IBM i
Version 7.2

Database
Performance and Query Optimization

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
647.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.

© Copyright International Business Machines Corporation 1998, 2013.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Performance and query optimization.......cccccciiiiiiniiniieiieiiiiiniiiiicninnenicnenenene d

What's NEW fOr IBM i 7.2, uciiiiieiiteeieeste st se sttt sat e s te e s e e sabe e be e saseesbeesaaessbeesasesabeenbaesaseensaensseensens 1
PN PDF .. eiictteieetestete st et st e e et e st e st e st e et e st e e e e s s e e st e s s e e beeseesbesssesseasseeseessesssesseesseaseassesseensesssessesnsessesssessenns 5
QUETY BNEINE OVEIVIBW. . utiiieuiieeeieeeeteeeeitreesitreeeseesetaeaasesaaseeassasassssesssssesssssassssssasssesssesessssssssesssssesesssanes 6
SQE AN COE ENEGINES..ccccuiieiciieecieeeeiee ettt e tte e e tte e e ae e s tae e e bae e s bae e e saee e saeeensteeansaseessesesesesnseneesens 6
(O TUT=T YA [T 0 T- 1 (ol g =T OSSPSRt 7
Y E= LA A (o g g P L P oY TSR 8
GLODAl StatiStiICs CaCE...ciiciiiriiiierte ettt st e st s be e s b e st e e saaessbeesseesabeenbaesaseen 9
PLAN CACNE. . ittt sttt e st s e st e st e e s ba e st e et e e s abe e be e saae e be e s ate e beesaaesbeenraesrteente 9
Data aCCESS METNOUS. c..iiiiiiiiieieete ettt ettt st e be e st e e beesatesbeesabessbeessaesaseenbaesnseensaesseeens 11
Permanent objects & aCCeSS MEthOUS.......ccciiiiciieiciee e sttt s eare e s rreeeans 12
Temporary objects & aCCESS METNOUS......cccuiiieiiiecee et e e re e e ae e e rae e e aae e enes 26
Objects processed iN PArallel. ... ittt e e b e s be e e be e e nbaeeenaae s 53
Spreading data autoMatiCAllY.......ccciiieciee e e e e 54
PrOCESSING QUETIES: OVEIVIEW..eeiiuiieeiuieeeitieeeiieeeeteesetteeesteesssseesasseeessseesasseesasssessssessssssessssesssssesssssessnseen 54
(O TUT=T RV o] o) 410 Y=Y P 55
(O TN RV A o] o1 A L aaTF2=Y Ao T a T 4] o 1T P 55
FAN oot o] X A Y=Y o F- N o PO 55
Y [aFed (o E= o] (=T o 4 412 (o] o S 56
SOLIA STALE DIIVES.c.utiiiiieieeiteete ettt ettt et es e st e st e st e s bee st e ssbeesbaesaseessaesaseenbaesssesnsaesssesnsesnsnessseens 57
MeMOrY PreferEenCe CONTIOLS.uii et rre e s bee e s bee e ebe e e e bee e sbaeeearaeeenseas 58
[T a1 eT o] 40412 o] o OSSR 59
B Ey 4] aToa i) o1 410 aTFZ=Y o] 3 FOu ST 69
LCT Lo TV o1 aT=oT o] 0 a1 2= L1 [o] o USSR 70
(0] ge [=TuT aT=oT 1] a1 14 To] o S S 76
VYT a Y o1 L= g g YT ol =V o] o PR 77
MOT OPEIMIZATION..eeietieeetie ettt e ree e eree e tee e etee e ebeeeebae e e baeesstaeesssaeesnsaeesnsaeesnseeessaeesnsneannes 79
RECUISIVE QUETY OPtIMIZAtION.....iiiiiieccieecciee ettt e e et e e s tte e e abae e bae e e abaeesnbaeesnseeennseeennseas 88
Adaptive QUEIY PrOCESSING.....uviieiiiieeiiieeiite ettt eeiteeectteeesreesstteesesseesssteessssaessseesssaeeasseeassaessssessnssnenns 97
ROW and COLUMN ACCESS CONTIOL..cuuiiiiiriiiiieiiierie et et sttt e st e ssteesieesbeesaaesateesbaesaseesseesasesnsaessnenns 101
TO0LS ettt ettt ettt ettt s e et e st e et e e st e et e e bt e e e e et e e et e et e e aee s b e e b e e et e e bee e be e baesabe e beenreesabeenaeesateebaens 108
HEALEN CONTET . .iiiiitecieeee ettt ettt ettt st e st e s be e s et e sbeesaeesabeesbaesabeenbaesasesnbaessnesnseenses 108
Database MONITO . ..uiiiiiiiieiiecie ettt ettt e sat e st e e s be e s beesbeesabeebeesabesbeesasesnseensaesnteenses 129
N LY== do] a oY a1 o] TSRS 140
INAEX AUVISOT . cuttiitiiieirite ettt ettt e et et e st e st e st e s beesste s beestaessbeesbaesaseesbaesaseenbeesasesnbaesssesnseesssesnseenes 145
RV U F= L =t o] =Y PO TPt 152
O] I o = 1o I 07 Vel s [T 156
AV AV 01T £ 0 0 F= Y a ot YR U 169
VIEW AEDUE MESSAZES. .uiicuiieeiiieeiieeeiteeecteeecte e e ite e s rtte e e ae e s ateessstee e stee e ssaeeasseeenstaeesaseeennseesnnsaeennses 170
ST 1O 1IN [g} (o n g F=1 1o] o ORI 171
Ko Nt aa] o X 1T o TS USRS 171
Change QUETY AttribDULES. .. .uiiiciee ettt et eraee e e ee e e bee e e bee e e bee e s bee e sbeeesaraaennseas 172
Y= LA A (o g g F= T P ==Y USSR 196
DiSPLlay MOT COLUMNS...uiiiiiieecciiee ettt ettt ecee e ctee e tee e e tee e e tee e e beeesbaeesabaeeeabaeesssaeesnsaesansaeesnseeennsaesnnsens 201
CheCk PeNdING CONSTIAINTS...ccciiiicieeiciee ettt ettt e e ete e eetee e e stee e e erte e eetae e esee e ebaeessaeesseeesnseeesnsens 203
Creating an iNAEX STrATEZY....cuuiiiiiecciee et ee e et e e ete e et e e e e ate e s ateeeeabeeessseeessseeesnseeennseeennsasennseens 204
BiNAry raiX INAEXES...eeiuieeiciieecteecciee et e eeteeeeteesetee s e teesetteesesteesesteesasseesasteeeasseesastassnstassnssessassesann 204
ENCOAEA VECTON INUEXES....iiiieiiiiiieeieeeieet ettt ettt sie e st bee st e e beesatesbaesaaessbeesaaesaseensaesnsesnseennes 211
COMPATE FAAIX & EVIS...iiiiciiiiciiee et ettt rtee et e e e tee e e tee e stee e e baeesabaeeesbaeesaseeennsaeasnseesnnseeannsens 220
INAEXES & thE OPTIMUZET e eieiciiee ettt e e e e e e te e e s te e e s be e e e bae e e baeesabaeesasaesnnses 220
INAEXING STrATEEY . .eiitiiieciiieeiiie ettt e et ecte e e cte e et e e et e e e eate e e sae e e sbeeesseeesteesstee e sseeasseeassaeasseesnnsnanns 231

Coding fOr EffECTIVE INAEXES.c...iiiiiieiiieeteee et s st e e s e e s s be e e s beeessbaeesnneas 233

INAEXES With SO SEQUENCE....cii ittt e e rre e e e et ee e e e e ne e e e e e e nbeee e senbaeeeesnnsseeeas 236
J o Lo =) =Y a 0] o] (=TSR 237
paY oY o] HTor=\uTo] a I (=11 7= (a1] o LT 245
Y= -\ - D OSSPSR 245
S =Te (U of =N oY o T=Ya o] 01T =\ o o [T SRNE 247
RETAIN CUMSOI POSITIONS. .. utiieiieiiieeeeeiitee e e eetee e e eecteeeeeseteeeeeeesteeeeessseeeeeessesessesssesassssssneesasnssenaenannes 249
(o T4 = Ta ol a1 oY= (=Tol o] o Te LU= PRSPPI 251
USE the OPTIMIZE CLaUSE...ciiiuiiieiiieeiieieite ettt e ettt esite e s site e siae e saee e ssate e s bbeesbeeesseeessssaesnsseesnnsaesnnees 251
Use FETCH FOR N ROWS......oiiiiiiiiiiieiniteeeiteeeite s etee s st esstee e staessbaessasaeesssaessssaessssaessnsesssnseessssaesnnns 253
USE INSERT N ROWS ...ttt ettt ettt s st e st e st e st e e st e e s teesstaesssbaesssbaessnsaessnsaessnseesnnseenn 253
Control database manager BLOCKING.......ciiciiiicieiiiiee ittt see e ee e s ree s sbee s sens 254
Optimize COLUMNS SELECTEM.uiiie e e ree e e e cbee e e s e bt e e e s e braeeeeenseeeesennnes 255
PREPARE CONSIAEIAtIONS. . .uiiiiiiiiiiiteiiiiesiitesettesstee st e st essate e s saaeessabaessabaessabeesssbeessssaessnseessnseessnses 255
REFRESH(*FORWARD) CONSIAEIAtIONS. ..cuviiitieitieeiiesteeeiteesteesteesteesaeesseessaeeseesssesnseessessnsesssessnsesssnes 256
T DI OVE CONMCUITENCY uutticcieeeeeeee ettt s eesse s s e s s e e s aeeeeeeeeeeaeeeaa e e s e s s sssssssasassssssnssnnsans 256
Performance CONSIAEIAtIONS.ivciiiiiiieecieertt ettt e s see e s saee e s saee e ssaeaessabeessaseessaseesnsseesnnes 257
(o] aT=o] o] 1=To1 aaF- 11 4 1= J O U SOOI SRRRN 257
LYoo a T 0T L= oT] o] o 1SRN 257
ALV CPY DTA. et tttee ettt ettt e sttt e sttt esetteesetteesebteesbeeesbteesseeesseaesseaesaseeesseaessteesaseessaseessaseeesasseesaseessane 258
VARCHAR and VARGRAPHIC.....co ittt ettt te st e s st e s sete s ste e s teessate e sssbaessaeaesnaeaesnnsaesnnsaesnnenas 259
=T o N o] oYL= LU T YRSt 261
(3])8 (o] =T oV ol =T F OSSPSR 264
JAY o] o] LTot= N Ao o IS Y=T Y] ol= - F SRR 264
P eI OIMANCE SEIVICES. .o iuiiiieiieiete ettt e st e sttt e st e e s ba e e s baeesbaeessaeesssaeessseeenseeean 270
0) 011 4 ST VAo =TSSR 278
IBM 1 SBIVICES. ..utiiieiieieiie ettt eit e e ettt e st e e st e e st e e s te e e s be e e s abeeesasaeesabaeesabaeesssaesassaessasaeesnsaessnsaeessaesssaesnnes 301
JAY o] o] LTot= N Ao o IS Y=T Y] ol= - TS 301
COMMUNICATION SEIVICES..iiiiutiiiiieeiiiet sttt st e st e st e st e sttt e sssteesssbeesasteesssseessssaesasseesassaesnsseesnnseenan 311
JAVA SOIVICES .t iutitieiee ittt ettt et e st e s st e s s te e seate e s sate e s steesastaeseateesastee s aeee s neeesantaesastaesantaeeanteeeantaesanee 339
JOUINAL SEIVICES. . .utiiieiieietieeet ettt ettt e s ettt e st e e e st e e s be e e s baeesbee e s beeesaseeessseaesseaesnseeesnsenesnsees 341
LI DarIAN SOIVICES. it uttiieieiictee ettt ettt e sttt e s te e st e e s ate e s ateessteesasteesastaesssteesseaesseaesaseeesaseeesnnsessans 360
MeESSAZE HANALING SEIVICES...iuiiiiiiii ittt sttt ettt see e s see e s sate e s saee e ssaee e sbeeesbeeesbeeesneeesnnens 363
PrOQUCT SEIVICES. . utiiiiiiieiieeectt ettt ettt e st e st e e s bee e s bee e s abe e s aee e s seeesssbaessaseesnssaessssaesnasaesnssaesnnsens 371
P T S VIS .t ittee ittt ettt ettt ettt e sttt e st e e st e e s bte e s bt e e sbee s sbee e sabaeesabeessabaeesabee e s beeesabeeeaabaeenbaeenbaeennreas 375
Y=ot 0) AV 1T VATl RSNt 384
Y010 Lo R T=Y VLol =SSR 399
SEOTAEE SEIVICES. . it iiuiitieiieiritteieiteesteese et e e st eesteesssbeessbeesasteesssteessseeeesssaesassaesssseesansaesassaesssseesnsseesnns 416
SYSTEM HEALIEN SEIVICES. ittt e e e e e are e e e s e sabe e e e s e nbaeeeeeennaneeas 429
WOIK ManagemeENT SEIVICES. ...ciecuitiriiiieiieeeiteeeiteeesiteesste e sttt e sateesbeeessbaeesseeesssbeesssseessaaessenesnsseenn 436
SYSTOOLS. .. ittt ettt ettt ettt s et e sttt e st te e s st e e s st e e s sbaesassaesastee e saae s ssaesassaesassaessssaeeassaeeansaesnnsaesansaenns 490
USING SYSTOOLS ... ettt ettt et ete e st e st e s s bt e s sabae s sateesssbaessssaessasaessssaessssaessssaessssaessnseesnne 490
BN Loty a o] aTh (o] g (o] s F- 1 £ T PO 492
O] I 71 o] L= RO URTTRRN 492
SO VW eeeiiiiiie ittt ettt e e e eeeeeetb et e e e e eeeseeee s b s bbb aeaaaeeeeeseeaasssbaaaaaaaeaeeeeesasssssbaeaaaeseseeseeneaaansrrrares 498
T Tl TR Lo (=T =T Lol = T TP 601
Performance INTOrMATION......cii i e s e s s e e e s e e s sbee s saraeesaeas 601
(O] o1=T a1 F= €= 1 o F= 1 1RSSR 626
PRTSOLINF ...ttt ettt ettt ettt et e e sttt e s bte e s bte e sbaeesabaeesbeeesasaeesabaessasaesssaeessaeesseessnsaessnns 632

[\ 0] o =Y - TR (Y- Y

Programming interface iNfOrmMation. ... e s e saees 648
TrAAEMAIKS ... vt tittee ettt ettt ettt e et e e sttt e e be e e sbteesbteesabeeesabeeesasteesasaeessaeessaeesasteesasaeesasaeesnseeesnn 649
BT g 0TS TaTo eleTaTe L A To] o T3 PR 649

Database performance and query optimization

The goal of database performance tuning is to minimize the response time of your queries by making the
best use of your system resources. The best use of these resources involves minimizing network traffic,
disk I/0, and CPU time. This goal can only be achieved by understanding the logical and physical structure
of your data, the applications used on your system, and how the conflicting uses of your database might
affect performance.

The best way to avoid performance problems is to ensure that performance issues are part of your
ongoing development activities. Many of the most significant performance improvements are realized
through careful design at the beginning of the database development cycle. To most effectively optimize
performance, you must identify the areas that yield the largest performance increases over the widest
variety of situations. Focus your analysis on these areas.

Many of the examples within this publication illustrate a query written through either an SQL or an
OPNQRYF query interface. The interface chosen for a particular example does not indicate an operation
exclusive to that query interface, unless explicitly noted. It is only an illustration of one possible query
interface. Most examples can be easily rewritten into whatever query interface that you prefer.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 645.

What's new for IBMi 7.2

The following information was added or updated in this release of the information:

« Support for Row and column access controls:

— “Row and column access control (RCAC)” on page 101
— QAQQINI options for RCAC: “QAQQINI query options” on page 176
- DB2 fori services outlines many system-provided views, procedures, and functions. “DB2 for i Services”

on page 264

« IBM i Services outlines many system services that can be accessed through system-provided SQL views,
procedures, and functions. “IBM i Services” on page 301

- Improved query identification matching advised indexes with existing Plan Cache queries.

