AIX Version 7.1

Performance management

—

—

- - .

- Y E————
[—— -
- - . .
I S S W E—
I 7 E—

Note

Before using this information and the product it supports, read the information in “Notices” on page
433.

This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new
editions.

© Copyright International Business Machines Corporation 2010, 2017.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

ADOUL this dOCUMENT......c.ueeiiiiiiiiiiiiiiterietereseeseseseacesessesesessesessssesessnsessssnsessssasesess Vi

LTt a1 NF=d N T = USSR vii
(OF Y Y Y T A AT AV AN 5 U vii
IS0 G000, ueeiiieeerieectestesieeterte s e st e eesreestess e e besreesseeseesseasseaseasseeseesteess e be e seaseeseeer e e beesaeareensesreeseereeareeneens vii

Performance management......cccccieiieiiieiieieiieniieniecaniessecassesssassessssessssassessssessasasses d

WV NaE'S NMEW..etiiitiiieeeieeit et ste st e st e st e st e st e s be e saeesateesbeesabeesbeesaseenbeesaseenbaesaseenbaesssesnsaesssesnseensaesnsannes 1
The basiCs Of PEITOIMANCE......ii ettt e e e e ate e e te e e ate e e ateesenaee e ntaeennsaeennees 2
YV =T IR e T4 4 Lo U S 2
PErfOrMAaNCE ODJECTIVES. ..ot et e e et e e s tt e e s at e e sertaesebteesstas e seeeeeseeesnsteennns 2
Program eXeCULION MOUEL.......iiciiiieiieecteeeteee ettt e e e et e e et e e e rae e e ate e e nbee e ntee e ntaeenenns 3
o ETe [V Tl a1 =T- Tod YOO 4
Yo LAV Ul a1 =T =Y ol 0SS 5
SYSEEM LUNING ettt ettt ettt ee e et e e te e et ee e e bee e et aae e e baeeesbee e e saeeessaeesssaeeassaeesnsesessseeesnsesesnseeeensens 6
PEIfOIMANCE TUNING...ci ittt e e et e e et e e e tt e e et e e e sb e e e steeessaeesseeessaesssaeasseessseesnnsaanns 7
The performanCe-tUNING PIrOCESS ...ccccviiicieeeeieeecteeeeteeeeteeeeteeeeteeesteessateeesateesssteesssaeeesseesenseaesnseeesnnees 7
Performance beNChMArKiNGoociieiiiieececce e et e e ae e e e be e e s bee e s baeesaraeesareas 11
System performanCe MONITOMING.......cucuii it e ee e e e e e sree e e be e e e bee e e baeesbaeesnseeessseeeenseessnsens 12
Continuous system-performance Monitoring advantages........ueccveeecieeeiieeeiieeecreeecreeecreeesreeeeaaeeas 12
Continuous system-performance monitoring with commands........ccccveeevieeccieecciecccee e, 13
Continuous system-performance monitoring with the topas command........c.cccocceevvieriinneeniiennnenne. 15
Continuous system-performance monitoring using Performance Management (PM) service.......... 26
Initial performance diagNOSiS.......uiiciiiiciiecie ettt et ree e tee e e te e e e bee e e bae e s bae e eabeeeenraeesareeeensaeennees 27
Types of reported performance ProblemMScccuii it te e e aee e saee e 27
Performance-Limiting Resource identification........cccoccuiiieiie e 30
Workload management dia@NOSiS. . ..cuieiciieeiiieecieeecreescteeecteeeeteeeebeesesteeessseeesabaeeesseessstasansseesnnseenns 35
RESOUICE MANAEEMENT ittt e e e e e e s e et e e e e e sessssabbbeaeaeaeeeeesssssssssrssseaaaeeeessssnnnes 35
Processor scheduler PeIrfOrMANCE......ciccii ittt e e e e e e e e e e e ate e s abee s aaee e ateeenes 36
Virtual Memory Manager PeIfOrMANCE......iicciiiciie et et et eeeeeesteeeete e e e teeeeteeestaeessaeesnsaeesnsasannes 41
Fixed-disk storage management PerformManCe........cccuiiecieeeiiieeiiee ettt rre e e sare e e saae e e aaee s 48
SUPPOIt fOr PINNEA MEMOIY ittt et e e e et e e e ate e e abe e e saeessnteeennseeessaesnssaeennsnas 50
L TU LT T oY ol=T [o = SRS 51
Symmetrical Multiprocessor concepts and archit@CtUreoecveeeecieiecciieeieeecee e 51
SMP PEITOIMANCE ISSUBS ..eiiuiieieiieeeieeeeieeeeteeeeteeeeteeesteesesteesestaeeesseesassasasssasssssesasssesssssesssssesssessnnes 57
SMP WOTKLOAAS .eeuviiiiiiiieiieriterte sttt ettt et st e e sbe e sateesbe e sateesbeesabeebeesaseesbaesasesaseesssesnseensaesseenns 58
SMP thread SChEAULING ..cceeeieeee ettt e e et e e te e e e be e e e abeeesasaeessseeannsaeennseeas 61
TREEAM TUNING oot e et e et e e e ette e e et e e e stee e steeeestaesasteessteesastaeansteesnstesenseeesnssnssnnes 62
SIMP L00LS 1eviiiiieiieceert ettt et sttt et e bt e st e st e e e r e e st e e s aee s b e e baesbe e baesaae e beesaaeebaenne 68
Performance planning and implementationocie ettt e e e 70
Workload component identifiCation.........cueecuieiciiieciccce e e 71
Performance requirements doCUMENTAtION........ciiciiieiiie et 71
Workload resource requirements eStiMatioNn.......cueeciieieciieieiieeccee e e rre e re e e be e e aaeeas 72
Efficient Program Design and IMplementation.......c.cccueeeiieeeciieeeciee et vee e e e 78
Performance-related installation GUIAELINEScccueiieiii e e e 85
POWERZ-DASEA SYSTEMS......iiiiiiiiciieeeciie et ectte et eete e e stte e et e e e ttee s atee e sbaeesssaeessee e sseeennseeensseeennsaesnnsens 89
POWER4 performance ENhanCeMENTS.cccuiiciieeeiiee et ece et este e e sre e e rae e e sareeesate e e s ateessaeeeennsaeeenes 89
POWER4-based systems scalability enhanCcements.........cccveeeieiieiie et e 90
B4 -DIT KEIMEL cutiiiieieite ettt et ettt e st e st e s s ae e st e e bee s be e baesabe e baesase s beesabeentaenasesareenbaens 90
Enhanced Journaled File SYSTEM...... ittt ettt st e e s bre e e ebee e sbaeessaeessaeesans 91
MiCIOPIOCESSOr PEITOIMANCE. .. .tiiiiieeeeieeeeteeceteeeetee e e e eeteeeette e e rteeeerteeeesteeeesaeesasseeeseeeesteeesteesseeesnsees 91

Microprocessor performance MONITOMING. . .c.uiiiciiiiiieieiieereeeeree e ete et sre e sre e s sbee s saeessareeesanas 91

Using the time command t0 Measure MICrOPrOCESSON USE .cuvuerrveerrreersireersireessireesssseesssseesssseessssees 99
Microprocessor-intensive program identifiCation........ccoeceevriieinieereiieereeeee e 101
Using the pprof command to measure microprocessor usage of kernel threadscccccevveveennne 103
Detecting instruction emulation with the emstat t00L......ccccovciiiriiiiriiiieeee e 105
Detecting alignment exceptions with the alstat toolcccvveviiiiiiiiiiii e 106
Restructuring executable programs with the fdpr program........ccceeeeiriiiiniiinnieeneesee e 107
Controlling contention for the MiCrOPrOCESSON......iiiiiiiiiiieiriie ettt see s e e aee e 108
Microprocessor-efficient user ID administration with the mkpasswd command...........cccceeeuuneeenn. 113
=TT VA o 1= T (o] 4 F- LTt TSR 114
MEIMIOIY USBEE. .. uuueeeettieieet e e ettt e et e e e e e s e e rer ettt e e e e e e se s n s sra e e et e aeeseesaea s s rseneeeeeeeaesesaannnnnneneaeeas 114
MeMOrY-1EaKING PrOSIAMSiiiiiiiiiiieiiiee ettt seiee st e seee e ssteesssteeserteesssteesasteesasteessssaesssseessseeesaneessnns 126
Memory requirements assessment with the rmss commandocccoeeereiieeecccciee e, 127
VMM memory load control tuning with the schedo commandcccceeveiriiiiniiiiniiennceeeeee, 133
VMM page replacement tUNING....c..iiv ittt ettt sre s sre e s st e ssate e ssaeesssbeessabeessaseeesaseessasens 136
Page SPACE AllOCAtiON...ciiiiiiiiiieiciieetee ettt st e st e st e s e e s e e e e s e e e s beeesabeeenareas 139
Paging-space threSholds TUNING....c.cuii ittt e s be e s e e s s aeeeas 141
Paging space garbage COLLECTION.....ciiuiiiiiieiteretee ettt s e e s bee e s bee e saeeessneas 141
Y F= Y=Y I 01T g T VUSRI 143
AIX MeEMOTY affiNiTy SUPPOI it e e eeee e e e e trr e e s e e s e e e e e snbeeeesenseeeeeeensreneeans 145
oYLl o oY=l TP PPPPTTTO 147
MULLIPLE PAZE SIZE SUPPOI...utiiiiiieiiiieirite ettt e este e s et e s st e s s teessbeessbeesssbaessssaessssaesssseesssaessssaesnns 150
VMM thread interrupt Offload........ueei et e et e e e et e e e e nrre e s 159
Logical volume and disk I/O perfOrmManCe... ... ciiieciieiiieeniieeecte ettt ste e s essaeeessseeesseeessnseen 160
MONITOTING AISK IO .uuiiiiiiiiiiiieieiee ettt sttt et e s sate e s s ate e s ate e s sbeesaseesaasaessssaesnssaesssaesnnseesan 160
LVM performance monitoring with the lvmstat command........cceccveiriiiiiiiiiniieineeeee e 181
Logical volume attributes that affect performancCe......ccociviiiiieini e 182
LVM performance tuning with the lvmo command.........ccceeiiiiriiiiiiienieeee e 185
e NV A] (or=1 Vo] W] g g Lo N oo a 1] To [T =1 4o 1= S 186
Volume group reCOMMENAATIONSiiiiiiiiiiiiiiiee it reieesrreesere e sttt e seaeeesesteeseseeeseseeesaneeesaseessaseessan 186
Reorganizing logiCal VOLUMEScccuiiiiiiiiiiteeiiecete sttt sttt st e s ae e s ee e s saae e s aae e sseeessasaesnanas 187
Tuning logical VOLUME STFHPING weeecviiiriiieeiiieriie ettt ettt et see e s e e s sbe e s sabeessabeessabeeesabeesnnseas 188
USING FAW ISK I/ ciieieiieieieeectt ettt ettt et eee e st st e e st e e s bt e e s seeesnteesnseesssaesassaesnsaenn 191
USINE SYNC aNd TSYNC CALLS ..eiiiuiiiiiiiiiee ettt ee s s aee e st e s s be e e s bee e s e e e sbaeesaneas 191
Setting SCSI-adapter and disk-device qUEUE LIMITS......cccviiirieiiiieeiiiee e 191
Expanding the CONFIGUIATION ...ciiiiiiiieiieceeee ettt be e e s e e e sbaeesaseeean 192
USING RAID ...etiiiiieeeiiee ettt ecite ettt e st e e stte e sttt e stt e e sbae e sbeeesabaeesasaessabeeesstessasaeesnsaeesseeesasanesssenesnseeesnss 193
FaST WHITE CACNE USE.uiiiiiiiiieiciee ettt ettt st e s s bt e e s e e e s bee e ssbeeesbeeessseeesaseesnases 193
Fast I/O Failure for Fibre Channel deVICES. i e e e e e e e e e e e e e e e esesaaaaaaas 194
Dynamic Tracking of Fibre Channel deViCes......ccuuiiiiiiiiiiiieiieecsieess st saee s 194
Fast I/O Failure and dynamic tracking iNteraCtion........cocceerrieerrieenniieinteeseeesee st saee e 197
[\ 4LeYe [V =T 1 R 198
Cautions aNd DENETITS. ...ttt e st s e e ba e s bae e s be e e e neeean 198
IO I U ol a1y (T or (1] TP 198
I/0 optimization and the Pf MOAULE.......ccceeiiiie e erre e e e e e e eree e e e eans 199
NN T el o] (=T 0 g T=T ol 7= o o 1O USRS 199
MIO enviroNMENTAl Variables. ...ttt s re e s s naeas 200
Module OptioNS AETINITIONS......uiiiieciiee e e e e e e s et ee e e e e s nbee e e s e nseaeeesanssenessnnens 202
EXQMPLES USING MIO.....ciiiiiiiiiiiiiieeiiite st et ssite s st e s s te e s sbe e s s be e s s beeesabaesssbeeessbeeesnseeesnseessnseessnsens 206
| EC YA (T 0 T 01T (] o T Ua LTSRS 212
L E Y £] (=T 0 g1 4] 1= T USSR 212
Potential performance inhibitors for JFS and Enhanced JFS........ccviiiiciiiei e 216
File system performance eNhanCeMENTS.ciiicciiee i e e e ecre e e e eere e e s eenree e e seensreeeeeennes 216
File system attributes that affect performancCe........coo i e 218
File SYStEM rEOrZaNIZAtiON. . ciiiiiieiieeeiieeerie ettt s st e st e s be e s sbe e s s beesssbeessabeesssbaesssseessaseessnses 220
File system performanCe TUNING.....c.cuii ittt ettt ssre e sste e s sate e ssaee e s sateessseeessssaessseesnnsaens 222
File system logs and log logical volumes reorganization........cccceveeerieennieennieesnieesneeeseeeeseee e 230

D] QA O I o - U o = S OO 231

=Y ATV oT 4 2 o= o] 0 F= ot =TSSR 233

TCP and UDP performanCe TUNING......c.ccutiiiieiiiieeiiieeseieeseteessiteeseiteeseseeesseesseseesssseessaseesssseesssseessans 233
Tuning Mbuf POOL PEIMTOIMEANCEeiiiiiiiieiieece et e s ae e s s e e s s e e e saneas 264
FN S ot Tod a1 U] T o= PP S SPTSPP 266
NaME FESOLULION TUNINEG . ..ciiiiiiiiiieiriee ettt e s ste e s s te e s sseeessaeeessaeeesssteessseaesastaesasseessnseesnnee 268
Network performanCe ANalySiS. ... iiieii e e ceceee e eecee e e e e e e eere e e e sernbreeeessbeeeesessseseeeennseneeean 268
TR o T=T (o] ' = ot =TSSR 297
NETWOTK FIle SYSTEMIS.....eiiii ettt crte e e e ree e e s e tre e e e e e ate e e s e esbeeeeeenbeeeesensaasesennsseeesennees 297
NFS performance monitoring and tUNING.......cciiuiiiiiieriiieriee et e st e s e e s e e s seeesssbeesssreessnseesas 302
NFS performance monitoring 0N the SEIVET ...ttt sbee s 308
NFS performance tuning 0N the SEIVET ...t ae e 309
NFS performance monitoring 0N the CLENT.......c.iii i 311
NFS tUNING ON The CLENT....iiiiiieieece ettt e st e s b e ssate e ssabeesssbeesasseesansaess 313
(08 Tl LI 11 C=T Y23 (=T o o TSR 318
TSR (= (=T =T o= PRSPPI 320
[N B o =T (o 0 g F= (o =TSSR 323
Performance considerations with logical partitioning........ccccceirvieiriieiniieineeeeee e 323
Workload management in @ PartitioN. ... iciericiericieeseee et e s s e s sbe e s s aee e 325
LPAR PeIrfOrmManCe iMPaACES....uuiieiecciieeeieeiiieeeeeiiteeeeeeitteeeeeectreeeeseesteaessessssaessesnssssessssssensessnsssessnnnsen 325
MICrOProCeSSOIS iN @ PArTITION....uiiiiieciiieececttee e cectee e eeectee e e eecre e e e e e ebee e e e eebreeeeeesseeeesesssenessennssneensanns 326
Virtual processor management within @ partition.........cueeiieiiiiieneee e 326
PAVo] o] Tot=N o] gl ofe] a I-]Te (=1 -1 {To] 1T TSRS 328
(B)VAaF: Tn alToll (o T=4Tor- 1N o X- 1 41 A o] a 1o =SSO OO PPPR 329
DLPAR performance imMpPliCatiONS......cuuiiiiecciieee e ccieee e ecctie e e e e e e e rre e e seereee e e e enbeeeesenseeeeseenssanesens 329
DLPAR TUNING T00LS.cccuutiiiiiieieiiiteeiteeeite et ste sttt s it e s sate e s te e ssate e s saeeesataesseeesstaesnssaesnsseesnssaesnnsens 330
DLPAR guidelines for adding miCroproCeSSOrS OF MEMOIY...cccuuiirrueeerieeerireeesireeessseeessseesssseesssseessnnes 330
N TTolf o o=V 1 (oY o 11 = PP 331
N Tolg o R o T hATo] o] = = Vot £ TSR 331
Implementation of MiCro-Partitioning.......ccccvcviiiiiiiiiiieiniee et see e s saee s s ree s sbeeesans 331
Micro-Partitioning performance iMpliCatioNS......c..iiiiiiiiieeniieceecee e s s 332
Active Memory EXPanSION (AME)......ooui ittt ee e e e te e e tte e e ateeeeataeeesteeeesteaeesteseenseeanes 332
FaYoYo]LTor=\ dTo] I HU T2Vl o T~ PRSPPI 342
Compiler optimization tECANIGUESoiii ittt e e et e e s e rre e e e s e nrae e e e e naaeeeean 342
Optimizing preprocessors for FORTRAN and €civciiiiiiiiiiiieniitesieessiieessieeessneessneeessneeesseeessneeens 350
Code-optimization tECANIGUES ..c..eeiieei ettt et e e rre e e e et e e e s e ee e e s e baeeeeeenreeeesensenns 350
Java performanCe MONITOTING. . .c.uiiiiieieiieeeite ettt srte sttt e s e e e et e e s beeesbaeesbaeesseeesssaeesseeesseeessaeens 352
AdVANTAZES OF JAVA..iicutiiiiiiiiiieeette ettt s st e s st e e e st e e s be e e s bee e s beeessbeeesbeeesseessnseeessseaesnsens 352
Java performance SUIAELINES.c.uii ittt st s e e s be e s ssbe e s beessnbeesnsraesas 352
JaVA MONITONNG T00LS.cciiiiiiiieieiiee ettt ettt se e s s rbe e s bt e e sbe e e sbae e sbaeesbaesssaessnsaeessenenns 353
Y AU a1 Y= (o N 5 TP 353
Garbage collection impacts t0 Java PerformManCe.....c.uiiuierriieniiieereeeee e e e s 354
Performance analysis With the trace facCility.......cccueeieecieee e e e 354
The trace facCility iN LAIL.....uiiee i e e e et e e e e e b e e e e senraeeeeeenraeees 355
Trace faCility USE EXAMPLE....uiii ettt etee et e e e et e e e seate e e e e e e bte e e e eenseeeeeensaneessnnsaneens 357
Starting and controlling trace from the command LiNecceiviiiiriiiiniiieniieeceee e 359
Starting and controlling trace from @ Programc.civcieiicieriiiei ettt see e e e s bee e 360
Using the trcrpt command t0 fOrmat @ rePOIT ..cieuiiiiciiiiciee et 361
AdAING NEW TrACE BVENTS ciiiiiiieiieeeitieeeite ettt st e e st e e stee e stee s sbee e sbaeesabaeesbaeessaeessaeesssaeesnseesnne 362
Reporting performanCe PrODLEMIS....c..ui ittt s e e s ee e ssate e s aseesnaeeesnaeas 366
MEASUIING The DASELING ...eiiiiiiieeeeeee ettt e s e e s e e e s e e s sabeeesabeessaseas 366
What is a performance ProblEMi. e rrer e e e e e s e e te e e e e e ebaee e e e ensreeeeeennes 367
Performance problem deSCrIPTIONuuieii it e e e e re e e e e e e e e e seabaee e s e saeeeeenns 367
Reporting a performance ProbLEM ... et s s be e s be e e aeeeas 367
Monitoring and tuning commands and SUDTOULINES.....ccccuiiiiiieiiiieirieeciee et e e 369
Performance reporting and analysis COMMANGASccccueiiiiiiniiiiniieenieeee e e e s seee s saeas 369
Performance tUning COMMANASoiiviiiiiiiiiiiee ettt seee e ssiee s ssaee e s sbee s sbee e sbeeesbeessbeeesasens 372
Performance-related SUDIOULINES ...oc..iiiiiiiiiiectect e 373
Efficient use of the Ld COMMEANG.....coi it e s e s saee e s aee e saeeesaeas 373

vi

Rebindable executable Programs ... s s 374

Prebound subrouting LIBraries ...ttt 374
ACCESSING The PrOCESSON TIMEBT..uiiiiiiiieieiieieeietee st seie e st e sste e s teessateesasteesssteesssteessseeessntaesssseessseeesnnes 375
POWER-based-architecture-unique tiMEr ACCESS ...uuiiiieiiireeeeiiireeeeiieeeeeeitreeeeeearreeeeeenseeeessesseeees 376
Access to timer registers in POWEIPC SYSTEMS ...coccuiiiiiiiiiiieiiieeiriee sttt e ssee e ssee e s seeesseeessseeesans 377
Second SUDFOUTING EXAMPLE.....uiiii et e e e e e bee e e e e bt e e e e eensteeeeeessaneesennseneessnnns 377
Determining MiCrOPrOCESSOr SPEEU .. tiiiiiet ittt rctteeseiteeserteesriteesstteessteessrtessbeeesseessseesssseessssaessseessnses 377
National language support: LoCale VErSUS SPEEMU......uiiiciieirciieiriieeeite et eite e ereeeseeeesbaessaeeesseesssaeenns 380
Programming CONSIAEIATIONS.c.uiiiiiieriiieieiee st rrtt e st e st e st essabe e s s be e s sbeesssbeesssbeessssaesssseesssseenan 380
SOME SIMPLFYING FULES...eiiiiieieiiee ettt sttt e s s be e s s be e s s be e s s sbe e s s beessabeessasaesnnes 381
SEHHING The LOCALE. .. it i ettt ettt s e e s s te e e sate e s sateessaaeessseeesnasaesnneas 382
TUNGDLE PArAMETEIS. .. . eiiiee ittt ecte e e e et e e e et e e e e eestaeeeeeanstaeeseasstaeaeeansseeaesennsanessannssnnenans 382
ENVIFONMENT VANADLESvviiiiiiieiieeeteeete ettt sttt ettt s et e e st e e s saae e saaeesstaesseeesnseenn 382
Kernel tuNable ParamEters.ttt e e e e tre e e s et re e e s e eeabee e e e snbtaeeseesseneeeennnes 408
NetWOork tUNable PAramMELErS.cuu ettt e e e etere e e e sttt e e e e s aba e e e s enbteeeesenseeneeasnses 422
TEST CASE SCENAIIOS. cuuviiieiieeetieeeitteeeitteeeitte e sttt e sttt esbaeesbeeesseeesseeessteessseeesseeessseessseesnsseesnssaesnsseesnnsens 427
Improving NFS client large file Writing performancCe......cc.covvieiiiiiniiieeite et 427
Streamline security subroutines with password iNdeXiNG........ccoecveeiriiieirieeiniieeree et 428
ST RIS o F= Y =Yo7 =T 2 o Y25 SR 429
RV I o o 2 o o Lo 2SR 431
[\ [0] 4o =33 5 X 1
e EAVZ (oY oTo] o3Vt] g YT =T =\ o a1 SRR 434
= e (=10 =T OO O OO UPRROPPRROPRPRN 435

L =) Y.). 3/ J

About this document

This topic collection provides application programmers, customer engineers, system engineers, system
administrators, experienced end users, and system programmers with complete information about how to
perform such tasks as assessing and tuning the performance of processors, file systems, memory, disk
I/0, Network File System (NFS), Java, and communications I/0. This topic collection also discusses
efficient system and application design, including their implementation. This topic collection is also
available on the documentation CD that is included with the operating system.

Highlighting

The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Identifies examples of specific data values, examples of text similar to what you
might see displayed, examples of portions of program code similar to what you might
write as a programmer, messages from the system, or information you should
actually type.

Monospace

Case-sensitivity in AIX

Everything in the AIX® operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the 1s command to list files. If you type LS,
the system responds that the command is not found. Likewise, FILEA, FilLea, and filea are three
distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be
performed, always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2010, 2017 vii

viii AIX Version 7.1: Performance management

Performance management

Learn about assessing and tuning the performance of processors, file systems, memory, disk I/O, NFS,
Java, and communications I/O. This topic collection also address efficient system and application design,
including their implementation.

Note: The metrics reported by any statistics tool such as 1parstat, vmstat, iostat, and mpstat,
including the applications based on Perfstat application program interface (API) or system performance
measurement interface (SPMI) API varies to a certain extent when run in parallel with the same sampling
interval at any given instance of time.

What's new in Performance management

Read about new or significantly changed information for the Performance management topic collection.

How to see what's new or changed
To help you see where technical changes have been made, the information center uses:
. The >! image to mark where new or changed information begins.

. The I< image to mark where new or changed information ends.

May 2018

- Added two examples to troubleshoot the disk performance issues by using the iostat command in the
“Assessing disk performance with the iostat command ” on page 161 topic.

April 2017

« Added information about the Fibre Channel Adapter Outstanding-Requests Limit tunable parameter in
the “Disk and disk adapter tunable parameters” on page 418 topic.

December 2016

« Updated information about the AIXTHREAD_SCOPE environment variable in the “Thread environment
variables ” on page 63 topic.

« Removed information about the mempools tunable parameter because it is not supported in AIX 6.1
and later.

October 2016

The following information is a summary of the updates that are made to the Performance Tuning topic
collection:

« Added information about the “VMM thread interrupt offload” on page 159 topic.

© Copyright IBM Corp. 2010, 2017 1

The basics of performance

Evaluating system performance requires an understanding of the dynamics of program execution.

System workload

An accurate and complete definition of a system's workload is critical to predicting or understanding its
performance.

A difference in workload can cause far more variation in the measured performance of a system than
differences in CPU clock speed or random access memory (RAM) size. The workload definition must
include not only the type and rate of requests sent to the system, but also the exact software packages
and in-house application programs to be executed.

It is important to include the work that a system is doing in the background. For example, if a system
contains file systems that are NFS-mounted and frequently accessed by other systems, handling those
accesses is probably a significant fraction of the overall workload, even though the system is not officially
a server.

A workload that has been standardized to allow comparisons among dissimilar systems is called a
benchmark. However, few real workloads duplicate the exact algorithms and environment of a
benchmark. Even industry-standard benchmarks that were originally derived from real applications have
been simplified and homogenized to make them portable to a wide variety of hardware platforms. The
only valid use for industry-standard benchmarks is to narrow the field of candidate systems that will be
subjected to a serious evaluation. Therefore, you should not solely rely on benchmark results when trying
to understand the workload and performance of your system.

It is possible to classify workloads into the following categories:

Multiuser
A workload that consists of a number of users submitting work through individual terminals. Typically,
the performance objectives of such a workload are either to maximize system throughput while
preserving a specified worst-case response time or to obtain the best possible response time for a
constant workload.

Server
A workload that consists of requests from other systems. For example, a file-server workload is
mostly disk read and disk write requests. It is the disk-I/O component of a multiuser workload (plus
NFS or other I/O activity), so the same objective of maximum throughput within a given response-time
limit applies. Other server workloads consist of items such as math-intensive programs, database
transactions, printer jobs.

Workstation
A workload that consists of a single user submitting work through a keyboard and receiving results on
the display of that system. Typically, the highest-priority performance objective of such a workload is
minimum response time to the user's requests.

Performance objectives

After defining the workload that your system will have to process, you can choose performance criteria
and set performance objectives based on those criteria.

The overall performance criteria of computer systems are response time and throughput.

Response time is the elapsed time between when a request is submitted and when the response from that
request is returned. Examples include:

« The amount of time a database query takes
« The amount of time it takes to echo characters to the terminal
- The amount of time it takes to access a Web page

Throughput is a measure of the amount of work that can be accomplished over some unit of time.
Examples include:

2 AIX Version 7.1: Performance management

« Database transactions per minute
- Kilobytes of a file transferred per second
« Kilobytes of a file read or written per second

« Web server hits per minute
The relationship between these metrics is complex. Sometimes you can have higher throughput at the
cost of response time or better response time at the cost of throughput. In other situations, a single

change can improve both. Acceptable performance is based on reasonable throughput combined with
reasonable response time.

In planning for or tuning any system, make sure that you have clear objectives for both response time and
throughput when processing the specified workload. Otherwise, you risk spending analysis time and
resource dollars improving an aspect of system performance that is of secondary importance.

Program execution model

To clearly examine the performance characteristics of a workload, a dynamic rather than a static model of
program execution is necessary, as shown in the following figure.

Hardware Operating System

Processor Pipeline Current Instruction

and Registers

Cache Currently Dispatched Thread

Translation
Lookaside Buffer

(TLB)

Dispatchable Threads

Real Memory Waiting Threads/

Interrupt Handlers

Disk Executable Programs

Figure 1. Program Execution Hierarchy

To run, a program must make its way up both the hardware and operating-system hierarchies in parallel.
Each element in the hardware hierarchy is more scarce and more expensive than the element below it.
Not only does the program have to contend with other programs for each resource, the transition from
one level to the next takes time. To understand the dynamics of program execution, you need a basic
understanding of each of the levels in the hierarchy.

Performance management 3

Hardware hierarchy

Usually, the time required to move from one hardware level to another consists primarily of the latency of
the lower level (the time from the issuing of a request to the receipt of the first data).

Fixed disks

The slowest operation for a running program on a standalone system is obtaining code or data from a disk,
for the following reasons:

« The disk controller must be directed to access the specified blocks (queuing delay).
« The disk arm must seek to the correct cylinder (seek latency).
« The read/write heads must wait until the correct block rotates under them (rotational latency).

« The data must be transmitted to the controller (transmission time) and then conveyed to the application
program (interrupt-handling time).

Slow disk operations can have many causes besides explicit read or write requests in the program.
System-tuning activities frequently prove to be hunts for unnecessary disk I/O.

Real memory

Real memory, often referred to as Random Access Memory, or RAM, is faster than disk, but much more
expensive per byte. Operating systems try to keep in RAM only the code and data that are currently in use,
storing any excess onto disk, or never bringing them into RAM in the first place.

RAM is not necessarily faster than the processor though. Typically, a RAM latency of dozens of processor
cycles occurs between the time the hardware recognizes the need for a RAM access and the time the data
or instruction is available to the processor.

If the access is going to a page of virtual memory that is stored over to disk, or has not been brought in
yet, a page fault occurs, and the execution of the program is suspended until the page has been read from
disk.

Translation Lookaside Buffer (TLB)

Programmers are insulated from the physical limitations of the system by the implementation of virtual
memory. You design and code programs as though the memory were very large, and the system takes
responsibility for translating the program's virtual addresses for instructions and data into the real
addresses that are needed to get the instructions and data from RAM. Because this address-translation
process can be time-consuming, the system keeps the real addresses of recently accessed virtual-
memory pages in a cache called the translation lookaside buffer (TLB).

As long as the running program continues to access a small set of program and data pages, the full virtual-
to-real page-address translation does not need to be redone for each RAM access. When the program
tries to access a virtual-memory page that does not have a TLB entry, called a TLB miss, dozens of
processor cycles, called the TLB-miss latency are required to perform the address translation.

Caches

To minimize the number of times the program has to experience the RAM latency, systems incorporate
caches for instructions and data. If the required instruction or data is already in the cache, a cache hit
results and the instruction or data is available to the processor on the next cycle with no delay. Otherwise,
a cache miss occurs with RAM latency.

In some systems, there are two or three levels of cache, usually called L1, L2, and L3. If a particular
storage reference results in an L1 miss, then L2 is checked. If L2 generates a miss, then the reference
goes to the next level, either L3, if it is present, or RAM.

Cache sizes and structures vary by model, but the principles of using them efficiently are identical.

4 AIX Version 7.1: Performance management

Pipeline and registers

A pipelined, superscalar architecture makes possible, under certain circumstances, the simultaneous
processing of multiple instructions. Large sets of general-purpose registers and floating-point registers
make it possible to keep considerable amounts of the program's data in registers, rather than continually
storing and reloading the data.

The optimizing compilers are designed to take maximum advantage of these capabilities. The compilers'
optimization functions should always be used when generating production programs, however small the
programs are. The Optimization and Tuning Guide for XL Fortran, XL C and XL C++ describes how programs
can be tuned for maximum performance.

Software hierarchy

To run, a program must also progress through a series of steps in the software hierarchy.

Executable programs

When you request a program to run, the operating system performs a number of operations to transform
the executable program on disk to a running program.

First, the directories in the your current PATH environment variable must be scanned to find the correct
copy of the program. Then, the system loader (not to be confused with the 1d command, which is the
binder) must resolve any external references from the program to shared libraries.

To represent your request, the operating system creates a process, or a set of resources, such as a private
virtual address segment, which is required by any running program.

The operating system also automatically creates a single thread within that process. A thread is the
current execution state of a single instance of a program. In AIX, access to the processor and other
resources is allocated on a thread basis, rather than a process basis. Multiple threads can be created
within a process by the application program. Those threads share the resources owned by the process
within which they are running.

Finally, the system branches to the entry point of the program. If the program page that contains the entry
point is not already in memory (as it might be if the program had been recently compiled, executed, or
copied), the resulting page-fault interrupt causes the page to be read from its backing storage.

Interrupt handlers

The mechanism for notifying the operating system that an external event has taken place is to interrupt
the currently running thread and transfer control to an interrupt handler.

Before the interrupt handler can run, enough of the hardware state must be saved to ensure that the
system can restore the context of the thread after interrupt handling is complete. Newly invoked interrupt
handlers experience all of the delays of moving up the hardware hierarchy (except page faults). Unless the
interrupt handler was run very recently (or the intervening programs were very economical), it is unlikely
that any of its code or data remains in the TLBs or the caches.

When the interrupted thread is dispatched again, its execution context (such as register contents) is
logically restored, so that it functions correctly. However, the contents of the TLBs and caches must be
reconstructed on the basis of the program's subsequent demands. Thus, both the interrupt handler and
the interrupted thread can experience significant cache-miss and TLB-miss delays as a result of the
interrupt.

Waiting threads

Whenever an executing program makes a request that cannot be satisfied immediately, such as a
synchronous I/0 operation (either explicit or as the result of a page fault), that thread is put in a waiting
state until the request is complete.

Normally, this results in another set of TLB and cache latencies, in addition to the time required for the
request itself.

Performance management 5

Dispatchable threads

When a thread is dispatchable but not running, it is accomplishing nothing useful. Worse, other threads
that are running may cause the thread's cache lines to be reused and real memory pages to be reclaimed,
resulting in even more delays when the thread is finally dispatched.

Currently dispatched threads
The scheduler chooses the thread that has the strongest claim to the use of the processor.

The considerations that affect that choice are discussed in “Processor scheduler performance” on page
36. When the thread is dispatched, the logical state of the processor is restored to the state that was in
effect when the thread was interrupted.

Current machine instructions

Most of the machine instructions are capable of executing in a single processor cycle if no TLB or cache
miss occurs.

In contrast, if a program branches rapidly to different areas of the program and accesses data from a large
number of different areas causing high TLB and cache-miss rates, the average number of processor cycles
per instruction (CPI) executed might be much greater than one. The program is said to exhibit poor
locality of reference. It might be using the minimum number of instructions necessary to do its job, but it
is consuming an unnecessarily large number of cycles. In part because of this poor correlation between
number of instructions and number of cycles, reviewing a program listing to calculate path length no
longer yields a time value directly. While a shorter path is usually faster than a longer path, the speed ratio
can be very different from the path-length ratio.

The compilers rearrange code in sophisticated ways to minimize the number of cycles required for the
execution of the program. The programmer seeking maximum performance must be primarily concerned
with ensuring that the compiler has all of the information necessary to optimize the code effectively,
rather than trying to second-guess the compiler's optimization techniques (see Effective Use of
Preprocessors and the Compilers). The real measure of optimization effectiveness is the performance of
an authentic workload.

System tuning

After efficiently implementing application programs, further improvements in the overall performance of
your system becomes a matter of system tuning.

The main components that are subject to system-level tuning are:

Communications I/0
Depending on the type of workload and the type of communications link, it might be necessary to tune
one or more of the following communications device drivers: TCP/IP, or NFS.

Fixed Disk
The Logical Volume Manager (LVM) controls the placement of file systems and paging spaces on the
disk, which can significantly affect the amount of seek latency the system experiences. The disk
device drivers control the order in which I/O requests are acted upon.

Real Memory
The Virtual Memory Manager (VMM) controls the pool of free real-memory frames and determines
when and from where to steal frames to replenish the pool.

Running Thread
The scheduler determines which dispatchable entity should next receive control. In AIX, the
dispatchable entity is a thread. See “Thread support ” on page 36.

6 AIX Version 7.1: Performance management

Performance tuning

Performance tuning of the system and workload is very important.

The performance-tuning process
Performance tuning is primarily a matter of resource management and correct system-parameter setting.
Tuning the workload and the system for efficient resource use consists of the following steps:

1. Identifying the workloads on the system
2. Setting objectives:
a. Determining how the results will be measured
b. Quantifying and prioritizing the objectives
3. Identifying the critical resources that limit the system's performance
4. Minimizing the workload's critical-resource requirements:
a. Using the most appropriate resource, if there is a choice
b. Reducing the critical-resource requirements of individual programs or system functions
c. Structuring for parallel resource use
5. Modifying the allocation of resources to reflect priorities
a. Changing the priority or resource limits of individual programs
b. Changing the settings of system resource-management parameters
6. Repeating steps 3 through 5 until objectives are met (or resources are saturated)
7. Applying additional resources, if necessary

There are appropriate tools for each phase of system performance management (see “Monitoring and
tuning commands and subroutines” on page 369). Some of the tools are available from IBM®; others are
the products of third parties. The following figure illustrates the phases of performance management in a
simple LAN environment.

) J |

Plan Install Monitor Tune Expand
(Idle) (Unbalanced) (Balanced) (Overloaded)

Figure 2. Performance Phases

Identification of the workloads

It is essential that all of the work performed by the system be identified. Especially in LAN-connected
systems, a complex set of cross-mounted file systems can easily develop with only informal agreement

Performance management 7

among the users of the systems. These file systems must be identified and taken into account as part of
any tuning activity.

With multiuser workloads, the analyst must quantify both the typical and peak request rates. It is also
important to be realistic about the proportion of the time that a user is actually interacting with the
terminal.

An important element of this identification stage is determining whether the measurement and tuning
activity has to be done on the production system or can be accomplished on another system (or off-shift)
with a simulated version of the actual workload. The analyst must weigh the greater authenticity of results
from a production environment against the flexibility of the nonproduction environment, where the
analyst can perform experiments that risk performance degradation or worse.

Importance of setting objectives

Although you can set objectives in terms of measurable quantities, the actual desired result is often
subjective, such as satisfactory response time. Further, the analyst must resist the temptation to tune
what is measurable rather than what is important. If no system-provided measurement corresponds to
the desired improvement, that measurement must be devised.

The most valuable aspect of quantifying the objectives is not selecting numbers to be achieved, but
making a public decision about the relative importance of (usually) multiple objectives. Unless these
priorities are set in advance, and understood by everyone concerned, the analyst cannot make trade-off
decisions without incessant consultation. The analyst is also apt to be surprised by the reaction of users
or management to aspects of performance that have been ignored. If the support and use of the system
crosses organizational boundaries, you might need a written service-level agreement between the
providers and the users to ensure that there is a clear common understanding of the performance
objectives and priorities.

Identification of critical resources

In general, the performance of a given workload is determined by the availability and speed of one or two
critical system resources. The analyst must identify those resources correctly or risk falling into an
endless trial-and-error operation.

Systems have both real, logical, and possibly virtual resources. Critical real resources are generally easier
to identify, because more system performance tools are available to assess the utilization of real
resources. The real resources that most often affect performance are as follows:

CPU cycles

« Memory

« I/O bus

« Various adapters
« Disk space

« Network access

Logical resources are less readily identified. Logical resources are generally programming abstractions
that partition real resources. The partitioning is done to share and manage the real resource.

You can use virtual resources on POWER5-based IBM System p systems, including Micro-Partitioning®,
virtual Serial Adapter, virtual SCSI and virtual Ethernet.

Some examples of real resources and the logical and virtual resources built on them are as follows:

CPU

« Processor time slice
« CPU entitlement or Micro-Partitioning
- Virtual Ethernet

8 AIX Version 7.1: Performance management

Memory

- Page frames

- Stacks

« Buffers

* Queues

 Tables

« Locks and semaphores

Disk space

 Logical volumes
« File systems
« Files

Logical partitions
Virtual SCSI

Network access

 Sessions
 Packets

- Channels
 Shared Ethernet

Itis important to be aware of logical and virtual resources as well as real resources. Threads can be
blocked by a lack of logical resources just as for a lack of real resources, and expanding the underlying
real resource does not necessarily ensure that additional logical resources will be created. For example,
the NFS server daemon, or nfsd daemon on the server is required to handle each pending NFS remote
I/0 request. The number of nfsd daemons therefore limits the number of NFS I/O operations that can be
in progress simultaneously. When a shortage of nfsd daemons exists, system instrumentation might
indicate that various real resources, like the CPU, are used only slightly. You might have the false
impression that your system is under-used and slow, when in fact you have a shortage of nfsd daemons
which constrains the rest of the resources. A nfsd daemon uses processor cycles and memory, but you
cannot fix this problem simply by adding real memory or upgrading to a faster CPU. The solution is to
create more of the logical resource, the nfsd daemons.

