Miscellaneous' ,
 SEQUENCES IS 'Sequences' ,
 SQLACKAGES IS 'SQL packages' ,
 USER_DEFINED_DISTINCT_TYPES IS 'User-defined distinct types' ,
 JOURNALS IS 'Journals' ,
 JOURNAL_RECEIVERS IS 'Journal receivers' ,
 "SCHEMA" IS 'Schema mask') ;

110 IBM i: Database Performance and Query Optimization

Error Messages

Table 30. Error messages

Message ID Error Message Text

SQL0462 W This warning appears in the job log if the procedure encounters objects for
which the user does not have *USE object authority. The warning is provided as
an indication that the procedure was unable to process all available objects.

Usage Notes

None

Related Information

None

Examples

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 645.

Example 1

Retrieve the overview for the entire database.

CALL QSYS2.Health_Database_Overview(1, '%', NULL, NULL, NULL);

Example results in System i Navigator:

Database performance and query optimization 111

Example 2

Archive all rows in the overview to an SQL table named MYLIB/ARCHIVE1.

CALL QSYS2.Health_Database_Overview(3, '%', 2147483647, 'MYLIB', 'ARCHIVE1')

Example 3

Retrieve the overview from MYLIB/ARCHIVE1.

CALL QSYS2.Health_Database_Overview(4, '%', NULL, 'MYLIB', 'ARCHIVE1')

Example results in System i Navigator:

112 IBM i: Database Performance and Query Optimization

QSYS2.Health_Activity ()
The QSYS2.Health _Activity () procedure returns summary counts of database and SQL operations over a
set of objects within one or more schemas.

Procedure definition:

CREATE PROCEDURE QSYS2.HEALTH_ACTIVITY(
 IN ARCHIVE_OPTION INTEGER,
 IN REFRESH_CURRENT_VALUES INTEGER,
 IN OBJECT_SCHEMA VARCHAR(258),
 IN OBJECT_NAME VARCHAR(258),
 IN NUMBER_OBJECTS_ACTIVITY_TO_ARCHIVE INTEGER,
 IN NUMBER_OF_ACTIVITY_ARCHIVE INTEGER,
 IN ACTIVITY_SCHEMA VARCHAR(258),
 IN ACTIVITY_TABLE VARCHAR(258))
 DYNAMIC RESULT SETS 1
 LANGUAGE C
 SPECIFIC QSYS2.HEALTH_ACTIVITY
 NOT DETERMINISTIC
 MODIFIES SQL DATA
 CALLED ON NULL INPUT
 EXTERNAL NAME 'QSYS/QSQHEALTH(ACTIVITY)'
 PARAMETER STYLE SQL;

Service Program Name: QSYS/QSQHEALTH

Default Public Authority: *USE

Threadsafe: Yes

IBM i release

This procedure was added to IBM i 6.1.

Parameters
Archive_Option

(Input) The type of operation to perform for the DB2 for i Health Center overview detail.

The supported values are:

Database performance and query optimization 113

• 1 = Query only, no archive action is taken
• 2 = Archive only
• 3 = Create archive and archive
• 4 = Query the archive

Note: Option 1 produces a new result set. Options 2 and 3 simply use the results from the last Query
option. Option 3 fails if the archive exists.

Refresh_Current_Values
(Input) This option directs how the archive operation is done. This option is only valid with archive
options 2 and 3.

The supported values are:

• 0 = No. Indicates that we capture the activity on the entire set of specified schemas and objects.
• 1 = Yes. Indicates that we only refresh the activity of the objects previously captured (based on the

short names).
• 2 = None. Use the results from the prior call. A call must have been performed in this job before

using this option

Object_Schema
(Input) The target schema or schemas for this operation. A single schema name can be entered. The
‘%' character can be used to direct the procedure to process all schemas with names that start with
the same characters which appear before the ‘%'. When this parameter contains only the ‘%'
character, the procedure processes all schemas within the database.

This name also affects the items refreshed if Refresh_Current_Values = 1.

Object_Name
(Input) The target object name for this operation. Only the ‘%' character is treated as a wildcard since
an underscore is a valid character in a name. The name must be delimited, if necessary, and case
sensitive.

This name also affects the items refreshed if Refresh_Current_Values = 1.

Number_Objects_Activity_to_Archive
(Input) The number of objects to save for each activity.

Number_Of_Activity_Archive
(Input) The number of rows to save per object activity.

The archive can be used to recognize trends over time. To have meaningful historical comparisons,
choose the row count size carefully. This argument is ignored if the Archive_Option is 1 or 4.

Activity_Schema
(Input) The table that contains the database activity archive.

This argument is ignored if the Archive_Option is 1.

Activity_Table
The table that contains the database activity archive.

This argument is ignored if the Archive_Option is 1.

Authorities

To query an existing archive, *USE object authority is required for the Activity_Schema and Activity_Table.
To create an archive, *CHANGE object authority is required for the Activity_Schema. To add to an existing
archive, *CHANGE object authority is required for the Activity_Table and *USE object authority is required
for the Activity_Schema.

When Archive_Option is 1 or 3, *USE object authority is required for the Object_Schema and for any
objects which are indicated by Object_Name. When an object is encountered and the caller does not have

114 IBM i: Database Performance and Query Optimization

*USE object authority, an SQL0462 warning is placed in the job log. The object is skipped and not included
in the procedure result set.

Result Set

When Archive_Option is 1 or 4, a single result set is returned.

The format of the result is as follows. All these items were added for IBM i 6.1.

QSYS2.Health_Activity() result set format:

"TIMESTAMP" TIMESTAMP NOT NULL,
ACTIVITY VARCHAR(2000) ALLOCATE(20) DEFAULT NULL,
CURRENT_VALUE FOR COLUMN "VALUE" BIGINT DEFAULT NULL,
OBJECT_SCHEMA FOR COLUMN BSCHEMA VARCHAR(128)ALLOCATE(10) DEFAULT NULL,
OBJECT_NAME FOR COLUMN BNAME VARCHAR(128) ALLOCATE(20) DEFAULT NULL,
OBJECT_TYPE FOR COLUMN BTYPE VARCHAR(24) ALLOCATE(10) DEFAULT NULL,
SYSTEM_OBJECT_SCHEMA FOR COLUMN SYS_DNAME VARCHAR(10) ALLOCATE(10)DEFAULT NULL,
SYSTEM_OBJECT_NAME FOR COLUMN SYS_ONAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
PARTITION_NAME FOR COLUMN MBRNAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
ACTIVITY_ID FOR COLUMN ACTIV00001 INTEGER DEFAULT NULL

LABEL ON COLUMN <result set>
("TIMESTAMP" IS 'Timestamp',
 ACTIVITY IS 'Activity',
 CURRENT_VALUE IS 'Current Value',
 OBJECT_SCHEMA IS 'Object Schema',
 OBJECT_NAME IS 'Object Name',
 OBJECT_TYPE IS 'Object Type',
 SYSTEM_OBJECT_SCHEMA IS 'System Object Schema',
 SYSTEM_OBJECT_NAME IS 'System Object Name',
 PARTITION_NAME IS 'Partition Name',
 ACTIVITY_ID IS 'Activity ID');

Limit Detail

The supported Database Health Center Activity can be seen on any machine by executing this query. The
supported value column contains zeros because this category of Health Center information is not tied to a
limit.

SELECT * FROM QSYS2.SQL_SIZING WHERE SIZING_ID BETWEEN 18000 AND 18199;

Note: The bold rows were added in IBM i 7.1.

Table 31. Summary counts of database and SQL operations within a schema.

SIZING_ID SIZING_NAME SUPPORTED_VALUE

18100 INSERT OPERATIONS 0

18101 UPDATE OPERATIONS 0

18102 DELETE OPERATIONS 0

18103 LOGICAL READS 0

18104 PHYSICAL READS 0

18105 CLEAR OPERATIONS 0

18106 INDEX BUILDS/REBUILDS 0

18107 DATA SPACE REORGANIZE OPERATIONS 0

18108 DATA SPACE COPY OPERATIONS 0

18109 FULL OPENS 0

18110 FULL CLOSES 0

Database performance and query optimization 115

Table 31. Summary counts of database and SQL operations within a schema. (continued)

SIZING_ID SIZING_NAME SUPPORTED_VALUE

18111 DAYS USED 0

18112 INDEX QUERY USE 0

18113 INDEX QUERY STATISTICS USE 0

18114 INDEX LOGICAL READS 0

18115 INDEX RANDOM READS 0

18116 SQL STATEMENT COMPRESSION COUNT 0

18117 SQL STATEMENT CONTENTION COUNT 0

18118 RANDOM READS 0

18119 SEQUENTIAL READS 0

Error Messages

Table 32. Error messages

Message ID Error Message Text

SQL0462 W This warning appears in the job log if the procedure encounters objects for
which the user does not have *USE object authority. The warning is provided as
an indication that the procedure was unable to process all available objects.

Usage Notes

None

Related Information

None

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 645.

Retrieve the activity information for all objects within the QSYS2 schema, using a maximum of 10 objects
per each activity.

CALL QSYS2.Health_Activity(1, 0, 'QSYS2', '%', 10, NULL, NULL, NULL);

Example results in System i Navigator:

116 IBM i: Database Performance and Query Optimization

Database performance and query optimization 117

QSYS2.Health_Design_Limits ()
The QSYS2.Health_Design_Limits () procedure returns detailed counts of design limits over a set of
objects within one or more schemas. Design limits correspond to architectural constructs, such as
‘Maximum number of columns in a table or view'.

Procedure definition:

CREATE PROCEDURE QSYS2.HEALTH_DESIGN_LIMITS(
 ARCHIVE_OPTION INTEGER,
 IN REFRESH_CURRENT_VALUES INTEGER,
 IN OBJECT_SCHEMA VARCHAR(258),
 IN OBJECT_NAME VARCHAR(258),
 IN NUMBER_OBJECTS_LIMIT_TO_ARCHIVE INTEGER,
 IN NUMBER_OF_LIMITS_ARCHIVE INTEGER,
 IN LIMIT_SCHEMA VARCHAR(258),
 IN LIMIT_TABLE VARCHAR(258),
 DYNAMIC RESULT SETS 1
 LANGUAGE C
 SPECIFIC QSYS2.HEALTH_DESIGN_LIMITS
 NOT DETERMINISTIC
 MODIFIES SQL DATA
 CALLED ON NULL INPUT
 EXTERNAL NAME 'QSYS/QSQHEALTH(DESIGN)'
 PARAMETER STYLE SQL;

Service Program Name: QSYS/QSQHEALTH

Default Public Authority: *USE

Threadsafe: Yes

IBM i release

This procedure was added to IBM i V5R4M0.

Parameters
Archive_Option

(Input) The type of operation to perform for the DB2 for i Health Center activity detail.

The supported values are:

• 1 = Query only, no archive action is taken
• 2 = Archive only
• 3 = Create archive and archive
• 4 = Query the archive

Note: Option 1 produces a new result set. Options 2 and 3 simply use the results from the last Query
option. Option 3 fails if the archive exists.

Refresh_Current_Values
(Input) This option directs how the archive operation is done. This option is only valid with archive
options 2 and 3.

The supported values are:

• 0 = No. Indicates that we capture the activity on the entire set of specified schemas and objects.
• 1 = Yes. Indicates that we only refresh the activity of the objects previously captured (based on the

short names).
• 2 = None. Use the results from the prior call. A call must have been performed in this job before

using this option

Object_Schema
(Input) The target schema or schemas for this operation. A single schema name can be entered. The
‘%' character can be used to direct the procedure to process all schemas with names that start with

118 IBM i: Database Performance and Query Optimization

the same characters which appear before the ‘%'. When this parameter contains only the ‘%'
character, the procedure processes all schemas within the database.

This name also affects the items refreshed if Refresh_Current_Values = 1.

Object_Name
(Input) The target object name for this operation. Only the ‘%' character is treated as a wildcard since
an underscore is a valid character in a name. The name must be delimited, if necessary, and case
sensitive.

This name also affects the items refreshed if Refresh_Current_Values = 1.

Number_Objects_Limit_to_Archive
(Input) The number of objects to save for each design limit.

Number_Of_Limits_Archive
(Input) The number of rows to save per object design limit.

The archive can be used to recognize trends over time. To have meaningful historical comparisons,
choose the row count size carefully. This argument is ignored if the Archive_Option is 1 or 4.

Limit_Schema
(Input) The schema that contains the database limit archive.

This argument is ignored if the Archive_Option is 1.

Limit_Table
The table that contains the database limit archive.

This argument is ignored if the Archive_Option is 1.

Authorities

To query an existing archive, *USE object authority is required for the Limit_Schema and Limit_Table. To
create an archive, *CHANGE object authority is required for the Limit_Schema. To add to an archive,
*CHANGE object authority is required for the Limit_Table.

When Archive_Option is 1 or 3, *USE object authority is required for the Object_Schema and for any
objects which are indicated by Object_Name. When an object is encountered and the caller does not have
*USE object authority, an SQL0462 warning is placed in the job log. The object is skipped and not included
in the procedure result set.

Result Set

When Archive_Option is 1 or 4, a single result set is returned.

The format of the result is as follows. All these items were added for IBM i V5R4M0.

QSYS2.Health_Design_Limits() result set format:

"TIMESTAMP" TIMESTAMP NOT NULL,
LIMIT VARCHAR(2000) ALLOCATE(20) DEFAULT NULL,
CURRENT_VALUE FOR COLUMN "VALUE" BIGINT DEFAULT NULL,
PERCENT DECIMAL(5, 2) DEFAULT NULL,
OBJECT_SCHEMA FOR COLUMN BSCHEMA VARCHAR(128) ALLOCATE(10) DEFAULT NULL,
OBJECT_NAME FOR COLUMN BNAME VARCHAR(128) ALLOCATE(20) DEFAULT NULL,
OBJECT_TYPE FOR COLUMN BTYPE VARCHAR(24) ALLOCATE(10) DEFAULT NULL,
SYSTEM_OBJECT_SCHEMA FOR COLUMN SYS_DNAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
SYSTEM_OBJECT_NAME FOR COLUMN SYS_ONAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
PARTITION_NAME FOR COLUMN MBRNAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL
MAXIMUM_VALUE FOR COLUMN "MAXVALUE" BIGINT DEFAULT NULL
LIMIT_ID INTEGER DEFAULT NULL

LABEL ON COLUMN <result set>
("TIMESTAMP" IS 'Timestamp',
 LIMIT IS 'Limit',
 CURRENT_VALUE IS 'Current Value',
 PERCENT IS 'Percent',
 OBJECT_SCHEMA IS 'Object Schema',
 OBJECT_NAME IS 'Object Name',

Database performance and query optimization 119

 OBJECT_TYPE IS 'Object Type',
 SYSTEM_OBJECT_SCHEMA IS 'System Object Schema',
 SYSTEM_OBJECT_NAME IS 'System Object Name',
 PARTITION_NAME IS 'Partition Name',
 MAXIMUM_VALUE IS 'Maximum Value',
 LIMIT_ID IS 'Limit ID');

Limit Detail

The supported Database Health Center Design limits can be seen on any machine by executing this query:

SELECT * FROM QSYS2.SQL_SIZING WHERE SIZING_ID BETWEEN 16000 AND 16999;

Table 33. Design limits over objects within a schema.

SIZING_ID SIZING_NAME SUPPORTED_VALUE

16100 MAXIMUM NUMBER OF MEMBERS 327670

16101 MAXIMUM NUMBER OF RECORD FORMATS 32

16800 MAXIMUM JOURNAL RECEIVER SIZE 1.09951E+12 (~1 TB)

16801 TOTAL SQL STATEMENTS 0

16802 TOTAL ACTIVE SQL STATEMENTS 0

16803 MAXIMUM SQL PACKAGE SIZE 520093696 (~500 MB)

16804 MAXIMUM LARGE SQL PACKAGE SIZE 1056964608 (~1 GB)

16805 MAXIMUM SQL PROGRAM ASSOCIATED SPACE SIZE 16777216

Error Messages

Table 34. Error messages

Message ID Error Message Text

SQL0462 W This warning appears in the job log if the procedure encounters objects for
which the user does not have *USE object authority. The warning is provided as
an indication that the procedure was unable to process all available objects.

Usage Notes

None

Related Information

None

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 645.

Retrieve the design limit information for all object names which start with the letter R, within the SYSIBM
schema, using a maximum of 20 objects per each design limit.

CALL QSYS2.Health_Design_Limits(1, 0, 'SYSIBM', 'R%', 20, NULL, NULL, NULL);

Example results in System i Navigator:

120 IBM i: Database Performance and Query Optimization

QSYS2.Health_Size_Limits ()
The QSYS2.Health_Size_Limits () procedure returns detailed size information for database objects within
one or more schemas. Size limits help you understand trends towards reaching a database limit such as
‘Maximum size of the data in a table partition'.

Procedure definition:

CREATE PROCEDURE QSYS2.HEALTH_SIZE_LIMITS(
 IN ARCHIVE_OPTION INTEGER,
 IN REFRESH_CURRENT_VALUES INTEGER,
 IN OBJECT_SCHEMA VARCHAR(258),
 IN OBJECT_NAME VARCHAR(258),
 IN NUMBER_OBJECTS_LIMIT_TO_ARCHIVE INTEGER,
 IN NUMBER_OF_LIMITS_ARCHIVE INTEGER,
 IN LIMIT_SCHEMA VARCHAR(258),
 IN LIMIT_TABLE VARCHAR(258))
 DYNAMIC RESULT SETS 1
 LANGUAGE C
 SPECIFIC QSYS2.HEALTH_SIZE_LIMITS
 NOT DETERMINISTIC
 MODIFIES SQL DATA
 CALLED ON NULL INPUT
 EXTERNAL NAME 'QSYS/QSQHEALTH(SIZE)'
 PARAMETER STYLE SQL;

Service Program Name: QSYS/QSQHEALTH

Default Public Authority: *USE

Database performance and query optimization 121

Threadsafe: Yes

IBM i release

This procedure was added to IBM i V5R4M0.

Parameters
Archive_Option

(Input) The type of operation to perform for the DB2 for i Health Center activity detail.

The supported values are:

• 1 = Query only, no archive action is taken
• 2 = Archive only
• 3 = Create archive and archive
• 4 = Query the archive

Note: Option 1 produces a new result set. Options 2 and 3 simply use the results from the last Query
option. Option 3 fails if the archive exists.

Refresh_Current_Values
(Input) This option directs how the archive operation is done. This option is only valid with archive
options 2 and 3.

The supported values are:

• 0 = No. Indicates that we capture the activity on the entire set of specified schemas and objects.
• 1 = Yes. Indicates that we only refresh the activity of the objects previously captured (based on the

short names).
• 2 = None. Use the results from the prior call. A call must have been performed in this job before

using this option

Object_Schema
(Input) The target schema or schemas for this operation. A single schema name can be entered. The
‘%' character can be used to direct the procedure to process all schemas with names that start with
the same characters which appear before the ‘%'. When this parameter contains only the ‘%'
character, the procedure processes all schemas within the database.

This name also affects the items refreshed if Refresh_Current_Values = 1.

Object_Name
(Input) The target object name for this operation. Only the ‘%' character is treated as a wildcard since
an underscore is a valid character in a name. The name must be delimited, if necessary, and case
sensitive.

This name also affects the items refreshed if Refresh_Current_Values = 1.

Number_Objects_Limit_to_Archive
(Input) The number of objects to save for each size limit.

Number_Of_Limits_Archive
(Input) The number of rows to save per object size limit.

The archive can be used to recognize trends over time. To have meaningful historical comparisons,
choose the row count size carefully. This argument is ignored if the Archive_Option is 1 or 4.

Limit_Schema
(Input) The schema that contains the database activity archive.

This argument is ignored if the Archive_Option is 1.

Limit_Table
The table that contains the database activity archive.

122 IBM i: Database Performance and Query Optimization

This argument is ignored if the Archive_Option is 1.

Authorities

To query an existing archive, *USE object authority is required for the Limit_Schema and Limit_Table. To
create an archive, *CHANGE object authority is required for the Limit_Schema. To add to an archive,
*CHANGE object authority is required for the Limit_Table.

When Archive_Option is 1 or 3, *USE object authority is required for the Object_Schema and for any
objects which are indicated by Object_Name. When an object is encountered and the caller does not have
*USE object authority, an SQL0462 warning is placed in the job log. The object is skipped and not included
in the procedure result set.

Result Set

When Archive_Option is 1 or 4, a single result set is returned.

The format of the result is as follows. All these items were added for IBM i V5R4M0.

QSYS2.Health_Size_Limits() result set format:

"TIMESTAMP" TIMESTAMP NOT NULL,
LIMIT VARCHAR(2000) ALLOCATE(20) DEFAULT NULL,
CURRENT_VALUE FOR COLUMN "VALUE" BIGINT DEFAULT NULL,
PERCENT DECIMAL(5, 2) DEFAULT NULL, OBJECT_SCHEMA FOR COLUMN BSCHEMA VARCHAR(128) ALLOCATE(10) DEFAULT
NULL,
OBJECT_NAME FOR COLUMN BNAME VARCHAR(128) ALLOCATE(20) DEFAULT NULL,
OBJECT_TYPE FOR COLUMN BTYPE VARCHAR(24) ALLOCATE(10) DEFAULT NULL,
SYSTEM_OBJECT_SCHEMA FOR COLUMN SYS_DNAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
SYSTEM_OBJECT_NAME FOR COLUMN SYS_ONAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
MAXIMUM_VALUE FOR COLUMN "MAXVALUE" BIGINT DEFAULT NULL,
LIMIT_ID INTEGER DEFAULT NULL,
PARTITION_NAME FOR COLUMN MBRNAME VARCHAR(10) ALLOCATE(10) DEFAULT NULL,
"SCHEMA" VARCHAR(258) ALLOCATE(10) DEFAULT NULL,
OBJECT VARCHAR(258) ALLOCATE(10) DEFAULT NULL,
"REFRESH" INTEGER DEFAULT NULL

LABEL ON COLUMN <result set>
("TIMESTAMP" IS 'Timestamp',
 LIMIT IS 'Limit',
 CURRENT_VALUE IS 'Current Value',
 PERCENT IS 'Percent',
 OBJECT_SCHEMA IS 'Object Schema',
 OBJECT_NAME IS 'Object Name',
 OBJECT_TYPE IS 'Object Type',
 SYSTEM_OBJECT_SCHEMA IS 'System Object Schema',
 SYSTEM_OBJECT_NAME IS 'System Object Name',
 MAXIMUM_VALUE IS 'Maximum Value',
 LIMIT_ID IS 'Limit ID',
 PARTITION_NAME IS 'Partition Name',
 "SCHEMA" IS 'Schema Mask',
 OBJECT IS 'Object Mask',
 "REFRESH" IS 'Refresh');

Limit Detail

The supported Database Health Center Size limits can be seen on any machine by executing this query:

SELECT * FROM QSYS2.SQL_SIZING WHERE SIZING_ID BETWEEN 15000 AND 15999;

Note: MAXIMUM NUMBER OF OVERFLOW ROWS was added in IBM i 7.1.

Table 35. Size limit information for database objects within a schema.

SIZING_ID SIZING_NAME SUPPORTED_VALUE

15000 MAXIMUM NUMBER OF ALL ROWS 4.29E+09

15001 MAXIMUM NUMBER OF VALID ROWS 4.29E+09

Database performance and query optimization 123

Table 35. Size limit information for database objects within a schema. (continued)

SIZING_ID SIZING_NAME SUPPORTED_VALUE

15002 MAXIMUM NUMBER OF DELETED ROWS 4.29E+09

15003 MAXIMUM TABLE PARTITION SIZE 1.7E+12

15004 MAXIMUM NUMBER OF OVERFLOW ROWS 4.29E+09

15101 MAXIMUM ROW LENGTH 32766

15102 MAXIMUM ROW LENGTH WITH LOBS 3.76E+09

15103 MAXIMUM NUMBER OF PARTITIONS 256

15150 MAXIMUM NUMBER OF REFERENCED TABLES 256

15300 MAXIMUM NUMBER OF TRIGGERS 300

15301 MAXIMUM NUMBER OF CONSTRAINTS 300

15302 MAXIMUM LENGTH OF CHECK CONSTRAINT 2097151

15400 MAXIMUM *MAX4GB INDEX SIZE 4.29E+09

15401 MAXIMUM *MAX1TB INDEX SIZE 1.7E+12

15402 MAXIMUM NUMBER OF INDEX ENTRIES 0

15500 MAXIMUM KEY COLUMNS 120

15501 MAXIMUM KEY LENGTH 32767

15502 MAXIMUM NUMBER OF PARTITIONING KEYS 120

15700 MAXIMUM NUMBER OF FUNCTION PARAMETERS 255

15701 MAXIMUM NUMBER OF PROCEDURE PARAMETERS 1024

Error Messages

Table 36. Error messages

Message ID Error Message Text

SQL0462 W This warning appears in the job log if the procedure encounters objects for
which the user does not have *USE object authority. The warning is provided as
an indication that the procedure was unable to process all available objects.

Usage Notes

None

Related Information

None

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 645.

124 IBM i: Database Performance and Query Optimization

Retrieve the size limit information for all object names which start with the letter S, within the SYSIBM
schema, using a maximum of five objects per each design limit.

CALL QSYS2.Health_Size_Limits(1, 0, 'SYSIBM', 'S%', 5, NULL, NULL, NULL);

Example results in System i Navigator:

QSYS2.Health_Environmental_Limits ()
The QSYS2.Health_Environmental_Limits() procedure returns detail on the top 10 jobs on the system, for
different SQL or application limits. The jobs do not have to be in existence. The top 10 information is
maintained within DB2 for i and gets reset when the machine is IPLed, the IASP is varied ON, or when the
QSYS2.Reset_Environmental_Limits() procedure is called.

Procedure definition:

CREATE PROCEDURE QSYS2.HEALTH_ENVIRONMENTAL_LIMITS(
 IN ARCHIVE_OPTION INTEGER,
 IN NUMBER_OF_LIMITS_ARCHIVE INTEGER,
 IN LIMIT_SCHEMA VARCHAR(258),
 IN LIMIT_TABLE VARCHAR(258))
 DYNAMIC RESULT SETS 1
 LANGUAGE C
 SPECIFIC QSYS2.HEALTH_ENVIRONMENTAL_LIMITS
 NOT DETERMINISTIC
 MODIFIES SQL DATA
 CALLED ON NULL INPUT
 EXTERNAL NAME 'QSYS/QSQHEALTH(ENVIRON)'
 PARAMETER STYLE SQL;

Database performance and query optimization 125

Service Program Name: QSYS/QSQHEALTH

Default Public Authority: *USE

Threadsafe: Yes

IBM i release

This procedure was added to IBM i 6.1.

Parameters
Archive_Option

(Input) The type of operation to perform for the DB2 for i Health Center activity detail.

The supported values are:

• 1 = Query only, no archive action is taken
• 2 = Archive only
• 3 = Create archive and archive
• 4 = Query the archive

Note: Option 1 produces a new result set. Options 2 and 3 simply use the results from the last Query
option. Option 3 fails if the archive exists.

Number_Of_Limits_Archive
(Input) The number of rows to save per object health limit.

The archive can be used to recognize trends over time. To have meaningful historical comparisons,
choose the row count size carefully. This argument is ignored if the Archive_Option is 1 or 4.

Limit_Schema
(Input) The schema that contains the database activity archive.

This argument is ignored if the Archive_Option is 1.

Limit_Table
The table that contains the database activity archive.

This argument is ignored if the Archive_Option is 1.

Authorities

To query an existing archive, *USE object authority is required for the Limit_Schema and Limit_Table. To
create an archive, *CHANGE object authority is required for the Limit_Schema. To add to an archive,
*CHANGE object authority is required for the Limit_Table.

When Archive_Option is 1 or 3, *USE object authority is required for the Object_Schema and for any
objects which are indicated by Object_Name. When an object is encountered and the caller does not have
*USE object authority, an SQL0462 warning is placed in the job log. The object is skipped and not included
in the procedure result set.

Result Set

When Archive_Option is 1 or 4, a single result set is returned.

The format of the result is as follows. All these items were added for IBM i 6.1.

QSYS2.Health_Environmental_Limits() result set format:

"TIMESTAMP" TIMESTAMP NOT NULL,
LIMIT VARCHAR(2000) ALLOCATE(20) DEFAULT NULL,
HIGHWATER_MARK_VALUE FOR COLUMN HIMARK BIGINT DEFAULT NULL,
WHEN_VALUE_WAS_RECORDED FOR COLUMN TIMEHIT TIMESTAMP NOT NULL,
PERCENT DECIMAL(5, 2) DEFAULT NULL,
JOB_NAME VARCHAR(28) ALLOCATE(20) DEFAULT NULL,
"CURRENT_USER" FOR COLUMN CUSER VARCHAR(128) ALLOCATE(10) DEFAULT NULL,

126 IBM i: Database Performance and Query Optimization

JOB_TYPE VARCHAR(26) ALLOCATE(20) DEFAULT NULL,
MAXIMUM_VALUE FOR COLUMN MAXVAL BIGINT DEFAULT NULL,
JOB_STATUS VARCHAR(13) DEFAULT NULL,
CLIENT_WRKSTNNAME FOR COLUMN "WRKSTNNAME" VARCHAR(255) DEFAULT NULL,
CLIENT_APPLNAME FOR COLUMN "APPLNAME" VARCHAR(255) DEFAULT NULL,
CLIENT_ACCTNG FOR COLUMN "ACCTNG" VARCHAR(255) DEFAULT NULL,
CLIENTROGRAMID FOR COLUMN "PROGRAMID" VARCHAR(255) DEFAULT NULL,
CLIENT_USERID FOR COLUMN "USERID" VARCHAR(255) DEFAULT NULL,
WHEN_LIMITS_ESTABLISHED FOR COLUMN TIMESET TIMESTAMP NOT NULL,
INTERFACE_NAME FOR COLUMN INTNAME VARCHAR(127) ALLOCATE(10) DEFAULT NULL,
INTERFACE_TYPE FOR COLUMN INTTYPE VARCHAR(63) ALLOCATE(10) DEFAULT NULL,
INTERFACE_LEVEL FOR COLUMN INTLEVEL VARCHAR(63) ALLOCATE(10) DEFAULT NULL,
LIMIT_ID INTEGER DEFAULT NULL

LABEL ON COLUMN <result set>
("TIMESTAMP" IS 'Timestamp',
 LIMIT IS 'Limit',
 HIGHWATER_MARK_VALUE IS 'Largest Value',
 WHEN_VALUE_WAS_RECORDED IS 'Timestamp When Recorded',
 PERCENT IS 'Percent',
 JOB_NAME IS 'Job Name',
 "CURRENT_USER" IS 'Current User',
 JOB_TYPE IS 'Job Type',
 MAXIMUM_VALUE IS 'Maximum Value',
 JOB_STATUS IS 'Job Status',
 CLIENT_WRKSTNNAME IS 'Client Workstation Name',
 CLIENT_APPLNAME IS 'Client Application Name',
 CLIENT_ACCTNG IS 'Client Accounting Code',
 CLIENTROGRAMID IS 'Client Program Identifier',
 CLIENT_USERID IS 'Client User Identifier',
 WHEN_LIMITS_ESTABLISHED IS 'Timestamp Limits Established',
 INTERFACE_NAME IS 'Interface Name' ,
 INTERFACE_TYPE IS 'Interface Type',
 INTERFACE_LEVEL IS 'Interface Level',
 LIMIT_ID IS 'Limit ID');

Limit Detail

The supported Database Health Center Environmental limits can be seen on any machine by executing
this query:

SELECT * FROM QSYS2.SQL_SIZING WHERE SIZING_ID BETWEEN 18200 AND 18299;

Note: The bold row was added in IBM i 7.1.

Table 37. SQL environmental limits.

SIZING_ID SIZING_NAME SUPPORTED_VALUE

18200 MAXIMUM NUMBER OF LOB or XML LOCATORS PER JOB 16000000

18201 MAXIMUM NUMBER OF LOB or XML LOCATORS PER
SERVER JOB

209000

18202 MAXIMUM NUMBER OF ACTIVATION GROUPS 0

18203 MAXIMUM NUMBER OF DESCRIPTORS 0

18204 MAXIMUM NUMBER OF CLI HANDLES 160000

18205 MAXIMUM NUMBER OF SQL OPEN CURSORS 21754

18206 MAXIMUM NUMBER OF SQL PSEUDO OPEN CURSORS 0

18207 MAXIMUM LENGTH OF SQL STATEMENT2097152 2097152

Error Messages

None

Database performance and query optimization 127

Usage Notes

None

Related Information

None

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 645.

Retrieve the SQL environmental limits for the current database.

CALL QSYS2.Health_Environmental_Limits(1, 0, NULL, NULL);

Example results in System i Navigator:

QSYS2.Reset_Environmental_Limits ()
The QSYS2.Reset_Environmental_Limits () procedure clears out the environment limit cache for the
database. If IASPs are being used, this procedure clears the environment limit cache for the IASP within
which it is called.

Procedure definition:

CREATE PROCEDURE QSYS2.RESET_ENVIRONMENTAL_LIMITS(
 LANGUAGE C
 SPECIFIC QSYS2.RESET_ENVIRONMENTAL_LIMITS
 NOT DETERMINISTIC
 MODIFIES SQL DATA
 CALLED ON NULL INPUT

128 IBM i: Database Performance and Query Optimization

 EXTERNAL NAME 'QSYS/QSQSSUDF(RESETENV)'
 PARAMETER STYLE SQL;

Service Program Name: QSYS/QSQHEALTH

Default Public Authority: *USE

Threadsafe: Yes

IBM i release

This procedure was added to IBM i 6.1.

Parameters

None.

Authorities

This procedure requires the user to have *JOBCTL user special authority or be authorized to the
QIBM_DB_SQLADM Function through Application Administration in System i Navigator. The Change
Function Usage (CHGFCNUSG) command can also be used to allow or deny use of the function.

For example:

CHGFCNUSG FCNID(QIBM_DB_SQLADM) USER(xxxxx) USAGE(*ALLOWED)

Result Set

None.

Error Messages

Table 38. Error messages

Message ID Error Message Text

SQL0552 Not authorized to PROCEDURE.

Usage Notes

None

Related Information

None

Example

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 645.

Reset the SQL environmental limits for the current database.

CALL QSYS2.RESET_ENVIRONMENTAL_LIMITS;

Monitoring your queries using the Database Monitor
Start Database Monitor (STRDBMON) command gathers information about a query in real time and
stores this information in an output table. This information can help you determine whether your system

Database performance and query optimization 129

and your queries are performing well, or whether they need fine-tuning. Database monitors can generate
significant CPU and disk storage overhead when in use.

You can gather performance information for a specific query, for every query on the system, or for a group
of queries on the system. When a job is monitored by multiple monitors, each monitor is logging rows to a
different output table. You can identify rows in the output database table by its unique identification
number.

When you start a monitor using the Start Database Monitor (STRDBMON) command, the monitor is
automatically registered with System i Navigator and appears in the System i Navigator monitor list.

Note: Database monitors also contain the SQL statement text and variable values. If the variable values or
SQL statements contain sensitive data you should create database monitors in a library that is not publicly
authorized to prevent exposure to the sensitive data.

What kinds of statistics you can gather

The database monitor provides the same information that is provided with the query optimizer debug
messages (Start Debug (STRDBG)) and the Print SQL information (PRTSQLINF) command.
The following is a sampling of the additional information that is gathered by the database monitors:

• System and job name
• SQL statement and subselect number
• Start and end timestamp
• Estimated processing time
• Total rows in table queried
• Number of rows selected
• Estimated number of rows selected
• Estimated number of joined rows
• Key columns for advised index
• Total optimization time
• Join type and method
• ODP implementation

How you can use performance statistics

You can use these performance statistics to generate various reports. For instance, you can include
reports that show queries that:

• Use an abundance of the system resources.
• Take a long time to execute.
• Did not run because of the query governor time limit.
• Create a temporary index during execution
• Use the query sort during execution
• Might perform faster with the creation of a keyed logical file containing keys suggested by the query

optimizer.

Note: A query that is canceled by an end request generally does not generate a full set of performance
statistics. However, it does contain all the information about how a query was optimized, except for
runtime or multi-step query information.

Related information
Start Debug (STRDBG) command
Print SQL Information (PRTSQLINF) command
Start Database Monitor (STRDBMON) command

130 IBM i: Database Performance and Query Optimization

Start Database Monitor (STRDBMON) command
The Start Database Monitor (STRDBMON) command starts the collection of database performance
statistics for a specified job, for all jobs on the system or for a selected set of jobs. The statistics are
placed in a user-specified database table and member. If the table or member do not exist, one is created
based on the QAQQDBMN table in library QSYS. If the table and member do exist, the record format of the
specified table is verified to insure it is the same.

For each monitor started using the STRDBMON command, the system generates a monitor ID that can be
used to uniquely identify each individual monitor. The monitor ID can be used on the ENDDBMON
command to uniquely identify which monitor is to be ended. The monitor ID is returned in the
informational message CPI436A which is generated for each occurrence of the STRDBMON command.
The monitor ID can also be found in column QQC101 of the QQQ3018 database monitor record.

Informally there are two types of monitors. A private monitor is a monitor over one, specific job (or the
current job). Only one (1) monitor can be started on a specific job at a time. For example, STRDBMON
JOB(*) followed by another STRDBMON JOB(*) within the same job is not allowed. A public monitor is a
monitor which collects data across multiple jobs. There can be a maximum of 10 public monitors active at
any one time. For example, STRDBMON JOB(*ALL) followed by another STRDBMON JOB(*ALL) is allowed
providing the maximum number of public monitors does not exceed 10. You could have 10 public
monitors and 1 private monitor active at the same time for any specific job.

If multiple monitors specify the same output file, only one copy of the database statistic records is written
to the file for each job. For example, STRDBMON OUTFILE(LIB/TABLE1) JOB(*) and STRDBMON
OUTFILE(LIB/TABLE1) JOB(*ALL) target the same output file. For the current job, there are not two copies
of the database statistic records–one copy for the private monitor and one copy for the public monitor.
There is only one copy of the database statistic records.

If the monitor is started on all jobs (a public monitor), any jobs waiting on queues or started during the
monitoring period are included in the monitor data. If the monitor is started on a specific job (a private
monitor) that job must be active in the system when the command is issued. Each job in the system can
be monitored concurrently by one private monitor and a maximum of 10 public monitors.

The STRDBMON command allows you to collect statistic records for a specific set or subset of the queries
running on any job. This filtering can be performed over the job name, user profile, query table names,
query estimated run time, TCP/IP address, or any combination of these filters. Specifying a STRDBMON
filter helps minimize the number of statistic records captured for any monitor.

Example 1: Starting Public Monitoring

 STRDBMON OUTFILE(QGPL/FILE1) OUTMBR(MEMBER1 *ADD)
 JOB(*ALL) FRCRCD(10))

This command starts database monitoring for all jobs on the system. The performance statistics are
added to the member named MEMBER1 in the file named FILE1 in the QGPL library. 10 records are held
before being written to the file.

Example 2: Starting Private Monitoring

 STRDBMON OUTFILE(*LIBL/FILE3) OUTMBR(MEMBER2)
 JOB(134543/QPGMR/DSP01) FRCRCD(20)

This command starts database monitoring for job number 134543. The job name is DSP01 and was
started by the user named QPGMR. The performance statistics are added to the member named
MEMBER2 in the file named FILE3. 20 records are held before being written to the file.

Example 3: Starting Private Monitoring to a File in a Library in an Independent ASP

 STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(134543/QPGMR/DSP01)

This command starts database monitoring for job number 134543. The job name is DSP01 and was
started by the user named QPGMR. The performance statistics are added to the member name

Database performance and query optimization 131

DBMONFILE (since OUTMBR was not specified) in the file named DBMONFILE in the library named LIB41.
This library could exist in more than one independent auxiliary storage pool (ASP); the library in the name
space of the originator's job is always used.

Example 4: Starting Public Monitoring For All Jobs That Begin With 'QZDA

 STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL/*ALL/QZDA*)

This command starts database monitoring for all jobs that whose job name begins with 'QZDA'. The
performance statistics (monitor records) are added to member DBMONFILE (since OUTMBR was not
specified) in file DBMONFILE in library LIB41. This library could exist in more than one independent
auxiliary storage pool (ASP); the library in the name space of the originator's job is always used.

Example 5: Starting Public Monitoring and Filtering SQL Statements That Run Over 10 Seconds

 STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL) RUNTHLD(10)

This command starts database monitoring for all jobs. Monitor records are created only for those SQL
statements whose estimated run time meets or exceeds 10 seconds.

Example 6: Starting Public Monitoring and Filtering SQL Statements That Have an Estimated
Temporary Storage Over 200 MB

 STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL) STGTHLD(200)

This command starts database monitoring for all jobs. Monitor records are created only for those SQL
statements whose estimated temporary storage meets or exceeds 200 MB.

Example 7: Starting Private Monitoring and Filtering Over a Specific File

 STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*)
 FTRFILE(LIB41/TABLE1)

This command starts database monitoring for the current job. Monitor records are created only for those
SQL statements that use file LIB41/TABLE1.

Example 8: Starting Private Monitoring for the Current User

 STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*) FTRUSER(*CURRENT)

This command starts database monitoring for the current job. Monitor records are created only for those
SQL statements that are executed by the current user.

Example 9: Starting Public Monitoring For Jobs Beginning With 'QZDA' and Filtering Over Run Time
and File

 STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL/*ALL/QZDA*)
 RUNTHLD(10) FTRUSER(DEVLPR1) FTRFILE(LIB41/TTT*)

This command starts database monitoring for all jobs whose job name begins with 'QZDA'. Monitor
records are created only for those SQL statements that meet all the following conditions:

• The estimated run time, as calculated by the query optimizer, meets, or exceeds 10 seconds
• Was executed by user 'DEVLPR1'.
• Use any file whose name begins with 'TTT' and resides in library LIB41.

132 IBM i: Database Performance and Query Optimization

Example 10: Starting Public Monitoring and Filtering SQL Statements That Have Internet Address
'9.10.111.77'.

 STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL)
 FTRINTNETA('9.10.111.77')

This command starts database monitoring for all jobs. Monitor records are created only for TCP/IP
database server jobs that are using the client IP version 4 address of '9.10.111.77'.

Example 11: Starting Public Monitoring and Filtering SQL Statements That Have a Port Number of
8471

 STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL) FTRLCLPORT(8471)

This command starts database monitoring for all jobs. Monitor records are created only for TCP/IP
database server jobs that are using the local port number 8471.

Example 12: Starting Public Monitoring Based on Feedback from the Query Governor

 CHGSYSVAL QQRYTIMLMT(200)
 STRDBMON OUTFILE(LIB41/DBMONFILE) JOB(*ALL) FTRQRYGOVR(*COND)

This commands starts database monitoring for all jobs whose estimated run time is expected to exceed
200 seconds, based on the response to the query governor. In this example, data is collected only if the
query is canceled or a return code of 2 is returned by a query governor exit program. The query can be
canceled by a user response to the inquiry message CPA4259, issued because the query exceeded the
query governor limits. It can also be canceled by the program logic inside the registered query governor
exit program.

Example 13: Collecting database monitor for Interactive SQL use

STRDBMON OUTFILE(QGPL/STRSQLMON1) OUTMBR(*FIRST *REPLACE)
 JOB(*ALL/*ALL/*ALL) TYPE(*DETAIL)
 FTRCLTPGM(STRSQL)

This command uses the database monitor pre-filter by Client Special Register Program ID to collect
monitor records for all the SQL statements executed by Interactive SQL (STRSQL command) usage.

Related information
Start Database Monitor (STRDBMON) command

End Database Monitor (ENDDBMON) command
The End Database Monitor (ENDDBMON) command ends the collection of database performance
statistics for a specified job, all jobs on the system, or a selected set of jobs (for example, a generic job
name).

To end a monitor, you can specify the job or the monitor ID or both. If only the JOB parameter is specified,
the monitor that was started using the same exact JOB parameter is ended - if there is only one monitor
which matches the specified JOB. If more than one monitor is active which matches the specified JOB,
then the user uniquely identifies which monitor is to be ended by use of the MONID parameter.

When only the MONID parameter is specified, the specified MONID is compared to the monitor ID of the
monitor for the current job and to the monitor ID of all active public monitors (monitors that are open
across multiple jobs). The monitor matching the specified MONID is ended.

The monitor ID is returned in the informational message CPI436A. This message is generated for each
occurrence of the STRDBMON command. Look in the job log for message CPI436A to find the system
generated monitor ID, if needed. The monitor ID can also be found in column QQC101 of the QQQ3018
database monitor record.

Database performance and query optimization 133

Restrictions

• If a specific job name and number or JOB(*) was specified on the Start Database Monitor
(STRDBMON) command, the monitor can only be ended by specifying the same job name and number or
JOB(*) on the ENDDBMON command.

• If JOB(*ALL) was specified on the Start Database Monitor (STRDBMON) command, the monitor
can only be ended by specifying ENDDBMON JOB(*ALL). The monitor cannot be ended by specifying
ENDDBMON JOB(*).

When monitoring is ended for all jobs, all the jobs on the system are triggered to close the database
monitor output table. However, the ENDDBMON command can complete before all the monitored jobs
have written their final statistic records to the log. Use the Work with Object Locks (WRKOBJLCK)
command to determine that all the monitored jobs no longer hold locks on the database monitor output
table before assuming that the monitoring is complete.

Example 1: End Monitoring for a Specific Job

ENDDBMON JOB(*)

This command ends database monitoring for the current job.

Example 2: End Monitoring for All Jobs

ENDDBMON JOB(*ALL)

This command ends the monitor open across all jobs on the system. If more than one monitor with
JOB(*ALL) is active, then the MONID parameter must also be specified to uniquely identify which specific
public monitor to end.

Example 3: End Monitoring for an Individual Public Monitor with MONID Parameter

ENDDBMON JOB(*ALL) MONID(061601001)

This command ends the monitor that was started with JOB(*ALL) and that has a monitor ID of
061601001. Because there were multiple monitors started with JOB(*ALL), the monitor ID must be
specified to uniquely identify which monitor that was started with JOB(*ALL) is to be ended.

Example 4: End Monitoring for an Individual Public Monitor with MONID Parameter

ENDDBMON MONID(061601001)

This command performs the same function as the previous example. It ends the monitor that was started
with JOB(*ALL) or JOB(*) and that has a monitor ID of 061601001.

Example 5: End Monitoring for All JOB(*ALL) Monitors

ENDDBMON JOB(*ALL/*ALL/*ALL) MONID(*ALL)

This command ends all monitors that are active across multiple jobs. It does not end any monitors open
for a specific job or the current job.

Example 6: End Monitoring for a Generic Job

ENDDBMON JOB(QZDA*)

This command ends the monitor that was started with JOB(QZDA*). If more than one monitor with
JOB(QZDA*) is active, then the MONID parameter must also be specified to uniquely identify which
individual monitor to end.

134 IBM i: Database Performance and Query Optimization

Example 7: End Monitoring for an Individual Monitor with a Generic Job

ENDDBMON JOB(QZDA*) MONID(061601001)

This command ends the monitor that was started with JOB(QZDA*) and has a monitor ID of 061601001.
Because there were multiple monitors started with JOB(QZDA*), the monitor ID must be specified to
uniquely identify which JOB(QZDA*) monitor is to be ended.

Example 8: End Monitoring for a Group of Generic Jobs

ENDDBMON JOB(QZDA*) MONID(*ALL)

This command ends all monitors that were started with JOB(QZDA*).

Related information
End Database Monitor (ENDDBMON) command

Database monitor performance rows
The rows in the database table are uniquely identified by their row identification number. The information
within the file-based monitor (Start Database Monitor (STRDBMON)) is written out based upon a
set of logical formats which are defined in the database monitor formats. These views correlate closely to
the debug messages and the Print SQL Information (PRSQLINF) messages.

The database monitor formats section also identifies which physical columns are used for each view and
what information it contains. You can use the views to identify the information that can be extracted from
the monitor. These rows are defined in several different views which are not shipped with the system and
must be created by the user, if wanted. The views can be created with the SQL DDL. The column
descriptions are explained in the tables following each figure.

Related concepts
Database monitor formats
This section contains the formats used to create the database monitor SQL tables and views.

Database monitor examples
The System i Navigator interface provides a powerful tool for gathering and analyzing performance
monitor data using database monitor. However, you might want to do your own analysis of the database
monitor files.

Suppose you have an application program with SQL statements and you want to analyze and performance
tune these queries. The first step in analyzing the performance is collection of data. The following
examples show how you might collect and analyze data using Start Database Monitor
(STRDBMON) and End Database Monitor (ENDDBMON) commands. Performance data is collected in
LIB/PERFDATA for an application running in your current job. The following sequence collects
performance data and prepares to analyze it.

1. STRDBMON FILE(LIB/PERFDATA) TYPE(*DETAIL). If this table does not exist, the command creates one
from the skeleton table in QSYS/QAQQDBMN.

2. Run your application
3. ENDDBMON
4. Create views over LIB/PERFDATA using the SQL DDL. Creating the views is not mandatory. All the

information resides in the base table that was specified on the STRDBMON command. The views simply
provide an easier way to view the data.

You are now ready to analyze the data. The following examples give you a few ideas on how to use this
data. You must closely study the physical and logical view formats to understand all the data being
collected. Then you can create queries that give the best information for your applications.

Related information
Start Database Monitor (STRDBMON) command
End Database Monitor (ENDDBMON) command

Database performance and query optimization 135

Application with table scans example
Determine which queries in your SQL application are implemented with table scans. The complete
information can be obtained by joining two views: QQQ1000, which contains information about the SQL
statements, and QQQ3000, which contains data about queries performing table scans.

The following SQL query can be used:

SELECT (B.End_Timestamp - B.Start_Timestamp) AS TOT_TIME, A.System_Table_Schema,
A.System_Table_Name,
 A.Index_Advised, A.Table_Total_Rows, C.Number_Rows_Returned, A.Estimated_Rows_Selected,
 B.Statement_Text_Long
 FROM LIB.QQQ3000 A, LIB.QQQ1000 B, LIB.QQQ3019 C
 WHERE A.Join_Column = B.Join_Column
 AND A.Join_Column = C.Join_Column

Sample output of this query is shown in the following table. Key to this example are the join criteria:

 WHERE A.Join_Column = B.Join_Column
 AND A.Join_Column = C.Join_Column

Much data about many queries is contained in multiple rows in table LIB/PERFDATA. It is not uncommon
for data about a single query to be contained in 10 or more rows within the table. The combination of
defining the logical views and then joining the views together allows you to piece together all the data for
a query or set of queries. Column QQJFLD uniquely identifies all queries within a job; column QQUCNT is
unique at the query level. The combination of the two, when referenced in the context of the logical views,
connects the query implementation to the query statement information.

Table 39. Output for SQL Queries that Performed Table Scans

Lib
Name

Table
Name

Total
Rows

Index
Advised

Rows
Returned

TOT_
TIME Statement Text

LIB1 TBL1 20000 Y 10 6.2 SELECT * FROM LIB1/TBL1
WHERE FLD1 = 'A'

LIB1 TBL2 100 N 100 0.9 SELECT * FROM LIB1/TBL2

LIB1 TBL1 20000 Y 32 7.1 SELECT * FROM LIB1/TBL1
WHERE FLD1 = 'B' AND
FLD2 > 9000

If the query does not use SQL, the SQL information row (QQQ1000) is not created. Without the SQL
information row, it is more difficult to determine which rows in LIB/PERFDATA pertain to which query.
When using SQL, row QQQ1000 contains the actual SQL statement text that matches the monitor rows to
the corresponding query. Only through SQL is the statement text captured. For queries executed using the
OPNQRYF command, the OPNID parameter is captured and can be used to tie the rows to the query. The
OPNID is contained in column Open_Id of row QQQ3014.

Queries with table scans example
Like the preceding example that showed which SQL applications were implemented with table scans, the
following example shows all queries that are implemented with table scans.

SELECT (D.End_Timestamp - D.Start_Timestamp) AS TOT_TIME, A.System_Table_Schema,
A.System_Table_Name,
 A.Table_Total_Rows, A.Index_Advised,
 B.Open_Id, B.Open_Time,
 C.Clock_Time_to_Return_All_Rows, C.Number_Rows_Returned,
 D.Result_Rows, D.Statement_Text_Long
 FROM LIB.QQQ3000 A INNER JOIN LIB.QQQ3014 B
 ON (A.Join_Column = B.Join_Column
 LEFT OUTER JOIN LIB.QQQ3019 C
 ON (A.Join_Column = C.Join_Column)

136 IBM i: Database Performance and Query Optimization

 LEFT OUTER JOIN LIB.QQQ1000 D
 ON (A.Join_Column = D.Join_Column)

In this example, the output for all queries that performed table scans are shown in the following table.

Note: The columns selected from table QQQ1000 do return NULL default values if the query was not
executed using SQL. For this example assume that the default value for character data is blanks and the
default value for numeric data is an asterisk (*).

Table 40. Output for All Queries that Performed Table Scans

Lib
Name

Table
Name

Total
Rows

Index
Advised

Query
OPNID

ODP
Open
Time

Clock
Time

Recs
Rtned

Rows
Rtned

TOT_
TIME Statement Text

LIB1 TBL1 20000 Y 1.1 4.7 10 10 6.2
SELECT *
FROM LIB1/TBL1
WHERE FLD1 = 'A'

LIB1 TBL2 100 N 0.1 0.7 100 100 0.9
SELECT *
FROM LIB1/TBL2

LIB1 TBL1 20000 Y 2.6 4.4 32 32 7.1
SELECT *
FROM LIB1/TBL1
WHERE FLD1 = 'A'
AND FLD2 > 9000

LIB1 TBL4 4000 N QRY04 1.2 4.2 724 * * *

If the SQL statement text is not needed, joining to table QQQ1000 is not necessary. You can determine
the total time and rows selected from data in the QQQ3014 and QQQ3019 rows.

Table scan detail example
Your next step could include further analysis of the table scan data. The previous examples contained a
column titled Index Advised. A 'Y' (yes) in this column is a hint from the query optimizer that the query
could perform better with an index to access the data. For the queries where an index is advised, the rows
selected by the query are low in comparison to the total number of table rows. This selectivity is another
indication that a table scan might not be optimal. Finally, a long execution time might highlight queries
that could be improved by performance tuning.

The next logical step is to look into the index advised optimizer hint. The following query can be used:

SELECT A.System_Table_Schema, A.System_Table_Name,
 A.Index_Advised, A.Index_Advised_Columns,
 A.Index_Advised_Columns_Count, B.Open_Id,
 C.Statement_Text_Long
 FROM LIB.QQQ3000 A INNER JOIN LIB.QQQ3014 B
 ON (A.Join_Column = B.Join_Column)
 LEFT OUTER JOIN LIB.QQQ1000 C
 ON (A.Join_Column = C.Join_Column)
 WHERE A.Index_Advised = 'Y'

There are two slight modifications from the first example. First, the selected columns have been changed.
Most important is the selection of Index_Advised_Columns containing a list of possible key columns to
use when creating the suggested index. Second, the query selection limits the output to those table scan
queries where the optimizer advises that an index is created (A.Index_Advised = 'Y'). The following table
shows what the results might look like.

Database performance and query optimization 137

Table 41. Output with Recommended Key Columns

Lib
Name

Table
Name

Index
Advised

Advised
Key
columns

Advised
Primary
Key

Query
OPNID Statement Text

LIB1 TBL1 Y FLD1 1
SELECT * FROM LIB1/TBL1
WHERE FLD1 = 'A'

LIB1 TBL1 Y FLD1,
FLD2

1
SELECT * FROM LIB1/TBL1
WHERE FLD1 = 'B' AND
FLD2 > 9000

LIB1 TBL4 Y FLD1,
FLD4

1 QRY04

Determine whether it makes sense to create a permanent index as advised by the optimizer. In this
example, creating one index over LIB1/TBL1 satisfies all three queries since each use a primary or left-
most key column of FLD1. By creating one index over LIB1/TBL1 with key columns FLD1, FLD2, there is
potential to improve the performance of the second query even more. Consider how often these queries
are run and the overhead of maintaining an additional index over the table when deciding whether to
create the suggested index.

If you create a permanent index over FLD1, FLD2 the next sequence of steps is as follows:

1. Start the performance monitor again
2. Rerun the application
3. End the performance monitor
4. Re-evaluate the data.

It is likely that the three index-advised queries are no longer performing table scans.

Additional database monitor examples
The following are additional ideas or examples on how to extract information from the performance
monitor statistics. All the examples assume that data has been collected in LIB/PERFDATA and the
documented views have been created.

1. How many queries are performing dynamic replans?

 SELECT COUNT(*)
 FROM LIB.QQQ1000
 WHERE Dynamic_Replan_Reason_Code <> 'NA'

2. What is the statement text and the reason for the dynamic replans?

 SELECT Dynamic_Replan_Reason_Code, Statement_Text_Long
 FROM LIB.QQQ1000
 WHERE Dynamic_Replan_Reason_Code <> 'NA'

Note: You need to refer to the description of column Dynamic_Replan_Reason_Code for definitions of
the dynamic replan reason codes.

3. How many indexes have been created over LIB1/TBL1?

 SELECT COUNT(*)
 FROM LIB.QQQ3002
 WHERE System_Table_Schema = 'LIB1'
 AND System_Table_Name = 'TBL1'

4. What key columns are used for all indexes created over LIB1/TBL1 and what is the associated SQL
statement text?

SELECT A.System_Table_Schema, A.System_Table_Name,
 A.Index_Advised_Columns, B.Statement_Text_Long

138 IBM i: Database Performance and Query Optimization

 FROM LIB.QQQ3002 A, LIB.QQQ1000 B
 WHERE A.Join_Column = B.Join_Column
 AND A.System_Table_Schema = 'LIB1'
 AND A.System_Table_Name = 'TBL1'

Note: This query shows key columns only from queries executed using SQL.
5. What key columns are used for all indexes created over LIB1/TBL1 and what was the associated SQL

statement text or query open ID?

SELECT A.System_Table_Schema, A.System_Table_Name, A.Index_Advised_Columns,
 B.Open_Id, C.Statement_Text_Long
 FROM LIB.QQQ3002 A INNER JOIN LIB.QQQ3014 B
 ON (A.Join_Column = B.Join_Column)
 LEFT OUTER JOIN LIB.QQQ1000 C
 ON (A.Join_Column = C.Join_Column)
 WHERE A.System_Table_Schema LIKE '%'
 AND A.System_Table_Name = '%'

Note: This query shows key columns from all queries on the system.
6. What types of SQL statements are being performed? Which are performed most frequently?

SELECT CASE Statement_Function
 WHEN 'O' THEN 'Other'
 WHEN 'S' THEN 'Select'
 WHEN 'L' THEN 'DDL'
 WHEN 'I' THEN 'Insert'
 WHEN 'U' THEN 'Update'
 ELSE 'Unknown'
 END, COUNT(*)
 FROM LIB.QQQ1000
 GROUP BY Statement_Function
 ORDER BY 2 DESC

7. Which SQL queries are the most time consuming? Which user is running these queries?

SELECT (End_Timestamp - Start_Timestamp), Job_User,
 Current_User_Profile, Statement_Text_Long
 FROM LIB.QQQ1000
 ORDER BY 1 DESC

8. Which queries are the most time consuming?

SELECT (A.Open_Time + B.Clock_Time_to_Return_All_Rows),
 A.Open_Id, C.Statement_Text_Long
 FROM LIB.QQQ3014 A LEFT OUTER JOIN LIB.QQQ3019 B
 ON (A.Join_Column = B.Join_Column)
 LEFT OUTER JOIN LIB.QQQ1000 C
 ON (A.Join_Column = C.Join_Column)
 ORDER BY 1 DESC

Note: This example assumes that detail data was collected (STRDBMON TYPE(*DETAIL)).
9. Show the data for all SQL queries with the data for each SQL query logically grouped.

SELECT A.*
 FROM LIB.PERFDATA A, LIB.QQQ1000 B
 WHERE A.QQJFLD = B.Join_Column

Note: This might be used within a report that will format the interesting data into a more readable
format. For example, all reason code columns can be expanded by the report to print the definition of
the reason code. Physical column QQRCOD = 'T1' means that a table scan was performed because no
indexes exist over the queried table.

10. How many queries are implemented with temporary tables because a key length greater than 2000
bytes, or more than 120 key columns was specified for ordering?

SELECT COUNT(*)
 FROM LIB.QQQ3004
 WHERE Reason_Code = 'F6'

Database performance and query optimization 139

11. Which SQL queries were implemented with nonreusable ODPs?

SELECT B.Statement_Text_Long
 FROM LIB.QQQ3010 A, LIB.QQQ1000 B
 WHERE A.Join_Column = B.Join_Column
 AND A.ODP_Implementation = 'N';

12. What is the estimated time for all queries stopped by the query governor?

SELECT Estimated_Processing_Time, Open_Id
 FROM LIB.QQQ3014
 WHERE Stopped_By_Query_Governor = 'Y'

Note: This example assumes that detail data was collected (STRDBMON TYPE(*DETAIL)).
13. Which queries estimated time exceeds actual time?

SELECT A.Estimated_Processing_Time,
 (A.Open_Time + B.Clock_Time_to_Return_All_Rows),
 A.Open_Id, C.Statement_Text_Long
 FROM LIB.QQQ3014 A LEFT OUTER JOIN LIB.QQQ3019 B
 ON (A.Join_Column = B.Join_Column)
 LEFT OUTER JOIN LIB.QQQ1000 C
 ON (A.Join_Column = C.Join_Column)
 WHERE A.Estimated_Processing_Time/1000 >
 (A.Open_Time + B.Clock_Time_to_Return_All_Rows)

Note: This example assumes that detail data was collected (STRDBMON TYPE(*DETAIL)).
14. Should you apply a PTF for queries containing UNIONs? Yes, if any queries are performing UNIONs.

Do any of the queries perform this function?

 SELECT COUNT(*)
 FROM QQQ3014
 WHERE Has_Union = 'Y'

Note: If the result is greater than 0, apply the PTF.
15. You are a system administrator and an upgrade to the next release is planned. You want to compare

data from the two releases.

• Collect data from your application on the current release and save this data in LIB/CUR_DATA
• Move to the next release
• Collect data from your application on the new release and save this data in a different table: LIB/

NEW_DATA
• Write a program to compare the results. You need to compare the statement text between the rows

in the two tables to correlate the data.

Using System i Navigator with detailed monitors
You can work with detailed monitors from the System i Navigator interface. The detailed SQL performance
monitor is the System i Navigator version of the STRDBMON database monitor, found on the native
interface.

You can start this monitor by right-clicking SQL Performance Monitors under the Database portion of the
System i Navigator tree and selecting New > Monitor. This monitor saves detailed data in real time to a
hard disk. It does not need to be paused or ended in order to analyze the results. You can also choose to
run a Visual Explain based on the data gathered by the monitor. Since this monitor saves data in real time,
it might have a performance impact on your system.

Starting a detailed monitor
You can start a detailed monitor from the System i Navigator interface.

You can start this monitor by right-clicking SQL Performance Monitors under the Database portion of the
System i Navigator tree and selecting New > SQL Performance Monitor.

When you create a detailed monitor, you can filter the information that you want to capture.

140 IBM i: Database Performance and Query Optimization

Initial number of records:
Select to specify the number of records initially allocated for the monitor. The 'Initial number of
records' option is used to pre-allocate storage to the database monitor out file. When collecting large
amounts of monitor records, this option improves the collection performance by avoiding automatic
storage extensions that occur as a file grows in size.

Minimum estimated query runtime:
Select to include queries that exceed a specified amount of time. Select a number and then a unit of
time.

Minimum estimated temporary storage:
Select to include queries that exceed a certain amount of temporary storage. Specify a size in MB.

Job name:
Select to filter by a specific job name. Specify a job name in the field. You can specify the entire ID or
use a wildcard. For example, 'QZDAS*' finds all jobs where the name starts with 'QZDAS.'

Job user:
Select to filter by a job user. Specify a user ID in the field. You can specify the entire ID or use a
wildcard. For example, 'QUSER*' finds all user IDs where the name starts with 'QUSER.'

Current user:
Select to filter by the current user of the job. Specify a user ID in the field. You can specify the entire
ID or use a wildcard. For example, 'QSYS*' finds all users where the name starts with 'QSYS.'

Client location:
Select to filter by Internet access. The input needs to be in IPv4 or IPv6 form.

1. IP version 4 address in dotted decimal form. Specify an Internet Protocol version 4 address in the
form nnn.nnn.nnn.nnn where each nnn is a number in the range 0 through 255.

2. IP version 6 address in colon hexadecimal form. Specify an internet protocol version 6 address in
the form xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx, where each xxxx is a hex number in the range 0
through FFFF. IP version 6 includes the IPv4-mapped IPv6 address form (for
example, ::FFFF:1.2.3.4). For IP version 6, the compressed form of the address is allowed.

3. IP host domain name. Specify an internet host domain name of up to 254 characters in length.

Local port:
Select to filter by port number. You can select a port from the list or else enter your own port number.

Ports in the list include:

• 446 - DRDA/DDM
• 447 - DRDA/DDM
• 448 - Secure DRDA/DDM (SSL)
• 4402 - QXDAEDRSQL server
• 8471 - Database server
• 9471 - Secure database server (SSL)

Query Governor limits:
Select to search for queries that have exceeded or are expected to exceed the query governor limits
set for the system. Choose from the following options:

• Always collect information when exceeded
• Conditional collection of information when exceeded

Client registers:
Select to filter by the client register information.

Statements that access these objects:
Select to filter by only queries that use certain tables. Click Browse to select tables to include. To
remove a table from the list, select the table and click Remove. A maximum of 10 table names can be
specified.

Database performance and query optimization 141

Activity to monitor:
Select to collect monitor output for user-generated queries or for both user-generated and system-
generated queries.

You can choose which jobs you want to monitor or choose to monitor all jobs. You can have multiple
instances of monitors running on your system at one time. You can create up to 10 detailed monitors to
monitor all jobs. When collecting information for all jobs, the monitor will collect on previously started
jobs or new jobs that are started after the monitor is created. You can edit this list by selecting and
removing jobs from the Selected jobs list.

Analyzing detailed monitor data
SQL performance monitors provides several predefined reports that you can use to analyze your monitor
data.

To view these reports, right-click a monitor and select Analyze. The monitor does not need to be ended in
order to view this information.

On the Analysis Overview dialog, you can view overview information or else choose one of the following
categories:

• How much work was requested?
• What options were provided to the optimizer?
• What implementations did the optimizer use?
• What types of SQL statements were requested?
• Miscellaneous information
• I/O information

From the Actions menu, you can choose one of the following summary predefined reports:

142 IBM i: Database Performance and Query Optimization

User summary
Contains a row of summary information for each user. Each row summarizes all SQL activity for that
user.

Job summary
Contains a row of information for each job. Each row summarizes all SQL activity for that job. This
information can be used to tell which jobs on the system are the heaviest users of SQL. These jobs are
perhaps candidates for performance tuning. You could then start a separate detailed performance
monitor on an individual job to get more detailed information without having to monitor the entire
system.

Operation summary
Contains a row of summary information for each type of SQL operation. Each row summarizes all SQL
activity for that type of SQL operation. This information provides the user with a high-level indication
of the type of SQL statements used. For example, are the applications mostly read-only, or is there a
large amount of update, delete, or insert activity. This information can then be used to try specific
performance tuning techniques. For example, if many INSERTs are occurring, you might use an
OVRDBF command to increase the blocking factor or the QDBENCWT API.

Program summary
Contains a row of information for each program that performed SQL operations. Each row summarizes
all SQL activity for that program. This information can be used to identify which programs use the
most or most expensive SQL statements. Those programs are then potential candidates for
performance tuning. A program name is only available if the SQL statements are embedded inside a
compiled program. SQL statements that are issued through ODBC, JDBC, or OLE DB have a blank
program name unless they result from a procedure, function, or trigger.

In addition, when a green check is displayed under Summary column, you can select that row and click
Summary to view information about that row type. Click Help for more information about the summary
report. To view information organized by statements, click Statements.

Comparing monitor data
You can use System i Navigator to compare data sets in two or more monitors.

System i Navigator provides you with two types of comparison. The first is a simple compare that provides
a high-level comparison of the monitors or snapshots. The second is a detailed comparison. The simple
compare provides you with enough data about the monitors or snapshots to help you determine if a
detailed comparison is helpful.

To launch a simple compare, go to System i Navigator > system name > SQL performance monitors.
Right-click one or more monitors and select Compare.

To launch a detailed comparison, select the Detailed Comparison tab.

On the Detailed Comparison dialog, you can specify information about the data sets that you want to
compare.

Name
The name of the monitors that you want to compare.

Schema mask
Select any names that you want the comparison to ignore. For example, consider the following
scenario: You have an application running in a test schema and it is optimized. Now you move it to the
production schema and you want to compare how it executes there. The statements in the
comparison are identical except that the statements in the test schema use "TEST" and the
statements in the production schema use "PROD". You can use the schema mask to ignore "TEST" in
the first monitor and "PROD" in the second monitor. Then the statements in the two monitors appear
identical.

Statements that ran longer than
The minimum runtime for statements to be compared.

Database performance and query optimization 143

Minimum percent difference
The minimum difference in key attributes of the two statements being compared that determines if
the statements are considered equal or not. For example, if you select 25% as the minimum percent
different, only matching statements whose key attributes differ by 25% or more are returned.

When you click Compare, both monitors are scanned for matching statements. Any matches found are
displayed side-by-side for comparison of key attributes of each implementation.

On the Comparison output dialog, you view statements that are included in the monitor by clicking Show
Statements. You can also run Visual Explain by selecting a statement and clicking Visual Explain.

Any matches found are displayed side-by-side for comparison of key attributes of each implementation.

Viewing statements in a monitor
You can view SQL statements that are included in a detailed monitor.

Right-click any detailed monitor in the SQL performance monitor window and select Show statements.

The filtering options provide a way to focus in on a particular area of interest:

Minimum runtime for the longest execution of the statement:
Select to include statements that exceed a certain amount of time. Select a number and then a unit of
time.

Statements that ran on or after this date and time:
Select to include statements run at a specified date and time. Select a date and time.

Statements that reference the following objects:
Select to include statements that use or reference certain objects. Click Browse to select objects to
include.

Statements that contain the following text:
Select to include only those statements that contain a specific type of SQL statement. For example,
specify SELECT if you only want to include statements that are using SELECT. The search is case
insensitive for ease of use. For example, the string 'SELECT' finds the same entries as the search string
'select'.

Multiple filter options can be specified. In a multi-filter case, the candidate entries for each filter are
computed independently. Only those entries that are present in all the candidate lists are shown. For
example, if you specified options Minimum runtime for the longest execution of the statement and
Statements that ran on or after this date and time, you will be shown statements with the minimum
runtime that ran on or after the specified date and time.

Related reference
Index advisor
The query optimizer analyzes the row selection in the query and determines, based on default values, if
creation of a permanent index improves performance. If the optimizer determines that a permanent index
might be beneficial, it returns the key columns necessary to create the suggested index.

Importing a monitor
You can import monitor data that has been collected using some other interface by using System i
Navigator.

Monitors that are created using the Start Database Monitor (STRDBMON) command are
automatically registered with System i Navigator. They are also included in the list of monitors displayed
by System i Navigator.

To import monitor data, right-click SQL Performance monitors and select Import. Once you have
imported a monitor, you can analyze the data.

144 IBM i: Database Performance and Query Optimization

Index advisor
The query optimizer analyzes the row selection in the query and determines, based on default values, if
creation of a permanent index improves performance. If the optimizer determines that a permanent index
might be beneficial, it returns the key columns necessary to create the suggested index.

The optimizer is able to perform radix index probe over any combination of the primary key columns, plus
one additional secondary key column. Therefore it is important that the first secondary key column is the
most selective secondary key column. The optimizer uses radix index scan with any of the remaining
secondary key columns. While radix index scan is not as fast as radix index probe, it can still reduce the
number of keys selected. It is recommended that secondary key columns that are fairly selective are
included.

Determine the true selectivity of any secondary key columns and whether you include those key columns
in the index. When building the index, make the primary key columns the left-most key columns, followed
by any of the secondary key columns chosen, prioritized by selectivity.

After creating the suggested index and executing the query again, it is possible that the query optimizer
will choose not to use the suggested index. It does not include join, ordering, and grouping criteria. The
SQE optimizer includes selection, join, ordering, and grouping criteria when suggesting indexes. Local
selection advice can now factor in both AND and OR predicates with the qualifications mentioned below.

You can access index advisor information in many different ways. These ways include:

• The index advisor interface in System i Navigator
• SQL performance monitor Show statements
• Visual Explain interface
• Querying the Database monitor view 3020 - Index advised.

Related reference
Overview of information available from Visual Explain
You can use Visual Explain to view many types of information.
Database monitor view 3020 - Index advised (SQE)
Displays the SQL logical view format for database monitor QQQ3020.
Viewing statements in a monitor
You can view SQL statements that are included in a detailed monitor.

Index advice and OR predicates
Index advice generation to handle OR predicates

Index Advisor has been extended to include queries that OR together local selection (WHERE clause)
columns over a single table. OR advice requires two or more indexes to be created as a dependent set.

If any of the OR'd indexes are missing, the optimizer won’t be able to cost and choose these dependent
indexes for implementation of the OR based query.

This relationship between OR based indexes in the SYSIXADV index advice table is with a new
DEPENDENT_ADVICE_COUNT column.

Some restrictions with this support:

• OR'd predicate advice appears only if no other advice is generated
• Maximum of 5 predicates OR'd together
• Advised for files with OR'd local selection that get costed in the primary join dial when optimizing a join

query

When Index Advisor shows highly dependent advice, use of the exact match capability from Show
Statements to find the query in the plan cache is helpful. Once found, use Visual Explain to discover the
dependent index advice specific to that query.

Database performance and query optimization 145

Index Or Advice example

• Should advise indexes over all OR'd predicate columns
• All 3 advised indexes will have DEPENDENT_ADVICE_COUNT>0
• Execution with indexes should produce bitmap implementation and register no new advice

SELECT orderkey, partkey, suppkey,
linenumber, shipmode orderpriority
FROM item_fact
WHERE OrderKey <= 10 OR
SuppKey <= 10 OR
PartKey <= 10
OPTIMIZE FOR ALL ROWS

The graphic below shows the Index advice for the OR'd predicate columns:

The graphic below depicts the Visual Explain showing the implementation of merge bitmap
representation using the OR'd advice indexes:

146 IBM i: Database Performance and Query Optimization

Displaying index advisor information
You can display index advisor information from the optimizer using System i Navigator.

System i Navigator displays information found in the QSYS2/SYSIXADV system table.

To display index advisor information, follow these steps:

1. In the System i Navigator window, expand the system that you want to use.
2. Expand Databases.
3. Right-click the database that you want to work with and select Index Advisor > Index Advisor.

You can also find index advisor information for a specific schema or a specific table by right-clicking on a
schema or table object.

Once you have displayed the information, you have several options. You can create an index from the list,
remove the index advised from the list, or clear the list entirely. You can also right-click on an index and
select Show SQL, launching a Run SQL Scripts session with the index creation statement. Finally, you can

Database performance and query optimization 147

right-click on an advised index and select Show Statements. With additional information automatically
provided in the advised index filter for the Plan Cache search, the resulting SQL statements shown will be
a better match to the original queries that generated that specific index advice.

Depending on if you are viewing the index advice at the database level or the schema level your list could
be large. Once you have the list displayed, follow these steps to subset your list:

1. Go to the View menu option, and select Customize this view > Include
2. Enter the information you would like to filter the list by.
3. Press the OK button to get the refreshed list of index advice.

Database manager indexes advised system table
This topic describes the indexes advised system table.

Table 42. SYSIXADV system table

Column name System
column name

Data type Description

TABLE_NAME TBNAME VARCHAR(258) Table over which an index is advised

TABLE_SCHEMA DBNAME VARCHAR(128) SQL schema containing the table

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name on which the index
is advised

PARTITION_NAME TBMEMBER CHAR(10) Partition detail for the index

KEY_COLUMNS_ADVISED KEYSADV VARCHAR(1600
0)

Column names for the advised index

LEADING_COLUMN_KEYS LEADKEYS VARCHAR(1600
0)

Leading, Order Independent keys. the
keys at the beginning of the
KEY_COLUMNS_ADVISED field which
could be reordered and still satisfy the
index being advised.

INDEX_TYPE INDEX_TYPE CHAR(14) Radix (default) or EVI

LAST_ADVISED LASTADV TIMESTAMP Last time this row was updated

TIMES_ADVISED TIMESADV BIGTINT Number of times this index has been
advised

ESTIMATED_CREATION_TIM
E

ESTTIME INT Estimated number of seconds for
index creation

REASON_ADVISED REASON CHAR(2) Coded reason why index was advised

LOGICAL_PAGE_SIZE PAGESIZE INT Recommended page size for index

MOST_EXPENSIVE_QUERY QUERYCOST INT Execution time in seconds of the query

AVERAGE_QUERY_ESTIMATE QUERYEST INT Average execution time in seconds of
the query

TABLE_SIZE TABLE_SIZE BIGINT Number of rows in table when the
index was advised

NLSS_TABLE_NAME NLSSNAME CHAR(10) NLSS table to use for the index

NLSS_TABLE_SCHEMA NLSSDBNAM
E

CHAR(10) Schema name of the NLSS table

148 IBM i: Database Performance and Query Optimization

Table 42. SYSIXADV system table (continued)

Column name System
column name

Data type Description

MTI_USED MTIUSED BIGINT The number of times that this specific
Maintained Temporary Index (MTI) has
been used by the optimizer. The
optimizer stops using a matching MTI
once a permanent index is created.

MTI_CREATED MTICREATED INTEGER The number of times that this specific
Maintained Temporary Index (MTI) has
been created by the optimizer. MTIs do
not persist across system IPLs.

LAST_MTI_USED LASTMTIUSE TIMESTAMP The timestamp representing the last
time this specific Maintained
Temporary Index (MTI) was used by
the optimizer to improve the
performance of a query. The MTI Last
Used field can be blank. The blank
field indicates that an MTI which
exactly matches this advice has never
been used by the queries which
generated this index advice.

AVERAGE_QUERY_ESTIMATE
_MICRO

QRYMICRO BIGINT Average execution time in
microseconds of the query which
drove the index advice

EVI_DISTINCT_VALUES EVIVALS INTEGER Recommended value to use when
creating the advised EVI index. This
value is n within the WITH n DISTINCT
VALUES clause on the CREATE INDEX
SQL statement.

INCLUDE_COLUMNS INCLCOL CLOB(10000) EVI INCLUDE expressions for index
creation.

FIRST_ADVISED FIRSTADV TIMESTAMP When this row was inserted.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of the table schema.

MTI_USED_FOR_STATS MTISTATS BIGINT Number of times Maintained
Temporary Index was used as a source
for optimizer statistics.

LAST_MTI_USED_FOR_STATS LASTMTISTA TIMESTAMP The timestamp representing the last
time this specific Maintained
Temporary Index was used as a source
of statistics by the optimizer to
improve the performance of a query.

DEPENDENT_ADVICE_COUN
T

DEPCNT BIGINT The number of times this index advice
was dependent upon other advice.

Database performance and query optimization 149

Index advisor column descriptions
Displays the columns that are used in the Index advisor window.

Table 43. Columns used in Index advisor window

Column name Description

Table for Which Index was Advised The optimizer is advising creation of a permanent index over
this table. This value is the long name for the table. The
advice was generated because the table was queried and no
existing permanent index could be used to improve the
performance of the query.

Schema Schema or library containing the table.

System Schema System name of the schema.

System Name System table name on which the index is advised

Partition Partition detail for the index. Possible values:

• <blank>, which means For all partitions
• For Each Partition
• specific name of the partition

Keys Advised Column names for the advised index. The order of the
column names is important. The names are listed in the
same order as in the CREATE INDEX SQL statement. An
exception is when the leading, order independent key
information indicates that the ordering can be changed.

Leading Keys Order Independent Leading, Order Independent keys. the keys at the beginning
of the KEY_COLUMNS_ADVISED field which could be
reordered and still satisfy the index being advised.

Index Type Advised Radix (default) or EVI

Last Advised for Query Use The timestamp representing the last time this index was
advised for a query.

Times Advised for Query Use The cumulative number of times this index has been advised.
This count ceases to increase once a matching permanent
index is created. The row of advice remains in this table until
the user removes it

Estimated Index Creation Time Estimated time in seconds to create this index.

Reason advised Reason why index was advised. Possible values are:

Row selection

Ordering/Grouping

Row selection and Ordering/Grouping

Logical Page Size Advised (KB) Recommended page size to be used on the PAGESIZE
keyword of the CREATE INDEX SQL statement when creating
this index.

Most Expensive Query Estimate Execution time in seconds of the longest running query
which generated this index advice.

Average of Query Estimates Average execution time in seconds of all queries that
generated this index advice.

150 IBM i: Database Performance and Query Optimization

Table 43. Columns used in Index advisor window (continued)

Column name Description

Rows in Table when Advised Number of rows in table for the last time this index was
advised.

NLSS Table Advised The sort sequence table in use by the query which generated
the index advice. For more detail on sort sequences:

NLSS Schema Advised The schema of the sort sequence table.

MTI Used The number of times that this specific Maintained Temporary
Index (MTI) has been used by the optimizer.

MTI Created The number of times that this specific Maintained Temporary
Index (MTI) has been created by the optimizer. MTIs do not
persist across system IPLs.

MTI Last Used The timestamp representing the last time this specific
Maintained Temporary Index (MTI) was used by the
optimizer to improve the performance of a query. The MTI
Last Used field can be blank. A blank field indicates that an
MTI which exactly matches this advice has never been used
by the queries which generated this index advice.

EVI Distinct Values Recommended value to use when creating the advised EVI
index. This value is n within the WITH n DISTINCT VALUES
clause on the CREATE INDEX SQL statement.

First Advised The date/time when a row is first added to the Index Advisor
table for this advice.

MTI Used for Stats The number of times that this specific Maintained Temporary
Index (MTI) has been used by the optimizer.

MTI Last Used for Stats The timestamp representing the last time this specific
Maintained Temporary Index (MTI) was used as a source of
statistics by the optimizer to improve the performance of a
query. The MTI Last Used field can be blank.

Dependent Advice Count Dependent implies that this advised index is dependent on
the creation of other dependent advised indexes and all of
the other dependent indexes must be created in order for a
index ORing bitmap implementation can be costed and
utilized.

• Zero - this advised index stands on its own, no OR selection
• Greater than Zero – Compare this column against the

TIMES_ADVISED column to understand how often this
advised index has both OR and non-OR selection.

Querying database monitor view 3020 - Index advised
The index advisor information can be found in the Database Monitor view 3020 - Index advised (SQE).

The advisor information is stored in columns QQIDXA, QQIDXK, and QQIDXD. When the QQIDXA column
contains a value of 'Y' the optimizer is advising you to create an index using the key columns shown in
column QQIDXD. The intention of creating this index is to improve the performance of the query.

In the list of key columns contained in column QQIDXD, the optimizer has listed what it considers the
suggested primary and secondary key columns. Primary key columns are columns that can significantly
reduce the number of keys selected based on the corresponding query selection. Secondary key columns
are columns that might or might not significantly reduce the number of keys selected.

Database performance and query optimization 151

Column QQIDXK contains the number of suggested primary key columns that are listed in column
QQIDXD. These primary key columns are the left-most suggested key columns. The remaining key
columns are considered secondary key columns and are listed in order of expected selectivity based on
the query. For example, assuming QQIDXK contains the value of four and QQIDXD specifies seven key
columns, then the first four key columns are the primary key columns. The remaining three key columns
are the suggested secondary key columns.

Condensing index advice
Many times, the index advisor advises several different indexes for the same table. You can condense
these advised indexes into the best matches for your queries.

1. In the System i Navigator window, expand the system you want to use.
2. Expand Databases.
3. Right-click the database that you want to work with and select Index Advisor > Condense Advised

Indexes.

Depending on if you are viewing the condensed index advice at the database level or the schema level
your list could be large. Once you have the list displayed, follow these steps to subset your list:

1. Go to the View menu option, and select Customize this view > Include ...
2. Enter the information you would like to filter the list by.
3. Select OK to get the refreshed list of condensed index advice.

Viewing your queries with Visual Explain
You can use the Visual Explain tool with System i Navigator to create a query graph that graphically
displays the implementation of an SQL statement. You can use this tool to see information about both
static and dynamic SQL statements. Visual Explain supports the following types of SQL statements:
SELECT, INSERT, UPDATE, and DELETE.

Queries are displayed using a graph with a series of icons that represent different operations that occur
during implementation. This graph is displayed in the main window. In the lower portion of the pane, the
SQL statement that the graph is based on is displayed. If Visual Explain is started from Run SQL Scripts,
you can view the debug messages issued by the optimizer by clicking the Optimizer messages tab. The
query attributes are displayed in the right pane.

Visual Explain can be used to graphically display the implementations of queries stored in the detailed
SQL performance monitor. However, it does not work with tables resulting from the memory-resident
monitor.

Starting Visual Explain
There are two ways to invoke the Visual Explain tool. The first, and most common, is through System i
Navigator. The second is through the Visual Explain (QQQVEXPL) API.

You can start Visual Explain from any of the following windows in System i Navigator:

• Enter an SQL statement in the Run SQL Scripts window. Select the statement and choose Explain or
Run and Explain from the Visual Explain menu.

• Expand the list of available SQL Performance Monitors. Right-click a detailed SQL Performance Monitor
and choose the Show Statements option. Select filtering information and select the statement in the
List of Statements window. Right-click and select Visual Explain. You can also start an SQL

152 IBM i: Database Performance and Query Optimization

Performance Monitor from Run SQL Scripts. Select Start SQL Performance monitor from the Monitor
menu.

• Start the SQL Details for Jobs function by right-clicking Databases and select SQL Details for Jobs.
Click Apply. Select a job from the list and right-click and select Show Details. When the SQL is
displayed in the lower pane, you can start Visual Explain by right-clicking on Statement and selecting
Visual Explain.

• Right-click SQL Plan Cache and select Show Statements. Select filtering information and select the
statement in the List of Statements window. Right-click and select Visual Explain.

• Expand the list of available SQL Plan Cache Snapshots. Right-click a snapshot and select Show
Statements. Select filtering information and select the statement in the List of Statements window.
Right-click and select Visual Explain.

• Expand the list of SQL Plan Cache Event Monitors. Right-click an event monitor and select Show
Statements. Select filtering information and select the statement in the List of Statements window.
Right-click and select Visual Explain.

You have three options when running Visual Explain from Run SQL Scripts.

Visual Explain only
This option allows you to explain the query without actually running it. The data displayed represents
the estimate of the query optimizer.

Note: Some queries might receive an error code 93 stating that they are too complex for displaying in
Visual Explain. You can circumvent this error by selecting the "Run and Explain" option.

Run and Explain
If you select Run and Explain, the query is run by the system before the diagram is displayed. This
option might take a significant amount of time, but the information displayed is more complete and
accurate.

Explain while running
For long running queries, you can choose to start Visual Explain while the query is running. By
refreshing the Visual Explain diagram, you can view the progress of the query.

In addition, a database monitor table that was not created as a result of using System i Navigator can be
explained through System i Navigator. First you must import the database monitor table into System i
Navigator. To import, right-click the SQL Performance Monitors and choose the Import option. Specify a
name for the performance monitor (name it is known by within System i Navigator) and the qualified name
of the database monitor table. Be sure to select Detailed as the type of monitor. Detailed represents the
file-based (STRDBMON) monitor while Summary represents the memory-resident monitor (which is not
supported by Visual Explain). Once the monitor has been imported, follow the steps to start Visual Explain
from within System i Navigator.

You can save your Visual Explain information as an SQL Performance monitor. This monitor can be useful
if you started the query from Run SQL Scripts and want to save the information for later comparison.
Select Save as Performance monitor from the File menu.

Related information
Visual Explain (QQQVEXPL) API

Overview of information available from Visual Explain
You can use Visual Explain to view many types of information.

The information includes:

• Information about each operation (icon) in the query graph
• Highlight expensive icons
• The statistics and index advisor
• The predicate implementation of the query
• Basic and detailed information in the graph

Database performance and query optimization 153

Information about each operation (icon) in the query graph

As stated before, the icons in the graph represent operations that occur during the implementation of the
query. The order of operations is shown by the arrows connecting the icons. If parallelism was used to
process an operation, the arrows are doubled. Occasionally, the optimizer "shares" hash tables with
different operations in a query, causing the lines of the query to cross.

You can view information about an operation by selecting the icon. Information is displayed in the
Attributes table in the right pane. To view information about the environment, click an icon and then
select Display query environment from the Action menu. Finally, you can view more information about
the icon by right-clicking the icon and selecting Help.

Highlight expensive icons

You can highlight problem areas (expensive icons) in your query using Visual Explain. Visual Explain offers
you two types of expensive icons to highlight: by processing time or number of rows. You can highlight
icons by selecting Highlight expensive icons from the View menu.

The statistics and index advisor

During the query implementation, the optimizer can determine if statistics need to be created or
refreshed, or if an index might make the query run faster. You can view these recommendations using the
Statistics and Index Advisor from Visual Explain. Start the advisor by selecting Advisor from the Action
menu. Additionally, you can begin collecting statistics or create an index directly from the advisor.

The predicate implementation of the query

Visual explain allows you to view the implementation of query predicates. Predicate implementation is
represented by a blue plus sign next to an icon. You can expand this view by right-clicking the icon and
selecting Expand. or open it into another window. Click an icon to view attributes about the operation. To
collapse the view, right-click anywhere in the window and select Collapse. This function is only available
on V5R3 or later systems.

The optimizer can also use the Look Ahead Predicate Generation to minimize the random the I/O costs of
a join. To highlight predicates that used this method, select Highlight LPG from the View menu.

Basic and full information in the graph

Visual Explain also presents information in two different views: basic and full. The basic view only shows
those icons that are necessary to understand the implementation of the SQL statement. It excludes some
preliminary, or intermediate operations that are not essential for understanding the main flow of query
implementation. The full view might show more icons that further depict the flow of the execution tree.
You can change the graph detail by select Graph Detail from the Options menu and selecting either Basic
or Full. The default view is Basic. In order to see all the detail for a Full view, change the Graph Detail to
Full, close out Visual Explain, and run the query again. The setting for Graph Detail persists.

For more information about Visual Explain and the different options that are available, see the Visual
Explain online help.

Refresh the Visual Explain diagram

For long running queries, you can refresh the visual explain graph with runtime statistical information
before the query is complete. Refresh also updates the appropriate information in the attributes section of
the icon shown on the right of the screen. In order to use the Refresh option, you need to select Explain
while Running from the Run SQL Scripts window.

To refresh the diagram, select Refresh from the View menu. Or click the Refresh button in the toolbar.

Related reference
Index advisor

154 IBM i: Database Performance and Query Optimization

The query optimizer analyzes the row selection in the query and determines, based on default values, if
creation of a permanent index improves performance. If the optimizer determines that a permanent index
might be beneficial, it returns the key columns necessary to create the suggested index.

Adaptive Query Processing in Visual Explain
You can use Visual Explain to request a new plan.

There might be times when you are asked to performance tune a query while the query is still running. For
instance, a query might be taking a long time to finish. After viewing the plan in Visual Explain, you decide
to create the recommended index to improve the speed of the query. So you create the index and then
want to signal the database optimizer to consider a new plan based on the new index.

Here are the steps to request the database engine to consider a new plan while running in Visual Explain:

1. Open Run SQL Scripts.
2. Type in a query.
3. Go to the Visual Explain menu and select Explain While Running.
4. The Visual Explain window is displayed.
5. Next, go to the Actions menu and select Request New Plan.

A message box appears.

Select Yes to restart the query.

Database performance and query optimization 155

The database optimizer considers any changes to the query environment, and determines whether it is
appropriate to generate a new plan. It might be possible that the database optimizer decides it is better to
continue using the existing plan.

Note: This capability could also be available when selecting Visual Explain of a statement in the SQL
Details for a Job window, or the SQL Plan Cache Show Statements window.

Related reference
Adaptive Query Processing
Adaptive Query Processing analyzes actual query run time statistics and uses that information for
subsequent optimizations.

Optimizing performance using the Plan Cache
The SQL Plan Cache contains a wealth of information about the SQE queries being run through the
database. Its contents are viewable through the System i Navigator GUI interface. Certain portions of the
plan cache can also be modified.

In addition, procedures are provided to allow users to programmatically work with the plan cache. These
procedures can be invoked using the SQL CALL statement.

The Plan Cache interface provides a window into the database query operations on the system. The
interface to the Plan Cache resides under the System i Navigator > system name > Database.

Within the SQL Plan Cache folder are two folders, SQL Plan Cache Snapshots and SQL Plan Cache Event
Monitors.

Clicking the SQL Plan Cache Snapshots folder shows a list of any snapshots gathered so far. A snapshot is
a database monitor file generated from the plan cache at the time a 'New Snapshot' is requested. It can
be treated much the same as the SQL Performance Monitors list. The same analysis capability exists for
snapshots as exists for traditional SQL performance monitors.

Clicking the SQL Plan Cache Event Monitors shows a list of any events that have been defined. Plan Cache
event monitors, when defined, generate database monitor information from plans as they are being
removed from the cache. The list includes currently active events as well as ones that have completed.
Like a snapshot, the event monitor is a database monitor file. Consequently, the same analysis capability
available to SQL performance monitors and snapshots can be used on the event file.

The plan cache is an actively changing cache. Therefore, it is important to realize that it contains timely
information. If information over long periods of time is of interest, an event monitor could be defined to
ensure that information is captured on any plans that are removed from the cache over time. Alternatively,
you could consider implementing a method of performing periodic snapshots of the plan cache to capture
trends and heavy usage periods. See the discussion on IBM supplied, callable SQL procedures later in this
section on plan cache.

Note: SQL plan cache snapshots and SQL plan cache event monitors also contain the SQL statement text
and variable values. If the variable values or SQL statements contain sensitive data you should create SQL
plan cache snapshots and SQL plan cache event monitors in a library that is not publicly authorized to
prevent exposure to the sensitive data.

156 IBM i: Database Performance and Query Optimization

Related concepts
Plan cache
The plan cache is a repository that contains the access plans for queries that were optimized by SQE.

SQL Plan Cache - Show Statements
By right-clicking the SQL Plan Cache icon, a series of options are shown which allow different views of
current plan cache of the database. The SQL Plan Cache > Show Statements option opens a screen with
filtering capability. This screen provides a direct view of the current plan cache on the system.

Press the Apply or Refresh button to display the current Plan Cache statements. The information shown
includes the SQL query text, last time the query ran, most expensive single instance run, total processing
time consumed, total number of times run, and information about the user and job that first created the
plan entry.

The information also includes several per run averages, including average runtime, average result set size
and average temporary storage usage. There is an adjusted average processing time which is the average
discounting any anomalous runs.

Database performance and query optimization 157

The display also shows how many times, if any, that the database engine resued the results of a prior run,
avoiding rerunning the entire statement. There is also a Save Results button (not shown) that allows you
to save the statement list, for example, to a .csv file or spreadsheet.

Finally, the numeric identifier and plan score are also displayed. For more detail on the columns
displayed, see rzajqcolumnsplancache.dita

Statement Options

By highlighting one or more plans and right clicking, a menu with several possible actions appears.

Visual Explain
Shows a visual depiction of the access plan and provides more detailed performance analysis. Note
only one statement can be highlighted when performing this action.

Show Longest Runs
Shows details of up to 10 of the longest running instances of that statement. Within the Longest Runs
list, you can right click a statement and select Visual Explain, Work With SQL Statement, Work With
SQL Statement and Variables, Save to New... snapshot or Remove. Snapshots are useful for
capturing the information for that specific run in Visual Explain. Removing old or superfluous runs
makes room to capture future runs. Only one statement can be highlighted when performing these
actions. Any runs removed only affect which runs are shown in the list. The total time, total number of
runs, and other information for the statement are still calculated including the runs removed from the
list.

Show Active Jobs
Displays a list of jobs on the system that are currently using that statement or statements.

Show User History
Shows a list of all user IDs that have run that statement along with the last time they ran it.

Work with SQL Statement
Displays a scripting window containing the SQL statement. The scripting window is useful for working
with and tuning the statement directly, or for just viewing the statement in its own window. Only one
statement can be highlighted when performing this action.

Work with SQL Statements and Variables
Displays a scripting window containing the SQL Statement and any parameter markers entered with
their specific values for that run of the SQL statement.

Save to New...
Allows you to create a snapshot of the selected statements.

Plan
Right-click to show options for modifying the plan:

Change Plan Score allows you to set the score to a specific value. The plan score is used to determine
when a plan might be removed from the cache. A lower score plan is removed before a higher score
plan. By setting the plan score high, the plan remains in the cache for a longer time. Setting the plan
score to a low value causes the plan to be pruned sooner than might otherwise have occurred.

Delete allows you to remove the plan immediately from the cache. Note under normal circumstances
there might not be a need to modify the attributes of a plan. Normal database processing ages and
prunes plans appropriately. These modifying options are provided mostly as tools for minute analysis
and for general interest.

The User and Job Name for each statement on the Statements screen is the user and job that created the
initial plan with full optimization. This user is not necessarily the same as the last user to run that
statement. The Longest Runs screen, however, does show the particular user and job for that individual
run.

Filtering Options

The screen provides filtering options which allow the user to more quickly isolate specific criteria of
interest. No filters are required to be specified (the default), though adding filtering shortens the time it

158 IBM i: Database Performance and Query Optimization

takes to show the results. The list of statements that is returned is ordered so that the statement
consuming the most total processing time is shown at the top. You can reorder the results by clicking the
column heading for which you want the list ordered. Repeated clicking toggles the order from ascending
to descending.

The filtering options provide a way to focus in on a particular area of interest:

Minimum runtime for the longest execution of the statement:
Show statements with at least one long individual statement instance runtime.

Statements that ran on or after this date and time:
Show statements that have been run recently.

Top 'n' most frequently run statements:
Show statements run most often.

Top 'n' statements with the largest total accumulated runtime:
Show the top resource consumers. Shows the first 'n' top statements by default when no filtering is
given. Specifying a value for 'n' improves the performance of getting the first screen of statements,
though the total statements displayed is limited to 'n'.

Statements the following user has ever run:
Show statements a particular user has run. The user and job name shown reflect the originator of the
cached statement. This user is not necessarily the same as the user specified on the filter (there could
be multiple users running the statement).

Statements that are currently active
Show statements that are still running or are in pseudo-close mode. The user and job name shown
reflect the originator of the cached statement. This user is not necessarily the same as the user
specified on the filter (there could be multiple users running the statement).

Note: An alternative for viewing the active statement for a job is to right-click the Database icon and
select SQL Details for Jobs...

Statements for which an index has been advised
Show only those statements where the optimizer advised an index to improve performance.

Statements for which statistics have been advised
Show only those statements where a statistic not yet collected might have been useful to the
optimizer. The optimizer automatically collects these statistics in the background. This option is
normally not that interesting unless, for whatever reason, you want to control the statistics collection
yourself.

Include statements initiated by the operating system
Show the 'hidden' statements initiated by the database to process a request. By default the list only
includes user-initiated statements.

Statements that reference the following objects:
Show statements that reference the tables or indexes specified.

Statements that contain the following text:
Show statements that include the text specified. This option is useful for finding particular types of
statements. For example, statements with a FETCH FIRST clause can be found by specifying ‘fetch'.
The search is not case sensitive for ease of use. For example, the string 'FETCH' finds the same
statements as the search string 'fetch'. This option provides a wildcard search capability on the SQL
text itself.

Multiple filter options can be specified. The candidate statements for each filter are computed
independently. Only those statements that are present in all the candidate lists are shown. For example,
you could specify options Top 'n' most frequently run statements and Statements the following user
has ever run. The display shows those most frequently run statements in the cache that have been run by
the specified user. It does not show the most frequently run statements by the user (unless those
statements are also the most frequently run statements in the entire cache).

Database performance and query optimization 159

SQL Plan Cache column descriptions
Displays the columns that are used in the SQL Plan Cache Statements window.

Table 44. Columns used in SQL Plan Cache Statements window

Column name Description

Last Time Run Displays the last time that this statement was run.

Most Expensive Time (sec) The time taken for the longest run of this statement.

Total Processing Time (sec) The sum total time that all runs of this statement took to
process in seconds.

Total Times Run The total number of times that this statement ran.

Average Processing Time (sec) The average time per run that this statement took to process
in seconds.

Statement The statement text.

Plan Creation User Name The name of the user id that created the plan.

Job Name The name of the job that created the plan.

Job User The name of the user id that owned the job that created the
plan.

Job Number The job number of the job that created the plan.

Adjusted Average Processing Time (sec) The average time per run that this statement took to process
in seconds where anomalous runs are removed from the
average calculation. This time provides a realistic average for
a statement by ignoring a single (or few) run that was
atypical to the normal condition of the statement.

Average Result Set Rows The average number of result set rows that are returned
when this statement is run.

Average Temp Storage Used (MB) The average amount of temporary storage used when this
statement is run.

Plan Score The rating of this plan relative to other plans in the cache. A
plan with a higher rating relative to other plans remains in
the cache for a longer time. A plan with a lower rating relative
to other plans is removed from the cache sooner than the
other plans.

Plan Identifier A unique numeric identifier of the plan.

Total Cached Results Used The number of times a result set from a prior run of the
statement was reused on a subsequent run of the statement.

Optimization Time (sec) The amount of time that it took to optimize this statement.

System Name The system name.

Relational Database name Relational database name

SQL plan cache properties
The SQL Plan Cache > Properties option shows high-level information about the cache. This information
includes cache size, number of plans, number of full opens and pseudo-opens that have occurred.

This information can be used to view overall database activity. If tracked over time, it provides trends to
help you better understand the database utilization peaks and valleys throughout the day and week.

160 IBM i: Database Performance and Query Optimization

You can edit the Plan Cache Size Threshold property of your plan cache by right-clicking a property and
selecting Edit Value. Under normal circumstances, this properties value is sufficient and altering is not
necessary. If it is altered, take care to assess the performance consequences of the change. Note that any
explicit designation of Plan Cache size is maintained across IPLs.

You might be able to edit some of the properties of your plan cache by right-clicking a property and
selecting Edit Value.

Creating SQL plan cache snapshots
The New > Snapshot option allows for the creation of a snapshot from the plan cache.

Unlike the snapshot option under Show Statements, it allows you to create a snapshot without having to
first view the queries.

Database performance and query optimization 161

The same filtering options are provided here as on the Show Statements screen.

The stored procedure, qsys2.dump_plan_cache, provides the simplest, programmatic way to create a
database monitor file output (snapshot) from the plan cache. The dump_plan_cache procedure takes two
parameters, library name and file name, for identifying the resulting database monitor file. If the file does

162 IBM i: Database Performance and Query Optimization

not exist, it is created. For example, to dump the plan cache to a database performance monitor file in
library QGPL:

CALL qsys2.dump_plan_cache('QGPL','SNAPSHOT1');

SQL plan cache event monitor
The SQL plan cache event monitor records changes in your plan cache.

You can access the SQL plan cache event monitor through the System i Navigator interface or by calling
the procedures directly.

The SQL plan cache event monitor captures monitor records of plans as they are removed from the plan
cache. The event monitor is useful for ensuring that all performance information potentially available in
the cache is captured even if plans are removed from the cache. Combining the event monitor output with
a plan cache snapshot provides a composite view of the cache from when the event monitor was started
until the snapshot is taken.

The event monitor allows the same filtering options as described for Show statements and
NewSnapshot. The exceptions are that the Top 'n' most frequently run statements and the Top 'n'
statements with largest total accumulated runtime are not shown. Once a statement is removed from the
cache, it is no longer compared to other plans. Therefore, these two 'Top n' filters do not make sense for
pruned plans.

Accessing the SQL plan cache with SQL stored procedures
The System i Navigator provides a visual interface into the plan cache. However, the plan cache is also
accessible through stored procedures which can be called using the SQL CALL statement.

These procedures allow for programmatic access to the plan cache and can be used, for example, for
scheduling plan cache captures or pre-starting an event monitor.

qsys2.dump_plan_cache(‘lib', 'file')

This procedure creates a snapshot (database monitor file) of the contents of the cache. It takes two
parameters, library name and file name, for identifying the resulting database monitor file. If the file does
not exist, it is created. The file name is restricted to 10 characters.

For example, to dump the plan cache to a database performance monitor file called SNAPSHOT1 in library
QGPL:

 CALL qsys2.dump_plan_cache('QGPL','SNAPSHOT1');

qsys2.start_plan_cache_event_monitor(‘lib', 'file')

This procedure starts an event monitor to intercept plans as they are removed from the cache and
generate performance information into the specified database monitor file. It takes two parameters,
library name and file name, for identifying the resulting database monitor file.

If the file does not exist, it is created. Initially the file is created and populated with the starting record id
3018 (column QQRID = 3018). Control returns to the caller but the event monitor stays active. Library
QTEMP is not allowed. The file name is restricted to 10 characters.

The event monitor stays active until one of the following occurs:

• it is ended by one of the end event monitor procedure calls.
• it is ended using the System i Navigator interface.
• an IPL (Initial Program Load) of the system occurs.
• the specified database monitor file is deleted or otherwise becomes unavailable.

Database performance and query optimization 163

For example, to start an event monitor and place plan information into a database performance monitor
file called PRUNEDP1 in library QGPL:

 CALL qsys2.start_plan_cache_event_monitor('QGPL','PRUNEDP1');

qsys2.start_plan_cache_event_monitor(‘lib', 'file', monitorID)

This procedure starts an event monitor to capture plans as they are removed from the cache and generate
performance information into a database monitor file. It takes three parameters, library name, file name,
and monitorID. The library name and file name identify the resulting database monitor file.

If the file does not exist, it is created. Initially the file is created and populated with the starting record id
3018. The monitorID is a CHAR(10) output parameter set by the database to contain the 10 character
identification of the event monitor that was started. Control returns to the procedure caller but the event
monitor stays active. Library QTEMP is not allowed. The file name is restricted to 10 characters.

The event monitor stays active until one of the following occurs:

• it is ended by one of the end event monitor procedure calls.
• it is ended using the System i Navigator interface.
• an IPL (Initial Program Load) of the system occurs.
• the specified database monitor file is deleted or otherwise becomes unavailable.

For example, start an event monitor to place plan information into a database performance monitor file
called PRUNEDPLANS1 in library QGPL. Capture the monitor id into host variable HVmonid for use later:

 CALL qsys2.start_plan_cache_event_monitor('QGPL','PRUNEDP1', :HVmonid);

qsys2.end_all_plan_cache_event_monitors()

This procedure can be used to end all active plan cache event monitors started either through the GUI or
use the start_plan_cache_event_monitor procedures. It takes no parameters.

 CALL qsys2.end_all_plan_cache_event_monitors();

qsys2.end_plan_cache_event_monitor(‘monID')

This procedure can be used to end the specific event monitor identified by the given monitor id value. This
procedure works with the start_plan_plan_event_monitor to end a particular event monitor.

Example:

 CALL qsys2.end_plan_cache_event_monitor('PLANC00001');

qsys2.change_plan_cache_size(sizeinMeg)

This procedure can be used to change the size of the Plan Cache. The integer parameter specifies the size
in megabytes that the plan cache is set to. Once designated, that size will remain at the fixed maximum
size of the Plan Cache even across IPLs. If the value given is zero, the plan cache is reset to its default
value which allows the plan cache to be auto-sized by the database.

Example:

 CALL qsys2.change_plan_cache_size(3072);

The following graphic illustrates that from System i Navigator, you can select the SQL Plan Cache
Properties.

164 IBM i: Database Performance and Query Optimization

The next graphic shows that the selected SQL Plan Cache properties displays the current plan cache size
and the timestamp that it was created.

Database performance and query optimization 165

qsys2.dump_plan_cache_properties(‘lib', 'file')

This procedure creates a file containing the properties of the cache. It takes two parameters, library name
and file name, for identifying the resulting properties file. If the file does not exist, it is created. The file
name is restricted to 10 characters. The file definition matches the archive file qsys2/qdboppcgen.

For example, to dump the plan cache properties to a file called PCPROP1 in library QGPL:

 CALL qsys2.dump_plan_cache_properties('QGPL','PCPROP1');

qsys2.dump_plan_cache_topN('lib', 'file', <number-of-TOP-queries-to-dump>

This procedure creates a snapshot file from the active plan cache containing only those queries with the
largest accumulated elapsed time. The number of queries to capture is designated by the caller in the
third parameter. This procedure provides a programmatic way capture the most noteworthy queries,
making it easier to compare and contrast this aspect of database performance.

For example, to capture the 20 queries with the largest elapsed time and dump the details into a snapshot
file named SNAPSHOTS/TOPN121413:

 CALL QSYS2.DUMP_PLAN_CACHE_topN('SNAPSHOTS', 'TOPN121413', 20);

qsys2.extract_statements

This procedure returns details from a plan cache snapshot in the form of an SQL table or a result set.

The parameters for this function are defined as follows. Only the first 2 parameters are required. The
others are optional and will be assumed to be the null value and ignored if they are not specified.

166 IBM i: Database Performance and Query Optimization

MONITOR_SCHEMA
VARCHAR(10). The schema name for the monitor to use for the extract. This parameter is required.

MONITOR_NAME
VARCHAR(10). The name for the monitor to use for the extract. This parameter is required.

ADDITIONAL_SELECT_COLUMNS
VARCHAR(5000). A character string containing additional columns or expressions to be appended to
the generated SELECT clause. A value of *AUDIT will cause the procedure to return the merged
statement and columns that are normally interesting to auditing. This parameter is optional.

ADDITIONAL_PREDICATES
VARCHAR(5000). A character string containing additional predicates to be appended to the generated
WHERE clause. This parameter is optional.

ORDER_BY
VARCHAR(5000). A character string containing additional options to be appended to the end of the
generated query. This can include the ORDER BY clause or other clauses such as FETCH FIRST n
ROWS. This parameter is optional.

OUTPUT_SCHEMA
VARCHAR(258). The schema name for the output table. This parameter is optional.

OUTPUT_TABLE
VARCHAR(258). The table name to contain the output. If the table identified by OUTPUT_SCHEMA and
OUTPUT_TABLE does not exist, it will be created. If the table exists, the result of this procedure call
will be added to the table. This parameter is optional.

If the OUTPUT_SCHEMA and OUTPUT_TABLE parameters have the null value, a result set containing the
extracted statement information is returned.

For example, extract the 100 most recent statements from monitor APRIL1014:

CALL QSYS2.DUMP_PLAN_CACHE('SNAPSHOTS', 'APRIL2014');

CALL QSYS2.EXTRACT_STATEMENTS('SNAPSHOTS', 'APRIL2014', '*AUDIT',
 'AND QQC21 NOT IN
 (''CH'', ''CL'', ''CN'', ''DE'', ''DI'', ''DM'', ''HC'', ''HH'', ''JR'', ''FE'',
 ''PD'', ''PR'', ''PD'')',
 ' ORDER BY QQSTIM DESC FETCH FIRST 100 ROWS ONLY ');

For example, extract all the queries where the query took longer than one second:

CALL QSYS2.DUMP_PLAN_CACHE('SNAPSHOTS', 'APRIL2014');

CALL QSYS2.EXTRACT_STATEMENTS('SNAPSHOTS', 'APRIL2014',
ADDITIONAL_SELECT_COLUMNS => ‘DEC(QQI6)/1000000.0 as Total_time,
 QVC102 as Current_User_Profile ',
ADDITIONAL_PREDICATES => ' AND QQI6 > 1000000 ',
ORDER_BY => ' ORDER BY QQI6 DESC ');

qsys2.import_pc_snapshot

This procedure is a programmatic alternative to using System i Navigator to import an existing SQL plan
cache snapshot.The caller of this procedure must have the necessary authorities needed to query the
target snapshot file.

The parameters for this function are defined as follows. All parameters are required.
PLAN_CACHE_LIBRARY

VARCHAR(10). The library name of the snapshot to import.
PLAN_CACHE_FILE

VARCHAR(10). The file name of the snapshot to import.
IMPORTED_NAME

CHAR(30). The character string that describes the snapshot being imported. This string will appear in
Navigator's Name column under SQL Plan Cache Snapshots.

Database performance and query optimization 167

This example shows how to programmatically capture information from the live plan cache for the 50
most expensive queries and import the snapshot into Navigator.

CALL QSYS2.DUMP_PLAN_CACHE_TOPN('SNAPSHOTS', 'JUNE2014', 50);
CALL QSYS2.IMPORT_PC_SNAPSHOT('SNAPSHOTS', 'JUNE2014', 'Top 50 Queries-June 2014');

qsys2.remove_pc_snapshot

This procedure is a programmatic alternative to using System i Navigator to delete an existing SQL plan
cache snapshot. The caller of this procedure must have the necessary authorities needed to delete the
target file. Any rows in the Navigator snapshot list which correspond to the input library and file name are
removed. The input file name is deleted.

The parameters for this function are defined as follows. All parameters are required.
PLAN_CACHE_LIBRARY

VARCHAR(10). The library name of the snapshot to remove.
PLAN_CACHE_FILE

VARCHAR(10). The file name of the snapshot to remove.

This example shows how to programmatically remove a snapshot that has aged beyond its usefulness.

CALL QSYS2.REMOVE_PC_SNAPSHOT('SNAPSHOTS', 'JUNE2013');

qsys2.import_pc_event_monitor

This procedure is a programmatic alternative to using System i Navigator to import an existing SQL plan
cache event monitor. The caller of this procedure must have the necessary authorities needed to query
the target event monitor file.

The parameters for this function are defined as follows. All parameters are required.
PLAN_CACHE_LIBRARY

VARCHAR(10). The library name of the event monitor to import.
PLAN_CACHE_FILE

VARCHAR(10). The file name of the event monitor to import.
IMPORTED_NAME

CHAR(30). The character string that describes the event monitor being imported. This string will
appear in Navigator's Name column under SQL Plan Cache Event Monitors.

This example shows how to programmatically import an event monitor into Navigator that was used to
capture queries pruned from the plan cache during the month of June, 2014.

CALL QSYS2.IMPORT_PC_EVENT_MONITOR('SNAPSHOTS', 'PRUNE0614', 'Pruned queries - June 2014');

qsys2.remove_pc_event_monitor

This procedure is a programmatic alternative to using System i Navigator to delete an existing SQL plan
cache event monitor. The caller of this procedure must have the necessary authorities needed to delete
the target file. Any rows in the Navigator event monitor list which correspond to the input library and file
name are removed. The input file name is deleted.

The parameters for this function are defined as follows. All parameters are required.
PLAN_CACHE_LIBRARY

VARCHAR(10). The library name of the event monitor to remove.
PLAN_CACHE_FILE

VARCHAR(10). The file name of the event monitor to remove.

168 IBM i: Database Performance and Query Optimization

This example shows how to programmatically remove an event monitor that has aged beyond its
usefulness.

CALL QSYS2.REMOVE_PC_EVENT_MONITOR('SNAPSHOTS', 'PRUNE0613');

CLEAR_PLAN_CACHE
The CLEAR_PLAN_CACHE procedure is a plan cache clearing alternative to performing a system IPL.

CLEAR_PLAN_CACHE procedure

 >>-CLEAR_PLAN_CACHE --()----------------------------------><

The schema is QSYS2.

This procedure is used primarily in performance test and QA environments. It provides database
performance analysts with a way to create a consistent environment from which to evaluate potential
database performance changes. The procedure will clear all plans in the system SQL Plan Cache that exist
at the time the procedure is run. Besides clearing the plan information, any Maintained Temporary
Indexes (MTIs) not currently in use by a query will be deleted as part of the clear. SQL queries run while
the CLEAR_PLAN_CACHE procedure is running may have their plans removed, but the queries
themselves will not incur a failure related to plan removal. Any SQL queries run after the clear is complete
will begin to repopulate the plan cache.

The time the CLEAR_PLAN_CACHE procedure takes to run will vary depending on the plan cache size. To
avoid tying up an interactive job, it is recommended to submit the procedure in a background job using a
combination of the Submit Job (SBMJOB) and Run SQL (RUNSQL) CL commands.

Authorization: The CLEAR_PLAN_CACHE procedure requires that the authorization ID associated with
the statement has *JOBCTL special authority or QIBM_DB_SQLADM function usage.

Errors: The procedure will fail with SQL0443 and SQL0552 if the caller does not have the required
authority.

Example:

SBMJOB CMD(RUNSQL SQL('CALL QSYS2.CLEAR_PLAN_CACHE()') COMMIT(*NONE) NAMING(*SQL))

Verifying the performance of SQL applications
You can verify the performance of an SQL application by using commands.

The commands that can help you verify performance:

Display Job (DSPJOB)
You can use the Display Job (DSPJOB) command with the OPTION(*OPNF) parameter to show
the indexes and tables used by an application running in a job.

You can also use DSPJOB with the OPTION(*JOBLCK) parameter to analyze object and row lock
contention. It displays the objects and rows that are locked and the name of the job holding the lock.

Specify the OPTION(*CMTCTL) parameter on the DSPJOB command to show the isolation level, the
number of rows locked during a transaction, and the pending DDL functions. The isolation level
displayed is the default isolation level. The actual isolation level, used for any SQL program, is
specified on the COMMIT parameter of the CRTSQLxxx command.

Print SQL Information (PRTSQLINF)
The Print SQL Information (PRTSQLINF) command lets you print information about the
embedded SQL statements in a program, SQL package, or service program. The information includes
the SQL statements, access plans used, and the command parameters used to precompile the source
member.

Start Database Monitor (STRDBMON)
You can use the Start Database Monitor (STRDBMON) command to capture to a file information
about every SQL statement that runs.

Database performance and query optimization 169

Change Query Attribute (CHGQRYA)
You can use the Change Query Attribute (CHGQRYA) command to change the query attributes
for the query optimizer. Among the attributes that can be changed by this command are the predictive
query governor, parallelism, and the query options.

Start Debug (STRDBG)
You can use the Start Debug (STRDBG) command to put a job into debug mode, and optionally
add as many as 20 programs, 20 class files, and 20 service programs to debug mode. It also specifies
certain attributes of the debugging session. For example, it can specify whether database files in
production libraries can be updated while in debug mode.

Related information
Display Job (DSPJOB) command
Print SQL Information (PRTSQLINF) command
Start Database Monitor (STRDBMON) command
Change Query Attributes (CHGQRYA) command
Start Debug (STRDBG) command

Examining query optimizer debug messages in the job log
Query optimizer debug messages issue informational messages to the job log about the implementation
of a query. These messages explain what happened during the query optimization process.

For example, you can learn:

• Why an index was or was not used
• Why a temporary result was required
• Whether joins and blocking are used
• What type of index was advised by the optimizer
• Status of the job queries
• Indexes used
• Status of the cursor

The optimizer automatically logs messages for all queries it optimizes, including SQL, call level interface,
ODBC, OPNQRYF, and SQL Query Manager.

Viewing debug messages using STRDBG command:

STRDBG command puts a job into debug mode. It also specifies certain attributes of the debugging
session. For example, it can specify whether database files in production schemas can be updated while
in debug mode. For example, use the following command:

STRDBG PGM(Schema/program) UPDPROD(*YES)

STRDBG places in the job log information about all SQL statements that run.

Viewing debug messages using QAQQINI table:

You can also set the QRYOPTLIB parameter on the Change Query Attributes (CHGQRYA) command
to a user schema where the QAQQINI table exists. Set the parameter on the QAQQINI table to
MESSAGES_DEBUG, and set the value to *YES. This option places query optimization information in the
job log. Changes made to the QAQQINI table are effective immediately and affect all users and queries
that use this table. Once you change the MESSAGES_DEBUG parameter, all queries that use this QAQQINI
table write debug messages to their respective job logs. Pressing F10 from the command Entry panel
displays the message text. To see the second-level text, press F1 (Help). The second-level text
sometimes offers hints for improving query performance.

170 IBM i: Database Performance and Query Optimization

Viewing debug messages in Run SQL Scripts:

To view debug messages in Run SQL Scripts, from the Options menu, select Include Debug Messages in
Job Log. Then from the View menu, select Job Log. To view detailed messages, double-click a message.

Viewing debug messages in Visual Explain:

In Visual Explain, debug messages are always available. You do not need to turn them on or off. Debug
messages appear in the lower portion of the window. You can view detailed messages by double-clicking
a message.

Print SQL Information
The Print SQL Information (PRTSQLINF) command returns information about the embedded SQL
statements in a program, SQL package (used to store the access plan for a remote query), or service
program. This information is then stored in a spooled file.

PRTSQLINF provides information about:

• The SQL statements being executed
• The type of access plan used during execution. How the query is implemented, indexes used, join order,

whether a sort is used, whether a database scan is used, and whether an index is created.
• A list of the command parameters used to precompile the source member for the object.
• The CREATE PROCEDURE and CREATE FUNCTION statement text used to create external procedures or

User Defined Functions.

This output is like the information that you can get from debug messages. However, while query debug
messages work at runtime, PRTSQLINF works retroactively. You can also see this information in the
second-level text of the query governor inquiry message CPA4259.

You can issue PRTSQLINF in a couple of ways. First, you can run the PRTSQLINF command against a
saved access plan. You must execute or at least prepare the query (using the SQL PREPARE statement)
before you use the command. It is best to execute the query because the index created as a result of
PREPARE is relatively sparse. It could well change after the first run. PRTSQLINF's requirement of a saved
access plan means that the command cannot be used with OPNQRYF.

You can also run PRTSQLINF against functions, stored procedures, triggers, SQL packages, and programs
from System i Navigator. This function is called Explain SQL. To view PRTSQLINF information, right-click
an object and select Explain SQL.

Related information
Print SQL Information (PRTSQLINF) command

Query optimization tools: Comparison
Use this table to find the information each tool can provide, when it analyzes your queries, and the tasks it
can do to improve your queries.

Table 45. Optimization tool comparison

PRTSQLINF STRDBG or CHGQRYA File-based monitor
(STRDBMON)

Memory-Based
Monitor

Visual Explain

Available without
running query (after
access plan has
been created)

Only available when
the query is run

Only available when
the query is run

Only available when
the query is run

Only available when
the query is
explained

Displayed for all
queries in SQL
program, whether
executed or not

Displayed only for
those queries which
are executed

Displayed only for
those queries which
are executed

Displayed only for
those queries which
are executed

Displayed only for
those queries that
are explained

Database performance and query optimization 171

Table 45. Optimization tool comparison (continued)

PRTSQLINF STRDBG or CHGQRYA File-based monitor
(STRDBMON)

Memory-Based
Monitor

Visual Explain

Information about
host variable
implementation

Limited information
about the
implementation of
host variables

All information
about host variables,
implementation, and
values

All information
about host variables,
implementation, and
values

All information
about host variables,
implementation, and
values

Available only to
SQL users with
programs, packages,
or service programs

Available to all query
users (OPNQRYF,
SQL, QUERY/400)

Available to all query
users (OPNQRYF,
SQL, QUERY/400)

Available only to
SQL interfaces

Available through
System i Navigator
Database and API
interface

Messages are
printed to spool file

Messages are
displayed in job log

Performance rows
are written to
database table

Performance
information is
collected in memory
and then written to
database table

Information is
displayed visually
through System i
Navigator

Easier to tie
messages to query
with subqueries or
unions

Difficult to tie
messages to query
with subqueries or
unions

Uniquely identifies
every query,
subquery, and
materialized view

Repeated query
requests are
summarized

Easy to view
implementation of
the query and
associated
information

Changing the attributes of your queries
You can modify different types of query attributes for a job with the Change Query Attributes
(CHGQRYA) CL command. You can also use the System i Navigator Change Query Attributes interface.
Related concepts
Plan cache
The plan cache is a repository that contains the access plans for queries that were optimized by SQE.
Objects processed in parallel
The DB2 Symmetric multiprocessing feature provides the optimizer with additional methods for retrieving
data that include parallel processing. Symmetrical multiprocessing is a form of parallelism achieved on a
single system where multiple CPU and I/O processors sharing memory and disk work simultaneously
toward a single result.
Related information
Change Query Attributes (CHGQRYA) command

Controlling queries dynamically with the query options file QAQQINI
The query options file QAQQINI support provides the ability to dynamically modify or override the
environment in which queries are executed. This modification is done through the Change Query
Attributes (CHGQRYA) command and the QAQQINI file. The query options file QAQQINI is used to set
some attributes used by the database manager.

For each query that is run the query option values are retrieved from the QAQQINI file in the schema
specified on the QRYOPTLIB parameter of the CHGQRYA CL command and used to optimize or implement
the query.

Environmental attributes that you can modify through the QAQQINI file include:

• ALLOW_ADAPTIVE_QUERY_PROCESSING
• ALLOW_ARRAY_VALUE_CHANGES
• ALLOW_TEMPORARY_INDEXES
• APPLY_REMOTE
• ASYNC_JOB_USAGE

172 IBM i: Database Performance and Query Optimization

• CACHE_RESULTS
• COLLATE_ERRORS
• COMMITMENT_CONTROL_LOCK_LIMIT
• DETERMINISTIC_UDF_SCOPE
• FIELDPROC_ENCODED_COMPARISON
• FORCE_JOIN_ORDER
• IGNORE_LIKE_REDUNDANT_SHIFTS
• LIMIT_PREDICATE_ OPTIMIZATION
• LOB_LOCATOR_THRESHOLD
• MATERIALIZED_QUERY_TABLE_REFRESH_AGE
• MATERIALIZED_QUERY_TABLE _USAGE
• MEMORY_POOL_PREFERENCE
• MESSAGES_DEBUG
• NORMALIZE_DATA
• OPEN_CURSOR_CLOSE_COUNT
• OPEN_CURSOR_THRESHOLD
• OPTIMIZATION_GOAL
• OPTIMIZE_STATISTIC_LIMITATION
• PARALLEL_DEGREE
• PARAMETER_MARKER_CONVERSION
• PSEUDO_OPEN_CHECK_HOST_VARS
• QUERY_TIME_LIMIT
• REOPTIMIZE_ACCESS_PLAN
• SQLSTANDARDS_MIXED_CONSTANT
• SQL_CONCURRENT_ACCESS_RESOLUTION
• SQL_DECFLOAT_WARNINGS
• SQL_FAST_DELETE_ROW_COUNT
• SQL_GVAR_BUILD_RULE
• SQL_MODIFIES_SQL_DATA
• SQL_PSEUDO_CLOSE
• SQL_STMT_COMPRESS_MAX
• SQL_STMT_REUSE
• SQL_SUPPRESS_WARNINGS
• SQL_TRANSLATE_ASCII_TO_JOB
• SQL_XML_DATA_CCSID
• STAR_JOIN
• STORAGE_LIMIT
• SYSTEM_SQL_STATEMENT_CACHE
• TEXT_SEARCH_DEFAULT_TIMEZONE
• UDF_TIME_OUT
• VARIABLE_LENGTH_OPTIMIZATION

Database performance and query optimization 173

Specifying the QAQQINI file with CHGQRYA
Use the Change Query Attributes (CHGQRYA) command with the QRYOPTLIB (query options
library) parameter to specify which schema currently contains or contains the query options file QAQQINI.

The query options file is retrieved from the schema specified on the QRYOPTLIB parameter for each
query. It remains in effect for the duration of the job or user session, or until the QRYOPTLIB parameter is
changed by the Change Query Attributes (CHGQRYA) command.

If the Change Query Attributes (CHGQRYA) command is not issued, or is issued without the
QRYOPTLIB parameter specified, QUSRSYS is searched for the QAQQINI file. If a query options file is not
found, no attributes are modified. Since the system ships without an INI file in QUSRSYS, you might
receive a message indicating that there is no INI file. This message is not an error but an indication that a
QAQQINI file that contains all default values is being used. The initial value of the QRYOPTLIB parameter
for a job is QUSRSYS.

Related information
Change Query Attributes (CHGQRYA) command

Creating the QAQQINI query options file
Each system is shipped with a QAQQINI template file in schema QSYS. The QAQQINI file in QSYS is to be
used as a template when creating all user specified QAQQINI files.

To create your own QAQQINI file, use the Create Duplicate Object (CRTDUPOBJ) command.
Create a copy of the QAQQINI file in the schema specified on the Change Query Attributes
(CHGQRYA) QRYOPTLIB parameter. The file name must remain QAQQINI. For example:

CRTDUPOBJ OBJ(QAQQINI)
 FROMLIB(QSYS)
 OBJTYPE(*FILE)
 TOLIB(MYLIB)
 DATA(*YES)

System-supplied triggers are attached to the QAQQINI file in QSYS therefore it is imperative that the only
means of copying the QAQQINI file is through the CRTDUPOBJ CL command. If another means is used,
such as CPYF, then the triggers could be corrupted. An error is signaled that the options file cannot be
retrieved or that the options file cannot be updated.

Because of the trigger programs attached to the QAQQINI file, the following CPI321A informational
message is displayed six times in the job log when the CRTDUPOBJ CL is used to create the file. These
messages are not an error; they are only informational messages.

CPI321A Information Message: Trigger QSYS_TRIG_&1___QAQQINI___00000&N in library &1 was
added to file QAQQINI in library &1. The ampersand variables (&1, &N) are replacement variables that
contain either the library name or a numeric value.

Note: It is highly recommended that the file QAQQINI, in QSYS, not be modified. This file is the original
template that is duplicated into QUSRSYS or a user specified library for use.

Related information
Change Query Attributes (CHGQRYA) command
Create Duplicate Object (CRTDUPOBJ) command

QAQQINI file override support
If you find working with the QAQQINI query options file cumbersome, consider using the
QSYS2.OVERRIDE_QAQQINI procedure. Instead of creating, managing, and using a QAQQINI *FILE object
directly, this procedure can be called to work with a temporary version of the INI file. It uses user-
specified options and values. The support relies upon the QTEMP library, so any changes affect only the
job which calls the procedure.

See OVERRIDE_QAQQINI procedure for more information.

174 IBM i: Database Performance and Query Optimization

QAQQINI query options file format
The QAQQINI file is shipped in the schema QSYS. It has a predefined format and has been pre-populated
with the default values for the rows.

Query Options File:

A UNIQUE
A R QAQQINI TEXT('Query options + file')
A QQPARM 256A VARLEN(10) +
 TEXT('Query+
 option parameter') +
 COLHDG('Parameter')
A QQVAL 256A VARLEN(10) +
 TEXT('Query option +
 parameter value') +
 COLHDG('Parameter Value')
A QQTEXT 1000G VARLEN(100) +
 TEXT('Query +
 option text') +
 ALWNULL +
 COLHDG('Query Option' +
 'Text') +
 CCSID(13488) +
 DFT(*NULL)
A K QQPARM

Setting the options within the query options file
The QAQQINI file query options can be modified with the INSERT, UPDATE, or DELETE SQL statements.

For the following examples, a QAQQINI file has already been created in library MyLib. To update an
existing row in MyLib/QAQQINI use the UPDATE SQL statement. This example sets MESSAGES_DEBUG =
*YES so that the query optimizer prints out the optimizer debug messages:

UPDATE MyLib/QAQQINI SET QQVAL='*YES'
WHERE QQPARM='MESSAGES_DEBUG'

To delete an existing row in MyLib/QAQQINI use the DELETE SQL statement. This example removes the
QUERY_TIME_LIMIT row from the QAQQINI file:

DELETE FROM MyLib/QAQQINI
WHERE QQPARM='QUERY_TIME_LIMIT'

To insert a new row into MyLib/QAQQINI use the INSERT SQL statement. This example adds the
QUERY_TIME_LIMIT row with a value of *NOMAX to the QAQQINI file:

 INSERT INTO MyLib/QAQQINI
VALUES('QUERY_TIME_LIMIT','*NOMAX','New time limit set by DBAdmin')

QAQQINI query options file authority requirements
QAQQINI is shipped with a *PUBLIC *USE authority. This authority allows users to view the query options
file, but not change it. Changing the values of the QAQQINI file affects all queries run on the system. Allow
only the system or database administrator to have *CHANGE authority to the QAQQINI query options file.

The query options file, which resides in the library specified on the Change Query Attributes
(CHGQRYA) CL command QRYOPTLIB parameter, is always used by the query optimizer. It is used even if
the user has no authority to the query options library and file. This authority provides the system
administrator with an additional security mechanism.

When the QAQQINI file resides in the library QUSRSYS the query options affects all the query users on the
system. To prevent anyone from inserting, deleting, or updating the query options, the system
administrator must remove update authority from *PUBLIC to the file. This update authority prevents
users from changing the data in the file.

A copy of the QAQQINI file can also reside in a user library. If that library is specified on the QRYOPTLIB
parameter of the Change Query Attributes (CHGQRYA) command, the query options affect all the
queries run for that user job. To prevent the query options from being retrieved from a particular library

Database performance and query optimization 175

the system administrator can revoke authority to the Change Query Attributes (CHGQRYA) CL
command.

QAQQINI file system-supplied triggers
The query options file QAQQINI file uses a system-supplied trigger program in order to process any
changes made to the file. A trigger cannot be removed from or added to the file QAQQINI.

If an error occurs on the update of the QAQQINI file (an INSERT, DELETE, or UPDATE operation), the
following SQL0443 diagnostic message is issued:

Trigger program or external routine detected an error.

QAQQINI query options
There are different options available for parameters in the QAQQINI file.

The following table summarizes the query options that can be specified on the QAQQINI command:

Table 46. Query Options Specified on QAQQINI Command

Parameter Value Description

ALLOW_ADAPTIVE_QUERY_PROCESSING

Specifies whether Adaptive Query Processing (AQP) processing is
done for a query.

Adaptive query processing uses runtime statistics to look for poor
performing queries and potentially replace the poor plan with an
improved plan.

*DEFAULT The default value is set to *YES.

*YES

Allows Adaptive query processing to occur for this query.

The existing QAQQINI options that affect AQP are the following:

• If the REOPTIMIZE_ACCESS_PLAN QAQQINI option is set to
*ONLY_REQUIRED, AQP does not reoptimize the original plan.
*ONLY_REQUIRED indicates the user does not want the query
reoptimized unless there is a functional reason to do so.
*ONLY_REQUIRED takes precedence over AQP.

• Join order requirements specified by the user in the
FORCE_JOIN_ORDER QAQQINI option take precedence over
AQP. If the user specifies the primary table in the join order, any
AQP primary recommendations will be placed after the primary
table if they are different.

*NO Adaptive query processing cannot be used for this query.

176 IBM i: Database Performance and Query Optimization

Table 46. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

ALLOW_ARRAY_VALUE_CHANGES

Specifies whether changes to the values of array elements are
visible to the query while the query is running.

*DEFAULT The default value is set to *NO.

*NO

Do not allow changes to values in arrays referenced in the query to
be visible after the query is opened.

All values which could be referenced in a query are copied during
query open processing. Any changes to values in arrays after the
query is opened are not visible.

Produces queries with predictable and reproducible results, but
might have a performance penalty when working with large arrays
or large array elements. The penalty is less if all the references to
arrays are simple non-column values, for example, :ARRAY[1]
or :ARRAY[:hv2].

Use of column values from a table to index the ARRAY, or using the
UNNEST() function results in copies of the entire array being made.
These copies have the largest performance penalty.

*YES

Allow changes to values in arrays to be visible to the query while
the query is running. The arrays are not copied during the open
processing of the query. If the array values are changed during the
processing of queries, the results of the query might be
unpredictable.

Performance might be improved for queries which reference large
arrays in complex array index lookup operations, such
as :Array[column-name], or when using UNNEST. Large arrays
include arrays that have thousands of elements, or elements with a
large size. Array index lookups using simple index values, such
as :ARRAY[1] or :ARRAY[:hv2], see minimal performance
improvements.

Performance of some queries might be negatively impacted. For
example, later queries that could reuse the results if they were
cached to avoid recalculation where the cached result is applicable.

Procedures that can run with *YES and still expect predictable
results have the following characteristics:

1. Contain no cursor declarations.

2. Receive arrays as input parameters:

• and do not contain SET statements which reference arrays
on the left side of the SET, and

• and have no SQL statements with INTO clauses referencing
arrays.

3. Do not contain SET statements which reference arrays on the
left side of the set:

• and have no SQL statements with INTO clauses referencing
arrays while a cursor is open for a query which references an
array.

ALLOW_TEMPORARY_ INDEXES

Specifies whether temporary indexes can be considered by the
optimizer. If temporary indexes are not allowed, then any other
viable plan is chosen regardless of cost to implement this query.

*DEFAULT The default value is set to *YES.

*YES Allow temporary indexes to be considered.

*ONLY_ REQUIRED

Do not allow any temporary indexes to be considered for this
access plan. Choose any other implementation regardless of cost to
avoid the creation of a temporary index. Only if no viable plan can
be found, is a temporary index allowed.

APPLY_REMOTE

Specifies for database queries involving distributed files, whether
the CHGQRYA query attributes are applied to the jobs on the
remote systems associated with this job.

*DEFAULT The default value is set to *YES.

*NO
The CHGQRYA attributes for the job are not applied to the remote
jobs. The remote jobs use the attributes associated to them on their
systems.

*YES

The query attributes for the job are applied to the remote jobs used
in processing database queries involving distributed tables. For
attributes where *SYSVAL is specified, the system value on the
remote system is used for the remote job. This option requires that,
if CHGQRYA was used for this job, the remote jobs must have
authority to use the CHGQRYA command.

Database performance and query optimization 177

Table 46. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

ASYNC_JOB_USAGE

Specifies the circumstances in which asynchronous (temp writer)
jobs can be used to help process database queries in the job. The
option determines which types of database queries can be used in
asynchronous jobs (running in parallel) to help complete the query.

An asynchronous job is a separate job that handles query requests
from jobs running the database queries on the system. The
asynchronous job processes each request and puts the results into
a temporary file. This intermediate temporary file is then used by
the main job to complete the database query.

The advantage of an asynchronous job is that it processes its
request at the same time (in parallel) that the main job processes
another query step. The disadvantage of using an asynchronous
job is that it might encounter a situation that it cannot handle in
the same way as the main job. For example, the asynchronous job
might receive an inquiry message from which it cancels, whereas
the main job can choose to ignore the message and continue.

There are two different types of database queries that can run
asynchronous jobs:

1. Distributed queries. These are database queries that involve
distributed files. Distributed files are provided through the
system feature DB2 Multi-System for IBM i.

2. Local queries. there are database queries that involve only
files local to the system where the database queries are being
run.

*DEFAULT The default value is set to *LOCAL.

*LOCAL

Asynchronous jobs might be used for database queries that involve
only tables local to the system where the database queries are
being run.

In addition, this option allows the communications required for
queries involving distributed tables to be asynchronous. Each
system involved in the query of the distributed tables can run its
portion of the query at the same time (in parallel).

*DIST Asynchronous jobs might be used for database queries that involve
distributed tables.

*ANY Asynchronous jobs might be used for any database query.

*NONE

No asynchronous jobs are allowed to be used for database query
processing. In addition, all processing for queries involving
distributed tables occurs synchronously. Therefore, no intersystem
parallel processing occurs.

CACHE_RESULTS

Specifies a way for the user to control the cache results
processing. For queries involving temporary results, for example,
sorts or hashes, the database manager often saves the results
across query pseudo-close or pseudo-open. The results are saved
as long as they are not large, with the hope that they can be reused
for the next run of the query. Beginning in V5R3, the database
manager saves these temporary results even when a job is finished
with them. The database manager assumes that another job can
later reuse the results.

The database manager automatically controls the caching of these
results, removing cache results as storage usage becomes large.
However, the amount of temporary storage used by the database
can be noticeably more than in previous releases.

*DEFAULT The default value is the same as *SYSTEM.

*SYSTEM

The database manager might cache a query result set. A
subsequent run of the query by the same job can reuse the cached
result set. Or, if the ODP for the query has been deleted, any job can
reuse the cached result set.

*JOB

The database manager might cache a query result set from one run
to the next for a job. Caching can occur as long as the query uses a
reusable ODP. When the reusable ODP is deleted, the cached result
set is destroyed. This value mimics V5R2 processing.

*NONE
The database does not cache any query results.

COLLATE_ERRORS

Specifies how data errors are handled on the GROUP BY and
ORDER BY expression during hash or sort processing within
queries.

*DEFAULT The default value is *NO.

*NO A value of *NO causes the query to be ended with an error when a
grouping or ordering expressions results in an error.

*YES A value of *YES indicates that the grouping or sort continues.

COMMITMENT_CONTROL_ LOCK_LIMIT

Specifies the maximum number of records that can be locked to a
commit transaction initiated after setting the new value.

The value specified for COMMITMENT_CONTROL _LOCK_LIMIT
does not affect transactions running in jobs that have already
started commitment control. For the value to be effective, it must
be changed before starting commitment control.

*DEFAULT

*DEFAULT is equivalent to 500,000,000.

If multiple journals are involved in the transaction, the
COMMITMENT_CONTROL _LOCK_LIMIT applies to each journal, not
to the transaction as a whole.

For example, files F1 to F5 are journaled to journal J1, and files F6
to F10 are journaled to J2. The COMMITMENT_CONTROL
_LOCK_LIMIT is set to 100,000. 100,000 record locks can be
acquired for files F1 to F5. 100,000 more locks can be acquired for
files F6 to F10.

Integer Value
The maximum number of records that can be locked to a commit
transaction initiated after setting the new value.

The valid integer value is 1–500,000,000.

178 IBM i: Database Performance and Query Optimization

Table 46. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

DETERMINISTIC_UDF_SCOPE

Specifies the scope or lifetime of the deterministic setting for User
Defined Functions (UDFs) and User Defined Table Functions
(UDTFs).

It is recommended that you specify STATEMENT DETERMINISTIC
on any CREATE FUNCTION statement that should be considered
deterministic for a single instance of a query open rather than
using the *OPEN option. DETERMINISTIC_UDF_SCOPE applies to
all deterministic UDFs and UDTFs in every query while this
QAQQINI option is in effect.

*DEFAULT The default value is *ALWAYS.

*ALWAYS
The UDF is always considered deterministic. Query temporary
objects might be shared across query opens and the UDF might not
run for a particular query open.

*OPEN The UDF is considered deterministic only for a single instance of a
query open. Query temporary objects are not shared across query
open. The UDF is run at least once in the query for a given set of
input parameters.