— “Index advisor” on page 145

— “Displaying index advisor information” on page 147

« Allow for host variable selectivity checks at pseudo open time:
— “Reducing the number of open operations” on page 247
— “QAQQINI query options” on page 176
« “Controlling queries dynamically with the query options file QAQQINI” on page 172

- Temporary indexes as a source of optimizer statistics: “Temporary index” on page 44

- Improved query optimization I/O cost estimates based on IPL determined disk I/O analysis: “Single
table optimization” on page 56

 Support for Solid State Drives: “Solid State Drives” on page 57

« “Index advisor column descriptions” on page 150

« “Database manager indexes advised system table” on page 148

« New system limit for index size 1.7 Terabytes: “QSYS2.Health_Size_Limits ()” on page 121

« Index advice generation now handles OR predicates: “Index advice and OR predicates” on page 145

SQE Plan Cache default auto sizing vs explicit size designation:

© Copyright IBM Corp. 1998, 2013 1

— “Plan cache” on page 9
— “Accessing the SQL plan cache with SQL stored procedures” on page 163

« EVI INCLUDE supports grouping set queries “Recommendations for EVI use” on page 217

What’s new

The following revisions or additions have been made to the Performance and query optimization
documentation since the first 7.2 publication:

« April 2019 update

— The maximum table size has been added as a tracked system limit and as a limit that sends alerts:
“System Health Services” on page 429, “System limit alerts” on page 431

« August 2018 update

— New services

- GENERATE_SQL_OBJECTS procedure: “GENERATE_SQL_OBJECTS procedure” on page 292

- JOB_DESCRIPTION_INFO view: “JOB_DESCRIPTION_INFO view” on page 449

- OUTPUT_QUEUE_ENTRIES_BASIC view: “OUTPUT_QUEUE_ENTRIES_BASIC view” on page 409
— Updated services

- ACTIVE_JOB_INFO table function optionally returns more detailed information:
“ACTIVE_JOB_INFO table function” on page 436

- NETSTAT_INFO view and NETSTATE_JOB_INFO view return port names from service table entries:
“NETSTAT_INFO view” on page 311 and “NETSTAT_JOB_INFO view” on page 326

- PARSE_STATEMENT table function supports some DDL references: “PARSE_STATEMENT table
function” on page 266

« October 2017 update

— New services

- ASP_INFO view: “ASP_INFO view” on page 417

- ASP_VARY_INFO view: “ASP_VARY_INFO view” on page 423

- JOB_QUEUE_INFO view: “JOB_QUEUE_INFO view” on page 470

- STACK_INFO table function: “STACK_INFO table function” on page 306
— Updated services

- DISPLAY_JOURNAL and HISTORY_LOG_INFO include syslog information: “DISPLAY_JOURNAL
table function” on page 342 and “HISTORY_LOG_INFO table function” on page 363

- OVERRIDE_QAQQINTI procedure has been fully documented: “OVERRIDE_QAQQINI procedure” on
page 265
- System limit notifications: “System limit alerts” on page 431

« March 2017 update

— New services

- AUTHORIZATION_LIST_INFO view: “AUTHORIZATION_LIST_INFO view” on page 384

- AUTHORIZATION_LIST_USER_INFO view: “AUTHORIZATION_LIST _USER_INFO view” on page 386
- OBJECT_PRIVILEGES view: “OBJECT_PRIVILEGES view” on page 390

- MESSAGE_QUEUE_INFO view: “MESSAGE_QUEUE_INFO view” on page 369

LICENSE_EXPIRATION_CHECK procedure: “LICENSE_EXPIRATION_CHECK procedure” on page
372

- SET_PASE_SHELL_INFO procedure: “SET_PASE_SHELL_INFO procedure” on page 305
— Updated services

2 IBMi: Database Performance and Query Optimization

- USER_INFO has new columns for supplemental group profile information and the PASE shell:
“USER_INFO view” on page 394

- LICENSE_INFO view has a new column indicating the install status: “LICENSE_INFO view” on page
372

- RESET_TABLE_INDEX_STATISTICS procedure has a new option to remove rows from the index
advice tracking table: “RESET_TABLE_INDEX_STATISTICS procedure” on page 276

« November 2016 update
— STATEMENT DETERMINISTIC option has been added for functions: “QAQQINI query options” on
page 176

— New services
- HISTORY_LOG_INFO table function: “HISTORY_LOG_INFO table function” on page 363
- JOB_INFO table function: “JOB_INFO table function” on page 457
- PARSE_STATEMENT table function: “PARSE_STATEMENT table function” on page 266
— Updated services

- DISPLAY_JOURNAL table function honors row and column access control: “DISPLAY_JOURNAL
table function” on page 342

- GET_JOB_INFO table function has new columns for prestart job information: “GET_JOB_INFO table
function” on page 456

- GROUP_PTF_CURRENCY view returns a new value to indicate PTFs will be current with the next IPL:
“GROUP_PTF_CURRENCY view” on page 375

- GROUP_PTF_CURRENCY and GROUP_PTF_DETAILS views have been updated to access a new XML
feed: “GROUP_PTF_CURRENCY view” on page 375 and “GROUP_PTF_DETAILS view” on page 376

- OBJECT_STATISTICS table function added an option to efficiently return a list of libraries:
“OBJECT_STATISTICS table function” on page 360

 April 2016 update

— New services
- ENVIRONMENT_VARIABLE_INFO view: “ENVIRONMENT_VARIABLE_INFO view” on page 302
- OUTPUT_QUEUE_INFO view: “OUTPUT_QUEUE_INFO view” on page 411
- SERVICES_INFO table and DB2 PTF Group level dependency information: “SERVICES_INFO table”

on page 303
— Updated services

- DISPLAY_JOURNAL table function accepts ending values as input parameters to limit the entries
returned: “DISPLAY_JOURNAL table function” on page 342

- NETSTAT_INFO view has been updated to return more information: “NETSTAT_INFO view” on page
311

- NETSTAT_INTERFACE_INFO view has been updated to return more information:
“NETSTAT_INTERFACE_INFO view” on page 318

- NETSTAT_JOB_INFO view has been updated to return more information: “NETSTAT_JOB_INFO
view” on page 326

- NETSTAT_ROUTE_INFO view has been updated to return more information:
“NETSTAT_ROUTE_INFO view” on page 327

- SERVER_SBS_ROUTING view shows information about more servers: “SERVER_SBS_ROUTING
view” on page 337

- SET_SERVER_SBS_ROUTING procedure allows you to configuring more servers:
“SET_SERVER_SBS_ROUTING procedure” on page 334

- SYSLIMITS view returns more information about each object: “SYSLIMITS view” on page 433

Database performance and query optimization 3

- An additional limit is tracked: Maximum extended dynamic package size: “System Health Services”

on page 429

« October 2015 update

New services

- GROUP_PTF_DETAILS view: “GROUP_PTF_DETAILS view” on page 376

- LICENSE_INFO view: “LICENSE_INFO view” on page 372

- MEDIA_LIBRARY_INFO view: “MEDIA_LIBRARY_INFO view” on page 425

- MEMORY_POOL table function: “MEMORY_POOL table function” on page 474

- MEMORY_POOL_INFO view: “MEMORY_POOL_INFO view” on page 476

- NETSTAT_INFO view: “NETSTAT_INFO view” on page 311

- NETSTAT_INTERFACE_INFO view: “NETSTAT_INTERFACE_INFO view” on page 318
- NETSTAT_JOB_INFO view: “NETSTAT_JOB_INFO view” on page 326

- NETSTAT_ROUTE_INFO view: “NETSTAT_ROUTE_INFO view” on page 327

- OBJECT_LOCK_INFO view: “OBJECT_LOCK_INFO view” on page 478

- OUTPUT_QUEUE_ENTRIES table function: “OUTPUT_QUEUE_ENTRIES table function” on page 399
- OUTPUT_QUEUE_ENTRIES view: “OUTPUT_QUEUE_ENTRIES view” on page 404

- RECORD_LOCK_INFO view: “RECORD_LOCK_INFO view” on page 480

- SYSTEM_STATUS table function: “SYSTEM_STATUS table function” on page 485

- SYSTEM_STATUS_INFO view: “SYSTEM_STATUS_INFO view” on page 487

Updated services

- ACTIVE_JOB_INFO table function has been updated to return elapsed time: “ACTIVE_JOB_INFO
table function” on page 436

- DATABASE_MONITOR_INFO view has been updated to describe new filter values:
“DATABASE_MONITOR_INFO view” on page 271

- ENV_SYS_INFO view has been updated to return the total configured memory: “ENV_SYS_INFO
view” on page 311

- GET_JOB_INFO table function has been updated to return the client IP address: “GET_JOB_INFO
table function” on page 456

- SET_SERVER_SBS_ROUTING procedure allows you to configuring the remote command server:
“SET_SERVER_SBS_ROUTING procedure” on page 334

« May 2015 update

Additional information was added to QQI1 - Insert unique count in the database monitor 1000
record. For details, see: “Database monitor view 1000 - SQL Information” on page 498

Additional options were added to the QAQQINI query option Memory_Pool_Preference. For details,
see: “QAQQINI query options” on page 176

CLEAR_PLAN_CACHE procedure. For details, see: “CLEAR_PLAN_CACHE” on page 169
New services

- ACTIVE_JOB_INFO table function: “ACTIVE_JOB_INFO table function” on page 436
- DATABASE_MONITOR_INFO view: “DATABASE_MONITOR_INFO view” on page 271

- DRDA_AUTHENTICATION_ENTRY_INFO view: “DRDA_AUTHENTICATION_ENTRY_INFO view” on
page 388

- JVM_INFO view: “JVM_INFO view” on page 339

- SCHEDULED_JOB_INFO view: “SCHEDULED_JOB_INFO view” on page 481
- SERVER_SBS_ROUTING view: “SERVER_SBS_ROUTING view” on page 337
- SET_JVM procedure: “SET_JVM procedure” on page 341

4 IBM i: Database Performance and Query Optimization

- SET_SERVER_SBS_ROUTING procedure: “SET_SERVER_SBS_ROUTING procedure” on page 334
— Updated services
- GET_JOB_INFO table function has been updated to return additional SQL information for a job:
“GET_JOB_INFO table function” on page 456

- OBJECT_STATISTICS table function has a new optional parameter to specify the name of the object
to return. It will also return the long SQL name for an object and has new columns to return the
text, the long schema name, and the SQL type of an object: “OBJECT_STATISTICS table function”
on page 360

- System Health Services has been updated to track index limits: “System Health Services” on page
429

« October 2014 update

— Updates to the QAQQINI query options topic
For details, see “QAQQINI query options” on page 176.

— Memory preference controls enhanced for SQL

For details, see “Memory preference controls” on page 58

— The database monitor topic has been updated: “Monitoring your queries using the Database
Monitor ” on page 129

— The SQL Plan Cache topic has been updated: “Optimizing performance using the Plan Cache” on page
156

— New services

- LIBRARY_LIST_INFO view: “LIBRARY_LIST_INFO view” on page 360
REPLY_LIST_INFO view: “REPLY_LIST_INFO view” on page 371

- JOURNAL_INFO view: “JOURNAL_INFO view” on page 351

- GROUP_PTF_CURRENCY view: “GROUP_PTF_CURRENCY view” on page 375

- JOBLOG_INFO table function: “JOBLOG_INFO table function” on page 367
— Tracking of additional file system limits

For details, see “System Health Services” on page 429

How to see what's new or changed
To help you see where technical changes have been made, this information uses:

« The ¥ image to mark where new or changed information begins.
« The € image to mark where new or changed information ends.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for Database performance and query optimization

View and print a PDF of this information.

To view or download the PDF version of this document, select Database performance and query
optimization.

Other information

You can also view or print any of the following PDF files:

« Preparing for and Tuning the SQL Query Engine on DB2° for i5/OSQL

« SQL Performance Diagnosis on IBM® DB2 Universal Database for iSeries%‘

Database performance and query optimization 5

http://www.redbooks.ibm.com/abstracts/sg246598.html
http://www.redbooks.ibm.com/abstracts/sg246654.html

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the preceding link).
2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader
You need Adobe Reader installed on your system to view or print these PDF files. You can download a free
copy from Adobe (http://get.adobe.com/reader/)—’-&'}.

Query engine overview

IBM DB2 for i provides two query engines to process queries: Classic Query Engine (CQE) and SQL Query
Engine (SQE).

The CQE processes queries originating from non-SQL interfaces: OPNQRYF, Query/400, and QQQQry API.
SQL-based interfaces, such as ODBC, JDBC, CLI, Query Manager, Net.Data®, RUNSQLSTM, and embedded
or interactive SQL, run through the SQE. For ease of use, the routing decision for processing the query by
either CQE or SQE is pervasive and under the control of the system. The requesting user or application
program cannot control or influence this behavior. However, a better understanding of the engines and
process that determines which path a query takes can give you a better understanding of query
performance.

Within SQE, several more components were created and other existing components were updated.
Additionally, new data access methods are possible with SQE that are not supported under CQE.

Related information

Embedded SQL programming

SQL programming

Query (QQQQRY) API

Open Query File (OPNQRYF) command

Run SQL Statements (RUNSQLSTM) command

SQE and CQE engines
It is important to understand the implementation differences of query management and processing in
COE versus SQE.

The following figure shows an overview of the IBM DB2 for i architecture. It shows the delineation
between CQE and SQE, how query processing is directed by the query dispatcher, and where each SQE
component fits. The functional separation of each SQE component is clearly evident. This division of
responsibility enables IBM to more easily deliver functional enhancements to the individual components
of SQE, as and when required. Notice that most of the SQE Optimizer components are implemented below
the MI. This implementation translates into enhanced performance efficiency.

6 IBM i: Database Performance and Query Optimization

http://get.adobe.com/reader/

ODBC/JDBC/ADO/DRDAMXDA

P

~ Network J

B

| Host Server u CLIIJDBC |
Static Dynamic %xten d?d
Complied ynamic
EI:':“EI;;d F'rn-plt!il:l:vary Prepare once and
statements then referance
SQL
Optimizer
Native | Query Dispatcher
(Record 1/0) CQE Optimizer SQE Optimizer
Machine Interface (M)
DB2 (Data Storage and Management)
SLIC SQE Optimizer
SQE
Statistics
Manager
CQE Database Engine SQE Data Access Primitives

As seen in the previous graphic, the query runs from any query interface to the optimizer and the query
dispatcher. The query dispatcher determines whether the query is implemented with CQE or SQE.

Query dispatcher

The function of the dispatcher is to route the query request to either CQE or SQE, depending on the
attributes of the query. All queries are processed by the dispatcher. It cannot be bypassed.

Currently, the dispatcher routes queries to SQE unless it finds that the query references or contains any of
the following;:

« INSERT WITH VALUES statement or the target of an INSERT with subselect statement
- Tables with Read triggers

« Read-only queries with more than 1000 dataspaces, or updatable queries with more than 256
dataspaces.

- DB2 Multisystem tables
+ QQQQry API

For other non-SQL queries, for example Query/400 or OPNQRYF, the routing of the query can be
controlled by the QAQQINI SQE_NATIVE_ACCESS option. See "table 46"

Related reference
MQT supported function

Database performance and query optimization 7

Although an MQT can contain almost any query, the optimizer only supports a limited set of query
functions when matching MQTs to user specified queries. The user-specified query and the MQT query
must both be supported by the SQE optimizer.

Statistics manager

In CQE, the retrieval of statistics is a function of the Optimizer. When the Optimizer needs to know
information about a table, it looks at the table description to retrieve the row count and table size. If an
index is available, the Optimizer might extract information about the data in the table. In SQE, the
collection and management of statistics is handled by a separate component called the statistics
manager. The statistics manager leverages all the same statistical sources as CQE, but adds more sources
and capabilities.

The statistics manager does not actually run or optimize the query. Instead, it controls the access to the
metadata and other information that is required to optimize the query. It uses this information to answer
questions posed by the query optimizer. The statistics manager always provides answers to the optimizer.
In cases where it cannot provide an answer based on actual existing statistics information, it is designed
to provide a predefined answer.

The Statistics manager typically gathers and tracks the following information:

Cardinality of values
The number of unique or distinct occurrences of a specific value in a single column or multiple
columns of a table.

Selectivity
Also known as a histogram, this information is an indication of how many rows are selected by any
given selection predicate or combination of predicates. Using sampling techniques, it describes the
selectivity and distribution of values in a given column of the table.

Frequent values
The top nn most frequent values of a column together with a count of how frequently each value
occurs. This information is obtained by using statistical sampling techniques. Built-in algorithms
eliminate the possibility of data skewing. For example, NULL values and default values that can
influence the statistical values are not taken into account.

Metadata information
Includes the total number of rows in the table, indexes that exist over the table, and which indexes are
useful for implementing the particular query.

Estimate of IO operation
An estimate of the amount of IO operations that are required to process the table or the identified
index.

The Statistics manager uses a hybrid approach to manage database statistics. Most of this information
can be obtained from existing indexes. In cases where the required statistics cannot be gathered from
existing indexes, statistical information is constructed on single columns of a table and stored internally.
By default, this information is collected automatically by the system, but you can manually control the
collection of statistics. Unlike indexes, however, statistics are not maintained immediately as data in the
tables change.

Related reference

Collecting statistics with the statistics manager

The collection of statistics is handled by a separate component called the statistics manager. Statistical
information can be used by the query optimizer to determine the best access plan for a query. Since the

8 IBM i: Database Performance and Query Optimization

query optimizer bases its choice of access plan on the statistical information found in the table, it is
important that this information is current.

Global Statistics Cache

In SQE, the DB2 Statistics Manager stores actual row counts into a Global Statistics Cache. In this
manner, the Statistics Manager refines its estimates over time as it learns where estimates have deviated
from actual row counts.

Both completed queries and currently executing queries might be inspected by the “Adaptive Query
Processing” on page 97 (AQP) task, which compares estimated row counts to actual row counts. If there
are any significant discrepancies, the AQP task notifies the DB2 Statistics Manager (SM). The SM stores
this actual row count (also called observed row count) into a Global Statistics Cache (GSC).

If the query which generated the observed statistic in the GSC is reoptimized, the actual row count
estimate is used in determining a new query plan. Further, if a different query asks for the same or a
similar row count, the SM could return the stored actual row count from the GSC. Faster query plans can
be generated by the query optimizer.

Typically, observed statistics are for complex predicates such as with a join. A simple example is a query
joining three files A, B, and C. There is a discrepancy between the estimate and actual row count of the
join of A and B. The SM stores an observed statistic into the GSC. Later, if a different join query of A, B, and
Z is submitted, the SM recalls the observed statistic of the A and B join. The SM considers that observed
statistic in its estimate of the A, B, and Z join.

The Global Statistics Cache is an internal DB2 object, and the contents of it are not directly observable.

Plan cache
The plan cache is a repository that contains the access plans for queries that were optimized by SQE.

Access plans generated by CQE are not stored in the plan cache; instead, they are stored in SQL packages,
the system-wide statement cache, and job cache. The purposes of the plan cache are to:

« Facilitate the reuse of a query access plan when the same query is re-executed
« Store runtime information for subsequent use in future query optimizations
« Provide performance information for analysis and tuning

Once an access plan is created, it is available for use by all users and all queries, regardless of where the
query originates. Furthermore, when an access plan is tuned, for example, when creating an index, all
queries can benefit from this updated access plan. This updated access plan eliminates the need to
reoptimize the query, resulting in greater efficiency.

The following graphic shows the concept of reusability of the query access plans stored in the plan cache:

Database performance and query optimization 9

Plan Cache

SQL Pgm-A
Plan X Statement 1

Statement 2

SQL PKG-1
Statement 3

Statement 4

Plan Y

SQL PKG-2
Statement 3

Plan Z Statement 5

As shown in the previous graphic, statements from packages and programs are stored in unique plans in
the plan cache. If Statement 3 exists in both SQL package 1 and SQL package 2, the plan is stored once in
the plan cache. The plan cache is interrogated each time a query is executed. If an access plan exists that
satisfies the requirements of the query, it is used to implement the query. Otherwise a new access plan is
created and stored in the plan cache for future use.

The plan cache is automatically updated with new query access plans as they are created. When new
statistics or indexes become available, an existing plan is updated the next time the query is run. The plan
cache is also automatically updated by the database with runtime information as the queries are run.

Each plan cache entry contains the original query, the optimized query access plan, and cumulative
runtime information gathered during the runs of the query. In addition, several instances of query runtime
objects are stored with a plan cache entry. These runtime objects are the real executable objects and
temporary storage containers (hash tables, sorts, temporary indexes, and so on) used to run the query.

By default the SQE Plan Cache will auto adjust from an initial threshold size of 512 MB to an internally
managed maximum. Automatic management of the SQL Plan Cache Threshold Size by the system will not
take effect if the plan cache threshold size is explicitly set on the system. See the SQL plan cache
properties topic for more information: rzajgplancacheprops.dita

« When processing is initiated to remove plans in the cache due to size constraint, the efficiency rating of
the cache is checked. If the rating is too low, the database will automatically increase the plan cache
size.

« The plan cache auto-sizing maximum size will not exceed a small percentage of free storage on the
system.

« The plan cache auto-sizing will decrease the size if the temporary storage on the machine exceeds a
certain percentage.

« The auto-sized adjusted threshold value does not survive an IPL. The default plan cache size is used
after an IPL and auto sizing begins again.

« To reset an explicitly set plan cache size in order to allow auto-sizing to take effect, set the plan cache
size to zero.