Logical resources and bottlenecks can be created inadvertently during application development. A
method of passing data or controlling a device may, in effect, create a logical resource. When such
resources are created by accident, there are generally no tools to monitor their use and no interface to
control their allocation. Their existence may not be appreciated until a specific performance problem
highlights their importance.

Minimizing critical-resource requirements

Consider minimizing the workload's critical-resource requirements at three levels.

Using the appropriate resource
The decision to use one resource over another should be done consciously and with specific goals in
mind.

An example of a resource choice during application development would be a trade-off of increased
memory consumption for reduced CPU consumption. A common system configuration decision that
demonstrates resource choice is whether to place files locally on an individual workstation or remotely on
a server.

Performance management 9

Reducing the requirement for the critical resource
For locally developed applications, the programs can be reviewed for ways to perform the same function
more efficiently or to remove unnecessary function.

At a system-management level, low-priority workloads that are contending for the critical resource can be
moved to other systems, run at other times, or controlled with the Workload Manager.

Structuring for parallel use of resources
Because workloads require multiple system resources to run, take advantage of the fact that the
resources are separate and can be consumed in parallel.

For example, the operating system read-ahead algorithm detects the fact that a program is accessing a
file sequentially and schedules additional sequential reads to be done in parallel with the application's
processing of the previous data. Parallelism applies to system management as well. For example, if an
application accesses two or more files at the same time, adding an additional disk drive might improve the
disk-I/0 rate if the files that are accessed at the same time are placed on different drives.

Resource allocation priorities
The operating system provides a number of ways to prioritize activities.

Some, such as disk pacing, are set at the system level. Others, such as process priority, can be set by
individual users to reflect the importance they attach to a specific task.

Repeating the tuning steps

A truism of performance analysis is that there is always a next bottleneck. Reducing the use of one
resource means that another resource limits throughput or response time.

Suppose, for example, we have a system in which the utilization levels are as follows:
CPU: 90% Disk: 70% Memory 60%

This workload is CPU-bound. If we successfully tune the workload so that the CPU load is reduced from
90 to 45 percent, we might expect a two-fold improvement in performance. Unfortunately, the workload
is now I/O-limited, with utilizations of approximately the following:

CPU: 45% Disk: 90% Memory 60%

The improved CPU utilization allows the programs to submit disk requests sooner, but then we hit the
limit imposed by the disk drive's capacity. The performance improvement is perhaps 30 percent instead
of the 100 percent we had envisioned.

There is always a new critical resource. The important question is whether we have met the performance
objectives with the resources at hand.

A Attention: Improper system tuning with the vimo, 100, schedo, no, and nfso tuning commands
might result in unexpected system behavior like degraded system or application performance, or a
system hang. Changes should only be applied when a bottleneck has been identified by
performance analysis.

Note: There is no such thing as a general recommendation for performance dependent tuning settings.

Applying additional resources

If, after all of the preceding approaches have been exhausted, the performance of the system still does
not meet its objectives, the critical resource must be enhanced or expanded.

If the critical resource is logical and the underlying real resource is adequate, the logical resource can be
expanded at no additional cost. If the critical resource is real, the analyst must investigate some
additional questions:

« How much must the critical resource be enhanced or expanded so that it ceases to be a bottleneck?

10 AIX Version 7.1: Performance management

« Will the performance of the system then meet its objectives, or will another resource become saturated
first?

« If there will be a succession of critical resources, is it more cost-effective to enhance or expand all of
them, or to divide the current workload with another system?

Performance benchmarking

When we attempt to compare the performance of a given piece of software in different environments, we
are subject to a number of possible errors, some technical, some conceptual. This section contains mostly
cautionary information. Other sections of this topic collection discuss the various ways in which elapsed
and process-specific times can be measured.

When we measure the elapsed (wall-clock) time required to process a system call, we get a number that
consists of the following:

« The actual time during which the instructions to perform the service were executing

« Varying amounts of time during which the processor was stalled while waiting for instructions or data
from memory (that is, the cost of cache and TLB misses)

The time required to access the clock at the beginning and end of the call
- Time consumed by periodic events, such as system timer interrupts
« Time consumed by more or less random events, such as I/O interrupts

To avoid reporting an inaccurate number, we normally measure the workload a number of times. Because
all of the extraneous factors add to the actual processing time, the typical set of measurements has a
curve of the form shown in the following illustration.

"Actual" value Mean of measured values

Distribution of
measured values

Figure 3. Curve for Typical Set of Measurement

The extreme low end may represent a low-probability optimum caching situation or may be a rounding
effect.

A regularly recurring extraneous event might give the curve a bimodal form (two maxima), as shown in the
following illustration.

Performance management 11

"Actual” value Mean

Figure 4. Bimodal Curve

One or two time-consuming interrupts might skew the curve even further, as shown in the following
illustration:

"Actual" value Mean of measured values

Distribution of
measured values

Figure 5. Skewed Curve

The distribution of the measurements about the actual value is not random, and the classic tests of
inferential statistics can be applied only with great caution. Also, depending on the purpose of the
measurement, it may be that neither the mean nor the actual value is an appropriate characterization of
performance.

System performance monitoring

AIX provides many tools and techniques for monitoring performance-related system activity.

Continuous system-performance monitoring advantages
There are several advantages to continuously monitoring system performance.
Continuous system performance monitoring can do the following:

- Sometimes detect underlying problems before they have an adverse effect
« Detect problems that affect a user's productivity

« Collect data when a problem occurs for the first time

« Allow you to establish a baseline for comparison

Successful monitoring involves the following;:

12 AIX Version 7.1: Performance management

Periodically obtaining performance-related information from the operating system

Storing the information for future use in problem diagnosis
« Displaying the information for the benefit of the system administrator

Detecting situations that require additional data collection or responding to directions from the system
administrator to collect such data, or both

Collecting and storing the necessary detail data

Tracking changes made to the system and applications

Continuous system-performance monitoring with commands

The vmstat, iostat, netstat, and sax commands provide the basic foundation upon which you can
construct a performance-monitoring mechanism.

You can write shell scripts to perform data reduction on the command output, warn of performance
problems, or record data on the status of a system when a problem is occurring. For example, a shell
script can test the CPU idle percentage for zero, a saturated condition, and execute another shell script for
when the CPU-saturated condition occurred. The following script records the 15 active processes that
consumed the most CPU time other than the processes owned by the user of the script:

ps -ef | egrep -v "STIME|$LOGNAME" | sort +3 -r | head -n 15

Continuous performance monitoring with the vmstat command
The vmstat command is useful for obtaining an overall picture of CPU, paging, and memory usage.

The following is a sample report produced by the vmstat command:

vmstat 5 2

kthxr memoxy page faults cpu

r b avm fre re pi po fr sr cy in sy cs us sy id wa

1 1 197167 477552 © 0O © 7 21 0O 106 1114 451 O © 99 ©
0 0 197178 477541 © 00 © 0 O 0 443 1123 442 0 0 99 0

Remember that the first report from the vmstat command displays cumulative activity since the last
system boot. The second report shows activity for the first 5-second interval.

For detailed discussions of the vmstat command, see “vmstat command” on page 91, “Memory usage
determination with the vmstat command” on page 114, and “Assessing disk performance with the vmstat
command ” on page 164.

Continuous performance monitoring with the iostat command
The iostat command is useful for determining disk and CPU usage.

The AIX operating system maintains a history of disk activity. In the following example, the disk I/O
history is disabled because the following message is displayed:

Disk history since boot not available.

The interval disk I/0 statistics are unaffected by this.

To enable disk I/0 history, from the command line enter smit chgsys and then select true from the
Continuously maintain DISK I/0O history field.

The following sample report is displayed when you run the iostat command:

iostat 5 2

tty: tin tout avg-cpu: 9% user % sys % idle % iowait
0.1 102.3 0.5 0.2 99.3 0.1

Disk history since boot not available.

Performance management 13

The interval disk I/0 statistics are unaffected by this.

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.2 79594 .4 0.6 6.6 73.7 19.2

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdiskl 0.0 0.0 0.0 0 0

hdisk0® 78.2 1129.6 282.4 5648 0

cdl 0.0 0.0 0.0 0 0

The first report from the iostat command shows cumulative activity since the last reset of the disk
activity counters. The second report shows activity for the first 5-second interval.

Related concepts

The iostat command

The iostat command is the fastest way to get a first impression, whether or not the system has a disk
I/O-bound performance problem.

Related tasks

Assessing disk performance with the iostat command
Begin the assessment by running the iostat command with an interval parameter during your system's
peak workload period or while running a critical application for which you need to minimize I/O delays.

Continuous performance monitoring with the netstat command
The netstat command is useful in determining the number of sent and received packets.

The following is a sample report produced by the netstat command:

netstat -I en® 5

input (en@) output input (Total) output
packets errs packets errs colls packets errs packets errs colls
8305067 0 7784711 0 0 20731867 0 20211853 0 0
3 0 1 0 0 7 0 5 0 0
24 0 127 0 0 28 0 131 0 0
CTRL C

Remember that the first report from the netstat command shows cumulative activity since the last
system boot. The second report shows activity for the first 5-second interval.

Other useful netstat command options are -s and -v. For details, see “netstat command ” on page 271.

Continuous performance monitoring with the sar command
The saxr command is useful in determining CPU usage.

The following is a sample report produced by the saxr command:

sar -P ALL 5 2
AIX aixhost 2 5 0OO40BOF4ACO0O 01/29/04

10:23:15 cpu %usT %sys %wio %idle
10:23:20 99
100
99
100
99
96
100
100
97
98

10:23:25

T WNPFPO 1T WP O

98
100
99
99
99

Average

PRPOON NWOORODOOOO
[oJoNoNoNo] [coJoNoNoNoNol o NoNo)
[oJoNoRoNo] [oJoJoNoNoNoNoNoNoN ol

T WNEFP O

The saxr command does not report the cumulative activity since the last system boot.

14 AIX Version 7.1: Performance management

For details on the saxr command, see “The sar command” on page 94 and “Assessing disk performance
with the sar command ” on page 165.

Continuous system-performance monitoring with the topas command

The topas command reports vital statistics about the activity on the local system, such as real memory
size and the number of write system calls.

The topas command uses the curses library to display its output in a format suitable for viewing on an
80x25 character-based display or in a window of at least the same size on a graphical display. The topas
command extracts and displays statistics from the system with a default interval of two seconds. The
topas command offers the following alternate screens:

« Overall system statistics
« List of busiest processes
WLM statistics

List of hot physical disks

Logical partition display
« Cross-Partition View

The bos.perf.tools fileset and the perfagent.tools fileset must be installed on the system to run
the topas command.

For more information on the topas command, see the topas command in Commands Reference, Volume
5.

The overall system statistics screen
The output of the overall system statistics screen consists of one fixed section and one variable section.

The top two lines at the left of the output shows the name of the system that the topas program is
running on, the date and time of the last observation, and the monitoring interval. Below this sectionis a
variable section which lists the following subsections:

« CPU utilization
« Network interfaces

Physical disks

« WLM classes

» Processes

To the right of this section is the fixed section which contains the following subsections of statistics:
- EVENTS/QUEUES

FILE/TTY

PAGING

MEMORY

PAGING SPACE

« NFS

The following is a sample output of the overall system statistics screen:

Topas Monitor for host: aixhost EVENTS/QUEUES FILE/TTY

Wed Feb 4 11:23:41 2004 Interval: 2 Cswitch 53 Readch 6323
Syscall 152 Writech 431

Kernel 0.0 | | Reads 3 Rawin 0

User 0.9 | | Writes 0 Ttyout 0

Wait 0.0 | | Forks 0 Igets 0

Idle 99.0 | IHHHHHHHHHHHHHHEEHHEEREREHERE) Execs 0 Namei 10
Runqueue 0.0 Dirblk 0

Network KBPS I-Pack 0-Pack KB-In KB-Out Waitqueue 0.0

end 0.8 0.4 0.9 0.0 0.8

Performance management 15

100 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
Faults 2 Real,MB 4095
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 8.0
hdisk0® 0.0 0.0 0.0 0.0 0.0 Pgspln 0 9% Noncomp 15.8
hdiskl 0.0 0.0 0.0 0.0 0.0 PgspOut 0 9% Client 14.7
PageIn (0]
WLM-Class (Active) CPU% Mem% Disk-I/0% PageOut 0 PAGING SPACE
System 0 0 0 Sios 0 Size,MB 512
Shared 0] 0] 0] % Used 1.2
Default 0 0 0 NFS (calls/sec) % Free 98.7
Name PID CPU% PgSp Class 0 ServerV2 0
topas 10442 3.0 0.8 System ClientV2 0 Press:
ksh 13438 0.0 0.4 System ServerV3 0 "h" for help
gil 1548 0.0 0.0 System ClientV3 0 "q" to quit

Except for the variable Processes subsection, you can sort all of the subsections by any column by moving
the cursor to the top of the desired column. All of the variable subsections, except the Processes
subsection, have the following views:

« List of top resource users
« One-line report presenting the sum of the activity

For example, the one-line-report view might show just the total disk or network throughput.

For the CPU subsection, you can select either the list of busy processors or the global CPU utilization, as
shown in the above example.

List of busiest processes screen of the topas monitor
To view the screen that lists the busiest processes, use the =P flag of the topas command.

This screen is similar to the Processes subsection of the overall system statistics screen, but with
additional detail. You can sort this screen by any of the columns by moving the cursor to the top of the
desired column. The following is an example of the output of the busiest processes screen:

Topas Monitor for host: aixhost Interval: 2 Wed Feb 4 11:24:05 2004
DATA TEXT PAGE PGFAULTS

USER PID PPID PRI NI RES RES SPACE TIME CPU% I/0 OTH COMMAND

root 1 0 60 20 202 9 202 0:04 0.0 121 1277 init

root 774 0 17 41 4 (0] 4 0:00 0.0 0 2 reaper

root 1032 0 60 41 4 (0] 4 0:00 0.0 (0] 2 xmgc

root 1290 0 36 41 4 0 4 0:01 0.0 0 530 netm

root 1548 0 37 41 17 0 17 1:24 0.0 0 23 gil

root 1806 0 16 41 4 0 4 0:00 0.0 0 12 wlmsched

root 2494 0 60 20 4 0 4 0:00 0.0 0 6 rtcmd

root 2676 1 60 20 91 10 91 0:00 0.0 20 6946 cron

root 2940 1 60 20 171 22 171 0:00 0.0 15 129 errdemon

root 3186 0 60 20 4 0 4 0:00 0.0 0 125 kbiod

root 3406 1 60 20 139 2 139 1:23 0.0 1542187 syncd

root 3886 0 50 41 4 0 4 0:00 0.0 0 2 jfsz

root 4404 0 60 20 4 0 4 0:00 0.0 0 2 lvmbb

root 4648 1 60 20 17 1 17 0:00 0.0 1 24 sa_daemon

root 4980 1 60 20 97 13 97 0:00 0.0 37 375 srcmstr

root 5440 1 60 20 15 2 15 0:00 0.0 7 28 shlap

root 5762 1 60 20 4 0 4 0:00 0.0 0 2 random

root 5962 4980 60 20 73 10 73 0:00 0.0 22 242 syslogd

root 6374 4980 60 20 63 2 63 0:00 0.0 2 188 rpc.lockd

root 6458 4980 60 20 117 12 117 0:00 0.0 54 287 portmap

WLM statistics screen of the topas monitor

To view the screen that shows the WLM statistics, use the =W flag of the topas command.

This screen is divided into the following sections:

« The top section is the list of busiest WLM classes, as presented in the WLM subsection of the overall
system statistics screen, which you can also sort by any of the columns.

« The second section of this screen is a list of hot processes within the WLM class you select by using the
arrow keys or the f key.

The following is an example of the WLM full screen report:

16 AIX Version 7.1: Performance management

Topas Monitor for host: aixhost Interval: 2 Wed Feb 4 11:24:29 2004

WLM-Class (Active) CPU% Memg% Disk-I/0%
System 0 0 0
Shared 0 0 0
Default 0 0 0
Unmanaged 0] 0] 0]
Unclassified 0 0 0

DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/0 OTH COMMAND
root 1 0 60 20 202 9 202 0:04 0.0 0 0 init
root 774 0 17 41 4 0 4 0:00 0.0 0 0 reaper
root 1032 0 60 41 4 0 4 0:00 0.0 0 0 xmgc
root 1290 0 36 41 4 0 4 0:01 0.0 0 0 netm
root 1548 0 37 41 17 0 17 1:24 0.0 0 0 gil
root 1806 0 16 41 4 0 4 0:00 0.0 0 0 wlmsched
root 2494 0 60 20 4 0 4 0:00 0.0 0 0 rtcmd
root 2676 1 60 20 91 10 91 0:00 0.0 0 0 cron
root 2940 1 60 20 171 22 171 0:00 0.0 0 0 errdemon
root 3186 0 60 20 4 0 4 0:00 0.0 0 0 kbiod

Viewing the physical disks screen

To view the screen that shows the list of hot physical disks, use the -D flag with the topas command.

The maximum number of physical disks displayed is the number of hot physical disks being monitored as

specified with the -d flag. The list of hot physical disks is sorted by the KBPS field.

The following example shows the report generated by the topas -D command:

Topas Monitor for host: aixcomm Interval: 2 Fri Jan 13 18:00:16 XXXX
Disk Busy% KBPS TPS KB-R ART MRT KB-W AWT MWT AQW AQD
hdisk@e 3.0 56.0 3.5 0.0 0.0 5.4 56.0 5.8 33.2 0.0 0.0
cdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

For more information on the topas-D command, see the topas command in Commands Reference,
Volume 5.

Viewing the Cross-Partition panel

To view cross-partition statistics in topas, use the -C flag with the topas command or press the C key
from any other panel.

The screen is divided into the following sections:

« The top section displays aggregated data from the partition set to show overall partition, memory, and
processor activity. The G key toggles this section between brief listing, detailed listing, and off.

« The bottom section displays the per partition statistics, which are in turn divided into two sections:
shared partitions and dedicated partitions. The S key toggles the shared partition section on and off.
The D key toggles the dedicated partition section on and off.

The following is a full screen example of the output from the topas -C command:

Topas CEC Monitor Interval: 10 Wed Mar 6 14:30:10 XXXX
Partitions Memory (GB) Processors

Shr: 4 Mon: 24 1InUse: 14 Mon: 8 PSz: 4 Shr_PhysB: 1.7

Ded: 4 Avl: 24 Avl: 8 APP: 4 Ded_PhysB: 4.1

Host 0S M Mem InU Lp Us Sy Wa Id PhysB Ent %EntC Vcsw PhI
-------------------------------- shared-------------cccccccne e
ptoolsl A53 u 1.1 0.4 4 15 3 082 1.30 0.50 22.0 200 5

ptools5 A53 U 12 10 1 12 3 085 0.20 0.25 0.3 121 3

ptools3 A53 C5.02.6 1 10 1 089 0.15 0.25 0.3 52 2

ptools7 A53 ¢ 2.00.4 1 0 1 099 0.05 0.10 0.3 112 2
------------------------------- dedilcatted e L L L L L L L
ptools4 A53 S 0.6 6.3 2 12 3 0 85 0.60

ptools6 A52 1.1 0.1 1 11 7 0 82 0.50

Performance management 17

ptools8 A52

2 0.50
ptools2 A52 2

1.160.1 1 11 7 08
1.10.1 1 11 7 08
Partitions can be sorted by any column except Host, OS, and M, by moving the cursor to the top of the

appropriate column. For more information on the topas -C command, see the topas command in
Commands Reference, Volume 5.

Viewing local logical partition-level information

To view partition-level information and per-logical-processor performance metrics, use the -L flag with
the topas command or press the L key from any other panel.

The screen is divided into two sections:

- The upper section displays a subset of partition-level information.
- The lower section displays a sorted list of logical processor metrics.

The following example shows the output from the topas -L command:

Interval: 2 Logical Partition: aix Sat Mar 13 09:44:48 XXXX
Poolsize: 3.0 Shared SMT ON Online Memory: 8192.0
Entitlement: 2.5 Mode: Capped Online Logical CPUs: 4

Online Virtual CPUs: 2
%user Y%sys %wait %idle physc %entc %lbusy app vcsw phint %hypv hcalls
47.5 32.5 7.0 13.0 2.0 80.0 100.0 1.0 240 150 5.0 1500

logcpu minpf majpf intr csw icsw rung lpa scalls usr sys wt idl pc lcsw
cpu0 1135 145 134 78 60 2 95 12345 10 65 15 10 0.6 120
cpul 998 120 104 92 45 1 89 4561 8 67 25 0 0.4 120
cpu2 2246 219 167 128 72 3 92 76300 20 50 20 10 0.5 120
cpu3 2167 198 127 62 43 2 94 1238 18 45 15 22 0.5 120

For more information on the topas-L command, see the topas command in Commands Reference,
Volume 5.

SMIT panels for topas/topasout/topasrec

SMIT panels are available for easier configuration and setup of the topas recording function and report
generation.

To go to the topas smit panel, type smitty performance (or smitty topas)and select Configure
Topas options.

The Configure Topas Options menu displays:

Configure Topas Options
Move cursor to desired item and press Enter

Add Host to topas external subnet search file (Rsi.hosts)
List hosts in topas external subnet search file (Rsi.hosts)
List active recordings

Start new recording

Stop recording

List completed recordings

Generate Report

Setup Performance Management

For more information, see the topas command in Commands Reference, Volume 5.

Adding a host to the topas external subnet search file (Rsi.hosts)
The PTX clients and topas -C|topasrec -Ccommand are limited in that the Remote Statistics
Interface (Rsi) API used to identify remote hosts.

Whenever a client is started, it broadcasts a query on the xmquery port which is a registered service of
the inetd daemon. Remote hosts see this query and the inetd. conf file is configured to start the
xmsexvd or xmtopas daemons and reply to the querying client. The existing architecture limits the
xmquery call to within hosts residing on the same subnet as the system making the query.

18 AIX Version 7.1: Performance management

To get around this problem, PTX has always supported user-customized host lists that reside outside the
subnet. The RSi reads this host list (RSi.hosts file), and directly polls any hostname or IP listed. You can
customize RSi. hosts file. By default, the RSi searches the following locations in order of precedence:

1. $HOME/Rsi.hosts
2. /etc/perf/Rsi.hosts
3. /usx/lpp/perfmgr/Rsi.hosts

This files format lists one host per entry line, either by Internet Address format or fully-qualified
hostname, as in the following example:

ptoolsll.austin.ibm.com
9.3.41.206

Select the Add Host to topas external subnet search file (Rsi.hosts) option to add hosts to the Rsi.hosts
file. Select the List hosts in topas external subnet search file (Rsi.hosts) option to see the list of options
inthe Rsi.hosts file.

Start new recordings

Use Start new recordings to start CEC/local persistent/non-persistent recording based on the user
selected inputs. The user will be presented with separate menus for starting CEC/local persistent/non-
persistent recording.

Persistent recording

Persistent recordings are those recordings that are started from SMIT with the option to specify the cut
and retention. You can specify the number of days of recording to be stored per recording file (cut) and the
number of days of recording to be retained (retention) before it can be deleted. Not more than one
instance of Persistent recording of the same type (CEC or local) recording can be run in a system. When a
Persistent recording is started, the recording command will be invoked with user-specified options. The
same set of command line options used by this persistent recording will be added to inittab entries.
This will ensure that the recording is started automatically on reboot or restart of the system.

Consider a system that is already running a Persistent local recording (binary or nmon recording format).
If you want to start a new Persistent recording of local binary recording, the existing persistent recording
must be stopped first using the Stop Persistent Recording option available under the Stop Recording
option. Then a new persistent local recording must be started from Start Persistent local recording
option. Starting Persistent recording will fail if a persistent recording of the same recording format is
already running in the system. Because Persistent recording adds inittab entries, only privileged users
are allowed to start Persistent recording.

For example, if the number of days to store per file is n, then a single file will contain a maximum of n days
of recording. If the recording exceeds n days, then a new file will be created and all of the subsequent
recordings will be stored in the new file. If the number of days to store per file is 0, the recording will be
written to only one file. If the number of days to retain is m, then the system will retain the recording file
that has data recorded within the last m days. Recording files generated by the same recording instance
of the topasxrec command that have recorded data earlier than m days will be deleted.

The default value for number of days to store per file is 1.
The default value for number of days to retain is 7.

The SMIT options for Start Recording menu displays:

SMIT options for Start Recording

Start Recording
Move cursor to desired item and press Enter.

Start Persistent local Recording
Start Persistent CEC Recording
Start Local Recording

Start CEC Recording

Performance management 19

Start Persistent Local Recording
The user can select the type of persistent local binary or nmon recording.

To start respective recording, select binary or nmon on the Type of Persistent Recording menu:

Type of Persistent Recording
Move cursor to desired item and press Enter.

binary
nmon

Fl=Help F2=Refresh F3=Cancel

If you have selected a report that is of binary type, the report displays as:

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

Type of Recording binary
Length of Recording persistent
Recording Interval in seconds [300]

* Number of Days to store per file [1]

* Number of Days to retain [7]
Output Path [1]
Overwrite existing recording file no
Enable WLE no
Include Disk Basic Metrics [Yes/No]
Include Service Time Metrics [Yes/No]
Include Disk Adapter Basic Metrics [yes/No]
Include Disk Adapter Service Time Metrics [Yes/No]

* % ok ok Xk ok

The recording interval (in seconds) should be a multiple of 60. If the recording type is local binary
recording, then the user has an option to enable the IBM Workload Estimator (WLE) report generation in
the SMIT screen. The WLE report is generated only on Sundays at 00:45 a.m. and requires local binary
recording to always be enabled for consistent data in the report. The data in the weekly report is correct
only if the local recordings are always enabled.

The generated WLE report is stored in the /etc/perf/<hostname>_aixwle_weekly.xml file. For example,
if the hostname is ptoolsll, the weekly report is written to the /etc/perf/ptoolsll_aixwle_weekly.xml
file.

For additional information, refer to:

« “Persistent recording” on page 19

« available nmon filters

Start Persistent CEC Recording

Use start persistent CEC recording to start the persistent recording for CEC. Final recording started will
depend on the inputs provided at the subsequent screens. The input screen will be loaded with default
values at the beginning.

Recording interval (in seconds) should be a multiple of 60.

For more information, refer to “Persistent recording” on page 19.

Start Local Recording

Use start local recording to start local recording based on the inputs provided at the subsequent screens.

The user can select from binary or nmon, and select day, hour, or custom to start the respective recording.
Type of Recording

Move cursor to desired item and press Enter.

binary
nmon

20 AIX Version 7.1: Performance management

Fl=Help F2=Refresh F3=Cancel
After selecting binary or nmon, the user must select the day, hour, or custom in the next selector screen.

Length of Recording

Move cursor to desired item and press Enter.

day

hour

custom
Fl=Help F2=Refresh F3=Cancel
F8=Image F10=Exit Enter=Do

For day or hour recording, recording interval and number of samples are not editable. For custom
recording, recording interval and number of samples are editable. Recording interval should be a multiple
of 60. The use of custom recording is to collect only the specified number of samples at the specified
interval and exit recording. If the number of samples is specified as zero, then the recording will be
continuously running until stopped.

The preloaded values shown in the screen are the default values.

For more information, refer to nmon_recording.dita.

Start CEC Recording
Use start CEC recording to start the recording for CEC subsequent screens.

The user must select the length of recording (day, hour or custom) to start the respective recording.

Length of Recording
Move cursor to desired item and press Enter.
day
hour
custom

Fl=Help F2=Refresh F3=Cancel

For day or hour recording, recording intervals and number of samples are not editable.

For custom recording, recording intervals and number of samples are editable and recording intervals
should be a multiple of 60. The use of custom recording is to collect only the specified number of samples
at the specified interval and exit recording. If the number of samples is specified as zero then the
recording will be continuously running until stopped.

NMON Recording
NMON comes with recording filters that help you customize the NMON recording. You can select and
deselect the following sections of the NMON recording;:

- JFS

« RAW kernel and LPAR

- volume group

« paging space

- MEMPAGES

« NFS

- WLM

« Large Page

« Shared Ethernet (for VIOS) Process
- Large Page and Asynchronous

Performance management 21

Note: Disks per line, disk group file, and desired disks are applicable options only if the disk configuration
section is included in the recording. The process filter and process threshold options are applicable only if
the processes list is included in the recording.

Process and Disk filters will be automatically loaded with the filter options used for the last recording by
the same user. You can specify that the Extexrnal command be invoked at the start or end of the NMON
recording in an External data collector start or end program. If you want external command to be invoked
periodically to record metrics, it can be specified at External data collector snap program. For details on
using external command for nmon recording refer to nmon command in Commands Reference, Volume 4.

Naming Convention
Recorded files will be stored in specified files as shown in the following:

« Given a file name that contains the directory and a file name prefix, the output file for a single file

recording is:

Style Files

Local Nmon <filename>_YYMMDD_HHMM.nmon
Style:

Local Nmon <filename>_YYMMDD_HHMM.topas
Style:

Topas Style CEC: <filename>_YYMMDD_HHMM.topas

« Given a file name that contains the directory and a file name prefix, the output file for multiple file
recordings (cut and retention) is:

Style Files

Local Nmon <filename>_YYMMDD.nmon
Style:

Local Nmon <filename>_YYMMDD.topas
Style:

Topas Style CEC: <filename>_CEC_YYMMDD.topas

« Given a file name that contains the directory and no file name prefix, the output file for a single file

recording is:

Style Files

Local Nmon <filename/hostname>_YYMMDD_HHMM.nmon
Style:

Local Nmon <filename/hostname>_YYMMDD_HHMM.topas
Style:

Topas Style CEC: <filename/hostname>_CEC_YYMMDD_HHMM.topas

« Given a file name that contains the directory and no file name prefix, the output files for multiple file
recordings (cut and retention) is:

Style Files

Local Nmon <filename/hostname>_YYMMDD.nmon
Style:

Local Nmon <filename/hostname>_YYMMDD.topas
Style:

Topas Style CEC: <filename/hostname>_CEC_YYMMDD.topas

22 AIX Version 7.1: Performance management

Two recordings of the same recording format and with the same filename parameter values (default or
user-specified filename) cannot be started simultaneously as these two recording processes tend to
write to the same recording file.

Examples:

1. The user is trying to start a local binary day recording with output path specified as /home/test/
sample_bin. If the recording file is created at the time 12:05 hours, Mar 10,2008 and the host name is
ses15 then the output file name will be /fhome/test/sample_bin/ses15_080310_1205.topas.

2. Assume that user is trying to start a persistent CEC recording with cut option as 2 and with output path
specified as /home/test/sample. Assuming the recording file is created at the time 12:05 hours, Mar
10, 2008 and the host name is ses15 then the output file name will be /home/test/sample_bin/
ses15_cec_080310.topas . After storing 2 days (as cut =2) of recording in this file, the recording file
named /home/test/sample_bin/ses15_cec_080312.topas will be created on Mar 12 to store
recorded data for Mar 12 and Mar 13.

Stop Recording
Use the Stop recording to stop the currently running recording. The user can select one particular running
recording from the list and stop it.

From the menu, you must select the type of recording to stop. After selecting the type of recording, the
currently running recording will be listed on the menu. You can then select a recording to be stopped.

Following is the screen for selecting the type of recording to stop:

Stop Recording
Stop persistent recording
Stop binary recording

Stop nmon recording
Stop CEC recording

Note: The recording can only be stopped if you have the requisite permission to stop the recording
process.

List active recordings
To list the currently running recordings on the system in the user specified directory, use List Active
Recordings.

To list active recordings:

1. Enter the path of recording.
2. Select the type of recording to be listed.

Type of
Recording

Move cursor to desired item and press Enter.

persistent
binary

nmon
cec
all
Fl=Help F2=Refresh F3=Cancel

F8=Image F10=Exit Enter=Do
/=Find n=Find Next

This will list the Format, Start time, and Output path of the active recordings and their specified path.

The output path of all persistent recordings will be prefixed by the asterisk (*). For persistent local
binary recording with WLE enabled, the output path will be prefixed by the number sign (#).

Performance management 23

List completed recordings
Use List completed recordings to display a list of the completed recordings in the user-specified

directory path. These completed recordings can be used by the Generate report menu to generate report
files.

To list completed recordings, follow these steps:
1. Enter the path of the recording. This is the path used to locate the recording file.
2. Select the type of recording to be used.

persistent
binary
nmon

cec

all

This will list the Recording Type, Start time and Stop time of the completed recordings in the
specified path.

Generating reports from existing recording files
Use the Generate Report option to generate reports from the existing recording files in the user-specified
directory path.

If the directory path selected is Persistent Recording, the following conditions are true:

1. If the persistent recording is running, then current running persistent recording is selected for report
generation.

2. If the persistent recording is not running, then the most recently completed persistent recording is
selected for report generation.

Using the Generate Report option prompts you to enter the values of the recording file, reporting format,
begin time, end time, interval, and the file or printer name to generate a report based on the input.

Perform the following steps to generate a report:

1. Select the file name or printer to send the report to:

Send report to File/Printer
Move cursor to desired item and press Enter.

1 Filename
2 Printer

2. Select the path to locate the recording file:
Path to locate the recording file [] +
3. Select the reporting format (based on the type of recording):

* Reporting Format [1 +

The following is an example of a comma separated/spreadsheet report type:

* Type of Recording [1

* Reporting Format [1]
Type [mean] +

Recording File name []

* OQutput File [1]

The following is an example of a nmon report type:

* Type of Recording

* Reporting Format
Recording File name

* Output File

e
A |

24 AIX Version 7.1: Performance management

Note: The Output file field is mandatory for comma separated/spreadsheet, and nmon types and optional
for all other reporting formats. The topas recordings support only mean type for comma separated and
spreadsheet reporting formats.

The following is an example of a summary/disk summary/detailed/network summary report type:

* Type of Recording
* Reporting Format
Begin Time (YYMMDDHHMM)
End Time (YYMMDDHHMM)
Interval
Recording File name
Output File (defaults to stdout)

[Lo T T T T T
[I) N "}

For all the above examples, the first two fields are non-modifiable and filled with values from the previous
selections.

If printer is selected as the report output, the Output File field is replaced with the required Printer
Name field from a list of printers configured in the system:

* Printer Name [1+

For a description about reporting formats available for CEC and Local binary recordings, see the topas
command in Commands Reference, Volume 5.

Setup Performance Management
This menu is used to setup and configure Performance Management.

Setup Performance Management
Move cursor to desired item and press Enter.
Enable PM Data Transmission
Disable PM Data Transmission
Retransmit Recorded Data
Change/Show Customer Information

Change/Show Data Retention Period
Change/Show Trending Days and Shift Timing

« Enable PM Data Transmission

Use Enable PM Data Transmission to enable transmission of performance data to IBM from Electronic
Service Agent (ESA) or Hardware Management Console (HMC).

- Disable PM Data Transmission
Use Disable PM Data Transmission to disable transmission of performance data to IBM.
« Retransmit Recorded Data

Use Retransmit Recorded Data to retransmit the Performance Data recorded earlier.

Retransmit Recorded Data

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Enter the Date [YYYYMMDD] [1 #

— If a user wants to re-transmit the PM Data dated 12th Feb, 2009, enter 20090212 in the text box.
— Enter 0 to transmit all the available recorded PM data files.
- After the date has been entered, it displays the following manual steps to send Data to IBM using ESA or
HMC:
Steps to do a Manual transmission from Electronic Service Agent on the HMC

1. Login to HMC
2. Select 'Service Management'

Performance management 25

3. Select 'Transmit Service Information'
4. Click the 'Send' button labeled 'To transmit the performance management information
immediately,
click Send. (the second Send button on the page)
5. Check the Console Events log for results

Steps to do a Manual transmission from Electronic Service Agent for AIX

Login to ESA using web interface (https://hostname:port/esa)
Go to 'Service information'

Select action 'Collect information'

Select the Performance Management checkbox

Click OK

Check the Activity Log for results'

CcCUuRhWNE

« Change/Show Customer Information

Use Change/Show Customer Information to display or update the customer information. Customer
information will be sent to IBM, if PM Data Transmission is enabled

« Change/Show Data Retention Period
Use Change/Show Data Retention Period to display or change the Data Retention Period. Retention
period determines how long the old data will be kept in Data directory before it is deleted.

- Change/Show Trending Days and Shift Timing

Use Change/Show Trending Days and Shift Timing to display/update the Trending Days and Shift
Timings.

Setup Workload Estimator
This menu is used to setup and configure Workload Estimator.

WLE

Type or select values in the entry fields.
Press Enter AFTER making all desired changes.

WLE Collection
WLE input type

« WLE Collection

Use WLE Collection to enable or disable creation of reports to be used as an input to WLE. The field
gives the current state of WLE Collection by default. Collection should be disabled before you can stop
an associated recording.

« WLE input type

Use WLE input type to decide if WLE reports should be based on the currently running local binary
recording or the local nmon recording. Note that this is applicable only for persistent recordings.

Continuous system-performance monitoring using Performance
Management (PM) service

Performance Management (PM) service helps automates the collection, archival and analysis of system
performance data and returns reports to help customer manage system resources and capacity. The data
collected is system utilization, performance information, and hardware configuration information.

Performance Management (PM) Data collected is sent to IBM through the Electronic Service Agent (ESA)
or Hardware Management Console (HMC). IBM stores the data for the customer and provides them with a
series of reports and graphs that show the server's growth and performance. Customers can access their
reports electronically using a traditional browser.

When used with the IBM Systems Workload Estimator, this offering allows customers to better
understand how their business trends relate to the timing of required hardware upgrades, such as Central
Processing Unit (CPU) or disk. The IBM Systems Workload Estimator can size a systems consolidation or

26 AIX Version 7.1: Performance management

evaluate upgrading a system with logical partitions, by having PM for IBM Power Systems send the data
for multiple systems or partitions to the IBM Systems Workload Estimator.

Performance Management Service uses topasrec persistent binary recording to collect the performance
data. So, topasrec persistent binary recording should always be enabled for PM Service to collect
performance data.

Notes:

1. By enabling PM Service, you agree that IBM may use and share the data collected by PM for IBM Power
Systems servers within the IBM enterprise without limitation, including for purposes of problem
determination, of assisting you with performance and capacity planning, of maintaining your existing
and new business relationships with IBM, of notifying you of existing or projected resource constraints,
and to assist us to enhance IBM products. You also agree that your data may be transferred to such
entities in any country whether or not a this country is a member of the European Union.

2. You may authorize IBM to share your data with various third parties, including one or more solution
providers and Business Partners to make them aware of your performance and capacity demands and
to enable them to provide you with a higher level of service. Authorization is done when viewing your
graphs online.

For more information about Performance Management services, see the README . perf.tools file.

Initial performance diagnosis

There are many types of reported performance problems to consider when diagnosing performance
problems.

Types of reported performance problems

When a performance problem is reported, it is helpful to determine the kind of performance problem by
narrowing the list of possibilities.

A particular program runs slowly

A program may start to run slowly for any one of several reasons.

Although this situation might seem trivial, there are still questions to answer:
« Has the program always run slowly?

If the program has just started running slowly, a recent change might be the cause.
« Has the source code changed or a new version installed?

If so, check with the programmer or vendor.
« Has something in the environment changed?

If a file used by the program, including its own executable program, has been moved, it may now be
experiencing network delays that did not exist previously. Or, files may be contending for a single-disk
accessor that were on different disks previously.

If the system administrator changed system-tuning parameters, the program may be subject to
constraints that it did not experience previously. For example, if the system administrator changed the
way priorities are calculated, programs that used to run rather quickly in the background may now be
slowed down, while foreground programs have sped up.

« Is the program written in the perl, awk, csh, or some other interpretive language?

Unfortunately, interpretive languages are not optimized by a compiler. Also, it is easy in a language like
perl or awk to request an extremely compute- or I/O-intensive operation with a few characters. It is
often worthwhile to perform a desk check or informal peer review of such programs with the emphasis
on the number of iterations implied by each operation.

 Does the program always run at the same speed or is it sometimes faster?

Performance management 27

The file system uses some of system memory to hold pages of files for future reference. If a disk-limited
program is run twice in quick succession, it will normally run faster the second time than the first.
Similar behavior might be observed with programs that use NFS. This can also occur with large
programs, such as compilers. The program's algorithm might not be disk-limited, but the time needed to
load a large executable program might make the first execution of the program much longer than
subsequent ones.

« If the program has always run slowly, or has slowed down without any obvious change in its
environment, look at its dependency on resources.

Performance-limiting resource identification describes techniques for finding the bottleneck.

Everything runs slowly at a particular time of day
There are several reasons why the system may slow down at certain times of the day.