FIELDPROC_ENCODED_COMPARISON

Specifies the amount of optimization that the optimizer might use
when queried columns have attached field procedures

*DEFAULT The default value is *ALLOW_EQUAL.

*NONE

No optimization to remove field procedure decode option 4 or
transformations to optimize field procedure invocations is allowed.
For example, the optimizer cannot transform fieldProc(4,
column) = ‘literal' to column = fieldProc(0,
‘literal'). This option is used when the field procedure is not
deterministic.

*ALLOW_
EQUAL

Optimization allowed for equal and not equal predicates, GROUP
BY, and DISTINCT processing. For example, the optimizer might
choose to change the predicate fieldProc(4, column) =
‘literal' to column = fieldProc(0, ‘literal') in order
to facilitate index matching. This option is useful when the field
procedure is deterministic but no ordering can be determined
based on the result of the field encoding.

*ALLOW_
RANGE

Transformation allowed for MIN, MAX grouping functions, ORDER
BY, and all predicates except LIKE in addition to the
transformations supported by *ALLOW_EQUAL. This option is useful
when the field procedure is deterministic and the encoded value
implies ordering

*ALL Transformation allowed for all predicates including LIKE, in addition
to the transformations supported by *ALLOW_RANGE.

FORCE_JOIN_ORDER

Specifies to the query optimizer that the join of files is to occur in
the order specified in the query.

*DEFAULT The default is set to *NO.

*NO Allow the optimizer to reorder join tables.

*SQL
Only force the join order for those queries that use the SQL JOIN
syntax. This option mimics the behavior for the optimizer before
V4R4M0.

*PRIMARY
nnn

Only force the join position for the file listed by the numeric value
nnn into the primary position (or dial) for the join. nnn is optional
and defaults to 1. The optimizer then determines the join order for
all the remaining files based upon cost.

*YES
Do not allow the query optimizer to specify the order of join tables
as part of its optimization process. The join occurs in the order in
which the tables were specified in the query.

IGNORE_LIKE_ REDUNDANT_SHIFTS

Specifies whether redundant shift characters are ignored for
DBCS-Open operands when processing the SQL LIKE predicate or
OPNQRYF command %WLDCRD built-in function.

*DEFAULT The default value is set to *OPTIMIZE.

*ALWAYS

When processing the SQL LIKE predicate or OPNQRYF command
%WLDCRD built-in function, redundant shift characters are ignored
for DBCS-Open operands. The optimizer cannot use an index to
perform key row positioning for SQL LIKE or OPNQRYF %WLDCRD
predicates involving DBCS-Open, DBCS-Either, or DBCS-Only
operands.

*OPTIMIZE

When processing the SQL LIKE predicate or the OPNQRYF command
%WLDCRD built-in function, redundant shift characters might be
ignored for DBCS-Open operands. These characters are ignored
depending on whether an index is used to perform key row
positioning for these predicates. This option enables the query
optimizer to consider key row positioning for SQL LIKE or OPNQRYF
%WLDCRD predicates involving DBCS-Open, DBCS-Either, or DBCS-
Only operands.

Database performance and query optimization 179

Table 46. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

LIMIT_PREDICATE_ OPTIMIZATION

Specifies that the query optimizer can only use simple isolatable
predicates (OIF) when performing its index optimization.

An OIF is a predicate that can eliminate a record without further
evaluation. Any predicate that cannot be classified as an OIF is
ignored by the optimizer and needs to be evaluated as a non-key
selection predicate.

A=10 and (A => 10 AND B=9) are OIFs.

A=10 OR B=9 are not OIFs.

Note: *YES impairs or limits index optimization.

*DEFAULT Do not eliminate the predicates that are not simple isolatable
predicates (OIF) when doing index optimization. Same as *NO.

*NO Do not eliminate the predicates that are not simple isolatable
predicates (OIF) when doing index optimization.

*YES

Eliminate the predicates that are not simple isolatable predicates
(OIF) when doing index optimization.

LOB_LOCATOR_THRESHOLD

Specifies either *DEFAULT or an Integer Value -- the threshold to
free eligible LOB locators that exist within the job.

*DEFAULT The default value is set to 0. This option indicates that the database
does not free locators.

Integer Value

If the value is 0, then the database does not free locators. For
values 1 through 250,000, on a FETCH request, the database
compares the SQL current LOB locator count for the job against the
threshold value. If the locator count is greater than or equal to the
threshold, the database frees host server created locators that have
been retrieved. This option applies to all host server jobs
(QZDASOINIT) and has no impact to other jobs.

MATERIALIZED_QUERY_ TABLE_REFRESH_AGE

Specifies the usage of materialized query tables in query
optimization and runtime.

*DEFAULT The default value is set to 0.

0 No materialized query tables can be used.

*ANY Any tables indicated by the MATERIALIZED_ QUERY_TABLE_USAGE
INI parameter can be used.

Timestamp_
duration

Only tables indicated by MATERIALIZED_ QUERY_TABLE_USAGE
INI option which have a REFRESH TABLE performed within the
specified timestamp duration can be used.

MATERIALIZED_QUERY_ TABLE_USAGE

Specifies the ability to examine which materialized query tables
are eligible to be used based on the last time a REFRESH TABLE
statement was run.

*DEFAULT The default value is set to *NONE.

*NONE Materialized query tables cannot be used in query optimization and
implementation.

*ALL User-maintained materialized query tables may be used.

*USER User-maintained materialized query tables can be used.

MEMORY_POOL_PREFERENCE

Specifies the preferred memory pool that database operations
uses. This option does not guarantee use of the specified pool, but
directs database to perform its paging into this pool when
supported by the database operation.

*DEFAULT The default value is set to *JOB.

*JOB Paging is done in the pool of the job. This option is normal paging
behavior.

*BASE Attempt to page storage into the base pool when paging is needed
and a database operation that supports targeted paging occurs.

nn Attempt to page storage into pool nn when paging is needed and a
database operation that supports targeted paging occurs.

*NAME PoolName
Attempt to page storage into a named storage pool when paging is
needed and a database operation that supports targeted paging
occurs.

*PRIVATE Library/
Subsystem/
PoolNumber

Attempt to page storage into a private storage pool in specified
library and subsystem when paging is needed and a database
operation that supports targeted paging occurs.

MESSAGES_DEBUG

Specifies whether Query Optimizer debug messages are displayed
to the job log. These messages are regularly issued when the job is
in debug mode.

*DEFAULT The default is set to *NO.

*NO No debug messages are to be displayed.

*YES Issue all debug messages that are generated for STRDBG.

NORMALIZE_DATA

Specifies whether normalization is performed on Unicode
constants, host variables, parameter markers, and expressions
that combine strings.

*DEFAULT The default is set to *NO.

*NO Unicode constants, host variables, parameter markers, and
expressions that combine strings is not normalized.

*YES Unicode constants, host variables, parameter markers, and
expressions that combine strings is normalized

180 IBM i: Database Performance and Query Optimization

Table 46. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

OPEN_CURSOR_CLOSE_ COUNT

Specifies either *DEFAULT or an Integer Value: the number of
cursors to full close when the threshold is encountered.

*DEFAULT *DEFAULT is equivalent to 0. See Integer Value for details.

Integer Value

This value determines the number of cursors to be closed. The valid
values for this parameter are 1 - 65536. The value for this
parameter is less than or equal to the number in the
OPEN_CURSOR_THREHOLD parameter.

If the number of open cursors reaches the value specified by the
OPEN_CURSOR_THRESHOLD, pseudo-closed cursors are hard
(fully) closed. The least recently used cursors are closed first.

This value is ignored if OPEN_CURSOR_THRESHOLD is *DEFAULT. If
OPEN_CURSOR_THRESHOLD is specified and the value is
*DEFAULT, the number of cursors closed is equal to
OPEN_CURSOR_THRESHOLD multiplied by 10 percent. The result is
rounded up to the next integer value.

OPEN_CURSOR_CLOSE_COUNT is used with
OPEN_CURSOR_THRESHOLD to manage the number of open
cursors within a job. Open cursors include pseudo-closed cursors.

OPEN_CURSOR_ THRESHOLD

Specifies either *DEFAULT or an Integer Value -- the threshold to
start full close of pseudo-closed cursors.

*DEFAULT *DEFAULT is equivalent to 0. See Integer Value for details.

Integer Value

This value determines the threshold to start full close of pseudo-
closed cursors. When the number of open cursors reaches this
threshold value, pseudo-closed cursors are hard (fully) closed with
the least recently used cursors being closed first. The number of
cursors to be closed is determined by
OPEN_CURSOR_CLOSE_COUNT.

The valid user-entered values for this parameter are 1 - 65536. A
default value of 0 indicates that there is no threshold. Hard closes
are not forced based on the number of open cursors within a job.

OPEN_CURSOR_THRESHOLD is used with
OPEN_CURSOR_CLOSE_COUNT to manage the number of open
cursors within a job. Open cursors include pseudo-closed cursors.

OPTIMIZATION_GOAL

Specifies the goal that the query optimizer uses when making
costing decisions.

*DEFAULT Optimization goal is determined by the interface (ODBC, SQL
precompiler options, OPTIMIZE FOR nnn ROWS clause).

*FIRSTIO

All queries are optimized with the goal of returning the first page of
output as fast as possible. This option works well when the output
is controlled by a user likely to cancel the query after viewing the
first page of data. Queries coded with OPTIMIZE FOR nnn ROWS
honor the goal specified by the clause.

*ALLIO

All queries are optimized with the goal of running the entire query
to completion in the shortest amount of elapsed time. This option is
better when the output of a query is written to a file or report, or the
interface is queuing the output data. Queries coded with OPTIMIZE
FOR nnn ROWS honor the goal specified by the clause.

OPTIMIZE_STATISTIC_ LIMITATION

Specifies limitations on the statistics gathering phase of the query
optimizer.

One of the most time consuming aspects of query optimization is
in gathering statistics from indexes associated with the queried
tables. Generally, the larger the size of the tables involved in the
query, the longer the gathering phase of statistics takes.

This option provides the ability to limit the amount of resources
spend during this phase of optimization. The more resources spent
on statistics gathering, the more accurate (optimal) the
optimization plan is.

*DEFAULT The amount of time spent in gathering index statistics is
determined by the query optimizer.

*NO No index statistics are gathered by the query optimizer. Default
statistics are used for optimization. (Use this option sparingly.)

*PERCENTAGE
integer value

Specifies the maximum percentage of the index that is searched
while gathering statistics. Valid values for are 1 - 99.

*MAX_
NUMBER_OF_
RECORDS_
ALLOWED
integer value

Specifies the largest table size, in number of rows, for which
gathering statistics is allowed. For tables with more rows than the
specified value, the optimizer does not gather statistics and uses
default values.

Database performance and query optimization 181

Table 46. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

PARALLEL_DEGREE

Specifies the parallel processing option that can be used when
running database queries and database file keyed access path
builds, rebuilds, and maintenance in the job. The specified parallel
processing option determines the types of parallel processing
allowed. There are two types of parallel processing:

1. Input/Output (I/O) parallel processing. With I/O parallel
processing, the database manager uses multiple tasks for
each query to do the I/O processing. The central processor
unit (CPU) processing is still done serially.

2. Symmetric Multiprocessing (SMP). SMP assigns both CPU and
I/O processing to tasks that run the query in parallel. Actual
CPU parallelism requires a system with multiple processors.
SMP can only be used if the system feature, DB2 Symmetric
Multiprocessing, is installed. Use of SMP parallelism can affect
the order in which records are returned.

*DEFAULT The default value is *SYSVAL.

*SYSVAL Set to the current system value QQRYDEGREE.

*IO Any number of tasks can be used. SMP parallel processing is not
allowed.

*OPTIMIZE

Any number of tasks for:

• I/O or SMP parallel processing of the query

• database file keyed access path build, rebuild, or maintenance.

SMP parallel processing is used only if the system feature, DB2
Symmetric Multiprocessing for IBM i, is installed.

Use of parallel processing and the number of tasks used is
determined by:

• the number of processors available in the system

• the job share of the amount of active memory available in the
pool in which the job is run

• whether the expected elapsed time for the query or database file
keyed access path build or rebuild is limited by CPU processing
or I/O resources.

The query optimizer chooses an implementation that minimizes
elapsed time based on the job share of the memory in the pool.

*OPTIMIZE
nnn

Like *OPTIMIZE, with the value nnn indicating a percentage from 1
to 200, used to influence the number of tasks. If not specified, 100
is used.

The query optimizer determines the parallel degree for the query
using the same processing as is done for *OPTIMIZE. Once
determined, the optimizer adjusts the actual parallel degree used
for the query by the percentage given.

Allows the user to override the parallel degree used without having
to specify a particular parallel degree under *NUMBER_OF_TASKS.

nnn

The query optimizer chooses to use either I/O or SMP parallel
processing to process the query. SMP parallel processing is used
only if the system feature, DB2 Symmetric Multiprocessing for IBM
i, is installed.

nnn is a percentage from 1 to 200 and is used to influence the
number of tasks. If not specified, 100 is used.

The choices made by the query optimizer are like those choices
made for parameter value *OPTIMIZE. The exception is the
assumption that all pool active memory can be used for query
processing, database file keyed access path build, rebuild, or
maintenance.

PARALLEL_DEGREE (continued) *NONE No parallel processing is allowed for database query processing or
database table index build, rebuild, or maintenance.

*NUMBER_
OF _TASKS
nnn

Indicates the maximum number of tasks that can be used for a
single query. The number of tasks is limited to either this value or
the number of disk arms associated with the table.

Not recommended if running SQE. The SQE optimizer attempts to
use this degree and override many of the normal costing
mechanisms. For SQE, use *OPTIMIZE with a percentage.

*MAX xxx Like *MAX, with the value xxx indicating the ability to specify an
integer percentage value 1 - 200. The query optimizer determines
the parallel degree for the query using the same processing as is
done for *MAX. Once determined, the optimizer adjusts the actual
parallel degree used for the query by the percentage given. This
option provides the user the ability to override the parallel degree
used to some extent without having to specify a particular parallel
degree under *NUMBER_OF_TASKS.

PARAMETER_MARKER_ CONVERSION

Specifies whether to allow literals to be implemented as
parameter markers in dynamic SQL queries.

*DEFAULT The default value is set to *YES.

*NO Constants cannot be implemented as parameter markers.

*YES Constants can be implemented as parameter markers.

182 IBM i: Database Performance and Query Optimization

Table 46. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

PREVENT_ADDITIONAL_CONFLICTING_LOCKS

The following SQL DDL statements require an exclusive, no read
lock on the target table. If the application activity cannot be
quiesced, it can be hard to accomplish these operations.

The PREVENT_ADDITIONAL_CONFLICTING_LOCKS QAQQINI
option provides a control for customers to use to direct the
operating system to favor a request for an exclusive, no read lock
over new requests to lock the object for reading.

*DEFAULT The default value is set to *NO

*NO When a job requests an exclusive lock on an object, do not prevent
concurrent jobs from acquiring additional locks on the object.

*YES

When *YES is chosen, any new requests for these lower-level read
locks will be kept behind the exclusive lock request and could
surface to applications as the table is unavailable for use for
querying.

• ALTER TABLE (Add, Alter or Drop Column)

• CREATE TRIGGER

• LOCK TABLE

• RENAME TABLE

PSEUDO_OPEN_CHECK_HOST_VARS

This option can be used to allow SQE to check the selectivity of the
host variable values at pseudo open time. If the new set of host
variable values require a different plan to perform well, SQE will
re-optimize the query.

This option is most appropriate when there is considerable
variability in the selectivity of host variable in the queries
predicates.

*DEFAULT The default value is set to *NO

*NO The optimizer does not check host variables for selectivity changes
once in pseudo-open.

*OPTIMIZE

The optimizer will determine when a host variable selectivity should
be checked. In general, the optimizer will monitor the query and if
after a certain number of runs it determines that there is no
advantage to checking host variable selectivity at pseudo open
time, it will stop checking. Full opens do normal plan validation.

*YES

The optimizer will always check host variable selectivity at pseudo
open time.

Note: If the REOPTIMIZE_ACCESS_PLAN INI option is set to
*ONLY_REQUIRED then this INI option has no effect.

QUERY_TIME_LIMIT

Specifies a time limit for database queries allowed to be started
based on the estimated number of elapsed seconds that the query
requires to process.

*DEFAULT The default value is set to *SYSVAL.

*SYSVAL The query time limit for this job is obtained from the system value,
QQRYTIMLMT.

*NOMAX There is no maximum number of estimated elapsed seconds.

integer value

Specifies the maximum value that is checked against the estimated
number of elapsed seconds required to run a query. If the
estimated elapsed seconds are greater than this value, the query is
not started. Valid values range from 0 to 2,147,352,578.

REOPTIMIZE_ACCESS_PLAN

Specifies whether the query optimizer reoptimizes a query with a
saved access plan.

Queries can have a saved access plan stored in the associated
storage of an HLL program, or in the plan cache managed by the
optimizer itself.

Note: If you specify *NO the query could still be revalidated.

Some of the reasons this option might be necessary are:

• The queried file was deleted and recreated.

• The query was restored to a different system than the one on
which it was created.

• An OVRDBF command was used.

*DEFAULT The default value is set to *NO.

*NO
Do not force the existing query to be reoptimized. However, if the
optimizer determines that optimization is necessary, the query is
optimized.

*YES Force the existing query to be reoptimized.

*FORCE Force the existing query to be reoptimized.

*ONLY_
REQUIRED

Do not allow the plan to be reoptimized for any subjective reasons.
For these cases, continue to use the existing plan since it is still a
valid workable plan. This option could mean that you might not get
all the performance benefits that a reoptimization plan might
derive. Subjective reasons include file size changes, new indexes,
and so on. Non-subjective reasons include deletion of an index
used by existing access plan, query file being deleted and
recreated, and so on.

SQE_NATIVE_ACCESS

This option controls how native access will be implemented for an
open or query. It does not affect a simple native open, such as an
open done using the OPNDBF command, unless opening an SQL
view, a partition table with a MBR(*ALL) override or a file
dependent on row or column access control. It also does not affect
the Query (QQQQRY) API.

*DEFAULT The default value could be either *YES or *NO as determined by the
Query Optimizer.

*NO Attempt open using the Classic Query Engine (CQE). If CQE is not
possible, attempt open using the SQL Query Engine (SQE).

*YES Attempt open using the SQL Query Engine (SQE). If SQE is not
possible, attempt open using the Classic Query Engine (CQE).

Database performance and query optimization 183

Table 46. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

SQE_NATIVE_ACCESS_POSITION_BEHAVIOR

This option controls the positioning behavior of native opens or
queries implemented by SQE. By specifying an option other than
*DEFAULT, performance benefits may be realized.

*DEFAULT Normal positioning behavior is performed.

*NO_ROLLBACK
_HOLD

The current cursor position is unchanged by a rollback.

*NO_KEY_
FAILURE_HOLD

If an attempted key positioning operation fails,the cursor position
prior to the attempted operation will not be restored. It is assumed
that another absolute positioning operation, such as first, last, or
key equal, will be attempted before any relative positioning
operations, such as next or previous.

*NO_HOLD Behavior is the same as defined for *NO_ROLLBACK_HOLD and
*NO_KEY_FAILURE_HOLD values.

SQLSTANDARDS_MIXED_ CONSTANT

Specifies whether to allow IGC constants to always be treated as
IGC-OPEN in SQL queries.

Note: When *NO is specified, DB2 for i is not compatible with the
other DB2 platforms.

*DEFAULT The default value is set to *YES.

*YES SQL IGC constants are treated as IGC-OPEN constants.

*NO
If the data in the IGC constant only contains shift-out DBCS-data
shift-in, then the constant are treated as IGC-ONLY, otherwise it is
treated as IGC-OPEN.

SQL_CONCURRENT_ACCESS_RESOLUTION

Specifies the concurrent access resolution to use for an SQL query.

*DEFAULT The default value is set to *WAIT.

*WAIT

The database manager must wait for the commit or rollback when
encountering data in the process of being updated, deleted, or
inserted. Rows encountered that are in the process of being
inserted are not skipped. This option applies if possible when the
isolation level in effect is Cursor Stability or Read Stability and is
ignored otherwise.

*CURCMT

The database manager can use the currently committed version of
the data for read-only scans when it is in the process of being
updated or deleted. Rows in the process of being inserted can be
skipped. This option applies if possible when the isolation level in
effect is Cursor Stability and is ignored otherwise.

SQL_DECFLOAT_WARNINGS

Specifies the warnings returned for SQL DECFLOAT computations
and conversions involving:

• division by 0.

• overflow.

• underflow.

• an invalid operand.

• an inexact result.

•

*DEFAULT The default value is set to *NO.

*YES
A warning is returned to the caller for DECFLOAT computations and
conversions involving division by 0, overflow, underflow, invalid
operand, inexact result, or subnormal number.

*NO

An error or a mapping error is returned to the
caller for DECFLOAT computations and
conversions involving division by 0, overflow,
underflow, or an invalid operand.

A warning or error is not returned for an inexact result or a
subnormal number.

SQL_FAST_DELETE_ ROW_COUNT

Specifies how the delete is implemented by the database
manager. This value is used when processing a DELETE FROM
table-name SQL statement without a WHERE clause.

*DEFAULT

The default value is set to 0.

0 indicates that the database manager chooses how many rows to
consider when determining whether fast delete could be used
instead of traditional delete.

When using the default value, the database manager will most likely
use 1000 as a row count. This means that using the INI option with
a value of 1000 results in no operational difference from using 0 for
the option.

*NONE This value forces the database manager to never attempt to fast
delete on the rows.

*OPTIMIZE This value is same as using *DEFAULT.

Integer Value

Specifying a value for this option allows the user to tune the
behavior of DELETE. The target table for the DELETE statement
must match or exceed the number of rows specified on the option
for fast delete to be attempted. A fast delete does not write
individual rows into a journal.

The valid values are 1 - 999,999,999,999,999.

184 IBM i: Database Performance and Query Optimization

Table 46. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

SQL_GVAR_BUILD_RULE

Determines whether global variables must exist or not when
building SQL routines or executing SQL pre-compiles.

This option has no affect on dynamic SQL statements.

*DEFAUT The default value is set to *DEFER

*DEFER

Global variables do not need to exist when an SQL routine is
created or the SQL pre-compiler is run. Since global variables are
not required to exist, the create will not fail when an incorrect
column name or routine variable is encountered. Incorrect name
usage will result in SQL0206 - "Column or global variable &1 not
found." failures when the statement is executed.

*EXIST Global variables referenced by SQL must exist when the SQL
routine is created or the SQL pre-compiler is run. Using this option,
an SQL0206 will be issued at create time.

SQL_MODIFIES_SQL_DATA

From the SQL Standard, no MODIFIES SQL DATA operations are
allowed in an SQL BEFORE trigger.

The Informix® database allows MODIFIES SQL DATA operations in
SQL BEFORE triggers. Setting the option to *YES allows SQL
BEFORE triggers to perform the SQL MODIFIES SQL DATA
operations.

*DEFAULT The default value is set to *NO.

*NO No MODIFIES SQL DATA operations are allowed in an SQL BEFORE
trigger.

*YES
MODIFIES SQL DATA operations are allowed in an SQL BEFORE
trigger.

SQL_PSEUDO_CLOSE

Before V6R1: SQL cursor open processing checks for the presence
of a data area named QSQPSCLS1 in the library list of the job. If
the data area is found, all reusable cursors are marked as
candidates for reuse. They are pseudo-closed the first time rather
than the second time the application closes the cursor. Without
this data area, a cursor does not become reusable until the second
close.

Pseudo-closing the first time results in leaving some cursors open
that might not be reused. These open cursors can increase the
amount of auxiliary and main storage required for the application.
The storage can be monitored using the WRKSYSSTS command.
For the amount of auxiliary storage used, look at the "% system
ASP used." For the amount of main storage, examine the faulting
rates on the WRKSYSSTS display.

The format and the contents of the data area are not important.
The data area can be deleted using the following command:
DLTDTAARA DTAARA(QGPL/QSQPSCLS1).

The existence of the data area is checked during the first SQL open
operation for each job. It is checked only once and the processing
mode remains the same for the life of the job. Because the library
list is used for the search, the change can be isolated to specific
jobs. Create the data area in a library that is included only in the
library lists for those jobs.

*DEFAULT

The default behavior depends upon whether the QSQPSCLS1
*DTAARA exists.

If the QSQPSCLS1 *DTAARA was found on the first OPEN within the
job, then SQL cursors are marked as candidates for reuse. The
cursors are pseudo-closed on the first close.

If the QSQPSCLS1 *DTAARA was not found on the first OPEN within
the job, then SQL cursors are marked as candidates for reuse. The
cursors are pseudo-closed on the second close.

Integer Value

Specifies a value greater than zero that indicates when a cursor is
pseudo-closed. The value of this option minus 1 indicates how
many times the cursor is hard closed before being marked as
candidate for pseudo-close. Valid values are 1 - 65535.

SQL_STMT_COMPRESS_MAX

Specifies the compression maximum setting, which is used when
statements are prepared into a package.

*DEFAULT
The default value is set to 2. The default indicates that the access
plan associated with any statement will be removed after a
statement has been compressed twice without being executed.

Integer Value

The integer value represents the number of times that a statement
is compressed before the access plan is removed to create more
space in the package. Executing the SQL statement resets the count
for that statement to 0. The valid Integer values are 1 - 255.

SQL_STMT_REUSE

Specifies the number of times the statement must be prepared in
the same connection before the statement is stored in the SQL
extended dynamic package. If the number of times the statement
has been prepared in the same connection is less than the
specified INI option, a temporary copy of the statement is used.
Any other job preparing the statement does a complete prepare.

*DEFAULT The default value is 3. The statement is stored on the third prepare
of the statement.

0 The statement will be stored on the first prepare of the statement.
This was the default behavior prior to V6R1M0

1::255 The number of times the statement must be prepared in the same
connection before the statement is stored in the SQL package.

SQL_SUPPRESS_MASKED_DATA_DETECTION

*DEFAULT The default value is set to *NO.

*YES
If masked data is being used to insert into or update a table,
detection of this masked data will not be done and a SQ20478 with
reason code 30 will not be sent.

*NO

If masked data is being used to insert into or update a table with
activated column access control directly from an expression
involving a column with an active column mask, detection of this
masked data will be done and a SQ20478 with reason code 30 will
be sent.

Database performance and query optimization 185

Table 46. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

SQL_SUPPRESS_WARNINGS

For SQL statements, this parameter provides the ability to
suppress SQL warnings.

*DEFAULT The default value is set to *NO.

*YES

Examine the SQLCODE in the SQLCA after execution of a statement.
If the SQLCODE is + 30, then alter the SQLCA so that no warning is
returned to the caller.

Set the SQLCODE to 0, the SQLSTATE to '00000' and SQLWARN to
' '.

Warnings:

• SQL0335

• SQL0030

• SQL7909 (on a DROP PROCEDURE/ROUTINE/FUNCTION)

*NO Specifies that SQL warnings are returned to the caller.

SQL_TRANSLATE_ASCII_ TO_JOB

Specifies whether to translate SQL statement text on the
application server (AS) according to the CCSID of the job. This
option applies when using DRDA to connect to an IBM i as the AS
where the application requestor (AR) machine is an ASCII-based
platform.

*DEFAULT The default value is set to *NO.

*YES Translate ASCII SQL statement text to the CCSID of the IBM i job.

*NO
Translate ASCII SQL statement text to the EBCIDIC CCSID
associated with the ASCII CCSID.

SQL_XML_DATA_CCSID

Specifies the CCSID to be used for XML columns, host variables,
parameter markers, and expressions, if not explicitly specified.

See “SQL_XML_DATA_CCSID QAQQINI option” on page 187

*DEFAULT The default value is set to 1208.

*JOB
The job CCSID is used for XML columns, host variables, parameter
markers, and expressions, if not explicitly specified. If the job
CCSID is 65535, the default CCSID of 1208 is used.

Integer Value

The CCSID used for XML columns, host variables, parameter
markers, and expressions, if not explicitly specified. This value must
be a valid single-byte or mixed EBCDIC CCSID or Unicode CCSID.
The value cannot be 65535.

STAR_JOIN

Note: Only modifies the environment for the Classic Query Engine.

Specifies enhanced optimization for hash queries where both a
hash join table and a Distinct List of values is constructed from the
data. This Distinct List of values is appended to the selection
against the primary table of the hash join

Any EVI indexes built over these foreign key columns can be used
to perform bitmap selection against the table before matching the
join values.

The use of this option does not guarantee that star join is chosen
by the optimizer. It only allows the use of this technique if the
optimizer has decided to implement the query by using a hash join.

*DEFAULT The default value is set to *NO

*NO The EVI Star Join optimization support is not enabled.

*COST

Allow query optimization to cost the usage of EVI Star Join support.

The optimizer determines whether the Distinct List selection is used
based on how much benefit can be derived from using that
selection.

STORAGE_LIMIT

Specifies a temporary storage limit for database queries. If a query
is expected to use more than the specified amount of storage, the
query is not allowed to run. The value specified is in megabytes.

*DEFAULT The default value is set to *NOMAX.

*NOMAX Never stop a query from running because of storage concerns.

Integer Value

The maximum amount of temporary storage in megabytes that can
be used by a query. This value is checked against the estimated
amount of temporary storage required to run the query as
calculated by the query optimizer. If the estimated amount of
temporary storage is greater than this value, the query is not
started. Valid values range from 0 through 2147352578.

SYSTEM_SQL_STATEMENT_ CACHE

Specifies whether to disable the system-wide SQL Statement
Cache for SQL queries.

*DEFAULT The default value is set to *YES.

*YES

Examine the system-wide SQL Statement Cache when an SQL
prepare request is processed. If a matching statement exists in the
cache, use the results of that prepare. This option allows the
application to potentially have better performing prepares.

*NO Specifies that the system-wide SQL Statement Cache is not
examined when processing an SQL prepare request.

186 IBM i: Database Performance and Query Optimization

Table 46. Query Options Specified on QAQQINI Command (continued)

Parameter Value Description

TEXT_SEARCH_DEFAULT_TIMEZONE

Specifies the time zone to apply to any date or dateTime value
specified in an XML text search using the CONTAINS or SCORE
function. The time zone is the offset from UTC (Greenwich mean
time. It is only applicable when a specific time zone is not given for
the value.

*DEFAULT Use the default as defined by database. This option is equivalent to
UTC.

sHH:MM

A time zone formatted value where

• s is the sign, + or –

• HH is the hour

• MM is the minute

The valid range for HH is 00 - 23. The valid range for MM is 00 - 59.
The format is specific. All values are required, including sign. If HH
or MM is less than 10, it must have a leading zero specified.

UDF_TIME_OUT

Note: Only modifies the environment for the Classic Query Engine.

Specifies the amount of time, in seconds, that the database waits
for a User Defined Function (UDF) to finish processing.

*DEFAULT The amount of time to wait is determined by the database. The
default is 30 seconds.

*MAX The maximum amount of time that the database waits for the UDF
to finish.

integer value

Specify the number of seconds that the database waits for a UDF to
finish. If the value given exceeds the database maximum wait time,
the maximum wait time is used by the database. Minimum value is
1 and maximum value is system defined.

VARIABLE_LENGTH_ OPTIMIZATION

Specifies whether aggressive optimization techniques are used on
variable length columns.

*DEFAULT The default value is set to *YES.

*YES

Enables aggressive optimization of variable-length columns,
including index-only access. It also allows constant value
substitution when an equal predicate is present against the
columns. As a consequence, the length of the data returned for the
variable-length column might not include any trailing blanks that
existed in the original data. As a result, the application can receive
the substituted value back instead of the original data. Function
calls could operate on the substituted value instead of the original
string value.

*NO Do not allow aggressive optimization of variable length columns.

Note: The following QAQQINI options will be ignored for SQE native query access. These options were
previously honored for CQE native query access.

• LIMIT_PREDICATE_OPTIMIZATION
• STAR_JOIN
• UDF_TIME_OUT

Note: The following QAQQINI options will be honored for SQE native query access. These options were
previously ignored for CQE native query access.

• DETERMINISTIC_UDF_SCOPE
• FIELDPROC_ENCODED_COMPARISON
• MATERIALIZED_QUERY_TABLE_USAGE
• MATERIALIZED_QUERY_TABLE_REFRESH_AGE
• MEMORY_POOL_PREFERENCE
• VARIABLE_LENGTH_OPTIMIZATION

SQL_XML_DATA_CCSID QAQQINI option
The SQL_XML_DATA_CCSID QAQQINI option has several settings that affect SQL processing.

The SQL_XML_DATA_CCSID QAQQINI setting is applied within SQL in the following SQL processing:

Table 47. SQL_XML_DATA_CCSID setting application within SQL

SQL Processing item Description

Valid values for the QAQQINI option are
CCSIDs allowed on an XML column.

Valid values are all EBCDIC SBCS and mixed CCSIDs, and
Unicode 1208, 1200, and 13488 CCSIDs.

Database performance and query optimization 187

Table 47. SQL_XML_DATA_CCSID setting application within SQL (continued)

SQL Processing item Description

Does not affect the promotion of SQL data
types.

Other SQL data types cannot be directly promoted to the SQL
XML data type.

XMLPARSE untyped parameter markers. The QAQQINI setting applies to untyped parameter markers
passed as string-expression. The type is CLOB(2G) for SBCS,
mixed, and UTF-8 values. The type is DBCLOB(1G) for Unicode
1200 and 13488.

XMLCOMMENT, XMLTEXT, XMLPI untyped
parameter markers.

The QAQQINI setting applies to untyped parameter markers
passed as string-expression. The type is VARCHAR(32740) for
SBCS, mixed, and UTF-8 values. The type is
VARGRAPHIC(16370) for Unicode 1200 and 13488.

Applies to parameter marker casts to the
XML type for XMLCONCAT, and
XMLDOCUMENT.

Applies to an untyped parameter marker passed as an XML-
expression. Unless an explicit CCSID clause is specified, the
CCSID of the parameter marker is obtained from the QAQQINI
setting.

The QAQQINI setting does not affect storage
and retrieval assignment rules.

The CCSID of the host variables and table columns apply.

String to column assignment on SQL INSERT
and UPDATE.

An implicit or explicit XMLPARSE is required on the column
assignment.

String to host variable assignment. An implicit or explicit XMLSERIALIZE is required on the host
variable assignment.

Column to column assignment. When the target column is XML, an implicit XMLPARSE is
applied if the source column is not XML. The target XML column
has a defined XML CCSID. When the source column is XML, an
explicit XMLSERIALIZE is required if the target column is not
XML.

Host variable to column assignment. The target column has a defined CCSID.

UNION ALL (if XML publishing functions in
query).

The XML result CCSID is obtained from the QAQQINI setting.

Does not apply to SQL constants. UX constants are defined as UTF-16. FX constants are defined
as UTF-8.

Result type of XML data built-in functions. If the first operand of XMLPARSE and XMLVALIDATE is an
untyped parameter marker, the CCSID is set from the QAQQINI
setting, which then affects the XML result CCSID. The QAQQINI
setting is used for XMLSERIALIZE for CHAR, VARCHAR, and LOB
AS data-type. UTF-16 is used for GRAPHIC, DBCLOB, and
NCHAR.

Result type of XML publishing functions -
XMLAGG, XMLGROUP, XMLATTRIBUTES,
XMLCOMMENT, XMLCONCAT,
XMLDOCUMENT, XMELEMENT, XMLFOREST,
XMLNAMESPACES, XMLPI, XMLROW, and
XMLTEXT.

The XML result CCSID for XML publishing functions is obtained
from the QAQQINI setting.

Result type of XML publishing functions in a
view.

The XML result CCSID is set when the view is created.

XML data type on external procedure XML AS
parameters.

The XML parameter CCSID is set when the procedure is created.

188 IBM i: Database Performance and Query Optimization

Table 47. SQL_XML_DATA_CCSID setting application within SQL (continued)

SQL Processing item Description

XML data type on external user-defined
functions.

The XML parameter and result CCSID are set when the function
is created.

CREATE TABLE XML column. The QAQQINI setting is used for dynamic SQL. The QAQQINI
setting is set in *PGM, *SRVPGM, and *SQLPKG objects when
created.

MQTs containing select-statement with XML
publishing functions.

The CCSID is set when the MQT is created. The CCSID is
maintained for an ALTER TABLE.

ALTER TABLE ADD MATERIALIZED QUERY
definition.

The QAQQINI setting is used if the select-statement contains
XML publishing functions.

XML AS CLOB CCSID The QAQQINI setting is built into *PGM and *SRVPGM objects
when the program is created. The CCSID defaults to UTF-8 for
CLOB when QAQQINI setting is UTF-16 or UCS2.

XML AS DBCLOB CCSID The default for DBCLOB is always UTF-16 for XML.

SQL GET and SET DESCRIPTOR XML data
type.

QAQQINI setting applied to XML data type.

SQL Global variables. QAQQINI setting applied to global variables with the XML data
type.

Related information
XML values
SQL statements and SQL/XML functions

Setting resource limits with the Predictive Query Governor
The Db2 for i Predictive Query Governor can stop the initiation of a query if the estimated run time
(elapsed execution time) or estimated temporary storage for the query is excessive. The governor acts
before a query is run instead of while a query is run. The governor can be used in any interactive or batch
job on the system. It can be used with all Db2 for i query interfaces and is not limited to use with SQL
queries.

The ability of the governor to predict and stop queries before they are started is important because:

• Operating a long-running query and abnormally ending the query before obtaining any results wastes
system resources.

• Some CQE operations within a query cannot be interrupted by the End Request (ENDRQS) CL
command. The creation of a temporary index or a query using a column function without a GROUP BY
clause are two examples of these types of queries. It is important to not start these operations if they
take longer than the user wants to wait.

The governor in Db2 for i is based on two measurements:

• The estimated runtime for a query.
• The estimated temporary storage consumption for a query.

If the query estimated runtime or temporary storage usage exceed the user-defined limits, the initiation
of the query can be stopped.

To define a time limit (in seconds) for the governor to use, do one of the following:

• Use the Query Time Limit (QRYTIMLMT) parameter on the Change Query Attributes (CHGQRYA)
CL command. The command language used is the first place where the optimizer attempts to find the
time limit.

Database performance and query optimization 189

• Set the Query Time Limit option in the query options file. The query options file is the second place
where the query optimizer attempts to find the time limit.

• Set the QQRYTIMLMT system value. Allow each job to use the value *SYSVAL on the Change Query
Attributes (CHGQRYA) CL command, and set the query options file to *DEFAULT. The system value
is the third place where the query optimizer attempts to find the time limit.

To define a temporary storage limit (in megabytes) for the governor to use, do the following:

• Use the Query Storage Limit (QRYSTGLMT) parameter on the Change Query Attributes
(CHGQRYA) CL command. The command language used is the first place where the query optimizer
attempts to find the limit.

• Set the Query Storage Limit option STORAGE_LIMIT in the query options file. The query options file is
the second place where the query optimizer attempts to find the time limit.

The time and temporary storage values generated by the optimizer are only estimates. The actual query
runtime might be more or less than the estimate. In certain cases when the optimizer does not have full
information about the data being queried, the estimate could vary considerably from the actual resource
used. In those cases, you might need to artificially adjust your limits to correspond to an inaccurate
estimate.

When setting the time limit for the entire system, set it to the maximum allowable time that any query
must be allowed to run. By setting the limit too low you run the risk of preventing some queries from
completing and thus preventing the application from successfully finishing. There are many functions that
use the query component to internally perform query requests. These requests are also compared to the
user-defined time limit.

You can check the inquiry message CPA4259 for the predicted runtime and storage. If the query is
canceled, debug messages are still written to the job log.

You can also add the Query Governor Exit Program that is called when estimated runtime and temporary
storage limits have exceeded the specified limits.

Related information
Query Governor Exit Program
End Request (ENDRQS) command
Change Query Attributes (CHGQRYA) command

Using the Query Governor
The resource governor works with the query optimizer.

When a user issues a request to the system to run a query, the following occurs:

1. The query access plan is created by the optimizer.

As part of the evaluation, the optimizer predicts or estimates the runtime for the query. This estimate
helps determine the best way to access and retrieve the data for the query. In addition, as part of the
estimating process, the optimizer also computes the estimated temporary storage usage for the query.

2. The estimated runtime and estimated temporary storage are compared against the user-defined query
limit currently in effect for the job or user session.

3. If the estimates for the query are less than or equal to the specified limits, the query governor lets the
query run without interruption. No message is sent to the user.

4. If the query limit is exceeded, inquiry message CPA4259 is sent to the user. The message states the
estimates as well as the specified limits. Realize that only one limit needs to be exceeded; it is possible
that you see that only one limit was exceeded. Also, if no limit was explicitly specified by the user, a
large integer value is shown for that limit.

Note: A default reply can be established for this message so that the user does not have the option to
reply. The query request is always ended.

5. If a default message reply is not used, the user chooses to do one of the following:

• End the query request before it is run.

190 IBM i: Database Performance and Query Optimization

• Continue and run the query even though the estimated value exceeds the associated governor limit.

Setting the resource limits for jobs other than the current job

You can set either or both resource limits for a job other than the current job. You set these limits by using
the JOB parameter on the Change Query Attributes (CHGQRYA) command. Specify either a query
options file library to search (QRYOPTLIB) or a specific QRYTIMLMT, or QRYSTGLMT, or both for that job.

Using the resource limits to balance system resources

After the source job runs the Change Query Attributes (CHGQRYA) command, effects of the
governor on the target job are not dependent upon the source job. The query resource limits remain in
effect for the duration of the job or user session, or until a resource limit is changed by a Change Query
Attributes (CHGQRYA) command.

Under program control, a user might be given different limits depending on the application function
performed, time of day, or system resources available. These limits provide a significant amount of
flexibility when trying to balance system resources with temporary query requirements.

Cancel a query with the Query Governor
When a query is expected to take more resources than the set limit, the governor issues inquiry message
CPA4259.

You can respond to the message in one of the following ways:

• Enter a C to cancel the query. Escape message CPF427F is issued to the SQL runtime code. SQL returns
SQLCODE -666.

• Enter an I to ignore the exceeded limit and let the query run to completion.

Control the default reply to the query governor inquiry message
The system administrator can control whether the interactive user has the option of ignoring the database
query inquiry message by using the Change Job (CHGJOB) CL command.

Changes made include the following:

• If a value of *DFT is specified for the INQMSGRPY parameter of the Change Job (CHGJOB) CL
command, the interactive user does not see the inquiry messages. The query is canceled immediately.

• If a value of *RQD is specified for the INQMSGRPY parameter of the Change Job (CHGJOB) CL
command, the interactive user sees the inquiry. The user must reply to the inquiry.

• If a value of *SYSRPYL is specified for the INQMSGRPY parameter of the Change Job (CHGJOB) CL
command, a system reply list is used to determine whether the interactive user sees the inquiry and
whether a reply is necessary. The system reply list entries can be used to customize different default
replies based on user profile name, user id, or process names. The fully qualified job name is available
in the message data for inquiry message CPA4259. This algorithm allows the keyword CMPDTA to be
used to select the system reply list entry that applies to the process or user profile. The user profile
name is 10 characters long and starts at position 51. The process name is 10 character long and starts
at position 27.

• The following example adds a reply list element that causes the default reply of C to cancel requests for
jobs whose user profile is 'QPGMR'.

ADDRPYLE SEQNBR(56) MSGID(CPA4259) CMPDTA(QPGMR 51) RPY(C)

The following example adds a reply list element that causes the default reply of C to cancel requests for
jobs whose process name is 'QPADEV0011'.

ADDRPYLE SEQNBR(57) MSGID(CPA4259) CMPDTA(QPADEV0011 27) RPY(C)

Related information
Change Job (CHGJOB) command

Database performance and query optimization 191

Testing performance with the query governor
You can use the query governor to test the performance of your queries.

To test the performance of a query with the query governor, do the following:

1. Set the query time limit to zero (QRYTIMLMT(0)) using the Change Query Attributes
(CHGQRYA) command or in the INI file. This forces an inquiry message from the governor stating that
the estimated time to run the query exceeds the query time limit.

2. Prompt for message help on the inquiry message and find the same information that you can find by
running the Print SQL Information (PRTSQLINF) command.

The query governor lets you optimize performance without having to run through several iterations of the
query.

Additionally, if the query is canceled, the query optimizer evaluates the access plan and sends the
optimizer debug messages to the job log. This process occurs even if the job is not in debug mode. You
can then review the optimizer tuning messages in the job log to see if additional tuning is needed to obtain
optimal query performance.

This method allows you to try several permutations of the query with different attributes, indexes, and
syntax, or both. You can then determine what performs better through the optimizer without actually
running the query to completion. This process saves on system resources because the actual query of the
data is never done. If the tables to be queried contain many rows, this method represents a significant
savings in system resources.

Be careful when you use this technique for performance testing, because all query requests are stopped
before they are run. This caution is especially important for a CQE query that cannot be implemented in a
single query step. For these types of queries, separate multiple query requests are issued, and then their
results are accumulated before returning the final results. Stopping the query in one of these intermediate
steps gives you only the performance information for that intermediate step, and not for the entire query.

Related information
Print SQL Information (PRTSQLINF) command
Change Query Attributes (CHGQRYA) command

Examples of setting query time limits
You can set the query time limit for the current job or user session using query options file QAQQINI.
Specify the QRYOPTLIB parameter on the Change Query Attributes (CHGQRYA) command. Use a
user library where the QAQQINI file exists with the parameter set to QUERY_TIME_LIMIT, and the value
set to a valid query time limit.

To set the query time limit for 45 seconds you can use the following Change Query Attributes
(CHGQRYA) command:

 CHGQRYA JOB(*) QRYTIMLMT(45)

This command sets the query time limit at 45 seconds. If the user runs a query with an estimated runtime
equal to or less than 45 seconds, the query runs without interruption. The time limit remains in effect for
the duration of the job or user session, or until the time limit is changed by the Change Query
Attributes (CHGQRYA) command.

Assume that the query optimizer estimated the runtime for a query as 135 seconds. A message is sent to
the user that stated that the estimated runtime of 135 seconds exceeds the query time limit of 45
seconds.

To set or change the query time limit for a job other than your current job, the Change Query
Attributes (CHGQRYA) command is run using the JOB parameter. To set the query time limit to 45
seconds for job 123456/USERNAME/JOBNAME use the following Change Query Attributes
(CHGQRYA) command:

 CHGQRYA JOB(123456/USERNAME/JOBNAME) QRYTIMLMT(45)

192 IBM i: Database Performance and Query Optimization

This command sets the query time limit at 45 seconds for job 123456/USERNAME/JOBNAME. If job
123456/USERNAME/JOBNAME tries to run a query with an estimated runtime equal to or less than 45
seconds the query runs without interruption. If the estimated runtime for the query is greater than 45
seconds, for example, 50 seconds, a message is sent to the user. The message states that the estimated
runtime of 50 seconds exceeds the query time limit of 45 seconds. The time limit remains in effect for the
duration of job 123456/USERNAME/JOBNAME, or until the time limit for job 123456/USERNAME/
JOBNAME is changed by the Change Query Attributes (CHGQRYA) command.

To set or change the query time limit to the QQRYTIMLMT system value, use the following Change Query
Attributes (CHGQRYA) command:

 CHGQRYA QRYTIMLMT(*SYSVAL)

The QQRYTIMLMT system value is used for duration of the job or user session, or until the time limit is
changed by the Change Query Attributes (CHGQRYA) command. This use is the default behavior
for the Change Query Attributes (CHGQRYA) command.

Note: The query time limit can also be set in the INI file, or by using the Change System Value
(CHGSYSVAL) command.

Related information
Change Query Attributes (CHGQRYA) command
Change System Value (CHGSYSVAL) command

Test temporary storage usage with the query governor
The predictive storage governor specifies a temporary storage limit for database queries. You can use the
query governor to test if a query uses any temporary object, such as a hash table, sort, or temporary
index.

To test for usage of a temporary object, do the following:

• Set the query storage limit to zero (QRYSTGLMT(0)) using the Change Query Attributes
(CHGQRYA) command or in the INI file. This forces an inquiry message from the governor anytime a
temporary object is used for the query. The message is sent regardless of the estimated size of the
temporary object.

• Prompt for message help on the inquiry message and find the same information that you can find by
running the Print SQL Information (PRTSQLINF) command. This command allows you to see
what temporary objects were involved.

Related information
Print SQL Information (PRTSQLINF) command
Change Query Attributes (CHGQRYA) command

Examples of setting query temporary storage limits
The temporary storage limit can be specified either in the QAQQINI file or on the Change Query
Attributes (CHGQRYA) command.

You can set the query temporary storage limit for a job using query options file QAQQINI. Specify the
QRYOPTLIB parameter on the Change Query Attributes (CHGQRYA) command. Use a user library
where the QAQQINI file exists with a valid value set for parameter STORAGE_LIMIT.

To set the query temporary storage limit on the Change Query Attributes (CHGQRYA) command
itself, specify a valid value for the QRYSTGLMT parameter.

If a value is specified both on the Change Query Attributes (CHGQRYA) command QRYSTGLMT
parameter and in the QAQQINI file specified on the QRYOPTLIB parameter, the QRYSTGLMT value is used.

To set the temporary storage limit for 100 MB in the current job, you can use the following Change
Query Attributes (CHGQRYA) command:

 CHGQRYA JOB(*) QRYSTGLMT(100)

Database performance and query optimization 193

If the user runs any query with an estimated temporary storage consumption equal to or less than 100
MB, the query runs without interruption. If the estimate is more than 100 MB, the CPA4259 inquiry
message is sent by the database. To set or change the query time limit for a job other than your current
job, the CHGQRYA command is run using the JOB parameter. To set the same limit for job 123456/
USERNAME/JOBNAME use the following CHGQRYA command:

CHGQRYA JOB(123456/USERNAME/JOBNAME) QRYSTGLMT(100)

This sets the query temporary storage limit to 100 MBfor job 123456/USERNAME/JOBNAME.

Note: Unlike the query time limit, there is no system value for temporary storage limit. The default
behavior is to let any queries run regardless of their temporary storage usage. The query temporary
storage limit can be specified either in the INI file or on the Change Query Attributes (CHGQRYA)
command.

Related information
Change Query Attributes (CHGQRYA) command

Controlling parallel processing for queries
There are two types of parallel processing available. The first is a parallel I/O that is available at no
charge. The second is DB2 Symmetric Multiprocessing, a feature that you can purchase. You can turn
parallel processing on and off.

Even if parallelism is enabled for a system or job, the individual queries that run in a job might not actually
use a parallel method. This decision might be because of functional restrictions, or the optimizer might
choose a non-parallel method because it runs faster.

Queries processed with parallel access methods aggressively use main storage, CPU, and disk resources.
The number of queries that use parallel processing must be limited and controlled.

Controlling system-wide parallel processing for queries
You can use the QQRYDEGREE system value to control parallel processing for a system.

The current value of the system value can be displayed or modified using the following CL commands:

• WRKSYSVAL - Work with System Value
• CHGSYSVAL - Change System Value
• DSPSYSVAL - Display System Value
• RTVSYSVAL - Retrieve System Value

The special values for QQRYDEGREE control whether parallel processing is allowed by default for all jobs
on the system. The possible values are:

*NONE
No parallel processing is allowed for database query processing.

*IO
I/O parallel processing is allowed for queries.

*OPTIMIZE
The query optimizer can choose to use any number of tasks for either I/O or SMP parallel processing
to process the queries. SMP parallel processing is used only if the DB2 Symmetric Multiprocessing
feature is installed. The query optimizer chooses to use parallel processing to minimize elapsed time
based on the job share of the memory in the pool.

*MAX
The query optimizer can choose to use either I/O or SMP parallel processing to process the query.
SMP parallel processing can be used only if the DB2 Symmetric Multiprocessing feature is installed.
The choices made by the query optimizer are like the choices made for parameter value *OPTIMIZE.
The exception is that the optimizer assumes that all active memory in the pool can be used to process
the query.

194 IBM i: Database Performance and Query Optimization

The default QQRYDEGREE system value is *NONE. You must change the value if you want parallel query
processing as the default for jobs run on the system.

Changing this system value affects all jobs that is run or are currently running on the system whose
DEGREE query attribute is *SYSVAL. However, queries that have already been started or queries using
reusable ODPs are not affected.

Controlling job level parallel processing for queries
You can also control query parallel processing at the job level using the DEGREE parameter of the Change
Query Attributes (CHGQRYA) command or in the QAQQINI file. You can also use the
SET_CURRENT_DEGREE SQL statement.

Using the Change Query Attributes (CHGQRYA) command

The parallel processing option allowed and, optionally, the number of tasks that can be used when
running database queries in the job can be specified. You can prompt on the Change Query
Attributes (CHGQRYA) command in an interactive job to display the current values of the DEGREE
query attribute.

Changing the DEGREE query attribute does not affect queries that have already been started or queries
using reusable ODPs.

The parameter values for the DEGREE keyword are:

*SAME
The parallel degree query attribute does not change.

*NONE
No parallel processing is allowed for database query processing.

*IO
Any number of tasks can be used when the database query optimizer chooses to use I/O parallel
processing for queries. SMP parallel processing is not allowed.

*OPTIMIZE
The query optimizer can choose to use any number of tasks for either I/O or SMP parallel processing
to process the query. SMP parallel processing can be used only if the DB2 Symmetric Multiprocessing
feature is installed. Use of parallel processing and the number of tasks used is determined by:

• the number of system processors available
• the job share of active memory available in the pool
• whether the expected elapsed time is limited by CPU processing or I/O resources

The query optimizer chooses an implementation that minimizes elapsed time based on the job share
of the memory in the pool.

*MAX
The query optimizer can choose to use either I/O or SMP parallel processing to process the query.
SMP parallel processing can be used only if the DB2 Symmetric Multiprocessing feature is installed.
The choices made by the query optimizer are like the choices made for parameter value *OPTIMIZE.
The exception is that the optimizer assumes that all active memory in the pool can be used to process
the query.

*NBRTASKS number-of-tasks
Specifies the number of tasks to be used when the query optimizer chooses to use SMP parallel
processing to process a query. I/O parallelism is also allowed. SMP parallel processing can be used
only if the DB2 Symmetric Multiprocessing feature is installed.

Using a number of tasks less than the number of system processors available restricts the number of
processors used simultaneously for running a query. A larger number of tasks ensures that the query
is allowed to use all the processors available on the system to run the query. Too many tasks can
degrade performance because of the over commitment of active memory and the overhead cost of
managing all the tasks.

Database performance and query optimization 195

*SYSVAL
Specifies that the processing option used is set to the current value of the QQRYDEGREE system
value.

The initial value of the DEGREE attribute for a job is *SYSVAL.

Using the SET CURRENT DEGREE SQL statement

You can use the SET CURRENT DEGREE SQL statement to change the value of the CURRENT_DEGREE
special register. The possible values for the CURRENT_DEGREE special register are:

1
No parallel processing is allowed.

2 through 32767
Specifies the degree of parallelism that is used.

ANY
Specifies that the database manager can choose to use any number of tasks for either I/O or SMP
parallel processing. Use of parallel processing and the number of tasks used is determined by:

• the number of system processors available
• the job share of active memory available in the pool
• whether the expected elapsed time is limited by CPU processing or I/O resources

The database manager chooses an implementation that minimizes elapsed time based on the job
share of the memory in the pool.

NONE
No parallel processing is allowed.

MAX
The database manager can choose to use any number of tasks for either I/O or SMP parallel
processing. MAX is like ANY except the database manager assumes that all active memory in the pool
can be used.

IO
Any number of tasks can be used when the database manager chooses to use I/O parallel processing
for queries. SMP is not allowed.

The value can be changed by invoking the SET CURRENT DEGREE statement.

The initial value of CURRENT DEGREE comes from the CHGQRYA CL command, PARALLEL_DEGREE
parameter in the current query options file (QAQQINI), or the QQRYDEGREE system value.

Related information
Set Current Degree statement
Change Query Attributes (CHGQRYA) command
DB2 Symmetric Multiprocessing

Collecting statistics with the statistics manager
The collection of statistics is handled by a separate component called the statistics manager. Statistical
information can be used by the query optimizer to determine the best access plan for a query. Since the
query optimizer bases its choice of access plan on the statistical information found in the table, it is
important that this information is current.

On many platforms, statistics collection is a manual process that is the responsibility of the database
administrator. With IBM i products, the database statistics collection process is handled automatically,
and only rarely is it necessary to update statistics manually.

The statistics manager does not actually run or optimize the query. It controls the access to the metadata
and other information that is required to optimize the query. It uses this information to answer questions
posed by the query optimizer. The answers can either be derived from table header information, from
existing indexes, or from single-column statistics.

196 IBM i: Database Performance and Query Optimization

The statistics manager must always provide an answer to the questions from the Optimizer. It uses the
best method available to provide the answers. For example, it could use a single-column statistic or
perform a key range estimate over an index. Along with the answer, the statistics manager returns a
confidence level to the optimizer that the optimizer can use to provide greater latitude for sizing
algorithms. If the statistics manager provides a low confidence in the number of groups estimated for a
grouping request, the optimizer can increase the size of the temporary hash table allocated.

Related concepts
Statistics manager
In CQE, the retrieval of statistics is a function of the Optimizer. When the Optimizer needs to know
information about a table, it looks at the table description to retrieve the row count and table size. If an
index is available, the Optimizer might extract information about the data in the table. In SQE, the
collection and management of statistics is handled by a separate component called the statistics
manager. The statistics manager leverages all the same statistical sources as CQE, but adds more sources
and capabilities.

Automatic statistics collection
When the statistics manager prepares its responses to the optimizer, it tracks the responses that were
generated using default filter factors. Default filter factors are used when column statistics or indexes are
not available. The statistics manager uses this information to automatically generate a statistic collection
request for the columns. This request occurs while the access plan is written to the plan cache. If system
resources allow, statistics collections occur in real time for direct use by the current query, avoiding a
default answer to the optimizer.

Otherwise, as system resources become available, the requested column statistics are collected in the
background. The next time the query is executed, the missing column statistics are available to the
statistics manager. This process allows the statistics manager to provide more accurate information to the
optimizer at that time. More statistics make it easier for the optimizer to generate a better performing
access plan.

If a query is canceled before or during execution, the requests for column statistics are still processed.
These requests occur if the execution reaches the point where the generated access plan is written to the
Plan Cache.

To minimize the number of passes through a table during statistics collection, the statistics manger
groups multiple requests for the same table. For example, two queries are executed against table T1. The
first query has selection criteria on column C1 and the second over column C2. If no statistics are
available for the table, the statistics manager identifies both of these columns as good candidates for
column statistics. When the statistics manager reviews requests, it looks for multiple requests for the
same table and groups them into one request. This grouping allows both column statistics to be created
with only one pass through table T1.

One thing to note is that column statistics are usually automatically created when the statistics manager
must answer questions from the optimizer using default filter factors. However, when an index is available
that might be used to generate the answer, then column statistics are not automatically generated. In this
scenario, there might be cases where optimization time benefits from column statistics. Using column
statistics to answer questions from the optimizer is more efficient than using the index data. So if query
performance seems extended, you might want to verify that there are indexes over the relevant columns
in your query. If so, try manually generating column statistics for these columns.

As stated before, statistics collection occurs as system resources become available. If you have a low
priority job permanently active on your system that is supposed to use all spare CPU cycles for
processing, your statistics collection is never active.

Automatic statistics refresh
Column statistics are not maintained when the underlying table data changes. The statistics manager
determines if columns statistics are still valid or if they no longer represent the column accurately (stale).

This validation is done each time one of the following occurs:

• A full open occurs for a query where column statistics were used to create the access plan

Database performance and query optimization 197

• A new plan is added to the plan cache, either because a new query was optimized or because an
existing plan was reoptimized.

To validate the statistics, the statistics manager checks to see if any of the following apply:

• Number of rows in the table has changed by more than 15% of the total table row count
• Number of rows changed in the table is more than 15% of the total table row count

If the statistics are stale, the statistics manager still uses them to answer the questions from the
optimizer. However, the statistics manager marks the statistics as stale in the plan cache and generates a
request to refresh them.

Viewing statistics requests
You can view the current statistics requests by using System i Navigator or by using Statistics APIs.

To view requests in System i Navigator, right-click Database and select Statistic Requests. This window
shows all user requested statistics collections that are pending or active. The view also shows all system
requested statistics collections that are being considered, are active, or have failed. You can change the
status of the request, order the request to process immediately, or cancel the request.

Related reference
Statistics manager APIs
You can use APIs to implement the statistics function of System i Navigator.

Indexes and column statistics
While performing similar functions, indexes and column statistics are different.

If you are trying to decide whether to use statistics or indexes to provide information to the statistics
manager, keep in mind the following differences.

One major difference between indexes and column statistics is that indexes are permanent objects that
are updated when changes to the underlying table occur. Column statistics are not updated. If your data is
constantly changing, the statistics manager might need to rely on stale column statistics. However,
maintaining an index after each table change might use more system resources than refreshing stale
column statistics after a group of changes have occurred.

Another difference is the effect that the existence of new indexes or column statistics has on the
optimizer. When new indexes become available, the optimizer considers them for implementation. If they
are candidates, the optimizer reoptimizes the query and tries to find a better implementation. However,
this reoptimization is not true for column statistics. When new or refreshed column statistics are
available, the statistics manager interrogates immediately. Reoptimization occurs only if the answers are
different from the ones that were given before these refreshed statistics. It is possible to use statistics
that are refreshed without causing a reoptimization of an access plan.

When trying to determine the selectivity of predicates, the statistics manager considers column statistics
and indexes as resources for its answers in the following order:

1. Try to use a multi-column keyed index when ANDed or ORed predicates reference multiple columns
2. If there is no perfect index that contains all the columns in the predicates, it tries to find a combination

of indexes that can be used.
3. For single column questions, it uses available column statistics
4. If the answer derived from the column statistics shows a selectivity of less than 2%, indexes are used

to verify this answer

Accessing column statistics to answer questions is faster than trying to obtain these answers from
indexes.

Column statistics can only be used by SQE. For CQE, all statistics are retrieved from indexes.

Finally, column statistics can be used only for query optimization. They cannot be used for the actual
implementation of a query, whereas indexes can be used for both.

198 IBM i: Database Performance and Query Optimization

Monitoring background statistics collection
The system value QDBFSTCCOL controls who is allowed to create statistics in the background.

The following list provides the possible values:
*ALL

Allows all statistics to be collected in the background. *ALL is the default setting.
*NONE

Restricts everyone from creating statistics in the background. *NONE does not prevent immediate
user-requested statistics from being collected, however.

*USER
Allows only user-requested statistics to be collected in the background.

*SYSTEM
Allows only system-requested statistics to be collected in the background.

When you switch the system value to something other than *ALL or *SYSTEM, the statistics manager
continues to place statistics requests in the plan cache. When the system value is switched back to *ALL,
for example, background processing analyzes the entire plan cache and looks for any existing column
statistics requests. This background task also identifies column statistics that have been used by a plan in
the plan cache. The task determines if these column statistics have become stale. Requests for the new
column statistics as well as requests for refresh of the stale columns statistics are then executed.

All background statistic collections initiated by the system or submitted by a user are performed by the
system job QDBFSTCCOL. User-initiated immediate requests are run within the user job. This job uses
multiple threads to create the statistics. The number of threads is determined by the number of
processors that the system has. Each thread is then associated with a request queue.

There are four types of request queues based on who submitted the request and how long the collection
is estimated to take. The default priority assigned to each thread can determine to which queue the
thread belongs:

• Priority 90 — short user requests
• Priority 93 — long user requests
• Priority 96 — short system requests
• Priority 99 — long system requests

Background statistics collections attempt to use as much parallelism as possible. This parallelism is
independent of the SMP feature installed on the system. However, parallel processing is allowed only for
immediate statistics collection if SMP is installed on the system. The job that requests the column
statistics also must allow parallelism.

Related information
Performance system values: Allow background database statistics collection

Replication of column statistics with CRTDUPOBJ versus CPYF
You can replicate column statistics with the Create Duplicate Object (CRTDUPOBJ) or the Copy
File (CPYF) commands.

Statistics are not copied to new tables when using the Copy File (CPYF) command. If statistics are
needed immediately after using this command, then you must manually generate the statistics using
System i Navigator or the statistics APIs. If statistics are not needed immediately, then they could be
created automatically by the system after the first touch of a column by a query.

Statistics are copied when using Create Duplicate Object (CRTDUPOBJ) command with
DATA(*YES). You can use this command as an alternative to creating statistics automatically after using a
Copy File (CPYF) command.

Related information
Create Duplicate Object (CRTDUPOBJ) command
Copy File (CPYF) command

Database performance and query optimization 199

Determining what column statistics exist
You can determine what column statistics exist in a couple of ways.

The first is to view statistics by using System i Navigator. Right-click a table or alias and select Statistic
Data. Another way is to create a user-defined table function and call that function from an SQL statement
or stored procedure.

Manually collecting and refreshing statistics
You can manually collect and refresh statistics through System i Navigator or by using statistics APIs.

To collect statistics using System i Navigator, right-click a table or alias and select Statistic Data. On the
Statistic Data dialog, click New. Then select the columns that you want to collect statistics for. Once you
have selected the columns, you can collect the statistics immediately or collect them in the background.

To refresh a statistic using System i Navigator, right-click a table or alias and select Statistic Data. Click
Update. Select the statistic that you want to refresh. You can collect the statistics immediately or collect
them in the background.

There are several scenarios in which the manual management (create, remove, refresh, and so on) of
column statistics could be beneficial and recommended.

High Availability (HA) solutions
High availability solutions replicate data to a secondary system by using journal entries. However,
column statistics are not journaled. That means that, on your backup system, no column statistics are
available when you first start using that system. To prevent the "warm up" effect, you might want to
propagate the column statistics that were gathered on your production system. Recreate them on
your backup system manually.

ISV (Independent Solution Provider) preparation
An ISV might want to deliver a customer solution that already includes column statistics frequently
used in the application, rather than waiting for the automatic statistics collection to create them. Run
the application on the development system for some time and examine which column statistics were
created automatically. You can then generate a script file to execute on the customer system after the
initial data load takes place. The script file can be shipped as part of the application

Business Intelligence environments
In a large Business Intelligence environment, it is common for large data load and update operations
to occur overnight. Column statistics are marked stale only when they are touched by the statistics
manager, and then refreshed after first touch. You might want to consider refreshing the column
statistics manually after loading the data.

You can do this refresh easily by toggling the system value QDBFSTCCOL to *NONE and then back to
*ALL. This process causes all stale column statistics to be refreshed. It also starts collection of any
column statistics previously requested by the system but not yet available. Since this process relies on
the access plans stored in the plan cache, avoid performing a system initial program load (IPL) before
toggling QDBFSTCCOL. An IPL clears the plan cache.

This procedure works only if you do not delete (drop) the tables and recreate them in the process of
loading your data. When deleting a table, access plans in the plan cache that refer to this table are
deleted. Information about column statistics on that table is also lost. The process in this environment
is either to add data to your tables or to clear the tables instead of deleting them.

Massive data updates
Updating rows in a column statistics-enabled table can significantly change the cardinality, add new
ranges of values, or change the distribution of data values. These updates can affect query
performance on the first query run against the new data. On the first run of such a query, the optimizer
uses stale column statistics to determine the access plan. At that point, it starts a request to refresh
the column statistics.

Prior to this data update, you might want to toggle the system value QDBFSTCCOL to *NONE and back
to *ALL or *SYSTEM. This toggle causes an analysis of the plan cache. The analysis includes searching
for column statistics used in access plan generation, analyzing them for staleness, and requesting
updates for the stale statistics.

200 IBM i: Database Performance and Query Optimization

If you massively update or load data, and run queries against these tables at the same time, the
automatic column statistics collection tries to refresh every time 15% of the data is changed. This
processing can be redundant since you are still updating or loading the data. In this case, you might
want to block automatic statistics collection for the tables and deblock it again after the data update
or load finishes. An alternative is to turn off automatic statistics collection for the whole system before
updating or loading the data. Switch it back on after the updating or loading has finished.

Backup and recovery
When thinking about backup and recovery strategies, keep in mind that creation of column statistics is
not journaled. Column statistics that exist at the time a save operation occurs are saved as part of the
table and restored with the table. Any column statistics created after the save took place are lost and
cannot be recreated by using techniques such as applying journal entries. If you have a long interval
between save operations and rely on journaling to restore your environment, consider tracking column
statistics that are generated after the latest save operation.

Related information
Performance system values: Allow background database statistics collection

Statistics manager APIs
You can use APIs to implement the statistics function of System i Navigator.

• Cancel Requested Statistics Collections (QDBSTCRS,
QdbstCancelRequestedStatistics) immediately cancels statistics collections that have been
requested, but are not yet completed or not successfully completed.

• Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) immediately
deletes existing completed statistics collections.

• List Requested Statistics Collections (QDBSTLRS,
QdbstListRequestedStatistics) lists all the columns and combination of columns and file
members that have background statistic collections requested, but not yet completed.

• List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) lists
additional statistics data for a single statistics collection.

• List Statistics Collections (QDBSTLS, QdbstListStatistics) lists all the columns and
combination of columns for a given file member that have statistics available.

• Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) allows you to
request one or more statistics collections for a given set of columns of a specific file member.

• Update Statistics Collection (QDBSTUS, QdbstUpdateStatistics) allows you to update
the attributes and to refresh the data of an existing single statistics collection

Related reference
Viewing statistics requests
You can view the current statistics requests by using System i Navigator or by using Statistics APIs.

Displaying materialized query table columns
You can display materialized query tables associated with another table using System i Navigator.

To display materialized query tables, follow these steps:

1. In the System i Navigator window, expand the system that you want to use.
2. Expand Databases and the database that you want to work with.
3. Expand Schemas and the schema that you want to work with.
4. Right-click a table and select Show Materialized Query Tables.

Table 48. Columns used in Show materialized query table window

Column name Description

Name The SQL name for the materialized query table

Database performance and query optimization 201

Table 48. Columns used in Show materialized query table window (continued)

Column name Description

Schema Schema or library containing the materialized query table

Partition Partition detail for the index. Possible values:

• <blank>, which means For all partitions
• For Each Partition
• specific name of the partition

Owner The user ID of the owner of the materialized query table.

System Name System table name for the materialized query table

Enabled Whether the materialized query table is enabled. Possible
values are:

• Yes
• No

If the materialized query table is not enabled, it cannot be
used for query optimization. It can, however, be queried
directly.

Creation Date The timestamp of when the materialized table was created.

Last Refresh Date The timestamp of the last time the materialized query table
was refreshed.

Last Query Use The timestamp when the materialized query table was last
used by the optimizer to replace user specified tables in a
query.

Last Query Statistics Use The timestamp when the materialized query table was last
used by the statistics manager to determine an access
method.

Query Use Count The number of instances the materialized query table was
used by the optimizer to replace user specified tables in a
query.

Query Statistics Use Count The number of instances the materialized query table was
used by the statistics manager to determine an access
method.

Last Used Date The timestamp when the materialized query table was last
used.

Days Used Count The number of days the materialized query table has been
used.

Date Reset Days Used Count The year and date when the days-used count was last set to
0.

Current Number of Rows The total number of rows included in this materialized query
table at this time.

Current Size The current size of the materialized query table.

Last Changed The timestamp when the materialized query table was last
changed.

202 IBM i: Database Performance and Query Optimization

Table 48. Columns used in Show materialized query table window (continued)

Column name Description

Maintenance The maintenance for the materialized query table. Possible
values are:

• User
• System

Initial Data Whether the initial data was inserted immediately or
deferred. Possible values are

• Deferred
• Immediate

Refresh Mode The refresh mode for the materialized query table. A
materialized query table can be refreshed whenever a change
is made to the table or deferred to a later time.

Isolation Level The isolation level for the materialized query table.

Sort Sequence The alternate character sorting sequence for National
Language Support (NLS).

Language Identifier The language code for the object.

SQL Statement The SQL statement that is used to populate the table.

Text The text description of the materialized query table.

Table Schema and table name.

Table Partition Table partition.

Table System Name System name of the table.

Managing check pending constraints columns
You can view and change constraints that have been placed in a check pending state by the system. Check
pending constraints refers to a state in which a mismatch exists between a parent and foreign key in a
referential constraint. A mismatch can also occur between the column value and the check constraint
definition in a check constraint.

To view constraints that have been placed in a check pending state, follow these steps:

1. Expand the system name and Databases.
2. Expand the database that you want to work with.
3. Expand the Database Maintenance folder.
4. Select Check Pending Constraints.
5. From this interface, you can view the definition of the constraint and the rows that are in violation of

the constraint rules. Select the constraint that you want to work with and then select Edit Check
Pending Constraint from the File menu.

6. You can either alter or delete the rows that are in violation.

Table 49. Columns used in Check pending constraints window

Column name Description

Name of Constraint in Check Pending Displays the name of the constraint that is in a check pending
state.

Database performance and query optimization 203

Table 49. Columns used in Check pending constraints window (continued)

Column name Description

Schema Schema containing the constraint that is in a check pending
state.

Type Displays the type of constraint that is in check pending.
Possible values are:

Check constraint

Foreign key constraint

Table name The name of the table associated with the constraint in
check pending state.

Enabled Displays whether the constraint is enabled. The constraint
must be disabled or the relationship taken out of the check
pending state before any input/output (I/O) operations can
be performed.

Creating an index strategy
Db2 for i provides two basic means for accessing tables: a table scan and an index-based retrieval. Index-
based retrieval is typically more efficient than table scan when less than 20% of the table rows are
selected.

There are two kinds of persistent indexes: binary radix tree indexes, which have been available since
1988, and encoded vector indexes (EVIs), which became available in 1998 with V4R2. Both types of
indexes are useful in improving performance for certain kinds of queries.

Binary radix indexes
A radix index is a multilevel, hybrid tree structure that allows many key values to be stored efficiently
while minimizing access times. A key compression algorithm assists in this process. The lowest level of
the tree contains the leaf nodes, which contain the base table row addresses associated with the key
value. The key value is used to quickly navigate to the leaf node with a few simple binary search tests.

The binary radix tree structure is good for finding a few rows because it finds a given row with a minimal
amount of processing. For example, create a binary radix index over a customer number column. Then
create a typical OLTP request like "find the outstanding orders for a single customer". The binary index
results in fast performance. An index created over the customer number column is considered the perfect
index for this type of query. The index allows the database to find the rows it needs and perform a minimal
number of I/Os.

In some situations, however, you do not always have the same level of predictability. Many users want on
demand access to the detail data. For example, they might run a report every week to look at sales data.
Then they want to "drill down" for more information related to a particular problem area they found in the
report. In this scenario, you cannot write all the queries in advance on behalf of the end users. Without
knowing what queries might run, it is impossible to build the perfect index.

Related information
SQL Create Index statement

Derived key index
You can use the SQL CREATE INDEX statement to create a derived key index using an SQL expression.

Traditionally an index could only specify column names in the key of the index over the table it was based
on. With this support, an index can have an expression in place of a column name that can use built-in
functions, or some other valid expression. Additionally, you can use the SQL CREATE INDEX statement to
create a sparse index using a WHERE condition.

204 IBM i: Database Performance and Query Optimization

For restrictions and other information about derived indexes, see the Create Index statement and Using
derived indexes.

Related reference
Using derived indexes
SQL indexes can be created where the key is specified as an expression. This type of key is also referred
to as a derived key.
Related information
SQL Create Index statement

Sparse indexes
You can use the SQL CREATE INDEX statement to create a sparse index using SQL selection predicates.

Last release users were given the ability to use the SQL CREATE INDEX statement to create a sparse index
using a WHERE condition. With this support, the query optimizer recognizes and considers sparse indexes
during its optimization. If the query WHERE selection is a subset of the sparse index WHERE selection,
then the sparse index is used to implement the query. Use of the sparse index usually results in improved
performance.

Examples

In this example, the query selection is a subset of the sparse index selection and an index scan over the
sparse index is used. The remaining query selection (COL3=30) is executed following the index scan.

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

In this example, the query selection is not a subset of the sparse index selection and the sparse index
cannot be used.

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20 and COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20

Related reference
Using sparse indexes
SQL indexes can be created using WHERE selection predicates. These indexes can also be referred to as
sparse indexes. The advantage of a sparse index is that fewer entries are maintained in the index. Only
those entries matching the WHERE selection criteria are maintained in the index.
Related information
SQL Create Index statement

Sparse index optimization
An SQL sparse index is like a select/omit access path. Both the sparse index and the select/omit logical
file contain only keys that meet the selection specified. For a sparse index, the selection is specified with
a WHERE clause. For a select/omit logical file, the selection is specified in the DDS using the COMP
operation.

The reason for creating a sparse index is to provide performance enhancements for your queries. The
performance enhancement is done by precomputing and storing results of the WHERE selection in the
sparse index. The database engine can use these results instead of recomputing them for a user specified
query. The query optimizer looks for any applicable sparse index and can choose to implement the query

Database performance and query optimization 205

using a sparse index. The decision is based on whether using a sparse index is a faster implementation
choice.

For a sparse index to be used, the WHERE selection in the query must be a subset of the WHERE selection
in the sparse index. That is, the set of records in the sparse index must contain all the records to be
selected by the query. It might contain extra records, but it must contain all the records to be selected by
the query. This comparison of WHERE selection is performed by the query optimizer during optimization.
It is like the comparison that is performed for Materialized Query Tables (MQT).

Besides the comparison of the WHERE selection, the optimization of a sparse index is identical to the
optimization that is performed for any Binary Radix index.

Refer to section 'Indexes and the Optimizer' for more details on how Binary Radix indexes are optimized.

Related concepts
Indexes & the optimizer
Since the optimizer uses cost based optimization, more information about the database rows and
columns makes for a more efficient access plan created for the query. With the information from the
indexes, the optimizer can make better choices about how to process the request (local selection, joins,
grouping, and ordering).
Related reference
Using sparse indexes
SQL indexes can be created using WHERE selection predicates. These indexes can also be referred to as
sparse indexes. The advantage of a sparse index is that fewer entries are maintained in the index. Only
those entries matching the WHERE selection criteria are maintained in the index.

Sparse index matching algorithm
This topic is a generalized discussion of how the sparse index matching algorithm works.

The selection in the query must be a subset of the selection in the sparse index in order for the sparse
index to be used. This statement is true whether the selection is ANDed together, ORed together, or a
combination of the two. For selection where all predicates are ANDed together, all WHERE selection
predicates specified in the sparse index must also be specified in the query. The query can contain
additional ANDed predicates. The selection for the additional predicates will be performed after the
entries are retrieved from the sparse index. See examples A1, A2, and A3 following.

Example A1

In this example, the query selection exactly matches the sparse index selection and an index scan over
the sparse index can be used.

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20 and COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

Example A2

In this example, the query selection is a subset of the sparse index selection and an index scan over the
sparse index can be used. The remaining query selection (COL3=30) is executed following the index scan.

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

Example A3

206 IBM i: Database Performance and Query Optimization

In this example, the query selection is not a subset of the sparse index selection and the sparse index
cannot be used.

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20 and COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20

For selection where all predicates are ORed together, all WHERE selection predicates specified in the
query, must also be specified in the sparse index. The sparse index can contain additional ORed
predicates. All the ORed selection in the query will be executed after the entries are retrieved from the
sparse index. See examples O1, O2, andO3 following.

Example O1

In this example, the query selection exactly matches the sparse index selection and an index scan over
the sparse index can be used. The query selection is executed following the index scan.

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 or COL2=20 or COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 or COL2=20 or COL3=30

Example O2

In this example, the query selection is a subset of the sparse index selection and an index scan over the
sparse index can be used. The query selection is executed following the index scan.

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 or COL2=20 or COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 or COL2=20

Example O3

In this example, the query selection is not a subset of the sparse index selection and the sparse index
cannot be used.

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 or COL2=20

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 or COL2=20 or COL3=30

The previous examples used simple selection, all ANDed, or all ORed together. These examples are not
typical, but they demonstrate how the selection of the sparse index is compared to the selection of the
query. Obviously, the more complex the selection the more difficult it becomes to determine
compatibility.

In the next example T1, the constant 'MN' was replaced by a parameter marker for the query selection.
The sparse index had the local selection of COL1='MN' applied to it when it was created. The sparse index
matching algorithm matches the parameter marker to the constant 'MN' in the query predicate COL1 =?. It
verifies that the value of the parameter marker is the same as the constant in the sparse index; therefore
the sparse index can be used.

The sparse index matching algorithm attempts to match where the predicates between the sparse index
and the query are not the same. An example is a sparse index with a predicate SALARY > 50000, and a
query with the predicate SALARY > 70000. The sparse index contains the rows necessary to run the

Database performance and query optimization 207

query. The sparse index is used in the query, but the predicate SALARY > 70000 remains as selection in
the query (it is not removed).

Example T1

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1='MN' or COL2='TWINS'

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=? or COL2='TWINS' or COL3='WIN'

In the next example T2, the keys of the sparse index match the ORDER BY fields in the query. For the
sparse index to satisfy the specified ordering, the optimizer must verify that the query selection is a
subset of the sparse index selection. In this example, the sparse index can be used.

Example T2

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL1, COL3)
WHERE COL1='MN' or COL2='TWINS'

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL2='TWINS'
ORDER BY COL1, COL3

Related reference
Using sparse indexes
SQL indexes can be created using WHERE selection predicates. These indexes can also be referred to as
sparse indexes. The advantage of a sparse index is that fewer entries are maintained in the index. Only
those entries matching the WHERE selection criteria are maintained in the index.
Details on the MQT matching algorithm
What follows is a generalized discussion of how the MQT matching algorithm works.

Sparse index examples
This topic shows examples of how the sparse index matching algorithm works.

In example S1, the query selection is a subset of the sparse index selection and consequently an index
scan over the sparse index is used. The remaining query selection (COL3=30) is executed following the
index scan.

Example S1

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

In example S2, the query selection is not a subset of the sparse index selection and the sparse index
cannot be used.

Example S2

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20 and COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20

In example S3, the query selection exactly matches the sparse index selection and an index scan over the
sparse index can be used.

208 IBM i: Database Performance and Query Optimization

Example S3

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20 and COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

In example S4, the query selection is a subset of the sparse index selection and an index scan over the
sparse index can be used. The remaining query selection (COL3=30) is executed following the index scan.

Example S4

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

In example S5, the query selection is not a subset of the sparse index selection and the sparse index
cannot be used.

Example S5

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20 and COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20

In example S6, the query selection exactly matches the sparse index selection and an index scan over the
sparse index can be used. The query selection is executed following the index scan to eliminate excess
records from the sparse index.

Example S6

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 or COL2=20 or COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 or COL2=20 or COL3=30

In example S7, the query selection is a subset of the sparse index selection and an index scan over the
sparse index can be used. The query selection is executed following the index scan to eliminate excess
records from the sparse index.

Example S7

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 or COL2=20 or COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 or COL2=20

In example S8, the query selection is not a subset of the sparse index selection and the sparse index
cannot be used.

Example S8

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 or COL2=20

Database performance and query optimization 209

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 or COL2=20 or COL3=30

In the next example S9, the constant 'MN' was replaced by a parameter marker for the query selection.
The sparse index had the local selection of COL1='MN' applied to it when it was created. The sparse index
matching algorithm matches the parameter marker to the constant 'MN' in the query predicate COL1 =?. It
verifies that the value of the parameter marker is the same as the constant in the sparse index; therefore
the sparse index can be used.

Example S9

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1='MN' or COL2='TWINS'

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
Where Col3='WIN' and (Col1=? or Col2='TWINS')

In the next example S10, the keys of the sparse index match the order by fields in the query. For the
sparse index to satisfy the specified ordering, the optimizer must verify that the query selection is a
subset of the sparse index selection. In this example, the sparse index can be used.

Example S10

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL1, COL3)
WHERE COL1='MN' or COL2='TWINS'

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
Where Col3='WIN' and (Col1='MN' or Col2='TWINS')
ORDER BY COL1, COL3

In the next example S11, the keys of the sparse index do not match the order by fields in the query. But
the selection in sparse index T2 is a superset of the query selection. Depending on size, the optimizer
might choose an index scan over sparse index T2 and then use a sort to satisfy the specified ordering.

Example S11

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL2, COL4)
WHERE COL1='MN' or COL2='TWINS'

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
Where Col3='WIN' and (Col1='MN' or Col2='TWINS')
ORDER BY COL1, COL3

The next example S12 represents the classic optimizer decision: is it better to do an index probe using
index IX1 or is it better to do an index scan using sparse index SPR1? Both indexes retrieve the same
number of index entries and have the same cost from that point forward. For example, both indexes have
the same cost to retrieve the selected records from the dataspace, based on the retrieved entries/keys.

The cost to retrieve the index entries is the deciding criteria. In general, if index IX1 is large then an index
scan over sparse index SPR1 has a lower cost to retrieve the index entries. If index IX1 is rather small
then an index probe over index IX1 has a lower cost to retrieve the index entries. Another cost decision is
reusability. The plan using sparse index SPR1 is not as reusable as the plan using index IX1 because of
the static selection built into the sparse selection.

Example S12

CREATE INDEX MYLIB/IX1 on MYLIB/T1 (COL1, COL2, COL3)

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20 and COL3=30

210 IBM i: Database Performance and Query Optimization

CSELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

Specify PAGESIZE on index creates
You can use the PAGESIZE parameter to specify the access path logical page size used by the system
when the access path is created. Use the PAGESIZE parameter when creating keyed files or indexes using
the Create Physical File (CRTPF) or Create Logical File (CRTLF) commands, or the SQL
CREATE INDEX statement.

The logical page size is the access path number of bytes that can be moved from auxiliary storage to the
job storage pool for a page fault.

Consider using the default of *KEYLEN for this parameter, except in rare circumstances. Then the page
size can be determined by the system based on the total length of the keys. When the access path is used
by selective queries (for example, individual key lookup), a smaller page size is typically more efficient.
When the query-selected keys are grouped in the access path with many records selected, or the access
path is scanned, a larger page size is more efficient.

Related information
Create Logical File (CRTLF) command
Create Physical File (CRTPF) command
SQL Create Index statement

General index maintenance
Whenever indexes are created and used, there is a potential for a decrease in I/O velocity due to
maintenance. Therefore, consider the maintenance cost of creating and using additional indexes. For radix
indexes with MAINT(*IMMED), maintenance occurs when inserting, updating, or deleting rows.

To reduce the maintenance of your indexes consider:

• Minimizing the number of table indexes by creating composite (multiple column) key indexes.
Composite indexes can be used for multiple different situations.

• Dropping indexes during batch inserts, updates, and deletes
• Creating in parallel. Either create indexes, one at a time, in parallel using SMP or create multiple indexes

simultaneously with multiple batch jobs
• Maintaining indexes in parallel using SMP

The goal of creating indexes is to improve query performance by providing statistics and implementation
choices. Maintain a reasonable balance on the number of indexes to limit maintenance overhead.

Encoded vector indexes
An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting
environments.

EVIs are a complementary alternative to existing index objects (binary radix tree structure - logical file or
SQL index) and are a variation on bitmap indexing. Because of their compact size and relative simplicity,
EVIs provide for faster scans of a table that can also be processed in parallel.

An EVI is a data structure that is stored as two components:

• The symbol table contains statistical and descriptive information about each distinct key value
represented in the table. Each distinct key is assigned a unique code, either 1 byte, 2 bytes or 4 bytes in
size.

By specifying INCLUDE on the create, additional aggregate values can be maintained in real time as an
extension of the key portion of the symbol table entry. These aggregated values are over non-key data in
the table grouped by the specified EVI key.

• The vector is an array of codes listed in the same ordinal position as the rows in the table. The vector
does not contain any pointers to the actual rows in the table.

Database performance and query optimization 211

Advantages of EVIs:

• Require less storage
• May have better build times than radix, especially if the number of unique values in the columns defined

for the key is relatively small.
• Provide more accurate statistics to the query optimizer
• Considerably better performance for certain grouping types of queries
• Good performance characteristics for decision support environments.
• Can be further extended for certain types of grouping queries with the addition of INCLUDE values.

Provides ready-made numeric aggregate values maintained in real time as part of index maintenance.
INCLUDE values become an extension of the EVI symbol table. Multiple include values can be specified
over different aggregating columns and maintained in the same EVI provided the group by values are
the same. This technique can reduce overall maintenance.

Disadvantages of EVIs:

• Cannot be used in ordering.
• Use for grouping is specialized. Supports:

– COUNT, DISTINCT requests over key columns
– aggregate requests over key columns where all other selection can be applied to the EVI symbol

table keys
– INCLUDE aggregates
– MIN or MAX, if aggregating value is part of the symbol table key.

• Use with joins always done in cooperation with hash table processing.
• Some additional maintenance idiosyncrasies.

Related reference
Encoded vector index
An encoded vector index is a permanent object that provides access to a table. This access is done by
assigning codes to distinct key values and then representing those values in a vector.
Related information
SQL Create Index statement
SQL INCLUDE statement

How the EVI works
EVIs work in different ways for costing and implementation.

For costing, the optimizer uses the symbol table to collect metadata information about the query.

For implementation, the optimizer can use the EVI in one of the following ways:

• Selection (WHERE clause)

The database engine uses the vector to build a dynamic bitmap or list of selected row ids. The bitmap or
list contains 1 bit for each row in the table. The bit is turned on for each selected row. Like a bitmap
index, these intermediate dynamic bitmaps (or lists) can be ANDed and ORed together to satisfy a
query.

For example, a user wants to see sales data for a specific region and time period. You can define an EVI
over the region and quarter columns of the table. When the query runs, the database engine builds
dynamic bitmaps using the two EVIs. The bitmaps are ANDed together to produce a single bitmap
containing only the relevant rows for both selection criteria.

This ANDing capability drastically reduces the number of rows that the system must read and test. The
dynamic bitmaps exists only as long as the query is executing. Once the query is completed, the
dynamic bitmaps are eliminated.

• Grouping or Distinct

212 IBM i: Database Performance and Query Optimization

The symbol table within the EVI contains distinct values for the specified columns in the key definition.
The symbol table also contains a count of the number of records in the base table that have each
distinct value. Queries involving grouping or distinct, based solely on columns in the key, are candidates
for a technique that uses the symbol table directly to determine the query result.

The symbol table contains only the key values and their associated counts, unless INCLUDE is specified.
Therefore, queries involving column function COUNT are eligible for this technique. But queries with
column functions MIN or MAX on other non-key columns are not eligible. MIN and MAX values are not
stored in the symbol table.

• EVI INCLUDE aggregates

Including additional aggregate values further extends the ability of the symbol table to provide ready-
made results. Aggregate data is grouped by the specified columns in the key definition. Therefore,
aggregate data must be over columns in the table other than those columns specified as EVI key values.

For performance, these included aggregates are limited to numeric results (SUM, COUNT, AVG,
VARIANCE) as they can be maintained directly from the inserted or removed row.

MIN or MAX values would occasionally require other row comparisons during maintenance and
therefore are not supported with the INCLUDE keyword.

EVI symbol table only access is used to satisfy distinct or grouping requests when the query is run with
commitment control *NONE or *CHG.

INCLUDE for additional aggregate values can be used in join queries. When possible, the existence of
EVIs with INCLUDE aggregates causes the group by process to be pushed down to each table as
necessary. See the following EVI INCLUDE grouping push down example: “EVI INCLUDE aggregate
example” on page 73

Related reference
Encoded vector index index-only access
The encoded vector index can also be used for index-only access.
Encoded vector index symbol table scan
An encoded vector index symbol table scan operation is used to retrieve the entries from the symbol table
portion of the index.
Encoded vector index symbol table probe
An encoded vector index symbol table probe operation is used to retrieve entries from the symbol table
portion of the index. Scanning the entire symbol table is not necessary.
Index grouping implementation
There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.
Related information
SQL INCLUDE statement

When to create EVIs
There are several instances to consider creating EVIs.

Consider creating encoded vector indexes when any one of the following is true:

• You want to gather 'live' statistics
• Full table scan is currently being selected for the query
• Selectivity of the query is 20%-70% and using skip sequential access with dynamic bitmaps speed up

the scan
• When a star schema join is expected to be used for star schema join queries.
• When grouping or distinct queries are specified against a column, the columns have few distinct values

and only the COUNT column function, if any, is used.
• When ready-made aggregate results grouped by the specified key columns would benefit query

performance.

Database performance and query optimization 213

Create encoded vector indexes with:

• Single key columns with a low number of distinct values expected
• Keys columns with a low volatility (do not change often)
• Maximum number of distinct values expected using the WITH n DISTINCT VALUES clause
• Single key over foreign key columns for a star schema model

EVI with INCLUDE vs Materialized Query Tables

Although EVIs with INCLUDE are not a substitute for Materialized Query Tables (MQTs), INCLUDE EVIs
have an advantage over single table aggregate MQTs (materialized query tables). The advantage is that
the ready-made aggregate results are maintained in real time, not requiring explicit REFRESH TABLE
requests. For performance and read access to aggregate results, consider turning your single table,
aggregate MQTs into INCLUDE EVIs. Keep in mind that the other characteristics of a good EVI are
applicable, such as a relatively low number of distinct key values.

As indexes, these EVIs are found during optimization just as any other indexes are found. Unlike MQTs,
there is no INI setting to enable and no second pass through the optimizer to cost the application of this
form of ready-made aggregate. In addition, EVIs with INCLUDE can be used to populate MQT summary
tables if the EVI is a match for a portion of the MQT definition.

Related reference
Encoded vector index symbol table scan
An encoded vector index symbol table scan operation is used to retrieve the entries from the symbol table
portion of the index.
Index grouping implementation
There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.
Related information
SQL INCLUDE statement

214 IBM i: Database Performance and Query Optimization

EVI maintenance
There are unique challenges to maintaining EVIs. The following table shows a progression of how EVIs are
maintained, the conditions under which EVIs are most effective, and where EVIs are least effective, based
on the EVI maintenance characteristics.

Database performance and query optimization 215

Table 50. EVI Maintenance Considerations

Condition Characteristics

Most Effective

Least Effective

When inserting an existing distinct
key value

• Minimum overhead
• Symbol table key value looked up

and statistics updated
• Vector element added for new

row, with existing byte code
• Minimal additional pathlength to

maintain any INCLUDEd
aggregate values (the increment
of a COUNT or adding to an
accumulating SUM)

When inserting a new distinct key
value - in order, within byte code
range

• Minimum overhead
• Symbol table key value added,

byte code assigned, statistics
assigned

• Vector element added for new
row, with new byte code

• Minimal additional pathlength to
maintain any INCLUDEd
aggregate values (the increment
of a COUNT or adding to an
accumulating SUM)

When inserting a new distinct key
value - out of order, within byte
code range

• Minimum overhead if contained
within overflow area threshold

• Symbol table key value added to
overflow area, byte code
assigned, statistics assigned

• Vector element added for new
row, with new byte code

• Considerable overhead if
overflow area threshold reached

• Access path validated - not
available

• EVI refreshed, overflow area keys
incorporated, new byte codes
assigned (symbol table and
vector elements updated)

• Minimal additional path-length to
maintain any INCLUDEd
aggregate values (the increment
of a COUNT or adding to an
accumulating SUM)

When inserting a new distinct key
value - out of byte code range

• Considerable overhead
• Access plan invalidated - not

available
• EVI refreshed, next byte code size

used, new byte codes assigned
(symbol table and vector
elements updated

• Not applicable to EVIs with
INCLUDE, as by definition the
max allowed byte code is used

216 IBM i: Database Performance and Query Optimization

Related reference
Encoded vector index
An encoded vector index is a permanent object that provides access to a table. This access is done by
assigning codes to distinct key values and then representing those values in a vector.
Related information
SQL INCLUDE statement

Recommendations for EVI use
Encoded vector indexes are a powerful tool for providing fast data access in decision support and query
reporting environments. To ensure the effective use of EVIs, use the following guidelines.

Create EVIs on

• Read-only tables or tables with a minimum of INSERT, UPDATE, DELETE activity.
• Key columns that are used in the WHERE clause - local selection predicates of SQL requests.
• Single key columns that have a relatively small set of distinct values.
• Multiple key columns that result in a relatively small set of distinct values.
• Key columns that have a static or relatively static set of distinct values.
• Non-unique key columns, with many duplicates.

Create EVIs with the maximum byte code size expected

• Use the "WITH n DISTINCT VALUES" clause on the CREATE ENCODED VECTOR INDEX statement.
• If unsure, use a number greater than 65,535 to create a 4 byte code. This method avoids the EVI

maintenance involved in switching byte code sizes.
• EVIs with INCLUDE always create with a 4 byte code.

When loading data

• Drop EVIs, load data, create EVIs.
• EVI byte code size is assigned automatically based on the number of actual distinct key values found in

the table.
• Symbol table contains all key values, in order, no keys in overflow area.
• EVIs with INCLUDE always use 4 byte code

Consider adding INCLUDE values to existing EVIs

An EVI index with INCLUDE values can be used to supply ready-made aggregate results. The existing
symbol table and vector are still used for table selection, when appropriate, for skip sequential plans over
large tables, or for index ANDing and ORing plans. If you already have EVIs, consider creating new ones
with additional INCLUDE values, and then drop the pre-existing index.

Consider specifying multiple INCLUDE values on the same EVI create

If you need different aggregates over different table values for the same GROUP BY columns specified as
EVI keys, define those aggregates in the same EVI. This definition cuts down on maintenance costs and
allows for a single symbol table and vector.

For example:

Select SUM(revenue) from sales group by Country

Select SUM(costOfGoods) from sales group by Country, Region

Database performance and query optimization 217

Both queries could benefit from the following EVI:

CREATE ENCODED VECTOR INDEX eviCountryRegion on Sales(country,region)
 INCLUDE(SUM(revenue), SUM(costOfGoods))

The optimizer does additional grouping (regrouping) if the EVI key values are wider than the
corresponding GROUP BY request of the query. This additional grouping would be the case in the first
example query.

If an aggregate request is specified over null capable results, an implicit COUNT over that same result is
included as part of the symbol table entry. The COUNT is used to facilitate index maintenance when a
requested aggregate needs to reflect. It can also assist with pushing aggregation through a join if the
optimizer determines this push is possible. The COUNT is then used to help compensate for fewer join
activity due to the pushed down grouping.

Consider EVI INCLUDE and Grouping Sets

EVI INCLUDE support has been expanded to match GROUPING SETs, ROLLUP and CUBE queries.

When EVI INCLUDES are available over a table being aggregated over in a grouping sets query, the query
is rewritten to facilitate and match any EVI INCLUDE indexes that might be available. This can result in
exceeding good query performance because the table is never accessed. All the aggregate variations
necessary to perform the rollup, cube or grouping set query result can be performed over the EVI symbol
table with INCLUDE values.

For example on the ROLLUP query below, the grouping is the sum of quantity rolled up at various levels
(month, quarter, year) and ONLY the symbol table of the encoded vector index is accessed in the access
plan.

SELECT year(shipdate) year_ship, quarter(shipdate) quarter, month(shipdate) month_ship,
sum(quantity)
 as totquantity
FROM item_fact
GROUP BY ROLLUP (Year(shipdate), Quarter(shipdate), month(shipdate));

Here is the EVI INCLUDE create that will facilitate the rollup query.

CREATE ENCODED VECTOR INDEX GS_EVI
 ON ITEM_FACT
 (YEAR (SHIPDATE) ASC , QUARTER (SHIPDATE) ASC , MONTH (SHIPDATE) ASC)
 INCLUDE (SUM (QUANTITY) , COUNT (*));

The following graphic shows a Visual Explain that illustrates the access and the performance. Instead of
accessing potentially millions of rows, the access is over a rather modest size symbol table.

218 IBM i: Database Performance and Query Optimization

Consider SMP and parallel index creation and maintenance

Symmetrical Multiprocessing (SMP) is a valuable tool for building and maintaining indexes in parallel. The
results of using the optional SMP feature of IBM i are faster index build times, and faster I/O velocities
while maintaining indexes in parallel. Using an SMP degree value of either *OPTIMIZE or *MAX, additional
multiple tasks and additional system resources are used to build or maintain the indexes. With a degree
value of *MAX, expect linear scalability on index creation. For example, creating indexes on a 4-processor
system can be four times as fast as a 1-processor system.

Checking values in the overflow area

You can also use the Display File Description (DSPFD) command (or System i Navigator -
Database) to check how many values are in the overflow area. Once the DSPFD command is issued, check
the overflow area parameter for details on the initial and actual number of distinct key values in the
overflow area.

Using CHGLF to rebuild the access path of an index

Use the Change Logical File (CHGLF) command with the attribute Force Rebuild Access Path set
to YES (FRCRBDAP(*YES)). This command accomplishes the same thing as dropping and recreating the
index, but it does not require that you know about how the index was built. This command is especially
effective for applications where the original index definitions are not available, or for refreshing the access
path.

Related information
SQL Create Index statement
SQL INCLUDE statement
Change Logical File (CHGLF) command
Display File Description (DSPFD) command

Database performance and query optimization 219

Comparing binary radix indexes and encoded vector indexes
DB2 for IBM i makes indexes a powerful tool.

The following table summarizes some of the differences between binary radix indexes and encoded
vector indexes:

Table 51. Comparison of radix and EVI indexes

Comparison value Binary Radix Indexes Encoded Vector Indexes

Basic data structure A wide, flat tree A Symbol Table and a vector

Interface for creating Command, SQL, System i
Navigator

SQL, System i Navigator

Can be created in parallel Yes Yes

Can be maintained in parallel Yes Yes

Used for statistics Yes Yes

Used for selection Yes Yes, with dynamic bitmaps or
RRN list

Used for joining Yes Yes (with a hash table)

Used for grouping Yes Yes

Used for ordering Yes No

Used to enforce unique
Referential Integrity constraints

Yes No

Source for predetermined or
ready-made numeric aggregate
results

No Yes, with INCLUDE keyword
option on create

Indexes & the optimizer
Since the optimizer uses cost based optimization, more information about the database rows and
columns makes for a more efficient access plan created for the query. With the information from the
indexes, the optimizer can make better choices about how to process the request (local selection, joins,
grouping, and ordering).

The CQE optimizer attempts to examine most, if not all, indexes built over a table unless or until it times
out. However, the SQE optimizer only considers those indexes that are returned by the Statistics Manager.
These include only indexes that the Statistics Manager decides are useful in performing local selection
based on the "where" clause predicates. Consequently, the SQE optimizer does not time out.

The primary goal of the optimizer is to choose an implementation that efficiently eliminates the rows that
are not interesting or required to satisfy the request. Normally, query optimization is thought of as trying
to find the rows of interest. A proper indexing strategy assists the optimizer and database engine with this
task.

Instances where an index is not used
Db2 for i does not use indexes in the certain instances.

• For a column that is expected to be updated; for example, when using SQL, your program might include
the following:

EXEC SQL
 DECLARE DEPTEMP CURSOR FOR
 SELECT EMPNO, LASTNAME, WORKDEPT
 FROM CORPDATA.EMPLOYEE
 WHERE (WORKDEPT = 'D11' OR
 WORKDEPT = 'D21') AND
 EMPNO = '000190'

220 IBM i: Database Performance and Query Optimization

 FOR UPDATE OF EMPNO, WORKDEPT
END-EXEC.

When using the OPNQRYF command, for example:

OPNQRYF FILE((CORPDATA/EMPLOYEE)) OPTION(*ALL)
 QRYSLT('(WORKDEPT *EQ ''D11'' *OR WORKDEPT *EQ ''D21'')
 *AND EMPNO *EQ ''000190''')

Even if you do not intend to update the employee department, the system cannot use an index with a
key of WORKDEPT.

An index can be used if all the index updatable columns are also used within the query as an isolatable
selection predicate with an equal operator. In the previous example, the system uses an index with a
key of EMPNO.

The system can operate more efficiently if the FOR UPDATE OF column list only names the column you
intend to update: WORKDEPT. Therefore, do not specify a column in the FOR UPDATE OF column list
unless you intend to update the column.

If you have an updatable cursor because of dynamic SQL, or FOR UPDATE was not specified and the
program contains an UPDATE statement, then all columns can be updated.

• For a column being compared with another column from the same row. For example, when using SQL,
your program might include the following:

EXEC SQL
 DECLARE DEPTDATA CURSOR FOR
 SELECT WORKDEPT, DEPTNAME
 FROM CORPDATA.EMPLOYEE
 WHERE WORKDEPT = ADMRDEPT
END-EXEC.

When using the OPNQRYF command, for example:

OPNQRYF FILE (EMPLOYEE) FORMAT(FORMAT1)
 QRYSLT('WORKDEPT *EQ ADMRDEPT')

Even though there is an index for WORKDEPT and another index for ADMRDEPT, Db2 for i does not use
either index. The index has no added benefit because every row of the table needs to be looked at.

Display indexes for a table
You can display indexes that are created on a table using System i Navigator.

To display indexes for a table, follow these steps:

1. In the System i Navigator window, expand the system that you want to use.
2. Expand Databases and the database that you want to work with.
3. Expand Schemas and the schema that you want to work with.
4. Right-click a table and select Show Indexes.

The Show index window includes the following columns:

Table 52. Columns used in Show index window

Column name Description

Name The SQL name for the index

Database performance and query optimization 221

Table 52. Columns used in Show index window (continued)

Column name Description

Type The type of index displayed. Possible values are:

• Keyed Physical File
• Keyed Logical File
• Primary Key Constraint
• Unique Key Constraint
• Foreign Key Constraint
• Index

Schema Schema or library containing the index or access path

Owner User ID of the owner of this index or access path

System Name System table name for the index or access path.

Text The text description of the index or access path

Index partition Partition detail for the index. Possible values:

• <blank>, For all partitions
• For Each Partition
• specific name of the partition

Valid Whether the access path or index is valid. The possible
values are Yes or No.

Creation Date The timestamp of when the index was created.

Last Build The last time that the access path or index was rebuilt.

Last Query Use Timestamp when the access path was last used by the
optimizer.

Last Query Statistics Use Timestamp when the access path was last used for statistics

Query Use Count Number of times the access path has been used for a query

Query Statistics Use Count Number of times the access path has been used for statistics

Last Used Date Timestamp when the access path or index was last used.

Days Used Count The number of days the index has been used.

Date Reset Days Used Count The year and date when the days-used count was last set to
0.

Number of Key Columns The number of key columns defined for the access path or
index.

Key Columns The key columns defined for the access path or index.

Current Key Values The number of current key values.

Current Size The size of the access path or index.

Current Allocated Pages The current number of pages allocated for the access path or
index.

222 IBM i: Database Performance and Query Optimization

Table 52. Columns used in Show index window (continued)

Column name Description

Logical Page Size The number of bytes used for the access path or the logical
page size of the index. Indexes with larger logical page sizes
are typically more efficient when scanned during query
processing. Indexes with smaller logical page sizes are
typically more efficient for simple index probes and
individual key look ups. If the access path or index is an
encoded vector, the value 0 is returned.

Duplicate Key Order How the access path or index handles duplicate key values.
Possible values are:

• Unique - all values are unique.
• Unique where not null - all values are unique unless null is
specified.

Maximum Key Length The maximum key length for the access path or index.

Unique Partial Key Values The number of unique partial keys for the key fields 1
through 4. If the access path is an encoded vector, this
number represents the number of full key distinct values.

Overflow Values The number of overflow values for this encoded vector index.

Key Code Size The length of the code assigned to each distinct key value of
the encoded vector index.

Sparse Is the index considered sparse. Sparse indexes only contain
keys for rows that satisfy the query. Possible values are:

• Yes
• No

Derived Key Is the index considered derived. A derived key is a key that is
the result of an operation on the base column. Possible
values are:

• Yes
• No

Partitioned Is the index partition created for each data partition defined
for the table using the specified columns. Possible values
are:

• Yes
• No

Maximum Size The maximum size of the access path or index.

Sort Sequence The alternate character sorting sequence for National
Language Support (NLS).

Language Identifier The language code for the object.

Estimated Rebuild Time The estimated time in seconds required to rebuild the access
path or index.

Database performance and query optimization 223

Table 52. Columns used in Show index window (continued)

Column name Description

Held Is a rebuild of an access path or index held. Possible values
are:

• Yes
• No

Maintenance For objects with key fields or join logical files, the type of
access path maintenance used. The possible values are:

• Do not wait
• Delayed
• Rebuild

Delayed Maintenance Keys The number of delayed maintenance keys for the access
path or index.

Recovery When the access path is rebuilt after damage to the access
path is recognized. The possible values are:

• After IPL
• During IPL
• Next Open

Index Logical Reads The number of access path or index logical read operations
since the last IPL.

WHERE Clause Specifies the condition to apply for a row to be included in
the index.

WHERE Clause Has UDF Does the WHERE clause have a UDF. Possible values are:

• Yes
• No

Table Table name of the table that the index is based on.

Table Partition Partition name of the table that the index is based on.

Table System Name System name of the table that the index is based on.

Last Rebuild Number Keys Number of keys in the index when the index was last rebuilt.

Last Rebuild Parallel Degree Parallel degree used when the index was last rebuilt.

Last Rebuild Time Amount of time in seconds it took to rebuild the index the
last time the index was rebuilt.

Keep in Memory Is the index kept in memory. Possible values are:

• Yes
• No

Sort Sequence Schema Schema of the sort sequence table if one is used.

Sort Sequence Name Name of the sort sequence table if one is used.

Random Reads The number of reads that have occurred in a random fashion.
Random means that the location of the row or key could not
be predicted ahead of time.

224 IBM i: Database Performance and Query Optimization

Table 52. Columns used in Show index window (continued)

Column name Description

Media Preference Indicates preference whether the storage for the table,
partition, or index is allocated on Solid State Disk (SSD), if
available.

Determine unnecessary indexes
You can easily determine which indexes are being used for query optimization.

Before V5R3, it was difficult to determine unnecessary indexes. Using the Last Used Date was not
dependable, as it was only updated when the logical file was opened using a native database application
(for example, an RPG application). Furthermore, it was difficult to find all the indexes over a physical file.
Indexes are created as part of a keyed physical file, keyed logical file, join logical file, SQL index, primary
key or unique constraint, or referential constraint. However, you can now easily find all indexes and
retrieve statistics on index usage as a result of System i Navigator and IBM i functionality. To assist you in
tuning your performance, this function now produces statistics on index usage as well as index usage in a
query.

To access index information through the System i Navigator, navigate to: Database > Schemas > Tables.
Right-click your table and select Show Indexes.

You can show all indexes for a schema by right-clicking on Tables or Indexes and selecting Show indexes.

Note: You can also view the statistics through the Retrieve Member Description (QUSRMBRD) API.

Certain fields available in the Show Indexes window can help you to determine any unnecessary indexes.
Those fields are:

Last Query Use
States the timestamp when the index was last used to retrieve data for a query.

Last Query Statistic Use
States the timestamp when the index was last used to provide statistical information.

Query Use Count
Lists the number of instances the index was used in a query.

Query Statistics Use
Lists the number of instances the index was used for statistical information.

Last Used Date
The century and date this index was last used.

Days Used Count
The number of days the index was used. If the index does not have a last used date, the count is 0.

Date Reset Days Used Count
The date that the days used count was last reset. You can reset the days used by Change Object
Description (CHGOBJD) command.

The fields start and stop counting based on your situation, or the actions you are currently performing on
your system. The following list describes what might affect one or both of your counters:

• The SQE and CQE query engines increment both counters. As a result, the statistics field is updated
regardless of which query interface is used.

• A save and restore procedure does not reset the statistics counter if the index is restored over an
existing index. If an index is restored that does not exist on the system, the statistics are reset.

Related information
Retrieve Member Description (QUSRMBRD) API
Change Object Description (CHGOBJD) command

Database performance and query optimization 225

Reset usage counts
Resetting the usage counts for a table allows you to determine how the changes you made to your
indexing strategy affected the indexes and constraints on that table. For example, if your new strategy
causes an index to never be used, you could then delete that index. Resetting usage counts on a table
affect all indexes and constraints that are created on that object.

Note: Resetting usage counts for a keyed physical file or a constraint in the Show Indexes window resets
the counts of all constraints and keyed access for that file or table.

You can reset index usage counts by right-clicking a specific index in the Indexes folder or in the Show
Indexes dialog and selecting Reset Usage Counts.

View index build status
You can view a list of indexes that are being built by the database. This view might be helpful in
determining when the index becomes usable to your applications.

To display indexes that are being built, follow these steps:

1. In the System i Navigator window, expand the system that you want to use.
2. Expand Databases.
3. Expand the database that you want to work with and then expand the Database Maintenance folder.

Select Index Builds.

Manage index rebuilds
You can manage the rebuild of your indexes using System i Navigator. You can view a list of access paths
that are rebuilding and either hold the access path rebuild or change the priority of a rebuild.

To display access paths to rebuild, follow these steps:

1. In the System i Navigator window, expand the system that you want to use.
2. Expand Databases.
3. Expand the database that you want to work with and then expand the Database Maintenance folder.

Select Index Rebuilds.

The access paths to rebuild dialog includes the following columns:

Table 53. Columns used in Index rebuilds window

Column name Description

Name Name of access path being rebuilt.

Schema Schema name where the index is located.

System Name The system name of the file that owns the index to be rebuilt.

System Schema System schema name of access path being rebuilt.

Type The type of index displayed. Possible values are:

Keyed Physical File

Keyed Logical File

Primary Key

Unique Key

Foreign Key

Index

226 IBM i: Database Performance and Query Optimization

Table 53. Columns used in Index rebuilds window (continued)

Column name Description

Status Displays the status of the rebuild. Possible values are:

1-99 – Rebuild Priority

Running – Rebuilding

Held – Held from be rebuilt

Rebuild Priority Displays the priority in which the rebuild for this
access path is run. Also referred to as sequence
number.

Possible values are:

1-99: Order to rebuild

Held

Open

Rebuild Reason Displays the reason why this access path needs to be rebuilt.
Possible values are:

Create or build index

IPL

Runtime error

Change file or index sharing

Other

Not needed

Change End of Data

Restore

Alter table

Change table

Change file

Reorganize

Enable a constraint

Alter table recovery

Change file recovery

Index shared

Runtime error

Verify constraint

Convert member

Restore recovery

Database performance and query optimization 227

Table 53. Columns used in Index rebuilds window (continued)

Column name Description

Rebuild Reason Subtype Displays the subtype reason why this access path needs to
be rebuilt. Possible values are:

Unexpected error

Index in use during failure

Unexpected error during update, delete, or insert

Delayed maintenance overflow or catch-up error

Other

No event

Change End of Data

Delayed maintenance mismatch

Logical page size mismatch

Partial index restore

Index conversion

Index not saved and restored

Partitioning mismatch

Partitioning change

Index or key attributes change

Original index invalid

Index attributes change

Force rebuild of index

Index not restored

Asynchronous rebuilds requested

Job ended abnormally

Alter table

Change constraint

Index invalid or attributes change

Invalid unique index found

Invalid constraint index found

Index conversion required

If there is no subtype, this field displays 0.

228 IBM i: Database Performance and Query Optimization

Table 53. Columns used in Index rebuilds window (continued)

Column name Description

Invalidation Reason Displays the reason why this access path was invalidated.
Possible values are:

User requested (See Invalidation Reason type for
more information)

Create or build Index

Load (See Invalidation Reason type for more
information)

Initial Program Load (IPL)

Runtime error

Modify

Journal failed to build the index

Marked index as fixable during runtime

Marked index as fixable during IPL

Change end of data

Database performance and query optimization 229

Table 53. Columns used in Index rebuilds window (continued)

Column name Description

Invalidation Reason Type Displays the reason type for why this access path was
invalidation.

Possible reason types for User requested:

Invalid because of REORG

It is a copy

Alter file

Converting new member

Change to *FRCRBDAP

Change to *UNIQUE

Change to *REBLD

Possible reason type for LOAD

The index was marked for invalidation but the
system crashed before the invalidation could
actually occur

The index was associated with the overlaid data
space header during a load, therefore it was
invalidated

Index was in IMPI format. The header was
converted and now it is invalidated to be rebuilt in
RISC format

The RISC index was converted to V5R1 format

Index invalidated due to partial load

Index invalidated due to a delayed maintenance
mismatch

Index invalidated due to a pad key mismatch

Index invalidated due to a significant fields bitmap
fix

Index invalidated due to a logical page size
mismatch

Index was not restored. File might have been
saved with ACCPTH(*NO) or index did not exist
when file was saved.

Index was not restored. File might have been
saved with ACCPTH(*NO) or index did not exist
when file was saved.

Index was rebuilt because file was saved in an
inconsistent state with SAVACT(*SYSDFN).

For other invalidation codes, this field displays 0.

Estimated Rebuild Time Estimated amount of time in seconds that it takes to rebuild
the index access path.

Rebuild Start Time Time when the rebuild was started.

230 IBM i: Database Performance and Query Optimization

Table 53. Columns used in Index rebuilds window (continued)

Column name Description

Elapsed Rebuild Time Amount of time that has elapsed in seconds since the start of
the rebuild of the access path.

Unique Indicates whether the rows in the access path are unique.
Possible values are:

Yes

No

Last Query Use Timestamp when the access path was last used

Last Query Statistics Use Timestamp when the access path was last used for statistics

Query Use Count Number of times the access path has been used for a query

Query Statistics Use Count Number of times the access path has been used for statistics

Partition Partition detail for the index. Possible values:

• <blank>, which means For all partitions
• For Each Partition
• specific name of the partition

Owner User ID of the owner of this access path.

Parallel Degree Number of processors to be used to rebuild the index.

Text Text description of the file owning the index.

You can also use the Edit Rebuild of Access Paths (EDTRBDAP) command to manage rebuilding
of access paths.

Related information
Rebuild access paths
Edit Rebuild of Access Paths (EDTRBDAP) command

Indexing strategy
There are two approaches to index creation: proactive and reactive. Proactive index creation involves
anticipating which columns are most often used for selection, joining, grouping, and ordering. Then
building indexes over those columns. In the reactive approach, indexes are created based on optimizer
feedback, query implementation plan, and system performance measurements.

It is useful to initially build indexes based on the database model and applications and not any particular
query. As a starting point, consider designing basic indexes based on the following criteria:

• Primary and foreign key columns based on the database model
• Commonly used local selection columns, including columns that are dependent, such as an

automobile's make and model
• Commonly used join columns not considered primary or foreign key columns
• Commonly used grouping columns

Related information
Indexing and statistics strategies for DB2 for i5/OS

Reactive approach to tuning
To perform reactive tuning, build a prototype of the proposed application without any indexes and start
running some queries. Or you could build an initial set of indexes and start running the application to see

Database performance and query optimization 231

http://www.ibm.com/servers/enable/site/education/abstracts/indxng_abs.html

which ones get used and which do not. Even with a smaller database, the slow running queries become
obvious quickly.

The reactive tuning method is also used when trying to understand and tune an existing application that is
not performing up to expectations. Use the appropriate debugging and monitoring tools, described in the
next section, to view the database feedback messages:

• the indexes the optimizer recommends for local selection
• the temporary indexes used for a query
• the query implementation methods the optimizer chose

If the database engine is building temporary indexes to process joins or perform grouping and selection
over permanent tables, build permanent indexes over the same columns. This technique is used to
eliminate the temporary index creation. In some cases, a temporary index is built over a temporary table,
so a permanent index is not able to be built for those tables. You can use the optimization tools listed in
the previous section to note the temporary index creation, the reason it was created, and the key
columns.

Proactive approach to tuning
Typically you will create an index for the most selective columns and create statistics for the least
selective columns in a query. By creating an index, the optimizer knows that the column is selective and it
also gives the optimizer the ability to use that index to implement the query.

In a perfect radix index, the order of the columns is important. In fact, it can make a difference as to
whether the optimizer uses it for data retrieval at all. As a general rule, order the columns in an index in
the following way:

• Equal predicates first. That is, any predicate that uses the "=" operator may narrow down the range of
rows the fastest and should therefore be first in the index.

• If all predicates have an equal operator, then order the columns as follows:

– Selection predicates + join predicates
– Join predicates + selection predicates
– Selection predicates + group by columns
– Selection predicates + order by columns

In addition to the guidelines above, in general, the most selective key columns should be placed first in
the index.

Consider the following SQL statement:

SELECT b.col1, b.col2, a.col1
 FROM table1 a, table2 b
 WHERE b.col1='some_value' AND
 b.col2=some_number AND
 a.join_col=b.join_col
 GROUP BY b.col1, b.col2, a.col1
 ORDER BY b.col1

With a query like this, the proactive index creation process can begin. The basic rules are:

• Custom-build a radix index for the largest or most commonly used queries. Example using the query
above:

radix index over join column(s) - a.join_col and b.join_col
radix index over most commonly used local selection column(s) - b.col2

• For ad hoc online analytical processing (OLAP) environments or less frequently used queries, build
single-key EVIs over the local selection column(s) used in the queries. Example using the query above:

 EVI over non-unique local selection columns - b.col1 and b.col2

232 IBM i: Database Performance and Query Optimization

Coding for effective indexes
The following topics provide suggestions to help you design code which allows Db2 for i to take advantage
of available indexes:

Avoid numeric conversions
When a column value and a host variable (or constant value) are being compared, try to specify the same
data types and attributes. Db2 for i might not use an index for the named column if the host variable or
constant value has a greater precision than the precision of the column. If the two items being compared
have different data types, Db2 for i needs to convert one or the other of the values, which can result in
inaccuracies (because of limited machine precision).

To avoid problems for columns and constants being compared, use the following:

• same data type
• same scale, if applicable
• same precision, if applicable

For example, EDUCLVL is a halfword integer value (SMALLINT). When using SQL, specify:

… WHERE EDUCLVL < 11 AND
 EDUCLVL >= 2

instead of

… WHERE EDUCLVL < 1.1E1 AND
 EDUCLVL > 1.3

When using the OPNQRYF command, specify:

... QRYSLT('EDUCLVL *LT 11 *AND ENUCLVL *GE 2')

instead of

... QRYSLT('EDUCLVL *LT 1.1E1 *AND EDUCLVL *GT 1.3')

If an index was created over the EDUCLVL column, then the optimizer might not use the index in the
second example. The constant precision is greater than the column precision. It attempts to convert the
constant to the precision of the column. In the first example, the optimizer considers using the index,
because the precisions are equal.

Avoid arithmetic expressions
Do not use an arithmetic expression as an operand to compare to a column in a row selection predicate.
The optimizer does not use an index on a column compared to an arithmetic expression. While this
technique might not cause the column index to become unusable, it prevents any estimates and possibly
the use of index scan-key positioning. The primary thing that is lost is the ability to use and extract any
statistics that might be useful in the optimization of the query.

For example, when using SQL, specify the following:

… WHERE SALARY > 16500

instead of

… WHERE SALARY > 15000*1.1

Database performance and query optimization 233

Avoid character string padding
Try to use the same data length when comparing a fixed-length character string column value to a host
variable or constant value. Db2 for i might not use an index if the constant value or host variable is longer
than the column length.

For example, EMPNO is CHAR(6) and DEPTNO is CHAR(3). For example, when using SQL, specify the
following:

… WHERE EMPNO > '000300' AND
 DEPTNO < 'E20'

instead of

… WHERE EMPNO > '000300 ' AND
 DEPTNO < 'E20 '

When using the OPNQRYF command, specify:

... QRYSLT('EMPNO *GT "000300" *AND DEPTNO *LT "E20"')

instead of

... QRYSLT('EMPNO *GT "000300" *AND DEPTNO *LT "E20"')

Avoid the use of LIKE patterns beginning with % or _
The percent (%), and underline (_), used in the pattern of a LIKE (OPNQRYF %WLDCRD) predicate, specify
a character string like the row column values to select. They can take advantage of indexes when used to
denote characters in the middle or at the end of a character string.

For example, when using SQL, specify the following:

… WHERE LASTNAME LIKE 'J%SON%'

When using the OPNQRYF command, specify the following:

... QRYSLT('LASTNAME *EQ %WLDCRD(''J*SON*'')')

However, when used at the beginning of a character string, they can prevent Db2 for i from using any
indexes that might be defined on the LASTNAME column to limit the number of rows scanned using index
scan-key positioning. Index scan-key selection, however, is allowed. For example, in the following queries
index scan-key selection can be used, but index scan-key positioning cannot.

In SQL:

… WHERE LASTNAME LIKE '%SON'

In OPNQRYF:

… QRYSLT('LASTNAME *EQ %WLDCRD(''*SON'')')

Avoid patterns with a % so that you can get the best performance with key processing on the predicate. If
possible, try to get a partial string to search so that index scan-key positioning can be used.

For example, if you were looking for the name "Smithers", but you only type "S%," this query returns all
names starting with "S." Adjust the query to return all names with "Smi%". By forcing the use of partial
strings, you might get better performance in the long term.

234 IBM i: Database Performance and Query Optimization

Using derived indexes
SQL indexes can be created where the key is specified as an expression. This type of key is also referred
to as a derived key.

For example, look at the following:

 CREATE INDEX TOTALIX ON EMPLOYEE(SALARY+BONUS+COMM AS TOTAL)

In this example, return all the employees whose total compensation is greater than 50000.

 SELECT * FROM EMPLOYEE
 WHERE SALARY+BONUS+COMM > 50000
 ORDER BY SALARY+BONUS+COMM

Since the optimizer uses the index TOTALIX with index probe to satisfy the WHERE selection and the
ordering criteria.

Some special considerations to with derived key index usage and matching include:

• There is no matching for index key constants to query host variables. This non-match includes implicit
parameter marker conversion performed by the database manager.

CREATE INDEX D_IDX1 ON EMPLOYEE (SALARY/12 AS MONTHLY)

In this example, return all employees whose monthly salary is greater than 3000.

long months = 12;

EXEC SQL SELECT * FROM EMPLOYEE WHERE SALARY/:months > 3000

However, in this case the optimizer does not use the index since there is no support for matching the
host variable value months in the query to the constant 12 in the index.

Usage of the QAQQINI option PARAMETER_MARKER_CONVERSION with value *NO can be used to
prevent conversion of constants to parameter markers. This technique allows for improved derived
index key matching. However, because of the performance implications of using this QAQQINI setting,
take care with its usage.

• In general, expressions in the index must match the expression in the query:

.... WHERE SALARY+COMM+BONUS > 50000

In this case, the WHERE SALARY+COMM+BONUS is different from the index key SALARY+BONUS
+COMM and would not match.

• It is recommended that the derived index keys be kept as simple as possible. The more complex the
query expression to match and the index key expression is, the less likely it is that the index is used.

• The CQE optimizer has limited support for matching derived key indexes.

Related reference
Derived key index
You can use the SQL CREATE INDEX statement to create a derived key index using an SQL expression.
Related information
SQL Create Index statement

Using sparse indexes
SQL indexes can be created using WHERE selection predicates. These indexes can also be referred to as
sparse indexes. The advantage of a sparse index is that fewer entries are maintained in the index. Only
those entries matching the WHERE selection criteria are maintained in the index.

In general, the query WHERE selection must be a subset of the sparse index WHERE selection in order for
the sparse index to be used.

Database performance and query optimization 235

Here is a simple example of when a sparse index can be used:

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

It is recommended that the WHERE selection in the sparse index is kept as simple as possible. The more
complex the WHERE selection, the more difficult it becomes to match the sparse index WHERE selection
to the query WHERE selection. Then it is less likely that the sparse index is used. The CQE optimizer does
not support sparse indexes. It does support select/omit logical files however. The SQE optimizer matches
the CQE optimizer in its support for select/omit logical files and has nearly full support for sparse indexes.

Related reference
Sparse indexes
You can use the SQL CREATE INDEX statement to create a sparse index using SQL selection predicates.
Related information
SQL Create Index statement

Using indexes with sort sequence
The following sections provide useful information about how indexes work with sort sequence tables.

Using indexes and sort sequence with selection, joins, or grouping
Before using an existing index, Db2 for i ensures the attributes of the columns (selection, join, or grouping
columns) match the attributes of the key columns in the existing index. The sort sequence table is an
additional attribute that must be compared.

The query sort sequence table (specified by the SRTSEQ and LANGID) must match the index sort
sequence table. Db2 for i compares the sort sequence tables. If they do not match, the existing index
cannot be used.

There is an exception to this rule, however. If the sort sequence table associated with the query is a
unique-weight sequence table (including *HEX), Db2 for i acts as though no sort sequence table is
specified for selection, join, or grouping columns that use the following operators and predicates:

• equal (=) operator
• not equal (^= or <>) operator
• LIKE predicate (OPNQRYF %WLDCRD and *CT)
• IN predicate (OPNQRYF %VALUES)

When these conditions are true, Db2 for i is free to use any existing index where the key columns match
the columns and either:

• The index does not contain a sort sequence table or
• The index contains a unique-weight sort sequence table

Note:

1. The table does not need to match the unique-weight sort sequence table associated with the query.
2. Bitmap processing has a special consideration when multiple indexes are used for a table. If two or

more indexes have a common key column referenced in the query selection, then those indexes must
either use the same sort sequence table or no sort sequence table.

Using indexes and sort sequence with ordering
Unless the optimizer chooses a sort to satisfy the ordering request, the index sort sequence table must
match the query sort sequence table.

When a sort is used, the translation is done during the sort. Since the sort is handling the sort sequence
requirement, this technique allows Db2 for i to use any existing index that meets the selection criteria.

236 IBM i: Database Performance and Query Optimization

Index examples
The following index examples are provided to help you create effective indexes.

For the purposes of the examples, assume that three indexes are created.

Assume that an index HEXIX was created with *HEX as the sort sequence.

 CREATE INDEX HEXIX ON STAFF (JOB)

Assume that an index UNQIX was created with a unique-weight sort sequence.

 CREATE INDEX UNQIX ON STAFF (JOB)

Assume that an index SHRIX was created with a shared-weight sort sequence.

 CREATE INDEX SHRIX ON STAFF (JOB)

Index example: Equal selection with no sort sequence table
Equal selection with no sort sequence table (SRTSEQ(*HEX)).

 SELECT * FROM STAFF
 WHERE JOB = 'MGR'

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF))
 QRYSLT('JOB *EQ ''MGR''')
 SRTSEQ(*HEX)

The system can use either index HEXIX or index UNQIX.

Index example: Equal selection with a unique-weight sort sequence table
Equal selection with a unique-weight sort sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

 SELECT * FROM STAFF
 WHERE JOB = 'MGR'

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF))
 QRYSLT('JOB *EQ ''MGR''')
 SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can use either index HEXIX or index UNQIX.

Index example: Equal selection with a shared-weight sort sequence table
Equal selection with a shared-weight sort sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU)).

 SELECT * FROM STAFF
 WHERE JOB = 'MGR'

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF))
 QRYSLT('JOB *EQ ''MGR''')
 SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can only use index SHRIX.

Index example: Greater than selection with a unique-weight sort sequence table
Greater than selection with a unique-weight sort sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

 SELECT * FROM STAFF
 WHERE JOB > 'MGR'

Database performance and query optimization 237

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF))
 QRYSLT('JOB *GT ''MGR''')
 SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can only use index UNQIX.

Index example: Join selection with a unique-weight sort sequence table
Join selection with a unique-weight sort sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

 SELECT * FROM STAFF S1, STAFF S2
 WHERE S1.JOB = S2.JOB

or the same query using the JOIN syntax.

 SELECT *
 FROM STAFF S1 INNER JOIN STAFF S2
 ON S1.JOB = S2.JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE(STAFF STAFF)
 FORMAT(FORMAT1)
 JFLD((1/JOB 2/JOB *EQ))
 SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can use either index HEXIX or index UNQIX for either query.

Index example: Join selection with a shared-weight sort sequence table
Join selection with a shared-weight sort sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU)).

 SELECT * FROM STAFF S1, STAFF S2
 WHERE S1.JOB = S2.JOB

or the same query using the JOIN syntax.

 SELECT *
 FROM STAFF S1 INNER JOIN STAFF S2
 ON S1.JOB = S2.JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE(STAFF STAFF) FORMAT(FORMAT1)
 JFLD((1/JOB 2/JOB *EQ))
 SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can only use index SHRIX for either query.

Index example: Ordering with no sort sequence table
Ordering with no sort sequence table (SRTSEQ(*HEX)).

 SELECT * FROM STAFF
 WHERE JOB = 'MGR'
 ORDER BY JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF))
 QRYSLT('JOB *EQ ''MGR''')
 KEYFLD(JOB)
 SRTSEQ(*HEX)

The system can only use index HEXIX.

238 IBM i: Database Performance and Query Optimization

Index example: Ordering with a unique-weight sort sequence table
Ordering with a unique-weight sort sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

 SELECT * FROM STAFF
 WHERE JOB = 'MGR'
 ORDER BY JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF))
 QRYSLT('JOB *EQ ''MGR''')
 KEYFLD(JOB) SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can only use index UNQIX.

Index example: Ordering with a shared-weight sort sequence table
Ordering with a shared-weight sort sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU)).

 SELECT * FROM STAFF
 WHERE JOB = 'MGR'
 ORDER BY JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF))
 QRYSLT('JOB *EQ ''MGR''')
 KEYFLD(JOB) SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can only use index SHRIX.

Index example: Ordering with ALWCPYDTA(*OPTIMIZE) and a unique-weight sort sequence table
Ordering with ALWCPYDTA(*OPTIMIZE) and a unique-weight sort sequence table (SRTSEQ(*LANGIDUNQ)
LANGID(ENU)).

 SELECT * FROM STAFF
 WHERE JOB = 'MGR'
 ORDER BY JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF))
 QRYSLT('JOB *EQ ''MGR''')
 KEYFLD(JOB)
 SRTSEQ(*LANGIDUNQ) LANGID(ENU)
 ALWCPYDTA(*OPTIMIZE)

The system can use either index HEXIX or index UNQIX for selection. Ordering is done during the sort
using the *LANGIDUNQ sort sequence table.

Index example: Grouping with no sort sequence table
Grouping with no sort sequence table (SRTSEQ(*HEX)).

 SELECT JOB FROM STAFF
 GROUP BY JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF)) FORMAT(FORMAT2)
 GRPFLD((JOB))
 SRTSEQ(*HEX)

The system can use either index HEXIX or index UNQIX.

Database performance and query optimization 239

Index example: Grouping with a unique-weight sort sequence table
Grouping with a unique-weight sort sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

 SELECT JOB FROM STAFF
 GROUP BY JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF)) FORMAT(FORMAT2)
 GRPFLD((JOB))
 SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can use either index HEXIX or index UNQIX.

Index example: Grouping with a shared-weight sort sequence table
Grouping with a shared-weight sort sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU)).

 SELECT JOB FROM STAFF
 GROUP BY JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF)) FORMAT(FORMAT2)
 GRPFLD((JOB))
 SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can only use index SHRIX.

The following examples assume that three more indexes are created over columns JOB and SALARY. The
CREATE INDEX statements precede the examples.

Assume an index HEXIX2 was created with *HEX as the sort sequence.

 CREATE INDEX HEXIX2 ON STAFF (JOB, SALARY)

Assume that an index UNQIX2 was created and the sort sequence is a unique-weight sort sequence.

 CREATE INDEX UNQIX2 ON STAFF (JOB, SALARY)

Assume an index SHRIX2 was created with a shared-weight sort sequence.

 CREATE INDEX SHRIX2 ON STAFF (JOB, SALARY)

Index example: Ordering and grouping on the same columns with a unique-weight sort sequence
table
Ordering and grouping on the same columns with a unique-weight sort sequence table
(SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

 SELECT JOB, SALARY FROM STAFF
 GROUP BY JOB, SALARY
 ORDER BY JOB, SALARY

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)
 GRPFLD(JOB SALARY)
 KEYFLD(JOB SALARY)
 SRTSEQ(*LANGIDUNQ) LANGID(ENU)

The system can use UNQIX2 to satisfy both the grouping and ordering requirements. If index UNQIX2 did
not exist, the system creates an index using a sort sequence table of *LANGIDUNQ.

240 IBM i: Database Performance and Query Optimization

Index example: Ordering and grouping on the same columns with ALWCPYDTA(*OPTIMIZE) and a
unique-weight sort sequence table
Ordering and grouping on the same columns with ALWCPYDTA(*OPTIMIZE) and a unique-weight sort
sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

 SELECT JOB, SALARY FROM STAFF
 GROUP BY JOB, SALARY
 ORDER BY JOB, SALARY

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)
 GRPFLD(JOB SALARY)
 KEYFLD(JOB SALARY)
 SRTSEQ(*LANGIDUNQ) LANGID(ENU)
 ALWCPYDTA(*OPTIMIZE)

The system can use UNQIX2 to satisfy both the grouping and ordering requirements. If index UNQIX2 did
not exist, the system does one of the following actions:

• Create an index using a sort sequence table of *LANGIDUNQ or
• Use index HEXIX2 to satisfy the grouping and to perform a sort to satisfy the ordering

Index example: Ordering and grouping on the same columns with a shared-weight sort sequence
table
Ordering and grouping on the same columns with a shared-weight sort sequence table
(SRTSEQ(*LANGIDSHR) LANGID(ENU)).

 SELECT JOB, SALARY FROM STAFF
 GROUP BY JOB, SALARY
 ORDER BY JOB, SALARY

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)
 GRPFLD(JOB SALARY)
 KEYFLD(JOB SALARY)
 SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can use SHRIX2 to satisfy both the grouping and ordering requirements. If index SHRIX2 did
not exist, the system creates an index using a sort sequence table of *LANGIDSHR.

Index example: Ordering and grouping on the same columns with ALWCPYDTA(*OPTIMIZE) and a
shared-weight sort sequence table
Ordering and grouping on the same columns with ALWCPYDTA(*OPTIMIZE) and a shared-weight sort
sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU).

 SELECT JOB, SALARY FROM STAFF
 GROUP BY JOB, SALARY
 ORDER BY JOB, SALARY

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)
 GRPFLD(JOB SALARY)
 KEYFLD(JOB SALARY)
 SRTSEQ(*LANGIDSHR) LANGID(ENU)
 ALWCPYDTA(*OPTIMIZE)

The system can use SHRIX2 to satisfy both the grouping and ordering requirements. If index SHRIX2 did
not exist, the system creates an index using a sort sequence table of *LANGIDSHR.

Database performance and query optimization 241

Index example: Ordering and grouping on different columns with a unique-weight sort sequence
table
Ordering and grouping on different columns with a unique-weight sort sequence table
(SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

 SELECT JOB, SALARY FROM STAFF
 GROUP BY JOB, SALARY
 ORDER BY SALARY, JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)
 GRPFLD(JOB SALARY)
 KEYFLD(SALARY JOB)
 SRTSEQ(*LANGIDSHR) LANGID(ENU)

The system can use index HEXIX2 or index UNQIX2 to satisfy the grouping requirements. A temporary
result is created containing the grouping results. A temporary index is then built over the temporary result
using a *LANGIDUNQ sort sequence table to satisfy the ordering requirements.

Index example: Ordering and grouping on different columns with ALWCPYDTA(*OPTIMIZE) and a
unique-weight sort sequence table
Ordering and grouping on different columns with ALWCPYDTA(*OPTIMIZE) and a unique-weight sort
sequence table (SRTSEQ(*LANGIDUNQ) LANGID(ENU)).

 SELECT JOB, SALARY FROM STAFF
 GROUP BY JOB, SALARY
 ORDER BY SALARY, JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)
 GRPFLD(JOB SALARY)
 KEYFLD(SALARY JOB)
 SRTSEQ(*LANGIDUNQ) LANGID(ENU)
 ALWCPYDTA(*OPTIMIZE)

The system can use index HEXIX2 or index UNQIX2 to satisfy the grouping requirements. A sort is
performed to satisfy the ordering requirements.

Index example: Ordering and grouping on different columns with ALWCPYDTA(*OPTIMIZE) and a
shared-weight sort sequence table
Ordering and grouping on different columns with ALWCPYDTA(*OPTIMIZE) and a shared-weight sort
sequence table (SRTSEQ(*LANGIDSHR) LANGID(ENU)).

 SELECT JOB, SALARY FROM STAFF
 GROUP BY JOB, SALARY
 ORDER BY SALARY, JOB

When using the OPNQRYF command, specify:

OPNQRYF FILE((STAFF)) FORMAT(FORMAT3)
 GRPFLD(JOB SALARY)
 KEYFLD(SALARY JOB)
 SRTSEQ(*LANGIDSHR) LANGID(ENU)
 ALWCPYDTA(*OPTIMIZE)

The system can use index SHRIX2 to satisfy the grouping requirements. A sort is performed to satisfy the
ordering requirements.

242 IBM i: Database Performance and Query Optimization

Sparse index examples
This topic shows examples of how the sparse index matching algorithm works.

In example S1, the query selection is a subset of the sparse index selection and consequently an index
scan over the sparse index is used. The remaining query selection (COL3=30) is executed following the
index scan.

Example S1

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

In example S2, the query selection is not a subset of the sparse index selection and the sparse index
cannot be used.

Example S2

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20 and COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20

In example S3, the query selection exactly matches the sparse index selection and an index scan over the
sparse index can be used.

Example S3

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20 and COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

In example S4, the query selection is a subset of the sparse index selection and an index scan over the
sparse index can be used. The remaining query selection (COL3=30) is executed following the index scan.

Example S4

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

In example S5, the query selection is not a subset of the sparse index selection and the sparse index
cannot be used.

Example S5

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20 and COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20

Database performance and query optimization 243

In example S6, the query selection exactly matches the sparse index selection and an index scan over the
sparse index can be used. The query selection is executed following the index scan to eliminate excess
records from the sparse index.

Example S6

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 or COL2=20 or COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 or COL2=20 or COL3=30

In example S7, the query selection is a subset of the sparse index selection and an index scan over the
sparse index can be used. The query selection is executed following the index scan to eliminate excess
records from the sparse index.

Example S7

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 or COL2=20 or COL3=30

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 or COL2=20

In example S8, the query selection is not a subset of the sparse index selection and the sparse index
cannot be used.

Example S8

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 or COL2=20

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 or COL2=20 or COL3=30

In the next example S9, the constant 'MN' was replaced by a parameter marker for the query selection.
The sparse index had the local selection of COL1='MN' applied to it when it was created. The sparse index
matching algorithm matches the parameter marker to the constant 'MN' in the query predicate COL1 =?. It
verifies that the value of the parameter marker is the same as the constant in the sparse index; therefore
the sparse index can be used.