10 IBMi: Database Performance and Query Optimization

Example:
CALL gsys2.change_plan_cache_size(0)

When the plan cache exceeds its designated size, a background task is automatically scheduled to
remove plans from the plan cache. Access plans are deleted based upon age, how frequently it is used,
and how much cumulative resources (CPU/IO) were consumed.

The total number of access plans stored in the plan cache depends largely upon the complexity of the SQL
statements that are being executed. The plan cache is cleared when a system Initial Program Load (IPL) is
performed.

Multiple access plans for a single SQL statement can be maintained in the plan cache. Although the SQL
statement is the primary key into the plan cache, different environmental settings can cause additional
access plans to be stored. Examples of these environmental settings include:

Different SMP Degree settings for the same query

Different library lists specified for the query tables

Different settings for the share of available memory for the job in the current pool
Different ALWCPYDTA settings
- Different selectivity based on changing host variable values used in selection (WHERE clause)

Currently, the plan cache can maintain a maximum of three different access plans for the same SQL
statement. As new access plans are created for the same SQL statement, older access plans are
discarded to make room for the new access plans. There are, however, certain conditions that can cause
an existing access plan to be invalidated. Examples of these conditions include:

« Specifying REOPTIMIZE _ACCESS_PLAN(*YES) or (*FORCE) in the QAQQINI table or in Run SQL Scripts
- Deleting or recreating the table that the access plan refers to
« Deleting an index that is used by the access plan

Related reference

Effects of the ALWCPYDTA parameter on database performance
Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

Changing the attributes of your queries
You can modify different types of query attributes for a job with the Change Query Attributes
(CHGQRYA) CL command. You can also use the System i Navigator Change Query Attributes interface.

Optimizing performance using the Plan Cache

The SQL Plan Cache contains a wealth of information about the SQE queries being run through the
database. Its contents are viewable through the System i Navigator GUI interface. Certain portions of the
plan cache can also be modified.

Data access methods

Data access methods are used to process queries and access data.
In general, the query engine has two kinds of raw material with which to satisfy a query request:

- The database objects that contain the data to be queried
« The executable instructions or operations to retrieve and transform the data into usable information

There are only two types of permanent database objects that can be used as source material for a query
— tables and indexes. Indexes include binary radix and encoded vector indexes.

In addition, the query engine might need to create temporary objects to hold interim results or references
during the execution of an access plan. The DB2 Symmetric Multiprocessing feature provides the
optimizer with additional methods for retrieving data that include parallel processing. Finally, the
optimizer uses certain methods to manipulate these objects.

Database performance and query optimization 11

Permanent objects and access methods
There are three basic types of access methods used to manipulate the permanent and temporary
database objects -- Create, Scan, and Probe.

The following table lists each object and the access methods that can be performed against that object.
The symbols shown in the table are the icons used by Visual Explain.

Table 1. Permanent object data access methods
Permanent objects Scan operations Probe operations
Table Table scan Table probe
Radix index Radix index scan Radix index probe
Encoded vector index Encoded vector index symbol Encoded vector index probe
table scan
Table

An SQL table or physical file is the base object for a query. It represents the source of the data used to
produce the result set for the query. It is created by the user and specified in the FROM clause (or
OPNOQRYF FILE parameter).

The optimizer determines the most efficient way to extract the data from the table in order to satisfy the
query. These ways could include scanning or probing the table or using an index to extract the data.

Visual explain icon:

Table scan

A table scan is the easiest and simplest operation that can be performed against a table. It sequentially
processes all the rows in the table to determine if they satisfy the selection criteria specified in the query.
It does this processing in a way to maximize the I/O throughput for the table.

A table scan operation requests large I/Os to bring as many rows as possible into main memory for
processing. It also asynchronously pre-fetches the data to make sure that the table scan operation is
never waiting for rows to be paged into memory. Table scan however, has a disadvantage in it has to
process all the rows in order to satisfy the query. The scan operation itself is efficient if it does not need to
perform the I/0O synchronously.

Table 2. Table scan attributes

Data access method Table scan

Description Reads all the rows from the table and applies the selection criteria to
each of the rows within the table. The rows in the table are processed
in no guaranteed order, but typically they are processed sequentially.

Advantages « Minimizes page I/O operations through asynchronous pre-fetching of
the rows since the pages are scanned sequentially

« Requests a larger I/O to fetch the data efficiently

12 IBMi: Database Performance and Query Optimization

Table 2. Table scan attributes (continued)

Data access method Table scan
Considerations « All rows in the table are examined regardless of the selectivity of the
query

« Rows marked as deleted are still paged into memory even though
none are selected. You can reorganize the table to remove deleted
rows.

Likely to be used « When expecting many rows returned from the table

« When the number of large I/0s needed to scan is fewer than the
number of small I/Os required to probe the table

Example SQL statement SELECT * FROM Employee

WHERE WorkDept BETWEEN 'AG1'AND 'EO1'
OPTIMIZE FOR ALL ROWS

Messages indicating use « Optimizer Debug;

CPI4329 — Arrival sequence was used for file EMPLOYEE
« PRTSQLINF:

SQL4010 — Table scan access for table 1.

SMP parallel enabled Yes

Also referred to as Table Scan, Preload

Visual Explain icon

Related concepts

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Table probe

A table probe operation is used to retrieve a specific row from a table based upon its row number. The row
number is provided to the table probe access method by some other operation that generates a row
number for the table.

This can include index operations as well as temporary row number lists or bitmaps. The processing for a
table probe is typically random. It requests a small I/O to retrieve only the row in question and does not
attempt to bring in any extraneous rows. This method leads to efficient processing for smaller result sets
because only rows needed to satisfy the query are processed, rather than scanning all rows.

However, since the sequence of the row numbers is not known in advance, little pre-fetching can be
performed to bring the data into main memory. This randomness can result in most of the I/Os associated
with table probe to be performed synchronously.

Database performance and query optimization 13

Table 3. Table probe attributes

Data access method

Table probe

Description Reads a single row from the table based upon a specific row number. A
random I/0O is performed against the table to extract the row.
Advantages « Requests smaller I/Os to prevent paging rows into memory that are

not needed

« Can be used with any access method that generates a row humber
for the table probe to process

Considerations

Because of the synchronous random I/0 the probe can perform poorly
when many rows are selected

Likely to be used

« When row numbers (from indexes or temporary row number lists) are
used, but data from the underlying table is required for further
processing of the query

- When processing any remaining selection or projection of the values

Example SQL statement

CREATE INDEX X1 ON Employee (LastName)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'A@1l' AND 'EO1'

AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Messages indicating use

There is no specific message that indicates the use of a table probe.
These example messages illustrate the use of a data access method
that generates a row number used to perform the table probe.

« Optimizer Debug:
CPI4328 — Access path of file X1 was used by query
« PRTSQLINF:

SQL4008 — Index X1 used for table 1.

SQL4011 — Index scan-key row positioning (probe)
used on table 1.

SMP parallel enabled

Yes

Also referred to as

Table Probe, Preload

Visual Explain icon

=]

Radix index

An SOL index (or keyed sequence access path) is a permanent object that is created over a table. The
index is used by the optimizer to provide a sequenced view of the data for a scan or probe operation.

The rows in the tables are sequenced in the index based upon the key columns specified on the creation
of the index. When the optimizer matches a query to index key columns, it can use the index to help
satisfy query selection, ordering, grouping, or join requirements.

14 IBMi: Database Performance and Query Optimization

Typically, using an index also includes a table probe to provide access to columns needed to satisfy the
query that cannot be found as index keys. If all the columns necessary to satisfy the query can be found
as index keys, then the table probe is not required. The query uses index-only access. Avoiding the table
probe can be an important savings for a query. The I/O associated with a table probe is typically the more
expensive synchronous random I/0.

Visual Explain icon:

Radix index scan

A radix index scan operation is used to retrieve the rows from a table in a keyed sequence. Like a table
scan, all the rows in the index are sequentially processed, but the resulting row numbers are sequenced
based upon the key columns.

The sequenced rows can be used by the optimizer to satisfy a portion of the query request (such as
ordering or grouping). They can also be used to provide faster throughput by performing selection against
the index keys rather than all the rows in the table. Since the index I/Os only contain keys, typically more
rows can be paged into memory in one I/O than rows in a table with many columns.

Table 4. Radix index scan attributes

Data access method Radix index scan
Description Sequentially scan and process all the keys associated with the index.
Any selection is applied to every key value of the index before a table
row
Advantages - Only those index entries that match any selection continue to be
processed

» Potential to extract all the data from the index key values, thus
eliminating the need for a Table Probe

« Returns the rows back in a sequence based upon the keys of the
index

Considerations Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/0 associated
with the Table Probe.

Likely to be used « When asking for or expecting only a few rows to be returned from
the index

- When sequencing the rows is required for the query (for example,
ordering or grouping)

« When the selection columns cannot be matched against the leading
key columns of the index

Example SQL statement CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'A@1' AND 'EO1'
ORDER BY LastName

OPTIMIZE FOR 30 ROWS

Database performance and query optimization 15

Table 4. Radix index scan attributes (continued)

Data access method Radix index scan

Messages indicating use « Optimizer Debug;

CPI4328 -- Access path of file X1 was used by query.

« PRTSQLINF:

SQL4008 -- Index X1 used for table 1.

SMP parallel enabled Yes

Also referred to as Index Scan

Index Scan, Preload

Index Scan, Distinct

Index Scan Distinct, Preload

Index Scan, Key Selection

Visual Explain icon
| @

Related reference

Effects of the ALWCPYDTA parameter on database performance

Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

Radix index probe

A radix index probe operation is used to retrieve the rows from a table in a keyed sequence. The main
difference between the radix index probe and the scan is that the rows returned are first identified by a
probe operation to subset them.

The optimizer attempts to match the columns used for some or all the selection against the leading keys
of the index. It then rewrites the selection into a series of ranges that can be used to probe directly into
the index key values. Only those keys from the series of ranges are paged into main memory.

The resulting row numbers generated by the probe can then be further processed by any remaining
selection against the index keys or a table probe operation. This method provides for quick access to only
the rows of the index that satisfy the selection.

The main function of a radix index probe is to provide quick selection against the index keys. In addition,
the row sequencing can be used to satisfy other portions of the query, such as ordering or grouping. Since
the index I/Os are only for rows that match the probe selection, no extraneous processing is performed on
rows that do not match. This savings in I/Os against rows that are not a part of the result set is one of the
primary advantages for this operation.

Table 5. Radix index probe attributes

Data access method Radix index probe

Description The index is quickly probed based upon the selection criteria that were
rewritten into a series of ranges. Only those keys that satisfy the
selection are used to generate a table row number.

16 IBMi: Database Performance and Query Optimization

Table 5. Radix index probe attributes (continued)

Data access method

Radix index probe

Advantages

« Only those index entries that match any selection continue to be
processed

» Provides quick access to the selected rows

- Potential to extract all the data from the index key values, thus
eliminating the need for a Table Probe

« Returns the rows back in a sequence based upon the keys of the
index

Considerations

Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/0 associated
with the Table Probe.

Likely to be used

= When asking for or expecting only a few rows to be returned from the
index

« When sequencing the rows is required the query (for example,
ordering or grouping)

« When the selection columns match the leading key columns of the
index

Example SQL statement

CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'A@1' AND 'EO1'

AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Messages indicating use

= Optimizer Debug:
CPI4328 -- Access path of file X1 was used by query.
* PRTSQLINF:

SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning used
on table 1.

SMP parallel enabled

Yes

Also referred to as

Index Probe

Index Probe, Preload

Index Probe, Distinct

Index Probe Distinct, Preload
Index Probe, Key Positioning

Index Scan, Key Row Positioning

Visual Explain icon

Database performance and query optimization 17

The following example illustrates a query where the optimizer might choose the radix index probe access
method:

CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'AG@1' AND 'EO1'

AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

In this example, index X1 is used to position to the first index entry that matches the selection built over
both columns LastName and WorkDept. The selection is rewritten into a series of ranges that match all
the leading key columns used from the index X1. The probe is then based upon the composite
concatenated values for all the leading keys. The pseudo-SQL for this rewritten SQL might look as follows:

SELECT = FROM X1

WHERE X1.LeadingKeys BETWEEN 'JonesA@1' AND 'JonesEOQ1'
OR X1.LeadingKeys BETWEEN 'PetersonA@l1' AND 'PetersonEOQ1'
OR X1.LeadingKeys BETWEEN 'SmithAG1' AND 'SmithEQ1'

All the key entries that satisfy the probe operation are used to generate a row number for the table
associated with the index (for example, Employee). The row number is used by a Table Probe operation to
perform random I/O on the table to produce the results for the query. This processing continues until all
the rows that satisfy the index probe operation have been processed. In this example, all the index entries
processed and rows retrieved met the index probe criteria.

Additional selection might be added that cannot use an index probe, such as selection against columns
which are not leading key columns of the index. Then the optimizer performs an index scan operation
within the range of probed values. This process still allows for selection to be performed before the Table
Probe operation.

Related concepts

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Related reference

Effects of the ALWCPYDTA parameter on database performance

Some complex queries can perform better by using a sort or hashing method to evaluate the query
instead of using or creating an index.

Encoded vector index
An encoded vector index is a permanent object that provides access to a table. This access is done by
assigning codes to distinct key values and then representing those values in a vector.

The size of the vector matches the number of rows in the underlying table. Each vector entry represents
the table row number in the same position. The codes generated to represent the distinct key values can
be 1 byte, 2 bytes, or 4 bytes in length. The key length depends upon the number of distinct values that
need to be represented in the vector. Because of their compact size and relative simplicity, the EVI can be
used to process large amounts of data efficiently.

An encoded vector index is used to represent the values stored in a table. However, the index itself cannot
be used to directly gain access to the table. Instead, the encoded vector index can only be used to
generate either a temporary row number list or a temporary row number bitmap. These temporary objects
can then be used with a table probe to specify the rows in the table that the query needs to process.

The main difference in the table probe using an encoded vector index vs. a radix index is that the I/O
paging can be asynchronous. The I/O can now be scheduled more efficiently to take advantage of groups
of selected rows. Large portions of the table can be skipped over where no rows are selected.

Visual explain icon:

18 IBMi: Database Performance and Query Optimization

Related concepts
Encoded vector indexes

An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting

environments.

EVI maintenance

There are unique challenges to maintaining EVIs. The following table shows a progression of how EVIs are
maintained, the conditions under which EVIs are most effective, and where EVIs are least effective, based
on the EVI maintenance characteristics.

Encoded vector index probe

The encoded vector index (EVI) is quickly probed based upon the selection criteria that were rewritten
into a series of ranges. It produces either a temporary row number list or bitmap.

Table 6. Encoded vector index probe attributes

Data access method

Encoded vector index probe

Description

The encoded vector index (EVI) is quickly probed based upon the
selection criteria that were rewritten into a series of ranges. It produces
either a temporary row number list or bitmap.

Advantages

« Only those index entries that match any selection continue to be
processed

» Provides quick access to the selected rows

» Returns the row numbers in ascending sequence so that the Table

Probe can be more aggressive in pre-fetching the rows for its
operation

Considerations

EVIs are usually built over a single key. The more distinct the column is
and the higher the overflow percentage, the less advantageous the
encoded vector index becomes. EVIs always require a Table Probe to be
performed on the result of the EVI probe operation.

Likely to be used

« When the selection columns match the leading key columns of the
index

« When an encoded vector index exists and savings in reduced I/0

against the table justifies the extra cost. This cost includes probing
the EVI and fully populating the temporary row number list.

Example SQL statement

CREATE ENCODED VECTOR INDEX EVI1 ON
Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON
Employee (Salary)

CREATE ENCODED VECTOR INDEX EVI3 ON
Employee (Job)

SELECT *

FROM Employee

WHERE WorkDept = 'EO1' AND Job = 'CLERK'
AND Salary = 5000

OPTIMIZE FOR 99999 ROWS

Database performance and query optimization 19

Table 6. Encoded vector index probe attributes (continued)

Data access method Encoded vector index probe
Messages indicating use - Optimizer Debug;
CPI4329 -- Arrival sequence was used for file
EMPLOYEE .

CPI4338 -- 3 Access path(s) used for bitmap
processing of file EMPLOYEE.

» PRTSQLINF:

SQL4010 -- Table scan access for table 1.
SQL4032 -- Index EVI1 used for bitmap processing

of table 1.
SQL4032 -- Index EVI2 used for bitmap processing
of table 1.
SQL4032 -- Index EVI3 used for bitmap processing
of table 1.
SMP parallel enabled Yes
Also referred to as Encoded Vector Index Probe, Preload

Visual Explain icon

Using the example above, the optimizer chooses to create a temporary row number bitmap for each of the
encoded vector indexes used by this query. Each bitmap only identifies those rows that match the
selection on the key columns for that index.

These temporary row number bitmaps are then merged together to determine the intersection of the rows
selected from each index. This intersection is used to form a final temporary row number bitmap used to
help schedule the I/O paging against the table for the selected rows.

The optimizer might choose to perform an index probe with a binary radix tree index if an index existed
over all three columns. The implementation choice is probably decided by the number of rows to be
returned and the anticipated cost of the I/0 associated with each plan.

If few rows are returned, the optimizer probably chooses the binary radix tree index and performs the
random I/O against the table. However, selecting more rows causes the optimizer to use the EVIs,
because of the savings from the more efficiently scheduled I/0 against the table.

Encoded vector index index-only access
The encoded vector index can also be used for index-only access.

The EVI can be used for more than generating a bitmap or row number list to provide an asynchronous I/0
map to the desired table rows. The EVI can also be used by two index-only access methods that can be
applied specific to the symbol table itself. These two index-only access methods are the EVI symbol table
scan and the EVI symbol table probe.

These two methods can be used with GROUP BY or DISTINCT queries that can be satisfied by the symbol
table. This symbol table-only access can be further employed in aggregate queries by adding INCLUDE
values to the encoded vector index.

The following information is a summary of the symbol table-only scan and probe access methods.

Use the following links to learn in-depth information.

20 IBMi: Database Performance and Query Optimization

Related concepts

Encoded vector indexes
An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting
environments.

How the EVI works
EVIs work in different ways for costing and implementation.

Related reference

Index grouping implementation

There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.

Encoded vector index symbol table scan
An encoded vector index symbol table scan operation is used to retrieve the entries from the symbol table
portion of the index.

All entries (symbols) in the symbol table are sequentially scanned if a scan is chosen. The symbol table
can be used by the optimizer to satisfy GROUP BY or DISTINCT portions of a query request.

Selection is applied to every entry in the symbol table. The selection must be applied to the symbol table
keys unless the EVI was created as a sparse index, with a WHERE clause. In that case, a portion of the
selection is applied as the symbol table is built and maintained. The query request must include matching
predicates to use the sparse EVI.