Most people have experienced the rush-hour slowdown that occurs because a large number of people in
the organization habitually use the system at one or more particular times each day. This phenomenon is
not always simply due to a concentration of load. Sometimes it is an indication of an imbalance that is
only a problem when the load is high. Other sources of recurring situations in the system should be
considered.

« If you run the iostat and netstat commands for a period that spans the time of the slowdown, or if
you have previously captured data from your monitoring mechanism, are some disks much more heavily
used than others? Is the CPU idle percentage consistently near zero? Is the number of packets sent or
received unusually high?

— If the disks are unbalanced, see “Logical volume and disk I/O performance” on page 160.

— Ifthe CPU is saturated, use the ps or topas commands to identify the programs being run during this
period. The sample script given in “Continuous system-performance monitoring with commands” on
page 13 simplifies the search for the heaviest CPU users.

— If the slowdown is counter-intuitive, such as paralysis during lunch time, look for a pathological
program such as a graphic x1ock or game program. Some versions of the x1ock program are known
to use huge amounts of CPU time to display graphic patterns on an idle display. It is also possible that
someone is running a program that is a known CPU burner and is trying to run it at the least intrusive
time.

« Unless your /var/adm/cron/cron.allow file is null, you may want to check the contents of
the /var/adm/cron/crontab directory for expensive operations.

If you find that the problem stems from conflict between foreground activity and long-running, CPU-
intensive programs that are, or should be, run in the background, consider changing the way priorities are
calculated using the schedo command to give the foreground higher priority. See “Thread-Priority-Value
calculation” on page 111.

Everything runs slowly at unpredictable times
The best tool for this situation is an overload detector, such as the £iltd daemon, a component of PTX.

The £iltd daemon can be set up to execute shell scripts or collect specific information when a particular
condition is detected. You can construct a similar, but more specialized, mechanism using shell scripts
containing the vmstat, iostat, netstat, sar, and ps commands.

If the problem is local to a single system in a distributed environment, there is probably a pathological
program at work, or perhaps two that intersect randomly.

Everything that an individual user runs is slow

Sometimes a system seems to affect a particular individual.

« The solution in this case is to quantify the problem. Ask the user which commands they use frequently,
and run those commands with the time command, as in the following example:

28 AIX Version 7.1: Performance management

time cp .profile testjunk
real OmO.08s
user OmoO.00s
sys OmO.01s

Then run the same commands under a user ID that is not experiencing performance problems. Is there
a difference in the reported real time?

« A program should not show much CPU time (user+sys) difference from run to run, but may show a real
time difference because of more or slower I/0. Are the user's files on an NFS-mounted directory? Or on
a disk that has high activity for other reasons?

« Check the user's . profile file for unusual $PATH specifications. For example, if you always search a
few NFS-mounted directories before searching /usx/bin, everything will take longer.

A number of LAN-connected systems slow down simultaneously

There are some common problems that arise in the transition from independent systems to distributed
systems.

The problems usually result from the need to get a new configuration running as soon as possible, or from
a lack of awareness of the cost of certain functions. In addition to tuning the LAN configuration in terms of
maximum transmission units (MTU) and mbufs, look for LAN-specific pathologies or nonoptimal situations
that may have evolved through a sequence of individually reasonable decisions.

« Use network statistics to ensure that there are no physical network problems. Ensure that commands
such as netstat -v, entstat, tokstat, atmstat, or fddistat do not show excessive errors or
collision on the adapter.

- Some types of software or firmware bugs can sporadically saturate the LAN with broadcast or other
packets.

When a broadcast storm occurs, even systems that are not actively using the network can be slowed by
the incessant interrupts and by the CPU resource consumed in receiving and processing the packets.
These problems are better detected and localized with LAN analysis devices than with the normal
performance tools.

« Do you have two LANs connected through a system?
Using a system as a router consumes large amounts of CPU time to process and copy packets. It is also

subject to interference from other work being processed by the system. Dedicated hardware routers
and bridges are usually a more cost-effective and robust solution.

Is there a clear purpose for each NFS mount?

At some stages in the development of distributed configurations, NFS mounts are used to give users on
new systems access to their home directories on their original systems. This situation simplifies the
initial transition, but imposes a continuing data communication cost. It is not unknown to have users on
system A interacting primarily with data on system B and vice versa.

Access to files through NFS imposes a considerable cost in LAN traffic, client and server CPU time, and
end-user response time. A general guideline is that user and data should normally be on the same
system. The exceptions are those situations in which an overriding concern justifies the extra expense
and time of remote data. Some examples are a need to centralize data for more reliable backup and
control, or a need to ensure that all users are working with the most current version of a program.

If these and other needs dictate a significant level of NFS client-server interchange, it is better to
dedicate a system to the role of server than to have a number of systems that are part-server, part-
client.

« Have programs been ported correctly and justifiably to use remote procedure calls (RPCs)?
The simplest method of porting a program into a distributed environment is to replace program calls
with RPCs on a 1:1 basis. Unfortunately, the disparity in performance between local program calls and

RPCs is even greater than the disparity between local disk I/O and NFS I/O. Assuming that the RPCs are
really necessary, they should be batched whenever possible.

Performance management 29

Everything on a particular service or device slows down at times
There are a variety of reasons why everything on a particular service or device slows down at times.

If everything that uses a particular device or service slows down at times, refer to the topic that covers
that particular device or service:

 “Microprocessor performance” on page 91

« “Memory performance” on page 114

« “Logical volume and disk I/O performance” on page 160

« “File system performance” on page 212

« “Network performance analysis” on page 268

« “NFS performance monitoring and tuning” on page 302

Everything runs slowly when connected remotely

Local and remote authentication to a system can behave very differently. By default, the local
authentication files are consulted first when a user logs in with their user id. This has a faster response
time than network-based authentication mechanisms.

If a user logs in and authenticates with some kind of network-authentication mechanism, that will be the
first mechanism searched when looking up user ids. This will affect any command that performs lookups
of user login names. It will also impact the following commands:

* ps -ef
e 1s-l
- ipcs -a

The specific authentication programs are defined in the /usxr/lib/security/methods. cfg file. The
default value is compat, which is the local authentication method. To view your current authentication
setting for a particular user id, login with the user id and at the command line, type:

echo $AUTHSTATE

If you want to ensure that you are using a local authentication mechanism first and then the network-
based authentication mechanism, like DCE for example, type the following at the command line:

export AUTHSTATE="compat,DCE"

Performance-Limiting Resource identification

The best tool for an overall look at resource utilization while running a multiuser workload is the vmstat
command.

The vmstat command reports CPU and disk-I/0O activity, as well as memory utilization data. The following
instantiation of the vmstat command produces a one-line summary report of system activity every 5
seconds:

vmstat 5
In the example above, because there is no count specified following the interval, reporting continues until
you cancel the command.

The following vmstat report was created on a system running AIXwindows and several synthetic
applications (some low-activity intervals have been removed for example purposes):

kthr memozry page faults cpu

r b avm fre re pi po fr sr cy in sy c¢s us sy id wa
0 0 8793 81 06 0 0 1 7 0125 42 30 1 295 2
0 0 8793 80 6 ©0 0 0 © 0155 113 79 14 8 78 ©
0 0 8793 57 0 3 0 © O 0178 28 69 11281 6

30 AIX Version 7.1: Performance management

0 0 9192 66 0 0 16 81 167 0 151 32 34 1 6 77 16
0 0 9193 65 0 0 0 0 0 0117 29 26 1 3 96 0
0 0 9193 65 0 0 0 ©0 0 0120 30 31 1 395 0
0 0 9693 69 0 0 53100 216 0 168 27 57 1 4 63 33
0 0 9693 69 0 0 0 0 0 0134 96 60 12 484 0
0 0 10193 57 06 0 0 0 0 0124 29 32 1 394 2
0 0 11194 64 00 O 38 201 1080 0 168 29 57 2 8 62 29
0 0 11194 63 6 0 0 0 0 0141 111 6512 7 81 O
0 0 5480 755 3 1 0 0 0 0154 107 7113 8 78 2
0 0 5467 5747 0 3 0 0 0 0167 39 68 116 79 5
0 1 4797 5821 0 21 0O O 0 0191 192 125 20 5 42 33
0 1 3778 6119 0 24 0 0 O 0188 170 98 5 8 41 46
O 0 3751 6139 O © O 0 0 01245 24 54 110 89 ©

In this initial assessment, pay particular attention to the pi and po columns of the page category and the
four columns in the cpu category.

The pi and po entries represent the paging-space page-ins and page-outs, respectively. If you observe
any instances of paging-space I/O, the workload may be approaching or beyond the system's memory
limits.

If the sum of the user and system CPU-utilization percentages, us and sy, is greater than 90 percentin a
given 5-second interval, the workload is approaching the CPU limits of the system during that interval.

If the I/O wait percentage, wa, is close to zero and the pi and po values are zero, the system is spending
time waiting on non-overlapped file I/O, and some part of the workload is I/O-limited.

If the vmstat command indicates a significant amount of I/O wait time, use the iostat command to
gather more detailed information.

The following instantiation of the iostat command produces summary reports of I/O activity and CPU
utilization every 5 seconds, and because we specify a count of 3 following the interval, reporting will stop
after the third report:

J## iostat 5 3

The following iostat report was created on a system running the same workload as the one in the
vimstat example above, but at a different time. The first report represents the cumulative activity since
the preceding boot, while subsequent reports represent the activity during the preceding 5-second
interval:

tty: tin tout avg-cpu: % user % sys % idle %iowait
0.0 4.3 0.2 0.6 98.8 0.4

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdisk® 0.0 0.2 0.0 7993 4408

hdiskl 0.0 0.0 0.0 2179 1692

hdisk2 0.4 1.5 0.3 67548 59151

cdo 0.0 0.0 0.0 0 0

tty: tin tout avg-cpu: % user % sys % idle %iowait
0.0 30.3 8.8 7.2 83.9 0.2

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdisk® 0.2 0.8 0.2 4 0

hdiskl 0.0 0.0 0.0 0 0

hdisk2 0.0 0.0 0.0 0 0

cdo 0.0 0.0 0.0 0 0

tty: tin tout avg-cpu: % user % sys % idle %iowait
0.0 8.4 0.2 5.8 0.0 93.8

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdisk® 0.0 0.0 0.0 0 0

hdiskl 0.0 0.0 0.0 0 0

hdisk2 98.4 575.6 61.9 396 2488

cdo 0.0 0.0 0.0 0 0

The first report shows that the I/O on this system is unbalanced. Most of the I/O (86.9 percent of
kilobytes read and 90.7 percent of kilobytes written) goes to hdisk2, which contains both the operating
system and the paging space. The cumulative CPU utilization since boot statistic is usually meaningless,
unless you use the system consistently, 24 hours a day.

Performance management 31

The second report shows a small amount of disk activity reading from hdisk®, which contains a separate
file system for the system's primary user. The CPU activity arises from two application programs and the
iostat command itself.

In the third report, you can see that we artificially created a near-thrashing condition by running a
program that allocates and stores a large amount of memory, which is about 26 MB in the above example.
Also in the above example, hdisk?2 is active 98.4 percent of the time, which results in 93.8 percent I/O
wait.

The limiting factor for a single program

If you are the sole user of a system, you can get a general idea of whether a program is I/O or CPU
dependent by using the time command as follows:

time cp foo.in foo.out

real OmO.13s
user OmO.01s
sys OmO.02s

Note: Examples of the time command use the version that is built into the Korn shell, ksh. The official
time command, /usx/bin/time, reports with a lower precision.

In the above example, the fact that the real elapsed time for the execution of the cp program (0.13
seconds) is significantly greater than the sum (.03 seconds) of the user and system CPU times indicates
that the program is I/O bound. This occurs primarily because the foo. in file has not been read recently.

On an SMP, the output takes on a new meaning. See “Considerations of the time and timex commands ”
on page 100 for more information.

Running the same command a few seconds later against the same file gives the following output:

real OmO.06s
user OmO.01s
sys OmO.03s

Most or all of the pages of the foo0. in file are still in memory because there has been no intervening
process to cause them to be reclaimed and because the file is small compared with the amount of RAM on
the system. A small foo. out file would also be buffered in memory, and a program using it as input
would show little disk dependency.

If you are trying to determine the disk dependency of a program, you must be sure that its input is in an
authentic state. That is, if the program will normally be run against a file that has not been accessed
recently, you must make sure that the file used in measuring the program is not in memory. If, on the
other hand, a program is usually run as part of a standard sequence in which it gets its input from the
output of the preceding program, you should prime memory to ensure that the measurement is authentic.
For example, the following command would have the effect of priming memory with the pages of the
foo.infile:

cp foo.in /dev/null

The situation is more complex if the file is large compared to RAM. If the output of one program is the
input of the next and the entire file will not fit in RAM, the second program will read pages at the head of
the file, which displaces pages at the end. Although this situation is very hard to simulate authentically, it
is nearly equivalent to one in which no disk caching takes place.

The case of a file that is perhaps just slightly larger than RAM is a special case of the RAM versus disk
analysis discussed in the next section.

32 AIX Version 7.1: Performance management

Disk or memory-related problem

Just as a large fraction of real memory is available for buffering files, the system's page space is available
as temporary storage for program working data that has been forced out of RAM.

Suppose that you have a program that reads little or no data and yet shows the symptoms of being I/0
dependent. Worse, the ratio of real time to user + system time does not improve with successive runs. The
program is probably memory-limited, and its I/0O is to, and possibly from the paging space. A way to check
on this possibility is shown in the following vmstatit shell script:

vmstat -s >temp.file # cumulative counts before the command
time $1 # command under test

vmstat -s >>temp.file # cumulative counts after execution
grep "pagi.xins" temp.file >>results # extract only the data
grep "pagi.xouts" temp.file >>results # of interest

The vmstatit script summarizes the voluminous vmstat -s report, which gives cumulative counts for a
number of system activities since the system was started.

If the shell script is run as follows:

vmstatit "cp filel file2" 2>results

the result is as follows:

real 0m0@.03s

user Om0@.01s

sys Omo.02s
2323 paging space page ins
2323 paging space page ins
4850 paging space page outs
4850 paging space page outs

The before-and-after paging statistics are identical, which confirms our belief that the ¢p command is not
paging-bound. An extended variant of the vmstatit shell script can be used to show the true situation,
as follows:

vmstat -s >temp.file

time $1

vmstat -s >>temp.file

echo "Ordinary Input:" >>results
grep "~[0-9]*page ins" temp.file >>results
echo "Ordinary Output:" >>results
grep "~[0-9]%page outs" temp.file >>results
echo "True Paging Output:" >>results
grep "pagi.xouts" temp.file >>results
echo "True Paging Input:" >>results
grep "pagi.*xins" temp.file >>results

Because file I/0O in the operating system is processed through the VMM, the vmstat -s command reports
ordinary program I/0 as page ins and page outs. When the previous version of the vmstatit shell script
was run against the cp command of a large file that had not been read recently, the result was as follows:

real 0m2.09s
user Om0.03s
sys Omo.74s
Ordinary Input:
46416 page ins
47132 page ins
Ordinary Output:
146483 page outs
147012 page outs
True Paging Output:
4854 paging space page outs
4854 paging space page outs
True Paging Input:
2527 paging space page ins
2527 paging space page ins

The time command output confirms the existence of an I/O dependency. The increase in page ins shows
the I/O necessary to satisfy the ¢p command. The increase in page outs indicates that the file is large

Performance management 33

enough to force the writing of dirty pages (not necessarily its own) from memory. The fact that there is no
change in the cumulative paging-space-1/0 counts confirms that the cp command does not build data
structures large enough to overload the memory of the test machine.

The order in which this version of the vmstatit script reports I/O is intentional. Typical programs read
file input and then write file output. Paging activity, on the other hand, typically begins with the writing out
of a working-segment page that does not fit. The page is read back in only if the program tries to access it.
The fact that the test system has experienced almost twice as many paging space page outsas
paging space page ins since it was booted indicates that at least some of the programs that have
been run on this system have stored data in memory that was not accessed again before the end of the
program. “Memory-limited programs ” on page 84 provides more information. See also “Memory
performance” on page 114.

To show the effects of memory limitation on these statistics, the following example observes a given
command in an environment of adequate memory (32 MB) and then artificially shrinks the system using
the rmss command (see “Memory requirements assessment with the rmss command ” on page 127). The
following command sequence

cc -c ed.c
vmstatit "cc -c ed.c" 2>results

first primes memory with the 7944-line source file and the executable file of the C compiler, then
measures the I/0 activity of the second execution:

real Om7.76s
user Om7.44s
sys OmO.15s
Ordinary Input:
57192 page ins
57192 page ins
Ordinary Output:
165516 page outs
165553 page outs
True Paging Output:
10846 paging space page outs
10846 paging space page outs
True Paging Input:
6409 paging space page ins
6409 paging space page ins

Clearly, this is not I/0 limited. There is not even any I/O necessary to read the source code. If we then
issue the following command:

rmss -c 8

to change the effective size of the machine to 8 MB, and perform the same sequence of commands, we
get the following output:

real 0m9.87s
user Om7.70s
sys Om0.18s
Ordinary Input:
57625 page ins
57809 page ins
Ordinary Output:
165811 page outs
165882 page outs
True Paging Output:
11010 paging space page outs
11061 paging space page outs
True Paging Input:
6623 paging space page ins
6701 paging space page ins

The following symptoms of I/O dependency are present:

« Elapsed time is longer than total CPU time
- Significant amounts of ordinary I/O on the nth execution of the command

34 AIX Version 7.1: Performance management

The fact that the elapsed time is longer than in the memory-unconstrained situation, and the existence of
significant amounts of paging-space I/0, make it clear that the compiler is being hampered by insufficient
memory.

Note: This example illustrates the effects of memory constraint. No effort was made to minimize the use
of memory by other processes, so the absolute size at which the compiler was forced to page in this
environment does not constitute a meaningful measurement.

To avoid working with an artificially shrunken machine until the next restart, run

rmss -r

to release back to the operating system the memory that the xrmss command had sequestered, thus
restoring the system to its normal capacity.

Workload management diagnosis
Workload management simply means assessing the priority of each of the components of the workload.

When you have exhausted the program performance-improvement and system-tuning possibilities, and
performance is still unsatisfactory at times, you have three choices:

« Let the situation remain as is
« Upgrade the performance-limiting resource
« Adopt workload-management techniques

The first approach leads to frustration and decreased productivity for some of your users. If you choose to
upgrade a resource, you have to be able to justify the expenditure. Thus the obvious solution is to
investigate the possibilities of workload management.

Usually, there are jobs that you can postpone. For example, a report that you need first thing in the
morning is equally useful when run at 3 a.m. as at 4 p.m. on the preceding day. The difference is that it
uses CPU cycles and other resources that are most likely idle at 3 a.m. You can use the at or cxontab
command to request a program to run at a specific time or at regular intervals.

Similarly, some programs that have to run during the day can run at reduced priority. They will take longer
to complete, but they will be in less competition with really time-critical processes.

Another technique is to move work from one machine to another; for example, if you run a compilation on
the machine where the source code resides. This kind of workload balancing requires more planning and
monitoring because reducing the load on the network and increasing the CPU load on a server might
result in a net loss.

The AIX Workload Manager (WLM) is part of the operating system kernel. WLM is designed to give the
system administrator greater control over how the scheduler and virtual memory manager (VMM) allocate
CPU and physical memory resources to processes. Disk usage can also be controlled by WLM. This can
prevent different classes of jobs from interfering with each other and to explicitly apply resources based
on the requirements of different groups of users. For further information, see Server Consolidation on RS/
6000°.

Resource management

AIX provides tunable components to manage the resources that have the most effect on system
performance.

For specific tuning recommendations see the following:

« “Microprocessor performance” on page 91.

« “Memory performance” on page 114.

« “Logical volume and disk I/O performance” on page 160.

« “Network performance” on page 233.

Performance management 35

« “NFS performance” on page 297.

Processor scheduler performance

There are several performance-related issues to consider regarding the processor scheduler.

Thread support

A thread can be thought of as a low-overhead process. It is a dispatchable entity that requires fewer
resources to create than a process. The fundamental dispatchable entity of the AIX Version 4 scheduler is
the thread.

Processes are composed of one or more threads. In fact, workloads migrated directly from earlier
releases of the operating system continue to create and manage processes. Each new process is created
with a single thread that has its parent process priority and contends for the processor with the threads of
other processes. The process owns the resources used in execution; the thread owns only its current
state.

When new or modified applications take advantage of the operating system's thread support to create
additional threads, those threads are created within the context of the process. They share the process's
private segment and other resources.

A user thread within a process has a specified contention scope. If the contention scope is global, the
thread contends for processor time with all other threads in the system. The thread that is created when a
process is created has global contention scope. If the contention scope is local, the thread contends with
the other threads within the process to be the recipient of the process's share of processor time.

The algorithm for determining which thread should be run next is called a scheduling policy.

Processes and threads

A process is an activity within the system that is started by a command, a shell program, or another
process.

Process properties are as follows:
- pid

- pgid

« uid

- gid

« environment

- cwd

« file descriptors

- signal actions

« process statistics

* nice

These properties are defined in /usr/include/sys/proc.h file.
Thread properties are as follows:
- stack

- scheduling policy

scheduling priority

pending signals
blocked signals

« thread-specific data

These thread properties are defined in /usr/include/sys/thread.h file.

36 AIX Version 7.1: Performance management

Each process is made up of one or more threads. A thread is a single sequential flow of control. Multiple
threads of control allow an application to overlap operations, such as reading from a terminal and writing
to afile.

Multiple threads of control also allow an application to service requests from multiple users at the same
time. Threads provide these capabilities without the added overhead of multiple processes such as those
created through the fork() system call.

A fast fork routine called f_fork() was introduced in AIX. This routine is useful for multithreaded
applications that calls the exec() subroutine immediately after you call the fork() subroutine. The fork()
subroutine is slower because it calls fork handlers to acquire the library locks before forking, and permits
the child to run the child handlers that initializes the locks. The f_fork() subroutine bypasses these
handlers and calls the kfork() system call directly. Web servers are a good example of an application that
can use the f_fork() subroutine.

Process and thread priority
The priority management tools manipulate process priority.

In AIX Version 4, process priority is a precursor to thread priority. When the fork() subroutine is called, a
process and a thread to run in it are created. The thread has the priority that would have been attributed
to the process.

The kernel maintains a priority value (sometimes termed the scheduling priority) for each thread. The
priority value is a positive integer and varies inversely with the importance of the associated thread. That
is, a smaller priority value indicates a more important thread. When the scheduler is looking for a thread
to dispatch, it chooses the dispatchable thread with the smallest priority value.

A thread can be fixed-priority or nonfixed priority. The priority value of a fixed-priority thread is constant,
while the priority value of a nonfixed-priority thread varies based on the minimum priority level for user
threads (a constant 40), the thread's nice value (20 by default, optionally set by the nice or xrenice
command), and its processor-usage penalty.

The priority of a thread can be fixed at a certain value, which can have a priority value less than 40, if their
priority is set (fixed) through the setpri() subroutine. These threads are immune to the scheduler
recalculation algorithms. If their priority values are fixed to be less than 40, these threads will run and
complete before any user threads can run. For example, a thread with a fixed value of 10 will run before a
thread with a fixed value of 15.

Users can apply the nice command to make a thread's nonfixed priority less favorable. The system
manager can apply a negative nice value to a thread, thus giving it a better priority.

The following illustration shows some of the ways in which the priority value can change.

At Thread After Some After renice -5 After
Inhation Execution setpn|)
to 50
CFU penalty CPU penalty
nice valus nice value nice value
Pricrity Value defaults to 20 rerrains 20 now 15
(emaller value Fixed priority
means higher value s 50
priority) MNice value
and CPL
Base priority Base priority Base priority usage are now
defaults to 40 remains 40 remains 40 irrelevamnt.

Figure 6. How the Priority Value is Determined

The nice value of a thread is set when the thread is created and is constant over the life of the thread,
unless explicitly changed by the user through the renice command or the setpri(), setpriority(),

thread_setsched(), or nice() system calls.

Performance management 37

The processor penalty is an integer that is calculated from the recent processor usage of a thread. The
recent processor usage increases by approximately 1 each time the thread is in control of the processor at
the end of a 10 ms clock tick, up to a maximum value of 120. The actual priority penalty per tick increases
with the nice value. Once per second, the recent processor usage values for all threads are recalculated.

The result is the following:

 The priority of a nonfixed-priority thread becomes less favorable as its recent processor usage increases
and vice versa. This implies that, on average, the more time slices a thread has been allocated recently,
the less likely it is that the thread will be allocated the next time slice.

« The priority of a nonfixed-priority thread becomes less favorable as its nice value increases, and vice
versa.

Note: With the use of multiple processor run queues and their load balancing mechanism, nice or
renice values might not have the expected effect on thread priorities because less favored priorities
might have equal or greater run time than favored priorities. Threads requiring the expected effects of
nice or xrenice should be placed on the global run queue.

You can use the ps command to display the priority value, nice value, and short-term processor-usage
values for a process.

See “Controlling contention for the microprocessor” on page 108 for a more detailed discussion on using
the nice and xrenice commands.

See “Thread-Priority-Value calculation” on page 111, for the details of the calculation of the processor
penalty and the decay of the recent processor usage values.

The priority mechanism is also used by AIX Workload Manager to enforce processor resource
management. Because threads classified under the Workload Manager have their priorities managed by
the Workload Manager, they might have different priority behavior over threads not classified under the
Workload Manager.

Scheduling policy for threads
The scheduling policy contain many possible values for threads.

SCHED_FIFO
After a thread with this policy is scheduled, it runs to completion unless it is blocked, it voluntarily
yields control of the processor, or a higher-priority thread becomes dispatchable. Only fixed-priority
threads can have a SCHED_FIFO scheduling policy.

SCHED_RR
When a SCHED_RR thread has control at the end of the time slice, it moves to the tail of the queue of
dispatchable threads of its priority. Only fixed-priority threads can have a SCHED_RR scheduling
policy.

SCHED_OTHER
This policy is defined by POSIX Standard 1003.4a as implementation-defined. The recalculation of
the running thread's priority value at each clock interrupt means that a thread may lose control
because its priority value has risen above that of another dispatchable thread.

SCHED_FIFO2
The policy is the same as for SCHED_FIFO, except that it allows a thread which has slept for only a
short amount of time to be put at the head of its run queue when it is awakened. This time period is
the affinity limit (tunable with schedo -o affinity_lim).

SCHED_FIFO3
A thread whose scheduling policy is set to SCHED_FIFO3 is always put at the head of a run queue. To
prevent a thread belonging to SCHED_FIFO2 scheduling policy from being put ahead of
SCHED_FIF03, the run queue parameters are changed when a SCHED_FIFO3 thread is enqueued, so
that no thread belonging to SCHED_FIFO2 will satisfy the criterion that enables it to join the head of
the run queue.

38 AIX Version 7.1: Performance management

SCHED_FIFO4
A higher priority SCHED_FIFO4 scheduling class thread does not preempt the currently running low
priority thread as long as their priorities differ by a value of 1. The default behavior is the preemption
of the currently running low priority thread on a given CPU by a high priority thread that becomes
eligible to run on the same processor.

The scheduling policies are set with the thread_setsched() system call and are only effective for the
calling thread. However, a thread can be set to the SCHED_RR scheduling policy by issuing a setpri() call
specifying the process ID; the caller of setpri() and the target of setpri() do not have to match.

Only processes that have root authority can issue the setpri() system call. Only threads that have root
authority can change the scheduling policy to any of the SCHED_FIFO options or SCHED_RR. If the
scheduling policy is SCHED_OTHER, the priority parameter is ignored by the thread_setsched()
subroutine.

Threads are primarily of interest for applications that currently consist of several asynchronous processes.
These applications might impose a lighter load on the system if converted to a multithreaded structure.
Scheduler run queue

The scheduler maintains a run queue of all of the threads that are ready to be dispatched.

The following illustration depicts the run queue symbolically.

_________ Priority Queue

0 Priority r I

I]

i)
g [Ly

| 1

I 1
] I o

I 1

i I
! ! >

, RunQueue !

I 1

| 1

' '

I I

' I

')

l)
1 i Al

I I
" ' >

127 AN

Figure 7. Run Queue

All the dispatchable threads with priority occupy positions in the run queue.

The fundamental dispatchable entity of the scheduler is the thread. AIX maintains 256 run queues. The
run queues relate directly to the range of possible values (0 through 255) for the priority field for each
thread. This method makes it easier for the scheduler to determine which thread is most favored to run.
Without having to search a single large run queue, the scheduler consults a mask where a bit is on to
indicate the presence of a ready-to-run thread in the corresponding run queue.

The priority value of a thread changes rapidly and frequently. The constant movement is because of the
way the scheduler recalculates priorities. This is not true, however, for fixed-priority threads.

Starting with AIX Version 6.1, each processor has a run queue per node. The run queue values that are
reported in the performance tools is the sum of all the threads in each run queue. Having a per-processor
run queue saves overhead on dispatching locks and improves overall processor affinity. Threads tend to
stay on the same processor more often. If a thread becomes executable because of an event on another

Performance management 39

processor than the executable thread that it is running on, then the thread gets dispatched immediately if
there is an idle processor. No preemption occurs until the processor's state is examined such as an
interrupt on the thread's processor.

On multiprocessor systems with multiple run queues, transient priority inversions can occur. It is possible
that at any time one run queue has several threads with more favorable priority than another run queue.
AIX has mechanisms for priority balancing over time, but if strict priority is required (for example, for real-
time applications) an environment variable that is called RT_GRQ exists. The RT_GRQ environmental
variable when set to ON, causes the thread to be on a global run queue. In that case, the global run queue
is searched for the thread with the best priority. This can improve performance for threads that are
interrupt driven. Threads that are running at fixed priority are placed on the global run queue, if the
fixed_pri_global parameter of the schedo command is set to 1.

The average number of threads in the run queue is seen in the first column of the vmstat command
output. If you divide this number by the number of processors, the result is the average number of
threads that are run on each processor. If this value is greater than one, these threads must wait their turn
for the processor the greater the number, the more likely it is that performance delays are noticed.

When a thread is moved to the end of the run queue (for example, when the thread has control at the end
of a time slice), it is moved to a position after the last thread in the queue that has the same priority value.

Scheduler processor time slice

The processor time slice is the amount of time a SCHED_RR thread can absorb before the scheduler
switches to another thread at the same priority.

You can use the timeslice option of the schedo command to increase the number of clock ticks in the
time slice by 10 millisecond increments (see “Scheduler time slice modification with the schedo
command ” on page 113).

Note: The time slice is not a guaranteed amount of processor time. It is the longest time that a thread can
be in control before it faces the possibility of being replaced by another thread. There are many ways in
which a thread can lose control of the processor before it has had control for a full time slice.

Mode switching

A user process undergoes a mode switch when it needs access to system resources. This is implemented
through the system call interface or by interrupts such as page faults.

There are two modes:
« User mode
« Kernel mode

Processor time spent in user mode (application and shared libraries) is reflected as user time in the
output of commands such as the vmstat, iostat, and saxr commands. Processor time spent in kernel
mode is reflected as system time in the output of these commands.

User mode
Programs that execute in the user protection domain are user processes.

Code that executes in this protection domain executes in user execution mode, and has the following
access:

- Read/write access to user data in the process private region
« Read access to the user text and shared text regions
« Access to shared data regions using the shared memory functions

Programs executing in the user protection domain do not have access to the kernel or kernel data
segments, except indirectly through the use of system calls. A program in this protection domain can only
affect its own execution environment and executes in the process or unprivileged state.

40 AIX Version 7.1: Performance management

Kernel mode
Programs that execute in the kernel protection domain include interrupt handlers, kernel processes, the
base kernel, and kernel extensions (device driver, system calls and file systems).

This protection domain implies that code executes in kernel execution mode, and has the following
access:

- Read/write access to the global kernel address space
« Read/write access to the kernel data in the process region when executing within a process

Kernel services must be used to access user data within the process address space.

Programs executing in this protection domain can affect the execution environments of all programs,
because they have the following characteristics:

« They can access global system data

« They can use kernel services

« They are exempt from all security restraints

« They execute in the processor privileged state.

Mode switches

The use of a system call by a user-mode process allows a kernel function to be called from user mode.
Access to functions that directly or indirectly invoke system calls is typically provided by programming
libraries, which provide access to operating system functions.

Mode switches should be differentiated from the context switches seen in the output of the vmstat (cs
column) and sar (cswch/s) commands. A context switch occurs when the currently running thread is
different from the previously running thread on that processor.

The scheduler performs a context switch when any of the following occurs:

« A thread must wait for a resource (voluntarily), such as disk I/0, network I/0, sleep, or locks
« A higher priority thread wakes up (involuntarily)
« The thread has used up its time slice (usually 10 ms).

Context switch time, system calls, device interrupts, NFS I/0, and any other activity in the kernel is
considered as system time.

Virtual Memory Manager performance

The virtual address space is partitioned into segments. A segment is a 256 MB, contiguous portion of the
virtual-memory address space into which a data object can be mapped.

Process addressability to data is managed at the segment (or object) level so that a segment can be
shared between processes or maintained as private. For example, processes can share code segments
yet have separate and private data segments.

Real-memory management
The VMM plays an important role in the management of real memory.

Virtual-memory segments are partitioned into fixed-size units called pages. AIX 7.1 running on POWER5+
processors supports four page sizes: 4 KB, 64 KB, 16 MB, and 16 GB. For more information, see Multiple
page size support. Each page in a segment can be in real memory (RAM), or stored on disk until it is
needed. Similarly, real memory is divided into page frames. The role of the VMM is to manage the
allocation of real-memory page frames and to resolve references by the program to virtual-memory pages
that are not currently in real memory or do not yet exist (for example, when a process makes the first
reference to a page of its data segment).

Because the amount of virtual memory that is in use at any given instant can be larger than real memory,
the VMM must store the surplus on disk. From the performance standpoint, the VMM has two, somewhat
opposed, objectives:

Performance management 41

« Minimize the overall processor-time and disk-bandwidth cost of the use of virtual memory.
« Minimize the response-time cost of page faults.

In pursuit of these objectives, the VMM maintains a free list of page frames that are available to satisfy a
page fault. The VMM uses a page-replacement algorithm to determine which virtual-memory pages
currently in memory will have their page frames reassigned to the free list. The page-replacement
algorithm uses several mechanisms:

« Virtual-memory segments are classified into either persistent segments or working segments.
- Virtual-memory segments are classified as containing either computational or file memory.
- Virtual-memory pages whose access causes a page fault are tracked.

Page faults are classified as new-page faults or as repage faults.

Statistics are maintained on the rate of repage faults in each virtual-memory segment.
 User-tunable thresholds influence the page-replacement algorithm's decisions.

Free list
The VMM maintains a logical list of free page frames that it uses to accommodate page faults.

In most environments, the VMM must occasionally add to the free list by reassigning some page frames
owned by running processes. The virtual-memory pages whose page frames are to be reassigned are
selected by the VMM's page-replacement algorithm. The VMM thresholds determine the number of
frames reassigned.

Persistent versus working segments
Persistent segments are permanent while working segments are temporary.

The pages of a persistent segment have permanent storage locations on disk. Files containing data or
executable programs are mapped to persistent segments. Because each page of a persistent segment has
a permanent disk storage location, the VMM writes the page back to that location when the page has been
changed and can no longer be kept in real memory. If the page has not changed when selected for
placement on a free list, no I/0 is required. If the page is referenced again later, a new copy is read in from
its permanent disk-storage location.

Working segments are transitory, exist only during their use by a process, and have no permanent disk-
storage location. Process stack and data regions are mapped to working segments, as are the kernel text
segment, the kernel-extension text segments, as well as the shared-library text and data segments.
Pages of working segments must also have disk-storage locations to occupy when they cannot be kept in
real memory. The disk-paging space is used for this purpose.

The following illustration shows the relationship between some of the types of segments and the
locations of their pages on disk. It also shows the actual (arbitrary) locations of the pages when they are
in real memory.

42 AIX Version 7.1: Performance management

0 Addressing Range 256 MB —
. l.,,‘_‘___‘_‘__‘-_._—_’_‘_.l
Frocess lll Program text segment (persistent) \
Theede) Stack and data segment (working)
re
\ Paging Space
Shared library segment (working) [————» D
'H"'\—-__‘____'_,_-F""‘
Page(s) /
Touched 0 4 KB Page Frames n Real
Real 110
Memory

Figure 8. Persistent and Working Storage Segments

Persistent-segment types are further classified. Client segments are used to map remote files (for
example, files that are being accessed through NFS), including remote executable programs. Pages from
client segments are saved and restored over the network to their permanent file location, not on the local-
disk paging space. Journaled and deferred segments are persistent segments that must be atomically
updated. If a page from a journaled or deferred segment is selected to be removed from real memory
(paged out), it must be written to disk paging space unless it is in a state that allows it to be committed
(written to its permanent file location).

Computational versus file memory
Computational memory, also known as computational pages, consists of the pages that belong to
working-storage segments or program text (executable files) segments.

File memory (or file pages) consists of the remaining pages. These are usually pages from permanent data
files in persistent storage.

Page replacement
When the number of available real memory frames on the free list becomes low, a page stealer is invoked.
A page stealer moves through the Page Frame Table (PFT), looking for pages to steal.

The PFT includes flags to signal which pages have been referenced and which have been modified. If the
page stealer encounters a page that has been referenced, it does not steal that page, but instead, resets
the reference flag for that page. The next time the clock hand (page stealer) passes that page and the
reference bit is still off, that page is stolen. A page that was not referenced in the first pass is immediately
stolen.

The modify flag indicates that the data on that page has been changed since it was brought into memory.
When a page is to be stolen, if the modify flag is set, a pageout call is made before stealing the page.
Pages that are part of working segments are written to paging space; persistent segments are written to
disk.

Performance management 43

Second Chance

PFT (excerpt) I_] Left in memory

Real Seq REF MOD but REF bit cleared
Free List Addr Type
Real aaa w 4+ + ,:::—:-__-—___::I
Addr \
'I'_‘ aaal L B — Paging Space
aaal
aaal w + e
aaad
b2 aaad W
bob4 bbb P + + —_——
coc bbbz F + > "
e bbb3 = + ————
bixba P
coc C
- = « I—r MFS Server
ccc? C +
cccd C +
ccod C
Resulting PFT (excerpt)
Real Seq REF MOD = T Page Frame Table (excerpt)
Addr Type B
aaal W .
aaald W
bbbl = +
bbb3 P
ccel C +
coced C

Figure 9. Page Replacement Example

In addition to the page-replacement, the algorithm keeps track of both new page faults (referenced for
the first time) and repage faults (referencing pages that have been paged out), by using a history buffer
that contains the IDs of the most recent page faults. It then tries to balance file (persistent data) page
outs with computational (working storage or program text) page outs.

When a process exits, its working storage is released immediately and its associated memory frames are
put back on the free list. However, any files that the process may have opened can stay in memory.

Page replacement is done directly within the scope of the thread if running on a uniprocessor. On a
multiprocessor system, page replacement is done through the lrud kernel process, which is dispatched to
a CPU when the minfree threshold has been reached. The lrud kernel process is multithreaded with one
thread per memory pool. Real memory is split into evenly sized memory pools based on the number of
CPUs and the amount of RAM. The number of memory pools on a system can be determined by running
the vmstat =-v command.

Repaging

A page fault is considered to be either a new page fault or a repage fault. A new page fault occurs when
there is no record of the page having been referenced recently. A repage fault occurs when a page that is
known to have been referenced recently is referenced again, and is not found in memory because the
page has been replaced (and perhaps written to disk) since it was last accessed.

A perfect page-replacement policy would eliminate repage faults entirely (assuming adequate real
memory) by always stealing frames from pages that are not going to be referenced again. Thus, the
number of repage faults is an inverse measure of the effectiveness of the page-replacement algorithm in
keeping frequently reused pages in memory, thereby reducing overall I/O demand and potentially
improving system performance.

To classify a page fault as new or repage, the VMM maintains a repage history buffer that contains the
page IDs of the N most recent page faults, where N is the number of frames that the memory can hold. For

44 AIX Version 7.1: Performance management

example, 512 MB memory requires a 128 KB repage history buffer. At page-in, if the page's ID is found in
the repage history buffer, it is counted as a repage. Also, the VMM estimates the computational-memory
repaging rate and the file-memory repaging rate separately by maintaining counts of repage faults for
each type of memory. The repaging rates are multiplied by 0.9 each time the page-replacement algorithm
runs, so that they reflect recent repaging activity more strongly than historical repaging activity.

VMM thresholds

Several numerical thresholds define the objectives of the VMM. When one of these thresholds is
breached, the VMM takes appropriate action to bring the state of memory back within bounds. This
section discusses the thresholds that the system administrator can alter through the vmo command.

The number of page frames on the free list is controlled by the following parameters:

minfree
Minimum acceptable number of real-memory page frames in the free list. When the size of the free list
falls below this number, the VMM begins stealing pages. It continues stealing pages until the size of
the free list reaches maxfree.

maxfree
Maximum size to which the free list will grow by VMM page-stealing. The size of the free list may
exceed this number as a result of processes terminating and freeing their working-segment pages or
the deletion of files that have pages in memory.

The VMM attempts to keep the size of the free list greater than or equal to minfree. When page faults or
system demands cause the free list size to fall below minfree, the page-replacement algorithm runs. The
size of the free list must be kept above a certain level (the default value of minfree) for several reasons.
For example, the operating system's sequential-prefetch algorithm requires several frames at a time for
each process that is doing sequential reads. Also, the VMM must avoid deadlocks within the operating
system itself, which could occur if there were not enough space to read in a page that was required to free
a page frame.