Example S9

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1='MN' or COL2='TWINS'

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
Where Col3='WIN' and (Col1=? or Col2='TWINS')

In the next example S10, the keys of the sparse index match the order by fields in the query. For the
sparse index to satisfy the specified ordering, the optimizer must verify that the query selection is a
subset of the sparse index selection. In this example, the sparse index can be used.

Example S10

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL1, COL3)
WHERE COL1='MN' or COL2='TWINS'

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
Where Col3='WIN' and (Col1='MN' or Col2='TWINS')
ORDER BY COL1, COL3

244 IBM i: Database Performance and Query Optimization

In the next example S11, the keys of the sparse index do not match the order by fields in the query. But
the selection in sparse index T2 is a superset of the query selection. Depending on size, the optimizer
might choose an index scan over sparse index T2 and then use a sort to satisfy the specified ordering.

Example S11

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL2, COL4)
WHERE COL1='MN' or COL2='TWINS'

SELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
Where Col3='WIN' and (Col1='MN' or Col2='TWINS')
ORDER BY COL1, COL3

The next example S12 represents the classic optimizer decision: is it better to do an index probe using
index IX1 or is it better to do an index scan using sparse index SPR1? Both indexes retrieve the same
number of index entries and have the same cost from that point forward. For example, both indexes have
the same cost to retrieve the selected records from the dataspace, based on the retrieved entries/keys.

The cost to retrieve the index entries is the deciding criteria. In general, if index IX1 is large then an index
scan over sparse index SPR1 has a lower cost to retrieve the index entries. If index IX1 is rather small
then an index probe over index IX1 has a lower cost to retrieve the index entries. Another cost decision is
reusability. The plan using sparse index SPR1 is not as reusable as the plan using index IX1 because of
the static selection built into the sparse selection.

Example S12

CREATE INDEX MYLIB/IX1 on MYLIB/T1 (COL1, COL2, COL3)

CREATE INDEX MYLIB/SPR1 on MYLIB/T1 (COL3)
WHERE COL1=10 and COL2=20 and COL3=30

CSELECT COL1, COL2, COL3, COL4
FROM MYLIB/T1
WHERE COL1=10 and COL2=20 and COL3=30

Application design tips for database performance
There are some design tips that you can apply when designing SQL applications to maximize your
database performance.

Using live data
The term live data refers to the type of access that the database manager uses when it retrieves data
without making a copy of the data. Using this type of access, the data, which is returned to the program,
always reflects the current values of the data in the database. The programmer can control whether the
database manager uses a copy of the data or retrieves the data directly. This control is done by specifying
the allow copy data (ALWCPYDTA) parameter on the precompiler commands or the Start SQL
(STRSQL) command.

Specifying ALWCPYDTA(*NO) instructs the database manager to always use live data. In most cases,
forcing live data access is a detriment to performance. It severely limits the possible plan choices that the
optimizer could use to implement the query. Avoid it in most cases. However, in specialized cases
involving a simple query, live data access can be used as a performance advantage. The cursor does not
need to be closed and opened again to refresh the data being retrieved.

An example application demonstrating this advantage is one that produces a list on a display. If the
display can show only 20 list elements at a time, then, after the initial 20 elements are displayed, the

Database performance and query optimization 245

programmer can request that the next 20 rows be displayed. A typical SQL application designed for an
operating system other than the IBM i operating system, might be structured as follows:

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT EMPNO, LASTNAME, WORKDEPT
 FROM CORPDATA.EMPLOYEE
 ORDER BY EMPNO
END-EXEC.

EXEC SQL
 OPEN C1
END-EXEC.

* PERFORM FETCH-C1-PARA 20 TIMES.

 MOVE EMPNO to LAST-EMPNO.

EXEC SQL
 CLOSE C1
END-EXEC.

* Show the display and wait for the user to indicate that
* the next 20 rows should be displayed.

EXEC SQL
 DECLARE C2 CURSOR FOR
 SELECT EMPNO, LASTNAME, WORKDEPT
 FROM CORPDATA.EMPLOYEE
 WHERE EMPNO > :LAST-EMPNO
 ORDER BY EMPNO
END-EXEC.

EXEC SQL
 OPEN C2
END-EXEC.

* PERFORM FETCH-C21-PARA 20 TIMES.

* Show the display with these 20 rows of data.

EXEC SQL
 CLOSE C2
END-EXEC.

In the preceding example, notice that an additional cursor had to be opened to continue the list and to get
current data. This technique can result in creating an additional ODP that increases the processing time
on the system. In place of the preceding example, the programmer can design the application specifying
ALWCPYDTA(*NO) with the following SQL statements:

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT EMPNO, LASTNAME, WORKDEPT
 FROM CORPDATA.EMPLOYEE
 ORDER BY EMPNO
END-EXEC.

EXEC SQL
 OPEN C1
END-EXEC.

* Display the screen with these 20 rows of data.

* PERFORM FETCH-C1-PARA 20 TIMES.

* Show the display and wait for the user to indicate that
* the next 20 rows should be displayed.

* PERFORM FETCH-C1-PARA 20 TIMES.

EXEC SQL
 CLOSE C1
END-EXEC.

In the preceding example, the query might perform better if the FOR 20 ROWS clause was used on the
multiple-row FETCH statement. Then, the 20 rows are retrieved in one operation.

246 IBM i: Database Performance and Query Optimization

Related information
Start SQL Interactive Session (STRSQL) command

Reducing the number of open operations
The SQL data manipulation language statements must do database open operations in order to create an
open data path (ODP) to the data. An open data path is the path through which all input/output operations
for the table are performed. In a sense, it connects the SQL application to a table. The number of open
operations in a program can significantly affect performance.

A database open operation occurs on:

• An OPEN statement
• SELECT INTO statement
• An INSERT statement with a VALUES clause
• An UPDATE statement with a WHERE condition
• An UPDATE statement with a WHERE CURRENT OF cursor and SET clauses that refer to operators or

functions
• SET statement that contains an expression
• VALUES INTO statement that contains an expression
• A DELETE statement with a WHERE condition

An INSERT statement with a select-statement requires two open operations. Certain forms of subqueries
could also require one open per subselect.

To minimize the number of opens, Db2 for i leaves the open data path (ODP) open and reuses the ODP if
the statement is run again, unless:

• The ODP used a host variable to build a subset temporary index. The optimizer could choose to build a
temporary index with entries for only the rows that match the row selection specified in the SQL
statement. If a host variable was used in the row selection, the temporary index does not have the
entries required for a different host variable value.

• Ordering was specified on a host variable value.
• An Override Database File (OVRDBF) or Delete Override (DLTOVR) CL command has been

issued since the ODP was opened, which affects the SQL statement execution.

Note: Only overrides that affect the name of the table being referred to causes the ODP to be closed
within a given program invocation.

• The join is a complex join that requires temporary objects to contain the intermediate steps of the join.
• Some cases involve a complex sort, where a temporary file is required, might not be reusable.
• A change to the library list since the last open has occurred, which changes the table selected by an
unqualified referral in system naming mode.

• The join was implemented by the CQE optimizer using hash join.

For embedded static SQL, Db2 for i only reuses ODPs opened by the same statement. An identical
statement coded later in the program does not reuse an ODP from any other statement. If the identical
statement must be run in the program many times, code it once in a subroutine and call the subroutine to
run the statement.

The ODPs opened by Db2 for i are closed when any of the following occurs:

• a CLOSE, INSERT, UPDATE, DELETE, or SELECT INTO statement completes and the ODP required a
temporary result that was not reusable or a subset temporary index.

• the Reclaim Resources (RCLRSC) command is issued. A Reclaim Resources (RCLRSC) is
issued when the first COBOL program on the call stack ends or when a COBOL program issues the STOP
RUN COBOL statement. Reclaim Resources (RCLRSC) does not close the ODPs created for
programs precompiled using CLOSQLCSR(*ENDJOB). For interaction of Reclaim Resources
(RCLRSC) with non-default activation groups, see the following books:

Database performance and query optimization 247

– WebSphere® Development Studio: ILE C/C++ Programmer's Guide
– WebSphere Development Studio: ILE COBOL Programmer's Guide
– WebSphere Development Studio: ILE RPG Programmer's Guide

• the last program containing SQL statements on the call stack exits. Exception is for ODPs created for
programs precompiled using CLOSQLCSR(*ENDJOB) or modules precompiled using
CLOSQLCSR(*ENDACTGRP).

• a CONNECT (Type 1) statement changes the application server for an activation group, all ODPs created
for the activation group are closed.

• a DISCONNECT statement ends a connection to the application server, all ODPs for that application
server are closed.

• a released connection is ended by a successful COMMIT, all ODPs for that application server are closed.
• the threshold for open cursors specified by the query options file (QAQQINI) parameter

OPEN_CURSOR_THRESHOLD is reached.
• the SQL LOCK TABLE or CL ALCOBJ OBJ((filename *FILE *EXCL)) CONFLICT(*RQSRLS) command closes

any pseudo-closed cursors associated with the specified table.
• an application has requested a close, but the data path was left open. The ODP can be forced closed for

a specific file by using the ALCOBJ CL command. This close does not force the ODP to close if the
application has not requested that the cursor be closed. The syntax for the command is: ALCOBJ
OBJ((library/file *FILE *EXCL)) CONFLICT(*RQSRLS).

• an MQT plan expired based on the timestamp.
• an incompatible commitment control change occurred.
• the table size changed beyond tolerance. The optimizer needs to reoptimize based on the new table

size.
• a new index or indexes were created. The optimizer can cost a plan created with the new indexes and

compare its cost to the previous plan.
• new statistics were created. The optimizer can take advantage of these new statistics to create a more
efficient plan.

• host variables are incompatible with a non-reusable MTI, an MQT, or a sparse index used to implement
the query.

• data is warm (in memory).
• the OPTIMIZATION_GOAL *All IO or *First IO specified in query options file QAQQINI was changed.
• a hard close was forced.

The optimizer does not recognize that query selectivity has changed due to host variable changes. It
continues to use the existing open and access plan. Change of selectivity due to host variables is only
evaluated at full open time unless the PSEUDO_OPEN_CHECK_HOST_VARS qaqqini option is altered.

You can control whether the system keeps the ODPs open in the following ways:

• Design the application so a program that issues an SQL statement is always on the call stack
• Use the CLOSQLCSR(*ENDJOB) or CLOSQLCSR(*ENDACTGRP) parameter
• By specifying the OPEN_CURSOR_THRESHOLD and OPEN_CURSOR_CLOSE_COUNT parameters of the

query options file (QAQQINI)

You can control whether the optimizer factors in host variable selectivity once in pseudo mode for queries
with host variable that have considerable selectivity variability.

• By specifying the PSEUDO_OPEN_CHECK_HOST_VARS parameter of the query options file (QAQQINI)

An open operation occurs for the first execution of each UPDATE WHERE CURRENT OF, when any SET
clause expression contains an operator or function. The open can be avoided by coding the function or
operation in the host language code.

248 IBM i: Database Performance and Query Optimization

For example, the following UPDATE causes the system to do an open operation:

EXEC SQL
 FETCH EMPT INTO :SALARY
END-EXEC.

EXEC SQL
 UPDATE CORPDATA.EMPLOYEE
 SET SALARY = :SALARY + 1000
 WHERE CURRENT OF EMPT
END-EXEC.

Instead, use the following coding technique to avoid opens:

EXEC SQL
 FETCH EMPT INTO :SALARY
END EXEC.

ADD 1000 TO SALARY.

EXEC SQL
 UPDATE CORPDATA.EMPLOYEE
 SET SALARY = :SALARY
 WHERE CURRENT OF EMPT
END-EXEC.

You can determine whether SQL statements result in full opens in several ways. The preferred methods
are to use the Database Monitor or by looking at the messages issued while debug is active. You can also
use the CL commands Trace Job (TRCJOB) or Display Journal (DSPJRN).

Related information
Reclaim Resources (RCLRSC) command
Trace Job (TRCJOB) command
Display Journal (DSPJRN) command
RPG
COBOL
C and C++

Retaining cursor positions
You can improve performance by retaining cursor positions.

Retaining cursor positions for non-ILE program calls
For non-ILE program calls, the close SQL cursor (CLOSQLCSR) parameter allows you to specify the scope
of the following:

• The cursors
• The prepared statements
• The locks

When used properly, the CLOSQLCSR parameter can reduce the number of SQL OPEN, PREPARE, and
LOCK statements needed. It can also simplify applications by allowing you to retain cursor positions
across program calls.

*ENDPGM
The default for all non-ILE precompilers. With this option, a cursor remains open and accessible only
while the program that opened it is on the call stack. When the program ends, the SQL cursor can no
longer be used. Prepared statements are also lost when the program ends. Locks, however, remain
until the last SQL program on the call stack has completed.

*ENDSQL
SQL cursors and prepared statements that are created by a program remain open until the last SQL
program on the call stack has completed. They cannot be used by other programs, only by a different
call to the same program. Locks remain until the last SQL program in the call stack completes.

Database performance and query optimization 249

*ENDJOB
This option allows you to keep SQL cursors, prepared statements, and locks active for the duration of
the job. When the last SQL program on the stack has completed, any SQL resources created by
*ENDJOB programs are still active. The locks remain in effect. The SQL cursors that were not explicitly
closed by the CLOSE, COMMIT, or ROLLBACK statements remain open. The prepared statements are
still usable on subsequent calls to the same program.

Related reference
Effects of precompile options on database performance
Several precompile options are available for creating SQL programs with improved performance. They are
only options because using them could impact the function of the application. For this reason, the default
value for these parameters is the value that ensures successful migration of applications from prior
releases. However, you can improve performance by specifying other options.

Retaining cursor positions across ILE program calls
For ILE program calls, the close SQL cursor (CLOSQLCSR) parameter allows you to specify the scope of
the following:

• The cursors
• The prepared statements
• The locks

When used properly, the CLOSQLCSR parameter can reduce the number of SQL OPEN, PREPARE, and
LOCK statements needed. It can also simplify applications by allowing you to retain cursor positions
across program calls.

*ENDACTGRP
The default for the ILE precompilers. With this option, SQL cursors and prepared statements remain
open until the activation group that the program is running under ends. They cannot be used by other
programs, only by a different call to the same program. Locks remain until the activation group ends.

*ENDMOD
With this option, a cursor remains open and accessible only while the module that opened it is active.
When the module ends, the SQL cursor can no longer be used. Prepared statements are also lost
when the module ends. Locks, however, remain until the last SQL program in the call stack completes.

General rules for retaining cursor positions for all program calls
Programs compiled with either CLOSQLCSR(*ENDPGM) or CLOSQLCSR(*ENDMOD) must open a cursor
every time the program or module is called, in order to access the data. If the SQL program or module is
called several times, and you want to take advantage of a reusable ODP, then the cursor must be explicitly
closed before the program or module exits.

Using the CLOSQLCSR parameter and specifying *ENDSQL, *ENDJOB, or *ENDACTGRP, you might not
need to run an OPEN and a CLOSE statement on every call. In addition to having fewer statements to run,
you can maintain the cursor position between calls to the program or module.

The following examples of SQL statements help demonstrate the advantage of using the CLOSQLCSR
parameter:

 EXEC SQL
 DECLARE DEPTDATA CURSOR FOR
 SELECT EMPNO, LASTNAME
 FROM CORPDATA.EMPLOYEE
 WHERE WORKDEPT = :DEPTNUM
 END-EXEC.

 EXEC SQL
 OPEN DEPTDATA
 END-EXEC.

 EXEC SQL
 FETCH DEPTDATA INTO :EMPNUM, :LNAME
 END-EXEC.

 EXEC SQL

250 IBM i: Database Performance and Query Optimization

 CLOSE DEPTDATA
 END-EXEC.

If this program is called several times from another SQL program, it is able to use a reusable ODP. This
technique means that, as long as SQL remains active between the calls to this program, the OPEN
statement does not require a database open operation. However, the cursor is still positioned to the first
result row after each OPEN statement, and the FETCH statement will always return the first row.

In the following example, the CLOSE statement has been removed:

 EXEC SQL
 DECLARE DEPTDATA CURSOR FOR
 SELECT EMPNO, LASTNAME
 FROM CORPDATA.EMPLOYEE
 WHERE WORKDEPT = :DEPTNUM
 END-EXEC.

 IF CURSOR-CLOSED IS = TRUE THEN
 EXEC SQL
 OPEN DEPTDATA
 END-EXEC.

 EXEC SQL
 FETCH DEPTDATA INTO :EMPNUM, :LNAME
 END-EXEC.

If this program is precompiled with the *ENDJOB or *ENDACTGRP option and the activation group
remains active, the cursor position is maintained. The cursor position is also maintained when the
following occurs:

• The program is precompiled with the *ENDSQL option.
• SQL remains active between program calls.

The result of this strategy is that each call to the program retrieves the next row in the cursor. On
subsequent data requests, the OPEN statement is unnecessary and, in fact, fails with a -502 SQLCODE.
You can ignore the error, or add code to skip the OPEN. Use a FETCH statement first, and then run the
OPEN statement only if the FETCH operation failed.

This technique also applies to prepared statements. A program can first try the EXECUTE, and if it fails,
perform the PREPARE. The result is that the PREPARE is only needed on the first call to the program,
assuming that the correct CLOSQLCSR option was chosen. If the statement can change between calls to
the program, perform the PREPARE in all cases.

The main program might also control cursors by sending a special parameter on the first call only. This
special parameter value indicates that because it is the first call, the subprogram performs the OPENs,
PREPAREs, and LOCKs.

Note: If you are using COBOL programs, do not use the STOP RUN statement. When the first COBOL
program on the call stack ends or a STOP RUN statement runs, a reclaim resource (RCLRSC) operation is
done. This operation closes the SQL cursor. The *ENDSQL option does not work as you wanted.

Programming techniques for database performance
By changing the coding of your queries, you can improve their performance.

Use the OPTIMIZE clause
If an application is not going to retrieve the entire result table for a cursor, using the OPTIMIZE clause can
improve performance. The query optimizer modifies the cost estimates to retrieve the subset of rows
using the value specified on the OPTIMIZE clause.

Assume that the following query returns 1000 rows:

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT EMPNO, LASTNAME, WORKDEPT
 FROM CORPDATA.EMPLOYEE

Database performance and query optimization 251

 WHERE WORKDEPT = 'A00'
 ORDER BY LASTNAME
 OPTIMIZE FOR 100 ROWS
END EXEC.

Note: The values that can be used for the preceding OPTIMIZE clause are 1–9999999 or ALL.

The optimizer calculates the following costs.

The optimize ratio = optimize for n rows value / estimated number of rows in answer set.

Cost using a temporarily created index:

 Cost to retrieve answer set rows
 + Cost to create the index
 + Cost to retrieve the rows again
 with a temporary index * optimize ratio

Cost using a SORT:

 Cost to retrieve answer set rows
 + Cost for SORT input processing
 + Cost for SORT output processing * optimize ratio

Cost using an existing index:

 Cost to retrieve answer set rows
 using an existing index * optimize ratio

In the previous examples, the estimated cost to sort or to create an index is not adjusted by the optimize
ratio. This method allows the optimizer to balance the optimization and preprocessing requirements.

If the optimize number is larger than the number of rows in the result table, no adjustments are made to
the cost estimates.

If the OPTIMIZE clause is not specified for a query, a default value is used based on the statement type,
value of ALWCPYDTA, or output device.

Table 54. OPTIMIZE FOR n ROWS default value

Statement Type ALWCPYDTA(*OPTIMIZE) ALWCPYDTA(*YES or *NO)

DECLARE CURSOR The number or rows in the result
table.

30 rows or the number of rows in
the result table.

Embedded Select 2 2

INTERACTIVE Select output to
display

30 rows or the number of rows in
the result table.

30 rows or the number of rows in
the result table.

INTERACTIVE Select output to
printer or database table

The number of rows in the result
table.

The number of rows in the result
table.

The OPTIMIZE clause influences the optimization of a query:

• To use an existing index (by specifying a small number).
• To enable the creation of an index, or run a sort or hash by specifying many possible rows in the answer

set.

Related information
select-statement

252 IBM i: Database Performance and Query Optimization

Use FETCH FOR n ROWS
Applications that perform many FETCH statements in succession could be improved by using FETCH FOR
n ROWS. With this clause, you can retrieve multiple rows of table data with a single FETCH, putting them
into a host structure array or row storage area.

An SQL application that uses a FETCH statement without the FOR n ROWS clause can be improved by
using the multiple-row FETCH statement to retrieve multiple rows. After the host structure array or row
storage area is filled by the FETCH, the application loops through the data, processing each of the
individual rows. The statement runs faster because the SQL run-time was called only once and all the data
was simultaneously returned to the application program.

You can change the application program to allow the database manager to block the rows that the SQL
run-time retrieves from the tables.

In the following table, the program attempted to FETCH 100 rows into the application. Note the
differences in the table for the number of calls to SQL runtime and the database manager when blocking
can be performed.

Table 55. Number of Calls Using a FETCH Statement

Database Manager Not Using
Blocking

Database Manager Using
Blocking

Single-Row FETCH Statement 100 SQL calls 100 database calls 100 SQL calls one database call

Multiple-Row FETCH Statement one SQL runtime call 100
database calls

one SQL runtime call one
database call

Related information
FETCH statement

Improve SQL blocking performance when using FETCH FOR n ROWS
Use these performance techniques to improve SQL blocking performance when using FETCH FOR n
ROWS.

You can improve SQL blocking performance with the following:

• Match the attribute information in the host structure array or the descriptor associated with the row
storage area with the attributes of the columns retrieved.

• Retrieve as many rows as possible with a single multiple-row FETCH call. The blocking factor for a
multiple-row FETCH request is not controlled by the system page sizes or the SEQONLY parameter on
the OVRDBF command. It is controlled by the number of rows that are requested on the multiple-row
FETCH request.

• Do not mix single- and multiple-row FETCH requests against the same cursor within a program. If one
FETCH against a cursor is treated as a multiple-row FETCH, all fetches against that cursor are treated as
multiple-row fetches. In that case, each of the single-row FETCH requests is treated as a multiple-row
FETCH of one row.

• Do not use the PRIOR, CURRENT, and RELATIVE scroll options with multiple-row FETCH statements. To
allow random movement of the cursor by the application, the database manager must maintain the
same cursor position as the application. Therefore, the SQL run-time treats all FETCH requests against a
scrollable cursor with these options specified as multiple-row FETCH requests.

Use INSERT n ROWS
Applications that perform many INSERT statements in succession could be improved by using INSERT n
ROWS. With this clause, you can insert one or more rows of data from a host structure array into a target
table. This array must be an array of structures where the elements of the structure correspond to
columns in the target table.

An SQL application that loops over an INSERT...VALUES statement (without the n ROWS clause) can be
improved by using the INSERT n ROWS statement to insert multiple rows into the table. After the

Database performance and query optimization 253

application has looped to fill the host array with rows, a single INSERT n ROWS statement inserts the
entire array into the table. The statement runs faster because the SQL runtime was only called once and
all the data was simultaneously inserted into the target table.

In the following table, the program attempted to INSERT 100 rows into a table. Note the differences in the
number of calls to SQL runtime and to the database manager when blocking can be performed.

Table 56. Number of Calls Using an INSERT Statement

Database Manager Not Using
Blocking

Database Manager Using
Blocking

Single-Row INSERT Statement 100 SQL runtime calls 100
database calls

100 SQL runtime calls one
database call

Multiple-Row INSERT Statement 1 SQL runtime call 100 database
calls

1 SQL runtime call 1 database
call

Related information
INSERT statement

Control database manager blocking
To improve performance, the SQL runtime attempts to retrieve and insert rows from the database
manager a block at a time whenever possible.

You can control blocking, if you want. Use the SEQONLY parameter on the CL command Override
Database File (OVRDBF) before calling the application program that contains the SQL statements.
You can also specify the ALWBLK parameter on the CRTSQLxxx commands or use the
QSY2.OVERRIDE_TABLE application service.

The database manager does not allow blocking in the following situations:

• The cursor is update or delete capable.
• The length of the row plus the feedback information is greater than 32767. The minimum size for the

feedback information is 11 bytes. The feedback size is increased by the number of bytes in the index
key columns used by the cursor, and the number of key columns, if any, that are null capable.

• COMMIT(*CS) is specified, and ALWBLK(*ALLREAD) is not specified.
• COMMIT(*ALL) is specified, and the following are true:

– A SELECT INTO statement or a blocked FETCH statement is not used
– The query does not use column functions or specify group by columns.
– A temporary result table does not need to be created.

• COMMIT(*CHG) is specified, and ALWBLK(*ALLREAD) is not specified.
• The cursor contains at least one subquery and the outermost subselect provided a correlated reference

for a subquery, or the outermost subselect processed a subquery with an IN, = ANY, or < > ALL
subquery predicate operator, which is treated as a correlated reference, and that subquery is not
isolatable.

The SQL runtime automatically blocks rows with the database manager in the following cases:

• INSERT

If an INSERT statement contains a select-statement, inserted rows are blocked and not inserted into
the target table until the block is full. The SQL runtime automatically does blocking for blocked inserts.

Note: If an INSERT with VALUES is specified, the SQL runtime might not close the internal cursor used
to perform the inserts until the program ends. If the same INSERT statement is run again, a full open is
not necessary and the application runs much faster.

• OPEN

254 IBM i: Database Performance and Query Optimization

Blocking is done under the OPEN statement when the rows are retrieved if all the following conditions
are true:

– The cursor is only used for FETCH statements.
– No EXECUTE or EXECUTE IMMEDIATE statements are in the program, or ALWBLK(*ALLREAD) was

specified, or the cursor is declared with the FOR FETCH ONLY clause.
– COMMIT(*CHG) and ALWBLK(*ALLREAD) are specified, COMMIT(*CS) and ALWBLK(*ALLREAD) are

specified, or COMMIT(*NONE) is specified.

Related reference
OVERRIDE_TABLE procedure
The OVERRIDE_TABLE procedure sets the blocking size for a table.
Effects of precompile options on database performance
Several precompile options are available for creating SQL programs with improved performance. They are
only options because using them could impact the function of the application. For this reason, the default
value for these parameters is the value that ensures successful migration of applications from prior
releases. However, you can improve performance by specifying other options.
Related information
Override Database File (OVRDBF) command

Optimize the number of columns that are selected with SELECT statements
For each column in the SELECT statement, the database manager retrieves the data from the underlying
table and maps it to a host variable in the application program. By minimizing the number of columns that
are specified, processing unit resource usage can be conserved.

Even though it is convenient to code SELECT *, it is far better to explicitly code the columns that are
required for the application. This technique is especially important for index-only access, or if all the
columns participate in a sort operation (as in SELECT DISTINCT and SELECT UNION).

This technique is also important when considering index only access. You minimize the number of
columns in a query and increase the odds that an index can be used to completely satisfy the data
request.

Related information
select-statement

Eliminate redundant validation with SQL PREPARE statements
The processing which occurs when an SQL PREPARE statement is run is like the processing which occurs
during precompile processing.

The following processing occurs for the statement that is being prepared:

• The syntax is checked.
• The statement is validated to ensure that the usage of objects is valid.
• An access plan is built.

Again when the statement is executed or opened, the database manager revalidates that the access plan
is still valid. Much of this open processing validation is redundant with the validation which occurred
during the PREPARE processing. The DLYPRP(*YES) parameter specifies whether PREPARE statements in
this program completely validates the dynamic statement. The validation is completed when the dynamic
statement is opened or executed. This parameter can provide a significant performance enhancement for
programs which use the PREPARE SQL statement because it eliminates redundant validation. Programs
that specify this precompile option must check the SQLCODE and SQLSTATE after running the OPEN or
EXECUTE statement to ensure that the statement is valid. DLYPRP(*YES) does not provide any
performance improvement if the INTO clause is used on the PREPARE statement, or if a DESCRIBE
statement uses the dynamic statement before an OPEN is issued for the statement.

Database performance and query optimization 255

Related reference
Effects of precompile options on database performance
Several precompile options are available for creating SQL programs with improved performance. They are
only options because using them could impact the function of the application. For this reason, the default
value for these parameters is the value that ensures successful migration of applications from prior
releases. However, you can improve performance by specifying other options.
Related information
Prepare statement

Page interactively displayed data with REFRESH(*FORWARD)
In large tables, paging performance is typically degraded because of the REFRESH(*ALWAYS) parameter
on the Start SQL (STRSQL) command. STRSQL dynamically retrieves the latest data directly from the
table. Paging performance can be improved by specifying REFRESH(*FORWARD).

When interactively displaying data using REFRESH(*FORWARD), the results of a select-statement are
copied to a temporary table as you page forward through the display. Other users sharing the table can
change the rows while you are displaying the select-statement results. If you page backward or forward
to rows that have already been displayed, the rows shown are in the temporary table instead of the
updated table.

The refresh option can be changed on the Session Services display.

Related information
Start SQL (STRSQL) command

Improve concurrency by avoiding lock waits
The concurrent access resolution option directs the database manager on how to handle cases of record
lock conflicts under certain isolation levels.

The concurrent access resolution, when applicable, can have one of the following values:

• Wait for outcome (default). This value directs the database manager to wait for the commit or rollback
when encountering locked data in the process of being updated or deleted. Locked rows that are in the
process of being inserted are not skipped. This option does not apply for read-only queries running
under isolation level None or Uncommitted Read.

• Use currently committed. This value allows the database manager to use the currently committed
version of the data for read-only queries when encountering locked data in the process of being updated
or deleted. Locked rows in the process of being inserted can be skipped. This option applies if possible
when the isolation level in effect is Cursor Stability and is ignored otherwise.

• Skip locked data. This value directs the database manager to skip rows in the case of record lock
conflicts. This option is applicable only when the query is running under an isolation level of Cursor
Stability or Read Stability and additionally for UPDATE and DELETE queries when the isolation level is
None or Uncommitted Read.

The concurrent access resolution values of USE CURRENTLY COMMITTED and SKIP LOCKED DATA can be
used to improve concurrency by avoiding lock waits. However, care must be used when using these
options because they might affect application functionality. For more information on the USE CURRENTLY
COMMITTED option, see Concurrency.

WAIT FOR OUTCOME, USE CURRENTLY COMMITTED, and SKIP LOCKED DATA can be specified as the
concurrent-access-resolution-clause in the attribute-string of a PREPARE statement.

Additionally, they can be specified as the concurrent-access-resolution-clause at the statement level on a
select-statement, SELECT INTO, searched UPDATE, or searched DELETE statement.

Concurrent access resolution is also specifiable as a precompiler option by using the CONACC parameter
on the CRTSQLxxx. The CONACC parameter accepts one of the following values:

256 IBM i: Database Performance and Query Optimization

• *DFT - specifies that the concurrent access option is not explicitly set for this program. The value that is
in effect when the program is invoked is used. The value can be set using the
SQL_CONCURRENT_ACCESS_RESOLUTION option in the query options file QAQQINI.

• *CURCMT - use currently committed.
• *WAIT - wait for outcome.

These same options can be set on the RUNSQLSTM and RUNSQL CL commands and by using the SET
OPTION SQL statement. Concurrent access resolution can be specified for SQL triggers, functions, and
procedures by using the SET OPTION statement.

When the concurrent access resolution option is not directly set by the application, it is set to the value of
the SQL_CONCURRENT_ACCESS_RESOLUTION option in the query options file QAQQINI. This option
accepts one of the following values:

• *DEFAULT - the default value is set to *WAIT.
• *CURCMT - use currently committed.
• *WAIT - wait for outcome.

Related reference
QAQQINI query options
There are different options available for parameters in the QAQQINI file.
Related information
concurrent-access-resolution-clause
Concurrency

General Db2 for i performance considerations
As you code your applications, there are some general tips that can help you optimize performance.

Effects on database performance when using long object names
Long object names are converted internally to system object names when used in SQL statements. This
conversion can have some performance impacts. Names of tables, views, indexes, and aliases that are 30
characters or less will generally perform much better names longer than 30 characters.

Qualify the long object name with a library name and the conversion to the short name happens at
precompile time. In this case, there is minimal performance impact when the statement is executed.
Otherwise, the conversion is done at execution time and has a small performance impact.

Effects of precompile options on database performance
Several precompile options are available for creating SQL programs with improved performance. They are
only options because using them could impact the function of the application. For this reason, the default
value for these parameters is the value that ensures successful migration of applications from prior
releases. However, you can improve performance by specifying other options.

The following table shows these precompile options and their performance impacts.

Some of these options might be suitable for most of your applications. Use the command CRTDUPOBJ to
create a copy of the SQL CRTSQLxxx command. and the CHGCMDDFT command to customize the optimal
values for the precompile parameters. The DSPPGM, DSPSRVPGM, DSPMOD, or PRTSQLINF commands can
be used to show the precompile options that are used for an existing program object.

Database performance and query optimization 257

Table 57. Precompile options and their performance impacts

Precompile Option Optimal Value Improvements Considerations

ALWCPYDTA *OPTIMIZE (the default) Queries where the
ordering or grouping
criteria conflicts with the
selection criteria.

A copy of the data could
be made when the query
is opened.

ALWBLK *ALLREAD (the default) Additional read-only
cursors use blocking.

ROLLBACK HOLD might
not change the position of
a read-only cursor.
Dynamic processing of
positioned updates or
deletes might fail.

CLOSQLCSR *ENDJOB, *ENDSQL, or
*ENDACTGRP

Cursor position can be
retained across program
invocations.

Implicit closing of SQL
cursor is not done when
the program invocation
ends.

DLYPRP *YES Programs using SQL
PREPARE statements
could run faster.

Complete validation of the
prepared statement is
delayed until the
statement is run or
opened.

TGTRLS *CURRENT (the default) The precompiler can
generate code that takes
advantage of performance
enhancements available
in the current release.

The program object
cannot be used on a
system from a previous
release.

Related reference
Effects of the ALWCPYDTA parameter on database performance
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.
Control database manager blocking
To improve performance, the SQL runtime attempts to retrieve and insert rows from the database
manager a block at a time whenever possible.
Retaining cursor positions for non-ILE program calls
For non-ILE program calls, the close SQL cursor (CLOSQLCSR) parameter allows you to specify the scope
of the following:
Eliminate redundant validation with SQL PREPARE statements
The processing which occurs when an SQL PREPARE statement is run is like the processing which occurs
during precompile processing.

Effects of the ALWCPYDTA parameter on database performance
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

By using the sort or hash, the database manager is able to separate the row selection from the ordering
and grouping process. Bitmap processing can also be partially controlled through this parameter. This
separation allows the use of the most efficient index for the selection. For example, consider the following
SQL statement:

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT EMPNO, LASTNAME, WORKDEPT

258 IBM i: Database Performance and Query Optimization

 FROM CORPDATA.EMPLOYEE
 WHERE WORKDEPT = 'A00'
 ORDER BY LASTNAME
END-EXEC.

The above SQL statement can be written in the following way by using the OPNQRYF command:

OPNQRYF FILE(CORPDATA/EMPLOYEE)
 FORMAT(FORMAT1)
 QRYSLT(WORKDEPT *EQ ''AOO'')
 KEYFLD(LASTNAME)

In the preceding example, when ALWCPYDTA(*NO) or ALWCPYDTA(*YES) is specified, the database
manager could try to create an index from the first index with a column named LASTNAME, if such an
index exists. The rows in the table are scanned, using the index, to select only the rows matching the
WHERE condition.

If ALWCPYDTA(*OPTIMIZE) is specified, the database manager uses an index with the first index column
of WORKDEPT. It then makes a copy of all the rows that match the WHERE condition. Finally, it could sort
the copied rows by the values in LASTNAME. This row selection processing is more efficient, because the
index used immediately locates the rows to be selected.

ALWCPYDTA(*OPTIMIZE) optimizes the total time that is required to process the query. However, the time
required to receive the first row could be increased because a copy of the data must be made before
returning the first row of the result table. This initial change in response time could be important for
applications that are presenting interactive displays or that retrieve only the first few rows of the query.
The Db2 for i query optimizer can be influenced to avoid sorting by using the OPTIMIZE clause.

Queries that involve a join operation might also benefit from ALWCPYDTA(*OPTIMIZE) because the join
order can be optimized regardless of the ORDER BY specification.

Related concepts
Plan cache
The plan cache is a repository that contains the access plans for queries that were optimized by SQE.
Related reference
Effects of precompile options on database performance
Several precompile options are available for creating SQL programs with improved performance. They are
only options because using them could impact the function of the application. For this reason, the default
value for these parameters is the value that ensures successful migration of applications from prior
releases. However, you can improve performance by specifying other options.
Radix index scan
A radix index scan operation is used to retrieve the rows from a table in a keyed sequence. Like a table
scan, all the rows in the index are sequentially processed, but the resulting row numbers are sequenced
based upon the key columns.
Radix index probe
A radix index probe operation is used to retrieve the rows from a table in a keyed sequence. The main
difference between the radix index probe and the scan is that the rows returned are first identified by a
probe operation to subset them.

Tips for using VARCHAR and VARGRAPHIC data types in databases
Variable-length column (VARCHAR or VARGRAPHIC) support allows you to define any number of columns
in a table as variable length. If you use VARCHAR or VARGRAPHIC support, the size of a table can typically
be reduced.

Data in a variable-length column is stored internally in two areas: a fixed-length or ALLOCATE area and an
overflow area. If a default value is specified, the allocated length is at least as large as the value. The
following points help you determine the best way to use your storage area.

When you define a table with variable-length data, you must decide the width of the ALLOCATE area. If
the primary goal is:

Database performance and query optimization 259

• Space saving: use ALLOCATE(0).
• Performance: the ALLOCATE area must be wide enough to incorporate at least 90% to 95% of the

values for the column.

It is possible to balance space savings and performance. In the following example of an electronic
telephone book, the following data is used:

• 8600 names that are identified by: last, first, and middle name
• The Last, First, and Middle columns are variable length.
• The shortest last name is two characters; the longest is 22 characters.

This example shows how space can be saved by using variable-length columns. The fixed-length column
table uses the most space. The table with the carefully calculated allocate sizes uses less disk space. The
table that was defined with no allocate size (with all the data stored in the overflow area) uses the least
disk space.

Table 58. Disk space used with variable-length columns

Variety of
Support

Last Name
Max/Alloc

First Name
Max/Alloc

Middle Name
Max/Alloc

Total Physical
File Size

Number of
Rows in
Overflow
Space

Fixed Length 22 22 22 567 K 0

Variable Length 40/10 40/10 40/7 408 K 73

Variable-Length
Default

40/0 40/0 40/0 373 K 8600

In many applications, performance must be considered. If you use the default ALLOCATE(0), it doubles
the disk unit traffic. ALLOCATE(0) requires two reads; one to read the fixed-length portion of the row and
one to read the overflow space. The variable-length implementation, with the carefully chosen ALLOCATE,
minimizes overflow and space and maximizes performance. The size of the table is 28% smaller than the
fixed-length implementation. Because 1% of rows are in the overflow area, the access requiring two reads
is minimized. The variable-length implementation performs about the same as the fixed-length
implementation.

To create the table using the ALLOCATE keyword:

CREATE TABLE PHONEDIR
 (LAST VARCHAR(40) ALLOCATE(10),
 FIRST VARCHAR(40) ALLOCATE(10),
 MIDDLE VARCHAR(40) ALLOCATE(7))

If you are using host variables to insert or update variable-length columns, use variable length host
variables. Because blanks are not truncated from fixed-length host variables, using fixed-length host
variables can cause more rows to spill into the overflow space. This increases the size of the table.

In this example, fixed-length host variables are used to insert a row into a table:

01 LAST-NAME PIC X(40).
 …
 MOVE "SMITH" TO LAST-NAME.
 EXEC SQL
 INSERT INTO PHONEDIR
 VALUES(:LAST-NAME, :FIRST-NAME, :MIDDLE-NAME, :PHONE)
 END-EXEC.

The host-variable LAST-NAME is not variable length. The string “SMITH”, followed by 35 blanks, is
inserted into the VARCHAR column LAST. The value is longer than the allocate size of 10. 30 of 35 trailing
blanks are in the overflow area.

260 IBM i: Database Performance and Query Optimization

In this example, variable-length host variables are used to insert a row into a table:

01 VLAST-NAME.
 49 LAST-NAME-LEN PIC S9(4) BINARY.
 49 LAST-NAME-DATA PIC X(40).
 …
 MOVE "SMITH" TO LAST-NAME-DATA.
 MOVE 5 TO LAST-NAME-LEN.
 EXEC SQL
 INSERT INTO PHONEDIR
 VALUES(:VLAST-NAME, :VFIRST-NAME, :VMIDDLE-NAME, :PHONE)
 END-EXEC.

The host variable VLAST-NAME is variable length. The actual length of the data is set to 5. The value is
shorter than the allocated length. It can be placed in the fixed portion of the column.

Running the Reorganize Physical File Member (RGZPFM) command against tables that contain
variable-length columns can improve performance. The fragments in the overflow area that are not in use
are compacted by the Reorganize Physical File Member (RGZPFM) command. This technique
reduces the read time for rows that overflow, increases the locality of reference, and produces optimal
order for serial batch processing.

Choose the appropriate maximum length for variable-length columns. Selecting lengths that are too long
increases the process access group (PAG). A large PAG slows performance. A large maximum length
makes SEQONLY(*YES) less effective. Variable-length columns longer than 2000 bytes are not eligible as
key columns.

Using LOBs and VARCHAR in the same table

Storage for LOB columns allocated in the same manner as VARCHAR columns. When a column stored in
the overflow storage area is referenced, currently all the columns in that area are paged into memory. A
reference to a "smaller" VARCHAR column that is in the overflow area can potentially force extra paging of
LOB columns. For example, A VARCHAR(256) column retrieved by application has side-effect of paging in
two 5 MB BLOB columns that are in the same row. In order to prevent this side-effect, you might want to
use ALLOCATE keyword to ensure that only LOB columns are stored in the overflow area.

Related information
Reorganize Physical File Member (RGZPFM) command
Reorganizing a physical file
Embedded SQL programming

Using field procedures to provide column level encryption
Field procedures can provide column level encryption in DB2 for i.

A field procedure is a user-written exit routine to transform values in a single column. When values in the
column are changed, or new values inserted, the field procedure is invoked for each value. The field
procedure can transform that value (encode it) in any way. The encoded value is then stored. When values
are retrieved from the column, the field procedure is invoked for each encoded value. The field procedure
decodes each value back to the original value. Any indexes defined on a column that uses a field
procedure are built with encoded values.

Field procedures are assigned to a table by the FIELDPROC clause of CREATE TABLE and ALTER TABLE.

A field procedure that is specified for a column is invoked in three general situations:

• For field-definition, when the CREATE TABLE or ALTER TABLE statement that names the procedure is
executed. During this invocation, the procedure is expected to:

– Determine whether the data type and attributes of the column are valid.
– Verify the literal list, and change it if wanted.
– Provide the field description of the column.

• For field-encoding, when a column value is field-encoded. That occurs for any value that:

Database performance and query optimization 261

– is inserted in the column by an SQL INSERT statement, SQL MERGE statement, or native write.
– is changed by an SQL UPDATE statement, SQL MERGE statement, or native update.
– is the target column for a copy from a column with an associated field procedure. The field procedure

might be invoked to encode the copied data. Examples include SQL Statements ALTER TABLE or
CREATE TABLE LIKE/AS and CL commands CPYF and RGZPFM.

– is compared to a column with a field procedure. The QAQQINI option
FIELDPROC_ENCODED_COMPARISON is used to determine if the column value is decoded, or the
host variable, constant, or join column is encoded.

– is the DEFAULT value for a column with an associated field procedure in a CREATE or ALTER TABLE
statement.

If there are any after or read triggers, the field procedure is invoked before any of these triggers. If there
are any before triggers, the field procedure is invoked after the before trigger.

• For field-decoding, when a stored value is field-decoded back into its original value. Field-decoding
occurs for any value that:

– is retrieved by an SQL SELECT or FETCH statement, or by a native read.
– is a column with an associated field procedure that is copied. The field procedure might be invoked to

decode the data before making the copy. Examples include SQL Statements ALTER TABLE, CREATE
TABLE LIKE/AS, and CL commands CPYF and RGZPFM.

– is compared to a column with a field procedure. The QAQQINI option
FIELDPROC_ENCODED_COMPARISON is used by the optimizer to decide if the column value is
decoded, or if the host variable or constant is encoded.

A field procedure is never invoked to process a null value. It is also not invoked for a DELETE operation
without a WHERE clause when the table has no DELETE triggers. The field procedure is invoked for
empty strings.

Improving performance

For queries that use field procedures, the path length is longer due to the additional processing of calling
the field procedure. In order to improve performance of queries, the SQE optimizer:

• attempts to remove decoding operations, based on the QAQQINI FIELDPROC_ENCODED COMPARISON
setting.

• matches existing indexes over columns that have an associated field procedure.
• creates and uses MTIs over columns with field procedures.
• creates statistics over the encoded values through statistics collection.

The SQE optimizer attempts to do the following optimizations:

• optimization of predicates that compare a field procedure column to a constant or host variable. For
example, predicate FP1(4, C1) = ‘abc' is optimized as C1 = FP1(0,‘abc'). With this specific example, the
optimization is done as long as the QAQQINI option is not *NONE.

• remove field procedure decoding operations from join predicates when the same field procedure is
applied to both sides of the join predicate, and no compatibility conversion is required. For example, join
predicate FP1(4,T1.C1) > FP1(4,T2.C1) is rewritten as T1.C1 > T2.C1. With this specific example, the
optimization is done as long as the QAQQINI option is either *ALLOW_RANGE or *ALL. This technique is
also applied to = predicates when the QAQQINI option is *ALLOW_EQUAL.

• remove field procedures from GROUP BY and ORDER BY clauses. For example, ORDER BY FP1(4,C1) is
rewritten as ORDER BY C1 if the QAQQINI setting is either *ALLOW_RANGE or *ALL

The CQE optimizer does not look at the QAQQINI option, which means it always runs in *NONE mode.
*NONE mode requires that all references to the column are decoded before any other operation is
performed. A CQE query does not match any existing indexes when the column has an associated field
procedure. If an index is required, a temporary index is built with the index keys decoded.

262 IBM i: Database Performance and Query Optimization

Related reference
QAQQINI query options
There are different options available for parameters in the QAQQINI file.
Related information
Defining field procedures
CREATE TABLE

Field procedure examples
The following examples show various field procedure-related optimizations done by the SQE optimizer.

The examples show the FieldProc name along with the encoding (field procedure function code 0) or
decoding (field procedure function code 4) in the pseudo-SQL. These codes indicate how the optimizer is
optimizing the field procedure calls.

Given the following table and index:

CREATE TABLE T1 (col1 CHAR(10), col2 CHAR(10) FIELDPROC ‘FP1')
CREATE INDEX IX1 on T1(col2)

Example 1

A user query written as:

SELECT col1, col2 FROM T1 WHERE col2 = ‘abc'

Is represented by the optimizer as:

SELECT col1, FP1(4, col2) FROM T1 WHERE FP1(4,col2) = ‘abc'

Note the FP1 with the decode operation around the COL2 references in the SELECT list and the WHERE
clause.

Assuming the QAQQINI FIELDPROC_ENCODED COMPARISON is set to *ALLOW_EQUAL, *ALLOW_RANGE
or *ALL:

The query optimizer rewrites the query as:

SELECT col1, ‘abc' FROM T1 WHERE col2 = FP1(0, ‘abc')

This rewrite allows the query optimizer to use the encoded index IX1 to implement the WHERE clause and
only cause one invocation of the field procedure for the query.

Example 2

SELECT col2 FROM T1 ORDER BY col2

Is represented by the query optimizer as:

SELECT FP1(4, col2) FROM T1 ORDER BY FP1(4, col2)

The optimized version removes the FieldProc from the ORDER BY clause assuming that the field
procedure QAQQINI option is set to *ALLOW_RANGE or *ALL:

SELECT FP1(4, col2) FROM T1 ORDER BY col2

Example 3

Select col2, COUNT(*) FROM T1 GROUP BY col2

Database performance and query optimization 263

Is represented by the query optimizer as:

Select FP1(4, col2), COUNT(*) FROM T1 GROUP BY FP1(4, col2)

The optimized version removes the field procedure invocation from the GROUP BY clause column col2,
allowing it to group the encoded data and only run the field procedure once per group. The decoded
grouped data is returned to the user. This optimization is done if the field procedure QAQQINI option is
set to *ALLOW_RANGE or *ALL:

SELECT FP1(4, col2), COUNT(*) FROM T1 GROUP BY col2

IS NULL/IS NOT NULL predicate does not require calling the field procedure field-decode option 4. The
field procedure cannot change the nullability of the field.

DB2 for i Services
There are many system-provided views, procedures, and functions.

These are grouped in the following categories.

Application Services
These procedures provide interfaces that are useful for application development.

DELIMIT_NAME scalar function
The DELIMIT_NAME function returns a name with delimiters if the delimiters are needed for use in an SQL
statement.

DELIMIT_NAME (name)

The schema is QSYS2.

name
A character or graphic string expression that identifies a name. The string must contain only
characters allowed in an SQL identifier. If the string is longer that 128 characters, it will be truncated
to 128 characters.

The result of the function is a varying length character string that contains name correctly delimited. This
includes delimiting reserved words. If name is the null value or an empty string, null is returned.

Example

• Delimit these names:

 VALUES DELIMIT_NAME('ABC'),
 DELIMIT_NAME('abc'),
 DELIMIT_NAME('test"name'),
 DELIMIT_NAME('test''name2'),
 DELIMIT_NAME('NEW')

Returns the values:

 ABC
"abc"
"test""name"
"test'name2"
"NEW"

264 IBM i: Database Performance and Query Optimization

OVERRIDE_QAQQINI procedure
The OVERRIDE_QAQQINI procedure creates and modifies a temporary version of the QAQQINI file.

The temporary QAQQINI file will be created in QTEMP. It inherits all query options that are already in
place for the job. The OVERRIDE_QAQQINI procedure can be called multiple times to establish job
specific QAQQINI settings.

The procedure can also be called to discard the temporary customization settings.

OVERRIDE_QAQQINI (

OVERRIDE_OPTION =>

override-option ,

OPTION_NAME =>

option-name ,

OPTION_VALUE =>

option-value)

The schema is QSYS2.

Authorization: For most QAQQINI options, none is required. For the following three options, *JOBCTL or
QIBM_DB_SQLADM function usage is required. These options are more restrictive because they can affect
the performance of other jobs.

• QUERY_TIME_LIMIT when the option-value is not 0.
• STORAGE_LIMIT
• PARALLEL_DEGREE

override-option
An integer value that indicates the function to perform.
1

Create the QAQQINI override file. A procedure call with this override-option value must be run
before option 2 can be used to change QAQQINI options.

2
Set a QAQQINI option to the specified value. See “QAQQINI query options” on page 176 for the
list of options and values.

3
Discard the temporary QAQQINI file.

option-name
A character or graphic string expression that identifies the name of the QAQQINI option to be
changed.

option-value
A character or graphic string expression that identifies the value to assign to the QAQQINI option
identified by option-name.

Example

• Establish the temporary override for QAQQINI. The job's current QAQQINI values will be used as the
initial values.

CALL QSYS2.OVERRIDE_QAQQINI(1, '', '');

• Temporarily override three QAQQINI values.

-- Avoid UDF timeout
CALL QSYS2.OVERRIDE_QAQQINI(2, 'UDF_TIME_OUT', '*MAX');
-- Force full opens of cursors
CALL QSYS2.OVERRIDE_QAQQINI(2, 'OPEN_CURSOR_THRESHOLD', '-1');
-- Force any saved access plans to be rebuilt
CALL QSYS2.OVERRIDE_QAQQINI(2, 'REBUILD_ACCESS_PLAN', '*YES');

Database performance and query optimization 265

• Discard the temporary QAQQINI file and revert to using the job's version of the QAQQINI file.

CALL QSYS2.OVERRIDE_QAQQINI(3, '', '');

OVERRIDE_TABLE procedure
The OVERRIDE_TABLE procedure sets the blocking size for a table.

OVERRIDE_TABLE (schema-name , table-name , blocking-size)

The schema is QSYS2.

schema-name
A character string expression containing the name of the schema.

table-name
A character string expression containing the name of the table.

blocking-size
A character string expression containing the blocking size. It can be a specific byte count or a special
value of *BUF32KB, *BUF64KB, *BUF128KB, or *BUF256KB.

Example

• Override the EMPLOYEE table to use 256K blocking for sequential processing.

CALL QSYS2.OVERRIDE_TABLE('CORPDATA', 'EMP', '*BUF256KB');

• Remove the override.

 CALL QSYS2.OVERRIDE_TABLE('CORPDATA', 'EMP', 0);

Related reference
Control database manager blocking
To improve performance, the SQL runtime attempts to retrieve and insert rows from the database
manager a block at a time whenever possible.

PARSE_STATEMENT table function
The PARSE_STATEMENT table function returns a list of object and column names that are used in an SQL
query, data change statement, or other statement where a query or expression is specified.

PARSE_STATEMENT (

SQL_STATEMENT =>

SQL-statement

,

NAMING =>

naming

,

DECIMAL_POINT =>

decimal-point

,

SQL_STRING_DELIMITER =>

SQL-string-delimiter

)

The schema is QSYS2.

SQL-statement
A character or graphic string expression that contains a valid SQL statement. The maximum string
length is 2 megabytes.

266 IBM i: Database Performance and Query Optimization

naming
A character or graphic string expression that defines the naming rule for the statement.
*SYS

System naming rules apply. This is the default.
*SQL

SQL naming rules apply.
decimal-point

A character or graphic string expression that defines the decimal point for numeric constants in SQL-
statement.
*PERIOD or .

The decimal point is the period. This is the default.
*COMMA or ,

The decimal point is the comma.
SQL-string-delimiter

A character or graphic string expression that defines the string delimiter for strings in SQL-statement.
Delimited identifiers in the SQL statement will use the opposite character.
*APOSTSQL or '

The apostrophe character (') is used to delimit strings. This is the default.
*QUOTESQL or "

The quote character (") is used to delimit strings.

Authorization:

• None required.

When the SQL statement is parsed, object names are identified and a result row is returned for every
name. This is done at the SQL parser level where names are identified strictly by where they appear in the
syntax. The following restrictions apply:

• Names used in data change statements and in any query construct are returned.
• For DDL statements, the following additional items are returned:

– For CREATE INDEX, the table on which the index is being created.
– For CREATE TABLE, any table referenced using the LIKE clause.
– For CREATE TRIGGER, the table or view on which the trigger is being defined.

DDL statements that do not contain these constructs, a query, or an expression return no rows.
• Names in a routine-body, triggered-action, and trigger-body are not returned. To see these references,

use QSYS2.SYSPROGRAMSTMTSTAT to find all the statements for the generated program or service
program and pass each of them as an argument to this table function.

• If the SQL statement is the null value, an empty string, a string of all blanks, or contains a syntax error,
no row is returned.

The result of the function is a table containing a row for each name reference with the format shown in the
following table. All the columns are null capable.

Database performance and query optimization 267

Table 59. PARSE_STATEMENT table function

Column Name Data Type Description

NAME_TYPE VARCHAR(8) Type of object name.

COLUMN
This is a column name or a global variable name.

FUNCTION
This is a function name.

SEQUENCE
This is a sequence name.

TABLE
This is a table, view, or alias name.

TYPE
This is a user-defined type name.

NAME VARCHAR(128) The object name.

Contains null if NAME_TYPE is COLUMN without a table qualifier.

SCHEMA VARCHAR(128) The schema name.

Contains null if NAME is not qualified with a schema name.

RDB VARCHAR(128) The relational database name.

Contains null if NAME is not qualified with a relational database name.

COLUMN_NAME VARCHAR(128) The column name.

Contains null if NAME_TYPE is not COLUMN.

USAGE_TYPE VARCHAR(17) How this name is used in the statement.

DDL SOURCE OBJECT
Name identifies the table an index or trigger is being created on, or the
table referenced by CREATE TABLE LIKE.

EXPRESSION
Name is referenced in an index key expression.

PARAMETER DEFAULT
Name is referenced in a parameter default expression.

QUERY
Name is referenced as part of a query construct.

TARGET TABLE
This is the table that will be affected for an insert, update, delete, or merge
statement. Also set for any explicitly specified columns from the target
table for insert, update, and merge.

NAME_START_POSITION INTEGER Position within the SQL-statement string that this name begins. For qualified
TABLE names, this is the position where the RDB or schema name begins. For all
other name types, this is the position of the name.

268 IBM i: Database Performance and Query Optimization

Table 59. PARSE_STATEMENT table function (continued)

Column Name Data Type Description

SQL_STATEMENT_TYPE VARCHAR(32) Type of SQL statement.

• ALTER FUNCTION

• ALTER PROCEDURE

• ALTER TABLE

• CALL

• CREATE FUNCTION

• CREATE INDEX

• CREATE MASK

• CREATE PERMISSION

• CREATE PROCEDURE

• CREATE TABLE

• CREATE TRIGGER

• CREATE VARIABLE

• CREATE VIEW

• DECLARE CURSOR

• DECLARE GLOBAL TEMPORARY TABLE

• DELETE

• EXECUTE IMMEDIATE

• INSERT

• MERGE

• PREPARE

• QUERY

• SET

• SET CURRENT TEMPORAL SYSTEM_TIME

• UPDATE

• VALUES INTO

Example

For every program and service program in library APPLIB, find all the references to table names
referenced in static SQL statements.

WITH program_statements(naming_mode, dec_point, string_delim, stmt_text,
 system_program_name, program_type)
 AS (SELECT a.naming, a.decimal_point, a.sql_string_delimiter, b.statement_text,
 a.system_program_name, a.program_type
 FROM qsys2.sysprogramstat a INNER JOIN
 qsys2.sysprogramstmtstat b ON a.program_schema = b.program_schema AND
 a.program_name = b.program_name AND
 a.module_name = b.module_name
 WHERE a.program_schema = 'APPLIB' AND b.program_schema = 'APPLIB')
SELECT system_program_name, program_type, c.schema, c.name, stmt_text
 FROM program_statements,
 TABLE(qsys2.parse_statement(stmt_text, naming_mode, dec_point, string_delim)) c
 WHERE c.name_type = 'TABLE'
 ORDER BY c.schema, c.name;

WLM_SET_CLIENT_INFO procedure
The WLM_SET_CLIENT_INFO procedure sets values for the SQL client special registers.

WLM_SET_CLIENT_INFO (client_userid , client_wrkstnname , client_applname

, client_acctng , client_programid)

The schema is SYSPROC.

Database performance and query optimization 269

client_userid
A character string containing the value to set for the CLIENT USERID special register for the current
connection.

client_wrkstnname
A character string containing the value to set for the CLIENT WRKSTNNAME special register for the
current connection.

client_applname
A character string containing the value to set for the CLIENT APPLNAME special register for the
current connection.

client_acctng
A character string containing the value to set for the CLIENT ACCTNG special register for the current
connection.

client_programid
A character string containing the value to set for the CLIENT PROGRAMID special register for the
current connection.

Performance Services
These services include procedures that provide interfaces to work with indexes and a view to see
information about database monitors.

Related reference
QAQQINI file override support
If you find working with the QAQQINI query options file cumbersome, consider using the
QSYS2.OVERRIDE_QAQQINI procedure. Instead of creating, managing, and using a QAQQINI *FILE object
directly, this procedure can be called to work with a temporary version of the INI file. It uses user-
specified options and values. The support relies upon the QTEMP library, so any changes affect only the
job which calls the procedure.

ACT_ON_INDEX_ADVICE procedure
The ACT_ON_INDEX_ADVICE procedure creates new indexes for a table based on indexes that have been
advised for the table.

ACT_ON_INDEX_ADVICE (schema-name , table-name ,

times_advised , mti_used , average_estimate)

The schema is SYSTOOLS.

schema-name
A character string containing the system name of the schema containing the table.

table-name
A character string containing the system name of the table. If NULL is passed, this parameter is not
used to select the target index advice.

times-advised
The number of times an index should have been advised before creating a permanent index. If NULL is
passed, this parameter is not used to select the target index advice.

mti-used
The number of times a maintained temporary index (MTI) has been used because a matching
permanent index did not exist. If NULL is passed, this parameter is not used to select the target index
advice.

average-estimate
The average estimated number of seconds needed to execute the query that drove the index advice. If
NULL is passed, this parameter is not used to select the target index advice.

For each potential index meeting the specified criteria, a CREATE INDEX statement will be run to generate
the permanent index. A radix index will be named name_RADIX_INDEX_n. An EVI index will be named

270 IBM i: Database Performance and Query Optimization

name_EVI_INDEX_n. The name represents the table name and n is a unique number. The row containing
this advised index is removed from the QSYS2.SYSIXADV table.

Examples

For schema PRODLIB, find all instances of index advice where a maintained temporary index was used
more than 1000 times and create permanent SQL indexes.

CALL SYSTOOLS.ACT_ON_INDEX_ADVICE(‘PRODLIB’,NULL,NULL,1000,NULL)

Related reference
SYSTOOLS
SYSTOOLS is a set of DB2 for IBM i supplied examples and tools.

DATABASE_MONITOR_INFO view
The DATABASE_MONITOR_INFO view returns information about database monitors and plan cache event
monitors on the server. Database monitors are started using the Start Database Monitor (STRDBMON)
command. The QSYS2.START_PLAN_CACHE_EVENT_MONITOR procedure is used to start a plan cache
event monitor. SQL Performance Monitors within IBM i Navigator are synonymous with database monitors
and are included in this view.

The following table describes the columns in the view. The schema is QSYS2.

Table 60. DATABASE_MONITOR_INFO view

Column Name
System Column
Name Data Type Description

MONITOR_ID MONITOR_ID CHAR(10) The system-assigned monitor ID for this monitor.

MONITOR_TYPE MONTYPE VARCHAR(7) Type of monitor.

PUBLIC
A monitor is considered public when the STRDBMON JOB
parameter indicates that jobs other than the current job
should be monitored. Public monitors remain active until
they are explicitly ended using the End Database Monitor
(ENDDBMON) command.

PRIVATE
A private monitor occurs when the STRDBMON JOB
parameter indicates to monitor only the current job. The
monitor is ended as part of job termination processing, if
needed. Only a private monitor that is active in the current
connection will be returned.

EVENT
An SQL plan cache event monitor intercepts plans as they are
moved from the plan cache into a database monitor file.

MONITOR_STATUS STATUS VARCHAR(8) Status of this monitor.

ACTIVE
Monitor is active.

INACTIVE
For a PUBLIC or PRIVATE monitor, it is inactive and can
become ACTIVE. For an EVENT monitor, entries are no longer
being collected.

CLOSING
The PUBLIC or PRIVATE monitor is not active or is in the
processing of ending. It is not known if the entry can be
reused for monitoring.

MONITOR_RECORD_TYPE RCDTYPE VARCHAR(6) Type of database records in this monitor.

DETAIL
Both basic and detail database monitor records. An EVENT
monitor always has a value of DETAIL.

BASIC
Only basic database monitor records

MONITOR_LIBRARY MONLIB VARCHAR(10) Library for this monitor.

MONITOR_FILE MONFILE VARCHAR(10) The file to which the database activity detail is written for this
monitor.

Database performance and query optimization 271

Table 60. DATABASE_MONITOR_INFO view (continued)

Column Name
System Column
Name Data Type Description

MONITOR_MEMBER MONMBR VARCHAR(10) Member for this monitor.

IASP_NUMBER IASPNUMBER SMALLINT The independent auxiliary storage pool (IASP) number for the
monitor file.

MONITOR_MEMBER_OPTION MBROPT VARCHAR(7)

Nullable

Value used for the member replace option the last time this
monitor was started.

• REPLACE

• ADD

Contains the null value for an EVENT monitor.

NUMBER_ROWS CARD BIGINT

Nullable

The number of rows in the database monitor file.

Contains the null value if information is not available.

DATA_SIZE SIZE BIGINT

Nullable

The total size, in bytes, of the database monitor file.

Contains the null value if information is not available.

MONITOR_JOB_FILTER JOB VARCHAR(32) Qualified job name for this monitor. For an EVENT monitor, this is
the job that started the monitor. Following the qualified job name
is the filter operator that applies to the job name. This is either *EQ
or *NE.

The special value of *ALL indicates all jobs on the system are
monitored. A generic name is allowed for both the job name and
the user name.

HOST_VARIABLE HOSTVAR VARCHAR(9)

Nullable

How host variables are handled in this database monitor.

BASIC
Host variables are written in the QQQ3010 database monitor
record.

SECURE
No host variables are captured and no QQQ3010 record is
written.

CONDENSED
Host variable values are captured in the QQQ1000 database
monitor record in column QQDBCLOB1. No QQQ3010 record
is written.

Contains the null value for an EVENT monitor.

FORCE_RECORDS FRCRCD SMALLINT

Nullable

The number of records to be held in the buffer before forcing the
records to be written to the file when running with a private
monitor.

Contains the null value if the system calculates the value or for an
EVENT monitor.

RUN_THRESHOLD_FILTER RUNTHLD INTEGER

Nullable

The filtering threshold, in seconds, based on the estimated run
time of SQL statements in this monitor.

Contains the null value if a run time threshold is not used for
filtering or for an EVENT monitor.

STORAGE_THRESHOLD_FILTER STGTHLD INTEGER

Nullable

The filtering threshold, in megabytes, based on the estimated
temporary storage usage of SQL statements in this monitor.

Contains the null value if a temporary threshold is not used for
filtering or for an EVENT monitor.

INCLUDE_SYSTEM_SQL INCSYSSQL VARCHAR(3) Monitor includes records for system-generated SQL statements.

YES
Monitor records are generated for both user-specified and
system-generated SQL statements.

NO
Monitor records are generated for only user-specified SQL
statements.

INI
For a PUBLIC or PRIVATE monitor, records are generated
based on the value of the SQL_DBMON_OUTPUT option in
the QAQQINI query options.

272 IBM i: Database Performance and Query Optimization

Table 60. DATABASE_MONITOR_INFO view (continued)

Column Name
System Column
Name Data Type Description

FILE_FILTER FTRFILE VARCHAR(2728)

Nullable

A list of up to 10 qualified file references that are used for filtering.
Following each file name is the filter operator that applies to the
file name. This is either *EQ or *NE. When more than one file is
listed, a comma and a single blank separate the entries. Either the
file name or the library name can be a generic name.

A special value of *ALL for the file name indicates all files in the
library.

Contains the null value if no database files are used for filtering.

USER_FILTER FTRUSER VARCHAR(158)

Nullable

A list of up to 10 user profiles that are used for filtering. Following
each user profile name is the filter operator that applies to the
user profile. This is either *EQ or *NE. When more than one profile
is listed, a comma and a single blank separate the entries. A profile
name can be a generic name.

Contains the null value if the user profile is not used for filtering.

TCPIP_FILTER FTRINTNETA VARCHAR(254)

Nullable

The TCP/IP address or host name is used for filtering.

This is an IPv4, IPv6, or IP host domain name, or the special value
of *LOCAL.

Contains the null value if the TCP/IP address or host name is not
used for filtering or for an EVENT monitor.

LOCAL_PORT_FILTER FTRLCLPORT INTEGER

Nullable

Filtering is based on the local TCP/IP port number. Monitor records
will be created for TCP/IP database server jobs running on behalf
of the specified local TCP/IP port. Jobs named QRWTSRVR and
QZDASOINIT are examples of these server jobs.

The IBM i well defined port numbers are documented here: Port
numbers for host servers and server mapper.

Contains the null value if the port number is not used for filtering
or for an EVENT monitor.

QUERY_GOVERNOR_FILTER FTRQRYGOVR VARCHAR(11)

Nullable

The query governor is used for filtering.

ALL
Monitor records will be collected when a query governor limit
is exceeded.

CONDITIONAL
Monitor records will be conditionally collected when a query
governor limit is exceeded.

Contains the null value if the query governor is not used for
filtering or for an EVENT monitor.

CLIENT_ACCTNG_FILTER FTRCLTACG VARCHAR(128)

Nullable

The CURRENT CLIENT_ACCTNG special register is used for
filtering.

Contains the null value if the CURRENT CLIENT_ACCTNG special
register is not used for filtering or for an EVENT monitor.

CLIENT_APPLNAME_FILTER FTRCLTAPP VARCHAR(128)

Nullable

The CURRENT CLIENT_APPLNAME special register is used for
filtering.

Contains the null value if the CURRENT CLIENT_APPLNAME
special register is not used for filtering or for an EVENT monitor.

CLIENT_PROGRAMID_FILTER FTRCLTPGM VARCHAR(128)

Nullable

The CURRENT CLIENT_PROGRAMID special register is used for
filtering.

Contains the null value if the CURRENT CLIENT_PROGRAMID
special register is not used for filtering or for an EVENT monitor.

CLIENT_USERID_FILTER FTRCLTUSR VARCHAR(128)

Nullable

The CURRENT CLIENT_USERID special register is used for
filtering.

Contains the null value if the CURRENT CLIENT_USERID special
register is not used for filtering or for an EVENT monitor.

CLIENT_WRKSTNNAME_FILTER FTRCLTWS VARCHAR(128)

Nullable

The CURRENT CLIENT_WRKSTNNAME special register is used for
filtering.

Contains the null value if the CURRENT CLIENT_WRKSTNNAME
special register is not used for filtering or for an EVENT monitor.

Database performance and query optimization 273

Table 60. DATABASE_MONITOR_INFO view (continued)

Column Name
System Column
Name Data Type Description

SQL_CODE_FILTER FTRSQLCODE VARCHAR(7)

Nullable

How the SQLCODE result from a statement execution is used for
filtering.

NONZERO
Any SQL statement with an SQLCODE value that is non-zero
is included in the monitor.

ERROR
Any SQL statement with an SQLCODE that is less than zero is
collected in the monitor.

WARNING
Any SQL statement with an SQLCODE that is greater than
zero is collected in the monitor.

SQLCODE
Any SQL statement with an SQLCODE that exactly matches
the value in the SQLCODE_VALUE column is collected in the
monitor.

Contains the null value if the SQLCODE for a statement is not used
for filtering or for an EVENT monitor.

SQLCODE_VALUE SQLCODEVAL INTEGER

Nullable

The positive or negative SQLCODE value to use for filtering.

Contains the null value if the SQL_CODE_FILTER column contains
a value other than SQLCODE.

Examples

Example 1: Get the MONITOR_ID for all the active PUBLIC monitors and the file names associated with
the MONITOR_IDs.

SELECT MONITOR_ID, MONITOR_LIBRARY, MONITOR_FILE
 FROM QSYS2.DATABASE_MONITOR_INFO
 WHERE MONITOR_STATUS = 'ACTIVE' AND
 MONITOR_TYPE = 'PUBLIC'

Example 2: Find the active monitors that have outfiles larger than 1Gig.

SELECT MONITOR_LIBRARY, MONITOR_FILE, NUMBER_ROWS, DATA_SIZE
 FROM QSYS2.DATABASE_MONITOR_INFO
 WHERE MONITOR_STATUS = 'ACTIVE' AND
 DATA_SIZE > 1073741824

Example 3: Find any active monitors that are filtering based upon a specific SQLCODE (FTRSQLCODE).

SELECT MONITOR_ID, MONITOR_LIBRARY, MONITOR_FILE, SQLCODE_VALUE
 FROM QSYS2.DATABASE_MONITOR_INFO
 WHERE MONITOR_STATUS = 'ACTIVE' AND
 SQL_CODE_FILTER = 'SQLCODE'

Example 4: Get the MONITOR_ID for a user's SQL plan cache event monitor and use it to end the active
event monitor.

CALL QSYS2.END_PLAN_CACHE_EVENT_MONITOR (SELECT MONITOR_ID
 FROM QSYS2.DATABASE_MONITOR_INFO
 WHERE MONITOR_TYPE = 'EVENT' AND
 MONITOR_LIBRARY = 'USERLIB')

274 IBM i: Database Performance and Query Optimization

HARVEST_INDEX_ADVICE procedure
The HARVEST_INDEX_ADVICE procedure generates one or more CREATE INDEX statements in source file
members for a specified table based on indexes that have been advised for the table.

HARVEST_INDEX_ADVICE (schema-name , table-name ,

times_advised , mti_used , average_estimate , output-library , output-file

)

The schema is SYSTOOLS.

schema-name
A character string containing the system name of the schema containing the table.

table-name
A character string containing the system name of the table.

times-advised
The number of times an index should have been advised before creating a permanent index. Pass a
value of 1 to not limit index creation by the number of times advised.

mti-used
The number of times a maintained temporary index (MTI) has been used because a matching
permanent index did not exist. Pass a value of 0 to not limit index creation by MTI use.

average-estimate
The average estimated number of seconds needed to execute the query that drove the index advice.
Pass a value of 0 to not limit index creation by the average query estimate.

output-library
A character string value containing the name of the library for the output source file.

output-file
A character string value containing the name of the output source file. The file must exist and must be
a source physical file.

For each potential index meeting the specified criteria, a CREATE INDEX statement to create the
permanent index will be generated in a member in the source file provided to this procedure. A radix index
will be named name_RADIX_INDEX_n. An EVI index will be named name_EVI_INDEX_n. The name
represents the table name and n is a unique number. The row containing this advised index is removed
from the QSYS2.SYSIXADV table.

Related reference
SYSTOOLS
SYSTOOLS is a set of DB2 for IBM i supplied examples and tools.

REMOVE_INDEXES procedure
The REMOVE_INDEXES procedure drops any indexes meeting the specified criteria.

REMOVE_INDEXES (schema-name , times_used , index-age)

The schema is SYSTOOLS.

schema-name
A character string containing the system name of the schema containing the indexes to be evaluated.
If the NULL value is passed, the entire database is processed.

times_used
A big integer value indicating the number of times an index has been used.

index-age
A character string containing an SQL labeled duration, such as '2 MONTHS'.

Database performance and query optimization 275

The procedure will evaluate all indexes for the specified schema-name value and drop any index that does
not meet the times-used and index-age threshold. If the number of times the index has been used by a
query and used for statistics is less than the times-used value, the index is considered under utilized and
is a candidate to be dropped. An index that has existed at least the length of time indicated by index-age
is also a candidate to be dropped. Any index that meets both criteria is dropped.

Only index names that have names like name_RADIX_INDEX_x or name_EVI_INDEX_x will be
considered by this procedure.

Examples

• Remove any index in MYLIB that is older than a month that has never been used.

CALL SYSTOOLS.REMOVE_INDEXES('MYLIB', 1, '1 MONTH')

• Remove all indexes from all schemas on the system that have existed for at least two weeks and haven't
been used at least 100 times.

CALL SYSTOOLS.REMOVE_INDEXES(NULL, 100, '14 DAYS')

Related reference
SYSTOOLS
SYSTOOLS is a set of DB2 for IBM i supplied examples and tools.

RESET_TABLE_INDEX_STATISTICS procedure
The RESET_TABLE_INDEX_STATISTICS procedure clears usage statistics for indexes defined over a table
or tables and optionally deletes rows from the index advice tracking table.

RESET_TABLE_INDEX_STATISTICS (

SCHEMA_NAME =>

schema-name ,

TABLE_NAME =>

table-name

,

DELETE_ADVICE =>

delete-advice

)

The schema is QSYS2.

This procedure will zero the QUERY_USE_COUNT and QUERY_STATISTICS_COUNT usage statistics for all
indexes over the specified tables. These counts can also be reset using the Change Object Description
(CHGOBJD) CL command, but the command requires an exclusive lock.

schema-name
A character string expression for the name of the schema or schemas to use. The name is case-
sensitive and must not be delimited. Wildcard characters (_ and %) are allowed in the string following
the rules for the SQL LIKE predicate.

table-name
A character string expression for the name of the table or tables to use. The name is case-sensitive
and must not be delimited. Wildcard characters (_ and %) are allowed in the string following the rules
for the SQL LIKE predicate.

delete-advice
A character string expression that indicates whether this procedure should remove rows from the
index advice tracking table.
NO

Index advice for the table is not affected. This is the default.

276 IBM i: Database Performance and Query Optimization

YES
This procedure will delete rows from the index advice tracking table (QSYS2/SYSIXADV) that
correspond to schema-name and table-name.

Authorization: The counts will only be reset when the caller has *OBJMGT and *OBJOPR authority on the
table. For each index found over the table, *OBJOPR is required. If the user does not have the required
authority to the table, the object is skipped and no warning is returned. If the user does not have the
required authority to the index, the object is skipped and an SQL warning is returned. To delete index
advice, the DELETE privilege is required on QSYS2/SYSIXADV. Index advice is only deleted when the caller
has the required authority to the table and index.

The procedure writes information related to every index processed into an SQL global temporary table.
The fields LAST_QUERY_USE, LAST_STATISTICS_USE, LAST_USE_DATE, and NUMBER_DAYS_USED are
not affected. The following query will display the results of the last call to the procedure:

SELECT * FROM SESSION.SQL_Indexes_Reset

The table that is created contains the following columns:

Table 61. SQL_Indexes_Reset result table

Column Name System Column Name Data Type Description

TABLE_SCHEMA DBNAME VARCHAR(128) Schema name of table.

TABLE_NAME NAME VARCHAR(128) Name of table.

TABLE_PARTITION TABLE00001 VARCHAR(128) Name of the table partition or member.

PARTITION_TYPE PARTI00001 CHAR(1) The type of table partitioning.

PARITION_NUMBER PARTI00002 INTEGER The partition number of this partition.

NUMBER_DISTRIBUTED_PARTITIONS NUMBE00001 INTEGER If the table is a distributed table, contains the total number of
partitions.

INDEX_SCHEMA INDEX00001 VARCHAR(128) Schema name of index.

INDEX_NAME INDEX_NAME VARCHAR(128) Name of index.

INDEX_MEMBER INDEX00002 VARCHAR(128) Partition or member name of index.

INDEX_TYPE INDEX_TYPE CHAR(11) Type of index.

LAST_QUERY_USE LAST_00002 TIMESTAMP The timestamp of the last time the SQL index was used in a query
since the last time the usage statistics were reset.

LAST_STATISTICS_USE LAST_00003 TIMESTAMP The timestamp of the last time the SQL index was used by the
optimizer for statistics since the last time the usage statistics
were reset.

QUERY_USE_COUNT QUERY00001 BIGINT The number of times the SQL index was used in a query since the
last time the usage statistics were reset.

QUERY_STATISTICS_COUNT QUERY00002 BIGINT The number of times the SQL index was used by the optimizer for
statistics since the last time the usage statistics were reset.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System table schema name.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

SYSTEM_TABLE_MEMBER SYSTE00001 CHAR(10) System member name.

Examples

• Zero the statistics for all indexes over table TOYSTORE.SALES

CALL qsys2.Reset_Table_Index_Statistics ('TOYSTORE', 'SALES')

• Zero the statistics for all indexes over any table in schema TOYSTORE whose name starts with the letter
S.

CALL qsys2.Reset_Table_Index_Statistics ('TOYSTORE', 'S%')

Database performance and query optimization 277

Utility Services
These procedures provide interfaces to monitor and work with SQL in jobs on the current system or to
compare constraint and routine information across systems.

CANCEL_SQL procedure
The CANCEL_SQL procedure requests cancellation of an SQL statement for the specified job.

CANCEL_SQL (job-name)

The schema is QSYS2.

job-name
A character string containing the qualified job name to be cancelled. It must be in upper case.

The CANCEL_SQL() procedure provides an alternative to end job immediate. It supports all application
and interactive SQL environments.

When an SQL cancel is requested, an asynchronous request is sent to the job identified by job-name. If
the job is processing an interruptible, long-running machine operation, analysis is done within the job to
determine whether it is safe to cancel the statement. When it is determined to be safe to cancel the
statement, an SQL0952 escape message is sent, causing the statement to terminate.

If it isn't safe to end the SQL statement, or if there is no active SQL statement, the request to cancel is
ignored. The caller of the cancel procedure will observe a successful return which only indicates that the
caller had the necessary authority to request a cancel and that the target job exists. The caller of the
CANCEL_SQL() procedure has no programmatic means of determining that the cancel request resulted in
a cancelled SQL statement.

If the cancel request occurs during the act of committing or rolling back a commitment-control
transaction, the request is ignored.

Authorization: The CANCEL_SQL procedure requires that the authorization ID associated with the
statement has *JOBCTL special authority.

Errors: The procedure will fail with a SQL0443 if the target job is not found. The procedure will fail with
SQL0443 and SQL0552 if the caller does not have *JOBCTL user special authority.

Commitment control: When the target application is running without commitment control (COMMIT =
*NONE), the cancelled SQL statement will terminate without rolling back the partial results of the
statement. If the cancelled statement is a query, the query ends. However, if the cancelled statement was
a long-running INSERT, UPDATE, or DELETE SQL statement, the changes made prior to cancellation
remain intact.

If the target application is using transaction management, the SQL statement is running under a
transaction savepoint level. When a long running INSERT, UPDATE, or DELETE SQL statement is cancelled,
the changes made prior to cancellation are rolled back.

In both cases, the application receives control back with an indication that the SQL statement failed. It is
up to the application to determine the next action.

Example

Safely cancel a job running an SQL statement.

 CALL QSYS2.CANCEL_SQL('483456/QUSER/QZDASOINIT')

278 IBM i: Database Performance and Query Optimization

CHECK_SYSCST procedure
The CHECK_SYSCST procedure compares entries in the QSYS2.SYSCONSTRAINTS table between two
systems.

CHECK_SYSCST (remote-rdb-name , schema-name

, avoid-result-set

)

The schema is SYSTOOLS.

remote-rdb-name
A character string containing the name of the remote database.

schema-name
A character string containing the name of the schema to compare.

avoid-result-set
An integer value that indicates whether a result set should be returned. The default is 0.
1

No result set is returned.
0

Result set is returned.

This procedure will return a result set to the caller. If no result set is requested, the differences are logged
to the SESSION.SYSCSTDIFF table.

The result set that is returned or the table that is created contains the following columns:

Table 62. SYSCSTDIFF result set

Column Name System Column Name Data Type Description

SERVER_NAME SRVRNAME VARCHAR(18) Name of server where the request was run.

CONSTRAINT_SCHEMA CDNAME VARCHAR(128) Name of the schema containing the constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint.

CONSTRAINT_TYPE TYPE VARCHAR(11) Type of constraint.

TABLE_SCHEMA TDBNAME VARCHAR(128) Name of schema containing the table.

TABLE_NAME TBNAME VARCHAR(128) Name of the table which the constraint is created over.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of schema containing the table.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of the table which the constraint is created over.

CONSTRAINT_KEYS COLCOUNT SMALLINT Specifies the number of key columns if this is a UNIQUE,
PRIMARY KEY, or FOREIGN KEY constraint.

CONSTRAINT_STATE CST_STATE VARCHAR(11) Indicates whether the constraint is established or defined.

ENABLED ENABLED VARCHAR(3) Indicates whether the constraint is enabled or disabled.

CHECK_PENDING CHECK00001 VARCHAR(3) Indicates whether the constraint is in check pending state.

Example

Find all the differences in constraint settings between the current system and LP01UT18 for the
CORPDB_EX schema:

 CALL SYSTOOLS.CHECK_SYSCST('LP01UT18', 'CORPDB_EX')

Related reference
SYSTOOLS

Database performance and query optimization 279

SYSTOOLS is a set of DB2 for IBM i supplied examples and tools.

CHECK_SYSROUTINE procedure
The CHECK_SYSROUTINE procedure compares entries in the QSYS2.SYSROUTINES table between two
systems.

CHECK_SYSROUTINE (remote-rdb-name , schema-name

, avoid-result-set

)

The schema is SYSTOOLS.

remote-rdb-name
A character string containing the name of the remote database.

schema-name
A character string containing the name of the schema to compare.

avoid-result-set
An integer value that indicates whether a result set should be returned. The default is 0.
1

No result set is returned.
0

Result set is returned.

This procedure will return a result set to the caller. If no result set is requested, the differences are logged
to the SESSION.SYSRTNDIFF table.

The result set that is returned or the table that is created contains the following columns:

Table 63. SYSRTNDIFF result set

Column Name System Column Name Data Type Description

SERVER_NAME SRVRNAME VARCHAR(18) Name of server where the request was run.

ROUTINE_CREATED RTNCREATE TIMESTAMP The timestamp when the routine was created.

ROUTINE_DEFINER DEFINER VARCHAR(128) Name of the user that defined the routine.

LAST_ALTERED ALTEREDTS TIMESTAMP Timestamp when routine was last altered.

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Schema name of the routine instance.

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine instance.

ROUTINE_SCHEMA RTNSCHEMA VARCHAR(128) Name of the schema that contains the routine.

ROUTINE_NAME RTNNAME VARCHAR(128) Name of the routine.

ROUTINE_TYPE RTNTYPE VARCHAR(9) Type of the routine.

ROUTINE_BODY BODY VARCHAR(8) Type of the routine body.

EXTERNAL_NAME EXTNAME VARCHAR(279) External program name for routine.

IN_PARMS IN_PARMS SMALLINT Identifies the number of input parameters.

OUT_PARMS OUT_PARMS SMALLINT Identifies the number of output parameters.

INOUT_PARMS INOUT_PARM SMALLINT Identifies the number of input/output parameters.

SQL_DATA_ACCESS DATAACCESS VARCHAR(8) Identifies whether a routine contains SQL and whether it reads or
modifies data.

PARM_SIGNATURE SIGNATURE VARCHAR(2048) The signature of the routine.

Example

280 IBM i: Database Performance and Query Optimization

Compare the current system to a remote system to find which routines differ, when they were created,
and who created them.

CALL SYSTOOLS.CHECK_SYSROUTINE('LP01UT18', 'CORPDB_EX')

Related reference
SYSTOOLS
SYSTOOLS is a set of DB2 for IBM i supplied examples and tools.

DUMP_SQL_CURSORS procedure
The DUMP_SQL_CURSORS procedure lists the open cursors for a job.

DUMP_SQL_CURSORS (

job-name , library-name , table-name , output-option)

The schema is QSYS2.

job-name
A character string containing a qualified job name or a value of '*' to indicate the current job

library-name
A character string containing a system library name for the procedure output. An empty string is
allowed.

table-name
A character string containing a system table name for the procedure output. An empty string is
allowed.

output-option
An integer value that indicates how to return the output.
1

Ignore library-name and table-name parameters and return a result set.
2

Ignore library-name and table-name parameters and place the results in table QTEMP/
SQL_CURSORS.

3
Place the results in table table-name in library library-name. If the table doesn't exist, it will be
created. If the table already exists, the results will be appended to the existing table.

4
Place the results in table table-name in library library-name. If the table doesn't exist, it will not be
created.

The result set that is returned or the table that is created contains the following columns:

Table 64. DUMP_SQL_CURSORS result table

Column Name System Column Name Data Type Description

SQL_IDENTITY SQL_I00001 INTEGER Unique identifier for the row.

DUMPTIME DUMPTIME TIMESTAMP Timestamp when row was inserted.

DUMP_BY_USER DUMPUSER VARCHAR(18) User ID used to insert row.

CURSOR_NAME CSRNAME VARCHAR(128) Name of the cursor.

PSEUDO_CLOSED PSEUDO VARCHAR(3) Pseudo close state of the cursor. Valid values are:

YES
Cursor is currently pseudo closed.

NO
Cursor is currently opened.

STATEMENT_NAME STMTNAME VARCHAR(128) Name of the statement corresponding to the cursor

Database performance and query optimization 281

Table 64. DUMP_SQL_CURSORS result table (continued)

Column Name System Column Name Data Type Description

OBJECT_NAME OBJNAME CHAR(10) Object containing the current SQL statement. Blank if current
SQL statement is not in a program, service program, or package.

OBJECT_LIBRARY OBJLIB CHAR(10) Library for object containing the current SQL statement. Blank if
current SQL statement is not in a program, service program, or
package.

OBJECT_TYPE OBJTYPE CHAR(10) Type of object containing the current SQL statement. Blank if
current SQL statement is not in a program, service program, or
package.

JOBNAME JOBNAME CHAR(28) System job name for the cursor. Contains * if current job was
specified for job-name argument.

Example

Populate QGPL/SQLCSR1 table with open SQL cursors for the current job.

 CALL QSYS2.DUMP_SQL_CURSORS('*', 'QGPL', 'SQLCSR1', 3);

FIND_AND_CANCEL_QSQSRVR_SQL procedure
The FIND_AND_CANCEL_QSQSRVR_SQL procedure finds a set of jobs with SQL activity and safely cancels
them.

FIND_AND_CANCEL_QSQSRVR_SQL (job-name)

The schema is QSYS2.

job-name
A character string containing a qualified job name.

The FIND_AND_CANCEL_QSQSRVR_SQL procedure uses the FIND_QSQSRVR_JOBS and CANCEL_SQL
procedures to determine the set of jobs that have SQL activity for the provided job-name. Each of these
jobs is made a target of an SQL cancel request.

Example

Cancel all the QSQSRVR jobs used by a specific job.

 CALL QSYS2.FIND_AND_CANCEL_QSQSRVR_SQL('564321/APPUSER/APPJOBNAME')

FIND_QSQSRVR_JOBS procedure
The FIND_QSQSRVR_JOBS procedure returns information about a QSQSRVR job.

FIND_QSQSRVR_JOBS (job-name)

The schema is QSYS2.

job-name
A character string containing a qualified job name.

If the specified job is active and is set up to use SQL server mode, the procedure determines which
QSQSRVR jobs are being used by the application in the form of active SQL server mode connections. The
procedure collects and returns work management, performance, and SQL information. It returns two SQL
result sets, one containing summary information and one containing detailed SQL server mode job
information.

Authorization: To invoke FIND_QSQSRVR_JOBS you need *JOBCTL special authority, QIBM_DB_SQLADM
function usage, or QIBM_DB_SYSMON function usage.

282 IBM i: Database Performance and Query Optimization

The results of the procedure call are saved in two temporary tables, QTEMP.QSQSRVR_SUMMARY and
QTEMP.QSQSRVR_DETAIL. When called from within IBM i Navigator Run SQL Scripts, two results sets are
displayed. When called from other interfaces, you need to query the temporary tables to see the data.

The result sets that are returned or the tables that are created contain the following columns:

Table 65. FIND_QSQSRVR_JOBS result set 1

Column Name System Column Name Data Type Description

SQL_IDENTITY SQL_I00001 INTEGER Unique identifier for this row.

NUMBER_OF_ACTIVE_JOBS NUMJOBS INTEGER Number of QSQSRVR jobs active for this job.

SERVER_MODE_JOB SRVRJOB CHAR(28) The fully qualified QSQSRVR job name for an active SQL Server
Mode connection established by job-name.

SERVER_MODE_CONNECTING_JOB CONNJOB CHAR(28) The fully qualified job name of the application job. This value
matches what was input for job_name.

TOTAL_PROCESSING_TIME TOTALCPU BIGINT The total amount of CPU time (in milliseconds) that has been
used by all server jobs.

TEMP_MEG_STORAGE TEMPMSTG INTEGER The total amount of auxiliary storage (in megabytes) that is
currently allocated to all server jobs.

PAGE_FAULTS FAULTS BIGINT The total number of times an active program referenced an
address that was not in main storage for all server jobs.

IO_REQUESTS IOREQS BIGINT The total number of auxiliary I/O requests performed by the job
across all routing steps for all server jobs. This includes both
database and non-database paging.

Table 66. FIND_QSQSRVR_JOBS result set 2

Column Name
System Column
Name Data Type Description

SQL_IDENTITY SQL_I00001 INTEGER Unique identifier for this row.

JOB_NAME JOBNAME CHAR(10) Job name.

USER_NAME USERNAME CHAR(10) User ID for the job.

JOB_NUMBER JOBNUM CHAR(6) Job number.

JOB_INTERNAL_IDENTIFIER JOBID CHAR(16) Internal identifer assigned to job.

CURRENT_USERNAME CURRUSER CHAR(10) The user profile that the thread is currently running under.

SUBSYSTEM_DESCRIPTION_NAME SBSNAME CHAR(10) Name of subsystem where job is running.

RUN_PRIORITY PRIORITY INTEGER The highest run priority allowed for any thread within this job.

SYSTEM_POOL_IDENTIFIER POOLID INTEGER The identifier of the system-related pool from which the job's main
storage is allocated.

TOTAL_PROCESSING_TIME TOTALCPU BIGINT The amount of CPU time (in milliseconds) that has been currently
used by this job.

PAGE_FAULTS FAULTS BIGINT The number of times an active program referenced an address that
was not in main storage during the current routing step of the
specified job.

IO_REQUESTS IOREQS BIGINT The number of auxiliary I/O requests performed by the job across
all routing steps. This includes both database and non-database
paging.

MEMORY_POOL_NAME POOLNAME CHAR(10) The name of the memory pool in which the job started running.

TEMP_MEG_STORAGE TEMPMSTG INTEGER The amount of auxiliary storage (in megabytes) that is currently
allocated to this job.

TIME_SLICE TSLICE INTEGER The maximum amount of processor time (in milliseconds) given to
each thread in this job before other threads in this job and in other
jobs are given the opportunity to run.

DEFAULT_WAIT DFTWAIT INTEGER The default maximum time (in seconds) that a thread in the job
waits for a system instruction to acquire a resource.

Database performance and query optimization 283

Table 66. FIND_QSQSRVR_JOBS result set 2 (continued)

Column Name
System Column
Name Data Type Description

SQL_APPLICATION_LIBRARY SQLLIB CHAR(10) The library name for the SQL statement object.

SQL_APPLICATION_PROGRAM SQLPGM CHAR(10) The program, service program, or package name of the object
which contains the last SQL statement executed in the job.

SQL_APPLICATION_TYPE APPTYPE CHAR(10) The object type.

SERVER_MODE_CONNECTING_JOB CONNJOB CHAR(28) The qualified job name of the job which established the SQL Server
Mode connection.

SERVER_MODE_CONNECTED_THREAD CONNTHD CHAR(10) The thread identifier of the last thread to use this connection.

STATUS_OF_CURRENT_SQL_STMT STMTSTAT CHAR(10) Status of the SQL statement. Values are ACTIVE or COMPLETED.

SQL_STATEMENT SQLSTMT VARCHAR(1000) First 1000 characters of the SQL statement.

GENERATE_SQL procedure
The GENERATE_SQL procedure generates the SQL data definition language statements required to
recreate a database object. The results are returned in the specified database source file member or as a
result set.

The database source file member will contain the generated SQL statements. If the output source file is
QTEMP/Q_GENSQL with a member name of Q_GENSQL, the source file is returned as a result set as well.

284 IBM i: Database Performance and Query Optimization

GENERATE_SQL (

DATABASE_OBJECT_NAME =>

database-object-name ,

DATABASE_OBJECT_LIBRARY_NAME =>

database-object-library-name ,

DATABASE_OBJECT_TYPE =>

database-object-type

,

DATABASE_SOURCE_FILE_NAME =>

database-source-file-name

,

DATABASE_SOURCE_FILE_LIBRARY_NAME =>

database-source-file-library-name

,

DATABASE_SOURCE_FILE_MEMBER =>

database-source-file-member

,

SEVERITY_LEVEL =>

severity-level

,

REPLACE_OPTION =>

replace-option

,

STATEMENT_FORMATTING_OPTION =>

statement-formatting-option

,

DATE_FORMAT =>

date-format

,

DATE_SEPARATOR =>

date-separator

,

TIME_FORMAT =>

time-format

,

TIME_SEPARATOR =>

time-separator

,

NAMING_OPTION =>

naming-option

,

DECIMAL_POINT =>

decimal-point

,

STANDARDS_OPTION =>

standards-option

,

DROP_OPTION =>

drop-option

,

MESSAGE_LEVEL =>

message-level

,

COMMENT_OPTION =>

comment-option

,

LABEL_OPTION =>

label-option

,

HEADER_OPTION =>

header-option

,

TRIGGER_OPTION =>

trigger-option

,

CONSTRAINT_OPTION =>

constraint-option

,

SYSTEM_NAME_OPTION =>

system-name-option

,

PRIVILEGES_OPTION =>

privileges-option

,

CCSID_OPTION =>

ccsid-option

,

CREATE_OR_REPLACE_OPTION =>

create-or-replace-option

,

OBFUSCATE_OPTION =>

obfuscate-option

,

ACTIVATE_ROW_AND_COLUMN_ACCESS_CONTROL_OPTION =>

activate-access-control-option

,

MASK_AND_PERMISSION_OPTION =>

mask-and-permission-option

,

QUALIFIED_NAME_OPTION =>

qualified-name-option

,

ADDITIONAL_INDEX_OPTION =>

additional-index-option

,

INDEX_INSTEAD_OF_VIEW_OPTION =>

index-instead-of-view-option

)

The schema is QSYS2.

database-object-name
A character or graphic string expression that identifies the name of the database object for which DDL
will be generated. Either the SQL name or the system name may be specified. The name is case

Database performance and query optimization 285

sensitive. Delimiters must not be specified. For example, a file with a name of "abc" must be specified
as abc. A file with a name of ABC must be specified in upper case. If the object type is a FUNCTION or
PROCEDURE, this name must be the specific name of the function or procedure. If TABLE or VIEW is
specified for the object type, the object name may identify an alias. In this case, the object that the
alias points to will be generated. A CREATE ALIAS statement will be generated only if ALIAS is
specified for the object type.
A '%' wildcard character can be used to select multiple objects of the same type. For example, a name
of 'TSTV%' will process all objects of database-object-type that start with the characters 'TSTV'

database-object-library-name
A character or graphic string expression that identifies the name of the library containing the object
for which DDL will be generated. Either the SQL name or the system name may be specified. The name
is case sensitive. Delimiters must not be specified. This name is ignored if the specified object type is
SCHEMA. A '%' wildcard character can be used to select multiple libraries.

database-object-type
A character or graphic string expression that identifies the type of the database object or object
attribute for which DDL is generated. You can use these special values for the object type:

ALIAS
The object is an SQL alias.

CONSTRAINT
The object attribute is a constraint.

FUNCTION
The object is an SQL function.

INDEX
The object is an SQL index.

MASK
The object is an SQL column mask.

PERMISSION
The object is an SQL row permission.

PROCEDURE
The object is an SQL procedure.

SCHEMA
The object is an SQL schema.

SEQUENCE
The object is an SQL sequence.

TABLE
The object is an SQL table or physical file.

TRIGGER
The object attribute is a trigger.

TYPE
The object is an SQL type.

VARIABLE
The object is an SQL global variable.

VIEW
The object is an SQL view or logical file.

XSR
The object is an XML schema repository object.

database-source-file-name
A character or graphic string expression that identifies the name of the source file that contains the
SQL statements generated by the procedure. The name must be a valid system name. The name is
case sensitive. If delimiters are required for the name to be valid, they must be specified. For

286 IBM i: Database Performance and Query Optimization

example, a file with a name of "abc" must be specified with the surrounding quotes. A file with a name
of ABC must be specified in upper case.
The record length of the specified source file must be greater than or equal to 92.
If database-source-file-name is not specified, Q_GENSQL will be used.

database-source-file-library
A character or graphic string expression that identifies the name of the library containing the source
file that contains the SQL statements generated by the procedure. The name must be a valid system
name. The name is case sensitive. If delimiters are required for the name to be valid, they must be
specified.
If database-source-file-library is not specified, QTEMP will be used.

database-source-file-member
A character or graphic string expression that identifies the name of the source file member that
contains the SQL statements generated by the procedure. The name must be a valid system name.
The name is case sensitive. If delimiters are required for the name to be valid, they must be specified.
You can use these special values for the member name:

*FIRST
The first database physical file member found.

*LAST
The last database physical file member found.

If values are provided for database-source-file-library-name, database-source-file-name, and
database-source-file-member the object must exist.

If database-source-file-member is not specified, Q_GENSQL will be used.

severity-level
The severity level at which the operation fails. If errors occur that have a severity level greater than
this value, the operation ends. The valid values are in the range 0 through 39 inclusive. Any severity 40
error will cause the procedure to fail.
If severity-level is not specified, 39 will be used.

replace-option
The replace option for the database source file member. The valid values are:

0
The resulting SQL statements are appended to the end of the database source file member.

1
The database source file member is cleared prior to adding the resulting SQL statements. If this
option is chosen, the member may be cleared even if an error is returned from the procedure. If
multiple objects are being generated, the member is cleared for each object so only the last
generated statement will remain in the member.

If replace-option is not specified, 1 will be used.
statement-formatting-option

The formatting option used in the generated SQL statements. The valid values are:

0
No additional formatting characters are added to the generated SQL statements.

1
Additional end-of-line characters and tab characters are added to the generated SQL statements.

If statement-formatting-option is not specified, 1 will be used.
date-format

The date format used for date constants in a generated SQL CREATE TABLE statement. The date
format may not apply to date constants that are in ISO, EUR, USA, or JIS format in a CREATE VIEW,
CREATE TRIGGER, CREATE FUNCTION, CREATE PROCEDURE, CREATE MASK, or CREATE
PERMISSION.

Database performance and query optimization 287

If date-format is not specified, ISO will be used.
date-separator

The date separator used for date constants in a generated SQL CREATE TABLE statement. The date
separator may not apply to date constants that are in ISO, EUR, USA, or JIS format in a CREATE VIEW,
CREATE TRIGGER, CREATE FUNCTION, CREATE PROCEDURE, CREATE MASK, or CREATE
PERMISSION statement.
If date-separator is not specified, - will be used.

time-format
The format used for time constants in a generated SQL CREATE TABLE statement. The time format
may not apply to time constants that are in ISO, EUR, USA, or JIS format in a CREATE VIEW, CREATE
TRIGGER, CREATE FUNCTION, CREATE PROCEDURE, CREATE MASK, or CREATE PERMISSION
statement.
If time-format is not specified, ISO will be used.

time-separator
The time separator used for time constants in a generated SQL CREATE TABLE statement. The time
separator may not apply to time constants that are in ISO, EUR, USA, or JIS format in a CREATE VIEW,
CREATE TRIGGER, CREATE FUNCTION, CREATE PROCEDURE, CREATE MASK, or CREATE
PERMISSION statement.
If time-separator is not specified, . will be used.

naming-option
The naming convention used for qualified names in the generated SQL statements. The valid values
are:

SQL
schema.table syntax

SYS
library/file syntax

If naming-option is not specified, SQL will be used.
decimal-point

The decimal point used for numeric constants. The valid values are:

.
Period separator

,
Comma separator

If decimal-point is not specified, . will be used.
standards-option

The standards option specifies whether the generated SQL statements should contain Db2 for i
extensions or whether the statements should conform to the Db2 family SQL or to the ANS and ISO
SQL standards. The valid values are:

0
Db2 for i extensions may be generated in SQL statements.

1
The generated SQL statements must conform to SQL statements common to the Db2 family.

2
The generated SQL statements must conform to the ANSI and ISO SQL standards.

If standards-option is not specified, 0 will be used.
drop-option

The drop option specifies whether DROP (or ALTER) SQL statements should be generated prior to the
CREATE statement to drop the specified object. The valid values are:

288 IBM i: Database Performance and Query Optimization

0
DROP statements should not be generated.

1
DROP statements should be generated.

If drop-option is not specified, 0 will be used.
message-level

The severity level at which the messages are generated. If errors occur that have a severity level
greater than this value, a message is generated in the output. The valid values are in the range 0
through 39 inclusive. The message level must be less than or equal to the severity level.
If message-level is not specified, 0 will be used.

comment-option
The comment option specifies whether COMMENT ON SQL statements should be generated if a
comment exists on the specified database object. If comments are not supported by the specified
database object, the comment option is ignored. The valid values are:

0
COMMENT ON SQL statements should not be generated.

1
COMMENT ON SQL statements should be generated. If the specified database object type is a
table or view, COMMENT ON SQL statements will also be generated for columns of the table or
view.

If comment-option is not specified, 1 will be used.
label-option

The label option specifies whether LABEL ON SQL statements should be generated if a label exists on
the specified database object. If labels are not supported by the specified database object, the label
option is ignored. The valid values are:

0
LABEL ON SQL statements should not be generated.

1
LABEL ON SQL statements should be generated. If the specified database object type is a table or
view, LABEL ON SQL statements will also be generated for columns of the table or view.

If label-option is not specified, 1 will be used.
header-option

The header option specifies whether a header should be generated prior to the CREATE statement.
The header consists of comments that describe the version, date and time, the relational database,
and some of the options used to generate the SQL statements. The valid values are:

0
A header should not be generated.

1
A header should be generated.

If header-option is not specified, 1 will be used.
trigger-option

The trigger option specifies whether triggers should be generated when the object type is a TABLE or
VIEW. The valid values are:

0
Triggers should not be generated.

1
Triggers should be generated.

If trigger-option is not specified, 1 will be used.

Database performance and query optimization 289

constraint-option
The constraint option specifies whether constraints should be generated when the object type is a
TABLE. The valid values are:

0
Constraints should not be generated.

1
Constraints should be generated using ALTER TABLE statements.

2
Constraints should be generated as part of the CREATE TABLE statement.

If constraint-option is not specified, 1 will be used.
system-name-option

The system name option specifies whether a FOR SYSTEM NAME clause should be generated for the
system name when it is different from the SQL name and the object type is an INDEX, TABLE, VIEW, or
VARIABLE. The valid values are:

0
A FOR SYSTEM NAME clause should not be generated.

1
A FOR SYSTEM NAME clause should be generated.

If system-name-option is not specified, 1 will be used.
privileges-option

The privileges option specifies whether GRANT SQL statements should be generated on the specified
database object. If privileges are not supported by the specified database object, the privileges option
is ignored. The valid values are:

0
GRANT SQL statements should not be generated.

1
GRANT SQL statements should be generated.

If privileges-option is not specified, 1 will be used.
ccsid-option

The CCSID option specifies whether the CCSID attribute should be generated for column definitions
when the object type is a TABLE. The valid values are:

0
CCSID attribute should not be generated.

1
CCSID attribute should be generated.

If ccsid-option is not specified, 1 will be used.
create-or-replace-option

The create or replace option specifies whether CREATE OR REPLACE should be generated for the
specified database object on the CREATE statement. This option is ignored if the specified database
object does not support CREATE OR REPLACE. The valid values are:

0
CREATE OR REPLACE should not be generated.

1
CREATE OR REPLACE should be generated.

If create-or-replace-option is not specified, 0 will be used.
obfuscate-option

The obfuscate option specifies whether an obfuscated SQL statement should be returned for SQL
functions, SQL procedures, or SQL triggers that were not created using obfuscated statements. This
option is ignored if the standards option is not ‘0’. This option is also ignored if the object is not an SQL

290 IBM i: Database Performance and Query Optimization

function, procedure, or trigger. This option is ignored if the object is already obfuscated. Setting
Obfuscate option = 0 cannot be used as a means of obtaining the unobfuscated SQL statement for an
obfuscated object. The valid values are:

0
An obfuscated statement should not be generated.

1
An obfuscated statement should be generated for SQL functions, SQL procedures, or SQL triggers.

If obfuscate-option is not specified, 0 will be used.
activate-access-control-option

The activate row and column access control option specifies whether an ALTER TABLE to activate row
and column access control should be generated when the object type is a TABLE. This option is
ignored if the standards option is not ‘0’ or '1'. The valid values are:

0
Activate row and column access control should not be generated.

1
Activate row and column access control should be generated.

If activate-access-control-option is not specified, 1 will be used.
mask-and-permission-option

The mask and permission option specifies whether row permissions and column masks should be
generated when the object type is a TABLE. This option is ignored if the standards option is not ‘0’ or
'1'. The valid values are:

0
Permissions and masks should not be generated.

1
Permissions and masks should be generated.

If mask-and-permission-option is not specified, 1 will be used.
qualified-name-option

The qualified name option specifies whether qualified or unqualified names should be generated for
the specified database object. The valid values are:

0
Qualified object names should be generated. Unqualified names within the body of SQL routines
will remain unqualified.

1
Unqualified object names should be generated when the a library is found which matches the
database object library name. Any SQL object or column reference that is RDB qualified will be
generated in its fully qualified form. For example, rdb-name.schema-name.table-name and rdb-
name.schema-name.table-name.column-name references will retain their full qualification.

If qualified-name-option is not specified, 0 will be used.
additional-index-option

The additional index option specifies whether additional CREATE INDEX statements will be generated
for DDS-created keyed physical or logical files. The valid values are:

0
Additional CREATE INDEX statements will not be generated.

1
An additional CREATE INDEX statement will be generated that matches the index for a DDS-
created keyed physical file. If the physical file has a PRIMARY KEY constraint, a CREATE INDEX
statement is not generated.
An additional CREATE INDEX statement will be generated that matches the index for a DDS-
created keyed logical file. If a value of ‘1’ is specified for the index instead of view option, an

Database performance and query optimization 291

additional CREATE INDEX statement is not generated. Additional CREATE INDEX statements will
also be generated that match the join indexes of a DDS-created join logical file.

If additional-index-option is not specified, 0 will be used.
index-instead-of-view-option

The Index instead of view option specifies whether a CREATE INDEX or CREATE VIEW statement will
be generated for a DDS-created keyed logical file. The valid values are:

0
A CREATE VIEW statement will be generated.

1
A CREATE INDEX statement will be generated that matches the index for a DDS-created keyed
logical file.

If index-instead-of-view-option is not specified, 0 will be used.

Examples

• Generate DDL for all tables in a schema and return the source as a result set.

CALL QSYS2.GENERATE_SQL('%', 'SAMPLE_CORPDB', 'TABLE', REPLACE_OPTION => '0');

• Generate DDL for all indexes starting with ‘X’ within the SAMPLE_CORPDB schema, place the output in a
file named DDLSOURCE/GENFILE member INDEXSRC.

CALL QSYS2.GENERATE_SQL('X%', 'SAMPLE_CORPDB', 'INDEX',
 'GENFILE', 'DDLSOURCE', 'INDEXSRC',
 REPLACE_OPTION => '0');

• Generate DDL for a single table and include the constraints within a CREATE OR REPLACE TABLE
statement.

CALL QSYS2.GENERATE_SQL('EMPLOYEE', 'SAMPLE_CORPDB', 'TABLE',
 'GENFILE', 'DDLSOURCE', 'MASTERSRC',
 CREATE_OR_REPLACE_OPTION => '1',
 CONSTRAINT_OPTION => '2');

GENERATE_SQL_OBJECTS procedure

The GENERATE_SQL_OBJECTS procedure generates the SQL data definition language (DDL) statements
required to recreate a set of database objects. The results are returned in the specified database source
file member or as a result set. The procedure will generate the objects in the source file member such that
dependent objects are generated after depended on objects.

The database source file member will contain the generated SQL statements. If the output source file is
QTEMP/Q_GENSQOBJ, the source file is returned as a result set as well.

292 IBM i: Database Performance and Query Optimization

GENERATE_SQL_OBJECTS (

SYSTEM_TABLE_NAME =>

system_table-name

,

SYSTEM_TABLE_SCHEMA =>

system-table-schema

,

DATABASE_SOURCE_FILE_NAME =>

database-source-file-name

,

DATABASE_SOURCE_FILE_LIBRARY_NAME =>

database-source-file-library-name

,

DATABASE_SOURCE_FILE_MEMBER =>

database-source-file-member

,

SEVERITY_LEVEL =>

severity-level

,

REPLACE_OPTION =>

replace-option

,

STATEMENT_FORMATTING_OPTION =>

statement-formatting-option

,

DATE_FORMAT =>

date-format

,

DATE_SEPARATOR =>

date-separator

,

TIME_FORMAT =>

time-format

,

TIME_SEPARATOR =>

time-separator

,

NAMING_OPTION =>

naming-option

,

DECIMAL_POINT =>

decimal-point

,

STANDARDS_OPTION =>

standards-option

,

DROP_OPTION =>

drop-option

,

MESSAGE_LEVEL =>

message-level

,

COMMENT_OPTION =>

comment-option

,

LABEL_OPTION =>

label-option

,

HEADER_OPTION =>

header-option

,

TRIGGER_OPTION =>

trigger-option

,

CONSTRAINT_OPTION =>

constraint-option

,

SYSTEM_NAME_OPTION =>

system-name-option

,

PRIVILEGES_OPTION =>

privileges-option

,

CCSID_OPTION =>

ccsid-option

,

CREATE_OR_REPLACE_OPTION =>

create-or-replace-option

,

OBFUSCATE_OPTION =>

obfuscate-option

,

ACTIVATE_ROW_AND_COLUMN_ACCESS_CONTROL_OPTION =>

activate-access-control-option

,

MASK_AND_PERMISSION_OPTION =>

mask-and-permission-option

,

QUALIFIED_NAME_OPTION =>

qualified-name-option

,

ADDITIONAL_INDEX_OPTION =>

additional-index-option

,

INDEX_INSTEAD_OF_VIEW_OPTION =>

index-instead-of-view-option

)

The schema is QSYS2.

system-table-name
A character or graphic string expression that identifies the name of a table that contains the names
and types of the database objects for which DDL will be generated. The system name of the table

Database performance and query optimization 293

must be specified. The name is case sensitive. Delimiters must be specified if they are required. For
example, a file with a name of "abc" must be specified as "abc". A file with a name of ABC must be
specified in upper case. Wildcard characters are not supported.
The specified table must contain three columns that contain the names and types of the objects for
which DDL will be generated. The column names of the table must be OBJECT_SCHEMA,
OBJECT_NAME, and SQL_OBJECT_TYPE, in that order.
For example, create the table like this:

CREATE TABLE QTEMP.INORDER (OBJECT_SCHEMA VARCHAR(258),
 OBJECT_NAME VARCHAR(258),
 SQL_OBJECT_TYPE CHAR(10));

The contents of the columns must be specified according to the following rules for the corresponding
parameters in the QSQGNDDL API. Each row in the table must identify an object that is distinct from
every other object in the table.
OBJECT_SCHEMA

Identifies the schema name of an object for which DDL will be generated. The name must be
delimited if delimiters are required in an SQL statement. This name is ignored if the specified
object type is SCHEMA. *LIBL and *CURLIB are not allowed.

OBJECT_NAME
Identifies the name of an object for which DDL will be generated. The name must be delimited if
delimiters are required in an SQL statement. If the object type is a FUNCTION or PROCEDURE, this
name must be the specific name of the function or procedure. If TABLE or VIEW is specified for the
object type, the object name must not identify an alias.

SQL_OBJECT_TYPE
Identifies the SQL object type of an object for which DDL will be generated.
ALIAS

The object is an SQL alias.
CONSTRAINT

The object attribute is a constraint.
FUNCTION

The object is an SQL function.
INDEX

The object is an SQL index.
MASK

The object is an SQL column mask.
PERMISSION

The object is an SQL row permission.
PROCEDURE

The object is an SQL procedure.
SCHEMA

The object is an SQL schema.
SEQUENCE

The object is an SQL sequence.
TABLE

The object is an SQL table or physical file.
TRIGGER

The object attribute is a trigger.
TYPE

The object is an SQL type.
VARIABLE

The object is an SQL global variable.

294 IBM i: Database Performance and Query Optimization

VIEW
The object is an SQL view or logical file.

XSR
The object is an XML schema repository object.

system-table-schema
A character or graphic string expression that identifies the name of the library of the table that
contains the names and types of the database objects for which DDL will be generated. The system
name of the schema must be specified. The name is case sensitive. Delimiters must be specified if
they are required. For example, a schema with a name of "lib1" must be specified as "lib1". A schema
with a name of LIB1 must be specified in upper case. Wildcard characters are not supported. *LIBL
and *CURLIB are not allowed.

The default is QTEMP.

database-source-file-name
A character or graphic string expression that identifies the name of the source file that contains the
SQL statements generated by the procedure. The name must be a valid system name. The name is
case sensitive. If delimiters are required for the name to be valid, they must be specified. For
example, a file with a name of "abc" must be specified with the surrounding quotes. A file with a name
of ABC must be specified in upper case.
The record length of the specified source file must be greater than or equal to 92.
If database-source-file-name is not specified, Q_GENSQOBJ will be used.

database-source-file-library-name
A character or graphic string expression that identifies the name of the library containing the source
file that contains the SQL statements generated by the procedure. The name must be a valid system
name. The name is case sensitive. If delimiters are required for the name to be valid, they must be
specified.
If database-source-file-library-name is not specified, QTEMP will be used.

database-source-file-member
A character or graphic string expression that identifies the name of the source file member that
contains the SQL statements generated by the procedure. The name must be a valid system name.
The name is case sensitive. If delimiters are required for the name to be valid, they must be specified.

If values are provided for database-source-file-library-name, database-source-file-name, and
database-source-file-member the object must exist.

If database-source-file-member is not specified, Q_GENSQOBJ will be used.

severity-level
The severity level at which the operation fails. If errors occur that have a severity level greater than
this value, the operation ends. The valid values are in the range 0 through 39 inclusive. Any severity 40
error will cause the procedure to fail.
If severity-level is not specified, 39 will be used.

replace-option
The replace option for the database source file member. The valid values are:

0
The resulting SQL statements are appended to the end of the database source file member.

1
The database source file member is cleared prior to adding the resulting SQL statements. If this
option is chosen, the member may be cleared even if an error is returned from the procedure.

If replace-option is not specified, 1 will be used.
statement-formatting-option

The formatting option used in the generated SQL statements. The valid values are:

0
No additional formatting characters are added to the generated SQL statements.

Database performance and query optimization 295

1
Additional end-of-line characters and tab characters are added to the generated SQL statements.

If statement-formatting-option is not specified, 1 will be used.
date-format

The date format used for date constants in a generated SQL CREATE TABLE statement. The date
format may not apply to date constants that are in ISO, EUR, USA, or JIS format in a CREATE VIEW,
CREATE TRIGGER, CREATE FUNCTION, CREATE PROCEDURE, CREATE MASK, or CREATE
PERMISSION.
If date-format is not specified, ISO will be used.

date-separator
The date separator used for date constants in a generated SQL CREATE TABLE statement. The date
separator may not apply to date constants that are in ISO, EUR, USA, or JIS format in a CREATE VIEW,
CREATE TRIGGER, CREATE FUNCTION, CREATE PROCEDURE, CREATE MASK, or CREATE
PERMISSION statement.
If date-separator is not specified, - will be used.

time-format
The format used for time constants in a generated SQL CREATE TABLE statement. The time format
may not apply to time constants that are in ISO, EUR, USA, or JIS format in a CREATE VIEW, CREATE
TRIGGER, CREATE FUNCTION, CREATE PROCEDURE, CREATE MASK, or CREATE PERMISSION
statement.
If time-format is not specified, ISO will be used.

time-separator
The time separator used for time constants in a generated SQL CREATE TABLE statement. The time
separator may not apply to time constants that are in ISO, EUR, USA, or JIS format in a CREATE VIEW,
CREATE TRIGGER, CREATE FUNCTION, CREATE PROCEDURE, CREATE MASK, or CREATE
PERMISSION statement.
If time-separator is not specified, . will be used.

naming-option
The naming convention used for qualified names in the generated SQL statements. The valid values
are:

SQL
schema.table syntax

SYS
library/file syntax

If naming-option is not specified, SQL will be used.
decimal-point

The decimal point used for numeric constants. The valid values are:

.
Period separator

,
Comma separator

If decimal-point is not specified, . will be used.
standards-option

The standards option specifies whether the generated SQL statements should contain Db2 for i
extensions or whether the statements should conform to the Db2 family SQL or to the ANS and ISO
SQL standards. The valid values are:

0
Db2 for i extensions may be generated in SQL statements.

1
The generated SQL statements must conform to SQL statements common to the Db2 family.

296 IBM i: Database Performance and Query Optimization

2
The generated SQL statements must conform to the ANSI and ISO SQL standards.

If standards-option is not specified, 0 will be used.
drop-option

The drop option specifies whether DROP (or ALTER) SQL statements should be generated prior to the
CREATE statement to drop the specified object. The valid values are:

0
DROP statements should not be generated.

1
DROP statements should be generated.

If drop-option is not specified, 0 will be used.
message-level

The severity level at which the messages are generated. If errors occur that have a severity level
greater than this value, a message is generated in the output. The valid values are in the range 0
through 39 inclusive. The message level must be less than or equal to the severity level.
If message-level is not specified, 0 will be used.

comment-option
The comment option specifies whether COMMENT ON SQL statements should be generated if a
comment exists on the specified database object. If comments are not supported by the specified
database object, the comment option is ignored. The valid values are:

0
COMMENT ON SQL statements should not be generated.

1
COMMENT ON SQL statements should be generated. If the specified database object type is a
table or view, COMMENT ON SQL statements will also be generated for columns of the table or
view.

If comment-option is not specified, 1 will be used.
label-option

The label option specifies whether LABEL ON SQL statements should be generated if a label exists on
the specified database object. If labels are not supported by the specified database object, the label
option is ignored. The valid values are:

0
LABEL ON SQL statements should not be generated.

1
LABEL ON SQL statements should be generated. If the specified database object type is a table or
view, LABEL ON SQL statements will also be generated for columns of the table or view.

If label-option is not specified, 1 will be used.
header-option

The header option specifies whether a header should be generated prior to the first generated
statement. The header consists of comments that describe the version, date and time, the relational
database, and some of the options used to generate the SQL statements. The valid values are:

0
A header should not be generated.

1
A header should be generated.

If header-option is not specified, 1 will be used.
trigger-option

The trigger option specifies whether triggers should be generated when the object type is a TABLE or
VIEW. The valid values are:

Database performance and query optimization 297

0
Triggers should not be generated.

1
Triggers should be generated.

If trigger-option is not specified, 1 will be used.
constraint-option

The constraint option specifies whether constraints should be generated when the object type is a
TABLE. The valid values are:

0
Constraints should not be generated.

1
Constraints should be generated.

2
Constraints should be generated as part of the CREATE TABLE statement.

If constraint-option is not specified, 1 will be used.
system-name-option

The system name option specifies whether a FOR SYSTEM NAME clause should be generated for the
system name when it is different from the SQL name and the object type is an INDEX, TABLE, VIEW, or
VARIABLE. The valid values are:

0
A FOR SYSTEM NAME clause should not be generated.

1
A FOR SYSTEM NAME clause should be generated.

If system-name-option is not specified, 1 will be used.
privileges-option

The privileges option specifies whether GRANT SQL statements should be generated on the specified
database object. If privileges are not supported by the specified database object, the privileges option
is ignored. The valid values are:

0
GRANT SQL statements should not be generated.

1
GRANT SQL statements should be generated.

If privileges-option is not specified, 1 will be used.
ccsid-option

The CCSID option specifies whether the CCSID attribute should be generated for column definitions
when the object type is a TABLE. The valid values are:

0
CCSID attribute should not be generated.

1
CCSID attribute should be generated.

If ccsid-option is not specified, 1 will be used.
create-or-replace-option

The create or replace option specifies whether CREATE OR REPLACE should be generated for the
specified database object on the CREATE statement. This option is ignored if the specified database
object does not support CREATE OR REPLACE. The valid values are:

0
CREATE OR REPLACE should not be generated.

1
CREATE OR REPLACE should be generated.

298 IBM i: Database Performance and Query Optimization

If create-or-replace-option is not specified, 0 will be used.
obfuscate-option

The obfuscate option specifies whether an obfuscated SQL statement should be returned for SQL
functions, SQL procedures, or SQL triggers that were not created using obfuscated statements. This
option is ignored if the standards option is not ‘0’. This option is also ignored if the object is not an SQL
function, procedure, or tirigger. This option is ignored if the object is already obfuscated. Setting
Obfuscate option = 0 cannot be used as a means of obtaining the unobfuscated SQL statement for an
obfuscated object. The valid values are:

0
An obfuscated statement should not be generated.

1
An obfuscated statement should be generated for SQL functions, SQL procedures, or SQL triggers.

If obfuscate-option is not specified, 0 will be used.
activate-access-control-option

The activate row and column access control option specifies whether an ALTER TABLE to activate row
and column access control should be generated when the object type is a TABLE. This option is
ignored if the standards option is not '0' or '1'. The valid values are:

0
Activate row and column access control should not be generated.

1
Activate row and column access control should be generated.

If activate-access-control-option is not specified, 1 will be used.
mask-and-permission-option

The mask and permission option specifies whether row permissions and column masks should be
generated when the object type is a TABLE. This option is ignored if the standards option is not '0' or
'1'. The valid values are:

0
Permissions and masks should not be generated.

1
Permissions and masks should be generated.

If mask-and-permission-option is not specified, 1 will be used.
qualified-name-option

The qualified name option specifies whether qualified or unqualified names should be generated for
the specified database object. The valid values are:

0
Qualified object names should be generated. Unqualified names within the body of SQL routines
will remain unqualified.

1
Unqualified object names should be generated when the a library is found which matches the
database object library name. Any SQL object or column reference that is RDB qualified will be
generated in its fully qualified form. For example, rdb-name.schema-name.table-name and rdb-
name.schema-name.table-name.column-name references will retain their full qualification.

If qualified-name-option is not specified, 0 will be used.
additional-index-option

The additional index option specifies whether additional CREATE INDEX statements will be generated
for DDS-created keyed physical or logical files. The valid values are:

0
Additional CREATE INDEX statements will not be generated.

Database performance and query optimization 299

1
An additional CREATE INDEX statement will be generated that matches the index for a DDS-
created keyed physical file. If the physical file has a PRIMARY KEY constraint, a CREATE INDEX
statement is not generated.
An additional CREATE INDEX statement will be generated that matches the index for a DDS-
created keyed logical file. If a value of ‘1’ is specified for the index instead of view option, an
additional CREATE INDEX statement is not generated. Additional CREATE INDEX statements will
also be generated that match the join indexes of a DDS-created join logical file.

If additional-index-option is not specified, 0 will be used.
index-instead-of-view-option

The index instead of view option specifies whether a CREATE INDEX or CREATE VIEW statement will
be generated for a DDS-created keyed logical file. The valid values are:

0
A CREATE VIEW statement will be generated.

1
A CREATE INDEX statement will be generated that matches the index for a DDS-created keyed
logical file.

If index-instead-of-view-option is not specified, 0 will be used.

Notes

• If an error occurs while generating the DDL for an object, the source file will contain the error and
processing will continue to the next object. After processing the last object, a warning SQLSTATE
'01H52' will be returned.

• Objects are generated in the following order:

1. Schemas
2. Types
3. Sequences
4. Aliases
5. Non-MQT tables and any constraints and indexes on those tables
6. Functions
7. Procedures
8. Variables
9. Views, DDS-created logical files and MQTs and any constraints and indexes on those tables

10. Triggers
11. Masks
12. Permissions
13. XSR objects

Restrictions

• One use of this procedure is to create a clone of a set of objects in another library by using
QUALIFIED_NAME_OPTION=>1, setting the current schema and path, and then running the generated
script.

– If a depended on object is not included in the list of objects for which DDL will be generated, errors
may occur when attempting to run the generated script. For example, if view V1 is based on table T1,
but only V1 is specified, the attempt to run the generated script will fail because T1 was not included.

– The QSQGNDDL API, on which this procedure is based, generates a qualified name in some cases.
Thus, it may be necessary to make minor modifications to the script prior to running it. For more

300 IBM i: Database Performance and Query Optimization

information see the Qualified name option parameter in Generate Data Definition Language
(QSQGNDDL) API.

• A function or procedure that has a parameter with a DEFAULT clause that references a variable, view, or
MQT will not create when running the generated script. This is because variables, views, and MQTs are
generated after functions and procedures. Note that references to variables, views, and MQTs within the
body of function or procedure are soft dependencies and will not prevent the create.

• A variable that contains a DEFAULT clause that references a view or MQT will not create when running
the generated script. This is because views and MQTs are generated after variables.

Examples

• Generate ordered DDL for the objects listed in the QTEMP.INORDER file.

CALL QSYS2.GENERATE_SQL_OBJECTS('INORDER', 'QTEMP');

RESTART_IDENTITY procedure
The RESTART_IDENTITY procedure examines the source-table and determines the identity column and its
next value. The next value and column name are used to configure the target-table to use the same next
value.

RESTART_IDENTITY (

source-schema , source-table , target-schema , target-table)

The schema is QSYS2.

source-schema
A character or graphic string for the schema name containing source-file. It must be a system schema
name.

source-table
A character or graphic string for the table name that has the identity value to copy. It must be a
system table name. The table must contain an identity column.

target-schema
A character or graphic string for the schema name containing target-table. It must be a system
schema name.

target-table
A character or graphic string for the table name that is to have its identity column value reset. It must
be a system table name. The table must contain an identity column that has the same name as the
identity column in source-table.

Example

Set the identity column in NEWTABLE to have the same next value as the identity column in OLDTABLE

 CALL QSYS2.RESTART_IDENTITY('OLDLIB', 'OLDTABLE', 'NEWLIB', 'NEWTABLE')

IBM i Services
There are many system services that can be accessed through system-provided SQL views, procedures,
and functions. These provide an SQL interface to access, transform, order, and subset the information
without needing to code to a system API.

Application Services
These procedures and views provide interfaces that can be used in applications.

Database performance and query optimization 301

ENVIRONMENT_VARIABLE_INFO view
The ENVIRONMENT_VARIABLE_INFO view contains information about environment variables.

The values returned for the columns in the view are similar to the values returned by the WRKENVVAR CL
command or Get All System-Level Environment Variables API. Refer to the API for more detailed
information.

Authorization: None required.

The following table describes the columns in the view. The system name is ENV_VARS. The schema is
QSYS2.

Table 67. ENVIRONMENT_VARIABLE_INFO view

Column Name System Column Name Data Type Description

ENVIRONMENT_VARIABLE_TYPE VAR_TYPE VARCHAR(6) The type of environment variable.

SYSTEM
Defined as a system level environment
variable.

JOB
Defined as a job level environment variable.
This variable and value only apply to the
current connection.

PASE
Defined as an IBM® Portable Application
Solutions Environment for i (PASE for i)
environment variable. This variable and
value only apply to the current job. PASE
variables are not returned unless the PASE
environment has been started.

ENVIRONMENT_VARIABLE_NAME VAR_NAME VARGRAPHIC(128) CCSID
1200

The name of the environment variable. If the
name is longer than 128 characters, it will be
truncated with no warning. If
ENVIRONMENT_VARIABLE_CCSID is 65535, the
content of this column is set using the job default
CCSID.

ENVIRONMENT_VARIABLE_VALUE VAR_VALUE VARGRAPHIC(1024)
CCSID 1200

Nullable

The current value of the environment variable. If
the value is longer than 1024 characters, it will be
truncated with no warning. If
ENVIRONMENT_VARIABLE_CCSID is 65535, the
content of this column is set using the job default
CCSID.

Contains null if there is no value.

ENVIRONMENT_VARIABLE_BINARY_NAME VAR_BNAME VARBINARY(128) The name of the environment variable in binary
form. This is the raw value for the name. If the
name is longer than 128 characters, it will be
truncated with no warning.

ENVIRONMENT_VARIABLE_BINARY_VALUE VAR_BVALUE VARBINARY(1024)

Nullable

The current value of the environment variable.
This is the raw value for the value. If the value is
longer than 1024 characters, it will be truncated
with no warning.

Contains null if there is no value.

ENVIRONMENT_VARIABLE_CCSID VAR_CCSID INTEGER The CCSID value associated with the environment
variable.

Example

Look at all system level environment variables and their values for this connection:

SELECT ENVIRONMENT_VARIABLE_NAME, ENVIRONMENT_VARIABLE_VALUE
 FROM QSYS2.ENVIRONMENT_VARIABLE_INFO
 WHERE ENVIRONMENT_VARIABLE_TYPE = 'SYSTEM'

302 IBM i: Database Performance and Query Optimization

QCMDEXC procedure
The QCMDEXC procedure executes a CL command.

QCMDEXC (CL-command-string)

The schema is QSYS2.

CL-command-string
A character string expression containing a CL command.

The CL-command-string will be run as a CL command.

Examples

• Add a library to the library list.

CALL QSYS2.QCMDEXC('ADDLIBLE PRODLIB2');

• Add a library to the library list using an expression.

DECLARE V_LIBRARY_NAME VARCHAR(10);
SET V_LIBRARY_NAME = 'PRODLIB2';
CALL QSYS2/QCMDEXC('ADDLIBLE ' CONCAT V_LIBRARY_NAME);

SERVICES_INFO table
The SERVICES_INFO table returns information about system-supplied services.

The following table describes the columns in the table. The system name is SERV_INFO. The schema is
QSYS2.

Table 68. SERVICES_INFO table

Column Name
System Column
Name Data Type Description

SERVICE_CATEGORY CATEGORY VARCHAR(40) Classification of the service.

• APPLICATION

• COMMUNICATION

• DATABASE-APPLICATION

• DATABASE-PERFORMANCE

• DATABASE-PLAN CACHE

• DATABASE-UTILITY

• JAVA

• JOURNAL

• LIBRARIAN

• MESSAGE HANDLING

• PRODUCT

• PTF

• SECURITY

• SPOOL

• STORAGE

• SYSTEM HEALTH

• WORK MANAGEMENT

SERVICE_SCHEMA_NAME SYS_NAME VARCHAR(128) Name of the schema containing the service.

SERVICE_NAME SERVNAME VARCHAR(128) Name of the service.

SQL_OBJECT_TYPE SQLTYPE VARCHAR(15) The type of object.

• PROCEDURE

• SCALAR FUNCTION

• TABLE

• TABLE FUNCTION

• VIEW

Database performance and query optimization 303

Table 68. SERVICES_INFO table (continued)

Column Name
System Column
Name Data Type Description

OBJECT_TYPE OBJTYPE VARCHAR(7)

Nullable

The system object type of the service.

• *FILE

• *SRVPGM

Contains null for procedures and functions implemented as
external routines.

SYSTEM_OBJECT_NAME SYS_ONAME VARCHAR(10)

Nullable

The system name of the service.

Contains null for procedures and functions implemented as
external routines.

LATEST_DB2_GROUP_LEVEL GROUPLVL INTEGER

Nullable

The DB2 for i PTF Group level which most recently changed this
service.

Contains null if the service has not been enhanced in a PTF in this
release.

INITIAL_DB2_GROUP_LEVEL INITIALLVL INTEGER

Nullable

The DB2 for i PTF Group level where this service was introduced.

Contains null if this service was available in the base for this
release.

EARLIEST_POSSIBLE_RELEASE MINRLS VARCHAR(6) The earliest release, in VxRxMx format, where a version of this
service is available.

EXAMPLE EXAMPLE VARCHAR(5000) An example SQL script that uses this service.

Example

Show all the available PTF services:

SELECT * FROM QSYS2.SERVICES_INFO
 WHERE SERVICE_CATEGORY = 'PTF'

DB2 PTF Group dependencies

To complement the DB2 PTF Group level information provided by the SERVICES_INFO catalog table, you
can determine the DB2 PTF Group dependency level for every static SQL statement within a module,
program, or service program. The QSYS2.SYSPROGRAMSTMTSTAT catalog contains one row for every
static SQL statement. The DB2 PTF Group dependency information is surfaced in two columns:
SQL_DB2_GROUP_LEVEL

Indicates the use of SQL language features. For example, new SQL statements or query clauses
surface as dependencies upon having a certain DB2 PTF Group level (or higher) installed before the
statement can be run.

This is an SQL syntax level and is an accurate indication of the dependency level.

SERVICES_DB2_GROUP_LEVEL
Indicates the consumption of IBM i Services. For example, queries that reference DB2 for i provided
views, functions, procedures, or global variables can surface possible dependencies upon having a
certain DB2 PTF Group level (or higher) installed before executing the statement. If multiple services
are used within a single SQL statement, the highest dependency level is returned.

The services that are instrumented are documented in “IBM i Services” on page 301 and DB2 for i
Services. SQL built-in functions and built-in global variables are also tracked.

This is not an exact indication of the DB2 PTF Group that is needed. It depends on how the service is
being used in your application. The information is provided based solely on the name of the service
and the knowledge of when the latest enhancement was added for that service. If the name of an
IBM-provided service matches an unqualified name in an SQL statement, it will be tracked as the IBM
service. Based on the reported use of these services, you will need to determine whether the reported
DB2 PTF Group is actually required.

304 IBM i: Database Performance and Query Optimization

To check all programs in APPLIB for potential SQL syntax and IBM i Service dependencies, execute the
following query. Only programs created after the SERVICES_INFO table was introduced will report this
information.

SELECT PROGRAM_NAME, SQL_DB2_GROUP_LEVEL, SERVICES_DB2_GROUP_LEVEL
 FROM QSYS2.SYSPROGRAMSTMTSTAT
 WHERE PROGRAM_SCHEMA = 'APPLIB' AND
 (SQL_DB2_GROUP_LEVEL IS NOT NULL OR
 SERVICES_DB2_GROUP_LEVEL IS NOT NULL);

To see more detailed information about which services are used in a program, including the name of each
service and the DB2 PTF Group level required for the service, perform the following steps:

1. STRDBG UPDPROD(*YES)
2. Precompile your program or build your SQL procedure, function, or trigger.

• To have informational messages written to the listing, add SET OPTION OUTPUT=*PRINT to your
SQL routine or specify the OUTPUT(*PRINT) parameter on the CRTSQLxxx or RUNSQLSTM CL
commands

3. For each reference to a service, message SQL7901 will be written to the joblog and, optionally, to the
precompile listing.

If you precompile with a TGTRLS of 7.1, a message will be issued for the earlier release as well with an
indication of the DB2 PTF Group level that is needed on that release. If the service is not supported for
a release, message SQL795B will be issued.

This information can be used to determine whether your application contains any content that might
require a certain level of DB2 PTF Group. If you need to deploy your application to a different partition or
an earlier release, this feedback can alert you to potential dependencies.

After you have created one or more objects using the steps above, you can query your job log to see if any
messages were issued that might need to be addressed.

SELECT MESSAGE_ID, MESSAGE_TEXT
 FROM TABLE(QSYS2.JOBLOG_INFO('*')) X
 WHERE MESSAGE_ID IN ('SQL7901', 'SQL795B')
 ORDER BY ORDINAL_POSITION;

Here is one more query to help tie this information together. It will tell you the DB2 PTF Group level that is
on a partition.

SELECT MAX(PTF_GROUP_LEVEL) AS DB2_PTF_LEVEL FROM QSYS2.GROUP_PTF_INFO
 WHERE PTF_GROUP_NAME LIKE 'SF9970%' AND PTF_GROUP_STATUS = 'INSTALLED';

SET_PASE_SHELL_INFO procedure
The SET_PASE_SHELL_INFO procedure provides the ability to set the path to the PASE shell for the
specified user or the path to the default shell returned for users that do not have a configured shell.

The path set by this procedure is returned in the pw_shell field in struct pw from PASE APIs such as Get
User Information for User Name (getpwnam) and Get User Information for User ID (getpwuid). It is also
returned by the QSYS2.USER_INFO view . If a user does not have a path set, the default shell path is
returned; if the default shell is not set, an empty string is returned. The pw_shell field is used by PASE
applications that need to execute shells for a user, such as the OpenSSH server. The OpenSSH server will
start this application as the initial program when the user logs in. If it is not set it will use /
QOpenSys/usr/bin/bsh instead.

Authorization:

• If AUTHORIZATION_NAME is *CURRENT or matches the caller of this procedure, no authorization is
needed.

• Otherwise the user calling this procedure must have:

– *SECADM special authority and

Database performance and query optimization 305

– *OBJMGT and *USE to the user profile identified by AUTHORIZATION_NAME.

SET_PASE_SHELL_INFO (

AUTHORIZATION_NAME =>

authorization-name ,

SHELL_PATH =>

shell-path)

The schema is QSYS2.

authorization-name
A character or graphic string expression that identifies an existing user profile name. Can also be one
of the following special values:
*CURRENT

Set the current user's shell.
*DEFAULT

Set the PASE shell to be used by any user that does not have an explicit value set. The default
does not apply to IBM supplied profiles.
The default is saved in the QSYS user profile. This is equivalent to specifying 'QSYS' for
authorization-name.

shell-path
A character or graphic string expression that specifies the path to a PASE shell. The string must begin
with a forward slash (/).
If shell-path is blanks, the empty string, or NULL, the shell path is removed for the user. Once the path
is removed, the value specified for *DEFAULT (if any) will apply to this user.

Examples

• Set the current user's shell to BASH shipped by 5733-OPS.

CALL QSYS2.SET_PASE_SHELL_INFO('*CURRENT',
 '/QOpenSys/QIBM/ProdData/OPS/tools/bin/bash');

• Set the default shell to be ksh for any users that do not have an explicit shell set.

CALL QSYS2.SET_PASE_SHELL_INFO('*DEFAULT', '/QOpenSys/usr/bin/ksh');

STACK_INFO table function
The STACK_INFO table function returns one row for each entry in the call stack for either a specific thread
or for every thread of the specified job. It returns information similar to what can be accessed through the
Display Job (DSPJOB) CL command and the Retrieve Call Stack (QWVRCSTK) API.

STACK_INFO (

JOB_NAME =>

job-name

,

THREAD_ID =>

thread-id

)

The schema is QSYS2.

Authorization: The authorization ID of the statement must have *JOBCTL special authority or must be the
same user profile that is running the specified job-name. If the authorization ID has *SERVICE special
authority, the returned call stack information will include Licensed Internal Code (LIC) stack entries.

306 IBM i: Database Performance and Query Optimization

https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/apis/qwvrcstk.htm?view=kc

job-name
The qualified job name to return stack information for. Can contain the following special value:
*

The current job name is used.
If job-name is not specified, the default is *.

thread-id
A numeric expression indicating the thread identifier to return information for. Can contain one of the
following special values:
ALL

Information for all the threads in the job is returned.
INITIAL

Information for the initial thread of the job is returned.
If thread-id is not specified:

• If job-name is *, the default is the value of the QSYS2.THREAD_ID global variable.
• Otherwise, the default is INITIAL.

The result of the function is a table containing multiple rows with the format shown in the following table.
All the columns are nullable.

Table 69. STACK_INFO table function

Column Name Data Type Description

THREAD_ID BIGINT The identifier for the specific thread.

THREAD_TYPE VARCHAR(6) Specifies how the thread was initiated.

SYSTEM
The thread was initiated by the operating system.

USER
The thread was initiated by a user process.

Contains the null value unless ALL was specified for the thread-id
input parameter.

ORDINAL_POSITION INTEGER A unique number for each row corresponding to a thread where 1 is
the first invocation entry for this thread and the highest number is the
most recent invocation entry for this thread.

ENTRY_TYPE VARCHAR(4) The type of stack entry.

ILE
This entry returns ILE program information. The columns
specific to JAVA, PASE, and LIC contain the null value.

JAVA
This entry returns JAVA information. The columns specific to ILE
and OPM, PASE, and LIC contain the null value.

LIC
This entry returns Licensed Internal Code (LIC) information. The
columns specific to ILE and OPM, JAVA, and PASE contain the
null value.