All entries are retrieved directly from the symbol table portion of the index without any access to the
vector portion of the index. There is also no access to the records in the associated table over which the
EVIis built.

Encoded vector index INCLUDE aggregates

To enhance the ability of the EVI symbol table to provide aggregate answers, the symbol table can be
created to contain additional INCLUDE values. These are ready-made numeric aggregate results, such as
SUM, COUNT, AVG, or VARIANCE values requested over non-key data. These aggregates are specified
using the INCLUDE keyword on the CREATE ENCODED VECTOR INDEX request.

These included aggregates are maintained in real time as rows are inserted, updated, or deleted from the
corresponding table. The symbol table maintains these additional aggregate values in addendum to the
EVI keys for each symbol table entry. Because these are numeric results and finite in size, the symbol
table is still a desirable compact size.

These included aggregates are over non-key columns in the table where the grouping is over the
corresponding EVI symbol table defined keys. The aggregate can be over a single column or a derivation.

Table 7. Encoded vector index symbol table scan attributes

Data access method Encoded vector index symbol table scan

Description Sequentially scan and process all the symbol table entries associated
with the index. When there is selection (WHERE clause), it is applied to
every entry in the symbol table. An exception is made in the case of a
sparse EVI, where the selection is applied as the index is created and
maintained. Selected entries are retrieved directly without any access
to the vector or the associated table.

Database performance and query optimization 21

Table 7. Encoded vector index symbol table scan attributes (continued)

Data access method

Encoded vector index symbol table scan

Advantages

» Pre-summarized results are readily available

= Only processes the unique values in the symbol table, avoiding
processing table records.

« Extract all the data from the index unique key values or INCLUDE
values, thus eliminating the need for a Table Probe or vector scan.

= With INCLUDE, provides ready-made numeric aggregates, eliminating
the need to access corresponding table rows to perform the
aggregation

Considerations

Dramatic performance improvement for grouping queries where the
resulting number of groups is relatively small compared to the number
of records in the underlying table. Can perform poorly when there are
many groups involved such that the symbol table is large. Poor
performance is even more likely if a large portion of the symbol table
has been put into the overflow area.

Dramatic performance improvement for grouping queries when the
aggregate is specified as an INCLUDE value of the symbol table.

Likely to be used

« When asking for GROUP BY, DISTINCT, COUNT, or COUNT DISTINCT
from a single table and the referenced columns are in the key
definition.

» When the number of unique values in the columns of the key
definition is small relative to the number of records in the underlying
table.

« When there is no selection (WHERE clause) within the query or the
selection does not reduce the result set much.

« When the symbol table key satisfies the GROUP BY, and requested
aggregates, like SUM or COUNT, are specified as INCLUDE values.

« when the query is run with commitment control *NONE or *CHG.

22 IBMi: Database Performance and Query Optimization

Table 7. Encoded vector index symbol table scan attributes (continued)

Data access method

Encoded vector index symbol table scan

Example SQL statement

CREATE ENCODED VECTOR INDEX EVI1 ON Sales (Region)
Example 1

SELECT Region, count(x)
FROM Sales

GROUP BY Region
OPTIMIZE FOR ALL ROWS

Example 2

SELECT DISTINCT Region
FROM Sales
OPTIMIZE FOR ALL ROWS

Example 3

SELECT COUNT(DISTINCT Region)
FROM Sales

Example 4 uses the INCLUDE option. The sums of revenue and cost of
goods per sales region is maintained in real time.

CREATE ENCODED VECTOR INDEX EVI2 ON Sales(Region)
INCLUDE (SUM(Revenue), SUM(CostOfGoods))

SELECT Region, SUM(Revenue), SUM(CostOfGoods)
FROM Sales
GROUP BY Region

Messages indicating use

» Optimizer Debug:
CPI4328 -- Access path of file EVI1 was used by query.
» PRTSQLINF:

SQL40O8 -- Index EVI1 used for table 1.SQL4010

Also referred to as

Encoded Vector Index Table Scan, Preload

Visual Explain icon

Related concepts
Encoded vector indexes

An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting

environments.
How the EVI works

EVIs work in different ways for costing and implementation.

Related reference
Index grouping implementation

Database performance and query optimization 23

There are two primary ways to implement grouping using an index: Ordered grouping and pre-
summarized processing.

Related information
SQL INCLUDE statement

Encoded vector index symbol table probe
An encoded vector index symbol table probe operation is used to retrieve entries from the symbol table
portion of the index. Scanning the entire symbol table is not necessary.

The symbol table can be used by the optimizer to satisfy GROUP BY or DISTINCT portions of a query
request.

The optimizer attempts to match the columns used for some or all the selection against the leading keys
of the EVI index. It then rewrites the selection into a series of ranges that can be used to probe directly
into the symbol table. Only those symbol table pages from the series of ranges are paged into main
memory.

The resulting symbol table entries generated by the probe operation can then be further processed by any
remaining selection against EVI keys. This strategy provides for quick access to only the entries of the
symbol table that satisfy the selection.

Like an encoded vector symbol table scan, a symbol table probe can return ready-made aggregate results
if INCLUDE is specified when the EVI is created.

All entries are retrieved directly from the symbol table portion of the index without any access to the
vector portion of the index. In addition, it is unnecessary to access the records in the associated table
over which the EVI is built.

Table 8. Encoded vector index symbol table probe attributes

Data access method Encoded vector index symbol table probe
Description
Advantages Probe the symbol table entries associated with the index. When there is

selection (WHERE clause), it is applied to every entry in the symbol
table that meets the probe criteria. If there are sparse EVIs, the
selection is applied as the EVI is created and maintained. Selected
entries are retrieved directly without any access to the vector or the
associated table.

Considerations « Pre-summarized results are readily available

= Only processes the unique values in the symbol table, avoiding
processing table records.

» Extracts all the data from the index unique key values or include
values, or both, thus eliminating the need for a table probe or vector
scan

« With INCLUDE, provides ready-made numeric aggregates, eliminating
the need to access corresponding table rows to perform the
aggregation

24 IBMi: Database Performance and Query Optimization

Table 8. Encoded vector index symbol table probe attributes (continued)

Data access method Encoded vector index symbol table probe

Likely to be used « When asking for GROUP BY, DISTINCT, COUNT, or COUNT DISTINCT
from a single table and the referenced columns are in the key
definition.

« When the number of unique values in the columns of the key
definition is small relative to the number of records in the underlying
table.

« When there is selection (WHERE clause) that reduces the selection
from the Symbol Table and the WHERE clause involves leading,
probable keys.

« When the symbol table key satisfies the GROUP BY and the WHERE
clause reduces selection to the leading keys, and aggregates are
specified as INCLUDE values.

» When the query is run with commitment control *NONE or *CHG.

Example SQL statement CREATE ENCODED VECTOR INDEX EVI1 ON Sales (Region)

Example 1

SELECT Region, COUNT(x)

FROM Sales

WHERE Region in ('Quebec', 'Manitoba')
GROUP BY Region

OPTIMIZE FOR ALL ROWS

Example 2

CREATE ENCODED VECTOR INDEX EVI2 ON Sales(Region)
INCLUDE (SUM(Revenue), SUM(CostOfGoods))

SELECT Region, SUM(Revenue), SUM(Cost0fGoods)
FROM Sales

WHERE Region = 'PACIFIC'

GROUP BY Region

Messages indicating use - Optimizer Debug;

CPI4328 -- Access path of file EVI1 was used by query.
* PRTSQLINF:

SQL4008 -- Index EVI1 used for table 1.SQL4010

Also referred to as Encoded Vector Index Table Probe, Preload

Visual Explain icon

Related concepts
Encoded vector indexes

Database performance and query optimization 25

An encoded vector index (EVI) is used to provide fast data access in decision support and query reporting

environments.
How the EVI works

EVIs work in different ways for costing and implementation.

Related reference

Index grouping implementation

There are two primary ways to implement grouping using an index: Ordered grouping and pre-

summarized processing.

Related information
SQL INCLUDE statement

Temporary objects and access methods

Temporary objects are created by the optimizer in order to process a query. In general, these temporary

objects are internal objects and cannot be accessed by a user.

Table 9. Temporary object data access methods

Temporary create objects

Scan operations

Probe operations

Temporary hash table

Hash table scan

Hash table probe

Temporary sorted list

Sorted list scan

Sorted list probe

Temporary distinct sorted list Sorted list scan N/A
Temporary list List scan N/A
Temporary values list Values list scan N/A

Temporary row number list

Row number list scan

Row number list probe

Temporary bitmap

Bitmap scan

Bitmap probe

Temporary index

Temporary index scan

Temporary index probe

Temporary buffer Buffer scan N/A
Queue N/A N/A
Array unnest temporary table Temporary table scan N/A

Temporary hash table

The temporary hash table is a temporary object that allows the optimizer to collate the rows based upon a
column or set of columns. The hash table can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary hash table is an efficient data structure because the rows are organized for quick and easy
retrieval after population has occurred. The hash table remains resident within main memory to avoid any
I/Os associated with either the scan or probe against the temporary object. The optimizer determines the
optimal hash table size based on the number of unique column combinations used as keys for the
creation.

Additionally the hash table can be populated with all the necessary columns to satisfy any further
processing. This population avoids any random I/Os associated with a table probe operation.

However, the optimizer can selectively include columns in the hash table when the calculated size
exceeds the memory pool storage available for the query. In these cases, a table probe operation is
required to recollect the missing columns from the hash table before the selected rows can be processed.

The optimizer also can populate the hash table with distinct values. If the query contains grouping or
distinct processing, then all the rows with the same key value are not required in the hash table. The rows
are still collated, but the distinct processing is performed during the population of the hash table itself.
This method allows a simple scan on the result in order to complete the grouping or distinct operation.

26 IBMi: Database Performance and Query Optimization

A temporary hash table is an internal data structure and can only be created by the database manager

Visual explain icon:

Hash table scan
During a hash table scan operation, the entire temporary hash table is scanned and all the entries
contained within the hash table are processed.

The optimizer considers a hash table scan when the data values need to be collated together, but
sequencing of the data is not required. A hash table scan allows the optimizer to generate a plan that
takes advantage of any non-join selection while creating the temporary hash table.

An additional benefit is that the temporary hash table data structure will typically cause the table data to
remain resident within main memory after creation. Resident table data reduces paging on the
subsequent hash table scan operation.

Table 10. Hash table scan attributes

Data access method Hash table scan

Description Read all the entries in a temporary hash table. The hash table can
perform distinct processing to eliminate duplicates. Or the temporary
hash table can collate all the rows with the same value together.

Advantages « Reduces the random I/0 to the table associated with longer running
queries that might otherwise use an index to collate the data

« Selection can be performed before generating the hash table to
subset the number of rows in the temporary object

Considerations Used for distinct or group by processing. Can perform poorly when the
entire hash table does not stay resident in memory as it is being
processed.

Likely to be used « When the use of temporary results is allowed by the query

environmental parameter (ALWCPYDTA)

» When the data is required to be collated based upon a column or
columns for distinct or grouping

Example SQL statement SELECT COUNT(%), FirstNme FROM Employee

WHERE WorkDept BETWEEN 'A@1' AND 'EO1'
GROUP BY FirstNme

Database performance and query optimization 27

Table 10. Hash table scan attributes (continued)

Data access method

Hash table scan

Messages indicating use

There are multiple ways in which a hash scan can be indicated through
the messages. The messages in this example illustrate how the SQL
Query Engine indicates a hash scan was used.

« Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
EMPLOYEE.

« PRTSQLINF:

SQL4010 -- Table scan access for table 1.
SQL4029 -- Hashing algorithm used to process
the grouping.

SMP parallel enabled

Yes

Also referred to as

Hash Scan, Preload
Hash Table Scan Distinct
Hash Table Scan Distinct, Preload

Visual Explain icon

Hash table probe

A hash table probe operation is used to retrieve rows from a temporary hash table based upon a probe

lookup operation.

The optimizer initially identifies the keys of the temporary hash table from the join criteria specified in the
query. When the hash table is probed, the values used to probe into the hash table are extracted from the
join-from criteria specified in the selection.

These values are sent through the same hashing algorithm used to populate the temporary hash table.
They determine if any rows have a matching equal value. All the matching join rows are then returned to
be further processed by the query.

Table 11. Hash table probe attributes

Data access method

Hash table probe

Description The temporary hash table is quickly probed based upon the join
criteria.
Advantages « Provides quick access to the selected rows that match probe criteria

« Reduces the random I/0 to the table associated with longer running
queries that use an index to collate the data

» Selection can be performed before generating the hash table to
subset the number of rows in the temporary object

Considerations

Used to process equal join criteria. Can perform poorly when the entire
hash table does not stay resident in memory as it is being processed.

28 IBMi: Database Performance and Query Optimization

Table 11. Hash table probe attributes (continued)

Data access method Hash table probe

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA)

« When the data is required to be collated based upon a column or
columns for join processing

« The join criteria was specified using an equals (=) operator

Exampl L statement
ample SQL stateme SELET * FROM Employee XXX, Department YYY

WHERE XXX.WorkDept = YYY.DeptNbr
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a hash probe can be indicated
through the messages. The messages in this example illustrate how
the SQL Query Engine indicates a hash probe was used.

 Optimizer Debug:

CPI4327 -- File EMPLOYEE processed in join
position 1.

CPI4327 -- File DEPARTMENT processed in join
position 2.

« PRTSQLINF:

SQL4007 -- Query implementation for join
position 1 table 1.

SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join
position 2 table 2.

SQL4010 -- Table scan access for table 2.

SMP parallel enabled Yes

Also referred to as Hash Table Probe, Preload
Hash Table Probe Distinct
Hash Table Probe Distinct, Preload

Visual Explain icon

The hash table probe access method is considered when determining the implementation for a secondary
table of a join. The hash table is created with the key columns that match the equal selection or join
criteria for the underlying table.

The hash table probe allows the optimizer to choose the most efficient implementation in selecting rows
from the underlying table, without regard for join criteria. This single pass through the underlying table
can now use a table scan or existing index to select the rows needed for the hash table population.

Since hash tables are constructed so that most of the hash table remains resident within main memory,
the I/O associated with a hash probe is minimal. Additionally, if the hash table was populated with all
necessary columns from the underlying table, no additional table probe is required to finish processing
this table. This method causes further I/O savings.

Database performance and query optimization 29

Related concepts

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Temporary sorted list

The temporary sorted list is a temporary object that allows the optimizer to sequence rows based upon a
column or set of columns. The sorted list can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary sorted list is a data structure where the rows are organized for quick and easy retrieval after
population has occurred. During population, the rows are copied into the temporary object and then a
second pass is made through the temporary object to perform the sort.

In order to optimize the creation of this temporary object, minimal data movement is performed while the
sort is processed. It is not as efficient to probe a temporary sorted list as it is to probe a temporary hash
table.

Additionally, the sorted list can be populated with all the necessary columns to satisfy any further
processing. This population avoids any random I/0s associated with a table probe operation.

However, the optimizer can selectively include columns in the sorted list when the calculated size
exceeds the memory pool storage available for this query. In those cases, a table probe operation is
required to recollect the missing columns from the sorted list before the selected rows can be processed.

A temporary sorted list is an internal data structure and can only be created by the database manager.

Visual explain icon:

Sorted list scan
During a sorted list scan operation, the entire temporary sorted list is scanned and all the entries
contained within the sorted list are processed.

A sorted list scan is considered when the data values need to be sequenced. A sorted list scan allows the
optimizer to generate a plan that can take advantage of any non-join selection while creating the
temporary sorted list.

An additional benefit is that the data structure will usually cause the table data within the sorted list to
remain resident within main memory after creation. This resident data reduces paging on the subsequent
sorted list scan operation.

Table 12. Sorted list scan attributes

Data access method Sorted list scan

Description Read all the entries in a temporary sorted list. The sorted list can
perform distinct processing to eliminate duplicate values or take
advantage of the temporary sorted list to sequence all the rows.

Advantages « Reduces the random I/0 to the table associated with longer running
queries that would otherwise use an index to sequence the data.

 Selection can be performed prior to generating the sorted list to
subset the number of rows in the temporary object

30 IBM i: Database Performance and Query Optimization

Table 12. Sorted list scan attributes (continued)

Data access method Sorted list scan

Considerations Used to process ordering or distinct processing. Can perform poorly
when the entire sorted list does not stay resident in memory as it is
being populated and processed.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA)

« When the data is required to be ordered based upon a column or
columns for ordering or distinct processing

Example SQL statement CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'A@1' AND 'EO1'
ORDER BY FirstNme

OPTIMZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a sorted list scan can be indicated
through the messages. The messages in this example illustrate how
the SQL Query Engine indicates a sorted list scan was used.

« Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4325 -- Temporary result file built for query.

« PRTSQLINF:

SQL4008 -- Index X1 used for table 1.
SQL4002 -- Reusable ODP sort used.

SMP parallel enabled No

Also referred to as Sorted List Scan, Preload
Sorted List Scan Distinct

Sorted List Scan Distinct, Preload

Visual Explain icon

Sorted list probe
A sorted list probe operation is used to retrieve rows from a temporary sorted list based upon a probe
lookup operation.

The optimizer initially identifies the temporary sorted list keys from the join criteria specified in the query.
The values used to probe into the temporary sorted list are extracted from the join-from criteria specified
in the selection. Those values are used to position within the sorted list in order to determine if any rows

have a matching value. All the matching join rows are then returned to be further processed by the query.

Table 13. Sorted list probe attributes

Data access method Sorted list probe

Description The temporary sorted list is quickly probed based upon the join criteria.

Database performance and query optimization 31

Table 13. Sorted list probe attributes (continued)

Data access method Sorted list probe

Advantages - Provides quick access to the selected rows that match probe criteria

« Reduces the random I/0 to the table associated with longer running
queries that otherwise use an index to collate the data

« Selection can be performed before generating the sorted list to
subset the number of rows in the temporary object

Considerations Used to process non-equal join criteria. Can perform poorly when the
entire sorted list does not stay resident in memory as it is being
populated and processed.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA)

« When the data is required to be collated based upon a column or
columns for join processing

« The join criteria was specified using a non-equals operator

Example SQL statement SELECT * FROM Employee XXX, Department YYY

WHERE XXX.WorkDept > YYY.DeptNo
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a sorted list probe can be indicated
through the messages. The messages in this example illustrate how the
SQL Query Engine indicates a sorted list probe was used.

« Optimizer Debug:

CPI4327 -- File EMPLOYEE processed in join position 1.
CPI4327 -- File DEPARTMENT processed in join
position 2.

» PRTSQLINF:

SQL40O7 -- Query implementation for join
position 1 table 1.

SQL4010 -- Table scan access for table 1.
SQL40O7 -- Query implementation for join
position 2 table 2.

SQL4010 -- Table scan access for table 2.