The following thresholds are expressed as percentages. They represent the fraction of the total real
memory of the machine that is occupied by file pages (pages of noncomputational segments).

minperm
If the percentage of real memory occupied by file pages falls below this level, the page-replacement
algorithm steals both file and computational pages, regardless of repage rates.

maxperm
If the percentage of real memory occupied by file pages rises above this level, the page-replacement
algorithm steals only file pages.

maxclient
If the percentage of real memory occupied by file pages is above this level, the page-replacement
algorithm steals only client pages.

When the percentage of real memory occupied by file pages is between the minperm and maxperm
parameter values, the VMM normally steals only file pages, but if the repaging rate for file pages is higher
than the repaging rate for computational pages, computational pages are stolen as well.

The main intent of the page-replacement algorithm is to ensure that computational pages are given fair
treatment. For example, the sequential reading of a long data file into memory should not cause the loss
of program text pages that are likely to be used again soon. The page-replacement algorithm's use of the
thresholds and repaging rates ensures that both types of pages get treated fairly, with a slight bias in favor
of computational pages.

VMM memory load control facility

A process requires real-memory pages to execute. When a process references a virtual-memory page that
is on disk, because it either has been paged-out or has never been read, the referenced page must be
paged-in and, on average, one or more pages must be paged out (if replaced pages had been modified),
creating I/0 traffic and delaying the progress of the process.

Performance management 45

The operating system attempts to steal real memory from pages that are unlikely to be referenced in the
near future, through the page-replacement algorithm. A successful page-replacement algorithm allows
the operating system to keep enough processes active in memory to keep the CPU busy. But at some level
of competition for memory, no pages are good candidates for paging out to disk because they will all be
reused in the near future by the active set of processes. This situation depends on the following:

« Total amount of memory in the system

The number of processes

The time-varying memory requirements of each process
« The page-replacement algorithm

When this happens, continuous paging-in and paging-out occurs. This condition is called thrashing.
Thrashing results in incessant I/O to the paging disk and causes each process to encounter a page fault
almost as soon as it is dispatched, with the result that none of the processes make any significant
progress.

The most destructive aspect of thrashing is that, although thrashing may have been triggered by a brief,
random peak in workload (such as all of the users of a system happening to press Enter in the same
second), the system might continue thrashing for an indefinitely long time.

The operating system has a memory load-control algorithm that detects when the system is starting to
thrash and then suspends active processes and delays the initiation of new processes for a period of time.
Five parameters set rates and bounds for the algorithm. The default values of these parameters have
been chosen to be "fail safe" across a wide range of workloads. In AIX Version 4, memory load control is
disabled by default on systems that have available memory frames that add up to greater than or equal to
128 MB.

Memory load control algorithm

The memory load control mechanism assesses, once per second, whether sufficient memory is available
for the set of active processes. When a memory-overcommitment condition is detected, some processes
are suspended, decreasing the number of active processes and thereby decreasing the level of memory
overcommitment.

When a process is suspended, all of its threads are suspended when they reach a suspendable state. The
pages of the suspended processes quickly become stale and are paged out by the page-replacement
algorithm, releasing enough page frames to allow the remaining active processes to progress. During the
interval in which existing processes are suspended, newly created processes are also suspended,
preventing new work from entering the system. Suspended processes are not reactivated until a
subsequent interval passes during which no potential thrashing condition exists. Once this safe interval
has passed, the threads of the suspended processes are gradually reactivated.

Memory load-control schedo parameters specify the following:

« The system memory overcommitment threshold (v_repage_hi)
« The number of seconds required to make a safe interval (v_sec_wait)

The individual process memory overcommitment threshold by which an individual process is qualified
as a suspension candidate (v_repage_proc)

« The minimum number of active processes when processes are being suspended (v_min_process)
« The minimum number of elapsed seconds of activity for a process after reactivation (v_exempt_secs)

For information on setting and tuning these parameters, see “VYMM memory load control tuning with the
schedo command ” on page 133.

Once per second, the scheduler (process 0) examines the values of all the above measures that have
been collected over the preceding one-second interval, and determines if processes are to be suspended
or activated. If processes are to be suspended, every process eligible for suspension by the -p and -e
parameter test is marked for suspension. When that process next receives the CPU in user mode, it is
suspended (unless doing so would reduce the number of active processes below the -m value). The user-
mode criterion is applied so that a process is ineligible for suspension during critical system activities
performed on its behalf. If, during subsequent one-second intervals, the thrashing criterion is still being

46 AIX Version 7.1: Performance management

met, additional process candidates meeting the criteria set by =p and -e are marked for suspension. When
the scheduler subsequently determines that the safe-interval criterion has been met and processes are to
be reactivated, some number of suspended processes are put on the run queue (made active) every
second.

Suspended processes are reactivated by:

1. Priority
2. The order in which they were suspended

The suspended processes are not all reactivated at once. A value for the number of processes reactivated
is selected by a formula that recognizes the number of then-active processes and reactivates either one-
fifth of the number of then-active processes or a monotonically increasing lower bound, whichever is
greater. This cautious strategy results in increasing the degree of multiprogramming roughly 20 percent
per second. The intent of this strategy is to make the rate of reactivation relatively slow during the first
second after the safe interval has expired, while steadily increasing the reintroduction rate in subsequent
seconds. If the memory-overcommitment condition recurs during the course of reactivating processes,
the following occur:

« Reactivation is halted
- The marked-to-be reactivated processes are again marked suspended
« Additional processes are suspended in accordance with the above rules

Allocation and reclamation of paging space slots

The operating system supports three allocation methods for working storage.

The three allocation methods for working storage, also referred to as paging-space slots, are as follows:
- Late allocation

« Early allocation

« Deferred allocation

Note: Paging-space slots are only released by process (not thread) termination or by the disclaim()
system call. The slots are not released by the free() system call

Late allocation algorithm

Many programs exploit late allocation by allocating virtual-memory address ranges for maximum-sized
structures and then only using as much of the structure as the situation requires. The pages of the virtual-
memory address range that are never accessed never require real-memory frames or paging-space slots.

This technique does involve some degree of risk. If all of the programs running in a machine happened to
encounter maximume-size situations simultaneously, paging space might be exhausted. Some programs
might not be able to continue to completion.

Early allocation algorithm

The second operating system's paging-space-slot-allocation method is intended for use in installations
where this situation is likely, or where the cost of failure to complete is intolerably high. Aptly called early
allocation, this algorithm causes the appropriate number of paging-space slots to be allocated at the time
the virtual-memory address range is allocated, for example, with the malloc() subroutine. If there are not
enough paging-space slots to support the malloc() subroutine, an error code is set. The early-allocation
algorithm is invoked as follows:

export PSALLOC=early

This example causes all future programs to be executed in the environment to use early allocation. The
currently executing shell is not affected.

Performance management 47

Early allocation is of interest to the performance analyst mainly because of its paging-space size
implications. If early allocation is turned on for those programs, paging-space requirements can increase
many times. Whereas the normal recommendation for paging-space size is at least twice the size of the
system's real memory, the recommendation for systems that use PSALLOC=early is at least four times
the real memory size. Actually, this is just a starting point. Analyze the virtual storage requirements of
your workload and allocate paging spaces to accommodate them. As an example, at one time, the
AIXwindows server required 250 MB of paging space when run with early allocation.

When using PSALLOC=early, the user should set a handler for the following SIGSEGV signal by pre-
allocating and setting the memory as a stack using the sigaltstack function. Even though
PSALLOC=early is specified, when there is not enough paging space and a program attempts to expand
the stack, the program may receive the SIGSEGV signal.

Deferred allocation algorithm

The paging-space-slot-allocation method of the third operating system is the default behavior. Deferred
Page Space Allocation (DPSA) policy delays allocation of paging space until it is necessary to page out the
page, which results in no wastage of the paging space allocation. This method saves huge amounts of
paging space that is the disk space.

On some systems, paging space might not ever be needed even if all the pages accessed have been
touched. This situation is most common on systems with very large amount of RAM. However, this may
result in overcommitment of paging space in cases where more virtual memory than available RAM is
accessed.

To disable DPSA and preserve the Late Page Space Allocation policy, run the following command:
vmo -o defps=0

To activate DPSA, run the following command:
vmo -o defps=1

In general, system performance can be improved by DPSA, because the overhead of allocating page
space after page faults is avoided the. Paging space devices need less disk space if DPSA is used.

For further information, see “Page space allocation” on page 139 and “Paging spaces placement and
sizes” on page 87.

Fixed-disk storage management performance
The operating system uses a hierarchy of structures to manage fixed-disk storage.

Each individual disk drive, called a physical volume (PV), has a name, such as /dev/hdisk®0. If the
physical volume is in use, it belongs to a volume group (VG). All of the physical volumes in a volume group
are divided into physical partitions (PPs) of the same size (by default, 4 MB in volume groups that include
physical volumes smaller than 4 GB; 8 MB or more with bigger disks).

For space-allocation purposes, each physical volume is divided into five regions. See “Position on physical
volume ” on page 182 for more information. The number of physical partitions in each region varies,
depending on the total capacity of the disk drive.

48 AIX Version 7.1: Performance management

fop/filename File

fop FS
1| |p| al |r |ndt1 1|2(3].|n|h2 VS
LPs
PPs
o lom|m | im] i o lom|m|im] i o lom|m [im] i PVs
/dev hdisk 0 fdev/h disk1 fdevihdisk2
Other'u'g/ rootvg
VGs

Figure 10. Organization of Fixed-Disk Data (Unmirrored)

Within each volume group, one or more logical volumes (LVs) are defined. Each logical volume consists of
one or more logical partitions. Each logical partition corresponds to at least one physical partition. If
mirroring is specified for the logical volume, additional physical partitions are allocated to store the
additional copies of each logical partition. Although the logical partitions are numbered consecutively, the
underlying physical partitions are not necessarily consecutive or contiguous.

Logical volumes can serve a number of system purposes, such as paging, but each logical volume that
holds ordinary system data or user data or programs contains a single journaled file system (JFS or
Enhanced JFS). Each JFS consists of a pool of page-size (4096-byte) blocks. When data is to be written to
a file, one or more additional blocks are allocated to that file. These blocks may or may not be contiguous
with one another and with other blocks previously allocated to the file.

For purposes of illustration, the previous figure shows a bad (but not the worst possible) situation that
might arise in a file system that had been in use for a long period without reorganization. The /op/
filename file is physically recorded on a large number of blocks that are physically distant from one
another. Reading the file sequentially would result in many time-consuming seek operations.

Performance management 49

While an operating system's file is conceptually a sequential and contiguous string of bytes, the physical
reality might be very different. Fragmentation may arise from multiple extensions to logical volumes as
well as allocation/release/reallocation activity within a file system. A file system is fragmented when its
available space consists of large numbers of small chunks of space, making it impossible to write out a
new file in contiguous blocks.

Access to files in a highly fragmented file system may result in a large number of seeks and longer I/0
response times (seek latency dominates I/0 response time). For example, if the file is accessed
sequentially, a file placement that consists of many, widely separated chunks requires more seeks than a
placement that consists of one or a few large contiguous chunks. If the file is accessed randomly, a
placement that is widely dispersed requires longer seeks than a placement in which the file's blocks are
close together.

The effect of a file's placement on I/0 performance diminishes when the file is buffered in memory. When
afile is opened in the operating system, it is mapped to a persistent data segment in virtual memory. The
segment represents a virtual buffer for the file; the file's blocks map directly to segment pages. The VMM
manages the segment pages, reading file blocks into segment pages upon demand (as they are
accessed). There are several circumstances that cause the VMM to write a page back to its corresponding
block in the file on disk; but, in general, the VMM keeps a page in memory if it has been accessed recently.
Thus, frequently accessed pages tend to stay in memory longer, and logical file accesses to the
corresponding blocks can be satisfied without physical disk accesses.

At some point, the user or system administrator can choose to reorganize the placement of files within
logical volumes and the placement of logical volumes within physical volumes to reduce fragmentation
and to more evenly distribute the total I/0 load. “Logical volume and disk I/O performance” on page 160
contains further details about detecting and correcting disk placement and fragmentation problems.

Support for pinned memory

AIX enables memory pages to be maintained in real memory all the time. This mechanism is called
pinning memory.

Pinning a memory region prohibits the pager from stealing pages from the pages backing the pinned
memory region. Memory regions defined in either system space or user space may be pinned. After a
memory region is pinned, accessing that region does not result in a page fault until the region is
subsequently unpinned. While a portion of the kernel remains pinned, many regions are pageable and are
only pinned while being accessed.

The advantage of having portions of memory pinned is that, when accessing a page that is pinned, you can
retrieve the page without going through the page replacement algorithm. An adverse side effect of having
too many pinned memory pages is that it can increase paging activity for unpinned pages, which would
degrade performance.

The vmo maxpin% tunable can be used to adjust the amount of memory that can be pinned. The maxpin
% tunable specifies the maximum percentage of real memory that can be pinned.

Note: Because the kernel must be able to pin some amount of kernel data, decreasing the value of the
maxpin% tunable might lead to functional problems and is not advised.

User applications may pin memory through several different mechanisms. Applications can use the
plock(), mlock(), and mlockall () subroutines to pin application memory.

An application can explicitly pin shared memory regions by specifying the SHM_LOCK option to the
shmctl () subroutine. An application can also pin a shared memory region by specifying the SHM_PIN
flag to shmget ().

50 AIX Version 7.1: Performance management

Multiprocessing

At any given time, a technological limit exists on the speed with which a single processor chip can
operate. If a system's workload cannot be handled satisfactorily by a single processor, one response is to
apply multiple processors to the problem.

The success of this response depends not only on the skill of the system designers, but also on whether
the workload is amenable to multiprocessing. In terms of human tasks, adding people might be a good
idea if the task is answering calls to a toll-free number, but is dubious if the task is driving a car.

If improved performance is the objective of a proposed migration from a uniprocessor to a multiprocessor
system, the following conditions must be true:

« The workload is processor-limited and has saturated its uniprocessor system.

- The workload contains multiple processor-intensive elements, such as transactions or complex
calculations, that can be performed simultaneously and independently.

« The existing uniprocessor cannot be upgraded or replaced with another uniprocessor of adequate
power.

Although unchanged single-thread applications normally function correctly in a multiprocessor
environment, their performance often changes in unexpected ways. Migration to a multiprocessor can
improve the throughput of a system, and can improve the execution time of complex, multithreaded
applications, but seldom improves the response time of individual, single-thread commands.

Getting the best possible performance from a multiprocessor system requires an understanding of the
operating-system and hardware-execution dynamics that are unique to the multiprocessor environment.

Symmetrical Multiprocessor concepts and architecture

As with any change that increases the complexity of the system, the use of multiple processors generates
design considerations that must be addressed for satisfactory operation and performance.

The additional complexity gives more scope for hardware/software trade-offs and requires closer
hardware/software design coordination than in uniprocessor systems. The different combinations of
design responses and trade-offs give rise to a wide variety of multiprocessor system architectures.

Types of multiprocessing

Several categories of multiprocessing (MP) systems exist.

Shared nothing MP

The processors share nothing (each has its own memory, caches, and disks), but they are interconnected.
This type of muliprocessing is also called a pure cluster.

Each processor is a complete stand-alone machine and runs a copy of the operating system. When LAN-
connected, processors are loosely coupled. When connected by a switch, the processors are tightly
coupled. Communication between processors is done through message-passing.

The advantages of such a system are very good scalability and high availability. The disadvantages of such
a system are an unfamiliar programming model (message passing).

Shared disks MP

The advantages of shared disks are that part of a familiar programming model is retained (disk data is
addressable and coherent, memory is not), and high availability is much easier than with shared-memory
systems. The disadvantages are limited scalability due to bottlenecks in physical and logical access to
shared data.

Processors have their own memory and cache. The processors run in parallel and share disks. Each
processor runs a copy of the operating system and the processors are loosely coupled (connected through
LAN). Communication between processors is done through message-passing.

Performance management 51

Shared Memory Cluster
All of the processors in a shared memory cluster have their own resources (main memory, disks, I/0) and
each processor runs a copy of the operating system.

Processors are tightly coupled (connected through a switch). Communication between the processors is
done through shared memory.

Shared memory MP

All of the processors are tightly coupled inside the same box with a high-speed bus or a switch. The
processors share the same global memory, disks, and I/O devices. Only one copy of the operating system
runs across all of the processors, and the operating system must be designed to exploit this architecture
(multithreaded operating system).

SMPs have several advantages:

« They are a cost-effective way to increase throughput.

- They offer a single system image since the Operating System is shared between all the processors
(administration is easy).

« They apply multiple processors to a single problem (parallel programming).

« Load balancing is done by the operating system.

« The uniprocessor (UP) programming model can be used in an SMP.

« They are scalable for shared data.

« All data is addressable by all the processors and kept coherent by the hardware snooping logic.

« There is no need to use message-passing libraries to communicate between processors because
communication is done through the global shared memory.

- More power requirements can be solved by adding more processors to the system. However, you must
set realistic expectations about the increase in performance when adding more processors to an SMP
system.

« More and more applications and tools are available today. Most UP applications can run on or are ported
to SMP architecture.

There are some limitations of SMP systems, as follows:

« There are limits on scalability due to cache coherency, locking mechanism, shared objects, and others.

« There is a need for new skills to exploit multiprocessors, such as threads programming and device
drivers programming.

Parallelizing an application
An application can be parallelized on an SMP in one of two ways.

« The traditional way is to break the application into multiple processes. These processes communicate
using inter-process communication (IPC) such as pipes, semaphores or shared memory. The processes
must be able to block waiting for events such as messages from other processes, and they must
coordinate access to shared objects with something like locks.

« Another way is to use the portable operating system interface for UNIX (POSIX) threads. Threads have
similar coordination problems as processes and similar mechanisms to deal with them. Thus a single
process can have any number of its threads running simultaneously on different processors.
Coordinating them and serializing access to shared data are the developer's responsibility.

Consider the advantages of both threads and processes when you are determining which method to use
for parallelizing an application. Threads may be faster than processes and memory sharing is easier. On
another hand, a process implementation will distribute more easily to multiple machines or clusters. If an
application needs to create or delete new instances, then threads are faster (more overhead in forking
processes). For other functions, the overhead of threads is about the same as that of processes.

52 AIX Version 7.1: Performance management

Data serialization

Any storage element that can be read or written by more than one thread may change while the program
is running.

This is generally true of multiprogramming environments as well as multiprocessing environments, but
the advent of multiprocessors adds to the scope and importance of this consideration in two ways:

« Multiprocessors and thread support make it attractive and easier to write applications that share data
among threads.

« The kernel can no longer solve the serialization problem simply by disabling interrupts.

Note: To avoid serious problems, programs that share data must arrange to access that data serially,
rather than in parallel. Before a program updates a shared data item, it must ensure that no other
program (including another copy of itself running on another thread) will change the item. Reads can
usually be done in parallel.

The primary mechanism that is used to keep programs from interfering with one another is the lock. A
lock is an abstraction that represents permission to access one or more data items. Lock and unlock
requests are atomic; that is, they are implemented in such a way that neither interrupts nor
multiprocessor access affect the outcome. All programs that access a shared data item must obtain the
lock that corresponds to that data item before manipulating it. If the lock is already held by another
program (or another thread running the same program), the requesting program must defer its access
until the lock becomes available.

Besides the time spent waiting for the lock, serialization adds to the number of times a thread becomes
nondispatchable. While the thread is nondispatchable, other threads are probably causing the
nondispatchable thread's cache lines to be replaced, which results in increased memory-latency costs
when the thread finally gets the lock and is dispatched.

The operating system's kernel contains many shared data items, so it must perform serialization
internally. Serialization delays can therefore occur even in an application program that does not share
data with other programs, because the kernel services used by the program have to serialize shared
kernel data.

Locks
Use locks to allocate and free internal operating system memory.

For more information, see Understanding Locking.

Types of locks
The Open Software Foundation/1 (OSF/1) 1.1 locking methodology was used as a model for the AIX
multiprocessor lock functions.

However, because the system is preemptable and pageable, some characteristics have been added to the
OSF/1 1.1 Locking Model. Simple locks and complex locks are preemptable. Also, a thread may sleep
when trying to acquire a busy simple lock if the owner of the lock is not currently running. In addition, a
simple lock becomes a sleep lock when a processor has been spinning on a simple lock for a certain
amount of time (this amount of time is a system-wide variable).

Simple locks
A simple lock in operating system version 4 is a spin lock that will sleep under certain conditions
preventing a thread from spinning indefinitely.

Simple locks are preemptable, meaning that a kernel thread can be preempted by another higher priority
kernel thread while it holds a simple lock. On a multiprocessor system, simple locks, which protect
thread-interrupt critical sections, must be used in conjunction with interrupt control in order to serialize
execution both within the executing processor and between different processors.

On a uniprocessor system, interrupt control is sufficient; there is no need to use locks. Simple locks are
intended to protect thread-thread and thread-interrupt critical sections. Simple locks will spin until the
lock becomes available if in an interrupt handler. They have two states: locked or unlocked.

Performance management 53

Complex locks
The complex locks in AIX are read-write locks that protect thread-thread critical sections. These locks are
preemptable.

Complex locks are spin locks that will sleep under certain conditions. By default, they are not recursive,
but can become recursive through the lock_set_recursive() kernel service. They have three states:
exclusive-write, shared-read, or unlocked.

Lock granularity

A programmer working in a multiprocessor environment must decide how many separate locks must be
created for shared data. If there is a single lock to serialize the entire set of shared data items, lock
contention is comparatively likely. The existence of widely used locks places an upper limit on the
throughput of the system.

If each distinct data item has its own lock, the probability of two threads contending for that lock is
comparatively low. Each additional lock and unlock call costs processor time, however, and the existence
of multiple locks makes a deadlock possible. At its simplest, deadlock is the situation shown in the
following illustration, in which Thread 1 owns Lock A and is waiting for Lock B. Meanwhile, Thread 2 owns
Lock B and is waiting for Lock A. Neither program will ever reach the unlock() call that would break the
deadlock. The usual preventive for deadlock is to establish a protocol by which all of the programs that
use a given set of locks must always acquire them in exactly the same sequence.

Thread 1 Kemel Thread 2

lock A —_— lock
-+ grant

lock - lock B
grant —_—

lock B S ai lock

w ait

lock -+ lock A

unlock A w ait unlock B

Figure 11. Deadlock

According to queuing theory, the less idle a resource, the longer the average wait to get it. The
relationship is nonlinear; if the lock is doubled, the average wait time for that lock more than doubles.

The most effective way to reduce wait time for a lock is to reduce the size of what the lock is protecting.
Here are some guidelines:

« Reduce the frequency with which any lock is requested.

« Lock just the code that accesses shared data, not all the code in a component (this will reduce lock
holding time).

« Lock only specific data items or structures and not entire routines.
- Always associate locks with specific data items or structures, not with routines.

54 AIX Version 7.1: Performance management

- For large data structures, choose one lock for each element of the structure rather than one lock for the
whole structure.

 Never perform synchronous I/0 or any other blocking activity while holding a lock.

« If you have more than one access to the same data in your component, try to move them together so
they can be covered by one lock-unlock action.

« Avoid double wake-up. If you modify some data under a lock and have to notify someone that you have
done it, release the lock before you post the wake-up.

« If you must hold two locks simultaneously, request the busiest one last.

On the other hand, a too-fine granularity will increase the frequency of locks requests and locks releases,
which therefore will add additional instructions. You must locate a balance between a too-fine and too-
coarse granularity. The optimum granularity will have to be found by trial and error, and is one of the big
challenges in an MP system. The following graph shows the relation between the throughput and the
granularity of locks.

A

Throu ghput

Granularity

>

Fine Coarse

Figure 12. Relationship Between Throughput and Granularity

Locking overhead
Requesting locks, waiting for locks, and releasing locks add processing overhead.

« A program that supports multiprocessing always does the same lock and unlock processing, even
though it is running in a uniprocessor or is the only user in a multiprocessor system of the locks in
question.

- When one thread requests a lock held by another thread, the requesting thread may spin for a while or
be put to sleep and, if possible, another thread dispatched. This consumes processor time.

« The existence of widely used locks places an upper bound on the throughput of the system. For
example, if a given program spends 20 percent of its execution time holding a mutual-exclusion lock, at
most five instances of that program can run simultaneously, regardless of the number of processors in
the system. In fact, even five instances would probably never be so nicely synchronized as to avoid
waiting for one another (see “Multiprocessor throughput scalability ” on page 59).

Waiting for locks
When a thread wants a lock already owned by another thread, the thread is blocked and must wait until
the lock becomes free.

There are two different ways of waiting:

Performance management 55

- Spin locks are suitable for locks that are held only for very short times. It allows the waiting thread to
keep its processor, repeatedly checking the lock bit in a tight loop (spin) until the lock becomes free.
Spinning results in increased CPU time (system time for kernel or kernel extension locks).

« Sleeping locks are suitable for locks that may be held for longer periods. The thread sleeps until the lock
is free and is put back in the run queue when the lock becomes free. Sleeping results in more idle time.

Waiting always decreases system performance. If a spin lock is used, the processor is busy, but it is not
doing useful work (not contributing to throughput). If a sleeping lock is used, the overhead of context
switching and dispatching as well as the consequent increase in cache misses is incurred.

Operating system developers can choose between two types of locks: mutually exclusive simple locks
that allow the process to spin and sleep while waiting for the lock to become available, and complex read-
write locks that can spin and block the process while waiting for the lock to become available.

Conventions govern the rules about using locks. Neither hardware nor software has an enforcement or
checking mechanism. Although using locks has made the AIX Version 4 "MP Safe," developers are
responsible to define and implement an appropriate locking strategy to protect their own global data.

Cache coherency

In designing a multiprocessor, engineers give considerable attention to ensuring cache coherency. They
succeed; but cache coherency has a performance cost.

We need to understand the problem being attacked:

If each processor has a cache that reflects the state of various parts of memory, it is possible that two or
more caches may have copies of the same line. It is also possible that a given line may contain more than
one lockable data item. If two threads make appropriately serialized changes to those data items, the
result could be that both caches end up with different, incorrect versions of the line of memory. In other
words, the system's state is no longer coherent because the system contains two different versions of
what is supposed to be the content of a specific area of memory.

The solutions to the cache coherency problem usually include invalidating all but one of the duplicate
lines when the line is modified. Although the hardware uses snooping logic to invalidate, without any
software intervention, any processor whose cache line has been invalidated will have a cache miss, with
its attendant delay, the next time that line is addressed.

Snooping is the logic used to resolve the problem of cache consistency. Snooping logic in the processor
broadcasts a message over the bus each time a word in its cache has been modified. The snooping logic
also snoops on the bus looking for such messages from other processors.

When a processor detects that another processor has changed a value at an address existing in its own
cache, the snooping logic invalidates that entry in its cache. This is called cross invalidate. Cross invalidate
reminds the processor that the value in the cache is not valid, and it must look for the correct value
somewhere else (memory or other cache). Since cross invalidates increase cache misses and the
snooping protocol adds to the bus traffic, solving the cache consistency problem reduces the
performance and scalability of all SMPs.

Processor affinity and binding

Processor affinity is the probability of dispatching of a thread to the processor that was previously
executing it. The degree of emphasis on processor affinity should vary directly with the size of the thread's
cache working set and inversely with the length of time since it was last dispatched. The AIX Version 4
dispatcher enforces affinity with the processors, so affinity is done implicitly by the operating system.

If athread is interrupted and later redispatched to the same processor, the processor's cache might still
contain lines that belong to the thread. If the thread is dispatched to a different processor, it will probably
experience a series of cache misses until its cache working set has been retrieved from RAM or the other
processor's cache. On the other hand, if a dispatchable thread has to wait until the processor that it was
previously running on is available, the thread may experience an even longer delay.

The highest possible degree of processor affinity is to bind a thread to a specific processor. Binding means
that the thread will be dispatched to that processor only, regardless of the availability of other processors.

56 AIX Version 7.1: Performance management

The bindprocessox command and the bindprocessor() subroutine bind the thread (or threads) of a
specified process to a particular processor (see “The bindprocessor command ” on page 68). Explicit
binding is inherited through fork() and exec() system calls.

The binding can be useful for CPU-intensive programs that experience few interrupts. It can sometimes
be counterproductive for ordinary programs, because it may delay the redispatch of a thread after an I/O
until the processor to which the thread is bound becomes available. If the thread has been blocked for the
duration of an I/O operation, it is unlikely that much of its processing context remains in the caches of the
processor to which it is bound. The thread would probably be better served if it were dispatched to the
next available processor.

Memory and bus contention

In a uniprocessor, contention for some internal resources, such as banks of memory and I/O or memory
buses, is usually a minor component using time. In a multiprocessor, these effects can become more
significant, particularly if cache-coherency algorithms add to the number of accesses to RAM.

SMP performance issues

There are certain things to take into account to effectively use an SMP.

Workload concurrency

The primary performance issue that is unique to SMP systems is workload concurrency, which can be
expressed as, "Now that we have n processors, how do we keep them all usefully employed"?

If only one processor in a four-way multiprocessor system is doing useful work at any given time, it is no
better than a uniprocessor. It could possibly be worse, because of the extra code to avoid interprocessor
interference.

Workload concurrency is the complement of serialization. To the extent that the system software or the
application workload (or the interaction of the two) require serialization, workload concurrency suffers.

Workload concurrency may also be decreased, more desirably, by increased processor affinity. The
improved cache efficiency gained from processor affinity may result in quicker completion of the program.
Workload concurrency is reduced (unless there are more dispatchable threads available), but response
time is improved.

A component of workload concurrency, process concurrency, is the degree to which a multithreaded
process has multiple dispatchable threads at all times.

Throughput
The throughput of an SMP system is mainly dependent on several factors.

« A consistently high level of workload concurrency. More dispatchable threads than processors at certain
times cannot compensate for idle processors at other times.

« The amount of lock contention.
« The degree of processor affinity.

Response time
The response time of a particular program in an SMP system is dependent on several factors.

« The process-concurrency level of the program. If the program consistently has two or more
dispatchable threads, its response time will probably improve in an SMP environment. If the program
consists of a single thread, its response time will be, at best, comparable to that in a uniprocessor of the
same speed.

- The amount of lock contention of other instances of the program or with other programs that use the
same locks.

Performance management 57

« The degree of processor affinity of the program. If each dispatch of the program is to a different
processor that has none of the program's cache lines, the program may run more slowly than in a
comparable uniprocessor.

SMP workloads

The effect of additional processors on performance is dominated by certain characteristics of the specific
workload being handled. This section discusses those critical characteristics and their effects.

The following terms are used to describe the extent to which an existing program has been modified, or a
new program designed, to operate in an SMP environment:

SMP safe
Avoidance in a program of any action, such as unserialized access to shared data, that would cause
functional problems in an SMP environment. This term, when used alone, usually refers to a program
that has undergone only the minimum changes necessary for correct functioning in an SMP
environment.

SMP efficient
Avoidance in a program of any action that would cause functional or performance problems in an SMP
environment. A program that is described as SMP-efficient is SMP-safe as well. An SMP-efficient
program has usually undergone additional changes to minimize incipient bottlenecks.

SMP exploiting
Adding features to a program that are specifically intended to make effective use of an SMP
environment, such as multithreading. A program that is described as SMP-exploiting is generally
assumed to be SMP-safe and SMP-efficient as well.

Workload multiprocessing

Multiprogramming operating systems running heavy workloads on fast computers give our human senses
the impression that several things are happening simultaneously.

In fact, many demanding workloads do not have large numbers of dispatchable threads at any given
instant, even when running on a single-processor system where serialization is less of a problem. Unless
there are always at least as many dispatchable threads as there are processors, one or more processors
will be idle part of the time.

The number of dispatchable threads is the total number of threads in the system

« Minus the number of threads that are waiting for I/0O,

« Minus the number of threads that are waiting for a shared resource,

« Minus the number of threads that are waiting for the results of another thread,
« Minus the number of threads that are sleeping at their own request.

A workload can be said to be multiprocessable to the extent that it presents at all times as many
dispatchable threads as there are processors in the system. Note that this does not mean simply an
average number of dispatchable threads equal to the processor count. If the number of dispatchable
threads is zero half the time and twice the processor count the rest of the time, the average number of
dispatchable threads will equal the processor count, but any given processor in the system will be
working only half the time.

Increasing the multiprocessability of a workload involves one or both of the following:

- Identifying and resolving any bottlenecks that cause threads to wait
« Increasing the total number of threads in the system

These solutions are not independent. If there is a single, major system bottleneck, increasing the number
of threads of the existing workload that pass through the bottleneck will simply increase the proportion of
threads waiting. If there is not currently a bottleneck, increasing the number of threads may create one.

58 AIX Version 7.1: Performance management

Multiprocessor throughput scalability
Real workloads do not scale perfectly on an SMP system.
Some factors that inhibit perfect scaling are as follows:

« Bus/switch contention increases while the number of processors increases

« Memory contention increases (all the memory is shared by all the processors)

« Increased cost of cache misses as memory gets farther away

« Cache cross-invalidates and reads from another cache to maintain cache coherency

« Increased cache misses because of higher dispatching rates (more processes/threads need to be
dispatched on the system)

« Increased cost of synchronization instructions

« Increased cache misses because of larger operating system and application data structures
« Increased operating system and application path lengths for lock-unlock

- Increased operating system and application path lengths waiting for locks

All of these factors contribute to what is called the scalability of a workload. Scalability is the degree to
which workload throughput benefits from the availability of additional processors. It is usually expressed
as the quotient of the throughput of the workload on a multiprocessor divided by the throughput on a
comparable uniprocessor. For example, if a uniprocessor achieved 20 requests per second on a given
workload and a four-processor system achieved 58 requests per second, the scaling factor would be 2.9.
That workload is highly scalable. A workload that consisted exclusively of long-running, compute-
intensive programs with negligible I/O or other kernel activity and no shared data might approach a
scaling factor of 3.2 to 3.9 on a 4-way system. However, most real-world workloads would not. Because
scalability is very difficult to estimate, scalability assumptions should be based on measurements of
authentic workloads.

The following figure illustrates the problems of scaling. The workload consists of a series of hypothetical
commands. Each command is about one-third normal processing, one-third I/O wait, and one-third
processing with a lock held. On the uniprocessor, only one command can actually be processing at a time,
regardless of whether the lock is held. In the time interval shown (five times the standalone execution
time of the command), the uniprocessor handles 7.67 of the commands.

Uni-
processor
r
A
2-\Way
Multi-
processor
B
\

Waiting for 1/O

(or Lock on MP) Hoding:Lack

Processing

Figure 13. Multiprocessor Scaling

Performance management 59

On the multiprocessor, two processors handle program execution, but there is still only one lock. For
simplicity, all of the lock contention is shown affecting processor B. In the period shown, the
multiprocessor handles 14 commands. The scaling factor is thus 1.83. We stop at two processors
because more would not change the situation. The lock is now in use 100 percent of the time. In a four-
way multiprocessor, the scaling factor would be 1.83 or less.

Real programs are seldom as symmetrical as the commands in the illustration. In addition we have only
taken into account one dimension of contention: locking. If we had included cache-coherency and
processor-affinity effects, the scaling factor would almost certainly be lower.

This example illustrates that workloads often cannot be made to run faster simply by adding processors.
Itis also necessary to identify and minimize the sources of contention among the threads.

Scaling is workload-dependent. Some published benchmark results imply that high levels of scalability
are easy to achieve. Most such benchmarks are constructed by running combinations of small, CPU-
intensive programs that use almost no kernel services. These benchmark results represent an upper
bound on scalability, not a realistic expectation.

Another interesting point to note for benchmarks is that in general, a one-way SMP will run slower (about
5-15 percent) than the equivalent uniprocessor running the UP version of the operating system.

Multiprocessor response time

A multiprocessor can only improve the execution time of an individual program to the extent that the
program can run in multithreaded mode.

There are several ways to achieve parallel execution of parts of a single program:

« Making explicit calls to 1ibpthreads. a subroutines (or, in older programs, to the fork() subroutine) to
create multiple threads that run simultaneously.

« Processing the program with a parallelizing compiler or preprocessor that detects sequences of code
that can be executed simultaneously and generates multiple threads to run them in parallel.

 Using a software package that is itself multithreaded.

Unless one or more of these techniques is used, the program will run no faster in a multiprocessor system
than in a comparable uniprocessor. In fact, because it may experience more locking overhead and delays
due to being dispatched to different processors at different times, it may be slower.

Even if all of the applicable techniques are exploited, the maximum improvement is limited by a rule that
has been called Amdahl's Law:

- If a fraction x of a program's uniprocessor execution time, t, can only be processed sequentially, the
improvement in execution time in an n-way multiprocessor over execution time in a comparable
uniprocessor (the speed-up) is given by the equation:

uniprocessor time - t - 1
seq time + mp time xt + (x-1)t X+Xx
n n

speed up =

lim speed-up = 1
n— 00 s

Figure 14. Amdahl's Law

60 AIX Version 7.1: Performance management

As an example, if 50 percent of a program's processing must be done sequentially, and 50 percent can be
done in parallel, the maximum response-time improvement is less than a factor of 2 (in an otherwise-idle
4-way multiprocessor, it is at most 1.6).

SMP thread scheduling

In the SMP environment, the availability of thread support makes it easier and less expensive to
implement SMP-exploiting applications.

Thread support divides program-execution control into two elements:

« A process is a collection of physical resources required to run the program, such as memory and access
to files.

« Athread is the execution state of an instance of the program, such as the current contents of the
instruction-address register and the general-purpose registers. Each thread runs within the context of a
given process and uses that process's resources. Multiple threads can run within a single process,
sharing its resources.

Forking multiple processes to create multiple flows of control is cumbersome and expensive, because
each process has its own set of memory resources and requires considerable system processing to set up.
Creating multiple threads within a single process requires less processing and uses less memory.

Thread support exists at two levels:
- libpthreads.a support in the application program environment
« Kernel thread support

Although threads are normally a convenient and efficient mechanism to exploit multiprocessing, there are
scalability limits associated with threads. Because threads share process resources and state, locking and
serialization of these resources can sometimes limit scalability.

Default scheduler processing of migrated workloads
The division between processes and threads is invisible to existing programs.

In fact, workloads migrated directly from earlier releases of the operating system create processes as
they have always done. Each new process is created with a single thread (the initial thread) that contends
for the CPU with the threads of other processes.

The default attributes of the initial thread, in conjunction with the new scheduler algorithms, minimize
changes in system dynamics for unchanged workloads.

Priorities can be manipulated with the nice and renice commands and the setpri() and setpriority()
system calls, as before. The scheduler allows a given thread to run for at most one time slice (normally 10
ms) before forcing it to yield to the next dispatchable thread of the same or higher priority. See
“Controlling contention for the microprocessor” on page 108 for more detail.

Scheduling algorithm variables
Several variables affect the scheduling of threads.
Some are unique to thread support; others are elaborations of process-scheduling considerations:
Priority
A thread's priority value is the basic indicator of its precedence in the contention for processor time.

Scheduler run queue position
A thread's position in the scheduler's queue of dispatchable threads reflects a number of preceding
conditions.

Scheduling policy
This thread attribute determines what happens to a running thread at the end of the time slice.

Performance management 61

Contention scope
A thread's contention scope determines whether it competes only with the other threads within its
process or with all threads in the system. A pthread created with process contention scope is
scheduled by the library, while those created with system scope are scheduled by the kernel. The
library scheduler uses a pool of kernels threads to schedule pthreads with process scope. Generally,
create pthreads with system scope, if they are performing I/0. Process scope is useful, when there is a
lot of intra-process synchronizations. Contention scope is a 1ibpthreads.a concept.

Processor affinity
The degree to which affinity is enforced affects performance.

The combinations of these considerations can seem complex, but you can choose from three distinct
approaches when you are managing a given process:

Default
The process has one thread, whose priority varies with CPU consumption and whose scheduling policy
is SCHED_OTHER.

Process-level control
The process can have one or more threads, but the scheduling policy of those threads is left as the
default SCHED_OTHER, which permits the use of the existing methods of controlling nice values and
fixed priorities. All of these methods affect all of the threads in the process identically. If the setpri()
subroutine is used, the scheduling policy of all of the threads in the process is set to SCHED_RR.

Thread-level control
The process can have one or more threads. The scheduling policy of these threads is set to SCHED_RR
or SCHED_FIFOn, as appropriate. The priority of each thread is fixed and is manipulated with thread-
level subroutines.

The scheduling policies are described in “Scheduling policy for threads ” on page 38.

Thread tuning
User threads provide independent flow of control within a process.

If the user threads need to access kernel services (such as system calls), the user threads will be serviced
by associated kernel threads. User threads are provided in various software packages with the most
notable being the pthreads shared library (1ibpthreads.a). With the libpthreads implementation, user
threads sit on top of virtual processors (VP) which are themselves on top of kernel threads. A
multithreaded user process can use one of two models, as follows:

1:1 Thread Model
The 1:1 model indicates that each user thread will have exactly one kernel thread mapped to it. This
model is the default model on all the AIX versions. In this model, each user thread is bound to a VP
and linked to exactly one kernel thread. The VP is not necessarily bound to a real CPU (unless binding
to a processor was done). A thread which is bound to a VP is said to have system scope because it is
directly scheduled with all the other user threads by the kernel scheduler.