OPM
This entry returns OPM program information. The columns
specific to JAVA, PASE, and LIC contain the null value.

PASE
This entry returns PASE information. The columns specific to ILE
and OPM, JAVA, and LIC contain the null value.

––– ILE and OPM information ––––––––

PROGRAM_NAME VARCHAR(10) The name of the program or service program.

Contains the null value if the program name is not available.

PROGRAM_LIBRARY_NAME VARCHAR(10) The name of the library in which the program is located.

Contains the null value if the program is not located in a library or if
the program library name is not available.

Database performance and query optimization 307

Table 69. STACK_INFO table function (continued)

Column Name Data Type Description

STATEMENT_IDENTIFIERS VARCHAR(109) The high-level language statement identifier. If this column contains
the character representation of a number, the number is right-
adjusted and padded on the left with zeros (for example,
'0000000246'). If the call stack entry is for an integrated language
environment (ILE) procedure, more than one statement identifier may
exist. If more than one statement identifier is returned, each identifier
will be ten characters long with a single blank between them. Up to
ten identifiers will be returned.

Returns the null value if a statement identifier cannot be determined.

REQUEST_LEVEL INTEGER The level of the request-processing program or procedure.

Contains the null value if the program or procedure has not received a
request message or incomplete information is available.

CONTROL_BOUNDARY VARCHAR(3) Whether a control boundary exists for a program or procedure. A
control boundary is defined as any ILE call stack entry for which the
immediately preceding call stack entry is for an ILE procedure or
program object in a different activation group.

NO
No control boundary is active.

YES
A control boundary is active.

Contains the null value if information is not available or incomplete
information is available.

PROGRAM_ASP_NAME VARCHAR(10) The name of the auxiliary storage pool (ASP) device in which the
program is located. Can contain the following special value:

*SYSBAS
The program is located in the system ASP or a basic user ASP

Contains the null value if the name of the ASP cannot be determined.

PROGRAM_ASP_NUMBER INTEGER The numeric identifier of the ASP containing the program.

1
The program is in the system ASP.

2-32
The program is in a basic user ASP.

33-255
The program is in an independent ASP.

Contains the null value if the ASP device cannot be determined.

MODULE_NAME VARCHAR(10) The module containing the integrated language environment (ILE)
procedure.

Contains the null value if this is not an ILE program or if the module
name is not available.

MODULE_LIBRARY_NAME VARCHAR(10) The name of the library in which the module is located.

Contains the null value if this is not an ILE program or if the module
library name is not available.

PROCEDURE_NAME VARCHAR(4096) The name of the procedure at this level of the call stack.

Returns the null value if this is not an ILE program or if the procedure
name cannot be determined.

ACTIVATION_GROUP_NUMBER DECIMAL(20,0) The number of the activation group within which the program or
procedure is running. This is an internal number that uniquely
identifies the activation group within the job.

Contains the null value if this is not an ILE program or incomplete
information is available.

308 IBM i: Database Performance and Query Optimization

Table 69. STACK_INFO table function (continued)

Column Name Data Type Description

ACTIVATION_GROUP_NAME VARCHAR(10) The name of the activation group within which the program or
procedure is running. Can contain the following special values:

*DFTACTGRP
The activation group does not have a specific name. The
activation group is one of the default activation groups for the
system.

*NEW
The activation group does not have a specific name. The
activation group was created when the program was called.

Contains the null value if this is not an ILE program or incomplete
information is available.

MI_INSTRUCTION_NUMBER INTEGER The current machine instruction number in the program.

Contains the null value if this is not an OPM program.

––– JAVA information ––––––––

JAVA_LINE_NUMBER INTEGER The line number where the invocation was interrupted.

Contains the null value if no line number can be determined.

JAVA_BYTE_CODE_OFFSET INTEGER The offset in bytes from the beginning of the Java method byte codes
to the resume point for the invocation.

Contains the null value if no Java byte code offset can be determined.

JAVA_METHOD_TYPE VARCHAR(9) The type of Java method.

DE
The method is a direct execution Java method. The Java method
has been precompiled by the Java Transformer.

GLUE
The invocation is a Java Virtual Machine glue frame used either
to perform a call from the JVM to a Java method or perform a
call to a Java native method.

INTERPRET
The method is an interpreted Java method. The Java method is
being interpreted by the Java Interpreter.

JIT
The method is a JIT compiled Java method. The Java method
has been compiled by the Java Just In Time Compiler.

MMI
The method is a MMI interpreted Java method. The Java method
is being interpreted by the Mixed Mode Java Interpreter.

Contains the null value if there is no information.

JAVA_CLASS_NAME DBCLOB(64000) CCSID 1200 The name of the Java class at this level of the call stack.

Returns the null value if the class name cannot be determined.

JAVA_METHOD_NAME DBCLOB(64000) CCSID 1200 The name of the Java method at this level of the call stack.

Returns the null value if the method name cannot be determined.

JAVA_METHOD_SIGNATURE DBCLOB(64000) CCSID 1200 The signature of the Java method at this level of the call stack.

Returns the null value if the signature cannot be determined.

JAVA_FILE_NAME DBCLOB(64000) CCSID 1200 The name of the Java file and directory that provides the location of
where the Java class was loaded at this level of the call stack. If the
Java class was loaded from a .jar or .zip file, then the location will be
the path to and the name of the .jar or .zip file. If the class was loaded
from a .class file, then the location will be the directory from which
the class was loaded.

Returns the null value if the file name cannot be determined.

JAVA_SOURCE_FILE_NAME DBCLOB(64000) CCSID 1200 The name of the Java source file at this level of the call stack.

Returns the null value if the source file name cannot be determined.

––– PASE information –––––––

Database performance and query optimization 309

Table 69. STACK_INFO table function (continued)

Column Name Data Type Description

PASE_LINE_NUMBER BIGINT The line number where the invocation was interrupted.

Contains the null value if no line number can be determined.

PASE_INSTRUCTION_ADDRESS DECIMAL(20,0) The IBM PASE for i memory address for the instruction that will run
when execution resumes for the invocation.

PASE_INSTRUCTION_OFFSET BIGINT The offset in bytes from the beginning of the start of the procedure to
the instruction that is either the suspend point for the invocation or
the resume point for the invocation.

PASE_KERNEL_CODE VARCHAR(3) Whether the invocation is running IBM PASE for i kernel code.

NO
The current invocation is not IBM PASE for i kernel code.

YES
The current invocation is IBM PASE for i kernel code.

Contains the null value if there is no information.

PASE_BIT_CODE INTEGER Whether the invocation is running 32-bit or 64-bit IBM PASE for i
code.

32
The invocation is running 32-bit IBM PASE for i code.

64
The invocation is running 64-bit IBM PASE for i code.

Contains the null value if PASE_KERNEL_CODE is YES.

PASE_ALTERNATE_RESUME_POINT VARCHAR(3) Whether the current entry is a second entry for a given invocation.
This flag is only used when the system can not reliably determine
which of two possible resume points will be used when an invocation
resumes execution.

NO
The current invocation does not have an alternate resume point.

YES
The current invocation has an alternate resume point.

Contains the null value if there is no information.

PASE_PROCEDURE_NAME DBCLOB(4000) CCSID 1200 The name of the procedure at this level of the call stack.

Returns the null value if the procedure name cannot be determined.

PASE_LOAD_MODULE_NAME DBCLOB(1000) CCSID 1200 The name of the load module at this level of the call stack.

Returns the null value if the load module name cannot be determined.

PASE_LOAD_MODULE_PATH DBCLOB(4000) CCSID 1200 The path to the load module at this level of the call stack.

Returns the null value if the load module path cannot be determined.

PASE_SOURCE_PATH_AND_FILE DBCLOB(1000) CCSID 1200 The path and name for the source file used to create the procedure.

Returns the null value if the path and name for the source file cannot
be determined.

––– LIC information –––––––

LIC_INSTRUCTION_OFFSET BIGINT The offset in bytes from the beginning of the start of the procedure to
the instruction that is either the suspend point for the invocation or
the resume point for the invocation.

LIC_PROCEDURE_NAME VARCHAR(4096) The name of the procedure at this level of the call stack.

Returns the null value if the procedure name cannot be determined.

LIC_LOAD_MODULE_NAME VARCHAR(64) The name of the load module at this level of the call stack.

Returns the null value if the load module name cannot be determined.

Example

• Find out whether ILE program MYPGM is on the stack for the current thread.

SELECT * FROM TABLE(QSYS2.STACK_INFO('*')) A
 WHERE PROGRAM_NAME = 'MYPGM';

310 IBM i: Database Performance and Query Optimization

• Create a table that contains the stack for all of the threads in a specific job.

CREATE TABLE STACK_DUMP AS (
 SELECT * FROM TABLE(QSYS2.STACK_INFO('358788/QLIWISVR/ADMIN1', 'ALL')) AS X
) WITH DATA;

Communication Services
These views and procedure provide communication information.

ENV_SYS_INFO view
The ENV_SYS_INFO view contains information about the current server.

The following table describes the columns in the view. The schema is SYSIBMADM.

Table 70. ENV_SYS_INFO view

Column Name System Column Name Data Type Description

OS_NAME OS_NAME VARCHAR(256)

Nullable

Operating system name.

OS_VERSION OS_VERSION VARCHAR(256)

Nullable

Operating system version.

OS_RELEASE OS_RELEASE VARCHAR(256)

Nullable

Operating system release.

HOST_NAME HOST_NAME VARCHAR(256)

Nullable

Name of the system.

TOTAL_CPUS TOTAL_CPUS INTEGER

Nullable

The maximum number of virtual processors defined within the
LPAR configuration.

CONFIGURED_CPUS CONFIGCPUS INTEGER

Nullable

The number of virtual processors currently available to the
partition.

CONFIGURED_MEMORY CONFIGMEM BIGINT

Nullable

Total amount of configured memory on the system, in
megabytes.

TOTAL_MEMORY TOTAL_MEM INTEGER

Nullable

Total amount of memory on the system, in megabytes.

Example

Return information about the current server.

SELECT * FROM SYSIBMADM.ENV_SYS_INFO

NETSTAT_INFO view
The NETSTAT_INFO view returns information about IPv4 and IPv6 network connections.

The values returned for the columns in the view are closely related to the values returned by List Network
Connections API and Retrieve Network Connection Data API. Refer to the APIs for more detailed
information.

The following table describes the columns in the view. The system name is NS_INFO. The schema is
QSYS2.

Database performance and query optimization 311

Table 71. NETSTAT_INFO view

Column Name System Column Name Data Type Description

CONNECTION_TYPE CONN_TYPE CHAR(4) The type of connection.

IPV4
The connection is an IPv4 connection.

IPV6
The connection is an IPv6 connection.

REMOTE_ADDRESS RMT_ADDR VARCHAR(45) The internet address of the remote host.

For IPv4:

• The address is in IPv4 address format. A value of 0.0.0.0
indicates that either the system is waiting for a connection to
open or that a UDP socket is being used. A value of 0 means
that the connection is a listening or UDP socket so this field
does not apply.

For IPv6:

• The address is in IPv6 address format. A value of :: means that
the connection is a listening socket so this field does not apply.

REMOTE_PORT RMT_PORT INTEGER The remote host port number. A value of 0 means that the
connection is a listening or UDP socket, so this field does not
apply.

REMOTE_PORT_NAME RMT_NAME VARGRAPHIC(14)
CCSID 1200

Nullable

The remote host well-known port name or the name from the
service table entry.

Contains null if there is no well-known port name.

LOCAL_ADDRESS LOCAL_ADDR VARCHAR(45) The local address of this connection on this system.

For IPv4:

• The address is in IPv4 address format. A value of 0.0.0.0
indicates that either the system is waiting for a connection to
open or that a UDP socket is being used.

For IPv6:

• The address is in IPv6 address format. A value of :: means the
local application specified that any local internet address can
be used.

LOCAL_PORT LOCAL_PORT INTEGER The local system port number.

LOCAL_PORT_NAME LOCAL_NAME VARGRAPHIC(14)
CCSID 1200

Nullable

The local system well-known port name or the name from the
service table entry.

Contains null if there is no well-known port name.

PROTOCOL PROTOCOL VARCHAR(3) Identifies the type of connection protocol.

TCP
A Transmission Control Protocol (TCP) connection or socket.

UDP
A User Datagram Protocol (UDP) socket.

312 IBM i: Database Performance and Query Optimization

Table 71. NETSTAT_INFO view (continued)

Column Name System Column Name Data Type Description

TCP_STATE STATE VARCHAR(12)

Nullable

The state of the connection.

CLOSED
This connection has ended.

CLOSE-WAIT
Waiting for an end connection request from the local user.

CLOSING
Waiting for an end connection request acknowledgment
from the remote host.

ESTABLISHED
The normal state in which data is transferred.

FIN-WAIT-1
Waiting for the remote host to acknowledge the local
system request to end the connection.

FIN-WAIT-2
Waiting for the remote host request to end the connection.

LAST-ACK
Waiting for the remote host to acknowledge an end
connection request.

LISTEN
Waiting for a connection request from any remote host.

SYN-RECEIVED
Waiting for a confirming connection request
acknowledgment.

SYN-SENT
Waiting for a matching connection request after having sent
a connection request.

TIME-WAIT
Waiting to allow the remote host enough time to receive the
local system's acknowledgment to end the connection.

Contains null if PROTOCOL is UDP.

IDLE_TIME IDLE_TIME DECIMAL(19,3) The length of time, in seconds, since the last activity on this
connection.

BIND_USER BIND_USER VARCHAR(10) The user profile of the job on the local system which first
performed a sockets API bind() of the socket.

BYTES_SENT_REMOTELY BYTES_OUT BIGINT The number of bytes sent to the remote host.

BYTES_RECEIVED_LOCALLY BYTES_IN BIGINT The number of bytes received from the remote host.

NETWORK_CONNECTION_TYPE NET_TYPE VARCHAR(4) The type of connection or socket.

*TCP
Identifies a transmission control protocol (TCP) connection
socket.

*UDP
Identifies a User Datagram Protocol (UDP) socket.

For IPv4, the following additional value can be returned.

*IPS
Identifies an Internet Protocol (IP) over SNA connection or
socket.

CONNECTION_OPEN_TYPE OPN_TYPE VARCHAR(7)

Nullable

The type of open for the connection.

ACTIVE
The local system opens the connection.

PASSIVE
A remote host opens the connection.

Contains null if PROTOCOL is UDP.

NUMBER_OF_ASSOCIATED_JOBS NUM_JOBS INTEGER The number of jobs associated with this connection.

LINE_DESCRIPTION LINE_DES VARCHAR(10)

Nullable

The local system line description associated with this connection.

Contains null if this is an IPv4 connection or if the connection is
not bound to a link local unicast interface.

Database performance and query optimization 313

Table 71. NETSTAT_INFO view (continued)

Column Name System Column Name Data Type Description

VIRTUAL_LAN_ID LAN_ID VARCHAR(4)

Nullable

The virtual LAN identifier associated with this connection. Can
also contain the following special value:

NONE
No virtual LAN identifier is associated with this connection.

Contains null if this is an IPv4 connection or if the connection is
not bound to a link local unicast interface.

CONNECTION_TRANSPORT_
LAYER

CNNTRANSPT VARCHAR(5) The transport that a connection is using. Values are:

• IPS
• TCPIP

IP_OPTIONS IP_OPTIONS BINARY(40)

Nullable

The hex value of IP datagram options that may have been
specified for a connection.

Contains null if this is an IPv6 connection or if no IP datagram
options have been specified.

ROUND_TRIP_TIME ROUND_TRIP BIGINT

Nullable

The smoothed round-trip time interval in milliseconds. This is a
measure of the time required for a segment on the connection to
arrive at its destination, to be processed, and to return an
acknowledgment to the client.

Contains null if PROTOCOL is UDP.

ROUND_TRIP_VARIANCE ROUND_VAR BIGINT

Nullable

The variance in milliseconds from the previous round-trip time.

Contains null if PROTOCOL is UDP.

CURRENT_RETRANSMISSIONS CT_RETRANS BIGINT

Nullable

The number of times the local system retransmitted the current
segment without receiving an acknowledgment.

Contains null if PROTOCOL is UDP.

TOTAL_RETRANSMISSIONS TL_RETRANS BIGINT

Nullable

The total number of times the local system retransmitted a
segment because an acknowledgement was not received. This is
a cumulative count of all segments resent during the entire time
the connection has been active.

Contains null if PROTOCOL is UDP.

TCP_CONNECTIONS_
CURRENTLY_ESTABLISHED

TCPCONN BIGINT

Nullable

The number of TCP connections for which the current state is
either ESTABLISHED or CLOSE-WAIT.

Contains null if PROTOCOL is UDP.

TCP_ACTIVE_OPENS TCPACTOPN BIGINT

Nullable

The number of times TCP connections have made a direct
transition to the SYN-SENT state from the CLOSED state. This
number is an indication of the number of times this local system
opened a connection to a remote system.

Contains null if PROTOCOL is UDP.

TCP_PASSIVE_OPENS TCPPSVOPN BIGINT

Nullable

The number of times TCP connections have made a direct
transition to the SYN-RECEIVED state from the LISTEN state. This
number is an indication of the number of times a remote system
opened a connection to this system.

Contains null if PROTOCOL is UDP.

TCP_FAILED_OPENS TCPFAILOPN BIGINT

Nullable

The total number of times TCP connections have made direct
transitions to a CLOSED state from either the SYN-SENT state or
the SYN-RECEIVED state and/or to LISTEN from SYN-RECEIVED.

Contains null if PROTOCOL is UDP.

TCP_ESTABLISHED_AND_THEN_
RESET

TCPESTRST BIGINT

Nullable

The number of times TCP connections have made a direct
transition to the CLOSED state from either the ESTABLISHED
state or the CLOSE-WAIT state.

Contains null if PROTOCOL is UDP.

TCP_SEGMENTS_SENT TCPSEGSENT BIGINT

Nullable

The total number of segments sent, including those on current
connections but excluding those containing only retransmitted
octets.

Contains null if PROTOCOL is UDP.

TCP_SEGMENTS_
RETRANSMITTED

TCPSEGRTRN BIGINT

Nullable

The number of TCP segments transmitted containing one or more
previously transmitted octets.

Contains null if PROTOCOL is UDP.

314 IBM i: Database Performance and Query Optimization

Table 71. NETSTAT_INFO view (continued)

Column Name System Column Name Data Type Description

TCP_SEGMENTS_RESET TCPSEGRST BIGINT

Nullable

The number of TCP segments sent containing the RST flag.

Contains null if PROTOCOL is UDP.

TCP_SEGMENTS_RECEIVED TCPSEGRCV BIGINT

Nullable

The total number of segments received, including those received
in error. This count includes segments received on currently
established connections.

Contains null if PROTOCOL is UDP.

TCP_SEGMENTS_RECEIVED_
ERROR

TCPSEGRCVE BIGINT

Nullable

The total number of segments received in error (for example, bad
TCP checksums).

Contains null if PROTOCOL is UDP.

OUTGOING_BYTES_BUFFERED BYTES_OUTB BIGINT

Nullable

The current number of bytes that an application has requested to
send, but TCP has not yet sent. If TCP has sent the bytes to the
remote system but has not yet received an acknowledgment, the
bytes are considered 'not sent'. They are included in this count.

Contains null if PROTOCOL is UDP.

USER_SEND_NEXT USRSNDNXT BIGINT

Nullable

The sequence number of the next byte of data to be sent by the
client application.

Contains null if PROTOCOL is UDP.

SEND_NEXT SEND_NEXT BIGINT

Nullable

The sequence number of the next byte of data that the local TCP
application sends to the remote TCP application.

Contains null if PROTOCOL is UDP.

SEND_UNACKNOWLEDGED SNDUNACK BIGINT

Nullable

The sequence number of the last segment sent that was not
acknowledged. This is the smallest sequence number of the send
window.

Contains null if PROTOCOL is UDP.

OUTGOING_PUSH_NUMBER OUTPSHNBR BIGINT

Nullable

The sequence number of the last byte of push data in the
outgoing stream. This value is zero if no push data is in the
outgoing data stream.

Contains null if PROTOCOL is UDP.

OUTGOING_URGENCY_NUMBER OUTURGNBR BIGINT

Nullable

The sequence number of the last byte of urgent data in the
outgoing data stream. This value is zero if no urgent data is in the
outgoing data stream.

Contains null if PROTOCOL is UDP.

OUTGOING_WINDOW_NUMBER OUTWINNBR BIGINT

Nullable

The largest sequence number in the send window of the
connection. The local TCP application cannot send data bytes
with sequence numbers greater than the outgoing window
number.

Contains null if PROTOCOL is UDP.

INCOMING_BYTES_BUFFERED BYTES_INB BIGINT

Nullable

The current number of bytes that are received and buffered by
TCP. These bytes are available to be read by an application.

Contains null if PROTOCOL is UDP.

RECEIVE_NEXT RCVNEXT BIGINT

Nullable

The next sequence number the local TCP is expecting to receive.

Contains null if PROTOCOL is UDP.

USER_RECEIVE_NEXT USRRCVNXT BIGINT

Nullable

The sequence number of the next byte to be passed to the
application by TCP.

Contains null if PROTOCOL is UDP.

INCOMING_PUSH_NUMBER INPSHNBR BIGINT

Nullable

The sequence number of the last byte of pushed data in the
incoming data stream. This value is zero if no push data is in the
incoming data stream.

Contains null if PROTOCOL is UDP.

INCOMING_URGENCY_NUMBER INURGNBR BIGINT

Nullable

The sequence number of the last byte of urgent data in the
incoming data stream. This value is zero if no urgent data is in the
incoming data stream.

Contains null if PROTOCOL is UDP.

Database performance and query optimization 315

Table 71. NETSTAT_INFO view (continued)

Column Name System Column Name Data Type Description

INCOMING_WINDOW_NUMBER INWINNBR BIGINT

Nullable

The largest sequence number in the incoming window of this
connection. Data bytes in the incoming stream having sequence
numbers larger than this number are not accepted.

Contains null if PROTOCOL is UDP.

MAXIMUM_WINDOW_SIZE MAXWINSIZ BIGINT

Nullable

The largest size of the send window, in bytes, during the entire
time the connection has been active.

Contains null if PROTOCOL is UDP.

CURRENT_WINDOW_SIZE CURWINSIZ BIGINT

Nullable

The current send window size in bytes.

Contains null if PROTOCOL is UDP.

LAST_UPDATE LSTUPD BIGINT

Nullable

The sequence number of the incoming segment used for the last
window update that occurred on the connection.

Contains null if PROTOCOL is UDP.

LAST_UPDATE_ACKNOWLEDGED LSTUPDACK BIGINT

Nullable

The acknowledgment number of the incoming segment used for
the last window update that occurred on the connection.

Contains null if PROTOCOL is UDP.

CONGESTION_WINDOW CONGESTWIN BIGINT

Nullable

The number of segments that are sent on the next transmission.
If an acknowledgment is received, the number is increased. If an
acknowledgment is not received, the number is reset to the
smallest allowable number.

Contains null if PROTOCOL is UDP.

SLOW_START_THRESHOLD SLWSTRTHR BIGINT

Nullable

The value of the slow-start threshold.

Contains null if PROTOCOL is UDP.

MAXIMUM_SEGMENT_SIZE MAXSEGSIZ BIGINT

Nullable

The size in bytes of the largest segment that may be transmitted
on this connection.

Contains null if PROTOCOL is UDP.

INITIAL_SEND_SEQUENCE_
NUMBER

SNDSEQNBR BIGINT

Nullable

The first sequence number sent on this connection.

Contains null if PROTOCOL is UDP.

INITIAL_RECEIVE_SEQUENCE_
NUMBER

RCVSEQNBR BIGINT

Nullable

The first sequence number received on this connection.

Contains null if PROTOCOL is UDP.

UDP_DATAGRAMS_SENT UDPSENT BIGINT

Nullable

The total number of UDP datagrams sent from all connections
since TCP/IP was started.

Contains null if PROTOCOL is TCP.

UDP_DATAGRAMS_RECEIVED UDPRCV BIGINT

Nullable

The total number of UDP datagrams received, including those
received in error. This count includes datagrams received on
currently established connections.

Contains null if PROTOCOL is TCP.

UDP_DATAGRAMS_NOT_
DELIVERED_PORT_
NOT_FOUND

UDPNDPNF BIGINT

Nullable

The total number of received UDP datagrams for UDP users for
which there was no application at the destination port.

Contains null if PROTOCOL is TCP.

UDP_DATAGRAMS_NOT_
DELIVERED_OTHER

UDPNDOTHER BIGINT

Nullable

The number of received UDP datagrams that could not be
delivered for reasons other than the lack of an application at the
destination port.

Contains null if PROTOCOL is TCP.

SOCKET_STATE SOCSTATE VARCHAR(13) The current state of the socket. Values are:

• BOUND
• CONNECTED
• CONNECTING
• DISCONNECTED
• ERROR
• LISTENING
• UNBOUND
• UNINITIALIZED

316 IBM i: Database Performance and Query Optimization

Table 71. NETSTAT_INFO view (continued)

Column Name System Column Name Data Type Description

SOCKET_BROADCAST SOCBROAD VARCHAR(3)

Nullable

Indicates if messages can be sent to the broadcast address.

NO
Messages cannot be sent to the broadcast address.

YES
Messages can be sent to the broadcast address.

Contains null if value is not specified or if socket is not an address
family of AF_INET and type SOCK_DGRAM or SOCK_RAW.

SOCKET_BYPASS_ROUTE SOCBYPASS VARCHAR(3)

Nullable

Indicates if the normal routing mechanism is being bypassed.

NO
The normal routing mechanism is being used.

YES
The normal routing mechanism is being bypassed.

Contains null if value is not specified or if socket is not an address
family of AF_INET or AF_INET6.

SOCKET_DEBUG SOCDEBUG VARCHAR(3)

Nullable

Indicates if low-level debugging is active.

NO
Low-level debugging is not active.

YES
Low-level debugging is active.

Contains null if value is not specified.

SOCKET_ERROR SOCERROR INTEGER

Nullable

Indicates if there any pending errors in the socket. A value of zero
indicates no pending errors. Otherwise, the value indicates the
error number.

Contains null if value is not specified.

SOCKET_KEEP_ALIVE SOCALIVE VARCHAR(3)

Nullable

Indicates if the connection is being kept up by periodic
transmissions.

NO
The connection is not being kept up by periodic
transmissions.

YES
The connection is being kept up by periodic transmissions.

Contains null if value is not specified or if socket is not an address
family of AF_INET or AF_INET6 and type SOCK_STREAM.

SOCKET_LINGER SOCLINGER VARCHAR(3)

Nullable

Indicates whether the system attempts to deliver any buffered
data or if the system discards it when a close() is issued.

NO
The system attempts to send buffered data with an infinite
wait time.

YES
The system attempts to send buffered data for
SOCKET_LINGER_TIME seconds. If the data is not
deliverable within that period of time, it is discarded.

Contains null if value is not specified.

SOCKET_LINGER_TIME SOCLTIME BIGINT

Nullable

The time, in seconds, the system will wait to send buffered data.

Contains null if value is not specified or if SOCKET_LINGER is NO.

SOCKET_OUT_OF_BAND_DATA SOCOUTBAND VARCHAR(3)

Nullable

Indicates if out-of-band data is received inline with normal data.

NO
Out-of-band data is not received inline with normal data.

YES
Out-of-band data is received inline with normal data.

Contains null if value is not specified or if socket is not an address
family of AF_INET or AF_INET6.

SOCKET_RECEIVE_BUFFER_SIZE SOCRCVBUF BIGINT

Nullable

The size of the receive buffer.

Contains null if value is not specified.

Database performance and query optimization 317

Table 71. NETSTAT_INFO view (continued)

Column Name System Column Name Data Type Description

SOCKET_RECEIVE_LOW_WATER_
MARK_SIZE

SOCRCVSZ BIGINT

Nullable

The size of the receive low-water mark. The default size is 1.

Contains null if value is not specified or if socket is not type
SOCK_STREAM.

SOCKET_REUSE_ADDRESS SOCREUSE VARCHAR(3)

Nullable

Indicates if the local socket address can be reused.

NO
The local socket address cannot be reused.

YES
The local socket address can be reused.

Contains null if value is not specified or if socket is not an address
family of AF_INET or AF_INET6 and type SOCK_STREAM or
SOCK_DGRAM.

SOCKET_SEND_BUFFER_SIZE SOCSENDBUF BIGINT

Nullable

The size of the send buffer.

Contains null if value is not specified.

SOCKET_TYPE SOCTYPE VARCHAR(14)

Nullable

The socket type. Values are:

SOCK_DGRAM
Datagram type.

SOCK_RAW
Raw type.

SOCK_SEQPACKET
Sequential packet type.

SOCK_STREAM
Stream type.

Contains null if value is not specified.

SOCKET_LOOPBACK SOCLOOPBK VARCHAR(3)

Nullable

Indicates if the loopback feature is being used.

NO
The loopback feature is not being used.

YES
The loopback feature is being used.

Contains null if value is not specified.

SOCKET_RECEIVE_TIMEOUT SOCRCVTO BIGINT

Nullable

The receive timeout value.

Contains null if value is not specified.

SOCKET_SEND_LOW_WATER_
MARK_SIZE

SOCSENDSZ BIGINT

Nullable

The size of the send low-water mark.

Contains null if value is not specified.

SOCKET_SEND_TIMEOUT SOCSENDTO BIGINT

Nullable

The send timeout value.

Contains null if value is not specified.

Example

Return information about all network connections for user QLWISVR.

SELECT * FROM QSYS2.NETSTAT_INFO
 WHERE BIND_USER = 'QLWISVR'

Related information
Internet Protocol version 6

NETSTAT_INTERFACE_INFO view
The NETSTAT_INTERFACE_INFO view returns information about IPv4 and IPv6 interfaces.

The values returned for the columns in the view are closely related to the values returned by List Network
Interfaces API. Refer to the API for more detailed information.

The following table describes the columns in the view. The system name is NS_INTER. The schema is
QSYS2.

318 IBM i: Database Performance and Query Optimization

Table 72. NETSTAT_INTERFACE_INFO view

Column Name System Column Name Data Type Description

CONNECTION_TYPE CONN_TYPE CHAR(4) The type of connection.

IPV4
The connection is an IPv4 connection.

IPV6
The connection is an IPv6 connection.

INTERNET_ADDRESS INT_ADDR VARCHAR(45) The internet address of the interface.

For IPv4:

• The address is in IPv4 address format.

Can contain the special value:

*IP4DHCP
The interface has been configured to use DHCP to obtain
an IPv4 address.

For IPv6:

• The address is in IPv6 address format.

Can contain the special value:

*IP6SAC
This interface will use Stateless Address Auto-
configuration to obtain an IPv6 address.

NETWORK_ADDRESS NET_ADDR VARCHAR(45) The internet address of the IP network or subnetwork to which the
interface is attached.

For IPv4:

• The address is in IPv4 address format.

For IPv6:

• The address is in IPv6 address format.

SUBNET_MASK SUBNET_MSK VARCHAR(15)

Nullable

The subnet mask for the network, subnet, and host address fields
of the internet address that defines the subnetwork for an
interface.

Contains null if this is an IPv6 connection.

PREFIX_LENGTH PRE_LEN INTEGER

Nullable

The prefix length defines how many bits of the IPv6 internet
address are in the prefix. It specifies how many of the left-most
bits of the address make up the prefix. The prefix length is used to
generate network and host addresses.

Contains null if this is an IPv4 connection.

LINE_DESCRIPTION LINE_DES VARCHAR(10) The name of the communications line description that identifies
the physical network associated with an interface. Can contain the
following special values:

*LOOPBACK
This is the loopback interface. Processing associated with a
loopback interface does not extend to a physical line.

*VIRTUALIP
The virtual interface is a circuitless interface.

For IPv4, the following additional values can be returned.

*IPS
The interface is used by Internet Protocol (IP) over SNA.

*OPC
The interface is attached to the optical bus (OptiConnect).

Database performance and query optimization 319

Table 72. NETSTAT_INTERFACE_INFO view (continued)

Column Name System Column Name Data Type Description

INTERFACE_LINE_TYPE LINE_TYPE VARCHAR(6) The type of line used by the interface.

ASYNC
Asynchronous communications protocol.

DDI
Distributed Data Interface protocol.

ELAN
Ethernet local area network protocol.

FR
Frame relay network protocol.

L2TP
Layer Two Tunneling protocol.

PPP
Point-to-Point protocol.

PPPOE
Point-to-Point over Ethernet protocol.

TDLC
Twinaxial Datalink Control. Used for TCP/IP over Twinax.

TRLAN
Token-ring local area network protocol.

VETH
Virtual Ethernet protocol.

WLS
Wireless local area network protocol.

X25
X.25 protocol.

Can also contain one of the following special values:

ERROR
A system error other than those for NOTFND was received
while trying to determine the link type for an interface.

NONE
Line is not defined. This value is used for the following
interfaces: *LOOPBACK, *VIRTUALIP, *OPC. There is no line
type value for this interface.

NOTFND
Not found. The line description object for this interface
cannot be found.

OTHER
An Internet Protocol (IP) over SNA interface.

320 IBM i: Database Performance and Query Optimization

Table 72. NETSTAT_INTERFACE_INFO view (continued)

Column Name System Column Name Data Type Description

INTERFACE_STATUS STATUS VARCHAR(12) The current status of the logical interface.

ACTIVE
The interface has been started and is running.

ENDING
The operating system is processing the request to end this
interface.

FAILED
The line description associated with this interface has
entered the failed state.

FAILED (TCP)
An error was detected in the IBM TCP/IP Licensed Internal
Code.

INACTIVE
The interface has not been started.

RCYCNL
A hardware failure has occurred and the line description
associated with this interface is in the recovery canceled
(RCYCNL) state.

RCYPND
An error with the physical line associated with this interface
was detected by the system. The line description associated
with this interface is in the recovery pending (RCYPND) state.

STARTING
The operating system is processing the request to start this
interface.

For IPv4, the following additional values can be returned.

ACQUIRING
The operating system is attempting to obtain an IP address
from a Dynamic Host Configuration Protocol (DHCP) server.

DOD
This interface is being used for Point-to-Point (PPP) Dial-on-
Demand.

INTERFACE_SOURCE SOURCE VARCHAR(9)

Nullable

Specifies how this interface was added to the protocol stack.

LOOPBACK
The interface was added by the protocol stack as the
loopback address.

STATELESS
The interface was added by IPv6 address autoconfiguration.

STATEFUL
The interface was added by Dynamic Host Configuration
Protocol version 6 (DHCPv6) configuration.

MANUAL
The interface was added by manual configuration.

Contains null if this is an IPv4 connection.

SERVICE_TYPE SRVC_TYPE VARCHAR(9)

Nullable

The type of service that defines how the internet hosts and routers
should make trade-offs between throughput, delay, reliability, and
cost.

MAXRLB
A higher level of effort to ensure delivery is important for
datagrams with the maximize reliability indication.

MAXTHRPUT
High data rate is important for datagrams with the maximize
throughput indication.

MINCOST
Lower cost is important for datagrams with the minimize
monetary cost indication.

MINDELAY
Prompt delivery is important for datagrams with the minimize
delay indication.

NORMAL
Normal service is used for delivery of datagrams.

OTHER
An Internet Protocol (IP) over SNA interface.

Contains null if this is an IPv6 connection.

Database performance and query optimization 321

Table 72. NETSTAT_INTERFACE_INFO view (continued)

Column Name System Column Name Data Type Description

VIRTUAL_LAN_ID LAN_ID VARCHAR(4) The virtual LAN to which this interface belongs according to IEEE
standard 802.1Q. Can also contain the following special value:

NONE
The interface does not belong to a virtual LAN.

MAXIMUM_TRANSMISSION_
UNIT

MTU VARCHAR(10) The maximum transmission unit (MTU) value specified for this
interface. Either an integer value or this special value:

LIND
The interface is not currently active and the MTU was
specified as *LIND.

For IPv4, the following additional value can be returned.

OTHER
An Internet Protocol (IP) over SNA interface.

CONFIGURED_MAXIMUM_
TRANSMISSION_UNIT

CFG_MTU VARCHAR(10) The configured maximum transmission unit value specified for this
interface. Either an integer value or this special value:

LIND
The interface is not currently active and the MTU was
specified as *LIND.

AUTOSTART AUTOSTART VARCHAR(3) Specifies whether the interface is automatically started when the
protocol stack is activated.

NO
This interface is not automatically started.

YES
This interface is automatically started.

DAD_MAX_TRANSMITS DAD_MAX BIGINT

Nullable

The maximum number of duplicate address detection (DAD)
transmissions the protocol stack will send out on this interface.

Contains null if this is an IPv4 connection.

HOST_ADDRESS HOST_ADDR VARCHAR(45) Host portion of the internet address.

For IPv4:

• Host portion of the Internet address, in dotted decimal notation,
as determined by the subnet mask specified for this interface.

For IPv6:

• Host portion of the Internet address, in IPv6 address format, as
determined by the prefix length configured for this interface.

DIRECTED_BROADCAST_
ADDRESS

DIRBRDADR VARCHAR(15)

Nullable

The Internet address, in dotted decimal notation, used to
broadcast to all systems attached to the same network or
subnetwork as this interface.

Contains null if this is an IPv6 connection or if interface is attached
to a network that does not support a broadcast operation.

ASSOCIATED_LOCAL_
INTERFACE

ASCLCLINT VARCHAR(15)

Nullable

The Internet address, in dotted decimal notation, of the local
interface that has been associated with this interface.

Contains null if this is an IPv6 connection or if no association has
been made between this interface and another local interface.

CHANGE_STATUS CHGSTS VARCHAR(6)

Nullable

The status of the most recent change to this interface in the
dynamic tables used by the TCP/IP protocol stack.

ADD
Add interface request processed.

CHANGE
Change interface request processed.

END
End interface request processed.

START
Start interface request processed.

Contains null if this is an IPv6 connection.

322 IBM i: Database Performance and Query Optimization

Table 72. NETSTAT_INTERFACE_INFO view (continued)

Column Name System Column Name Data Type Description

PACKET_RULES PKT_RULES VARCHAR(17)

Nullable

The kind of packet rules data available for this line.

NONE
No filters and no NAT are loaded for this line.

NAT
NAT is enabled for this line.

FILTERS
Filters are defined for this line.

NAT_FILTERS
NAT enabled and filters defined for this line.

FILTERS_IPSEC
Filters and IPSec filters are defined for this line.

NAT_FILTERS_IPSEC
NAT enabled and Filters and IPsec filters defined for this line.

Contains null if packet rules data is unknown.

INTERFACE_TYPE TYPE VARCHAR(12)

Nullable

The interface type:

BROADCAST
Broadcast capable.

NONBROADCAST
Non-broadcast capable.

UNNUMBERED
Unnumbered network.

Contains null if this is an IPv6 connection.

NETWORK_FULL_NAME NET_FNAME VARCHAR(24)

Nullable

The complete name of the network that this interface is a part of.

Contains null if this is an IPv6 connection or if there is no network
name.

INTERFACE_FULL_NAME FNAME VARCHAR(24)

Nullable

The complete interface name.

Contains null if this is an IPv6 connection or if there is no interface
name.

ALIAS_NAME ALIAS_NAME VARGRAPHIC(50)
CCSID 1200

Nullable

Name given to the interface to use as an alternate to the IP
address.

Contains null if there is no alias name.

INTERFACE_TEXT LABEL VARGRAPHIC(50)
CCSID 1200

Nullable

Description of the interface.

Contains null if there is no interface description.

DHCP_CREATED DHCPCRT VARCHAR(3)

Nullable

Specifies whether this interface was created using Dynamic Host
Configuration Protocol (DHCP).

NO
This interface was not created using DHCP.

YES
This interface was created using DHCP.

Contains null if this is an IPv6 connection.

DHCP_DYNAMIC_DNS_
UPDATES

DHCPDYNDNS VARCHAR(3)

Nullable

Specifies whether dynamic updates to Domain Name System
(DNS) tables are enabled or not.

NO
DNS updates are disabled.

YES
DNS updates are enabled.

Contains null if this is an IPv6 connection or if interface was not
created by DHCP.

DHCP_LEASE_EXPIRATION DHCPLEXP TIMESTAMP(0)

Nullable

The timestamp when the DHCP lease will expire.

Contains null if this is an IPv6 connection or if interface was not
created by DHCP.

DHCP_LEASE_OBTAINED DHCPLOBT TIMESTAMP(0)

Nullable

The timestamp when the DHCP lease was obtained or renewed.

Contains null if interface was not created by DHCP.

Database performance and query optimization 323

Table 72. NETSTAT_INTERFACE_INFO view (continued)

Column Name System Column Name Data Type Description

DHCP_USE_UNIQUE_ID DHCPUSEUID VARCHAR(3)

Nullable

Whether the DHCP unique identifier (DUID) is used as the client
identification for the Dynamic Host Configuration Protocol (DHCP).

NO
The hardware (MAC) address is used for the client ID.

YES
The DHCP unique identifier is used for the client ID or this is
an IPv6 connection.

Contains null if interface was not created by DHCP.

DHCP_SERVER_UNIQUE_ID DHCPSRVUID VARCHAR(30)

Nullable

Specifies the DHCP unique identifier (DUID) of the DHCP server
from which the IP address was obtained.

Contains null if this is an IPv4 connection or if interface was not
created by DHCP.

DHCP_SERVER_ADDRESS DHCPSRVADD VARCHAR(15)

Nullable

The Internet address, in dotted decimal notation, of the DHCP
server from which the DHCP lease was obtained or renewed.

Contains null if this is an IPv6 connection or if interface was not
created by DHCP.

PREFERRED_INTERFACE_
DEFAULT_ROUTE

PREFDFTRTE VARCHAR(3)

Nullable

This field describes whether the preferred proxy interfaces are
based on the system's default route.

NO
The default route is not used to determine the preferred
interface.

YES
The default route is used to determine the preferred
interface.

Contains null if this is an IPv6 connection.

PREFERRED_INTERFACE_LIST PREFIFCLST VARCHAR(159)

Nullable

A list of up to 10 preferred interface internet addresses. Each
internet address within the preferred interface list is given in
dotted decimal notation. When there is more than one internet
address, a single blank separates the addresses.

Contains null if this is an IPv6 connection or if a preferred interface
list is not being used.

PREFERRED_PHYSICAL_LINE_
LIST

PREFLINLST VARCHAR(159)

Nullable

A list of up to 10 preferred physical line list entries. Each entry in
the list is formatted as LINE_DESCRIPTION:VIRTUAL_LAN_ID.
The line description can be up to 10 characters long. The virtual
LAN ID can be up to 4 characters long. When there is more than
one preferred physical line, a single blank separates entries.

Contains null if this is an IPv4 connection.

ADDRESS_TYPE ADDR_TYPE VARCHAR(9)

Nullable

The type of IPv6 address that is assigned to this network interface.

ANYCAST
An identifier for a set of interfaces (typically belonging to
different nodes). A packet sent to an anycast address is
delivered to one of the interfaces identified by that address
(the "nearest" one, according to the routing protocols'
measure of distance).

MULTICAST
An identifier for a set of interfaces (typically belonging to
different nodes). A packet sent to a multicast address is
delivered to all interfaces identified by that address.

UNICAST
An identifier for a single interface. A packet sent to a unicast
address is delivered to the interface identified by that
address.

Contains null if this is an IPv4 connection.

ADDRESS_CLASS ADDR_CLASS VARCHAR(9)

Nullable

The class of IPv6 address that is assigned to this network
interface.

PUBLIC
The interface is a public one.

TEMPORARY
The interface is a temporary one used for privacy extensions.

Contains null if this is an IPv4 connection.

324 IBM i: Database Performance and Query Optimization

Table 72. NETSTAT_INTERFACE_INFO view (continued)

Column Name System Column Name Data Type Description

ADDRESS_PREFERRED_LIFETIME ADDPLIFE BIGINT

Nullable

The length of time that a "valid" address is preferred, in seconds. A
negative value indicates that the address preferred lifetime expired
that number of seconds ago.

Contains null if this is an IPv4 connection or if ADDRESS_CLASS is
not TEMPORARY.

ADDRESS_VALID_LIFETIME ADDVLIFE BIGINT

Nullable

The length of time, in seconds, that an address remains in a "valid"
state. A negative value indicates that the address valid lifetime
expired that number of seconds ago.

Contains null if this is an IPv4 connection or if ADDRESS_CLASS is
not TEMPORARY.

ADDRESS_PREFERRED_
LIFETIME_EXPIRATION

ADDPFRLE TIMESTAMP(0)

Nullable

The timestamp when this address will no longer be in the preferred
state. If the timestamp is in the future, the address is still
preferred. If the timestamp is in the past, then this address is no
longer preferred.

Contains null if this is an IPv4 connection or if ADDRESS_CLASS is
not TEMPORARY.

ADDRESS_VALID_LIFETIME_
EXPIRATION

ADDVLDLE TIMESTAMP(0)

Nullable

The timestamp when this address will expire or did expire. If the
timestamp is in the future, the address has not expired yet. If the
timestamp is in the past, then this address has expired and is still
being returned for a short period of time to indicate that the
interface ceased to function because its valid lifetime expired.

Contains null if this is an IPv4 connection or if ADDRESS_CLASS is
not TEMPORARY.

ON_LINK ON_LINK VARCHAR(3)

Nullable

Whether or not this interface and all IPv6 addresses with the same
prefix are on the same link.

NO
Addresses with the same prefix are not assumed to be on the
same link.

YES
Addresses with the same prefix are assumed to be on the
same link and directly reachable.

Contains null if this is an IPv4 connection or if
INTERNET_ADDRESS is *IP6SAC.

PROXY_ARP_ENABLED PRXARPENB VARCHAR(3)

Nullable

Indicates whether Proxy ARP is currently active for this interface.

NO
Proxy ARP not enabled.

YES
Proxy ARP enabled.

Contains null if this is an IPv6 connection.

PROXY_ARP_ALLOWED PRXARPALW VARCHAR(3)

Nullable

Indicates whether Proxy ARP has been configured to be allowed or
not allowed.

NO
Proxy ARP not allowed.

YES
Proxy ARP allowed.

Contains null if this is an IPv6 connection or if interface is not
Opticonnect (*OPC) or Virtual Ethernet.

CURRENT_PROXY_AGENT_LINE PRXAGT VARCHAR(10)

Nullable

Name of the communication line description that is used with the
IPv6 interface for virtual IP address (VIPA) proxy Neighbor
Discovery.

Contains null if this is an IPv4 connection or if no association has
been made between this interface and another physical interface.

CURRENT_PROXY_AGENT_
LINE_VIRTUAL_LAN_ID

PRXAGTLAN VARCHAR(4)

Nullable

The virtual LAN to which the proxy agent line belongs according to
IEEE standard 802.1Q. Can also contain the following special
value:

NONE
There is no virtual LAN identifier associated with the current
proxy agent line.

Contains null if this is an IPv4 connection or if no association has
been made between this interface and another physical interface.

Database performance and query optimization 325

Table 72. NETSTAT_INTERFACE_INFO view (continued)

Column Name System Column Name Data Type Description

LAST_CHANGE_TIMESTAMP LASTCHG TIMESTAMP(0)

Nullable

The timestamp of the most recent change to this interface in the
dynamic tables used by the protocol stack.

Contains null if the interface has never been changed.

Example

Return information about all interfaces which are using Virtual Ethernet protocol..

SELECT * FROM QSYS2.NETSTAT_INTERFACE_INFO
 WHERE INTERFACE_LINE_TYPE = 'VETH'

Related information
Internet Protocol version 6

NETSTAT_JOB_INFO view
The NETSTAT_JOB_INFO view returns information about jobs using IPv4 and IPv6 network connections.

The values returned for the columns in the view are closely related to the values returned by Retrieve
Network Connection Data API. Refer to the API for more detailed information.

The following table describes the columns in the view. The system name is NS_JOB. The schema is
QSYS2.

Table 73. NETSTAT_JOB_INFO view

Column Name System Column Name Data Type Description

CONNECTION_TYPE CONN_TYPE CHAR(4) The type of connection.

IPV4
The connection is an IPv4 connection.

IPV6
The connection is an IPv6 connection.

REMOTE_ADDRESS RMT_ADDR VARCHAR(45) The internet address of the remote host.

For IPv4:

• The address is in IPv4 address format. A value of 0.0.0.0
indicates that either the system is waiting for a connection to
open or that a UDP socket is being used. A value of 0 means
that the connection is a listening or UDP socket so this field
does not apply.

For IPv6:

• The address is in IPv6 address format. A value of :: means
that the connection is a listening socket so this field does not
apply.

REMOTE_PORT RMT_PORT INTEGER The remote host port number. A value of 0 means that the
connection is a listening or UDP socket, so this field does not
apply.

REMOTE_PORT_NAME RMT_NAME VARGRAPHIC(14)
CCSID 1200

Nullable

The remote host well-known port name or the name from the
service table entry.

Contains null if there is no well-known port name.

LOCAL_ADDRESS LOCAL_ADDR VARCHAR(45) The local address of this connection on this system.

For IPv4:

• The address is in IPv4 address format. A value of 0.0.0.0
indicates that either the system is waiting for a connection to
open or that a UDP socket is being used.

For IPv6:

• The address is in IPv6 address format. A value of :: means the
local application specified that any local internet address can
be used.

LOCAL_PORT LOCAL_PORT INTEGER The local system port number.

326 IBM i: Database Performance and Query Optimization

Table 73. NETSTAT_JOB_INFO view (continued)

Column Name System Column Name Data Type Description

LOCAL_PORT_NAME LOCAL_NAME VARGRAPHIC(14)
CCSID 1200

Nullable

The local system well-known port name or the name from the
service table entry.

Contains null if there is no well-known port name.

AUTHORIZATION_NAME USER_NAME VARCHAR(10)

Nullable

The effective user profile of the thread for which information is
being retrieved. This name may differ from the user portion of
the job name.

Contains null when SLIC_TASK_NAME is not null or if JOB_NAME
is the special value *SIGNON.

JOB_NAME JOB_NAME VARCHAR(28)

Nullable

The qualified job name. Can also contain the following special
value:

*SIGNON
This connection is a telnet connection and the system is
performing sign-on processing or is displaying a sign-on
prompt on it.

Contains null when SLIC_TASK_NAME is not null.

SLIC_TASK_NAME SLIC_TASK VARCHAR(16)

Nullable

The task name as identified to the system.

Contains null when JOB_NAME is not null.

INTERNAL_JOB_ID JOB_ID BINARY(16)

Nullable

A value that can be used by system APIs to speed the process of
locating the job on the system.

Contains null if JOB_NAME is the special value *SIGNON or if
SLIC_TASK_NAME is not null.

JOB_TYPE JOB_TYPE VARCHAR(11)

Nullable

The type of job:

AUTOSTART
The job is an autostart job.

BATCH
The job is a batch job.

INTERACTIVE
The job is an interactive job.

MONITOR
The job is a subsystem monitor job.

READER
The job is a spooled reader job.

SCPF
The job is the SCPF system job.

SYSTEM
The job is a system job.

WRITER
The job is a spooled writer job.

Contains null if JOB_NAME is the special value *SIGNON or if
SLIC_TASK_NAME is not null.

Example

Return information about all jobs using IPv4 network connections.

SELECT * FROM QSYS2.NETSTAT_JOB_INFO
 WHERE CONNECTION_TYPE = 'IPV4'

Related information
Internet Protocol version 6

NETSTAT_ROUTE_INFO view
The NETSTAT_ROUTE_INFO view returns information about IPv4 and IPv6 routes.

The values returned for the columns in the view are closely related to the values returned by List Network
Routes API. Refer to the API for more detailed information.

The following table describes the columns in the view. The system name is NS_ROUTE. The schema is
QSYS2.

Database performance and query optimization 327

Table 74. NETSTAT_ROUTE_INFO view

Column Name System Column Name Data Type Description

CONNECTION_TYPE CONN_TYPE CHAR(4) The type of connection.

IPV4
The connection is an IPv4 connection.

IPV6
The connection is an IPv6 connection.

ROUTE_DESTINATION ROUTE_DEST VARCHAR(45) The Internet Protocol address of the ultimate destination reached
by this route.

For IPv4:

• The address is in IPv4 address format. When used in
combination with the subnet mask and the type of service
values, the route destination identifies a route to a network or
system. A value of 0.0.0.0 means that the route destination is
the default route.

For IPv6:

• The address is in IPv6 address format. When used in
combination with the prefix length, the route destination
identifies a route to a network or host.

SUBNET_MASK SUBNET_MSK VARCHAR(15)

Nullable

The actual value of the subnet mask for the route destination in
dotted-decimal notation. A value of 0.0.0.0 means no value is
defined.

Contains null if this is an IPv6 connection.

NEXT_HOP NEXT_HOP VARCHAR(45) The internet address of the first system on the path from your
system to the route destination.

For IPv4:

• The address is in IPv4 address format.

For IPv6:

• The address is in IPv6 address format.

Can contain the following special value:

*DIRECT
This is the next hop value of a route that is automatically
created.

PREFIX_LENGTH PRE_LEN INTEGER

Nullable

The prefix length defines how many bits of the route destination
IPv6 address are in the prefix. It specifies how many of the left-
most bits of the address make up the prefix. The prefix length is
used to generate network and host addresses.

Contains null if this is an IPv4 connection.

ROUTE_STATUS ROUTE_STS VARCHAR(10)

Nullable

The current state of the route.

DOD
This route is used for Point-to-Point (PPP) Dial-on-Demand.
Currently, this Dial-on-Demand route is not available. The
route will become available when a Dial-on-Demand session
is initiated for the interface this route is associated with.

For IPv4:

YES
The router specified by the next hop value for this interface
is available for use.

NO
The router specified by the next hop value for this interface
is not available for use.

NO GATEWAY
The router specified by the next hop value for this interface
is not available for use, the router may be experiencing a
problem.

For IPv6:

ACTIVE
This route is currently active and is in the current route
search path.

INACTIVE
This route is not in the route search path and is not being
used.

Contains null if the state is unknown.

328 IBM i: Database Performance and Query Optimization

Table 74. NETSTAT_ROUTE_INFO view (continued)

Column Name System Column Name Data Type Description

ROUTE_MAXIMUM_
TRANSMISSION_UNIT

ROUTE_MTU VARCHAR(10) The maximum transmission unit (MTU) value for this route in
bytes. Can be either a number or one of the following special
values:

For IPv4:

IFC
The route is not currently active and the MTU was specified
as *IFC.

OTHER
An Internet Protocol (IP) over SNA interface.

For IPv6:

*IP6LINMTU
This route uses the MTU of the line it is bound to.

CONFIGURED_ROUTE_
MAXIMUM_
TRANSMISSION_UNIT

CFG_RT_MTU VARCHAR(10)

Nullable

A number representing the configured maximum transmission
unit (MTU) value for this route, in bytes. Can be either a number
or the following special value:

*IP6LINMTU
The route MTU was specified as *IP6LINMTU, the MTU
value of the line to which this route is bound.

Contains null if this is an IPv4 connection.

ROUTE_TYPE ROUTE_TYPE VARCHAR(8)

Nullable

The type of route.

DFTROUTE
A default route.

DIRECT
A route to a network or subnetwork to which this system
has a direct physical connection.

HOST
A route to a specific remote host.

NET
An indirect route to a remote network.

SUBNET
An indirect route to a remote subnetwork. This option is only
for IPv4 connections.

Contains null if the type of route is unknown.

Database performance and query optimization 329

Table 74. NETSTAT_ROUTE_INFO view (continued)

Column Name System Column Name Data Type Description

ROUTE_SOURCE ROUTE_SRC VARCHAR(18)

Nullable

Specifies how this route was added to the routing table.

For IPv4:

CFG
The route was added using the configuration commands of
the local system.

ICMP
The route was added with the Internet Control Message
Protocol (ICMP) redirect mechanism.

OTHER
The route was added with a sockets input/output control
(IOCtl) or other mechanism.

RIP
The route was added by the Routing Information Protocol
(RIP).

SNMP
The route was added by the Simple Network Management
Protocol (SNMP).

For IPv6:

AUTOCONFIG
This route was added because of an interface added by
stateless autoconfiguration.

BGP
This route was added by the Border Gateway Protocol
(BGP).

CFGIFC
The route was added because of a manually configured
interface.

CFGRTE
The route was manually configured.

IDRP
This route was added by the Inter-Domain Routing Protocol
(IDRP).

IGRP
This route was added by the Interior Gateway Routing
Protocol (IGRP).

OSPF
The route was added by the Open Shortest Path First (OSPF)
protocol.

RA_PREFIX_INFO
This route was added because of the presence of a Prefix
Information Option on a Router Advertisement packet
received by the system.

RA_ROUTE_INFO
This route was added because of the presence of a Route
Information Option on a Router Advertisement packet
received by the system.

RA_ROUTER_LIFETIME
This route was added because of the presence of a non-zero
value in the Router Lifetime field in a Router Advertisement
packet received by the system.

REDIRECT
This route was added by the ICMPv6 redirect mechanism.

RIP
The route was added by the Routing Information Protocol
(RIP).

ROUTING
This route was determined to be necessary and added by
the TCP/IP stack on this system.

SNMP
This route was added by the Simple Network Management
Protocol (SNMP).

Contains null if the route source is not known.

330 IBM i: Database Performance and Query Optimization

Table 74. NETSTAT_ROUTE_INFO view (continued)

Column Name System Column Name Data Type Description

SERVICE_TYPE SRVC_TYPE VARCHAR(9)

Nullable

The type of service that defines how the internet hosts and
routers should make trade-offs between throughput, delay,
reliability, and cost.

MAXRLB
A higher level of effort to ensure delivery is important for
datagrams with the maximize reliability indication.

MAXTHRPUT
High data rate is important for datagrams with the maximize
throughput indication.

MINCOST
Lower cost is important for datagrams with the minimize
monetary cost indication.

MINDELAY
Prompt delivery is important for datagrams with the
minimize delay indication.

NORMAL
Normal service is used for delivery of datagrams.

OTHER
An Internet Protocol (IP) over SNA interface.

Contains null if this is an IPv6 connection.

ROUTE_PROTOCOL ROUTE_PTCL VARCHAR(7)

Nullable

Specifies the protocol that was used to generate this route.

BGP
Border Gateway protocol.

IDRP
InterDomain Routing protocol.

IGRP
InterGateway Routing protocol.

LOCAL
Local configuration.

NDISC
Neighbor discovery.

NETMGMT
Network Management protocol.

OSPF
Open Shortest Path First protocol.

OTHER
None of the listed protocols.

RIP
Routing Information protocol.

Contains null if this is an IPv4 connection.

ROUTE_PREFERENCE ROUTE_PREF VARCHAR(6)

Nullable

The preference of this route during route selection.

LOW
This route has a low preference.

MEDIUM
This route has a medium preference.

HIGH
This route has a high preference.

Contains null if this is an IPv4 connection.

LOCAL_BINDING_TYPE LOCALTYPE VARCHAR(7)

Nullable

The type of line to which this route is bound.

• DYNAMIC
• STATIC

Contains null if this is an IPv6 connection.

LOCAL_BINDING_INTERFACE LOCALIFC VARCHAR(15)

Nullable

The IP interface to bind to this route.

Contains null if this is an IPv6 connection.

Database performance and query optimization 331

Table 74. NETSTAT_ROUTE_INFO view (continued)

Column Name System Column Name Data Type Description

LOCAL_BINDING_INTERFACE_
STATUS

LOCALSTS VARCHAR(12)

Nullable

The current status of the logical interface.

ACTIVE
The interface has been started and is running.

DOD
This interface is being used for Point-to-Point (PPP) Dial-on-
Demand.

DUPLICATE
Another host on the LAN responded to a packet destined for
this logical interface.

ENDING
The operating system is processing the request to end this
interface.

FAILED
The line description associated with this interface has
entered the failed state.

FAILED (TCP)
An error was detected in the IBM TCP/IP Licensed Internal
Code.

INACTIVE
The interface has not been started.

RCYCNL
A hardware failure has occurred and the line description
associated with this interface is in the recovery canceled
(RCYCNL) state.

RCYPND
An error with the physical line associated with this interface
was detected by the system. The line description associated
with this interface is in the recovery pending (RCYPND)
state.

STARTING
The operating system is processing the request to start this
interface.

Contains null if this is an IPv6 connection.

LOCAL_BINDING_NETWORK_
ADDRESS

LOCALADDR VARCHAR(15)

Nullable

The Internet address, in dotted decimal notation, of the IP
network or subnetwork that the interface is attached to.

Contains null if this is an IPv6 connection.

LOCAL_BINDING_SUBNET_MASK LOCALMASK VARCHAR(15)

Nullable

The subnet mask for the network, subnet, and host address fields
for the local binding network address, in dotted decimal notation,
that defines the subnetwork for an interface.

Contains null if this is an IPv6 connection.

LOCAL_BINDING_LINE_
DESCRIPTION

LOCALLINE VARCHAR(10) The name of the communications line description or virtual line
(L2TP) that identifies the network associated with an interface.
Can contain the following special values:

*LOOPBACK
This is a loopback interface. Processing associated with the
loopback interface does not extend to a physical line.

*OPC
This interface is attached to the optical bus (OptiConnect).

*VIRTUALIP
The virtual interface is a circuitless interface.

LOCAL_BINDING_LINE_STATUS LOCALLSTS VARCHAR(8)

Nullable

The current operational status of the communications line to
which this route is bound.

ACTIVE
The line is operational.

FAILED
The desired state of the line is Active, but it is currently in
the Inactive state.

INACTIVE
The line is not operational.

Contains null if this is an IPv4 connection.

332 IBM i: Database Performance and Query Optimization

Table 74. NETSTAT_ROUTE_INFO view (continued)

Column Name System Column Name Data Type Description

LOCAL_BINDING_LINE_TYPE LOCALLTYPE VARCHAR(6) The type of line used by the interface.

ASYNC
Asynchronous communications protocol.

DDI
Distributed Data Interface protocol.

ELAN
Ethernet local area network protocol.

FR
Frame relay network protocol.

L2TP
Layer Two Tunneling protocol.

PPP
Point-to-Point protocol.

PPPOE
Point-to-Point over Ethernet protocol.

TDLC
Twinaxial Datalink Control. Used for TCP/IP over Twinax.

TRLAN
Token-ring local area network protocol.

VETH
Virtual Ethernet protocol.

WLS
Wireless local area network protocol.

X25
X.25 protocol.

Can also contain one of the following special values:

ERROR
A system error other than those for NOTFND was received
while trying to determine the link type for an interface.

NONE
Line is not defined. This value is used for the following
interfaces: *LOOPBACK, *VIRTUALIP, *OPC. There is no line
type value for this interface.

NOTFND
Not found. The line description object for this interface
cannot be found.

OTHER
An Internet Protocol (IP) over SNA interface.

LOCAL_BINDING_VIRTUAL_
LAN_ID

LOCALLAN VARCHAR(4) The virtual LAN to which this route is bound. Can also contain the
following special value:

NONE
No virtual LAN identifier is associated with the binding line.

ROUTE_PRECEDENCE ROUTE_PRCD INTEGER

Nullable

Priority of route. Values are 1 to 10, with the lowest priority being
1.

Contains null if this is an IPv6 connection.

ROUTE_TEXT LABEL VARGRAPHIC(50)
CCSID(1200)

Nullable

Text description associated with the route.

Contains null if there is no description.

DUPLICATE DUPLICATE VARCHAR(6)

Nullable

Indicates whether this route is a duplicate of another route in the
routing table or not, and also whether there are any routes which
are duplicates of this route.

NO
This route is not a duplicate of another route but it does
have duplicates.

UNIQUE
This route is not a duplicate of another route and it does not
have any duplicates.

YES
This route is a duplicate of another route.

Contains null if this is an IPv4 connection.

Database performance and query optimization 333

Table 74. NETSTAT_ROUTE_INFO view (continued)

Column Name System Column Name Data Type Description

EXPIRATION EXPIRATION TIMESTAMP(0)

Nullable

The timestamp when this route will expire or did expire. If the
timestamp is in the future, the route has not expired yet. If the
timestamp is in the past, then this route has expired and is still
being returned for a short period of time to indicate that the route
ceased to function because its lifetime expired.

Contains null if this is an IPv4 connection or if the route will never
expire.

PPP_CONFIGURATION_PROFILE PPPCFGPRF VARCHAR(10)

Nullable

The name of the Point-to-Point Protocol (PPP) configuration
profile associated with this route.

Contains null if this is an IPv4 connection or if Point-to-Point
Protocol is not being used with this route.

PPP_AUTHENTICATION_USER_ID PPPAUTUSR VARCHAR(24)

Nullable

The Point-to-Point Protocol authentication user id associated
with this route.

Contains null if this is an IPv4 connection or if Point-to-Point
Protocol is not being used with this route.

PPP_INTERNET_ADDRESS PPPINTADD VARCHAR(45)

Nullable

The internet address, in IPv6 address format, to which this Point-
to-Point route is bound.

Contains null if this is an IPv4 connection or if Point-to-Point
Protocol is not being used with this route.

PPP_DIAL_ON_DEMAND_
PROFILE

PPPDODPRF VARCHAR(10)

Nullable

The name of the Dial-on-demand Remote Peer Enabled Point-to-
Point profile associated with this route.

Contains null if this is an IPv4 connection or if Point-to-Point
Protocol is not being used with this route.

LAST_CHANGE_TIMESTAMP LASTCHG TIMESTAMP(0)

Nullable

The timestamp of the most recent change to this route in the
dynamic tables used by the protocol stack.

Contains null if the interface has never been changed.

Example

Return information about all routes which are available for use.

SELECT * FROM QSYS2.NETSTAT_ROUTE_INFO
 WHERE ROUTE_STATUS = 'YES' OR ROUTE_STATUS = 'ACTIVE'

Related information
Internet Protocol version 6

SET_SERVER_SBS_ROUTING procedure
The SET_SERVER_SBS_ROUTING procedure provides the ability to configure some servers to utilize
alternative subsystems based on the user profile that is establishing the connection. The user profile can
be a group profile or a supplemental group profile.

This procedure allows an administrator to reposition specific users into alternate, non-default,
subsystems. When configured, new incoming TCP/IP server connections will use the alternate subsystem.
If the server is configured to route to a user-specified subsystem by incoming TCP/IP address as well, the
job will first route to the subsystem configured for that TCP/IP address and then immediately attempt to
route to the subsystem configured for the connecting user profile.

By default, all users for the following servers utilize the same subsystem:

Table 75. Servers and default subsystems

Server Description Server Name Default subsystem

Central server QZSCSRVS QUSRWRK

Database server QZDASOINIT QUSRWRK

Data queue server QZHQSSRV QUSRWRK

DDM QRWTSRVR QUSRWRK

334 IBM i: Database Performance and Query Optimization

Table 75. Servers and default subsystems (continued)

Server Description Server Name Default subsystem

DRDA QRWTSRVR QUSRWRK

File server QPWFSERVSO QSERVER

Network print server QNPSERVS QUSRWRK

Remote command server QZRCSRVS QUSRWRK

For more information on these servers see DRDA and DDM overview and Host servers by function.

SET_SERVER_SBS_ROUTING (

AUTHORIZATION_NAME =>

authorization-name

,

SERVER_NAME =>

server-name ,

SUBSYSTEM_NAME =>

subsystem-name

,

ALLOW_ROLLOVER =>

allow-rollover

)

The schema is QSYS2.

authorization-name
A character or graphic string expression that identifies an existing user or group profile name.

server-name
A character or graphic string expression that identifies the name of the server job that will be rerouted
to subsystem-name for authorization-name whenever a connection is initiated to this server job. Valid
server-name values are:

• QNPSERVS
• QPWFSERVSO
• QRWTSRVR
• QZDASOINIT
• QZHQSSRV
• QZRCSRVS
• QZSCSRVS

The special value of *ALL can be used to indicate all of the valid server-name values.
subsystem-name

A character or graphic string expression that identifies the name of the subsystem that will be used for
the specified user, instead of the default subsystem, whenever a connection is initiated to the
specified server job. No validation is done on subsystem-name to make sure it is a valid and active
subsystem.
Specifying the null value will clear the entry for this authorization-name and server-name.

allow-rollover
A character or graphic string expression that indicates the action to take if the specified subsystem is
not active. Valid values are:
NO

If the alternate subsystem cannot be used, the connection request will fail.

Database performance and query optimization 335

YES
If the alternate subsystem cannot be used, the connection request will succeed by using a batch
immediate job in the default subsystem.

If this parameter is not specified, the default is YES.

Notes

Authorization: The user calling this procedure must have *SECADM special authority. In addition,
*OBJMGT and *USE is required to the user profile.

The Prestart Job Entry must specify the subsystem-name.

If, for any reason, the alternate subsystem cannot be used to establish the connection, the connection will
run in the default subsystem (or the last subsystem it was successfully routed to) as a batch immediate
job. An example of this would be if the authorization-name does not have *USE authority to the subsystem
description for subsystem-name.

If routing has been configured for a user profile, the user profile configuration will always be used,
regardless of any group profile configuration. A group profile configuration will take precedence over any
supplemental group profile configuration.

Examples

• Set new incoming DRDA and DDM TCP/IP server connections for user profile TIM to route to subsystem
TIMSUBSYS.

CALL QSYS2.SET_SERVER_SBS_ROUTING('TIM','QRWTSRVR','TIMSUBSYS')

• Reset incoming DRDA and DDM TCP/IP server connections for user profile TIM back to the original
default subsystem.

CALL QSYS2.SET_SERVER_SBS_ROUTING('TIM','QRWTSRVR',NULL)

• Configure group profile ADMIN to use an alternate subsystem for all of the servers supported by this
procedure. Do not permit a connection request to rollover to use QUSRWRK.

CALL QSYS2.SET_SERVER_SBS_ROUTING('ADMIN','*ALL','ADHOCSBS','NO')

• Set new incoming Database server TCP/IP connections for user profile BOB to route to subsystem
BOBSUBSYS.

CALL QSYS2.SET_SERVER_SBS_ROUTING('BOB','QZDASOINIT','BOBSUBSYS')

• Construct a subsystem that will constrain the amount of system resources available to users who are
known to execute expensive queries.

CRTSBSD SBSD(QGPL/ADHOCSBS) POOLS((1 *BASE)) TEXT('Adhoc DRDA users SBS')

CRTJOBQ QGPL/ADHOCJOBQ TEXT('Adhoc DRDA users job queue')

ADDJOBQE SBSD(QGPL/ADHOCSBS) JOBQ(QGPL/ADHOCJOBQ) MAXACT(25) SEQNBR(40)

CRTCLS CLS(QGPL/ADHOCCLS) RUNPTY(55) TIMESLICE(100) TEXT('Adhoc DRDA users class')

ADDPJE SBSD(QGPL/ADHOCSBS) PGM(QSYS/QRWTSRVR) JOBD(QGPL/QDFTSVR) CLS(QGPL/ADHOCCLS)

STRSBS SBSD(QGPL/ADHOCSBS)

CALL QSYS2.SET_SERVER_SBS_ROUTING('SLFUSER','QRWTSRVR','ADHOCSBS')

Related information
Use of prestart jobs

336 IBM i: Database Performance and Query Optimization

SERVER_SBS_ROUTING view
The SERVER_SBS_ROUTING view returns information about the users who have alternate subsystem
configurations for some IBM i servers. When a user profile listed in this view attempts to use TCP/IP to
form a connection to the server, an attempt is made to use the alternate subsystem instead of the default
subsystem for that server.

Authorization: You must have *OBJOPR and *READ authority to a *USRPRF or it will not be returned.

The QSYS2.SET_SERVER_SBS_ROUTING procedure can be used to change the values shown in this view.

The following table describes the columns in the view. The system name is SRVR_RTG. The schema is
QSYS2.

Table 76. SERVER_SBS_ROUTING view

Column Name
System Column
Name Data Type Description

AUTHORIZATION_NAME USER_NAME VARCHAR(128) The user profile that has an alternate subsystem configuration.

QRWTSRVR_SUBSYSTEM DRDADDMSBS VARCHAR(10)

Nullable

The subsystem name that incoming DRDA or DDM connections
will be rerouted to.

Contains the null value when an alternate subsystem for this
server has not been configured for this user.

QZDASOINIT_SUBSYSTEM ZDASBS VARCHAR(10)

Nullable

The subsystem name that incoming database server connections
will be rerouted to.

Contains the null value when an alternate subsystem for this
server has not been configured for this user.

QZRCSRVS_SUBSYSTEM ZRCSBS VARCHAR(10)

Nullable

The subsystem name that incoming remote command server
connections will be rerouted to.

Contains the null value when an alternate subsystem for this
server has not been configured for this user.

QZHQSSRV_SUBSYSTEM ZHQSBS VARCHAR(10)

Nullable

The subsystem name that incoming data queue server
connections will be rerouted to.

Contains the null value when an alternate subsystem for this
server has not been configured for this user.

QZSCSRVS_SUBSYSTEM ZSCSBS VARCHAR(10)

Nullable

The subsystem name that incoming central server connections
will be rerouted to.

Contains the null value when an alternate subsystem for this
server has not been configured for this user.

QNPSERVS_SUBSYSTEM NPSSBS VARCHAR(10)

Nullable

The subsystem name that incoming network print server
connections will be rerouted to.

Contains the null value when an alternate subsystem for this
server has not been configured for this user.

QPWFSERVSO_SUBSYSTEM PWFSBS VARCHAR(10)

Nullable

The subsystem name that incoming file server connections will be
rerouted to.

Contains the null value when an alternate subsystem for this
server has not been configured for this user.

QRWTSRVR_ROLLOVER DRDA_RO VARCHAR(3) Indicates how incoming DRDA or DDM connection requests are
handled if the specified subsystem cannot be used.

NO
Incoming connections will be rejected.

YES
Incoming connections will be routed to the default
subsystem. If an alternate subsystem is not configured for
this server, YES is the default.

QZDASOINIT_ROLLOVER ZDA_RO VARCHAR(3) Indicates how incoming database server connection requests are
handled if the specified subsystem cannot be used.

NO
Incoming connections will be rejected.

YES
Incoming connections will be routed to the default
subsystem. If an alternate subsystem is not configured for
this server, YES is the default.

Database performance and query optimization 337

Table 76. SERVER_SBS_ROUTING view (continued)

Column Name
System Column
Name Data Type Description

QZRCSRVS_ROLLOVER ZRC_RO VARCHAR(3) Indicates how incoming remote command connection requests
are handled if the specified subsystem cannot be used.

NO
Incoming connections will be rejected.

YES
Incoming connections will be routed to the default
subsystem. If an alternate subsystem is not configured for
this server, YES is the default.

QZHQSSRV_ROLLOVER ZHQ_RO VARCHAR(3) Indicates how incoming data queue server connection requests
are handled if the specified subsystem cannot be used.

NO
Incoming connections will be rejected.

YES
Incoming connections will be routed to the default
subsystem. If an alternate subsystem is not configured for
this server, YES is the default.

QZSCSRVS_ROLLOVER ZSC_RO VARCHAR(3) Indicates how incoming central server connection requests are
handled if the specified subsystem cannot be used.

NO
Incoming connections will be rejected.

YES
Incoming connections will be routed to the default
subsystem. If an alternate subsystem is not configured for
this server, YES is the default.

QNPSERVS_ROLLOVER NPS_RO VARCHAR(3) Indicates how incoming network print server connection requests
are handled if the specified subsystem cannot be used.

NO
Incoming connections will be rejected.

YES
Incoming connections will be routed to the default
subsystem. If an alternate subsystem is not configured for
this server, YES is the default.

QPWFSERVSO_ROLLOVER PWF_RO VARCHAR(3) Indicates how incoming file server connection requests are
handled if the specified subsystem cannot be used.

NO
Incoming connections will be rejected.

YES
Incoming connections will be routed to the default
subsystem. If an alternate subsystem is not configured for
this server, YES is the default.

The following table shows the servers that can have alternate subsystem configurations.

Table 77. Servers and server names

Server Description Server Name

Central server QZSCSRVS

Database server QZDASOINIT

Data queue server QZHQSSRV

DDM QRWTSRVR

DRDA QRWTSRVR

File server QPWFSERVSO

Network print server QNPSERVS

Remote command server QZRCSRVS

338 IBM i: Database Performance and Query Optimization

Example

Query subsystem routing information for all user profiles:

SELECT * FROM QSYS2.SERVER_SBS_ROUTING

TCPIP_INFO view
The TCPIP_INFO view contains TCP/IP information for the current host connection.

The following table describes the columns in the view. The schema is QSYS2.

Table 78. TCPIP_INFO view

Column Name System Column Name Data Type Description

COLLECTED_TIME COLLE00001 TIMESTAMP

Nullable

Timestamp indicating when this row of information was
collected.

LOCAL_HOST_NAME LOCAL00001 VARCHAR(255)

Nullable

TCP/IP host name of the local system.

CLIENT_IP_ADDRESS_TYPE CLIEN00001 VARCHAR(10)

Nullable

TCP/IP address version of the client.

CLIENT_IP_ADDRESS CLIEN00002 VARCHAR(45)

Nullable

TCP/IP address of the client.

CLIENT_PORT_NUMBER CLIEN00003 INTEGER

Nullable

TCP/IP port of the client.

SERVER_IP_ADDRESS_TYPE SERVE00001 VARCHAR(10)

Nullable

TCP/IP address version of the server.

SERVER_IP_ADDRESS SERVE00002 VARCHAR(45)

Nullable

TCP/IP address of the server.

SERVER_PORT_NUMBER SERVE00003 INTEGER

Nullable

TCP/IP port number of the server.

HOST_VERSION HOST_00001 VARCHAR(10)

Nullable

Operating system version.

Example

Return information about the current host connection.

SELECT * FROM QSYS2.TCPIP_INFO

Java Services
This view and procedure provide Java information and JVM management options.

JVM_INFO view
The JVM_INFO view returns information about active Java Virtual Machine (JVM) jobs. The information is
a subset of what can be found interactively using the Work with JVM Jobs (WRKJVMJOB) command.

The following table describes the columns in the view. The schema is QSYS2.

Table 79. JVM_INFO view

Column Name
System Column
Name Data Type Description

JOB_NAME JOB_NAME VARCHAR(28) The qualified job name for the active JVM.

Database performance and query optimization 339

Table 79. JVM_INFO view (continued)

Column Name
System Column
Name Data Type Description

PROCESS_ID PROCESS_ID INTEGER The process identifier used by the kernel to uniquely identify the
process.

START_TIME START_TIME TIMESTAMP The current time when the JVM was started.

INITIAL_THREAD_TASKCOUNT INITTHDNUM BIGINT The number of threads initiated for this JVM when the JVM was
started.

JAVA_THREAD_COUNT JAVATHDNUM BIGINT The current number of java threads within the JVM job.

TOTAL_GC_TIME ACCUMTIME BIGINT Total time spent performing garbage collection tasks in
milliseconds.

GC_CYCLE_NUMBER GC_CYCLE INTEGER The current or last garbage collection cycle performed.

GC_POLICY_NAME GCPOLICY VARGRAPHIC(16)

CCSID 1200

The name of the garbage collection policy in use.

JAVA_HOME JAVA_HOME VARGRAPHIC(102
4)

CCSID 1200

The java.home environment variable value in effect for this JVM.

This value indicates the JDK that is used when running a Java
application. The location of the Java tools and utilities is in one of
two directories, either <JAVA_HOME>/jre/bin or <JAVA_HOME>/
bin, where <JAVA_HOME> is the value of the JAVA_HOME
environment variable. For example, if JAVA_HOME is set to /
QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit, indicating that
IBM Technology for Java 6 32-bit is to be used, then the Java tools
and utilities directories would be:

/QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit/bin
/QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit/jre/bin

USER_DIRECTORY USER_DIR VARGRAPHIC(102
4)

CCSID 1200

The user working directory for the JVM.

This also indicates the location where diagnostic detail will be
dumped for the JVM.

NUM_CURRENT_PROPERTIES NUMPROP INTEGER Total number of Java system properties currently present.

INITIAL_HEAP_SIZE INTHEAP BIGINT The initial heap size available to the JVM code, in kilobytes.

CURRENT_HEAP_SIZE CURHEAP BIGINT The amount of memory, in kilobytes, currently allocated for heap
space.

IN_USE_HEAP_SIZE INUSEHEAP BIGINT The amount of memory, in kilobytes, currently in use by the heap.

MAX_HEAP_SIZE MAXHEAP BIGINT The maximum heap size available to the JVM code, in kilobytes.

MALLOC_MEMORY_SIZE MALLOCSIZE BIGINT The amount of memory, in kilobytes, that has been allocated with
malloc().

INTERNAL_MEMORY_SIZE INTMEM BIGINT The amount of memory, in kilobytes, that the JVM is using for
internal operations.

JIT_MEMORY_SIZE JITSIZE BIGINT The size of the memory space, in kilobytes, that is used by the JIT
(Just in Time) compiler.

SHARED_CLASS_SIZE SHAREDSIZE BIGINT The amount of memory, in kilobytes, that the JVM is using for
shared classes.

BIT_MODE BIT_MODE INTEGER The Java version of this job.

32
32 bit Java job

64
64 bit Java job

Example

Examine the active JVM jobs, ordered by top heap space consumption.

 SELECT * FROM QSYS2.JVM_INFO
 ORDER BY CURRENT_HEAP_SIZE DESC

340 IBM i: Database Performance and Query Optimization

SET_JVM procedure
The SET_JVM procedure can be used to manage specific JVM jobs.

This actions provided by this DB2 for i procedure can also be accomplished interactively using the Work
with JVM Jobs (WRKJVMJOB) command.

SET_JVM (job_name , action)

The schema is QSYS2.

job_name
A character or graphic string expression that identifies the qualified job name of the job to change.

action
A character or graphic string expression that specifies that action to perform. Supported actions are:
GC_ENABLE_VERBOSE

Enable verbose garbage collection detail.
GC_DISABLE_VERBOSE

Disable verbose garbage collection detail.
GENERATE_HEAP_DUMP

Generates information about the JVM's heap. Generates a dump of all the heap space allocations
which have not yet been freed.

GENERATE_SYSTEM_DUMP
Generates system detail for the JVM. Generates a binary format raw memory image of the job that
was running when the dump was initiated.

GENERATE_JAVA_DUMP
Generates Java detail for the JVM. Generates multiple files that contain diagnostic information for
the JVM and the Java applications running within the JVM.

Example

• Change a specific web admin JVM to provide verbose garbage collection details:

CALL QSYS2.SET_JVM('121376/QWEBADMIN/ADMIN4','GC_ENABLE_VERBOSE') ;

Journal Services
This function and view provide journal information.

Database performance and query optimization 341

DISPLAY_JOURNAL table function
The DISPLAY_JOURNAL table function returns information about journal entries. It returns information
similar to what is returned by the Display Journal (DSPJRN) CL command and the Retrieve Journal Entries
(QjoRetrieveJournalEntries) API.

DISPLAY_JOURNAL (

JOURNAL_LIBRARY =>

journal-library ,

JOURNAL_NAME =>

journal-name

,

STARTING_RECEIVER_LIBRARY =>

receiver-library

,

STARTING_RECEIVER_NAME =>

receiver-name

,

STARTING_TIMESTAMP =>

starting-timestamp

,

STARTING_SEQUENCE =>

starting-sequence

,

JOURNAL_CODES =>

journal-codes

,

JOURNAL_ENTRY_TYPES =>

journal-types

,

OBJECT_LIBRARY =>

object-library

,

OBJECT_NAME =>

object-name

,

OBJECT_OBJTYPE =>

object-type

,

OBJECT_MEMBER =>

object-member

,

USER =>

user ,

JOB =>

job

,

PROGRAM =>

program

,

ENDING_RECEIVER_LIBRARY =>

ending-receiver-library

,

ENDING_RECEIVER_NAME =>

ending-receiver-name

,

ENDING_TIMESTAMP =>

ending-timestamp

,

ENDING_SEQUENCE =>

ending-sequence

,

GENERATE_SYSLOG =>

generate-syslog

,

EOF_DELAY =>

eof-delay

)

342 IBM i: Database Performance and Query Optimization

The schema is QSYS2.

Authorization:

• You must have *USE authority to the journal and to all requested journal receivers.
• *OBJEXIST authority is required to the journal if object-name is omitted or if object-name specifies an

object that no longer exists.
• If object-name is *ALL, you must be authorized to every object associated with a journal entry.

journal-library
A character or graphic string expression that identifies the name of the library containing the journal.
The name cannot be *LIBL or *CURLIB.

journal-name
A character or graphic string expression that identifies the name of the journal.

receiver-library
A character or graphic string expression that identifies the name of the starting journal receiver library.
The name can be *LIBL or *CURLIB.

receiver-name
A character or graphic string expression that identifies the name of the starting journal receiver. If one
of the special values *CURRENT, *CURCHAIN, and *CURAVLCHN is specified, the receiver-library value
will be ignored. Otherwise, the receiver-name and receiver-library must identify a valid journal
receiver.

If no journal receiver is specified, *CURRENT will be used.

starting-timestamp
A timestamp value that specifies the starting timestamp to use.

A value cannot be specified for both starting-timestamp and starting-sequence.

starting-sequence
A decimal expression that identifies the starting sequence number to use. If the starting-sequence
value is not found in the receiver range, an error is returned.

A value cannot be specified for both starting-timestamp and starting-sequence.

journal-codes
A character or graphic string expression that lists the journal codes to return. The string can contain
the special values of *ALL or *CTL, or it can be a list of one or more journal codes. Journal codes in the
string can be separated by one or more separators. Separators are blank and comma. For example, a
valid string can be 'RJ' or 'R J' or 'R,J' or 'R, J'.

If no string is provided, *ALL is used.

journal-types
A character or graphic string expression that lists the journal entry types to return. The string can
contain the special values of *ALL or *RCD, or it can be a list of one or more journal entry types.
Journal entry types in the string can be separated by one or more separators. Separators are blank
and comma. For example, a valid string can be 'JFCT' or 'JF CT' or 'JF,CT' or 'JF, CT'.

If no string is provided, *ALL is used.

object-library
A character or graphic string expression that identifies the name of an object library. The values *LIBL
and *CURLIB are allowed.

object-name
A character or graphic string expression that identifies the name of an object.

If the object-name contains the special value of *ALL, object-library must contain a library name and
object-type must contain a valid object type. Otherwise, object-name, object-library, object-type, and
object-member must identify a valid object.

Database performance and query optimization 343

object-type
A character or graphic string expression that identifies the system object type for the object. The value
must be *DTAARA, *DTAQ, *FILE, or *LIB.

object-member
A character or graphic string expression that identifies the name of a member. It can be a special
value of *FIRST, *ALL, or *NONE or a valid member name. If the object type is not *FILE, the member
name is ignored.

user
A character or graphic string expression that identifies the user profile name for the current user of
the job. If user is not specified, *ALL is used.

job
A character or graphic string expression that identifies the name of a job. The first 10 characters are
the job name, the second 10 characters are the user name, and the last 6 characters are the job
number. If job is not specified, *ALL is used.

program
A character or graphic string expression that identifies the name of a program. If program is not
specified, *ALL is used.

ending-receiver-library
A character or graphic string expression that identifies the name of the ending journal receiver library.
The name can be *LIBL or *CURLIB. If ending-receiver-name is not *CURRENT, a value for ending-
receiver-library must be specified.

The value of this parameter is ignored if eof-delay is greater than zero.

ending-receiver-name
A character or graphic string expression that identifies the name of the ending journal receiver. If the
special value *CURRENT is specified, the ending-receiver-library value will be ignored. Otherwise, the
ending-receiver-name and ending-receiver-library must identify a valid journal receiver.

If ending-receiver-name is not specified, *CURRENT is used.

The value of this parameter is ignored if eof-delay is greater than zero.

ending-timestamp
A timestamp value that specifies the ending timestamp to use.

A value cannot be specified for both ending-timestamp and ending-sequence. This parameter cannot
be specified if eof-delay is greater than zero.

ending-sequence
A decimal expression that identifies the ending sequence number to use. If the ending-sequence value
is not found in the receiver range, an error is returned.

A value cannot be specified for both ending-timestamp and ending-sequence. This parameter cannot
be specified if eof-delay is greater than zero.

generate-syslog
A character or graphic string expression that indicates whether to transform journal entries into syslog
formatted detail. Values are:
NO

No syslog information will be returned. The SYSLOG_EVENT, SYSLOG_FACILITY,
SYSLOG_SEVERITY, and SYSLOG_PRIORITY columns will contain the null value.

RFC3164
Values will be returned for the SYSLOG_EVENT, SYSLOG_FACILITY, SYSLOG_SEVERITY, and
SYSLOG_PRIORITY columns if syslog information is defined for the journal entry. The
SYSLOG_EVENT column will contain a syslog header that matches the RFC3164 format as
described by the Internet Engineering Task Force (IETF) Request For Comments (RFC) 3164.

344 IBM i: Database Performance and Query Optimization

RFC5424
Values will be returned for the SYSLOG_EVENT, SYSLOG_FACILITY, SYSLOG_SEVERITY, and
SYSLOG_PRIORITY columns if syslog information is defined for the journal entry. The
SYSLOG_EVENT column will contain a syslog header that matches the RFC5424 format as
described by the Internet Engineering Task Force (IETF) Request For Comments (RFC) 5424.

DISPLAY_JOURNAL only returns syslog information for the audit journal. If RFC3164 or RFC5424 is
specified, journal-library must be QSYS and journal-name must be QAUDJRN.

If generate-syslog is not specified or is the null value, NO is used.

eof-delay
An integer expression that specifies the number of seconds to sleep when all audit journal entries
have been read. This delay allows the caller to establish a polling service that will continually return
rows, sleeping for the specified interval whenever all entries have been processed.

A value of zero indicates no delay is used and a finite set of rows will be returned. A value greater than
zero indicates that the table function will sleep, as needed, to wait for new audit journal entries and
never end. If eof-delay is not specified or is the null value, zero is used.

If this parameter has a value greater than zero, the generate-syslog parameter must be RFC3164 or
RFC5424, the ending-receiver-library and ending-receiver-name are ignored, and the ending-
timestamp and ending-sequence parameters cannot be specified with a value other than their default
values.

When using a non-zero eof-delay parameter, avoid using query clauses that depend on returning a
finite number of rows. For example, using the FETCH FIRST n ROWS clause can cause the query to
end when the requested number of rows has been satisfied. A query using the DISPLAY_JOURNAL
function with a non-zero eof-delay parameter does not allow data to be copied (ALWCPYDTA(*NO)).
This means that a query requiring a copy of data, such as one using an ORDER BY clause or UNION
DISTINCT, will issue an error and not be allowed.

The special values supported for the function arguments are the same as for the Display Journal
(DSPJRN) CL command.

The result of the function is a table containing rows with the format shown in the following table. All the
columns are nullable.

Table 80. DISPLAY_JOURNAL table function

Column Name Data Type Description

ENTRY_TIMESTAMP TIMESTAMP The system date and time when the journal entry was added to the journal
receiver.

SEQUENCE_NUMBER DECIMAL(21,0) A number assigned by the system to each journal entry.

JOURNAL_CODE CHAR(1) The primary category of the journal entry.

JOURNAL_ENTRY_TYPE CHAR(2) Further identifies the type of user-created or system-created entry.

COUNT_OR_RRN BIGINT Contains either the relative record number (RRN) of the record that caused the
journal entry or a count that is pertinent to the specific type of journal entry.

ENTRY_DATA BLOB(2G) The entry specific data returned for this journal entry.

NULL_VALUE_INDICATORS VARCHAR(8000) The null value indicators returned for this journal entry.

OBJECT VARCHAR(30) The name of the object for which the journal entry was added.

OBJECT_TYPE VARCHAR(10) The type of object in the entry.

OBJECT_TYPE_INDICATOR CHAR(1) An indicator with respect to the information in the object field.

FILE_TYPE_INDICATOR CHAR(1) Identifies whether or not this journal entry is associated with a logical file.

JOURNAL_IDENTIFIER VARCHAR(10) The journal identifier (JID) for the object.

CURRENT_USER VARCHAR(10) The name of the effective user profile under which the job was running when the
entry was created.

JOB_NAME VARCHAR(10) The name of the job that added the entry.

Database performance and query optimization 345

Table 80. DISPLAY_JOURNAL table function (continued)

Column Name Data Type Description

JOB_USER VARCHAR(10) The user profile name of the user that started the job.

JOB_NUMBER VARCHAR(6) The job number of the job that added the entry.

THREAD BIGINT Identifies the thread within the process that added the journal entry.

PROGRAM_NAME VARCHAR(10) The name of the program that added the entry.

PROGRAM_LIBRARY VARCHAR(10) The name of the library that contains the program that added the journal entry.

PROGRAM_LIBRARY_ASP_DEVICE VARCHAR(10) The name of the ASP device that contains the program.

PROGRAM_LIBRARY_ASP_NUMBER INTEGER The number for the auxiliary storage pool that contains the program that added
the journal entry.

COMMIT_CYCLE DECIMAL(21,0) A number that identifies the commit cycle.

NESTED_COMMIT_LEVEL BIGINT Indicates the nesting level of the commit cycle that was open when a journal
entry representing an object level change was deposited.

XID VARCHAR(140) The transaction identifier, as defined by the Open Group's XA specification, for
commit cycles related to an XA transaction branch.

LUW VARCHAR(39) The logical unit of work identifies entries to be associated with a given unit of
work.

REMOTE_PORT INTEGER The port number of the remote address associated with this journal entry.

REMOTE_ADDRESS VARCHAR(46) The remote address associated with the journal entry.

SYSTEM_NAME VARCHAR(8) The name of the system on which the entry is being retrieved.

SYSTEM_SEQUENCE_NUMBER DECIMAL(21,0) The system sequence number indicates the relative sequence of when this journal
entry was deposited into the journal.

REFERENTIAL_CONSTRAINT CHAR(1) Whether this entry was recorded for actions that occurred on records that are part
of a referential constraint.

TRIGGER CHAR(1) Whether this entry was created as result of a trigger program.

IGNORE_ON_APPLY CHAR(1) Whether this entry is ignored during an Apply Journaled Changes (APYJRNCHG) or
Remove Journaled Changed (RMVJRNCHG) command.

MINIMIZED_ENTRY_DATA CHAR(1) Whether this entry has minimized entry specific data as a result of the journal
having specified MINENTDTA for the object type of the entry.

MINIMIZED_ON_FIELD_BOUNDARY CHAR(1) Whether this entry has minimized entry specific data on field boundaries as a
result of the journal having been specified with MINENTDTA(*FLDBDY).

INDICATOR_FLAG CHAR(1) An indicator for the operation.

RECEIVER_NAME VARCHAR(10) The name of the receiver holding the journal entry.

RECEIVER_LIBRARY VARCHAR(10) The name of the library containing the receiver holding the journal entry.

RECEIVER_ASP_DEVICE VARCHAR(10) The name of the ASP device containing the receiver holding the journal entry.

RECEIVER_ASP_NUMBER INTEGER The number for the auxiliary storage pool containing the receiver holding the
journal entry.

ARM_NUMBER INTEGER The number of the disk arm that contains the journal entry.

OBJECT_ASP_DEVICE VARCHAR(10) ASP device name.

OBJECT_ASP_NUMBER INTEGER ASP number.

PARENT_FILE_ID BINARY(16) File ID for parent directory.

OBJECT_FILE_ID BINARY(16) File ID for object.

RELATIVE_DIRECTORY_FILE_ID BINARY(16) File ID of directory containing object in PATH_NAME.

OBJECT_FILE_NAME VARGRAPHIC(2002)
CCSID 1200

Object name.

PATH_NAME DBCLOB(16M)
CCSID 1200

Name of IFS path.

DLO_NAME VARCHAR(12) DLO name.

FOLDER_PATH VARCHAR(63) DLO folder path.

346 IBM i: Database Performance and Query Optimization

Table 80. DISPLAY_JOURNAL table function (continued)

Column Name Data Type Description

SYSLOG_EVENT VARGRAPHIC(2048)
CCSID 1200

The Common Event Format (CEF) syslog event for the journal entry preceded with
a header of the requested type. If a header-type of RFC3164 is requested, the
maximum length is 1024 characters. If a header-type of RFC5424 is requested,
the maximum length is 2048 characters. The string will be truncated with no
warning if it exceeds the maximum length.

The audit journal entry types that generate syslog information and the key names
returned for journal entries are listed in the Notes section.

Contains the null value if there is no syslog event defined for the journal entry or if
NO was specified for the GENERATE_SYSLOG parameter.

SYSLOG_FACILITY INTEGER The syslog facility assigned to the event.

4
security/authorization messages

Contains the null value if there is no syslog event defined for the journal entry or if
NO was specified for the GENERATE_SYSLOG parameter.

SYSLOG_SEVERITY INTEGER The syslog severity assigned to the event.

2
Critical condition

4
Warning condition

5
Notice: A normal but significant condition

6
Informational message

The severity assigned to each journal entry is listed in the Notes section.

Contains the null value if there is no syslog event defined for the journal entry or if
NO was specified for the GENERATE_SYSLOG parameter.

SYSLOG_PRIORITY INTEGER The syslog priority number assigned to the event.

Contains the null value if there is no syslog event defined for the journal entry or if
NO was specified for the GENERATE_SYSLOG parameter.

Note

Row and column access control: This table function recognizes whether ROW ACCESS CONTROL or
COLUMN ACCESS CONTROL exists and is activated for the target table. If any row or column access
control is active for the table, the rule text logic defined for the row permissions and/or column masks is
applied before returning the value in ENTRY_DATA. When the rule text for a row permission determines
that the user invoking the function should not see the row, the ENTRY_DATA column contains the text NOT
AUTHORIZED. If the user is allowed to see the row and a column mask exists, the rule text for the column
mask determines the value returned for ENTRY_DATA.

Syslog information: Syslog information is returned for a subset of audit journal entries. Syslog
information is also available for history log messages. See HISTORY_LOG_INFO table function for more
details.

The following audit journal entries can generate syslog information:
AD

Auditing changes
AF

Authority failure
AX

Row and column access control
CA

Authority changes
CD

Command string audit

Database performance and query optimization 347

CO
Create object

CP
User profile changed, created, or restored

DO
Delete object

DS
DST security password reset

GR
Generic record

GS
Socket description was given to another job

LD
Link, unlink, or look up directory entry

OM
Object move or rename

OR
Object restore

OW
Object ownership changed

PA
Program changed to adopt authority

PG
Change of an object’s primary group

PW
Invalid password

RA
Authority change during restore

RJ
Restoring job description with user profile specified

RO
Change of object owner during restore

RP
Restoring adopted authority program

RU
Restoring user profile authority

RZ
Changing a primary group during restore

SE
Subsystem routing entry changed

SO
Server security user information actions

ST
Use of service tools

SV
System value changed

ZC
Object accessed (change)

ZR
Object accessed (read)

348 IBM i: Database Performance and Query Optimization

The audit journal entries are assigned a SYSLOG_SEVERITY value in the following way:

• Severity 2 Critical condition

– SV - System value when QAUDCTL is changed to *NONE
• Severity 4 Warning condition

– AF - Authority failure
– GR - Generic record, when function usage was checked and failed for a function name with a prefix of
QIBM_DB_

• Severity 5 Notice: A normal but significant condition

– AD - Auditing changes
– AX - Row and column access control
– CA - Authority changes
– CP - User profile changed, created, or restored
– DS - DST security password reset
– OM - Object move or rename
– OW - Object ownership changed
– PG - Change of an object’s primary group
– PW - Invalid password
– RA - Authority change during restore
– RO - Change of object owner during restore
– RU - Restoring user profile authority
– RZ - Change a primary group during restore
– SO - Server security user information actions

• Severity 6 Informational message

– CD - Command string audit
– CO - Create object
– DO - Delete object
– GR - Generic record, except for the Severity 4 case where function usage was checked and failed
– GS - Socket description was given to another job
– LD - Link, unlink, or look up directory entry
– OR - Object restore
– PA - Program changed to adopt authority
– RJ - Restoring job description with user profile specified
– RP - Restoring adopted authority program
– SE - Subsystem routing entry changed
– ST - Use of service tools
– SV - System value changed, except for QAUDCTL severity 2 case
– ZC - Object accessed (change)
– ZR - Object accessed (read)

The Common Event Format key names that are generated within the SYSLOG_EVENT column are:

Database performance and query optimization 349

Table 81. Common Event Format key names

Common Event Format key name Description

deviceExternalId Device name (extracted from ENTRY_DATA
column)

dloName Document Library Object name (DLO_NAME
column)

dloPath Document Library Object folder path
(FOLDER_PATH column)

dproc Destination job (process) name (extracted from
ENTRY_DATA column)

duser Destination user name (extracted from
ENTRY_DATA column)

filePath IFS stream file path (PATH_NAME column)

fileType Object type (OBJECT_TYPE column)

fname IFS stream file name (OBJECT_FILE_NAME
column)

msg Additional information from the audit record not
included in other keys (extracted from
ENTRY_DATA column)

objName Object name (OBJECT column)

oldDloName Document Library Object name (before rename)
(extracted from ENTRY_DATA column)

oldDloPath Document Library Object folder path (before
rename) (extracted from ENTRY_DATA column)

oldFileName IFS stream file name (before rename) (extracted
from ENTRY_DATA column)

oldFilePath IFS stream file path (before rename) (extracted
from ENTRY_DATA column)

oldObjName Object name (before rename) (extracted from
ENTRY_DATA column)

reason Text description of the audit journal entry

shost Source system (host) name (SYSTEM_NAME
column)

sproc Source job (process) name (JOB_NAME,
JOB_USER, JOB_NUMBER columns)

spt Source port number (REMOTE_PORT column)

src Source IP address (REMOTE_ADDRESS column)

suser Source user name (CURRENT_USER column)

Examples

• Select all entries from the *CURRENT receiver of journal TESTLIB/QSQJRN.

SELECT * FROM TABLE (
 DISPLAY_JOURNAL('TESTLIB', 'QSQJRN')) AS JT;

350 IBM i: Database Performance and Query Optimization

• Find all changes made by SUPERUSER against the PRODDATA/SALES table. The first two arguments are
passed without names since they correspond with the first two parameters for the function. The other
four arguments are passed using the parameter name syntax to avoid specifying a value for the
parameters that are not needed.

SELECT journal_code, journal_entry_type, object, object_type, X.*
FROM TABLE (
 QSYS2.Display_Journal(
 'PRODDATA', 'QSQJRN', -- Journal library and name
 OBJECT_LIBRARY=>'PRODDATA', OBJECT_NAME=>'SALES',
 OBJECT_OBJTYPE=>'*FILE', OBJECT_MEMBER=>'SALES'
)) AS X
WHERE journal_entry_type in ('DL', 'PT', 'PX', 'UP') AND "CURRENT_USER" = 'SUPERUSER'
ORDER BY entry_timestamp DESC

• Select entries from the audit journal that return syslog information and format them with an RFC5424
header.

SELECT syslog_facility, syslog_severity, syslog_event
 FROM TABLE (QSYS2.DISPLAY_JOURNAL('QSYS', 'QAUDJRN',
 GENERATE_SYSLOG =>'RFC5424'
)) AS X
 WHERE syslog_event IS NOT NULL;

JOURNAL_INFO view
The JOURNAL_INFO view contains information about journals, including remote journals.

The values returned for the columns in the view are closely related to the values returned by Retrieve
Journal Information API. Refer to the API for more detailed information.

The following table describes the columns in the view. The schema is QSYS2.

Table 82. JOURNAL_INFO view

Column Name System Column Name Data Type Description

JOURNAL_NAME JRNNAME VARCHAR(10) The name of the journal.

JOURNAL_LIBRARY SYS_DNAME VARCHAR(10) The name of the library that contains the journal.

ASP_NUMBER ASPNUMBER INTEGER The number of the auxiliary storage pool to which
storage for the journal is allocated.

JOURNAL_ASPGRP JRNASPGRP VARCHAR(10) The name of the auxiliary storage pool (ASP) in
which the journal resides. A value of *SYSBAS
indicates the system ASP and all basic user ASPs.

ATTACHED_JOURNAL_RECEIVER_NAME ATTRCVNAME VARCHAR(10)

Nullable

The name of the journal receiver that is currently
attached to this journal.

Contains the null value when there is no attached
receiver.

ATTACHED_JOURNAL_RECEIVER_LIBRARY ATTRCVLIB VARCHAR(10)

Nullable

The name of the library that contains the attached
journal receiver.

Contains the null value when there is no attached
receiver.

MESSAGE_QUEUE MSGQNAME VARCHAR(10) The name of the message queue that is associated
with this journal.

MESSAGE_QUEUE_LIBRARY MSGQLIB VARCHAR(10) The name of the library that contains the message
queue.

Database performance and query optimization 351

Table 82. JOURNAL_INFO view (continued)

Column Name System Column Name Data Type Description

DELETE_RECEIVER_OPTION DLTRCVOPT VARCHAR(3) Indicates whether the system deletes detached
journal receivers that are associated with this
journal when they are no longer needed for IPL or
IASP vary on recovery.

YES
Detached journal receivers that are
associated with this journal are deleted when
they are no longer needed for IPL or IASP
vary on recovery.

NO
Detached journal receivers that are
associated with this journal are not deleted
when they are no longer needed for IPL or
IASP vary on recovery.

DELETE_RECEIVER_DELAY DLTRCVDLY INTEGER

Nullable

The delay time (in minutes) between attempts to
delete journal receivers associated with this
journal.

Contains the null value when
DELETE_RECEIVER_OPTION is NO.

JOURNAL_TYPE TYPE VARCHAR(10) The scope of the journal and some of its
characteristics.

*LOCAL
This is a local journal.

*REMOTE
This is a remote journal.

JOURNAL_STATE STATE VARCHAR(10) An indication as to whether journal entries are
currently being sent to a journal. For a remote
journal, this is whether the journal is actively
receiving journal entries from the source system
journal.

*INACTIVE
If this is a remote journal, this means journal
entries cannot be received from a source
journal.

*ACTIVE
If this is a local journal, this means journal
entries can be deposited to this journal. If
this is a remote journal, this means journal
entries can be received from a source journal.

*FAILED
If this is a remote journal, this means journal
entries cannot be received from a source
journal due to a remote journal function
failure. Does not apply to local journals.

*INACTPEND
If this is a remote journal, this means a
request is being processed to set the journal
state to *INACTIVE. Does not apply to local
journals.

*STANDBY
If this is a local journal, this means that most
journal entries are not deposited into the
journal and there will be no errors indicating
that the entry was not deposited. Does not
apply to remote journals.

*CTLINACT
The remote journal is in the process of a
controlled inactivate.

*PENDING
The remote journal is transitioning from an
*INACTIVE state to an *ACTIVE state.

NUMBER_JOURNAL_RECEIVERS NUMJRNRCV INTEGER The total number of journal receivers that are
associated with the journal.

TOTAL_SIZE_JOURNAL_RECEIVERS SIZJRNRCV BIGINT The total size of the journal receivers (in kilobytes)
associated with the journal.

352 IBM i: Database Performance and Query Optimization

Table 82. JOURNAL_INFO view (continued)

Column Name System Column Name Data Type Description

NUMBER_REMOTE_JOURNALS RMTJRNS INTEGER The total number of remote journals that are
directly downstream of this journal.

REDIRECTED_RECEIVER_LIBRARY RDRRCVLIB VARCHAR(10)

Nullable

For a local or *TYPE1 remote journal, the
redirected receiver library name that is currently in
place on this journal's local journal for any
downstream journal receivers associated with
*TYPE1 remote journals.

Contains *NONE if no *TYPE1 remote journals have
been added or if no receiver library redirection was
specified when *TYPE1 remote journals were
added.

Contains the redirected receiver library name that
is currently in place on this remote journal if the
specified journal is a *TYPE2 remote journal.

Contains the null value if no *TYPE1 remote
journals have been added.

MAXIMUM_REMOTE_JOURNALS
_ENTRIES_BEHIND

MAXRMTENTB INTEGER

Nullable

The maximum number of entries that are waiting
to be sent to the target system for any remote
journal.

Contains the null value if
NUMBER_REMOTE_JOURNALS is 0 or if no
attached remote journals are active with async
delivery mode.

MAXIMUM_REMOTE_JOURNALS
_TIME_BEHIND

MAXRMTSECB BIGINT

Nullable

The maximum value (in hundredths of seconds)
that the source journal is behind in sending journal
entries to the target system for any remote journal.

Contains the null value if
NUMBER_REMOTE_JOURNALS is 0 or if no
attached remote journals are active with async
delivery mode.

MAXIMUM_REMOTE_JOURNALS
_RETRANSMISSIONS

MAXRMTRETR BIGINT

Nullable

The maximum value for any remote journal of the
total number of times the local system
retransmitted a segment because an
acknowledgement was not received.

Contains the null value if
NUMBER_REMOTE_JOURNALS is 0 or if no
attached remote journals are active using TCP/IP.

JOURNAL_TEXT TEXT VARCHAR(50)

Nullable

The text description of the journal.

Contains the null value if the journal has no text.

MANAGE_RECEIVER_OPTION MNGRCVOPT VARCHAR(10)

Nullable

Indicates whether the system or user manages the
changing of journal receivers.

*SYSTEM
The system manages the changing of journal
receivers.

*USER
The user manages the changing of journal
receivers.

Contains the null value for a remote journal.

MANAGE_RECEIVER_DELAY MNGRCVDLY INTEGER

Nullable

The delay time (in minutes) between attempts to
attach new journal receivers to this journal.

Contains the null value when
MANAGE_RECEIVER_OPTION is *USER or the null
value.

REMOVE_INTERNAL_ENTRIES RMVINTENT VARCHAR(3)

Nullable

Handling of internal system entries.

YES
The size of the attached receivers is reduced
by automatic removal of the internal system
entries.

NO
The internal system entries are not removed.

Contains the null value for a remote journal.

Database performance and query optimization 353

Table 82. JOURNAL_INFO view (continued)

Column Name System Column Name Data Type Description

REMOVE_FIXED_LENGTH_DETAIL MINFIXLEN VARCHAR(3)

Nullable

Handling of fixed length details.

YES
The size of the journal entries that are
deposited into the attached journal receivers
is reduced by the automatic removal of all
fixed length data such as job name, machine
sequence number, and so on.

NO
Fixed length data is not removed.

Contains the null value for a remote journal.

RECEIVER_MAXIMUM_SIZE MAXOPT VARCHAR(10)

Nullable

The receiver size option that applies to this journal
receiver.

*MAXOPT1
The journal receivers attached to the journal
can have a maximum receiver size of
approximately one terabyte
(1,099,511,627,776 bytes) and a maximum
sequence number of 9,999,999,999.
Additionally, the maximum size of the journal
entry that can be deposited is 15,761,440
bytes.

*MAXOPT2
The journal receivers attached to the journal
can have a maximum receiver size of
approximately one terabyte
(1,099,511,627,776 bytes) and a maximum
sequence number of 9,999,999,999.
Additionally, the maximum size of the journal
entry which can be deposited is
4,000,000,000 bytes.

*MAXOPT3
The journal receivers attached to the journal
can have a maximum receiver size of
approximately one terabyte
(1,099,511,627,776 bytes) and a maximum
sequence number of
18,446,744,073,709,551,600. Additionally,
the maximum size of the journal entry which
can be deposited is 4,000,000,000 bytes.

*NONE
The journal receivers attached to the journal
can have a maximum journal receiver size of
approximately 1.9 gigabytes and a maximum
sequence number of 2,147,483,136.

Contains the null value for a remote journal.

MINIMIZE_ESD_FOR_DATA_AREAS MINDTAARA VARCHAR(3)

Nullable

Indicates whether journal entries for data areas
may have minimized entry specific data.

YES
Journal entries for data areas have minimized
entry specific data.

NO
Journal entries for data areas do not have
minimized entry specific data.

Contains the null value for a remote journal.

354 IBM i: Database Performance and Query Optimization

Table 82. JOURNAL_INFO view (continued)

Column Name System Column Name Data Type Description

MINIMIZE_ESD_FOR_FILES MINFILE VARCHAR(19)

Nullable

Indicates whether journal entries for files may
have minimized entry specific data.

NO
Journal entries for files will have complete
entry specific data.

MINIMIZED
Journal entries for files may have minimized
entry specific data. The minimizing does not
occur on field boundaries. Therefore, the
entry specific data may not be viewable and
may not be used for auditing purposes.

MINIMIZED FOR AUDIT
Journal entries for files may have minimized
entry specific data. The minimizing occurs on
field boundaries. Therefore, the entry specific
data will be viewable and may be used for
auditing purposes.

Contains the null value for a remote journal.

JOURNAL_CACHE JRNCACHE VARCHAR(3)

Nullable

Specifies whether journal entries are cached
before being written out to disk.

YES
Journal entries are cached before being
written out to disk.

NO
Journal entries are not cached before being
written out to disk.

Contains the null value for a remote journal.

FIXED_LENGTH_DATA_INCLUDES
_JOB_NAME

FLDJOB VARCHAR(3)

Nullable

Indicates whether the job name will be stored
when journal entries are deposited.

YES
The job name will be stored when journal
entries are deposited.

NO
The job name will not be stored when journal
entries are deposited.

Contains the null value for a remote journal.

FIXED_LENGTH_DATA_INCLUDES
_USER_NAME

FLDUSR VARCHAR(3)

Nullable

Indicates whether the user name will be stored
when journal entries are deposited.

YES
The user name will be stored when journal
entries are deposited.

NO
The user name will not be stored when
journal entries are deposited.

Contains the null value for a remote journal.

FIXED_LENGTH_DATA_INCLUDES
_PROGRAM_NAME

FLDPGM VARCHAR(3)

Nullable

Indicates whether the program name will be
stored when journal entries are deposited.

YES
The program name will be stored when
journal entries are deposited.

NO
The program name will not be stored when
journal entries are deposited.

Contains the null value for a remote journal.

Database performance and query optimization 355

Table 82. JOURNAL_INFO view (continued)

Column Name System Column Name Data Type Description

FIXED_LENGTH_DATA_INCLUDES
_PROGRAM_LIBRARY

FLDPGMLIB VARCHAR(3)

Nullable

Indicates whether the program library name will
be stored when journal entries are deposited.

YES
The program library name will be stored
when journal entries are deposited.

NO
The program library name will not be stored
when journal entries are deposited.

Contains the null value for a remote journal.

FIXED_LENGTH_DATA_INCLUDES
_SYSTEM_SEQUENCE_NUMBER

FLDSYSSEQ VARCHAR(3)

Nullable

Indicates whether the system sequence number
will be stored when journal entries are deposited.

YES
The system sequence number will be stored
when journal entries are deposited.

NO
The system sequence number will not be
stored when journal entries are deposited.

Contains the null value for a remote journal.

FIXED_LENGTH_DATA_INCLUDES
_REMOTE_ADDRESS

FLDRMTADR VARCHAR(3)

Nullable

Indicates whether the remote address will be
stored when journal entries are deposited.

YES
The remote address will be stored when
journal entries are deposited.

NO
The remote address will not be stored when
journal entries are deposited.

Contains the null value for a remote journal.

FIXED_LENGTH_DATA_INCLUDES
_THREAD_ID

FLDTHD VARCHAR(3)

Nullable

Indicates whether the thread identifier will be
stored when journal entries are deposited.

YES
The thread identifier will be stored when
journal entries are deposited.

NO
The thread identifier will not be stored when
journal entries are deposited.

Contains the null value for a remote journal.

FIXED_LENGTH_DATA_INCLUDES
_LOGICAL_UNIT_OF_WORK_ID

FLDLUW VARCHAR(3)

Nullable

Indicates whether the logical unit of work identifier
will be stored when journal entries are deposited.

YES
The logical unit of work identifier will be
stored when journal entries are deposited.

NO
The logical unit of work identifier will not be
stored when journal entries are deposited.

Contains the null value for a remote journal.

FIXED_LENGTH_DATA_INCLUDES
_TRANSACTION_ID

FLDXID VARCHAR(3)

Nullable

Indicates whether the transaction identifier will be
stored when journal entries are deposited.

YES
The transaction identifier will be stored when
journal entries are deposited.

NO
The transaction identifier will not be stored
when journal entries are deposited.

Contains the null value for a remote journal.

356 IBM i: Database Performance and Query Optimization

Table 82. JOURNAL_INFO view (continued)

Column Name System Column Name Data Type Description

JOURNALED_OBJECT_LIMIT JRNOBJLMT VARCHAR(10)

Nullable

The number of objects that can be journaled to the
journal.

*MAX250K
The maximum number of objects that can be
journaled to the journal is 250,000.

*MAX10M
The maximum number of objects that can be
journaled to the journal is 10,000,000.

Contains the null value for a remote journal.

JOURNALED_OBJECTS JRNALL INTEGER

Nullable

Total of all objects journaled to the journal. This
count includes explicitly journaled objects such as
files, file members, access paths, data areas, data
queues, libraries, and integrated file system
objects. This count also includes implicitly
journaled objects such as journal receivers,
commitment definitions, and objects journaled for
system recovery purposes.

Contains the null value for a remote journal.

JOURNALED_FILES JRNFILE INTEGER

Nullable

The total number of files that are currently being
journaled to this journal.

Contains the null value for a remote journal.

JOURNALED_MEMBERS JRNMBR INTEGER

Nullable

The total number of file members that are
currently being journaled to this journal.

Contains the null value for a remote journal.

JOURNALED_DATA_AREAS JRNDTAARA INTEGER

Nullable

The total number of data areas that are currently
being journaled to this journal.

Contains the null value for a remote journal.

JOURNALED_DATA_QUEUES JRNDTAQ INTEGER

Nullable

The total number of data queues that are currently
being journaled to this journal.

Contains the null value for a remote journal.

JOURNALED_IFS_OBJECTS JRNIFS INTEGER

Nullable

The total number of integrated file system objects
of type *DIR, *STMF, and *SYMLNK that are
currently being journaled to this journal.

Contains the null value for a remote journal.

JOURNALED_ACCESS_PATHS JRNAP INTEGER

Nullable

The total number of access paths that are currently
being journaled to this journal.

Contains the null value for a remote journal.

JOURNALED_COMMITMENT_DEFINITIONS JRNCMTDFN INTEGER

Nullable

The total number of commitment definitions that
are currently being implicitly journaled to this
journal.

Contains the null value for a remote journal.

JOURNALED_LIBRARIES JRNLIB INTEGER

Nullable

The total number of libraries that are currently
being journaled to this journal.

Contains the null value for a remote journal.

JOURNAL_RECOVERY_COUNT JRNRCYCNT INTEGER

Nullable

The approximate number of journaled changes
that would need to be recovered during journal
synchronization for this journal in the event of an
abnormal IPL or vary on.

Contains the null value for a local journal with the
value *SYSDFT or for a remote journal,

REMOTE_JOURNAL_TYPE RMTJRNTYPE VARCHAR(10)

Nullable

The type of remote journal. Values are *TYPE1 and
*TYPE2.

Contains the null value for a local journal.

Database performance and query optimization 357

Table 82. JOURNAL_INFO view (continued)

Column Name System Column Name Data Type Description

JOURNAL_DELIVERY_MODE DELIVMODE VARCHAR(10)

Nullable

The journal delivery mode that is being used to
replicate journal entries to this journal.

*ASYNC
Journal entries are being delivered or
replicated asynchronously.

*SYNC
Journal entries are being delivered or
replicated synchronously.

*ASYNCPEND
Journal entries are to be delivered or
replicated asynchronously, but the journal is
currently in catch-up mode.

*SYNCPEND
Journal entries are to be delivered or
replicated synchronously, but the journal is
currently in catch-up mode.

Contains the null value for a local journal or a
remote journal whose JOURNAL_STATE field is not
*ACTIVE or *CTLINACT.

LOCAL_JOURNAL_NAME LCLJRNNAME VARCHAR(10)

Nullable

The journal name of the local journal. The local
journal is the journal that is the initiator of the
original journal deposit that has been replicated
downstream to this journal.

Contains the null value for a local journal.

LOCAL_JOURNAL_LIBRARY LCLJRNLIB VARCHAR(10)

Nullable

The library name of the local journal.

Contains the null value for a local journal.

LOCAL_JOURNAL_SYSTEM LCLJRNSYS VARCHAR(8)

Nullable

The name of the system for the local journal.

Contains *UNKNOWN if journal is a remote journal
and does not have an attached receiver.

Contains the null value for a local journal.

LOCAL_JOURNAL_ASPGRP LCLASPGRP VARCHAR(10)

Nullable

The name of the independent auxiliary storage
pool (ASP) group of the local journal. *SYSBAS is
used to indicate the system ASP and all basic user
ASPs.

Contains *UNKNOWN if journal is a remote journal
and does not have an attached receiver.

Contains the null value for a local journal.

SOURCE_JOURNAL_NAME SRCJRNNAME VARCHAR(10)

Nullable

The journal name of the source journal. The source
journal is the journal that is directly upstream of
this journal.

Contains *UNKNOWN if journal is a remote journal
and does not have an attached receiver.

Contains the null value for a local journal.

SOURCE_JOURNAL_LIBRARY SRCJRNLIB VARCHAR(10)

Nullable

The library name of the source journal.

Contains *UNKNOWN if journal is a remote journal
and does not have an attached receiver.

Contains the null value for a local journal.

SOURCE_JOURNAL_SYSTEM SRCJRNSYS VARCHAR(8)

Nullable

The name of the system for the source journal.

Contains *UNKNOWN if journal is a remote journal
and does not have an attached receiver.

Contains the null value for a local journal.

SOURCE_JOURNAL_ASPGRP SRCASPGRP VARCHAR(10)

Nullable

The name of the independent auxiliary storage
pool (ASP) group of the source journal.

Contains *UNKNOWN if journal is a remote journal
and does not have an attached receiver.

Contains the null value for a local journal.

358 IBM i: Database Performance and Query Optimization

Table 82. JOURNAL_INFO view (continued)

Column Name System Column Name Data Type Description

LOCAL_RECEIVER_SYSTEM LCLRCVSYS VARCHAR(8)

Nullable

If this journal receiver is associated with a remote
journal, the name of the system for the local
journal.

Contains *UNKNOWN if journal is a remote journal
and does not have an attached receiver.

Contains the null value for a local journal.

SOURCE_RECEIVER_SYSTEM SRCRCVSYS VARCHAR(8)

Nullable

If this journal receiver is associated with a remote
journal, the name of the system for the source
journal.

Contains *UNKNOWN if journal is a remote journal
and does not have an attached receiver.

Contains the null value for a local journal.

ACTIVATION_TIME ACTDT TIMESTAMP

Nullable

If the journal is a remote journal and it is currently
active, the date and time the journal was activated.

Contains the null value for a local journal or a
remote journal whose JOURNAL_STATE field is not
*ACTIVE or *CTLINACT.

ESTIMATED_TIME_BEHIND ESTBEHIND BIGINT

Nullable

If the journal is an active remote journal and the
delivery mode is asynchronous, this is the
estimated amount of time, in milliseconds,
between when the journal entries are written to
disk on the source system and when they are
received on the target system.

Contains the null value for a local journal or a
remote journal whose JOURNAL_STATE field is not
*ACTIVE or *CTLINACT.

MAXIMUM_TIME_BEHIND MAXBEHIND BIGINT

Nullable

The maximum value of ESTIMATED_TIME_BEHIND
since the journal was activated.

Contains the null value for a local journal or a
remote journal whose JOURNAL_STATE field is not
*ACTIVE or *CTLINACT.

MAXIMUM_BEHIND_TIMESTAMP MAXBHNDTIM TIMESTAMP

Nullable

The date and time that the
ESTIMATED_TIME_BEHIND occurred.

Contains the null value for a local journal or a
remote journal whose JOURNAL_STATE field is not
*ACTIVE or *CTLINACT.

JOURNAL_ENTRY_FILTERING FILTER VARCHAR(3)

Nullable

Indicates whether or not journal entry filtering is
active for this journal.

YES
Journal entry filtering is active for this
journal.

NO
Journal entry filtering is not active for this
journal.

Contains the null value for a local journal or a
remote journal whose JOURNAL_STATE field is not
*ACTIVE or *CTLINACT.

Examples

• List all journals that are falling behind sending entries to one or more remote journals:

SELECT JOURNAL_NAME, JOURNAL_LIBRARY FROM QSYS2.JOURNAL_INFO,
 MAXIMUM_REMOTE_JOURNALS_ENTRIES_BEHIND,
 MAXIMUM_REMOTE_JOURNALS_TIME_BEHIND, MAXIMUM_REMOTE_JOURNALS_RETRANSMISSIONS
 WHERE MAXIMUM_REMOTE_JOURNALS_ENTRIES_BEHIND > 0
 ORDER BY MAXIMUM_REMOTE_JOURNALS_ENTRIES_BEHIND DESC

• Find any remote journals that are not currently active:

SELECT * FROM QSYS2.JOURNAL_INFO
 WHERE JOURNAL_TYPE = '*REMOTE'

Database performance and query optimization 359

 AND JOURNAL_STATE <> '*ACTIVE'
 ORDER BY JOURNAL_LIBRARY, JOURNAL_NAME,

• For security auditing reasons, find any journals that are not recording remote address info:

SELECT * FROM QSYS2.JOURNAL_INFO
 WHERE REMOVE_FIXED_LENGTH_DETAIL = 'YES'
 OR FIXED_LENGTH_DATA_INCLUDES_REMOTE_ADDRESS = 'NO'

Librarian Services
These services provide object and library list information.

LIBRARY_LIST_INFO view
The LIBRARY_LIST_INFO view contains information about the current job's library list.

The following table describes the columns in the view. The schema is QSYS2.

Table 83. LIBRARY_LIST_INFO view

Column Name System Column Name Data Type Description

ORDINAL_POSITION COLNO INTEGER Position of this entry in the library list.

SCHEMA_NAME NAME VARCHAR(128)

Nullable

Name of the schema.

SYSTEM_SCHEMA_NAME SYS_NAME VARCHAR(10) System name of the schema.

TYPE TYPE VARCHAR(15) The portion of the library list containing the
selected library. Possible values are:

USER
The library is in the user portion of the library
list.

SYSTEM
The library is in the system portion of the
library list.

PRODUCT
The library is a product library in the library
list.

CURRENT
The library is the current library entry in the
library list.

IASP_NUMBER IASP SMALLINT

Nullable

The number of the auxiliary storage pool where
storage is allocated for the library.

TEXT_DESCRIPTION TEXT VARGRAPHIC(50) CCSID
1200

Nullable

The text description of the library.

Contains the null value is there is no text
description.

Example

• See the current library list for your job

SELECT * FROM QSYS2.LIBRARY_LIST_INFO

OBJECT_STATISTICS table function
The OBJECT_STATISTICS table function returns information about objects in a library.

Authorization:

• If the user has *EXECUTE authority to the library, and both *OBJOPR and *READ authority to an object,
full details are returned.

• Otherwise, partial information is returned along with an SQL warning of '01548'.

360 IBM i: Database Performance and Query Optimization

OBJECT_STATISTICS (library-name , object-type-list

,

OBJECT_NAME =>

object-name

)

The schema is QSYS2.

library-name
A character or graphic string expression that identifies the name of a library. If the library's name is a
delimited name, the delimited form of the name must be specified. It can be either a long or short
library name.

The following special values are allowed for library-name.
*ALL

All libraries.
*ALLUSR

All user libraries in *SYSBAS and the current thread's ASP group.
*ALLUSRAVL

All user libraries in all available ASPs.
*CURLIB

The job's current library.
*LIBL

The library list.
*USRLIBL

The job's current library and the user portion of the library list.

The following special value is allowed for library-name when object-type-list is '*LIB' or 'LIB'.
*ALLSIMPLE

The fastest approach to retrieving all user and system library names in *SYSBAS and the current
thread's ASP group. Values are returned for the following columns: OBJNAME, OBJLONGNAME,
and OBJTYPE. All other columns return NULL.

object-type-list
A character or graphic string expression containing one or more system object types separated by
either a blank or a comma. The object types can include or exclude the leading * character. The
special value of '*ALL' or 'ALL' can be used to return all objects in the library library-name.

object-name
A character or graphic string expression that identifies the name of an object or a library. If the
object's name is a delimited name, the delimited form of the name must be specified. It can be either
a long or short object name. The name must be the valid system name for the object unless the object
is a file or a library; for files and libraries the SQL name can be specified.
If this parameter is specified, only objects with this name in library-name corresponding to the object
types in object-type-list are returned.
If this parameter is not specified, all objects in library-name corresponding to the object types in
object-type-list are returned.
The following special value is allowed for object-name.
*ALLSIMPLE

The fastest approach to retrieving the system names for objects in a library. All objects in library-
name corresponding to the object types in object-type-list are returned. Values are returned for
the following columns: OBJNAME, OBJTYPE, and OBJLONGSCHEMA. All other columns return
NULL.

The result of the function is a table containing a row for each object with the format shown in the
following table. All the columns are null capable.

Database performance and query optimization 361

Table 84. OBJECT_STATISTICS table function

Column Name Data Type Description

OBJNAME VARCHAR(10) System name of the object.

OBJTYPE VARCHAR(8) System type of the object.

OBJOWNER VARCHAR(10) The user profile that owns the object.

OBJDEFINER VARCHAR(10) The user profile that created the object.

OBJCREATED TIMESTAMP Timestamp of when the object was created.

OBJSIZE DECIMAL(15,0) Size of the object, in bytes.

OBJTEXT VARCHAR(50) The description of the object.

Contains the null value if the object has no text.

OBJLONGNAME VARCHAR(128) The SQL name for the object.

For an external procedure or an external function, the name will be returned
when a single procedure or function exists for that *PGM or *SRVPGM object.

Contains the null value if an SQL name could not be returned.

LAST_USED_TIMESTAMP TIMESTAMP The date the object was used last. The time portion of the timestamp will always
be 0.

Contains the null value if the object has never been used.

DAYS_USED_COUNT INTEGER The number of days an object has been used on the system.

LAST_RESET_TIMESTAMP TIMESTAMP The date when the days used count was last reset to zero. The time portion of the
timestamp will always be 0.

Contains the null value if the days used count has never been reset.

IASP_NUMBER SMALLINT The auxiliary storage pool (ASP) where storage is allocated for the object.

OBJATTRIBUTE VARCHAR(10) The attribute for this object's type, if any.

Contains an empty string if no attribute.

OBJLONGSCHEMA VARCHAR(128) The SQL schema name for this object.

TEXT VARGRAPHIC(50) CCSID
1200

The description of the object, in CCSID 1200, for *LIB objects.

Contains the null value if OBJTYPE is not *LIB.

SQL_OBJECT_TYPE VARCHAR(9) The SQL type of the object. Values are:

• ALIAS

• FUNCTION

• INDEX

• PACKAGE

• PROCEDURE

• ROUTINE

• SEQUENCE

• TABLE

• TRIGGER

• TYPE

• VARIABLE

• VIEW

• XSR

Contains the null value if the object is not an SQL object.

Example

• Find all journals in library MJATST.

 SELECT * FROM TABLE (QSYS2.OBJECT_STATISTICS('MJATST ','JRN')) AS X

or

362 IBM i: Database Performance and Query Optimization

SELECT * FROM TABLE (QSYS2.OBJECT_STATISTICS('MJATST ','*JRN')) AS X

• Find all journals and journal receivers in library MJATST.

SELECT * FROM TABLE (QSYS2.OBJECT_STATISTICS('MJATST ','JRN JRNRCV')) AS X

or

SELECT * FROM TABLE (QSYS2.OBJECT_STATISTICS('MJATST ','*JRN *JRNRCV')) AS X

• Find all programs and service programs in library MYLIB. Use *ALLSIMPLE to return the list quickly,
omitting the detail information.

SELECT * FROM TABLE (QSYS2.OBJECT_STATISTICS('MYLIB','PGM SRVPGM','*ALLSIMPLE')) X

Message Handling Services
These views provide system message information.

HISTORY_LOG_INFO table function
The HISTORY_LOG_INFO table function returns one row for each message in the history log based on the
timestamp range specified. It returns information similar to what is returned by the Display Log (DSPLOG)
CL command and the Open List of History Log Messages (QMHOLHST) API.

HISTORY_LOG_INFO (

START_TIME =>

start-time

,

END_TIME =>

end-time

,

GENERATE_SYSLOG =>

generate-syslog

,

EOF_DELAY =>

eof-delay

)

The schema is QSYS2.

Authorization: No authorization needed.

start-time
A timestamp expression that indicates the starting timestamp to use when returning history log
information.

If this parameter is omitted, the default of CURRENT DATE - 1 DAY is used.

end-time
A timestamp expression that indicates the ending timestamp to use when returning history log
information.

If this parameter is omitted, the default of '9999-12-30-00.00.00.000000' is used.

generate-syslog
A character or graphic string expression that indicates whether to transform history log messages into
syslog formatted detail. Values are:

Database performance and query optimization 363

NO
No syslog information will be returned. The SYSLOG_EVENT, SYSLOG_FACILITY,
SYSLOG_SEVERITY, and SYSLOG_PRIORITY columns will contain the null value.

RFC3164
Values will be returned for the SYSLOG_EVENT, SYSLOG_FACILITY, SYSLOG_SEVERITY, and
SYSLOG_PRIORITY columns for each history log message. The SYSLOG_EVENT column will
contain a syslog header that matches the RFC3164 format as described by the Internet
Engineering Task Force (IETF) Request For Comments (RFC) 3164.

RFC5424
Values will be returned for the SYSLOG_EVENT, SYSLOG_FACILITY, SYSLOG_SEVERITY, and
SYSLOG_PRIORITY columns for each history log message. The SYSLOG_EVENT column will
contain a syslog header that matches the RFC5424 format as described by the Internet
Engineering Task Force (IETF) Request For Comments (RFC) 5424.

If generate-syslog is not specified or is the null value, NO is used.

eof-delay
An integer expression that specifies the number of seconds to sleep when all history log messages
have been read. This delay allows the caller to establish a polling service that will continually return
rows, sleeping for the specified interval whenever all messages have been processed.

A value of zero indicates no delay is used and a finite set of rows will be returned. A value greater than
zero indicates that the table function will sleep, as needed, to wait for new history log messages and
never end. If eof-delay is not specified or is the null value, zero is used.

If this parameter has a value greater than zero, the generate-syslog parameter must be RFC3164 or
RFC5424, and the end-time parameter cannot be specified with a value other than its default value.

When using a non-zero eof-delay parameter, avoid using query clauses that depend on returning a
finite number of rows. For example, using the FETCH FIRST n ROWS clause can cause the query to
end when the requested number of rows has been satisfied. A query using the HISTORY_LOG_INFO
function with a non-zero eof-delay parameter does not allow data to be copied (ALWCPYDTA(*NO)).
This means that a query requiring a copy of data, such as one using an ORDER BY clause or UNION
DISTINCT, will issue an error and not be allowed.

The result of the function is a table containing multiple rows with the format shown in the following table.
All the columns are nullable.

Table 85. HISTORY_LOG_INFO table function

Column Name Data Type Description

ORDINAL_POSITION INTEGER A unique number for each row that indicates the time order of
messages in the job log. The first (oldest) message returned from the
history log will have a value of 1. Subsequent messages will have a
value one greater than the previous message. Since these values are
assigned when this catalog is queried, there will be no gaps in values.

MESSAGE_ID VARCHAR(7) The message ID for this message.

Contains the null value if this is an impromptu message or
MESSAGE_TYPE is REPLY.

MESSAGE_TYPE VARCHAR(13) Type of message. Values are:

• COMPLETION

• DIAGNOSTIC

• ESCAPE

• INFORMATIONAL

• INQUIRY

• NOTIFY

• REPLY

• REQUEST

• SENDER

364 IBM i: Database Performance and Query Optimization

Table 85. HISTORY_LOG_INFO table function (continued)

Column Name Data Type Description

MESSAGE_SUBTYPE VARCHAR(22) Subtype of message.

The values returned for REPLY messages:

• FROM EXIT PROGRAM

• FROM SYSTEM REPLY LIST

• MESSAGE DEFAULT USED

• NOT VALIDITY CHECKED

• SYSTEM DEFAULT USED

• VALIDITY CHECKED

The value returned for some REQUEST messages:

• WITH PROMPTING

Contains the null value for other message types.

SEVERITY SMALLINT The severity assigned to the message.

MESSAGE_TIMESTAMP TIMESTAMP The timestamp when the message was sent.

FROM_USER VARCHAR(10) The current user of the job when the message was sent.

FROM_JOB VARCHAR(28) The qualified job name when the message was sent.

FROM_PROGRAM VARCHAR(10) The program that sent the message.

MESSAGE_LIBRARY VARCHAR(10) The name of the library containing the message file.

Contains the null value if MESSAGE_ID is null.

MESSAGE_FILE VARCHAR(10) The message file containing the message.

Contains the null value if MESSAGE_ID is null.

MESSAGE_TOKENS VARCHAR(4096) FOR BIT DATA The message token string. If the value is longer than 4096 characters,
it will be truncated with no warning.

Contains the null value if there are no message tokens.

MESSAGE_TEXT VARGRAPHIC(1024) CCSID 1200 The first level text of the message including tokens, or the impromptu
message text.

Contains the null value if MESSAGE_ID is null or if the message file
could not be accessed.

MESSAGE_SECOND_LEVEL_TEXT VARGRAPHIC(4096) CCSID 1200 The second level text of the message including tokens.

Contains the null value if MESSAGE_ID is null or if the message has no
second level text or if the message file could not be accessed.

SYSLOG_EVENT VARGRAPHIC(2048) CCSID 1200 The Common Event Format (CEF) syslog event for the message
preceded by a header of the requested type. If a header-type of
RFC3164 is requested, the maximum length is 1024 characters. If a
header-type of RFC5424 is requested, the maximum length is 2048
characters. The string will be truncated with no warning if it exceeds
the maximum length.

The key names returned for history log information are listed in the
Notes section.

Contains the null value if NO was specified for the
GENERATE_SYSLOG parameter.

SYSLOG_FACILITY INTEGER The syslog facility assigned to the event.

1
user-level messages

4
security/authorization messages

The facility assigned is defined in the Notes section.

Contains the null value if NO was specified for the
GENERATE_SYSLOG parameter.

Database performance and query optimization 365

Table 85. HISTORY_LOG_INFO table function (continued)

Column Name Data Type Description

SYSLOG_SEVERITY INTEGER The syslog severity assigned to the event.

1
Alert: Action must be taken immediately

3
Error condition

4
Warning condition

5
Notice: A normal but significant condition

6
Informational message

7
Debug level message

The severity assigned is listed in the Notes section.

Contains the null value if NO was specified for the
GENERATE_SYSLOG parameter.

SYSLOG_PRIORITY INTEGER The syslog priority number assigned to the event.

Contains the null value if NO was specified for the
GENERATE_SYSLOG parameter.

Notes

Syslog information: Syslog information is returned for all messages in the history log. Syslog information
is also available for audit journal entries. See DISPLAY_JOURNAL table function for more details.

All history log messages return a SYSLOG_FACILITY value of 1 except as noted below. Messages are
assigned a SYSLOG_SEVERITY value in the following way:

• Severity 1 Alert: Action must be taken immediately

– MESSAGE_TYPE contains a value of INQUIRY, NOTIFY, or REPLY
• Severity 3 Error condition

– MESSAGE_ID contains a value of CPF1164 with a job ending code value in the MESSAGE_TEXT
column of 30 or higher

– MESSAGE_TYPE contains a value of ESCAPE when the SEVERITY column contains a value of 50 or
greater

• Severity 4 Warning condition

– MESSAGE_ID contains a value of CPF1393. The SYSLOG_FACILITY column is set to 4.
– MESSAGE_ID contains a value of CPF1164 with a job ending code value in the MESSAGE_TEXT

column of 20
– MESSAGE_TYPE contains a value of ESCAPE when the SEVERITY column contains a value of 30 or

greater but less than 50
• Severity 5 Notice: A normal but significant condition

– MESSAGE_ID contains a value of CPF1164 with a job ending code value in the MESSAGE_TEXT
column of 10

– MESSAGE_TYPE contains a value of INFORMATIONAL, COMPLETION, DIAGNOSTIC, or REQUEST
when the SEVERITY column contains a value of 50 or greater

• Severity 6 Informational message

– MESSAGE_ID contains a value of CPF1164 with a job ending code value in the MESSAGE_TEXT
column of 0

– MESSAGE_TYPE contains a value of ESCAPE when the SEVERITY column contains a value less than
30

– MESSAGE_TYPE contains a value of SENDER

366 IBM i: Database Performance and Query Optimization

– MESSAGE_TYPE contains a value of INFORMATIONAL, COMPLETION, DIAGNOSTIC, or REQUEST
when the SEVERITY column contains a value less than 50

• Severity 7 Debug level message

– MESSAGE_ID contains a value of CPF9897 or CPF9898 (regardless of severity or message type)

The Common Event Format key names that are generated within the SYSLOG_EVENT column are:

Table 86. Common Event Format key names

Common Event Format key name Description

msg The message text (MESSAGE_TEXT column) from
the history log message

reason Text description of the history log message

sproc The qualified job name (FROM_JOB column) from
the history log message

suser Current user name (FROM_USER column) from the
history log message

Examples

• Return a list of history log messages for all of yesterday and today.

SELECT * FROM TABLE(QSYS2.HISTORY_LOG_INFO()) X

• Return a list of all history log messages for the last 24 hours.

SELECT * FROM TABLE(QSYS2.HISTORY_LOG_INFO(CURRENT TIMESTAMP - 1 DAY)) X

• Return history log information since the last IPL, assuming that the last IPL timestamp is in a global
variable named LAST_IPL_TIME.

SELECT * FROM TABLE(QSYS2.HISTORY_LOG_INFO(LAST_IPL_TIME, CURRENT TIMESTAMP)) A

• Return syslog information formatted with an RFC3164 header for all history log messages from the start
of today forward into the future. When all history log messages have been returned to the caller, the
query will pause for 5 minutes (300 seconds) before checking again for messages.

SELECT syslog_facility, syslog_severity, syslog_event
 FROM TABLE (QSYS2.HISTORY_LOG_INFO(START_TIME => CURRENT DATE,
 GENERATE_SYSLOG =>'RFC3164',
 EOF_DELAY => 300
)) AS X;

JOBLOG_INFO table function
The JOBLOG_INFO table function returns one row for each message in a job log.