SMP parallel enabled Yes

Also referred to as Sorted List Probe, Preload
Sorted List Probe Distinct
Sorted List Probe Distinct, Preload

Visual Explain icon

The sorted list probe access method is considered when determining the implementation for a secondary
table of a join. The sorted list is created with the key columns that match the non-equal join criteria for
the underlying table. The optimizer chooses the most efficient implementation to select the rows from the

32 IBMi: Database Performance and Query Optimization

underlying table without regard to any join criteria. This single pass through the underlying table can use a
Table Scan or an existing index to select the rows needed to populate the sorted list.

Since sorted lists are constructed so that most of the temporary object remains resident within main
memory, the sorted list I/O is minimal. If the sorted list was populated with all necessary table columns,
no additional Table Probe is required to finish processing the table, causing further I/O savings.

Related concepts

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Temporary distinct sorted list
A temporary distinct sorted list combines the features of the temporary hash table and the temporary
sorted list.

Like the hash table, the temporary distinct sorted list allows the optimizer to collate the rows based on a
column or set of columns. Like the sorted list, the temporary distinct sorted list also allows the optimizer
to sequence the rows.

A temporary distinct sorted list contains a hash table data structure set up for efficient access to
aggregate rows during population. In addition, a binary tree data structure is maintained over the hash
table data structure so that the data can be accessed in sequence. The sorted aspect of the data structure
allows for the efficient computation of super-aggregate rows in SQL statements that contain GROUP BY
ROLLUP.

A temporary sorted aggregate hash table is an internal data structure and can only be created by the
database manager.

Visual explain icon:

Sorted list scan
During the sorted list scan, the entire temporary distinct sorted list is scanned and all the entries
contained within the temporary are processed.

The optimizer uses the sorted list scan when the data values need to be aggregated and sequenced. The
optimizer generates this plan that can take advantage of any non-join selection while creating the
temporary distinct sorted list. The data structure of the temporary distinct sorted list will typically cause
the table data to remain resident within main memory after creation. This memory-resident data reduces
paging on the subsequent sorted list scan.

Table 14. Sorted list scan attributes

Data access method Sorted list scan
Description Reads all the entries in a temporary distinct sorted list
Advantages « Allows efficient computation of ROLLUP super-aggregate rows.

» Reduces the random I/O to the table associated with longer running
queries that might otherwise use an index to collate the data.

« Selection can be performed before generating the distinct sorted list
to subset the number of rows in the temporary object.

Database performance and query optimization 33

Table 14. Sorted list scan attributes (continued)

Data access method Sorted list scan

Considerations Used for GROUP BY ROLLUP processing, Can perform poorly when the
entire temporary object does not stay resident in memory as it is being
processed.

Likely to be used « When the use of temporary results is allowed in the query

environmental parameter (ALWCPYDTA)
« When a GROUP BY ROLLUP is in the SQL statement

Messages indicating use N/A
SMP parallel enabled Yes
Also referred to as N/A

Visual Explain icon

Temporary list

The temporary list is a temporary object that allows the optimizer to store intermediate results of a query.
The list is an unsorted data structure that is used to simplify the operation of the query. Since the list does
not have any keys, the rows within the list can only be retrieved by a sequential scan operation.

The temporary list can be used for various reasons, some of which include an overly complex view or
derived table, Symmetric Multiprocessing (SMP) or to prevent a portion of the query from being processed
multiple times.

A temporary list is an internal data structure and can only be created by the database manager.

Visual explain icon:

List scan

The list scan operation is used when a portion of the query is processed multiple times, but no key
columns can be identified. In these cases, that portion of the query is processed once and its results are
stored within the temporary list. The list can then be scanned for only those rows that satisfy any
selection or processing contained within the temporary object.

Table 15. List scan attributes

Data access method List scan

Description Sequentially scan and process all the rows in the temporary list.

34 IBM i: Database Performance and Query Optimization

Table 15. List scan attributes (continued)

Data access method List scan

Advantages « The temporary list and list scan can be used by the optimizer to
minimize repetition of an operation or to simplify the optimizer logic
flow.

- Selection can be performed before generating the list to subset the
number of rows in the temporary object.

Considerations Used to prevent portions of the query from being processed multiple
times when no key columns are required to satisfy the request.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

« When DB2 symmetric multiprocessing is used for the query.

Exampl L statement
ample SQL stateme SELECT * FROM Employee XXX, Department YYY

WHERE XXX.LastName IN ('Smith', 'Jones', 'Peterson')
AND YYY.DeptNo BETWEEN 'AG1' AND 'EO1'
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a list scan can be indicated through
the messages. The messages in this example illustrate how the SQL
Query Engine indicates a list scan was used.

« Optimizer Debug:

CPI4325 -- Temporary result file built for query.

CPI4327 -- File EMPLOYEE processed in join
position 1.

CPI4327 -- File DEPARTMENT processed in join
position 2.

« PRTSQLINF:

SQL4007 -- Query implementation for join
position 1 table 1.

SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join
position 2 table 2.

SQL4001 -- Temporary result created
SQL4010 -- Table scan access for table 2.

SMP parallel enabled Yes

Also referred to as List Scan, Preload

Visual Explain icon

Using the example above, the optimizer chose to create a temporary list to store the selected rows from
the DEPARTMENT table. Since there is no join criteria, a Cartesian product join is performed between the
two tables. To prevent the join from scanning all the rows of the DEPARTMENT table for each join
possibility, the selection against the DEPARTMENT table is performed once. The results are stored in the
temporary list. The temporary list is then scanned for the Cartesian product join.

Database performance and query optimization 35

Temporary values list
The temporary values list allows the optimizer to store rows of data specified in a VALUES clause of a
SELECT or CREATE VIEW statement.

The list is an unsorted data structure that is used to simplify the operation of the query. Since the list does
not have any keys, the rows within the list can only be retrieved by a sequential scan operation.

A temporary values list is an internal data structure and can only be created by the database manager.

Visual explain icon:

1.

Values list scan
During a values list scan operation, the entire temporary values list is scanned and all the rows of data are
processed.

Table 16. Values list scan attributes

Data access method Values list scan

Description Sequentially scan and process all the rows of data in the temporary
values list.

Advantages The temporary values list and values list scan can be used by the
optimizer to simplify the optimizer logic flow.

Likely to be used When a VALUES clause is specified in the from-clause of an SQL
fullselect

Example SQL statement SELECT EMPNO, 'empprojact'

FROM EMPPROJACT

WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
UNION

VALUES ('NEWAAA', 'new'), ('NEWBBB', 'new')

Messages indicating use There are multiple ways in which a values list scan can be indicated
through the messages. The messages in this example illustrate how the
SQL Query Engine indicates a values list scan was used.

= Optimizer Debug:
CPI4329 -- Arrival sequence was used for file *VALUES.
» PRTSQLINF:

SQL4010 -- Table scan access for table 1.

SMP parallel enabled Yes

Also referred to as Values List, Preload

Visual Explain icon %
1
z

Temporary row number list

The temporary row number list is a temporary object that allows the optimizer to sequence rows based
upon their row address (their row number). The row number list can be either scanned or probed by the
optimizer to satisfy different operations of the query.

A temporary row number list is a data structure where the rows are organized for quick and efficient
retrieval. The row number list only contains the row number for the associated row. Since no table data is

36 IBM i: Database Performance and Query Optimization

present, a table probe operation is typically associated with it in order to retrieve the underlying table
data. Because the row numbers are sorted, the random I/0 associated with the table probe operation is
performed more efficiently. The database manager performs pre-fetch or look-ahead logic to determine if
multiple rows are located on adjacent pages. If so, the table probe requests a larger I/O to bring the rows
into main memory more efficiently.

A temporary row number list is an internal data structure and can only be created by the database
manager.

Visual explain icon:

&

Row number list scan

The entire temporary row number list is scanned and all the row addresses contained within the row
number list are processed. The optimizer considers this plan when there is an applicable encoded vector
index or if the index probe or scan random I/O can be reduced. The random I/O can be reduced by first
preprocessing and sorting the row numbers associated with the Table Probe.

The use of a row number list scan allows the optimizer to generate a plan that can take advantage of
multiple indexes to match up to different portions of the query.

An additional benefit is that the data structure of the temporary row number list guarantees that the row
numbers are sorted. It closely mirrors the row number layout of the table data, ensuring that the table
paging never visits the same page of data twice. This results in increased I/O savings for the query.

A row number list scan is identical to a bitmap scan operation. The only difference is that the list scan is
over a list of row addresses while the bitmap scan is over a bitmap representing the addresses.

Table 17. Row number list scan

Data access method Row number list scan

Description Sequentially scan and process all the row numbers in the temporary
row number list. The sorted row numbers can be merged with other
temporary row number lists or can be used as input into a Table Probe
operation.

Advantages « The temporary row number list only contains address, no data, so the
temporary can be efficiently scanned within memory.

« The row numbers contained within the temporary object are sorted to
provide efficient I/O processing to access the underlying table.

- Selection is performed as the row number list is generated to subset
the number of rows in the temporary object.

Considerations Since the row number list contains only the addresses of the selected
rows in the table, a separate Table Probe fetches the table rows.

Likely to be used « When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

« When the cost of sorting of the row number is justified by the more
efficient I/0 that can be performed during the Table Probe operation.

« When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Database performance and query optimization 37

Table 17. Row number list scan (continued)

Data access method Row number list scan

Example SQL statement CREATE INDEX X1 ON Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON
Employee (Salary)

CREATE ENCODED VECTOR INDEX EVI3 ON
Employee (Job)

SELECT * FROM Employee

WHERE WorkDept = 'EO1' AND Job = 'CLERK'
AND Salary = 5000

OPTIMIZE FOR 99999 ROWS

Messages indicating use There are multiple ways in which a row number list scan can be
indicated through the messages. The messages in this example
illustrate how the SQL Query Engine indicates a row number list scan
was used.

« Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
EMPLOYEE.

CPI4338 -- 3 Access path(s) used for bitmap
processing of file EMPLOYEE.

« PRTSQLINF:

SQL4010 -- Table scan access for table 1.

SQL4032 -- Index X1 used for bitmap
processing of table 1.

SQL4032 -- Index EVI2 used for bitmap
processing of table 1.

SQL4032 -- Index EVI3 used for bitmap
processing of table 1.

SMP parallel enabled Yes

Also referred to as Row Number List Scan, Preload

Visual Explain icon

Using the example above, the optimizer created a temporary row number list for each of the indexes used
by this query. These indexes included a radix index and two encoded vector indexes. Each index row
number list was scanned and merged into a final composite row number list representing the intersection
of all the index row number lists. The final row number list is then used by the Table Probe to determine
which rows are selected and processed for the query results.

Row number list probe

A row number list probe is used to test row numbers generated by a separate operation against the
selected rows of a temporary row number list. The row numbers can be generated by any operation that
constructs a row number for a table. That row number is then used to probe into a temporary row number
list to determine if it matches the selection used to generate the list.

The use of a row number list probe operation allows the optimizer to generate a plan that can take
advantage of any sequencing provided by an index, but still use the row number list to perform additional
selection before any Table probe operations.

38 IBMi: Database Performance and Query Optimization

A row number list probe is identical to a bitmap probe operation. The only difference is that the list probe
is over a list of row addresses while the bitmap probe is over a bitmap representing the addresses.

Table 18. Row number list probe

Data access method

Row number list probe

Description

The temporary row number list is quickly probed based upon the row
number generated by a separate operation.

Advantages

- The temporary row number list only contains a row address, no data,
so the temporary can be efficiently probed within memory.

« The row numbers represented within the row number list are sorted
to provide efficient lookup processing to test the underlying table.

» Selection is performed as the row number list is generated to subset
the number of selected rows in the temporary object.

Considerations

Since the row number list contains only the addresses of the selected
rows in the table, a separate Table Probe fetches the table rows.

Likely to be used

« When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

« When the cost of creating and probing the row number list is justified
by reducing the number of Table Probe operations that must be
performed.

« When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Example SQL statement

CREATE INDEX X1 ON Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON
Employee (Salary)

CREATE ENCODED VECTOR INDEX EVI3 ON
Employee (Job)

SELECT * FROM Employee

WHERE WorkDept = 'EO1' AND Job = 'CLERK'
AND Salary = 5000

ORDER BY WorkDept

Messages indicating use

There are multiple ways in which a row number list probe can be
indicated through the messages. The messages in this example
illustrate how the SQL Query Engine indicates a row number list probe
was used.

= Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4338 -- 2 Access path(s) used for bitmap
processing of file EMPLOYEE.

« PRTSQLINF:

SQL40E8 -- Index X1 used for table 1.

SQL4011 -- Index scan-key row positioning
used on table 1.

SQL4032 -- Index EVI2 used for bitmap
processing of table 1.

SQL4032 -- Index EVI3 used for bltmap
processing of table 1

SMP parallel enabled

Yes

Also referred to as

Row Number List Probe, Preload

Database performance and query optimization 39

Table 18. Row number list probe (continued)

Data access method Row number list probe

Visual Explain icon ﬂ
[
&

Using the example above, the optimizer created a temporary row number list for each of the encoded
vector indexes. Additionally, an index probe operation was performed against the radix index X1 to satisfy
the ordering requirement. Since the ORDER BY requires that the resulting rows be sequenced by the
WorkDept column, the row number list cannot be scanned for the selected rows.

However, the temporary row number list can be probed using a row address extracted from the index X1
used to satisfy the ordering. By probing the list with the row address extracted from the index probe, the
sequencing of the keys in the index X1 is preserved. The row can still be tested against the selected rows
within the row number list.

Temporary bitmap

The temporary bitmap is a temporary object that allows the optimizer to sequence rows based upon their
row address (their row number). The bitmap can be either scanned or probed by the optimizer to satisfy
different operations of the query.

A temporary bitmap is a data structure that uses a bitmap to represent all the row numbers for a table.
Since each row is represented by a separate bit, all the rows within a table can be represented in a fairly
condensed form. When a row is selected, the bit within the bitmap that corresponds to the selected row is
set on. After the temporary bitmap is populated, all the selected rows can be retrieved in a sorted manner
for quick and efficient retrieval. The temporary bitmap only represents the row number for the associated
selected rows.

No table data is present within the temporary bitmap. A table probe operation is typically associated with
the bitmap in order to retrieve the underlying table data. Because the bitmap is by definition sorted, the
random I/0 associated with the table probe operation can be performed more efficiently. The database
manager performs pre-fetch or look-ahead logic to determine if multiple rows are located on adjacent
pages. If so, the table probe requests a larger I/O to bring the rows into main memory more efficiently.

A temporary bitmap is an internal data structure and can only be created by the database manager.

Visual explain icon:

L

Bitmap scan

During a bitmap scan operation, the entire temporary bitmap is scanned and all the row addresses
contained within the bitmap are processed. The optimizer considers this plan when there is an applicable
encoded vector index or if the index probe or scan random I/0 can be reduced. The random I/O can be
reduced by first preprocessing and sorting the row numbers associated with the Table Probe.

The use of a bitmap scan allows the optimizer to generate a plan that can take advantage of multiple
indexes to match up to different portions of the query.

40 IBM i: Database Performance and Query Optimization

An additional benefit is that the data structure of the temporary bitmap guarantees that the row numbers
are sorted. It closely mirrors the row number layout of the table data, ensuring that the table paging never
visits the same page of data twice. This results in increased I/0 savings for the query.

A bitmap scan is identical to a row nhumber list scan operation. The only difference is that the list scan is
over a list of row addresses while the bitmap scan is over a bitmap representing the addresses.

Table 19. Bitmap scan attributes

Data access method

Bitmap scan attributes

Description

Sequentially scan and process all the row numbers in the temporary
bitmap. The sorted row numbers can be merged with other temporary
bitmaps or can be used as input into a Table Probe operation.

Advantages

- The temporary bitmap only contains a reference to a row address, no
data, so the temporary can be efficiently scanned within memory.

« The row numbers represented within the temporary object are sorted
to provide efficient I/O processing to access the underlying table.

« Selection is performed as the bitmap is generated to subset the
number of selected rows in the temporary object.

Considerations

Since the bitmap contains only the addresses of the selected rows in
the table, a separate Table Probe fetches the table rows.

Likely to be used

« When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

« When the cost of sorting of the row numbers is justified by the more
efficient I/0 that can be performed during the Table Probe operation.

« When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Example SQL statement

CREATE INDEX X1 ON Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON
Employee (Salary)

CREATE ENCODED VECTOR INDEX EVI3 ON
Employee (Job)

SELECT * FROM Employee

WHERE WorkDept = 'EO1' AND Job = 'CLERK'
AND Salary = 5000

OPTIMIZE FOR 99999 ROWS

Messages indicating use

There are multiple ways in which a bitmap scan can be indicated
through the messages. The messages in this example illustrate how the
Classic Query Engine indicates a bitmap scan was used.

= Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
EMPLOYEE.

CPI4338 -- 3 Access path(s) used for bitmap
processing of file EMPLOYEE.

« PRTSQLINF:

SQL4010 -- Table scan access for table 1.

SQL4032 -- Index X1 used for bitmap
processing of table 1.

SQL4032 -- Index EVI2 used for bitmap
processing of table 1.

SQL4032 -- Index EVI3 used for bitmap
processing of table 1.

Database performance and query optimization 41

Table 19. Bitmap scan attributes (continued)

Data access method Bitmap scan attributes
SMP parallel enabled Yes
Also referred to as Bitmap Scan, Preload

Row Number Bitmap Scan
Row Number Bitmap Scan, Preload

Skip Sequential Scan

Visual Explain icon

Using the example above, the optimizer created a temporary bitmap for each of the indexes used by this
query. These indexes included a radix index and two encoded vector indexes. Each index temporary
bitmap was scanned and merged into a final composite bitmap representing the intersection of all the
index temporary bitmaps. The final bitmap is then used by the Table Probe operation to determine which
rows are selected and processed for the query results.

Bitmap probe

A bitmap probe operation is used to test row numbers generated by a separate operation against the
selected rows of a temporary bitmap. The row numbers can be generated by any operation that
constructs a row number for a table. That row number is then used to probe into a temporary bitmap to
determine if it matches the selection used to generate the bitmap.

The use of a bitmap probe operation allows the optimizer to generate a plan that can take advantage of
any sequencing provided by an index, but still use the bitmap to perform additional selection before any
Table Probe operations.

A bitmap probe is identical to a row number list probe operation. The only difference is that the list probe
is over a list of row addresses while the bitmap probe is over a bitmap representing the addresses.

Table 20. Bitmap probe attributes

Data access method Bitmap probe attributes

Description The temporary bitmap is quickly probed based upon the row number
generated by a separate operation.

Advantages - The temporary bitmap only contains a reference to a row address, no
data, so the temporary can be efficiently probed within memory.

« The row numbers represented within the bitmap are sorted to
provide efficient lookup processing to test the underlying table.