M:N Thread Model
The M:N model was implemented in AIX 4.3.1 and is also now the default model. In this model,
several user threads can share the same virtual processor or the same pool of VPs. Each VP can be
thought of as a virtual CPU available for executing user code and system calls. A thread which is not
bound to a VP is said to be a local or process scope because it is not directly scheduled with all the
other threads by the kernel scheduler. The pthreads library will handle the scheduling of user threads
to the VP and then the kernel will schedule the associated kernel thread. As of AIX 4.3.2, the default is
to have one kernel thread mapped to eight user threads. This is tunable from within the application or
through an environment variable.

Depending on the type of application, the administrator can choose to use a different thread model. Tests
show that certain applications can perform much better with the 1:1 model. The default thread model
was changed back to 1:1 from M:N in AIX 6.1. For all the AIX versions, by simply setting the environment
variable AIXTHREAD_SCOPE=S for a specific process, we can set the thread model to 1:1, and then
compare the performance to its previous performance when the thread model was M:N.

62 AIX Version 7.1: Performance management

If you see an application creating and deleting threads, it could be the kernel threads are being harvested
because of the 8:1 default ratio of user threads to kernel threads. This harvesting along with the overhead
of the library scheduling can affect the performance. On the other hand, when thousands of user threads
exist, there may be less overhead to schedule them in user space in the library rather than manage
thousands of kernel threads. You should always try changing the scope if you encounter a performance
problem when using pthreads; in many cases, the system scope can provide better performance.

If an application is running on an SMP system, then if a user thread cannot acquire a mutex, it will attempt
to spin for up to 40 times. It could easily be the case that the mutex was available within a short amount
of time, so it may be worthwhile to spin for a longer period of time. As you add more CPUs, if the
performance goes down, this usually indicates a locking problem. You might want to increase the spin
time by setting the environment variable SPINLOOPTIME=n, where n is the number of spins. It is not
unusual to set the value as high as in the thousands depending on the speed of the CPUs and the number
of CPUs. Once the spin count has been exhausted, the thread can go to sleep waiting for the mutex to
become available or it can issue the yield() system call and simply give up the CPU but stay in an
executable state rather than going to sleep. By default, it will go to sleep, but by setting the
YIELDLOOPTIME environment variable to a number, it will yield up to that many times before going to
sleep. Each time it gets the CPU after it yields, it can try to acquire the mutex.

Certain multithreaded user processes that use the malloc subsystem heavily may obtain better
performance by exporting the environment variable MALLOCMULTIHEAP=1 before starting the
application. The potential performance improvement is particularly likely for multithreaded C++
programs, because these may make use of the malloc subsystem whenever a constructor or destructor is
called. Any available performance improvement will be most evident when the multithreaded user
process is running on an SMP system, and particularly when system scope threads are used (M:N ratio of
1:1). However, in some cases, improvement may also be evident under other conditions, and on
uniprocessors.

Thread environment variables

Within the 1ibpthreads.a framework, a series of tuning knobs have been provided that might impact
the performance of the application.

If possible, use a front-end shell script to invoke the binary executable programs. The shell script should
specify the new values that you want to override the system defaults for the environment variables
described in the sections that follow.

AIXTHREAD_COND_DEBUG

The AIXTHREAD_COND_DEBUG variable maintains a list of condition variables for use by the debugger. If
the program contains a large number of active condition variables and frequently creates and destroys
condition variables, this can create higher overhead for maintaining the list of condition variables. Setting
the variable to OFF will disable the list. Leaving this variable turned on makes debugging threaded
applications easier, but can impose some overhead.

AIXTHREAD_ENRUSG

The AIXTHREAD_ENRUSG variable enables or disables the pthread resource collection. Turning it on
allows for resource collection of all pthreads in a process, but will impose some overhead.

AIXTHREAD_GUARDPAGES=n

* R +
* | pthread attr

* S + <--- pthread->pt_attr

* | pthread struct

* S L LELLELL + <--- pthread->pt_stk.st_limit
* | pthread stack

* | |

* |V |

* R L L L EEL L L + <--- pthread->pt_stk.st_base
* | RED ZONE |

Performance management 63

* L + <--- pthread->pt_guardaddr
* | pthread private data |
* B + <--- pthread->pt_data

The RED ZONE on this illustration is called the Guardpage.
The pthread attr, pthread, and ctx represent the PTH_FIXED part of the memory allocated for a pthread.

The approximate byte sizes in the diagram below are in brackets for 32-bit. For 64-bit, expect the pieces
comprising PTH_FIXED to be slightly larger and the key data to be 8 K, but otherwise the same.

| page alignment 2 |
| [8K-4K+PTH_FIXED-al] |

*

*

*

* B LT +

* | pthread ctx [368]

* Pooocsoosoossoosooso0050 +<--- pthread->pt_attr

* | pthread attr [112]

* {foccooooooooooooooooooo0 + <--- pthread->pt_attr

* | pthread struct [960]

* S + <--- pthread

* | pthread stack | pthread->pt_stk.st_limit
* | | [96K+4K-PTH_FIXED] |

* |V |

* Pocccoooossoooonssoo000s + <--- pthread->pt_stk.st_base
* | RED ZONE [4K]

* Poooosoosoossoos00Es0050 + <--- pthread->pt_guardaddr
* | pthread key data [4K] |

* S R L LLEL LD + <--- pthread->pt_data

* | page alignment 1 (al) |

* | [<4K] |

* LT T +

The RED ZONE on this illustration is called the Guardpage.

The decimal number of guardpages to add to the end of the pthread stack is n, which overrides the
attribute values that are specified at pthread creation time. If the application specifies its own stack, no
guardpages are created. The default is 0 and n must be a positive value.

The guardpage size in bytes is determined by multiplying n by the PAGESIZE. Pagesize is a system-
determined size.

AIXTHREAD_DISCLAIM_GUARDPAGES

The AIXTHREAD_DISCLAIM_GUARDPAGES variable controls whether the stack guardpages are disclaimed
when a pthread stack is created. If AIXTHREAD_DISCLAIM_GUARDPAGES=ON, the guardpages are
disclaimed. If a pthread stack does not have any guardpages, setting the
AIXTHREAD_DISCLAIM_GUARDPAGES variable has no effect.

AIXTHREAD_MNRATIO

The AIXTHREAD_MNRATIO variable controls the scaling factor of the library. This ratio is used when
creating and terminating pthreads. It may be useful for applications with a very large number of threads.
However, always test a ratio of 1:1 because it may provide for better performance.

AIXTHREAD_MUTEX_DEBUG

The AIXTHREAD_MUTEX_DEBUG variable maintains a list of active mutexes for use by the debugger. If the
program contains a large number of active mutexes and frequently creates and destroys mutexes, this can
create higher overhead for maintaining the list of mutexes. Setting the variable to ON makes debugging
threaded applications easier, but may impose the additional overhead. Leaving the variable set to OFF
disables the list.

AIXTHREAD_MUTEX_FAST

If the program experiences performance degradation due to heavy mutex contention, then setting this
variable to ON will force the pthread library to use an optimized mutex locking mechanism that works only

64 AIX Version 7.1: Performance management

on process-private mutexes. These process-private mutexes must be initialized using the
pthread_mutex_init routine and must be destroyed using the pthread_mutex_destroy routine. Leaving the
variable set to OFF forces the pthread library to use the default mutex locking mechanism.

AIXTHREAD_READ_GUARDPAGES

The AIXTHREAD_READ_GUARDPAGES variable enables or disables read access to the guardpages that are
added to the end of the pthread stack. For more information about guardpages that are created by the
pthread, see “AIXTHREAD_GUARDPAGES=n" on page 63.

AIXTHREAD_RWLOCK_DEBUG

The AIXTHREAD_RWLOCK_DEBUG variable maintains a list of read-write locks for use by the debugger. If
the program contains a large number of active read-write locks and frequently creates and destroys read-
write locks, this may create higher overhead for maintaining the list of read-write locks. Setting the
variable to OFF will disable the list.

AIXTHREAD_SUSPENDIBLE={ON|OFF}

Setting the AIXTHREAD_SUSPENDIBLE variable to ON prevents deadlock in applications that use the
following routines with the pthread_suspend_np routine or the pthread_suspend_others_np routine:

 pthread_getrusage_np
» pthread_cancel

» pthread_detach

- pthread_join
 pthread_getunique_np
« pthread_join_np
 pthread_setschedparam
 pthread_getschedparam
« pthread_kill

There is a small performance penalty associated with this variable.

AIXTHREAD_SCOPE={S|P}

The S option signifies a system-wide contention scope (1:1), and the P option signifies a process-wide
contention scope (M:N). One of these options must be specified; the default value is S.

Use of the AIXTHREAD_SCOPE environment variable impacts only those threads created with the default
attribute. The default attribute is employed when the attr parameter of the pthread_create()
subroutine is NULL.

If a user thread is created with system-wide scope, it is bound to a kernel thread and it is scheduled by
the kernel. The underlying kernel thread is not shared with any other user thread.

If a user thread is created with process-wide scope, it is subject to the user scheduler, which means the
following

- It does not have a dedicated kernel thread.

« It sleeps in user mode.

- Itis placed on the user run queue when it is waiting for a processor.
« Itis subjected to time slicing by the user scheduler.

Tests show that some applications can perform better with the 1:1 model.

Performance management 65

AIXTHREAD_SLPRATIO

The AIXTHREAD_SLPRATIO thread tuning variable controls the number of kernel threads that should be
held in reserve for sleeping threads. In general, fewer kernel threads are required to support sleeping
pthreads because they are generally woken one at a time. This conserves kernel resources.

AIXTHREAD_STK=n

The AIXTHREAD_STK=n thread tuning variable controls the decimal number of bytes that should be
allocated for each pthread. This value may be overridden by pthread_attr_setstacksize.

AIXTHREAD_AFFINITY={default|strict|first-touch}

The AIXTHREAD_AFFINITY controls the placement of pthread structures, stacks, and thread-local storage
on an enhanced affinity enabled system.

« The default option will not attempt any special placement of this data, balancing it over the memory
regions used by the process as determined by the system settings

« The strict option will always place this data in memory local to the pthread; this may incur some
performance penalty during the creation of the pthread as the existing data is migrated from one
memory region to another, however, may improve run-time performance.

 The first touch option is similar in placement of memory local to the pthread, however, it will not
attempt to migrate any data within the memory. The in-memory pages are needed by the thread for this
data (including paging in memory from paging space), and will be placed local. This option allows a
balance between startup time and runtime performance.

AIXTHREAD_PREALLOC=n

The AIXTHREAD_PREALLOC variable designates the number of bytes to pre-allocate and free during
thread creation. Some multi-threaded applications may benefit from this by avoiding calls to sbrk() from
multiple threads simultaneously.

The default is 0 and n must be a positive value.

AIXTHREAD_HRT

The AIXTHREAD_HRT=true variable allow high-resolution time-outs for application's pthreads. You must
have root authority, or CAP_NUMA_ATTACH capability to enable high-resolution time-outs. This
environment variable is ignored, if you do not have the required authority or capabilities.

MALLOCBUCKETS

Malloc buckets provides an optional buckets-based extension of the default allocator. It is intended to
improve malloc performance for applications that issue large numbers of small allocation requests. When
malloc buckets is enabled, allocation requests that fall within a predefined range of block sizes are
processed by malloc buckets. All other requests are processed in the usual manner by the default
allocator.

Malloc buckets is not enabled by default. It is enabled and configured prior to process startup by setting
the MALLOCTYPE and MALLOCBUCKETS environment variables.

For more information on malloc buckets, see General Programming Concepts: Writing and Debugging
Programs.

MALLOCMULTIHEAP={considersize,heaps:n}

Multiple heaps are required so that a threaded application can have more than one thread issuing
malloc(), free(), and realloc() subroutine calls. With a single heap, all threads trying to do a malloc(),
free(), or realloc() call would be serialized (that is, only one call at a time). The result is a serious impact

66 AIX Version 7.1: Performance management

on multi-processor machines. With multiple heaps, each thread gets its own heap. If all heaps are being

used, then any new threads trying to do a call will have to wait until one or more of the heaps is available.
Serialization still exists, but the likelihood of its occurrence and its impact when it does occur are greatly
reduced.

The thread-safe locking has been changed to handle this approach. Each heap has its own lock, and the
locking routine "intelligently" selects a heap to try to prevent serialization. If the considersize option is
set in the MALLOCMULTIHEAP environment variable, then the selection will also try to select any available
heap that has enough free space to handle the request instead of just selecting the next unlocked heap.

More than one option can be specified (and in any order) as long as they are comma-separated, for
example:

MALLOCMULTIHEAP=considersize,heaps:3

The options are:

considersize
This option uses a different heap-selection algorithm that tries to minimize the working set size of the
process. The default is not to use this option and use the faster algorithm.

heaps:n
Use this option to change the number of heaps. The valid range for nis 1 to 32. If yousetnto a
number outside of this range (that is, if n<=0 or n>32), n will be set to 32.

The default for MALLOCMULTIHEAP is NOT SET (only the first heap is used). If the environment variable
MALLOCMULTIHEAP is set (for example, MALLOCMULTIHEAP=1) then the threaded application will be able
to use all of the 32 heaps. Setting MALLOCMULTIHEAP=heaps:n will limit the number of heaps to n
instead of the 32 heaps.

For more information, see the Malloc Multiheap section in General Programming Concepts: Writing and
Debugging Programs.

SPINLOOPTIME=n

The SPINLOOPTIME variable controls the number of times the system tries to get a busy mutex or spin
lock without taking a secondary action such as calling the kernel to yield the process. This control is
intended for MP systems, where it is hoped that the lock being held by another actively running pthread
will be released. The parameter works only within libpthreads (user threads). If locks are usually available
within a short amount of time, you may want to increase the spin time by setting this environment
variable. The number of times to retry a busy lock before yielding to another pthread is n. The default is 40
and n must be a positive value.

The MAXSPIN kernel parameter affects spinning in the kernel lock routines (see “Using the schedo
command to modify the MAXSPIN parameter” on page 70).

YIELDLOOPTIME=n

The YIELDLOOPTIME variable controls the number of times that the system yields the processor when
trying to acquire a busy mutex or spin lock before actually going to sleep on the lock. The processor is
yielded to another kernel thread, assuming there is another executable one with sufficient priority. This
variable has been shown to be effective in complex applications, where multiple locks are in use. The
number of times to yield the processor before blocking on a busy lock is n. The default is 0 and n must be
a positive value.

Variables for process-wide contention scope

The following environment variables impact the scheduling of pthreads created with process-wide
contention scope.

AIXTHREAD_MNRATIO=p:k
where k is the number of kernel threads that should be employed to handle p runnable pthreads. This
environment variable controls the scaling factor of the library. This ratio is used when creating and

Performance management 67

terminating pthreads. The variable is only valid with process-wide scope; with system-wide scope,
this environment variable is ignored. The default setting is 8:1.

AIXTHREAD_SLPRATIO=k:p
where k is the number of kernel threads that should be held in reserve for p sleeping pthreads. The
sleep ratio is the number of kernel threads to keep on the side in support of sleeping pthreads. In
general, fewer kernel threads are required to support sleeping pthreads, since they are generally
woken one at a time. This conserves kernel resources. Any positive integer value may be specified for
p and k. If k>p, then the ratio is treated as 1:1. The default is 1:12.

AIXTHREAD_MINKTHREADS=n
where n is the minimum number of kernel threads that should be used. The library scheduler will not
reclaim kernel threads below this figure. A kernel thread may be reclaimed at virtually any point.
Generally, a kernel thread is targeted for reclaim as a result of a pthread terminating. The default is 8.

Thread debug options

The pthreads library maintains a list of active mutexes, condition variables, and read-write locks for use
by the debugger.

When a lock is initialized, it is added to the list, assuming that it is not already on the list. The list is held as
a linked list, so determining that a new lock is not already on the list has a performance implication when
the list gets large. The problem is compounded by the fact that the list is protected by a lock
(dbx__mutexes), which is held across the search of the list. In this case other calls to the
pthread_mutex_init() subroutine are held while the search is done.

If the following environment variables are set to OFF, which is the default, then the appropriate debugging
list will be disabled completely. That means the dbx command (or any debugger using the pthread debug
library) will show no objects in existence.

« AIXTHREAD_MUTEX_DEBUG
+ AIXTHREAD_COND_DEBUG
« AIXTHREAD_RWLOCK_DEBUG

To set any of these environment variables to ON, use the following command:

export variable_name=0N

SMP tools

All performance tools of the operating system support SMP machines.

Some performance tools provide individual processor utilization statistics. Other performance tools
average out the utilization statistics for all processors and display only the averages.

This section describes the tools that are only supported on SMP. For details on all other performance
tools, see the appropriate sections.

The bindprocessor command
Use the bindprocessox command to bind or unbind the kernel threads of a process to a processor.
Root authority is necessary to bind or unbind threads in processes that you do not own.

Note: The bindprocessoxr command is meant for multiprocessor systems. Although it will also work on
uniprocessor systems, binding has no effect on such systems.

To query the available processors, run the following:

bindprocessor -q
The available processors are: 0 1 2 3

The output shows the logical processor numbers for the available processors, which are used with the
bindprocessoxr command as will be seen.

68 AIX Version 7.1: Performance management

To bind a process whose PID is 14596 to processor 1, run the following:

bindprocessor 14596 1

No return message is given if the command was successful. To verify if a process is bound or unbound to a
processor, use the ps -mo THREAD command as explained in “Using the ps command” on page 101:

ps -mo THREAD

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

root 3292 7130 - A 1 60 1 - 240001 pts/0 - -ksh
- - - 14309 S 1 60 1 = 400 = = e

root 14596 3292 - A 73100 1 - 200001 pts/0@ 1 /tmp/cpubound
= = - 15629 R 73 100 1 = 0 = 1 -

root 15606 3292 - A 74101 1 - 200001 pts/0 - /tmp/cpubound
= = - 16895 R 74 101 1 = 0 = = =

root 16634 3292 - A 73 100 1 - 200001 pts/0 - /tmp/cpubound
- - - 15107 R 73 100 1 = 0 - - -

root 18048 3292 - A 14 67 1 = 200001 pts/0 - ps -mo THREAD
= = - 17801 R 14 67 1 = 0] = = -

The BND column shows the number of the processor that the process is bound to or a dash (-) if the
process is not bound at all.

To unbind a process whose PID is 14596, use the following command:

bindprocessor -u 14596
ps -mo THREAD

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

root 3292 7130 - A 2 61 1 = 240001 pts/0 - -ksh
- - - 14309 S 2 61 1 - 400 - - -

root 14596 3292 - A 120 124 1 - 200001 pts/0 - /tmp/cpubound
- - - 15629 R 120 124 1 = 0 = - -

root 15606 3292 - A 120 124 1 - 200001 pts/0 - /tmp/cpubound
= = - 16895 R 120 124 1 = 0 = = -

root 16634 3292 - A 120 124 © - 200001 pts/0 - /tmp/cpubound
- - - 15107 R 120 124 0O - 0 - - -

root 18052 3292 A 12 66 1 - 200001 pts/0 - ps -mo THREAD
- - - 17805 R 12 66 1 - 0 - - -

When the bindprocessoxr command is used on a process, all of its threads will then be bound to one
processor and unbound from their former processor. Unbinding the process will also unbind all its
threads. You cannot bind or unbind an individual thread using the bindprocessoxr command.

However, within a program, you can use the bindprocessor() function call to bind individual threads. If the
bindprocessor() function is used within a piece of code to bind threads to processors, the threads remain
with these processors and cannot be unbound. If the bindprocessoxr command is used on that process,
all of its threads will then be bound to one processor and unbound from their respective former
processors. An unbinding of the whole process will also unbind all the threads.

A process cannot be bound until it is started; that is, it must exist in order to be bound. When a process
does not exist, the following error displays:

bindprocessor 7359 1
1730-002: Process 7359 does not match an existing process

When a processor does not exist, the following error displays:

bindprocessor 7358 4
1730-001: Processor 4 is not available

Note: Do not use the bindprocessoxr command on the wait processes kproc.

Binding considerations
There are several issues to consider before you use the process binding.

Binding can be useful for CPU-intensive programs that experience few interrupts. It can sometimes be
counterproductive for ordinary programs because it might delay the redispatch of a thread after an I/0
until the processor to which the thread is bound becomes available. If the thread is blocked during an I/O

Performance management 69

operation, it is unlikely that much of its processing context remains in the caches of the processor to
which it is bound. The thread is better served if it is dispatched to the next available processor.

Binding does not prevent other processes from being dispatched on the processor on which you bound
your process. Binding is different from partitioning. Using rsets or exclusive rsets allows a set of logical
processors to be dedicated for a specific workload. Therefore, a higher priority process might be
dispatched on the processor where you bind your process. In this case, your process is not dispatched on
other processors, and therefore, you the performance of the bound process is not increased. Better
results might be achieved if you increase the priority of the bound process.

If you bind a process on a heavily loaded system, you might decrease its performance because when a
processor becomes idle, the process is not able to run on the idle processor if it is not the processor on
which the process is bound.

If the process is multithreaded, binding the process binds all its threads to the same processor. Therefore,
the process does not take advantage of the multiprocessing, and performance is not improved.

Note: Use process binding with care because it disrupts the natural load balance that is provided by AIX,
and the overall performance of the system can degrade. If the workload of the system changes from the
initial binding that is monitored, system performance can suffer. If you use the bindprocessox
command, monitor the system regularly because the environment might change, making the bound
process to adversely affect the system performance.

Using the schedo command to modify the MAXSPIN parameter

If a thread wants to acquire a lock when another thread currently owns that lock and is running on
another CPU, the thread that wants the lock will spin on the CPU until the owner thread releases the lock
up to a certain value as specified by a tunable parameter called MAXSPIN.

The default value of MAXSPIN is 0x4000 (16384) for SMP systems and at 1 on UP systems. If you notice
more idle or I/O wait time on a system that had not shown this previously, it could be that threads are
going to sleep more often. If this is causing a performance problem, then tune MAXSPIN such that it is a
higher value or set to -1 which means to spin up to OxFFFFFFFF times.

To revise the number of times to spin before going to sleep use the maxspin option of the schedo
command. To reduce CPU usage that might be caused by excessive spins, reduce the value of MAXSPIN as
follows:

schedo -o maxspin=8192

You might observe an increase in context-switching. If context-switching becomes the bottleneck,
increase MAXSPIN.

To change the value, you must be the root user.

Performance planning and implementation

A program that does not perform acceptably is not functional. Every program must satisfy a set of users,
sometimes a large and diverse set. If the performance of the program is truly unacceptable to a significant
number of those users, it will not be used. A program that is not being used is not performing its intended
function.

This situation is true of licensed software packages as well as user-written applications, although most
developers of software packages are aware of the effects of poor performance and take pains to make
their programs run as fast as possible. Unfortunately, they cannot anticipate all of the environments and
uses that their programs will experience. Final responsibility for acceptable performance falls on the
people who select or write, plan for, and install software packages.

This section describes the stages by which a programmer or system administrator can ensure that a newly
written or purchased program has acceptable performance. (Wherever the word programmer appears
alone, the term includes system administrators and anyone else who is responsible for the ultimate
success of a program.)

70 AIX Version 7.1: Performance management

To achieve acceptable performance in a program, identify and quantify acceptability at the start of the
project and never lose sight of the measures and resources needed to achieve it. Although this method
sounds elementary, some programming projects consciously reject it. They adopt a policy that might be
fairly described as design, code, debug, maybe document, and if we have time, fix the performance.

The only way that programs can predictably be made to function in time, not just in logic, is by integrating
performance considerations in the software planning and development process. Advance planning is
perhaps more critical when existing software is being installed, because the installer has less freedom
than the developer.

Although the detail of this process might seem burdensome for a small program, remember that we have
a second "agenda." Not only must the new program have satisfactory performance, we must also ensure
that the addition of that program to an existing system does not degrade the performance of other
programs run on that system.

Workload component identification

Whether the program is new or purchased, small or large, the developers, the installers, and the
prospective users have assumptions about the use of the program.

Some of these assumptions may be:

Who will be using the program
- Situations in which the program will be run

How often those situations will arise and at what times of the hour, day, month, or year

Whether those situations will also require additional uses of existing programs

Which systems the program will run on
e How much data will be handled, and from where
« Whether data created by or for the program will be used in other ways

Unless these ideas are elicited as part of the design process, they will probably be vague, and the
programmers will almost certainly have different assumptions than the prospective users. Even in the
apparently trivial case in which the programmer is also the user, leaving the assumptions unarticulated
makes it impossible to compare design to assumptions in any rigorous way. Worse, it is impossible to
identify performance requirements without a complete understanding of the work being performed.

Performance requirements documentation

In identifying and quantifying performance requirements, it is important to identify the reasoning behind a
particular requirement. This is part of the general capacity planning process. Users might be basing their
statements of requirements on assumptions about the logic of the program that do not match the
programmer's assumptions.

At a minimum, a set of performance requirements should document the following:

« The maximum satisfactory response time to be experienced most of the time for each distinct type of
user-computer interaction, along with a definition of most of the time. Response time is measured from
the time that the user performs the action that says "Go" until the user receives enough feedback from
the computer to continue the task. It is the user's subjective wait time. It is not from entry to a
subroutine until the first write statement.

If the user denies interest in response time and indicates that only the result is of interest, you can ask
whether "ten times your current estimate of stand-alone execution time" would be acceptable. If the
answer is "yes," you can proceed to discuss throughput. Otherwise, you can continue the discussion of
response time with the user's full attention.

- The response time that is minimally acceptable the rest of the time. A longer response time can cause
users to think the system is down. You also need to specify rest of the time; for example, the peak
minute of a day, 1 percent of interactions. Response time degradations can be more costly or painful at
a particular time of the day.

Performance management 71

 The typical throughput required and the times it will be taking place. This is not a casual consideration.
For example, the requirement for one program might be that it runs twice a day: at 10:00 a.m. and 3:15
p.m. If this is a CPU-limited program that runs for 15 minutes and is planned to run on a multiuser
system, some negotiation is in order.

« The size and timing of maximum-throughput periods.
« The mix of requests expected and how the mix varies with time.

« The number of users per machine and total number of users, if this is a multiuser application. This
description should include the times these users log on and off, as well as their assumed rates of
keystrokes, completed requests, and think times. You may want to investigate whether think times vary
systematically with the preceding and following request.

« Any assumptions that the user is making about the machines the workload will run on. If the user has a
specific existing machine in mind, make sure you know that early on. Similarly, if the user is assuming a
particular type, size, cost, location, interconnection, or any other variable that will constrain your ability
to satisfy the preceding requirements, that assumption also becomes part of the requirements.
Satisfaction will probably not be assessed on the system where the program is developed, tested, or
first installed.

Workload resource requirements estimation

Unless you are purchasing a software package that comes with detailed resource-requirement
documentation, estimating resources can be the most difficult task in the performance-planning process.

The difficulty has several causes, as follows:

« There are several ways to do any task. You can write a C (or other high-level language) program, a shell
script, a perl script, an awk script, a sed script, an AIX windows dialog, and so on. Some techniques
that may seem particularly suitable for the algorithm and for programmer productivity are
extraordinarily expensive from the performance perspective.

A useful guideline is that, the higher the level of abstraction, the more caution is needed to ensure that
one does not receive a performance surprise. Consider carefully the data volumes and number of
iterations implied by some apparently harmless constructs.

- The precise cost of a single process is difficult to define. This difficulty is not merely technical; it is
philosophical. If multiple instances of a given program run by multiple users are sharing pages of
program text, which process should be charged with those pages of memory? The operating system
leaves recently used file pages in memory to provide a caching effect for programs that reaccess that
data. Should programs that reaccess data be charged for the space that was used to retain the data?
The granularity of some measurements such as the system clock can cause variations in the CPU time
attributed to successive instances of the same program.

Two approaches deal with resource-report ambiguity and variability. The first is to ignore the ambiguity
and to keep eliminating sources of variability until the measurements become acceptably consistent.
The second approach is to try to make the measurements as realistic as possible and describe the
results statistically. Note that the latter yields results that have some correlation with production
situations.

« Systems are rarely dedicated to running a single instance of a single program. There are almost always
daemons running, there is frequently communications activity, and often workload from multiple users.
These activities seldom add up linearly. For example, increasing the number of instances of a given
program may result in few new program text pages being used, because most of the program was
already in memory. However, the additional processes may result in more contention for the processor's
caches, so that not only do the other processes have to share processor time with the newcomer, but all
processes may experience more cycles per instruction. This is, in effect, a slowdown of the processor,
as a result of more frequent cache misses.

Make your estimate as realistic as the specific situation allows, using the following guidelines:

« If the program exists, measure the existing installation that most closely resembles your own
requirements. The best method is to use a capacity planning tool such as BEST/1.

72 AIX Version 7.1: Performance management

« If no suitable installation is available, do a trial installation and measure a synthetic workload.

- Ifitis impractical to generate a synthetic workload that matches the requirements, measure individual
interactions and use the results as input to a simulation.

- If the program does not exist yet, find a comparable program that uses the same language and general
structure, and measure it. Again, the more abstract the language, the more care is needed in
determining comparability.

- If no comparable program exists, develop a prototype of the main algorithms in the planned language,
measure the prototype, and model the workload.

« Only if measurement of any kind is impossible or infeasible should you make an educated guess. If it is
necessary to guess at resource requirements during the planning stage, it is critical that the actual
program be measured at the earliest possible stage of its development.

Keep in mind that independent software vendors (ISV) often have sizing guidelines for their applications.
In estimating resources, we are primarily interested in four dimensions (in no particular order):

CPU time
Processor cost of the workload

Disk accesses
Rate at which the workload generates disk reads or writes

LAN traffic
Number of packets the workload generates and the number of bytes of data exchanged

Real memory
Amount of RAM the workload requires

The following sections discuss how to determine these values in various situations.

Workload resources measurement

If the real program, a comparable program, or a prototype is available for measurement, the choice of
technique depends on several factors.

These factors are:

- Whether the system is processing other work in addition to the workload we want to measure.

« Whether we have permission to use tools that may degrade performance. For example, is this system in
production or is it dedicated to our use for the duration of the measurement?

« The degree to which we can simulate or observe an authentic workload.

Measuring a complete workload on a dedicated system
Using a dedicated system is the ideal situation because we can use measurements that include system
overhead as well as the cost of individual processes.

To measure overall system performance for most of the system activity, use the vmstat command:

vmstat 5 >vmstat.output

This gives us a picture of the state of the system every 5 seconds during the measurement run. The first
set of vmstat output contains the cumulative data from the last boot to the start of the vmstat
command. The remaining sets are the results for the preceding interval, in this case 5 seconds. A typical
set of vmstat output on a system looks similar to the following:

kthr memory page faults cpu

r b avm fre re pi po fr sr cy in sy c¢s us sy id wa
O 175186 192 © 0 O 0 1 0 344 1998 403 6 2 92 0

To measure CPU and disk activity, use the iostat command:

iostat 5 >iostat.output

Performance management 73

This gives us a picture of the state of the system every 5 seconds during the measurement run. The first
set of iostat output contains the cumulative data from the last boot to the start of the iostat
command. The remaining sets are the results for the preceding interval, in this case 5 seconds. A typical
set of iostat output on a system looks similar to the following:

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.0 0.0 19.4 5.7 70.8 4.1

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdisk0® 8.0 34.5 8.2 12 164

hdiskl 0.0 0.0 0.0 0 0

cdo 0.0 0.0 0.0 0 0

To measure memory, use the svmon command. The svmon -G command gives a picture of overall
memory use. The statistics are in terms of 4 KB pages:

svmon -G

size inuse free pin virtual
memory 65527 65406 121 5963 74711
pg space 131072 37218

work pers clnt lpage
pin 5972 0] 0] 0]
in use 54177 9023 2206 0

In this example, the machine's 256 MB memory is fully used. About 83 percent of RAM is in use for
working segments, the read/write memory of running programs (the rest is for caching files). If there are
long-running processes in which we are interested, we can review their memory requirements in detail.
The following example determines the memory used by a process of user hoetzel.

ps -fu hoetzel
UID PID PPID C STIME TTY TIME CMD
hoetzel 24896 33604 0 09:27:35 pts/3 0:00 /usr/bin/ksh
hoetzel 32496 25350 6 15:16:34 pts/5 0:00 ps -fu hoetzel

svmon -P 24896

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
24896 ksh 7547 4045 1186 7486 N N N
Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual

0 0 work kernel seg = 6324 4041 1186 6324
6a89aa d work shared library text - 1064 0 0 1064
72d3cb 2 work process private - 75 4 0 75
401100 1 pers code,/dev/hd2:6250 - 59 0 - -
3d40f f work shared library data - 23 0 0 23
16925a - pers /dev/hd4:447 - 2 0 - -

The working segment (5176), with 4 pages in use, is the cost of this instance of the ksh program. The
2619-page cost of the shared library and the 58-page cost of the ksh program are spread across all of the
running programs and all instances of the ksh program, respectively.

If we believe that our 256 MB system is larger than necessary, use the rmss command to reduce the
effective size of the machine and remeasure the workload. If paging increases significantly or response
time deteriorates, we have reduced memory too much. This technique can be continued until we find a
size that runs our workload without degradation. See “Memory requirements assessment with the rmss
command ” on page 127 for more information on this technique.

The primary command for measuring network usage is the netstat program. The following example
shows the activity of a specific Token-Ring interface:

netstat -I tx0 5

input (tx0) output input (Total) output
packets errs packets errs colls packets errs packets errs colls
35552822 213488 30283693 0 0 35608011 213488 30338882 0 0
300 0 426 0 0 300 0 426 0 0
272 2 190 0 0 272 2 190 0 0
231 0 192 0 0] 231 0] 192 0 0]

74 AIX Version 7.1: Performance management

143 0 113 0 0 143 0 113 0 0
408 1 176 0 0 408 1 176 0 0

The first line of the report shows the cumulative network traffic since the last boot. Each subsequent line
shows the activity for the preceding 5-second interval.

Complete workload measurement on a production system
The techniques of measurement on production systems are similar to those on dedicated systems, but we
must be careful to avoid degrading system performance.

Probably the most cost-effective tool is the vmstat command, which supplies data on memory, I/0, and
CPU usage in a single report. If the vmstat intervals are kept reasonably long, for example, 10 seconds,
the average cost is relatively low. See “Performance-Limiting Resource identification” on page 30 for
more information on using the vmstat command.

Measuring a partial workload on a production system
By partial workload, we mean measuring a part of the production system's workload for possible transfer
to or duplication on a different system.

Because this is a production system, we must be as unobtrusive as possible. At the same time, we must
analyze the workload in more detail to distinguish between the parts we are interested in and those we
are not. To do a partial measurement, we must discover what the workload elements of interest have in
common. Are they:

« The same program or a small set of related programs?
« Work performed by one or more specific users of the system?
« Work that comes from one or more specific terminals?

Depending on the commonality, we could use one of the following

ps -ef | grep pgmname
ps -fuusername,
ps -ftttyname,

to identify the processes of interest and report the cumulative CPU time consumption of those processes.
We can then use the svmon command (judiciously) to assess the memory use of the processes.

Individual program measurement

Many tools are available for measuring the resource consumption of individual programs. Some of these
programs are capable of more comprehensive workload measurements as well, but are too intrusive for
use on production systems.

Most of these tools are discussed in depth in the sections that discuss tuning for minimum consumption
of specific resources. Some of the more prominent are:

svmon
Measures the real memory used by a process. Discussed in “Memory usage” on page 114.

time
Measures the elapsed execution time and CPU consumption of an individual program. Discussed in
“Using the time command to measure microprocessor use ” on page 99.

tprof
Measures the relative CPU consumption of programs, subroutine libraries, and the operating system's
kernel. Discussed in Profiling tools section of the Performance Tools Guide and Reference.

vmstat -s
Measures the I/O load generated by a program. Discussed in “Assessing overall disk I/O with the
vmstat command ” on page 169.

Performance management 75

Estimating resources required by a new program

The invention and redesign that take place during the coding phase defy prediction, but the following
guidelines can help you to get a general sense of the requirements.

It is impossible to make precise estimates of unwritten programs. As a starting point, a minimal program
would need the following:

» About 50 milliseconds of CPU time, mostly system time.
- Real Memory

— One page for program text
— About 15 pages (of which 2 are pinned) for the working (data) segment

— Access to 1ibc.a. Normally this is shared with all other programs and is considered part of the base
cost of the operating system.

« About 12 page-in Disk I/O operations, if the program has not been compiled, copied, or used recently.
Otherwise, none required.

To the above, add the basic cost allowances for demands implied by the design (the units given are for
example purposes only):

« CPU time

— The CPU consumption of an ordinary program that does not contain high levels of iteration or costly
subroutine calls is almost immeasurably small.

— If the proposed program contains a computationally expensive algorithm, develop a prototype and
measure the algorithm.

— If the proposed program uses computationally expensive library subroutines, such as X or Motif
constructs or the printf() subroutine, measure their CPU consumption with otherwise trivial
programs.

- Real Memory

— Allow approximately 350 lines of code per page of program text, which is about 12 bytes per line.
Keep in mind that coding style and compiler options can make a difference of a factor or two in either
direction. This allowance is for pages that are touched in your typical scenario. If your design places
infrequently executed subroutines at the end of the executable program, those pages do not normally
consume real memory.

— References to shared libraries other than 1ibc.a increase the memory requirement only to the
extent that those libraries are not shared with other programs or instances of the program being
estimated. To measure the size of these libraries, write a trivial, long-running program that refers to
them and use the svmon =P command against the process.

— Estimate the amount of storage that will be required by the data structures identified in the design.
Round up to the nearest page.

— Inthe short run, each disk I/O operation will use one page of memory. Assume that the page has to
be available already. Do not assume that the program will wait for another program's page to be
freed.

- DiskI/O

— For sequential I/O, each 4096 bytes read or written causes one I/0O operation, unless the file has
been accessed recently enough that some of its pages are still in memory.

— Forrandom I/0O, each access, however small, to a different 4096-byte page causes one I/0 operation,
unless the file has been accessed recently enough that some of its pages are still in memory.

— Each sequential read or write of a 4 KB page in a large file takes about 100 units. Each random read
or write of a 4 KB page takes about 300 units. Remember that real files are not necessarily stored
sequentially on disk, even though they are written and read sequentially by the program.
Consequently, the typical CPU cost of an actual disk access will be closer to the random-access cost
than to the sequential-access cost.

76 AIX Version 7.1: Performance management

« Communications I/O

— If disk I/0 is actually to Network File System (NFS) remote-mounted file systems, the disk I/O is
performed on the server, but the client experiences higher CPU and memory demands.

— RPCs of any kind contribute substantially to the CPU load. The proposed RPCs in the design should be
minimized, batched, prototyped, and measured in advance.

— Each sequential NFS read or write of an 4 KB page takes about 600 units on the client. Each random
NFS read or write of a 4 KB page takes about 1000 units on the client.

— Web browsing and Web serving implies considerable network I/O, with TCP connections opening and
closing quite frequently.

Transforming program-level estimates to workload estimates

The best method for estimating peak and typical resource requirements is to use a queuing model such as
BEST/1.

Static models can be used, but you run the risk of overestimating or underestimating the peak resource.
In either case, you need to understand how multiple programs in a workload interact from the standpoint
of resource requirements.

If you are building a static model, use a time interval that is the specified worst-acceptable response time
for the most frequent or demanding program (usually they are the same). Determine which programs will

typically be running during each interval, based on your projected number of users, their think time, their

key entry rate, and the anticipated mix of operations.

Use the following guidelines:
- CPU time

— Add together the CPU requirements for the all of the programs that are running during the interval.
Include the CPU requirements of the disk and communications I/0 the programs will be doing.

— If this number is greater than 75 percent of the available CPU time during the interval, consider fewer
users or more CPUs.

« Real Memory

— The operating system memory requirement scales with the amount of physical memory. Start with 6
to 8 MB for the operating system itself. The lower figure is for a standalone system. The latter figure is
for a system that is LAN-connected and uses TCP/IP and NFS.

— Add together the working segment requirements of all of the instances of the programs that will be
running during the interval, including the space estimated for the program's data structures.

— Add to that total the memory requirement of the text segment of each distinct program that will be
running (one copy of the program text serves all instances of that program). Remember that any (and
only) subroutines that are from unshared libraries will be part of the executable program, but the
libraries themselves will not be in memory.

— Add to the total the amount of space consumed by each of the shared libraries that will be used by
any program in the workload. Again, one copy serves all.

— To allow adequate space for some file caching and the free list, your total memory projection should
not exceed 80 percent of the size of the machine to be used.

« Disk I/O

— Add the number of I/Os implied by each instance of each program. Keep separate totals for I/Os to
small files (or randomly to large files) versus purely sequential reading or writing of large files (more
than 32 KB).

— Subtract those I/0Os that you believe will be satisfied from memory. Any record that was read or
written in the previous interval is probably still available in the current interval. Beyond that, examine
the size of the proposed machine versus the total RAM requirements of the machine's workload. Any
space remaining after the operating system's requirement and the workload's requirements probably
contains the most recently read or written file pages. If your application's design is such that there is

Performance management 77

a high probability that you will reuse recently accessed data, you can calculate an allowance for the
caching effect. Remember that the reuse is at the page level, not at the record level. If the probability
of reuse of a given record is low, but there are a lot of records per page, it is likely that some of the
records needed in any given interval will fall in the same page as other, recently used, records.