JOBLOG_INFO (job-name)

The schema is QSYS2.

job-name
A character or graphic string expression that identifies the qualified name of a job. The special value of
'*' indicates the current job.

The result of the function is a table containing multiple rows with the format shown in the following table.
All the columns are nullable.

Database performance and query optimization 367

Table 87. JOBLOG_INFO table function

Column Name Data Type Description

ORDINAL_POSITION INTEGER A unique number for each row that indicates the time order of
messages in the job log. The first (oldest) message in the job log will
have a value of 1. Subsequent messages will have a value one greater
than the previous message. Since these values are assigned when this
catalog is queried, there will be no gaps in values. There is no visibility
of messages that have been deleted from the job log.

MESSAGE_ID VARCHAR(7) The message ID for this message.

Contains the null value if this is an impromptu message or a REQUEST
message.

MESSAGE_TYPE VARCHAR(13) Type of message. Values are:

• COMMAND

• COMPLETION

• DIAGNOSTIC

• ESCAPE

• INFORMATIONAL

• INQUIRY

• NOTIFY

• REPLY

• REQUEST

• SCOPE

• SENDER

MESSAGE_SUBTYPE VARCHAR(22) Subtype of message.

Values for NOTIFY or ESCAPE messages are:

• EXCEPTION HANDLED

• EXCEPTION NOT HANDLED

Values for REPLY messages are:

• FROM EXIT PROGRAM

• FROM SYSTEM REPLY LIST

• MESSAGE DEFAULT USED

• NOT VALIDITY CHECKED

• SYSTEM DEFAULT USED

• VALIDITY CHECKED

Contains the null value for other message types.

SEVERITY SMALLINT The severity assigned to the message.

MESSAGE_TIMESTAMP TIMESTAMP The timestamp for when the message was issued.

FROM_LIBRARY VARCHAR(10) The library containing the program or service program that sent the
message.

FROM_PROGRAM VARCHAR(256) The program or service program name that sent the message.

FROM_MODULE VARCHAR(10) The module that sent the message.

FROM_PROCEDURE VARCHAR(4096) The procedure that sent the message.

FROM_INSTRUCTION VARCHAR(10) The instruction that sent the message.

TO_LIBRARY VARCHAR(10) The library containing the program or service program that received
the message

TO_PROGRAM VARCHAR(10) The program or service program name that received the message.

TO_MODULE VARCHAR(10) The module that received the message.

TO_PROCEDURE VARCHAR(4096) The procedure that received the message.

TO_INSTRUCTION VARCHAR(10) The instruction that received the message.

FROM_USER VARCHAR(10) The userid of the job when the message was sent.

MESSAGE_FILE VARCHAR(10) The message file containing the message.

MESSAGE_LIBRARY VARCHAR(10) The name of the library containing the message file.

MESSAGE_TOKEN_LENGTH SMALLINT The length of the MESSAGE_TOKENS string.

368 IBM i: Database Performance and Query Optimization

Table 87. JOBLOG_INFO table function (continued)

Column Name Data Type Description

MESSAGE_TOKENS VARCHAR(512) FOR BIT DATA The message token string. If the value is longer than 512 characters,
it will be truncated with no warning.

MESSAGE_TEXT VARGRAPHIC(1024) CCSID 1200 The first level text of the message including tokens.

MESSAGE_SECOND_LEVEL_TEXT VARGRAPHIC(4096) CCSID 1200 The second level text of the message including tokens.

Examples

• Return joblog information for job 347117/Quser/Qzdasoinit.

SELECT * FROM TABLE(QSYS2.JOBLOG_INFO('347117/Quser/Qzdasoinit')) A

• Extract the last command entered by the user.

SELECT MESSAGE_TEXT FROM TABLE(QSYS2.JOBLOG_INFO('817029/QUSER/QPADEV0004')) A
 WHERE A.MESSAGE_TYPE = 'REQUEST'
 ORDER BY ORDINAL_POSITION DESC
 FETCH FIRST 1 ROW ONLY

MESSAGE_QUEUE_INFO view
The MESSAGE_QUEUE_INFO view returns one row for each message in a message queue. It returns
information similar to what is returned by the Display Messages (DSPMSG) CL command and the Receive
Nonprogram Message (QMHRCVM) API.

This view does not change the contents of the message queue. The message is kept in the message queue
without changing its new or old designation. The view does not utilize the wait time parameter as
described in the QMHRCVM API. A wait time of 0 is used.

Authorization: The user must have *USE authority to the message queue and *EXECUTE authority to the
message queue library.

The following table describes the columns in the view. The system name is MSGQ_INFO. The schema is
QSYS2.

Table 88. MESSAGE_QUEUE_INFO view

Column Name System Column Name Data Type Description

MESSAGE_QUEUE_LIBRARY MSGQ_LIB VARCHAR(10) The name of the library containing the message queue.

MESSAGE_QUEUE_NAME MSGQ_NAME VARCHAR(10) The name of the message queue containing the message.

MESSAGE_ID MSGID VARCHAR(7)

Nullable

The message ID for this message.

Contains the null value if this is an impromptu message or
MESSAGE_TYPE is REPLY.

MESSAGE_TYPE MSG_TYPE VARCHAR(13) Type of message. Values are:

• COMPLETION

• DIAGNOSTIC

• ESCAPE

• INFORMATIONAL

• INQUIRY

• NOTIFY

• REPLY

• REQUEST

• SENDER

Database performance and query optimization 369

Table 88. MESSAGE_QUEUE_INFO view (continued)

Column Name System Column Name Data Type Description

MESSAGE_SUBTYPE MSG_SUBTYP VARCHAR(22)

Nullable

Subtype of message.

The values returned for REPLY messages:

• FROM EXIT PROGRAM

• FROM SYSTEM REPLY LIST

• MESSAGE DEFAULT USED

• NOT VALIDITY CHECKED

• SYSTEM DEFAULT USED

• VALIDITY CHECKED

The value returned for some REQUEST messages:

• WITH PROMPTING

Contains the null value for other message types.

MESSAGE_TEXT MSG_TEXT VARGRAPHIC(102
4) CCSID 1200

Nullable

The first level text of the message including tokens, or the
impromptu message text.

Contains the null value if MESSAGE_TYPE is REPLY or if the
message file could not be accessed.

SEVERITY SEVERITY SMALLINT The severity assigned to the message.

MESSAGE_TIMESTAMP MSG_TIME TIMESTAMP The timestamp when the message was sent.

MESSAGE_KEY MSG_KEY BINARY(4) The key assigned to the message.

The key is assigned by the command or API that sends the
message. For details, see Message Types and Message Keys in
the Qmhrcvm API

ASSOCIATED_MESSAGE_KEY ASSOC_KEY BINARY(4)

Nullable

For MESSAGE_TYPE of REPLY, contains the associated inquiry or
notify message key.

Contains the null value for other message types.

FROM_USER FROM_USER VARCHAR(10) The current user of the thread when the message was sent.

FROM_JOB FROM_JOB VARCHAR(28) The qualified job name of the job that sent the message.

FROM_PROGRAM FROM_PGM VARCHAR(10) The program that sent the message.

MESSAGE_FILE_LIBRARY MSGF_LIB VARCHAR(10)

Nullable

The name of the library containing the message file.

Contains the null value if MESSAGE_ID is null.

MESSAGE_FILE_NAME MSGF_NAME VARCHAR(10)

Nullable

The message file containing the message.

Contains the null value if MESSAGE_ID is null.

MESSAGE_TOKENS MSG_TOKENS VARCHAR(4096)
FOR BIT DATA

Nullable

The message token string. If the value is longer than 4096
characters, it will be truncated with no warning.

Contains the null value if there are no tokens.

MESSAGE_SECOND_LEVEL_TEXT MSG_TEXT2 VARGRAPHIC(409
6) CCSID 1200

Nullable

The second level text of the message including tokens.

Contains the null value if MESSAGE_ID is null or if the message
has no second level text or if the message file could not be
accessed.

Example

• Examine all inquiry messages and their responses.

SELECT a.message_timestamp, a.message_text, a.from_user,
 b.message_timestamp, b.message_text, b.from_user
FROM qsys2.message_queue_info a INNER JOIN qsys2.message_queue_info b
 ON a.message_key = b.associated_message_key
WHERE a.message_type = 'INQUIRY' AND
 b.message_type = 'REPLY'
ORDER BY b.message_timestamp DESC;

370 IBM i: Database Performance and Query Optimization

REPLY_LIST_INFO view
The REPLY_LIST_INFO view contains information about the current job's reply list entries.

The following table describes the columns in the view. The schema is QSYS2.

Table 89. REPLY_LIST_INFO view

Column Name
System Column
Name Data Type Description

SEQUENCE_NUMBER SEQNO SMALLINT The number that specifies the search order of the
entries in the reply list.

MESSAGE_ID MSGID VARCHAR(7) The identifier of the inquiry message for which
automatic system action is to be taken.

A value of ANY indicates that this reply list entry
matches any message identifier. Unless
comparison data is specified for this reply list entry,
all reply list entries with a sequence number
greater than this one are ignored.

MESSAGE_REPLY REPLY VARCHAR(32) When an inquiry message is received with a
matching message identifier, this value defines
whether an automatic reply to the message is
given.

DEFAULT
The default reply to the inquiry message is
sent.

REQUIRED
The inquiry message requires an explicit
reply.

character string
The character string to be sent as the reply to
the inquiry message.

COMPARISON_DATA COMPDATA VARGRAPHIC(28) CCSID
1200

Nullable

The character string that is compared with the
message data of the inquiry message.

Contains the null value if there is no comparison
data.

COMPARISON_DATA_OFFSET OFFSET SMALLINT

Nullable

The position in the message data of the inquiry
message at which the comparison with the
COMARISON_DATA starts.

Contains the null value if there is no comparison
data.

DUMP_JOB DUMPJOB VARCHAR(3) Specifies whether the job that sent the inquiry
message is to be dumped.

NO
The job is not dumped.

YES
The job is dumped before control returns to
the program that is sending the message.

Example

• See the reply list entries for your job

SELECT * FROM QSYS2.REPLY_LIST_INFO

Product Services
These services provide information about licensed products.

Database performance and query optimization 371

LICENSE_EXPIRATION_CHECK procedure
The LICENSE_EXPIRATION_CHECK procedure sends a message to the QSYSOPR message queue for
every license that corresponds to an installed product that has already expired or is set to expire within
the specified number of days.

LICENSE_EXPIRATION_CHECK (

EXPIRATION_INTERVAL =>

expiration-interval

)

The schema is SYSTOOLS.

expiration-interval
An integer value that indicates the number of days to use as the threshold for checking license
information. If not specified, 30 will be used.

Authorization: None required.

Example

• Send an informational message to the system operator message queue, QSYS/QSYSOPR, for every
installed product with a license that will expire in the next 10 days.

CALL SYSTOOLS.LICENSE_EXPIRATION_CHECK(10);

LICENSE_INFO view
The LICENSE_INFO view contains information about all products or features that contain license
information.

The values returned for the columns in the view are similar to the values returned by the Work with
Licence Information (WRKLICINF) CL command or Retrieve License Information (QLZARTV) API. Refer to
the API for more detailed information.

Authorization: None required.

The following table describes the columns in the view. The system name is LIC_INFO. The schema is
QSYS2.

Table 90. LICENSE_INFO view

Column Name System Column Name Data Type Description

PRODUCT_ID LICPGM VARCHAR(7) The identifier of the product.

LICENSE_TERM LIC_TERM VARCHAR(6) The license term indicates whether the authorized usage limit for a
product exists until the next version, next release, or next
modification level of the product.

• Vx or vv for products licensed by version.

• VxRy or vvrr for products licensed by release.

• VxRyMz or vvrrmm for products licensed by modification.

RELEASE_LEVEL RLS_LVL VARCHAR(6) The version, release, and modification level of the product in either
VxRyMz or vvrrmm format.

FEATURE_ID FEATURE VARCHAR(4) The feature number of the product.

INSTALLED INSTALLED VARCHAR(3) Indicates whether this feature number of the product is installed.

NO
The feature is not installed.

YES
The feature is installed.

PROCESSOR_GROUP PROC_GROUP VARCHAR(3) The processor group of this system.

372 IBM i: Database Performance and Query Optimization

Table 90. LICENSE_INFO view (continued)

Column Name System Column Name Data Type Description

PRODUCT_TEXT LABEL VARGRAPHIC(50)
CCSID 1200

Nullable

The description of the product or feature.

Contains null if there is no description text.

USAGE_LIMIT USG_LIMIT INTEGER

Nullable

The usage limit of the product or feature that contains license
information. Values are 0-999999 indicating the number of users
allowed to access the product.

Contains null if there is no usage limit.

USAGE_LIMIT_UPDATED USG_UPDATE TIMESTAMP(0)

Nullable

The timestamp when the usage limit was last updated.

Contains null if the usage limit has never been updated.

USAGE_TYPE USAGE_TYPE VARCHAR(11) The usage type of the license.

*CONCURRENT
The usage type is concurrent, meaning the usage limit is for
the number of uses held by unique jobs using the product or
feature at the same time.

*REGISTERED
The usage type is registered, meaning the usage limit is for
the number of uses held by license users registered to use the
product or feature.

*PROCESSOR
The usage type is processor, meaning the usage limit is for the
number of processors on system partitions where this product
or feature is in use.

USAGE_COUNT USG_COUNT DECIMAL(8,2) The current usage count for the product or feature. Valid values are
0 through 999999. If the product is using processor usage type, the
usage count value is rounded up to the next whole number.

GLOBAL_COUNT GLOB_COUNT DECIMAL(8,2) The number of jobs currently using this product or feature across
all system partitions.

LICENSED_USER_COUNT LIC_COUNT INTEGER The number of current license users.

THRESHOLD THRESHOLD DECIMAL(10,2)

Nullable

The usage limit threshold for this product or feature.

Contains null if there is no usage limit threshold.

PEAK_USAGE PEAK_USAGE DECIMAL(10,2) For concurrent usage, the maximum number of uses held by
license users of the product or feature at one time.

For registered usage, the maximum number of uses that have been
registered through license users for the product or feature.

For processor usage, the maximum number of processors
configured for this system partition while this product or feature
was in use.

LAST_PEAK_USAGE LAST_PEAK TIMESTAMP(0)

Nullable

The timestamp when the peak usage of the product or feature last
occurred since the peak usage was reset to zero.

Contains null if the product has not been used since the peak usage
was reset to zero.

COMPLIANCE_TYPE COMP_TYPE VARCHAR(10) The compliance type of the program determines the action taken
when the usage limit of the product or feature is exceeded.

*OPRACTION
License requests are denied and failure messages are sent.

*WARNING
A warning message is sent.

*KEYED
Requests for licenses over the usage limit are allowed for the
number of days in the product's grace period. Once the grace
period ends, the license users holding uses over the usage
limit will be released and no requests for uses over the limit
will be granted until a new license key is received from the
software provider. The expiration date is the date the license
will expire. After the expiration date is reached, the default
usage limit is in effect. When a request for a license is
received after the usage limit has been reached, the system
sends a warning message to the system operator message
queue and to any additional message queues defined for the
product.

Database performance and query optimization 373

Table 90. LICENSE_INFO view (continued)

Column Name System Column Name Data Type Description

LOG_VIOLATION LOG VARCHAR(3) Specifies whether or not requests exceeding the usage limit are
logged in the QUSRSYS/QLZALOG journal.

NO
The requests for a license when the usage count is greater
than or equal to the usage limit will not be logged.

YES
The requests for a license when the usage count is greater
than or equal to the usage limit will be logged.

LICENSE_EXPIRATION EXPIR_DATE DATE

Nullable

The date the license will expire. After the expiration date is
reached, the usage limit is reset to the default usage limit.

Contains null if the license has no expiration date.

GRACE_PERIOD GRACE_PRD INTEGER The number of days a user has to obtain a new license key after a
product or feature exceeds its usage limit.

GRACE_END GRACE_END DATE

Nullable

The date the grace period expires. When a request for license uses
exceeds the usage limit for a product or feature, the date the grace
period expires is determined by adding the number of days in the
grace period to the current date.

Contains null if there is no grace period or the grace period has
expired.

VENDOR_DATA VENDOR VARCHAR(8) Information the vendor defined when the key was added using the
Add License Key Information (ADDLICKEY) command.

MESSAGE_QUEUE1 MESSAGE_1 VARCHAR(10)

Nullable

The name of the first message queue to which messages will be
sent.

Each of these message queues, in addition to the system operator
message queue, will be sent a messages if one of the following
occurs:

• The usage count threshold is met.

• A license request is made, and the usage count is equal to or
greater than the usage limit.

• The usage limit is changed.

The messages sent include:

• CPI9E10 - License usage limit changed for product &1.

• CPI9E19 - Usage limit threshold exceeded.

• CPI9E75 - Grace period will expire on &3.

• CPI9E76 - Expiration date will be reached on &3.

Contains null if there is no first message queue.

MESSAGE_QUEUE_LIBRARY1 LIBRARY_1 VARCHAR(10)

Nullable

The library containing the first message queue.

Contains null if there is no first message queue.

MESSAGE_QUEUE2 MESSAGE_2 VARCHAR(10)

Nullable

The name of the second message queue to which messages will be
sent.

Contains null if there is no second message queue.

MESSAGE_QUEUE_LIBRARY2 LIBRARY_2 VARCHAR(10)

Nullable

The library containing the second message queue.

Contains null if there is no second message queue.

MESSAGE_QUEUE3 MESSAGE_3 VARCHAR(10)

Nullable

The name of the third message queue to which messages will be
sent.

Contains null if there is no third message queue.

MESSAGE_QUEUE_LIBRARY3 LIBRARY_3 VARCHAR(10)

Nullable

The library containing the third message queue.

Contains null if there is no third message queue.

MESSAGE_QUEUE4 MESSAGE_4 VARCHAR(10)

Nullable

The name of the fourth message queue to which messages will be
sent.

Contains null if there is no fourth message queue.

MESSAGE_QUEUE_LIBRARY4 LIBRARY_4 VARCHAR(10)

Nullable

The library containing the fourth message queue.

Contains null if there is no fourth message queue.

374 IBM i: Database Performance and Query Optimization

Table 90. LICENSE_INFO view (continued)

Column Name System Column Name Data Type Description

MESSAGE_QUEUE5 MESSAGE_5 VARCHAR(10)

Nullable

The name of the fifth message queue to which messages will be
sent.

Contains null if there is no fifth message queue.

MESSAGE_QUEUE_LIBRARY5 LIBRARY_5 VARCHAR(10)

Nullable

The library containing the fifth message queue.

Contains null if there is no fifth message queue.

Example

Return information about all licensed products and features that will expire within the next 2 weeks.

SELECT * FROM QSYS2.LICENSE_INFO
 WHERE LICENSE_EXPIRATION <= CURRENT DATE + 14 DAYS;

PTF Services
These views provide PTF information.

GROUP_PTF_CURRENCY view
The GROUP_PTF_CURRENCY is a view containing a query which implements a live comparison of the PTF
Groups installed on the partition against the service levels listed on the IBM Preventive Service Planning
website.

When queried, the view uses the XMLTable() and HTTPGETBLOB() table functions to consume a live XML
feed from IBM Preventive Service Planning (PSP). If the partition cannot connect to the PSP website, the
PTF_GROUP_CURRENCY column will contain PSP INFORMATION NOT AVAILABLE. When querying this
view, the job CCSID cannot be 65535 or the query will fail.

The results of the query show which PTF Groups installed on the partition match the latest level made
available by IBM and those which have a more recent version available.

The following table describes the columns in the view. The schema is SYSTOOLS.

Table 91. GROUP_PTF_CURRENCY view

Column name System column name Data type Description

PTF_GROUP_CURRENCY GRP_CRNCY VARCHAR(46)

Nullable

A description of the PTF group's status. Values
returned are:

INSTALLED LEVEL IS CURRENT
Indicates that the PTF Group level installed
matches the most current level available from
IBM

CURRENT AT THE NEXT IPL
Indicates that the most current PTF Group
level available from IBM is ready to be applied
when the next IPL occurs.

UPDATE AVAILABLE
Indicates that a more recent PTF Group level is
available from IBM

PSP INFORMATION NOT AVAILABLE
Indicates that the query is unable to connect
to the external IBM PSP PTF Group level feed.

PTF_GROUP_ID GRP_ID CHAR(7)

Nullable

The name of the PTF group.

PTF_GROUP_TITLE GRP_TITLE VARCHAR(1000)

Nullable

The descriptive name of the PTF group.

PTF_GROUP_LEVEL_INSTALLED GRP_LVL INTEGER

Nullable

The most recent level of this PTF Group installed on
the partition.

Database performance and query optimization 375

Table 91. GROUP_PTF_CURRENCY view (continued)

Column name System column name Data type Description

PTF_GROUP_LEVEL_AVAILABLE GRP_IBMLVL INTEGER

Nullable

The PTF Group level which is available from IBM
PSP.

PTF_GROUP_LAST_UPDATED_BY_IBM GRP_LSTUPD CHAR(10)

Nullable

The date that IBM made the latest PTF Group level
available. This is the character form of the date
formatted as MM/DD/YYYY.

PTF_GROUP_RELEASE GRP_RLS VARCHAR(6)

Nullable

The release level of the PTF Group. For example,
'R710' indicates IBM i 7.1 release level.

PTF_GROUP_STATUS_ON_SYSTEM GRP_SYSSTS VARCHAR(20)

Nullable

This column will always contain the value
'INSTALLED'.

Notes

• The PSP website is:

http://www.ibm.com/support/docview.wss?uid=nas4PSPbyNum&aid=1

To determine the IP address for your geography, ping www.ibm.com.
• The PTF_GROUP_STATUS_ON_SYSTEM column is included in this view to demonstrate that it would be

possible to create your own version of this query or view which includes information about PTF Groups
that are loaded, but not installed.

Example

Compare the PTF Group service level detail, ordering the results from furthest behind to current.

SELECT * FROM SYSTOOLS.GROUP_PTF_CURRENCY
 ORDER BY PTF_GROUP_LEVEL_AVAILABLE - PTF_GROUP_LEVEL_INSTALLED DESC

Related reference
SYSTOOLS
SYSTOOLS is a set of DB2 for IBM i supplied examples and tools.

GROUP_PTF_DETAILS view
The GROUP_PTF_DETAILS is a view containing a query which implements a live comparison of the PTFs
within PTF Groups installed on the partition against the service levels listed on the IBM Preventive Service
Planning website.

When queried, the view uses the XMLTable() and HTTPGETBLOB() table functions to consume a live XML
feed from IBM Preventive Service Planning (PSP). If the partition cannot connect to the PSP website, the
query will fail with an SQL4302. When querying this view, the job CCSID cannot be 65535 or the query
will fail.

The results of the query show which PTFs from all PTF Groups installed on the partition match the latest
level made available by IBM and those which have a more recent version available.

The following table describes the columns in the view. The schema is SYSTOOLS.

Table 92. GROUP_PTF_DETAILS view

Column name System column
name

Data type Description

PTF_GROUP_DESCRIPTION GRPDESC VARCHAR(100) Description of the PTF group.

PTF_GROUP_NAME GRPNAME CHAR(7) Name of the PTF group.

376 IBM i: Database Performance and Query Optimization

Table 92. GROUP_PTF_DETAILS view (continued)

Column name System column
name

Data type Description

PTF_STATUS PTF_STATUS VARCHAR(11) Status of the PTF.

PTF APPLIED
The PTF has been loaded and applied.

PTF LOADED
The PTF has been loaded but not applied.

PTF MISSING
The PTF does not exists on this partition.

PTF_PRODUCT_ID LICPGM VARCHAR(7) The licensed program for this PTF.

PTF_IDENTIFIER PTFID VARCHAR(7) The identifier of the PTF.

APAR_NAME APAR_NAME VARCHAR(7) The APAR name associated with the PTF.

PTF_INCLUDED_IN_GROUP_DATE PTF_DATE VARCHAR(10) The date that this PTF was first made available in a group
PTF. Contains the character form of a date formatted as
MM/DD/YY.

PTF_CUM_PACKAGE PTF_CUMPKG VARCHAR(8) The identifier of the cumulative PTF package containing
this PTF.

PTF_PRODUCT_DESCRIPTION PRODDESC VARCHAR(132)

Nullable

Product description.

PTF_RELEASE_LEVEL PTFRLS VARCHAR(6)

Nullable

The release level of the PTF.

PTF_PRODUCT_LOAD PRODLOAD VARCHAR(4)

Nullable

The load ID of the product load for the PTF.

PTF_LOADED_STATUS LOADSTAT VARCHAR(19)

Nullable

The current loaded status of the PTF.

NOT LOADED
The PTF has never been loaded.

LOADED
The PTF has been loaded.

APPLIED
The PTF has been applied.

PERMANENTLY APPLIED
The PTF has been applied permanently.

PERMANENTLY REMOVED
The PTF has been permanently removed.

DAMAGED
The PTF is damaged. An error occurred while
applying the PTF. It needs to be reloaded and
applied.

SUPERCEDED
The PTF is superseded. A PTF will have a status of
superseded when one of the following situations
occurs:

• Another PTF with a more recent correction for the
problem has been loaded on the system. The PTF
ID that has been loaded can be found in the
PTF_SUPERCEDED_BY_PTF column.

• The PTF save file for another PTF with a more
recent correction for the problem has been logged
into *SERVICE on the system.

PTF_SAVE_FILE SAVF VARCHAR(3)

Nullable

Indicates whether a save file exists for the PTF.

NO
The PTF has no save file.

YES
The PTF has a save file.

Database performance and query optimization 377

Table 92. GROUP_PTF_DETAILS view (continued)

Column name System column
name

Data type Description

PTF_COVER_LETTER COVER VARCHAR(3)

Nullable

Indicates whether a cover letter exists for the PTF.

NO
The PTF has no cover letter.

YES
The PTF has a cover letter.

PTF_ON_ORDER ONORD VARCHAR(3)

Nullable

Indicates whether the PTF has been ordered.

NO
The PTF has not been ordered or has already been
received.

YES
The PTF has been ordered.

PTF_IPL_ACTION IPLACT VARCHAR(19)

Nullable

The action to be taken on this PTF during the next
unattended IPL.

NONE
No action occurs at the next IPL.

TEMPORARILY APPLIED
The PTF is temporarily applied at the next IPL.

TEMPORARILY REMOVED
The PTF is temporarily removed at the next IPL.

PERMANENTLY APPLIED
The PTF is permanently applied at the next IPL.

PERMANENTLY REMOVED
The PTF is permanently removed at the next IPL.

PTF_ACTION_PENDING ACTPEND VARCHAR(3)

Nullable

Indicates whether a required action has yet to be
performed to make this PTF active.

NO
No required actions are pending for this PTF.

YES
A required action needs to occur for this PTF to be
active. Check the Activation Instructions section of
the cover letter to determine what the action is. If the
PTF_ACTION_REQUIRED column is set to IPL and
the activation instructions have been performed,
then the PTF is active. However, this column will not
be updated until the next IPL.

PTF_ACTION_REQUIRED ACTREQ VARCHAR(12)

Nullable

Indicates whether an action is required to make this PTF
active when it is applied. See the cover letter to determine
what action needs to be taken.

NONE
No activation instructions are needed for this PTF.

EXIT PROGRAM
This PTF was shipped with activation instructions in
the cover letter. This value is returned for all PTFs
that have an exit program to update the status of the
PTF after the activation instructions have been
performed.

IPL
This PTF was shipped with activation instructions in
the cover letter. No exit program exists to verify the
activation instructions were performed.

PTF_IPL_REQUIRED IPLREQ VARCHAR(9)

Nullable

Indicates whether an IPL is required to apply this PTF.

DELAYED
The PTF is delayed. The PTF must be applied during
an IPL.

IMMEDIATE
The PTF is immediate. No IPL is needed to apply the
PTF.

UNKNOWN
The type of the PTF is not known.

378 IBM i: Database Performance and Query Optimization

Table 92. GROUP_PTF_DETAILS view (continued)

Column name System column
name

Data type Description

PTF_IS_RELEASED RELEASED VARCHAR(3)

Nullable

Indicates whether the PTF save file is available for
distribution to another system. This is set to YES only when
the System Manager for IBM i licensed program is on the
system and the product is supported. The PTF_SAVE_FILE
column must have a value of YES before using the value in
this column.

NO
The PTF save file cannot be distributed.

YES
The PTF save file is released and can be distributed
to another system.

PTF_MINIMUM_LEVEL MINLVL VARCHAR(2)

Nullable

The indicator of the lowest level of the product to which
this PTF can be applied. The level can be AA to 99.

Contains the null value if the product does not have a level.

PTF_MAXIMUM_LEVEL MAXLVL VARCHAR(2)

Nullable

The indicator of the highest level of the product to which
this PTF can be applied. The level can be AA to 99.

Contains the null value if the product does not have a level.

PTF_STATUS_TIMESTAMP STATTIME TIMESTAMP

Nullable

The date and time that the PTF status was last changed.

Contains the null value when the status date and time is
not available.

PTF_SUPERCEDED_BY_PTF SUPERCEDE VARCHAR(7)

Nullable

The identifier of the PTF that has replaced this PTF.

This field will be blank when the PTF is not superseded or
when the superseding PTF has not been loaded on the
system.

PTF_CREATION_TIMESTAMP CRTTIME TIMESTAMP

Nullable

The date and time that the PTF was created.

Contains the null value when the creation date and time
cannot be determined.

Note

The PSP websites used by this service are found based upon the PTF groups that are currently installed
on the partition. For each distinct PTF group, a unique PSP XML feed is accessed:

http://www.ibm.com/support/docview.wss?uid=nas4<PTF-Group-Name>&aid=1

For example, the JAVA PTF group details can be accessed using:

http://www.ibm.com/support/docview.wss?uid=nas4SF99572&aid=1

To determine the IP address for your geography, ping www.ibm.com.

Example

• Review the details for the PTFs which have not yet been applied for the PTF groups installed on this
partition.

SELECT * FROM SYSTOOLS.GROUP_PTF_DETAILS
 WHERE PTF_STATUS <> 'PTF APPLIED'
 ORDER BY PTF_GROUP_NAME

Related reference
SYSTOOLS
SYSTOOLS is a set of DB2 for IBM i supplied examples and tools.

GROUP_PTF_INFO view
The GROUP_PTF_INFO view contains information about the group PTFs for the server.

The information returned is similar to the information available from Work with PTF Groups (WRKPTFGRP)
CL command.

Database performance and query optimization 379

The following table describes the columns in the view. The schema is QSYS2.

Table 93. GROUP_PTF_INFO view

Column name System column name Data type Description

COLLECTED_TIME COLLE00001 TIMESTAMP Date and time of when this row information was
generated.

PTF_GROUP_NAME PTF_G00001 VARCHAR(60)

Nullable

Name of the PTF group.

PTF_GROUP_DESCRIPTION PTF_G00002 VARCHAR(100)

Nullable

Description of the PTF group.

PTF_GROUP_LEVEL PTF_G00003 INTEGER

Nullable

Level of the PTF group.

PTF_GROUP_TARGET_RELEASE PTF_G00004 VARCHAR(6)

Nullable

Release level for PTF group.

PTF_GROUP_STATUS PTF_G00005 VARCHAR(20)

Nullable

Status of the PTF group.

UNKNOWN
The PTF group status cannot be resolved because
a related PTF group is either not found on the
system or is in error.

NOT APPLICABLE
All PTFs in the PTF group and related PTF groups
are for products that are not installed or
supported on this system.

SUPPORTED ONLY
There are no PTFs in the PTF group or related PTF
groups that are for installed products on this
system. There is at least one PTF that is for a
product, release, option, and load identifier that is
supported on this system.

NOT INSTALLED
There is at least one PTF that is for an installed
product on this system, and not all of the PTFs or
their superseding PTFs are temporarily or
permanently applied.

INSTALLED
All PTFs for products that are installed on this
system are temporarily or permanently applied. If
a PTF is superseded, a superseding PTF is either
temporarily or permanently applied.

ERROR
The PTF group information is in error. Either
delete the PTF group or replace the PTF group
information that is currently on the system.

APPLY AT NEXT IPL
All PTFs for the installed products on the system
are either set to be applied at the next IPL or are
already temporarily or permanently applied.

RELATED GROUP
The PTF group does not have any PTFs for
products installed or supported on the system.
However, it is identified in another PTF group as a
related PTF group. Deleting a PTF group in this
status will cause the other PTF group to have a
status of UNKNOWN.

ON ORDER
There is at least one PTF in the group that is on
order and has not yet been installed on the
system. It will be delivered on either physical or
virtual media.

Example

380 IBM i: Database Performance and Query Optimization

Determine the level of the latest CUM PTF group installed on the system.

SELECT MAX(PTF_GROUP_LEVEL) AS CUM_LEVEL
 FROM QSYS2.GROUP_PTF_INFO
 WHERE PTF_GROUP_NAME IN ('SF99610','SF99710')
 AND PTF_GROUP_STATUS = 'INSTALLED'

PTF_INFO view
The PTF_INFO view contains information about PTFs for the server.

The information returned is similar to QpzListPTF API.

The following table describes the columns in the view. The schema is QSYS2.

Table 94. PTF_INFO view

Column name System column
name

Data type Description

PTF_PRODUCT_ID LICPGM VARCHAR(7)

Nullable

Product identifier.

PTF_PRODUCT_OPTION PRODOPT VARCHAR(6)

Nullable

Product option.

PTF_PRODUCT_RELEASE_LEVEL PRODRLS VARCHAR(6)

Nullable

Product release level.

PTF_PRODUCT_DESCRIPTION PRODDESC VARCHAR(132)

Nullable

Product description.

PTF_IDENTIFIER PTFID VARCHAR(7)

Nullable

The identifier of the PTF.

PTF_RELEASE_LEVEL PTFRLS VARCHAR(6)

Nullable

The release level of the PTF.

PTF_PRODUCT_LOAD PRODLOAD VARCHAR(4)

Nullable

The load ID of the product load for the PTF.

PTF_LOADED_STATUS LOADSTAT VARCHAR(19)

Nullable

The current loaded status of the PTF.

NOT LOADED
The PTF has never been loaded.

LOADED
The PTF has been loaded.

APPLIED
The PTF has been applied.

PERMANENTLY APPLIED
The PTF has been applied permanently.

PERMANENTLY REMOVED
The PTF has been permanently removed.

DAMAGED
The PTF is damaged. An error occurred while
applying the PTF. It needs to be reloaded and
applied.

SUPERCEDED
The PTF is superseded. A PTF will have a status of
superseded when one of the following situations
occurs:

• Another PTF with a more recent correction for the
problem has been loaded on the system. The PTF
ID that has been loaded can be found in the
PTF_SUPERCEDED_BY_PTF column.

• The PTF save file for another PTF with a more
recent correction for the problem has been logged
into *SERVICE on the system.

Database performance and query optimization 381

Table 94. PTF_INFO view (continued)

Column name System column
name

Data type Description

PTF_SAVE_FILE SAVF VARCHAR(3)

Nullable

Indicates whether a save file exists for the PTF.

NO
The PTF has no save file.

YES
The PTF has a save file.

PTF_COVER_LETTER COVER VARCHAR(3)

Nullable

Indicates whether a cover letter exists for the PTF.

NO
The PTF has no cover letter.

YES
The PTF has a cover letter.

PTF_ON_ORDER ONORD VARCHAR(3)

Nullable

Indicates whether the PTF has been ordered.

NO
The PTF has not been ordered or has already been
received.

YES
The PTF has been ordered.

PTF_IPL_ACTION IPLACT VARCHAR(19)

Nullable

The action to be taken on this PTF during the next
unattended IPL.

NONE
No action occurs at the next IPL.

TEMPORARILY APPLIED
The PTF is temporarily applied at the next IPL.

TEMPORARILY REMOVED
The PTF is temporarily removed at the next IPL.

PERMANENTLY APPLIED
The PTF is permanently applied at the next IPL.

PERMANENTLY REMOVED
The PTF is permanently removed at the next IPL.

PTF_ACTION_PENDING ACTPEND VARCHAR(3)

Nullable

Indicates whether a required action has yet to be
performed to make this PTF active.

NO
No required actions are pending for this PTF.

YES
A required action needs to occur for this PTF to be
active. Check the Activation Instructions section of
the cover letter to determine what the action is. If
the PTF_ACTION_REQUIRED column is set to IPL
and the activation instructions have been performed,
then the PTF is active. However, this column will not
be updated until the next IPL.

PTF_ACTION_REQUIRED ACTREQ VARCHAR(12)

Nullable

Indicates whether an action is required to make this PTF
active when it is applied. See the cover letter to determine
what action needs to be taken.

NONE
No activation instructions are needed for this PTF.

EXIT PROGRAM
This PTF was shipped with activation instructions in
the cover letter. This value is returned for all PTFs
that have an exit program to update the status of the
PTF after the activation instructions have been
performed.

IPL
This PTF was shipped with activation instructions in
the cover letter. No exit program exists to verify the
activation instructions were performed.

382 IBM i: Database Performance and Query Optimization

Table 94. PTF_INFO view (continued)

Column name System column
name

Data type Description

PTF_IPL_REQUIRED IPLREQ VARCHAR(9)

Nullable

Indicates whether an IPL is required to apply this PTF.

DELAYED
The PTF is delayed. The PTF must be applied during
an IPL.

IMMEDIATE
The PTF is immediate. No IPL is needed to apply the
PTF.

UNKNOWN
The type of the PTF is not known.

PTF_IS_RELEASED RELEASED VARCHAR(3)

Nullable

Indicates whether the PTF save file is available for
distribution to another system. This is set to YES only
when the System Manager for IBM i licensed program is
on the system and the product is supported. The
PTF_SAVE_FILE column must have a value of YES before
using the value in this column.

NO
The PTF save file cannot be distributed.

YES
The PTF save file is released and can be distributed
to another system.

PTF_MINIMUM_LEVEL MINLVL VARCHAR(2)

Nullable

The indicator of the lowest level of the product to which
this PTF can be applied. The level can be AA to 99.

Contains the null value if the product does not have a
level.

PTF_MAXIMUM_LEVEL MAXLVL VARCHAR(2)

Nullable

The indicator of the highest level of the product to which
this PTF can be applied. The level can be AA to 99.

Contains the null value if the product does not have a
level.

PTF_STATUS_TIMESTAMP STATTIME TIMESTAMP

Nullable

The date and time that the PTF status was last changed.

Contains the null value when the status date and time is
not available.

PTF_SUPERCEDED_BY_PTF SUPERCEDE VARCHAR(7)

Nullable

The identifier of the PTF that has replaced this PTF.

This field will be blank when the PTF is not superseded or
when the superseding PTF has not been loaded on the
system.

PTF_CREATION_TIMESTAMP CRTTIME TIMESTAMP

Nullable

The date and time that the PTF was created.

Contains the null value when the creation date and time
cannot be determined.

PTF_TECHNOLOGY_REFRESH_PTF TRPTF VARCHAR(3)

Nullable

Indicates whether this is a technology refresh PTF.

NO
This is not a technology refresh PTF.

YES
This is a technology refresh PTF.

Examples

• Find which PTFs will be impacted by the next IPL.

SELECT PTF_IDENTIFIER, PTF_IPL_ACTION, A.*
 FROM QSYS2.PTF_INFO A
 WHERE PTF_IPL_ACTION <> 'NONE‘

• Find which PTFs are loaded but not applied.

SELECT PTF_IDENTIFIER, PTF_PRODUCT_DESCRIPTION, A.*
 FROM QSYS2.PTF_INFO A
 WHERE PTF_LOADED_STATUS = 'LOADED'
 ORDER BY PTF_PRODUCT_ID

Database performance and query optimization 383

Security Services
These views, procedures, and functions provide security information.

AUTHORIZATION_LIST_INFO view
The AUTHORIZATION_LIST_INFO view returns a list of all objects secured by an authorization list.

The information returned is similar to the information available through the Display Authorization List
Objects (DSPAUTLOBJ) CL command and the List Objects Secured by Authorization List (QSYLATLO) API.

Authorization: Detail is returned when one of the following is true:

• The user has *READ authority to the authorization list.
• The user is authorized to the Database Security Administrator function of the IBM i. The Change

Function Usage (CHGFCNUSG) command, with a function ID of QIBM_DB_SECADM, can be used to
change the list of users allowed to use the function.

• The user has *ALLOBJ special authority.

The following table describes the columns in the view. The system name is AUTHL_INFO. The schema is
QSYS2.

Table 95. AUTHORIZATION_LIST_INFO view

Column name System column name Data type Description

AUTHORIZATION_LIST AUTH_LIST VARCHAR(10) The authorization list for this object.

SYSTEM_OBJECT_SCHEMA SYS_DNAME VARCHAR(10)

Nullable

The library that contains the object.

Returns the null value if the object is not in the QSYS
or QDLS file system.

SYSTEM_OBJECT_NAME SYS_ONAME VARCHAR(10)

Nullable

The object that is secured by the authorization list.

Returns the null value if the object is not in the QSYS
or QDLS file system.

SYSTEM_OBJECT_TYPE SYS_OTYPE VARCHAR(8) The system object type of the secured object.

OBJECT_ATTRIBUTE OBJATTR VARCHAR(5)

Nullable

The attribute for the secured object's type.

Returns the null value if the object has no attribute
or if it is not in the QSYS or QDLS file system.

OBJECT_SCHEMA OSCHEMA VARCHAR(128)

Nullable

The SQL schema name for this object.

OBJECT_NAME ONAME VARCHAR(128)

Nullable

The SQL name of the object.

For an external procedure or an external function,
the name will be returned when a single procedure
or function exists for that *PGM or *SRVPGM object.

Contains the null value if an SQL name could not be
returned.

384 IBM i: Database Performance and Query Optimization

Table 95. AUTHORIZATION_LIST_INFO view (continued)

Column name System column name Data type Description

OBJECT_TYPE OTYPE VARCHAR(9)

Nullable

The SQL object type. The following values can be
returned.

ALIAS
The object is an SQL alias.

FUNCTION
The object is an SQL function.

INDEX
The object is an SQL index.

PACKAGE
The object is an SQL package.

PROCEDURE
The object is an SQL procedure.

ROUTINE
The object is used in SQL by one or more
external functions and/or external procedures.

SEQUENCE
The object is an SQL sequence.

TABLE
The object is an SQL table.

TRIGGER
The object is an SQL trigger.

TYPE
The object is an SQL type.

VARIABLE
The object is an SQL global variable.

VIEW
The object is an SQL view.

XSR
The object is an XML schema repository object.

Returns the null value if the object is not an SQL
object.

OBJECT_OWNER OWNER VARCHAR(10) The owner of the object.

PRIMARY_GROUP GROUP VARCHAR(10)

Nullable

The user who is the primary group for the object.

Returns the null value if there is no primary group for
the object.

TEXT_DESCRIPTION TEXT VARCHAR(50)

Nullable

The descriptive text for the secured object.

Returns the null value if the object is not in the QSYS
or QDLS file system.

ASPGRP ASPGRP VARCHAR(10) The name of the ASP device containing the object. A
value of *SYSBAS indicates the system ASP and all
basic user ASPs.

AUTHORITY_HOLDER AUT_HOLDER VARCHAR(3) Indicates whether the object is an authority holder.

NO
The object is not an authority holder.

YES
The object is an authority holder.

PATH_NAME PATH_NAME DBCLOB(16M)
CCSID 1200
Nullable

The path name for the object that is secured by the
authorization list.

Returns the null value if the object is in the QSYS or
QDLS file system.

DLO_NAME DLO_NAME VARCHAR(12)

Nullable

The document library object (DLO) name for the
object.

Returns the null value if OBJECT_TYPE is not *DOC
(document) or *FLR (folder).

FOLDER_PATH FOLDER VARCHAR(63)

Nullable

The name of the folder that contains the DLO object.

Returns the null value if the object is not in a folder.

Example

Database performance and query optimization 385

Return information about all the object secured by authorization list APP1.

SELECT * FROM QSYS2.AUTHORIZATION_LIST_INFO WHERE AUTHORIZATION_LIST = 'APP1';

AUTHORIZATION_LIST_USER_INFO view
The AUTHORIZATION_LIST_USER_INFO view returns a list of all authorization lists and their authorities.

The information returned is similar to the information available through the Display Authorization List
(DSPAUTL) CL command.

Authorization: None required.

The following table describes the columns in the view. The system name is AUTL_USERS. The schema is
QSYS2.

Table 96. AUTHORIZATION_LIST_USER_INFO view

Column name System column name Data type Description

AUTHORIZATION_LIST AUTL VARCHAR(10) The name of the authorization list.

AUTHORIZATION_NAME USER_NAME VARCHAR(10) User profile name. Can contain the following special
value.

*PUBLIC
This row contains the public authority for the
object.

OBJECT_AUTHORITY OBJ_AUTH VARCHAR(12) The authority that the user has to the object.
Contains one of the following values:

*ALL
Allows all operations on the object except
those that are limited to the owner or
controlled by authorization list management
authority.

*CHANGE
Allows all operations on the object except
those that are limited to the owner or
controlled by object existence authority, object
alter authority, object reference authority, and
object management authority.

*EXCLUDE
All operations on the object are prohibited.

*USE
Allows access to the object attributes and use
of the object. The user cannot change the
object.

USER DEFINED
The specific object authorities and data
authorities do not match any of the predefined
object authority levels.

AUTHORIZATION_LIST_MANAGEMENT AUTL_MGMT VARCHAR(3) The authorization list management authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

OWNER OWNER VARCHAR(10) The owner of the authorization list.

OBJECT_OPERATIONAL OBJOPER VARCHAR(3) The object operational authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

386 IBM i: Database Performance and Query Optimization

Table 96. AUTHORIZATION_LIST_USER_INFO view (continued)

Column name System column name Data type Description

OBJECT_MANAGEMENT OBJMGT VARCHAR(3) The object management authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

OBJECT_EXISTENCE OBJEXIST VARCHAR(3) The object existence authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

OBJECT_ALTER OBJALTER VARCHAR(3) The object alter authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

OBJECT_REFERENCE OBJREF VARCHAR(3) The object reference authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

DATA_READ DATA_READ VARCHAR(3) The data read authority for AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

DATA_ADD DATA_ADD VARCHAR(3) The data add authority for AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

DATA_UPDATE DATA_UPD VARCHAR(3) The data update authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

DATA_DELETE DATA_DEL VARCHAR(3) The data delete authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

DATA_EXECUTE DATA_EXEC VARCHAR(3) The data execute authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

TEXT_DESCRIPTION TEXT VARCHAR(50)

Nullable

The descriptive text for the authorization list.

Contains null if the authorization list has no text
description.

Example

Database performance and query optimization 387

List the public security settings for all authorization lists.

SELECT *
 FROM QSYS2.AUTHORIZATION_LIST_USER_INFO
 WHERE AUTHORIZATION_NAME = '*PUBLIC';

DRDA_AUTHENTICATION_ENTRY_INFO view
The DRDA_AUTHENTICATION_ENTRY_INFO view returns user server authentication entry information.

A server authentication entry defines a userid and password to send on a connect request over TCP/IP. A
server authentication list is associated with every user profile on the system. The Add Server
Authentication Entry (ADDSVRAUTE) command is used to add entries.

When a DRDA connection over TCP/IP is attempted without specifying a userid and password, and
password authentication is required, the DB2 for i client checks the server authentication list for the user
profile under which the client job is running. If it finds a match between the RDB name on the CONNECT
statement and the server name in an authentication entry, or the server name is the special value
QDDMDRDASERVER, the associated userid (and password if one exists) is used for the connection.

A server authentication entry can also be used to specify a userid and password to be used for a DDM
connection over TCP/IP. When a DDM connection is attempted over TCP/IP, and password authentication
is required, the DB2 for i client checks the server authentication list for the user profile under which the
client job is running. If it finds a match between the RDB name specified in the DDM file and the server
name in an authentication entry, or the server name is the special value QDDMDRDASERVER, the
associated userid (and password if one exists) is used for the connection. If no RDB name is specified in
the DDM file and the server name is either of the special values QDDMDRDASERVER or QDDMSERVER, the
associated userid (and password if one exists) is used for the connection.

Only rows where the AUTHORIZATION_NAME is for a *USRPRF object that you have *OBJOPR and *READ
authority to will be returned.

The following table describes the columns in the view. The schema is QSYS2.

Table 97. DRDA_AUTHENTICATION_ENTRY_INFO view

Column Name
System Column
Name Data Type Description

AUTHORIZATION_NAME USER_NAME VARCHAR(10) The user profile on the client system.

SERVER_NAME SRVR_NAME VARGRAPHIC(200)
CCSID 1200

The target system for the authentication entry.

This is the name of the RDB or QDDMDRDASERVER that is used for
connections made on behalf of RDB DDM files or DRDA
connections. For a non-RDB DDM file that does not use the RDB
directory, the value will be QDDMDRDASERVER or QDDMSERVER.
See Client security in a TCP/IP network for more information.

SERVER_AUTHORIZATION_NAME SRVR_USER VARGRAPHIC(1000)
CCSID 1200

The user profile on the target system.

PASSWORD_STORED PW_STORED VARCHAR(3) Indicates whether a password is stored for the authentication
entry.

YES
A password is stored for the authentication entry.

NO
A password is not stored for the authentication entry.

Example

For an auditor, generate a list of user profiles that have authentication entries on the system:

SELECT DISTINCT(AUTHORIZATION_NAME)
 FROM QSYS2.DRDA_AUTHENTICATION_ENTRY_INFO

FUNCTION_INFO view
The FUNCTION_INFO view contains details about function usage identifiers.

The following table describes the columns in the view. The schema is QSYS2.

388 IBM i: Database Performance and Query Optimization

Table 98. FUNCTION_INFO view

Column Name System Column Name Data Type Description

FUNCTION_ID FCNID VARCHAR(30)

Nullable

The function ID.

FUNCTION_CATEGORY FCNCAT VARCHAR(10)

Nullable

Indicates whether the function is a client or host function.

1 - CLIENT
The function is a locally managed client function within IBM i Navigator.

2 - CLIENT
The function is a locally managed client function, not within IBM i
Navigator.

3 - HOST
The function is a host function.

4 - CLIENT
The function is a centrally managed client function within IBM i
Navigator.

5 - CLIENT
The function is a centrally managed client function, not within IBM i
Navigator.

FUNCTION_TYPE FCNTYP VARCHAR(13)

Nullable

The type of function.

PRODUCT
The function is a function product.

GROUP
The function is a function group.

ADMINISTRABLE
The function is an administrable function.

FUNCTION_NAME_MESSAGE_TEXT FCNMSGTXT VARGRAPHIC(330)
CCSID(1200)

Nullable

The first-level text for the function-name message ID.

FUNCTION_NAME FCNNAM VARGRAPHIC(330)
CCSID(1200)

Nullable

The text for the function name.

FUNCTION_DESCRIPTION_MESSAGE_
TEXT

FCNDESCTXT VARGRAPHIC(330)
CCSID(1200)

Nullable

The first-level text for the function-description message ID.

FUNCTION_DESCRIPTION FCNDESC VARGRAPHIC(330)
CCSID(1200)

Nullable

The text for the function description.

FUNCTION_PRODUCT_ID FCNPRDID VARCHAR(30)

Nullable

The ID of the product that the function is registered for.

FUNCTION_GROUP_ID FCNGRPID VARCHAR(30)

Nullable

The ID of the function group that the function is grouped with. If the function
is not grouped with a function group, this field is set to *NONE.

DEFAULT_USAGE DFTUG VARCHAR(7)

Nullable

The default usage for the function.

DENIED
The default usage does not allow usage of the function.

ALLOWED
The default usage allows usage of the function.

ALLOBJ_INDICATOR ALLOBJ VARCHAR(8)

Nullable

Indicates whether a user with *ALLOBJ special authority can use the function.

NOT USED
The user, its groups, or default must allow usage of the function.

USED
A user with *ALLOBJ special authority is always allowed to use the
function.

USAGE_INFORMATION_INDICATOR USGINFO VARCHAR(3)

Nullable

Indicates whether there is usage information defined for the function.

NO
There is no usage information defined for the function.

YES
There is usage information defined for the function.

Example

Database performance and query optimization 389

Determine what function usage IDs exist and their default configuration.

SELECT * FROM QSYS2.FUNCTION_INFO ORDER BY FUNCTION_ID

FUNCTION_USAGE view
The FUNCTION_USAGE view contains function usage configuration details.

Only users with *SECADM user special authority can examine the function usage configuration details
returned with this view. Users without *SECADM authority who attempt to reference this view will get
SQLCODE -443.

The following table describes the columns in the view. The schema is QSYS2.

Table 99. FUNCTION_USAGE view

Column Name System Column Name Data Type Description

FUNCTION_ID FCNID VARCHAR(30) The ID of the function.

USER_NAME USER_NAME VARCHAR(10) The name of the user profile that has a usage setting for this
function

USAGE USAGE VARCHAR(7) Usage setting.

ALLOWED
The user profile is allowed to use the function.

DENIED
The user profile is not allowed to use the function.

USER_TYPE USER_TYPE VARCHAR(5) Type of user profile.

USER
The user profile is a user.

GROUP
The user profile is a group.

Example

Determine what function usage has been granted or revoked.

 SELECT * FROM QSYS2.FUNCTION_USAGE ORDER BY FUNCTION_ID, USER_NAME

GROUP_PROFILE_ENTRIES view
The GROUP_PROFILE_ENTRIES view contains one row for each user profile that is part of a group profile.

Both group profile (GRPPRF) and supplemental group profile (SUPGRPPRF) information is considered for
each user profile.

The following table describes the columns in the view. The schema is QSYS2.

Table 100. GROUP_PROFILE_ENTRIES view

Column Name System Column Name Data Type Description

GROUP_PROFILE_NAME GROUPNAME VARCHAR(128) Group profile name

USER_PROFILE_NAME USERNAME VARCHAR(128) User profile name

USER_TEXT USER_TEXT VARCHAR(50)

Nullable

User profile text description.

OBJECT_PRIVILEGES view
The OBJECT_PRIVILEGES view returns a row for every user authorized to an object, along with their
associated object and data authorities.

The information returned is similar to the information available through the Display Object Authority
(DSPOBJAUT) CL command.

390 IBM i: Database Performance and Query Optimization

Authorization: All authorized users are returned for an object when at least one of the following is true:

• The caller has *OBJMGT authority.
• The caller is the owner of the object.
• The object is an authorization list.
• The caller is authorized to the Database Security Administrator function of IBM i. The Change Function

Usage (CHGFCNUSG) command, with a function ID of QIBM_DB_SECADM, can be used to change the
list of users allowed to use the function.

Otherwise, only authorizations for the caller are returned.

The following table describes the columns in the view. The system name is OBJ_PRIV. The schema is
QSYS2.

Table 101. OBJECT_PRIVILEGES view

Column name System column name Data type Description

OBJECT_SCHEMA OSCHEMA VARCHAR(128) The SQL schema name for this object.

OBJECT_NAME NAME VARCHAR(128)

Nullable

The SQL name of the object.

For an external procedure or an external function,
the name will be returned when a single procedure
or function exists for that *PGM or *SRVPGM object.

Contains the null value if an SQL name could not be
returned.

SYSTEM_OBJECT_SCHEMA SYS_DNAME VARCHAR(10) The library that contains the object.

SYSTEM_OBJECT_NAME SYS_ONAME VARCHAR(10) The system object name.

OBJECT_TYPE OBJTYPE VARCHAR(8) The system object type.

SQL_OBJECT_TYPE SQLTYPE VARCHAR(9)

Nullable

The SQL object type. The following values can be
returned.

ALIAS
The object is an SQL alias.

FUNCTION
The object is an SQL function.

INDEX
The object is an SQL index.

PACKAGE
The object is an SQL package.

PROCEDURE
The object is an SQL procedure.

ROUTINE
The object is used in SQL by one or more
external functions and/or external procedures.

SEQUENCE
The object is an SQL sequence.

TABLE
The object is an SQL table.

TRIGGER
The object is an SQL trigger.

TYPE
The object is an SQL type.

VARIABLE
The object is an SQL global variable.

VIEW
The object is an SQL view.

XSR
The object is an XML schema repository object.

Returns the null value if the object is not an SQL
object.

Database performance and query optimization 391

Table 101. OBJECT_PRIVILEGES view (continued)

Column name System column name Data type Description

AUTHORIZATION_NAME USER_NAME VARCHAR(10) User profile name. Can contain the following special
value.

*PUBLIC
This row contains the public authority for the
object.

OBJECT_AUTHORITY OBJ_AUTH VARCHAR(12) The authority that the user has to the object.
Contains one of the following special values:

*ALL
Allows all operations on the object except
those that are limited to the owner or
controlled by authorization list management
authority.

*AUTL
The public authority specified in the
authorization list used by this object is used

*CHANGE
Allows all operations on the object except
those that are limited to the owner or
controlled by object existence authority, object
alter authority, object reference authority, and
object management authority.

*EXCLUDE
All operations on the object are prohibited.

*USE
Allows access to the object attributes and use
of the object. The user cannot change the
object.

USER DEFINED
The specific object authorities and data
authorities do not match any of the predefined
object authority levels.

OWNER OWNER VARCHAR(10) The user profile that owns the object.

OBJECT_OPERATIONAL OBJOPER VARCHAR(3) Indicates the object operational authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

OBJECT_MANAGEMENT OBJMGT VARCHAR(3) The object management authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

OBJECT_EXISTENCE OBJEXIST VARCHAR(3) The object existence authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

OBJECT_ALTER OBJALTER VARCHAR(3) The object alter authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

392 IBM i: Database Performance and Query Optimization

Table 101. OBJECT_PRIVILEGES view (continued)

Column name System column name Data type Description

OBJECT_REFERENCE OBJREF VARCHAR(3) The object reference authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

DATA_READ DATA_READ VARCHAR(3) The data read authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

DATA_ADD DATA_ADD VARCHAR(3) The data add authority for AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

DATA_UPDATE DATA_UPD VARCHAR(3) The data update authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

DATA_DELETE DATA_DEL VARCHAR(3) The data delete authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

DATA_EXECUTE DATA_EXEC VARCHAR(3) The data execute authority for
AUTHORIZATION_NAME.

NO
The user does not have this authority.

YES
The user has this authority.

TEXT_DESCRIPTION TEXT VARCHAR(50)

Nullable

The descriptive text for this object.

Contains null if the object has no text description.

Example

Find user profiles that are publicly accessible.

SELECT *
 FROM QSYS2.OBJECT_PRIVILEGES
 WHERE SYSTEM_OBJECT_SCHEMA = 'QSYS' AND
 OBJECT_TYPE = '*USRPRF' AND
 AUTHORIZATION_NAME = '*PUBLIC' AND
 OBJECT_AUTHORITY <> '*EXCLUDE';

SET_COLUMN_ATTRIBUTE procedure
The SET_COLUMN_ATTRIBUTE procedure sets the SECURE attribute for a column so variable values used
for the column cannot be seen in the database monitor or plan cache.

SET_COLUMN_ATTRIBUTE (

schema-name , table-name , column-name , attribute)

Database performance and query optimization 393

The schema is SYSPROC.

schema-name
A character string expression containing the system name of a schema.

table-name
A character string expression containing the system name of a table.

column-name
A character string expression containing the system name of a column.

attribute
A character string expression containing the attribute to set for the column.

Valid values are:
SECURE NO

This column does not contain data that needs to be secured in a database monitor or plan cache
SECURE YES

This column contains data that needs to be secured in a database monitor or plan cache.

All variable values for any query that references this column will not be visible in a database
monitor or plan cache unless the security officer has started the database monitor or the security
officer is accessing the plan cache. All host variable values will appear as *SECURE when
examined from the monitor and plan cache unless the user is the QSECOFR user.

The secure setting for a column is shown in the SECURE column of the QSYS2/SYSCOLUMNS2 catalog.

Example

Set the credit card column in the ORDERS table so it is secure.

CALL SYSPROC.SET_COLUMN_ATTRIBUTE('LIB1', 'ORDERS', 'CCNBR', 'SECURE YES');

SQL_CHECK_AUTHORITY scalar function
The SQL_CHECK_AUTHORITY scalar function returns an indication of whether the user is authorized to
query the specified *FILE object.

SQL_CHECK_AUTHORITY (library-name , file-name)

The schema is QSYS2.

library-name
Library name containing the file.

file-name
File name for which authority will be examined.

The result of the function is a SMALLINT.

The returned value is:
0

If the user does not have authority to query the file, the object is not a *FILE object, or the object does
not exist.

1
If the user is authorized to query the file.

USER_INFO view
The USER_INFO view contains information about user profiles.

The values returned for the columns in the view are closely related to the values returned by Retrieve
User Information (QSYRUSRI) API. Refer to the API for more detailed information.

394 IBM i: Database Performance and Query Optimization

Authorization: Only *USRPRF objects that the user has *OBJOPR and *READ authority to will be returned.
To see a non-null value for the USER_DEFAULT_PASSWORD column, the user must have *ALLOBJ and
*SECADM authority.

The following table describes the columns in the view. The schema is QSYS2.

Table 102. USER_INFO view

Column Name System Column Name Data Type Description

AUTHORIZATION_NAME USER_NAME VARCHAR(10)

Nullable

User profile name.

PREVIOUS_SIGNON PRVSIGNON TIMESTAMP

Nullable

The date and time the user last signed on.

SIGN_ON_ATTEMPTS_NOT_VALID SIGNONINV INTEGER

Nullable

The number of sign-on attempts that were not
valid since the last successful sign-on.

STATUS STATUS VARCHAR(10)

Nullable

The status of the user profile.

PASSWORD_CHANGE_DATE PWDCHGDAT TIMESTAMP

Nullable

The date the user's password was last changed.

NO_PASSWORD_INDICATOR NOPWD VARCHAR(3)

Nullable

Indicates whether *NONE is specified for the
password in the user profile.

NO
The password in the user profile is not
*NONE.

YES
The password in the user profile is *NONE.

PASSWORD_EXPIRATION_INTERVAL PWDEXPITV INTEGER

Nullable

The number of days (from 1 through 366) the
user's password can remain active before it must
be changed.

DATE_PASSWORD_EXPIRES PWDEXPDAT TIMESTAMP

Nullable

The date the user's password expires.

DAYS_UNTIL_PASSWORD_EXPIRES PWDDAYSEXP INTEGER

Nullable

The number of days until the password will expire.
Contains null if the password will not expire within
the number of days specified by the password
expiration warning (QPWDEXPWRN) system value.

SET_PASSWORD_TO_EXPIRE PWDEXP VARCHAR(3)

Nullable

Indicates whether the user's password is set to
expire, requiring the user to change the password
when signing on.

USER_CLASS_NAME USRCLS VARCHAR(10)

Nullable

The user's class name.

SPECIAL_AUTHORITIES SPCAUT VARCHAR(88)

Nullable

A list of the special authorities the user has.

GROUP_PROFILE_NAME GRPPRF VARCHAR(10)

Nullable

The name of the group profile.

SUPPLEMENTAL_GROUP_COUNT SUPGRPCNT SMALLINT The number of supplemental groups in the
SUPPLEMENTAL_GROUP_LIST column.

SUPPLEMENTAL_GROUP_LIST SUPGRPLIST VARCHAR(150)

Nullable

A list of supplemental groups for the user profile.
Up to 15 supplemental groups are returned. Each
entry except for the last one is padded with
blanks to fill 10 characters.

Contains null if the user has no supplemental
groups.

OWNER OWNER VARCHAR(10)

Nullable

This field indicates who is to own objects created
by this user.

Database performance and query optimization 395

Table 102. USER_INFO view (continued)

Column Name System Column Name Data Type Description

GROUP_AUTHORITY GRPAUT VARCHAR(10)

Nullable

The authority the user's group profile has to
objects the user creates.

ASSISTANCE_LEVEL ASTLVL VARCHAR(10)

Nullable

The user interface that the user will use.

CURRENT_LIBRARY_NAME CURLIB VARCHAR(10)

Nullable

The name of the user's current library.

INITIAL_MENU_NAME INLMNU VARCHAR(10)

Nullable

The initial menu for the user.

INITIAL_MENU_LIBRARY_NAME INLMNULIB VARCHAR(10)

Nullable

The name of the library that the initial menu is in.

INITIAL_PROGRAM_NAME INITPGM VARCHAR(10)

Nullable

The initial program for the user.

INITIAL_PROGRAM_LIBRARY_NAME INITPGMLIB VARCHAR(10)

Nullable

The name of the library that the initial program is
in.

LIMIT_CAPABILITIES LMTCPB VARCHAR(10)

Nullable

Indicates whether the user has limited
capabilities.

TEXT_DESCRIPTION TEXT VARCHAR(50)

Nullable

The descriptive text for the user profile.

DISPLAY_SIGNON_INFORMATION DSPSGNINF VARCHAR(10)

Nullable

Indicates whether the sign-on information display
is shown when the user signs on.

LIMIT_DEVICE_SESSIONS LMTDEVSSN VARCHAR(10)

Nullable

Specifies if the number of device sessions allowed
for a user is limited.

KEYBOARD_BUFFERING KBDBUF VARCHAR(10)

Nullable

The keyboard buffering value that is used when a
job is initialized for this user.

MAXIMUM_ALLOWED_STORAGE MAXSTGLRG BIGINT

Nullable

The maximum amount of auxiliary storage (in
kilobytes) that can be assigned to store
permanent objects owned by the user. Contains
null if the user has no maximum storage.

STORAGE_USED STGUSED BIGINT

Nullable

The amount of auxiliary storage (in kilobytes)
occupied by this user's owned objects on
*SYSBAS. The QSYS2.USER_STORAGE catalog
should be used to determine the storage
consumed on all ASPs.

HIGHEST_SCHEDULING_PRIORITY PTYLMT CHAR(1)

Nullable

The highest scheduling priority the user is allowed
to have for each job submitted to the system.

JOB_DESCRIPTION_NAME JOBD VARCHAR(10)

Nullable

The name of the job description used for jobs that
start through subsystem work station entries.

JOB_DESCRIPTION_LIBRARY_NAME JOBDLIB VARCHAR(10)

Nullable

Job description library name.

ACCOUNTING_CODE ACGCDE VARCHAR(15)

Nullable

The accounting code that is associated with this
user.

MESSAGE_QUEUE_NAME MSGQ VARCHAR(10)

Nullable

The name of the message queue that is used by
this user.

MESSAGE_QUEUE_LIBRARY_NAME MSGQLIB VARCHAR(10)

Nullable

The name of the library the message queue is in.

396 IBM i: Database Performance and Query Optimization

Table 102. USER_INFO view (continued)

Column Name System Column Name Data Type Description

MESSAGE_QUEUE_DELIVERY_METHOD DLVRY VARCHAR(10)

Nullable

How the messages are delivered to the message
queue used by the user.

MESSAGE_QUEUE_SEVERITY SEV SMALLINT

Nullable

The lowest severity that a message can have and
still be delivered to a user in break or notify mode

OUTPUT_QUEUE_NAME OUTQ VARCHAR(10)

Nullable

The output queue used by this user.

OUTPUT_QUEUE_LIBRARY_NAME OUTQLIB VARCHAR(10)

Nullable

The name of the library where the output queue is
located.

PRINT_DEVICE PRTDEV VARCHAR(10)

Nullable

The printer used to print for this user.

SPECIAL_ENVIRONMENT SPCENV VARCHAR(10)

Nullable

The special environment the user operates in
after signing on.

ATTENTION_KEY_HANDLING_
PROGRAM_NAME

ATNPGM VARCHAR(10)

Nullable

The attention key handling program for this user.

ATTENTION_KEY_HANDLING_
PROGRAM_LIBRARY_NAME

ATNPGMLIB VARCHAR(10)

Nullable

The name of the library where the program is
located.

LANGUAGE_ID LANGID VARCHAR(10)

Nullable

The language ID used by the system for this user.

COUNTRY_OR_REGION_ID CNTRYID VARCHAR(10)

Nullable

Country or region ID.

CHARACTER_CODE_SET_ID CCSID VARCHAR(6)

Nullable

The CCSID for the user.

USER_OPTIONS USROPT VARCHAR(77)

Nullable

A list of the options for users to customize their
environment. Contains null if there are no user
options.

SORT_SEQUENCE_TABLE_NAME SRTSEQ VARCHAR(10)

Nullable

The name of the sort sequence table used for
string comparisons.

SORT_SEQUENCE_TABLE_LIBRARY_NAME SRTSEQLIB VARCHAR(10)

Nullable

The name of the library that is used to locate the
sort sequence table.

OBJECT_AUDITING_VALUE OBJAUD VARCHAR(10)

Nullable

The object auditing value for this user.

USER_ACTION_AUDIT_LEVEL AUDLVL VARCHAR(341)

Nullable

The action audit values for this user.

GROUP_AUTHORITY_TYPE GRPAUTTYP VARCHAR(10)

Nullable

The type of authority the user's group profile has
to objects the user creates.

USER_ID_NUMBER UID BIGINT

Nullable

The user ID number for the user profile.

GROUP_ID_NUMBER GID BIGINT

Nullable

The group ID number for the user profi

LOCALE_JOB_ATTRIBUTES SETOBJATR VARCHAR(88)

Nullable

A list of the job attributes that are taken from the
user's locale path.

Database performance and query optimization 397

Table 102. USER_INFO view (continued)

Column Name System Column Name Data Type Description

GROUP_MEMBER_INDICATOR GRPMBR VARCHAR(3)

Nullable

Whether this user is a group that has members.

DIGITAL_CERTIFICATE_INDICATOR DCIND VARCHAR(3)

Nullable

Whether there are digital certificates associated
with this user.

CHARACTER_IDENTIFIER_CONTROL CHRIDCTL VARCHAR(10)

Nullable

The character identifier control for the user.

LOCAL_PASSWORD_MANAGEMENT LCLPWDMGT VARCHAR(3)

Nullable

Indicates if password is managed locally.

BLOCK_PASSWORD_CHANGE PWDCHGBLK VARCHAR(10)

Nullable

Specifies the time period, in hours, during which a
password is blocked from being changed
following the prior successful password change
operation.

USER_ENTITLEMENT_REQUIRED ENTITLERQD VARCHAR(3)

Nullable

Whether a user entitlement is required for this
user profile.

USER_EXPIRATION_INTERVAL USREXPITV SMALLINT

Nullable

The number of days (from 1 through 366) before
the user profile is automatically disabled.

USER_EXPIRATION_DATE ESREXPDATE TIMESTAMP

Nullable

The date when the user profile expires and is
automatically disabled or deleted.

USER_EXPIRATION_ACTION ACTION VARCHAR(8)

Nullable

The action that will occur when the user profile
has expired.

HOME_DIRECTORY HOMEDIR VARGRAPHIC(1024)
CCSID 1200

Nullable

The home directory for this user profile.

LOCALE_PATH_NAME LOCALE VARGRAPHIC(1024)
CCSID 1200

Nullable

The locale path name that is assigned to the user
profile when a job is started.

USER_DEFAULT_PASSWORD DFTPWD VARCHAR(3)

Nullable

The password is the default password.

NO
The password is not the default password.

YES
The password appears to be the default
password since it matches the user profile
name.

Contains null if not authorized to view this
information.

USER_OWNER USER_OWNER VARCHAR(10)

Nullable

The user profile that owns this user profile.

USER_CREATOR CREATOR VARCHAR(10)

Nullable

The user profile that created this user profile.

SIZE SIZE DECIMAL(15,0)

Nullable

Size of the user profile, in bytes.

CREATION_TIMESTAMP TIMESTAMP TIMESTAMP

Nullable

Timestamp of when the user profile was created.

LAST_USED_TIMESTAMP LASTUSED TIMESTAMP

Nullable

The date the user profile was used last. The time
portion of the timestamp will always be 0.

398 IBM i: Database Performance and Query Optimization

Table 102. USER_INFO view (continued)

Column Name System Column Name Data Type Description

DAYS_USED_COUNT DAYSUSED INTEGER

Nullable

The number of days the user profile has been
used on the system.

LAST_RESET_TIMESTAMP LASTRESET TIMESTAMP

Nullable

The date when the days used count was last reset
to zero. The time portion of the timestamp will
always be 0.

PASE_SHELL_PATH SHELL_PATH VARCHAR(1024)
CCSID 1208
Nullable

Path to the user's PASE shell. If
AUTHORIZATION_NAME is QSYS, this column
contains the default shell path used for all user
profiles that have not had a value explicitly set.

Returns the null value if a value has not been set
using the QSYS2.SET_PASE_SHELL_INFO
procedure.

Example

Determine which users are having trouble signing on.

SELECT * FROM QSYS2.USER_INFO
 WHERE SIGN_ON_ATTEMPTS_NOT_VALID > 0

Spool Services
This view and function provide information about spooled files.

OUTPUT_QUEUE_ENTRIES table function
The OUTPUT_QUEUE_ENTRIES table function returns one row for each spooled file in an output queue.

OUTPUT_QUEUE_ENTRIES (

OUTQ_LIB =>

outq-lib ,

OUTQ_NAME =>

outq-name

,

DETAILED_INFO =>

detailed-info)

The schema is QSYS2.

To invoke this function, the caller must have:

• Read authority to the output queue object, or
• *JOBCTL special authority and the output queue has OPRCTL(*YES), or
• *SPLCTL special authority

outq-lib
A character or graphic string expression that identifies the name of the library containing outq-name.
If this parameter is blank, the default of *LIBL is used.

outq-name
A character or graphic string expression that identifies the name of an output queue.

detailed-info
A character or graphic string expression that indicates the type of information to be returned.
*YES

All the information available for the output queue is returned.

Database performance and query optimization 399

*NO
Only the general information is returned for the output queue. This is the information in the
columns prior to the ACCOUNTING_CODE column. This is the default.

The result of the function is a table containing rows with the format shown in the following table. All the
columns are nullable.

Table 103. OUTPUT_QUEUE_ENTRIES table function

Column Name Data Type Description

CREATE_TIMESTAMP TIMESTAMP The timestamp when the file was created.

SPOOLED_FILE_NAME VARCHAR(10) The file name that was specified by the user program when the file was created,
or the name of the device file used to create this file.

USER_NAME VARCHAR(10) The name of the user profile that produced the file.

USER_DATA VARCHAR(10) The user-specified data that describes this file. Contains null if there is no user-
specified data.

STATUS VARCHAR(15) Status of the spooled file.

CLOSED
The file has been completely processed by a program but
SCHEDULE(*JOBEND) was specified and the job that produced the file has
not yet finished.

DEFERRED
Printing of the file has been deferred.

DELETED
The file has been deleted.

HELD
The file has been held.

MESSAGE WAITING
This file has a message which needs a reply or an action to be taken.

OPEN
The file has not been completely processed and is not ready to be selected
by a writer.

PENDING
The file is pending to be printed.

PRINTING
The file has been completely sent to the printer but print complete status
has not been sent back.

READY
The file is available to be written.

SAVED
The file has been printed and then saved. This file remains saved until it is
released.

SENDING
The file is being sent or has been sent to a remote system.

WRITING
This file is currently being produced by the writer.

SIZE INTEGER The size of the spooled file, in kilobytes.

TOTAL_PAGES INTEGER The total number of pages in the file.

COPIES SMALLINT The number of copies remaining to print.

FORM_TYPE VARCHAR(10) The type of form that should be loaded in the printer to print this file.

JOB_NAME VARCHAR(28) The qualified job name that produced the file.

400 IBM i: Database Performance and Query Optimization

Table 103. OUTPUT_QUEUE_ENTRIES table function (continued)

Column Name Data Type Description

DEVICE_TYPE VARCHAR(10) The type of data stream used to represent the file.

*AFPDS
Advanced Function Presentation data stream

*AFPDSLINE
AFPDS data mixed with 1403 line data

*IPDS
Intelligent printer data stream

*LINE
1403 line data

*SCS
Systems Network Architecture (SNA) character stream

*USERASCII
ASCII data

OUTPUT_PRIORITY SMALLINT The priority of the spooled file.

FILE_NUMBER INTEGER The spooled file number of the specified file.

SYSTEM VARCHAR(8) The name of the system where the job that created the spooled file ran.

Values for the following columns are returned when the DETAILED_INFO parameter is *YES. Otherwise, the columns will contain the null value.

ACCOUNTING_CODE VARCHAR(15) An identifier assigned by the system to record the resources used to write this
file.

EXPIRATION_DATE DATE The date the file will be eligible for removal from the system by the Delete
Expired Spooled Files (DLTEXPSPLF) command. Contains the null value if the file
will not expire.

SAVE_AFTER_WRITE VARCHAR(4) Indicates whether this file is to be saved after it is written.

*NO
The file is deleted after it has been written.

*YES
The file is set to save status after it has been written.

PAGE_LENGTH INTEGER The page length, in lines per page, used by the spooled file.

LINES_PER_INCH DECIMAL(5,1) The number of lines per vertical inch defined in the printer file.

PAGE_WIDTH INTEGER The page width, in characters per printed line, used by the spooled file.

CHARACTERS_PER_INCH DECIMAL(5,1) The number of characters per horizontal inch, defined in the printer file.

PRINT_FIDELITY VARCHAR(8) The kind of error handling that is performed when printing.

*ABSOLUTE
The file is printed only if it can be printed exactly as specified in the data
stream.

*CONTENT
The printing overrides errors in the data stream and continues printing with
the printers best quality based on the content fidelity.

PAGE_ROTATION VARCHAR(5) The degree of rotation of the text on the page, with respect to the way the form is
loaded into the printer.

*AUTO
Computer output reduction is done automatically if the output is too large to
fit on the form, regardless of the print quality.

*DEVD
The operating system sends a device default rotation value to the printer.
Page rotation is dependent on the printer's specifications.

*COR
Output created for a form 13.2 inches wide by 11.0 inches long is adjusted
to print on a form 11.0 inches wide by 8.5 inches long.

Database performance and query optimization 401

Table 103. OUTPUT_QUEUE_ENTRIES table function (continued)

Column Name Data Type Description

PRINT_BOTH_SIDES VARCHAR(7) How the information prints.

*FORMDF
The file uses a user-specified form definition. This value is used only for
*LINE, *AFPDS, and *AFPDSLINE printer device type files.

*NO
The printing on the page is on one side only.

*YES
The printing is on both sides of the page with the top of each page the same
for both sides.

*TUMBLE
The printing is on both sides with the top of one printed page at the opposite
end from the top of the other printed page.

FILE_AVAILABLE VARCHAR(8) The time when this file becomes available to an output device for processing.

*IMMED
The file is available as soon as the file is opened.

*FILEEND
The file is available as soon as the file is closed.

*JOBEND
The file is available when the job that owns the file is completed.

STARTING_PAGE VARCHAR(10) The page at which printing is to start for the file. Can contain the following special
value:

*ENDPAGE
Printing starts with the last page.

ENDING_PAGE VARCHAR(10) The page at which printing is to end for the file. Can contain the following special
value:

*END
Printing ends with the last page.

DEVICE_FILE_LIBRARY VARCHAR(10) The name of the library that contains the device file.

DEVICE_FILE_NAME VARCHAR(10) The name of the device file used to create the spooled file.

PROGRAM_THAT_OPENED_FILE_LIBRARY VARCHAR(10) The name of the library that contains the program that opened the file. Contains
null when the program is not known.

PROGRAM_THAT_OPENED_FILE_NAME VARCHAR(10) The name of the program that opened the spooled file. Contains null when the
program is not known.

FORM_DEFINITION_LIBRARY VARCHAR(10) The name of the library that contains the form definition. Contains null if
FORM_DEFINITION_NAME is a special value or if no form definition is specified
for this spooled file.

FORM_DEFINITION_NAME VARCHAR(10) The name of the form definition to use for this print request. Can contain one of
the following special values:

*DEVD
The form definition in the printer device description will be used.

*INLINE
The form definition defined in the spooled file data stream will be used.

*INLINED
The form definition defined in the spooled file data stream will be used. If a
form definition is not found, the form definition in the printer device
description will be used.

F1DFLT
The form definition defined in the spooled file data stream will be used.

Contains null when no form definition is specified for this spooled file.

PAGE_DEFINITION_LIBRARY VARCHAR(10) The name of the library containing the page definition. Contains the null value for
*LINE or *AFPDSLINE printer device type files.

PAGE_DEFINITION_NAME VARCHAR(10) The name of the page definition to use for the file. Contains the null value for
*LINE or *AFPDSLINE printer device type files.

402 IBM i: Database Performance and Query Optimization

Table 103. OUTPUT_QUEUE_ENTRIES table function (continued)

Column Name Data Type Description

FRONT_OVERLAY_LIBRARY VARCHAR(10) The name of the library containing the front overlay. Can contain one of these
special values:

*CURLIB
The current ibrary is searched the front overlay.

*LIBL
The library list is used to locate the front overlay.

Contains null when FRONT_OVERLAY_NAME is *NONE.

FRONT_OVERLAY_NAME VARCHAR(10) The name of the front overlay. Can contain the following special value:

*NONE
The file does not use the front overlay.

BACK_OVERLAY_LIBRARY VARCHAR(10) The name of the library containing the back overlay. Contains null when
BACK_OVERLAY_NAME is a special value.

BACK_OVERLAY_NAME VARCHAR(10) The name of the back overlay. Can contain the following special values:

*FRONTOVL
The back overlay is the same as the front overlay.

*NONE
The file does not use the back overlay.

CHARACTER_SET_LIBRARY VARCHAR(10) The name of the library containing the font character set object. Can contain one
of these special values:

*CURLIB
The current library is searched for the font character set object.

*LIBL
The library list is used to locate the font character set object.

Contains null when CHARACTER_SET_NAME is *FONT.

CHARACTER_SET_NAME VARCHAR(10) The name of the font character set object used to print this file. Can contain the
following special value:

*FONT
The information specified on the font parameter is used instead of the
character set and code page.

CODE_PAGE_LIBRARY VARCHAR(10) The name of the library containing the code page used to print this spooled file.
Can contain one of these special values:

*CURLIB
The current library is searched for the code page name.

*LIBL
The library list is used to locate the code page name.

Contains null when no code page is specified for this spooled file.

CODE_PAGE_NAME VARCHAR(10) The name of the code page used to print this spooled file. Contains null when no
code page is specified for this spooled file.

CHARACTER_SET_POINTSIZE DECIMAL(5,1) The point size in which this file's characters should be printed. Contains null if the
character set does not have a point size.

CODED_FONT_LIBRARY VARCHAR(10) The name of the library containing the coded font used to print this spooled file.
Can contain one of these special values:

*CURLIB
The current library is searched for the coded font.

*LIBL
The library list is used to locate the coded font.

Contains null when CODED_FONT_NAME is *FNTCHRSET.

CODED_FONT_NAME VARCHAR(10) The name of the coded font used to print this spooled file. Can contain the
following special value:

*FNTCHRSET
The values used are the values specified on the character set name and
library name and code page name and library name fields.

CODED_FONT_POINTSIZE DECIMAL(5,1) The point size in which this file's characters should be printed. Contains null if the
coded font does not have a point size.

MULTIBYTE_DATA VARCHAR(10) Whether the file can contain double-byte character set (DBCS) data, Unicode
data, or both. Values are *YES and *NO.

Database performance and query optimization 403

Table 103. OUTPUT_QUEUE_ENTRIES table function (continued)

Column Name Data Type Description

DBCS_CODED_FONT_LIBRARY VARCHAR(10) The name of the library containing the DBCS-coded font. Can contain one of these
special values:

*CURLIB
The current library is searched for the DBCS-coded font.

*LIBL
The library list is used to locate the DBCS-coded font.

Contains null when DBCS_CODED_FONT_NAME is *SYSVAL.

DBCS_CODED_FONT_NAME VARCHAR(10) The name of the DBCS-coded font used to print DBCS-coded data on printers
configured as AFP(*YES). Can contain the following special value:

*SYSVAL
The DBCS-coded font specified in the system value is used.

DBCS_CODED_FONT_POINTSIZE DECIMAL(5,1) The point size in which this file's DCBS characters should be printed. Contains
null if the DBCS-coded font does not have a point size.

Example

Find the 100 largest spool files in the QEZJOBLOG output queue. Since no detailed information is needed,
specify *NO to avoid the additional processing.

SELECT *
 FROM TABLE(QSYS2.OUTPUT_QUEUE_ENTRIES('*LIBL', 'QEZJOBLOG', '*NO')) A
 ORDER BY SIZE DESC
 FETCH FIRST 100 ROWS ONLY

OUTPUT_QUEUE_ENTRIES view
The OUTPUT_QUEUE_ENTRIES view returns one row for each spooled file in every output queue.

The schema is QSYS2.

Rows will be returned for spooled files when the caller has:

• Execute authority to the output queue library and

– Read authority to the output queue object, or
– *JOBCTL special authority and the output queue has OPRCTL(*YES), or
– *SPLCTL special authority

To achieve the best performance when querying the OUTPUT_QUEUE_ENTRIES view, the use of a WHERE
clause is recommended if you are interested in examining specific output queue libraries or output
queues. If the intent of the query is to examine all spool files, consider whether all attributes of the spool
file are necessary. If not, a better performing query may be possible using the OUTPUT_QUEUE_ENTRIES
table function with DETAIL_INFO set to *NO.

The following table describes the columns in the view. The schema is QSYS2.

Table 104. OUTPUT_QUEUE_ENTRIES view

Column Name System Column Name Data Type Description

OUTPUT_QUEUE_NAME OUTQ VARCHAR(10) Name of the output queue containing the spooled file.

OUTPUT_QUEUE_LIBRARY_NAME OUTQLIB VARCHAR(10) The name of the library that contains the output queue.

CREATE_TIMESTAMP CREATED TIMESTAMP The timestamp when the file was created.

SPOOLED_FILE_NAME SPOOLNAME VARCHAR(10) The file name that was specified by the user program when the
file was created, or the name of the device file used to create
this file.

USER_NAME USER_NAME VARCHAR(10) The name of the user profile that produced the file.

USER_DATA USER_DATA VARCHAR(10)

Nullable

The user-specified data that describes this file. Contains null if
there is no user-specified data.

404 IBM i: Database Performance and Query Optimization

Table 104. OUTPUT_QUEUE_ENTRIES view (continued)

Column Name System Column Name Data Type Description

STATUS STATUS VARCHAR(15) Status of the spooled file.

CLOSED
The file has been completely processed by a program but
SCHEDULE(*JOBEND) was specified and the job that
produced the file has not yet finished.

DEFERRED
Printing of the file has been deferred.

DELETED
The file has been deleted.

HELD
The file has been held.

MESSAGE WAITING
This file has a message which needs a reply or an action to
be taken.

OPEN
The file has not been completely processed and is not
ready to be selected by a writer.

PENDING
The file is pending to be printed.

PRINTING
The file has been completely sent to the printer but print
complete status has not been sent back.

READY
The file is available to be written.

SAVED
The file has been printed and then saved. This file remains
saved until it is released.

SENDING
The file is being sent or has been sent to a remote system.

WRITING
This file is currently being produced by the writer.

SIZE SIZE INTEGER The size of the spooled file, in kilobytes.

TOTAL_PAGES PAGES INTEGER The total number of pages in the file.

COPIES COPIES SMALLINT The number of copies remaining to print.

FORM_TYPE FORM_TYPE VARCHAR(10) The type of form that should be loaded in the printer to print this
file.

JOB_NAME JOB_NAME VARCHAR(28) The qualified job name that produced the file.

DEVICE_TYPE DEVTYPE VARCHAR(10) The type of data stream used to represent the file.

*AFPDS
Advanced Function Presentation data stream

*AFPDSLINE
AFPDS data mixed with 1403 line data

*IPDS
Intelligent printer data stream

*LINE
1403 line data

*SCS
Systems Network Architecture (SNA) character stream

*USERASCII
ASCII data

OUTPUT_PRIORITY OUTPTY SMALLINT The priority of the spooled file.

FILE_NUMBER FILENUM INTEGER The spooled file number of the specified file.

SYSTEM SYSTEM VARCHAR(8) The name of the system where the job that created the spooled
file ran.

ACCOUNTING_CODE ACGCDE VARCHAR(15) An identifier assigned by the system to record the resources
used to write this file.

EXPIRATION_DATE EXPDATE DATE

Nullable

The date the file will be eligible for removal from the system by
the Delete Expired Spooled Files (DLTEXPSPLF) command.
Contains the null value if the file will not expire.

Database performance and query optimization 405

Table 104. OUTPUT_QUEUE_ENTRIES view (continued)

Column Name System Column Name Data Type Description

SAVE_AFTER_WRITE SAVEAFTER VARCHAR(4) Indicates whether this file is to be saved after it is written.

*NO
The file is deleted after it has been written.

*YES
The file is set to save status after it has been written.

PAGE_LENGTH PAGELEN INTEGER The page length, in lines per page, used by the spooled file.

LINES_PER_INCH LPI DECIMAL(5,1) The number of lines per vertical inch defined in the printer file.

PAGE_WIDTH WIDTH INTEGER The page width, in characters per printed line, used by the
spooled file.

CHARACTERS_PER_INCH CPI DECIMAL(5,1) The number of characters per horizontal inch, defined in the
printer file.

PRINT_FIDELITY FIDELITY VARCHAR(8) The kind of error handling that is performed when printing.

*ABSOLUTE
The file is printed only if it can be printed exactly as
specified in the data stream.

*CONTENT
The printing overrides errors in the data stream and
continues printing with the printers best quality based on
the content fidelity.

PAGE_ROTATION ROTATION VARCHAR(5) The degree of rotation of the text on the page, with respect to
the way the form is loaded into the printer.

*AUTO
Computer output reduction is done automatically if the
output is too large to fit on the form, regardless of the print
quality.

*DEVD
The operating system sends a device default rotation value
to the printer. Page rotation is dependent on the printer's
specifications.

*COR
Output created for a form 13.2 inches wide by 11.0 inches
long is adjusted to print on a form 11.0 inches wide by 8.5
inches long.

PRINT_BOTH_SIDES BOTHSIDES VARCHAR(7) How the information prints.

*FORMDF
The file uses a user-specified form definition. This value is
used only for *LINE, *AFPDS, and *AFPDSLINE printer
device type files.

*NO
The printing on the page is on one side only.

*YES
The printing is on both sides of the page with the top of
each page the same for both sides.

*TUMBLE
The printing is on both sides with the top of one printed
page at the opposite end from the top of the other printed
page.

FILE_AVAILABLE FILEAVAIL VARCHAR(8) The time when this file becomes available to an output device
for processing.

*IMMED
The file is available as soon as the file is opened.

*FILEEND
The file is available as soon as the file is closed.

*JOBEND
The file is available when the job that owns the file is
completed.

STARTING_PAGE STARTPAGE VARCHAR(10) The page at which printing is to start for the file. Can contain the
following special value:

*ENDPAGE
Printing starts with the last page.

406 IBM i: Database Performance and Query Optimization

Table 104. OUTPUT_QUEUE_ENTRIES view (continued)

Column Name System Column Name Data Type Description

ENDING_PAGE ENDPAGE VARCHAR(10) The page at which printing is to end for the file. Can contain the
following special value:

*END
Printing ends with the last page.

DEVICE_FILE_LIBRARY DEVLIB VARCHAR(10) The name of the library that contains the device file.

DEVICE_FILE_NAME DEVFILE VARCHAR(10) The name of the device file used to create the spooled file.

PROGRAM_THAT_OPENED_
FILE_LIBRARY

LIBOPEN VARCHAR(10)

Nullable

The name of the library that contains the program that opened
the file. Contains null when the program is not known.

PROGRAM_THAT_OPENED_
FILE_NAME

PGMOPEN VARCHAR(10)

Nullable

The name of the program that opened the spooled file. Contains
null when the program is not known.

FORM_DEFINITION_LIBRARY FORMLIB VARCHAR(10)

Nullable

The name of the library that contains the form definition.
Contains null if FORM_DEFINITION_NAME is a special value or if
no form definition is specified for this spooled file.

FORM_DEFINITION_NAME FORMNAME VARCHAR(10)

Nullable

The name of the form definition to use for this print request. Can
contain one of the following special values:

*DEVD
The form definition in the printer device description will be
used.

*INLINE
The form definition defined in the spooled file data stream
will be used.

*INLINED
The form definition defined in the spooled file data stream
will be used. If a form definition is not found, the form
definition in the printer device description will be used.

F1DFLT
The form definition defined in the spooled file data stream
will be used.

Contains null when no form definition is specified for this
spooled file.

PAGE_DEFINITION_LIBRARY PAGELIB VARCHAR(10)

Nullable

The name of the library containing the page definition. Contains
the null value for *LINE or *AFPDSLINE printer device type files.

PAGE_DEFINITION_NAME PAGENAME VARCHAR(10)

Nullable

The name of the page definition to use for the file. Contains the
null value for *LINE or *AFPDSLINE printer device type files.

FRONT_OVERLAY_LIBRARY FRONTLIB VARCHAR(10)

Nullable

The name of the library containing the front overlay. Can contain
one of these special values:

*CURLIB
The current ibrary is searched the front overlay.

*LIBL
The library list is used to locate the front overlay.

Contains null when FRONT_OVERLAY_NAME is *NONE.

FRONT_OVERLAY_NAME FRONTNAME VARCHAR(10) The name of the front overlay. Can contain the following special
value:

*NONE
The file does not use the front overlay.

BACK_OVERLAY_LIBRARY BACKLIB VARCHAR(10)

Nullable

The name of the library containing the back overlay. Contains
null when BACK_OVERLAY_NAME is a special value.

BACK_OVERLAY_NAME BACKNAME VARCHAR(10) The name of the back overlay. Can contain the following special
values:

*FRONTOVL
The back overlay is the same as the front overlay.

*NONE
The file does not use the back overlay.

Database performance and query optimization 407

Table 104. OUTPUT_QUEUE_ENTRIES view (continued)

Column Name System Column Name Data Type Description

CHARACTER_SET_LIBRARY CHRSETLIB VARCHAR(10)

Nullable

The name of the library containing the font character set object.
Can contain one of these special values:

*CURLIB
The current library is searched for the font character set
object.

*LIBL
The library list is used to locate the font character set
object.

Contains null when CHARACTER_SET_NAME is *FONT.

CHARACTER_SET_NAME CHRSETNAME VARCHAR(10) The name of the font character set object used to print this file.
Can contain the following special value:

*FONT
The information specified on the font parameter is used
instead of the character set and code page.

CODE_PAGE_LIBRARY CODELIB VARCHAR(10)

Nullable

The name of the library containing the code page used to print
this spooled file. Can contain one of these special values:

*CURLIB
The current library is searched for the code page name.

*LIBL
The library list is used to locate the code page name.

Contains null when no code page is specified for this spooled
file.

CODE_PAGE_NAME CODENAME VARCHAR(10)

Nullable

The name of the code page used to print this spooled file.
Contains null when no code page is specified for this spooled
file.

CHARACTER_SET_POINTSIZE CHARSIZE DECIMAL(5,1)

Nullable

The point size in which this file's characters should be printed.
Contains null if the character set does not have a point size.

CODED_FONT_LIBRARY FONTLIB VARCHAR(10)

Nullable

The name of the library containing the coded font used to print
this spooled file. Can contain one of these special values:

*CURLIB
The current library is searched for the coded font.

*LIBL
The library list is used to locate the coded font.

Contains null when CODED_FONT_NAME is *FNTCHRSET.

CODED_FONT_NAME FONTNAME VARCHAR(10) The name of the coded font used to print this spooled file. Can
contain the following special value:

*FNTCHRSET
The values used are the values specified on the character
set name and library name and code page name and library
name fields.

CODED_FONT_POINTSIZE FONTSIZE DECIMAL(5,1)

Nullable

The point size in which this file's characters should be printed.
Contains null if the coded font does not have a point size.

MULTIBYTE_DATA MULTIBYTE VARCHAR(10) Whether the file can contain double-byte character set (DBCS)
data, Unicode data, or both. Values are *YES and *NO.

DBCS_CODED_FONT_LIBRARY DBCSLIB VARCHAR(10)

Nullable

The name of the library containing the DBCS-coded font. Can
contain one of these special values:

*CURLIB
The current library is searched for the DBCS-coded font.

*LIBL
The library list is used to locate the DBCS-coded font.

Contains null when DBCS_CODED_FONT_NAME is *SYSVAL.

DBCS_CODED_FONT_NAME DBCSNAME VARCHAR(10) The name of the DBCS-coded font used to print DBCS-coded
data on printers configured as AFP(*YES). Can contain the
following special value:

*SYSVAL
The DBCS-coded font specified in the system value is used.

408 IBM i: Database Performance and Query Optimization

Table 104. OUTPUT_QUEUE_ENTRIES view (continued)

Column Name System Column Name Data Type Description

DBCS_CODED_FONT_POINTSIZE DBCSSIZE DECIMAL(5,1)

Nullable

The point size in which this file's DCBS characters should be
printed. Contains null if the DBCS-coded font does not have a
point size.

Example

Find the 100 largest spool files in the QEZJOBLOG output queue.

SELECT * FROM QSYS2.OUTPUT_QUEUE_ENTRIES
 WHERE OUTPUT_QUEUE_NAME = 'QEZJOBLOG'
 ORDER BY SIZE DESC
 FETCH FIRST 100 ROWS ONLY

OUTPUT_QUEUE_ENTRIES_BASIC view
The OUTPUT_QUEUE_ENTRIES_BASIC view returns one row for each spooled file in every output queue.
This view uses the QSYS2.OUTPUT_QUEUE_ENTRIES table function with DETAILED_INFO => 'NO'.

The schema is QSYS2.

Rows will be returned for spooled files when the caller has:

• Execute authority to the output queue library and

– Read authority to the output queue object, or
– *JOBCTL special authority and the output queue has OPRCTL(*YES), or
– *SPLCTL special authority

To achieve the best performance when querying the OUTPUT_QUEUE_ENTRIES_BASIC view, the use of a
WHERE clause is recommended if you are interested in examining specific output queue libraries or
output queues. OUTPUT_QUEUE_ENTRIES_BASIC typically performs much better than
OUTPUT_QUEUE_ENTRIES. OUTPUT_QUEUE_ENTRIES should only be used when
OUTPUT_QUEUE_ENTRIES_BASIC does not include the columns needed by the query.

The following table describes the columns in the view. The system name is OUTQ_INFOB. The schema is
QSYS2.

Table 105. OUTPUT_QUEUE_ENTRIES_BASIC view

Column Name System Column Name Data Type Description

OUTPUT_QUEUE_NAME OUTQ VARCHAR(10) Name of the output queue containing the spooled file.

OUTPUT_QUEUE_LIBRARY_NAME OUTQLIB VARCHAR(10) The name of the library that contains the output queue.

CREATE_TIMESTAMP CREATED TIMESTAMP The timestamp when the file was created.

SPOOLED_FILE_NAME SPOOLNAME VARCHAR(10) The file name that was specified by the user program when the
file was created, or the name of the device file used to create
this file.

USER_NAME USER_NAME VARCHAR(10) The name of the user profile that produced the file.

USER_DATA USER_DATA VARCHAR(10)

Nullable

The user-specified data that describes this file. Contains null if
there is no user-specified data.

Database performance and query optimization 409

Table 105. OUTPUT_QUEUE_ENTRIES_BASIC view (continued)

Column Name System Column Name Data Type Description

STATUS STATUS VARCHAR(15) Status of the spooled file.

CLOSED
The file has been completely processed by a program but
SCHEDULE(*JOBEND) was specified and the job that
produced the file has not yet finished.

DEFERRED
Printing of the file has been deferred.

DELETED
The file has been deleted.

HELD
The file has been held.

MESSAGE WAITING
This file has a message which needs a reply or an action to
be taken.

OPEN
The file has not been completely processed and is not
ready to be selected by a writer.

PENDING
The file is pending to be printed.

PRINTING
The file has been completely sent to the printer but print
complete status has not been sent back.

READY
The file is available to be written.

SAVED
The file has been printed and then saved. This file remains
saved until it is released.

SENDING
The file is being sent or has been sent to a remote system.

WRITING
This file is currently being produced by the writer.

SIZE SIZE INTEGER The size of the spooled file, in kilobytes.

TOTAL_PAGES PAGES INTEGER The total number of pages in the file.

COPIES COPIES SMALLINT The number of copies remaining to print.

FORM_TYPE FORM_TYPE VARCHAR(10) The type of form that should be loaded in the printer to print this
file.

JOB_NAME JOB_NAME VARCHAR(28) The qualified job name that produced the file.

DEVICE_TYPE DEVTYPE VARCHAR(10) The type of data stream used to represent the file.

*AFPDS
Advanced Function Presentation data stream

*AFPDSLINE
AFPDS data mixed with 1403 line data

*IPDS
Intelligent printer data stream

*LINE
1403 line data

*SCS
Systems Network Architecture (SNA) character stream

*USERASCII
ASCII data

OUTPUT_PRIORITY OUTPTY SMALLINT The priority of the spooled file.

FILE_NUMBER FILENUM INTEGER The spooled file number of the specified file.

SYSTEM SYSTEM VARCHAR(8) The name of the system where the job that created the spooled
file ran.

Examples

410 IBM i: Database Performance and Query Optimization

• Find the 100 largest spool files in the QEZJOBLOG output queue.

SELECT * FROM QSYS2.OUTPUT_QUEUE_ENTRIES_BASIC
 WHERE OUTPUT_QUEUE_NAME = 'QEZJOBLOG'
 ORDER BY SIZE DESC
 FETCH FIRST 100 ROWS ONLY

• Find the top 10 consumers of SPOOL storage.

SELECT USER_NAME, SUM(SIZE) AS TOTAL_SPOOL_SPACE
 FROM QSYS2.OUTPUT_QUEUE_ENTRIES_BASIC
 WHERE USER_NAME NOT LIKE 'Q%'
 GROUP BY USER_NAME
 ORDER BY TOTAL_SPOOL_SPACE DESC LIMIT 10;

OUTPUT_QUEUE_INFO view
The OUTPUT_QUEUE_INFO view returns one row for each output queue.

The values returned for the columns in the view are similar to the values returned by the Retrieve Output
Queue Information (QSPROUTQ) API. Refer to the API for more detailed information.

Authorization: Rows will be returned for output queues when the caller has:

• Execute authority to the output queue library and

– Read authority to the output queue object, or
– *JOBCTL special authority and the output queue has OPRCTL(*YES), or
– *SPLCTL special authority

The following table describes the columns in the view. The system name is OUTQ_DTL. The schema is
QSYS2.

Table 106. OUTPUT_QUEUE_INFO view

Column Name System Column Name Data Type Description

OUTPUT_QUEUE_NAME OUTQ VARCHAR(10) Name of the output queue.

OUTPUT_QUEUE_LIBRARY_NAME OUTQLIB VARCHAR(10) The name of the library that contains the output queue.

NUMBER_OF_FILES FILES INTEGER The total number of spooled files currently on this output queue.

NUMBER_OF_WRITERS WRITERS INTEGER The number of printer writers that have been started to this
output queue.

WRITERS_TO_AUTOSTART AUTOSTART INTEGER The number of remote printer writers to autostart to this output
queue at system IPL.

PRINTER_DEVICE_NAME DEV_NAME VARCHAR(10)

Nullable

The name of the printer device. If more than one writer is started,
this is the printer device name of the first writer.

Contains the null value if WRITER_TYPE is not PRINTER.

ORDER_OF_FILES FILE_ORDER VARCHAR(7) The order of the spooled files on the output queue.

*FIFO
The queue is first-in first-out for each file. That is, on the
queue, new spooled files are placed behind all other
spooled files that have the same priority.

*JOBNBR
The queue entries for the spooled files are sorted in priority
sequence using the job number (the date and time that the
job entered the system) of the job that created the spooled
file.

Database performance and query optimization 411

Table 106. OUTPUT_QUEUE_INFO view (continued)

Column Name System Column Name Data Type Description

DISPLAY_ANY_FILE ANYFILE VARCHAR(6) Whether users who have authority to read this output queue can
display the output data of any output file on this queue, or only
the data in their own files.

*NO
Users authorized to the queue can only display, copy, or
send their own spooled files, unless one of the following
applies:

• they have *SPLCTL special authority, or

• they have *JOBCTL special authority and
OPERATOR_CONTROLLED is *YES.

*OWNER
Only the owner of a file or a user with *SPLCTL authority can
display, copy, send, or move their own spooled files to
another output queue.

*YES
Any user having authority to read the queue can display,
copy, or send the data of any file on the queue.

JOB_SEPARATORS JOB_SEP VARCHAR(4) The number of job separators (0-9) to be placed at the beginning
of the output for each job having spooled file entries on this
output queue. Can also contain the following special value:

*MSG
No job separators are used; instead a message is sent to the
writer's message queue at the end of each job indicating
that the output can be removed.

MAXIMUM_PAGES MAX_PAGES INTEGER

Nullable

Only spooled files with this number of pages or less will print
between MAXIMUM_PAGES_STARTING_TIME and
MAXIMUM_PAGES_ENDING_TIME. If more than one set of
maximum spooled file size values is defined for this output
queue, only information for the first set is returned.

Contains the null value if no maximum spooled file size is defined.

MAXIMUM_PAGES_STARTING_
TIME

MAX_START TIME

Nullable

The starting time, in local job time, that spooled files exceeding
MAXIMUM_PAGES will be restricted from printing. If a spooled
file exceeds the page limit it will be in deferred status until
ENDING_TIME.

Contains the null value if no maximum spooled file size is defined.

MAXIMUM_PAGES_ENDING_
TIME

MAX_END TIME

Nullable

The ending time, in local job time, when spooled files exceeding
MAXIMUM_PAGES will be allowed to print.

Contains the null value if no maximum spooled file size is defined.

OPERATOR_CONTROLLED OPR_CTRL VARCHAR(4) Whether users with job control authority are allowed to manage
or control the files on this queue. Users have job control authority
if SPCAUT(*JOBCTL) is specified in their user profile.

*NO
This queue and its entries cannot be controlled or changed
by users with job control authority unless they also have
some other special authority.

*YES
Users with job control authority can control the queue and
make changes to the files on the queue.

AUTHORITY_TO_CHECK ALL_AUTH VARCHAR(7) Indicates what type of authorities to the output queue allow the
user to control all the files on the queue.

*DTAAUT
Any user with *READ, *ADD, and *DELETE authority to the
output queue can control all output files on the queue.

*OWNER
Only the owner of the output queue can control all the
output files on the queue.

DATA_QUEUE_LIBRARY DTAQ_LIB VARCHAR(10)

Nullable

The name of the library containing the data queue.

Contains the null value if no data queue is associated with this
output queue.

DATA_QUEUE_NAME DTAQ_NAME VARCHAR(10)

Nullable

The name of the data queue associated with this output queue.

Contains the null value if no data queue is associated with this
output queue.

412 IBM i: Database Performance and Query Optimization

Table 106. OUTPUT_QUEUE_INFO view (continued)

Column Name System Column Name Data Type Description

OUTPUT_QUEUE_STATUS STATUS VARCHAR(8) The status of the output queue.

HELD
The queue is held.

RELEASED
The queue is released.

WRITER_JOB_NAME WRITER_JOB VARCHAR(28)

Nullable

The qualified job name of the writer job. If more than one writer is
started, this is the name of the first writer.

Contains the null value if a writer job is not started for this queue.

WRITER_JOB_STATUS WRITER_STS VARCHAR(4)

Nullable

The status of the writer job. If more than one writer is started,
this is the status of the first writer.

END
The writer job has ended.

HLD
The writer job is held.

JOBQ
The writer job is on the job queue.

MSGW
The writer job is waiting for a message response.

STR
The writer job is started for the output queue.

Contains the null value if a writer job is not started for this queue.

WRITER_TYPE WRITER_TYP VARCHAR(7)

Nullable

The type of writer started for this output queue.

PRINTER
Printer writer.

REMOTE
Remote writer.

Contains the null value if a writer job is not started for this queue.

SPOOLED_FILE_ASP_ATTRIBUTE ASP_ATTR VARCHAR(8) The auxiliary storage pool (ASP) where the spooled files are to
reside.

*OUTQASP
The spooled files reside in the auxiliary storage pool in
which the output queue resides.

*SYSTEM
The spooled files reside in the system auxiliary storage pool.

SPOOLED_FILE_ASP_NUMBER ASPNUM INTEGER The number of the auxiliary storage pool (ASP) where the spooled
files reside.

SPOOLED_FILE_ASPGRP ASPGRP VARCHAR(10)

Nullable

The name of the auxiliary storage pool (ASP) device where the
spooled files reside. Can also contain the following special value:

*SYSBAS
The spooled files resides in the system ASP (ASP 1) or one
of the defined basic user ASPs (ASPs 2-32).

Contains the null value if the name is not available.

TEXT_DESCRIPTION TEXT VARCHAR(50)

Nullable

The text description of the output queue.

Contains the null value if the output queue has no description.

MESSAGE_QUEUE_LIBRARY MSGQ_LIB VARCHAR(10)

Nullable

The name of the library containing the message queue. Can
contain the following special value:

*LIBL
The library list is searched to find the message queue.

Contains the null value if the output queue is not a remote output
queue or if WRITER_TYPE is PRINTER.

MESSAGE_QUEUE_NAME MSGQ_NAME VARCHAR(10)

Nullable

The name of the message queue to which messages, created by
the remote writer started to this output queue, are sent.

Contains the null value if the output queue is not a remote output
queue or if WRITER_TYPE is PRINTER.

Database performance and query optimization 413

Table 106. OUTPUT_QUEUE_INFO view (continued)

Column Name System Column Name Data Type Description

HOST_PRINT_TRANSFORM TRANSFORM VARCHAR(4)

Nullable

Whether to use the host print transform function to transform a
spooled file.

*NO
Do not transform data streams using host print transform.

*YES
Transform data streams using host print transform.

Contains the null value if NETWORK_CONNECTION_TYPE is *SNA
and USER_DRIVER_PROGRAM_NAME is null.

IMAGE_CONFIGURATION_NAME IMAGE_NAME VARCHAR(10)

Nullable

The name of the image configuration.

Contains the null value if no image configuration is used when
transforming the spooled file before sending.

MANUFACTURER_TYPE_AND_
MODEL

TYPE_MODEL VARCHAR(17)

Nullable

The manufacturer, type, and model for a printer using the host
print transform function.

See Printer Model Settings for Host Print Transform (HPT) in the
IBM Support Portal for the list of supported values.

Contains the null value when NETWORK_CONNECTION_TYPE is
*SNA, or when NETWORK_CONNECTION_TYPE is *IP and
HOST_PRINT_TRANSFORM is *NO.

WORKSTATION_CUSTOMIZING_
OBJECT_LIBRARY

CUSTOM_LIB VARCHAR(10)

Nullable

The library name for the workstation customizing object.

Contains the null value if there is no workstation customizing
object or if NETWORK_CONNECTION_TYPE is *SNA and
USER_DRIVER_PROGRAM_NAME is null.

WORKSTATION_CUSTOMIZING_
OBJECT_NAME

CUSTOM_NAM VARCHAR(10)

Nullable

The name of an object that consists of a table of attributes used
to customize a given ASCII device.

Contains the null value if there is no workstation customizing
object or if NETWORK_CONNECTION_TYPE is *SNA and
USER_DRIVER_PROGRAM_NAME is null.

NETWORK_CONNECTION_TYPE NET_TYPE VARCHAR(7)

Nullable

The type of network connection to the remote system.

*IP
The TCP/IP network is used as the connectivity to the
remote system.

*SNA
The SNADS network is used as the connectivity to the
remote system.

*USRDFN
A user-defined connectivity is used as the connectivity to
the remote system.

Contains the null value if the output queue is not a remote output
queue.

DESTINATION_TYPE DEST_TYPE VARCHAR(8)

Nullable

The type of destination system that spooled files on this output
queue are being sent to.

*NDS
The destination is Novell NetWare 3 or 4, and the
connection type is *USRDFN.

*OS400
The destination system is an IBM i.

*OTHER
The destination system does not match any of the other
special values. This is commonly used when the destination
is a printer.

*PSF2
The destination system is a PC using Print Services
Facility/2.

*S390
This destination system is a System/390® system.

Contains the null value if the output queue is not a remote output
queue.

REMOTE_SYSTEM_NAME REMOTE_NAM VARCHAR(255)

Nullable

The name of the remote system.

Contains the null value if the output queue is not a remote output
queue.

414 IBM i: Database Performance and Query Optimization

http://www-01.ibm.com/support/docview.wss?uid=nas8N1019698

Table 106. OUTPUT_QUEUE_INFO view (continued)

Column Name System Column Name Data Type Description

REMOTE_PRINTER_QUEUE REMOTE_PRT VARCHAR(255)

Nullable

The name of the remote printer. Can also contain one of these
special values:

*SYSTEM
The default system printer on the remote system will
determine the printer queue.

*USER
The user profile that creates the spooled file will determine
the user ID on the remote system that it is sent to.

Contains the null value if the output queue is not a remote output
queue.

DESTINATION_OPTIONS DEST_OPT VARCHAR(128)

Nullable

Destination-dependent options that are specific to a particular
implementation of an LPR Print Server. Can also contain the
special values:

*NOWAIT
The remote writer will not wait for confirmation that the
destination system has finished processing the spooled file.

*USRDFNTXT
Use the value for the user-defined text of the user profile
when the spooled file was created.

Contains the null value if the output queue is not a remote output
queue.

USER_DRIVER_PROGRAM_
LIBRARY

UDP_LIB VARCHAR(10)

Nullable

The name of the library that contains the user driver program.
Can also be one of these special values:

*CURLIB
The current library for the job is used to locate the user
driver program.

*LIBL
The library list used to locate the user driver program.

Contains the null value if no user driver program is specified.

USER_DRIVER_PROGRAM_NAME UDP_NAME VARCHAR(10)

Nullable

The name of the user-specified driver program that is used to
process the spooled files on the output queue.

Contains the null value if no user driver program is specified.

USER_DEFINED_OBJECT_LIBRARY UDO_LIB VARCHAR(10)

Nullable

The name of the library that contains the user-defined object.
Can also be one of these special values:

*CURLIB
The current library for the job is used to locate the user-
defined object.

*LIBL
The library list used to locate the user-defined object.

Contains the null value if no user-defined object is specified.

USER_DEFINED_OBJECT_NAME UDO_NAME VARCHAR(10)

Nullable

The name of the user-defined object that is used by user
applications or user-specified programs that process spooled
files.

Contains the null value if no user-defined object is specified.

USER_DEFINED_OBJECT_TYPE UDO_TYPE VARCHAR(7)

Nullable

The type of the user-defined object.

*DTAARA
Data area.

*DTAQ
Data queue.

*FILE
File.

*PSFCFG
PSF configuration object.

*USRIDX
User index.

*USRQ
User queue.

*USRSPC
User space.

Contains the null value if no user-defined object is specified.

Database performance and query optimization 415

Table 106. OUTPUT_QUEUE_INFO view (continued)

Column Name System Column Name Data Type Description

DATA_TRANSFORM_PROGRAM_
LIBRARY

DTP_LIB VARCHAR(10)

Nullable

The name of the library that contains the data transform program.
Can also be one of these special values:

*CURLIB
The current library for the job is used to locate the data
transform program.

*LIBL
The library list used to locate the data transform program.

Contains the null value if no data transform program is specified.

DATA_TRANSFORM_PROGRAM_
NAME

DTP_NAME VARCHAR(10)

Nullable

The name of the user-specified data transform program that is
used by the driver program.

Contains the null value if no data transform program is specified.

USER_DEFINED_OPTION_1 UDEF_OPT1 VARCHAR(10)

Nullable

The first user-defined option.

Contains the null value if there are no user-defined options.

USER_DEFINED_OPTION_2 UDEF_OPT2 VARCHAR(10)

Nullable

The second user-defined option.

Contains the null value if there are not at least two user-defined
options.

USER_DEFINED_OPTION_3 UDEF_OPT3 VARCHAR(10)

Nullable

The third user-defined option.

Contains the null value if there are not at least three user-defined
options.

USER_DEFINED_OPTION_4 UDEF_OPT4 VARCHAR(10)

Nullable

The fourth user-defined option.

Contains the null value if there are not at least four user-defined
options.

USER_DEFINED_DATA UDEF_DATA VARBINARY(5000)

Nullable

Data defined by the user to be used by user applications or user-
specified programs that process spooled files.

Contains the null value if there is no user-defined data.

LDAP_PUBLISHING_STATUS PUBLISHED VARCHAR(3) Whether the output queue is published in the network directory.

NO
Output queue is not published.

YES
Output queue is published.

FORMS_CONTROL_BUFFER FORMS_BUF VARCHAR(8)

Nullable

The forms control buffer (FCB) for files sent to a VM/MVS host
system. Contains either the name of the FCB or one of the
following special values:

*PRTF
The first 8 characters of the printer file used to spool the file
determines the name of the FCB.

*USRDTA
The first 8 characters of the user data (USRDATA) spooled
file attribute determines the name of the FCB. If the user
data is blank, no FCB is used.

Contains the null value if no FCB is used when sending spooled
files or if NETWORK_CONNECTION_TYPE is not *SNA or
DESTINATION_TYPE is not *S390.

VM_MVS_CLASS VM_CLASS CHAR(1)

Nullable

The VM/MVS SYSOUT class for distributions sent to a VM host
system or to a MVS host system. Values are A-Z, 0-9 to indicate
the distribution class.

Contains the null value if not defined for this output queue.

Example

SELECT * FROM QSYS2.OUTPUT_QUEUE_INFO

Storage Services
These views provide information about storage and storage devices.

416 IBM i: Database Performance and Query Optimization

ASP_INFO view
The ASP_INFO view returns information about auxiliary storage pools (ASPs).

The values returned for the columns in the view are similar to the values returned by the Work with
Configuration Status (WRKCFGSTS) CL command and the Open List of ASPs (QYASPOL) API.

Authorization: None required.

The following table describes the columns in the view. The system name is ASP_INFO. The schema is
QSYS2.

Table 107. ASP_INFO view

Column Name System Column Name Data Type Description

DEVICE_DESCRIPTION_NAME DEVD_NAME VARCHAR(10)
Nullable

The name of the device description that brought the
independent ASP (IASP) to varyon/active state.

Contains the null value if the ASP is not an IASP or if
it is an IASP and ASP_STATE is VARIED OFF.

ASP_NUMBER ASP_NUM INTEGER A unique identifier for an ASP. Possible values are 1
through 255.

1
The system ASP

2-32
User ASPs

33-255
IASPs

ASP_STATE ASP_STATE VARCHAR(10) The device configuration status of an ASP.

ACTIVE
The status of the ASP is active.

AVAILABLE
The status of the ASP is available.

NONE
There is no status. This value is used for the
system ASP and any basic user ASPs.

VARIED OFF
The status of the ASP is varyoff.

VARIED ON
The status of the ASP is varyon.

ASP_TYPE ASP_TYPE VARCHAR(9)
Nullable

The use that is assigned to the ASP.

PRIMARY
The ASP is a primary ASP.

SECONDARY
The ASP is a secondary ASP.

SYSTEM
The ASP is the system ASP.

UDFS
The ASP is a user-defined file system ASP.

USER
The ASP is a user ASP.

Contains the null value for an IASP when the type
cannot be determined.

RDB_NAME RDB_NAME VARCHAR(18)
Nullable

The name that is assigned to the database that this
ASP defines.

Contains the null value if ASP_TYPE is not PRIMARY
or SECONDARY.

NUMBER_OF_DISK_UNITS DISK_UNITS INTEGER The total number of disk units in the ASP. If
mirroring is active for disk units within the ASP, the
mirrored pair of units is counted as one.

Database performance and query optimization 417

https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/apis/qyaspol.htm?view=kc

Table 107. ASP_INFO view (continued)

Column Name System Column Name Data Type Description

DISK_UNITS_PRESENT PRESENT VARCHAR(4) Indicates whether disk units in the ASP were found.

ALL
All disk units were found.

NONE
No disk units were found.

SOME
The disk unit that is used to provide the
identity of the ASP was found but some other
disk units were not found.

TOTAL_CAPACITY TOTCAP BIGINT
Nullable

The total number of used and unused megabytes in
the ASP. A special value of -2 is returned if the size
of this field is exceeded.

Contains the null value if the capacity cannot be
determined.

TOTAL_CAPACITY_AVAILABLE TOTCAPA BIGINT
Nullable

The total number of unused megabytes in the ASP. A
special value of -2 is returned if the value was too
big to return.

Contains the null value if the capacity cannot be
determined.

PROTECTED_CAPACITY PROTCAP BIGINT
Nullable

The total number of used and unused megabytes in
the ASP that are protected by mirroring or device
parity. A special value of -2 is returned if the value
was too big to return.

Contains the null value if the capacity cannot be
determined.

PROTECTED_CAPACITY_AVAILABLE PROTCAPA BIGINT
Nullable

The number of unused megabytes in the ASP that
are protected by mirroring or device parity. A special
value of -2 is returned if the value was too big to
return.

Contains the null value if the capacity cannot be
determined.

UNPROTECTED_CAPACITY UNPROTCAP BIGINT
Nullable

The total number of used and unused megabytes in
the ASP that are not protected by mirroring or device
parity. A special value of -2 is returned if the value
was too big to return.

Contains the null value if the capacity cannot be
determined.

UNPROTECTED_CAPACITY_
AVAILABLE

UNPROTCAPA BIGINT
Nullable

The number of unused megabytes in the ASP that
are not protected by mirroring or device parity. A
special value of -2 is returned if the value was too
big to return.

Contains the null value if the capacity cannot be
determined.

SYSTEM_STORAGE SYS_STG INTEGER
Nullable

The amount of storage in megabytes currently
allocated in the ASP for operating system use.

Contains the null value if this is not the system ASP.

OVERFLOW_STORAGE OVER_STG BIGINT
Nullable

The number of megabytes of storage that has
overflowed from the user ASP into the system ASP. A
special value of -2 is returned if the value was too
big to return.

Contains the null value if this is an IASP.

STORAGE_THRESHOLD_PERCENTAGE THRESHOLD INTEGER When the storage in the ASP reaches this
percentage, a warning message is sent to the
QSYSOPR message queue. When this percentage is
reached for the system ASP (ASP 1), message
CPF0907 is sent. When this percentage is reached
for a user ASP, message CPI0953 is sent.

418 IBM i: Database Performance and Query Optimization

Table 107. ASP_INFO view (continued)

Column Name System Column Name Data Type Description

OVERFLOW_RECOVERY_RESULT OVER_RES VARCHAR(7)
Nullable

An indicator of the result of the ASP overflow
recovery operation, which is performed during IPL at
the user's request. When this operation is
requested, an attempt is made to recover the user
ASP from an overflow condition by moving
overflowed auxiliary storage from the system ASP
back to the user ASP during the storage
management recovery step of an IPL.

CANCEL
ASP overflow recovery was canceled prior to
completion.

FAIL
ASP overflow recovery failed due to insufficient
space in the user ASP.

SUCCESS
All overflowed storage was successfully
moved.

Contains the null value if this is an IASP.

ERROR_LOG_SPACE ERR_SPACE INTEGER
Nullable

The number of megabytes of auxiliary storage
allocated to the error log.

Contains the null value if this is not the system ASP.

MACHINE_LOG_SPACE LOG_SPACE INTEGER
Nullable

The number of megabytes of auxiliary storage
allocated to the machine log.

Contains the null value if this is not the system ASP.

MACHINE_TRACE_SPACE TRC_SPACE INTEGER
Nullable

The number of megabytes of auxiliary storage
allocated to the machine trace.

Contains the null value if this is not the system ASP.

MAIN_STORAGE_DUMP_SPACE MSD_SPACE INTEGER
Nullable

The number of megabytes of auxiliary storage
allocated to the main storage dump space.

Contains the null value if this is not the system ASP.

MICROCODE_SPACE MIC_SPACE INTEGER
Nullable

The number of megabytes of auxiliary storage
allocated to the microcode and space used by the
microcode.

Contains the null value if this is an IASP that is
varied off.

END_IMMEDIATE END_IMMED VARCHAR(3)
Nullable

This column only applies to the system ASP (ASP 1).

NO
If a request for space in the system ASP cannot
be satisfied because there is not enough
storage, the system will be allowed to continue
running.

YES
If a request for space in the system ASP cannot
be satisfied because there is not enough
storage, the system will be ended immediately.

Contains the null value if this is not the system ASP.

Database performance and query optimization 419

Table 107. ASP_INFO view (continued)

Column Name System Column Name Data Type Description

COMPRESSION_RECOVERY_POLICY COMP_RECOV VARCHAR(18) The compression recovery policy for the ASP. If the
ASP has compressed drives as part of its
configuration, this value controls how overflow
situations are handled for this ASP. The following
policies allow the user to control what is done when
the ASP appears full.

OVERFLOW DELAY
When the ASP capacity is about to be
exceeded, the operating system posts system
reference code (SRC) A6xx 0277 in the system
control panel and waits for a limited time for
space to become available. If space becomes
available before the limited time ends, the SRC
is removed from the system control panel and
normal operations resume. If space does not
become available before the limited time ends,
data overflows into the system ASP.

OVERFLOW IMMEDIATE
When the ASP capacity is about to be
exceeded, the data immediately overflows into
the system ASP.

WAIT
When the ASP capacity is about to be
exceeded, the operating system posts SRC
A6xx 0277 in the system control panel and
waits indefinitely for space to become
available. The user must take action before
normal operation resumes. Possible actions
include deleting objects from the ASP or
changing the compression recovery policy to a
value that allows the ASP to overflow.

COMPRESSED_DISK_UNITS COMPRESSED VARCHAR(4) Whether there are compressed disk units in the ASP.

ALL
All disk units in this ASP are compressed.

NONE
No compressed disk units in this ASP.

SOME
Compressed and uncompressed disk units in
this ASP.

CHANGES_WRITTEN_TO_DISK WRITTEN VARCHAR(3) An indicator of whether all changes made the
previous time the IASP was online were written to
disk. Varyoff processing attempts to write changed
IASP storage but, in some failures, it may not be
successful.

NO
Not all changes were written to disk.

YES
All changes were written to disk.

MULTIPLE_CONNECTION_DISK_UNITS MULT_CONN VARCHAR(3) A disk unit may have multiple resource names. Each
resource name represents a unique connection to
the disk unit. All active connections are used to
communicate with the disk unit. This attribute
indicates whether the disk unit has more than one
connection.

NO
The disk unit has only one connection.

YES
The disk unit has more than one connection.

420 IBM i: Database Performance and Query Optimization

Table 107. ASP_INFO view (continued)

Column Name System Column Name Data Type Description

BALANCE_STATUS BALANCE VARCHAR(8)
Nullable

The current status of the balance function for this
ASP.

COMPLETE
The ASP balance function has completed
running. The ASP is completely balanced.

ENDED
The ASP balance function has run, but was
ended before the ASP was completely
balanced. The Start ASP Balance (STRASPBAL)
command can be used to restart the balance
function.

ENDING
The ASP balance function is currently in the
process of ending. Either the time limit has run
out or the End ASP Balance (ENDASPBAL)
command was issued for this ASP.

NONE
No balance activity has occurred for this ASP.

RUNNING
The ASP balance function is currently running
for this ASP.

Contains the null value if ASP_STATE is not ACTIVE
or AVAILABLE for IASP.

Database performance and query optimization 421

Table 107. ASP_INFO view (continued)

Column Name System Column Name Data Type Description

BALANCE_TYPE BAL_TYPE VARCHAR(21)
Nullable

The type of balance activity that is currently running
or was done last.

CAPACITY BALANCING
Capacity balancing. Capacity balancing
redistributes data so that the percentage of
disk space used is the same on all disk units
within the ASP.

CLEAR COLLECTION DATA
Clear collection data. Clear collection data
removes the trace data created by running the
Trace ASP Balance (TRCASPBAL) command.

HSM BALANCING
Hierarchical Storage Management (HSM)
balancing. HSM balancing can be run only on
an ASP that contains a mixture of high-
performance and low-performance disk units.
An example of low-performance disk units is
compressed disk units. The HSM balance
function moves high-use data to high-
performance units and moves low-use data to
low-performance units. The high-use and low-
use data is identified by running the Trace ASP
Balance (TRCASPBAL) command.

MOVE DATA
Move data. Move data is used to reduce the
down time associated with removing a disk
unit. The Check ASP Balance (CHKASPBAL)
command can be used to determine which
units are currently marked to no longer receive
new allocations and to have their existing
allocations moved to other disk units.

MP BALANCING
Media Preference (MP) balancing. MP
balancing can be run only on an ASP that
contains a mixture of Solid State Disk (SSD)
units and Hard Disk Drive (HDD) units. The goal
of the MP balance function is to have high-use
data on SSD units and low-use data on HDD
units. The high-use and low-use data is
identified by running the Trace ASP Balance
(TRCASPBAL) command.

NONE
No ASP balance activity was requested for the
ASP.

USAGE BALANCING
Usage balancing. Usage balancing redistributes
data so that the percentage of disk activity is
the same on all disk units within the ASP. High-
use and low-use data is identified by running
the Trace ASP Balance (TRCASPBAL)
command. Usage balancing moves data among
the disk units, guided by the trace results, in an
attempt to equalize the utilizations.

Contains the null value if ASP_STATE is not ACTIVE
or AVAILABLE for IASP.

BALANCE_DATA_MOVED BAL_MOVED BIGINT
Nullable

The number of megabytes that have been moved by
the balance function. A special value of -2 is
returned if the value was too big to return.

Contains the null value if BALANCE_STATUS is not
RUNNING.

BALANCE_DATA_REMAINING BAL_REMAIN BIGINT
Nullable

The number of megabytes that remain to be moved
by the balance function before the move is
considered complete. A special value of -2 is
returned if the value was too big to return.

Contains the null value if BALANCE_STATUS is not
RUNNING.

422 IBM i: Database Performance and Query Optimization

Table 107. ASP_INFO view (continued)

Column Name System Column Name Data Type Description

BALANCE_TIMESTAMP BAL_TIME TIMESTAMP(0)
Nullable

The timestamp of the last status change for the
balance function.

Contains the null value when BALANCE_TYPE is
NONE or the null value.

TRACE_STATUS TRC_STATUS VARCHAR(10)
Nullable

The current status of the trace function. The trace
gathers statistics about the data on the disk units
within the ASP. This data is used by the balance
functions.

CLEARING
The trace data for this ASP is being cleared.

COMPLETE 1
The trace function has completed running. The
statistics for the ASP have been gathered and
are ready for the balance function to start.

COMPLETE 2
The trace function has completed and the
statistics for the ASP have been gathered. The
ASP is ready for further collection or for the
balance function to start.

ENDING
The trace function is currently in the process of
ending. Either the time limit has run out or the
trace was stopped through use of the Trace
ASP Balance (TRCASPBAL) command.

NONE
There is no current trace data for this ASP.

RUNNING
The trace function is currently running for this
ASP.

Contains the null value if ASP_STATE is not ACTIVE
or AVAILABLE for IASP.

TRACE_DURATION TRC_DUR INTEGER
Nullable

The number of minutes that the trace function has
run collecting data for this ASP. The trace can be run
multiple times for an ASP.

Contains the null value when TRACE_STATUS is
NONE or the null value.

TRACE_TIMESTAMP TRC_TIME TIMESTAMP(0)
Nullable

The timestamp of the last status change for the
trace function.

Contains the null value when TRACE_STATUS is
NONE or the null value.

RESOURCE_NAME RESOURCE VARCHAR(10)
Nullable

The resource name that identifies the ASP by which
a collection of disks is known.

Contains the null value for the system ASP, any user
ASPs, and for an IASP where the name cannot be
determined.

PRIMARY_ASP_RESOURCE_NAME PRIMARY VARCHAR(10)
Nullable

The resource name of the primary ASP for a
secondary ASP.

Contains the null value if ASP_TYPE is not
SECONDARY.

Example

• Show ASP information for the partition.

SELECT * FROM QSYS2.ASP_INFO;

ASP_VARY_INFO view
The ASP_VARY_INFO view returns one row for each step associated with a vary on or vary off operation for
all independent ASP devices.

The values returned for the columns in the view are similar to the values returned by the Display ASP
Status (DSPASPSTS) CL command.

Database performance and query optimization 423

Authorization: The privileges held by the authorization ID of the statement must have *USE authority to
the independent ASP device description. If the user does not have *USE authority to all independent ASP
device descriptions, a warning is returned to indicate that partial data is returned.

The following table describes the columns in the view. The system name is VARY_INFO. The schema is
QSYS2.

Table 108. ASP_VARY_INFO view

Column Name System Column Name Data Type Description

IASP_NAME IASP_NAME VARCHAR(10) The name of the ASP device description.

OPERATION_NUMBER OP_NUMBER INTEGER A value for an instance of a vary on or vary off
operation, where the highest number is the most
recent operation. The most recent 64 operations
are returned.

OPERATION_TYPE OP_TYPE VARCHAR(8) The type of vary operation.

VARY OFF
VARY ON

OPERATION_STATE OP_STATE VARCHAR(8) The state of the entire operation.

ACTIVE
The operation is active. STEP_STATE shows
the status of the steps that are part of the
operation.

COMPLETE
The operation completed successfully.

FAILED
The operation failed to complete
successfully.

STEP STEP VARGRAPHIC(50)
CCSID 1200

The description of the operation step.

STEP_STATE STEP_STATE VARCHAR(8) The state of the operation step.

ACTIVE
The step is active.

COMPLETE
The step completed successfully.

FAILED
The step failed to complete successfully.

START_TIMESTAMP START TIMESTAMP The timestamp for the start of this operation step.

END_TIMESTAMP END TIMESTAMP
Nullable

The timestamp for the end of this operation step.

Contains the null value if the operation step has
not completed or may never complete.

DURATION DURATION DECIMAL(12,6)
Nullable

The time duration, in seconds, of this operation
step.

Contains the null value if the operation step has
not completed or may never complete.

JOB_NAME JOB_NAME VARCHAR(28)
Nullable

The qualified job name that initiated this vary
operation.

Contains the null value if the job name is not
available.

IASP_NUMBER IASPNUM INTEGER The number associated with the ASP device.

Example

• Return the steps from available vary on operations, listed from most expensive to least expensive.

SELECT * FROM QSYS2.ASP_VARY_INFO
 WHERE OPERATION_TYPE = 'VARY ON'
 ORDER BY IASP_NAME, DURATION DESC;

424 IBM i: Database Performance and Query Optimization

• Create a table to retain vary on historical data. Populate it with the current available values.

CREATE TABLE VARY_HISTORY AS
 (SELECT * FROM QSYS2.ASP_VARY_INFO) WITH DATA;

• Update the table that contains vary on historical data with any new rows.

MERGE INTO VARY_HISTORY H
 USING QSYS2.ASP_VARY_INFO N
 ON H.OPERATION_NUMBER = N.OPERATION_NUMBER
 WHEN NOT MATCHED THEN
 INSERT VALUES (N.IASP_NAME, N.OPERATION_NUMBER, N.OPERATION_TYPE,
 N.OPERATION_STATE, N.STEP, N.STEP_STATE,
 N.START_TIMESTAMP, N.END_TIMESTAMP, N.DURATION,
 N.JOB_NAME, N.IASP_NUMBER);

MEDIA_LIBRARY_INFO view
The MEDIA_LIBRARY_INFO view returns information that can also be seen through the Work with Media
Library Status (WRKMLBSTS) command interface.

The following table describes the columns in the view. The schema is QSYS2.

Table 109. MEDIA_LIBRARY_INFO view

Column Name System Column Name Data Type Description

DEVICE_NAME DEVICE VARCHAR(10) The name of the device.

DEVICE_STATUS DEVICE_STS VARCHAR(20) The status of the device. The most common values are:

VARIED ON
The media library device is varied on.

VARIED OFF
The media library device is varied off.

ACTIVE
The resource is currently in use by a job under this media
library.

See List Configuration Descriptions API for a complete list of
status values.

DEVICE_TYPE DEVICE_TYP VARCHAR(10) The type of device. Contains the special value *RSRCNAME if the
device type is determined by the resource in the
RESOURCE_NAME column.

DEVICE_MODEL DEVICE_MDL VARCHAR(10) The model number of the device. Contains the special value
*RSRCNAME if the device model is determined by the resource
in the RESOURCE_NAME column.

RESOURCE_NAME RESOURCE VARCHAR(10)

Nullable

The name of the resource.

Contains the null value if the DEVICE_STATUS column has a
value of VARIED_OFF, or if the tape library does not have any
associated tape resources.

RESOURCE_STATUS RSRC_STS VARCHAR(11)

Nullable

The status of the resource.

OPERATIONAL
The resource is working and the system can address the
tape drive resource.

ACTIVE
The resource is currently in use by a job under this media
library.

UNAVAILABLE
The resource is currently not available because it may be in
use by another object, another client, or DST.

FAILED
The resource is not operational and the system can no
longer communicate with that resource. A hardware
problem may have occurred.

Contains the null value if the DEVICE_STATUS column has a
value of VARIED_OFF, or if the tape library does not have any
associated tape resources.

Database performance and query optimization 425

Table 109. MEDIA_LIBRARY_INFO view (continued)

Column Name System Column Name Data Type Description

RESOURCE_ALLOCATION_STATUS ALLOCATION VARCHAR(11)

Nullable

Current allocation status for the resource.

ALLOCATED
For a tape media library device the resource is exclusively
assigned to this system and cannot be accessed by another
system. For an optical media library device the drive is
available for use by this media library.

UNPROTECTED
A tape resource is not exclusively assigned to this system.
This resource can be assigned to this system when no
other system has already assigned the resource.

DEALLOCATED
For a tape media library the resource is not assigned to this
system and is not available to respond to requests. For an
optical media library the device is not available for use by
this media library.

STAND-ALONE
A tape resource is not available. The tape resource is
reserved by a varied on stand-alone tape device
description for non-library mode use.

*UNKNOWN
An optical media library is varied off or failed. The current
allocation for a resource cannot be determined.

Contains the null value if the DEVICE_STATUS column has a
value of VARIED_OFF, or if the tape library does not have any
associated tape resources.

RESOURCE_ALLOCATION
_PRIORITY

ALLOC_PRTY VARCHAR(4) The priority of a job when requesting a resource. 1 is highest
priority, 99 is lowest. Can contain the following special value:

*JOB
The priority of the job is used as the resource allocation
priority.

INITIAL_MOUNT_WAIT_TIME INIT_WAIT VARCHAR(6) The maximum amount of time a request will wait for allocation
of a tape resource for the initial mount. Contains either a
numeric string representing the number of minutes or one of the
following special values:

*JOB
The allocation wait time is determined by the default wait
time attribute of the job requesting the allocation, rounded
up to the nearest minute.

*IMMED
The request will not wait for a tape resource to become
available.

*NOMAX
The request will wait until a tape resource is available.

END_OF_VOLUME_MOUNT_WAIT
_TIME

END_WAIT VARCHAR(6) The maximum amount of time a request will wait for allocation
of a tape resource for the end of volume mount. Contains either
a numeric string representing the number of minutes or one of
the following special values:

*JOB
The allocation wait time is determined by the default wait
time attribute of the job requesting the allocation, rounded
up to the nearest minute.

*IMMED
The request will not wait for a tape resource to become
available.

*NOMAX
The request will wait until a tape resource is available.

DEVICE_DESCRIPTION DEVICE_DES VARCHAR(50) The text description of the device.

Example

Return information about all media library devices.

SELECT * FROM QSYS2.MEDIA_LIBRARY_INFO

426 IBM i: Database Performance and Query Optimization

SYSDISKSTAT view
The SYSDISKSTAT view contains information about disks.

The following table describes the columns in the view. The schema is QSYS2.

Table 110. SYSDISKSTAT view

Column Name System Column Name Data Type Description

ASP_NUMBER ASP_NUMBER SMALLINT Specifies the independent auxiliary storage pool (IASP)
number.

DISK_TYPE DISK_TYPE VARCHAR(4) Disk type number of the disk.

DISK_MODEL DISK_MODEL VARCHAR(4) Model number of the disk.

UNIT_NUMBER UNITNBR SMALLINT Unit number of the disk.

UNIT_TYPE UNIT_TYPE SMALLINT Indicates the type of disk unit:

0
Not solid state disk

1
Solid state disk (SSD)

UNIT_STORAGE_CAPACITY UNITSCAP BIGINT Unit storage capacity has the same value as the unit media
capacity for configured disk units. This value is 0 for non-
configured units.

UNIT_SPACE_AVAILABLE UNITSPACE BIGINT Space (in bytes) available on the unit for use.

PERCENT_USED PERCENTUSE DECIMAL(7,3)
Nullable

The percentage that the disk unit has been consumed.

UNIT_MEDIA_CAPACITY UNITMCAP BIGINT Storage capacity (in bytes) of the unit.

LOGICAL_MIRRORED_PAIR_STATUS MIRRORPS CHAR(1)
Nullable

Indicates the status of a mirrored pair of disks:

0
Indicates that one mirrored unit of a mirrored pair is
not active.

1
Indicates that both mirrored units of a mirrored pair
are active.

Contains null if the unit is not mirrored.

MIRRORED_UNIT_STATUS MIRRORUS CHAR(1)
Nullable

Indicates the status of a mirrored unit:

1
Indicates that this mirrored unit of a mirrored pair is
active (online with current data).

2
Indicates that this mirrored unit is being
synchronized.

3
Indicates that this mirrored unit is suspended.

Contains null if the unit is not mirrored.

Example

• Return information about all disks.

SELECT * FROM QSYS2.SYSDISKSTAT

• Return information for all SSD units.

SELECT * FROM QSYS2.SYSDISKSTAT WHERE UNIT_TYPE = 1

Database performance and query optimization 427

SYSTMPSTG view
The SYSTMPSTG view contains one row for every temporary storage bucket that is tracking some amount
of temporary storage across the system.

Temporary storage is application working storage that does not persist across a restart of the operating
system. Accounting for all the temporary storage being used on the system is implemented using the
concept of temporary storage buckets.

There are two types of temporary storage buckets:

• global buckets that are used to track temporary storage that is scoped to all jobs on the system.
• job buckets that are used to track temporary storage that is scoped to a single job.

Each bucket has a bucket number. Global buckets managed by the licensed internal code have bucket
numbers from 1 to 4095. Global buckets managed by IBM i Work Management have bucket numbers from
4096 to 65535. Job buckets have numbers greater than 65535.

A job temporary storage bucket is assigned when the job starts and does not change for the life of the job.
A job temporary storage bucket will normally be empty after the associated job ends and all working
storage for the job is deleted or freed. If the job temporary storage bucket is empty after the job ends, the
bucket becomes available to be associated with a new job. If the job associated with the job buckets ends
and some temporary objects tracked to that job are not deleted, the job bucket will show a status of
*ENDED as well as the date and time that the job ended. These job buckets identify jobs that are not
deleting all of their temporary storage when the job ends.