« Selection is performed as the bitmap is generated to subset the
number of selected rows in the temporary object.

Considerations Since the bitmap contains only the addresses of the selected rows in
the table, a separate Table Probe fetches the table rows.

42 1BM i: Database Performance and Query Optimization

Table 20. Bitmap probe attributes (continued)

Data access method

Bitmap probe attributes

Likely to be used

« When the use of temporary results is allowed by the query
environmental parameter (ALWCPYDTA).

« When the cost of creating and probing the bitmap is justified by
reducing the number of Table Probe operations that must be
performed.

« When multiple indexes over the same table need to be combined in
order to minimize the number of selected rows.

Example SQL statement

CREATE INDEX X1 ON Employee (WorkDept)

CREATE ENCODED VECTOR INDEX EVI2 ON
Employee (Salary)

CREATE ENCODED VECTOR INDEX EVI3 ON
Employee (Job)

SELECT * FROM Employee

WHERE WorkDept = 'EO1' AND Job = 'CLERK'
AND Salary = 5000

ORDER BY WorkDept

Messages indicating use

There are multiple ways in which a bitmap probe can be indicated
through the messages. The messages in this example illustrate how the
Classic Query Engine indicates a bitmap probe was used.

» Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4338 -- 2 Access path(s) used for bitmap
processing of file EMPLOYEE.

« PRTSQLINF:

SQL4008 -- Index X1 used for table 1.

SQL4011 -- Index scan-key row positioning
used on table 1.

SQL4032 -- Index EVI2 used for bitmap
processing of table 1.

SQL4032 -- Index EVI3 used for bitmap
processing of table 1.

SMP parallel enabled

Yes

Also referred to as

Bitmap Probe, Preload
Row Number Bitmap Probe

Row Number Bitmap Probe, Preload

Visual Explain icon

Eﬂ
4

Using the example above, the optimizer created a temporary bitmap for each of the encoded vector
indexes. Additionally, an index probe operation was performed against the radix index X1 to satisfy the
ordering requirement. Since the ORDER BY requires that the resulting rows be sequenced by the
WorkDept column, the bitmap cannot be scanned for the selected rows.

Database performance and query optimization 43

However, the temporary bitmap can be probed using a row address extracted from the index X1 used to
satisfy the ordering. By probing the bitmap with the row address extracted from the index probe, the
sequencing of the keys in the index X1 is preserved. The row can still be tested against the selected rows
within the bitmap.

Temporary index

A temporary index is a temporary object that allows the optimizer to create and use a radix index for a
specific query. The temporary index has all the same attributes and benefits as a radix index created
through the CREATE INDEX SQL statement or Cxreate Logical File (CRTLF) CL command.

Additionally, the temporary index is optimized for use by the optimizer to satisfy a specific query request.
This optimization includes setting the logical page size and applying any selection to the index to speed
up its use after creation.

The temporary index can be used to satisfy various query requests:

Ordering

Grouping/Distinct
« Joins
« Record selection

Generally a temporary index is a more expensive temporary object to create than other temporary
objects. It can be populated by a table scan, or by one or more index scans or probes. The optimizer
considers all the methods available when determining which method to use to produce the rows for the
index creation. This process is like the costing and selection of the other temporary objects used by the
optimizer.

One significant advantage of the temporary index over other temporary objects is that it is the only
temporary object maintained if the underlying table changes. The temporary index is identical to a radix
index in that any inserts or updates against the table are reflected immediately through normal index
maintenance.

SQE usage of temporary indexes is different from CQE usage in that SQE allows reuse. References to
temporary indexes created and used by the SQE optimizer are kept in the system Plan Cache. A temporary
index is saved for reuse by other instances of the same query or other instances of the same query
running in a different job. It is also saved for potential reuse by a different query that can benefit from the
use of the same temporary index.

By default, an SQE temporary index persists until the Plan Cache entry for the last referencing query plan
is removed. With the SQE Plan Cache auto sizing capability, there is the potential for SQE temporary
indexes to persist longer. You can control this behavior by setting the CACHE_RESULTS QAQQINI value.
The default for this INI value allows the optimizer to keep temporary indexes around for reuse.

Changing the INI value to "*JOB' prevents the temporary index from being saved in the Plan Cache; the
index does not survive a hard close. The *JOB option causes the SQE optimizer use of temporary indexes
to behave more like the CQE optimizer. The temporary index has a shorter life, but is still shared as long as
there are active queries using it. This behavior can be desirable in cases where there is concern about
increased maintenance costs for temporary indexes that persist for reuse.

A SQE temporary index can also be used as a source of statistics.
A temporary index is an internal data structure and can only be created by the database manager.

Visual explain icon:

&,

44 1BM i: Database Performance and Query Optimization

Temporary index scan

A temporary index scan operation is identical to the index scan operation that is performed upon the
permanent radix index. It is still used to retrieve the rows from a table in a keyed sequence; however, the
temporary index object must first be created. All the rows in the index are sequentially processed, but the
resulting row numbers are sequenced based upon the key columns.

The sequenced rows can be used by the optimizer to satisfy a portion of the query request (such as

ordering or grouping).

Table 21. Temporary index scan attributes

Data access method

Temporary index scan

Description Sequentially scan and process all the keys associated with the
temporary index.
Advantages « Potential to extract all the data from the index key values, thus

eliminating the need for a Table Probe

» Returns the rows back in a sequence based upon the keys of the
index

Considerations

Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/0 associated
with the Table Probe.

Likely to be used

- When sequencing the rows is required for the query (for example,
ordering or grouping)

« When the selection columns cannot be matched against the leading
key columns of the index

« When the overhead cost associated with the creation of the
temporary index can be justified against other alternative methods
to implement this query

Example SQL statement

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'A@1' AND 'EO1'
ORDER BY LastName

OPTIMIZE FOR ALL ROWS

Messages indicating use

« Optimizer Debug:
CPI4321 -- Access path built for file EMPLOYEE.
« PRTSQLINF:

SQL4009 -- Index created for table 1.

SMP parallel enabled

Yes

Also referred to as

Index Scan

Index Scan, Preload

Index Scan, Distinct

Index Scan Distinct, Preload

Index Scan, Key Selection

Database performance and query optimization 45

Table 21. Temporary index scan attributes (continued)

Data access method Temporary index scan

Visual Explain icon
[@

Using the example above, the optimizer chose to create a temporary index to sequence the rows based
upon the LastName column. A temporary index scan might then be performed to satisfy the ORDER BY
clause in this query.

The optimizer determines where the selection against the WorkDept column best belongs. It can be
performed as the temporary index itself is being created or it can be performed as a part of the temporary
index scan. Adding the selection to the temporary index creation has the possibility of making the open
data path (ODP) for this query non-reusable. This ODP reuse is considered when determining how
selection is performed.

Temporary index probe

A temporary index probe operation is identical to the index probe operation that is performed on the
permanent radix index. Its main function is to provide quick access against the index keys of the
temporary index. However, it can still be used to retrieve the rows from a table in a keyed sequence.

The temporary index is used by the optimizer to satisfy the join portion of the query request.

Table 22. Temporary index probe attributes

Data access method Temporary index probe

Description The index is quickly probed based upon the selection criteria that
were rewritten into a series of ranges. Only those keys that satisfy the
selection is used to generate a table row number.

Advantages - Only those index entries that match any selection continue to be
processed. Provides quick access to the selected rows

» Potential to extract all the data from the index key values, thus
eliminating the need for a Table Probe

« Returns the rows back in a sequence based upon the keys of the
index

Considerations Generally requires a Table Probe to be performed to extract any
remaining columns required to satisfy the query. Can perform poorly
when many rows are selected because of the random I/0 associated
with the Table Probe.

Likely to be used - When the ability to probe the rows required for the query (for
example, joins) exists

= When the selection columns cannot be matched against the leading
key columns of the index

« When the overhead cost associated with the creation of the
temporary index can be justified against other alternative methods
to implement this query

46 1BM i: Database Performance and Query Optimization

Table 22. Temporary index probe attributes (continued)

Data access method Temporary index probe

Example SQL statement SELET * FROM Employee XXX, Department YYY

WHERE XXX.WorkDept = YYY.DeptNo
OPTIMIZE FOR ALL ROWS

Messages indicating use There are multiple ways in which a temporary index probe can be
indicated through the messages. The messages in this example
illustrate one example of how the Classic Query Engine indicates a
temporary index probe was used.

« Optimizer Debug:

CPI4321 -- Access path built for file DEPARTMENT.

CPI4327 -- File EMPLOYEE processed in join
position 1.

CPI4326 -- File DEPARTMENT processed in join
position 2.

« PRTSQLINF:

SQL4007 -- Query implementation for join
position 1 table 1.

SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join
position 2 table 2.

SQL4009 -- Index created for table 2.

SMP parallel enabled Yes

Also referred to as Index Probe

Index Probe, Preload

Index Probe, Distinct

Index Probe Distinct, Preload

Index Probe, Key Selection

Visual Explain icon

Using the example above, the optimizer chose to create a temporary index over the DeptNo column to
help satisfy the join requirement against the DEPARTMENT table. A temporary index probe was then
performed against the temporary index to process the join criteria between the two tables. In this
particular case, there was no additional selection that might be applied against the DEPARTMENT table
while the temporary index was being created.

Temporary buffer

The temporary buffer is a temporary object that is used to help facilitate operations such as parallelism. It
is an unsorted data structure that is used to store intermediate rows of a query. The difference between a
temporary buffer and a temporary list is that the buffer does not need to be fully populated before its
results are processed.

The temporary buffer acts as a serialization point between parallel and non-parallel portions of a query.
The operations used to populate the buffer cannot be performed in parallel, whereas the operations that
fetch rows from the buffer can be performed in parallel.

Database performance and query optimization 47

The temporary buffer is required for SQE because the index scan and index probe operations are not SMP
parallel-enabled for this engine. Unlike CQE, which performs these index operations in parallel, SQE does
not subdivide the index operation work to take full advantage of parallel processing.

The buffer is used to allow a query to be processed under parallelism by serializing access to the index
operations. Any remaining work within the query is processed in parallel.

A temporary buffer is an internal data structure and can only be created by the database manager.

Visual explain icon:

=

=) |-
L

Buffer scan

The buffer scan is used when a query is processed using DB2 Symmetric Multiprocessing, yet a portion of
the query is unable to be parallel processed. The buffer scan acts as a gateway to control access to rows
between the parallel enabled portions of the query and the non-parallel portions.

Multiple threads can be used to fetch the selected rows from the buffer, allowing the query to perform any
remaining processing in parallel. However, the buffer is populated in a non-parallel manner.

A buffer scan operation is identical to the list scan operation that is performed upon the temporary list
object. The main difference is that a buffer does not need to be fully populated before the start of the scan
operation. A temporary list requires that the list is fully populated before fetching any rows.

Table 23. Buffer scan attributes

Data access method Buffer scan

Description Sequentially scan and process all the rows in the temporary buffer.
Enables SMP parallelism to be performed over a non-parallel portion of
the query.

Advantages « The temporary buffer can be used to enable parallelism over a

portion of a query that is non-parallel

» The temporary buffer does not need to be fully populated in order to
start fetching rows

Considerations Used to prevent portions of the query from being processed multiple
times when no key columns are required to satisfy the request.

Likely to be used « When the query is attempting to take advantage of DB2 Symmetric
Multiprocessing

« When a portion of the query cannot be performed in parallel (for
example, index scan or index probe)

Example SQL statement CHGQRYA DEGREE (xOPTIMIZE)

CREATE INDEX X1 ON
Employee (LastName, WorkDept)

SELECT * FROM Employee

WHERE WorkDept BETWEEN 'AG1' AND 'EO1'

AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

48 1BM i: Database Performance and Query Optimization

Table 23. Buffer scan attributes (continued)

Data access method Buffer scan

Messages indicating use « Optimizer Debug;

CPI4328 -- Access path of file X1 was used by query.
CPI4330 -- 8 tasks used for parallel index scan
of file EMPLOYEE.

« PRTSQLINF:

SQL4027 -- Access plan was saved with DB2
SMP installed on the system.
SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning
used on table 1.
SQL4030 -- 8 tasks specified for parallel scan
on table 1.

SMP parallel enabled Yes

Also referred to as Not applicable

Visual Explain icon

Using the example above, the optimizer chose to use the existing index X1 to perform an index probe
operation against the table. In order to speed up the remaining Table Probe operation for this query, DB2
Symmetric Multiprocessing is used to perform the random probe into the table. Since the index probe is
not SMP parallel-enabled for SQE, it is placed within a temporary buffer to control access to the selected
index entries.

Queue

The Queue is a temporary object that the optimizer uses to feed recursion by putting data values needed
for the recursion on it. This data typically includes those values used on the recursive join predicate, and
other recursive data accumulated or manipulated during the recursive process.

The Queue has two operations allowed:

« Enqueue: puts data on the queue
« Dequeue: takes data off the queue

A queue is an efficient data structure because it contains only the data needed to feed the recursion or
directly modified by the recursion process. Its size is managed by the optimizer.

Unlike other temporary objects created by the optimizer, the queue is not populated all at once by the
underlying query node tree. It is a real-time temporary holding area for values feeding the recursion. In
this regard, a queue is not considered temporary, as it does not prevent the query from running if
ALWCPYDTA(*NO) was specified. The data can flow from the query at the same time the recursive values
are inserted into the queue and used to retrieve additional join rows.

A queue is an internal data structure and can only be created by the database manager.

Visual explain icon:

Database performance and query optimization 49

Enqueue

During an enqueue operation, an entry is put on the queue. The entry contains key values used by the
recursive join predicates or data manipulated as a part of the recursion process. The optimizer always
supplies an enqueue operation to collect the required recursive data on the query node directly above the
Union AlL

Table 24. Enqueue Attributes

Data Access Method Enqueue
Description Places an entry on the queue needed to cause further recursion
Advantages « Required as a source for the recursion. Only enqueues required

values for the recursion process. Each entry has short life span, until
it is dequeued.

« Each entry on the queue can seed multiple iterative fullselects that
are recursive from the same RCTE or view.

Likely to be used A required access method for recursive queries

Example SQL statement WITH RPL (PART, SUBPART, QUANTITY) AS

(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = 'O1'

UNION ALL
SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

)
SELECT DISTINCT PART, SUBPART, QUANTITY

FROM RPL
Messages indicating use There are no explicit messages that indicate the use of an enqueue
SMP parallel enabled Yes
Also referred to as Not applicable

Visual Explain icon
===
i

Use the CYCLE option in the definition of the recursive query if the data reflecting the parent-child
relationship could be cyclic, causing an infinite recursion loop. CYCLE prevents already visited recursive
key values from being put on the queue again for a given set of related (ancestry chain) rows.

Use the SEARCH option in the definition of the recursive query to return the results of the recursion in the
specified parent-child hierarchical ordering. The search choices are Depth or Breadth first. Depth first
means that all the descendents of each immediate child are returned before the next child is returned.
Breadth first means that each child is returned before their children are returned.

50 IBM i: Database Performance and Query Optimization

SEARCH requires not only the specification of the relationship keys, the columns which make up the
parent-child relationship, and the search type of Depth or Breadth. It also requires an ORDER BY clause in
the main query on the provided sequence column in order to fully implement the specified ordering.

Dequeue
During a dequeue operation, an entry is taken off the queue. Those values specified by recursive
reference are fed back in to the recursive join process.

The optimizer always supplies a corresponding enqueue, dequeue pair of operations for each recursive
common table expression or recursive view in the specifying query. Recursion ends when there are no
more entries to pull off the queue.

Table 25. Dequeue Attributes

Data Access Method Dequeue

Description Removes an entry off the queue. Minimally, provides one side of the
recursive join predicate that feeds the recursive join and other data
values that are manipulated through the recursive process. The
dequeue operation is always on the left side of the inner join with
constraint, where the right side is the target child rows.

Advantages - Provides quick access to recursive values
« Allows for post selection of local predicate on recursive data values

Likely to be used « Arequired access method for recursive queries

« A single dequeued value can feed the recursion of multiple iterative
fullselects that reference the same RCTE or view

Exampl L statement
ample SQL stateme WITH RPL (PART, SUBPART, QUANTITY) AS

(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = '0O1'

UNION ALL
SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

)
SELECT DISTINCT PART, SUBPART, QUANTITY

FROM RPL
Messages indicating use There are no explicit messages that indicate the use of the dequeue
operation.
SMP parallel enabled Yes
Also referred to as Not applicable

Visual Explain icon

IEE?EEEEE %
|
=

Array unnest temporary table
The array unnest temporary table is a temporary object that holds the output of an UNNEST of an array or
a list of arrays. It can be viewed vertically, with each column of array values having the same format. The

Database performance and query optimization 51

temporary table contains one or more arrays specified by the user in an UNNEST clause of a SELECT
statement.

UNNEST creates a temporary table with the arrays specified as columns in the table. If more than one
array is specified, the first array provides the first column in the result table. The second array provides
the second column, and so on.

The arrays might be of different lengths. Shorter arrays are primed with nulls to match the length of the
longest array in the list.

If WITH ORDINALITY is specified, an extra counter column of type BIGINT is appended to the temporary
table. The ordinality column contains the index position of the elements in the arrays.

The array unnest temporary table is an internal data structure and can only be created by the database

manager.

—
[y Wy —

Visual explain icon:

Related reference
QAQQINI query options
There are different options available for parameters in the QAQQINI file.

Related information

Array support in SQL procedures
Debugging an SQL routine
table-reference

Array unnest temporary table scan
During an array unnest temporary table scan operation, the temporary table is processed one row at a
time.

Table 26. Array unnest temporary table scan operation

Data access method Array unnest temporary table scan

Description Sequentially scan and process all the rows of data in the unnest
temporary table.

Advantages The array unnest temporary table and temporary table scan can be
used to simplify the logic flow of the optimizer for processing arrays.

Likely to be used When an UNNEST clause is specified in the from-clause of an SQL
fullselect.

Example SQL statement CREATE PROCEDURE processCustomers()

BEGIN

DECLARE ids INTARRAY;

DECLARE names STRINGARRAY;

set ids = ARRAY[5,6,7];

set names = ARRAY['Ann', 'Bob', 'Sue'];

INSERT INTO customerTable(id, name, order)

(SELECT Customers.id, Customers.name, Customers.order
FROM UNNEST(ids, names) WITH ORDINALITY

AS Customers(id, name, order));

END

CALL processCustomers()

52 IBMi: Database Performance and Query Optimization

Table 26. Array unnest temporary table scan operation (continued)

Data access method Array unnest temporary table scan

Messages indicating use There are multiple ways in which an array unnest temporary table scan
can be indicated through the messages. The messages in this example
illustrate how the SQL Query Engine indicates an array unnest
temporary table scan was used.