— Compare the net I/0 requirements (disk I/Os per second per disk) to the approximate capabilities of
current disk drives. If the random or sequential requirement is greater than 75 percent of the total
corresponding capability of the disks that will hold application data, tuning (and possibly expansion)
will be needed when the application is in production.

« Communications I/O
— Calculate the bandwidth consumption of the workload. If the total bandwidth consumption of all of

the nodes on the LAN is greater than 70 percent of nominal bandwidth (50 percent for Ethernet), you
might want to use a network with higher bandwidth.

— Perform a similar analysis of CPU, memory, and I/0 requirements of the added load that will be
placed on the server.

Note: Remember that these guidelines are intended for use only when no extensive measurement is
possible. Any application-specific measurement that can be used in place of a guideline will considerably
improve the accuracy of the estimate.

Efficient Program Desigh and Implementation

If you have determined which resource will limit the speed of your program, you can go directly to the
section that discusses appropriate techniques for minimizing the use of that resource.

Otherwise, assume that the program will be balanced and that all of the recommendations in this section
apply. Once the program is implemented, proceed to “Performance-Limiting Resource identification” on

page 30.

Processor-limited programs

If the program is processor-limited because it consists almost entirely of numerical computation, the
chosen algorithm will have a major effect on the performance of the program.

The maximum speed of a truly processor-limited program is determined by:
 The algorithm used

« The source code and data structures created by the programmer
- The sequence of machine-language instructions generated by the compiler

The sizes and structures of the processor's caches

The architecture and clock rate of the processor itself (see “Determining microprocessor speed” on
page 377)

A discussion of alternative algorithms is beyond the scope of this topic collection. It is assumed that
computational efficiency has been considered in choosing the algorithm.

Given an algorithm, the only items in the preceding list that the programmer can affect are the source
code, the compiler options used, and possibly the data structures. The following sections deal with
techniques that can be used to improve the efficiency of an individual program for which the user has the
source code. If the source code is not available, attempt to use tuning or workload-management
techniques.

Design and coding for effective use of caches
Effective use of storage means keeping it full of instructions and data that are likely to be used.

Processors have a multilevel hierarchy of memory:

1. Instruction pipeline and the CPU registers
2. Instruction and data cache(s) and the corresponding translation lookaside buffers

78 AIX Version 7.1: Performance management

3. RAM
4. Disk

As instructions and data move up the hierarchy, they move into storage that is faster than the level below
it, but also smaller and more expensive. To obtain the maximum possible performance from a given
machine, therefore, the programmer must make the most effective use of the available storage at each
level.

An obstacle to achieving efficient storage is the fact that storage is allocated in fixed-length blocks such
as cache lines and real memory pages that usually do not correspond to boundaries within programs or
data structures. Programs and data structures that are designed without regard to the storage hierarchy
often make inefficient use of the storage allocated to them, with adverse performance effects in small or
heavily loaded systems.

Taking the storage hierarchy into account means understanding and adapting to the general principles of
efficient programming in a cached or virtual-memory environment. Repackaging techniques can yield
significant improvements without recoding, and any new code should be designed with efficient storage
use in mind.

Two terms are essential to any discussion of the efficient use of hierarchical storage: locality of reference
and working set.

« The locality of reference of a program is the degree to which its instruction-execution addresses and
data references are clustered in a small area of storage during a given time interval.

- The working set of a program during that same interval is the set of storage blocks that are in use, or,
more precisely, the code or data that occupy those blocks.

A program with good locality of reference has a minimal working set, because the blocks that are in use
are tightly packed with executing code or data. A functionally equivalent program with poor locality of
reference has a larger working set, because more blocks are needed to accommodate the wider range of
addresses being accessed.

Because each block takes a significant amount of time to load into a given level of the hierarchy, the
objective of efficient programming for a hierarchical-storage system is to design and package code in such
a way that the working set remains as small as practical.

The following figure illustrates good and bad practice at a subroutine level. The first version of the
program is packaged in the sequence in which it was probably written. The first subroutine PriSubl
contains the entry point of the program. It always uses primary subroutines PriSub2 and PriSub3. Some
infrequently used functions of the program require secondary subroutines SecSubi and SecSub2. On
rare occasions, the error subroutines ErrSubl and ErrSub2 are needed.

Poor Locality of Reference, Large Working Set

Page 1 Page 2 Fage 3
PriSub 1 SecSub 1 ErrSub 1 PriSub 2 SecSub 2 ErrSub 2 PriSub 3
Good Locality of Reference, Small Working Set
Page 1 Page 2 Page 3
PriSub 1 PriSub 2 PriSub 3 SecSub 1 SecSub 2 EmrSub 1 ErrSub 2

Figure 15. Locality of Reference

Performance management 79

The initial version of the program has poor locality of reference because it takes three pages of memory to
run in the normal case. The secondary and error subroutines separate the main path of the program into
three, physically distant sections.

The improved version of the program places the primary subroutines adjacent to one another and puts the
low-frequency function after that. The necessary error subroutines (which are rarely-used) are left at the
end of the executable program. The most common functions of the program can now be handled with only
one disk read and one page of memory instead of the three previously required.

Remember that locality of reference and working set are defined with respect to time. If a program works
in stages, each of which takes a significant time and uses a different set of subroutines, try to minimize
the working set of each stage.

Registers and pipeline

In general, allocating and optimizing of register space and keeping the pipeline full are the responsibilities
of the compilers.

The programmer's main obligation is to avoid structures that defeat compiler-optimization techniques.
For example, if you use one of your subroutines in one of the critical loops of your program, it may be
appropriate for the compiler to inline that subroutine to minimize execution time. If the subroutine has
been packaged in a different .c module, however, it cannot be inlined by the compiler.

Cache and TLBs

A cache can hold Translation lookaside buffers (TLBs), which contain the mapping from virtual address to
real address of recently used pages of instruction text or data.

Depending on the processor architecture and model, processors have from one to several caches to hold
the following:

« Parts of executing programs
 Data used by executing programs
« TLBs

If a cache miss occurs, loading a complete cache line can take dozens of processor cycles. If a TLB miss
occurs, calculating the virtual-to-real mapping of a page can take several dozen cycles. The exact cost is
implementation-dependent.

Even if a program and its data fit in the caches, the more lines or TLB entries used (that is, the lower the
locality of reference), the more CPU cycles it takes to get everything loaded in. Unless the instructions and
data are reused many times, the overhead of loading them is a significant fraction of total program
execution time, resulting in degraded system performance.

Good programming techniques keep the main-line, typical-case flow of the program as compact as
possible. The main procedure and all of the subroutines it calls frequently should be contiguous. Low-
probability conditions, such as obscure errors, should be tested for only in the main line. If the condition
actually occurs, its processing should take place in a separate subroutine. All such subroutines should be
grouped together at the end of the module. This arrangement reduces the probability that low-usage code
will take up space in a high-usage cache line. In large modules, some or all of the low-usage subroutines
might occupy a page that almost never has to be read into memory.

The same principle applies to data structures, although it is sometimes necessary to change the code to
compensate for the compiler's rules about data layout.

For example, some matrix operations, such as matrix multiplication, involve algorithms that, if coded
simplistically, have poor locality of reference. Matrix operations generally involve accessing the matrix
data sequentially, such as row elements acting on column elements. Each compiler has specific rules
about the storage layout of matrixes. The FORTRAN compiler lays out matrixes in column-major format
(that is, all of the elements of column 1, followed by all the elements of column 2, and so forth). The C
compiler lays out matrixes in row-major format. If the matrixes are small, the row and column elements
can be contained in the data cache, and the processor and floating-point unit can run at full speed.

80 AIX Version 7.1: Performance management

However, as the size of the matrixes increases, the locality of reference of such row/column operations
deteriorates to a point where the data can no longer be maintained in the cache. In fact, the natural
access pattern of the row/column operations generates a thrashing pattern for the cache where a string of
elements accessed is larger than the cache, forcing the initially accessed elements out and then repeating
the access pattern again for the same data.

The general solution to such matrix access patterns is to partition the operation into blocks, so that
multiple operations on the same elements can be performed while they remain in the cache. This general
technique is given the name strip mining.

Experts in numerical analysis were asked to code versions of the matrix-manipulation algorithms that
made use of strip mining and other optimization techniques. The result was a 30-fold improvement in
matrix-multiplication performance. The tuned routines are in the Basic Linear Algebra Subroutines (BLAS)
library, /usr/1ib/1libblas.a. A larger set of performance-tuned subroutines is the Engineering and
Scientific Subroutine Library (ESSL) licensed program.

The functions and interfaces of the Basic Linear Algebra Subroutines are documented in AIX Version 7.1
Technical Reference. The FORTRAN run-time environment must be installed to use the library. Users
should generally use this library for their matrix and vector operations because its subroutines are tuned
to a degree that users are unlikely to achieve by themselves.

If the data structures are controlled by the programmer, other efficiencies are possible. The general
principle is to pack frequently used data together whenever possible. If a structure contains frequently
accessed control information and occasionally accessed detailed data, make sure that the control
information is allocated in consecutive bytes. This will increase the probability that all of the control
information will be loaded into the cache with a single (or at least with the minimum number of) cache
misses.

Preprocessor and compiler utilization

There are several levels of optimization that give the compiler different degrees of freedom in instruction
rearrangement.

The programmer who wants to obtain the highest possible performance from a given program running on
a given machine must deal with several considerations:

« There are preprocessors that can rearrange some source code structures to form a functionally
equivalent source module that can be compiled into more efficient executable code.

- Just as there are several variants of the architecture, there are several compiler options to allow optimal
compilation for a specific variant or set of variants.

« The programmer can use the #pragma feature to inform the C compiler of certain aspects of the
program that will allow the compiler to generate more efficient code by relaxing some of its worst-case
assumptions.

Programmers who are unable to experiment, should always optimize. The difference in performance
between optimized and unoptimized code is almost always so large that basic optimization (the -0 option
of the compiler commands) should always be used. The only exceptions are testing situations in which
there is a specific need for straightforward code generation, such as statement-level performance
analysis using the tprof tool.

These techniques yield additional performance improvement for some programs, but the determination of
which combination yields the best performance for a specific program might require considerable
recompilation and measurement.

For an extensive discussion of the techniques for efficient use of compilers, see Optimization and Tuning
Guide for XL Fortran, XL C and XL C++.

Performance management 81

Optimization levels
The degree to which the compiler will optimize the code it generates is controlled by the -0 flag.

No optimization
In the absence of any version of the -0 flag, the compiler generates straightforward code with no
instruction reordering or other attempt at performance improvement.

-0 or-02
These equivalent flags cause the compiler to optimize on the basis of conservative assumptions about
code reordering. Only explicit relaxations such as the #pragma directives are used. This level
performs no software pipelining, loop unrolling, or simple predictive commoning. It also constrains
the amount of memory the compiler can use.

-03
This flag directs the compiler to be aggressive about the optimization techniques used and to use as
much memory as necessary for maximum optimization. This level of optimization may result in
functional changes to the program if the program is sensitive to floating-point exceptions, the sign of
zero, or precision effects of reordering calculations. These side effects can be avoided, at some
performance cost, by using the -gstrict option in combination with -03. The -ghot option, in
combination with =03, enables predictive commoning and some unrolling. The result of these changes
is that large or complex routines should have the same or better performance with the =03 option
(possibly in conjunction with -qgstrict or -ghot) that they had with the -0 option in earlier versions of
the compiler.

-04
This flag is equivalent to -03 -qipa with automatic generation of architecture and tuning option ideal
for that platform.

-05
This flag is similiar to =04, except in this case,-gipa = level = 2.

Specific hardware platforms compilation
There are many things you should consider before compiling for specific hardware platforms.

Systems can use several type of processors. By using the =garch and -qtune options, you can optimize
programs for the special instructions and particular strengths of these processors.

Follow these guidelines:

« If your program will be run only on a single system, or on a group of systems with the same processor
type, use the -qarch option to specify the processor type.

« If your program will be run on systems with different processor types, and you can identify one
processor type as the most important, use the appropriate -qarch and -qtune settings. FORTRAN and
HPF users can use the xx1£ and xx1lhpf commands to select these settings interactively.

- If your program is intended to run on the full range of processor implementations, and is not intended
primarily for one processor type, do not use either -garch or -qtune.
C options for string.h subroutine performance

The operating system provides the ability to embed the string subroutines in the application program
rather than using them from 1ibc. a, saving call and return linkage time.

To embed the string subroutines, the source code of the application must have the following statement
prior to the use of the subroutine(s):

#include <string.h>

82 AIX Version 7.1: Performance management

C and C++ coding style for best performance

In many cases, the performance cost of a C construct is not obvious, and sometimes is even counter-
intuitive.

Some of these situations are as follows:
« Whenever possible, use int instead of char or short.

In most cases, char and short data items take more instructions to manipulate. The extra instructions
cost time, and, except in large arrays, any space that is saved by using the smaller data types is more
than offset by the increased size of the executable program.

- If you have to use a char, make it unsigned, if possible.

A signed char takes another two instructions more than an unsigned char each time the variable is
loaded into a register.

« Use local (automatic) variables rather than global variables whenever possible.

Global variables require more instructions to access than local variables. Also, in the absence of
information to the contrary, the compiler assumes that any global variable may have been changed by a
subroutine call. This change has an adverse effect on optimization because the value of any global
variable used after a subroutine call will have to be reloaded.

« When it is necessary to access a global variable (that is not shared with other threads), copy the value
into a local variable and use the copy.

Unless the global variable is accessed only once, it is more efficient to use the local copy.
« Use binary codes rather than strings to record and test for situations. Strings consume both data and
instruction space. For example, the sequence:

#define situation_1 1
#define situation_2 2
#tdefine situation_3 3

int situation_val;
situation_val = situation_2;

if'(éituation_val == situation_1)

is much more efficient than the following sequence:

char situation_val[20];
strcpy(situation_val,"situation_2");

if'(&strcmp(situation_val,"situation_l"))::o)

- When strings are necessary, use fixed-length strings rather than null-terminated variable-length strings
wherever possible.

The mem*() family of routines, such as memcpy(), is faster than the corresponding str*() routines, such
as strcpy(), because the str*() routines must check each byte for null and the mem*() routines do not.

Compiler execution time
There are several factors that affect the execution time of the compiler.

In the operating system, the C compiler can be invoked by two different commands: cc and x1c. The cc
command, which has historically been used to invoke the system's C compiler, causes the C compiler to

run in langlevel=extended mode. This mode allows the compilation of existing C programs that are not

ANSI-compliant. It also consumes processor time.

If the program being compiled is, in fact, ANSI-compliant, it is more efficient to invoke the C compiler by
using the x1c command.

Performance management 83

Use of the =03 flag implicitly includes the =gqmaxmem option. This option allows the compiler to use as
much memory as necessary for maximum optimization. This situation can have two effects:

e On a multiuser system, a large =03 compilation may consume enough memory to have an adverse effect
on the performance experienced by other users.

« On a system with small real memory, a large =03 compilation may consume enough memory to cause
high paging rates, making compilation slow.

Memory-limited programs

To programmers accustomed to struggling with the addressing limitations of, for instance, the DOS
environment, 256 MB virtual memory segments seem effectively infinite. The programmer is tempted to
ignore storage constraints and code for minimum path length and maximum simplicity. Unfortunately,
there is a drawback to this attitude.

Virtual memory is large, but it is variable-speed. The more memory used, the slower it becomes, and the
relationship is not linear. As long as the total amount of virtual storage actually being touched by all
programs (that is, the sum of the working sets) is slightly less than the amount of unpinned real memory
in the machine, virtual memory performs at about the speed of real memory. As the sum of the working
sets of all executing programs passes the number of available page frames, memory performance
degrades rapidly (if VMM memory load control is turned off) by up to two orders of magnitude. When the
system reaches this point, it is said to be thrashing. It is spending almost all of its time paging, and no
useful work is being done because each process is trying to steal back from other processes the storage
necessary to accommodate its working set. If VMM memory load control is active, it can avoid this self-
perpetuating thrashing, but at the cost of significantly increased response times.

The degradation caused by inefficient use of memory is much greater than that from inefficient use of the
caches because the difference in speed between memory and disk is so much higher than the difference
between cache and memory. Where a cache miss can take a few dozen CPU cycles, a page fault typically
takes 10 milliseconds or more, which is at least 400 000 CPU cycles.

Although VMM memory load control can ensure that incipient thrashing situations do not become self-
perpetuating, unnecessary page faults still exact a cost in degraded response time and reduced
throughput (see “VMM memory load control tuning with the schedo command ” on page 133).

Pageable code structure
To minimize the code working set of a program, the general objective is to pack code that is frequently
executed into a small area, separating it from infrequently executed code.

Specifically:

« Do not put long blocks of error-handling code in line. Place them in separate subroutines, preferably in
separate source-code modules. This applies not only to error paths, but to any functional option that is
infrequently used.

« Do not structure load modules arbitrarily. Try to ensure that frequently called object modules are
located as close to their callers as possible. Object modules consisting (ideally) of infrequently called
subroutines should be concentrated at the end of the load module. The pages they inhabit will seldom
be read in.

Pageable data structure
To minimize the data working set, try to concentrate the frequently used data and avoid unnecessary
references to virtual-storage pages.

Specifically:

« Use the malloc() or calloc() subroutines to request only as much space as you actually need. Never
request and then initialize a maximum-sized array when the actual situation uses only a fraction of it.
When you touch a new page to initialize the array elements, you effectively force the VMM to steal a
page of real memory from someone. Later, this results in a page fault when the process that owned that
page tries to access it again. The difference between the malloc() and calloc() subroutines is not just in
the interface.

84 AIX Version 7.1: Performance management

« Because the calloc() subroutine zeroes the allocated storage, it touches every page that is allocated,
whereas the malloc() subroutine touches only the first page. If you use the calloc() subroutine to
allocate a large area and then use only a small portion at the beginning, you place an unnecessary load
on the system. Not only do the pages have to be initialized; if their real-memory frames are reclaimed,
the initialized and never-to-be-used pages must be written out to paging space. This situation wastes
both I/O and paging-space slots.

« Linked lists of large structures (such as buffers) can result in similar problems. If your program does a
lot of chain-following looking for a particular key, consider maintaining the links and keys separately
from the data or using a hash-table approach instead.

« Locality of reference means locality in time, not just in address space. Initialize data structures just prior
to when they are used (if at all). In a heavily loaded system, data structures that are resident for a long
time between initialization and use risk having their frames stolen. Your program would then experience
an unnecessary page fault when it began to use the data structure.

- Similarly, if a large structure is used early and then left untouched for the remainder of the program, it
should be released. It is not sufficient to use the free() subroutine to free the space that was allocated
with the malloc() or calloc() subroutines. The free() subroutine releases only the address range that the
structure occupied. To release the real memory and paging space, use the disclaim() subroutine to
disclaim the space as well. The call to disclaim() should be before the call to free().

Misuse of pinned storage
To avoid circularities and time-outs, a small fraction of the system must be pinned in real memory.

For this code and data, the concept of working set is meaningless, because all of the pinned information is
in real storage all the time, whether or not it is used. Any program (such as a user-written device driver)
that pins code or data must be carefully designed (or scrutinized, if ported) to ensure that only minimal
amounts of pinned storage are used. Some cautionary examples are as follows:

« Code is pinned on a load-module (executable file) basis. If a component has some object modules that
must be pinned and others that can be pageable, package the pinned object modules in a separate load
modaule.

« Pinning a module or a data structure because there might be a problem is irresponsible. The designer
should understand the conditions under which the information could be required and whether a page
fault could be tolerated at that point.

« Pinned structures whose required size is load-dependent, such as buffer pools, should be tunable by
the system administrator.

Performance-related installation guidelines

There are many issues to consider before and during the installation process.

Operating system preinstallation guidelines
Two situations require consideration, as follows:
- Installing the Operating System on a New System

Before you begin the installation process, be sure that you have made decisions about the size and
location of disk file systems and paging spaces, and that you understand how to communicate those
decisions to the operating system.

« Installing a New Level of the Operating System on an Existing System
If you are upgrading to a new level of the operating system, do the following:

— Check to see if you are using a /etc/tunables/nextboot file.

— Ifyoudouse the /etc/tunables/nexthoot file, inspect the /etc/tunables/lastboot.log
file after the first reboot.

Performance management 85

Microprocessor preinstallation guidelines
Use the default microprocessor scheduling parameters, such as the time-slice duration.

Unless you have extensive monitoring and tuning experience with the same workload on a nearly identical
configuration, leave these parameters unchanged at installation time.

See “Microprocessor performance” on page 91 for post-installation recommendations.

Memory preinstallation guidelines

Do not make any memory-threshold changes until you have had experience with the response of the
system to the actual workload.

See “Memory performance” on page 114 for post-installation recommendations.

Disk preinstallation guidelines

The mechanisms for defining and expanding logical volumes attempt to make the best possible default
choices. However, satisfactory disk-I/O performance is much more likely if the installer of the system
tailors the size and placement of the logical volumes to the expected data storage and workload
requirements.

Recommendations are as follows:

- If possible, the default volume group, rootvg, should consist only of the physical volume on which the
system is initially installed. Define one or more other volume groups to control the other physical
volumes in the system. This recommendation has system management, as well as performance,
advantages.

- If a volume group consists of more than one physical volume, you may gain performance by:

— Initially defining the volume group with a single physical volume.

— Defining a logical volume within the new volume group. This definition causes the allocation of the
volume group's journal logical volume on the first physical volume.

— Adding the remaining physical volumes to the volume group.
— Defining the high-activity file systems on the newly added physical volumes.

— Defining only very-low-activity file systems, if any, on the physical volume containing the journal
logical volume. This affects performance only if I/O would cause journaled file system (JFS) log
transactions.

This approach separates journaled I/0 activity from the high-activity data I/O, increasing the
probability of overlap. This technique can have an especially significant effect on NFS server

performance, because both data and journal writes must be complete before NFS signals I/0
complete for a write operation.

- At the earliest opportunity, define or expand the logical volumes to their maximum expected sizes. To
maximize the probability that performance-critical logical volumes will be contiguous and in the desired
location, define or expand them first.

« High-usage logical volumes should occupy parts of multiple disk drives. If the RANGE of physical
volumes option on the Add a Logical Volume screen of the SMIT program (fast path: smitty mklv) is
set to maximum, the new logical volume will be divided among the physical volumes of the volume
group (or the set of physical volumes explicitly listed).

- If the system has drives of different types (or you are trying to decide which drives to order), consider
the following guidelines:

— Place large files that are normally accessed sequentially on the fastest available disk drive.

— If you expect frequent sequential accesses to large files on the fastest disk drives, limit the number of
disk drivers per disk adapter.

86 AIX Version 7.1: Performance management

— When possible, attach drives with critical, high-volume performance requirements to a high speed
adapter. These adapters have features, such as back-to-back write capability, that are not available
on other disk adapters.

— On the smaller disk drives, logical volumes that will hold large, frequently accessed sequential files
should be allocated in the outer_edge of the physical volume. These disks have more blocks per track
in their outer sections, which improves sequential performance.

— On the original SCSI bus, the highest-numbered drives (those with the numerically largest SCSI
addresses, as set on the physical drives) have the highest priority. Subsequent specifications usually
attempt to maintain compatibility with the original specification. Thus, the order from highest to
lowest priority is as follows: 7-6-5-4-3-2-1-0-15-14-13-12-11-10-9-8.

In most situations this effect is not noticeable, but large sequential file operations have been known
to exclude low-numbered drives from access to the bus. You should probably configure the disk
drives holding the most response-time-critical data at the highest addresses on each SCSI bus.

The 1sdev -Cs scsi command reports on the current address assignments on each SCSI bus. For the
original SCSI adapter, the SCSI address is the first number in the fourth pair of numbers in the output.
In the following output example, one 400 GB disk is at SCSI address 4, another at address 5, the
8mm tape drive at address 1, and the CDROM drive is at address 3.

cdo Available 10-80-00-3,0 SCSI Multimedia CD-ROM Drive
hdisk® Available 10-80-00-4,0 16 Bit SCSI Disk Drive
hdiskl Available 10-80-00-5,0 16 Bit SCSI Disk Drive
rmt0o Available 10-80-00-1,0 2.3 GB 8mm Tape Drive

— Large files that are heavily used and are normally accessed randomly, such as databases, must be
spread across two or more physical volumes.

Related concepts

Logical volume and disk I/O performance
This topic focuses on the performance of logical volumes and locally attached disk drives.

Paging spaces placement and sizes

The general recommendation is that the sum of the sizes of the paging spaces should be equal to at least
twice the size of the real memory of the machine, up to a memory size of 256 MB (512 MB of paging
space).

Note: For memories larger than 256 MB, the following is recommended:

total paging space = 512 MB + (memory size - 256 MB) *x 1.25

However, with Deferred Page Space Allocation, this guideline may tie up more disk space than required.
See “Page space allocation” on page 139 for more information.

Ideally, there should be several paging spaces of roughly equal size, each on a different physical disk
drive. If you decide to create additional paging spaces, create them on physical volumes that are more
lightly loaded than the physical volume in rootvg. When allocating paging space blocks, the VMM allocates
four blocks, in turn, from each of the active paging spaces that has space available. While the system is
booting, only the primary paging space (hdé) is active. Consequently, all paging-space blocks allocated
during boot are on the primary paging space. This means that the primary paging space should be
somewhat larger than the secondary paging spaces. The secondary paging spaces should all be of the
same size to ensure that the algorithm performed in turn can work effectively.

The 1sps -a command gives a snapshot of the current utilization level of all the paging spaces on a
system. You can also used the psdanger() subroutine to determine how closely paging-space utilization is
approaching critical levels. As an example, the following program uses the psdanger() subroutine to
provide a warning message when a threshold is exceeded:

/* psmonitor.c
Monitors system for paging space low conditions. When the condition is
detected, writes a message to stderr.
Usage: psmonitor [Interval [Count]]
Default: psmonitor 1 1000000

Performance management 87

*/

#include <stdio.h>
#include <signal.h>
main(int argc,char **argv)

int interval = 1; /* seconds */

int count = 1000000; /* intervals =%/

int current; /* interval */

int last; /* check %/

int kill_offset; /* returned by psdanger() =/
int danger_offset; /* returned by psdanger() x/

/* are there any parameters at all? x/
if (arge > 1) {
if ((interval = atoi(argv[1])) < 1) %
fprintf(stderr, "Usage: psmonitor [interval [count] J\n");
exit(1);

3
if (arge > 2) {
if ((count = atoi(argv[2])) <1) {
fprintf(stderr, "Usage: psmonitor [interval [count] J\n");
exit(1);
¥
3
3
last = count -1;
for(current = 0; current < count; current++) {
kill_offset = psdanger(SIGKILL); /% check for out of paging space x/
if (kill_offset < 0)
fprintf(stderr,
"OUT OF PAGING SPACE! %d blocks beyond SIGKILL threshold.\n",
kill offsetx(-1));
else §
danger_offset = psdanger(SIGDANGER); /* check for paging space low */
if (danger_offset < 0) {
fprintf(stderr,
"WARNING: paging space low. %d blocks beyond SIGDANGER threshold.\n",
danger_offset*(-1));
fprintf(stderr,
" %d blocks below SIGKILL threshold.\n",
kill_offset);
3
3
if (current < last)
sleep(interval);

Disk mirroring performance implications

From a performance standpoint, mirroring is costly, mirroring with Write Verify is costlier still (extra disk
rotation per write), and mirroring with both Write Verify and Mirror Write Consistency is costliest of all
(disk rotation plus a seek to Cylinder 0).

If mirroring is being used and Mirror Write Consistency is on (as it is by default), consider locating the
copies in the outer region of the disk, because the Mirror Write Consistency information is always written
in Cylinder 0. From a fiscal standpoint, only mirroring with writes is expensive. Although an 1slv
command will usually show Mirror Write Consistency to be on for non-mirrored logical volumes, no actual
processing is incurred unless the COPIES value is greater than one. Write Verify defaults to off, because it
does have meaning (and cost) for non-mirrored logical volumes.

A mirror write consistency option called Passive Mirror Write Consistency (MWC) is available. The default
mechanism for ensuring mirror write consistency is Active MWC. Active MWC provides fast recovery at
reboot time after a crash has occurred. However, this benefit comes at the expense of write performance
degradation, particularly in the case of random writes. Disabling Active MWC eliminates this write-
performance penalty, but upon reboot after a crash you must use the syncvg -f command to manually
synchronize the entire volume group before users can access the volume group. To achieve this,
automatic vary-on of volume groups must be disabled.

Enabling Passive MWC not only eliminates the write-performance penalty associated with Active MWC,
but logical volumes will be automatically resynchronized as the partitions are being accessed. This means
that the administrator does not have to synchronize logical volumes manually or disable automatic

88 AIX Version 7.1: Performance management

vary-on. The disadvantage of Passive MWC is that slower read operations may occur until all the
partitions have been resynchronized.

You can select either mirror write consistency option within SMIT when creating or changing a logical
volume. The selection option takes effect only when the logical volume is mirrored (copies > 1).

Mirrored striped LVs performance implications
Logical volume mirroring and striping combines the data availability of RAID 1 with the performance of
RAID O entirely through software.

Logical volumes cannot be mirrored and striped at the same time. Volume groups that contain striped and
mirrored logical volumes cannot be imported into AIX.
Communications preinstallation guidelines

For correct placement of adapters and various performance guidelines, see the PCI Adapter Placement
Reference.

See the summary of communications tuning recommendations in “TCP and UDP performance tuning” on
page 233 and “Tuning mbuf pool performance ” on page 264.

POWER4-based systems

There are several performance issues related to POWER4-based servers.

For related information, see “File system performance” on page 212, “Resource management” on page
35, and IBM Redbooks® publication The POWER4 Processor Introduction and Tuning Guide.

POWER4 performance enhancements
The POWER4 microprocessor includes the several performance enhancements.

« It is optimized for symmetric multiprocessing (SMP), thus providing better instruction parallelism.

- It employs better scheduling for instructions and data prefetching and a more effective branch-
prediction mechanism.

- It provides higher memory bandwidth than the POWER3 microprocessor, and is designed to operate at
much higher frequencies.

Microprocessor comparison

The following table compares key aspects of different IBM microprocessors.

Table 1. Processor Comparisons

POWER3 RS64 POWER4
Frequency 450 MHz 750 MHz >1GHz
Fixed Point Units 3 2 2
Floating Point Units 2 1 2
Load/Store Units 2 1 2
Branch/Other Units 1 1 2
Dispatch Width 4 4 5
Branch Prediction Dynamic Static Dynamic
I-cache size 32 KB 128 KB 64 KB
D-cache size 128 KB 128 KB 32 KB

Performance management 89

http://www.redbooks.ibm.com/redbooks/SG247041.html

Table 1. Processor Comparisons (continued)

POWER3 RS64 POWER4
L2-cache size 1,4,8MB 2,4,8,16 MB 1.44
L3-cache size N/A N/A Scales with number of
processors
Data Prefetch Yes No Yes

POWER4-based systems scalability enhancements

On POWER4-based systems, the operating system provides several scalability advantages over previous
systems, both in terms of workload and performance.

Workload scalability refers to the ability to handle an increasing application-workload. Performance
scalability refers to maintaining an acceptable level of performance as software resources increase to
meet the demands of larger workloads.

The following are some of the most important scalability changes.

Pinned shared memory for database

AIX enables memory pages to be maintained in real memory all the time. This mechanism is called
pinning memory.

Pinning a memory region prohibits the pager from stealing pages from the pages that back the pinned
memory region.

Larger memory support
The maximum real-memory size supported by the 64-bit kernel depends on the hardware systems.

This size is based upon the boot-time real memory requirements of hardware systems and possible I/0
configurations that the 64-bit kernel supports. No minimum paging-space size requirement exists for the
64-bit kernel.

64-bit kernel

The AIX operating system provides a 64-bit kernel that addresses bottlenecks that could have limited
throughput on 32-way systems.

As of AIX 7.1, the 64-bit kernel is the only kernel available. POWER4 systems are optimized for the 64-bit
kernel, which is intended to increase scalability of RS/6000 System p systems. It is optimized for running
64-bit applications on POWER4 systems. The 64-bit kernel also improves scalability by allowing larger
amounts of physical memory.

Additionally, JFS2 is the default file system for AIX 7.1. You can choose to use either JFS or Enhanced
JFS. For more information on Enhanced JFS, see File system performance.

64-bit applications on 32-bit kernel

The performance of 64-bit applications running on the 64-bit kernel on POWER4 systems should be
greater than, or equal to, the same application running on the same hardware with the 32-bit kernel.

The 64-bit kernel allows 64-bit applications to be supported without requiring system call parameters to
be remapped or reshaped. The 64-bit kernel applications use a more advanced compiler that is optimized
specifically for the POWER4 system.

90 AIX Version 7.1: Performance management

32-hit applications on 64-bit kernel
In most instances, 32-bit applications can run on the 64-hit kernel without performance degradation.

32-bit applications on the 64-bit kernel will typically have slightly lower performance than on the 32-bit
call because of parameter reshaping. This performance degradation is typically not greater than 5%. For
example, calling the fork() command might result in significantly more overhead.

64-bit applications on 64-bit Kernel, non-POWER4 systems

The performance of 64-bit applications under the 64-bit kernel on non-POWER4 systems may be lower
than that of the same applications on the same hardware under the 32-bit kernel.

The non-POWER4 systems are intended as a bridge to POWER4 systems and lack some of the support
that is needed for optimal 64-bit kernel performance.

64-bit kernel extensions on non-POWER4 systems

The performance of 64-bit kernel extensions on POWER4 systems should be the same or better than their
32-bit counterparts on the same hardware.

However, performance of 64-bit kernel extensions on non-POWER4 machines may be lower than that of
32-bit kernel extensions on the same hardware because of the lack of optimization for 64-bit kernel
performance on non-POWER4 systems.

Enhanced Journaled File System

Enhanced JFS, or JFS2, is another native AIX journaling file system. This is the default file system for AIX
6.1 and later.

For more information on Enhanced JFS, see “File system performance” on page 212.

Microprocessor performance

This topic includes information on techniques for detecting runaway or processor-intensive programs and
minimizing their adverse affects on system performance.

If you are not familiar with microprocessor scheduling, you may want to refer to the “Processor scheduler
performance” on page 36 topic before continuing.

Microprocessor performance monitoring
The processing unit is one of the fastest components of the system.

It is comparatively rare for a single program to keep the microprocessor 100 percent busy (that is, 0
percent idle and 0 percent wait) for more than a few seconds at a time. Even in heavily loaded multiuser
systems, there are occasional 10 milliseconds (ms) periods that end with all threads in a wait state. If a
monitor shows the microprocessor 100 percent busy for an extended period, there is a good chance that
some program is in an infinite loop. Even if the program is "merely" expensive, rather than broken, it
needs to be identified and dealt with.

vmstat command

The first tool to use is the vmstat command, which quickly provides compact information about various
system resources and their related performance problems.

The vmstat command reports statistics about kernel threads in the run and wait queue, memory, paging,
disks, interrupts, system calls, context switches, and CPU activity. The reported CPU activity is a
percentage breakdown of user mode, system mode, idle time, and waits for disk I/0.

Note: If the vmstat command is used without any interval, then it generates a single report. The single
report is an average report from when the system was started. You can specify only the Count parameter

Performance management 91

with the Interval parameter. If the Interval parameter is specified without the Count parameter, then the
reports are generated continuously.

As a CPU monitor, the vmstat command is superior to the iostat command in that its one-line-per-
report output is easier to scan as it scrolls and there is less overhead involved if there are many disks
attached to the system. The following example can help you identify situations in which a program has run
away or is too CPU-intensive to run in a multiuser environment.

vmstat 2

kthr memory page faults cpu
r b avm fre re pi po fr sr cy in sy c¢s us sy id wa
1 022478 1677 O 0 O 0 0 0 188 1380 157 57 32 0 10
1 0 22506 1609 O 0O O 0 0 0 214 1476 186 48 37 0 16
O 022498 1582 O 0O O © 0 0 248 1470 226 55 36 0 9
2 022534 1465 O 00 O 0 0 0238 903 239 77 23 0 ©
2 022534 1445 0O 00 0O 0 0 0 209 1142 205 72 28 0 O
2 0 22534 1426 (0] (0] 0 0 0 0 189 1220 212 74 26 O O
3 022534 14106 0 0 O 0 O 00 255 1704 268 70 30 O ©
2 122557 1365 O O O © O 0383 977 216 72 28 0 0
2 022541 1356 O 00 O © 0 0 237 1418 209 63 33 0 4
1 022524 1350 O O O O 0 0 241 1348 179 52 32 0 16
1 022546 1293 O 0 O 0 0 0 217 1473 180 51 35 0 14

This output shows the effect of introducing a program in a tight loop to a busy multiuser system. The first
three reports (the summary has been removed) show the system balanced at 50-55 percent user, 30-35
percent system, and 10-15 percent I/O wait. When the looping program begins, all available CPU cycles
are consumed. Because the looping program does no I/0, it can absorb all of the cycles previously unused
because of I/O wait. Worse, it represents a process that is always ready to take over the CPU when a
useful process relinquishes it. Because the looping program has a priority equal to that of all other
foreground processes, it will not necessarily have to give up the CPU when another process becomes
dispatchable. The program runs for about 10 seconds (five reports), and then the activity reported by the
vmstat command returns to a more normal pattern.

Optimum use would have the CPU working 100 percent of the time. This holds true in the case of a single-
user system with no need to share the CPU. Generally, if us + sy time is below 90 percent, a single-user
system is not considered CPU constrained. However, if us + sy time on a multiuser system exceeds 80
percent, the processes may spend time waiting in the run queue. Response time and throughput might
suffer.

To check if the CPU is the bottleneck, consider the four cpu columns and the two kthx (kernel threads)
columns in the vmstat report. It may also be worthwhile looking at the faults column:

- cpu
Percentage breakdown of CPU time usage during the interval. The cpu columns are as follows:
- us

The us column shows the percent of CPU time spent in user mode. A UNIX process can execute in
either user mode or system (kernel) mode. When in user mode, a process executes within its
application code and does not require kernel resources to perform computations, manage memory,
or set variables.

— sy
The sy column details the percentage of time the CPU was executing a process in system mode. This
includes CPU resource consumed by kernel processes (kprocs) and others that need access to kernel
resources. If a process needs kernel resources, it must execute a system call and is thereby switched
to system mode to make that resource available. For example, reading or writing of a file requires

kernel resources to open the file, seek a specific location, and read or write data, unless memory
mapped files are used.

- id

92 AIX Version 7.1: Performance management

The id column shows the percentage of time which the CPU is idle, or waiting, without pending local
disk I/0. If there are no threads available for execution (the run queue is empty), the system
dispatches a thread called wait, which is also known as the idle kproc. On an SMP system, one wait
thread per processor can be dispatched. The report generated by the ps command (with the -k or -g
0 option) identifies this as kproc or wait. If the ps report shows a high aggregate time for this
thread, it means there were significant periods of time when no other thread was ready to run or
waiting to be executed on the CPU. The system was therefore mostly idle and waiting for new tasks.

wa

The wa column details the percentage of time the CPU was idle with pending local disk I/O and NFS-
mounted disks. If there is at least one outstanding I/O to a disk when wait is running, the time is
classified as waiting for I/O. Unless asynchronous I/O is being used by the process, an I/0 request to
disk causes the calling process to block (or sleep) until the request has been completed. Once an I/O
request for a process completes, it is placed on the run queue. If the I/Os were completing faster,
more CPU time could be used.

A wa value over 25 percent could indicate that the disk subsystem might not be balanced properly, or
it might be the result of a disk-intensive workload.

For information on the change made to wa, see “Wait I/O time reporting ” on page 160.

« kthr

Number of kernel threads in various queues averaged per second over the sampling interval. The kthzr
columns are as follows:

r

Average number of kernel threads that are runnable, which includes threads that are running and
threads that are waiting for the CPU. If this number is greater than the number of CPUs, there is at
least one thread waiting for a CPU and the more threads there are waiting for CPUs, the greater the
likelihood of a performance impact.

b

Average number of kernel threads in the VMM wait queue per second. This includes threads that are
waiting on filesystem I/O or threads that have been suspended due to memory load control.

If processes are suspended due to memory load control, the blocked column (b) in the vmstat
report indicates the increase in the number of threads rather than the run queue.

p

For vmstat -I The number of threads waiting on I/Os to raw devices per second. Threads waiting on
I/0s to filesystems would not be included here.

- faults

Information about process control, such as trap and interrupt rate. The faults columns are as follows:

in
Number of device interrupts per second observed in the interval. Additional information can be found
in “Assessing disk performance with the vmstat command ” on page 164.

sy

The number of system calls per second observed in the interval. Resources are available to user
processes through well-defined system calls. These calls instruct the kernel to perform operations for
the calling process and exchange data between the kernel and the process. Because workloads and
applications vary widely, and different calls perform different functions, it is impossible to define how
many system calls per-second are too many. But typically, when the sy column raises over 10000
calls per second on a uniprocessor, further investigations is called for (on an SMP system the number
is 10000 calls per second per processor). One reason could be "polling" subroutines like the select()
subroutine. For this column, it is advisable to have a baseline measurement that gives a count for a
normal sy value.