Statistics for each job bucket indicate the current amount of storage (in bytes) used for temporary storage
tracked by the bucket, the storage limit (in bytes) for disk storage used for temporary storage tracked by
the bucket, and the peak amount of disk storage (in bytes) used for temporary storage tracked by the
bucket. A job bucket does not include any temporary storage used for SQL query execution. For job
buckets, the storage limit will reflect the MAXTMPSTG value of the class (*CLS) object specified when the
job was submitted; a null value is returned if the job has a MAXTMPSTG value of *NOMAX.

The following table describes the columns in the view. The schema is QSYS2.

Table 111. SYSTMPSTG view

Column Name System Column Name Data Type Description

BUCKET_NUMBER BKTNBR INTEGER Number that uniquely identifies the temporary storage bucket.

GLOBAL_BUCKET_NAME GLBBKTNAME VARCHAR(30)
Nullable

For global buckets, the name of the bucket.

For job buckets, contains the null value.

JOBNAME JOBNAME VARCHAR(10)
Nullable

For job buckets, the job name.

For global buckets, contains the null value.

JOB_USER_NAME JOBUSRNAME VARCHAR(10)
Nullable

For job buckets, the user profile under which the job is run.

For global buckets, contains the null value.

JOB_NUMBER JOBNBR CHAR(6)
Nullable

For job buckets, the job number assigned by the system.

For global buckets, contains the null value.

BUCKET_CURRENT_SIZE BKTCURSIZ DECIMAL(23,0) The current number of bytes of disk storage for this temporary
storage bucket.

BUCKET_LIMIT_SIZE BKTLMTSIZ DECIMAL(23,0)
Nullable

The current limit, in bytes, for the amount of disk storage for this
temporary storage bucket. If the temporary storage bucket has
no limit, contains the null value.

BUCKET_PEAK_SIZE BKTPEAKSIZ DECIMAL(23,0) The largest number of bytes of disk storage for this temporary
storage bucket. For global buckets, this is the peak amount of
disk storage since the last restart of the operating system. For
job buckets, this is the peak amount of disk storage since the job
was started.

428 IBM i: Database Performance and Query Optimization

Table 111. SYSTMPSTG view (continued)

Column Name System Column Name Data Type Description

JOB_STATUS JOBSTS VARCHAR(7)
Nullable

For job buckets, indicates whether the bucket is associated with
an active job or a job that ended without deleting all temporary
objects associated with the job.

*ENDED
The job associated with this job bucket has ended.

*ACTIVE
The job associated with this job bucket is still active.

For global buckets, contains the null value.

JOB_ENDED_TIME JOBENDTIM TIMESTAMP
Nullable

For job buckets associated with jobs that have ended, indicates
the timestamp of when the associated job ended.

Contains the null value for global buckets and job buckets
associated with active jobs.

USER_STORAGE view
The USER_STORAGE view contains details about storage by user profile.

The user storage consumption detail is determined by using Retrieve User Information (QSYRUSRI) API.

You must have *OBJOPR and *READ authority to a *USRPRF or it will not be returned. To see information
for independent ASPs (iASPs), the iASP must be varied on.

User storage is broken down by SYSBAS and iASPs.

The following table describes the columns in the view. The schema is QSYS2.

Table 112. USER_STORAGE view

Column Name System Column Name Data Type Description

AUTHORIZATION_NAME USER_NAME VARCHAR(10)

Nullable

User profile name.

ASPGRP ASPGRP VARCHAR(10)

Nullable

Name of the independent ASP or *SYSBAS.

MAXIMUM_STORAGE_ALLOWED MAXSTG BIGINT

Nullable

The maximum amount of auxiliary storage (in kilobytes) that can
be assigned to store permanent objects owned by the user.
Contains null if the user does not have a maximum amount of
allowed storage.

STORAGE_USED STGUSED BIGINT

Nullable

The amount of auxiliary storage (in kilobytes) occupied by the
user's owned objects for this ASPGRP.

Example

Determine how much storage user SCOTTF has consumed.

SELECT * FROM QSYS2/USER_STORAGE
 WHERE USER_NAME = ‘SCOTTF’

System Health Services
For the most important system resources, the IBM i operating system automatically tracks the highest
consumption and consumers.

The IBM i operating system is comprised of many products and components. As an integrated operating
system, not only do the products and components frequently rely upon each other, but common building
blocks and resources are used. Some of the resources are deemed to be critical because their proper use
and consumption is directly related to achieving continued, normal operational behavior. The repository
for this tracking lies within DB2 for i.

A table, a view, and global variables combine to provide information about limits on your system.
Information about the important limits is logged in a DB2 for i supplied table named QSYS2/SYSLIMTBL.
The QSYS2/SYSLIMITS view uses SYSLIMTBL and other DB2 resources to provide extended and

Database performance and query optimization 429

formatted detail about these limits. You should generally work with the view rather than the underlying
table. You can use DB2 for i provided global variables to control the number of rows kept for each type of
limit in SYSLIMTBL.

The limits that are tracked are:

• ASP limits

– Maximum number of spool files
• Database limits

– Maximum number of all rows in a partition
– Maximum number of valid rows in a partition
– Maximum number of deleted rows in a partition
– Maximum size of a table
– Maximum number of overflow rows in a partition
– Maximum number of variable-length segments
– Maximum number of indexes over a partition
– Maximum size of a *MAX4GB index
– Maximum size of a *MAX1TB index
– Maximum size of an encoded vector index
– Maximum size of an extended dynamic package

• File system limits

– Maximum number of object description entries in a library
– Number of objects linked in a directory
– Maximum number of directories linked in a directory
– Maximum number of file system objects in *SYSBAS ASPs
– Maximum number of file system objects in an independent ASP
– Maximum number of document library objects in a folder
– Number of document library objects in the system ASP
– Maximum number of document library objects in a user ASP
– Maximum number of bytes in a stream file
– Maximum number of bytes in a document

• Job limits

– Maximum number of rows locked in a unit of work
– Maximum number of row change operations in a unit of work

• Journal limits

– Maximum size of a journal receiver
– Maximum number of objects that can be associated with a *MAX10M journal
– Maximum number of objects that can be associated with a *MAX250K journal
– Maximum sequence number of a *MAXOPT3 journal
– Maximum sequence number of a *MAXOPT1 or *MAXOPT2 journal

• Object limits

– Maximum number of members in a source physical file
• System limits

– Maximum number of jobs

430 IBM i: Database Performance and Query Optimization

System limit alerts
Some system limits are instrumented by the IBM i operating system to send messages to QSYSOPR when
a threshold value has been reached.

Once each day the following limits are checked against their alerting level. If the level is exceeded, a
message is sent to the QSYSOPR message queue. Since these limits will prevent database activity from
continuing if they are reached, you should take action to get the object's percent used for the limit below
the alerting level. Reducing data by archiving it is one example of an action that could be taken.

Table 113. System limits that send alerting messages

Limit ID Limit description Maximum Alerting Level Alerting Cadence

15000 Maximum number
of all rows in a
partition

4,294,967,288 Greater than 90% Once per day

15003 Maximum size of a
table

1,869,169,767,21
9

Greater than 90% Once per day

15104 Maximum number
of variable-length
segments

65,533 Greater than 90% Once per day

15400 Maximum
*MAX4GB Index
Size

4,294,967,296 Greater than 90% Once per day

15401 Maximum
*MAX1TB Index
Size

1,869,166,411,77
6

Greater than 90% Once per day

15403 Maximum Encoded
Vector Index Size

2,199,023,255,55
2

Greater than 90% Once per day

The QSYSOPR message is formatted like this:

MYLIB/MYTABLE *FILE HAS CONSUMED MORE THAN 90% OF THE LIMIT:
15000-MAXIMUM NUMBER OF ALL ROWS (4008420999 OF 4294967288=93.33%).
REFER TO ibm.biz/DB2foriAlerts FOR MORE DETAIL.

SYSLIMTBL table
The SYSLIMTBL table contains information about limits that are being approached. It is maintained by
DB2 for i.

This table is not authorized or managed like a typical DB2 for i catalog. By default, all users have authority
to view and change the data within this table. If this table is removed or incompatibly altered, the IBM i
operating system will automatically recreate it. The SYSLIMTBL table was designed to have as small a
footprint as possible.

You can add AFTER INSERT or AFTER DELETE triggers to this table. This allows you to perform an action
such as sending a notification when a limit is being logged to the table.

The following table describes the columns in the table. The schema is QSYS2.

Table 114. SYSLIMTBL table

Column Name System Column Name Data Type Description

LAST_CHANGE_TIMESTAMP LASTCHG TIMESTAMP The timestamp when this row was last changed.

Database performance and query optimization 431

Table 114. SYSLIMTBL table (continued)

Column Name System Column Name Data Type Description

LIMIT_CATEGORY CATEGORY SMALLINT The category of this limit.

0
Database

1
Journal

2
Security

3
Miscellaneous

4
Work management

5
File system

6
Save/restore

7
Cluster

8
Communications

LIMIT_TYPE LIMTYPE SMALLINT The type of limit.

1
Object

2
Job

3
System

4
ASP

LIMIT_ID LIMIT_ID INTEGER Unique identifier for this limit. Values are maintained in the
SIZING_ID column in the QSYS2/SQL_SIZING table.

JOB_NAME JOB_NAME VARCHAR(28) The name of the job that reported the current value.

USER_NAME CURUSER VARCHAR(10) The name of the user in effect when the current value was
updated.

CURRENT_VALUE CURVAL BIGINT Reported value for this limit.

SYSTEM_SCHEMA_NAME SYS_NAME VARCHAR(10)

Nullable

The library name for the object. If no library name, contains the
null value.

SYSTEM_OBJECT_NAME SYS_ONAME VARCHAR(30)

Nullable

The object name for this row. If no object name, contains the null
value.

SYSTEM_TABLE_MEMBER SYS_MNAME VARCHAR(10)

Nullable

The member name for an object limit specific to database
members. Contains the null value if this row is not for a member
limit.

OBJECT_TYPE OBJTYPE VARCHAR(7)

Nullable

The IBM i object type when an object name has been logged in
the SYSTEM_SCHEMA_NAME and SYSTEM_OBJECT_NAME
columns. Contains the null value when no object name is
specified.

ASP_NUMBER ASPNUM SMALLINT

Nullable

Contains the ASP number related to this row. Contains the null
value if there is no ASP number.

IFS_PATH_NAME PATHNAME DBCLOB(5000)
CCSID 1200

Nullable

IFS path for the object. Contains the null value if there is no path.

432 IBM i: Database Performance and Query Optimization

SYSLIMITS view
The SYSLIMITS view contains information about limits. This view is built upon QSYS/SYSLIMTBL along
with other system information. If a job is still active, it contains information about the job that logged the
limit.

The following table describes the columns in the view. The schema is QSYS2.

Table 115. SYSLIMITS view

Column Name System Column Name Data Type Description

LAST_CHANGE_TIMESTAMP LASTCHG TIMESTAMP The timestamp when this row was last changed.

LIMIT_CATEGORY CATEGORY VARCHAR(15) The category of this limit.

• DATABASE

• JOURNAL

• SECURITY

• MISCELLANEOUS

• WORK MANAGEMENT

• FILE SYSTEM

• SAVE RESTORE

• CLUSTER

• COMMUNICATION

• UNKNOWN

LIMIT_TYPE TYPE VARCHAR(7) The type of limit.

• OBJECT

• JOB

• SYSTEM

• ASP

• UNKNOWN

SIZING_NAME SIZING_NAM VARCHAR(128) Name that corresponds to the sizing ID.

COMMENTS COMMENTS VARCHAR(2000)

Nullable

Description of the limit.

USER_NAME CURUSER VARCHAR(10) The name of the user in effect when this row was logged.

CURRENT_VALUE CURVAL BIGINT Reported value for this limit.

MAXIMUM_VALUE MAXVAL DECIMAL(21,0)

Nullable

Maximum value allowed for this limit.

JOB_NAME JOB_NAME VARCHAR(28) The name of the job when this row was logged.

JOB_STATUS JOB_STATUS CHAR(10)

Nullable

Status of the job.

ACTIVE_JOB_STATUS AJSTATUS CHAR(4)

Nullable

The active status of the initial thread of the job.

RUN_PRIORITY RUNPRI INTEGER

Nullable

The highest run priority allowed for any thread within this job.

SBS_NAME SBS_NAME CHAR(10)

Nullable

Name of subsystem where job is running.

CPU_USED CPU_USED BIGINT

Nullable

The amount of CPU time (in milliseconds) that has been currently
used by this job.

TEMP_STORAGE_USED_MB TEMPSTG INTEGER

Nullable

The amount of auxiliary storage (in megabytes) that is currently
allocated to this job.

AUX_IO_REQUESTED AUXIO BIGINT

Nullable

The number of auxiliary I/O requests performed by the job
across all routing steps. This includes both database and
nondatabase paging.

Database performance and query optimization 433

Table 115. SYSLIMITS view (continued)

Column Name System Column Name Data Type Description

PAGE_FAULTS PAGEFAULT BIGINT

Nullable

The number of times an active program referenced an address
that was not in main storage during the current routing step of
the specified job.

CLIENT_WRKSTNNAME CLIENTWRK CHAR(255)

Nullable

Value of the SQL CLIENT_WRKSTNNAME special register.

CLIENT_APPLNAME CLIENTAPP CHAR(255)

Nullable

Value of the SQL CLIENT_APPLNAME special register.

CLIENT_ACCTNG CLIENTACT CHAR(255)

Nullable

Value of the SQL CLIENT_ACCTNG special register.

CLIENT_PROGRAMID CLIENTPGM CHAR(255)

Nullable

Value of the SQL CLIENT_PROGRAMID special register.

CLIENT_USERID CLIENTUSER CHAR(255)

Nullable

Value of the SQL CLIENT_USERID special register.

SQL_STATEMENT_TEXT SQLSTMT VARCHAR(10000)

Nullable

Statement text of the last SQL statement to run or the SQL
statement that is currently running.

SCHEMA_NAME OBJ_SCHEMA VARCHAR(128)

Nullable

The SQL schema name for this object. If no schema name,
contains the null value.

OBJECT_NAME OBJ_NAME VARCHAR(128)

Nullable

The SQL name for the object. If no object name or if an SQL
name could not be returned, contains the null value.

SYSTEM_SCHEMA_NAME SYS_NAME VARCHAR(10)

Nullable

The library name for the object. If no library name, contains the
null value.

SYSTEM_OBJECT_NAME SYS_ONAME VARCHAR(30)

Nullable

The object name for this row. If no object name, contains the null
value.

SYSTEM_TABLE_MEMBER SYS_MNAME VARCHAR(10)

Nullable

The member name for an object limit specific to database
members. Contains the null value if this row is not for a member
limit.

IFS_PATH_NAME PATHNAME DBCLOB(5000)
CCSID 1200

Nullable

IFS path for the object. Contains the null value if there is no path.

OBJECT_TYPE OBJTYPE VARCHAR(7)

Nullable

The IBM i object type when an object name has been logged in
the SYSTEM_SCHEMA_NAME and SYSTEM_OBJECT_NAME
columns. Contains the null value when no object name is
specified.

434 IBM i: Database Performance and Query Optimization

Table 115. SYSLIMITS view (continued)

Column Name System Column Name Data Type Description

SQL_OBJECT_TYPE SQLOBJTYPE VARCHAR(9)

Nullable

The SQL type of the object when an object name has been logged
in the SYSTEM_SCHEMA_NAME and SYSTEM_OBJECT_NAME
columns. Values are:

• ALIAS

• FUNCTION

• INDEX

• PACKAGE

• PROCEDURE

• ROUTINE

• SEQUENCE

• TABLE

• TRIGGER

• TYPE

• VARIABLE

• VIEW

• XSR

Contains the null value if the object is not an SQL object or when
no object name is specified.

ASP_NUMBER ASPNUM SMALLINT

Nullable

Contains the ASP number related to this row. Contains the null
value if there is no ASP number.

LIMIT_ID LIMIT_ID INTEGER Unique identifier for this limit. Values are maintained in the
SIZING_ID column in the QSYS2/SQL_SIZING table.

QIBM_SYSTEM_LIMITS global variables
To prevent excess storage consumption within the SYS2/SYSLIMTBL table, DB2 for i will automatically
delete (or prune) rows.

DB2 for i supplied global variables guide the pruning action. For each type of limit, there are two global
variables. The pruning variable is used to choose how many of the most recently logged entries should be
retained. The high point variable is used to choose how many of the highest consumption value entries
should be retained.

The following are the names of the global variables and the limit that is shipped for each one. The schema
is SYSIBMADM.

QIBM_SYSTEM_LIMITS_PRUNE_BY_ASP
100

QIBM_SYSTEM_LIMITS_PRUNE_BY_JOB
50

QIBM_SYSTEM_LIMITS_PRUNE_BY_OBJECT
20

QIBM_SYSTEM_LIMITS_PRUNE_BY_SYSTEM
100

QIBM_SYSTEM_LIMITS_SAVE_HIGH_POINTS_BY_ASP
25

QIBM_SYSTEM_LIMITS_SAVE_HIGH_POINTS_BY_JOB
5

QIBM_SYSTEM_LIMITS_SAVE_HIGH_POINTS_BY_OBJECT
5

QIBM_SYSTEM_LIMITS_SAVE_HIGH_POINTS_BY_SYSTEM
25

You can redefine any of the global variable values to change a limit on your system. After the variable is
redefined, the new value takes effect after the next system IPL.

Database performance and query optimization 435

Use IBM i Navigator to generate SQL for the global variable and use the OR REPLACE option to recreate it
with a different default. For example, to keep 50 of the most recently logged rows for all system types of
limits, use the following SQL statement:

CREATE OR REPLACE VARIABLE SYSIBMADM.QIBM_SYSTEM_LIMITS_PRUNE_BY_SYSTEM
 INTEGER
 DEFAULT 50

Work Management Services
These views and functions provide system value and job information.

ACTIVE_JOB_INFO table function
The ACTIVE_JOB_INFO table function returns one row for every active job.

The information returned is similar to the detail seen from the Work with Active Jobs (WRKACTJOB)
command. The ACTIVE_JOB_INFO table function has two uses:

1. To see details for all, or a subset of, active jobs. A subset of active jobs can be requested by using the
optional filter parameters.

2. To measure elapsed statistics for active jobs. You can use an optional parameter to reset statistics,
similar to the WRKACTJOB command F10 Restart Statistics function. Measurements will be calculated
based on this new starting point.

ACTIVE_JOB_INFO (

RESET_STATISTICS =>

reset-statistics

,

SUBSYSTEM_LIST_FILTER =>

subsystem-list-filter

,

JOB_NAME_FILTER =>

job-name-filter

,

CURRENT_USER_LIST_FILTER =>

current-user-list-filter

,

DETAILED_INFO =>

detailed-info

)

The schema is QSYS2.

Authorization: None required to see general information or information about your own jobs.

For DETAILED_INFO => ALL:

• All users can see detailed column information for CLIENT_IP_ADDRESS, PAGE_FAULTS,
JOB_ACTIVE_TIME, PRESTART_JOB_REUSE_COUNT, and PRESTART_JOB_MAX_USE_COUNT.

• A user with QIBM_DB_SQLADM or QIBM_DB_SYSMON function usage authority can see detailed
column information that relates to SQL activity starting with the SQL_STATEMENT_TEXT column through
the PSEUDO_CLOSED_CURSOR_COUNT column.

• For a user with *JOBCTL user special authority, all detailed column information is returned.

436 IBM i: Database Performance and Query Optimization

reset-statistics
A character or graphic string expression that contains a value of YES or NO.

If this parameter has a value of YES, statistics are reset such that the time of this query execution is
used as the new baseline. Future invocations of ACTIVE_JOB_INFO within this connection will return
statistical detail relative to the new baseline. If this parameter has a value of NO, statistics are not
reset for the invocation unless the subsystem-list-filter or job-name-filter parameter values are
different than the previous invocation. Changing the filter values will always cause statistics to be
reset. If this parameter is not specified, the default is NO.

The first invocation of ACTIVE_JOB_INFO within a connection will always perform an implicit reset,
regardless of whether a reset was explicitly requested.

subsystem-list-filter
A character or graphic string expression that contains a list of up to 25 subsystem names separated by
exactly one comma. The filter determines which subsystems to use to return job information.

If this parameter is not specified, is an empty string, or is the null value, information for all
subsystems is returned.

job-name-filter
A character or graphic string expression that contains an unqualified job name that determines the job
information to be returned. The name can be a generic name.

The string can be one of the following special values:
*

Only information for the current job is returned.
*ALL

Information for all jobs is returned.
*CURRENT

Information for all jobs with a job name that is the same as the current job is returned.
*SBS

Information for all active subsystem monitors is returned.
*SYS

Information for all active system jobs is returned. When using this value, the subsystem-list-filter
must not be specified or must be the null value.

If this parameter is not specified, is an empty string, or is the null value, information for all jobs is
returned.

current-user-list-filter
A character or graphic string expression that contains a list of up to 10 user profile names separated
by exactly one comma. The filter determines which current user values to use to return job
information.

If this parameter is not specified, is an empty string, or is the null value, information for all users is
returned.

detailed-info
A character or graphic string expression that indicates the type of information to be returned.
ALL

Information for all the columns is returned.
NONE

Only the general information is returned for active jobs. This is the information in the columns
prior to the JOB_DESCRIPTION_LIBRARY column. This is the default.

QTEMP
In addition to the general information for active jobs, the QTEMP_SIZE column is returned.

The result of the function is a table containing multiple rows with the format shown in the following table.
All the columns are nullable.

Database performance and query optimization 437

Table 116. ACTIVE_JOB_INFO table function

Column Name Data Type Description

ORDINAL_POSITION INTEGER A unique number for each row.

JOB_NAME VARCHAR(28) The qualified job name.

INTERNAL_JOB_ID BINARY(16) The internal job identifier.

SUBSYSTEM VARCHAR(10) The name of the subsystem where the job is running.

Contains the null value if the job is a system job.

SUBSYSTEM_LIBRARY_NAME VARCHAR(10) Library containing the subsystem description.

Contains the null value if the job is a system job.

AUTHORIZATION_NAME VARCHAR(10) The user profile under which the initial thread is running at this time.
For jobs that swap user profiles, this user profile name and the user
profile that initiated the job can be different.

JOB_TYPE VARCHAR(3) Type of active job.

ASJ
Autostart

BCH
Batch

BCI
Batch Immediate

EVK
Started by a procedure start request

INT
Interactive

M36
Advanced 36 server job

MRT
Multiple requester terminal

PDJ
Print driver job

PJ
Prestart job

RDR
Spool reader

SBS
Subsystem monitor

SYS
System

WTR
Spool writer

438 IBM i: Database Performance and Query Optimization

Table 116. ACTIVE_JOB_INFO table function (continued)

Column Name Data Type Description

FUNCTION_TYPE VARCHAR(3) The type of function described in the FUNCTION column.

CMD
The FUNCTION column contains the name of the command
being run.

DLY
The initial thread of the job is processing a DLYJOB (Delay Job)
command. The FUNCTION column contains a time that is the
number of seconds the job is delayed (up to 999999 seconds),
or the time when job is to resume processing (hh:mm:ss).

GRP
The FUNCTION column contains the group name of a suspended
group job.

I/O
The job is a subsystem monitor that is performing input/output
operations (I/O) to a work station for the sign-on display file. The
FUNCTION column contains the name of the work station device.

IDX
The FUNCTION column contains the name of the file associated
with an index rebuild operation.

JVM
The initial thread of the job is running a Java Virtual Machine.
The FUNCTION column contains the name of the java class.

LOG
The FUNCTION column contains QHST to indicate history
information is being logged to a database file.

MNU
The FUNCTION column contains the name of the menu.

MRT
The job is either a multiple requester terminal (MRT) job if
JOB_TYPE is BCH, or it is an interactive job attached to an MRT
job if JOB_TYPE is INT.

For an MRT job, the FUNCTION column contains information in
the following format:

• CHAR(2): The number of requesters currently attached to the
MRT job.

• CHAR(1): Contains a / (slash).

• CHAR(2): The maximum number of requesters.

• CHAR(1): Contains a blank.

• CHAR(3): The never-ending program (NEP) indicator. A value
of NEP indicates a never-ending program. A value of blanks
indicates that it is not a never-ending program.

• CHAR(1): Contains a blank.

For an interactive job attached to an MRT, the FUNCTION column
contains the name of the MRT procedure.

PGM
The FUNCTION column contains the name of a program.

PRC
The FUNCTION column contains the name of a procedure.

USR
The FUNCTION column contains the user-specified function set
with the Change Current Job (QWCCCJOB) API.

Contains the null value if none of these values apply.

Database performance and query optimization 439

Table 116. ACTIVE_JOB_INFO table function (continued)

Column Name Data Type Description

FUNCTION VARCHAR(10) The last high-level function initiated by the initial thread.

If FUNCTION_TYPE is not null, contains a value as defined by the
FUNCTION_TYPE column. Otherwise, can contain one of the following
values:

ADLACTJOB
Auxiliary storage is being allocated for the number of active jobs
specified in the QADLACTJ system value.

ADLTOTJOB
Auxiliary storage is being allocated for the number of jobs
specified in the QADLTOTJ system value.

CMDENT
The command entry display is being used.

COMMIT
The initial thread of the job is performing a commit operation.

DIRSHD
This job is running under the directory shadowing function.

DLTSPF
A spooled file is being deleted.

DUMP
A dump is in process.

JOBIDXRCY
A damaged job index is being recovered.

JOBLOG
A job log is being produced.

JOBLOGQRCY
The job log server queue is being recovered or rebuilt.

PASSTHRU
The job is a pass-through job.

RCLSPLSTG
Empty spooled database members are being deleted.

ROLLBACK
The initial thread of the job is performing a rollback operation.

SPLCLNUP
A cleanup of jobs on job queues and spooled files is being
performed.

Contains the null value if a logged function has not been performed.

440 IBM i: Database Performance and Query Optimization

Table 116. ACTIVE_JOB_INFO table function (continued)

Column Name Data Type Description

JOB_STATUS VARCHAR(4) The status of the initial thread of the job. The following list contains
some of the most common values. For a complete list of values, see
Work Management API Attribute Descriptions in Application
Programming Interfaces

CMNW
Waiting for the completion of an I/O operation to a
communications device.

CNDW
Waiting on handle-based condition.

DEQW
Waiting for completion of a dequeue operation.

DLYW
Due to the Delay Job (DLYJOB) command, the initial thread of
the job is delayed while it waits for a time interval to end, or for a
specific delay end time.

DSPW
Waiting for input from a work station display.

END
The job has been ended with the *IMMED option, or its delay
time has ended with the *CNTRLD option.

EOJ
Ending for a reason other than running the End Job (ENDJOB) or
End Subsystem (ENDSBS) command.

EVTW
Waiting for an event.

HLD
The job is being held.

JVAW
Waiting for completion of a Java program operation.

LCKW
Waiting for a lock.

LSPW
Waiting for a lock space to be attached.

MSGW
Waiting for a message from a message queue.

MTXW
Waiting for a mutex.

PSRW
A prestart job waiting for a program start request.

RUN
Job is currently running.

SEMW
Waiting for a semaphore.

THDW
Waiting for another thread to complete an operation.

MEMORY_POOL VARCHAR(9) The identifier of the system-related pool from which the job's main
storage is allocated.

RUN_PRIORITY INTEGER The run priority of the job.

THREAD_COUNT INTEGER The number of active threads in the job.

TEMPORARY_STORAGE INTEGER The amount of temporary storage, in megabytes, that is currently
allocated to this job.

CPU_TIME DECIMAL(20,0) The total processing unit time used by the job, in milliseconds.

TOTAL_DISK_IO_COUNT DECIMAL(20,0) The total number of disk I/O operations performed by the job across
all routing steps. This is the sum of the asynchronous and
synchronous disk I/O.

ELAPSED_INTERACTION_COUNT INTEGER The number of interactions. This is the number of operator
interactions during the measurement time interval.

Contains the null value if the job is not interactive.

ELAPSED_TOTAL_RESPONSE_TIME INTEGER The total response time over the measurement time interval, in
seconds.

Contains the null value if the job is not interactive.

Database performance and query optimization 441

Table 116. ACTIVE_JOB_INFO table function (continued)

Column Name Data Type Description

ELAPSED_TOTAL_DISK_IO_COUNT DECIMAL(20,0) The number of disk I/O operations performed by the job during the
measurement time interval. This is the sum of the asynchronous and
synchronous disk I/O.

ELAPSED_ASYNC_DISK_IO_COUNT DECIMAL(20,0) The number of asynchronous (physical) disk I/O operations performed
by the job during the measurement time interval. This value is the sum
of the asynchronous database and nondatabase reads and writes.

ELAPSED_SYNC_DISK_IO_COUNT DECIMAL(20,0) The number of synchronous (physical) disk I/O operations performed
by the job during the measurement time interval. This value is the sum
of the synchronous database and nondatabase reads and writes.

ELAPSED_CPU_PERCENTAGE DECIMAL(10,1) The percent of processing unit time attributed to this job during the
measurement time interval.

ELAPSED_CPU_TIME DECIMAL(20,0) The total CPU time spent during the measurement time interval, in
milliseconds.

ELAPSED_PAGE_FAULT_COUNT DECIMAL(20,0) The number of times an active program referenced an address that is
not in main storage for the specified job during the measurement time
interval.

JOB_END_REASON VARCHAR(60) Reason the job is ending. Contains one of the following values:

• JOB ENDING IN NORMAL MANNER

• JOB ENDED WHILE IT WAS STILL ON A JOB QUEUE

• SYSTEM ENDED ABNORMALLY

• JOB ENDING NORMALLY AFTER A CONTROLLED END WAS
REQUESTED

• JOB ENDING IMMEDIATELY

• JOB ENDING ABNORMALLY

• JOB ENDED DUE TO THE CPU LIMIT BEING EXCEEDED

• JOB ENDED DUE TO THE STORAGE LIMIT BEING EXCEEDED

• JOB ENDED DUE TO THE MESSAGE SEVERITY LEVEL BEING
EXCEEDED

• JOB ENDED DUE TO THE DISCONNECT TIME INTERVAL BEING
EXCEEDED

• JOB ENDED DUE TO THE INACTIVITY TIME INTERVAL BEING
EXCEEDED

• JOB ENDED DUE TO A DEVICE ERROR

• JOB ENDED DUE TO A SIGNAL

• JOB ENDED DUE TO AN UNHANDLED ERROR

Contains the null value if job is not currently ending.

SERVER_TYPE VARCHAR(30) The type of server represented by the job. See Server table for a list of
server type values.

Contains the null value if the job is not part of a server.

ELAPSED_TIME DECIMAL(20,3) The time that has elapsed, in seconds, between the measurement
start time and the current system time.

Values for the following columns are returned when the DETAILED_INFO parameter is ALL. Otherwise, the columns will contain the null value.

JOB_DESCRIPTION_LIBRARY VARCHAR(10) The name of the library containing the job description.

Contains the null value if the job has no job description.

JOB_DESCRIPTION VARCHAR(10) The name of the job description used for this job.

Contains the null value if the job has no job description.

JOB_QUEUE_LIBRARY VARCHAR(10) The name of the library containing the job queue.

Contains the null value if the job is not a batch job that was started
from a job queue.

JOB_QUEUE VARCHAR(10) The name of the job queue that the job was on.

Contains the null value if the job is not a batch job that was started
from a job queue.

OUTPUT_QUEUE_LIBRARY VARCHAR(10) The name of the library that contains the default output queue.

Contains the null value if the job has no default output queue.

442 IBM i: Database Performance and Query Optimization

Table 116. ACTIVE_JOB_INFO table function (continued)

Column Name Data Type Description

OUTPUT_QUEUE VARCHAR(10) The name of the default output queue that is used for spooled output
produced by this job. The default output queue is only used by
spooled printer files that specify *JOB for the output queue.

Contains the null value if the job has no default output queue.

CCSID INTEGER The coded character set identifier (CCSID) used for this job.

DEFAULT_CCSID INTEGER The default coded character set identifier used for this job.

SORT_SEQUENCE_LIBRARY VARCHAR(10) The name of the library that contains the sort sequence table.

Contains the null value if no sort sequence table is defined for this job
or if SORT_SEQUENCE is a special value.

SORT_SEQUENCE VARCHAR(10) The name of the sort sequence table associated with this job.

Contains the null value if no sort sequence table is defined for this job.

LANGUAGE_ID CHAR(3) The language identifier associated with this job.

DATE_FORMAT CHAR(4) The date format used for this job.

*DMY
Day, month, year format.

*JUL
Julian format (year and day).

*MDY
Month, day, year format.

*YMD
Year, month, day format.

DATE_SEPARATOR CHAR(1) The date separator used for this job.

TIME_SEPARATOR CHAR(1) The time separator used for this job.

DECIMAL_FORMAT VARCHAR(6) The decimal format used for this job.

*BLANK
Uses a period for a decimal point, a comma for a 3-digit grouping
character, and zero-suppress to the left of the decimal point.

J
Uses a comma for a decimal point and a period for a 3-digit
grouping character. The zero-suppression character is in the
second position (rather than the first) to the left of the decimal
notation. Balances with zero values to the left of the comma are
written with one leading zero (0,04). The J entry also overrides
any edit codes that might suppress the leading zero.

I
Uses a comma for a decimal point, a period for a 3-digit grouping
character, and zero-suppress to the left of the decimal point.

TIMEZONE_DESCRIPTION VARCHAR(10) The name of the time zone description that is used to calculate local
job time.

TIMEZONE_CURRENT_OFFSET INTEGER The offset, in minutes, used to calculate local job time. This value has
been adjusted for Daylight Saving Time, if necessary.

TIMEZONE_FULL_NAME VARCHAR(50) The full, or long, name for the time zone. This column returns either
the standard or Daylight Saving Time full name depending on whether
or not Daylight Saving Time is in effect.

Contains the null value if the time zone description uses a message to
specify the current full name and the message cannot be retrieved.

TIMEZONE_ABBREVIATED_NAME VARCHAR(10) The abbreviated, or short, name for the time zone. This column
returns either the standard or Daylight Saving Time abbreviated name
depending on whether or not Daylight Saving Time is in effect.

Contains the null value if the time zone description uses a message to
specify the current abbreviated name and the message cannot be
retrieved.

JOB_ENTERED_SYSTEM_TIME TIMESTAMP(0) The timestamp for when the job was placed on the system.

JOB_ACTIVE_TIME TIMESTAMP(0) The timestamp for when the job began to run on the system.

Database performance and query optimization 443

Table 116. ACTIVE_JOB_INFO table function (continued)

Column Name Data Type Description

CLIENT_IP_ADDRESS VARCHAR(45) Client IP address, in IPv4 format, being used by the job.

Contains the null value when no client IP address exists or the job is
using IPv6.

JOB_USER_IDENTITY_SETTING VARCHAR(11) The method by which the job user identity was set.

APPLICATION
The job user identity was explicitly set by an application using
one of the Set Job User Identity APIs, QWTSJUID or
QwtSetJuid(). The job may be running either single threaded or
multithreaded.

DEFAULT
The job is currently running single threaded and the job user
identity is the name of the user profile under which the job is
currently running.

SYSTEM
The job is currently running multithreaded and the job user
identity was implicitly set by the system when the job became
multithreaded. It was set to the name of the user profile that the
job was running under when it became multithreaded.

JOB_USER_IDENTITY VARCHAR(10) The user profile name by which the job is known to other jobs on the
system. The job user identity is used for authorization checks when
other jobs on the system attempt to operate against the job.

Contains the null value if the user profile no longer exists.

DBCS_CAPABLE VARCHAR(3) Whether the job is DBCS-capable.

NO
The job is not DBCS-capable.

YES
The job is DBCS-capable.

SIGNAL_STATUS VARCHAR(3) Whether the job is enabled to receive signals from another job or the
system.

NO
The job is not enabled for signals. This job cannot receive signals
from another job or the system.

YES
The job is enabled for signals. This job can receive signals from
another job or the system.

MESSAGE_REPLY VARCHAR(3) Whether the job is waiting for a reply to a specific message.

NO
The job is not waiting for a reply to a message.

YES
The job is waiting for a reply to a message.

Contains the null value if the job is not in message wait status.

END_STATUS VARCHAR(3) Whether the system issued a controlled cancellation.

NO
The system, subsystem, or job is not canceled.

YES
The system, the subsystem in which the job is running, or the job
itself is canceled.

CANCEL_KEY VARCHAR(3) Whether the user pressed the cancel key.

NO
The user did not press the cancel key.

YES
The user pressed the cancel key.

EXIT_KEY VARCHAR(3) Whether the user pressed the exit key.

NO
The user did not press the exit key.

YES
The user pressed the exit key.

444 IBM i: Database Performance and Query Optimization

Table 116. ACTIVE_JOB_INFO table function (continued)

Column Name Data Type Description

MAXIMUM_ACTIVE_THREADS INTEGER The maximum number of threads that a job can run with at any time.
If multiple threads are initiated simultaneously, this value may be
exceeded. If this maximum value is exceeded, the excess threads will
be allowed to run to their normal completion. Initiation of additional
threads will be inhibited until the maximum number of threads in the
job drops below this maximum value.

Contains the null value if there is no maximum.

SYSTEM_POOL_ID INTEGER The identifier of the system-related pool from which main storage is
currently being allocated for the job's initial thread. These identifiers
are not the same as those specified in the subsystem description, but
are the same as the system pool identifiers shown on the system
status display. If a thread reaches its time-slice end, the pool the
thread is running in can be switched based on the job's time-slice end
pool value. The current system pool identifier returned will be the
actual pool in which the initial thread of the job is running.

POOL_NAME VARCHAR(10) The name of the memory pool in which the job started running. The
name may be a number, in which case it is a private pool associated
with a subsystem. Can contain one of the following special values:

*BASE
This job is running in the base system pool, which can be shared
with other subsystems.

*INTERACT
This job is running in the shared pool used for interactive work.

*MACHINE
This job is running in the machine pool.

*SHRPOOL1 - *SHRPOOL60
This job is running in the identified shared pool.

*SPOOL
This job is running in the shared pool for spooled writers.

QTEMP_SIZE INTEGER The amount of storage, in megabytes, used by objects in the job's
temporary library (QTEMP). Objects that are locked, damaged, or not
authorized are not included.

Contains the null value if the size cannot be returned.

PEAK_TEMPORARY_STORAGE INTEGER The maximum amount of auxiliary storage, in megabytes, that the job
has used.

DEFAULT_WAIT INTEGER The default maximum time, in seconds, that a thread in the job waits
for a system instruction, such as a LOCK machine interface (MI)
instruction, to acquire a resource.

Contains the null value if there is no maximum.

MAXIMUM_PROCESSING_TIME_
ALLOWED

INTEGER The maximum processing unit time, in milliseconds, that the job can
use. If the job consists of multiple routing steps, this is the maximum
processing unit time that the current routing step can use. If the
maximum time is exceeded, the job is held.

Contains the null value if no maximum amount of processing unit time
has been defined.

MAXIMUM_TEMPORARY_STORAGE_
ALLOWED

INTEGER The maximum amount of auxiliary storage, in megabytes, that the job
can use. If the job consists of multiple routing steps, this is the
maximum temporary storage that the routing step can use. This
temporary storage is used for storage required by the program itself
and by implicitly created internal system objects used to support the
routing step. (It does not include storage for objects in the QTEMP
library.) If the maximum temporary storage is exceeded, the job is
held. This does not apply to the use of permanent storage, which is
controlled through the user profile.

Contains the null value if no maximum amount of temporary storage
has been defined.

TIME_SLICE INTEGER The maximum amount of processor time, in milliseconds, given to
each thread in this job before other threads in this job and in other
jobs are given the opportunity to run. The time slice establishes the
amount of time needed by a thread in this job to accomplish a
meaningful amount of processing. At the end of the time slice, the
thread might be put in an inactive state so that other threads can
become active in the storage pool. Values range from 8 through
9999999.

Database performance and query optimization 445

Table 116. ACTIVE_JOB_INFO table function (continued)

Column Name Data Type Description

PAGE_FAULTS BIGINT The number of times an active program referenced an address that
was not in main storage during the current routing step of the
specified job.

TOTAL_RESPONSE_TIME BIGINT The total amount of response time for the initial thread, in
milliseconds. This value does not include the time used by the
machine, by the attached input/output (I/O) hardware, and by the
transmission lines for sending and receiving data. Returns zero for
jobs that have no interactions. A value of -1 is returned if the field is
not large enough to hold the actual result.

INTERACTIVE_TRANSACTIONS INTEGER The count of operator interactions, such as pressing the Enter key or a
function key. Returns zero for jobs that have no interactions.

DATABASE_LOCK_WAITS INTEGER The number of times that the initial thread had to wait to obtain a
database lock.

NON_DATABASE_LOCK_WAITS INTEGER The number of times that the initial thread had to wait to obtain a
nondatabase lock.

INTERNAL_MACHINE_
LOCK_WAITS

INTEGER The number of times that the initial thread had to wait to obtain an
internal machine lock.

DATABASE_LOCK_WAIT_TIME INTEGER The cumulative amount of time, in milliseconds, that the initial thread
has had to wait to obtain database locks.

NON_DATABASE_LOCK_WAIT_TIME INTEGER The cumulative amount of time, in milliseconds, that the initial thread
has had to wait to obtain nondatabase locks.

INTERNAL_MACHINE_LOCK_
WAIT_TIME

INTEGER The cumulative amount of time, in milliseconds, that the initial thread
has had to wait to obtain internal machine locks.

SQL_STATEMENT_TEXT VARCHAR(10000) Statement text of the last SQL statement to run or the SQL statement
that is currently running. The statement text will be truncated if it is
longer than the column.

Contains the null value if no SQL statement has been run.

SQL_STATEMENT_STATUS VARCHAR(8) The status of SQL within this job.

ACTIVE
An SQL statement is currently running

COMPLETE
At least one SQL statement has run and has completed

Contains the null value if no SQL statement has been run.

SQL_STATEMENT_START_TIMESTAMP TIMESTAMP The timestamp of the execution start for an active SQL statement.

Contains the null value if there is no active SQL statement.

SQL_STATEMENT_NAME VARCHAR(128) The name of the SQL statement.

Contains the null value when the SQL statement has no name.

SQL_STATEMENT_LIBRARY_NAME VARCHAR(10) The library name for the SQL statement object.

Contains the null value when the SQL statement name is null or when
the SQL statement does not exist within a permanent object.

SQL_STATEMENT_OBJECT_NAME VARCHAR(10) The name of the object which contains the last SQL statement
executed in the job. When the current SQL statement belongs to an
SQL function or an SQL procedure, the object name will be the
external program name.

Contains the null value when the SQL statement name is null or when
the SQL statement does not exist within a permanent object.

SQL_STATEMENT_OBJECT_TYPE VARCHAR(7) The type of object containing the current SQL statement.

*PGM
The current SQL statement resides within a program.

*SQLPKG
The current SQL statement resides within an SQL package.

*SRVPGM
The current SQL statement resides within a service program.

Contains the null value when the SQL statement object name is null.

QUERY_OPTIONS_LIBRARY_NAME VARCHAR(10) The name of the QAQQINI options library in use for this job.

446 IBM i: Database Performance and Query Optimization

Table 116. ACTIVE_JOB_INFO table function (continued)

Column Name Data Type Description

SQL_ACTIVATION_GROUP_COUNT INTEGER The number of activation groups, current and ended, that have
executed SQL statements for the job.

Contains the null value if no SQL statement has been run.

SQL_DESCRIPTOR_COUNT BIGINT The number of SQL descriptors that are active for the job.

Contains the null value if no SQL descriptors are active for the job.

SQL_LOB_LOCATOR_COUNT INTEGER The number of LOB locators that are active for the job.

Contains the null value if no LOB locators are active for the job.

CLI_HANDLE_COUNT BIGINT The number of SQL Call Level Interface (CLI) handles that are active
for the job. This count includes CLI statement handles, descriptor
handles, environment handles, and connection handles.

Contains the null value if no CLI handles are active for the job.

SQL_SERVER_MODE VARCHAR(3) Indicates whether the job is configured to use SQL Server Mode.

NO
The job is not configured to use SQL Server Mode.

YES
The job is configured to use SQL Server Mode.

CLIENT_ACCTNG VARCHAR(255) Value of the SQL CURRENT CLIENT_ACCTNG special register. The
value can be null. For more information, see CURRENT
CLIENT_ACCTNG.

CLIENT_APPLNAME VARCHAR(255) Value of the SQL CURRENT CLIENT_APPLNAME special register. The
value can be null. For more information, see CURRENT
CLIENT_APPLNAME.

CLIENT_PROGRAMID VARCHAR(255) Value of the SQL CURRENT CLIENT_PROGRAMID special register. The
value can be null. For more information, see CURRENT
CLIENT_PROGRAMID.

CLIENT_USERID VARCHAR(255) Value of the SQL CURRENT CLIENT_USERID special register. The value
can be null. For more information, see CURRENT CLIENT_USERID.

CLIENT_WRKSTNNAME VARCHAR(255) Value of the SQL CURRENT CLIENT_WRKSTNNAME special register.
The value can be null. For more information, see CURRENT
CLIENT_WRKSTNNAME.

ROUTINE_TYPE CHAR(1) For a routine defined using SQL, the type of the currently executing
routine.

F
Function

P
Procedure

Contains the null value if there is no SQL routine currently executing.

ROUTINE_SCHEMA VARCHAR(128) For a routine defined using SQL, the schema name of the currently
executing routine.

Contains the null value if there is no SQL routine currently executing.

ROUTINE_SPECIFIC_NAME VARCHAR(128) For a routine defined using SQL, the name of the currently executing
routine.

Contains the null value if there is no SQL routine currently executing.

CLIENT_PORT INTEGER The port number used by the current client to communicate with the
server.

Contains the null value if the target job does not correspond to a
connection formed using the TCP/IP protocol.

CLIENT_HOST VARCHAR(255) The host name used by the current client to communicate with the
server.

Contains the null value if the target job does not correspond to a
connection formed using the TCP/IP protocol.

INTERFACE_NAME VARCHAR(127) The client database interface name.

Contains the null value if there is no client database interface name.

INTERFACE_TYPE VARCHAR(63) The client database interface type.

Contains the null value if there is no client database interface type.

Database performance and query optimization 447

Table 116. ACTIVE_JOB_INFO table function (continued)

Column Name Data Type Description

INTERFACE_LEVEL VARCHAR(63) The client database interface level in the following form:
"VVRRMMFP". VV - Version RR - Release MM - Modification level FP -
Fix pack level (only applicable for certain interfaces).

Contains the null value if there is no client database interface level.

SERVER_MODE_CONNECTING_JOB VARCHAR(28) The qualified job name of the job that established the SQL Server
Mode connection. If the job name is QSQSRVR, then the qualified job
name of the connecting job is returned.

Contains the null value if the job name is not QSQSRVR or
JOB_STATUS is PSRW.

SERVER_MODE_CONNECTING_THREAD BIGINT If the job name is QSQSRVR and the server mode job is in use, the
thread identifier of the last thread to use this connection is returned.
When SQL_STATEMENT_STATUS is COMPLETE, this application thread
identifier might no longer exist.

Contains the null value if the job name is not QSQSRVR or
JOB_STATUS is PSRW.

PRESTART_JOB_REUSE_COUNT INTEGER The number of times the prestart job has been used. The prestart job
reuse count is incremented when a disconnect is processed for a
prestart job. When the prestart job reuse count exceeds the prestart
job maximum number of uses, the job is ended.

Contains the null value if the job is not a prestart job.

PRESTART_JOB_MAX_USE_COUNT INTEGER The maximum number of times the prestart job can be used before it
is ended. A value of -1 is returned for *NOMAX.

Contains the null value if the job is not a prestart job.

AVAILABLE_RESULT_SETS INTEGER The current count of unconsumed SQL result sets for the job.

Contains the null value if the job has no unconsumed SQL result sets.

UNCONSUMED_RESULT_SETS INTEGER The cumulative count of unconsumed SQL result sets that were
discarded for the job.

Contains the null value if the job has no unconsumed SQL result sets
that have been discarded.

OPEN_CURSOR_COUNT INTEGER The number of SQL cursors that are currently open for the job.

Contains the null value if no SQL cursors are currently open for the job.

FULL_OPEN_CURSOR_COUNT BIGINT The total number of SQL cursors that have been full opened for the life
of the job.

Contains the null value if no SQL cursors have been full opened during
the life of the job.

PSEUDO_OPEN_CURSOR_COUNT BIGINT The total number of SQL cursors that have been pseudo opened for
the life of the job. Pseudo opens are also known as reused SQL
cursors.

Contains the null value if no SQL cursors have been pseudo opened
during the life of the job.

PSEUDO_CLOSED_CURSOR_COUNT INTEGER The active number of pseudo closed SQL cursors within the job.
Pseudo closed cursors are cursors that have been closed by the
application, but remain open within the database. A pseudo closed
cursor may be reused when the same query is executed many times,
resulting in a performance improvement on the open. Conversely,
accumulating too many pseudo closed cursors within the job can have
a negative impact on the storage footprint of the job.

Contains the null value if no SQL cursors are pseudo closed.

CQE_CURSOR_COUNT INTEGER The number of cursors using CQE for this job. This includes SQL
cursors (both fully opened and pseudo closed) and cursors used to
implement native database queries.

Contains the null value if no cursors have used CQE for this job.

CQE_CURSOR_STORAGE INTEGER The amount of storage, in megabytes, used by cursors using CQE for
this job.

Contains the null value if no cursors have used CQE for this job.

448 IBM i: Database Performance and Query Optimization

Table 116. ACTIVE_JOB_INFO table function (continued)

Column Name Data Type Description

SQE_CURSOR_COUNT INTEGER The number of cursors using SQE for this job. This includes SQL
cursors (both fully opened and pseudo closed) and cursors used to
implement native database queries.

Contains the null value if no cursors have used SQE for this job.

SQE_CURSOR_STORAGE INTEGER The amount of storage, in megabytes, used by cursors using SQE for
this job.

Contains the null value if no cursors have used SQE for this job.

LARGEST_QUERY_SIZE INTEGER The amount of storage, in megabytes, used by the SQE cursor that
used the most storage for this job.

Contains the null value if no cursors have used SQE for this job.

QRO_HASH VARCHAR(8) An internally generated identifier for the SQE query referred to in the
LARGEST_QUERY_SIZE column. The QRO hash surfaces within Visual
Explain and from Show Statements exploration of the SQL Plan Cache
and SQL Plan Cache Snapshots.

Contains the null value if no cursors have used SQE for this job.

Examples

• Example 1: Looking at only QZDASOINIT jobs, find the top 10 consumers of Elapsed I/O.

SELECT JOB_NAME, AUTHORIZATION_NAME, ELAPSED_TOTAL_DISK_IO_COUNT, ELAPSED_CPU_PERCENTAGE
FROM TABLE(QSYS2.ACTIVE_JOB_INFO(
 JOB_NAME_FILTER => 'QZDASOINIT',
 SUBSYSTEM_LIST_FILTER => 'QUSRWRK')) X
ORDER BY ELAPSED_TOTAL_DISK_IO_COUNT DESC
FETCH FIRST 10 ROWS ONLY;

Note: The data in the ELAPSED_xxx columns is updated upon each re-execution of the query. Elapsed
data will not get returned the first time a query is run for ACTIVE_JOB_INFO for a connection. See the
reset-statistics parameter for details.

• Example 2: Find the active jobs using the most temporary storage. Include the most recently executed
SQL statement for each target job.

SELECT JOB_NAME, AUTHORIZATION_NAME, TEMPORARY_STORAGE, SQL_STATEMENT_TEXT
FROM TABLE (QSYS2.ACTIVE_JOB_INFO(DETAILED_INFO => 'ALL')) X
 WHERE JOB_TYPE <> 'SYS'
ORDER BY TEMPORARY_STORAGE DESC;

JOB_DESCRIPTION_INFO view
The JOB_DESCRIPTION_INFO view returns information about job descriptions.

The values returned for the columns in the view are closely related to the values returned by the Display
Job Description (DSPJOBD) CL command and the Retrieve Job Description Information (QWDRJOBD) API.

Authorization: Rows will be returned for job descriptions when the caller has *EXECUTE authority to the
job description library and *USE authority to the job description.

The following table describes the columns in the view. The system name is JOBD_INFO. The schema is
QSYS2.

Table 117. JOB_DESCRIPTION_INFO view

Column Name System Column Name Data Type Description

JOB_DESCRIPTION_LIBRARY JOBDLIB VARCHAR(10) The name of the library in which the job description resides.

JOB_DESCRIPTION JOBD VARCHAR(10) The name of the job description about which information is being
returned.

AUTHORIZATION_NAME USER_NAME VARCHAR(10) The name of the user profile associated with this job description.
Can contain the following special value:

*RQD
A user name is required to use the job description.

Database performance and query optimization 449

Table 117. JOB_DESCRIPTION_INFO view (continued)

Column Name System Column Name Data Type Description

JOB_DATE JOB_DATE DATE
Nullable

The date that will be assigned to jobs using this job description
when they are started.

Contains the null value if this job will use the QDATE system
value.

ACCOUNTING_CODE ACGCDE VARCHAR(15) An identifier assigned to jobs that use this job description. This
code is used to collect system resource use information. Can
contain the following special value:

*USRPRF
The accounting code used for jobs using this job
description is obtained from the job's user profile.

ROUTING_DATA RTGDTA VARCHAR(80) The routing data that is used with this job description to start
jobs. Can contain one of the following special values:

QCMDI
The default routing data QCMDI is used by the IBM-
supplied interactive subsystem to route the job to the IBM-
supplied control language processor QCMD in the QSYS
library.

*RQSDTA
Up to the first 80 characters of the request data specified
in the request data field are used as the routing data for the
job.

REQUEST_DATA RQSDTA VARCHAR(256)
Nullable

The request data that is placed as the last entry in the job's
message queue for jobs that use this job description. Can
contain the following special value:

*RTGDTA
The data specified in the routing data parameter is placed
as the last entry in the job's message queue.

Contains the null value if no request data is placed in the job's
message queue.

LIBRARY_LIST_COUNT LIBL_COUNT INTEGER The number of libraries in the user portion of the initial library
list.

LIBRARY_LIST LIBL VARCHAR(2750)
Nullable

The initial library list that is used for jobs that use this job
description. Only the libraries in the user portion of the library
list are included. The list is an array of 11 character entries. Each
entry contains a ten character name followed by one blank. Can
contain the following special value:

*SYSVAL
The jobs using this job description will use the library list
specified by the QUSRLIBL system value.

Contains the null value is there is no initial library list.

JOB_SWITCHES SWITCHES CHAR(8) The initial settings for a group of eight job switches used by jobs
that use this job description. These switches can be set or tested
in a program and used to control a program's flow. The possible
values are '0' (off) and '1' (on).

TEXT_DESCRIPTION TEXT VARCHAR(50)
Nullable

The user text, if any, used to briefly describe the job description.

Contains the null value is there is no descriptive text.

JOB_QUEUE_LIBRARY JOBQLIB VARCHAR(10) The library of the job queue into which batch jobs using this job
description are placed.

JOB_QUEUE JOBQ VARCHAR(10) The name of the job queue into which batch jobs using this job
description are placed.

JOB_QUEUE_PRIORITY JOBQ_PRI SMALLINT The scheduling priority of each job that uses this job description.
The highest priority is 1 and the lowest priority is 9.

HOLD_ON_JOB_QUEUE JOBQ_HOLD VARCHAR(4) Whether jobs using this job description are put on the job queue
with a status of held.

*NO
Jobs using this job description are not put on the job queue
as held.

*YES
Jobs using this job description are put on the job queue as
held.

450 IBM i: Database Performance and Query Optimization

Table 117. JOB_DESCRIPTION_INFO view (continued)

Column Name System Column Name Data Type Description

OUTPUT_QUEUE_LIBRARY OUTQLIB VARCHAR(10)
Nullable

The name of the library in which the output queue resides.

Contains the null value if OUTPUT_QUEUE is a special value.

OUTPUT_QUEUE OUTQ VARCHAR(10) The name of the default output queue that is used for spooled
output produced by jobs that use this job description. Can
contain one of the following special values:

*DEV
The output queue with the same name as the printer
device for this job description is used.

*USRPRF
The output queue name for jobs using this job description
is obtained from the user profile of the job at the time the
job is started.

*WRKSTN
The output queue name is obtained from the device
description from which this job is started.

OUTPUT_QUEUE_PRIORITY OUTQ_PRI SMALLINT The output priority for spooled files that are produced by jobs
using this job description. The highest priority is 1, and the
lowest priority is 9.

SPOOLED_FILE_ACTION SPOOL_ACT VARCHAR(7) Specifies whether spooled files can be accessed through job
interfaces once a job has completed its normal activity.

*DETACH
Spooled files are detached from the job when the job
completes its activity.

*KEEP
When the job completes its activity, as long as at least one
spooled file for the job exists in the system auxiliary
storage pool (ASP 1) or in a basic user ASP (ASPs 2-32),
the spooled files are kept with the job and the status of the
job is updated to indicate that the job has completed. If all
remaining spooled files for the job are in independent ASPs
(ASPs 33-255), the spooled files will be detached from the
job and the job will be removed from the system.

*SYSVAL
The jobs using this job description will take the spooled file
action specified by the QSPLFACN system value.

PRINTER_DEVICE DEV_NAME VARCHAR(10) The name of the printer device that is used for all spooled files
created by jobs that use this job description. Can contain one of
the following special values:

*SYSVAL
The value in the system value QPRTDEV at the time the job
is started is used as the printer device name.

*USRPRF
The printer device name is obtained from the user profile of
the job at the time the job is started.

*WRKSTN
The printer device name is obtained from the work station
where the job was started.

PRINT_TEXT PRINT_TEXT VARCHAR(30)
Nullable

The line of text that is printed at the bottom of each page of
printed output for jobs using this job description. Can contain the
following special value:

*SYSVAL
The value in the system value QPRTTXT is used for jobs
using this job description.

Contains the null value if there is no text to print.

JOB_MESSAGE_QUEUE
_MAXIMUM_SIZE

MSGQ_MAX SMALLINT
Nullable

The maximum size (in megabytes) of the job message queue.
The possible values are 2 to 64.

Contains the null value if the maximum size is set by system
value QJOBMSGQMX at the time the job is started.

Database performance and query optimization 451

Table 117. JOB_DESCRIPTION_INFO view (continued)

Column Name System Column Name Data Type Description

JOB_MESSAGE_QUEUE_FULL
_ACTION

MSGQ_FULL VARCHAR(8) The action taken when the job message queue becomes full.

*NOWRAP
When the message queue becomes full, do not wrap. This
action will cause the job to end.

*PRTWRAP
When the message queue becomes full, wrap the job
queue and print the messages that are being overlaid.

*SYSVAL
The value is specified by the system value QJOBMSGQFL.

*WRAP
When the message queue becomes full, wrap to the
beginning and start filling again.

SYNTAX_CHECK_SEVERITY SYNTAX SMALLINT
Nullable

Whether requests placed on the job's message queue are
checked for syntax as CL commands, and the message severity
that causes a syntax error to end processing of a job. The
possible values are:

0-99
Specifies the lowest message severity that causes a
running job to end. The request data is checked for syntax
as CL commands, and, if a syntax error occurs that is
greater than or equal to the error message severity
specified here, the running of the job that contains the
erroneous command is suppressed.

Contains the null value if the request data is not checked for
syntax as CL commands.

JOB_END_SEVERITY JOB_ENDSEV SMALLINT The message severity level of escape messages that can cause a
batch job to end. The batch job ends when a request in the batch
input stream sends an escape message whose severity is equal
to or greater than this value to the request processing program.
The possible values are from 0 through 99.

JOBLOG_OUTPUT JOBLOG_OUT VARCHAR(10) How the job log will be produced when the job completes. This
does not affect job logs produced when the message queue is
full and the job message queue full action specifies *PRTWRAP.
Messages in the job message queue are written to a spooled file,
from which the job log can be printed, unless the Control Job Log
Output (QMHCTLJL) API was used in the job to specify that the
messages in the job log are to be written to a database file.

The job log output value can be changed at any time until the job
log has been produced or removed. To change the job log output
value for a job, use the Change Job (QWTCHGJB) API or the
Change Job (CHGJOB) command.

The job log can be displayed at any time until the job log has
been produced or removed. To display the job log, use the
Display Job Log (DSPJOBLOG) command.

The job log can be removed when the job has completed and the
job log has not yet been produced or removed. To remove the job
log, use the Remove Pending Job Log (QWTRMVJL) API or the
End Job (ENDJOB) command.

The possible values are:

*JOBEND
The job log will be produced by the job itself. If the job
cannot produce its own job log, the job log will be produced
by a job log server. For example, a job does not produce its
own job log when the system is processing a Power Down
System (PWRDWNSYS) command.

*JOBLOGSVR
The job log will be produced by a job log server. For more
information about job log servers, refer to the Start Job Log
Server (STRLOGSVR) command.

*PND
The job log will not be produced. The job log remains
pending until removed.

*SYSVAL
The value is specified by the QLOGOUTPUT system value.

452 IBM i: Database Performance and Query Optimization

Table 117. JOB_DESCRIPTION_INFO view (continued)

Column Name System Column Name Data Type Description

INQUIRY_MESSAGE_REPLY INQ_REPLY VARCHAR(8) How inquiry messages are answered for jobs that use this job
description.

*DFT
The system uses the default message reply to answer any
inquiry messages issued while the job is running. The
default reply is either defined in the message description or
is the default system reply.

*RQD
The job requires an answer for any inquiry messages that
occur while the job is running.

*SYSRPYL
The system reply list is checked to see if there is an entry
for an inquiry message issued while the job is running. If a
match occurs, the system uses the reply value for that
entry. If no entry exists for that message, the system uses
an inquiry message.

MESSAGE_LOGGING_LEVEL LOG_LEVEL SMALLINT The type of information logged.

0
No messages are logged.

1
All messages sent to the job's external message queue
with a severity greater than or equal to the message
logging severity are logged. This includes the indication of
job start, job end, and job completion status.

2
The following information is logged:

• Level 1 information.

• Request messages that result in a high-level message
with a severity code greater than or equal to the logging
severity cause the request message and all associated
messages to be logged.

Note: A high-level message is one that is sent to the
program message queue of the program that receives
the request message. For example, QCMD is an IBM-
supplied request processing program that receives
request messages.

3
The following information is logged:

• Level 1 and 2 information.

• All request messages.

• Commands run by a CL program are logged if it is
allowed by the logging of CL programs job attribute and
the log attribute of the CL program.

4
The following information is logged:

• All request messages and all messages with a severity
greater than or equal to the message logging severity,
including trace messages.

• Commands run by a CL program are logged if it is
allowed by the logging of CL programs job attribute and
the log attribute of the CL program.

MESSAGE_LOGGING_SEVERITY LOG_SEV SMALLINT The severity level that is used in conjunction with the logging
level to determine which error messages are logged in the job
log. The possible values are from 0 through 99.

Database performance and query optimization 453

Table 117. JOB_DESCRIPTION_INFO view (continued)

Column Name System Column Name Data Type Description

MESSAGE_LOGGING_TEXT LOG_TEXT VARCHAR(7) The level of message text that is written in the job log when a
message is logged according to the logging level and logging
severity.

*MSG
Only the message text is written to the job log.

*NOLIST
If the job ends normally, no job log is produced. If the job
ends abnormally (if the job end code is 20 or higher), a job
log is produced. The messages that appear in the job log
contain both the message text and the message help.

*SECLVL
Both the message text and the message help (cause and
recovery) of the error message are written to the job log.

LOG_CL_PROGRAM_COMMANDS LOG_CL VARCHAR(4) Whether or not commands are logged for CL programs that are
run.

*NO
CL programs are not logged.

*YES
CL programs are logged.

DEVICE_RECOVERY_ACTION DEVRECOVER VARCHAR(13) The action to take when an I/O error occurs for the interactive
job's requesting program device.

*DSCENDRQS
Disconnects the job when an I/O error occurs. When the
job reconnects, the system sends the End Request
(ENDRQS) command to return control to the previous
request level.

*DSCMSG
Disconnects the job when an I/O error occurs. When the
job reconnects, the system sends a message to the
application program indicating the job has reconnected and
that the workstation device has recovered.

*ENDJOB
Ends the job when an I/O error occurs. A message is sent
to the job's log and to the history log (QHST). This message
indicates that the job ended because of a device error.

*ENDJOBNOLIST
Ends the job when an I/O error occurs. There is no job log
produced for the job. The system sends a message to the
history log (QHST). This message indicates that the job
ended because of a device error.

*MSG
Signals the I/O error message to the application and lets
the application program perform error recovery.

*SYSVAL
The value in the system value QDEVRCYACN at the time the
job is started is used as the device recovery action for this
job description.

TIME_SLICE_END_POOL TIME_SLICE VARCHAR(7) Whether interactive jobs using this job description should be
moved to another main storage pool when they reach time-slice
end.

*BASE
The job is moved to the base pool when it reaches time-
slice end.

*NONE
The job is not moved when it reaches time-slice end.

*SYSVAL
The system value is used.

454 IBM i: Database Performance and Query Optimization

Table 117. JOB_DESCRIPTION_INFO view (continued)

Column Name System Column Name Data Type Description

ALLOW_MULTIPLE_THREADS ALWMLTTHD VARCHAR(4) Whether or not the job is allowed to run with multiple user
threads. This attribute does not prevent the operating system
from creating system threads in the job. This attribute is not
allowed to be changed once a job starts. This attribute applies to
autostart jobs, prestart jobs, batch jobs submitted from job
schedule entries, and jobs started by using the Submit Job
(SBMJOB) and Batch Job (BCHJOB) commands. This attribute is
ignored when starting all other types of jobs. This attribute
should be set to *YES only in job descriptions that are used
exclusively with functions that create multiple user threads.

*NO
The job is not allowed to run with multiple user threads.

*YES
The job is allowed to run with multiple user threads.

ASPGRP ASPGRP VARCHAR(10)
Nullable

The name of the ASP group. This is the name of the primary ASP
device in an ASP group or the name of an ASP device
description. This specifies the initial ASP group setting for jobs
using this job description.

Contains the null value if jobs using this job description do not
have an initial ASP group.

DDM_CONVERSATION DDM_CONV VARCHAR(5) Whether the Distributed Data Management conversations are
kept or dropped when they are not being used. The possible
values are:

*DROP
The system ends a DDM-allocated conversation when there
are no users.

*KEEP
The system keeps DDM conversation connections active
when there are no users.

Examples

• Review information about the job queues associated with each job description.

SELECT JOB_DESCRIPTION_LIBRARY, JOB_DESCRIPTION,
 JOB_QUEUE_LIBRARY, JOB_QUEUE, JOB_QUEUE_PRIORITY
 FROM QSYS2.JOB_DESCRIPTION_INFO;

• Find the job descriptions that have APPLIB1 in their library list

SELECT JOB_DESCRIPTION_LIBRARY, JOB_DESCRIPTION, LIBRARY_LIST
 FROM QSYS2.JOB_DESCRIPTION_INFO
 WHERE LIBRARY_LIST LIKE '%APPLIB1%';

• Examine the library lists for every job description.

Since the library list column returns a character string containing a list of libraries, to see the individual
library names it needs to be broken apart. To do this, you can create a table function that takes the
library list string and returns a list of library names.

CREATE OR REPLACE FUNCTION QGPL.GET_LIB_NAMES(JOBD_LIBL VARCHAR(2750),
 JOBD_LIBL_CNT INT)
 RETURNS TABLE(LIBL_POSITION INT, LIBRARY_NAME VARCHAR(10))
 BEGIN
 DECLARE IN_POS INT;
 DECLARE LIB_CNT INT;
 SET IN_POS = 1;
 SET LIB_CNT = 1;
 WHILE LIB_CNT <= JOBD_LIBL_CNT
 DO
 PIPE (LIB_CNT, RTRIM((SUBSTR(JOBD_LIBL, IN_POS, 10))));
 SET IN_POS = IN_POS + 11;
 SET LIB_CNT = LIB_CNT + 1;
 END WHILE;
 RETURN;
 END;

Database performance and query optimization 455

Now this function can be used to return the list of library names.

SELECT JOB_DESCRIPTION, JOB_DESCRIPTION_LIBRARY, LIBL_POSITION, LIBRARY_NAME
 FROM QSYS2.JOB_DESCRIPTION_INFO,
 TABLE (QGPL.GET_LIB_NAMES(LIBRARY_LIST, LIBRARY_LIST_COUNT)) X;

GET_JOB_INFO table function
The GET_JOB_INFO table function returns one row containing the information about a specific job.

GET_JOB_INFO (job-name)

The schema is QSYS2.

To invoke this function, the caller must have *JOBCTL user special authority, or QIBM_DB_SQLADM or
QIBM_DB_SYSMON function usage authority.

job-name
A character or graphic string expression that identifies the name of a job. The special value of '*'
indicates the current job.

The result of the function is a table containing a single row with the format shown in the following table.
All the columns are nullable.

Table 118. GET_JOB_INFO table function

Column Name Data Type Description

V_JOB_STATUS CHAR(10) Status of the job.

*ACTIVE
Job is active. It could be a group job, system request job, or disconnected
job.

*COMPLETE
Job is complete and job status information is no longer accessible.

*JOBQ
Job is currently on job queue.

*OUTQ
Job has completed running but has output on an output queue or the job
log has not yet been written.

V_ACTIVE_JOB _STATUS CHAR(4) The active status of the initial thread of the job.

For the list of values see Work Management API Attribute Descriptions in
Application Programming Interfaces and search on "Active job status".

V_RUN_PRIORITY INTEGER The highest run priority allowed for any thread within this job.

V_SBS_NAME CHAR(10) Name of subsystem where job is running.

V_CPU_USED BIGINT The amount of CPU time (in milliseconds) that has been currently used by this
job.

V_TEMP_STORAGE_USED_MB INTEGER The amount of auxiliary storage (in megabytes) that is currently allocated to this
job.

V_AUX_IO_REQUESTED BIGINT The number of auxiliary I/O requests performed by the job across all routing
steps. This includes both database and nondatabase paging.

V_PAGE_FAULTS BIGINT The number of times an active program referenced an address that was not in
main storage during the current routing step of the specified job.

V_CLIENT_WRKSTNNAME CHAR(255) Value of the SQL CLIENT_WRKSTNNAME special register.

V_CLIENT_APPLNAME CHAR(255) Value of the SQL CLIENT_APPLNAME special register.

V_CLIENT_ACCTNG CHAR(255) Value of the SQL CLIENT_ACCTNG special register.

V_CLIENT_PROGRAMID CHAR(255) Value of the SQL CLIENT_PROGRAMID special register.

V_CLIENT_USERID CHAR(255) Value of the SQL CLIENT_USERID special register.

V_SQL_STATEMENT_TEXT VARCHAR(10000) Statement text of the last SQL statement to run or the SQL statement that is
currently running.

456 IBM i: Database Performance and Query Optimization

Table 118. GET_JOB_INFO table function (continued)

Column Name Data Type Description

V_SQL_STMT_STATUS CHAR(8) The status of SQL within this job.

ACTIVE
An SQL statement is currently running

COMPLETE
At least one SQL statement has run and has completed

Returns null if no SQL statement has been run.

V_SQL_STMT_START_TIMESTAMP TIMESTAMP The timestamp of the execution start for an active SQL statement. If there is no
active SQL statement, the null value is returned.

V_QUERY_OPTIONS_LIB_NAME CHAR(10) The name of the QAQQINI options library in use for this job.

V_CLIENT_IP_ADDRESS VARCHAR(45) Client IP address being used by the job.

Returns null when no client IP address exists or the job is using IPv6.

V_PJ_REUSE_COUNT INTEGER The number of times the prestart job has been used. The prestart job reuse
count is incremented when a disconnect is processed for a prestart job. When
the prestart job reuse count exceeds the prestart job maximum number of uses,
the job is ended.

Returns null if the job is not active or if the job is not a prestart job.

V_PJ_MAXUSE_COUNT INTEGER The maximum number of times the prestart job can be used before it is ended. A
value of -1 is returned for *NOMAX.

Returns null if the job is not active or if the job is not a prestart job.

Example

Return information about job 347117/Quser/Qzdasoinit.

SELECT * FROM TABLE(QSYS2.GET_JOB_INFO('347117/Quser/Qzdasoinit')) A

JOB_INFO table function
The JOB_INFO table function returns one row for each job meeting the selection criteria. It returns
information similar to what is returned by the Work with User Jobs (WRKUSRJOB), Work with Subsystem
Jobs (WRKSBSJOB), and Work with Submitted Jobs (WRKSBMJOB) CL commands and the List Job
(QUSLJOB) API.

JOB_INFO (

JOB_STATUS_FILTER =>

job-status-filter

,

JOB_TYPE_FILTER =>

job-type-filter

,

JOB_SUBSYSTEM_FILTER =>

job-subsystem-filter

,

JOB_USER_FILTER =>

job-user-filter

,

JOB_SUBMITTER_FILTER =>

job-submitter-filter

)

The schema is QSYS2.

Database performance and query optimization 457

Authorization: None required.

job-status-filter
A character or graphic string expression that specifies the value to use as the job status filtering
criteria. The string must be one of the following special values:
*ALL

Jobs of any status including jobs on job queues, active jobs, and jobs on an output queue.
*ACTIVE

Jobs that are active. You can use the QSYS2.ACTIVE_JOB_INFO table function to get additional
details for these jobs.

*JOBQ
Jobs that are not active because they are waiting on a job queue.

*OUTQ
Jobs that have completed execution and have output on an output queue.

If this parameter is not provided, a value of *ALL is used.

job-type-filter
A character or graphic string expression that specifies the value to use as the job type filtering criteria.
The string must be one of the following special values:
*ALL

All types of user jobs, including interactive jobs and batch jobs.
*BATCH

Only batch user jobs, including prestart jobs, batch immediate jobs, and autostart jobs.
*INTERACT

Only interactive user jobs.

If this parameter is not provided, a value of *ALL is used.

job-subsystem-filter
A character or graphic string expression that specifies the subsystem value to use as the job
subsystem filtering criteria. The string can be a subsystem name or the following value:
*ALL

All jobs in all subsystems, including jobs that are on job queues and on output queues.

If a subsystem name is provided, only active jobs and jobs that are on job queues are found.

If this parameter is not provided, a value of *ALL is used.

job-user-filter
The USER special register or a character or graphic string expression that specifies the user profile
name to use as the job user filtering criteria.
The string can be a user name or one of the following special values:
*ALL

All jobs being processed under all user names.
*USER

The user part of the qualified job name.
The USER special register is specified as a non-string value. It represents the current user of the job
invoking the function.
If this parameter is not provided, the value of the USER special register is used.

job-submitter-filter
A character or graphic string expression that specifies the type of submitted jobs to return. The string
must be one of the following values:
*ALL

All submitted jobs.

458 IBM i: Database Performance and Query Optimization

*JOB
Jobs that were submitted from the same job that is invoking this function.

*USER
Jobs that were submitted from a job having the same user profile as the job invoking this function.

*WRKSTN
Jobs that were submitted from the same work station as the job invoking this function.

If this parameter is not provided, a value of *ALL is used.

Restrictions:

• Only one of these filters can have a value other than *ALL: job-subsystem-filter and job-submitter-filter.
• If a value other than *ALL is specified for job-submitter-filter, you must specify *ALL for job-user-filter.

Notes:

• Jobs submitted with *NO specified for the Allow display by WRKSBMJOB (DSPSBMJOB) parameter of
the SBMJOB command are not returned by this table function.

For each of the WRKSBMJOB, WRKSBSJOB, and WRKUSRJOB CL commands shown below, the
corresponding invocation of JOB_INFO will return the same list of jobs. Note that to get exact
equivalence, predicates must be added to some queries to achieve equivalent results:

• For equivalence with WRKUSRJOB, a query must always include the predicate WHERE JOB_TYPE NOT
IN ('SBS','SYS','RDR','WTR')

• For equivalence with WRKSBSJOB SBS(*OUTQ) or WRKSBSJOB SBS(*ALL), a query must always include
the predicate WHERE JOB_TYPE NOT IN ('SBS','SYS')

Table 119. Equivalent CL command and JOB_INFO invocations

CL Command CL Parameters JOB_INFO invocation

WRKSBMJOB SBMFROM(*USER) SELECT * FROM TABLE(QSYS2.JOB_INFO(
 JOB_SUBMITTER_FILTER => '*USER',
 JOB_USER_FILTER => '*ALL'
)) X

SBMFROM(*WRKST
N)

SELECT * FROM TABLE(QSYS2.JOB_INFO(
 JOB_SUBMITTER_FILTER => '*WRKSTN',
 JOB_USER_FILTER => '*ALL'
)) X

SBMFROM(*JOB) SELECT * FROM TABLE(QSYS2.JOB_INFO(
 JOB_SUBMITTER_FILTER => '*JOB',
 JOB_USER_FILTER => '*ALL'
)) X

Database performance and query optimization 459

Table 119. Equivalent CL command and JOB_INFO invocations (continued)

CL Command CL Parameters JOB_INFO invocation

WRKSBSJOB SBS(QBATCH)
USER(*ALL)

SELECT * FROM TABLE(QSYS2.JOB_INFO(
 JOB_SUBSYSTEM_FILTER => 'QBATCH',
 JOB_USER_FILTER => '*ALL'
)) X

SBS(*JOBQ)
USER(*ALL)

SELECT * FROM TABLE(QSYS2.JOB_INFO(
 JOB_STATUS_FILTER => '*JOBQ',
 JOB_USER_FILTER => '*ALL'
)) X

SBS(*OUTQ)
USER(JOEUSER)

SELECT * FROM TABLE(QSYS2.JOB_INFO(
 JOB_STATUS_FILTER => '*OUTQ',
 JOB_USER_FILTER => 'JOEUSER'
)) X
WHERE JOB_TYPE NOT IN ('SBS','SYS')

SBS(*ALL)
USER(*ALL)

SELECT * FROM TABLE(QSYS2.JOB_INFO(
 JOB_STATUS_FILTER => '*ALL',
 JOB_USER_FILTER => '*ALL'
)) X
WHERE JOB_TYPE NOT IN ('SBS','SYS')

WRKUSRJOB USER(*)
STATUS(*ALL)
JOBTYPE(*ALL)

SELECT * FROM TABLE(QSYS2.JOB_INFO(
)) X
WHERE JOB_TYPE NOT IN ('SBS','SYS','RDR','WTR')

USER(*)
STATUS(*ALL)
JOBTYPE(*INTERAC
T)

SELECT * FROM TABLE(QSYS2.JOB_INFO(
 JOB_TYPE_FILTER => '*INTERACT'
)) X
WHERE JOB_TYPE NOT IN ('SBS','SYS','RDR','WTR')

USER(JOEUSER)
STATUS(*ACTIVE)
JOBTYPE(*ALL)

SELECT * FROM TABLE(QSYS2.JOB_INFO(
 JOB_USER_FILTER => 'JOEUSER',
 JOB_STATUS_FILTER => '*ACTIVE'
)) X
WHERE JOB_TYPE NOT IN ('SBS','SYS','RDR','WTR')

USER(*)
STATUS(*OUTQ)
JOBTYPE(*ALL)

SELECT * FROM TABLE(QSYS2.JOB_INFO(
 JOB_STATUS_FILTER => '*OUTQ'
)) X
WHERE JOB_TYPE NOT IN ('SBS','SYS','RDR','WTR')

USER(*ALL)
STATUS(*JOBQ)
JOBTYPE(*BATCH)

SELECT * FROM TABLE(QSYS2.JOB_INFO(
 JOB_USER_FILTER => '*ALL',
 JOB_STATUS_FILTER => *JOBQ',
 JOB_TYPE_FILTER =>'*BATCH'
)) X
WHERE JOB_TYPE NOT IN ('SBS','SYS','RDR','WTR')

The result of the function is a table containing multiple rows with the format shown in the following table.
All the columns are nullable.

Table 120. JOB_INFO table function

Column Name Data Type Description

JOB_NAME VARCHAR(28) The qualified job name.

460 IBM i: Database Performance and Query Optimization

Table 120. JOB_INFO table function (continued)

Column Name Data Type Description

JOB_INFORMATION VARCHAR(12) Indicates whether information is available for the job.

NO
The information is not available because the job was not
accessible.

YES
The information is available.

When this value is NO, all columns other than JOB_NAME return the
null value.

JOB_STATUS VARCHAR(6) The status of the job.

ACTIVE
The job has started, and it can use system resources (processing
unit, main storage, and so on). This does not guarantee that the
job is currently running, however. For example, an active job may
be in one of the following states where it is not in a position to
use system resources:

• The Hold Job (HLDJOB) command holds the job; the Release
Job (RLSJOB) command allows the job to run again.

• The Transfer Group Job (TFRGRPJOB) or Transfer Secondary
Job (TFRSECJOB) command suspends the job. When control
returns to the job, the job can run again.

• The job is disconnected using the Disconnect Job (DSCJOB)
command. When the interactive user signs back on, thereby
connecting back into the job, the job can run again.

• The job is waiting for any reason. For example, when the job
receives the reply for an inquiry message, the job can start
running again.

JOBQ
The job is currently on a job queue. The job possibly was
previously active and was placed back on the job queue because
of the Transfer Job (TFRJOB) or Transfer Batch Job
(TFRBCHJOB) command, or the job was never active because it
was just submitted.

OUTQ
The job has completed running and has spooled output that has
not yet printed or the job's job log has not yet been written.

JOB_TYPE VARCHAR(3) The type of job.

ASJ
Autostart

BCH
Batch

BCI
Batch Immediate

EVK
Started by a procedure start request

INT
Interactive

M36
Advanced 36 server job

MRT
Multiple requester terminal

PDJ
Print driver job

PJ
Prestart job

RDR
Spool reader

SBS
Subsystem monitor

SYS
System

WTR
Spool writer

Database performance and query optimization 461

Table 120. JOB_INFO table function (continued)

Column Name Data Type Description

JOB_TYPE_ENHANCED VARCHAR(28) The combined job type and job subtype values.

ALTERNATE_SPOOL_USER
Batch - alternate spool user

AUTOSTART
Autostart job

BATCH
Batch job

BATCH_IMMEDIATE
Batch immediate job

BATCH_MRT
Batch - System/36 multiple requester terminal (MRT) job

COMM_PROCEDURE_START_REQUEST
Communications job - procedure start request job

INTERACTIVE
Interactive job

INTERACTIVE_GROUP
Interactive job - Part of group

INTERACTIVE_SYSREQ
Interactive job - Part of system request pair

INTERACTIVE_SYSREQ_AND_GROUP
Interactive job - Part of system request pair and part of a group

PRESTART
Prestart job

PRESTART_BATCH
Prestart batch job

PRESTART_COMM
Prestart communications job

READER
Reader job

SUBSYSTEM
Subsystem job

SYSTEM
System job (all system jobs including SCPF)

WRITER
Writer job (including both spool writers and print drivers)

JOB_SUBSYSTEM VARCHAR(10) The name of the subsystem for the job.

Contains the null value if the job has no subsystem.

JOB_DATE VARCHAR(10) The date that is assigned to the job, in *ISO format. The job date
remains the same for the duration of the job unless it is changed by
the user. Can also contain the following special value:

SYSVAL
This job will use the system date.

Contains the null value if JOB_STATUS is OUTQ.

JOB_DESCRIPTION_LIBRARY VARCHAR(10) The name of the library containing the job description.

Contains the null value if JOB_DESCRIPTION is null.

JOB_DESCRIPTION VARCHAR(10) The name of the job description used for this job.

Contains the null value if the job has no job description.

JOB_ACCOUNTING_CODE VARCHAR(15) An identifier assigned to the job by the system to collect resource use
information for the job when job accounting is active.

Contains the null value if the job has no accounting code.

SUBMITTER_JOB_NAME VARCHAR(28) The qualified job name of the submitter's job.

Contains the null value if the job has no submitter.

SUBMITTER_MESSAGE_QUEUE_LIBRARY VARCHAR(10) The name of the library containing the message queue.

Contains the null value if the job has no submitter.

SUBMITTER_MESSAGE_QUEUE VARCHAR(10) The name of the message queue where the system sends a
completion message when a batch job ends.

Contains the null value if the job has no submitter.

462 IBM i: Database Performance and Query Optimization

Table 120. JOB_INFO table function (continued)

Column Name Data Type Description

SERVER_TYPE VARCHAR(30) The type of server represented by the job. See Server table for a list of
server type values.

Contains the null value if the job is not part of a server.

JOB_ENTERED_SYSTEM_TIME TIMESTAMP(0) The timestamp for when the job was placed on the system.

JOB_SCHEDULED_TIME TIMESTAMP(0) The timestamp for when the job is scheduled to become active.

Contains the null value if this is not a scheduled job.

JOB_ACTIVE_TIME TIMESTAMP(0) The time the job began to run on the system.

Contains the null value if the job did not become active.

JOB_END_TIME TIMESTAMP(0) The timestamp for when the job completed running on the system.

Contains the null value if the job has not ended.

JOB_END_SEVERITY SMALLINT The message severity level of escape messages that can cause a
batch job to end. The batch job ends when a request in the batch input
stream sends an escape message, whose severity is equal to or
greater than this value, to the request processing program.

COMPLETION_STATUS VARCHAR(8) The completion status of the job.

ABNORMAL
The job completed abnormally.

NORMAL
The job completed normally.

Contains the null value if this the job has not completed.

JOB_END_REASON VARCHAR(60) The most recent action that caused the job to end. Contains one of the
following values:

• JOB ENDED DUE TO A DEVICE ERROR

• JOB ENDED DUE TO A SIGNAL

• JOB ENDED DUE TO AN UNHANDLED ERROR

• JOB ENDED DUE TO THE CPU LIMIT BEING EXCEEDED

• JOB ENDED DUE TO THE DISCONNECT TIME INTERVAL BEING
EXCEEDED

• JOB ENDED DUE TO THE INACTIVITY TIME INTERVAL BEING
EXCEEDED

• JOB ENDED DUE TO THE MESSAGE SEVERITY LEVEL BEING
EXCEEDED

• JOB ENDED DUE TO THE STORAGE LIMIT BEING EXCEEDED

• JOB ENDED WHILE IT WAS STILL ON A JOB QUEUE

• JOB ENDING ABNORMALLY

• JOB ENDING IMMEDIATELY

• JOB ENDING IN NORMAL MANNER

• JOB ENDING NORMALLY AFTER A CONTROLLED END WAS
REQUESTED

• SYSTEM ENDED ABNORMALLY

Contains the null value if job is not currently ending.

JOB_QUEUE_LIBRARY VARCHAR(10) The name of the library containing the job queue.

Contains the null value if JOB_STATUS is OUTQ or if job is not on a job
queue and the job is not a batch job that was started from a job queue.

JOB_QUEUE_NAME VARCHAR(10) The name of the job queue that the job is currently on, or that the job
was on if it is currently active.

Contains the null value if JOB_STATUS is OUTQ or if job is not on a job
queue and the job is not a batch job that was started from a job queue.

Database performance and query optimization 463

Table 120. JOB_INFO table function (continued)

Column Name Data Type Description

JOB_QUEUE_STATUS VARCHAR(9) The status of this job on the job queue.

HELD
This job is being held on the job queue.

RELEASED
This job is ready to be selected.

SCHEDULED
This job will run as scheduled.

Contains the null value if the job is not on a job queue.

JOB_QUEUE_PRIORITY SMALLINT The scheduling priority of the job compared to other jobs on the same
job queue. The highest priority is 0 and the lowest is 9.

Contains the null value if JOB_STATUS is not JOBQ.

JOB_QUEUE_TIME TIMESTAMP(0) The timestamp when the job was put on the job queue.

Contains the null value if this the job is not on a job queue.

JOB_MESSAGE_QUEUE_MAXIMUM_SIZE SMALLINT The maximum size, in megabytes, that the job message queue can
become. The range is 2 to 64.

Contains the null value if JOB_QUEUE_NAME is null.

JOB_MESSAGE_QUEUE_FULL_ACTION VARCHAR(8) The action to take when the message queue is full.

*NOWRAP
When the job message queue is full, do not wrap. This action
causes the job to end.

*PRTWRAP
When the job message queue is full, wrap the message queue
and print the messages that are being overlaid because of the
wrapping.

*WRAP
When the job message queue is full, wrap to the beginning and
start filling again.

Contains the null value if JOB_QUEUE_NAME is null.

ALLOW_MULTIPLE_THREADS VARCHAR(3) Indicates whether this job allows multiple user threads. This attribute
does not prevent the operating system from creating system threads
in the job.

NO
This job does not allow multiple user threads.

YES
This job allows multiple user threads.

PEAK_TEMPORARY_STORAGE INTEGER The maximum amount of auxiliary storage, in megabytes, that the job
has used.

Contains the null value if JOB_STATUS is OUTQ or for a job on a job
queue if a value has not been set for the job.

DEFAULT_WAIT INTEGER The default maximum time, in seconds, that a thread in the job waits
for a system instruction, such as a LOCK machine interface (MI)
instruction, to acquire a resource.

Contains the null value if there is no maximum, if JOB_STATUS is
OUTQ, or for a job on a job queue if a value has not been set for the
job.

MAXIMUM_PROCESSING_TIME_
ALLOWED

INTEGER The maximum processing unit time, in milliseconds, that the job can
use. If the job consists of multiple routing steps, this is the maximum
processing unit time that the current routing step can use. If the
maximum time is exceeded, the job is held.

Contains the null value if JOB_STATUS is OUTQ or if no maximum
amount of processing unit time has been defined.

464 IBM i: Database Performance and Query Optimization

Table 120. JOB_INFO table function (continued)

Column Name Data Type Description

MAXIMUM_TEMPORARY_STORAGE_
ALLOWED

INTEGER The maximum amount of auxiliary storage, in megabytes, that the job
can use. If the job consists of multiple routing steps, this is the
maximum temporary storage that the routing step can use. This
temporary storage is used for storage required by the program itself
and by implicitly created internal system objects used to support the
routing step. (It does not include storage for objects in the QTEMP
library.) If the maximum temporary storage is exceeded, the job is
held. This does not apply to the use of permanent storage, which is
controlled through the user profile.

Contains the null value if JOB_STATUS is OUTQ or if no maximum
amount of temporary storage has been defined.

TIME_SLICE INTEGER The maximum amount of processor time, in milliseconds, given to
each thread in this job before other threads in this job and in other
jobs are given the opportunity to run. The time slice establishes the
amount of time needed by a thread in this job to accomplish a
meaningful amount of processing. At the end of the time slice, the
thread might be put in an inactive state so that other threads can
become active in the storage pool. Values range from 8 through
9999999.

Contains the null value if JOB_STATUS is OUTQ or for a job on a job
queue if a value has not been set for the job.

JOB_SWITCHES CHAR(8) The current setting of the job switches used by this job.

Contains the null value no job switches are set.

ROUTING_DATA VARCHAR(80) The routing data that is used to determine the routing entry that
identifies the program to start for the routing step.

Contains the null value if there is no routing data for this job.

CCSID INTEGER The coded character set identifier (CCSID) used for this job.

Contains the null value if no CCSID is defined for this job.

CHARACTER_IDENTIFIER_CONTROL VARCHAR(9) The character identifier control for the job. This attribute controls the
type of CCSID conversion that occurs for display files, printer files, and
panel groups. The *CHRIDCTL special value must be specified on the
CHRID command parameter on the create, change, or override
command for display files, printer files, and panel groups before this
attribute will be used.

*DEVD
The *DEVD special value performs the same function as on the
CHRID command parameter for display files, printer files, and
panel groups.

*JOBCCSID
The *JOBCCSID special value performs the same function as on
the CHRID command parameter for display files, printer files,
and panel groups.

SORT_SEQUENCE_LIBRARY VARCHAR(10) The name or the library that contains the sort sequence table.

Contains the null value if no sort sequence table is defined for this job
or if SORT_SEQUENCE_NAME is a special value.

SORT_SEQUENCE_NAME VARCHAR(10) The name of the sort sequence table associated with this job.

Contains the null value if no sort sequence table is defined for this job.

LANGUAGE_ID CHAR(3) The language identifier associated with this job.

COUNTRY_ID CHAR(2) The country or region identifier associated with this job.

DATE_FORMAT CHAR(4) The date format used for this job.

*DMY
Day, month, year format.

*JUL
Julian format (year and day).

*MDY
Month, day, year format.

*YMD
Year, month, day format.

DATE_SEPARATOR CHAR(1) The date separator used for this job.

TIME_SEPARATOR CHAR(1) The time separator used for this job.

Database performance and query optimization 465

Table 120. JOB_INFO table function (continued)

Column Name Data Type Description

DECIMAL_FORMAT VARCHAR(6) The decimal format used for this job.

*BLANK
Uses a period for a decimal point, a comma for a 3-digit grouping
character, and zero-suppress to the left of the decimal point.

J
Uses a comma for a decimal point and a period for a 3-digit
grouping character. The zero-suppression character is in the
second position (rather than the first) to the left of the decimal
notation. Balances with zero values to the left of the comma are
written with one leading zero (0,04). The J entry also overrides
any edit codes that might suppress the leading zero.

I
Uses a comma for a decimal point, a period for a 3-digit grouping
character, and zero-suppress to the left of the decimal point.

TIME_ZONE_DESCRIPTION_NAME VARCHAR(10) The name of the time zone description that is used to calculate local
job time.

MESSAGE_LOGGING_LEVEL SMALLINT The type of information that is logged.

0
No messages are logged.

1
All messages sent to the job's external message queue with a
severity greater than or equal to the message logging severity
are logged. This includes the indication of job start, job end and
job completion status.

2
The following information is logged:

• Level 1 information

• Request messages that result in a high-level message with a
severity code greater than or equal to the logging severity
cause the request message and all associated messages to be
logged.

Note: A high-level message is one that is sent to the program
message queue of the program that receives the request
message. For example, QCMD is an IBM-supplied request
processing program that receives request messages.

3
The following information is logged:

• Level 1 and 2 information

• All request messages

• Commands run by a CL program are logged if it is allowed by
the logging of CL programs job attribute and the log attribute
of the CL program.

4
The following information is logged:

• All request messages and all messages with a severity greater
than or equal to the message logging severity, including trace
messages.

• Commands run by a CL program are logged if it is allowed by
the logging of CL programs job attribute and the log attribute
of the CL program.

MESSAGE_LOGGING_SEVERITY SMALLINT The severity level that is used in conjunction with the logging level to
determine which error messages are logged in the job log. The values
range from 0 through 99.

466 IBM i: Database Performance and Query Optimization

Table 120. JOB_INFO table function (continued)

Column Name Data Type Description

MESSAGE_LOGGING_TEXT VARCHAR(7) The level of message text that is written in the job log when a message
is logged according to the logging level and logging severity.

*MSG
Only the message text is written to the job log.

*NOLIST
If the job ends normally, no job log is produced. If the job ends
abnormally (the job end code is 20 or higher), a job log is
produced. The messages that appear in the job log contain both
the message text and the message help.

*SECLVL
Both the message text and the message help (cause and
recovery) of the error message are written to the job log.

LOG_CL_PROGRAM_COMMANDS VARCHAR(4) Specifies whether or not commands are logged for CL programs that
are run.

*NO
Commands are not logged.

*YES
Commands are logged.

STATUS_MESSAGE VARCHAR(7) Specifies whether status messages are displayed for this job.

*NONE
This job does not display status messages.

*NORMAL
This job displays status messages.

INQUIRY_MESSAGE_REPLY VARCHAR(8) Specifies how the job answers inquiry messages.

*RQD
The job requires an answer for any inquiry messages that occur
while this job is running.

*DFT
The system uses the default message reply to answer any inquiry
messages issued while this job is running. The default reply is
either defined in the message description or is the default
system reply.

*SYSRPYL
The system reply list is checked to see if there is an entry for an
inquiry message issued while this job is running. If a match
occurs, the system uses the reply value for that entry. If no entry
exists for that message, the system uses an inquiry message.

BREAK_MESSAGE VARCHAR(7) Specifies how this job handles break messages.

*HOLD
The message queue holds break messages until a user or
program requests them. The work station user uses the Display
Message (DSPMSG) command to display the messages; a
program must issue a Receive Message (RCVMSG) command to
receive a message and handle it.

*NORMAL
The message queue status determines break message handling.

*NOTIFY
The system notifies the job's message queue when a message
arrives. For interactive jobs, the audible alarm sounds if there is
one, and the message-waiting light comes on.

JOB_LOG_OUTPUT VARCHAR(10) Specifies how the job log will be produced when the job completes.

*JOBEND
The job log will be produced by the job itself. If the job cannot
produce its own job log, the job log will be produced by a job log
server. For example, a job does not produce its own job log when
the system is processing a Power Down System (PWRDWNSYS)
command.

*JOBLOGSVR
The job log will be produced by a job log server. For more
information about job log servers, refer to the Start Job Log
Server (STRLOGSVR) command.

*PND
The job log will not be produced. The job log remains pending
until removed.

Database performance and query optimization 467

Table 120. JOB_INFO table function (continued)

Column Name Data Type Description

JOB_LOG_PENDING VARCHAR(3) Specifies whether there is a job log that has not yet been written. The
writing of the job log may become pending based on the value of the
job log output job attribute when the job completes its activity.

NO
Job log is not pending.

YES
Job log is pending.

OUTPUT_QUEUE_PRIORITY SMALLINT The output priority for spooled output files that this job produces. The
highest priority is 0, and the lowest is 9.

OUTPUT_QUEUE_LIBRARY VARCHAR(10) The name of the library that contains the default output queue.

OUTPUT_QUEUE_NAME VARCHAR(10) The name of the default output queue that is used for spooled output
produced by this job and the name of the library that contains the
output queue. The default output queue is only for spooled printer
files that specify *JOB for the output queue.

SPOOLED_FILE_ACTION VARCHAR(7) Specifies whether spooled files are accessed through job interfaces
after the job has completed is normal activity.

*DETACH
The spooled files are detached from the job when the job
completes its activity.

*KEEP
When the job completes its activity, as long as at least one
spooled file for the job exists in the system auxiliary storage pool
(ASP 1) or in a basic user ASP (ASPs 2-32), the spooled files are
kept with the job and the status of the job is updated to indicate
that the job has completed. If all remaining spooled files for the
job are in independent ASPs (ASPs 33-255), the spooled files
will be detached from the job and the job will be removed from
the system.

PRINTER_DEVICE_NAME VARCHAR(10) The printer device used for printing output from this job.

PRINT_KEY_FORMAT VARCHAR(7) Specifies whether border and header information is provided when the
Print key is pressed.

*NONE
The border and header information is not included with output
from the Print key.

*PRTBDR
The border information is included with output from the Print
key.

*PRTHDR
The header information is included with output from the Print
key.

*PRTALL
The border and header information is included with output from
the Print key.

PRINT_TEXT VARCHAR(30) The line of text that is printed at the bottom of each page of printed
output for the job.

Contains the null value if there is no text defined to print at the bottom
of each page.

DEVICE_NAME VARCHAR(10) The name of the device as identified to the system. For an interactive
job it is the device where the job started.

Contains the null value if this is not an interactive job.

468 IBM i: Database Performance and Query Optimization

Table 120. JOB_INFO table function (continued)

Column Name Data Type Description

DEVICE_RECOVERY_ACTION VARCHAR(13) The action taken for interactive jobs when an I/O error occurs for the
job's requesting program device.

*DSCENDRQS
Disconnects the job when an I/O error occurs. When the job
reconnects, the system sends the End Request (ENDRQS)
command to return control to the previous request level.

*DSCMSG
Disconnects the job when an I/O error occurs. When the job
reconnects, the system sends an error message to the
application program, indicating the job has reconnected and that
the work station device has recovered.

*ENDJOB
Ends the job when an I/O error occurs. A message is sent to the
job's log and to the history log (QHST) indicating the job ended
because of a device error.

*ENDJOBNOLIST
Ends the job when an I/O error occurs. There is no job log
produced for the job. The system sends a message to the QHST
log indicating the job ended because of a device error.

*MSG
Signals the I/O error message to the application and lets the
application program perform error recovery.

Contains the null value if this is not an interactive job.

DDM_CONVERSATION VARCHAR(5) Specifies whether connections using distributed data management
(DDM) protocols remain active when they are not being used. The
connections include APPC conversations, active TCP/IP connections
or Opti-Connect connections.

*DROP
The system ends a DDM connection when there are no users.
Examples include when an application closes a DDM file, or when
a DRDA application runs a SQL DISCONNECT statement.

*KEEP
The system keeps DDM connections active when there are no
users, except for the following:

• The routing step ends on the source system. The routing step
ends when the job ends or when the job is rerouted to another
routing step.

• The Reclaim Distributed Data Management Conversation
(RCLDDMCNV) command or the Reclaim Resources (RCLRSC)
command runs.

• A communications failure or an internal failure occurs.

• A DRDA connection to an application server not running on the
system ends.

MODE_NAME VARCHAR(8) The mode name of the advanced program-to-program
communications device that started the job. The following special
value may be returned:

*BLANK
The mode name is a blank name.

Contains the null value if the job is not using advanced program-to-
program communications (APPC).

UNIT_OF_WORK_ID CHAR(24) The unit of work ID is used to track jobs across multiple systems.

Contains the null value if the job is not associated with a source or
target system using advanced program-to-program communications
(APPC).

INTERNAL_JOB_ID BINARY(16) The internal job identifier.

Examples

• Find all interactive jobs.

SELECT * FROM TABLE(QSYS2.JOB_INFO(JOB_TYPE_FILTER => '*INTERACT')) X;

Database performance and query optimization 469

• Find jobs submitted by SCOTTF that have not been started.

SELECT * FROM TABLE(QSYS2.JOB_INFO(JOB_USER_FILTER => 'SCOTTF',
 JOB_STATUS_FILTER => '*JOBQ')) X;

JOB_QUEUE_INFO view
The JOB_QUEUE_INFO view returns one row for each job queue.

The values returned for the columns in the view are similar to the values returned by the Work with Job
Queue (WRKJOBQ) CL command and the Retrieve Job Queue Information (QSPRJOBQ) API.

Authorization: Rows will be returned for job queues when the caller has:

• Execute authority to the job queue library and

– Read authority to the job queue, or
– *JOBCTL special authority and the job queue has OPRCTL(*YES), or
– *SPLCTL special authority

The following table describes the columns in the view. The system name is JOBQ_INFO. The schema is
QSYS2.

Table 121. JOB_QUEUE_INFO view

Column Name System Column Name Data Type Description

JOB_QUEUE_NAME JOBQ VARCHAR(10) The name of the job queue.

JOB_QUEUE_LIBRARY JOBQ_LIB VARCHAR(10) The name of the library that contains the job
queue.

JOB_QUEUE_STATUS STATUS VARCHAR(8) The status of the job queue.

HELD
The queue is held.

RELEASED
The queue is released.

NUMBER_OF_JOBS JOBS INTEGER The number of jobs in the queue.

SUBSYSTEM_NAME SUB_NAME VARCHAR(10)
Nullable

The name of the subsystem that can receive jobs
from this job queue.

Contains the null value if this job queue is not
associated with an active subsystem.

SUBSYSTEM_LIBRARY_NAME SUBLIB_NAM VARCHAR(10)
Nullable

The library in which the subsystem description
resides.

Contains the null value if this job queue is not
associated with an active subsystem.

SEQUENCE_NUMBER SEQNO INTEGER
Nullable

The job queue entry sequence number. The
subsystem uses this number to determine the
order in which job queues are processed. Jobs
from the queue with the lowest sequence number
are processed first.

Contains the null value if this job queue is not
associated with an active subsystem.

MAXIMUM_ACTIVE_JOBS MAX_JOBS INTEGER
Nullable

The maximum number of jobs that can be active at
the same time through this job queue entry. A
value of -1 indicates *NOMAX, no maximum
number of jobs is defined.

Contains the null value if this job queue is not
associated with an active subsystem.

ACTIVE_JOBS ACT_JOBS INTEGER
Nullable

The current number of jobs that are active that
came through this job queue entry.

Contains the null value if this job queue is not
associated with an active subsystem.

HELD_JOBS HELD_JOBS INTEGER The current number of jobs that are in *HELD
status. This is the sum of the 10
HELD_JOBS_PRIORITY_n columns.

470 IBM i: Database Performance and Query Optimization

https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/apis/qsprjobq.htm?view=kc

Table 121. JOB_QUEUE_INFO view (continued)

Column Name System Column Name Data Type Description

RELEASED_JOBS RLS_JOBS INTEGER The current number of jobs that are in *RELEASED
status. This is the sum of the 10
RELEASED_JOBS_PRIORITY_n columns.

SCHEDULED_JOBS SCHED_JOBS INTEGER The current number of jobs that are in
*SCHEDULED status. This is the sum of the 10
SCHEDULED_JOBS_PRIORITY_n columns.

TEXT_DESCRIPTION TEXT VARCHAR(50)
Nullable

Text that describes the job queue.

Contains the null value if there is no text
description for the job queue.

OPERATOR_CONTROLLED OPR_CTRL VARCHAR(4) Whether users with job control authority are
allowed to control this job queue and manage the
jobs on the queue. Users have job control authority
if SPCAUT(*JOBCTL) is specified in their user
profile.

*NO
This queue and its jobs cannot be controlled
by users with job control authority unless
they also have other special authority.

*YES
Users with job control authority can control
the queue and manage the jobs on the
queue.

AUTHORITY_TO_CHECK ALL_AUTH VARCHAR(7) Whether the user must be the owner of the queue
in order to control the queue by holding or
releasing the queue.

*DTAAUT
Any user with *READ, *ADD, or *DELETE
authority to the job queue can control the
queue.

*OWNER
Only the owner of the job queue can control
the queue.

MAXIMUM_ACTIVE_JOBS_
PRIORITY_1

MAXIMUM1 INTEGER
Nullable

The maximum number of priority 1 jobs that can
be active at the same time. A value of -1 indicates
*NOMAX, no maximum number of jobs.

Contains the null value if this job queue is not
associated with an active subsystem.

MAXIMUM_ACTIVE_JOBS_
PRIORITY_2

MAXIMUM2 INTEGER
Nullable

The maximum number of priority 2 jobs that can
be active at the same time. A value of -1 indicates
*NOMAX, no maximum number of jobs.

Contains the null value if this job queue is not
associated with an active subsystem.

MAXIMUM_ACTIVE_JOBS_
PRIORITY_3

MAXIMUM3 INTEGER
Nullable

The maximum number of priority 3 jobs that can
be active at the same time. A value of -1 indicates
*NOMAX, no maximum number of jobs.

Contains the null value if this job queue is not
associated with an active subsystem.

MAXIMUM_ACTIVE_JOBS_
PRIORITY_4

MAXIMUM4 INTEGER
Nullable

The maximum number of priority 4 jobs that can
be active at the same time. A value of -1 indicates
*NOMAX, no maximum number of jobs.

Contains the null value if this job queue is not
associated with an active subsystem.

MAXIMUM_ACTIVE_JOBS_
PRIORITY_5

MAXIMUM5 INTEGER
Nullable

The maximum number of priority 5 jobs that can
be active at the same time. A value of -1 indicates
*NOMAX, no maximum number of jobs.

Contains the null value if this job queue is not
associated with an active subsystem.

MAXIMUM_ACTIVE_JOBS_
PRIORITY_6

MAXIMUM6 INTEGER
Nullable

The maximum number of priority 6 jobs that can
be active at the same time. A value of -1 indicates
*NOMAX, no maximum number of jobs.

Contains the null value if this job queue is not
associated with an active subsystem.

Database performance and query optimization 471

Table 121. JOB_QUEUE_INFO view (continued)

Column Name System Column Name Data Type Description

MAXIMUM_ACTIVE_JOBS_
PRIORITY_7

MAXIMUM7 INTEGER
Nullable

The maximum number of priority 7 jobs that can
be active at the same time. A value of -1 indicates
*NOMAX, no maximum number of jobs.

Contains the null value if this job queue is not
associated with an active subsystem.

MAXIMUM_ACTIVE_JOBS_
PRIORITY_8

MAXIMUM8 INTEGER
Nullable

The maximum number of priority 8 jobs that can
be active at the same time. A value of -1 indicates
*NOMAX, no maximum number of jobs.

Contains the null value if this job queue is not
associated with an active subsystem.

MAXIMUM_ACTIVE_JOBS_
PRIORITY_9

MAXIMUM9 INTEGER
Nullable

The maximum number of priority 9 jobs that can
be active at the same time. A value of -1 indicates
*NOMAX, no maximum number of jobs.

Contains the null value if this job queue is not
associated with an active subsystem.

ACTIVE_JOBS_PRIORITY_0 ACTIVE0 INTEGER
Nullable

The number of priority 0 jobs that are active.

Contains the null value if this job queue is not
associated with an active subsystem.

ACTIVE_JOBS_PRIORITY_1 ACTIVE1 INTEGER
Nullable

The number of priority 1 jobs that are active.

Contains the null value if this job queue is not
associated with an active subsystem.

ACTIVE_JOBS_PRIORITY_2 ACTIVE2 INTEGER
Nullable

The number of priority 2 jobs that are active.

Contains the null value if this job queue is not
associated with an active subsystem.

ACTIVE_JOBS_PRIORITY_3 ACTIVE3 INTEGER
Nullable

The number of priority 3 jobs that are active.

Contains the null value if this job queue is not
associated with an active subsystem.

ACTIVE_JOBS_PRIORITY_4 ACTIVE4 INTEGER
Nullable

The number of priority 4 jobs that are active.

Contains the null value if this job queue is not
associated with an active subsystem.

ACTIVE_JOBS_PRIORITY_5 ACTIVE5 INTEGER
Nullable

The number of priority 5 jobs that are active.

Contains the null value if this job queue is not
associated with an active subsystem.

ACTIVE_JOBS_PRIORITY_6 ACTIVE6 INTEGER
Nullable

The number of priority 6 jobs that are active.

Contains the null value if this job queue is not
associated with an active subsystem.

ACTIVE_JOBS_PRIORITY_7 ACTIVE7 INTEGER
Nullable

The number of priority 7 jobs that are active.

Contains the null value if this job queue is not
associated with an active subsystem.

ACTIVE_JOBS_PRIORITY_8 ACTIVE8 INTEGER
Nullable

The number of priority 8 jobs that are active.

Contains the null value if this job queue is not
associated with an active subsystem.

ACTIVE_JOBS_PRIORITY_9 ACTIVE9 INTEGER
Nullable

The number of priority 9 jobs that are active.

Contains the null value if this job queue is not
associated with an active subsystem.

RELEASED_JOBS_PRIORITY_0 RELEASED0 INTEGER The number of priority 0 jobs currently sitting on
the job queue in *RELEASED status.

RELEASED_JOBS_PRIORITY_1 RELEASED1 INTEGER The number of priority 1 jobs currently sitting on
the job queue in *RELEASED status.

RELEASED_JOBS_PRIORITY_2 RELEASED2 INTEGER The number of priority 2 jobs currently sitting on
the job queue in *RELEASED status.

RELEASED_JOBS_PRIORITY_3 RELEASED3 INTEGER The number of priority 3 jobs currently sitting on
the job queue in *RELEASED status.

RELEASED_JOBS_PRIORITY_4 RELEASED4 INTEGER The number of priority 4 jobs currently sitting on
the job queue in *RELEASED status.

472 IBM i: Database Performance and Query Optimization

Table 121. JOB_QUEUE_INFO view (continued)

Column Name System Column Name Data Type Description

RELEASED_JOBS_PRIORITY_5 RELEASED5 INTEGER The number of priority 5 jobs currently sitting on
the job queue in *RELEASED status.

RELEASED_JOBS_PRIORITY_6 RELEASED6 INTEGER The number of priority 6 jobs currently sitting on
the job queue in *RELEASED status.

RELEASED_JOBS_PRIORITY_7 RELEASED7 INTEGER The number of priority 7 jobs currently sitting on
the job queue in *RELEASED status.

RELEASED_JOBS_PRIORITY_8 RELEASED8 INTEGER The number of priority 8 jobs currently sitting on
the job queue in *RELEASED status.

RELEASED_JOBS_PRIORITY_9 RELEASED9 INTEGER The number of priority 9 jobs currently sitting on
the job queue in *RELEASED status.

SCHEDULED_JOBS_PRIORITY_0 SCHEDULED0 INTEGER The number of priority 0 jobs currently sitting on
the job queue in *SCHEDULED status.

SCHEDULED_JOBS_PRIORITY_1 SCHEDULED1 INTEGER The number of priority 1 jobs currently sitting on
the job queue in *SCHEDULED status.

SCHEDULED_JOBS_PRIORITY_2 SCHEDULED2 INTEGER The number of priority 2 jobs currently sitting on
the job queue in *SCHEDULED status.

SCHEDULED_JOBS_PRIORITY_3 SCHEDULED3 INTEGER The number of priority 3 jobs currently sitting on
the job queue in *SCHEDULED status.

SCHEDULED_JOBS_PRIORITY_4 SCHEDULED4 INTEGER The number of priority 4 jobs currently sitting on
the job queue in *SCHEDULED status.

SCHEDULED_JOBS_PRIORITY_5 SCHEDULED5 INTEGER The number of priority 5 jobs currently sitting on
the job queue in *SCHEDULED status.

SCHEDULED_JOBS_PRIORITY_6 SCHEDULED6 INTEGER The number of priority 6 jobs currently sitting on
the job queue in *SCHEDULED status.

SCHEDULED_JOBS_PRIORITY_7 SCHEDULED7 INTEGER The number of priority 7 jobs currently sitting on
the job queue in *SCHEDULED status.

SCHEDULED_JOBS_PRIORITY_8 SCHEDULED8 INTEGER The number of priority 8 jobs currently sitting on
the job queue in *SCHEDULED status.

SCHEDULED_JOBS_PRIORITY_9 SCHEDULED9 INTEGER The number of priority 9 jobs currently sitting on
the job queue in *SCHEDULED status.

HELD_JOBS_PRIORITY_0 HELD0 INTEGER The number of priority 0 jobs currently sitting on
the job queue in *HELD status.

HELD_JOBS_PRIORITY_1 HELD1 INTEGER The number of priority 1 jobs currently sitting on
the job queue in *HELD status.

HELD_JOBS_PRIORITY_2 HELD2 INTEGER The number of priority 2 jobs currently sitting on
the job queue in *HELD status.

HELD_JOBS_PRIORITY_3 HELD3 INTEGER The number of priority 3 jobs currently sitting on
the job queue in *HELD status.

HELD_JOBS_PRIORITY_4 HELD4 INTEGER The number of priority 4 jobs currently sitting on
the job queue in *HELD status.

HELD_JOBS_PRIORITY_5 HELD5 INTEGER The number of priority 5 jobs currently sitting on
the job queue in *HELD status.

HELD_JOBS_PRIORITY_6 HELD6 INTEGER The number of priority 6 jobs currently sitting on
the job queue in *HELD status.

HELD_JOBS_PRIORITY_7 HELD7 INTEGER The number of priority 7 jobs currently sitting on
the job queue in *HELD status.

HELD_JOBS_PRIORITY_8 HELD8 INTEGER The number of priority 8 jobs currently sitting on
the job queue in *HELD status.

HELD_JOBS_PRIORITY_9 HELD9 INTEGER The number of priority 9 jobs currently sitting on
the job queue in *HELD status.

Example

Database performance and query optimization 473

• Examine the job queues with the largest number of active jobs

SELECT * FROM QSYS2.JOB_QUEUE_INFO
 WHERE ACTIVE_JOBS IS NOT NULL
 ORDER BY NUMBER_OF_JOBS DESC;

MEMORY_POOL table function
The MEMORY_POOL table function returns one row for every pool.

The information returned is similar to the detail seen from the Work System Status (WRKSYSSTS)
command.

MEMORY_POOL (

RESET_STATISTICS =>

reset_statistics

)

The schema is QSYS2.

reset_statistics
A character or graphic string expression that contains a value of YES or NO.

If this parameter has a value of YES, statistics are reset such that the time of this query execution is
used as the new baseline. The columns that contain this statistical data have names that are prefixed
with ELAPSED_. Future invocations of MEMORY_POOL within this connection will return statistical
detail relative to the new baseline. If this parameter has a value of NO, statistics are not reset for the
invocation. If this parameter is not specified, the default is NO.

The result of the function is a table containing multiple rows with the format shown in the following table.
All the columns are nullable.

Table 122. MEMORY_POOL table function

Column Name Data Type Description

SYSTEM_POOL_ID INTEGER The system-related pool identifier for each of the system storage
pools that currently has main storage allocated to it.

POOL_NAME VARCHAR(10) The name of this storage pool. The name may be a number, in which
case it is a private pool associated with a subsystem, or one of the
following special values.

*MACHINE
The specified pool definition is defined to be the machine pool.

*BASE
The specified pool definition is defined to be the base system
pool, which can be shared with other subsystems.

*INTERACT
The specified pool definition is defined to be the shared pool
used for the QINTER subsystem.

*SPOOL
The specified pool definition is defined to be the shared pool
used for spooled writers.

*SHRPOOLx
The specified pool definition is defined to be a shared pool.

CURRENT_SIZE DECIMAL(20,2) The amount of main storage, in megabytes, in the pool.

RESERVED_SIZE DECIMAL(10,2) The amount of storage, in megabytes, in the pool reserved for system
use (for example, for save/restore operations).

DEFINED_SIZE DECIMAL(20,2) The size of the pool, in megabytes, as defined in the shared pool,
subsystem description, or system value QMCHPOOL. Contains the null
value for a pool without a defined size.

MAXIMUM_ACTIVE_THREADS INTEGER The maximum number of threads that can be active in the pool at any
one time.

CURRENT_THREADS INTEGER The number of threads currently using the pool.

CURRENT_INELIGIBLE_THREADS INTEGER The number of ineligible threads in the pool.

474 IBM i: Database Performance and Query Optimization

Table 122. MEMORY_POOL table function (continued)

Column Name Data Type Description

STATUS VARCHAR(8) The status of the pool.

ACTIVE
Pool is currently active.

INACTIVE
Pool is currently not active.

SUBSYSTEM_LIBRARY_NAME VARCHAR(10) The library containing the subsystem name. Contains the null value for
shared pools.

SUBSYSTEM_NAME VARCHAR(10) The subsystem with which this storage pool is associated. Contains
the null value for shared pools.

DESCRIPTION VARCHAR(50) The description of the shared pool. Contains the null value for private
pools or if a description does not exist for a shared pool.

PAGING_OPTION VARCHAR(10) Whether the system will dynamically adjust the paging characteristics
of the storage pool for optimum performance.

*FIXED
The system does not dynamically adjust the paging
characteristics.

*CALC
The system dynamically adjusts the paging characteristics.

USRDFN
The system does not dynamically adjust the paging
characteristics for the storage pool but uses values that have
been defined through the QWCCHGTN API.

ELAPSED_TIME INTEGER The time, in seconds, since the measurement start time.

ELAPSED_DATABASE_FAULTS DECIMAL(10,1) The rate, in page faults per second, of database page faults against
pages containing either database access paths or data.

ELAPSED_NON_DATABASE_FAULTS DECIMAL(10,1) The rate, in page faults per second, of nondatabase page faults
against pages other than those designated as database pages.

ELAPSED_TOTAL_FAULTS DECIMAL(10,1) The rate, in page faults per second, of database faults and non-
database faults.

ELAPSED_DATABASE_PAGES DECIMAL(10,1) The rate, in pages per second, at which database pages are brought
into the storage pool.

ELAPSED_NON_DATABASE_PAGES DECIMAL(10,1) The rate in pages per second at which nondatabase pages are brought
into the storage pool.

ELAPSED_ACTIVE_TO_WAIT DECIMAL(10,1) The rate, in transitions per minute, of transitions of threads from an
active condition to a waiting condition.

ELAPSED_WAIT_TO_INELIGIBLE DECIMAL(10,1) The rate, in transitions per minute, of transitions of threads from a
waiting condition to an ineligible condition.

ELAPSED_ACTIVE_TO_INELIGIBLE DECIMAL(10,1) The rate, in transitions per minute, of transitions of threads from an
active condition to an ineligible condition.

TUNING_PRIORITY INTEGER The priority of the shared storage pool used by the system when
making automatic performance adjustments. Contains the null value
for private pools defined in subsystem descriptions.

TUNING_MINIMUM_SIZE DECIMAL(10,2) The minimum amount of storage to allocate to the shared storage pool
(as a percentage of total main storage). Contains the null value for
private pools defined in subsystem descriptions.

TUNING_MAXIMUM_SIZE DECIMAL(10,2) The maximum amount of storage to allocate to the shared storage
pool (as a percentage of total main storage). Contains the null value
for private pools defined in subsystem descriptions.

TUNING_MINIMUM_FAULTS DECIMAL(10,2) The maximum page faults per second to use as a guideline for the
shared storage pool. Contains the null value for private pools defined
in subsystem descriptions.

TUNING_MAXIMUM_FAULTS DECIMAL(10,2) The minimum page faults per second to use as a guideline for the
shared storage pool. Contains the null value for private pools defined
in subsystem descriptions.

TUNING_THREAD_FAULTS DECIMAL(10,2) The page faults per second for each active thread to use as a guideline
for the shared storage pool. Contains the null value for private pools
defined in subsystem descriptions.

Database performance and query optimization 475

Table 122. MEMORY_POOL table function (continued)

Column Name Data Type Description

TUNING_MINIMUM_ACTIVITY DECIMAL(10,2) The minimum value that the shared pool's activity level can be set to
by the performance adjuster when the QPFRADJ system value is set to
2 or 3. Contains the null value for private pools defined in subsystem
descriptions.

TUNING_MAXIMUM_ACTIVITY DECIMAL(10,2) The maximum value that the shared pool's activity level can be set to
by the performance adjuster when the QPFRADJ system value is set to
2 or 3. Contains the null value for private pools defined in subsystem
descriptions.

Example

Return all available pool information, both private and shared, active and inactive. Specify to reset all the
elapsed values to 0.

SELECT * FROM TABLE(QSYS2.MEMORY_POOL(RESET_STATISTICS=>'YES')) X;

MEMORY_POOL_INFO view
The MEMORY_POOL_INFO view returns one row for every active pool.

The information returned is similar to the detail seen from the Work System Status (WRKSYSSTS)
command. It does not reset the statistical columns; to do this, use the associated table function,
MEMORY_POOL.

The following table describes the columns in the view. The schema is QSYS2.

Table 123. MEMORY_POOL_INFO view

Column Name System Column Name Data Type Description

SYSTEM_POOL_ID POOL_ID INTEGER The system-related pool identifier for each of the system
storage pools that currently has main storage allocated to it.

POOL_NAME POOL_NAME VARCHAR(10) The name of this storage pool. The name may be a number, in
which case it is a private pool associated with a subsystem, or
one of the following special values.

*MACHINE
The specified pool definition is defined to be the machine
pool.

*BASE
The specified pool definition is defined to be the base
system pool, which can be shared with other subsystems.

*INTERACT
The specified pool definition is defined to be the shared
pool used for the QINTER subsystem.

*SPOOL
The specified pool definition is defined to be the shared
pool used for spooled writers.

*SHRPOOLx
The specified pool definition is defined to be a shared
pool.

CURRENT_SIZE CURR_SIZE DECIMAL(20,2) The amount of main storage, in megabytes, in the pool.

RESERVED_SIZE RSVD_SIZE DECIMAL(10,2) The amount of storage, in megabytes, in the pool reserved for
system use (for example, for save/restore operations).

DEFINED_SIZE DFND_SIZE DECIMAL(20,2) The size of the pool, in megabytes, as defined in the shared
pool, subsystem description, or system value QMCHPOOL.
Contains the null value for a pool without a defined size.

MAXIMUM_ACTIVE_THREADS MAX_THREAD INTEGER The maximum number of threads that can be active in the pool
at any one time.

CURRENT_THREADS CURR_THRD INTEGER The number of threads currently using the pool.

CURRENT_INELIGIBLE_THREADS INEL_THRD INTEGER The number of ineligible threads in the pool.

SUBSYSTEM_LIBRARY_NAME SUBLIB_NAM VARCHAR(10)

Nullable

The library containing the subsystem name. Contains the null
value for shared pools.

476 IBM i: Database Performance and Query Optimization

Table 123. MEMORY_POOL_INFO view (continued)

Column Name System Column Name Data Type Description

SUBSYSTEM_NAME SUB_NAME VARCHAR(10)

Nullable

The subsystem with which this storage pool is associated.
Contains the null value for shared pools.

DESCRIPTION DESC VARCHAR(50)

Nullable

The description of the shared pool. Contains the null value for
private pools or if a description does not exist for a shared pool.

PAGING_OPTION PAGE_OPT VARCHAR(10) Whether the system will dynamically adjust the paging
characteristics of the storage pool for optimum performance.

*FIXED
The system does not dynamically adjust the paging
characteristics.

*CALC
The system dynamically adjusts the paging
characteristics.

USRDFN
The system does not dynamically adjust the paging
characteristics for the storage pool but uses values that
have been defined through the QWCCHGTN API.

ELAPSED_TIME ELAP_TIME INTEGER The time, in seconds, since the measurement start time.

ELAPSED_DATABASE_FAULTS ELAP_DBF DECIMAL(10,1) The rate, in page faults per second, of database page faults
against pages containing either database access paths or data.

ELAPSED_NON_DATABASE_FAULTS ELAP_NDBF DECIMAL(10,1) The rate, in page faults per second, of nondatabase page faults
against pages other than those designated as database pages.

ELAPSED_TOTAL_FAULTS ELAP_TOTF DECIMAL(10,1) The rate, in page faults per second, of database faults and non-
database faults.

ELAPSED_DATABASE_PAGES ELAP_DBP DECIMAL(10,1) The rate, in pages per second, at which database pages are
brought into the storage pool.

ELAPSED_NON_DATABASE_PAGES ELAP_NDBP DECIMAL(10,1) The rate in pages per second at which nondatabase pages are
brought into the storage pool.

ELAPSED_ACTIVE_TO_WAIT ELAP_ATW DECIMAL(10,1) The rate, in transitions per minute, of transitions of threads
from an active condition to a waiting condition.

ELAPSED_WAIT_TO_INELIGIBLE ELAP_WTI DECIMAL(10,1) The rate, in transitions per minute, of transitions of threads
from a waiting condition to an ineligible condition.

ELAPSED_ACTIVE_TO_INELIGIBLE ELAP_ATI DECIMAL(10,1) The rate, in transitions per minute, of transitions of threads
from an active condition to an ineligible condition.

TUNING_PRIORITY TUN_PRIOR INTEGER

Nullable

The priority of the shared storage pool used by the system
when making automatic performance adjustments. Contains
the null value for private pools defined in subsystem
descriptions.

TUNING_MINIMUM_SIZE TUN_MIN_SZ DECIMAL(10,2)

Nullable

The minimum amount of storage to allocate to the shared
storage pool (as a percentage of total main storage). Contains
the null value for private pools defined in subsystem
descriptions.

TUNING_MAXIMUM_SIZE TUN_MAX_SZ DECIMAL(10,2)

Nullable

The maximum amount of storage to allocate to the shared
storage pool (as a percentage of total main storage). Contains
the null value for private pools defined in subsystem
descriptions.

TUNING_MINIMUM_FAULTS TUN_MIN_FT DECIMAL(10,2)

Nullable

The maximum page faults per second to use as a guideline for
the shared storage pool. Contains the null value for private
pools defined in subsystem descriptions.

TUNING_MAXIMUM_FAULTS TUN_MAX_FT DECIMAL(10,2)

Nullable

The minimum page faults per second to use as a guideline for
the shared storage pool. Contains the null value for private
pools defined in subsystem descriptions.

TUNING_THREAD_FAULTS TUN_THR_FT DECIMAL(10,2)

Nullable

The page faults per second for each active thread to use as a
guideline for the shared storage pool. Contains the null value
for private pools defined in subsystem descriptions.

TUNING_MINIMUM_ACTIVITY TUN_MIN_AC DECIMAL(10,2)

Nullable

The minimum value that the shared pool's activity level can be
set to by the performance adjuster when the QPFRADJ system
value is set to 2 or 3. Contains the null value for private pools
defined in subsystem descriptions.

Database performance and query optimization 477

Table 123. MEMORY_POOL_INFO view (continued)

Column Name System Column Name Data Type Description

TUNING_MAXIMUM_ACTIVITY TUN_MAX_AC DECIMAL(10,2)

Nullable

The maximum value that the shared pool's activity level can be
set to by the performance adjuster when the QPFRADJ system
value is set to 2 or 3. Contains the null value for private pools
defined in subsystem descriptions.

Example

Return all active pool information.

SELECT * FROM QSYS2.MEMORY_POOL_INFO;

OBJECT_LOCK_INFO view
The OBJECT_LOCK_INFO view returns one row for every lock held for every object on the partition in
*SYSBAS and in the current thread's ASP group.

The values returned for the columns in the view are closely related to the values returned by Retrieve
Lock Information API and Retrieve Lock Request Information API. Refer to the APIs for more detailed
information.

When querying this view, you should use a WHERE clause to restrict the result set to avoid excessive use
of system resources.

The following table describes the columns in the view. The schema is QSYS2.

Table 124. OBJECT_LOCK_INFO view

Column Name System Column Name Data Type Description

OBJECT_SCHEMA OSCHEMA VARCHAR(128) The name of the schema containing the object.

OBJECT_NAME NAME VARCHAR(128) The name of the object.

SYSTEM_OBJECT_SCHEMA SYS_DNAME VARCHAR(10) The system library name of the object.

SYSTEM_OBJECT_NAME SYS_ONAME VARCHAR(10) The system name of the object

SYSTEM_TABLE_MEMBER SYS_MNAME VARCHAR(10)

Nullable

The name of the member that is locked in the file.

Contains the null value if the lock information is not for a
member.

OBJECT_TYPE OBJTYPE VARCHAR(8) The system object type of the locked object.

SQL_OBJECT_TYPE SQLTYPE VARCHAR(9)

Nullable

The SQL type of the object. Values are:

• ALIAS

• FUNCTION

• INDEX

• PACKAGE

• PROCEDURE

• ROUTINE

• SEQUENCE

• TABLE

• TRIGGER

• TYPE

• VARIABLE

• VIEW

• XSR

Contains the null value if the object is not an SQL object.

ASP_NUMBER ASPNUM INTEGER The numeric identifier of the ASP containing the object that is
locked.

ASPGRP ASPGRP VARCHAR(10) The name of the ASP device containing the object that is locked.
Can contain the special value of *SYSBAS.

478 IBM i: Database Performance and Query Optimization

Table 124. OBJECT_LOCK_INFO view (continued)

Column Name System Column Name Data Type Description

MEMBER_LOCK_TYPE LOCK_TYPE VARCHAR(10)

Nullable

The type of lock that is held.

MEMBER
Lock on the member control block.

DATA
Lock on the actual data within the member.

ACCESSPATH
Lock on the access path used to access the member's data.

Contains the null value if the lock information is not for a
member.

LOCK_STATE LOCK_STATE VARCHAR(7) The lock condition for the object or member.

*SHRRD
Lock shared for read.

*SHRUPD
Lock shared for update.

*SHRNUP
Lock shared no update.

*EXCLRD
Lock exclusive allow read.

*EXCL
Lock exclusive no read.

LOCK_STATUS STATUS VARCHAR(9) The status of the lock.

HELD
The lock is currently held by the job.

WAITING
The job is waiting for the lock.

REQUESTED
The job has a lock request outstanding for the object.

LOCK_SCOPE LOCK_SCOPE VARCHAR(10) The scope of the lock. Values are:

• JOB

• THREAD

• LOCK SPACE

JOB_NAME JOB_NAME VARCHAR(28) The qualified job name.

THREAD_ID THREAD_ID BIGINT

Nullable

The thread that is associated with the lock.

• If a held lock is job scoped, returns the null value. If a held
lock is thread scoped, contains the identifier for the thread
holding the lock.

• If the scope of the lock is to the lock space and the lock is not
held, contains the identifier of the thread requesting the lock.

• If the lock is requested but not yet available, contains the
identifier of the thread requesting the lock.

LOCK_SPACE_ID LOCKID BINARY(20)

Nullable

When the LOCK_SCOPE column value is LOCK SPACE and the
lock is being waited on by a thread, contains the lock space ID
value for which the lock is being waited on.

Otherwise, contains the null value.

LOCK_COUNT LOCK_COUNT INTEGER The number of identical locks held.

PROGRAM_LIBRARY_NAME PROGLIB VARCHAR(10)

Nullable

The name of the library containing the program or service
program.

Contains the null value if the lock holder information is not
available.

PROGRAM_NAME PROGNAME VARCHAR(10)

Nullable

The name of the program holding the lock. This can be any type
of program object, including objects of type *PGM and *SRVPGM.

Contains the null value if the lock holder information is not
available.

MODULE_LIBRARY MODLIB VARCHAR(10)

Nullable

The library containing the module.

Contains the null value if the lock holder information is not
available or if the program is not an ILE program.

Database performance and query optimization 479

Table 124. OBJECT_LOCK_INFO view (continued)

Column Name System Column Name Data Type Description

MODULE_NAME MODNAME VARCHAR(10)

Nullable

The module containing the ILE procedure.

Contains the null value if the lock holder information is not
available or if the program is not an ILE program.

PROCEDURE_NAME PROCNAME VARCHAR(10)

Nullable

The name of the procedure.

Contains the null value if the lock holder information is not
available.

STATEMENT_ID STMTID CHAR(10)

Nullable

The high-level language statement identifier. For a character
representation of a number, the number is right-adjusted and
padded on the left with zeros (for example, '0000000246').

Contains the null value if the lock holder information is not
available.

MACHINE_INSTRUCTION INSTRUCT INTEGER

Nullable

The current machine instruction number in the program.

Contains the null value if the lock holder information is not
available or if it is an ILE procedure.

Example

Find all the jobs holding object locks over the SALES table:

SELECT * FROM QSYS2.OBJECT_LOCK_INFO
 WHERE SYSTEM_OBJECT_NAME = 'SALES'

RECORD_LOCK_INFO view
The RECORD_LOCK_INFO view returns one row for every record lock for the partition.

The values returned for the columns in the view are closely related to the values returned by Retrieve
Record Locks API. Refer to the APIs for more detailed information.

When querying this view, you should use a WHERE clause to restrict the result set to avoid excessive use
of system resources.

The following table describes the columns in the view. The schema is QSYS2.

Table 125. RECORD_LOCK_INFO view

Column Name System Column Name Data Type Description

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the schema.

TABLE_NAME TABNAME VARCHAR(128) Name of the table.

TABLE_PARTITION TABPART VARCHAR(128) Name of the table partition or member that contains the locked
record.

SYSTEM_TABLE_SCHEMA SYS_DNAME VARCHAR(10) System name of the schema.

SYSTEM_TABLE_NAME SYS_TNAME VARCHAR(10) System name of the table

SYSTEM_TABLE_MEMBER SYS_MNAME VARCHAR(10) The name of the member that contains the locked record.

RELATIVE_RECORD_NUMBER RRN BIGINT The relative record number (RRN) of the record that is locked.

480 IBM i: Database Performance and Query Optimization

Table 125. RECORD_LOCK_INFO view (continued)

Column Name System Column Name Data Type Description

LOCK_STATE LOCK_STATE VARCHAR(8) The lock condition for the record.

READ
The record is locked for read. Another job may read the
same record but cannot lock the record for update intent.
The record cannot be changed by another job as long as
one job holds a read lock on the record.

UPDATE
The record is locked for update intent. Another job may
read the record but may not obtain a read or update lock on
it until the lock is released.

INTERNAL
The row is locked internally for read. For a short time the
operating system holds an internal lock to access the row.
Another job may read the same row and may even have the
row locked for update intent. However, if another job does
have the row locked for update intent, the actual change of
the row will not proceed until the internal lock is released.

LOCK_STATUS STATUS VARCHAR(9) The status of the lock.

HELD
The lock is currently held by the job.

WAITING
The job is waiting for the lock.

LOCK_SCOPE LOCK_SCOPE VARCHAR(10) The scope of the lock. Values are:

• JOB

• THREAD

• LOCK SPACE

JOB_NAME JOB_NAME VARCHAR(28) The qualified job name.

THREAD_ID THREAD_ID BIGINT

Nullable

The thread that is associated with the lock.

• If a held lock is job scoped, returns the null value. If a held
lock is thread scoped, contains the identifier for the thread
holding the lock.

• If the scope of the lock is to the lock space and the lock is not
held, contains the identifier of the thread requesting the lock.

• If the lock is requested but not yet available, contains the
identifier of the thread requesting the lock.

LOCK_SPACE_ID LOCKID BINARY(20)

Nullable

When the LOCK_SCOPE column value is LOCK SPACE and the
lock is being waited on by a thread, contains the lock space ID
value for which the lock is being waited on.

Otherwise, contains the null value.

Example

Review the jobs that are updating the SALES table:

SELECT JOB_NAME, COUNT(*) AS ROWS_UPDATING
 FROM QSYS2.RECORD_LOCK_INFO
 WHERE SYSTEM_TABLE_NAME = 'SALES' AND
 SYSTEM_TABLE_SCHEMA = 'TOYSTORE' AND
 LOCK_STATE = 'UPDATE'
 GROUP BY JOB_NAME
 ORDER BY ROWS_UPDATING DESC

SCHEDULED_JOB_INFO view
The SCHEDULED_JOB_INFO view returns information that can also be seen through the Work with Job
Schedule Entries (WRKJOBSCDE) command interface. Each job schedule entry contains the information
to automatically submit a batch job once or at regularly scheduled intervals.

Authorization: No authority is required to access scheduled job rows, but some columns return NULL if
you don't have the required authority. You must have *JOBCTL special authority or be the user profile
listed in the SCHEDULED_BY column to see the data in all columns.

Database performance and query optimization 481

The following table describes the columns in the view. The schema is QSYS2.

Table 126. SCHEDULED_JOB_INFO view

Column Name
System Column
Name Data Type Description

SCHEDULED_JOB_ENTRY_NUMBER ENTRYNO INTEGER The number assigned to the job schedule entry when the entry is
added to the job schedule.

SCHEDULED_JOB_NAME SCDJOBNAME VARCHAR(10) The name of the job schedule entry.

This is the simple job name portion of the fully qualified job name
used when the job is submitted. It is also used to identify the job
schedule entry through change, hold, release and remove functions.

SCHEDULED_DATE_VALUE SCDDATEV VARCHAR(14) Indicates the date on which the job is scheduled to be submitted.

SCHEDULED_DATE
The date in the SCHEDULED_DATE column is used

SCHEDULED_DAYS
The days in the SCHEDULED_DAYS column are used

*MONTHSTR
The first day of the month is used.

*MONTHEND
The last day of the month is used.

SCHEDULED_DATE SCDDATE DATE

Nullable

The date on which the job is scheduled to be submitted.

Contains the null value if the SCHEDULED_DATE_VALUE column is
not SCHEDULED_DATE.

SCHEDULED_TIME SCDTIME TIME The time when the job is scheduled to be submitted on the
scheduled date.

SCHEDULED_DAYS SCDDAYS VARCHAR(34)

Nullable

The days on which the job is submitted if a specific date is not
specified.

The value is a comma separated string with any or all of the values:
*MON *TUE *WED *THU *FRI *SAT *SUN. The single value of *ALL
can be returned to represent all seven values.

Contains the null value if SCHEDULED_DATE_VALUE is not
SCHEDULED_DAYS.

FREQUENCY FREQUENCY VARCHAR(8) How often the job is to be submitted.

*ONCE
The job is scheduled to be submitted a single time.

*WEEKLY
The job is scheduled to be submitted on the same day or days
of each week at the scheduled time.

*MONTHLY
The job is scheduled to be submitted on the same day or days
of each month at the scheduled time.

482 IBM i: Database Performance and Query Optimization

Table 126. SCHEDULED_JOB_INFO view (continued)

Column Name
System Column
Name Data Type Description

RELATIVE_DAYS_OF_MONTH RELDAYSMON VARCHAR(13)

Nullable

Specifies which occurrence during the month (for the days listed in
the SCHEDULED_DAYS column) the job is scheduled to be run. The
value is a comma separated string with up to five of the following
values:

1
The job is scheduled for the first occurrence of the day or days
(SCHEDULED_DAYS: *MON and *WED for example) of the
month.

2
The job is scheduled for the second occurrence of the day or
days of the month.

3
The job is scheduled for the third occurrence of the day or days
of the month.

4
The job is scheduled for the fourth occurrence of the day or
days of the month.

5
The job is scheduled for the fifth occurrence of the day or days
of the month.

*LAST
The job is scheduled for the last occurrence of the day or days
of the month.

Contains the null value if the FREQUENCY column does not have a
value of MONTHLY or SCHEDULED_DAYS is null.

RECOVERY_ACTION RECOVERY VARCHAR(7) The recovery action taken when the system is powered down or in
the restricted state at the time a job is scheduled to be submitted.

*SBMRLS
Submit a job to the job queue as a released job.

*SBMHLD
Submit a job to the job queue as a held job.

*NOSBM
Do not submit a job to the job queue.

NEXT_SUBMISSION_DATE NXTSUBDATE DATE

Nullable

The next date that the job scheduling process is scheduled to submit
this job.

Contains the null value if the job is not scheduled to be submitted
again.

STATUS STATUS VARCHAR(9) The status of the job schedule entry.

HELD
The entry is held. If an entry has a status of HELD at the
scheduled date and time, a job is not submitted.

SAVED
The entry is defined with a frequency of ONCE and a save value
of *YES at a time later than the scheduled date and time.

SCHEDULED
The entry is waiting until the scheduled date and time for a job
to be submitted.

JOB_QUEUE_NAME JOBQ VARCHAR(10) The job queue to which the job is scheduled to be submitted. Can
contain the special value of *JOBD, meaning that the job is
submitted to the job queue specified in the job description listed in
the JOB_DESCRIPTION_NAME and
JOB_DESCRIPTION_LIBRARY_NAME columns.

JOB_QUEUE_LIBRARY_NAME JOBQLIB VARCHAR(10)

Nullable

The library containing the job queue.

Contains the null value if JOB_QUEUE_NAME is *JOBD

.