« Optimizer Debug:
CPI4329 -- Arrival sequence was used for file *UNNEST_1.
« PRTSQLINF:

SQL4010 -- Table scan access for table 1.

SMP parallel enabled Yes

b=

Also referred to as

Visual Explain icon

Objects processed in parallel

The DB2 Symmetric multiprocessing feature provides the optimizer with additional methods for retrieving
data that include parallel processing. Symmetrical multiprocessing is a form of parallelism achieved on a
single system where multiple CPU and I/O processors sharing memory and disk work simultaneously
toward a single result.

This parallel processing means that the database manager can have more than one (or all) of the system
processors working on a single query simultaneously. The performance of a CPU-bound query can be
improved with this feature on multiple-processor systems by distributing the processor load across more
than one processor.

The preceding tables indicate what data access methods are enabled to take advantage of the DB2
Symmetric Multiprocessing feature. An important thing to note, however, is that the parallel
implementation differs for both the SQL Query Engine and the Classic Query Engine.

Processing requirements
Parallelism requires that SMP parallel processing must be enabled by one of the following methods:

« System value QQRYDEGREE

« Query option file

« DEGREE parameter on the Change Query Attributes (CHGQRYA) command
« SQL SET CURRENT DEGREE statement

Once parallelism has been enabled, a set of database system tasks or threads is created at system
startup for use by the database manager. The database manager uses the tasks to process and retrieve
data from different disk devices. Since these tasks can be run on multiple processors simultaneously, the
elapsed time of a query can be reduced. Even though the tasks do much of the parallel I/O and CPU
processing, the I/O and CPU resource accounting is transferred to the application job. The summarized
I/0 and CPU resources for this type of application continue to be accurately displayed by the Woxk with
Active Jobs (WRKACTJOB) command.

Database performance and query optimization 53

The job must be run in a shared storage pool with the *CALC paging option, as this method causes more
efficient use of active memory.

Related concepts

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

Related reference

Changing the attributes of your queries

You can modify different types of query attributes for a job with the Change Query Attributes
(CHGQRYA) CL command. You can also use the System i Navigator Change Query Attributes interface.

Related information

SET CURRENT DEGREE statement

Performance system values: Parallel processing for queries and indexes
Adjusting performance automatically

Work with Active Jobs (WRKACTJOB) command

Change Query Attributes (CHGQRYA) command

DB2 Symmetric Multiprocessing

Spreading data automatically

Db2 for i automatically spreads the data across the disk devices available in the auxiliary storage pool
(ASP) where the data is allocated. This process ensures that the data is spread without user intervention.

The spreading allows the database manager to easily process the blocks of rows on different disk devices
in parallel. Even though Db2 for i spreads data across disk devices within an ASP, sometimes the
allocation of the data extents (contiguous sets of data) might not be spread evenly. This unevenness
occurs when there is uneven allocation of space on the devices, or when a new device is added to the ASP.
The allocation of the table data space could be spread again by saving, deleting, and then restoring the
table.

Maintaining an even distribution of data across all the disk devices can lead to better throughput on query
processing. The number of disk devices used and how the data is spread across them is considered by the
optimizer while costing the different plan permutations.

Processing queries: Overview

This overview of the query optimizer provides guidelines for designing queries that perform and use
system resources more efficiently.

This overview covers queries that are optimized by the query optimizer and includes interfaces such as
SQL, OPNQRYF, APIs (QQQQRY), ODBC, and Query/400 queries. Whether you apply the guidelines, the
guery results are still correct.

Note: The information in this overview is complex. You might find it helpful to experiment with an IBM i
product as you read this information to gain a better understanding of the concepts.

When you understand how Db2 for i processes queries, it is easier to understand the performance
impacts of the guidelines discussed in this overview. There are two major components of Db2 for i query
processing:

+ How the system accesses data.

These methods are the algorithms that are used to retrieve data from the disk. The methods include
index usage and row selection techniques. In addition, parallel access methods are available with the
DB2 Symmetric Multiprocessing operating system feature.

« Query optimizer

54 IBM i: Database Performance and Query Optimization

The query optimizer identifies the valid techniques which can be used to implement the query and
selects the most efficient technique.

How the query optimizer makes your queries more efficient

Data manipulation statements such as SELECT specify only what data the user wants, not how to retrieve
that data. This path to the data is chosen by the optimizer and stored in the access plan. Understand the
techniques employed by the query optimizer for performing this task.

The optimizer is an important part of Db2 for i because the optimizer:

- Makes the key decisions which affect database performance.
« Identifies the techniques which can be used to implement the query.
« Selects the most efficient technique.

General query optimization tips
Here are some tips to help your queries run as fast as possible.

« Create indexes whose leftmost key columns match your selection predicates to help supply the
optimizer with selectivity values (key range estimates).

« For join queries, create indexes that match your join columns to help the optimizer determine the
average number of matching rows.

« Minimize extraneous mapping by specifying only columns of interest on the query. For example, specify
only the columns you need to query on the SQL SELECT statement instead of specifying SELECT *. Also,
specify FOR FETCH ONLY if the columns do not need to be updated.

« If your queries often use table scan, use the Reoxrganize Physical File Membexr (RGZPFM)
command to remove deleted rows from tables, or the Change Physical File (CHGPF) REUSEDLT
(*YES) command to reuse deleted rows.

Consider using the following options:

« Specify ALWCPYDTA(*OPTIMIZE) to allow the query optimizer to create temporary copies of data so
better performance can be obtained. The IBM i Access ODBC driver and Query Management driver
always use this mode. If ALWCPYDTA(*YES) is specified, the query optimizer attempts to implement the
query without copies of the data, but might create copies if required. If ALWCPYDTA(*NO) is specified,
copies of the data are not allowed. If the query optimizer cannot find a plan that does not use a
temporary, then the query cannot be run.

« For SQL, use CLOSQLCSR(*ENDJOB) or CLOSQLCSR(*ENDACTGRP) to allow open data paths to remain
open for future invocations.

« Specify DLYPRP(*YES) to delay SQL statement validation until an OPEN, EXECUTE, or DESCRIBE
statement is run. This option improves performance by eliminating redundant validation.

« Use ALWBLK(*ALLREAD) to allow row blocking for read-only cursors.
Related information

Reorganize Physical File Member (RGZPFM) command
Change Physical File (CHGPF) command

Access plan validation
An access plan is a control structure that describes the actions necessary to satisfy each query request. It
contains information about the data and how to extract it. For any query, whenever optimization occurs,
the query optimizer develops an optimized plan of how to access the requested data.

To improve performance, an access plan is saved once it is built (see following exceptions), to be available
for potentially future runs of the query. However, the optimizer has dynamic replan capability. This means
that even if a previously built (and saved) plan is found, the optimizer could rebuild it if a more optimal
plan is possible. This process allows for maximum flexibility while still taking advantage of saved plans.

Database performance and query optimization 55

« For dynamic SQL, an access plan is created at prepare or open time. However, optimization uses the
host variable values to determine an optimal plan. Therefore, a plan built at prepare time could be
rebuilt the first time the query is opened (when the host variable values are present).

« Foran IBMi program that contains static embedded SQL, an access plan is initially created at compile
time. Again, since optimization uses the host variable values to determine an optimal plan, the compile-
time plan could be rebuilt the first time the query is opened.

« For Open Query File (OPNQRYF), an access plan is created but is not saved. A new access plan is
created each time the OPNQRYF command is processed.

« For Query/400, an access plan is saved as part of the query definition object.

In all the preceding cases where a plan is saved, including static SQL, dynamic replan can still apply as
the queries are run over time.

The access plan is validated when the query is opened. Validation includes the following:

Verifying that the same tables are referenced in the query as in the access plan. For example, the tables
were not deleted and recreated or that the tables resolved by using *LIBL have not changed.

Verifying that the indexes used to implement the query, still exist.

Verifying that the table size or predicate selectivity has not changed significantly.
Verifying that QAQQINI options have not changed.

Single table optimization

At run time, the optimizer chooses an optimal access method for a query by calculating an implementation
cost based on the current state of the database. The optimizer uses two costs in its decision: an I/O cost
and a CPU cost. The goal of the optimizer is to minimize both I/O and CPU cost.

Improved query optimization I/0 cost estimates

The time it takes to perform an disk I/O operation can vary according to the connecting infrastructure, the
external or internal nature of the media and media type, spinning disk or Solid State Disk. Consequently,
the total I/O cost associated with a particular query access method may vary from system to system.

In order to more accurately estimate these costs, the optimizer considers the performance of each disk
unit individually. It does this by measuring the time it takes for read operations to complete across a
sample of pages across the disk. This analysis is done at each IPL for disks in the system and user ASPs
and at vary-on time for independent ASPs. With this information and with the additional knowledge about
how database objects are spread across various disk units, the optimizer can make a reasonable estimate
about the time it takes to perform I/0O against a given database object. This means that no matter where
your data resides, and even as it moves around, the optimizer can choose the most efficient plan to
execute your queries.

Optimizing Access to each table

The optimizer uses a general set of guidelines to choose the best method for accessing data in each table.
The optimizer:

« Determines the default filter factor for each predicate in the selection clause.

- Determines the true filter factor of the predicates by key range estimate when the selection predicates
match the index left-most keys, or by available column statistics.

« Determines the cost of table scan processing if an index is not required.

- Determines the cost of creating an index over a table if an index is required. This index is created by
performing either a table scan or creating an index-from-index.

« Determines the cost of using a sort routine or hashing method if appropriate.
« Determines the cost of using existing indexes using Index Probe or Index Scan

56 IBM i: Database Performance and Query Optimization

— Orders the indexes. For SQE, the indexes are ordered in general such that the indexes that access the
smallest number of entries are examined first. For CQE, the indexes are ordered from mostly recently
created to oldest.

— For each index available, the optimizer does the following:

- Determines if the index meets the selection criteria.

- Determines the cost of using the index by estimating the number of I/Os and CPU needed to Index
Probe or Index Scan, and possible Table Probes.

- Compares the cost of using this index with the previous cost (current best).
- Picks the cheaper one.
- Continues to search for best index until the optimizer decides to look at no more indexes.

SQE orders the indexes so that the best indexes are examined first. Once an index is found that is
more expensive than the previously chosen best index, the search is ended.

For CQE, the time limit controls how much time the optimizer spends choosing an implementation.
The time limit is based on how much time was spent so far and the current best implementation cost
found. The idea is to prevent the optimizer from spending more time optimizing the query than it
takes to actually execute the query. Dynamic SQL queries are subject to the optimizer time
restrictions. Static SQL query optimization time is not limited. For OPNQRYF, if you specify
OPTALLAP(*YES), the optimization time is not limited.

For small tables, the query optimizer spends little time in query optimization. For large tables, the
query optimizer considers more indexes. For CQE, the optimizer generally considers five or six
indexes for each table of a join before running out of optimization time. Because of this processing, it
is normal for the optimizer to spend longer lengths of time analyzing queries against the tables.

« Determines the cost of using a temporary bitmap

— Order the indexes that can be used for bit mapping. In general the indexes that select the smallest
number of entries are examined first.

— Determine the cost of using this index for bit mapping and the cost of merging this bitmap with any
previously generated bitmaps.

— If the cost of this bitmap plan is cheaper than the previous bitmap plan, continue searching for
bitmap plans.

- After examining the possible methods of access the data for the table, the optimizer chooses the best
plan from all the plans examined.

Solid State Drives
Solid State Drives (SSDs) offer a number of advantages over traditional hard disk drives (HDDs)

Solid State Drives

Solid State Drives (SSDs) offer a number of advantages over traditional hard disk drives (HDDs). With no
seek time or rotational delays, SSDs can deliver substantially better I/O performance than HDDs. Capable
of driving tens of thousands of I/O operations per second as opposed to hundreds for HDDs, SSDs break
through performance bottlenecks of I/0-bound applications. Applications that require dozens and dozens
of “extra” HDDs for performance can meet their I/O performance requirements with far fewer SSDs,
resulting in energy, space, and cost savings.

As IBMi has it’'s own storage manager and DB2 for i built in, the integration of SSDs on IBM i is a fairly
simple task. The functions provided for management of SSDs and adjusting their impact on Applications
and Database are very simple and easy to use.

There are three basic methodologies to place data on SSD.

- ASP Balancer — Enhanced for SSDs
« Library and SSD Integration
- DB2 and SSD Integration

Database performance and query optimization 57

To compare and contrast these methodologies see the IBM i white paper:

http://www-03.ibm.com/systems/resources/ssd_ibmi.pdf

To allow you to specify what data should be allocated on SSD, DB2 has provided the capability to specify a
“media preference” as an attribute of a database table, partition, or index. It should be noted that this
attribute specifies that storage allocations on SSD are preferred, but if no SSD disks are available or if the
SSD disks do not have enough space left to allocate the entire object, at least some part of the object will
be allocated on traditional disks. See the UNIT parameter on CRTPF and CRTLF or the media-preference
clause (UNIT SSD) on the CREATE TABLE, DECLARE GLOBAL TEMPORARY TABLE, CREATE INDEX, and
ALTER TABLE SOL statements.

You should consider SSDs if your I/O demands have outpaced the performance capabilities of traditional
HDDs, latencies associated with spinning platters and moving arms limit the speed of HDD data access.
SSDs near instantaneous data access removes this I/0 bottleneck, creating a paradigm shift in I/O
performance. Applications throttled by poor I/O performance can benefit greatly from SSDs.

Memory preference controls

Memory preference controls can be used as a technique to maximize performance and utilization of
resources.

Memory preference controls

Memory preference controls can be used against performance critical database tables, indexes, physical
files, and logical files as a technique to maximize performance and utilization of resources. Several
approaches are available for controlling the memory preference:

1. Set Object Access (SETOBJACC) command

One benefit of SETOBJACC is that you can carve out a separate memory pool that is not used by from
any running applications or MEMORY_POOL_PREFERENCE and those objects will then not get paged
out because neither applications nor SQE will be using that pool. If the target objects are primarily
accessed using Native database I/O,SETOBJACC is the preferred approach.SETOBJACC uses a single
thread to bring the object into memory.

2. Change Physical File (CHGPF) and Change Logical File (CHGLF) commands - Keep in
memory (KEEPINMEM) parameter

When an object is changed to have Keep in memory set to *YES, the database will bring the object into
memory and attempt to keep it in memory when it is accessed using SQL via SQE. Native database I/O
(for example RPG CHAIN, READ, etc.) does not do this. KEEPINMEM has the ability to use parallel I/O
to bring the object into memory.

« CHGPF KEEPINMEM(*YES|*NO)
« CHGLF KEEPINMEM(*YES|*NO)
3. The SQL memory-preference can be used as an alternative to the KEEPINMEM command parameter.

The behavior of SQL configured in memory objects matches the behavior described in theKEEPINMEM
section.

KEEP IN MEMORY <NO/YES> is available on the following SQL statements:
« ALTER TABLE

« CREATE INDEX

« CREATE TABLE

- DECLARE GLOBAL TEMPORARY TABLE

Note: The QSYS2/SYSPARTITIONSTAT and SYSPARTITIONINDEXSTAT catalogs can be queried to
determine the memory-preference for specific objects. When a memory-preference is specified for an
object, the MEMORY_POOL_PREFERENCE QAQQINI option can be used to influence where we attempt to
page objects. There is no guarantee that objects will remain in memory.

58 IBM i: Database Performance and Query Optimization

http://www-03.ibm.com/systems/resources/ssd_ibmi.pdf

Join optimization
A join operation is a complex function that requires special attention in order to achieve good
performance. This section describes how Db2 for i implements join queries and how optimization choices

are made by the query optimizer. It also describes design tips and techniques which help avoid or solve
performance problems.

Nested loop join implementation

Db2 for i provides a nested loop join method. For this method, the processing of the tables in the join are
ordered. This order is called the join order. The first table in the final join order is called the primary
table. The other tables are called secondary tables. Each join table position is called a dial.

The nested loop is implemented either using an index on secondary tables, a hash table, or a table scan
(arrival sequence) on the secondary tables. In general, the join is implemented using either an index or a
hash table.

Index nested loop join implementation
During the join, Db2 for i:

1. Accesses the first primary table row selected by the predicates local to the primary table.
2. Builds a key value from the join columns in the primary table.
3. Chooses the access to the first secondary table:

« If using an index, Radix Index Probe is used to locate the first row satisfying the join condition for the
secondary table. The probe uses an index with keys matching the join condition or local row
selection columns of the secondary table.

- Applies bitmap selection, if applicable.

All rows that satisfy the join condition from each secondary dial are located using an index. Rows are
retrieved from secondary tables in random sequence. This random disk I/O time often accounts for a
large percentage of the processing time of the query. Since a given secondary dial is searched once
for each row selected from the primary and the preceding secondary dials that satisfy the join
condition for each of the preceding secondary dials, many searches could be against the later dials.
Any inefficiencies in the processing of the later dials can significantly inflate the query processing
time. This reason is why attention to performance considerations for join queries can reduce the run
time of a join query from hours to minutes.

If an efficient index cannot be found, a temporary index could be created. Some join queries build
temporary indexes over secondary dials even when an index exists for all the join keys. Because
efficiency is important for secondary dials of longer running queries, the optimizer could build a
temporary index containing only entries with local row selection for that dial. This preprocessing of
row selection allows the database manager to process row selection in one pass instead of each time
rows are matched for a dial.

If using a Hash Table Probe, a hash temporary result table is created containing all rows from local
selection against the table on the first probe. The structure of the hash table is such that rows with
the same join value are loaded into the same hash table partition (clustered). The location of the
rows for any given join value can be found by applying a hashing function to the join value.

A nested loop join using a Hash Table Probe has several advantages over a nested loop join using an
Index Probe:

— The structure of a hash temporary result table is simpler than the structure of an index. Less CPU
processing is required to build and probe a hash table.

— The rows in the hash result table contain all the data required by the query. There is no need to
access the dataspace of the table with random I/O when probing the hash table.

— Like join values are clustered, so all matching rows for a given join value can typically be accessed
with a single I/O request.

— The hash temporary result table can be built using SMP parallelism.

Database performance and query optimization 59

— Unlike indexes, entries in hash tables are not updated to reflect changes of column values in the
underlying table. The existence of a hash table does not affect the processing cost of other
updating jobs in the system.

- If using a Sorted List Probe, a sorted list result is created containing all the rows from local selection
against the table on the first probe. The structure of the sorted list table is such that rows with the
same join value are sorted together in the list. The location of the rows for any given join value can be
found by probing using the join value.

« If using a Table Scan, locate the first row that satisfies the join condition or local row selection
columns of the secondary table. The join could be implemented with a table scan when the
secondary table is a user-defined table function.