Cs

Performance management 93

Number of context switches per second observed in the interval. The physical CPU resource is
subdivided into logical time slices of 10 milliseconds each. Assuming a thread is scheduled for
execution, it will run until its time slice expires, until it is preempted, or until it voluntarily gives up
control of the CPU. When another thread is given control of the CPU, the context or working
environment of the previous thread must be saved and the context of the current thread must be
loaded. The operating system has a very efficient context switching procedure, so each switch is
inexpensive in terms of resources. Any significant increase in context switches, such as when cs is a
lot higher than the disk I/O and network packet rate, should be cause for further investigation.

The iostat command

The iostat command is the fastest way to get a first impression, whether or not the system has a disk
I/0-bound performance problem.

See “Assessing disk performance with the iostat command ” on page 161. The tool also reports CPU
statistics.

The following example shows a part of an 1iostat command output. The first stanza shows the summary
statistic since system startup.

iostat -t 2 6

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.0 0.8 8.4 2.6 88.5 0.5
0.0 80.2 4.5 3.0 92.1 0.5
0.0 40.5 7.0 4.0 89.0 0.0
0.0 40.5 9.0 2.5 88.5 0.0
0.0 40.5 7.5 1.0 91.5 0.0
0.0 40.5 10.0 3.5 80.5 6.0

The CPU statistics columns (% user, % sys, % idle, and % iowait) provide a breakdown of CPU usage. This
information is also reported in the vmstat command output in the columns labeled us, sy, id, and wa. For
a detailed explanation for the values, see “vmstat command” on page 91. Also note the change made to
%iowait described in “Wait I/0 time reporting ” on page 160.

Related tasks

Assessing disk performance with the iostat command
Begin the assessment by running the iostat command with an interval parameter during your system's
peak workload period or while running a critical application for which you need to minimize I/0 delays.

Related reference

Continuous performance monitoring with the iostat command
The iostat command is useful for determining disk and CPU usage.

The sar command
The sax command gathers statistical data about the system.

Though it can be used to gather some useful data regarding system performance, the sax command can
increase the system load that can exacerbate a pre-existing performance problem if the sampling
frequency is high. But compared to the accounting package, the sax command is less intrusive. The
system maintains a series of system activity counters which record various activities and provide the data
that the sax command reports. The sax command does not cause these counters to be updated or used;
this is done automatically regardless of whether or not the sax command runs. It merely extracts the
data in the counters and saves it, based on the sampling rate and number of samples specified to the sax
command.

With its numerous options, the sax command provides queuing, paging, TTY, and many other statistics.
One important feature of the sax command is that it reports either system-wide (global among all
processors) CPU statistics (which are calculated as averages for values expressed as percentages, and as
sums otherwise), or it reports statistics for each individual processor. Therefore, this command is
particularly useful on SMP systems.

There are three situations to use the sax command:

94 AIX Version 7.1: Performance management

Real-time sampling and display
To collect and display system statistic reports immediately, run the saxr command.

Use the following command:

sar -u 2 5
AIX sesl2 1 6 000126C5D600 04/08/08

System configuration: lcpu=2 mode=Capped

19:42:43 %usT %sys %wio %idle physc
19:42:45 (0] 2 1 97 0.98
19:42:47 0 0 0 100 1.02
19:42:49 0 0 0 100 1.00
19:42:51 0 0 0 100 1.00
19:42:53 0 0 0 100 1.00
Average 0 1 0 99 1.00

This example is from a single user workstation and shows the CPU utilization.

Display previously captured data

The -0 and -f options (write and read to/from user given data files) allow you to visualize the behavior of
your machine in two independent steps. This consumes less resources during the problem-reproduction
period.

You can use a separate machine to analyze the data by transferring the file because the collected binary
file keeps all data the sax command needs.

sar -o /tmp/sar.out 2 5 > /dev/null

The above command runs the sax command in the background, collects system activity data at 2-second
intervals for 5 intervals, and stores the (unformatted) sax data in the /tmp/sar.out file. The redirection
of standard output is used to avoid a screen output.

The following command extracts CPU information from the file and outputs a formatted report to standard
output:

sar -f/tmp/sar.out
AIX sesl2 1 6 000126C5D600 04/08/08

System configuration: lcpu=2 mode=Capped

20:17:00 %usr %sys %wio %idle physc
20:18:00 0 1 0 99 1.00
20:19:00 0 1 0 929 1.00
20:20:00 0] 1 0] 99 1.00
20:21:01 0 1 0 99 1.00
20:22:00 0 0 0 929 1.00
Average 0 1 0 99 1.00

The captured binary data file keeps all information needed for the reports. Every possible sarx report
could therefore be investigated. This also allows to display the processor-specific information of an SMP
system on a single processor system.

System activity accounting via cron daemon
Two shell scripts (/usr/1lib/sa/sal and /usr/1lib/sa/sa2) are structured to be run by the cxon
daemon and provide daily statistics and reports.

The saxr command calls a process named sadc to access system data. Sample stanzas are included (but
commented out) in the /var/spool/cron/crontabs/adm crontab file to specify when the cxon
daemon should run the shell scripts.

The following lines show a modified crontab for the adm user. Only the comment characters for the data
collections were removed:

Performance management 95

¥ SYSTEM ACTIVITY REPORTS

8am-5pm activity reports every 20 mins during weekdays.
activity reports every an hour on Saturday and Sunday.
6pm-7am activity reports every an hour during weekdays.

Daily summary prepared at 18:05.

0 8-17 * * 1-5 /usr/lib/sa/sal 1200 3 &

O x * x 0,6 /usr/lib/sa/sal &
0 18-7 * 1-5 /Jusr/lib/sa/sal &
18 *

*
* 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 -ubcwyaqvm &

Collection of data in this manner is useful to characterize system usage over a period of time and to

determine peak usage hours.

Useful microprocessor options

There are many useful microprocessor-related options for the sax command.

The most useful options are:

- sar -P

The -P option reports per-processor statistics for the specified processors. By specifying the ALL
keyword, statistics for each individual processor and an average for all processors is reported. When -P
ALL is used inside a workload partition environment, RSET-wide statistics will be displayed in addition
to system wide statistics and the processors belonging to the RSET will be prefixed with an asterisk (*)
symbol. RSET-wide statistics will be displayed only if the workload partition environment is associated
with an RSET. Of the flags which specify the statistics to be reported, only the -a, -c, -m, -u, and -w flags

are meaningful with the -P flag.

The following example shows the per-processor statistic while a microprocessor-bound program was

running on processor number 0:

sar -P ALL 2 2

AIX tooltime2 1 6 OOCA52594C00 04/02/08
System configuration: lcpu=4 mode=Capped
05:23:08 cpu %usr %sys %wio

92
51
0
0
46
89
7
3
0
45

05:23:11

05:23:13

TWNPRPO T WNEFPO

91
12
2
0
46

Average

[N oNoNoR-BENG JooNoNoR N oNoNoNee)

T WNEP O

The last line of every stanza, which starts with a dash (-) in the cpu column, is the average for all
processors. An average (-) line displays only if the =P ALL option is used. It is removed if processors are
specified. The last stanza, labeled with the word Average instead of a time stamp, keeps the averages

OORPROO OONOOOOOOO®

ors
0l

dle
(¢}
49
100
100
50
0]
93
95
100
49

0
88
98

100
49

for the processor-specific rows over all stanzas.

The following example shows the vmstat output during this time:

System configuration: lcpu=4 mem=44570MB

kthr memory page

physc
.00
.00
.51
.48
.99
.00
.00
.51
.49
.00

NOOORFRPOOOR

.00
.00
.51
.48
99

POOOR

faults

r b avm fr i
2 0 860494 6020610 O
2 0 860564 6020540 0
1 0 860669 6020435 0
2 0 860769 6020335 0

96 AIX Version 7.1: Performance management

in sy cs
16 14061 409
4 14125 400
3 14042 388
3 13912 398

[cNoNoNoR]

The first numbered line is the summary since startup of the system. The second line reflects the start of
the saxr command, and with the third row, the reports are comparable. The vmstat command can only
display the average microprocessor utilization over all processors. This is comparable with the dashed
(-) rows from the microprocessor utilization output from the saxr command.

When run inside a WPAR environment, the same command produces the following output:

AIX wparl 1 6 OOCBA6FEA4CO0 04/01/08

wparl configuration: lcpu=2 memlim=204MB cpulim=0.06 rset=Regular

05:23:08 cpu %usr %sys %wio %idle physc
0

05:23:11 %0 8 92 0 1.00
*1 0 51 0 49 0.00

2 0 0 0 100 0.51

3 0 0 0 100 0.48

R 4 71 0 24 1.00

= 4 46 0 50 1.99

05:23:13 %0 10 89 0 0 1.00
*1 0 7 0 93 0.00

2 0 3 2 95 0.51

3 0 0 0 100 0.49

R 5 48 0 46 1.00

= 5 45 0 49 2.00

Average *0 9 921 0 0 1.00
*1 0 12 0 88 0.00

2 0 2 1 98 0.51

g 0 0 0 100 0.48

R 4 51 0 44 1.00

- 5 46 0 49 1.99

The WPAR has an associated RSET registry. Processors 0 and 1 are attached to the RSET. The R line
displays the use by the RSET associated with the WPAR. The processors present in the RSET are
prefixed by the asterisk (*) symbol.

sar —P RST is used to display the use metrics of the processors present in the RSET. If there is no RSET
associated with the WPAR environment, all of the processor’s metrics are displayed.

The following example shows sax =P RST run inside a WPAR environment:

AIX wparl 1 6 OOCBA6FE4CO0 04/01/08

wparl configuration: lcpu=2 memlim=204MB cpulim=0.06 zrset=Regular

05:02:57 cpu %usr %sys %wio %idle physc
05:02:59 0 20 80 (¢} (¢} 1.00
1 10 0 0 20 0.00
R 15 40 ¢} 45 1.00
05:03:01 0 20 80 (¢} (¢} 1.00
1 8 0 0 92 0.00
R 14 40 (¢} 46 1.00
Average 0 20 80 0 0 1.00
1 9 (¢} (¢} 91 0.00
R 14 40 (¢} 46 1.00
sar -u

This displays the microprocessor utilization. It is the default if no other flag is specified. It shows the
same information as the microprocessor statistics of the vmstat or iostat commands.

During the following example, a copy command was started:

sar -u 3 3

AIX wparl 1 6 OOCBA6FE4CO0 04/01/08

wparl configuration: lcpu=2 memlim=204MB cpulim=0.06 rset=Regular

05:02:57 cpu %usr %sys %wio %idle physc
0

05:02:59 0O 20 80 0 1.00
1 10 0 0 90 0.00
R 15 40 0 45 1.00
05:03:01 0O 20 80 0 0 1.00
1 8 0 0 92 0.00
R 14 40 0 46 1.00
Average 0 20 80 0 0 1.00

Performance management 97

1 9 0 0 91 0.00
R 14 40 0 46 1.00

When run inside a workload partition, the same command produces the following output:

AIX wparl 1 6 OOCBA6FE4CO0 04/01/08

wparl configuration: lcpu=2 memlim=204MB cpulim=0.06 rset=Regular

05:07:16 %usT %sys %wio %idle physc %resc
05:07:19 17 83 = = 0.11 181.6
05:07:22 19 81 = = 0.08 133.5
05:07:26 16 84 = = 0.10 173.4
Average 17 83 = = 0.10 164.3

This displays the %resc information for workload partitions that have processor resource limits
enforced. This metric indicates the percentage of processor resource consumed by the workload
partition.

sar -Cc

The -c option shows the system call rate.

sar -¢c 1 3

19:28:25 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
19:28:26 134 36 1 0.00 0.00 2691306 1517
19:28:27 46 34 1 0.00 0.00 2716922 1531
19:28:28 46 34 1 0.00 0.00 2716922 1531
Average 75 35 1 0.00 0.00 2708329 1527

While the vmstat command shows system call rates as well, the sax command can also show if these
system calls are read(), write(), fork(), exec(), and others. Pay particular attention to the fork/s
column. If this is high, then further investigation might be needed using the accounting utilities, the
trace command, or the tprof command.

« sar -q

The -q option shows the run-queue size and the swap-queue size.

sar -qg 5 3

19:31:42 rung-sz %runocc swpg-sz %swpocc

19:31:47 1.0 100 1.0 100

19:31:52 2.0 100 1.0 100

19:31:57 1.0 100 1.0 100

Average 1.3 95 1.0 95
rung-sz

The average number of threads that are runnable per second and the percentage of time that the
run queue was occupied (the % field is subject to error).

sSWp(Q-sz
The average number of threads in the VMM wait queue and the % of time that the swap queue was
occupied. (The % field is subject to error.)

The -q option can indicate whether you have too many jobs running (rung-sz) or have a potential
paging bottleneck. In a highly transactional system, for example Enterprise Resource Planning (ERP),
the run queue can be in the hundreds, because each transaction uses small amounts of microprocessor
time. If paging is the problem, run the vmstat command. High I/O wait indicates that there is
significant competing disk activity or excessive paging due to insufficient memory.

Using the resource sets
Follow these guidelines on best practice for using the resource sets.

Recommendations

98 AIX Version 7.1: Performance management

1. If the resource set is sub-core but contains more than one processor from each core, then for best
results include the primary thread, and subsequent contiguous simultaneous multithreading (SMT)
threads (logical processors) such that there are no gaps in the processors included in the core.

2. The resource set contains the same number of processors from each core that is represented.
Guidelines
The following statements are true when the resource sets are used:

« The resource sets can have cores from multiple scheduler resource allocation domains (SRAD) and
need not have the same number of cores from each SRAD.

« The resource sets can have one processor from each core that is represented, and it need not be the
primary SMT thread.

- When load balancing for the resource sets is enabled, the processor folding subsystem such as the VPM
makes folding decisions that are based on the cores that are required by the resource sets. The cores
that have the most resource set attached work are given priority when the cores to be folded or
unfolded are decided.

Note: If static power-saving mode is enabled, VPM performs energy aware core selection even though
the load balancing for the resource sets is enabled.

The xmperf program
Using the xmpexf program displays CPU use as a moving skyline chart.

The xmpexf program is described in detail in the Performance Toolbox Version 3: Guide and Reference.

Using the time command to measure microprocessor use

Use the time command to understand the performance characteristics of a single program and its
synchronous children.

The time command reports the real time, that is the elapsed time from beginning to end of the program.
It also reports the amount of microprocessor time used by the program. The microprocessor time is
divided into user and sys. The usex value is the time used by the program itself and any library
subroutines it calls. The sys value is the time used by system calls invoked by the program (directly or
indirectly).

The sum of user + sys is the total direct microprocessor cost of executing the program. This does not
include the microprocessor costs of parts of the kernel that can be said to run on behalf of the program,
but which do not actually run on its thread. For example, the cost of stealing page frames to replace the
page frames taken from the free list when the program started is not reported as part of the program's
microprocessor consumption.

On a uniprocessor, the difference between the real time and the total microprocessor time, that is:

real - (user + sys)

is the sum of all of the factors that can delay the program, plus the program's own unattributed costs. On
an SMP, an approximation would be as follows:

real * number_of processors - (user + sys)

In approximately the order of diminishing size, the factors can be:
« I/O required to bring in the program's text and data

« I/O required to acquire real memory for the program's use

« microprocessor time consumed by other programs

= microprocessor time consumed by the operating system

In the following example, the program used in the preceding section has been compiled with =03 to make
it run more quickly. There is very little difference between the real (wall-clock) time required to run the

Performance management 99

program and the sum of its user and system microprocessor times. The program is getting all the time it
wants, probably at the expense of other programs in the system.

time looper

real Om3.58s
user Om3.16s
sys OmO.04s

In the next example, we run the program at a less favorable priority by adding 10 to its nice value. It takes
almost twice as long to run, but other programs are also getting a chance to do their work:

time nice -n 10 looper
real Om6.54s
user Om3.17s
sys OmO.03s

Note that we placed the nice command within the time command, rather than the reverse. If we had
entered

nice -n 10 time looper

we would have gotten a different time command (/usx/bin/time) with a lower-precision report, rather
than the version of the time command we have been using, which is built into the ksh shell. If the time
command comes first, you get the built-in version, unless you specify the fully qualified name

of fusx/bin/time. If the time command is invoked from another command, you get /usx/bin/time.

Considerations of the time and timex commands
Take several facts into account when you use either the time or the timex command.
These factors are:

« The use of the /usxr/bin/time and /usxr/bin/timex commands is not recommended. When
possible, use the time subcommand of the Korn or C shell.

« The timex -s command uses the sax command to acquire additional statistics. Because the sax
command is intrusive, the timex -s command is also. Especially for brief runs, the data reported by the
timex -s command may not precisely reflect the behavior of a program in an unmonitored system.

« Because of the length of the system clock tick (10 milliseconds) and the rules used by the scheduler in
attributing CPU time use to threads, the results of the time command are not completely deterministic.
Because the time is sampled, there is a certain amount of unavoidable variation between successive
runs. This variation is in terms of clock ticks. The shorter the run time of the program, the larger the
variation as a percentage of the reported result (see “Accessing the processor timer” on page 375).

« Use of the time or timex command (whether from /usx/bin or through the built-in shell time
function) to measure the user or system time of a sequence of commands connected by pipes, entered
on the command ling, is not recommended. One potential problem is that syntax oversights can cause
the time command to measure only one of the commands, without any indication of a user error. The
syntax is technically correct; it just does not produce the answer that the user intended.

« Although the time command syntax did not change, its output takes on a new meaning in an SMP
environment:

On an SMP the real, or elapsed time may be smaller than the user time of a process. The user time is
now the sum of all the times spent by the threads or the process on all processors.

If a process has four threads, running it on a uniprocessor (UP) system shows that the real time is
greater than the user time:

time 4threadedprog
real Om11.70s
user Omll.09s
sys OmO.08s

100 AIX Version 7.1: Performance management

Running it on a 4-way SMP system could show that the real time is only about 1/4 of the user time. The
following output shows that the multithreaded process distributed its workload on several processors
and improved its real execution time. The throughput of the system was therefore increased.

time 4threadedprog
real Om3.40s
user Om9.81s
sys OmO.09s

Microprocessor-intensive program identification

To locate the processes dominating microprocessor usage, there are two standard tools, the ps command
and the acctcom command.

Another tool to use is the topas monitor, which is described in “Continuous system-performance
monitoring with the topas command” on page 15.

Using the ps command

The ps command is a flexible tool for identifying the programs that are running on the system and the
resources they are using. It displays statistics and status information about processes on the system,
such as process or thread ID, I/O activity, CPU, and memory utilization.

In this section the options and output fields that are relevant for the CPU are discussed.
Three of the possible ps output columns report CPU usage, each in a different way.

Column
Value Is:

(o
Recently used CPU time for the process (in units of clock ticks).
TIME
Total CPU time used by the process since it started (in units of minutes and seconds).

%CPU
Total CPU time used by the process since it started, divided by the elapsed time since the process
started. This time is a measure of the CPU dependence of the program.

CPU intensive
The following shell script:

ps -ef | egrep -v "STIME|$LOGNAME" | sort +3 -r | head -n 15

is a tool for focusing on the highest recently used CPU-intensive user processes in the system (the header
line is reinserted for clarity):

UID PID PPID C STIME TTY TIME CMD
mary 45742 54702 120 15:19:05 pts/29 0:02 ./looper
root 52122 1 11 15:32:33 pts/31 58:39 xhogger

root 4250 1 3 15:32:33 pts/31 26:03 xmconsole allcon
root 38812 4250 1 15:32:34 pts/31 8:58 xmconstats 0 3 30
root 27036 6864 1 15:18:35 - 0:00 rlogind
root 47418 25926 0 17:04:26 - 0:00 coelogin <d29dbms:0>
bick 37652 43538 0 16:58:40 pts/4 0:00 /bin/ksh

bick 43538 1 0 16:58:38 - 0:07 aixterm

luc 60062 27036 0 15:18:35 pts/18 0:00 -ksh

The column (C) indicates the recently used CPU. The process of the looping program leads the list. The C
value can minimize the CPU usage of the looping process because the scheduler stops counting at 120.
For a multithreaded process, this field indicates the sum of CP listed for all the threads within that
process.

The following example shows a simple five-thread program with all the threads in an infinite looping
program:

Performance management 101

ps -1lmo THREAD -p 8060956

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
root 8060956 6815882 - A 720 120 © = 200001 pts/0 - ./a.out

= = = 8716483 R 120 120 0 = 400000 = > =

= = - 17105017 R 120 120 O = 400000 = o o

= = - 24182849 R 120 120 © = 400000 = = =

= = - 24510589 R 120 120 © = 400000 = > =

= = - 30277829 R 120 120 O = 400000 = = o

= = - 35913767 R 120 120 © = 400000 = = =

In the CP column, the value 720 indicates the sum of individual threads listed below this value, that is: (5
* 120) + (120).

CPU time ratio

The ps command, run periodically, displays the CPU time under the TIME column and the ratio of CPU
time to real time under the %CPU column. Look for the processes that dominate usage. The au and v
options give similar information on user processes. The options aux and vg display both user and system
processes.

The following example is taken from a four-way SMP system:

ps au

USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND

root 19048 24.6 0.0 28 44 pts/1 A 13:53:00 2:16 /tmp/cpubound
root 19388 0.0 0.0 372 460 pts/1 A Feb 20 0:02 -ksh

root 15348 0.0 0.0 372 460 pts/4 A Feb 20 0:01 -ksh

root 20418 0.0 0.0 368 452 pts/3 A Feb 20 0:01 -ksh

root 16178 0.0 0.0 292 364 0 A Feb 19 0:00 /usr/shin/getty
root 16780 0.0 0.0 364 392 pts/2 A Feb 19 0:00 -ksh

root 18516 0.0 0.0 360 412 pts/0 A Feb 20 0:00 -ksh

root 15746 0.0 0.0 212 268 pts/1 A 13:55:18 0:00 ps au

The %CPU is the percentage of CPU time that has been allocated to that process since the process was
started. It is calculated as follows:

(process CPU time / process duration) % 100

Imagine two processes: The first starts and runs five seconds, but does not finish; then the second starts
and runs five-seconds but does not finish. The ps command would now show 50 percent %CPU for the
first process (five-seconds CPU for 10 seconds of elapsed time) and 100 percent for the second (five-
seconds CPU for five seconds of elapsed time).

On an SMP, this value is divided by the number of available CPUs on the system. Looking back at the
previous example, this is the reason why the %CPU value for the cpubound process never exceeds 25,
because the example is run on a four-way processor system. The cpubound process uses 100 percent of
one processor, but the %CPU value is divided by the number of available CPUs.

The THREAD option

The ps command can display threads and the CPUs that threads or processes are bound to by using the
ps -mo THREAD command. The following is an example:

ps -mo THREAD

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
root 20918 20660 - A O 60 1 - 240001 pts/1 - -ksh
= = = 20005 S 0 60 1 - 400 = = =

The TID column shows the thread ID, the BND column shows processes and threads bound to a
processor.

It is normal to see a process named kproc (PID of 516 in operating system version 4) using CPU time.
When there are no threads that can be run during a time slice, the scheduler assigns the CPU time for that
time slice to this kernel process (kproc), which is known as the idle or wait kproc. SMP systems has an idle
kproc for each processor.

For complete details about the ps command, see in Commands Reference.

102 AIX Version 7.1: Performance management

Using the acctcom command
The acctcom command displays historical data on CPU usage if the accounting system is activated.

Activate accounting only if absolutely needed because starting the accounting system puts a measurable
overhead on the system. To activate the accounting system, do the following:

1. Create an empty accounting file:
touch acctfile

2. Turn on accounting:
/usr/sbin/acct/accton acctfile

3. Allow accounting to run for a while and then turn off accounting:
/usr/sbin/acct/accton

4. Display what accounting captured, as follows:

/usr/sbin/acct/acctcom acctfile

COMMAND START END REAL CPU MEAN
NAME USER TTYNAME TIME TIME (SECS) (SECS) SIZE(K)
ffaccton root pts/2 19:57:18 19:57:18 0.02 0.02 184.00
ips root pts/2 19:57:19 19:57:19 0.19 0.17 35.00
#ls root pts/2 19:57:20 19:57:20 0.09 0.03 109.00
ips root pts/2 19:57:22 19:57:22 0.19 0.17 34.00
jfaccton root pts/2 20:04:17 20:04:17 0.00 0.00 0.00
#fwho root pts/2 20:04:19 20:04:19 0.02 0.02 0.00

If you reuse the same file, you can see when the newer processes were started by looking for the accton
process (this was the process used to turn off accounting the first time).

Using the pprof command to measure microprocessor usage of kernel
threads

The ppxrof command reports microprocessor usage on all kernel threads running within an interval using
the trace utility.

The raw process information is saved to pprof.flow and five reports are generated. If no flags are
specified, all reports are generated.

To determine whether the ppxof program is installed and available, run the following command:

1slpp -1I bos.perf.tools

The types of reports are as follows:

pprof.cpu
Lists all kernel level threads sorted by actual microprocessor time. Contains: Process Name, Process
ID, Parent Process ID, Process State at Beginning and End, Thread ID, Parent Thread ID, Actual CPU
Time, Start Time, Stop Time, Stop - Start.

pprof.famcpu
Lists the information for all families (processes with a common ancestor). The Process Name and
Process ID for the family is not necessarily the ancestor. Contains: Start Time, Process Name, Process
ID, Number of Threads, Total CPU Time.

pprof.famind
Lists all processes grouped by families (processes with a common ancestor). Child process names are
indented with respect to the parent. Contains: Start Time, Stop Time, Actual CPU Time, Process ID,
Parent Process ID, Thread ID, Parent Thread ID, Process State at Beginning and End, Level, Process
Name.

Performance management 103

pprof.namecpu

Lists information about each type of kernel thread (all executable with the same name). Contains:

Process Name, Number of Threads, CPU Time, % of Total CPU Time.

pprof.start

Lists all kernel threads sorted by start time that were dispatched during the pprof command interval.
Contains: Process Name, Process ID, Parent Process ID, Process State Beginning and End, Thread ID,

Parent Thread ID, Actual CPU Time, Start Time, Stop Time, Stop - Start.

Following is a sample pprof.namecpu file that was generated by running the tthreads32 program, which
forks off four threads, which in turn each fork off a process of their own. These processes then execute

several ksh and sleep programs:

Pprof PROCESS NAME

Sorted by CPU Time

Report

From: Thu Oct 19 17:53:07 2000

To: Thu Oct 19 17:53:22 2000

Pname #ofThreads CPU_Time %
tthreads32 13 0.116 37.935
sh 8 0.092 30.087

Idle 2 0.055 17.987
ksh 12 0.026 8.503
trace 3 0.007 2.289
java 3 0.006 1.962
kproc 5 0.004 1.308
xmservd 1 0.000 0.000
trcstop 1 0.000 0.000
swapper 1 0.000 0.000
gil 1 0.000 0.000

1s 4 0.000 0.000
sleep 9 0.000 0.000
ps 4 0.000 0.000
syslogd 1 0.000 0.000
nfsd 2 0.000 0.000

70 0.306 100.000

The corresponding pprof.cpuis as follows:

Pprof CPU Report

Sorted by Actual CPU Time

Alive (when traced started or stopped)

From: Thu Oct 19 17:53:07 2000
To: Thu Oct 19 17:53:22 2000
E = Exec'd F = Forked
X = Exited A =
C = Thread Created
Pname PID PPID BE
STP-STT
Idle 774 0 AA
0.154
tthreads32 5490 11982 EX
0.126
sh 11396 5490 EE
0.072
sh 14106 5490 EE
0.043
sh 13792 5490 EE
0.068
ksh 5490 11982 FE
0.017
tthreads32 5490 11982 CX
0.098
tthreads32 5490 11982 CX
0.099
tthreads32 14506 5490 FE

104 AIX Version 7.1: Performance management

TID PTID ACC_time STT_time STP_time

775 0 0.052 0.000 0.154
18161 22435 0.040 0.027 0.154
21917 5093 0.035 0.082 0.154
16999 18867 0.028 0.111 0.154
20777 18179 0.028 0.086 0.154
18161 22435 0.016 0.010 0.027

5093 18161 0.011 0.056 0.154
18179 18161 0.010 0.054 0.154
17239 10133 0.010 0.128 0.143

0010 ksh 11982 13258 AA 22435 0 0.010 0.005 0.154
0. tthreads32 13792 5490 FE 20777 18179 0.010 0.059 0.086
002 tthreads32 5490 11982 CX 18867 18161 0.010 0.057 0.154
0. 0% tthreads32 11396 5490 FE 21917 5093 0.009 0.069 0.082
0o tthreads32 5490 11982 CX 10133 18161 0.008 0.123 0.154
- 0% tthreads32 14106 5490 FE 16999 18867 0.008 0.088 0.111
0029 trace 5488 11982 AX 18159 0 0.006 0.001 0.005
0009 kproc 1548 0 AA 2065 0 0.004 0.071 0.154
.00 Idle 516 0 AA 517 0 0.003 0.059 0.154
0.095 _

java 11612 11106 AA 14965 0 0.003 0.010 0.154
0 java 11612 11106 AA 14707 0 0.003 0.010 0.154
0 trace 12544 5488 AA 20507 0 0.001 0.000 0.001
.00t sh 14506 5490 EE 17239 10133 0.001 0.143 0.154
0o trace 12544 5488 CA 19297 20507 0.000 0.001 0.154
0o ksh 4930 2678 AA 5963 0 0.000 0.154 0.154
0000 kproc 6478 0 AA 3133 0 0.000 0.154 0.154
0000 ps 14108 5490 EX 17001 18867 0.000 0.154 0.154
000 tthreads32 13794 5490 FE 20779 18179 0.000 0.154 0.154
0000 sh 13794 5490 EE 20779 18179 0.000 0.154 0.154
0000 ps 13794 5490 EX 20779 18179 0.000 0.154 0.154
000 sh 14108 5490 EE 17001 18867 0.000 0.154 0.154
0000 tthreads32 14108 5490 FE 17001 18867 0.000 0.154 0.154
Z'ZZZ ls 13792 5490 EX 20777 18179 0.000 0.154 0.154

Detecting instruction emulation with the emstat tool

To maintain compatibility with older binaries, the AIX kernel includes emulation routines that provide
support for instructions that might not be included in a particular chip architecture. Attempting to execute
a non-supported instruction results in an illegal instruction exception. The kernel decodes the illegal
instruction, and if it is a non-supported instruction, the kernel runs an emulation routine that functionally
emulates the instruction.

Depending upon the execution frequency of non-supported instructions and the their emulation path
lengths, emulation can result in varying degrees of performance degradation due to kernel context switch
and instruction emulation overhead. Even a very small percentage of emulation might result in a big
performance difference. The following table shows estimated instruction path lengths for several of the
non-supported instructions:

Instruction Emulated in Estimated Path Length (instructions)
abs assembler 117
doz assembler 120
mul assembler 127
rlmi C 425

Performance management 105

Instruction Emulated in Estimated Path Length (instructions)

sle C 447
clf C 542
div C 1079

Instructions that are not common on all platforms must be removed from code written in assembler,
because recompilation is only effective for high-level source code. Routines coded in assembler must be
changed so that they do not use missing instructions, because recompilation has no effect in this case.

The first step is to determine if instruction emulation is occurring by using the emstat tool.

To determine whether the emstat program is installed and available, run the following command:

1lslpp -1I bos.perf.tools

The emstat command works similarly to the vmstat command in that you specify an interval time in
seconds, and optionally, the number of intervals. The value in the first column is the cumulative count
since system boot, while the value in the second column is the number of instructions emulated during
that interval. Emulations on the order of many thousands per second can have an impact on performance.

The following is an example of output from issuing the emstat 1 command:

emstat 1

Emulation Emulation

SinceBoot Delta
0 0
0 0
0 0

Once emulation has been detected, the next step is to determine which application is emulating
instructions. This is much harder to determine. One way is to run only one application at a time and
monitor it with the emstat program. Sometimes certain emulations cause a trace hook to be
encountered. This can be viewed in the ASCII trace report file with the words PROGRAM CHECK. The
process/thread associated with this trace event is emulating instructions either due to its own code
emulating instructions, or it is executing library or code in other modules that are emulating instructions.

Detecting alignment exceptions with the alstat tool
Misalignment of data can cause the hardware to generate an alignment exception.

AIX compilers perform natural alignment of data types. For example, data of type short, which is 2 bytes
long, is padded automatically to 4 bytes by the compiler. Common programming practices such as
typecasting and usage of alignment pragmas can cause application data to be aligned incorrectly.
POWER® processor-based optimization assumes correct alignment of data. Thus, fetching misaligned data
may require multiple memory accesses where a single access should have sufficed. An alignment
exception generated by a misalignment of data would force the kernel to simulate the needed memory
accesses. As with the case of instruction emulation, this can degrade application performance.

The alstat tool packaged with bos.pexrf.tools can be used to detect if alignment exceptions are
occurring. To show alignment exceptions on a per-CPU basis, use the =v option.

Because alstat and emstat are the same binary, either of these tools can be used to show instruction
emulation and alignment exceptions. To show instruction emulation, use the -e option on alstat. To
show alignment exceptions, use the -a option on emstat.

The output for alstat looks similar to the following:

alstat -e 1
Alignment Alignment Emulation Emulation
SinceBoot Delta SinceBoot Delta
0] 0] 0] 0]

106 AIX Version 7.1: Performance management

Restructuring executable programs with the fdpr program

The £dpx (feedback-directed program restructuring) program optimizes executable modules for faster
execution and more efficient use of real memory.

To determine whether the fdpx program is installed and available on your system, run the following
command:

1lslpp -1I perfagent.tools

The £dpx command is a performance-tuning utility that can improve both performance and real memory
utilization of user-level application programs. The source code is not necessary as input to the fdpx
program. However, stripped executable programs are not supported. If source code is available, programs
built with the -qfdpr compiler flag contain information to assist the £dpx program in producing reordered
programs with guaranteed functionality. If the -qfdpr flag is used, it should be used for all object modules
in a program. Static linking will not enhance performance if the -qfdpr flag is used.

The £dpx tool reorders the instructions in an executable program to improve instruction cache,
Translation Lookaside Buffer (TLB), and real memory utilization by doing the following:

« Packing together highly executed code sequences (as determined through profiling)
« Recoding conditional branches to improve hardware branch prediction
- Moving infrequently executed code out of line

For example, given an "if-then-else" statement, the £dpx program might conclude that the program uses
the else branch more often than the if branch. It will then reverse the condition and the two branches as
shown in the following figure.

if (condition) if (I condition)
then then

instructions would become other instructions
else _ else

other instructions instruction

endif endif

Figure 16. Example of Conditional Branch Recoding

Large applications (larger than 5 MB) that are CPU-bound can improve execution time up to 23 percent,
but typically the performance is improved between 5 and 20 percent. The reduction of real memory
requirements for text pages for this type of program can reach 70 percent. The average is between 20 and
50 percent. The numbers depend on the application's behavior and the optimization options issued when
using the £dpx program.

The £dpx processing takes place in three stages:

1. The executable module to be optimized is instrumented to allow detailed performance-data collection.

2. The instrumented executable module is run in a workload provided by the user, and performance data
from that run is recorded.

3. The performance data is used to drive a performance-optimization process that results in a
restructured executable module that should perform the workload that exercised the instrumented
executable program more efficiently. It is critically important that the workload used to drive the fdpx
program closely match the actual use of the program. The performance of the restructured executable
program with workloads that differ substantially from that used to drive the £dpx program is
unpredictable, but can be worse than that of the original executable program.

Performance management 107

As an example, the ## fdpxr -p ProgramName -R3 -x test.sh command would use the test case
test.sh torunaninstrumented form of program ProgramName. The output of that run would be used
to perform the most aggressive optimization (-R3) of the program to form a new module called, by
default, ProgramName . £dpzr. The degree to which the optimized executable program performed better
in production than its predecessor would depend largely on the degree to which the test case test.sh
successfully imitated the production workload.

Note: The £dpx program incorporates advanced optimization algorithms that sometimes result in
optimized executable programs that do not function in the same way as the original executable module. It
is absolutely essential that any optimized executable program be thoroughly tested before being used in
any production situation; that is, before its output is trusted.

In summary, users of the £dpx program should adhere to the following;:

« Take pains to use a workload to drive the £dpx program that is representative of the intended use.
- Thoroughly test the functioning of the resulting restructured executable program.
 Use the restructured executable program only on the workload for which it has been tuned.

Controlling contention for the microprocessor

Although the AIX kernel dispatches threads to the various processors, most of the system management
tools refer to the process in which the thread is running rather than the thread itself.

Controlling the priority of user processes

User-process priorities can be manipulated using the nice or xrenice command or the setpri()
subroutine, and displayed with the ps command.

An overview of priority is provided in “Process and thread priority” on page 37.

Priority calculation is employed to accomplish the following:
 Share the CPU among threads

 Prevent starvation of any thread

« Penalize compute-bound threads

« Increase continuous discrimination between threads over time

Running a command with the nice command
Any user can run a command at a less-favorable-than-normal priority by using the nice command.

Only the root user can use the nice command to run commands at a more-favorable-than-normal
priority. In this case, the nice command values range between -20 and 19.

With the nice command, the user specifies a value to be added to or subtracted from the standard nice
value. The modified nice value is used for the process that runs the specified command. The priority of
the process is still non-fixed; that is, the priority value is still recalculated periodically based on the CPU
usage, nice value, and minimum user-process-priority value.

The standard nice value of a foreground process is 20 (24 for a ksh background process). The following
command would cause the vmstat command to be run in the foreground with a nice value of 25
(instead of the standard 20), resulting in a less favorable priority.

nice -n 5 vmstat 10 3 > vmstat.out

If you use the root login, the vmstat command can be run at a more favorable priority with the following:

nice -n -5 vmstat 10 3 > vmstat.out

If you were not using root login and issued the preceding example nice command, the vmstat command
would still be run but at the standard nice value of 20, and the nice command would not issue any error
message.

108 AIX Version 7.1: Performance management

Setting a fixed priority with the setpri subroutine
An application that runs under the root user ID can use the setpri() subroutine to set its own priority or
that of another process.

For example:

retcode = setpri(0,59);

would give the current process a fixed priority of 59. If the setpri() subroutine fails, it returns -1.

The following program accepts a priority value and a list of process IDs and sets the priority of all of the
processes to the specified value.

/*
fixprocpri.c
Usage: fixprocpri priority PID .

*/

#include <sys/sched.h>
f##include <stdio.h>
#include <sys/errno.h>

main(int argc,char **argv)
i

pid_t ProcessID;

int Priority,ReturnP;

if(arge < 3) {
printf(" usage - setpri priority pid(s) \n");
exit(1);

argv++;
Priority=atoi(*xargv++);
if (Priority < 50) {
printf(" Priority must be >= 50 \n");
exit(1);
b

while (xargv) {
ProcessID=atoi(*argv++);
ReturnP = setpri(ProcessID, Priority);
if (ReturnP > 0)
printf("pid=%d new pri=%d old pri=Xd\n",
(int)ProcessID,Priority,ReturnP);
else §
perror(" setpri failed ");
exit(1);

Displaying process priority with the ps command

The -l (lowercase L) flag of the ps command displays the nice values and current priority values of the
specified processes.

For example, you can display the priorities of all of the processes owned by a given user with the
following;:

ps -lu userl

F S UID PID PPID C PRI NI ADDR Sz WCHAN TTY TIME CMD
241801 S 200 7032 7286 0 60 20 1b4c 108 pts/2 0:00 ksh
200801 S 200 7568 7032 0 70 25 2310 88 5910a58 pts/2 0:00 vmstat
241801 S 200 8544 6494 O 60 20 154b 108 pts/0 0:00 ksh

The output shows the result of the nice -n 5 command described previously. Process 7568 has an
inferior priority of 70. (The ps command was run by a separate session in superuser mode, hence the
presence of two TTYs.)

Performance management 109

If one of the processes had used the setpri(10758, 59) subroutine to give itself a fixed priority, a sample
ps -l output would be as follows:

F S UID PID PPID C PRI NI ADDR Sz WCHAN TTY TIME CMD
200903 S 0 10758 10500 0 59 -- 3438 40 4f91f98 pts/0 0:00 fixpri

Modifying the priority with the renice command

The renice command alters the nice value, and thus the priority, of one or more processes that are
already running. The processes are identified either by process ID, process group ID, or the name of the
user who owns the processes.

The xrenice command cannot be used on fixed-priority processes. A non-root user can specify a value to
be added to, but not subtracted from the nice value of one or more running processes. The modification
is done to the nice values of the processes. The priority of these processes is still non-fixed. Only the
root user can use the renice command to alter the priority value within the range of -20 to 20, or
subtract from the nice value of one or more running processes.