Database performance and query optimization 483

Table 126. SCHEDULED_JOB_INFO view (continued)

Column Name
System Column
Name Data Type Description

JOB_QUEUE_STATUS JOBQSTATUS VARCHAR(10)

Nullable

The status of the job queue.

HLD
The job queue is held, but not attached to an active subsystem.

HLD/SBS
The job queue is held and attached to an active subsystem.

LOCKED
The status of the job queue could not be determined because a
lock could not be obtained on the job queue.

RLS
The job queue is released, but not attached to an active
subsystem.

RLS/SBS
The job queue is released and attached to an active
subsystem.

Contains the null value if JOB_QUEUE_NAME is *JOBD, if the job
queue is not found or is damaged, or if the information is not
available.

DATES_OMITTED OMITDATES VARCHAR(219)

Nullable

A comma separated string with up to 20 dates in *ISO format
indicating dates when the job will not be scheduled to run.

Contains the null value if no dates were specified to omit or if the
information is not available.

SCHEDULED_BY CREATEDBY VARCHAR(10) The user profile of the job which added the entry to the job schedule.

DESCRIPTION TEXT VARCHAR(50)

Nullable

The descriptive text for the job schedule entry.

Contains the null value if the job schedule entry has no description.

COMMAND_STRING COMMAND VARCHAR(512)

Nullable

The command that is run in the submitted job.

Contains the null value if the information is not available.

USER_PROFILE_FOR_SUBMITTED_JOB SBMJOBUSR VARCHAR(10)

Nullable

The user profile to be used when the job is submitted. Can contain
the special value *JOBD to indicate that the user profile from the job
description is used.

Contains the null value if the information is not available.

JOB_DESCRIPTION_NAME JOBD VARCHAR(10)

Nullable

The job description used when the job is submitted. Can contain the
special value of *USRPRF to indicate that the job description
specified in the user profile under which the submitted job runs is
used.

Contains the null value if the information is not available.

JOB_DESCRIPTION_LIBRARY_NAME JOBDLIB VARCHAR(10)

Nullable

The library containing the job description.

Contains the null value if JOB_DESCRIPTION_NAME has a value of
*USRPRF or if the information is not available.

MESSAGE_QUEUE_NAME MSGQ VARCHAR(10)

Nullable

The name of the message queue where the messages for this job
schedule entry are sent. Can contain the special value *USRPRF to
indicate that the message queue specified in the user profile under
which the submitted job runs is used.

Contains the null value is no specific message queue is associated
with this job schedule entry or if the information is not available.

MESSAGE_QUEUE_LIBRARY_NAME MSGQLIB VARCHAR(10)

Nullable

The library containing the message queue.

Contains the null value if MESSAGE_QUEUE_NAME is null, contains
the special value of *USRPRF, or if the information is not available.

LAST_SUCCESSFUL_SUBMISSION_
TIMESTAMP

SBMTIMSTMP TIMESTAMP(0)

Nullable

The timestamp when a batch job was last successfully submitted for
the job schedule entry.

Contains the null value if the job schedule entry has not been used
to submit a job.

LAST_SUCCESSFUL_SUBMISSION_JOB LASTSBMJOB VARCHAR(28)

Nullable

The qualified job name used when this scheduled job was last
submitted.

Contains the null value if the scheduled job has never been
submitted or if the information is not available.

484 IBM i: Database Performance and Query Optimization

Table 126. SCHEDULED_JOB_INFO view (continued)

Column Name
System Column
Name Data Type Description

LAST_ATTEMPTED_SUBMISSION_
TIMESTAMP

ATTSBMTIM TIMESTAMP(0)

Nullable

The timestamp when this scheduled job was last submitted.

Contains the null value if the scheduled job has never been
submitted or if the information is not available.

LAST_ATTEMPTED_SUBMISSION_STATUS SBMJOBSTS VARCHAR(68)

Nullable

The status from when this scheduled job was last submitted. Values
are:

• JOB SUCCESSFULLY SUBMITTED

• LAST JOB SUBMISSION FAILED, CHECK THE JOB MESSAGE
QUEUE FOR DETAILS

• JOB NOT SUBMITTED DUE TO HELD STATUS

• JOB SUBMITTED AFTER SCHEDULED TIME AS SPECIFIED BY
RECOVERY ACTION

• JOB NOT SUBMITTED AS SPECIFIED BY RECOVERY ACTION

Contains the null value if the scheduled job has never been
submitted or if the information is not available.

KEEP_ENTRY KEEP VARCHAR(3)

Nullable

Whether the job schedule entry is kept or removed after the job has
been submitted.

YES
The job schedule entry is kept.

NO
The job schedule entry is removed.

Contains the null value when the FREQUENCY column does not
contain *ONCE or if the information is not available.

Example

Review the job scheduled entries which are no longer in effect, either because they were explicitly held or
because they were scheduled to run a single time and the scheduled date and time has passed.

SELECT * FROM QSYS2.SCHEDULED_JOB_INFO WHERE STATUS IN ('HELD', 'SAVED')
 ORDER BY SCHEDULED_BY;

SYSTEM_STATUS table function
The SYSTEM_STATUS table function returns a single row containing details about the current partition.

The information returned is similar to the detail seen from the Work with System Status (WRKSYSSTS) and
the Work with System Activity (WRKSYSACT) commands.

SYSTEM_STATUS (

RESET_STATISTICS =>

reset_statistics

)

The schema is QSYS2.

reset_statistics
A character or graphic string expression that contains a value of YES or NO.

If this parameter has a value of YES, statistics are reset such that the time of this query execution is
used as the new baseline. The columns that contain this statistical data have names that are prefixed
with ELAPSED_. Future invocations of SYSTEM_STATUS within this connection will return statistical
detail relative to the new baseline. If this parameter has a value of NO, statistics are not reset for the
invocation. If this parameter is not specified, the default is NO.

The result of the function is a table containing multiple rows with the format shown in the following table.
All the columns are nullable.

Database performance and query optimization 485

Table 127. SYSTEM_STATUS table function

Column Name Data Type Description

TOTAL_JOBS_IN_SYSTEM INTEGER The total number of user and system jobs that are currently in the
system. The total includes:

• All jobs on job queues waiting to be processed.

• All jobs currently active (being processed).

• All jobs that have completed running but still have output on output
queues to be produced.

MAXIMUM_JOBS_IN_SYSTEM INTEGER The maximum number of jobs that are allowed on the system. When
the number of jobs reaches this maximum, you can no longer submit
or start more jobs on the system. The total includes:

• All jobs on job queues waiting to be processed.

• All jobs currently active (being processed).

• All jobs that have completed running but still have output on output
queues to be produced.

ACTIVE_JOBS_IN_SYSTEM INTEGER The number of jobs active in the system (jobs that have been started,
but have not yet ended), including both user and system jobs.

INTERACTIVE_JOBS_IN_SYSTEM DECIMAL(10,2) The percentage of interactive performance assigned to this logical
partition. This value is a percentage of the total interactive
performance available to the entire physical system.

ELAPSED_TIME INTEGER The time that has elapsed, in seconds, between the measurement
start time and the current system time.

ELAPSED_CPU_USED DECIMAL(10,2) The average of the elapsed time during which the processing units
were in use.

ELAPSED_CPU_SHARED DECIMAL(10,2) The percentage of the total shared processor pool capacity used by all
partitions using the pool during the elapsed time. Returns null if this
partition does not share processors.

ELAPSED_CPU_UNCAPPED_CAPACITY DECIMAL(10,2) The percentage of the uncapped shared processing capacity for the
partition used since the last time statistics were reset. Returns null if
this partition cannot use more that its configured processing capacity.

CONFIGURED_CPUS INTEGER Total number of configured CPUs for the partition.

CPU_SHARING_ATTRIBUTE VARCHAR(8) This attribute indicates whether this partition is sharing processors. If
the value indicates the partition does not share physical processors,
then this partition uses only dedicated processors. If the value
indicates the partition shares physical processors, then this partition
uses physical processors from a shared pool of physical processors.

CAPPED
Partition shares processors. The partition is limited to using its
configured capacity.

UNCAPPED
Partition shares processors. The partition can use more than its
configured capacity.

Contains the null value if the partition does not share processors.

CURRENT_CPU_CAPACITY DECIMAL(10,2) The current processing capacity specifies the processor units that are
being used in the partition. For a partition sharing physical processors,
the current processing capacity represents the share of the physical
processors in the pool it is running. For a partition using dedicated
processors, the current processing capacity represents the number of
virtual processors that are currently active in the partition.

AVERAGE_CPU_RATE DECIMAL(20,2) The average CPU rate expressed as a percentage where 100%
indicates the processor is running at its nominal frequency. A value
above or below 100% indicates how much the processor has been
slowed down (throttled) or speeded up (turbo) relative to the nominal
frequency for the processor model. For instance, a value of 120%
indicates the processor is running 20% faster against its nominal
speed.

AVERAGE_CPU_UTILIZATION DECIMAL(20,2) The average CPU utilization for all the active processors.

MINIMUM_CPU_UTILIZATION DECIMAL(20,2) The CPU utilization of the processor that reported the minimum
amount of CPU utilization.

MAXIMUM_CPU_UTILIZATION DECIMAL(20,2) The CPU utilization of the processor that reported the maximum
amount of CPU utilization.

SQL_CPU_UTILIZATION DECIMAL(20,2) Always contains the null value.

486 IBM i: Database Performance and Query Optimization

Table 127. SYSTEM_STATUS table function (continued)

Column Name Data Type Description

MAIN_STORAGE_SIZE BIGINT The amount of main storage, in kilobytes, in the system.

SYSTEM_ASP_STORAGE BIGINT The storage capacity of the system auxiliary storage pool (ASP
number 1) in millions of bytes. This value represents the amount of
space available for storage of both permanent and temporary objects.

TOTAL_AUXILIARY_STORAGE BIGINT The total auxiliary storage, in millions of bytes, on the system.

SYSTEM_ASP_USED DECIMAL(10,2) The percentage of the system storage pool (ASP number 1) currently
in use.

CURRENT_TEMPORARY_STORAGE INTEGER The current amount of storage, in millions of bytes, in use for
temporary objects.

MAXIMUM_TEMPORARY_STORAGE_USED INTEGER The largest amount of storage, in millions of bytes, used for temporary
objects at any one time since the last IPL.

PERMANENT_ADDRESS_RATE DECIMAL(6,3) The percentage of the maximum possible addresses for permanent
objects that have been used.

TEMPORARY_ADDRESS_RATE DECIMAL(6,3) The percentage of the maximum possible addresses for temporary
objects that have been used.

TEMPORARY_256MB_SEGMENTS DECIMAL(10,2) The percentage of the maximum possible temporary 256MB
segments that have been used.

TEMPORARY_4GB_SEGMENTS DECIMAL(10,2) The percentage of the maximum possible temporary 4GB segments
that have been used.

PERMANENT_256MB_SEGMENTS DECIMAL(10,2) The percentage of the maximum possible permanent 256MB
segments that have been used.

PERMANENT_4GB_SEGMENTS DECIMAL(10,2) The percentage of the maximum possible permanent 4GB segments
that have been used.

HOST_NAME VARCHAR(255) Name of the system where this information was generated.

PARTITION_ID INTEGER The identifier for the partition in which this view is being run.

NUMBER_OF_PARTITIONS INTEGER The number of partitions on the system. This includes partitions that
are currently powered on (running) and partitions that are powered
off.

ACTIVE_THREADS_IN_SYSTEM INTEGER The number of initial and secondary threads in the system (threads
that have been started, but have not yet ended), including both user
and system threads.

RESTRICTED_STATE VARCHAR(3) Whether the system is in restricted state.

NO
System is not in restricted state.

YES
System is in restricted state.

Example

Return storage and CPU status for the partition. Specify to reset all the elapsed values to 0.

SELECT * FROM TABLE(QSYS2.SYSTEM_STATUS(RESET_STATISTICS=>'YES')) X;

SYSTEM_STATUS_INFO view
The SYSTEM_STATUS_INFO view returns a single row containing details about the current partition.

The information returned is similar to the detail seen from the Work with System Status (WRKSYSSTS) and
the Work with System Activity (WRKSYSACT) commands. It does not reset the statistical columns; to do
this, use the associated table function, “SYSTEM_STATUS table function” on page 485.

The following table describes the columns in the view. The schema is QSYS2.

Database performance and query optimization 487

Table 128. SYSTEM_STATUS_INFO view

Column Name System Column Name Data Type Description

TOTAL_JOBS_IN_SYSTEM TOTAL_JOBS INTEGER The total number of user and system jobs that are currently in
the system. The total includes:

• All jobs on job queues waiting to be processed.

• All jobs currently active (being processed).

• All jobs that have completed running but still have output on
output queues to be produced.

MAXIMUM_JOBS_IN_SYSTEM MAX_JOBS INTEGER The maximum number of jobs that are allowed on the system.
When the number of jobs reaches this maximum, you can no
longer submit or start more jobs on the system. The total
includes:

• All jobs on job queues waiting to be processed.

• All jobs currently active (being processed).

• All jobs that have completed running but still have output on
output queues to be produced.

ACTIVE_JOBS_IN_SYSTEM ACT_JOBS INTEGER The number of jobs active in the system (jobs that have been
started, but have not yet ended), including both user and system
jobs.

INTERACTIVE_JOBS_IN_SYSTEM INTER_JOBS DECIMAL(5,2) The percentage of interactive performance assigned to this
logical partition. This value is a percentage of the total interactive
performance available to the entire physical system.

ELAPSED_TIME ELAP_TIME INTEGER The time that has elapsed, in seconds, between the
measurement start time and the current system time.

ELAPSED_CPU_USED ELAP_USED DECIMAL(5,2) The average of the elapsed time during which the processing
units were in use.

ELAPSED_CPU_SHARED ELAP_SHARE DECIMAL(5,2)

Nullable

The percentage of the total shared processor pool capacity used
by all partitions using the pool during the elapsed time. Returns
null if this partition does not share processors.

ELAPSED_CPU_UNCAPPED_
CAPACITY

ELAP_UNCAP DECIMAL(5,2)

Nullable

The percentage of the uncapped shared processing capacity for
the partition used since the last time statistics were reset.
Returns null if this partition cannot use more that its configured
processing capacity.

CONFIGURED_CPUS CONFIGCPUS INTEGER Total number of configured CPUs for the partition.

CPU_SHARING_ATTRIBUTE CPU_SHARE VARCHAR(8)

Nullable

This attribute indicates whether this partition is sharing
processors. If the value indicates the partition does not share
physical processors, then this partition uses only dedicated
processors. If the value indicates the partition shares physical
processors, then this partition uses physical processors from a
shared pool of physical processors.

CAPPED
Partition shares processors. The partition is limited to using
its configured capacity.

UNCAPPED
Partition shares processors. The partition can use more
than its configured capacity.

Contains the null value if the partition does not share processors.

CURRENT_CPU_CAPACITY CPU_CAP DECIMAL(5,2) The current processing capacity specifies the processor units
that are being used in the partition. For a partition sharing
physical processors, the current processing capacity represents
the share of the physical processors in the pool it is running. For
a partition using dedicated processors, the current processing
capacity represents the number of virtual processors that are
currently active in the partition.

AVERAGE_CPU_RATE CPU_RATE DECIMAL(5,2) The average CPU rate expressed as a percentage where 100%
indicates the processor is running at its nominal frequency. A
value above or below 100% indicates how much the processor
has been slowed down (throttled) or speeded up (turbo) relative
to the nominal frequency for the processor model. For instance, a
value of 120% indicates the processor is running 20% faster
against its nominal speed.

AVERAGE_CPU_UTILIZATION CPU_AVG DECIMAL(5,2) The average CPU utilization for all the active processors.

MINIMUM_CPU_UTILIZATION CPU_MIN DECIMAL(5,2) The CPU utilization of the processor that reported the minimum
amount of CPU utilization.

488 IBM i: Database Performance and Query Optimization

Table 128. SYSTEM_STATUS_INFO view (continued)

Column Name System Column Name Data Type Description

MAXIMUM_CPU_UTILIZATION CPU_MAX DECIMAL(5,2) The CPU utilization of the processor that reported the maximum
amount of CPU utilization.

SQL_CPU_UTILIZATION CPU_SQL DECIMAL(5,2)

Nullable

Always contains the null value.

MAIN_STORAGE_SIZE MAIN_STG BIGINT The amount of main storage, in kilobytes, in the system.

SYSTEM_ASP_STORAGE SYS_STG BIGINT The storage capacity of the system auxiliary storage pool (ASP
number 1) in millions of bytes. This value represents the amount
of space available for storage of both permanent and temporary
objects.

TOTAL_AUXILIARY_STORAGE AUX_STG BIGINT The total auxiliary storage, in millions of bytes, on the system.

SYSTEM_ASP_USED SYS_RATE DECIMAL(5,2) The percentage of the system storage pool (ASP number 1)
currently in use.

CURRENT_TEMPORARY_STORAGE TEMP_CUR INTEGER The current amount of storage, in millions of bytes, in use for
temporary objects.

MAXIMUM_TEMPORARY_STORAGE_
USED

TEMP_MAX INTEGER The largest amount of storage, in millions of bytes, used for
temporary objects at any one time since the last IPL.

PERMANENT_ADDRESS_RATE PERM_RATE DECIMAL(6,3) The percentage of the maximum possible addresses for
permanent objects that have been used.

TEMPORARY_ADDRESS_RATE TEMP_RATE DECIMAL(6,3) The percentage of the maximum possible addresses for
temporary objects that have been used.

TEMPORARY_256MB_SEGMENTS TEMP_256MB DECIMAL(5,2) The percentage of the maximum possible temporary 256MB
segments that have been used.

TEMPORARY_4GB_SEGMENTS TEMP_4GB DECIMAL(5,2) The percentage of the maximum possible temporary 4GB
segments that have been used.

PERMANENT_256MB_SEGMENTS PERM_256MB DECIMAL(5,2) The percentage of the maximum possible permanent 256MB
segments that have been used.

PERMANENT_4GB_SEGMENTS PERM_4GB DECIMAL(5,2) The percentage of the maximum possible permanent 4GB
segments that have been used.

HOST_NAME HOST_NAME VARCHAR(255) Name of the system where this information was generated.

PARTITION_ID PART_ID INTEGER The identifier for the partition in which this view is being run.

NUMBER_OF_PARTITIONS NUM_PART INTEGER The number of partitions on the system. This includes partitions
that are currently powered on (running) and partitions that are
powered off.

ACTIVE_THREADS_IN_SYSTEM ACT_THREAD INTEGER The number of initial and secondary threads in the system
(threads that have been started, but have not yet ended),
including both user and system threads.

RESTRICTED_STATE REST_STATE VARCHAR(3) Whether the system is in restricted state.

NO
System is not in restricted state.

YES
System is in restricted state.

Example

Review the storage and CPU status for the partition.

SELECT * FROM QSYS2.SYSTEM_STATUS_INFO;

SYSTEM_VALUE_INFO view
The SYSTEM_VALUE_INFO view contains information about system values.

This view returns the names of system values and their values. The list of system values can be found in
Retrieve System Values (QWCRSVAL) API.

Database performance and query optimization 489

*ALLOBJ or *AUDIT special authority is required to retrieve the values for QAUDCTL, QAUDENDACN,
QAUDFRCLVL, QAUDLVL, QAUDLVL2, and QCRTOBJAUD. The current value column will contain ‘*NOTAVL’
or -1 when accessed by an unauthorized user.

The following table describes the columns in the view. The schema is QSYS2.

Table 129. SYSTEM_VALUE_INFO view

Column Name System Column Name Data Type Description

SYSTEM_VALUE_NAME SYSVALNAME VARCHAR(10) Name of the system value.

CURRENT_NUMERIC_VALUE CURNUMVAL BIGINT Contains the value if the system value is numeric data. Otherwise, contains
the null value.

CURRENT_CHARACTER_VALUE CURCHARVAL VARGRAPHIC(1280)
CCSID(1200)

Contains the value if the system value is character data. Otherwise,
contains the null value.

Example

Look at the system values related to maximums.

SELECT * FROM SYSTEM_VALUE_INFO
WHERE SYSTEM_VALUE_NAME LIKE '%MAX%'

returns

 SYSTEM_VALUE_NAME CURRENT_NUMERIC_VALUE CURRENT_CHARACTER_VALUE
 QMAXACTLVL 32,767 -
 QMAXSIGN - 000005
 QPWDMAXLEN 8 -
 QMAXSGNACN - 3
 QMAXJOB 163,520 -
 QMAXSPLF 9,999 -

SYSTOOLS
SYSTOOLS is a set of DB2 for IBM i supplied examples and tools.

SYSTOOLS is the name of a Database supplied schema (library). SYSTOOLS differs from other DB2 for i
supplied schemas (QSYS, QSYS2, SYSIBM, and SYSIBMADM) in that it is not part of the default system
path. As general purpose useful tools or examples are built by IBM, they are considered for inclusion
within SYSTOOLS. SYSTOOLS provides a wider audience with the opportunity to extract value from the
tools.

It is the intention of IBM to add content dynamically to SYSTOOLS, either on base releases or through
PTFs for field releases. A best practice for customers who are interested in such tools would be to
periodically review the contents of SYSTOOLS.

Using SYSTOOLS
You can generate the sample SQL procedures, learn how to call the procedures, and understand the
outcome that is expected. You can also modify the procedure source to customize an example into your
business operations.

Use System i Navigator, as shown in Figure 1.

Figure 1. System i Navigator schema view of SYSTOOLS:

490 IBM i: Database Performance and Query Optimization

Start with the Generate SQL action, as shown in Figure 2, to discover and learn within SYSTOOLS. This
action utilizes the Generate Data Definition Language (QSQGNDDL) API to produce the CREATE
PROCEDURE (SQL) statement. This statement is needed to create a replica of the IBM supplied
procedure.

Figure 2. Launching Generate SQL from System i Navigator:

After the Generate SQL action completes, as shown in figure 3, you will have a Run SQL Scripts window
active, allowing you to do the following:

1. Scroll down and read the procedure prolog.
2. Understand how to call the procedure and the outcome that is expected.
3. Modify the procedure source, including the procedure name and schema. This capability could be the

most useful aspect of SYSTOOLS, allowing you to quickly claim and customize an IBM supplied
example into your business operations.

Figure 3. Run SQL Scripts view of the generated SQL:

Database performance and query optimization 491

The IBM maintenance of SYSTOOLS includes periodically dropping and recreating the IBM supplied
objects. Customers are allowed to create their own objects within SYSTOOLS. However, if your user
created objects conflict with the IBM supplied objects, your objects might be deleted. The tools and
examples within SYSTOOLS are considered ready for use. However, they are not subject to IBM Service
and Support as they are not considered part of any IBM product.

Database monitor formats
This section contains the formats used to create the database monitor SQL tables and views.

Database monitor SQL table format
Displays the format used to create the QSYS/QAQQDBMN performance statistics table, that is shipped
with the system.

 CREATE TABLE QSYS.QAQQDBMN (
 QQRID DECIMAL(15, 0) NOT NULL DEFAULT 0 ,
 QQTIME TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
 QQJFLD CHAR(46) CCSID 65535 NOT NULL DEFAULT '' ,
 QQRDBN CHAR(18) CCSID 37 NOT NULL DEFAULT '' ,

492 IBM i: Database Performance and Query Optimization

 QQSYS CHAR(8) CCSID 37 NOT NULL DEFAULT '' ,
 QQJOB CHAR(10) CCSID 37 NOT NULL DEFAULT '' ,
 QQUSER CHAR(10) CCSID 37 NOT NULL DEFAULT '' ,
 QQJNUM CHAR(6) CCSID 37 NOT NULL DEFAULT '' ,
 QQUCNT DECIMAL(15, 0) DEFAULT NULL ,
 QQUDEF VARCHAR(100) CCSID 37 DEFAULT NULL ,
 QQSTN DECIMAL(15, 0) DEFAULT NULL ,
 QQQDTN DECIMAL(15, 0) DEFAULT NULL ,
 QQQDTL DECIMAL(15, 0) DEFAULT NULL ,
 QQMATN DECIMAL(15, 0) DEFAULT NULL ,
 QQMATL DECIMAL(15, 0) DEFAULT NULL ,
 QQTLN CHAR(10) CCSID 37 DEFAULT NULL ,
 QQTFN CHAR(10) CCSID 37 DEFAULT NULL ,
 QQTMN CHAR(10) CCSID 37 DEFAULT NULL ,
 QQPTLN CHAR(10) CCSID 37 DEFAULT NULL ,
 QQPTFN CHAR(10) CCSID 37 DEFAULT NULL ,
 QQPTMN CHAR(10) CCSID 37 DEFAULT NULL ,
 QQILNM CHAR(10) CCSID 37 DEFAULT NULL ,
 QQIFNM CHAR(10) CCSID 37 DEFAULT NULL ,
 QQIMNM CHAR(10) CCSID 37 DEFAULT NULL ,
 QQNTNM CHAR(10) CCSID 37 DEFAULT NULL ,
 QQNLNM CHAR(10) CCSID 37 DEFAULT NULL ,
 QQSTIM TIMESTAMP DEFAULT NULL ,
 QQETIM TIMESTAMP DEFAULT NULL ,
 QQKP CHAR(1) CCSID 37 DEFAULT NULL ,
 QQKS CHAR(1) CCSID 37 DEFAULT NULL ,
 QQTOTR DECIMAL(15, 0) DEFAULT NULL ,
 QQTMPR DECIMAL(15, 0) DEFAULT NULL ,
 QQJNP DECIMAL(15, 0) DEFAULT NULL ,
 QQEPT DECIMAL(15, 0) DEFAULT NULL ,
 QQDSS CHAR(1) CCSID 37 DEFAULT NULL ,
 QQIDXA CHAR(1) CCSID 37 DEFAULT NULL ,
 QQORDG CHAR(1) CCSID 37 DEFAULT NULL ,
 QQGRPG CHAR(1) CCSID 37 DEFAULT NULL ,
 QQJNG CHAR(1) CCSID 37 DEFAULT NULL ,
 QQUNIN CHAR(1) CCSID 37 DEFAULT NULL ,
 QQSUBQ CHAR(1) CCSID 37 DEFAULT NULL ,
 QQHSTV CHAR(1) CCSID 37 DEFAULT NULL ,
 QQRCDS CHAR(1) CCSID 37 DEFAULT NULL ,
 QQRCOD CHAR(2) CCSID 37 DEFAULT NULL ,
 QQRSS DECIMAL(15, 0) DEFAULT NULL ,
 QQREST DECIMAL(15, 0) DEFAULT NULL ,
 QQRIDX DECIMAL(15, 0) DEFAULT NULL ,
 QQFKEY DECIMAL(15, 0) DEFAULT NULL ,
 QQKSEL DECIMAL(15, 0) DEFAULT NULL ,
 QQAJN DECIMAL(15, 0) DEFAULT NULL ,
 QQIDXD VARCHAR(1000) ALLOCATE(48) CCSID 37 DEFAULT NULL ,
 QQC11 CHAR(1) CCSID 37 DEFAULT NULL ,
 QQC12 CHAR(1) CCSID 37 DEFAULT NULL ,
 QQC13 CHAR(1) CCSID 37 DEFAULT NULL ,
 QQC14 CHAR(1) CCSID 37 DEFAULT NULL ,
 QQC15 CHAR(1) CCSID 37 DEFAULT NULL ,
 QQC16 CHAR(1) CCSID 37 DEFAULT NULL ,
 QQC18 CHAR(1) CCSID 37 DEFAULT NULL ,
 QQC21 CHAR(2) CCSID 37 DEFAULT NULL ,
 QQC22 CHAR(2) CCSID 37 DEFAULT NULL ,
 QQC23 CHAR(2) CCSID 37 DEFAULT NULL ,
 QQI1 DECIMAL(15, 0) DEFAULT NULL ,
 QQI2 DECIMAL(15, 0) DEFAULT NULL ,
 QQI3 DECIMAL(15, 0) DEFAULT NULL ,
 QQI4 DECIMAL(15, 0) DEFAULT NULL ,
 QQI5 DECIMAL(15, 0) DEFAULT NULL ,
 QQI6 DECIMAL(15, 0) DEFAULT NULL ,
 QQI7 DECIMAL(15, 0) DEFAULT NULL ,
 QQI8 DECIMAL(15, 0) DEFAULT NULL ,
 QQI9 DECIMAL(15, 0) DEFAULT NULL ,
 QQIA DECIMAL(15, 0) DEFAULT NULL ,
 QQF1 DECIMAL(15, 0) DEFAULT NULL ,
 QQF2 DECIMAL(15, 0) DEFAULT NULL ,
 QQF3 DECIMAL(15, 0) DEFAULT NULL ,
 QQC61 CHAR(6) CCSID 37 DEFAULT NULL ,
 QQC81 CHAR(8) CCSID 37 DEFAULT NULL ,
 QQC82 CHAR(8) CCSID 37 DEFAULT NULL ,
 QQC83 CHAR(8) CCSID 37 DEFAULT NULL ,
 QQC84 CHAR(8) CCSID 37 DEFAULT NULL ,
 QQC101 CHAR(10) CCSID 37 DEFAULT NULL ,
 QQC102 CHAR(10) CCSID 37 DEFAULT NULL ,
 QQC103 CHAR(10) CCSID 37 DEFAULT NULL ,
 QQC104 CHAR(10) CCSID 37 DEFAULT NULL ,
 QQC105 CHAR(10) CCSID 37 DEFAULT NULL ,
 QQC106 CHAR(10) CCSID 37 DEFAULT NULL ,
 QQC181 VARCHAR(128) ALLOCATE(18) CCSID 37 DEFAULT NULL ,

Database performance and query optimization 493

 QQC182 VARCHAR(128) ALLOCATE(18) CCSID 37 DEFAULT NULL ,
 QQC183 VARCHAR(128) ALLOCATE(15) CCSID 37 DEFAULT NULL ,
 QQC301 VARCHAR(30) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QQC302 VARCHAR(30) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QQC303 VARCHAR(30) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QQ1000 VARCHAR(1000) ALLOCATE(48) CCSID 37 DEFAULT NULL ,
 QQTIM1 TIMESTAMP DEFAULT NULL ,
 QQTIM2 TIMESTAMP DEFAULT NULL ,
 QVQTBL VARCHAR(128) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QVQLIB VARCHAR(128) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QVPTBL VARCHAR(128) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QVPLIB VARCHAR(128) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QVINAM VARCHAR(128) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QVILIB VARCHAR(128) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QVQTBLI CHAR(1) CCSID 37 DEFAULT NULL ,
 QVPTBLI CHAR(1) CCSID 37 DEFAULT NULL ,
 QVINAMI CHAR(1) CCSID 37 DEFAULT NULL ,
 QVBNDY CHAR(1) CCSID 37 DEFAULT NULL ,
 QVJFANO CHAR(1) CCSID 37 DEFAULT NULL ,
 QVPARPF CHAR(1) CCSID 37 DEFAULT NULL ,
 QVPARPL CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC11 CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC12 CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC13 CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC14 CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC15 CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC16 CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC17 CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC18 CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC19 CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC1A CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC1B CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC1C CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC1D CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC1E CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC1F CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC11 CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC12 CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC13 CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC14 CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC15 CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC16 CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC17 CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC18 CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC19 CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC1A CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC1B CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC1C CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC1D CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC1E CHAR(1) CCSID 37 DEFAULT NULL ,
 QWC1F CHAR(1) CCSID 37 DEFAULT NULL ,
 QVC21 CHAR(2) CCSID 37 DEFAULT NULL ,
 QVC22 CHAR(2) CCSID 37 DEFAULT NULL ,
 QVC23 CHAR(2) CCSID 37 DEFAULT NULL ,
 QVC24 CHAR(2) CCSID 37 DEFAULT NULL ,
 QVCTIM DECIMAL(15, 0) DEFAULT NULL ,
 QVPARD DECIMAL(15, 0) DEFAULT NULL ,
 QVPARU DECIMAL(15, 0) DEFAULT NULL ,
 QVPARRC DECIMAL(15, 0) DEFAULT NULL ,
 QVRCNT DECIMAL(15, 0) DEFAULT NULL ,
 QVFILES DECIMAL(15, 0) DEFAULT NULL ,
 QVP151 DECIMAL(15, 0) DEFAULT NULL ,
 QVP152 DECIMAL(15, 0) DEFAULT NULL ,
 QVP153 DECIMAL(15, 0) DEFAULT NULL ,
 QVP154 DECIMAL(15, 0) DEFAULT NULL ,
 QVP155 DECIMAL(15, 0) DEFAULT NULL ,
 QVP156 DECIMAL(15, 0) DEFAULT NULL ,
 QVP157 DECIMAL(15, 0) DEFAULT NULL ,
 QVP158 DECIMAL(15, 0) DEFAULT NULL ,
 QVP159 DECIMAL(15, 0) DEFAULT NULL ,
 QVP15A DECIMAL(15, 0) DEFAULT NULL ,
 QVP15B DECIMAL(15, 0) DEFAULT NULL ,
 QVP15C DECIMAL(15, 0) DEFAULT NULL ,
 QVP15D DECIMAL(15, 0) DEFAULT NULL ,
 QVP15E DECIMAL(15, 0) DEFAULT NULL ,
 QVP15F DECIMAL(15, 0) DEFAULT NULL ,
 QVC41 CHAR(4) CCSID 37 DEFAULT NULL ,
 QVC42 CHAR(4) CCSID 37 DEFAULT NULL ,
 QVC43 CHAR(4) CCSID 37 DEFAULT NULL ,
 QVC44 CHAR(4) CCSID 37 DEFAULT NULL ,
 QVC81 CHAR(8) CCSID 37 DEFAULT NULL ,
 QVC82 CHAR(8) CCSID 37 DEFAULT NULL ,

494 IBM i: Database Performance and Query Optimization

 QVC83 CHAR(8) CCSID 37 DEFAULT NULL ,
 QVC84 CHAR(8) CCSID 37 DEFAULT NULL ,
 QVC85 CHAR(8) CCSID 37 DEFAULT NULL ,
 QVC86 CHAR(8) CCSID 37 DEFAULT NULL ,
 QVC87 CHAR(8) CCSID 37 DEFAULT NULL ,
 QVC88 CHAR(8) CCSID 37 DEFAULT NULL ,
 QVC101 CHAR(10) CCSID 37 DEFAULT NULL ,
 QVC102 CHAR(10) CCSID 37 DEFAULT NULL ,
 QVC103 CHAR(10) CCSID 37 DEFAULT NULL ,
 QVC104 CHAR(10) CCSID 37 DEFAULT NULL ,
 QVC105 CHAR(10) CCSID 37 DEFAULT NULL ,
 QVC106 CHAR(10) CCSID 37 DEFAULT NULL ,
 QVC107 CHAR(10) CCSID 37 DEFAULT NULL ,
 QVC108 CHAR(10) CCSID 37 DEFAULT NULL ,
 QVC1281 VARCHAR(128) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QVC1282 VARCHAR(128) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QVC1283 VARCHAR(128) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QVC1284 VARCHAR(128) ALLOCATE(10) CCSID 37 DEFAULT NULL ,
 QVC3001 VARCHAR(300) ALLOCATE(32) CCSID 37 DEFAULT NULL ,
 QVC3002 VARCHAR(300) ALLOCATE(32) CCSID 37 DEFAULT NULL ,
 QVC3003 VARCHAR(300) ALLOCATE(32) CCSID 37 DEFAULT NULL ,
 QVC3004 VARCHAR(300) ALLOCATE(32) CCSID 37 DEFAULT NULL ,
 QVC3005 VARCHAR(300) ALLOCATE(32) CCSID 37 DEFAULT NULL ,
 QVC3006 VARCHAR(300) ALLOCATE(32) CCSID 37 DEFAULT NULL ,
 QVC3007 VARCHAR(300) ALLOCATE(32) CCSID 37 DEFAULT NULL ,
 QVC3008 VARCHAR(300) ALLOCATE(32) CCSID 37 DEFAULT NULL ,
 QVC5001 VARCHAR(500) ALLOCATE(32) CCSID 37 DEFAULT NULL ,
 QVC5002 VARCHAR(500) ALLOCATE(32) CCSID 37 DEFAULT NULL ,
 QVC1000 VARCHAR(1000) ALLOCATE(48) CCSID 37 DEFAULT NULL ,
 QWC1000 VARCHAR(1000) ALLOCATE(48) CCSID 37 DEFAULT NULL ,
 QQINT01 INTEGER DEFAULT NULL ,
 QQINT02 INTEGER DEFAULT NULL ,
 QQINT03 INTEGER DEFAULT NULL ,
 QQINT04 INTEGER DEFAULT NULL ,
 QQSMINT1 SMALLINT DEFAULT NULL ,
 QQSMINT2 SMALLINT DEFAULT NULL ,
 QQSMINT3 SMALLINT DEFAULT NULL ,
 QQSMINT4 SMALLINT DEFAULT NULL ,
 QQSMINT5 SMALLINT DEFAULT NULL ,
 QQSMINT6 SMALLINT DEFAULT NULL ,
 QQ1000L CLOB(2147483647) ALLOCATE(48) CCSID 37 DEFAULT NULL ,
 QFC11 CHAR(1) CCSID 37 DEFAULT NULL ,
 QFC12 CHAR(1) CCSID 37 DEFAULT NULL ,
 QFC13 CHAR(1) CCSID 37 DEFAULT NULL ,
 QQCLOB2 CLOB(2147483647) ALLOCATE(48) CCSID 37 DEFAULT NULL ,
 QFC14 CHAR(1) CCSID 37 DEFAULT NULL ,
 QFC15 CHAR(1) CCSID 37 DEFAULT NULL ,
 QFC16 CHAR(1) CCSID 37 DEFAULT NULL ,
 QQCLOB3 CLOB(2147483647) CCSID 37 DEFAULT NULL ,
 QFC17 CHAR(1) CCSID 37 DEFAULT NULL ,
 QFC18 CHAR(1) CCSID 37 DEFAULT NULL ,
 QFC19 CHAR(1) CCSID 37 DEFAULT NULL ,
 QQDBCLOB1 DBCLOB(1073741823) ALLOCATE(24) CCSID 1200 DEFAULT NULL ,
 QFC1A CHAR(1) CCSID 37 DEFAULT NULL ,
 QFC1B CHAR(1) CCSID 37 DEFAULT NULL ,
 QFC1C CHAR(1) CCSID 37 DEFAULT NULL ,
 QQDBCLOB2 DBCLOB(1073741823) CCSID 1200 DEFAULT NULL ,
 QFC1D CHAR(1) CCSID 37 DEFAULT NULL ,
 QFC1E CHAR(1) CCSID 37 DEFAULT NULL ,
 QFC1F CHAR(1) CCSID 37 DEFAULT NULL ,
 QQBLOB1 BLOB(2147483647) DEFAULT NULL ,
 QXC11 CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC12 CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC13 CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC14 CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC15 CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC16 CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC17 CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC18 CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC19 CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC1A CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC1B CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC1C CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC1D CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC1E CHAR(1) CCSID 37 DEFAULT NULL ,
 QXC21 CHAR(2) CCSID 37 DEFAULT NULL ,
 QXC22 CHAR(2) CCSID 37 DEFAULT NULL ,
 QXC23 CHAR(2) CCSID 37 DEFAULT NULL ,
 QXC24 CHAR(2) CCSID 37 DEFAULT NULL ,
 QXC25 CHAR(2) CCSID 37 DEFAULT NULL ,
 QXC26 CHAR(2) CCSID 37 DEFAULT NULL ,
 QXC27 CHAR(2) CCSID 37 DEFAULT NULL ,

Database performance and query optimization 495

 QXC28 CHAR(2) CCSID 37 DEFAULT NULL ,
 QXC29 CHAR(2) CCSID 37 DEFAULT NULL ,
 QXC41 CHAR(4) CCSID 37 DEFAULT NULL ,
 QXC42 CHAR(4) CCSID 37 DEFAULT NULL ,
 QXC43 CHAR(4) CCSID 65535 DEFAULT NULL ,
 QXC44 CHAR(4) CCSID 37 DEFAULT NULL ,
 QQINT05 INTEGER DEFAULT NULL ,
 QQINT06 INTEGER DEFAULT NULL ,
 QQINT07 INTEGER DEFAULT NULL ,
 QQINT08 INTEGER DEFAULT NULL ,
 QQINT09 INTEGER DEFAULT NULL ,
 QQINT0A INTEGER DEFAULT NULL ,
 QQINT0B INTEGER DEFAULT NULL ,
 QQINT0C INTEGER DEFAULT NULL ,
 QQINT0D INTEGER DEFAULT NULL ,
 QQINT0E INTEGER DEFAULT NULL ,
 QQINT0F INTEGER DEFAULT NULL ,
 QQSMINT7 SMALLINT DEFAULT NULL ,
 QQSMINT8 SMALLINT DEFAULT NULL ,
 QQSMINT9 SMALLINT DEFAULT NULL ,
 QQSMINTA SMALLINT DEFAULT NULL ,
 QQSMINTB SMALLINT DEFAULT NULL ,
 QQSMINTC SMALLINT DEFAULT NULL ,
 QQSMINTD SMALLINT DEFAULT NULL ,
 QQSMINTE SMALLINT DEFAULT NULL ,
 QQSMINTF SMALLINT DEFAULT NULL)

 RCDFMT QQQDBMN ;
 RENAME QSYS/QQQDBMN TO SYSTEM NAME QAQQDBMN;

 LABEL ON TABLE QSYS/QAQQDBMN
 IS 'Database Monitor Physical File' ;

 LABEL ON COLUMN QSYS.QAQQDBMN
(QQRID IS 'Record ID' ,
 QQTIME IS 'Created Time' ,
 QQJFLD IS 'Join Column' ,
 QQRDBN IS 'Relational Database Name' ,
 QQSYS IS 'System Name' ,
 QQJOB IS 'Job Name' ,
 QQUSER IS 'Job User' ,
 QQJNUM IS 'Job Number' ,
 QQUCNT IS 'Unique Counter' ,
 QQUDEF IS 'User Defined Column' ,
 QQSTN IS 'Statement Number' ,
 QQQDTN IS 'Subselect Number' ,
 QQQDTL IS 'Subselect Nested Level' ,
 QQMATN IS 'Subselect Number of Materialized View' ,
 QQMATL IS 'Subselect Level of Materialized View' ,
 QQTLN IS 'Library of Table Queried' ,
 QQTFN IS 'Name of Table Queried' ,
 QQTMN IS 'Member of Table Queried' ,
 QQPTLN IS 'Library of Base Table' ,
 QQPTFN IS 'Name of Base Table' ,
 QQPTMN IS 'Member of Base Table' ,
 QQILNM IS 'Library of Index Used' ,
 QQIFNM IS 'Name of Index Used' ,
 QQIMNM IS 'Member of Index Used' ,
 QQNTNM IS 'NLSS Table' ,
 QQNLNM IS 'NLSS Library' ,
 QQSTIM IS 'Start Time' ,
 QQETIM IS 'End Time' ,
 QQKP IS 'Key Positioning' ,
 QQKS IS 'Key Selection' ,
 QQTOTR IS 'Total Rows' ,
 QQTMPR IS 'Number of Rows in Temporary' ,
 QQJNP IS 'Join Position' ,
 QQEPT IS 'Estimated Processing Time' ,
 QQDSS IS 'Data Space Selection' ,
 QQIDXA IS 'Index Advised' ,
 QQORDG IS 'Ordering' ,
 QQGRPG IS 'Grouping' ,
 QQJNG IS 'Join' ,
 QQUNIN IS 'Union' ,
 QQSUBQ IS 'Subquery' ,
 QQHSTV IS 'Host Variables' ,
 QQRCDS IS 'Row Selection' ,
 QQRCOD IS 'Reason Code' ,
 QQRSS IS 'Number of Rows Selected' ,
 QQREST IS 'Estimated Number of Rows Selected' ,
 QQRIDX IS 'Number of Entries in Index Created' ,
 QQFKEY IS 'Estimated Entries for Key Positioning' ,

496 IBM i: Database Performance and Query Optimization

 QQKSEL IS 'Estimated Entries for Key Selection' ,
 QQAJN IS 'Estimated Number of Joined Rows' ,
 QQIDXD IS 'Advised Key Columns' ,
 QQI9 IS 'Thread Identifier' ,
 QVQTBL IS 'Queried Table Long Name' ,
 QVQLIB IS 'Queried Library Long Name' ,
 QVPTBL IS 'Base Table Long Name' ,
 QVPLIB IS 'Base Library Long Name' ,
 QVINAM IS 'Index Used Long Name' ,
 QVILIB IS 'Index Used Library Name' ,
 QVQTBLI IS 'Table Long Required' ,
 QVPTBLI IS 'Base Long Required' ,
 QVINAMI IS 'Index Long Required' ,
 QVBNDY IS 'I/O or CPU Bound' ,
 QVJFANO IS 'Join Fan Out' ,
 QVPARPF IS 'Parallel Pre-Fetch' ,
 QVPARPL IS 'Parallel Pre-Load' ,
 QVCTIM IS 'Estimated Cumulative Time' ,
 QVPARD IS 'Parallel Degree Requested' ,
 QVPARU IS 'Parallel Degree Used' ,
 QVPARRC IS 'Parallel Limited Reason Code' ,
 QVRCNT IS 'Refresh Count' ,
 QVFILES IS 'Number of Tables Joined') ;

LABEL ON COLUMN QSYS.QAQQDBMN
(QQRID TEXT IS 'Record ID' ,
 QQTIME TEXT IS 'Time record was created' ,
 QQJFLD TEXT IS 'Join Column' ,
 QQRDBN TEXT IS 'Relational Database Name' ,
 QQSYS TEXT IS 'System Name' ,
 QQJOB TEXT IS 'Job Name' ,
 QQUSER TEXT IS 'Job User' ,
 QQJNUM TEXT IS 'Job Number' ,
 QQUCNT TEXT IS 'Unique Counter' ,
 QQUDEF TEXT IS 'User Defined Column' ,
 QQSTN TEXT IS 'Statement Number' ,
 QQQDTN TEXT IS 'Subselect Number' ,
 QQQDTL TEXT IS 'Subselect Nested Level' ,
 QQMATN TEXT IS 'Subselect Number of Materialized View' ,
 QQMATL TEXT IS 'Subselect Level of Materialized View' ,
 QQTLN TEXT IS 'Library of Table Queried' ,
 QQTFN TEXT IS 'Name of Table Queried' ,
 QQTMN TEXT IS 'Member of Table Queried' ,
 QQPTLN TEXT IS 'Base Table Library' ,
 QQPTFN TEXT IS 'Base Table' ,
 QQPTMN TEXT IS 'Base Table Member' ,
 QQILNM TEXT IS 'Library of Index Used' ,
 QQIFNM TEXT IS 'Name of Index Used' ,
 QQIMNM TEXT IS 'Member of Index Used' ,
 QQNTNM TEXT IS 'NLSS Table' ,
 QQNLNM TEXT IS 'NLSS Library' ,
 QQSTIM TEXT IS 'Start timestamp' ,
 QQETIM TEXT IS 'End timestamp' ,
 QQKP TEXT IS 'Key positioning' ,
 QQKS TEXT IS 'Key selection' ,
 QQTOTR TEXT IS 'Total row in table' ,
 QQTMPR TEXT IS 'Number of rows in temporary' ,
 QQJNP TEXT IS 'Join Position' ,
 QQEPT TEXT IS 'Estimated processing time' ,
 QQDSS TEXT IS 'Data Space Selection' ,
 QQIDXA TEXT IS 'Index advised' ,
 QQORDG TEXT IS 'Ordering' ,
 QQGRPG TEXT IS 'Grouping' ,
 QQJNG TEXT IS 'Join' ,
 QQUNIN TEXT IS 'Union' ,
 QQSUBQ TEXT IS 'Subquery' ,
 QQHSTV TEXT IS 'Host Variables' ,
 QQRCDS TEXT IS 'Row Selection' ,
 QQRCOD TEXT IS 'Reason Code' ,
 QQRSS TEXT IS 'Number of rows selected or sorted' ,
 QQREST TEXT IS 'Estimated number of rows selected' ,
 QQRIDX TEXT IS 'Number of entries in index created' ,
 QQFKEY TEXT IS 'Estimated keys for key positioning' ,
 QQKSEL TEXT IS 'Estimated keys for key selection' ,
 QQAJN TEXT IS 'Estimated number of joined rows' ,
 QQIDXD TEXT IS 'Key columns for the index advised' ,
 QQI9 TEXT IS 'Thread Identifier' ,
 QVQTBL TEXT IS 'Queried Table, Long Name' ,
 QVQLIB TEXT IS 'Queried Library, Long Name' ,
 QVPTBL TEXT IS 'Base Table, Long Name' ,
 QVPLIB TEXT IS 'Base Library, Long Name' ,
 QVINAM TEXT IS 'Index Used, Long Name' ,

Database performance and query optimization 497

 QVILIB TEXT IS 'Index Used, Libary Name' ,
 QVQTBLI TEXT IS 'Table Long Required' ,
 QVPTBLI TEXT IS 'Base Long Required' ,
 QVINAMI TEXT IS 'Index Long Required' ,
 QVBNDY TEXT IS 'I/O or CPU Bound' ,
 QVJFANO TEXT IS 'Join Fan out' ,
 QVPARPF TEXT IS 'Parallel Pre-Fetch' ,
 QVPARPL TEXT IS 'Parallel Pre-Load' ,
 QVCTIM TEXT IS 'Cumulative Time' ,
 QVPARD TEXT IS 'Parallel Degree, Requested' ,
 QVPARU TEXT IS 'Parallel Degree, Used' ,
 QVPARRC TEXT IS 'Parallel Limited, Reason Code' ,
 QVRCNT TEXT IS 'Refresh Count' ,
 QVFILES TEXT IS 'Number of, Tables Joined') ;

Optional database monitor SQL view format
These examples show the different optional SQL view format that you can create with the SQL shown. The
column descriptions are explained in the tables following each example. These views are not shipped with
the system, and you must create them, if you choose to do so. These views are optional and are not
required for analyzing monitor data.

Any rows that have a row identification number (QQRID) of 5000 or greater are for internal database use.

Database monitor view 1000 - SQL Information
Displays the SQL logical view format for database monitor QQQ1000.

Create View QQQ1000 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQI5 as Unique_Refresh_Counter,
 QQUDEF as User_Defined,
 QQSTN as Statement_Number,
 QQC11 as Statement_Function,
 QQC21 as Statement_Operation,
 QQC12 as Statement_Type,
 QQC13 as Parse_Required,
 QQC103 as Package_Name,
 QQC104 as Package_Library,
 QQC181 as Cursor_Name,
 QQC182 as Statement_Name,
 QQSTIM as Start_Timestamp,
 QQ1000 as Statement_Text,
 QQC14 as Statement_Outcome,
 QQI2 as Result_Rows,
 QQC22 as Dynamic_Replan_Reason_Code,
 QQC16 as Data_Conversion_Reason_Code,
 QQI4 as Total_Time_Milliseconds,
 QQI3 as Rows_Fetched,
 QQETIM as End_Timestamp,
 QQI6 as Total_Time_Microseconds,
 QQI7 as SQL_Statement_Length,
 QQI1 as Insert_Unique_Count,
 QQI8 as SQLCode,
 QQC81 as SQLState,
 QVC101 as Close_Cursor_Mode,
 QVC11 as Allow_Copy_Data_Value,
 QVC12 as PseudoOpen,
 QVC13 as PseudoClose,
 QVC14 as ODP_Implementation,
 QVC21 as Dynamic_Replan_SubCode,
 QVC41 as Commitment_Control_Level,
 QWC1B as Concurrent_Access_Resolution,
 QVC15 as Blocking_Type,
 QVC16 as Delay_Prepare,
 QVC1C as Explainable,
 QVC17 as Naming_Convention,
 QVC18 as Dynamic_Processing_Type,

498 IBM i: Database Performance and Query Optimization

 QVC19 as LOB_Data_Optimized,
 QVC1A as Program_User_Profile_Used,
 QVC1B as Dynamic_User_Profile_Used,
 QVC1281 as Default_Collection,
 QVC1282 as Procedure_Name,
 QVC1283 as Procedure_Library,
 QQCLOB2 as SQL_Path,
 QVC1284 as Current_Schema,
 QQC18 as Binding_Type,
 QQC61 as Cursor_Type,
 QVC1D as Statement_Originator,
 QQC15 as Hard_Close_Reason_Code,
 QQC23 as Hard_Close_Subcode,
 QVC42 as Date_Format,
 QWC11 as Date_Separator,
 QVC43 as Time_Format,
 QWC12 as Time_Separator,
 QWC13 as Decimal_Point,
 QVC104 as Sort_Sequence_Table ,
 QVC105 as Sort_Sequence_Library,
 QVC44 as Language_ID,
 QVC23 as Country_ID,
 QQIA as First_N_Rows_Value,
 QQF1 as Optimize_For_N_Rows_Value,
 QVC22 as SQL_Access_Plan_Reason_Code,
 QVC24 as Access_Plan_Not_Saved_Reason_Code,
 QVC81 as Transaction_Context_ID,
 QVP152 as Activation_Group_Mark,
 QVP153 as Open_Cursor_Threshold,
 QVP154 as Open_Cursor_Close_Count,
 QVP155 as Commitment_Control_Lock_Limit,
 QWC15 as Allow_SQL_Mixed_Constants,
 QWC16 as Suppress_SQL_Warnings,
 QWC17 as Translate_ASCII,
 QWC18 as System_Wide_Statement_Cache,
 QVP159 as LOB_Locator_Threshold,
 QVP156 as Max_Decimal_Precision,
 QVP157 as Max_Decimal_Scale,
 QVP158 as Min_Decimal_Divide_Scale ,
 QWC19 as Unicode_Normalization,
 QQ1000L as Statement_Text_Long,
 QVP15B as Old_Access_Plan_Length,
 QVP15C as New_Access_Plan_Length,
 QVP151 as Fast_Delete_Count,
 QQF2 as Statement_Max_Compression,
 QVC102 as Current_User_Profile,
 QVC1E as Expression_Evaluator_Used,
 QVP15A as Host_Server_Delta,
 QQC301 as NTS_Lock_Space_Id,
 QQC183 as IP_Address,
 QFC11 as IP_Type,
 QQSMINT2 as IP_Port_Number,
 QVC3004 as NTS_Transaction_Id,
 QQSMINT3 as NTS_Format_Id_Length,
 QQSMINT4 as NTS_Transatction_ID_SubLength,
 QVRCNT as Unique_Refresh_Counter2,
 QVP15F as Times_Run,
 QVP15E as FullOpens,
 QVC1F as Proc_In_Cache,
 QWC1A as Combined_Operation,
 QVC3001 as Client_Applname,
 QVC3002 as Client_Userid,
 QVC3003 as Client_Wrkstnname,
 QVC3005 as Client_Acctng,
 QVC3006 as Client_Progamid,
 QVC5001 as Interface_Information,
 QVC82 as Open_Options,
 QWC1D as Extended_Indicators,
 QWC1C as DECFLOAT_Rounding_Mode,
 QWC1E as SQL_DECFLOAT_Warnings,
 QVP15D as Worst_Time_Micro,
 QQINT05 as SQ_Unique_Count,
 QFC13 as Concurrent_Access_Res_Used,
 QQSMINT8 as SQL_Scalar_UDFs_Not_Inlined,
 QVC3007 as Result_Set_Cursor,
 QFC12 as Implicit_XMLPARSE_Option,
 QQSMINT7 as SQL_XML_Data_CCSID,
 QQSMINT5 as OPTIMIZER_USE,
 QFC14 as XML_Schema_In_Cache,
 QQC105 as Current_User,
 QFC15 as Row_Column_Access_Control

Database performance and query optimization 499

 FROM DbMonLib/DbMonTable
 WHERE QQRID=1000)

Table 130. QQQ1000 - SQL Information

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

Unique_Refresh_Counter QQI5 Unique refresh counter

User_Defined QQUDEF User-defined column

Statement_Number QQSTN Statement number (unique per statement)

Statement_Function QQC11 Statement function:

• S - Select
• U - Update
• I - Insert
• D - Delete
• L - Data definition language
• O - Other

500 IBM i: Database Performance and Query Optimization

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Statement_Operation QQC21 Statement operation:

• AC - Allocate cursor
• AD - Allocate descriptor
• AF - Alter function
• AL - Alter table
• AK - Alter mask
• AP - Alter procedure
• AQ - Alter sequence
• AR - Alter permission
• AS - Associate locators
• AT - Alter trigger
• BE - Compound (dynamic)
• CA - Call
• CB - Create variable
• CC - Create collection
• CD - Create type
• CF - Create function
• CG - Create trigger
• CI - Create index
• CK - Create mask
• CL - Close
• CM - Commit
• CN - Connect
• CO - Comment on
• CP - Create procedure
• CQ - Create sequence
• CR - Create permission
• CS - Create alias/synonym
• CT - Create table
• CV - Create view
• DA - Deallocate descriptor
• DE - Describe
• DI - Disconnect
• DL - Delete
• DM - Describe parameter marker
• DO - Describe procedure
• DP - Declare procedure
• DR - Drop
• DS - Describe cursor
• DT - Describe table
• EI - Execute immediate
• EX - Execute
• FE - Fetch
• FL - Free locator
• GR - Grant
• GS - Get descriptor
• HC - Hard close
• HL - Hold locator
• IN - InsertDatabase performance and query optimization 501

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Statement_Operation (continued) QQC21 • JR - Server job reused
• LK - Lock
• LO - Label on
• MG - Merge
• MT - More text (Deprecated in V5R4)
• OP - Open
• PD - Prepare and describe
• PR - Prepare
• QF - OPNQRYF command
• QM - Query/400 STRQMQRY command
• QO - OPNDBF command or Native open
• QQ - QQQQRY() API
• QR - RUNQRY command
• RB - Rollback to savepoint
• RE - Release
• RF - Refresh Table
• RG - Resignal
• RM - Set current DECFLOAT rounding mode
• RO - Rollback
• RS - Release Savepoint
• RT - Rename table
• RV - Revoke
• SA - Savepoint
• SC - Set connection
• SD - Set descriptor
• SE - Set encryption password
• SN - Set session user
• SI - Select into
• SO - Set current degree
• SP - Set path
• SR - Set result set
• SS - Set current schema
• ST - Set transaction
• SV - Set variable
• SX - Set current implicit XMLPARSE option
• TO - Transfer ownership
• TT - Truncate
• UP - Update
• VI - Values into
• X0 - Unknown statement
• X1 - Unknown statement
• X2 - DRDA (AS) Unknown statement
• X3 - Unknown statement
• X9 - Internal error
• XA - X/Open API
• ZD - Host server only activity

502 IBM i: Database Performance and Query Optimization

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Statement_Type QQC12 Statement type:

• D - Dynamic statement
• S - Static statement

Parse_Required QQC13 Parse required (Y/N)

Package_Name QQC103 Name of the package or name of the program that contains the current SQL
statement

Package_Library QQC104 Name of the library containing the package

Cursor_Name QQC181 Name of the cursor corresponding to this SQL statement, if applicable

Statement_Name QQC182 Name of statement for SQL statement, if applicable

Start_Timestamp QQSTIM Time this statement entered

Statement_Text QQ1000 First 1000 bytes of statement text

Statement_Outcome QQC14 Statement outcome

• S - Successful
• U - Unsuccessful

Result_Rows QQI2 Number of result rows returned. Will only be set for the following SQL
operations and is 0 for all others:

• IN - Insert
• UP - Update
• DL - Delete
• For an SQL Plan Cache snapshot, this count represents the aggregate

count for all runs of this query. This count can be divided by the total
number of runs, COALESCE(QVP15F,1), to determine the average rows
fetched for a given query run.

Database performance and query optimization 503

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Dynamic_Replan_Reason_Code QQC22 Dynamic replan (access plan rebuilt)

• NA - No replan.
• NR - SQL QDT rebuilt for new release.
• A1 - A table or member is not the same object as the one referenced

when the access plan was last built. Some reasons why they might be
different are:

– Object was deleted and recreated.
– Object was saved and restored.
– Library list was changed.
– Object was renamed.
– Object was moved.
– Object was overridden to a different object.
– This run is the first run of this query after the object containing the

query has been restored.
– Mask or permission attributes changed for the object.

• A2 - Access plan was built to use a reusable Open Data Path (ODP) and
the optimizer chose to use a nonreusable ODP for this call.

• A3 - Access plan was built to use a non-reusable Open Data Path (ODP)
and the optimizer chose to use a reusable ODP for this call.

• A4 - Either the number of rows in the table member has changed by more
than 10% or a selectivity or cardinality statistic has change by more than
25% since the access plan was last built.

• A5 - A new index exists over one of the tables in the query.
• A6 - An index that was used for this access plan no longer exists or is no

longer valid.
• A7 - IBM i Query requires the access plan to be rebuilt because of system

programming changes.
• A8 - The CCSID of the current job is different from the CCSID of the job

that last created the access plan.
• A9 - The value of one or more of the following values is different for the

current job than it was for the job that last created this access plan:

– date format
– date separator
– time format
– time separator

504 IBM i: Database Performance and Query Optimization

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Dynamic_Replan_Reason_Code (continued) QQC22 • AA - The sort sequence table specified is different from the sort sequence
table that was used when this access plan was created.

• AB - Storage pool changed or DEGREE parameter of CHGQRYA command
changed.

• AC - The system feature DB2 Symmetric Multiprocesing has been
installed or removed.

• AD - The value of the degree query attribute has changed.
• AE - A view is either being opened by a high-level language or a view is

being materialized.
• AF - A user-defined type or user-defined function is not the same object

as the one referred to in the access plan; or the SQL Path is not the same
as when the access plan was built.

• B0 - The options specified have changed as a result of the query options
file.

• B1 - The access plan was generated with a commitment control level that
is different in the current job.

• B2 - The access plan was generated with a static cursor answer set size
that is different from the previous access plan.

• B3 - The query was reoptimized because this run is the first run of the
query after it was prepared. This run is the first run with actual parameter
marker values.

• B4 - The query was reoptimized because referential or check constraints
have changed.

• B5 - The query was reoptimized because Materialized query tables have
changed.

• B6 - The query was reoptimized because the value of a host variable
changed and the access plan is no longer valid.

• B7 - The query was reoptimized because AQP determined that it was
beneficial.

• B8 - The query was reoptimized because Expression Evaluator
determined that the statement should be reoptimized.

Data_Conversion_Reason_Code QQC16 Data conversion

• N - No.
• 0 - Not applicable.
• 1 - Lengths do not match.
• 2 - Numeric types do not match.
• 3 - C host variable is NUL-terminated.
• 4 - Host variable or column is variable length and the other is not variable

length.
• 5 - Host variable or column is not variable length and the other is variable

length.
• 6 - Host variable or column is variable length and the other is not variable

length.
• 7 - CCSID conversion.
• 8 - DRDA and NULL capable, variable length, contained in a partial row,

derived expression, or blocked fetch with not enough host variables.
• 9 - Target table of an insert is not an SQL table.

Database performance and query optimization 505

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Data_Conversion_Reason_Code (continued) • 10 - Host variable is too short to hold a TIME or TIMESTAMP value being
retrieved.

• 11 - Host variable is DATE, TIME, or TIMESTAMP and value being retrieved
is a character string.

• 12 - Too many host variables specified and records are blocked.
• 13 - DRDA used for a blocked FETCH. Also, the number of host variables

specified in the INTO clause is less than the number of result values in the
select list.

• 14 - LOB locator used and the commitment control level was not *ALL.

Total_Time_Milliseconds QQI4 Total time for this statement, in milliseconds. For fetches, the time includes
all fetches for this OPEN of the cursor.

Note: When monitor files are created when using an SQL Plan Cache
snapshot, this time represents the aggregate time for all runs of this query.
This time can be divided by the total number of runs, COALESCE(QVP15F,1),
to determine an average time for a given run of the query.

Rows_Fetched QQI3 Total rows fetched for cursor

Note: When monitor files are created when using an SQL Plan Cache
snapshot, this field is not set.

End_Timestamp QQETIM Time SQL request completed

Total_Time_Microseconds QQI6 Total time for this statement, in microseconds. For fetches, this time
includes all fetches for this OPEN of the cursor.

Note: When monitor files are created when using an SQL Plan Cache
snapshot, this time represents the aggregate time for all runs of this query.
This time can be divided by the total number of runs, COALESCE(QVP15F,1),
to determine an average time for a given run of the query.

SQL_Statement_Length QQI7 Length of SQL Statement

506 IBM i: Database Performance and Query Optimization

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Insert_Unique_Count QQI1 If the operation (QQC21) indicates INSERT (IN), this field contains the
unique query count for the QDT associated with the INSERT. QQUCNT
contains the unique query count for the QDT associated with the WHERE
part of the statement.

If the operation (QQC21) indicates DELETE (DL) or TRUNCATE (TT), this field
contains the fast delete reason code.

Possible values if the operation is a DELETE or TRUNCATE are :

• 0 - Fast delete results unknown or fast delete is not relevant because the
delete failed.

• 1 - Fast delete was achieved.

All other values if the operation is a DELETE or TRUNCATE indicate the
reason the database was unable to implement the request using fast delete.
Fast delete attempt denied values:

• 2 - File is a DDM file.
• 3 - File is a multi member file.
• 4 - File is distributed file.
• 5 - File is a logical file or SQL view.
• 6 - File is a parent file.
• 7 - File has one or more enabled delete triggers created over it.
• 8 - Number of rows in table is less than 1000 OR less than the QAQQINI

SQL_FAST_DELETE_ROW_COUNT value. Refer to QVP151 to see the
SQL_FAST_DELETE_ROW_COUNT value in effect for this statement.

• 9 - DBMAINT failed. This reason code could appear for many reasons,
including the existence of a logical open within this job, pending record
changes, ragged save in progress and possibly other reasons.

• 10- Failed to acquire an exclusive no read (LENR) lock on the file.
• 11- Failed to acquire an exclusive allow read (LEAR) lock on the file's data

space.
• 12- The user does not have *EXECUTE authority to the library.
• 13- File has one or more enabled delete triggers and RESTRICT WHEN

DELETE TRIGGERS was specified on a TRUNCATE statement.
• 51- A WHERE clause was used on the DELETE.
• 52- QAQQINI SQL_FAST_DELETE_ROW_COUNT indicated to disallow fast

delete.
• 53- File is an alias referring to a partition table member.
• 54- The user does not have *DELETE authority to the file.
• 55- File is not found.

SQLCode QQI8 SQL return code

SQLState QQC81 SQLSTATE

Close_Cursor_Mode QVC101 Close Cursor. Possible values are:

• *ENDJOB - SQL cursors are closed when the job ends.
• *ENDMOD - SQL cursors are closed when the module ends
• *ENDPGM - SQL cursors are closed when the program ends.
• *ENDSQL - SQL cursors are closed when the first SQL program on the call

stack ends.
• *ENDACTGRP - SQL cursors are closed when the activation group ends.

Database performance and query optimization 507

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Allow_Copy_Data_Value QVC11 ALWCPYDTA setting (Y/N/O)

• Y - A copy of the data might be used.
• N - Cannot use a copy of the data.
• O - The optimizer can choose to use a copy of the data for performance.

PseudoOpen QVC12 Pseudo Open (Y/N) for SQL operations that can trigger opens.

• OP - Open
• IN - Insert
• UP - Update
• DL - Delete
• SI - Select Into
• SV - Set
• VI - Values into

For all operations, it can be blank.

PseudoClose QVC13 Pseudo Close (Y/N) for SQL operations that can trigger a close.

• CL - Close
• IN - Insert
• UP - Update
• DL - Delete
• SI - Select Into
• SV - Set
• VI - Values into

For all operations, it can be blank.

ODP_Implementation QVC14 ODP implementation

• R - Reusable ODP
• N - Nonreusable ODP
• ' ' - Column not used

Dynamic_Replan_SubCode QVC21 Dynamic replan, subtype reason code

Commitment_Control_Level QVC41 Commitment control level. Possible values are:

• CS - Cursor stability
• CSKL - Cursor stability. Keep exclusive locks.
• NC - No commit
• RR - Repeatable read
• RREL - Repeatable read. Keep exclusive locks.
• RS - Read stability
• RSEL - Read stability. Keep exclusive locks.
• UR - Uncommitted read

Concurrent_Access_Resolution QWC1B Indicates what method of concurrent access resolution was specified.

• N - Concurrent access resolution was not specified.
• S - SKIP LOCKED DATA clause was specified.
• U - USE CURRENTLY COMMITTED clause was specified.
• W- WAIT FOR OUTCOME clause was specified.

508 IBM i: Database Performance and Query Optimization

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Blocking_Type QVC15 Type of blocking. Possible values are:

• S - Single row, ALWBLK(*READ)
• F - Force one row, ALWBLK(*NONE)
• L - Limited block, ALWBLK(*ALLREAD)

Delay_Prepare QVC16 Delay prepare of statement (Y/N).

Explainable QVC1C The SQL statement is explainable (Y/N).

Naming_Convention QVC17 Naming convention. Possible values:

• N - System naming convention
• S - SQL naming convention

Dynamic_Processing_Type QVC18 Type of dynamic processing.

• E - Extended dynamic
• S - System wide cache
• L - Local prepared statement

LOB_Data_Optimized QVC19 Optimize LOB data types (Y/N)

Program_User_Profile_Used QVC1A User profile used when compiled programs are executed. Possible values
are:

• N = User Profile is determined by naming conventions. For *SQL,
USRPRF(*OWNER) is used. For *SYS, USRPRF(*USER) is used.

• U = USRPRF(*USER) is used.
• O = USRPRF(*OWNER) is used.

Dynamic_User_Profile_Used QVC1B User profile used for dynamic SQL statements.

• U = USRPRF(*USER) is used.
• O = USRPRF(*OWNER) is used.

Default_Collection QVC1281 Name of the default collection.

Procedure_Name QVC1282 Procedure name on CALL to SQL.

Procedure_Library QVC1283 Procedure library on CALL to SQL.

SQL_Path QQCLOB2 Path used to find procedures, functions, and user-defined types for static
SQL statements.

Current_Schema QVC1284 SQL current schema.

Binding_Type QQC18 Binding type:

• C - Column-wise binding
• R - Row-wise binding

Cursor_Type QQC61 Cursor Type:

• NSA - Non-scrollable, asensitive, forward only
• NSI - Non-scrollable, insensitive, forward only
• NSS - Non-scrollable, sensitive, forward only
• SCA - scrollable, asensitive
• SCI - scrollable, insensitive
• SCS - scrollable, sensitive

Statement_Originator QVC1D SQL statement originator:

• U - User
• S - System

Database performance and query optimization 509

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Hard_Close_Reason_Code QQC15 SQL cursor hard close reason. Possible reasons are:

• 1 - Internal Error
• 2 - Exclusive Lock
• 3 - Interactive SQL Reuse Restriction
• 4 - Host variable Reuse Restriction
• 5 - Temporary Result Restriction
• 6 - Cursor Restriction
• 7 - Cursor Hard Close Requested
• 8 - Internal Error
• 9 - Cursor Threshold
• A - Optimizer decided to Hard-Close
• B - Reuse Cursor Error
• C - DRDA AS Cursor Closed
• D - DRDA AR Not WITH HOLD
• E - Repeatable Read
• F - Lock Conflict Or QSQPRCED Threshold - Library
• G - Lock Conflict Or QSQPRCED Threshold - File
• H - Execute Immediate Access Plan Space
• I - QSQCSRTH Dummy Cursor Threshold
• J - File Override Change
• K - Program Invocation Change
• L - File Open Options Change
• M - Statement Reuse Restriction
• N - Internal Error
• O - Library List Changed
• P - Exit Processing
• Q - SET SESSION USER statement

Hard_Close_Subcode QQC23 SQL cursor hard close reason subcode.

For QQC15 Reason code ‘A’ the following subcodes apply:

• Z7 - New Index found
• Z8 – Data Space Size changed out side of range
• Z9 – MQT refresh age expired
• ZA – Host variable values are no longer compatible with current plan
• ZB – new statistic was found
• ZC – commit level changed
• ZD – Reoptimze for Warm IO
• ZE – Reoptimze and change from FIRSTIO to ALLIO
• ZF – Host variable selectivity changes require Reoptimization
• ZG – AQP decided to hard-close

510 IBM i: Database Performance and Query Optimization

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Date_Format QVC42 Date Format. Possible values are:

• ISO
• USA
• EUR
• JIS
• JUL
• MDY
• DMY
• YMD

Date_Separator QWC11 Date Separator. Possible values are:

• "/"
• "."
• ","
• "-"
• " "

Time_Format QVC43 Time Format. Possible values are:

• ISO
• USA
• EUR
• JIS
• HMS

Time_Separator QWC12 Time Separator. Possible values are:

• ":"
• "."
• ","
• " "

Decimal_Point QWC13 Decimal Point. Possible values are:

• "."
• ","

Sort_Sequence_Table QVC104 Sort Sequence Table

Sort_Sequence_Library QVC105 Sort Sequence Library

Language_ID QVC44 Language ID

Country_ID QVC23 Country ID

First_N_Rows_Value QQIA Value specified on the FIRST n ROWS clause.

Optimize_For_N_Rows _Value QQF1 Value specified on the OPTIMIZE FOR n ROWS clause.

Database performance and query optimization 511

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

SQL_Access_Plan_Reason_Code QVC22 SQL access plan rebuild reason code. Possible reasons are:

• A1 - A table or member is not the same object as the one referenced
when the access plan was last built. Some reasons they might be different
are:

– Object was deleted and recreated.
– Object was saved and restored.
– Library list was changed.
– Object was renamed.
– Object was moved.
– Object was overridden to a different object.
– This rebuild is the first run of this query after the object containing the

query has been restored.
• A2 - Access plan was built to use a reusable Open Data Path (ODP) and

the optimizer chose to use a non-reusable ODP for this call.
• A3 - Access plan was built to use a non-reusable Open Data Path (ODP)

and the optimizer chose to use a reusable ODP for this call.
• A4 - The number of rows in the table has changed by more than 10%

since the access plan was last built.
• A5 - A new index exists over one of the tables in the query
• A6 - An index that was used for this access plan no longer exists or is no

longer valid.

512 IBM i: Database Performance and Query Optimization

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

SQL_Access_Plan_Reason_Code (continued) • A7 - IBM i Query requires the access plan to be rebuilt because of system
programming changes.

• A8 - The CCSID of the current job is different from the CCSID of the job
that last created the access plan.

• A9 - One or more of the following values is different for the current job
than it was for the job that last created this access plan:

– date format
– date separator
– time format
– time separator.

• AA - The sort sequence table specified is different from the sort sequence
table that was used when this access plan was created.

• AB - Storage pool changed or DEGREE parameter of CHGQRYA command
changed.

• AC - The system feature DB2 Symmetric Multiprocessing has been
installed or removed.

• AD - The value of the degree query attribute has changed.
• AE- A view is either being opened by a high-level language or a view is

being materialized.
• AF - A user-defined type or user-defined function is not the same object

as the one referred to in the access plan, or, the SQL Path is not the same
as when the access plan was built.

• B0 - The options specified have changed as a result of the query options
file.

• B1 - The access plan was generated with a commitment control level that
is different in the current job.

• B2 - The access plan was generated with a static cursor answer set size
that is different from the previous access plan.

• B3 - The query was reoptimized because this run is the first run after the
query was prepared. It is the first run with actual parameter marker
values.

• B4 - The query was reoptimized because referential or check constraints
have changed.

• B5 - The query was reoptimized because Materialized query tables have
changed.

• B6 - The query was reoptimized because the value of a host variable
changed and the access plan is no longer valid.

• B7 - The query was reoptimized because AQP determined that the query
must be reoptimized.

Database performance and query optimization 513

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Access_Plan_Not_Saved_Reason_Code QVC24 Access plan not saved reason code. Possible reasons are:

• A1 - Failed to get an LSUP lock on associated space of program or
package.

• A2 - Failed to get an immediate LEAR space location lock on first byte of
associated space of program.

• A3 - Failed to get an immediate LENR space location lock on first byte of
associated space of program.

• A5 - Failed to get an immediate LEAR space location lock on first byte of
ILE associated space of a program.

• A6 - Error trying to extend space of an ILE program.
• A7 - No room in program.
• A8 - No room in program associated space.
• A9 - No room in program associated space.
• AA - No need to save. Save already done in another job.
• AB - Query optimizer cannot lock the QDT.
• B1 - Saved at the end of the program associated space.
• B2 - Saved at the end of the program associated space.
• B3 - Saved in place.
• B4 - Saved in place.
• B5 - Saved at the end of the program associated space.
• B6 - Saved in place.
• B7 - Saved at the end of the program associated space.
• B8 - Saved at the end of the program associated space.

Transaction_Context_ID QVC81 Transaction context ID.

Activation_Group_Mark QVP152 Activation Group Mark

Open_Cursor_Threshold QVP153 Open cursor threshold

Open_Cursor_Close_Count QVP154 Open cursor close count

Commitment_Control_Lock_Limit QVP155 Commitment control lock limit

Allow_SQL_Mixed_Constants QWC15 Using SQL mixed constants (Y/N)

Suppress_SQL_Warnings QWC16 Suppress SQL warning messages (Y/N)

Translate_ASCII QWC17 Translate ASCII to job (Y/N)

System_Wide_Statement_Cache QWC18 Using system-wide SQL statement cache (Y/N)

LOB_Locator_Threshold QVP159 LOB locator threshold

Max_Decimal_Precision QVP156 Maximum decimal precision (63/31)

Max_Decimal_Scale QVP157 Maximum decimal scale

Min_Decimal_Divide_Scale QVP158 Minimum decimal divide scale

Unicode_Normalization QWC19 Unicode data normalization requested (Y/N)

Statement_Text_Long QQ1000L Complete statement text

Old_Access_Plan_Length QVP15B Length of old access plan

New_Access_Plan_Length QVP15C Length of new access plan

514 IBM i: Database Performance and Query Optimization

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Fast_Delete_Count QVP151 SQL fast delete count. Possible values are:

• 0 = *OPTIMIZE or *DEFAULT
• 1-999,999,999,999 = User specified value
• 'FFFFFFFFFFFFFFFF'x = *NONE

Statement_Max_Compression QQF2 SQL statement maximum compression. Possible values are:

• 1 - *DEFAULT
• 1 - User specified queries
• 2 - All queries, user, and system
• 3 - System generated internal queries

Current_User_Profile QVC102 Current user profile name

Expression_Evaluator_Used QVC1E • N - Not applicable
• S - SQL mapping
• Y - QQ expression evaluator
• O - Expression handled by an Open
• T - Expression evaluator used temporary copy of access plan

Host_Server_Delta QVP15A Time not spent within Host Server

NTS_Lock_Space_Id QQC301 NTS Lock Space Identifier

IP_Address QQC183 IP Address

IP_Type QFC11 IP address type

• '0' = No client IP address
• '1' = IPV4 format
• '2' = IPV6 format

Only applicable for database server jobs.

IP_Port_Number QQSMINT2 IP Port Number

NTS_Transaction_Id QVC3004 NTS Transaction Identifier

NTS_Format_Id_Length QQSMINT3 NTS Format Identified length

NTS_Transaction_ID_SubLength QQSMINT4 NTS Transaction Identifier sublength.

Unique_Refresh_Counter2 QVRCNT Unique refresh counter

Times_Run QVP15F Number of times this Statement was run. If Null, then the statement was run
once.

Note: While using an SQL Plan Cache snapshot, this value can be set by the
database monitor. This value might be null if the query never completed, or
was running when the snapshot was created. If there is not a plan cache
snapshot, the value is null.

Full_Opens QVP15E Number of runs that were processed as full opens. If Null, then the refresh
count (qvrcnt) is used to determine if the open was a full open (0) or a
pseudo open (>0).

Note: While using an SQL Plan Cache snapshot, this value can be set by the
database monitor. This value might be null if the query never completed, or
was running when the snapshot was created. If there is not a plan cache
snapshot, the value is null.

Proc_In_Cache QVC1F Procedure definition was found in an internal cache. (Y/N) Only applicable
for CALL statements.

Combined_Operation QWC1A Statement was performed with the processing for another statement. (Y/N)
Only applicable for OPEN, FETCH, and CLOSE statements.

Database performance and query optimization 515

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Client_Applname QVC3001 Client Special Register - application name

Client_Userid QVC3002 Client Special Register - userid

Client_Wrkstnname QVC3003 Client Special Register - work station name

Client_Acctng QVC3005 Client Special Register - accounting string

Client_Programid QVC3006 Client Special Register - program name

Interface_Information QVC5001 Part of the CLIENT special register information. Three types of info are
stored in this char500 column, separated by colons.

• First part, Interface Name, varchar(127);
• Second part, Interface Level, varchar(63);
• Third part, Interface Type, varchar(63)

Open_Options QVC82 Open options appear as a combination of the following characters,
representing the actual capability for the cursor. The character values are
left-aligned and padded on the right with blanks. Example 'RU ' indicate that
the cursor is both read and update capable.

• R - Read capable
• W - Write capable
• U - Update capable
• D - Delete capable

Extended_Indicators QWC1D An Update or Insert statement was enabled to use extended indicators
(Y/N).

DECFLOAT_Rounding_Mode QWC1C Rounding mode to use for DECFLOAT computations and conversions.

• 'E' = ROUND_HALF_EVEN
• 'C' = ROUND_CEILING
• 'D' = ROUND_DOWN
• 'F' = ROUND_FLOOR
• 'G' = ROUND_HALF_DOWN
• 'H' = ROUND_HALF_UP
• 'U' = ROUND_UP

SQL_DECFLOAT_Warnings QWC1E DECFLOAT computations and conversions involving division by 0, overflow,
underflow, an invalid operand, an inexact result, or a subnormal number
results in a warning (Y/N).

Worst_Time_Micro QVP15D If not null, this time is the time for the slowest single run of this query.

Note: When monitor files are created when using an SQL Plan Cache
snapshot, this time represents the run time for the longest single run of the
query. If the value is null, then the longest run information is not available.
In that case, QQI6 might be the next best answer. See documentation for
QQI6 for the proper use of that field

SQ_Unique_Count QQINT05 A unique count used to uniquely identify statements which do not have an
ODP but do pass in host variables. If QQUCNT is 0 and the statement passes
in host variables, this value is non-zero. An example would be a CALL
statement.

516 IBM i: Database Performance and Query Optimization

Table 130. QQQ1000 - SQL Information (continued)

View Column Name

Table
Column
Name Description

Concurrent_Access_Res_Used QFC13 Specifies what method of concurrent access resolution was used.

• 'N' = Concurrent access resolution is not applicable. This method applies
to read queries with no commit or uncommitted read.

• 'S' = SKIP LOCKED DATA clause was specified and rows with incompatible
locks held by other transactions are skipped.

• 'U' = USE CURRENTLY COMMITTED clause was specified and the currently
committed version of data being updated or deleted is used. Data being
inserted is skipped.

• 'W' = Wait for commit or rollback when data is in the process of being
inserted, updated, or deleted. This is the default method when the
isolation level does not apply, the query is processed by CQE, or when not
specified by the user.

SQL_Scalar_UDFs_Not_Inlined QQSMINT8 Specifies the number of SQL scalar user-defined functions (UDFs) that were
not inlined in an SQL query or expression.

Result_Set_Cursor QVC3007 Result Set Cursor name. Set by Allocate Cursor, Fetch, and Close.

Implicit_XMLPARSE_Option QFC12 CURRENT IMPLICIT XMLPARSE OPTION special register. This option is used
to specify white-space handling for an implicit parse of serialized XML data.

• 'S' = STRIP WHITESPACE
• 'P' = PRESERVE WHITESPACE

SQL_XML_Data_CCSID QQSMINT7 The CCSID used for XML columns, host variables, parameter markers, and
expressions if not explicitly specified.

OPTIMIZER_USE QQSMINT5 Which optimizer was used for the query. Set to null if the monitor predates
this option.

• 0 = Does not apply for this statement
• 1 = SQE was used (SQL Query Engine)
• 2 = CQE was used (Classic Query Engine)
• 3 = CQE direct was used (statements like INSERT W/VALUES)

XML_Schema_In_Cache QFC14 The XML schema binary used during XMLVALIDATE or decomposition was
found in the XML cache.

• 'Y' = Yes
• 'N' = No

Current_User QQC105 The value of the CURRENT USER special register. The value only appears in
the QQC105 column if the SQL statement used CURRENT USER.

Row_Column_Access_Control QFC15 Type of row or column access applied.

• ' ' = Not applicable
• 'C' = Column Access Control
• 'R' = Row Access Control
• 'B' = Both Row and Column Access Control

Database monitor view 3000 - Table Scan
Displays the SQL logical view format for database monitor QQQ3000

Create View QQQ3000 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,

Database performance and query optimization 517

 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQTLN as System_Table_Schema,
 QQTFN as System_Table_Name,
 QQTMN as Member_Name,
 QQPTLN as System_Base_Table_Schema,
 QQPTFN as System_Base_Table_Name,
 QQPTMN as Base_Member_Name,
 QQTOTR as Table_Total_Rows,
 QQREST as Estimated_Rows_Selected,
 QQAJN as Estimated_Join_Rows,
 QQEPT as Estimated_Processing_Time,
 QQJNP as Join_Position,
 QQI1 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QQI2 as Index_Advised_Columns_Count,
 QQDSS as DataSpace_Selection,
 QQIDXA as Index_Advised,
 QQRCOD as Reason_Code,
 QQIDXD as Index_Advised_Columns,
 QVQTBL as Table_Name,
 QVQLIB as Table_Schema,
 QVPTBL as Base_Table_Name,
 QVPLIB as Base_Table_Schema,
 QVBNDY as Bound,
 QVRCNT as Unique_Refresh_Counter,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_PreLoad,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QVCTIM as Estimated_Cumulative_Time,
 QQC11 as Skip_Sequential_Table_Scan,
 QQI3 as Table_Size,
 QVC3001 as DataSpace_Selection_Columns,
 QQC14 as Derived_Column_Selection,
 QVC3002 as Derived_Column_Selection_Columns,
 QQC18 as Read_Trigger,
 QVP157 as UDTF_Cardinality,
 QVC1281 as UDTF_Specific_Name,
 QVC1282 as UDTF_Specific_Schema,
 QVP154 as Pool_Size,
 QVP155 as Pool_Id,
 QQC13 as MQT_Replacement,
 QQC15 as InsertTable,
 QQSMINTF as Plan_Iteration_Number
 QQF1 as Average_Read_Time
 FROM UserLib/DBMONTABLE
 WHERE QQRID=3000)

Table 131. QQQ3000 - Table Scan

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

518 IBM i: Database Performance and Query Optimization

Table 131. QQQ3000 - Table Scan (continued)

View Column Name

Table
Column
Name Description

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSele
cts

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Cod
e

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

Table_Total_Rows QQTOTR Total rows in table

Estimated_Rows_Selected QQREST Estimated number of rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Join_Position QQJNP Join position - when available

DataSpace_Number QQI1 Dataspace number

Database performance and query optimization 519

Table 131. QQQ3000 - Table Scan (continued)

View Column Name

Table
Column
Name Description

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE - Less than or equal
• CP - Cartesian product

Index_Advised_Columns_Count QQI2 Number of advised columns that use index scan-key
positioning

DataSpace_Selection QQDSS Dataspace selection

• Y - Yes
• N - No

Index_Advised QQIDXA Index advised

• Y - Yes
• N - No

Reason_Code QQRCOD Reason code

• T1 - No indexes exist.
• T2 - Indexes exist, but none can be used.
• T3 - Optimizer chose table scan over available indexes.

Index_Advised_Columns QQIDXD Columns for the index advised

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

520 IBM i: Database Performance and Query Optimization

Table 131. QQQ3000 - Table Scan (continued)

View Column Name

Table
Column
Name Description

Bound QVBNDY I/O or CPU bound. Possible values are:

• I - I/O bound
• C - CPU bound

Unique_Refresh_Counter QVRCNT Unique refresh counter

Join_Fanout QVJFANO Join fan out. Possible values are:

• N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

• D - Distinct fanout. Join fanout is allowed however
none of the join fanout rows are returned.

• U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (Y/N)

Parallel_Degree_Requested QVPARD Parallel degree requested

Parallel_Degree_Used QVPARU Parallel degree used

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Skip_Sequential_Table_Scan QQC11 Skip sequential table scan (Y/N)

Table_Size QQI3 Size of table being queried

DataSpace_Selection_Columns QVC3001 Columns used for dataspace selection

Derived_Column_Selection QQC14 Derived column selection (Y/N)

Derived_Column_Selection_Columns QVC3002 Columns used for derived column selection

Read_Trigger QQC18 Read Trigger (Y/N)

UDTF_Cardinality QVP157 User-defined table function Cardinality

UDTF_Specific_Name QVC1281 User-defined table function specific name

UDTF_Specific_Schema QVC1282 User-defined table function specific schema

Pool_Size QVP154 Memory pool size

Pool_Id QVP155 Memory pool ID

MQT_Replacement QQC13 Materialized Query Table replaced queried table (Y/N)

Insert_Table QQC15 This is a target table of an insert (Y/N)

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Average_Read_Time QQF1 Average disk I/O time for this object

Database performance and query optimization 521

Database monitor view 3001 - Index Used
Displays the SQL logical view format for database monitor QQQ3001

Create View QQQ3001 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQTLN as System_Table_Schema,
 QQTFN as System_Table_Name,
 QQTMN as Member_Name,
 QQPTLN as System_Base_Table_Schema,
 QQPTFN as System_Base_Table_Name,
 QQPTMN as Base_Member_Name,
 QQILNM as System_Index_Schema,
 QQIFNM as System_Index_Name,
 QQIMNM as Index_Member_Name,
 QQTOTR as Table_Total_Rows,
 QQREST as Estimated_Rows_Selected,
 QQFKEY as Index_Probe_Keys,
 QQKSEL as Index_Scan_Keys,
 QQAJN as Estimated_Join_Rows,
 QQEPT as Estimated_Processing_Time,
 QQJNP as Join_Position,
 QQI1 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QQI2 as Index_Advised_Probe_Count,
 QQKP as Index_Probe_Used,
 QQI3 as Index_Probe_Column_Count,
 QQKS as Index_Scan_Used,
 QQDSS as DataSpace_Selection,
 QQIDXA as Index_Advised,
 QQRCOD as Reason_Code,
 QQIDXD as Index_Advised_Columns,
 QQC11 as Constraint,
 QQ1000 as Constraint_Name,
 QVQTBL as Table_Name,
 QVQLIB as Table_Schema,
 QVPTBL as Base_Table_Name,
 QVPLIB as Base_Table_Schema,
 QVINAM as Index_Name,
 QVILIB as Index_Schema,
 QVBNDY as Bound,
 QVRCNT as Unique_Refresh_Counter,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_Preload,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QVCTIM as Estimated_Cumulative_Time,
 QVc14 as Index_Only_Access,
 QQc12 as Index_Fits_In_Memory,
 QQC15 as Index_Type,
 QVC12 as Index_Usage,
 QQI4 as Index_Entries,
 QQI5 as Unique_Keys,
 QQI6 as Percent_Overflow,
 QQI7 as Vector_Size,
 QQI8 as Index_Size,

522 IBM i: Database Performance and Query Optimization

 QQIA as Index_Page_Size,
 QVP154 as Pool_Size,
 QVP155 as Pool_Id,
 QVP156 as Table_Size,
 QQC16 as Skip_Sequential_Table_Scan,
 QVC13 as Tertiary_Indexes_Exist,
 QVC3001 as DataSpace_Selection_COlumns,
 QQC14 as Derived_Column_Selection,
 QVC3002 as Derived_Column_Selection_Columns,
 QVC3003 as Table_Columns_For_Index_Probe,
 QVC3004 as Table_Columns_For_Index_Scan,
 QVC3005 as Join_Selection_Columns,
 QVC3006 as Ordering_Columns,
 QVC3007 as Grouping_Columns,
 QQC18 as Read_Trigger,
 QVP157 as UDTF_Cardinality,
 QVC1281 as UDTF_Specific_Name,
 QVC1282 as UDTF_Specific_Schema,
 QQC13 as MQT_Replacement,
 QQSMINTF as Plan_Iteration_Number,
 QVC3008 as Include_Values,
 QVC15 as Sparse_Index
 QQF1 as Average_Read_Time
 FROM UserLib/DBMONTable
 WHERE QQRID=3001)

Table 132. QQQ3001 - Index Used

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User-defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numbe
r

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSel
ects

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Co
de

QVP15C Decomposed query subselect reason code

Database performance and query optimization 523

Table 132. QQQ3001 - Index Used (continued)

View Column Name
Table Column
Name Description

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

System_Index_Schema QQILNM Schema name of index used for access

System_Index_Name QQIFNM Name of index used for access

Index_Member_Name QQIMNM Member name of index used for access

Table_Total_Rows QQTOTR Total rows in base table

Estimated_Rows_Selected QQREST Estimated number of rows selected

Index_Probe_Keys QQFKEY Columns selected through index scan-key positioning

Index_Scan_Keys QQKSEL Columns selected through index scan-key selection

Estimated_Join_Rows QQAJN Estimated number of joined rows

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Join_Position QQJNP Join position - when available

DataSpace_Number QQI1 Dataspace number

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE- Less than or equal
• CP - Cartesian product

524 IBM i: Database Performance and Query Optimization

Table 132. QQQ3001 - Index Used (continued)

View Column Name
Table Column
Name Description

Index_Advised_Probe_Count QQI2 Number of advised key columns that use index scan-
key positioning

Index_Probe_Used QQKP Index scan-key positioning

• Y - Yes
• N - No

Index_Probe_Column_Count QQI3 Number of columns that use index scan-key positioning
for the index used

Index_Scan_Used QQKS Index scan-key selection

• Y - Yes
• N - No

DataSpace_Selection QQDSS Dataspace selection

• Y - Yes
• N - No

Index_Advised QQIDXA Index advised

• Y - Yes
• N - No

Reason_Code QQRCOD Reason code

• I1 - Row selection
• I2 - Ordering/Grouping
• I3 - Row selection and Ordering/Grouping
• I4 - Nested loop join
• I5 - Row selection using bitmap processing

Index_Advised_Columns QQIDXD Columns for index advised

Constraint QQC11 Index is a constraint (Y/N)

Constraint_Name QQ1000 Constraint name

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

Index_Name QVINAM Name of index (or constraint) used, long name

Index_Schema QVILIB Library of index used, long name

Bound QVBNDY I/O or CPU bound. Possible values are:

• I - I/O bound
• C - CPU bound

Unique_Refresh_Counter QVRCNT Unique refresh counter

Database performance and query optimization 525

Table 132. QQQ3001 - Index Used (continued)

View Column Name
Table Column
Name Description

Join_Fanout QVJFANO Join fanout. Possible values are:

• N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

• D - Distinct fanout. Join fanout is allowed however
none of the join fanout rows are returned.

• U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_Preload QVPARPL Parallel Preload (Y/N)

Parallel_Degree_Requested QVPARD Parallel degree requested

Parallel_Degree_Used QVPARU Parallel degree used

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Index_Only_Access QVC14 Index only access (Y/N)

Index_Fits_In_Memory QQC12 Index fits in memory (Y/N)

Index_Type QQC15 Type of Index. Possible values are:

• B - Binary Radix Index
• C - Constraint (Binary Radix)
• E - Encoded Vector Index (EVI)
• X - Query created temporary index

Index_Usage QVC12 Index Usage. Possible values are:

• P - Primary Index
• T - Tertiary (AND or OR) Index

Index_Entries QQI4 Number of index entries

Unique_Keys QQI5 Number of unique key values

Percent_Overflow QQI6 Percent overflow

Vector_Size QQI7 Vector size

Index_Size QQI8 Index size

Index_Page_Size QQIA Index page size

Pool_Size QVP154 Pool size

Pool_Id QVP155 Pool ID

Table_Size QVP156 Table size

Skip_Sequential_Table_Scan QQC16 Skip sequential table scan (Y/N)

Tertiary_Indexes_Exist QVC13 Tertiary indexes exist (Y/N)

526 IBM i: Database Performance and Query Optimization

Table 132. QQQ3001 - Index Used (continued)

View Column Name
Table Column
Name Description

DataSpace_Selection_Columns QVC3001 Columns used for dataspace selection

Derived_Column_Selection QQC14 Derived column selection (Y/N)

Derived_Column_Selection_Columns QVC3002 Columns used for derived column selection

Table_Column_For_Index_Probe QVC3003 Columns used for index scan-key positioning

Table_Column_For_Index_Scan QVC3004 Columns used for index scan-key selection

Join_Selection_Columns QVC3005 Columns used for Join selection

Ordering_Columns QVC3006 Columns used for Ordering

Grouping_Columns QVC3007 Columns used for Grouping

Read_Trigger QQC18 Read Trigger (Y/N)

UDTF_Cardinality QVP157 Cardinality for user-defined table function.

UDTF_Specific_Name QVC1281 Specific name for user-defined table function.

UDTF_Specific_Schema QVC1282 Specific schema for user-defined table function.

MQT_Replacement QQC13 Materialized Query Table replaced queried table (Y/N)

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Include_Values QVC3008 Encoded Vector indexes only.

Aggregates included as part of index creation and
predetermined for Grouping query request.

Sparse_Index QVC15 Index contains sparse selection or Select/Omit
selection criteria (Y/N).

Average_Read_Time QQF1 Average disk I/O time for this object

Database monitor view 3002 - Index Created
Displays the SQL logical view format for database monitor QQQ3002.

Create View QQQ3002 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQTLN as System_Table_Schema,
 QQTFN as System_Table_Name,
 QQTMN as Member_Name,
 QQPTLN as System_Base_Table_Schema,
 QQPTFN as System_Base_Table_Name,

Database performance and query optimization 527

 QQPTMN as Base_Member_Name,
 QQILNM as System_Index_Schema,
 QQIFNM as System_Index_Name,
 QQIMNM as Index_Member_Name,
 QQNTNM as NLSS_Table,
 QQNLNM as NLSS_Library,
 QQSTIM as Start_Timestamp,
 QQETIM as End_Timestamp,
 QQTOTR as Table_Total_Rows,
 QQRIDX as Created_Index_Entries,
 QQREST as Estimated_Rows_Selected,
 QQFKEY as Index_Probe_Keys,
 QQKSEL as Index_Scan_Keys,
 QQAJN as Estimated_Join_Rows,
 QQEPT as Estimated_Processing_Time,
 QQJNP as Join_Position,
 QQI1 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QQI2 as Index_Advised_Probe_Count,
 QQKP as Index_Probe_Used,
 QQI3 as Index_Probe_Column_Count,
 QQKS as Index_Scan_Used,
 QQDSS as DataSpace_Selection,
 QQIDXA as Index_Advised,
 QQRCOD as Reason_Code,
 QQIDXD as Index_Advised_Columns,
 QQ1000 as Created_Index_Columns,
 QVQTBL as Table_Name,
 QVQLIB as Table_Schema,
 QVPTBL as Base_Table_Name,
 QVPLIB as Base_Table_Schema,
 QVINAM as Index_Name,
 QVILIB as Index_Schema,
 QVBNDY as Bound,
 QVRCNT as Unique_Refresh_Counter,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_Preload,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QVCTIM as Estimated_Cumulative_Time,
 QQC101 as Created_Index_Name,
 QQC102 as Created_Index_Schema,
 QQI4 as Created_Index_Page_Size,
 QQI5 as Created_Index_Row_Size,
 QQC14 as Created_Index_Used_ACS_Table,
 QQC103 as Created_Index_ACS_Table,
 QQC104 as Created_Index_ACS_Library,
 QVC13 as Created_Index_Reusable,
 QVC14 as Created_Index_Sparse,
 QVC1F as Created_Index_Type,
 QVP15F as Created_Index_Unique_EVI_Count,
 QVC15 as Permanent_Index_Created,
 QVC16 as Index_From_Index,
 QVP151 as Created_Index_Parallel_Degree_Requested,
 QVP152 as Created_Index_Parallel_Degree_Used,
 QVP153 as Created_Index_Parallel_Degree_Reason_Code,
 QVC17 as Index_Only_Access,
 QVC18 as Index_Fits_In_Memory,
 QVC1B as Index_Type,
 QQI6 as Index_Entries,
 QQI7 as Unique_Keys,
 QVP158 as Percent_Overflow,
 QVP159 as Vector_Size,
 QQI8 as Index_Size,
 QVP156 as Index_Page_Size,
 QVP154 as Pool_Size,
 QVP155 as Pool_ID,
 QVP157 as Table_Size,
 QVC1C as Skip_Sequential_Table_Scan,
 QVC3001 as DataSpace_Selection_Columns,
 QVC1E as Derived_Column_Selection,
 QVC3002 as Derived_Column_Selection_Columns,
 QVC3003 as Table_Column_For_Index_Probe,
 QVC3004 as Table_Column_For_Index_Scan,
 QQC18 as Read_Trigger,
 QQC13 as MQT_Replacement,
 QQC16 as Reused_Temporary_Index,

528 IBM i: Database Performance and Query Optimization

 QQINT03 as Estimated_Storage,
 QQSMINTF as Plan_Iteration_Number,
 QQF1 as Average_Read_Time
 FROM UserLib/DBMONTable
 WHERE QQRID=3002)

Table 133. QQQ3002 - Index Created

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across
all decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

System_Index_Schema QQILNM Schema name of index used for access

System_Index_Name QQIFNM Name of index used for access

Database performance and query optimization 529

Table 133. QQQ3002 - Index Created (continued)

View Column Name

Table
Column
Name Description

Index_Member_Name QQIMNM Member name of index used for access

NLSS_Table QQNTNM NLSS table

NLSS_Library QQNLNM NLSS library

Start_Timestamp QQSTIM Start timestamp, when available.

End_Timestamp QQETIM End timestamp, when available

Table_Total_Rows QQTOTR Total rows in table

Created_Index_Entries QQRIDX Number of entries in index created

Estimated_Rows_Selected QQREST Estimated number of rows selected

Index_Probe_Keys QQFKEY Keys selected thru index scan-key positioning

Index_Scan_Keys QQKSEL Keys selected thru index scan-key selection

Estimated_Join_Rows QQAJN Estimated number of joined rows

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Join_Position QQJNP Join position - when available

DataSpace_Number QQI1 Dataspace number

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE - Less than or equal
• CP - Cartesian product

Index_Advised_Probe_Count QQI2 Number of advised key columns that use index scan-
key positioning

Index_Probe_Used QQKP Index scan-key positioning

• Y - Yes
• N - No

530 IBM i: Database Performance and Query Optimization

Table 133. QQQ3002 - Index Created (continued)

View Column Name

Table
Column
Name Description

Index_Probe_Column_Count QQI3 Number of columns that use index scan-key
positioning for the index used

Index_Scan_Used QQKS Index scan-key selection

• Y - Yes
• N - No

DataSpace_Selection QQDSS Dataspace selection

• Y - Yes
• N - No

Index_Advised QQIDXA Index advised

• Y - Yes
• N - No

Reason_Code QQRCOD Reason code

• I1 - Row selection
• I2 - Ordering/Grouping
• I3 - Row selection and Ordering/Grouping
• I4 - Nested loop join

Index_Advised_Columns QQIDXD Key columns for index advised

Created_Index_Columns QQ1000 Key columns for index created

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

Index_Name QVINAM Name of index (or constraint) used, long name

Index_Schema QVILIB Schema of index used, long name

Bound QVBNDY I/O or CPU bound. Possible values are:

• I - I/O bound
• C - CPU bound

Unique_Refresh_Counter QVRCNT Unique refresh counter

Join_Fanout QVJFANO Join fan out. Possible values are:

• N - Normal join situation where fanout is allowed
and each matching row of the join fanout is
returned.

• D - Distinct fanout. Join fanout is allowed however
none of the join fanout rows are returned.

• U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Database performance and query optimization 531

Table 133. QQQ3002 - Index Created (continued)

View Column Name

Table
Column
Name Description

Join_Table_Count QVFILES Number of tables joined

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_Preload QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Created_Index_Name QQC101 Name of index created - when available

Created_Index_Schema QQC102 Schema of index created - when available

Created_Index_Page_Size QQI4 Page size of index created

Created_Index_Row_Size QQI5 Row size of index created

Created_Index_Used_ACS_Table QQC14 Index Created used Alternate Collating Sequence
Table (Y/N)

Created_Index_ACS_Table QQC103 Alternate Collating Sequence table of index created.

Created_Index_ACS_Library QQC104 Alternate Collating Sequence library of index created.

Created_Index_Reusable QVC13 Index created is reusable (Y/N)

Created_Index_Sparse QVC14 Index created is sparse index (Y/N)

Created_Index_Type QVC1F Type of index created. Possible values:

• B - Binary Radix Index
• E - Encoded Vector Index (EVI)

Created_Index_Unique_EVI_Count QVP15F Number of unique values of index created if index
created is an EVI index.

Permanent_Index_Created QVC15 Permanent index created (Y/N)

Index_From_Index QVC16 Index from index (Y/N)

Created_Index_Parallel_Degree_Requeste
d

QVP151 Parallel degree requested (index created)

Created_Index_Parallel_Degree_Used QVP152 Parallel degree used (index created)

Created_Index_Parallel_Degree_Reason_C
ode

QVP153 Reason parallel processing was limited (index
created)

Index_Only_Access QVC17 Index only access (Y/N)

Index_Fits_In_Memory QVC18 Index fits in memory (Y/N)

532 IBM i: Database Performance and Query Optimization

Table 133. QQQ3002 - Index Created (continued)

View Column Name

Table
Column
Name Description

Index_Type QVC1B Type of Index. Possible values are:

• B - Binary Radix Index
• C - Constraint (Binary Radix)
• E - Encoded Vector Index (EVI)
• T - Tertiary (AND/OR) Index

Index_Entries QQI6 Number of index entries, index used

Unique_Keys QQI7 Number of unique key values, index used

Percent_Overflow QVP158 Percent overflow, index used

Vector_Size QVP159 Vector size, index used

Index_Size QQI8 Size of index used.

Index_Page_Size QVP156 Index page size

Pool_Size QVP154 Pool size

Pool_ID QVP155 Pool id

Table_Size QVP157 Table size

Skip_Sequential_Table_Scan QVC1C Skip sequential table scan (Y/N)

DataSpace_Selection_Columns QVC3001 Columns used for dataspace selection

Derived_Column_Selection QVC1E Derived column selection (Y/N)

Derived_Column_Selection_Columns QVC3002 Columns used for derived column selection

Table_Columns_For_Index_Probe QVC3003 Columns used for index scan-key positioning

Table_Columns_For_Index_Scan QVC3004 Columns used for index scan-key selection

Read_Trigger QQC18 Read Trigger (Y/N)

MQT_Replacement QQC13 Materialized Query Table replaced queried table (Y/N)

Reused_Temporary_Index QQC16 Temporary index reused (Y/N)

Estimated_Storage QQINT03 Estimated amount of temporary storage used, in
megabytes, to create the temporary index.

Plan_Iteration_Number QQSMINT
F

AQP Plan iteration number, original optimization = 1

Average_Read_Time QQF1 Average disk I/O time for this object

Database monitor view 3003 - Query Sort
Displays the SQL logical view format for database monitor QQQ3003.

Create View QQQ3003 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,

Database performance and query optimization 533

 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQSTIM as Start_Timestamp,
 QQETIM as End_Timestamp,
 QQRSS as Sorted_Rows,
 QQI1 as Sort_Space_Size,
 QQI2 as Pool_Size,
 QQI3 as Pool_Id,
 QQI4 as Internal_Sort_Buffer_Length,
 QQI5 as External_Sort_Buffer_Length,
 QQRCOD as Reason_Code,
 QQI7 as Union_Reason_Subcode,
 QVBNDY as Bound,
 QVRCNT as Unique_Refresh_Counter,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_PreLoad,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QQEPT as Estimated_Processing_Time,
 QVCTIM as Estimated_Cumulative_Time,
 QQAJN as Estimated_Join_Rows,
 QQJNP as Join_Position,
 QQI6 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QQINT03 as Estimated_Storage,
 QQSMINTF as Plan_Iteration_Number
 QQF1 as Average_Read_Time
 FROM UserLib/DBMONTable
 WHERE QQRID=3003)

Table 134. QQQ3003 - Query Sort

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

534 IBM i: Database Performance and Query Optimization

Table 134. QQQ3003 - Query Sort (continued)

View Column Name
Table Column
Name Description

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numbe
r

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across
all decomposed subselects

Total_Number_Decomposed_SubSele
cts

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Cod
e

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Start_Timestamp QQSTIM Start timestamp, when available

End_Timestamp QQETIM End timestamp, when available

Sorted_Rows QQRSS Estimated number of rows selected or sorted.

Sort_Space_Size QQI1 Estimated size of sort space.

Pool_Size QQI2 Pool size

Pool_Id QQI3 Pool id

Internal_Sort_Buffer_Length QQI4 Internal sort buffer length

External_Sort_Buffer_Length QQI5 External sort buffer length

Reason_Code QQRCOD Reason code

• F1 - Query contains grouping columns (GROUP BY)
from more that one table, or contains grouping
columns from a secondary table of a join query that
cannot be reordered.

• F2 - Query contains ordering columns (ORDER BY)
from more that one table, or contains ordering
columns from a secondary table of a join query that
cannot be reordered.

• F3 - The grouping and ordering columns are not
compatible.

• F4 - DISTINCT was specified for the query.
• F5 - UNION was specified for the query.
• F6 - Query had to be implemented using a sort. Key

length of more than 2000 bytes or more than 120 key
columns specified for ordering.

Database performance and query optimization 535

Table 134. QQQ3003 - Query Sort (continued)

View Column Name
Table Column
Name Description

Reason_Code (continued) • F7 - Query optimizer chose to use a sort rather than
an index to order the results of the query.

• F8 - Perform specified row selection to minimize I/O
wait time.

• FC - The query contains grouping fields and there is a
read trigger on at least one of the physical files in the
query.

Union_Reason_Subcode QQI7 Reason subcode for Union:

• 51 - Query contains UNION and ORDER BY
• 52 - Query contains UNION ALL

Bound QVBNDY I/O or CPU bound. Possible values are:

• I - I/O bound
• C - CPU bound

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

536 IBM i: Database Performance and Query Optimization

Table 134. QQQ3003 - Query Sort (continued)

View Column Name
Table Column
Name Description

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE - Less than or equal
• CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

• N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

• D - Distinct fanout. Join fanout is allowed however
none of the join fanout rows are returned.

• U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Estimated_Storage QQINT03 Estimated amount of temporary storage used, in
megabytes, to create the temporary index.

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Average_Read_Time QQF1 Average disk I/O time for this object

Database monitor view 3004 - Temp Table
Displays the SQL logical view format for database monitor QQQ3004.

Create View QQQ3004 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQTLN as System_Table_Schema,
 QQTFN as System_Table_Name,
 QQTMN as Member_Name,
 QQPTLN as System_Base_Table_Schema,
 QQPTFN as System_Base_Table_Name,
 QQPTMN as Base_Member_Name,
 QQSTIM as Start_Timestamp,
 QQETIM as End_Timestamp,
 QQC11 as Has_Default_Values,

Database performance and query optimization 537

 QQTMPR as Table_Rows,
 QQRCOD as Reason_Code,
 QVQTBL as Table_Name,
 QVQLIB as Table_Schema,
 QVPTBL as Base_Table_Name,
 QVPLIB as Base_Table_Schema,
 QQC101 as Temporary_Table_Name,
 QQC102 as Temporary_Table_Schema,
 QVBNDY as Bound,
 QVRCNT as Unique_Refresh_Counter,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_PreLoad,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QQEPT as Estimated_Processing_Time,
 QVCTIM as Estimated_Cumulative_Time,
 QQAJN as Estimated_Join_Rows,
 QQJNP as Join_Position,
 QQI6 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QQI2 as Temporary_Table_Row_Size,
 QQI3 as Temporary_Table_Size,
 QQC12 as Temporary_Query_Result,
 QQC13 as Distributed_Temporary_Table,
 QVC3001 as Distributed_Temporary_Data_Nodes,
 QQI7 as Materialized_Subqery_QDT_Level,
 QQI8 as Materialized_Union_QDT_Level,
 QQC14 as View_Contains_Union,
 QQINT03 as Estimated_Storage,
 QQSMINTF as Plan_Iteration_Number
 QQF1 as Average_Read_Time
 FROM UserLib/DBMONTable
 WHERE QQRID=3004)

Table 135. QQQ3004 - Temp Table

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

538 IBM i: Database Performance and Query Optimization

Table 135. QQQ3004 - Temp Table (continued)

View Column Name

Table
Column
Name Description

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across
all decomposed subselects

Total_Number_Decomposed_SubSelect
s

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

Start_Timestamp QQSTIM Start timestamp, when available

End_Timestamp QQETIM End timestamp, when available

Has_Default_Values QQC11 Default values may be present in temporary

• Y - Yes
• N - No

Table_Rows QQTMPR Estimated number of rows in the temporary

Database performance and query optimization 539

Table 135. QQQ3004 - Temp Table (continued)

View Column Name

Table
Column
Name Description

Reason_Code QQRCOD Reason code. Possible values are:

• F1 - Query contains grouping columns (GROUP BY)
from more that one table, or contains grouping
columns from a secondary table of a join query that
cannot be reordered.

• F2 - Query contains ordering columns (ORDER BY)
from more that one table, or contains ordering
columns from a secondary table of a join query that
cannot be reordered.

• F3 - The grouping and ordering columns are not
compatible.

• F4 - DISTINCT was specified for the query.
• F5 - UNION was specified for the query.
• F6 - Query had to be implemented using a sort. Key

length of more than 2000 bytes or more than 120
key columns specified for ordering.

• F7 - Query optimizer chose to use a sort rather than
an index to order the results of the query.

• F8 - Perform specified row selection to minimize
I/O wait time.

• F9 - The query optimizer chose to use a hashing
algorithm rather than an index to perform the
grouping.

• FA - The query contains a join condition that
requires a temporary table

• FB - The query optimizer creates a run-time
temporary file in order to implement certain
correlated group by queries.

• FC - The query contains grouping fields and there is
a read trigger on at least one of the physical files in
the query.

• FD - The query optimizer creates a runtime
temporary file for a static-cursor request.

• H1 - Table is a join logical file and its join type does
not match the join type specified in the query.

• H2 - Format specified for the logical table
references more than one base table.

• H3 - Table is a complex SQL view requiring a
temporary table to contain the results of the SQL
view.

• H4 - For an update-capable query, a subselect
references a column in this table which matches
one of the columns being updated.

• H5 - For an update-capable query, a subselect
references an SQL view which is based on the table
being updated.

• H6 - For a delete-capable query, a subselect
references either the table from which rows are to
be deleted, an SQL view, or an index based on the
table from which rows are to be deleted

• H7 - A user-defined table function was
materialized.

540 IBM i: Database Performance and Query Optimization

Table 135. QQQ3004 - Temp Table (continued)

View Column Name

Table
Column
Name Description

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Library of base table, long name

Temporary_Table_Name QQC101 Temporary table name

Temporary_Table_Schema QQC102 Temporary table schema

Bound QVBNDY I/O or CPU bound. Possible values are:

• I - I/O bound
• C - CPU bound

Unique_Refresh_Counter QVRCNT Unique refresh counter

Join_Fanout QVJFANO Join fan out. Possible values are:

• N - Normal join situation where fanout is allowed
and each matching row of the join fanout is
returned.

• D - Distinct fanout. Join fanout is allowed however
none of the join fanout rows are returned.

• U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (Y/N)

Parallel_Degree_Requested QVPARD Parallel degree requested

Parallel_Degree_Used QVPARU Parallel degree used

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

Database performance and query optimization 541

Table 135. QQQ3004 - Temp Table (continued)

View Column Name

Table
Column
Name Description

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE - Less than or equal
• CP - Cartesian product

Temporary_Table_Row_Size QQI2 Row size of temporary table, in bytes

Temporary_Table_Size QQI3 Estimated size of temporary table, in bytes.

Temporary_Query_Result QQC12 Temporary result table that contains the results of
the query. (Y/N)

Distributed_Temporary_Table QQC13 Distributed Table (Y/N)

Distributed_Temporary_Data_Nodes QVC3001 Data nodes of temporary table

Materialized_Subqery_QDT_Level QQI7 Materialized subquery QDT level

Materialized_Union_QDT_Level QQI8 Materialized Union QDT level

View_Contains_Union QQC14 Union in a view (Y/N)

Estimated_Storage QQINT03 Estimated amount of temporary storage used, in
megabytes, to create the temporary index.

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Average_Read_Time QQF1 Average disk I/O time for this object

Database monitor view 3005 - Table Locked
Displays the SQL logical view format for database monitor QQQ3005.

Create View QQQ3005 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,

542 IBM i: Database Performance and Query Optimization

 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQTLN as System_Table_Schema,
 QQTFN as System_Table_Name,
 QQTMN as Member_Name,
 QQPTLN as System_Base_Table_Schema,
 QQPTFN as System_Base_Table_Name,
 QQPTMN as Base_Member_Name,
 QQC11 as Lock_Success,
 QQC12 as Unlock_Request,
 QQRCOD as Reason_Code,
 QVQTBL as Table_Name,
 QVQLIB as Table_Schema,
 QVPTBL as Base_Table_Name,
 QVPLIB as Base_Table_Schema,
 QQJNP as Join_Position,
 QQI6 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QVRCNT as Unique_Refresh_Counter
 FROM UserLib/DBMONTable
 WHERE QQRID=3005)

Table 136. QQQ3005 - Table Locked

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numbe
r

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSel
ects

QVP15B Total number of decomposed subselects

Database performance and query optimization 543

Table 136. QQQ3005 - Table Locked (continued)

View Column Name

Table
Column
Name Description

Decomposed_SubSelect_Reason_Co
de

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

Lock_Success QQC11 Successful lock indicator (Y/N)

Unlock_Request QQC12 Unlock request (Y/N)

Reason_Code QQRCOD Reason code

• L1 - UNION with *ALL or *CS with Keep Locks
• L2 - DISTINCT with *ALL or *CS with Keep Locks
• L3 - No duplicate keys with *ALL or *CS with Keep Locks
• L4 - Temporary needed with *ALL or *CS with Keep Locks
• L5 - System Table with *ALL or *CS with Keep Locks
• L6 - Orderby > 2000 bytes with *ALL or *CS with Keep

Locks
• L9 - Unknown
• LA - User-defined table function with *ALL or *CS with

Keep Locks

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

544 IBM i: Database Performance and Query Optimization

Table 136. QQQ3005 - Table Locked (continued)

View Column Name

Table
Column
Name Description

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE - Less than or equal
• CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

• N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

• D - Distinct fanout. Join fanout is allowed however none
of the join fanout rows are returned.

• U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Unique_Refresh_Counter QVRCNT Unique refresh counter

Database monitor view 3006 - Access Plan Rebuilt
Displays the SQL logical view format for database monitor QQQ3006.

Create View QQQ3006 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQRCOD as Reason_Code,
 QQC21 as SubCode,
 QVRCNT as Unique_Refresh_Counter,
 QQTIM1 as Last_Access_Plan_Rebuild_Timestamp,
 QQC11 as Reoptimization_Done,

Database performance and query optimization 545

 QVC22 as Previous_Reason_Code,
 QVC23 as Previous_SubCode,
 QQSMINTF as Plan_Iteration_Number
 FROM UserLib/DBMONTable
 WHERE QQRID=3006)

Table 137. QQQ3006 - Access Plan Rebuilt

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numbe
r

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSele
cts

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Co
de

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

546 IBM i: Database Performance and Query Optimization

Table 137. QQQ3006 - Access Plan Rebuilt (continued)

View Column Name

Table
Column
Name Description

Reason_Code QQRCOD Reason code why access plan was rebuilt

• A1 - A table or member is not the same object as the
one referenced when the access plan was last built.
Some reasons they might be different are:

– Object was deleted and recreated.
– Object was saved and restored.
– Library list was changed.
– Object was renamed.
– Object was moved.
– Object was overridden to a different object.
– This is the first run of this query after the object

containing the query has been restored.
– Mask or permission attributes changed for the

object.
• A2 - Access plan was built to use a reusable Open

Data Path (ODP) and the optimizer chose to use a non-
reusable ODP for this call.

• A3 - Access plan was built to use a non-reusable Open
Data Path (ODP) and the optimizer chose to use a
reusable ODP for this call.

• A4 - The number of rows in the table has changed by
more than 10% since the access plan was last built.

• A5 - A new index exists over one of the tables in the
query

• A6 - An index that was used for this access plan no
longer exists or is no longer valid.

• A7 - IBM i Query requires the access plan to be rebuilt
because of system programming changes.

• A8 - The CCSID of the current job is different than the
CCSID of the job that last created the access plan.

• A9 - The value of one or more of the following is
different for the current job than it was for the job that
last created this access plan:

– date format
– date separator
– time format
– time separator.

Database performance and query optimization 547

Table 137. QQQ3006 - Access Plan Rebuilt (continued)

View Column Name

Table
Column
Name Description

Reason_Code (continued) QQRCOD • AA - The sort sequence table specified is different
than the sort sequence table that was used when this
access plan was created.

• AB - Storage pool changed.
• AC - The system feature DB2 multisystem has been

installed or removed.
• AD - The value of the degree query attribute has

changed.
• AE - A view is either being opened by a high level

language or a view is being materialized.
• AF - A sequence object or user-defined type or

function is not the same object as the one referred to
in the access plan; or, the SQL path used to generate
the access plan is different than the current SQL path.

• B0 - The options specified have changed as a result of
the query options file.

• B1 - The access plan was generated with a
commitment control level that is different in the
current job.

• B2 - The access plan was generated with a static
cursor answer set size that is different than the
previous access plan.

• B3 - The query was reoptimized because this is the
first run of the query after a prepare. That is, it is the
first run with real actual parameter marker values.

• B4 - The query was reoptimized because referential or
check constraints have changed.

• B5 - The query was reoptimized because MQTs have
changed.

• B6 - The query was reoptimized because the value of
a host variable changed and the access plan is no
longer valid.

• B7 - The query was reoptimized because AQP
determined that the query should be reoptimized.

• B8 - The query was reoptimized because Expression
Evaluator determined that the statement should be
reoptimized

SubCode QQC21 If the access plan rebuild reason code was A7 this two-
byte hex value identifies which specific reason for A7
forced a rebuild.

Unique_Refresh_Counter QVRCNT Unique refresh counter

Last_Access_Plan_Rebuild_Timesta
mp

QQTIM1 Timestamp of last access plan rebuild

548 IBM i: Database Performance and Query Optimization

Table 137. QQQ3006 - Access Plan Rebuilt (continued)

View Column Name

Table
Column
Name Description

Reoptimization_Done QQC11 Required optimization for this plan.

• Y - Yes, plan was really optimized.
• N - No, the plan was not reoptimized because of the

QAQQINI option for the REOPTIMIZE_ACCESS_PLAN
parameter value

Previous_Reason_Code QVC22 Previous reason code

Previous_SubCode QVC23 Previous reason subcode

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Database monitor view 3007 - Optimizer Timed Out
Displays the SQL logical view format for database monitor QQQ3007.

Create View QQQ3007 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQTLN as System_Table_Schema,
 QQTFN as System_Table_Name,
 QQTMN as Member_Name,
 QQPTLN as System_Base_Table_Schema,
 QQPTFN as System_Base_Table_Name,
 QQPTMN as Base_Member_Name,
 QQ1000 as Index_Names,
 QQC11 as Optimizer_Timed_Out,
 QQC301 as Reason_Codes,
 QVQTBL as Table_Name,
 QVQLIB as Table_Schema,
 QVPTBL as Base_Table_Name,
 QVPLIB as Base_Table_Schema,
 QQJNP as Join_Position,
 QQI6 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QVRCNT as Unique_Refresh_Counter,
 QQIDXNL as Index_Names_2,
 QQSMINTF as Plan_iteration_number
 FROM UserLib/DBMONTable
 WHERE QQRID=3007)

Database performance and query optimization 549

Table 138. QQQ3007 - Optimizer Timed Out

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across
all decomposed subselects

Total_Number_Decomposed_SubSelect
s

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member name of base table

550 IBM i: Database Performance and Query Optimization

Table 138. QQQ3007 - Optimizer Timed Out (continued)

View Column Name

Table
Column
Name Description

Index_Names QQ1000 Names of indexes not used and reason code.

1. Access path was not in a valid state. The system
invalidated the access path.

2. Access path was not in a valid state. The user
requested that the access path be rebuilt.

3. Access path is a temporary access path (resides in
library QTEMP) and was not specified as the file to
be queried.

4. The cost to use this access path, as determined by
the optimizer, was higher than the cost associated
with the chosen access method.

5. The keys of the access path did not match the
fields specified for the ordering/grouping criteria.
For distributed file queries, the access path keys
must exactly match the ordering fields if the
access path is to be used when ALWCPYDTA(*YES
or *NO) is specified.

6. The keys of the access path did not match the
fields specified for the join criteria.

7. Use of this access path will not minimize delays
when reading records from the file. The user
requested to minimize delays when reading
records from the file.

8. The access path cannot be used for a secondary
file of the join query because it contains static
select/omit selection criteria. The join-type of the
query does not allow the use of select/omit access
paths for secondary files.

9. File contains record ID selection. The join-type of
the query forces a temporary access path to be
built to process the record ID selection.

10. The user specified ignore decimal data errors on
the query. This disallows the use of permanent
access paths.

Database performance and query optimization 551

Table 138. QQQ3007 - Optimizer Timed Out (continued)

View Column Name

Table
Column
Name Description

Index_Names (continued) QQ1000 • 11. The access path contains static select/omit
selection criteria which is not compatible with the
selection in the query.

• 12. The access path contains static select/omit
selection criteria whose compatibility with the
selection in the query cannot be determined. Either
the select/omit criteria or the query selection
became too complex during compatibility
processing.

• 13. The access path contains one or more keys
which may be changed by the query during an insert
or update.

• 14. The access path is being deleted or is being
created in an uncommitted unit of work in another
process.

• 15. The keys of the access path matched the fields
specified for the ordering/grouping criteria. However,
the sequence table associated with the access path
did not match the sequence table associated with
the query.

• 16. The keys of the access path matched the fields
specified for the join criteria. However, the sequence
table associated with the access path did not match
the sequence table associated with the query.

• 17. The left-most key of the access path did not
match any fields specified for the selection criteria.
Therefore, key row positioning cannot be performed,
making the cost to use this access path higher than
the cost associated with the chosen access method.

• 18. The left-most key of the access path matched a
field specified for the selection criteria. However, the
sequence table associated with the access path did
not match the sequence table associated with the
query. Therefore, key row positioning cannot be
performed, making the cost to use this access path
higher than the cost associated with the chosen
access method.

• 19. The access path cannot be used because the
secondary file of the join query is a select/omit
logical file. The join-type requires that the select/
omit access path associated with the secondary file
be used or, if dynamic, that an access path be
created by the system.

Optimizer_Timed_Out QQC11 Optimizer timed out (Y/N)

Reason_Codes QQC301 List of unique reason codes used by the indexes that
timed out (each index has a corresponding reason
code associated with it)

552 IBM i: Database Performance and Query Optimization

Table 138. QQQ3007 - Optimizer Timed Out (continued)

View Column Name

Table
Column
Name Description

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE - Less than or equal
• CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

• N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

• D - Distinct fanout. Join fanout is allowed however
none of the join fanout rows are returned.

• U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Unique_Refresh_Counter QVRCNT Unique refresh counter

Index_Names_2 QQ1000L Index names when the list will not fit into QQ1000. Set
to null otherwise

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Database performance and query optimization 553

Database monitor view 3008 - Subquery Processing
Displays the SQL logical view format for database monitor QQQ3008.

Create View QQQ3008 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QQI1 as Original_QDT_Count,
 QQI2 as Merged_QDT_Count,
 QQI3 as Final_QDT_Count,
 QVRCNT as Unique_Refresh_Counter,
 QQSMINTF as PlanIterNum
 FROM UserLib/DBMONTable
 WHERE QQRID=3008)

Table 139. QQQ3008 - Subquery Processing

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Num
ber

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

554 IBM i: Database Performance and Query Optimization

Table 139. QQQ3008 - Subquery Processing (continued)

View Column Name

Table
Column
Name Description

Original_QDT_Count QQI1 Original number of QDTs

Merged_QDT_Count QQI2 Number of QDTs merged

Final_QDT_Count QQI3 Final number of QDTs

Unique_Refresh_Counter QVRCNT Unique refresh counter

PlanIterNum QQSMINTF AQP Plan iteration number, original optimization = 1

Database monitor view 3010 - Host Variable & ODP Implementation
Displays the SQL logical view format for database monitor QQQ3010.

Create View QQQ3010 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQI5 as Unqiue_Refresh_Counter2,
 QQUDEF as User_Defined,
 QQC11 as ODP_Implementation,
 QQC12 as Host_Variable_Implementation,
 QQ1000 as Host_Variable_Values,
 QVRCNT as Unique_Refresh_Counter,
 QQDBCLOB1 as DBCLOB_CCSID,
 QQI7 as DBCLOB_Length,
 QQINT05 as SQ_Unique_Count,
 QVC11 as HV_Truncated
 FROM UserLib/DBMONTable
 WHERE QQRID=3010)

Table 140. QQQ3010 - HostVar & ODP Implementation

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

Unqiue_Refresh_Counter2 QQI5 Unique refresh counter

Database performance and query optimization 555

Table 140. QQQ3010 - HostVar & ODP Implementation (continued)

View Column Name
Table Column
Name Description

User_Defined QQUDEF User defined column

ODP_Implementation QQC11 ODP implementation

• R - Reusable ODP
• N - Nonreusable ODP
• ' ' - Column not used

Host_Variable_Implementati
on

QQC12 Host variable implementation

• I - Interface supplied values (ISV)
• V - Host variables treated as literals (V2)
• U - Table management row positioning (UP)
• S - SQL Insert/Update host variable value

Host_Variable_Values QQ1000 Host variable values

Unique_Refresh_Counter QVRCNT Unique refresh counter

DBCLOB_CCSID QQDBCLOB1 Host variables values in a DBCLOB CCSID 1200 field

DBCLOB_Length QQI7 Length of host variables in the DBCLOB column.

SQ_Unique_Count QQINT05 A unique count used to uniquely identify statements which do
not have an ODP but do pass in host variables. If QQUCNT is 0
and the statement passes in host variables, this value will be
non-zero. An example would be a CALL statement.

HV_Truncated QVC11 Host variable has been truncated (Y/N).

Database monitor view 3011 - Array Host Variables
Displays the SQL logical view format for database monitor QQQ3011.

Create View QQQ3011 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQ19 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQC11 as ODP_Implementation,
 QQC12 as Array_Variable_Implementation,
 QQC101 as Array_Name,
 QVRCNT as Unique_Refresh_Counter,
 QQDBCLOB1 as Array_Values,
 QQINT05 as SQ_Unique_Count,
 QVC11 AS HV_Truncated,
 QVC1281 as Array_Name,
 QVC1282 as Array_Library,
 QQI1 as Max_Cardinality,
 QQI2 as Cur_Cardinality,
 QQI3 as Index_Position
 FROM UserLib/DBMONTable
 WHERE QQRID=3011)

556 IBM i: Database Performance and Query Optimization

Table 141. QQQ3011 - Array Host Variables

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

ODP_Implementation QQC11 ODP implementation:

• R - Reusable ODP
• N - Nonreusable ODP
• ' ' - Column not used

Array_Variable_Implementati
on

QQC12 Array variable implementation:

• I - Interface supplied values (ISV)
• S- SQL Insert/Update array variable value

Array_Name QQC101 Array name generated by the optimizer. Matches the array
value in the QQ1000 QQHVAR field in the 3010 record.

Unique_Refresh_Counter QVRCNT Unique refresh counter.

Array_Values QQDBCLOB1 Array variables values in a DBCLOB CCSID 1200 field (max 1
MB).

SQ_Unique_Count QQINT05 A unique count used to uniquely identify statements which do
not have an ODP but do pass in Arrays. If QQUCNT is 0 and
the statement passes in Arrays, this value will be non-zero. An
example would be a CALL statement.

HV_Truncated QVC11 Host variable has been truncated (Y/N).

Array_Name QVC1281 Name of Array UDT.

Array_Library QVC1282 Library of Array UDT.

Max_Cardinality QQI1 Maximum cardinality of Array.

Cur_Cardinality QQI2 Current cardinality of Array.

Index_Position QQI3 Index position in the Array designated in the QQ1000
QQHVAR field in the 3010 record.

Database performance and query optimization 557

Database monitor view 3012 - Global Variables
Displays the SQL logical view format for database monitor QQQ3012.

Create View QQQ3012 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQI5 as Unique_Refresh_Counter2,
 QQUDEF as User_Defined,
 QVRCNT as Unique_Refresh_Counter,
 QQDBCLOB1 as DBCLOB_Global_Variable,
 QQINT05 as SQ_Unique_Count,
 QVC11 as GV_Truncated
 FROM UserLib/DBMONTable
 WHERE QQRID=3012)

Table 142. QQQ3012 - Global Variables

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

Unique_Refresh_Counter2 QQI5 Unique refresh counter

User_Defined QQUDEF User-defined column

Unique_Refresh_Counter QVRCNT Unique refresh counter

DBCLOB_Global_Variable QQDBCLOB1 Global session variable values in a DBCLOB CCSID 1200 field.

SQ_Unique_Count QQINT05 A unique count used to uniquely identify statements which do
not have an ODP but do pass in global variables. If QQUCNT is
0 and the statement passes in global variables, this value is
non-zero. An example would be a CALL statement.

GV_Truncated QVC11 Host variable has been truncated (Y/N).

Database monitor view 3014 - Generic QQ Information
Displays the SQL logical view format for database monitor QQQ3014.

Create View QQQ3014 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,

558 IBM i: Database Performance and Query Optimization

 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQREST as Estimated_Rows_Selected,
 QQEPT as Estimated_Processing_Time,
 QQI1 as Open_Time,
 QQORDG as Has_Ordering,
 QQGRPG as Has_Grouping,
 QQJNG as Has_Join,
 QQC22 as Join_Type,
 QQUNIN as Has_Union,
 QQSUBQ as Has_Subquery,
 QWC1F as Has_Scalar_Subselect,
 QQHSTV as Has_Host_Variables,
 QQRCDS as Has_Row_Selection,
 QQC11 as Query_Governor_Enabled,
 QQC12 as Stopped_By_Query_Governor,
 QQC101 as Open_Id,
 QQC102 as Query_Options_Library,
 QQC103 as Query_Options_Table_Name,
 QQC13 as Early_Exit,
 QVRCNT as Unique_Refresh_Counter,
 QQI5 as Optimizer_Time,
 QQTIM1 as Access_Plan_Timestamp,
 QVC11 as Ordering_Implementation,
 QVC12 as Grouping_Implementation,
 QVC13 as Join_Implementation,
 QVC14 as Has_Distinct,
 QVC15 as Is_Distributed,
 QVC3001 as Distributed_Nodes,
 QVC105 as NLSS_Table,
 QVC106 as NLSS_Library,
 QVC16 as ALWCPYDATA,
 QVC21 as Access_Plan_Reason_Code,
 QVC22 as Access_Plan_Reason_SubCode,
 QVC3002 as Summary,
 QWC16 as Last_Union_Subselect,
 QVP154 as Query_PoolSize,
 QVP155 as Query_PoolID,
 QQI2 as Query_Time_Limit,
 QVC81 as Parallel_Degree,
 QQI3 as Max_Number_of_Tasks,
 QVC17 as Apply_CHGQRYA_Remote,
 QVC82 as Async_Job_Usage,
 QVC18 as Force_Join_Order_Indicator,
 QVC19 as Print_Debug_Messages,
 QVC1A as Parameter_Marker_Conversion,
 QQI4 as UDF_Time_Limit,
 QVC1283 as Optimizer_Limitations,
 QVC1E as Reoptimize_Requested,
 QVC87 as Optimize_All_Indexes,
 QQC14 as Has_Final_Decomposed_QDT,
 QQC15 as Is_Final_Decomposed_QDT,
 QQC18 as Read_Trigger,
 QQC81 as Star_Join,
 SUBSTR(QVC23,1,1) as Optimization_Goal,
 SUBSTR(QVC24,1,1) as VE_Diagram_Type,
 SUBSTR(QVC24,2,1) as Ignore_Like_Redunant_Shifts,
 QQC23 as Union_QDT,
 QQC21 as Unicode_Normalization,
 QVP153 as Pool_Fair_Share,
 QQC82 as Force_Join_Order_Requested,
 QVP152 as Force_Join_Order_Dataspace1,
 QQI6 as No_Parameter_Marker_Reason_Code,
 QVP151 as Hash_Join_Reason_Code,
 QQI7 as MQT_Refresh_Age,
 SUBSTR(QVC42,1,1) as MQT_Usage,

Database performance and query optimization 559

 QVC43 as SQE_NotUsed_Reason_Code,
 QVP156 as Estimated_IO_Count,
 QVP157 as Estimated_Processing_Cost,
 QVP158 as Estimated_CPU_Cost,
 QVP159 as Estimated_IO_Cost,
 SUBSTR(QVC44,1,1) as Has_Implicit_Numeric_Conversion,
 QVCTIM as Accumulated_Est_Process_Time,
 QQINT01 as Query_Gov_Storage_Limit,
 QQINT02 as Estimated_Storage,
 QQINT03 as Adjusted_Temp_Storage,
 QQINT04 as Original_Cost_Estimate,
 QQI8 as Parallel_Degree_Percentage,
 QFC12 as FieldProc_Encoded_Comparison,
 QFC13 as Allow_Array_Changes_INI_Opt,
 QFC11 as SQL_Concurrent_Access_Resolution,
 QQSMINTF as Plan_Iteration_Number,
 QXC11 as Warm_IO_Requested,
 QXC12 as Warm_IO_Used,
 QXC13 as Optimization_ Goal_Override,
 QXC1E as Plan_Signature_Match,
 QXC14 as Check_HostVars,
 QXC15 as FullOptimization,
 QXC16 as Pseudo_Open_Replace_Reason,
 QXC17 as WorkloadGroup
 FROM UserLib/DBMONTable
 WHERE QQRID=3014)

Table 143. QQQ3014 - Generic QQ Information

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User-defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numb
er

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSel
ects

QVP15B Total number of decomposed subselects

560 IBM i: Database Performance and Query Optimization

Table 143. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

Decomposed_SubSelect_Reason_Co
de

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Estimated_Rows_Selected QQREST Estimated number of rows selected

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Open_Time QQI1 Time spent to open cursor, in milliseconds

Has_Ordering QQORDG Ordering (Y/N)

Has_Grouping QQGRPG Grouping (Y/N)

Has_Join QQJNG Join Query (Y/N)

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

Has_Union QQUNIN Union Query (Y/N)

Has_Subquery QQSUBQ Subquery (Y/N)

Has_Scalar_Subselect QWC1F Scalar Subselects (Y/N)

Has_Host_Variables QQHSTV Host variables (Y/N)

Has_Row_Selection QQRCDS Row selection (Y/N)

Query_Governor_Enabled QQC11 Query governor enabled (Y/N)

Stopped_By_Query_Governor QQC12 Query governor stopped the query (Y/N)

Open_Id QQC101 Query open ID

Query_Options_Library QQC102 Query Options library name

Query_Options_Table_Name QQC103 Query Options file name

Early_Exit QQC13 Query early exit value

Unique_Refresh_Counter QVRCNT Unique refresh counter

Optimizer_Time QQI5 Time spent in optimizer, in milliseconds

Access_Plan_Timestamp QQTIM1 Access Plan rebuilt timestamp, last time access plan was
rebuilt.

Ordering_Implementation QVC11 Ordering implementation. Possible values are:

• I - Index
• S - Sort

Database performance and query optimization 561

Table 143. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

Grouping_Implementation QVC12 Grouping implementation. Possible values are:

• I - Index
• H - Hash grouping

Join_Implementation QVC13 Join Implementation. Possible values are:

• N - Nested Loop join
• H - Hash join
• C - Combination of Nested Loop and Hash

Has_Distinct QVC14 Distinct query (Y/N)

Is_Distributed QVC15 Distributed query (Y/N)

Distributed_Nodes QVC3001 Distributed nodes

NLSS_Table QVC105 Sort Sequence Table

NLSS_Library QVC106 Sort Sequence Library

ALWCPYDATA QVC16 ALWCPYDTA setting

Access_Plan_Reason_Code QVC21 Reason code why access plan was rebuilt

Access_Plan_Reason_SubCode QVC22 Subcode why access plan was rebuilt

Summary QVC3002 Summary of query implementation. Shows dataspace
number and name of index used for each table being
queried.

Last_Union_Subselect QWC16 Last part (last QDT) of Union (Y/N)

Query_PoolSize QVP154 Pool size

Query_PoolID QVP155 Pool id

Query_Time_Limit QQI2 Query time limit

Parallel_Degree QVC81 Parallel Degree

• *SAME - Do not change current setting
• *NONE - No parallel processing is allowed
• *I/O - Any number of tasks might be used for I/O

processing. SMP parallel processing is not allowed.
• *OPTIMIZE - The optimizer chooses the number of

tasks to use for either I/O or SMP parallel processing.
• *MAX - The optimizer chooses to use either I/O or SMP

parallel processing.
• *SYSVAL - Use the current system value to process the

query.
• *ANY - Has the same meaning as *I/O.
• *NBRTASKS - The number of tasks for SMP parallel

processing is specified in column QVTASKN.

Max_Number_of_Tasks QQI3 Max number of tasks

562 IBM i: Database Performance and Query Optimization

Table 143. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

Apply_CHGQRYA_Remote QVC17 Apply CHGQRYA remotely (Y/N)

Async_Job_Usage QVC82 Asynchronous job usage

• *SAME - Do not change current setting
• *DIST - Asynchronous jobs might be used for queries

with distributed tables
• *LOCAL - Asynchronous jobs might be used for queries

with local tables only
• *ANY - Asynchronous jobs might be used for any

database query
• *NONE - No asynchronous jobs are allowed

Force_Join_Order_Indicator QVC18 Force join order (Y/N)

Print_Debug_Messages QVC19 Print debug messages (Y/N)

Parameter_Marker_Conversion QVC1A Parameter marker conversion (Y/N)

UDF_Time_Limit QQI4 User Defined Function time limit

Optimizer_Limitations QVC1283 Optimizer limitations. Possible values:

• *PERCENT followed by 2 byte integer containing the
percent value

• *MAX_NUMBER_OF_RECORDS followed by an integer
value that represents the maximum number of rows

Reoptimize_Requested Reoptimize access plan requested. Possible values are:

• O - Only reoptimize the access plan when required. Do
not reoptimize for subjective reasons.