4. Determines if the row is selected by applying any remaining selection local to the first secondary dial.

If the secondary dial row is not selected then the next row that satisfies the join condition is located.
Steps 1 through 4 are repeated until a row that satisfies both the join condition and any remaining
selection is selected from all secondary tables

5. Returns the result join row.

6. Processes the last secondary table again to find the next row that satisfies the join condition in that
dial.

During this processing, when no more rows satisfying the join condition can be selected, the
processing backs up to the logical previous dial. It attempts to read the next row that satisfies its join
condition.

7. Ends processing when all selected rows from the primary table are processed.
Note the following characteristics of a nested loop join:

- If ordering or grouping is specified, and all the columns are over a single table eligible to be the primary,
then the optimizer costs the join with that table as the primary table, performing the grouping and
ordering with an index.

« If ordering and grouping is specified on two or more tables or if temporary objects are allowed, Db2 for i
breaks the processing of the query into two parts:

1. Perform the join selection, omitting the ordering or grouping processing, and write the result rows to
a temporary work table. This method allows the optimizer to consider any table of the join query as a
candidate for the primary table.

2. Perform the ordering or grouping on the data in the temporary work table.

Queries that cannot use hash join
Hash join cannot be used for queries that:

« Hash join cannot be used for queries involving physical files or tables that have read triggers.

« Require that the cursor position is restored as the result of the SQL ROLLBACK HOLD statement or the
ROLLBACK CL command. For SQL applications using commitment control level other than *NONE, this
method requires that *ALLREAD be specified as the value for the ALWBLK precompiler parameter.

« Hash join cannot be used for a table in a join query where the join condition something other than an
equals operator.

« CQE does not support hash join if the query contains any of the following:

Subqueries unless all subqueries in the query can be transformed to inner joins.
UNION or UNION ALL
Perform left outer or exception join.

Use a DDS created join logical file.

Related concepts
Objects processed in parallel

60 IBM i: Database Performance and Query Optimization

The DB2 Symmetric multiprocessing feature provides the optimizer with additional methods for retrieving
data that include parallel processing. Symmetrical multiprocessing is a form of parallelism achieved on a
single system where multiple CPU and I/O processors sharing memory and disk work simultaneously
toward a single result.

Related reference

Table scan

A table scan is the easiest and simplest operation that can be performed against a table. It sequentially
processes all the rows in the table to determine if they satisfy the selection criteria specified in the query.
It does this processing in a way to maximize the I/O throughput for the table.

Sorted list probe
A sorted list probe operation is used to retrieve rows from a temporary sorted list based upon a probe
lookup operation.

Hash table probe
A hash table probe operation is used to retrieve rows from a temporary hash table based upon a probe
lookup operation.

Radix index probe

A radix index probe operation is used to retrieve the rows from a table in a keyed sequence. The main
difference between the radix index probe and the scan is that the rows returned are first identified by a
probe operation to subset them.

Join optimization algorithm
The query optimizer must determine the join columns, join operators, local row selection, dial
implementation, and dial ordering for a join query.

The join columns and join operators depend on the following situations:

« Join column specifications of the query
« Join order
« Interaction of join columns with other row selection

Join specifications not implemented for the dial are deferred until a later dial or, if an inner join, processed
as row selection.

For a given dial, the only join specifications which are usable as join columns are those being joined to a
previous dial. For example, the second dial can only use join specifications which reference columns in the
primary dial. Likewise, the third dial can only use join specifications which reference columns in the
primary and the second dials, and so on. Join specifications which reference later dials are deferred until
the referenced dial is processed.

Note: For OPNQRYF, only one type of join operator is allowed for either a left outer or an exception join.
That is, the join operator for all join conditions must be the same.

When looking for an existing index to access a secondary dial, the query optimizer looks at the left-most
key columns of the index. For a given dial and index, the join specifications which use the left-most key
columns can be used. For example:

DECLARE BROWSE2 CURSOR FOR
SELECT » FROM EMPLOYEE, EMP_ACT
WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND EMPLOYEE.HIREDATE = EMP_ACT.EMSTDATE
OPTIMIZE FOR 99999 ROWS

For the index over EMP_ACT with key columns EMPNO, PROJNO, and EMSTDATE, the join operation is
performed only on column EMPNO. After the join is performed, index scan-key selection is done using
column EMSTDATE.

The query optimizer also uses local row selection when choosing the best use of the index for the
secondary dial. If the previous example had been expressed with a local predicate as:

DECLARE BROWSE2 CURSOR FOR
SELECT x FROM EMPLOYEE, EMP_ACT

Database performance and query optimization 61

WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND EMPLOYEE.HIREDATE = EMP_ACT.EMSTDATE
AND EMP_ACT.PROJNO = '123456'

OPTIMIZE FOR 99999 ROWS

The index with key columns EMPNO, PROINO, and EMSTDATE are fully utilized by combining join and
selection into one operation against all three key columns.

When creating a temporary index, the left-most key columns are the usable join columns in that dial
position. All local row selection for that dial is processed when selecting entries for inclusion into the
temporary index. A temporary index is like the index created for a select/omit keyed logical file. The
temporary index for the previous example has key columns of EMPNO and EMSTDATE.

Since the optimizer tries a combination of join and local row selection, you can achieve almost all the
advantages of a temporary index by using an existing index. In the preceding example, using either
implementation, an existing index could be used or a temporary index could be created. A temporary
index is built with the local row selection on PROINO applied during the index creation. The temporary
index has key columns of EMPNO and EMSTDATE to match the join selection.

If, instead, an existing index was used with key columns of EMPNO, PROJNO, EMSTDATE (or PROJINO,
EMP_ACT, EMSTDATE), the local row selection can be applied at the same time as the join selection. This
method contrasts to applying the local selection before the join selection, as happens when the
temporary index is created. Or applying the local selection after the join selection, as happens when only
the first key column of the index matches the join column.

The existing index implementation is more likely to provide faster performance because join and selection
processing are combined without the overhead of building a temporary index. However, the existing index
could have slightly slower I/O processing than the temporary index because the local selection is run
many times rather than once. In general, create indexes with key columns for the combination of join and
equal selection columns as the left-most keys.

Join order optimization

The SQE optimizer allows join reordering for a join logical file. However, the join order is fixed if CQE runs a
query that references a join logical file. The join order is also fixed if the OPNQRYF JORDER(*FILE)
parameter is specified. In addition, the join order is fixed if the query options file (QAQQINI)
FORCE_JOIN_ORDER parameter is *YES

Otherwise, the following join ordering algorithm is used to determine the order of the tables:

1. Determine an access method for each individual table as candidates for the primary dial.
2. Estimate the number of rows returned for each table based on local row selection.

If the join query with ordering or grouping is processed in one step, the table with the ordering or
grouping columns is the primary table.

3. Determine an access method, cost, and expected number of rows returned for each join combination
of candidate tables as primary and first secondary tables.

The join order combinations estimated for a four table inner join would be:
1-2 2-1 1-3 3-1 1-4 4-1 2-3 3-2 2-4 4-2 3-4 4-3

4. Choose the combination with the lowest join cost and number of selected rows or both.

5. Determine the cost, access method, and expected number of rows for each remaining table joined to
the previous secondary table.

6. Select an access method for each table that has the lowest cost for that table.
7. Choose the secondary table with the lowest join cost and number of selected rows or both.
8. Repeat steps 4 through 7 until the lowest cost join order is determined.

Note: After dial 32, the optimizer uses a different method to determine file join order, which might not be
the lowest cost.

62 IBM i: Database Performance and Query Optimization

When a query contains a left or right outer join or a right exception join, the join order is not fixed.
However, all from-columns of the ON clause must occur from dials previous to the left or right outer or
exception join. For example:

FROM A INNER JOIN B ON A.C1=B.C1
LEFT OUTER JOIN C ON B. C2=C.C2

The allowable join order combinations for this query would be:
1-2-3,2-1-3,0r 2-3-1

Right outer or right exception joins are implemented as left outer and left exception, with files flipped. For
example:

FROM A RIGHT OUTER JOIN B ON A.C1=B.C1

is implemented as B LEFT OUTER JOIN A ON B.C1=A.C1. The only allowed join order is 2-1.

Related information
Open Query File (OPNQRYF) command
Change Query Attributes (CHGQRYA) command

Full outer join
Full outer join is supported by the SQE optimizer. Just as right outer and right exception join are rewritten
to the supported join types of inner, left outer or left exception, a full outer join is also rewritten.

A full outer join of A FULL OUTER JOIN B is equivalent to a (A LEFT OUTER JOIN B) UNION ALL (B LEFT
EXCEPTION JOIN A). The following example illustrates the rewrite.

SELECT EMPNO, LASTNAME, DEPTNAME

FROM CORPDATA.EMPLOYEE XXX

FULL OUTER JOIN CORPDATA.DEPARTMENT YYY
ON XXX.WORKDEPT = YYY.DEPTNO

This query is rewritten as the following:

SELECT EMPNO, LASTNAME, DEPTNAME
FROM CORPDATA.EMPLOYEE XXX
LEFT OUTER JOIN CORPDATA.DEPARTMENT YYY
ON XXX.WORKDEPT = YYY.DEPTNO
UNION ALL
SELECT EMPNO, LASTNAME, DEPTNAME
FROM CORPDATA.DEPARTMENT YYY
LEFT EXCEPTION JOIN CORPDATA.EMPLOYEE XXX
ON XXX.WORKDEPT = YYY.DEPTNO

A query with multiple FULL OUTER JOIN requests, suchas A FULL OUTER JOIN B FULL OUTER JOIN
C can quickly become complicated in this rewritten state. This complication is illustrated in the following
example.

If not running in live data mode, the optimizer could facilitate performance both during optimization and
runtime by encapsulating intermediate results in a temporary data object. This object can be optimized
once and plugged into both the scanned and probed side of the rewrite. These shared temporary objects
eliminate the need to make multiple passes through the specific tables to satisfy the request.

In this example, the result of the (A FULL OUTER JOIN B) is a candidate for encapsulation during its FULL
OUTER join with C.

A FULL OUTER JOIN B FULL OUTER JOIN C
This query is rewritten as the following:

((A LEFT OUTER JOIN B) UNION ALL (B LEFT EXCEPTION JOIN A)) LEFT OUTER JOIN C)
UNION ALL
(C LEFT EXCEPTION JOIN ((A LEFT OUTER JOIN B) UNION ALL (B LEFT EXCEPTION JOIN A))

Database performance and query optimization 63

FULL OUTER implies that both sides of the join request can generate NULL values in the resulting answer
set. Local selection in the WHERE clause of the query could result in the appropriate downgrade of the
FULL OUTER to a LEFT OUTER or INNER JOIN.

If you want FULL OUTER JOIN behavior and local selection applied, specify the local selection in the ON
clause of the FULL OUTER JOIN, or use common table expressions. For example:

WITH TEMPEMP AS (SELECT %* FROM CORPDATA.EMPLOYEE XXX WHERE SALARY > 10000)
SELECT EMPNO, LASTNAME, DEPTNAME

FROM TEMPEMP XXX

FULL OUTER JOIN CORPDATA.DEPARTMENT YYY

ON XXX.WORKDEPT = YYY.DEPTNO

Join cost estimation and index selection

As the query optimizer compares the various possible access choices, it must assign a numeric cost value
to each candidate. The optimizer uses that value to determine the implementation which consumes the
least amount of processing time. This costing value is a combination of CPU and I/O time

In steps 3 and 5 in “Join order optimization” on page 62, the optimizer estimates cost and chooses an
access method for a given dial combination. The choices made are like the choices for row selection,
except that a plan using a probe must be chosen.

The costing value is based on the following assumptions:

- Table pages and index pages must be retrieved from auxiliary storage. For example, the query optimizer
is not aware that an entire table might be loaded into active memory as the result of a Set Object
Access (SETOBJACC) CL command. Use of this command could significantly improve the
performance of a query. However, the optimizer does not change the query implementation to take
advantage of the memory resident state of the table.

« The query is the only process running on the system. No allowance is given for system CPU utilization or
I/0 waits which occur because of other processes using the same resources. CPU-related costs are
scaled to the relative processing speed of the system running the query.

« The values in a column are uniformly distributed across the table. For example, if 10% of the table rows
have the same value, then on average, every 10th row in the table contains that value.

e The column values are independent from any other column values in a row, unless there is an index
available whose key definition is (A, B). Multi-key field indexes allow the optimizer to detect when the
values between columns are correlated.

For example, a column named A has a value of 1 in 50% of the rows in a table. A column named B has a
value of 2 in 50% of the rows. It is expected that a query which selects rows where A = 1,andB = 2
selects 25% of the rows in the table.

The main factors in the join cost calculation for secondary dials are:

« the number of rows selected in all previous dials
« the number of rows which match, on average, each of the rows selected from previous dials.

Both of these factors can be derived by estimating the number of matching rows for a given dial.

When the join operator is something other than equal, the expected number of matching rows is based on
the following default filter factors:

» 33% for less-than, greater-than, less-than-equal-to, or greater-than-equal-to
* 90% for not equal

25% for BETWEEN range (OPNQRYF %RANGE)

10% for each IN list value (OPNQRYF %VALUES)

For example, when the join operator is less-than, the expected number of matching rows is 0.33 *
(number of rows in the dial). If no join specifications are active for the current dial, the Cartesian product
is assumed to be the operator. For Cartesian products, the number of matching rows is every row in the
dial, unless local row selection can be applied to the index.

64 IBM i: Database Performance and Query Optimization

When the join operator is equal, the expected number of rows is the average number of duplicate rows for
a given value.

Related information
Set Object Access (SETOBJACC) command

Transitive closure predicates

For join queries, the query optimizer could do some special processing to generate additional selection.
When the set of predicates that belong to a query logically infer extra predicates, the query optimizer
generates additional predicates. The purpose is to provide more information during join optimization.

See the following examples:

SELECT » FROM EMPLOYEE, EMP_ACT
WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND EMPLOYEE.EMPNO = '000010'

The optimizer modifies the query to:

SELECT » FROM EMPLOYEE, EMP_ACT
WHERE EMPLOYEE.EMPNO EMP_ACT . EMPNO
AND EMPLOYEE.EMPNO '000010"
AND EMP_ACT.EMPNO '000010"'

The following rules determine which predicates are added to other join dials:

« The dials affected must have join operators of equal.

« The predicate is isolatable, which means that a false condition from this predicate omits the row.
« One operand of the predicate is an equal join column and the other is a constant or host variable.
« The predicate operator is not LIKE (OPNQRYF %WLDCRD, or *CT).

The predicate is not connected to other predicates by OR.

The query optimizer generates a new predicate, whether a predicate exists in the WHERE clause
(OPNQRYF QRYSLT parameter).

Some predicates are redundant. Redundant predicates occur when a previous evaluation of other
predicates in the query already determines the result that predicate provides. Redundant predicates can
be specified by you or generated by the query optimizer during predicate manipulation. Redundant
predicates with operators of =, >, >=, <, <=, or BETWEEN (OPNQRYF *EQ, *GT, *GE, *LT, *LE, or %RANGE)
are merged into a single predicate to reflect the most selective range.

Look ahead predicate generation (LPG)

A special type of transitive closure called look ahead predicate generation (LPG) might be costed for joins.
In this case, the optimizer tries to minimize the random I/0 of a join by pre-applying the query results to a
large fact table. LPG is typically used with a class of queries referred to as star join queries. However, it
can possibly be used with any join query.

Look at the following query:

SELECT * FROM EMPLOYEE,EMP_ACT
WHERE EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND EMPLOYEE.EMPNO ='000010"

The optimizer could decide to internally modify the query to be:

WITH HT AS (SELECT *
FROM EMPLOYEE
WHERE EMPLOYEE.EMPNO="'000010")

SELECT *
FROM HT, EMP_ACT
WHERE HT.EMPNO = EMP_ACT.EMPNO
AND EMP_ACT.EMPNO IN (SELECT DISTINCT EMPNO
FROM HT)

Database performance and query optimization 65

The optimizer places the results of the "subquery" into a temporary hash table. The hash table of the
subquery can be applied in one of two methods against the EMP_ACT (fact) table:

« The distinct values of the hash tables are retrieved. For each distinct value, an index over EMP_ACT is
probed to determine which records are returned for that value. Those record identifiers are normally
then stored and sorted (sometimes the sorting is omitted, depending on the total number of record ids
expected). Once the ids are determined, the subset of EMP_ACT records can be accessed more
efficiently than in a traditional nested loop join processing.

« EMP_ACT can be scanned. For each record, the hash table is probed to see if the record joins at all to
EMPLOYEE. This method allows for efficient access to EMP_ACT with a more efficient record rejection
method than in a traditional nested loop join process.

Note: LPG processing is part of the normal processing in the SQL Query Engine. CQE only considers the
first method, requires that the index in question by an EVI and also requires use of the STAR_JOIN and
FORCE_JOIN_ORDER QAQQINI options.

Tips for improving performance when selecting data from more than two tables

The following suggestion is only applicable to CQE and is directed specifically to select-statements that
access several tables. For joins that involve more than two tables, you might want to provide redundant
information about the join columns. The CQE optimizer does not generate transitive closure predicates
between two columns. If you give the optimizer extra information to work with when requesting a join, it
can determine the best way to do the join. The additional information might seem redundant, but is
helpful to the optimizer.

If the select-statement you are considering accesses two or more tables, all the recommendations
suggested in “Creating an index strategy” on page 204 apply. For example, instead of coding:

EXEC SQL
DECLARE EMPACTDATA CURSOR FOR
SELECT LASTNAME, DEPTNAME, PROJNO, ACTNO
FROM CORPDATA.DEPARTMENT, CORPDATA.EMPLOYEE,
CORPDATA.EMP_ACT
WHERE DEPARTMENT.MGRNO = EMPLOYEE.EMPNO
AND EMPLOYEE.EMPNO = EMP_ACT.EMPNO
END-EXEC.

Provide the optimizer with a little more data and code:

EXEC SQL
DECLARE EMPACTDATA CURSOR FOR
SELECT LASTNAME, DEPTNAME, PROJNO, ACTNO
FROM CORPDATA.DEPARTMENT, CORPDATA.EMPLOYEE,
CORPDATA.EMP_ACT
WHERE DEPARTMENT.MGRNO = EMPLOYEE.EMPNO
AND EMPLOYEE.EMPNO = EMP_ACT.EMPNO
AND DEPARTMENT.MGRNO = EMP_ACT.EMPNO
END-EXEC.

Multiple join types for a query

Multiple join types (inner, left outer, right outer, left exception, and right exception) can be specified in the
query using the JOIN syntax. However, the Db2 for i can only support one join type of inner, left outer, or
left exception join for the entire query. The optimizer determines the overall join type for the query and
reorders the files to achieve the correct semantics.

Note: This section does not apply to SQE or OPNQRYF.

The optimizer evaluates the join criteria, along with any row selection, to determine the join type for each
dial and the entire query. Then the optimizer generates additional selection using the relative row number
of the tables to simulate the different types of joins that occur within the query.