• Y - Yes, force the access plan to be reoptimized.
• N - No, do not reoptimize the access plan, unless

optimizer determines that it is necessary. May
reoptimize for subjective reasons.

Optimize_All_Indexes Optimize all indexes requested

• *SAME - Do not change current setting
• *YES - Examine all indexes
• *NO - Allow optimizer to time out
• *TIMEOUT - Force optimizer to time out

Has_Final_Decomposed_QDT QQC14 Final decomposed QDT built indicator (Y/N)

Is_Final_Decomposed_QDT QQC15 The final decomposed QDT indicator (Y/N)

Read_Trigger QQC18 One of the files contains a read trigger (Y/N)

Database performance and query optimization 563

Table 143. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

Star_Join QQC81 Star join optimization requested.

• *NO - Star join optimization is not performed.
• *COST - The optimizer determines if any EVIs can be

used for star join optimization.
• *FORCE - The optimizer adds any EVIs that can be used

for star join optimization.

Optimization_Goal QVC23 Byte 1 = Optimization goal. Possible values are:

• F - First I/O, optimize the query to return the first screen
full of rows as quickly as possible.

• A - All I/O, optimize the query to return all rows as
quickly as possible.

VE_Diagram_Type QVC24 Byte 1 = Type of Visual Explain diagram. Possible values
are:

• D - Detail
• B - Basic

Ignore_Like_Redunant_Shifts QVC24 Byte 2 - Ignore LIKE redundant shifts. Possible values
are:

• O - Optimize, the query optimizer determines which
redundant shifts to ignore.

• A - All redundant shifts are ignored.

Union_QDT QQC23 Byte 1 = This QDT is part of a UNION that is contained
within a view (Y/N).

Byte 2 = This QDT is the last subselect of the UNION that
is contained within a view (Y/N).

Unicode_Normalization QQC21 Unicode data normalization requested (Y/N)

Pool_Fair_Share QVP153 Fair share of the pool size as determined by the optimizer

Force_Join_Order_Requested QQC82 Force Join Order requested. Possible values are:

• *NO - The optimizer was allowed to reorder join files
• *YES - The optimizer was not allowed to reorder join
files as part of its optimization process

• *SQL - The optimizer only forced the join order for those
queries that used the SQL JOIN syntax

• *PRIMARY - The optimizer was only required to force
the primary dial for the join.

Force_Join_Order_Dataspace1 QVP152 Primary dial to force if Force_Join_Order_Indicator is
*PRIMARY.

564 IBM i: Database Performance and Query Optimization

Table 143. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

No_Parameter_Marker_Reason_Code QQI6 Reason code for why Parameter Marker Conversion was
not performed:

1. Argument of function must be a literal
2. LOCALTIME or LOCALTIMESTAMP
3. Duration literal in arithmetic expression
4. UPDATE query with no WHERE clause
5. BLOB literal
6. Special register in UPDATE or INSERT with values
7. Result expression for CASE
8. GROUP BY expression
9. ESCAPE character

10. Double Negative value -(-1)
11. INSERT or UPDATE with a mix of literals, parameter

markers, and NULLs
12. UPDATE with a mix of literals and parameter markers
13. INSERT with VALUES containing NULL value and

expressions
14. UPDATE with list of expressions

99. Parameter marker conversion disabled by
QAQQINI

Hash_Join_Reason_Code QVP151 Reason code why hash join was not used.

MQT_Refresh_Age QQI7 Value of the
MATERIALIZED_QUERY_TABLE_REFRESH_AGE duration.
If the QAQQINI parameter value is set to *ANY, the
timestamp duration is 99999999999999.

MQT_Usage QVC42,1,1 Byte 1 - Contains the
MATERIALIZED_QUERY_TABLE_USAGE. Possible values
are:

• N - *NONE - no materialized query tables used in query
optimization and implementation

• A - *ALL - User-maintained. Refresh-deferred query
tables can be used.

• U - *USER - Only user-maintained materialized query
tables can be used.

Database performance and query optimization 565

Table 143. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

SQE_NotUsed_Reason_Code QVC43 SQE Not Used Reason Code. Possible values:

• LF - DDS logical file specified in query definition
• DK - An index with derived key or select/omit was found

over a queried table
• NF - Too many tables in query
• NS - Not an SQL query or query not run through an SQL

interface
• DF - Distributed table in query
• RT - Read Trigger defined on queried table
• PD - Program described file in query
• WC - WHERE CURRENT OF a partition table
• IO - Simple INSERT query
• CV - Create view statement

Estimated_IO_Count QVP156 Estimated I/O count

Estimated_Processing_Cost QVP157 Estimated processing cost in milliseconds

Estimated_CPU_Cost QVP158 Estimated CPU cost in milliseconds

Estimated_IO_Cost QVP159 Estimated I/O cost in milliseconds

Has_Implicit_Numeric_Conversion QVC44 Byte 1: Implicit numeric conversion (Y/N)

Accumulated_Est_Process_Time QVCTIM Accumulated estimated processing time across all
subselects, in seconds.

Query_Gov_Storage_Limit QQINT01 Specified query governor storage limit, in megabytes

Estimated_Storage QQINT02 Original estimated temporary storage used, in megabytes.

Adjusted_Temp_Storage QQINT03 Adjusted temporary storage used, in Adjusted megabytes.
This value accumulates the actual time and storage it
took to create any temporary indexes and temporary
tables. Set by CQE only.

Original_Cost_Estimate QQINT04 Original cost estimate as determined by the CQE query
optimizer. Set by CQE only.

Parallel_Degree_Percentage QQI8 Percentage specified on Parallel_Degree *OPTIMIZE and
*MAX.

FieldProc_Encoded_Comparison QFC12 FIELDPROC_ENCODED_COMPARISON option active for
this query. Specifies the amount of optimization that the
optimizer might use when queried columns have attached
field procedures.

• 'N' - NONE
• 'E' - ALLOW_ EQUAL
• 'R' - ALLOW_ RANGE
• 'A' - ALL

566 IBM i: Database Performance and Query Optimization

Table 143. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

Allow_Array_Change_INI_Opt QFC13 ALLOW_ARRAY_VALUE_CHANGES QAQQINI option active
for this query.

• 'N' - Do not allow changes to values in arrays referenced
in the query to be visible after the query is opened.

• 'Y' - Allow changes to values in arrays to be visible to
the query while the query is running.

SQL_Concurrent_Access_Resolution QFC11 SQL_CONCURRENT_ACCESS_RESOLUTION QAQQINI
option active for this query.

• 'U' - USE CURRENTLY COMMITTED
• 'W' - WAIT FOR OUTCOME

Plan_Iteration_Number QQSMINTF AQP Plan iteration number; original optimization = 1

Warm_IO_Requested QXC11 Warm I/O value that was requested.

• 'Y' - Yes, use Warm I/O
• 'N' - No, do not use Warm I/O
• 'D' - Default

Warm_IO_Used QXC12 Warm I/O values used to implement the query.

• 'Y' - Yes, use Warm I/O
• 'N' - No, do not use Warm I/O
• 'D' - Default

Optimization_Goal_Override QXC13 Optimization Goal Override.

• 'O' - Override the specified Optimize For N Rows value
and use Optimize For All Rows.

• 'D' - Default, use the specified Optimize For N Rows
value.

Plan_Signature_Match QXC1E Plan signature match.

• 'Y' - New plan matched old plan it replaced; same plan
signature.

• 'N' - New plan different from old plan it replaced;
different plan signature.

Check_HostVars QXC14 Indicates if this query is enabled for host variable
selectivity checking at pseudo-open time.

• ‘N’ – No pseudo-open host variable checking enabled
• ‘O’ – This query is a candidate for pseudo-open host

variable checking and the QAQQINI option was
*OPTIMIZE

• ‘Y’ - This query is a candidate for pseudo-open host
variable checking and the QAQQINI option was *YES

Database performance and query optimization 567

Table 143. QQQ3014 - Generic QQ Information (continued)

View Column Name

Table
Column
Name Description

FullOptimization QXC15 Plan was rebuilt (Y/N)

Pseudo_Open_Replace_Reason QXC16 Indicates if the plan was replaced due to QAQQINI
PSEUDO_OPEN_CHECK_HOST_VARS option

• '0' - Plan was not replaced
• '1' - Plan was replaced

WorkloadGroup QXC17 Workload Group is in effect (Y/N)

Database monitor view 3015 - Statistics Information
Displays the SQL logical view format for database monitor QQQ3015.

Create View QQQ3015 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQTLN as System_Table_Schema,
 QQTFN as System_Table_Name,
 QQTMN as Member_Name,
 QQPTLN as System_Base_Table_Schema,
 QQPTFN as System_Base_Table_Name,
 QQPTMN as Base_Member_Name,
 QVQTBL as Table_Name,
 QVQLIB as Table_Schema,
 QVPTBL as Base_Table_Name,
 QVPLIB as Base_Table_Schema,
 QQNTNM as NLSS_Table,
 QQNLNM as NLSS_Library,
 QQC11 as Statistic_Status,
 QQI2 as Statistic_Importance,
 QQ1000 as Statistic_Columns,
 QVC1000 as Statistic_ID,
 QQSMINTF as Plan_Iteration_Number
 FROM UserLib/DBMONTable
 WHERE QQRID=3015)

Table 144. QQQ3015 - Statistic Information

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

568 IBM i: Database Performance and Query Optimization

Table 144. QQQ3015 - Statistic Information (continued)

View Column Name

Table
Column
Name Description

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSelec
ts

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of the base table queried

Base_Member_Name QQPTMN Member name of base table

Table_Name QVQTBL Queried table, long name

Table_Schema QVQLIB Schema of queried table, long name

Base_Table_Name QVPTBL Base table, long name

Base_Table_Schema QVPLIB Schema of base table, long name

NLSS_Table QQNTNM NLSS table

NLSS_Library QQNLNM NLSS library

Database performance and query optimization 569

Table 144. QQQ3015 - Statistic Information (continued)

View Column Name

Table
Column
Name Description

Statistic_Status QQC11 Statistic Status. Possible values are:

• 'N' - No statistic
• 'S' - Stale statistic
• ' ' - Unknown

Statistic_Importance QQI2 Importance of this statistic

Statistic_Columns QQ1000 Columns for the statistic advised

Statistic_ID QVC1000 Statistic identifier

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Database monitor view 3018 - STRDBMON/ENDDBMON
Displays the SQL logical view format for database monitor QQQ3018.

Create View QQQ3018 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQC11 as Monitored_Job_type,
 QQC12 as Monitor_Command,
 QQC301 as Monitor_Job_Information,
 QQ1000L as STRDBMON_Command_Text,
 QQC101 as Monitor_ID,
 QQC102 as Version_Release_Mod,
 QQC103 as Group_PTF,
 QVC11 as Initial_AQP_Processing,
 QQSMINT1 as Current_Plan_Cache_Threshold,
 QQSMINT2 as Current_Plan_Cache_Subcaches,
 QQINT01 as Number_of_Currently_Active_Queries,
 QQINT02 as Current_Plan_Cache_Size,
 QQINT03 as Current_Plan_Cache_Size_Threshold,
 QQINT04 as Number_of_SMP_Threads,
 QQINT05 as Current_Number_of_MTIs,
 QQINT06 as Number_of_Pruning_Listeners,
 QQINT07 as Number_of_Plan_Cache_Awakenings,
 QQINT08 as Number_of_Plan_Cache_Naps,
 QQINT09 as Number_Pseudo_Open_queries_Hard_Closed
 QQINT0A as Number_of_MTIs_Created,
 QQINT0B as Number_of_MTIs_Deleted,
 QQINT0C as Number_AQP_Wakeups,
 QQINT0D as Number_AQP_Plans_Replaced,
 QQINT0E as Number_of_Active_Queries,
 QVP151 as Number_of_Plans_in_Cache,
 QVP152 as Number_of_ROQs_in_Cache,
 QVP153 as Number_of_Temp_ROQs_in_Cache,
 QVP154 as Number_of_Reuseable_ROQs_in_Cache,
 QVP155 as Size_of_Temporary_Objects_stored_in_Cache,
 QVP156 as Number_of_Plans_Built_Since_Start,
 QVP157 as Number_of_Plans_Used_ROQ,
 QVP158 as Number_of_Plans_Used_nonROQ,
 QVP159 as Number_of_Plans_Used_No_ROQ,
 QVP15A as Number_of_Plan_Cache_Probes,
 QVP15B as Number_of_Plans_Used_from_Cache,
 QVP15C as Number_of_Plan_Cache_No_Matches,
 QVP15D as Number_of_Plans_Pruned,
 QVP15E as Number_of_Plans_Removed,
 QVP15F as Number_of_Queries_Run_Since_Start,
 QQI1 as Number_of_Query_Full_Opens_Since_Start,

570 IBM i: Database Performance and Query Optimization

 QQI2 as Number_of_Full_Opens_Which_Reused_ROQ,
 QQI3 as Number_Full_Optimizations,
 QQI4 as Number_Reopts_with_Existing_Valid_Plans
 FROM UserLib/DBMONTable
 WHERE QQRID=3018)

Table 145. QQQ3018 - STRDBMON/ENDDBMON

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Monitored_Job_type QQC11 Type of job monitored

• C - Current
• J - Job name
• A - All

Monitor_Command QQC12 Command type

• S - STRDBMON
• E - ENDDBMON

Monitor_Job_Information QQC301 Monitored job information

• * - Current job
• Job number/User/Job name
• *ALL - All jobs

STRDBMON_Command_Text QQ1000L STRDBMON command text.

Monitor_ID QQC101 Monitor ID

Version_Release_Mod QQC102 Version Release and modification level

Group_PTF QQC103 Installed Group PTF number and level. For example, 'SF99601 3' indicates that
Database Group release V6R1M0, version 3 is installed.

Initial_AQP_Processing QVC11 Initial AQP processing.

Y indicates that the monitor file has already been processed to handle the AQP
plan iteration number. All iterations other than the last one have been changed to
a negative number.

All other values indicate that the monitor file has not been processed.

Current_PC_Threshold QQSMINT1 Database Plan Cache threshold, a value between 1-100 to represent a percent

Current_PC_Subcaches QQSMINT2 Number of sub-caches within the database Plan Cache

Num_Active_Queries QQINT01 Number of queries currently active

Current_PC_Size QQINT02 Current size of database Plan Cache, in MB

Current_PC_Size_Threshold QQINT03 Size threshold of database Plan Cache, in MB

Number_of_SMP_Threads QQINT04 Number of SMP Threads

Current_Number_of_MTIs QQINT05 Number of temporary indexes

Num_of_Pruning_Monitors QQINT06 Number of event monitors used to prune the database Plan Cache

Database performance and query optimization 571

Table 145. QQQ3018 - STRDBMON/ENDDBMON (continued)

View Column Name
Table Column
Name Description

Num_of_PC_Prunnings QQINT07 Number of times plans were pruned from the database Plan Cache

Num_of_Plan_Cache_Naps QQINT08 Number of times the database Plan Cache became inactive

Num_POpen_Hard_Closed QQINT09 Number of pseudo-opened queries that were hard closed

Num_of_MTIs_Created QQINT0A Number of temporary indexes that were created

Num_of_MTIs_Deleted QQINT0B Number of temporary indexes that were deleted

Num_AQP_Active QQINT0C Number of times AQP became active, whether a new plan was created or not

Num_AQP_Plans_Replaced QQINT0D Number of plans that were rebuilt due to AQP

Num_of_Plans_in_Cache QVP151 Number of plans in the database Plan Cache

Num_of_ROQs_in_Cache QVP152 Number of plans with a Read Only Query (ROQ) in the database Plan Cache

Num_of_Temp_ROQs_in_Cache QVP153 Number of plans with temporary ROQs in the database Plan Cache

Num_of_Reuseable_ROQs QVP154 Number of plans with reusable ROQs in the database Plan Cache

Size_Temp_Objects_in_Cache QVP155 Size of temporary objects in the database Plan Cache, in MB

Num_Plans_Built_Since_Start QVP156 Number of new plans built

Num_Plans_Used_ROQ QVP157 Number of times a plan with a reusable ROQ was run

Num_Plans_Used_nonROQ QVP158 Number of times a plan with a non-reusable ROQ was run

Num_Plans_Used_No_ROQ QVP159 Number of times a plan without a ROQ was run

Num_Plan_Cache_Probes QVP15A Number of times the database Plan Cache was probed in hopes of finding a
matching plan

Num_Plans_Used_from_Cache QVP15B Number of times a matching plan was found in the database Plan Cache

Num_Plan_Cache_No_Matches QVP15C Number of times a matching plan was not found in the database Plan Cache

Num_Plans_Pruned QVP15D Number of plans that were removed from the database Plan Cache due to size
restrictions

Num_Plans_Removed QVP15E Number of obsolete plans that were removed from the database Plan Cache

Num_Run_Since_Start QVP15F Number of queries that were run

Num_FullOpens_Since_Start QQI1 Number of queries that performed a full open when they were run

Num_FullOpens_Reused_ROQ QQI2 Number of queries that performed a full open and reused an existing ROQ when
run

Num_Full_Optimizations QQI3 Number of queries that required a full optimization when run

Num_Valid_Plan_Reopts QQI4 Number of queries that performed a full optimization even when a valid plan
existed

Database monitor view 3019 - Rows retrieved
Displays the SQL logical view format for database monitor QQQ3019.

Create View QQQ3019 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,

572 IBM i: Database Performance and Query Optimization

 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQI1 as CPU_Time_to_Return_All_Rows,
 QQI2 as Clock_Time_to_Return_All_Rows,
 QQI3 as Number_Synchronous_Database_Reads,
 QQI4 as Number_Synchronous_Database_Writes,
 QQI5 as Number_Asynchronous_Database_Reads,
 QQI6 as Number_Asynchronous_Database_Writes,
 QVP151 as Number_Page_Faults,
 QQI7 as Number_Rows_Returned,
 QQI8 as Number_of_Calls_for_Returned_Rows,
 QVP15F as Number_of_Times_Statement_was_Run,
 QQINT03 as Temporary_Storage,
 QQC11 as DBMON_Temp_Result_Reused,
 QQC21 as DBMON_Temp_Reused_RC,
 QQINT01 as DBMON_Temp_Reuse_Count,
 QQIA as Skip_Lock_Row_Count,
 QQINT05 as Skip_Lock_Row_Runs,
 QQINT06 as Skip_Lock_On_Runs,
 QQF1 as Adjusted_Average_Run_Time,
 QVRCNT as Unique_Refresh_Counter,
 QVP152 as Committed_Journal_Search_Requests,
 QVP153 as Committed_Journal_Search_Failures,
 QVP154 as Committed_Journal_Search_Time_Limit
 FROM UserLib/DBMONTable
 WHERE QQRID=3019)

Table 146. QQQ3019 - Rows retrieved

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Number QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across
all decomposed subselects

Total_Number_Decomposed_SubSelects QVP15B Total number of decomposed subselects

Database performance and query optimization 573

Table 146. QQQ3019 - Rows retrieved (continued)

View Column Name

Table
Column
Name Description

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

CPU_Time_to_Return_All_Rows QQI1 CPU time to return all rows, in milliseconds

Clock_Time_to_Return_All_Rows QQI2 Clock time to return all rows, in milliseconds

Number_Synchronous_Database_Reads QQI3 Number of synchronous database reads

Number_Synchronous_Database_Writes QQI4 Number of synchronous database writes

Number_Asynchronous_Database_Reads QQI5 Number of asynchronous database reads

Number_Asynchronous_Database_Writes QQI6 Number of asynchronous database writes

Number_Page_Faults QVP151 Number of page faults

Number_Rows_Returned QQI7 Number of rows returned

Number_of_Calls_for_Returned_Rows QQI8 Number of calls to retrieve rows returned

Number_of_Times_Statement_was_Run QVP15F Number of times this Statement was run. If Null, then
the statement was run once.

Temporary_Storage QQINT03 Amount of temporary storage used.

DBMON_Temp_Result_Reused QQC11 Indicates if the query temporary result was reused
(Y/N).

DBMON_Temp_Reused_RC QQC21 Reason code why the query temporary result was
reused.

DBMON_Temp_Reuse_Count QQINT01 Number of times the query temporary result was
reused.

Skip_Lock_Row_Count QQIA Number of locked rows that were skipped.

Skip_Lock_Row_Runs QQINT05 Number of runs where some rows were skipped.

Skip_Lock_On_Runs QQINT06 Number of runs where Skip Lock was active.

Adjusted_Average_Run_Time QQF1 Average runtime for the query, adjusted to not include
individual runs that are well outside the norm. Units in
microseconds.

Unique_Refresh_Counter QVRCNT Unique refresh counter

Committed_Journal_Search_Requests QVP152 Number of times the database manager searched the
journal for the currently committed version of a record.

Committed_Journal_Search_Failures QVP153 Number of times the database manager failed to find
the currently committed version of a record in the
journal.

Committed_Journal_Search_Time_Limit QVP154 Maximum amount of time allowed to search the
journal for the currently committed version of a record.

574 IBM i: Database Performance and Query Optimization

Database monitor view 3020 - Index advised (SQE)
Displays the SQL logical view format for database monitor QQQ3020.

Create View QQQ3020 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QQTLN as System_Table_Schema,
 QQTFN as System_Table_Name,
 QQTMN as Member_Name,
 QQPTLN as System_Base_Table_Schema,
 QQPTFN as System_Base_Table_Name,
 QQPTMN as Base_Member_Name,
 QVPLIB as Base_Table_Schema,
 QVPTBL as Base_Table_Name,
 QQTOTR as Table_Total_Rows,
 QQEPT as Estimated_Processing_Time,
 QQIDXA as Index_is_Advised,
 QQIDXD as Index_Advised_Columns_Short_List,
 QQ1000L as Index_Advised_Columns_Long_List,
 QQI1 as Number_of_Advised_Columns,
 QQI2 as Number_of_Advised_Primary_Columns,
 QQRCOD as Reason_Code,
 QVRCNT as Unique_Refresh_Counter,
 QVC1F as Type_of_Index_Advised,
 QQNTNM as NLSS_Table,
 QQNLNM as NLSS_Library,
 QQSMINTF as Plan_Iteration_Number,
 QQ13 as DEPENDENT_ADVICE_ID
 FROM UserLib/DBMONTable
 WHERE QQRID=3020)

Table 147. QQQ3020 - Index advised (SQE)

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

Database performance and query optimization 575

Table 147. QQQ3020 - Index advised (SQE) (continued)

View Column Name
Table Column
Name Description

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numbe
r

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSele
cts

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Cod
e

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

System_Table_Schema QQTLN Schema of table queried

System_Table_Name QQTFN Name of table queried

Member_Name QQTMN Member name of table queried

System_Base_Table_Schema QQPTLN Schema name of base table

System_Base_Table_Name QQPTFN Name of base table for table queried

Base_Member_Name QQPTMN Member of base table

Base_Table_Schema QVPLIB Schema of base table, long name

Base_Table_Name QVPTBL Base table, long name

Table_Total_Rows QQTOTR Number of rows in the table

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Index_is_Advised QQIDXA Index advised (Y/N)

Index_Advised_Columns_Short_List QQIDXD Columns for the index advised, first 1000 bytes

Index_Advised_Columns_Long_List QQ1000L Column for the index advised

Number_of_Advised_Columns QQI1 Number of indexes advised

Number_of_Advised_Primary_Column
s

QQI2 Number of advised columns that use index scan-key
positioning

576 IBM i: Database Performance and Query Optimization

Table 147. QQQ3020 - Index advised (SQE) (continued)

View Column Name
Table Column
Name Description

Reason_Code QQRCOD Reason code

• I1 - Row selection
• I2 - Ordering/Grouping
• I3 - Row selection and Ordering/Grouping
• I5 - Row selection using bitmap processing
• I6 - Source of statistics

Unique_Refresh_Counter QVRCNT Unique refresh counter

Type_of_Index_Advised QVC1F Type of index advised. Possible values are:

• B - Radix index
• E - Encoded vector index

NLSS_Table QQNTNM Sort Sequence Table

NLSS_Library QQNLNM Sort Sequence Library

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Dependent_Advice_ID QQ13 Unique identifier used to link together OR predicate
index advice

Related reference
Index advisor
The query optimizer analyzes the row selection in the query and determines, based on default values, if
creation of a permanent index improves performance. If the optimizer determines that a permanent index
might be beneficial, it returns the key columns necessary to create the suggested index.

Database monitor view 3021 - Bitmap Created
Displays the SQL logical view format for database monitor QQQ3021.

Create View QQQ3021 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QVRCNT as Unique_Refresh_Counter,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_PreLoad,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QQEPT as Estimated_Processing_Time,
 QVCTIM as Estimated_Cumulative_Time,

Database performance and query optimization 577

 QQREST as Estimated_Rows_Selected,
 QQAJN as Estimated_Join_Rows,
 QQJNP as Join_Position,
 QQI6 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QQI2 as Bitmap_Size,
 QVP151 as Bitmap_Count,
 QVC3001 as Bitmap_IDs,
 QQINT03 as Storage_Estimate,
 QQSMINTF as Plan_Iteration_Number
 FROM UserLib/DBMONTable
 WHERE QQRID=3021)

Table 148. QQQ3021 - Bitmap Created

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numbe
r

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSel
ects

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Co
de

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

578 IBM i: Database Performance and Query Optimization

Table 148. QQQ3021 - Bitmap Created (continued)

View Column Name

Table
Column
Name Description

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE - Less than or equal
• CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

• N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

• D - Distinct fanout. Join fanout is allowed however none
of the join fanout rows are returned.

• U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Bitmap_Size QQI2 Bitmap size

Database performance and query optimization 579

Table 148. QQQ3021 - Bitmap Created (continued)

View Column Name

Table
Column
Name Description

Bitmap_Count QVP151 Number of bitmaps created

Bitmap_IDs QVC3001 Internal bitmap IDs

Storage_Estimate QQINT03 Estimated amount of temporary storage used, in
megabytes, to create the temporary index.

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1.

Database monitor view 3022 - Bitmap Merge
Displays the SQL logical view format for database monitor QQQ3022

Create View QQQ3022 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QVRCNT as Unique_Refresh_Counter,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_PreLoad,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QQEPT as Estimated_Processing_Time,
 QVCTIM as Estimated_Cumulative_Time,
 QQREST as Estimated_Rows_Selected,
 QQAJN as Estimated_Join_Rows,
 QQJNP as Join_Position,
 QQI6 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QQI2 as Bitmap_Size,
 QVC101 as Bitmap_ID,
 QVC3001 as Bitmaps_Merged,
 QQINT03 as Storage_Estimate,
 QQSMINTF as Plan_Iteration_Number
 FROM UserLib/DBMONTable
 WHERE QQRID=3022)

Table 149. QQQ3022 - Bitmap Merge

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

580 IBM i: Database Performance and Query Optimization

Table 149. QQQ3022 - Bitmap Merge (continued)

View Column Name

Table
Column
Name Description

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numb
er

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSel
ects

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Co
de

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

Database performance and query optimization 581

Table 149. QQQ3022 - Bitmap Merge (continued)

View Column Name

Table
Column
Name Description

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE - Less than or equal
• CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

• N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

• D - Distinct fanout. Join fanout is allowed however none
of the join fanout rows are returned.

• U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Bitmap_Size QQI2 Bitmap size

Bitmap_ID QVC101 Internal bitmap ID

Bitmaps_Merged QVC3001 IDs of bitmaps merged together

Storage_Estimate QQINT03 Estimated amount of temporary storage used, in
megabytes, to create the final bitmap. Only set by CQE

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Database monitor view 3023 - Temp Hash Table Created
Displays the SQL logical view format for database monitor QQQ3023.

Create View QQQ3023 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,

582 IBM i: Database Performance and Query Optimization

 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QVRCNT as Unique_Refresh_Counter,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_PreLoad,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QQEPT as Estimated_Processing_Time,
 QVCTIM as Estimated_Cumulative_Time,
 QQREST as Estimated_Rows_Selected,
 QQAJN as Estimated_Join_Rows,
 QQJNP as Join_Position,
 QQI6 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QVC1F as HashTable_ReasonCode,
 QQI2 as HashTable_Entries,
 QQI3 as HashTable_Size,
 QQI4 as HashTable_Row_Size,
 QQI5 as HashTable_Key_Size,
 QQIA as HashTable_Element_Size,
 QQI7 as HashTable_PoolSize,
 QQI8 as HashTable_PoolID,
 QVC101 as HashTable_Name,
 QVC102 as HashTable_Library,
 QVC3001 as HashTable_Columns,
 QQINT03 as Storage_Estimate,
 QQSMINTF as Plan_Iteration_Number
 FROM UserLib/DBMONTable
 WHERE QQRID=3023)

Table 150. QQQ3023 - Temp Hash Table Created

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Database performance and query optimization 583

Table 150. QQQ3023 - Temp Hash Table Created (continued)

View Column Name

Table
Column
Name Description

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numbe
r

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSele
cts

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Co
de

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

584 IBM i: Database Performance and Query Optimization

Table 150. QQQ3023 - Temp Hash Table Created (continued)

View Column Name

Table
Column
Name Description

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE - Less than or equal
• CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

• N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

• D - Distinct fanout. Join fanout is allowed however
none of the join fanout rows are returned.

• U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

HashTable_ReasonCode QVC1F Hash table reason code

• J - Created for hash join
• G - Created for hash grouping

HashTable_Entries QQI2 Hash table entries

HashTable_Size QQI3 Hash table size

HashTable_Row_Size QQI4 Hash table row size

HashTable_Key_Size QQI5 Hash table key size

HashTable_Element_Size QQIA Hash table element size

HashTable_PoolSize QQI7 Hash table pool size

HashTable_PoolID QQI8 Hash table pool ID

HashTable_Name QVC101 Hash table internal name

HashTable_Library QVC102 Hash table library

HashTable_Columns QVC3001 Columns used to create hash table

Storage_Estimate QQINT03 Estimated amount of temporary storage used, in
megabytes, to create the hash table. Only set by CQE.

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Database monitor view 3025 - Distinct Processing
Displays the SQL logical view format for database monitor QQQ3025.

Create View QQQ3025 as
 (SELECT QQRID as Row_ID,

Database performance and query optimization 585

 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QVRCNT as Unique_Refresh_Counter,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_PreLoad,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QQEPT as Estimated_Processing_Time,
 QVCTIM as Estimated_Cumulative_Time,
 QQREST as Estimated_Rows_Selected,
 QQSMINTF as Plan_Iteration_Number
 FROM UserLib/DBMONTable
 WHERE QQRID=3025)

Table 151. QQQ3025 - Distinct Processing

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numbe
r

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

586 IBM i: Database Performance and Query Optimization

Table 151. QQQ3025 - Distinct Processing (continued)

View Column Name

Table
Column
Name Description

Total_Number_Decomposed_SubSele
cts

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Cod
e

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Plan_Iteration_Number QQSMINT
F

AQP Plan iteration number, original optimization = 1

Database monitor view 3026 - Set operation
Displays the SQL logical view format for database monitor QQQ3026.

Create View QQQ3026 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QVRCNT as Unique_Refresh_Counter,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_PreLoad,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QQEPT as Estimated_Processing_Time,
 QVCTIM as Estimated_Cumulative_Time,
 QQREST as Estimated_Rows_Selected,
 QQC11 as Union_Type,
 QVFILES as Join_Table_Count,
 QQUNIN as Has_Union,

Database performance and query optimization 587

 QWC16 as Last_Union_Subselect,
 QQC23 as Set_in_a_View,
 QQC22 as Set_Operator,
 QQSMINTF as Plan_Iteration_Number
 FROM UserLib/DBMONTable
 WHERE QQRID=3026)

Table 152. QQQ3026 - Set operatoin

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numbe
r

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSel
ects

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Co
de

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (Y/N)

Parallel_Degree_Requested QVPARD Parallel degree requested

Parallel_Degree_Used QVPARU Parallel degree used

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

588 IBM i: Database Performance and Query Optimization

Table 152. QQQ3026 - Set operatoin (continued)

View Column Name
Table Column
Name Description

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated number of rows selected

Union_Type QQC11 Type of union. Possible values are:

• A - Union All
• U - Union

Join_Table_Count QVFILES Number of tables queried

Has_Union QQUNIN Union subselect (Y/N)

Last_Union_Subselect QWC16 This is the last subselect, or only subselect, for the
query. (Y/N)

Set_in_a_View QQC23 Set operation within a view.

• Byte 1 of 2 (Y/N): This subselect is part of a query that
is contained within a view and it contains a set
operation (for example, Union).

• Byte 2 of 2 (Y/N): This is the last subselect of the
query that is contained within a view.

Set_Operator QQC22 Type of set operation. Possible values are:

• UU - Union
• UA - Union All
• UR - Union Recursive
• EE - Except
• EA - Except All
• II - Intersect
• IA - Intersect All

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Database monitor view 3027 - Subquery Merge
Displays the SQL logical view format for database monitor QQQ3027.

Create View QQQ3027 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,

Database performance and query optimization 589

 QVRCNT as Unique_Refresh_Counter,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_PreLoad,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QQEPT as Estimated_Processing_Time,
 QVCTIM as Estimated_Cumulative_Time,
 QQREST as Estimated_Rows_Selected,
 QQAJN as Estimated_Join_Rows,
 QQJNP as Join_Position,
 QQI1 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QVP151 as Subselect_Number_of_Inner_Subquery,
 QVP152 as Subselect_Level_of_Inner_Subquery,
 QVP153 as Materialized_View_Subselect_Number_of_Inner,
 QVP154 as Materialized_View_Nested_Level_of_Inner,
 QVP155 as Materialized_View_Union_Level_of_Inner,
 QQC101 as Subquery_Operator,
 QVC21 as Subquery_Type,
 QQC11 as Has_Correlated_Columns,
 QVC3001 as Correlated_Columns,
 QQSMINTF as Plan_Iteration_Number
 FROM UserLib/DBMONTable
 WHERE QQRID=3027)

Table 153. QQQ3027 - Subquery Merge

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Subselect number for outer subquery

SubSelect_Nested_Level QQQDTL Subselect level for outer subquery

Materialized_View_Subselect_Number QQMATN Materialized view subselect number for outer
subquery

Materialized_View_Nested_Level QQMATL Materialized view subselect level for outer
subquery

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique
across all decomposed subselects

590 IBM i: Database Performance and Query Optimization

Table 153. QQQ3027 - Subquery Merge (continued)

View Column Name
Table Column
Name Description

Total_Number_Decomposed_SubSelect
s

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Code QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index
used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position - when available

DataSpace_Number QQI6 Dataspace number

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE - Less than or equal
• CP - Cartesian product

Database performance and query optimization 591

Table 153. QQQ3027 - Subquery Merge (continued)

View Column Name
Table Column
Name Description

Join_Fanout QVJFANO Join fan out. Possible values are:

• N - Normal join situation where fanout is allowed
and each matching row of the join fanout is
returned.

• D - Distinct fanout. Join fanout is allowed
however none of the join fanout rows are
returned.

• U - Unique fanout. Join fanout is not allowed.
Error situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

Subselect_Number_of_Inner_Subquery QVP151 Subselect number for inner subquery

Subselect_Level_of_Inner_Subquery QVP152 Subselect level for inner subquery

Materialized_View_Subselect_Number
_of_Inner

QVP153 Materialized view subselect number for inner
subquery

Materialized_View_Nested_Level_of_Inn
er

QVP154 Materialized view subselect level for inner
subquery

Materialized_View_Union_Level_of_Inne
r

QVP155 Materialized view union level for inner subquery

Subquery_Operator QQC101 Subquery operator. Possible values are:

• EQ - Equal
• NE - Not Equal
• LT - Less Than or Equal
• LT - Less Than
• GE - Greater Than or Equal
• GT - Greater Than
• IN
• LIKE
• EXISTS
• NOT - Can precede IN, LIKE or EXISTS

Subquery_Type QVC21 Subquery type. Possible values are:

• SQ - Subquery
• SS - Scalar subselect
• SU - Set Update

Has_Correlated_Columns QQC11 Correlated columns exist (Y/N)

Correlated_Columns QVC3001 List of correlated columns with corresponding QDT
number

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization =
1

592 IBM i: Database Performance and Query Optimization

Database monitor view 3028 - Grouping
Displays the SQL logical view format for database monitor QQQ3028.

Create View QQQ3028 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QVRCNT as Unique_Refresh_Counter,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_PreLoad,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QQEPT as Estimated_Processing_Time,
 QVCTIM as Estimated_Cumulative_Time,
 QQREST as Estimated_Rows_Selected,
 QQAJN as Estimated_Join_Rows,
 QQJNP as Join_Position,
 QQI1 as DataSpace_Number,
 QQC21 as Join_Method,
 QQC22 as Join_Type,
 QQC23 as Join_Operator,
 QVJFANO as Join_Fanout,
 QVFILES as Join_Table_Count,
 QQC11 as GroupBy_Implementation,
 QQC101 as GroupBy_Index_Name,
 QQC102 as GroupBy_Index_Library,
 QVINAM as GroupBy_Index_Long_Name,
 QVILIB as GroupBy_Index_Long_Library,
 QQC12 as Has_Having_Selection,
 QQC13 as Having_to_Where_Selection_Conversion,
 QQI2 as Estimated_Number_of_Groups,
 QQI3 as Average_Number_Rows_per_Group,
 QVC3001 as GroupBy_Columns,
 QVC3002 as MIN_Columns,
 QVC3003 as MAX_Columns,
 QVC3004 as SUM_Columns,
 QVC3005 as COUNT_Columns,
 QVC3006 as AVG_Columns,
 QVC3007 as STDDEV_Columns,
 QVC3008 as VAR_Columns,
 QQSMINTF as Plan_Iteration_Number
 FROM UserLib/DBMONTable
 WHERE QQRID=3028)

Table 154. QQQ3028 - Grouping

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

Database performance and query optimization 593

Table 154. QQQ3028 - Grouping (continued)

View Column Name

Table
Column
Name Description

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job user

Job_Number QQJNUM Job number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numbe
r

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSele
cts

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Cod
e

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (index used)

Parallel_Degree_Requested QVPARD Parallel degree requested (index used)

Parallel_Degree_Used QVPARU Parallel degree used (index used)

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited (index used)

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated rows selected

Estimated_Join_Rows QQAJN Estimated number of joined rows

Join_Position QQJNP Join position

DataSpace_Number QQI1 Dataspace number

594 IBM i: Database Performance and Query Optimization

Table 154. QQQ3028 - Grouping (continued)

View Column Name

Table
Column
Name Description

Join_Method QQC21 Join method - when available

• NL - Nested loop
• MF - Nested loop with selection
• HJ - Hash join

Join_Type QQC22 Join type - when available

• IN - Inner join
• PO - Left partial outer join
• EX - Exception join

Join_Operator QQC23 Join operator - when available

• EQ - Equal
• NE - Not equal
• GT - Greater than
• GE - Greater than or equal
• LT - Less than
• LE - Less than or equal
• CP - Cartesian product

Join_Fanout QVJFANO Join fan out. Possible values are:

• N - Normal join situation where fanout is allowed and
each matching row of the join fanout is returned.

• D - Distinct fanout. Join fanout is allowed however none
of the join fanout rows are returned.

• U - Unique fanout. Join fanout is not allowed. Error
situation if join fanout occurs.

Join_Table_Count QVFILES Number of tables joined

GroupBy_Implementation QQC11 Group by implementation

• ' ' - No grouping
• I - Index
• H - Hash

GroupBy_Index_Name QQC101 Index, or constraint, used for grouping

GroupBy_Index_Library QQC102 Library of index used for grouping

GroupBy_Index_Long_Name QVINAM Long name of index, or constraint, used for grouping

GroupBy_Index_Long_Library QVILIB Long name of index, or constraint, library used for
grouping

Has_Having_Selection QQC12 Having selection exists (Y/N)

Having_to_Where_Selection_Conversi
on

QQC13 Having to Where conversion (Y/N)

Database performance and query optimization 595

Table 154. QQQ3028 - Grouping (continued)

View Column Name

Table
Column
Name Description

Estimated_Number_of_Groups QQI2 Estimated number of groups

Average_Number_Rows_per_Group QQI3 Average number of rows in each group

GroupBy_Columns QVC3001 Grouping columns

MIN_Columns QVC3002 MIN columns

MAX_Columns QVC3003 MAX columns

SUM_Columns QVC3004 SUM columns

COUNT_Columns QVC3005 COUNT columns

AVG_Columns QVC3006 AVG columns

STDDEV_Columns QVC3007 STDDEV columns

VAR_Columns QVC3008 VAR columns

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Database monitor view 3030 - Materialized query tables
Displays the SQL logical view format for database monitor QQQ3030.

Create View QQQ3030 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QVRCNT as Unique_Refresh_Counter,
 QQ1000 as Materialized_Query_Tables,
 QQC301 as MQT_Reason_Codes,
 QQSMINTF as Plan_Iteration_Number
 FROM UserLib/DBMONTable
 WHERE QQRID=3030)

Table 155. QQQ3030 - Materialized query tables

View Column Name

Table
Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

596 IBM i: Database Performance and Query Optimization

Table 155. QQQ3030 - Materialized query tables (continued)

View Column Name

Table
Column
Name Description

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job User

Job_Number QQJNUM Job Number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numbe
r

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across all
decomposed subselects

Total_Number_Decomposed_SubSele
cts

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Co
de

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Materialized_Query_Tables QQ1000 Materialized query tables examined and reason why used
or not used:

• 0 - The materialized query table was used
• 1 - The cost to use the materialized query table, as

determined by the optimizer, was higher than the cost
associated with the chosen implementation.

• 2 - The join specified in the materialized query was not
compatible with the query.

• 3 - The materialized query table had predicates that
were not matched in the query.

• 4 - The grouping specified in the materialized query
table is not compatible with the grouping specified in
the query.

Database performance and query optimization 597

Table 155. QQQ3030 - Materialized query tables (continued)

View Column Name

Table
Column
Name Description

Materialized_Query_Tables
(continued)

• 5 - The query specified columns that were not in the
select-list of the materialized query table.

• 6 - The materialized query table query contains
functionality that is not supported by the query
optimizer.

• 7 - The materialized query table specified the DISABLE
QUERY OPTIMIZATION clause.

• 8 - The ordering specified in the materialized query
table is not compatible with the ordering specified in
the query.

• 9 - The query contains functionality that is not
supported by the materialized query table matching
algorithm.

• 10 - Materialized query tables may not be used for this
query.

• 11 - The refresh age of this materialized query table
exceeds the duration specified by the
MATERIALIZED_QUERY_TABLE_REFRESH_AGE
QAQQINI option.

• 12 - The commit level of the materialized query table is
lower than the commit level specified for the query.

• 13 - The distinct specified in the materialized query
table is not compatible with the distinct specified in the
query.

• 14 - The FETCH FOR FIRST n ROWS clause of the
materialized query table is not compatible with the
query.

• 15 - The QAQQINI options used to create the
materialized query table are not compatible with the
QAQQINI options used to run this query.

• 16 - The materialized query table is not usable.
• 17 - The union specified in the materialized query table

is not compatible with the query.
• 18 - The constants specified in the materialized query

table are not compatible with host variable values
specified in the query.

• 19 - The Materialized query table is in check pending
status.

• 20 - The UDTF specified in the materialized query table
was not compatible with the query.

• 21 - The VALUES clause specified in the materialized
query table was not compatible with the query.

• 22 - The UNNEST clause specified in the materialized
query table was not compatible with the query.

598 IBM i: Database Performance and Query Optimization

Table 155. QQQ3030 - Materialized query tables (continued)

View Column Name

Table
Column
Name Description

MQT_Reason_Codes QQC301 List of unique reason codes used by the materialized
query tables (each materialized query table has a
corresponding reason code associated with it)

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Database monitor view 3031 - Recursive common table expressions
Displays the SQL logical view format for database monitor QQQ3031.

Create View QQQ3031 as
 (SELECT QQRID as Row_ID,
 QQTIME as Time_Created,
 QQJFLD as Join_Column,
 QQRDBN as Relational_Database_Name,
 QQSYS as System_Name,
 QQJOB as Job_Name,
 QQUSER as Job_User,
 QQJNUM as Job_Number,
 QQI9 as Thread_ID,
 QQUCNT as Unique_Count,
 QQUDEF as User_Defined,
 QQQDTN as Unique_SubSelect_Number,
 QQQDTL as SubSelect_Nested_Level,
 QQMATN as Materialized_View_Subselect_Number,
 QQMATL as Materialized_View_Nested_Level,
 QVP15E as Materialized_View_Union_Level,
 QVP15A as Decomposed_Subselect_Number,
 QVP15B as Total_Number_Decomposed_SubSelects,
 QVP15C as Decomposed_SubSelect_Reason_Code,
 QVP15D as Starting_Decomposed_SubSelect,
 QVRCNT as Unique_Refresh_Counter,
 QVPARPF as Parallel_Prefetch,
 QVPARPL as Parallel_PreLoad,
 QVPARD as Parallel_Degree_Requested,
 QVPARU as Parallel_Degree_Used,
 QVPARRC as Parallel_Degree_Reason_Code,
 QQEPT as Estimated_Processing_Time,
 QVCTIM as Estimated_Cumulative_Time,
 QQREST as Estimated_Rows_Selected,
 QQC11 as Recursive_Query_Cycle_Check,
 QQC15 as Recursive_Query_Search_Option,
 QQI2 as Number_of_Recursive_Values,
 QQSMINTF as Plan_Iteration_Number
 FROM UserLib/DBMONTable
 WHERE QQRID=3031)

Table 156. QQQ3031 - Recursive common table expressions

View Column Name
Table Column
Name Description

Row_ID QQRID Row identification

Time_Created QQTIME Time row was created

Join_Column QQJFLD Join column (unique per job)

Relational_Database_Name QQRDBN Relational database name

System_Name QQSYS System name

Job_Name QQJOB Job name

Job_User QQUSER Job User

Database performance and query optimization 599

Table 156. QQQ3031 - Recursive common table expressions (continued)

View Column Name
Table Column
Name Description

Job_Number QQJNUM Job Number

Thread_ID QQI9 Thread identifier

Unique_Count QQUCNT Unique count (unique per query)

User_Defined QQUDEF User defined column

Unique_SubSelect_Number QQQDTN Unique subselect number

SubSelect_Nested_Level QQQDTL Subselect nested level

Materialized_View_Subselect_Numb
er

QQMATN Materialized view subselect number

Materialized_View_Nested_Level QQMATL Materialized view nested level

Materialized_View_Union_Level QVP15E Materialized view union level

Decomposed_Subselect_Number QVP15A Decomposed query subselect number, unique across
all decomposed subselects

Total_Number_Decomposed_SubSel
ects

QVP15B Total number of decomposed subselects

Decomposed_SubSelect_Reason_Co
de

QVP15C Decomposed query subselect reason code

Starting_Decomposed_SubSelect QVP15D Decomposed query subselect number for the first
decomposed subselect

Unique_Refresh_Counter QVRCNT Unique refresh counter

Parallel_Prefetch QVPARPF Parallel Prefetch (Y/N)

Parallel_PreLoad QVPARPL Parallel Preload (Y/N)

Parallel_Degree_Requested QVPARD Parallel degree requested

Parallel_Degree_Used QVPARU Parallel degree used

Parallel_Degree_Reason_Code QVPARRC Reason parallel processing was limited

Estimated_Processing_Time QQEPT Estimated processing time, in seconds

Estimated_Cumulative_Time QVCTIM Estimated cumulative time, in seconds

Estimated_Rows_Selected QQREST Estimated number of rows selected

Recursive_Query_Cycle_Check QQC11 CYCLE option:

• Y - checking for cyclic data
• N - not checking for cyclic data

Recursive_Query_Search_Option QQC15 SEARCH option:

• N - None specified
• D - Depth first
• B - Breadth first

600 IBM i: Database Performance and Query Optimization

Table 156. QQQ3031 - Recursive common table expressions (continued)

View Column Name
Table Column
Name Description

Number_of_Recursive_Values QQI2 Number of values put on queue to implement
recursion. Includes values necessary for CYCLE and
SEARCH options.

Plan_Iteration_Number QQSMINTF AQP Plan iteration number, original optimization = 1

Query optimizer messages reference
See the following for query optimizer message reference:

Query optimization performance information messages
You can evaluate the structure and performance of the SQL statements in a program using informational
messages. These messages are put in the job log by the database manager.

The messages are issued for an SQL program or interactive SQL when running in the debug mode. The
database manager could send any of the following messages when appropriate. The ampersand variables
(&1, &X) are replacement variables that contain either an object name or other substitution value when
you see the message in the job log. These messages provide feedback on how a query was run. In some
cases, the messages indicate improvements you can make to help the query run faster.

The messages contain message help that provides information about the cause for the message, object
name references, and possible user responses.

The time at which the message is sent does not necessarily indicate when the associated function was
performed. Some messages are sent altogether at the start of a query run.

CPI4321 - Access path built for &18 &19

Message
Text:

Access path built for &18 &19.

Database performance and query optimization 601

CPI4321 - Access path built for &18 &19

Cause Text: A temporary access path was built to access records from member &6 of &18 &19 in
library &5 for reason code &10. This process took &11 minutes and &12 seconds. The
access path built contains &15 entries. The access path was built using &16 parallel
tasks. A zero for the number of parallel tasks indicates that parallelism was not used.
The reason codes and their meanings follow:

1 - Perform specified ordering/grouping criteria.

2 - Perform specified join criteria.

3 - Perform specified record selection to minimize I/O wait time.

The access path was built using the following key fields. The key fields and their
corresponding sequence (ASCEND or DESCEND) will be shown:

&17.

A key field of *MAP indicates the key field is an expression (derived field).

The access path was built using sequence table &13 in library &14.

A sequence table of *N indicates the access path was built without a sequence table. A
sequence table of *I indicates the table was an internally derived table that is not
available to the user.

If &18 &19 in library &5 is a logical file then the access path is built over member &9 of
physical file &7 in library &8.

A file name starting with *QUERY or *N indicates the access path was built over a
temporary file.

Recovery
Text:

If this query is run frequently, you may want to create an access path (index) similar to
this definition for performance reasons. Create the access path using sequence table
&13 in library &14, unless the sequence table is *N. If an access path is created, it is
possible the query optimizer may still choose to create a temporary access path to
process the query.

If *MAP is returned for one of the key fields or *I is returned for the sequence table, then
a permanent access path cannot be created. A permanent access path cannot be built
with these specifications.

CPI4322 - Access path built from keyed file &1

Message
Text:

Access path built from keyed file &1.

602 IBM i: Database Performance and Query Optimization

CPI4322 - Access path built from keyed file &1

Cause Text: A temporary access path was built using the access path from member &3 of keyed file
&1 in library &2 to access records from member &6 of file &4 in library &5 for reason
code &10. This process took &11 minutes and &12 seconds. The access path built
contains &15 entries. The reason codes and their meanings follow:

1 - Perform specified ordering/grouping criteria.

2 - Perform specified join criteria.

3 - Perform specified record selection to minimize I/O wait time.

The access path was built using the following key fields. The key fields and their
corresponding sequence (ASCEND or DESCEND) will be shown:

&17.

A key field of *MAP indicates the key field is an expression (derived field).

The temporary access path was built using sequence table &13 in library &14.

A sequence table of *N indicates the access path was built without a sequence table. A
sequence table of *I indicates the table was an internally derived table that is not
available to the user.

If file &4 in library &5 is a logical file then the temporary access path is built over
member &9 of physical file &7 in library &8. Creating an access path from a keyed file
generally results in improved performance.

Recovery
Text:

If this query is run frequently, you may want to create an access path (index) similar to
this definition for performance reasons. Create the access path using sequence table
&13 in library &14, unless the sequence table is *N. If an access path is created, it is
possible the query optimizer may still choose to create a temporary access path to
process the query.

If *MAP is returned for one of the key fields or *I is returned for the sequence table, then
a permanent access path cannot be created. A permanent access path cannot be built
with these specifications.

A temporary access path can only be created using index only access if all of the fields
that were used by this temporary access path are also key fields for the access path
from the keyed file.

CPI4323 - The query access plan has been rebuilt

Message Text: The query access plan has been rebuilt.

Database performance and query optimization 603

CPI4323 - The query access plan has been rebuilt

Cause Text: The access plan was rebuilt for reason code &13. The reason codes and their meanings follow:

0 - A new access plan was created.

1 - A file or member is not the same object as the one referred to in the access plan. Some reasons include the
object being recreated, restored, or overridden to a new object.

2 - Access plan was using a reusable Open Data Path (ODP), and the optimizer chose to use a non-reusable
ODP.

3 - Access plan was using a non-reusable Open Data Path (ODP) and the optimizer chose to use a reusable
ODP.

4 - The number of records in member &3 of file &1 in library &2 has changed by more than 10%.

5 - A new access path exists over member &6 of file &4 in library &5.

6 - An access path over member &9 of file &7 in library &8 that was used for this access plan no longer exists
or is no longer valid.

7 - The query access plan had to be rebuilt because of system programming changes.

8 - The CCSID (Coded Character Set Identifier) of the current job is different than the CCSID used in the access
plan.

9 - The value of one of the following is different in the current job: date format, date separator, time format, or
time separator.

10 - The sort sequence table specified has changed.

11 - The number of active processors or the size or paging option of the storage pool has changed.

12 - The system feature DB2 Symmetric Multiprocessing has either been installed or removed.

13 - The value of the degree query attribute has changed either by the CHGSYSVAL or CHGQRYA CL commands
or with the query options file &15 in library &16.

14 - A view is either being opened by a high level language open, or is being materialized.

15 - A sequence object or user-defined type or function is not the same object as the one referred to in the
access plan; or, the SQL path used to generate the access plan is different than the current SQL path.

16 - Query attributes have been specified from the query options file &15 in library &16.

17 - The access plan was generated with a commitment control level that is different in the current job.

18 - The access plan was generated with a different static cursor answer set size.

19 - This is the first run of the query since a prepare or compile.

20 and greater -- View the second level message text of the next message issued (CPI4351) for an explanation
of these reason codes.

If the reason code is 4, 5, 6, 20, or 21 and the file specified in the reason code explanation is a logical file, then
member &12 of physical file &10 in library &11 is the file with the specified change.

Recovery Text: Excessive rebuilds should be avoided and may indicate an application design problem.

CPI4324 - Temporary file built for file &1

Message
Text:

Temporary file built for file &1.

604 IBM i: Database Performance and Query Optimization

CPI4324 - Temporary file built for file &1

Cause Text: A temporary file was built for member &3 of file &1 in library &2 for reason code &4. This
process took &5 minutes and &6 seconds. The temporary file was required in order for
the query to be processed. The reason codes and their meanings follow:

1 - The file is a join logical file and its join-type (JDFTVAL) does not match the join-type
specified in the query.

2 - The format specified for the logical file references more than one physical file.

3 - The file is a complex SQL view, or nested table expression, or common table
expression, or is a data change table reference that requires a temporary file.

4 - For an update-capable query, a subselect references a field in this file which matches
one of the fields being updated.

5 - For an update-capable query, a subselect references SQL view &1, which is based on
the file being updated.

6 - For a delete-capable query, a subselect references either the file from which records
are to be deleted or an SQL view or logical file based on the file from which records are
to be deleted.

7 - The file is user-defined table function &8 in &2, and all the records were retrieved
from the function. The processing time is not returned for this reason code.

8 - The file is a partition file requiring a temporary file for processing the grouping or join.

Recovery
Text:

You may want to change the query to refer to a file that does not require a temporary file
to be built.

CPI4325 - Temporary result file built for query

Message
Text:

Temporary result file built for query.

Database performance and query optimization 605

CPI4325 - Temporary result file built for query

Cause Text: A temporary result file was created to contain the results of the query for reason code
&4. This process took &5 minutes and &6 seconds. The temporary file created contains
&7 records. The reason codes and their meanings follow:

1 - The query contains grouping fields (GROUP BY) from more than one file, or contains
grouping fields from a secondary file of a join query that cannot be reordered.

2 - The query contains ordering fields (ORDER BY) from more than one file, or contains
ordering fields from a secondary file of a join query that cannot be reordered.

3 - The grouping and ordering fields are not compatible.

4 - DISTINCT was specified for the query.

5 - Set operator (UNION, EXCEPT, or INTERSECT) was specified for the query.

6 - The query had to be implemented using a sort. More than 120 key fields specified for
ordering.

7 - The query optimizer chose to use a sort rather than an access path to order the
results of the query.

8 - Perform specified record selection to minimize I/O wait time.

9 - The query optimizer chose to use a hashing algorithm rather than an access path to
perform the grouping for the query.

10 - The query contains a join condition that requires a temporary file.

11 - The query optimizer creates a run-time temporary file in order to implement certain
correlated group by queries.

12 - The query contains grouping fields (GROUP BY, MIN/MAX, COUNT, etc.) and there is
a read trigger on one or more of the underlying physical files in the query.

13 - The query involves a static cursor or the SQL FETCH FIRST clause.

Recovery
Text:

For more information on why a temporary result was used, refer to “Data access
methods” on page 11.

CPI4325 - Temporary result file built for query

Message
Text:

&12 &13 processed in join position &10.

606 IBM i: Database Performance and Query Optimization

CPI4325 - Temporary result file built for query

Cause Text: Access path for member &5 of file &3 in library &4 was used to access records in
member &2 of file &13 in library &1 for reason code &9. The reason codes and their
meanings follow:

1 - Perform specified record selection.

2 - Perform specified ordering/grouping criteria.

3 - Record selection and ordering/grouping criteria.

4 - Perform specified join criteria.

If file &13 in library &1 is a logical file then member &8 of physical file &6 in library &7 is
the actual file in join position &10.

A file name starting with *TEMPX for the access path indicates it is a temporary access
path built over file &6.

A file name starting with *N or *QUERY for the file indicates it is a temporary file.

Index only access was used for this file within the query: &11.

A value of *YES for index only access processing indicates that all of the fields used from
this file for this query can be found within the access path of file &3. A value of *NO
indicates that index only access could not be performed for this access path.

Index only access is generally a performance advantage since all of the data can be
extracted from the access path and the data space does not have to be paged into active
memory.

Recovery
Text:

Generally, to force a file to be processed in join position 1, specify an order by field from
that file only.

If ordering is desired, specifying ORDER BY fields over more than one file forces the
creation of a temporary file and allows the optimizer to optimize the join order of all the
files. No file is forced to be first.

An access path can only be considered for index only access if all of the fields used
within the query for this file are also key fields for that access path.

Refer to the “Data access methods” on page 11 for additional tips on optimizing a
query's join order and index only access.

In some cases, creating a temporary result table provides the fastest way to run a query.
Other queries that have many rows to be copied into the temporary result table can take
a significant amount of time. However, if the query is taking more time and resources
than can be allowed, consider changing the query so that a temporary result table is not
required.

CPI4326 - &12 &13 processed in join position &10

Message
Text:

&12 &13 processed in join position &10.

Database performance and query optimization 607

CPI4326 - &12 &13 processed in join position &10

Cause Text: Access path for member &5 of file &3 in library &4 was used to access records in
member &2 of file &13 in library &1 for reason code &9. The reason codes and their
meanings follow:

1 - Perform specified record selection.

2 - Perform specified ordering/grouping criteria.

3 - Record selection and ordering/grouping criteria.

4 - Perform specified join criteria.

If file &13 in library &1 is a logical file then member &8 of physical file &6 in library &7 is
the actual file in join position &10.

A file name starting with *TEMPX for the access path indicates it is a temporary access
path built over file &6.

A file name starting with *N or *QUERY for the file indicates it is a temporary file.

Index only access was used for this file within the query: &11.

A value of *YES for index only access processing indicates that all of the fields used from
this file for this query can be found within the access path of file &3. A value of *NO
indicates that index only access could not be performed for this access path.

Index only access is generally a performance advantage since all of the data can be
extracted from the access path and the data space does not have to be paged into active
memory.

Recovery
Text:

Generally, to force a file to be processed in join position 1, specify an order by field from
that file only.

If ordering is desired, specifying ORDER BY fields over more than one file forces the
creation of a temporary file and allows the optimizer to optimize the join order of all the
files. No file is forced to be first.

An access path can only be considered for index only access if all of the fields used
within the query for this file are also key fields for that access path.

Refer to the “Data access methods” on page 11 for additional tips on optimizing a
query's join order and index only access.

In some cases, creating a temporary result table provides the fastest way to run a query.
Other queries that have many rows to be copied into the temporary result table can take
a significant amount of time. However, if the query is taking more time and resources
than can be allowed, consider changing the query so that a temporary result table is not
required.

This message provides the join position of the specified table when an index is used to access the table
data. Join position pertains to the order in which the tables are joined.

CPI4327 - File &12 &13 processed in join position &10

Message
Text:

&12 &13 processed in join position &10.

Cause Text: Arrival sequence access was used to select records from member &2 of file &13 in
library &1.

If file &13 in library &1 is a logical file then member &8 of physical file &6 in library &7 is
the actual file in join position &10.

A file name that starts with *QUERY for the file indicates it is a temporary file.

608 IBM i: Database Performance and Query Optimization

CPI4327 - File &12 &13 processed in join position &10

Recovery
Text:

Generally, to force a file to be processed in join position 1, specify an order by field from
that file only.

Refer to the “Data access methods” on page 11 for additional tips on optimizing a
query's join order.

CPI4328 - Access path of file &3 was used by query

Message
Text:

Access path of file &3 was used by query.

Cause Text: Access path for member &5 of file &3 in library &4 was used to access records from
member &2 of &12 &13 in library &1 for reason code &9. The reason codes and their
meanings follow:

1 - Record selection.

2 - Ordering/grouping criteria.

3 - Record selection and ordering/grouping criteria.

If file &13 in library &1 is a logical file then member &8 of physical file &6 in library &7 is
the actual file being accessed.

Index only access was used for this query: &11.

A value of *YES for index only access processing indicates that all of the fields used for
this query can be found within the access path of file &3. A value of *NO indicates that
index only access could not be performed for this access path.

Index only access is generally a performance advantage since all of the data can be
extracted from the access path and the data space does not have to be paged into active
memory.

Recovery
Text:

An access path can only be considered for index only access if all of the fields used
within the query for this file are also key fields for that access path.

Refer to the “Data access methods” on page 11. for additional tips on index only access.

CPI4329 - Arrival sequence access was used for &12 &13

Message
Text:

Arrival sequence access was used for &12 &13.

Cause Text: Arrival sequence access was used to select records from member &2 of file &13 in
library &1.

If file &13 in library &1 is a logical file then member &8 of physical file &6 in library &7 is
the actual file from which records are being selected.

A file name starting with *N or *QUERY for the file indicates it is a temporary file.

Recovery
Text:

The use of an access path may improve the performance of the query if record selection
is specified.

If an access path does not exist, you may want to create one whose left-most key fields
match fields in the record selection. Matching more key fields in the access path with
fields in the record selection will result in improved performance.

Generally, to force the use of an existing access path, specify order by fields that match
the left-most key fields of that access path.

For more information refer to “Data access methods” on page 11.

Database performance and query optimization 609

CPI432A - Query optimizer timed out for file &1

Message
Text:

Query optimizer timed out for file &1.

Cause Text: The query optimizer timed out before it could consider all access paths built over
member &3 of file &1 in library &2.

The list below shows the access paths considered before the optimizer timed out. If file
&1 in library &2 is a logical file then the access paths specified are actually built over
member &9 of physical file &7 in library &8. Following each access path name in the list
is a reason code which explains how the optimizer considered the access path.

&11.

The reason codes and their meanings follow:

0 - The access path was used to implement the query.

1 - Access path was not in a valid state. The system invalidated the access path.

2 - Access path was not in a valid state. The user requested that the access path be
rebuilt.

3 - Access path is a temporary access path (resides in library QTEMP) and was not
specified as the file to be queried.

4 - The cost to use this access path, as determined by the optimizer, was higher than the
cost associated with the chosen access method.

5 - The keys of the access path did not match the fields specified for the ordering/
grouping criteria.

6 - The keys of the access path did not match the fields specified for the join criteria.

7 - Use of this access path would not minimize delays when reading records from the file
as the user requested.

8 - The access path cannot be used for a secondary file of the join query because it
contains static select/omit selection criteria. The join-type of the query does not allow
the use of select/omit access paths for secondary files.

9 - File &1 contains record ID selection. The join-type of the query forces a temporary
access path to be built to process the record ID selection.

10 and greater - View the second level message text of the next message issued
(CPI432D) for an explanation of these reason codes.

Recovery
Text:

To ensure an access path is considered for optimization specify that access path to be
the queried file. The optimizer will first consider the access path of the file specified on
the query. SQL-created indexes cannot be queried but can be deleted and recreated to
increase the chance they will be considered during query optimization.

The user may want to delete any access paths no longer needed.

CPI432B - Subselects processed as join query

Message
Text:

Subselects processed as join query.

Cause Text: Two or more SQL subselects were combined together by the query optimizer and
processed as a join query. Processing subselects as a join query generally results in
improved performance.

Recovery
Text:

None — Generally, this method of processing is a good performing option.

610 IBM i: Database Performance and Query Optimization

CPI432C - All access paths were considered for file &1

Message
Text:

All access paths were considered for file &1.

Cause Text: The query optimizer considered all access paths built over member &3 of file &1 in
library &2.

The list below shows the access paths considered. If file &1 in library &2 is a logical file
then the access paths specified are actually built over member &9 of physical file &7 in
library &8. Following each access path name in the list is a reason code which explains
how the optimizer considered the access path.

&11.

The reason codes and their meanings follow:

0 - The access path was used to implement the query.

1 - Access path was not in a valid state. The system invalidated the access path.

2 - Access path was not in a valid state. The user requested that the access path be
rebuilt.

3 - Access path is a temporary access path (resides in library QTEMP) and was not
specified as the file to be queried.

4 - The cost to use this access path, as determined by the optimizer, was higher than the
cost associated with the chosen access method.

5 - The keys of the access path did not match the fields specified for the ordering/
grouping criteria. For distributed file queries, the access path keys must exactly match
the ordering fields if the access path is to be used when ALWCPYDTA(*YES or *NO) is
specified.

6 - The keys of the access path did not match the fields specified for the join criteria.

7 - Use of this access path would not minimize delays when reading records from the
file. The user requested to minimize delays when reading records from the file.

8 - The access path cannot be used for a secondary file of the join query because it
contains static select/omit selection criteria. The join-type of the query does not allow
the use of select/omit access paths for secondary files.

9 - File &1 contains record ID selection. The join-type of the query forces a temporary
access path to be built to process the record ID selection.

10 and greater - View the second level message text of the next message issued
(CPI432D) for an explanation of these reason codes.

Recovery
Text:

The user may want to delete any access paths no longer needed.

CPI432D - Additional access path reason codes were used

Message
Text:

Additional access path reason codes were used.

Database performance and query optimization 611

CPI432D - Additional access path reason codes were used

Cause Text: Message CPI432A or CPI432C was issued immediately before this message. Because of
message length restrictions, some of the reason codes used by messages CPI432A and
CPI432C are explained below rather than in those messages.

The reason codes and their meanings follow:

10 - The user specified ignore decimal data errors on the query. This disallows the use of
permanent access paths.

11 - The access path contains static select/omit selection criteria which is not
compatible with the selection in the query.

12 - The access path contains static select/omit selection criteria whose compatibility
with the selection in the query could not be determined. Either the select/omit criteria or
the query selection became too complex during compatibility processing.

13 - The access path cannot be used because it contains one or more keys which may be
changed by the query during an insert or update.

14 - The access path is being deleted or is being created in an uncommitted unit of work
in another process.

15 - The keys of the access path matched the fields specified for the ordering/grouping
criteria. However, the sequence table associated with the access path did not match the
sequence table associated with the query.

16 - The keys of the access path matched the fields specified for the join criteria.
However, the sequence table associated with the access path did not match the
sequence table associated with the query.

17 - The left-most key of the access path did not match any fields specified for the
selection criteria. Therefore, key row positioning could not be performed, making the
cost to use this access path higher than the cost associated with the chosen access
method.

18 - The left-most key of the access path matched a field specified for the selection
criteria. However, the sequence table associated with the access path did not match the
sequence table associated with the query. Therefore, key row positioning could not be
performed, making the cost to use this access path higher than the cost associated with
the chosen access method.

19 - The access path cannot be used because the secondary file of the join query is a
select/omit logical file. The join-type requires that the select/omit access path
associated with the secondary file be used or, if dynamic, that an access path be created
by the system.

99 - The access path was used to gather statistics information for the query optimizer.

Recovery
Text:

See prior message CPI432A or CPI432C for more information.

Because of message length restrictions, some of the reason codes used by messages CPI432A and
CPI432C are explained in the message help of CPI432D. Use the message help from this message to
interpret the information returned from message CPI432A or CPI432C.

CPI432E - Selection fields mapped to different attributes

Message
Text:

Selection fields mapped to different attributes.

612 IBM i: Database Performance and Query Optimization

CPI432E - Selection fields mapped to different attributes

Cause Text: The data type, digits, decimal position, or length of each of the following selection fields
was changed so that the field could be properly compared to the literal, host variable, or
field operand associated with it. Therefore, an access path cannot be used to process
that selection, since no key field has attributes that match the new attributes of the field.
&1.

The data type of the field may have been changed to match the comparison operand. For
a numeric field, the number of total digits or fractional digits of the comparison operand
may have exceeded that of the field.

Recovery
Text:

You may want to change each comparison operand as follows:

1 - For a literal, change the literal value so that its attributes match the field's attributes.
Normally, an attributes mismatch is caused by a numeric literal that has non-significant
leading or trailing zeroes.

2 - For a host variable, either change the host variable's definition to match the field's
definition or define a new host variable that matches the field's definition.

3 - For a field, change the attributes of one of the fields to match the other's attributes.

CPI432F - Access path suggestion for file &1

Message
Text:

Access path suggestion for file &1.

Cause Text: To improve performance the query optimizer is suggesting a permanent access path be
built with the key fields it is recommending. The access path will access records from
member &3 of file &1 in library &2.

In the list of key fields that follow, the query optimizer is recommending the first &10 key
fields as primary key fields. The remaining key fields are considered secondary key fields
and are listed in order of expected selectivity based on this query. Primary key fields are
fields that significantly reduce the number of keys selected based on the corresponding
selection predicate. Secondary key fields are fields that may or may not significantly
reduce the number of keys selected. It is up to the user to determine the true selectivity
of secondary key fields and to determine whether those key fields should be used when
creating the access path.

The query optimizer is able to perform key positioning over any combination of the
primary key fields, plus one additional secondary key field. Therefore it is important that
the first secondary key field be the most selective secondary key field. The query
optimizer will use key selection with any remaining secondary key fields. While key
selection is not as fast as key positioning it can still reduce the number of keys selected.
Hence, secondary key fields that are fairly selective should be included. When building
the access path all primary key fields should be specified first followed by the secondary
key fields which are prioritized by selectivity. The following list contains the suggested
primary and secondary key fields:

&11.

If file &1 in library &2 is a logical file then the access path should be built over member
&9 of physical file &7 in library &8.

Recovery
Text:

If this query is run frequently, you may want to create the suggested access path for
performance reasons. It is possible that the query optimizer will choose not to use the
access path just created.

For more information, refer to “Data access methods” on page 11.

Database performance and query optimization 613

CPI4330 - &6 tasks used for parallel &10 scan of file &1

Message
Text:

&6 tasks used for parallel &10 scan of file &1.

Cause Text: &6 is the average numbers of tasks used for a &10 scan of member &3 of file &1 in
library &2.

If file &1 in library &2 is a logical file, then member &9 of physical file &7 in library &8 is
the actual file from which records are being selected.

A file name starting with *QUERY or *N for the file indicates a temporary result file is
being used.

The query optimizer has calculated that the optimal number of tasks is &5 which was
limited for reason code &4. The reason code definitions are:

1 - The *NBRTASKS parameter value was specified for the DEGREE parameter of the
CHGQRYA CL command.

2 - The optimizer calculated the number of tasks which would use all of the central
processing units (CPU).

3 - The optimizer calculated the number of tasks which can efficiently run in this job's
share of the memory pool.

4 - The optimizer calculated the number of tasks which can efficiently run using the
entire memory pool.

5 - The optimizer limited the number of tasks to equal the number of disk units which
contain the file's data.

The database manager may further limit the number of tasks used if the allocation of the
file's data is not evenly distributed across disk units.

Recovery
Text:

To disallow usage of parallel &10 scan, specify *NONE on the query attribute degree.

A larger number of tasks might further improve performance. The following actions
based on the optimizer reason code might allow the optimizer to calculate a larger
number:

1 - Specify a larger number of tasks value for the DEGREE parameter of the CHGQRYA CL
command. Start with a value for number of tasks which is a slightly larger than &5.

2 - Simplify the query by reducing the number of fields being mapped to the result buffer
or by removing expressions. Also, try specifying a number of tasks as described by
reason code 1.

3 - Specify *MAX for the query attribute DEGREE.

4 - Increase the size of the memory pool.

5 - Use the CHGPF CL command or the SQL ALTER statement to redistribute the file's
data across more disk units.

CPI4331 - &6 tasks used for parallel index created over file

Message
Text:

&6 tasks used for parallel index created over file &1.

614 IBM i: Database Performance and Query Optimization

CPI4331 - &6 tasks used for parallel index created over file

Cause Text: &6 is the average numbers of tasks used for an index created over member &3 of file &1
in library &2.

If file &1 in library &2 is a logical file, then member &9 of physical file &7 in library &8 is
the actual file over which the index is being built.

A file name starting with *QUERY or *N for the file indicates a temporary result file is
being used.

The query optimizer has calculated that the optimal number of tasks is &5 which was
limited for reason code &4. The definition of reason codes are:

1 - The *NBRTASKS parameter value was specified for the DEGREE parameter of the
CHGQRYA CL command.

2 - The optimizer calculated the number of tasks which would use all of the central
processing units (CPU).

3 - The optimizer calculated the number of tasks which can efficiently run in this job's
share of the memory pool.

4 - The optimizer calculated the number of tasks which can efficiently run using the
entire memory pool.

The database manager may further limit the number of tasks used for the parallel index
build if either the allocation of the file's data is not evenly distributed across disk units or
the system has too few disk units.

Recovery
Text:

To disallow usage of parallel index build, specify *NONE on the query attribute degree.

A larger number of tasks might further improve performance. The following actions
based on the reason code might allow the optimizer to calculate a larger number:

1 - Specify a larger number of tasks value for the DEGREE parameter of the CHGQRYA CL
command. Start with a value for number of tasks which is a slightly larger than &5 to see
if a performance improvement is achieved.

2 - Simplify the query by reducing the number of fields being mapped to the result buffer
or by removing expressions. Also, try specifying a number of tasks for the DEGREE
parameter of the CHGQRYA CL command as described by reason code 1.

3 - Specify *MAX for the query attribute degree.

4 - Increase the size of the memory pool.

CPI4332 - &1 host variables used in query

Message
Text:

&1 host variables used in query.

Cause Text: There were &1 host variables defined for use in the query. The values used for the host
variables for this open of the query follow: &2.

The host variables values displayed above may have been special values. An explanation
of the special values follow:

- DBCS data is displayed in hex format.

- *N denotes a value of NULL.

- *Z denotes a zero length string.

- *L denotes a value too long to display in the replacement text.

- *U denotes a value that could not be displayed.

Database performance and query optimization 615

CPI4332 - &1 host variables used in query

Recovery
Text:

None

CPI4333 - Hashing algorithm used to process join

Message
Text:

Hashing algorithm used to process join.

Cause Text: The hash join method is typically used for longer running join queries. The original query
will be subdivided into hash join steps.

Each hash join step will be optimized and processed separately. Debug messages which
explain the implementation of each hash join step follow this message in the joblog.

The list below shows the names of the files or the table functions used in this query. If
the entry is for a file, the format of the entry in this list is the number of the hash join
step, the filename as specified in the query, the member name as specified in the query,
the filename actually used in the hash join step, and the member name actually used in
the hash join step. If the entry is for a table function, the format of the entry in this list is
the number of the hash join step and the function name as specified in the query.

If there are two or more files or functions listed for the same hash step, then that hash
step is implemented with nested loop join.

Recovery
Text:

The hash join method is usually a good implementation choice, however, if you want to
disallow the use of this method specify ALWCPYDTA(*YES).

CPI4334 - Query implemented as reusable ODP

Message
Text:

Query implemented as reusable ODP.

Cause Text: The query optimizer built the access plan for this query such that a reusable open data
path (ODP) will be created. This plan will allow the query to be run repeatedly for this job
without having to rebuild the ODP each time. This normally improves performance
because the ODP is created only once for the job.

Recovery
Text:

Generally, reusable ODPs perform better than non-reusable ODPs.

CPI4335 - Optimizer debug messages for hash join step &1 follow

Message
Text:

Optimizer debug messages for hash join step &1 follow:

Cause Text: This join query is implemented using the hash join algorithm. The optimizer debug
messages that follow provide the query optimization information about hash join step
&1.

Recovery
Text:

Refer to “Data access methods” on page 11 for more information about hashing
algorithm for join processing.

CPI4336 - Group processing generated

Message
Text:

Group processing generated.

Cause Text: Group processing (GROUP BY) was added to the query step. Adding the group
processing reduced the number of result records which should, in turn, improve the
performance of subsequent steps.

616 IBM i: Database Performance and Query Optimization

CPI4336 - Group processing generated

Recovery
Text:

For more information refer to “Data access methods” on page 11

CPI4337 - Temporary hash table build for hash join step &1

Message
Text:

Temporary hash table built for hash join step &1.

Cause Text: A temporary hash table was created to contain the results of hash join step &1. This
process took &2 minutes and &3 seconds. The temporary hash table created contains
&4 records. The total size of the temporary hash table in units of 1024 bytes is &5. A list
of the fields which define the hash keys follow:

Recovery
Text:

Refer to “Data access methods” on page 11 for more information about hashing
algorithm for join processing.

CPI4338 - &1 Access path(s) used for bitmap processing of file &2

Message
Text:

&1 Access path(s) used for bitmap processing of file &2.

Cause Text: Bitmap processing was used to access records from member &4 of file &2 in library &3.

Bitmap processing is a method of allowing one or more access path(s) to be used to
access the selected records from a file. Using bitmap processing, record selection is
applied against each access path, similar to key row positioning, to create a bitmap. The
bitmap has marked in it only the records of the file that are to be selected. If more than
one access path is used, the resulting bitmaps are merged together using boolean logic.
The resulting bitmap is then used to reduce access to just those records actually
selected from the file.

Bitmap processing is used in conjunction with the two primary access methods: arrival
sequence (CPI4327 or CPI4329) or keyed access (CPI4326 or CPI4328). The message
that describes the primary access method immediately precedes this message.

When the bitmap is used with the keyed access method then it is used to further reduce
the number of records selected by the primary access path before retrieving the
selected records from the file.

When the bitmap is used with arrival sequence then it allows the sequential scan of the
file to skip records which are not selected by the bitmap. This is called skip sequential
processing.

The list below shows the names of the access paths used in the bitmap processing:

&8

If file &2 in library &3 is a logical file then member &7 of physical file &5 in library &6 is
the actual file being accessed.

Recovery
Text:

Refer to “Data access methods” on page 11 for more information about bitmap
processing.

CPI433A - Unable to retrieve query options file

Message
Text:

Unable to retrieve query options file.

Database performance and query optimization 617

CPI433A - Unable to retrieve query options file

Cause Text: Unable to retrieve the query options from member &3 in file &2 in library &1 for reason
code &4. The reason codes and their meanings follow:

1 - Library &1 was not found.

2 - File &2 in library &1 was not found.

3 - The file was damaged.

4 - The file was locked by another process which prevented successful retrieval of the
query options.

5 - File &2 and the internal query options structures are out of sync.

6 - An unexpected error occurred while trying to retrieve the options file.

The query options file is used by the Query Optimizer to determine how a query will be
implemented.

Recovery
Text:

Default query options will be used, unless one of the following actions are taken, based
on the reason code above.

1 - Either create the library (CRTLIB command) or correct the library name and then try
the request again.

2 - Either specify the library name that contains the query options file or create a
duplicate object (CRTDUPOBJ command) of file &2 from library QSYS into the specified
library.

4 - Wait for lock on file &2 in library &1 to be released and try the request again.

3, 5, or 6 - Delete query options file &2 in library &1 and then duplicate it from QSYS. If
the problem still persists, report the problem (ANZPRB command).

CPI433B - Unable to update query options file

Message
Text:

Unable to update query options file.

Cause Text: An error occurred while trying to update the query options from member &3, file &2,
library &1 for reason code &4. The reason codes and their meanings follow:

1 - The library &1 was not found.

2 - The file &2 in library &1 was not found.

3 - The parameter &5 was not found.

4 - The value &6 for parameter &5 was not valid.

5 - An unexpected error occurred while trying to update the options file.

Recovery
Text:

Do one of the following actions based on the reason code above.

1 - Either create the library (CRTLIB) command or correct the library name and then try
the request again.

2 - Either specify the library name that contains the query options file or create duplicate
object (CRTDUPOBJ) command of QAQQINI from library QSYS into the specified library.

3 - Either specify a valid parameter or correct the parameter name and then try the
request again.

4 - Either specify a valid parameter value or correct the parameter value and then try the
request again. (WRKJOB) command.

618 IBM i: Database Performance and Query Optimization

CPI433C - Library &1 not found

Message
Text:

Library &1 not found.

Cause Text: The specified library does not exist, or the name of the library is not spelled correctly.

Recovery
Text:

Correct the spelling of the library name, or specify the name of an existing library. Then
try the request again.

CPI433D - Query options used to build the query access plan

Message
Text:

Query options used to build the query access plan.

Cause Text: The access plan that was saved was created with query options retrieved from file &2 in
library &1.

Recovery
Text:

None

CPI433E - User-defined function &4 found in library &1

Message
Text:

User-defined function &4 found in library &1.

Cause Text: Function &4 was resolved to library &1. The specific name of the function is &5.

If the function is defined to use an external program, the associated program or service
program is &3 in library &2.

Recovery
Text:

Refer to the SQL programming topic collection, for more information on user-defined
functions.

CPI433F - Multiple join classes used to process join

Message
Text:

Multiple join classes used to process join.

Cause Text: Multiple join classes are used when join queries are written that have conflicting
operations or cannot be implemented as a single query.

Each join class step will be optimized and processed separately. Debug messages
detailing the implementation of each join class follow this message in the joblog.

The list below shows the file names of the files used in this query. The format of each
entry in this list is the number of the join class step, the number of the join position in the
join class step, the file name as specified in the query, the member name as specified in
the query, the file name actually used in the join class step, and the member name
actually used in the join class step.

Recovery
Text:

Refer to “Join optimization” on page 59 for more information about join classes.

CPI4340 - Optimizer debug messages for join class step &1 follow

Message
Text:

Optimizer debug messages for join class step &1 follow:

Cause Text: This join query is implemented using multiple join classes. The optimizer debug
messages that follow provide the query optimization information about join class step
&1.

Database performance and query optimization 619

CPI4340 - Optimizer debug messages for join class step &1 follow

Recovery
Text:

Refer to “Join optimization” on page 59 for more information about join classes.

CPI4341 - Performing distributed query

Message
Text:

Performing distributed query.

Cause Text: Query contains a distributed file. The query was processed in parallel on the following
nodes: &1.

Recovery
Text:

For more information about processing of distributed files, refer to the Distributed
database programming topic collection.

CPI4342 - Performing distributed join for query

Message
Text:

Performing distributed join for query.

Cause Text: Query contains join criteria over a distributed file and a distributed join was performed,
in parallel, on the following nodes: &1.

The library, file and member names of each file involved in the join follow: &2.

A file name beginning with *QQTDF indicates it is a temporary distributed result file
created by the query optimizer and it will not contain an associated library or member
name.

Recovery
Text:

For more information about processing of distributed files, refer to the Distributed
database programming.

CPI4343 - Optimizer debug messages for distributed query step &1 of &2 follow

Message
Text:

Optimizer debug messages for distributed query step &1 of &2 follow:

Cause Text: A distributed file was specified in the query which caused the query to be processed in
multiple steps. The optimizer debug messages that follow provide the query
optimization information about distributed step &1 of &2 total steps.

Recovery
Text:

For more information about processing of distributed files, refer to the Distributed
database programming.

CPI4345 - Temporary distributed result file &3 built for query

Message
Text:

Temporary distributed result file &3 built for query.

620 IBM i: Database Performance and Query Optimization

CPI4345 - Temporary distributed result file &3 built for query

Cause Text: Temporary distributed result file &3 was created to contain the intermediate results of
the query for reason code &6. The reason codes and their meanings follow:

1 - Data from member &2 of &7 &8 in library &1 was directed to other nodes.

2 - Data from member &2 of &7 &8 in library &1 was broadcast to all nodes.

3 - Either the query contains grouping fields (GROUP BY) that do not match the
partitioning keys of the distributed file or the query contains grouping criteria but no
grouping fields were specified or the query contains a subquery.

4 - Query contains join criteria over a distributed file and the query was processed in
multiple steps.

A library and member name of *N indicates the data comes from a query temporary
distributed file.

File &3 was built on nodes: &9.

It was built using partitioning keys: &10.

A partitioning key of *N indicates no partitioning keys were used when building the
temporary distributed result file.

Recovery
Text:

If the reason code is:

1 - Generally, a file is directed when the join fields do not match the partitioning keys of
the distributed file. When a file is directed, the query is processed in multiple steps and
processed in parallel. A temporary distributed result file is required to contain the
intermediate results for each step.

2 - Generally, a file is broadcast when join fields do not match the partitioning keys of
either file being joined or the join operator is not an equal operator. When a file is
broadcast the query is processed in multiple steps and processed in parallel. A
temporary distributed result file is required to contain the intermediate results for each
step.

3 - Better performance may be achieved if grouping fields are specified that match the
partitioning keys.

4 - Because the query is processed in multiple steps, a temporary distributed result file
is required to contain the intermediate results for each step. See preceding message
CPI4342 to determine which files were joined together.

For more information about processing of distributed files, refer to the Distributed
database programming

CPI4346 - Optimizer debug messages for query join step &1 of &2 follow

Message
Text:

Optimizer debug messages for query join step &1 of &2 follow:

Cause Text: Query processed in multiple steps. The optimizer debug messages that follow provide
the query optimization information about join step &1 of &2 total steps.

Recovery
Text:

No recovery necessary.

CPI4347 - Query being processed in multiple steps

Message
Text:

Query being processed in multiple steps.

Database performance and query optimization 621

CPI4347 - Query being processed in multiple steps

Cause Text: The original query will be subdivided into multiple steps.

Each step will be optimized and processed separately. Debug messages which explain
the implementation of each step follow this message in the joblog.

The list below shows the file names of the files used in this query. The format of each
entry in this list is the number of the join step, the filename as specified in the query, the
member name as specified in the query, the filename actually used in the step, and the
member name actually used in the step.

Recovery
Text:

No recovery necessary.

CPI4348 - The ODP associated with the cursor was hard closed

Message
Text:

The ODP associated with the cursor was hard closed.

Cause Text: The Open Data Path (ODP) for this statement or cursor has been hard closed for reason
code &1. The reason codes and their meanings follow:

1 - Either the length of the new LIKE pattern is zero and the length of the old LIKE
pattern is nonzero or the length of the new LIKE pattern is nonzero and the length of the
old LIKE pattern is zero.

2 - An additional wildcard was specified in the LIKE pattern on this invocation of the
cursor.

3 - SQL indicated to the query optimizer that the cursor cannot be refreshed.

4 - The system code could not obtain a lock on the file being queried.

5 - The length of the host variable value is too large for the the host variable as
determined by the query optimizer.

6 - The size of the ODP to be refreshed is too large.

7 - Refresh of the local ODP of a distributed query failed.

8 - SQL hard closed the cursor prior to the fast path refresh code.

Recovery
Text:

In order for the cursor to be used in a reusable mode, the cursor cannot be hard closed.
Look at the reason why the cursor was hard closed and take the appropriate actions to
prevent a hard close from occurring.

CPI4349 - Fast past refresh of the host variables values is not possible

Message
Text:

Fast past refresh of the host variable values is not possible.

622 IBM i: Database Performance and Query Optimization

CPI4349 - Fast past refresh of the host variables values is not possible

Cause Text: The Open Data Path (ODP) for this statement or cursor could not invoke the fast past
refresh code for reason code &1. The reason codes and their meanings follow:

1 - The new host variable value is not null and old host variable value is null or the new
host variable value is zero length and the old host variable value is not zero length.

2 - The attributes of the new host variable value are not the same as the attributes of the
old host variable value.

3 - The length of the host variable value is either too long or too short. The length
difference cannot be handled in the fast path refresh code.

4 - The host variable has a data type of IGC ONLY and the the length is not even or is less
than 2 bytes.

5 - The host variable has a data type of IGC ONLY and the new host variable value does
not contain an even number of bytes.

6 - A translate table with substitution characters was used.

7 - The host variable contains DBCS data and a CCSID translate table with substitution
characters is required.

8 - The host variable contains DBCS that is not well formed. That is, a shift-in without a
shift-out or visa versa.

9 - The host variable must be translated with a sort sequence table and the sort
sequence table contains substitution characters.

10 - The host variable contains DBCS data and must be translated with a sort sequence
table that contains substitution characters.

11 - The host variable is a Date, Time or Timestamp data type and the length of the host
variable value is either too long or too short.

Recovery
Text:

Look at the reason why fast path refresh could not be used and take the appropriate
actions so that fast path refresh can be used on the next invocation of this statement or
cursor.

CPI434 - Member &3 was opened with fewer open options than were specified

Message
Text:

Member &3 was opened with fewer open options than were specified.

Cause Text: An INSTEAD OF trigger is being used for some of the open options. However there is an
additional INSTEAD OF trigger on an underlying SQL view file whose trigger actions
cannot be used. An open request can support INSTEAD OF triggers from only one SQL
view file. The member could not be opened with the following open options: &4.

Recovery
Text:

When adding an INSTEAD OF trigger, specify trigger actions for all of the requested open
options.

CPI434E - Query could not be run using SQE

Message
Text:

Query could not be run using SQE.

Cause Text: The query was run using CQE (Current Query Engine). The query could not be run using
SQE (SQL Query Engine) for reason code &1. The reason codes and their meanings
follow:

1 -- Sort sequence table &2 in library &3 is an ICU (International Components of
Unicode) sort sequence table that is not supported by SQE.

Database performance and query optimization 623

CPI434E - Query could not be run using SQE

Recovery
Text:

Recovery for reason code 1: To run the query using SQE, specify a version of the ICU sort
sequence table that is &4 or later.

CPI4350 - Materialized query tables were considered for optimization

Message
Text:

Materialized query tables were considered for optimization.

624 IBM i: Database Performance and Query Optimization

CPI4350 - Materialized query tables were considered for optimization

Cause Text: The query optimizer considered usage of materialized query tables for this query.

Following each materialized query table name in the list is a reaon code which explains
why the materialized query table was not used. A reason code of 0 indicates that the
materialized query table was used to implement the query.

The reason codes and their meanings follow:

1 - The cost to use the materialized query table, as determined by the optimizer, was
higher than the cost associated with the chosen implementation.

2 - The join specified in the materialized query was not compatible with the query.

3 - The materialized query table had predicates that were not matched in the query.

4 - The grouping or distinct specified in the materialized query table is not compatible
with the grouping or distinct specified in the query.

5 - The query specified columns that were not in the select-list of the materialized query
table.

6 - The materialized query table query contains functionality that is not supported by the
query optimizer.

7 - The materialized query table specified the DISABLE QUERY OPTIMIZATION clause.

8 - The ordering specified in the materialized query table is not compatible with the
ordering specified in the query.

9 - The query contains functionality that is not supported by the materialized query table
matching algorithm.

10 - Materialized query tables may not be used for this query.

11 - The refresh age of this materialized query table exceeds the duration specified by
the MATERIALIZED_QUERY_TABLE_REFRESH_AGE QAQQINI option.

12 - The commit level of the materialized query table is lower than the commit level
specified for the query.

14 - The FETCH FOR FIRST n ROWS clause of the materialized query table is not
compatible with the query.

15 - The QAQQINI options used to create the materialized query table are not
compatible with the QAQQINI options used to run this query.

16 - The materialized query table is not usable.

17 - The UNION specified in the materialized query table is not compatible with the
query.

18 - The constants specified in the materialized query table are not compatible with host
variable values specified in the query.

19 - The materialized query table is in Check Pending status and cannot be used.

20 - The UDTF specified in the materialized query table is not compatible with UDTF in
the query.

21 - The Values clause specified in the materialized query table is not compatible with
Values specified in the query.

Recovery
Text:

The user may want to delete any materialized query tables that are no longer needed.

Database performance and query optimization 625

CPI4351 - Additional reason codes for query access plan has been rebuilt

Message
Text:

Additional reason codes for query access plan has been rebuilt.

Cause Text: Message CPI4323 was issued immediately before this message. Because of message
length restrictions, some of the reason codes used by message CPI4323 are explained
below rather than in that message. The CPI4323 message was issued for reason code
&13. The additional reason codes and their meaning follow:

20 - Referential or check constraints for member &19 of file &17 in library &18 have
changed since the access plan was generated.

21 - Materialized query tables for member &22 of file &20 in library &21 have changed
since the access plan was generated. If the file is *N then the file name is not available.

22 - The value of a host variable changed and the access plan is no longer valid.

23 - Adaptive Query Processing (AQP) determined that a new access plan is needed.

Recovery
Text:

See the prior message CPI4323 for more information.

CPI436A - Database monitor started for job &1, monitor ID &2

Message
Text:

Database monitor started for job &1, monitor ID &2.

Cause Text: The database monitor was started for job &1. The system generated monitor ID for this
database monitor is &2.

If multiple monitors have been started using the same generic job name, the monitor ID
is needed to uniquely identify which monitor is to be ended with the ENDDBMON
command.

Recovery
Text:

If multiple monitors have been started using the same generic job name, remember the
monitor ID. The monitor ID will be required when using the ENDDBMON command to
end this specific monitor.

Query optimization performance information messages and open data paths
Several of the following SQL runtime messages refer to open data paths.

An open data path (ODP) definition is an internal object that is created when a cursor is opened or when
other SQL statements are run. It provides a direct link to the data so that I/O operations can occur. ODPs
are used on OPEN, INSERT, UPDATE, DELETE, and SELECT INTO statements to perform their respective
operations on the data.

Even though SQL cursors are closed and SQL statements have run, in many cases, the database manager
saves the associated ODPs of the SQL operations. These ODPs are then reused the next time the
statement is run. For example, an SQL CLOSE statement could close the SQL cursor, but leave the ODP
available to use again the next time the cursor is opened. This technique can significantly reduce the
processing and response time in running SQL statements.

The ability to reuse ODPs when SQL statements are run repeatedly is an important consideration in
achieving faster performance.

SQL7910 - All SQL cursors closed

Message
Text:

SQL cursors closed.

626 IBM i: Database Performance and Query Optimization

SQL7910 - All SQL cursors closed

Cause Text: SQL cursors have been closed and all Open Data Paths (ODPs) have been deleted,
except those that were opened by programs with the CLOSQLCSR(*ENDJOB) option or
were opened by modules with the CLOSQLCSR(*ENDACTGRP) option. All SQL programs
on the call stack have completed, and the SQL environment has been exited. This
process includes the closing of cursors, the deletion of ODPs, the removal of prepared
statements, and the release of locks.

Recovery
Text:

To keep cursors, ODPs, prepared statements, and locks available after the completion of
a program, use the CLOSQLCSR precompile parameter.

-- The *ENDJOB option will allow the user to keep the SQL resources active for the
duration of the job.

-- The *ENDSQL option will allow the user to keep SQL resources active across program
calls, provided the SQL environment stays resident. Running an SQL statement in the
first program of an application will keep the SQL environment active for the duration of
that application.

-- The *ENDPGM option, which is the default for non-Integrated Language Environment®

(ILE) programs, causes all SQL resources to only be accessible by the same invocation of
a program. Once an *ENDPGM program has completed, if it is called again, the SQL
resources are no longer active.

-- The *ENDMOD option causes all SQL resources to only be accessible by the same
invocation of the module.

-- The *ENDACTGRP option, which is the default for ILE modules, will allow the user to
keep the SQL resources active for the duration of the activation group.

SQL7911 - ODP reused

Message
Text:

ODP reused.

Cause Text: An ODP that was previously created has been reused. There was a reusable Open Data
Path (ODP) found for this SQL statement, and it has been used. The reusable ODP may
have been from the same call to a program or a previous call to the program. A reuse of
an ODP will not generate an OPEN entry in the journal.

Recovery
Text:

None

SQL7912 - ODP created

Message
Text:

ODP created.

Cause Text: An Open Data Path (ODP) has been created. No reusable ODP could be found. This
occurs in the following cases:

-- This is the first time the statement has been run.

-- A RCLRSC has been issued since the last run of this statement.

-- The last run of the statement caused the ODP to be deleted.

-- If this is an OPEN statement, the last CLOSE of this cursor caused the ODP to be
deleted.

-- The Application Server (AS) has been changed by a CONNECT statement.

Database performance and query optimization 627

SQL7912 - ODP created

Recovery
Text:

If a cursor is being opened many times in an application, it is more efficient to use a
reusable ODP, and not create an ODP every time. This also applies to repeated runs of
INSERT, UPDATE, DELETE, and SELECT INTO statements. If ODPs are being created on
every open, see the close message to determine why the ODP is being deleted.

The first time that the statement is run or the cursor is opened for a process, an ODP must always be
created. However, if this message appears on every statement run or cursor open, use the tips
recommended in “Retaining cursor positions for non-ILE program calls” on page 249 in your application.

SQL7913 - ODP deleted

Message
Text:

ODP deleted.

Cause Text: The Open Data Path (ODP) for this statement or cursor has been deleted. The ODP was
not reusable. This could be caused by using a host variable in a LIKE clause, ordering on
a host variable, or because the query optimizer chose to accomplish the query with an
ODP that was not reusable.

Recovery
Text:

See previous query optimizer messages to determine how the cursor was opened.

SQL7914 - ODP not deleted

Message
Text:

ODP not deleted.

Cause Text: The Open Data Path (ODP) for this statement or cursor has not been deleted. This ODP
can be reused on a subsequent run of the statement. This will not generate an entry in
the journal.

Recovery
Text:

None

SQL7915 - Access plan for SQL statement has been built

Message
Text:

Access plan for SQL statement has been built.

Cause Text: SQL had to build the access plan for this statement at run time. This occurs in the
following cases:

-- The program has been restored from a different release and this is the first time this
statement has been run.

-- All the files required for the statement did not exist at precompile time, and this is the
first time this statement has been run.

-- The program was precompiled using SQL naming mode, and the program owner has
changed since the last time the program was called.

Recovery
Text:

This is normal processing for SQL. Once the access plan is built, it will be used on
subsequent runs of the statement.

SQL7916 - Blocking used for query

Message
Text:

Blocking used for query.

628 IBM i: Database Performance and Query Optimization

SQL7916 - Blocking used for query

Cause Text: Blocking has been used in the implementation of this query. SQL will retrieve a block of
records from the database manager on the first FETCH statement. Additional FETCH
statements have to be issued by the calling program, but they do not require SQL to
request more records, and therefore will run faster.

Recovery
Text:

SQL attempts to utilize blocking whenever possible. In cases where the cursor is not
update capable, and commitment control is not active, there is a possibility that blocking
will be used.

SQL7917 - Access plan not updated

Message
Text:

Access plan not updated.

Cause Text: The query optimizer rebuilt the access plan for this statement, but the program could
not be updated. Another job may be running the program. The program cannot be
updated with the new access plan until a job can obtain an exclusive lock on the
program. The exclusive lock cannot be obtained if another job is running the program, if
the job does not have proper authority to the program, or if the program is currently
being saved. The query will still run, but access plan rebuilds will continue to occur until
the program is updated.

Recovery
Text:

See previous messages from the query optimizer to determine why the access plan has
been rebuilt. To ensure that the program gets updated with the new access plan, run the
program when no other active jobs are using it.

SQL7918 - Reusable ODP deleted

Message
Text:

Reusable ODP deleted. Reason code &1.

Database performance and query optimization 629

SQL7918 - Reusable ODP deleted

Cause Text: An existing Open Data Path (ODP) was found for this statement, but it could not be
reused for reason &1. The statement now refers to different files or uses different
override options than are in the ODP. Reason codes and their meanings are:

1 -- Commitment control isolation level is not compatible.

2 -- The statement contains SQL special register USER, CURRENT DEBUG MODE,
CURRENT DECFLOAT ROUNDING MODE, or CURRENT TIMEZONE, and the value for one
of these registers has changed.

3 -- The PATH used to locate an SQL function has changed.

4 -- The job default CCSID has changed.

5 -- The library list has changed, such that a file is found in a different library. This only
affects statements with unqualified table names, when the table exists in multiple
libraries.

6 -- The file, library, or member for the original ODP was changed with an override.

7 -- An OVRDBF or DLTOVR command has been issued. A file referred to in the
statement now refers to a different file, library, or member.

8 -- An OVRDBF or DLTOVR command has been issued, causing different override
options, such as different SEQONLY or WAITRCD values.

9 -- An error occurred when attempting to verify the statement override information is
compatible with the reusable ODP information.

10 -- The query optimizer has determined the ODP cannot be reused.

11 -- The client application requested not to reuse ODPs.

Recovery
Text:

Do not change the library list, the override environment, or the values of the special
registers if reusable ODPs are to be used.

SQL7919 - Data conversion required on FETCH or embedded SELECT

Message
Text:

Data conversion required on FETCH or embedded SELECT.

630 IBM i: Database Performance and Query Optimization

SQL7919 - Data conversion required on FETCH or embedded SELECT

Cause Text: Host variable &2 requires conversion. The data retrieved for the FETCH or embedded
SELECT statement can not be directly moved to the host variables. The statement ran
correctly. Performance, however, would be improved if no data conversion was required.
The host variable requires conversion for reason &1.

-- Reason 1 - host variable &2 is a character or graphic string of a different length than
the value being retrieved.

-- Reason 2 - host variable &2 is a numeric type that is different than the type of the
value being retrieved.

-- Reason 3 - host variable &2 is a C character or C graphic string that is NUL-terminated,
the program was compiled with option *CNULRQD specified, and the statement is a
multiple-row FETCH.

-- Reason 4 - host variable &2 is a variable length string and the value being retrieved is
not.

-- Reason 5 - host variable &2 is not a variable length string and the value being
retrieved is.

-- Reason 6 - host variable &2 is a variable length string whose maximum length is
different than the maximum length of the variable length value being retrieved.

-- Reason 7 - a data conversion was required on the mapping of the value being retrieved
to host variable &2, such as a CCSID conversion.

-- Reason 8 - a DRDA connection was used to get the value being retrieved into host
variable &2. The value being retrieved is either null capable or varying-length, is
contained in a partial row, or is a derived expression.

-- Reason 10 - the length of host variable &2 is too short to hold a TIME or TIMESTAMP
value being retrieved.

-- Reason 11 - host variable &2 is of type DATE, TIME or TIMESTAMP, and the value
being retrieved is a character string.

-- Reason 12 - too many host variables were specified and records are blocked. Host
variable &2 does not have a corresponding column returned from the query.

-- Reason 13 - a DRDA connection was used for a blocked FETCH and the number of host
variables specified in the INTO clause is less than the number of result values in the
select list.

-- Reason 14 - a LOB Locator was used and the commitment control level of the process
was not *ALL.

Recovery
Text:

To get better performance, attempt to use host variables of the same type and length as
their corresponding result columns.

SQL7939 - Data conversion required on INSERT or UPDATE

Message
Text:

Data conversion required on INSERT or UPDATE.

Database performance and query optimization 631

SQL7939 - Data conversion required on INSERT or UPDATE

Cause Text: The INSERT or UPDATE values can not be directly moved to the columns because the
data type or length of a value is different than one of the columns. The INSERT or
UPDATE statement ran correctly. Performance, however, would be improved if no data
conversion was required. The reason data conversion is required is &1.

-- Reason 1 is that the INSERT or UPDATE value is a character or graphic string of a
different length than column &2.

-- Reason 2 is that the INSERT or UPDATE value is a numeric type that is different than
the type of column &2.

-- Reason 3 is that the INSERT or UPDATE value is a variable length string and column
&2 is not.

-- Reason 4 is that the INSERT or UPDATE value is not a variable length string and
column &2 is.

-- Reason 5 is that the INSERT or UPDATE value is a variable length string whose
maximum length is different that the maximum length of column &2.

-- Reason 6 is that a data conversion was required on the mapping of the INSERT or
UPDATE value to column &2, such as a CCSID conversion.

-- Reason 7 is that the INSERT or UPDATE value is a character string and column &2 is of
type DATE, TIME, or TIMESTAMP.

-- Reason 8 is that the target table of the INSERT is not a SQL table.

Recovery
Text:

To get better performance, try to use values of the same type and length as their
corresponding columns.

PRTSQLINF message reference
The following messages are returned from PRTSQLINF.

SQL400A - Temporary distributed result file &1 was created to contain join result

Message
Text:

Temporary distributed result file &1 was created to contain join result. Result file was
directed.

Cause Text: Query contains join criteria over a distributed file and a distributed join was performed in
parallel. A temporary distributed result file was created to contain the results of the
distributed join.

Recovery
Text:

For more information about processing of distributed files, refer to the Distributed
database programming topic collection.

SQL400B - Temporary distributed result file &1 was created to contain join result

Message
Text:

Temporary distributed result file &1 was created to contain join result. Result file was
broadcast.

Cause Text: Query contains join criteria over a distributed file and a distributed join was performed in
parallel. A temporary distributed result file was created to contain the results of the
distributed join.

Recovery
Text:

For more information about processing of distributed files, refer to the Distributed
database programming topic collection.

632 IBM i: Database Performance and Query Optimization

SQL400C - Optimizer debug messages for distributed query step &1 and &2 follow

Message
Text:

Optimizer debug messages for distributed query step &1 of &2 follow:

Cause Text: A distributed file was specified in the query which caused the query to be processed in
multiple steps. The optimizer debug messages that follow provide the query
optimization information about the current step.

Recovery
Text:

For more information about processing of distributed files, refer to the Distributed
database programming topic collection.

SQL400D - GROUP BY processing generated

Message
Text:

GROUP BY processing generated.

Cause Text: GROUP BY processing was added to the query step. Adding the GROUP BY reduced the
number of result rows which should, in turn, improve the performance of subsequent
steps.

Recovery
Text:

For more information refer to the SQL programming topic collection.

SQL400E - Temporary distributed result file &1 was created while processing distributed subquery

Message
Text:

Temporary distributed result file &1 was created while processing distributed subquery.

Cause Text: A temporary distributed result file was created to contain the intermediate results of the
query. The query contains a subquery which requires an intermediate result.

Recovery
Text:

Generally, if the fields correlated between the query and subquery do not match the
partition keys of the respective files, the query must be processed in multiple steps and
a temporary distributed file will be built to contain the intermediate results. For more
information about processing of distributed files, refer to the Distributed database
programming topic collection.

SQL4001 - Temporary result created

Message
Text:

Temporary result created.

Cause Text: Conditions exist in the query which cause a temporary result to be created. One of the
following reasons may be the cause for the temporary result:

-- The table is a join logical file and its join type (JDFTVAL) does not match the join-type
specified in the query.

-- The format specified for the logical file refers to more than one physical table.

-- The table is a complex SQL view requiring a temporary table to contain the results of
the SQL view.

-- The query contains grouping columns (GROUP BY) from more than one table, or
contains grouping columns from a secondary table of a join query that cannot be
reordered.

Recovery
Text:

Performance may be improved if the query can be changed to avoid temporary results.

Database performance and query optimization 633

SQL4002 - Reusable ODP sort used

Message
Text:

Reusable ODP sort used.

Cause Text: Conditions exist in the query which cause a sort to be used. This allowed the open data
path (ODP) to be reusable. One of the following reasons may be the cause for the sort:

-- The query contains ordering columns (ORDER BY) from more than one table, or
contains ordering columns from a secondary table of a join query that cannot be
reordered.

-- The grouping and ordering columns are not compatible.

-- DISTINCT was specified for the query.

-- UNION was specified for the query.

-- The query had to be implemented using a sort. Key length of more than 2000 bytes,
more than 120 ordering columns, or an ordering column containing a reference to an
external user-defined function was specified for ordering.

-- The query optimizer chose to use a sort rather than an index to order the results of the
query.

Recovery
Text:

A reusable ODP generally results in improved performance when compared to a non-
reusable ODP.

SQL4003 - UNION

Message
Text:

UNION, EXCEPT, or INTERSECT.

Cause Text: A UNION, EXCEPT, or INTERSECT operator was specified in the query. The messages
preceding this keyword delimiter correspond to the subselect preceding the UNION,
EXCEPT, or INTERSECT operator. The messages following this keyword delimiter
correspond to the subselect following the UNION, EXCEPT, or INTERSECT operator.

Recovery
Text:

None

SQL4004 - SUBQUERY

Message
Text:

SUBQUERY.

Cause Text: The SQL statement contains a subquery. The messages preceding the SUBQUERY
delimiter correspond to the subselect containing the subquery. The messages following
the SUBQUERY delimiter correspond to the subquery.

Recovery
Text:

None

SQL4005 - Query optimizer timed out for table &1

Message
Text:

Query optimizer timed out for table &1.

Cause Text: The query optimizer timed out before it could consider all indexes built over the table.
This is not an error condition. The query optimizer may time out in order to minimize
optimization time. The query can be run in debug mode (STRDBG) to see the list of
indexes which were considered during optimization. The table number refers to the
relative position of this table in the query.

634 IBM i: Database Performance and Query Optimization

SQL4005 - Query optimizer timed out for table &1

Recovery
Text:

To ensure an index is considered for optimization, specify the logical file of the index as
the table to be queried. The optimizer will first consider the index of the logical file
specified on the SQL select statement. Note that SQL created indexes cannot be queried.
An SQL index can be deleted and recreated to increase the chances it will be considered
during query optimization. Consider deleting any indexes no longer needed.

SQL4006 - All indexes considered for table &1

Message
Text:

All indexes considered for table &1.

Cause Text: The query optimizer considered all index built over the table when optimizing the query.
The query can be run in debug mode (STRDBG) to see the list of indexes which were
considered during optimization. The table number refers to the relative position of this
table in the query.

Recovery
Text:

None

SQL4007 - Query implementation for join position &1 table &2

Message
Text:

Query implementation for join position &1 table &2.

Cause Text: The join position identifies the order in which the tables are joined. A join position of 1
indicates this table is the first, or left-most, table in the join order. The table number
refers to the relative position of this table in the query.

Recovery
Text:

Join order can be influenced by adding an ORDER BY clause to the query. Refer to “Join
optimization” on page 59 for more information about join optimization and tips to
influence join order.

SQL4008 - Index &1 used for table &2

Message
Text:

Index &1 used for table &2.

Cause Text: The index was used to access rows from the table for one of the following reasons:

-- Row selection.

-- Join criteria.

-- Ordering/grouping criteria.

-- Row selection and ordering/grouping criteria.

The table number refers to the relative position of this table in the query.

The query can be run in debug mode (STRDBG) to determine the specific reason the
index was used.

Recovery
Text:

None

SQL4009 - Index created for table &1

Message
Text:

Index created for table &1.

Database performance and query optimization 635

SQL4009 - Index created for table &1

Cause Text: A temporary index was built to access rows from the table for one of the following
reasons:

-- Perform specified ordering/grouping criteria.

-- Perform specified join criteria.

The table number refers to the relative position of this table in the query.

Recovery
Text:

To improve performance, consider creating a permanent index if the query is run
frequently. The query can be run in debug mode (STRDBG) to determine the specific
reason the index was created and the key columns used when creating the index. NOTE:
If permanent index is created, it is possible the query optimizer may still choose to
create a temporary index to access the rows from the table.

SQL401A - Processing grouping criteria for query containing a distributed table

Message
Text:

Processing grouping criteria for query containing a distributed table.

Cause Text: Grouping for queries that contain distributed tables can be implemented using either a
one or two step method. If the one step method is used, the grouping columns (GROUP
BY) match the partitioning keys of the distributed table. If the two step method is used,
the grouping columns do not match the partitioning keys of the distributed table or the
query contains grouping criteria but no grouping columns were specified. If the two step
method is used, message SQL401B will appear followed by another SQL401A message.

Recovery
Text:

For more information about processing of distributed tables, refer to the Distributed
database programming topic collection.

SQL401B - Temporary distributed result table &1 was created while processing grouping criteria

Message
Text:

Temporary distributed result table &1 was created while processing grouping criteria.

Cause Text: A temporary distributed result table was created to contain the intermediate results of
the query. Either the query contains grouping columns (GROUP BY) that do not match
the partitioning keys of the distributed table or the query contains grouping criteria but
no grouping columns were specified.

Recovery
Text:

For more information about processing of distributed tables, refer to the Distributed
database programming topic collection.

SQL401C - Performing distributed join for query

Message
Text:

Performing distributed join for query.

Cause Text: Query contains join criteria over a distributed table and a distributed join was performed
in parallel. See the following SQL401F messages to determine which tables were joined
together.

Recovery
Text:

For more information about processing of distributed tables, refer to the Distributed
database programming topic collection.

SQL401D - Temporary distributed result table &1 was created because table &2 was directed

Message
Text:

Temporary distributed result table &1 was created because table &2 was directed.

636 IBM i: Database Performance and Query Optimization

SQL401D - Temporary distributed result table &1 was created because table &2 was directed

Cause Text: Temporary distributed result table was created to contain the intermediate results of the
query. Data from a distributed table in the query was directed to other nodes.

Recovery
Text:

Generally, a table is directed when the join columns do not match the partitioning keys of
the distributed table. When a table is directed, the query is processed in multiple steps
and processed in parallel. A temporary distributed result file is required to contain the
intermediate results for each step. For more information about processing of distributed
tables, refer to the Distributed database programming topic collection.

SQL401E - Temporary distributed result table &1 was created because table &2 was broadcast

Message
Text:

Temporary distributed result table &1 was created because table &2 was broadcast.

Cause Text: Temporary distributed result table was created to contain the intermediate results of the
query. Data from a distributed table in the query was broadcast to all nodes.

Recovery
Text:

Generally, a table is broadcast when join columns do not match the partitioning keys of
either table being joined or the join operator is not an equal operator. When a table is
broadcast the query is processed in multiple steps and processed in parallel. A
temporary distributed result table is required to contain the intermediate results for
each step. For more information about processing of distributed tables, refer to the
Distributed database programming topic collection.

SQL401F - Table &1 used in distributed join

Message
Text:

Table &1 used in distributed join.

Cause Text: Query contains join criteria over a distributed table and a distributed join was performed
in parallel.

Recovery
Text:

For more information about processing of distributed tables, refer to the Distributed
database programming topic collection.

SQL4010 - Table scan access for table &1

Message
Text:

Table scan access for table &1.

Cause Text: Table scan access was used to select rows from the table. The table number refers to
the relative position of this table in the query.

Recovery
Text:

Table scan is generally a good performing option when selecting a high percentage of
rows from the table. The use of an index, however, may improve the performance of the
query when selecting a low percentage of rows from the table.

SQL4011 - Index scan-key row positioning used on table &1

Message
Text:

Index scan-key row positioning used on table &1.

Cause Text: Index scan-key row positioning is defined as applying selection against the index to
position directly to ranges of keys that match some or all of the selection criteria. Index
scan-key row positioning only processes a subset of the keys in the index and is a good
performing option when selecting a small percentage of rows from the table.

The table number refers to the relative position of this table in the query.

Database performance and query optimization 637

SQL4011 - Index scan-key row positioning used on table &1

Recovery
Text:

Refer to “Data access methods” on page 11 for more information about index scan-key
row positioning.

SQL4012 - Index created from index &1 for table &2

Message
Text:

Index created from index &1 for table &2.

Cause Text: A temporary index was created using the specified index to access rows from the
queried table for one of the following reasons:

-- Perform specified ordering/grouping criteria.

-- Perform specified join criteria.

The table number refers to the relative position of this table in the query.

Recovery
Text:

Creating an index from an index is generally a good performing option. Consider creating
a permanent index for frequently run queries. The query can be run in debug mode
(STRDBG) to determine the key columns used when creating the index. NOTE: If a
permanent index is created, it is possible the query optimizer may still choose to create
a temporary index to access the rows from the table.

SQL4013 - Access plan has not been built

Message
Text:

Access plan has not been built.

Cause Text: An access plan was not created for this query. Possible reasons may include:

-- Tables were not found when the program was created.

-- The query was complex and required a temporary result table.

-- Dynamic SQL was specified.

Recovery
Text:

If an access plan was not created, review the possible causes. Attempt to correct the
problem if possible.

SQL4014 - &1 join column pair(s) are used for this join position

Message
Text:

&1 join column pair(s) are used for this join position.

Cause Text: The query optimizer may choose to process join predicates as either join selection or
row selection. The join predicates used in join selection are determined by the final join
order and the index used. This message indicates how many join column pairs were
processed as join selection at this join position. Message SQL4015 provides detail on
which columns comprise the join column pairs.

If 0 join column pairs were specified then index scan-key row positioning with row
selection was used instead of join selection.

Recovery
Text:

If fewer join pairs are used at a join position than expected, it is possible no index exists
which has keys matching the desired join columns. Try creating an index whose keys
match the join predicates.

If 0 join column pairs were specified then index scan-key row positioning was used.
Index scan-key row positioning is normally a good performing option. Message SQL4011
provides more information on index scan-key row positioning.

638 IBM i: Database Performance and Query Optimization

SQL4015 - From-column &1.&2, to-column &3.&4, join operator &5, join predicate &6

Message
Text:

From-column &1.&2, to-column &3.&4, join operator &5, join predicate &6.

Cause Text: Identifies which join predicate was implemented at the current join position. The
replacement text parameters are:

-- &1: The join 'from table' number. The table number refers to the relative position of
this table in the query.

-- &2: The join 'from column' name. The column within the join from table which
comprises the left half of the join column pair. If the column name is *MAP, the column is
an expression (derived field).

-- &3: The join 'to table' number. The table number refers to the relative position of this
table in the query.

-- &4. The join 'to column' name. The column within the join to column which comprises
the right half of the join column pair. If the column name is *MAP, the column is an
expression (derived field).

-- &5. The join operator. Possible values are EQ (equal), NE (not equal), GT (greater
than), LT (less than), GE (greater than or equal), LE (less than or equal), and CP (cross
join or cartesian product).

-- &6. The join predicate number. Identifies the join predicate within this set of join pairs.

Recovery
Text:

Refer to “Join optimization” on page 59 for more information about joins.

SQL4016 - Subselects processed as join query

Message
Text:

Subselects processed as join query.

Cause Text: The query optimizer chose to implement some or all of the subselects with a join query.
Implementing subqueries with a join generally improves performance over
implementing alternative methods.

Recovery
Text:

None

SQL4017 - Host variables implemented as reusable ODP

Message
Text:

Host variables implemented as reusable ODP.

Cause Text: The query optimizer has built the access plan allowing for the values of the host
variables to be supplied when the query is opened. This query can be run with different
values being provided for the host variables without requiring the access plan to be
rebuilt. This is the normal method of handling host variables in access plans. The open
data path (ODP) that will be created from this access plan will be a reusable ODP.

Recovery
Text:

Generally, reusable open data paths perform better than non-reusable open data paths.

SQL4018 - Host variables implemented as non-reusable ODP

Message
Text:

Host variables implemented as non-reusable ODP.

Database performance and query optimization 639

SQL4018 - Host variables implemented as non-reusable ODP

Cause Text: The query optimizer has implemented the host variables with a non-reusable open data
path (ODP).

Recovery
Text:

This can be a good performing option in special circumstances, but generally a reusable
ODP gives the best performance.

SQL4019 - Host variables implemented as file management row positioning reusable ODP

Message
Text:

Host variables implemented as file management row positioning reusable ODP.

Cause Text: The query optimizer has implemented the host variables with a reusable open data path
(ODP) using file management row positioning.

Recovery
Text:

Generally, a reusable ODP performs better than a non-reusable ODP.

SQL402A - Hashing algorithm used to process join

Message
Text:

Hashing algorithm used to process join.

Cause Text: The hash join algorithm is typically used for longer running join queries. The original
query will be subdivided into hash join steps. Each hash join step will be optimized and
processed separately. Access plan implementation information for each of the hash join
steps is not available because access plans are not saved for the individual hash join
dials. Debug messages detailing the implementation of each hash dial can be found in
the joblog if the query is run in debug mode using the STRDBG CL command.

Recovery
Text:

The hash join method is usually a good implementation choice, however, if you want to
disallow the use of this method specify ALWCPYDTA(*YES). Refer to the &qryopt. for
more information on hashing algorithm for join processing.

SQL402B - Table &1 used in hash join step &2

Message
Text:

Table &1 used in hash join step &2.

Cause Text: This message lists the table number used by the hash join steps. The table number
refers to the relative position of this table in the query. If there are two or more of these
messages for the same hash join step, then that step is a nested loop join. Access plan
implementation information for each of the hash join step are not available because
access plans are not saved for the individual hash steps. Debug messages detailing the
implementation of each hash step can be found in the joblog if the query is run in debug
mode using the STRDBG CL command.

Recovery
Text:

Refer to “Data access methods” on page 11 for more information about hashing.

SQL402C - Temporary table created for hash join results

Message
Text:

Temporary table created for hash join results.

Cause Text: The results of the hash join were written to a temporary table so that query processing
could be completed. The temporary table was required because the query contained
one or more of the following: GROUP BY or summary functions ORDER BY DISTINCT
Expression containing columns from more than one table Complex row selection
involving columns from more than one table

640 IBM i: Database Performance and Query Optimization

SQL402C - Temporary table created for hash join results

Recovery
Text:

Refer to “Data access methods” on page 11 for more information about the hashing
algorithm for join processing.

SQL402D - Query attributes overridden from query options file &2 in library &1

Message
Text:

Query attributes overridden from query options file &2 in library &1.

Cause Text: None

Recovery
Text:

None

SQL4020 - Estimated query run time is &1 seconds

Message
Text:

Estimated query run time is &1 seconds.

Cause Text: The total estimated time, in seconds, of executing this query.

Recovery
Text:

None

SQL4021 - Access plan last saved on &1 at &2

Message
Text:

Access plan last saved on &1 at &2.

Cause Text: The date and time reflect the last time the access plan was successfully updated in the
program object.

Recovery
Text:

None

SQL4022 - Access plan was saved with SRVQRY attributes active

Message
Text:

Access plan was saved with SRVQRY attributes active.

Cause Text: The access plan that was saved was created while SRVQRY was active. Attributes saved
in the access plan may be the result of SRVQRY.

Recovery
Text:

The query will be re-optimized the next time it is run so that SRVQRY attributes will not
be permanently saved.

SQL4023 - Parallel table prefetch used

Message
Text:

Parallel table prefetch used.

Cause Text: The query optimizer chose to use a parallel prefetch access method to reduce the
processing time required for the table scan.

Database performance and query optimization 641

SQL4023 - Parallel table prefetch used

Recovery
Text:

Parallel prefetch can improve the performance of queries. Even though the access plan
was created to use parallel prefetch, the system will actually run the query only if the
following are true:

-- The query attribute degree was specified with an option of *IO or *ANY for the
application process.

-- There is enough main storage available to cache the data being retrieved by multiple
I/O streams. Normally, 5 megabytes would be a minimum. Increasing the size of the
shared pool may improve performance.

For more information about parallel table prefetch, refer to “Data access methods” on
page 11.

SQL4024 - Parallel index preload access method used

Message
Text:

Parallel index preload access method used.

Cause Text: The query optimizer chose to use a parallel index preload access method to reduce the
processing time required for this query. This means that the indexes used by this query
will be loaded into active memory when the query is opened.

Recovery
Text:

Parallel index preload can improve the performance of queries. Even though the access
plan was created to use parallel preload, the system will actually use parallel preload
only if the following are true:

-- The query attribute degree was specified with an option of *IO or *ANY for the
application process.

-- There is enough main storage to load all of the index objects used by this query into
active memory. Normally, a minimum of 5 megabytes would be a minimum. Increasing
the size of the shared pool may improve performance.

For more information about parallel table prefetch, refer to “Data access methods” on
page 11.

SQL4025 - Parallel table preload access method used

Message
Text:

Parallel table preload access method used.

Cause Text: The query optimizer chose to use a parallel table preload access method to reduce the
processing time required for this query. This means that the data accessed by this query
will be loaded into active memory when the query is opened.

Recovery
Text:

Parallel table preload can improve the performance of queries. Even though the access
plan was created to use parallel preload, the system will actually use parallel preload
only if the following are true:

-- The query attribute degree must have been specified with an option of *IO or *ANY for
the application process.

-- There is enough main storage available to load all of the data in the file into active
memory. Normally, 5 megabytes would be a minimum. Increasing the size of the shared
pool may improve performance.

For more information about parallel table prefetch, refer to “Data access methods” on
page 11.

642 IBM i: Database Performance and Query Optimization

SQL4026 - Index only access used on table number &1

Message
Text:

Index only access used on table number &1.

Cause Text: Index only access is primarily used in conjunction with either index scan-key row
positioning index scan-key selection. This access method will extract all of the data from
the index rather than performing random I/O to the data space. The table number refers
to the relative position of this table in the query.

Recovery
Text:

Refer to “Data access methods” on page 11 for more information about index only
access.

SQL4027 - Access plan was saved with DB2 Symmetric Multiprocessing installed on the system

Message
Text:

Access plan was saved with DB2 Symmetric Multiprocessing installed on the system.

Cause Text: The access plan saved was created while the system feature DB2 Symmetric
Multiprocessing was installed on the system. The access plan may have been influenced
by the presence of this system feature. Having this system feature installed may cause
the implementation of the query to change.

Recovery
Text:

For more information about how the system feature DB2 Symmetric Multiprocessing can
influence a query, refer to the “Controlling parallel processing for queries” on page 194

SQL4028 - The query contains a distributed table

Message
Text:

The query contains a distributed table.

Cause Text: A distributed table was specified in the query which may cause the query to be
processed in multiple steps. If the query is processed in multiple steps, additional
messages will detail the implementation for each step. Access plan implementation
information for each step is not available because access plans are not saved for the
individual steps. Debug messages detailing the implementation of each step can be
found in the joblog if the query is run in debug mode using the STRDBG CL command.

Recovery
Text:

For more information about how a distributed table can influence the query
implementation refer to the Distributed database programming topic collection.

SQL4029 - Hashing algorithm used to process the grouping

Message
Text:

Hashing algorithm used to process the grouping.

Cause Text: The grouping specified within the query was implemented with a hashing algorithm.

Recovery
Text:

Implementing the grouping with the hashing algorithm is generally a performance
advantage since an index does not have to be created. However, if you want to disallow
the use of this method simply specify ALWCPYDTA(*YES). Refer to “Data access
methods” on page 11 for more information about the hashing algorithm.

SQL4030 - &1 tasks specified for parallel scan on table &2

Message
Text:

&1 tasks specified for parallel scan on table &2.

Cause Text: The query optimizer has calculated the optimal number of tasks for this query based on
the query attribute degree. The table number refers to the relative position of this table
in the query.

Database performance and query optimization 643

SQL4030 - &1 tasks specified for parallel scan on table &2

Recovery
Text:

Parallel table or index scan can improve the performance of queries. Even though the
access plan was created to use the specified number of tasks for the parallel scan, the
system may alter that number based on the availability of the pool in which this job is
running or the allocation of the table's data across the disk units. Refer to “Data access
methods” on page 11 for more information about parallel scan.

SQL4031 - &1 tasks specified for parallel index create over table &2

Message
Text:

&1 tasks specified for parallel index create over table &2.

Cause Text: The query optimizer has calculated the optimal number of tasks for this query based on
the query attribute degree. The table number refers to the relative position of this table
in the query.

Recovery
Text:

Parallel index create can improve the performance of queries. Even though the access
plan was created to use the specified number of tasks for the parallel index build, the
system may alter that number based on the availability of the pool in which this job is
running or the allocation of the table's data across the disk units. Refer to “Data access
methods” on page 11 for more information about parallel index create.

SQL4032 - Index &1 used for bitmap processing of table &2

Message
Text:

Index &1 used for bitmap processing of table &2.

Cause Text: The index was used, in conjunction with query selection, to create a bitmap. The bitmap,
in turn, was used to access rows from the table. This message may appear more than
once per table. If this occurs, then a bitmap was created from each index of each
message. The bitmaps were then combined into one bitmap using boolean logic and the
resulting bitmap was used to access rows from the table. The table number refers to the
relative position of this table in the query.

Recovery
Text:

The query can be run in debug mode (STRDBG) to determine more specific information.
Also, refer to “Data access methods” on page 11 for more information about bitmap
processing.

SQL4033 - &1 tasks specified for parallel bitmap create using &2

Message
Text:

&1 tasks specified for parallel bitmap create using &2.

Cause Text: The query optimizer has calculated the optimal number of tasks to use to create the
bitmap based on the query attribute degree.

Recovery
Text:

Using parallel index scan to create the bitmap can improve the performance of queries.
Even though the access plan was created to use the specified number of tasks, the
system may alter that number based on the availability of the pool in which this job is
running or the allocation of the file's data across the disk units. Refer to “Data access
methods” on page 11 for more information about parallel scan.

SQL4034 - Multiple join classes used to process join

Message
Text:

Multiple join classes used to process join.

644 IBM i: Database Performance and Query Optimization

SQL4034 - Multiple join classes used to process join

Cause Text: Multiple join classes are used when join queries are written that have conflicting
operations or cannot be implemented as a single query. Each join class will be optimized
and processed as a separate step of the query with the results written out to a
temporary table. Access plan implementation information for each of the join classes is
not available because access plans are not saved for the individual join class dials.
Debug messages detailing the implementation of each join dial can be found in the
joblog if the query is run in debug mode using the STRDBG CL command.

Recovery
Text:

Refer to “Join optimization” on page 59 for more information about join classes.

SQL4035 - Table &1 used in join class &2

Message
Text:

Table &1 used in join class &2.

Cause Text: This message lists the table numbers used by each of the join classes. The table number
refers to the relative position of this table in the query. All of the tables listed for the
same join class will be processed during the same step of the query. The results from all
of the join classes will then be joined together to return the final results for the query.
Access plan implementation information for each of the join classes are not available
because access plans are not saved for the individual classes. Debug messages detailing
the implementation of each join class can be found in the joblog if the query is run in
debug mode using the STRDBG CL command.

Recovery
Text:

Refer to “Join optimization” on page 59 for more information about join classes.

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS PROGRAM
DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR
TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF
THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT
APPLY TO YOU.

Database performance and query optimization 645

646 IBM i: Database Performance and Query Optimization

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 1998, 2013 647

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This Database performance and query optimization publication documents intended Programming
Interfaces that allow the customer to write programs to obtain the services of IBM i.

648 Notices

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 649

http://www.ibm.com/legal/copytrade.shtml

650 IBM i: Database Performance and Query Optimization

IBM®

	Contents
	Performance and query optimization
	What's new for IBM i 7.2
	Print PDF
	Query engine overview
	SQE and CQE engines
	Query dispatcher
	Statistics manager
	Global Statistics Cache
	Plan cache

	Data access methods
	Permanent objects & access methods
	Table
	Table scan
	Table probe

	Radix index
	Radix index scan
	Radix index probe

	Encoded vector index
	EVI probe
	EVI index-only access
	EVI symbol table scan
	EVI symbol table probe

	Temporary objects & access methods
	Temporary hash table
	Hash table scan
	Hash table probe

	Temporary sorted list
	Sorted list scan
	Sorted list probe

	Temporary distinct sorted list
	Sorted list scan

	Temporary list
	List scan

	Temporary values list
	Values list scan

	Temporary row number list
	Row number list scan
	Row number list probe

	Temporary bitmap
	Bitmap scan
	Bitmap probe

	Temporary index
	Temporary index scan
	Temporary index probe

	Temporary buffer
	Buffer scan

	Queue
	Enqueue
	Dequeue

	Array unnest temporary table
	Array unnest temporary table scan

	Objects processed in parallel
	Spreading data automatically

	Processing queries: Overview
	Query optimizer
	Query optimization tips
	Access plan validation
	Single table optimization
	Solid State Drives
	Memory preference controls
	Join optimization
	Nested loop join
	Join optimization
	Join order optimization
	Full outer join
	Join cost & index selection
	Transitive closure predicates
	LPG
	CQE Join performance tips
	Multiple join types
	Join performance problems
	Join performance tips

	Distinct optimization
	Grouping optimization
	Hash grouping
	Index grouping
	Eliminate grouping columns
	Add grouping columns
	Index skip key processing
	Read trigger considerations
	Grouping set optimization

	Ordering optimization
	View implementation
	View composite
	View materialization

	MQT optimization
	MQT supported function
	Using MQTs
	MQT examples
	MQT matching
	Determining MQT usage
	MQT recommendations

	Recursive query optimization
	Example
	Multiple initialization & iterative fullselects
	Predicate pushing
	SEARCH considerations
	CYCLE considerations
	SMP & recursive queries

	Adaptive Query Processing
	How AQP works
	AQP example
	AQP join order
	Database Monitor additions

	Row and column access control
	Indexing strategy and RCAC
	Materialized query tables and RCAC

	Tools
	Health Center
	Navigator view
	SQL procedures
	Health_Database_Overview
	Health_Activity
	Health_Design_Limits
	Health_Size_Limits
	Health_Environmental_Limits
	Reset_Environmental_Limits

	Database Monitor
	Start
	End
	Performance rows
	Examples
	Application with table scans
	Queries with table scans
	Table scan detail
	Additional examples

	Navigator monitors
	Start
	Analyze data
	Compare data
	View statements
	Import

	Index advisor
	Index advice and OR predicates
	Display information
	System table

	Column descriptions
	Database monitor view
	Condense advice

	Visual Explain
	Start
	Information available
	Adaptive Query Processing in VE

	SQL Plan Cache
	Show Statements
	Column descriptions
	Properties
	Creating snapshots
	Event monitor
	SQL stored procedures
	Clear SQL plan cache procedure

	Verify performance
	View debug messages
	Print SQL Information
	Tool comparison
	Change query attributes
	QAQQINI
	CHGQRYA
	Create
	QAQQINI override support
	File format
	Update
	Authority requirements
	System-supplied triggers
	Query options
	SQL_XML_DATA_CCSID option

	Predictive Query Governor
	How to use
	Cancel a query
	Control the reply
	Test performance
	Time limit examples
	Test temporary storage use
	Storage limit examples

	Parallel processing
	System-wide
	Job level

	Statistics manager
	Automatic collection
	Automatic refresh
	View requests
	Indexes and column statistics
	Background collection
	Replicate column statistics
	View column statistics
	Manual collection and refresh
	APIs

	Display MQT columns
	Check pending constraints

	Creating an index strategy
	Binary radix indexes
	Derived key index
	Sparse indexes
	Optimization
	Matching algorithm
	Sparse index examples

	Specify PAGESIZE
	Index maintenance

	Encoded vector indexes
	How the EVI works
	When to create
	Maintenance
	Recommendations

	Compare radix & EVIs
	Indexes & the optimizer
	Index not used
	Display indexes for a table
	Determine unnecessary indexes
	Reset usage counts
	View index builds
	Manage index rebuilds

	Indexing strategy
	Reactive approach
	Proactive approach

	Coding for effective indexes
	Avoid numeric conversions
	Avoid arithmetic expressions
	Avoid character string padding
	LIKE considerations
	Derived indexes
	Sparse indexes

	Indexes with sort sequence
	Selection, joins, or grouping
	Ordering

	Index examples
	Equal selection, no sort sequence
	Equal selection, unique-weight sort sequence
	Equal selection, shared-weight sort sequence
	Greater than selection, unique-weight sort sequence
	Join selection, unique-weight sort sequence
	Join selection, shared-weight sort sequence
	Order, no sort sequence
	Order, unique-weight sort sequence
	Order, shared-weight sort sequence
	Order, ALWCPYDTA(*OPTIMIZE), unique-weight sort sequence
	Group, no sort sequence
	Group, unique-weight sort sequence
	Group, shared-weight sort sequence
	Order & group on same columns, unique-weight sort sequence
	Order & group on same columns, ALWCPYDTA(*OPTIMIZE), unique-weight sort sequence
	Order & group on same columns, shared-weight sort sequence
	Order & group on same columns, ALWCPYDTA(*OPTIMIZE), shared-weight sort sequence
	Order & group on different columns, unique-weight sort sequence
	Order & group on different columns, ALWCPYDTA(*OPTIMIZE), unique-weight sort sequence
	Order & group on different columns, ALWCPYDTA(*OPTIMIZE), shared-weight sort sequence
	Sparse index examples

	Application design tips
	Live data
	Reduce open operations
	Retain cursor positions
	Non-ILE program calls
	ILE program calls
	General rules

	Programming techniques
	Use the OPTIMIZE clause
	Use FETCH FOR n ROWS
	Improve SQL blocking performance

	Use INSERT n ROWS
	Control database manager blocking
	Optimize columns selected
	PREPARE considerations
	REFRESH(*FORWARD) considerations
	Improve concurrency

	Performance considerations
	Long object names
	Precompile options
	ALWCPYDTA
	VARCHAR and VARGRAPHIC
	Field procedures
	Examples

	DB2 for i Services
	Application Services
	DELIMIT_NAME scalar function
	OVERRIDE_QAQQINI procedure
	OVERRIDE_TABLE procedure
	PARSE_STATEMENT table function
	WLM_SET_CLIENT_INFO procedure

	Performance Services
	ACT_ON_INDEX_ADVICE procedure
	DATABASE_MONITOR_INFO view
	HARVEST_INDEX_ADVICE procedure
	REMOVE_INDEXES procedure
	RESET_TABLE_INDEX_STATISTICS procedure

	Utility Services
	CANCEL_SQL procedure
	CHECK_SYSCST procedure
	CHECK_SYSROUTINE procedure
	DUMP_SQL_CURSORS procedure
	FIND_AND_CANCEL_QSQSRVR_SQL procedure
	FIND_QSQSRVR_JOBS procedure
	GENERATE_SQL procedure
	GENERATE_SQL_OBJECTS procedure
	RESTART_IDENTITY procedure

	IBM i Services
	Application Services
	ENVIRONMENT_VARIABLE_INFO view
	QCMDEXC procedure
	SERVICES_INFO table
	SET_PASE_SHELL_INFO procedure
	STACK_INFO table function

	Communication Services
	ENV_SYS_INFO view
	NETSTAT_INFO view
	NETSTAT_INTERFACE_INFO view
	NETSTAT_JOB_INFO view
	NETSTAT_ROUTE_INFO view
	SET_SERVER_SBS_ROUTING procedure
	SERVER_SBS_ROUTING view
	TCPIP_INFO view

	Java Services
	JVM_INFO view
	SET_JVM procedure

	Journal Services
	DISPLAY_JOURNAL table function
	JOURNAL_INFO view

	Librarian Services
	LIBRARY_LIST_INFO view
	OBJECT_STATISTICS table function

	Message Handling Services
	HISTORY_LOG_INFO table function
	JOBLOG_INFO table function
	MESSAGE_QUEUE_INFO view
	REPLY_LIST_INFO view

	Product Services
	LICENSE_EXPIRATION_CHECK procedure
	LICENSE_INFO view

	PTF Services
	GROUP_PTF_CURRENCY view
	GROUP_PTF_DETAILS view
	GROUP_PTF_INFO view
	PTF_INFO view

	Security Services
	AUTHORIZATION_LIST_INFO view
	AUTHORIZATION_LIST_USER_INFO view
	DRDA_AUTHENTICATION_ENTRY_INFO view
	FUNCTION_INFO view
	FUNCTION_USAGE view
	GROUP_PROFILE_ENTRIES view
	OBJECT_PRIVILEGES view
	SET_COLUMN_ATTRIBUTE procedure
	SQL_CHECK_AUTHORITY scalar function
	USER_INFO view

	Spool Services
	OUTPUT_QUEUE_ENTRIES table function
	OUTPUT_QUEUE_ENTRIES view
	OUTPUT_QUEUE_ENTRIES_BASIC view
	OUTPUT_QUEUE_INFO view

	Storage Services
	ASP_INFO view
	ASP_VARY_INFO view
	MEDIA_LIBRARY_INFO view
	SYSDISKSTAT view
	SYSTMPSTG view
	USER_STORAGE view

	System Health Services
	System limit alerts
	SYSLIMTBL table
	SYSLIMITS view
	QIBM_SYSTEM_LIMITS global variables

	Work Management Services
	ACTIVE_JOB_INFO table function
	JOB_DESCRIPTION_INFO view
	GET_JOB_INFO table function
	JOB_INFO table function
	JOB_QUEUE_INFO view
	MEMORY_POOL table function
	MEMORY_POOL_INFO view
	OBJECT_LOCK_INFO view
	RECORD_LOCK_INFO view
	SCHEDULED_JOB_INFO view
	SYSTEM_STATUS table function
	SYSTEM_STATUS_INFO view
	SYSTEM_VALUE_INFO view

	SYSTOOLS
	Using SYSTOOLS

	Database monitor formats
	SQL table
	SQL view
	1000 - SQL Information
	3000 - Table Scan
	3001 - Index Used
	3002 - Index Created
	3003 - Query Sort
	3004 - Temp Table
	3005 - Table Locked
	3006 - Access Plan Rebuilt
	3007 - Optimizer Timed Out
	3008 - Subquery Processing
	3010 - Host Variable, ODP Implementation
	3011 - Array Host Variables
	3012 - Global Variables
	3014 - Generic QQ Information
	3015 - Statistics Information
	3018 - STRDBMON/ENDDBMON
	3019 - Rows retrieved
	3020 - Index advised (SQE)
	3021 - Bitmap Created
	3022 - Bitmap Merge
	3023 - Temp Hash Table Created
	3025 - Distinct Processing
	3026 - Set operation
	3027 - Subquery Merge
	3028 - Grouping
	3030 - Materialized query tables
	3031 - Recursive common table expressions

	Messages reference
	Performance information
	Open data paths
	PRTSQLINF

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