To continue the example, use the xrenice command to alter the nice value of the vmstat process that
you started with nice.

renice -n -5 7568
ps -lu userl

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
241801 S 200 7032 7286 0 60 20 1b4c 108 pts/2 0:00 ksh
200801 S 200 7568 7032 O 60 20 2310 92 5910a58 pts/2 0:00 vmstat
241801 S 200 8544 6494 O 60 20 154b 108 pts/0 0:00 ksh

Now the process is running at a more favorable priority that is equal to the other foreground processes. To
undo the effects of this, you could issue the following:

renice -n 5 7568
ps -lu userl

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
241801 S 200 7032 7286 0O 60 20 1b4c 108 pts/2 0:00 ksh
200801 S 200 7568 7032 1 70 25 2310 92 5910a58 pts/2 0:00 vmstat
241801 S 200 8544 6494 O 60 20 154b 108 pts/0 0:00 ksh

In these examples, the xrenice command was run by the root user. When run by an ordinary user ID,
there are two major limitations to the use of the xrenice command:

 Only processes owned by that user ID can be specified.

« The nice value of the process cannot be decreased, not even to return the process to the default
priority after making its priority less favorable with the xrenice command.

nice and renice command syntax clarification

The nice and renice commands have different ways of specifying the amount that is to be added to the
standard nice value of 20.

Nice Renice

Command Command Resulting nice Value Best Priority Value
nice-n5 renice-n5 25 70
nice-n +5 renice -n +5 25 70
nice-n-5 renice -n-5 15 55

110 AIX Version 7.1: Performance management

Thread-Priority-Value calculation
This section discusses tuning using priority calculation and the schedo command.

The “schedo command ” on page 111 command allows you to change some of the CPU scheduler
parameters used to calculate the priority value for each thread. See “Process and thread priority” on page
37 for background information on priority.

To determine whether the schedo program is installed and available, run the following command:

1slpp -1I bos.perf.tune

Priority calculation

The kernel maintains a priority value (sometimes termed the scheduling priority) for each thread. The
priority value is a positive integer and varies inversely with the importance of the associated thread. That
is, a smaller priority value indicates a more important thread. When the scheduler is looking for a thread
to dispatch, it chooses the dispatchable thread with the smallest priority value.

The formula for calculating the priority value is:

priority value = base priority + nice penalty + (CPU penalty based on recent CPU usage)

The recent CPU usage value of a given thread is incremented by 1 each time that thread is in control of the
CPU when the timer interrupt occurs (every 10 milliseconds). The recent CPU usage value is displayed as
the C column in the ps command output. The maximum value of recent CPU usage is 120.

The default algorithm calculates the CPU penalty by dividing recent CPU usage by 2. The CPU-penalty-to-
recent-CPU-usage ratio is therefore 0.5. This ratio is controlled by a value called R (the default is 16). The
formula is as follows:

CPU_penalty = C * R/32

Once a second, the default algorithm divides the recent CPU usage value of every thread by 2. The recent-
CPU-usage-decay factor is therefore 0.5. This factor is controlled by a value called D (the default is 16).
The formula is as follows:

C=2Cx*D/32

The algorithm for calculating priority value uses the nice value of the process to determine the priority of
the threads in the process. As the units of CPU time increase, the priority decreases with the nice effect.
Using schedo -r -d can give additional control over the priority calculation by setting new values for R

and D. See “schedo command ” on page 111 for further information.

Begin with the following equation:
p_nice = base priority + nice value
Now use the following formula:

If p_nice > 60,
then x_nice =
else x_nice =

(p_nice * 2) - 60,
p_nice.

If the nice value is greater than 20, then it has double the impact on the priority value than if it was less
than or equal to 20. The new priority calculation (ignoring integer truncation) is as follows:

priority value = x_nice + [(x_nice + 4)/64 %= Cx(R/32)]

schedo command
Tuning is accomplished through two options of the schedo command: sched_R and sched_D.

Each option specifies a parameter that is an integer from 0 through 32. The parameters are applied by
multiplying by the parameter's value and then dividing by 32. The default R and D values are 16, which

Performance management 111

yields the same behavior as the original algorithm [(D=R=16)/32=0.5]. The new range of values permits a
far wider spectrum of behaviors. For example:

schedo -o sched_R=0

[(R=0)/32=0, (D=16)/32=0.5] would mean that the CPU penalty was always 0, making priority a function
of the nice value only. No background process would get any CPU time unless there were no dispatchable
foreground processes at all. The priority values of the threads would effectively be constant, although
they would not technically be fixed-priority threads.

schedo -o sched_R=5

[(R=5)/32=0.15625, (D=16)/32=0.5] would mean that a foreground process would never have to
compete with a background process started with the command nice -n 10. The limit of 120 CPU time
slices accumulated would mean that the maximum CPU penalty for the foreground process would be 18.

schedo -o sched_R=6 -o sched_D=16

[(R=6)/32=0.1875, (D=16)/32=0.5] would mean that, if the background process were started with the
command nice -n 10, it would be at least one second before the background process began to receive
any CPU time. Foreground processes, however, would still be distinguishable on the basis of CPU usage.
Long-running foreground processes that should probably be in the background would ultimately
accumulate enough CPU usage to keep them from interfering with the true foreground.

schedo -o sched_R=32 -o sched_D=32

[(R=32)/32=1, (D=32)/32=1] would mean that long-running threads would reach a C value of 120 and
remain there, contending on the basis of their nice values. New threads would have priority, regardless of
their nice value, until they had accumulated enough time slices to bring them within the priority value
range of the existing threads.

Here are some guidelines for R and D:

« Smaller values of R narrow the priority range and make the nice value have more of an impact on the
priority.

« Larger values of R widen the priority range and make the nice value have less of an impact on the
priority.

« Smaller values of D decay CPU usage at a faster rate and can cause CPU-intensive threads to be
scheduled sooner.

« Larger values of D decay CPU usage at a slower rate and penalize CPU-intensive threads more (thus
favoring interactive-type threads).

Priority calculation example
The example shows R=4 and D=31 and assumes no other runnable threads.

current_effective_priority
| base process priority
| nice value
| | count (time slices consumed)
I I I (sctho -0 sched_R)

|

|

|
time O p =40 + 20 + (0 * 4/32) = 60
time 10 ms p =40 + 20 + (1 * 4/32) = 60
time 20 ms p =40 + 20 + (2 % 4/32) = 60
time 30 ms p =40 + 20 + (3 * 4/32) = 60
time 40 ms p =40 + 20 + (4 * 4/32) = 60
time 50 ms p =40 + 20 + (5 % 4/32) = 60
time 60 ms p =40 + 20 + (6 * 4/32) = 60
time 70 ms p =40 + 20 + (7 * 4/32) = 60
time 80 ms p =40 + 20 + (8 % 4/32) = 61
time 90 ms p =40 + 20 + (9 * 4/32) = 61
time 100ms p =40 + 20 + (10 =« 4/32) = 61

(skipping forward to 1000msec or 1 second)

112 AIX Version 7.1: Performance management

time 1000ms p =40 + 20 + (100 * 4/32) = 72
time 1000ms swapper recalculates the accumulated CPU usage counts of
all processes. For the above process:
new_CPU_usage = 100 * 31/32 = 96 (if d=31)
after decaying by the swapper: p = 40 + 20 + (96 % 4/32) = 72
(if d=16, then p = 40 + 20 + (100/2 * 4/32) = 66)
= 72

time 1010ms p =40 + 20 + (97 % 4/32) =

time 1020ms p =40 + 20 + (98 * 4/32) = 72

time 1030ms p =40 + 20 + (99 % 4/32) = 72

time 1230ms p =40 + 20 + (119 % 4/32) = 74

time 1240ms p =40 + 20 + (120 %= 4/32) = 75 count <= 120

time 1250ms p =40 + 20 + (120 % 4/32) = 75

time 1260ms p =40 + 20 + (120 * 4/32) = 75

time 2000ms p =40 + 20 + (120 % 4/32) = 75

time 2000ms swapper recalculates the counts of all processes.
For above process 120 % 31/32 = 116

time 2010ms p =40 + 20 + (117 % 4/32) = 74

Scheduler time slice modification with the schedo command

The length of the scheduler time slice can be modified with the schedo command. To change the time
slice, use the schedo -o timeslice=value option.

The value of -t is the number of ticks for the time slice and only SCHED_RR threads will use the nondefault
time slice value (see “Scheduling policy for threads ” on page 38 for a description of fixed priority
threads).

Changing the time slice takes effect instantly and does not require a reboot.

A thread running with SCHED_OTHER or SCHED_RR scheduling policy can use the CPU for up to a full time
slice (the default time slice being 1 clock tick), a clock tick being 10 ms.

In some situations, too much context switching is occurring and the overhead of dispatching threads can
be more costly than allowing these threads to run for a longer time slice. In these cases, increasing the
time slice might have a positive impact on the performance of fixed-priority threads. Use the vmstat and
saxr commands for determining the number of context switches per second.

In an environment in which the length of the time slice has been increased, some applications might not
need or should not have the full time slice. These applications can give up the processor explicitly with the
yield() system call (as can programs in an unmodified environment). After a yield() call, the calling thread
is moved to the end of the dispatch queue for its priority level.

Microprocessor-efficient user ID administration with the mkpasswd
command

To improve login response time and conserve microprocessor time in systems with many users, the
operating system can use a indexed version of the /etc/passwd file to look up user IDs. When this
facility is used, the /etc/passwd file still exists, but is not used in normal processing.

The indexed versions of the file are built by the mkpasswd command. If the indexed versions are not
current, login processing reverts to a slow, microprocessor-intensive sequential search through /etc/
passwd.

The command to create indexed password files is mkpasswd -f. This command creates indexed versions
of /etc/passwd, /etc/security/passwd, and /etc/security/lastlog. The files created

are /etc/passwd.nm.idx, /etc/passwd.id.idx, /etc/security/passwd.idx, and /etc/
security/lastlog.idx. Note that this will greatly enhance performance of applications that also need
the encrypted password (such as login and any other program that needs to do password authentication).

Applications can also be changed to use alternative routines such as _getpwent() instead of getpwent(),
_getpwnam_shadow(name,0) instead of getpwnam(name), or _getpwuid_shadow(uid,0) instead of
getpwuid(uid) to do name/ID resolution in cases where the encrypted password is not needed. This
prevents a lookup of /etc/security/passwd.

Performance management 113

Do not edit the password files by hand because the time stamps of the database files (. idx) will not be in
sync and the default lookup method (linear) will be used. If the passwd, mkusex, chuser, rmusex
commands (or the SMIT command equivalents, with fast paths of the same name) are used to administer
user IDs, the indexed files are kept up to date automatically. If the /etc/passwd file is changed with an
editor or with the pwdadm command, the index files must be rebuilt.

Note: The mkpasswd command does not affect NIS, DCE, or LDAP user databases.

Memory performance

This section describes how memory use can be measured and modified.

The memory of a system is almost constantly filled to capacity. Even if currently running programs do not
consume all available memory, the operating system retains in memory the text pages of programs that
ran earlier and the files that they used. There is no cost associated with this retention, because the
memory would have been unused anyway. In many cases, the programs or files will be used again, which
reduces disk I/O.

Readers who are not familiar with the operating system's virtual-memory management may want to look
at “Virtual Memory Manager performance” on page 41 before continuing.

Memory usage
Several performance tools provide memory usage reports.

The reports of most interest are from the vmstat, ps, and svmon commands.

Memory usage determination with the vmstat command

The vmstat command summarizes the total active virtual memory used by all of the processes in the
system, as well as the number of real-memory page frames on the free list.

Active virtual memory is defined as the number of virtual-memory working segment pages that have
actually been touched. This number can be larger than the number of real page frames in the machine,
because some of the active virtual-memory pages may have been written out to paging space.

When determining if a system might be short on memory or if some memory tuning needs to be done, run
the vmstat command over a set interval and examine the pi and po columns on the resulting report.
These columns indicate the number of paging space page-ins per second and the number of paging space
page-outs per second. If the values are constantly non-zero, there might be a memory bottleneck. Having
occasional non-zero values is not be a concern because paging is the main principle of virtual memory.

vmstat 2 10

kthr memory page faults cpu

r b avm fre re pi po fr st cy in sy c¢s us sy id wa

1 3 113726 124 0 14 6 151 600 0 521 5533 816 23 13 7 57
0 3113643 346 O 2 14 208 690 0O 585 2201 866 16 9 2 73

O 3113659 135 O 2 2 108 323 0O 516 1563 797 25 7 2 66
0 2 113661 122 O 3 2 120 375 O 527 1622 871 13 7 2 79
0 3 113662 128 0 10 3 134 432 0 644 1434 948 22 7 4 67
1 51213858 238 0O 35 1 146 422 0 599 5103 903 40 16 0 44
0 3113969 127 O 5 10 153 529 O 565 2006 823 19 8 3 70
O 3113983 125 0O 33 5 153 424 0 559 2165 921 25 8 4 63

0 3113682 121 O 20 9 154 470 0O 608 1569 1007 15 8 0 77
0 4 113701 124 © 3 29 228 635 0O 674 1730 1086 18 9 0 73

In the example output above, notice the high I/O wait in the output and also the number of threads on the
blocked queue. Other I/O activities might cause I/O wait, but in this particular case, the I/O wait is most
likely due to the paging in and out from paging space.

To see if the system has performance problems with its VMM, examine the columns under memory and
page:
« memory

Provides information about the real and virtual memory.

114 AIX Version 7.1: Performance management

avim

The Active Virtual Memory, avm, column represents the number of active virtual memory pages
present at the time the vmstat sample was collected. The deferred page space policy is the default
policy. Under this policy, the value for avm might be higher than the number of paging space pages
used. The avm statistics do not include file pages.

fre

The fxe column shows the average number of free memory pages. A page is a 4 KB area of real
memory. The system maintains a buffer of memory pages, called the free list, that will be readily
accessible when the VMM needs space. The minimum number of pages that the VMM keeps on the
free list is determined by the minfree parameter of the vmo command. For more details, see “VMM
page replacement tuning” on page 136.

When an application terminates, all of its working pages are immediately returned to the free list. Its
persistent pages, or files, however, remain in RAM and are not added back to the free list until they
are stolen by the VMM for other programs. Persistent pages are also freed if the corresponding file is
deleted.

For this reason, the fre value may not indicate all the real memory that can be readily available for use
by processes. If a page frame is needed, then persistent pages related to terminated applications are
among the first to be handed over to another program.

If the fre value is substantially above the maxfree value, it is unlikely that the system is thrashing.
Thrashing means that the system is continuously paging in and out. However, if the system is
experiencing thrashing, you can be assured that the fre value will be small.

- page

Information about page faults and paging activity. These are averaged over the interval and given in
units per second.

re

Note: This column is currently not supported.

pi

The pi column details the number of pages paged in from paging space. Paging space is the part of
virtual memory that resides on disk. It is used as an overflow when memory is over committed.
Paging space consists of logical volumes dedicated to the storage of working set pages that have

been stolen from real memory. When a stolen page is referenced by the process, a page fault occurs,
and the page must be read into memory from paging space.

Due to the variety of configurations of hardware, software and applications, there is no absolute
number to look out for. This field is important as a key indicator of paging-space activity. If a page-in
occurs, there must have been a previous page-out for that page. It is also likely in a memory-
constrained environment that each page-in will force a different page to be stolen and, therefore,
paged out.

po

The po column shows the number (rate) of pages paged out to paging space. Whenever a page of
working storage is stolen, it is written to paging space, if it does not yet reside in paging space or if it
was modified. If not referenced again, it will remain on the paging device until the process terminates
or disclaims the space. Subsequent references to addresses contained within the faulted-out pages
results in page faults, and the pages are paged in individually by the system. When a process
terminates normally, any paging space allocated to that process is freed. If the system is reading in a
significant number of persistent pages, you might see an increase in po without corresponding
increases in pi. This does not necessarily indicate thrashing, but may warrant investigation into data-
access patterns of the applications.

fr

Number of pages that were freed per second by the page-replacement algorithm during the interval.
As the VMM page-replacement routine scans the Page Frame Table, or PFT, it uses criteria to select

Performance management 115

which pages are to be stolen to replenish the free list of available memory frames. The criteria
include both kinds of pages, working (computational) and file (persistent) pages. Just because a page
has been freed, it does not mean that any I/O has taken place. For example, if a persistent storage
(file) page has not been modified, it will not be written back to the disk. If I/O is not necessary,
minimal system resources are required to free a page.

- Sr

Number of pages that were examined per second by the page-replacement algorithm during the
interval. The page-replacement algorithm might have to scan many page frames before it can steal
enough to satisfy the page-replacement thresholds. The higher the sr value compared to the fr value,
the harder it is for the page-replacement algorithm to find eligible pages to steal.

Number of cycles per second of the clock algorithm. The VMM uses a technique known as the clock
algorithm to select pages to be replaced. This technique takes advantage of a referenced bit for each
page as an indication of what pages have been recently used (referenced). When the page-stealer
routine is called, it cycles through the PFT, examining each page's referenced bit.

The cy column shows how many times per second the page-replacement code has scanned the PFT.
Because the free list can be replenished without a complete scan of the PFT and because all of the
vmstat fields are reported as integers, this field is usually zero.

One way to determine the appropriate amount of RAM for a system is to look at the largest value for avm
as reported by the vmstat command. Multiply that by 4 K to get the number of bytes and then compare
that to the number of bytes of RAM on the system. Ideally, avm should be smaller than total RAM. If not,
some amount of virtual memory paging will occur. How much paging occurs will depend on the difference
between the two values. Remember, the idea of virtual memory is that it gives us the capability of
addressing more memory than we have (some of the memory is in RAM and the rest is in paging space).
But if there is far more virtual memory than real memory, this could cause excessive paging which then
results in delays. If avm is lower than RAM, then paging-space paging could be caused by RAM being filled
up with file pages. In that case, tuning the minperm,maxperm, and maxclient values could reduce the
amount of paging-space paging. Refer to “VMM page replacement tuning” on page 136 for more
information.

The vmstat -I command

The vmstat -I command displays additional information, such as file pages in per-second, file pages out
per-second which means any VMM page-ins and page-outs that are not paging space page-ins or paging
space page-outs.

The re and cy columns are not reported with this flag.

The vmstat -s command
The summary option, -s, sends a summary report to standard output starting from system initialization
expressed in absolute counts rather than on an interval basis.

The recommended way of using these statistics is to run this command before a workload, save the
output, and then run it again after the workload and save its output. The next step is to determine the
difference between the two sets of output. An awk script called vmstatit that does this automatically is
provided in “Disk or memory-related problem” on page 33.

vmstat -s
3231543 total address trans. faults
63623 page ins
383540 page outs
149 paging space page ins
832 paging space page outs
0 total reclaims
807729 zero filled pages faults
4450 executable filled pages faults
429258 pages examined by clock
8 revolutions of the clock hand
175846 pages freed by the clock
18975 backtracks
0 lock misses

116 AIX Version 7.1: Performance management

40 free frame waits
0 extend XPT waits
16984 pending I/0 waits
186443 start I/0s
186443 iodones
141695229 cpu context switches
317690215 device interrupts
0 software interrupts
0 traps
55102397 syscalls

The page-in and page-out numbers in the summary represent virtual memory activity to page in or out
pages from page space and file space. The paging space ins and outs are representative of only page
space.

Memory usage determination with the ps command

The ps command can also be used to monitor memory usage of individual processes.

The ps v PID command provides the most comprehensive report on memory-related statistics for an
individual process, such as:

Page faults
Size of working segment that has been touched

Size of working segment and code segment in memory

Size of text segment

Size of resident set
« Percentage of real memory used by this process

The following is an example:

ps v
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
36626 pts/3 A 0:00 0 316 408 32768 51 60 0.0 0.0 ps v

The most important columns on the resulting ps report are described as follows:

PGIN
Number of page-ins caused by page faults. Since all I/O is classified as page faults, this is basically a
measure of I/O volume.

SIZE
Virtual size (in paging space) in kilobytes of the data section of the process (displayed as SZ by other
flags). This number is equal to the number of working segment pages of the process that have been
touched times 4. If some working segment pages are currently paged out, this number is larger than
the amount of real memory being used. SIZE includes pages in the private segment and the shared-
library data segment of the process.

RSS
Real-memory (resident set) size in kilobytes of the process. This number is equal to the sum of the
number of working segment and code segment pages in memory times 4. Remember that code
segment pages are shared among all of the currently running instances of the program. If 26 ksh
processes are running, only one copy of any given page of the ksh executable program would be in
memory, but the ps command would report that code segment size as part of the RSS of each
instance of the ksh program.

TSI1Z

Size of text (shared-program) image. This is the size of the text section of the executable file. Pages of
the text section of the executable program are only brought into memory when they are touched, that
is, branched to or loaded from. This number represents only an upper bound on the amount of text
that could be loaded. The TSIZ value does not reflect actual memory usage. This TSIZ value can also
be seen by executing the dump -ov command against an executable program (for example, dump -

ov /usr/bin/1s).

Performance management 117

TRS
Size of the resident set (real memory) of text. This is the number of code segment pages times 4. This
number exaggerates memory use for programs of which multiple instances are running. The TRS
value can be higher than the TSIZ value because other pages may be included in the code segment
such as the XCOFF header and the loader section.

%MEM
Calculated as the sum of the number of working segment and code segment pages in memory times 4
(that is, the RSS value), divided by the size of the real memory in use, in the machine in KB, times 100,
rounded to the nearest full percentage point. This value attempts to convey the percentage of real
memory being used by the process. Unfortunately, like RSS, it tends the exaggerate the cost of a
process that is sharing program text with other processes. Further, the rounding to the nearest
percentage point causes all of the processes in the system that have RSS values under 0.005 times
real memory size to have a %MEM of 0.0.

Note: The ps command does not indicate memory consumed by shared memory segments or memory-
mapped segments. Because many applications use shared memory or memory-mapped segments, the
svmon command is a better tool to view the memory usage of these segments.

The svmon command

The svmon command provides a more in-depth analysis of memory usage. It is more informative, but also
more intrusive, than the vmstat and ps commands. The svmon command captures a snapshot of the
current state of memory. However, it is not a true snapshot because it runs at the user level with
interrupts enabled.

To determine whether svmon is installed and available, run the following command:

1lslpp -1I bos.perf.tools

The svmon command can only be executed by the root user.

If an interval is used, which is the =i option, statistics will be displayed until the command is killed or until
the number of intervals, which can be specified right after the interval, is reached.

You can use the following different reports to analyze the displayed information:

Global (-G)
Displays statistics describing the real memory and paging space in use for the whole system.
Process (-P)
Displays memory usage for the specified active processes. If no list of processes is supplied, the
memory usage statistics display all active processes.
Segment (-S)
Displays memory usage for the specified segments. If no list of segments is supplied, memory usage
statistics display all defined segments.

Detailed Segment (-D)
Displays detailed information on specified segments.

User (-U)
Displays memory usage statistics for the specified login names. If no list of login names is supplied,
memory usage statistics display all defined login names.

Command (-C)
Displays memory usage statistics for the processes specified by command name.

Workload Management Class (-W)
Displays memory usage statistics for the specified workload management classes. If no classes are
supplied, memory usage statistics display all defined classes.

Frame (-F)
Displays information about frames. When no frame number is specified, the percentage of used
memory is reported. The only frames that are taken into account are the ones where the reference bit
is set. During the processing period, all reference bits are reset. So, when the -f option is used a

118 AIX Version 7.1: Performance management

second time, the svmon command reports the percentage of real memory that has been accessed
since the previous time the -f option was used. If a reserved pool is defined on the system, the
percentage of memory used in each defined pool is reported.

Tier (-T)
Displays information about tiers, such as the tier number, the superclass name when the -a flag is
used, and the total number of pages in real memory from segments belonging to the tier.

Amount of memory in use
The svmon command can provide data on the amount of memory in use.

To print out global statistics, use the -G flag. In the following example, it repeats two times at one-second
intervals.

svmon -G -i 1 2

size inuse free pin virtual
memory 1048576 425275 623301 66521 159191
pg space 262144 31995

work pers clnt
pin 46041 0] 0]
in use 129600 275195 0
PageSize PoolSize inuse pgsp pin virtual
s 4 KB = 404795 31995 46041 159191
L 16 MB 5 0 0 5 0]

size inuse free pin virtual
memory 1048576 425279 623297 66521 159195
pg space 262144 31995

work pers clnt
pin 46041 0 (0]
in use 129604 275195 0]
PageSize PoolSize inuse pgsp pin virtual
s 4 KB = 404799 31995 46041 159195
L 16 MB 5 0 0 5 0

Notice that if only 4 KB pages are available on the system, the section that breaks down the information
per page size is not displayed.

The columns on the resulting svmon report are described as follows:

memory
Statistics describing the use of real memory, shown in 4 KB pages.

size
Total size of memory in 4 KB pages.
inuse
Number of pages in RAM that are in use by a process plus the number of persistent pages that

belonged to a terminated process and are still resident in RAM. This value is the total size of
memory minus the number of pages on the free list.

free
Number of pages on the free list.

pin
Number of pages pinned in RAM (a pinned page is a page that is always resident in RAM and
cannot be paged out).

virtual
Number of pages allocated in the process virtual space.

pg space
Statistics describing the use of paging space, shown in 4 KB pages. The value reported is the actual
number of paging-space pages used, which indicates that these pages were paged out to the paging
space. This differs from the vmstat command in that the vmstat command's avm column which
shows the virtual memory accessed but not necessarily paged out.

Performance management 119

size
Total size of paging space in 4 KB pages.
inuse
Total number of allocated pages.
pin
Detailed statistics on the subset of real memory containing pinned pages, shown in 4 KB frames.

work
Number of working pages pinned in RAM.

pers
Number of persistent pages pinned in RAM.

cint
Number of client pages pinned in RAM.

in use
Detailed statistics on the subset of real memory in use, shown in 4 KB frames.

work
Number of working pages in RAM.

pers
Number of persistent pages in RAM.

cint
Number of client pages in RAM (client page is a remote file page).

PageSize
Displayed only if page sizes other than 4 KB are available on the system. Specifies individual statistics
per page size available on the system.

PageSize
Page size

PoolSize
Number of pages in the reserved memory pool.

inuse
Number of pages used

Pgsp
Number of pages allocated in the paging space
pin
Number of pinned pages
virtual
Number of pages allocated in the system virtual space.

In the example, there are 1 048 576 pages of total size of memory. Multiply this number by 4096 to see
the total real memory size in bytes (4 GB). While 425 275 pages are in use, there are 623 301 pages on
the free list and 66 521 pages are pinned in RAM. Of the total pages in use, there are 129 600 working
pages in RAM, 275 195 persistent pages in RAM, and 0 client pages in RAM. The sum of these three parts,
plus the memory reserved but not necessarily used by the reserved pools, is equal to the inuse column of
the memory part. The pin part divides the pinned memory size into working, persistent, and client
categories. The sum of them, plus the memory reserved by the reserved pools, which is always pinned, is
equal to the pin column of the memory part. There are 262 144 pages (1 GB) of total paging space, and 31
995 pages are in use. The inuse column of memory is usually greater than the inuse column of pg space
because memory for file pages is not freed when a program completes, while paging-space allocation is.

120 AIX Version 7.1: Performance management

Memory usage by processes
The svmon -P command displays the memory usage statistics for all the processes currently running on a

system.

The following is an example of the svmon =P command:

svmon -P

Virtual 64-bit Mthrd 16MB

Pin
0]
3335

OCOOCOOOWOON

N Y N

Pgsp Virtual
36 6823

2674 5197
242 1098
97 165

14 26

Pid Command
16264 IBM.ServiceRM
PageSize Inuse
s 4 KB 10075
L 16 MB
Vsid Esid Type
fo01le d work
0 0 work
bh83£7 2 work
503ea f work
c8439 1 pers
883f1 - work
e83dd - pers
f043e 4 work
c0438 - pers
bh8437 3 mmap
583eb - pers
Pid Command
17032 IBM.CSMAgentR
PageSize Inuse
S 4 KB 9791
L 16 MB
Vsid Esid Type
fo01le d work
0 0 work
400 2 work
38407 f work
a83f5 1 pers
7840f - work
e83dd - pers
babf7 - pers
383e7 - pers
e03fc - pers
£839f mmap
[...]

Virtual 64-bit Mthrd 16MB

Inuse Pin Pgsp
10075 3345 3064 13310
Pin Pgsp Virtual
3345 3064 13310
0 0 0
Description PSize Inuse
shared library text s 4857
kernel seg s 4205
process private s 898
shared library data s 63
code, /dev/hd2:149841 S 28
S 21
/dev/hd2:71733 s 2
shared memory segment s 1
large file /dev/hd9var:243 s 0
mapped to sid a03f4 s 0
large file /dev/hd9var:247 s 0
Inuse Pin Pgsp
9791 3347 3167 12944
Pin Pgsp Virtual
3347 3167 12944
0 0 0
Description PSize Inuse
shared library text s 4857
kernel seg s 4205
process private s 479
shared library data s 120
code, /dev/hd2:149840 s 99
s 28
/dev/hd2:71733 s 2
/dev/hd2:284985 S 1
large file /dev/hd9var:186 s 0
large file /dev/hd9var:204 s 0
mapped to sid 5840b s 0

Pin

3335

OCOOCOOOOOON

N Y N

Pgsp Virtual
36 6823
2674 5197
303 674
127 211

27 39

The command output details both the global memory use per process and also detailed memory use per
segment used by each reported process. The default sorting rule is a decreasing sort based on the Inuse
page count. You can change the sorting rule using the svmon command with either the -u, -p, =g, or -v

flags.

For a summary of the top 15 processes using memory on the system, use the following command:

svmon -Pt15 | perl -e 'while(<>){print if($.==2||$&&&!$s++);$.=0 if(/~A-+$/)3"

Command
IBM.Sexrvic
IBM.CSMAge
zsh

zsh

getty
perl5.8.0
sendmail
rmcd

ksh

ksh
errdemon
cron
rpc.mountd
rlogind
rlogind

eRM
ntR

Inuse Pin Pgsp
10075 3345 3064
9791 3347 3167
9457 3337 2710
9456 3337 2710
9413 3337 2710
9147 3337 2710
9390 3337 2878
9299 3340 3224
9275 3337 2710
9270 3337 2710
9248 3337 2916
9217 3337 2770
9212 3339 2960
9211 3337 2710
9211 3337 2710

Virtual 64-bit Mthrd 16MB

13310
12944
12214
12213
12150
12090
12258
12596
12172
12169
12255
12125
12290
12181
12181

Zzzzzzzzzzzzz=2
zZ2<zZz2222<k22222<<<
Zzzzzzzzzzzzz=2

Performance management 121

The Pid 16 264 is the process ID that has the highest memory consumption. The Command indicates the
command name, in this case IBM.ServiceRM. The Inuse column, which is the total number of pages in
real memory from segments that are used by the process, shows 10 075 pages. Each page is 4 KB. The
Pin column, which is the total number of pages pinned from segments that are used by the process,
shows 3 345 pages. The Pgsp column, which is the total number of paging-space pages that are used by
the process, shows 3 064 pages. The Virtual column (total number of pages in the process virtual space)
shows 13 310.

The detailed section displays information about each segment for each process that is shown in the
summary section. This includes the virtual, Vsid, and effective, Esid, segment identifiers. The Esid
reflects the segment register that is used to access the corresponding pages. The type of the segment is
also displayed along with its description that consists in a textual description of the segment, including
the volume name and i-node of the file for persistent segments. The report also details the size of the
pages the segment is backed by, where s denotes 4 KB pages and L denotes 16 MB pages, the number of
pages in RAM, Inuse, number of pinned pages in RAM ,Pin, number of pages in paging space, Pgsp, and
number of virtual pages, Virtual.

You can use even more options to obtain more details. The =j option displays the path of the file for
persistent segments. The =l option provides more detail for segments and the -r option displays the
memory ranges used by each segment. The following is an example of the svmon command with the =, -r,
and -j options:

svmon -S f00le 400 e83dd -1 -r -j

Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual

foole d work shared library text s 4857 0 36 6823
Addr Range: 0..60123
Shared library text segment

400 2 work process private s 480 2 303 675

Addr Range: 0..969 : 65305..65535
pid(s)=17032

e83dd - pers /dev/hd2:71733 s 2 0 - -

/usr/lib/nls/loc/uconvTable/IS08859-1

Addr Range: 0..1
pid(s)=17552, 17290, 17032, 16264, 14968, 9620

The Address Range specifies one range for a persistent or client segment and two ranges for a working
segment. The range for a persistent or a client segment takes the form '0..x,' where x is the maximum
number of virtual pages that have been used. The range field for a working segment can be '0..x :
y..65535', where 0..x contains global data and grows upward, and y..65535 contains stack area and grows
downward. For the address range, in a working segment, space is allocated starting from both ends and
working towards the middle. If the working segment is non-private (kernel or shared library), space is
allocated differently.

In the above example, the segment ID 400 is a private working segment; its address range is 0. . 969
65305..65535. The segment ID £001e is a shared library text working segment; its address range is
0..60123.

A segment can be used by multiple processes. Each page in real memory from such a segment is
accounted for in the Inuse field for each process using that segment. Thus, the total for Inuse may
exceed the total number of pages in real memory. The same is true for the Pgsp and Pin fields. The
values displayed in the summary section consist of the sum of Inuse, Pin, and Pgsp, and Virtual
counters of all segments used by the process.

In the above example, the e83dd segment is used by several processes whose PIDs are 17552, 17290,
17032,16264,14968 and 9620.

Detailed information on a specific segment ID

The =D option displays detailed memory-usage statistics for segments.

The following is an example:

svmon -D 38287 -b
Segid: 38287

Type: working
PSize: s (4 KB)

122 AIX Version 7.1: Performance management

Address Range: 0..484

Size of page space allocation: 2 pages (0,0 MB)

Virtual: 18 frames (0,1 MB)

Inuse: 16 frames (0,1 MB)
Page Psize Frame Pin Ref
341 s 527720 N N
342 S 996079 N N
343 s 524936 N N
344 s 985024 N N
347 s 658735 N N
348 s 78158 N N
349 s 174728 N N
350 s 758694 N N
404 s 516554 N N
406 s 740622 N Y
411 S 528313 N Y
412 s 1005599 N Y
416 s 509936 N N
440 S 836295 N N
443 s 60204 N N
446 s 655288 N N

The explanation of the columns are as follows:

Page
Specifies the index of the page within the segment.

Psize

Mod

< <K KK Z<zZ2Z2Z22222=2=2=2

ExtSegid ExtPage

Specifies the size of the page (s for 4 KB, m for 64 KB, L for 16 MB and S for 16 GB).

Frame

Specifies the index of the real memory frame that the page resides in.

Pin
Specifies a flag indicating whether the page is pinned.
Ref

Only specified with the =b flag. Specifies a flag indicating whether the page's reference bit is on.

Mod

Only specified with the -b flag. Specifies a flag indicating whether the page is modified.

ExtSegid

In case the page belongs to an extended segment that is linked to the inspected segment, the virtual

segment identifier of this segment is displayed.
ExtPage

In case the page belongs to an extended segment that is linked to the inspected segment, the index of

the page within that extended segment is displayed.

When an extended segment is linked to the inspected segment, the report looks like the following

example:
Page Psize Frame Pin Ref
65574 S 345324 N N
65575 s 707166 N N
65576 s 617193 N N

Mod

ExtSegid ExtPage
288071 38
288071 39
288071 40

The -b flag shows the status of the reference and modified bits of all the displayed frames. After it is
shown, the reference bit of the frame is reset. When used with the -i flag, it detects which frames are

accessed between each interval.

Note: Due to the performance impacts, use the -b flag with caution.

Performance management 123

List of top memory usage of segments

The =S option is used to sort segments by memory usage and to display the memory-usage statistics for
the specified segments. If no list of segments is supplied, memory usage statistics display all defined
segments.

The following command sorts system and non-system segments by the number of pages in real memory.
The -t option can be used to limit the number of segments displayed to the count specified. The -u flag
sorts the output in descending order by the total number of pages in real memory.

The following is example output of the svmon command with the =S, -t, and -u options:

svmon -Sut 10

Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
70c4de - pers large file /dev/1v01:26 s 84625 0 - -
22ec4 - work s 29576 0 0 29586
8b091 - pers /dev/hd3:123 s 24403 0] - -
7800f - work kernel heap s 22050 3199 19690 22903
a2db4 - pers /dev/hd3:105 s 15833 0] - -
80010 - work page frame table s 15120 15120 0 15120
7000e - work misc kernel tables s 13991 0 2388 14104
dcO9b - pers /dev/hd1:28703 s 9496 0] - -
730ee - pers /dev/hd3:111 s 8568 0] - -
f00le - work s 4857 0 36 6823

Correlation between the symon and vmstat command outputs
There is a correlation between the svmon and vmstat outputs.

The following is example output from the svmon command:

svmon -G

size inuse free pin virtual
memory 1048576 417374 631202 66533 151468
pg space 262144 31993

work pers clnt
pin 46053 0 0
in use 121948 274946 0
PageSize PoolSize inuse pgsp pin virtual
s 4 KB = 397194 262144 46053 151468
L 16 MB 5 (0] (0] 5 (0]

The vmstat command was run in a separate window while the svmon command was running. The
vmstat report follows:

vmstat 3

kthxr memoxry page faults cpu
r b avm fre re pi po fr sr cy in sy cs us sy id wa
1 5 205031 749504 © 0O © 0 O 01240 248 318 0 0 99 0
2 2 151360 6313160 ©6 © 3 3 32 0 1187 1718 641 1 1 98 0O
1 0 151366 631304 0O 0O O 0 O 0 13352240 535 0 199 0
1 0 151366 631304 0O 0O © 0 O 0 1303 2434 528 1 4 95 0
1 0 151367 631303 0O 0 © 0 O 0 1331 2202 528 O 0 99 0

The global svmon report shows related numbers. The £re column of the vmstat command relates to the
memory free column of the svmon command. The Active Virtual Memory, avm, value of the vmstat
command reports is similar to the virtual memory value that the svmon command reports.

124 AIX Version 7.1: Performance management

Correlation between the symon command and ps command outputs

There are some relationships between the svmon command and ps command outputs.

Example 1

The following is an example for the svmon command and ps command output:

4 ps v 405528
PID TTY STAT TIME PGIN SIZE
405528 pts/0 A 43:11 1 168

RSS

(0) root @ clocklé: 6.1.2.0: /

LIM TSIZ

172 32768 1

TRS %CPU %MEM COMMAND
4 99.5 0.0 yes

svmon -0 unit=KB,segment=category,filtercat=exclusive -P 405528

Pgsp Virtual

0

168

Unit: KB
Pid Command Inuse Pin
405528 yes 172 16
EXCLUSIVE segments Inuse
172
Vsid Esid Type Description
554f1 f work shared library data
49416 2 work process private
6d49f 1 clnt code,/dev/hd2:338

PSize
s
s
s

Pgsp Virtual

0 168

Inuse Pin Pgsp Virtual
92 0 0 92
76 16 0 76
4 0 - -

The ps command output above displays the SIZE as 168 and RSS as 172. The use of the svmon

command above provides both the values.

You can use the output values from the svmon command displayed above with the following equations to

calculate the SIZE and RSS:

SIZE = Work Process Private Memory Usage in KB + Work Shared Library Data Memory Usage in KB

RSS = SIZE + Text Code Size (Type=clnt, Description=code,)

Using the values in the example above you get the following:

SIZE = 92 + 76 = 168
RSS = 168 + 4 = 172

Example 2

The following is an example for the svmon command and ps command output:

ps v 282844
PID TTY STAT TIME PGIN SIZE RSS
282844 - A 15:49 322 24604 25280

(0) root @ clocklé: 6.1.2.0: /

LIM TSIZ
XX 787

TRS %CPU 9%MEM COMMAND
676 0.0 3.0 /opt/rsct/b

svmon -0 unit=KB,segment=category,filtercat=exclusive -P 282844

Pgsp Virtual

Unit: KB
Pid Command Inuse Pin
282844 IBM.CSMAgentR 25308 16
EXCLUSIVE segments Inuse
25308
Vsid Esid Type Description
2936e 2 work process private
2d36f f work shared library data
1364 1 clnt code,/dev/hd2:81988
154c1 - clnt /dev/hd9var:353
41494 - clnt /dev/hd2:82114
4d3d7 - clnt /dev/hd9var:357
7935a - clnt /dev/hd9var:307
4d377 mmap maps 2 source(s)
3934a - clnt /dev/hd9var:300

0 24604
Pin Pgsp Virtual
16 (0] 24604
PSize Inuse Pin Pgsp Virtual
s 23532 16 0 23532
s 1072 0 0 1072
s 676 0 = =
s 16 (0] = =
s 8 0 = =
s 4 0 = =
s 0 (0] = =
s 0 0 = =
s 0 0 = =

The ps command output above displays the SIZE as 24604 and RSS as 25280.

Performance management 125

You can use the output values from the svmon command displayed above with the following equations to
calculate the SIZE and RSS:

SIZE = Work Process Private Memory Usage in KB + Work Shared Library Data Memory Usage in KB
RSS = SIZE + Text Code Size (Type=clnt, Description=code,)

Using the values in the example above you get the following:

24604

SIZE = 23532 + 1072 =
= 25280

RSS = 24604 + 676

Minimum memory requirement calculation

The minimum memory requirement of a program can be calculated easily.

Total memory pages (4 KB units) =T+ (N (PD+ LD)) + F

where:
T
= Number of pages for text (shared by all users)
N
= Number of copies of this program running simultaneously
PD
= Number of working segment pages in process private segment
LD
= Number of shared library data pages used by the process
F

= Number of file pages (shared by all users)

Multiply the result by 4 to obtain the number of kilobytes required. You may want to add in the kernel,
kernel extension, and shared library text segment values to this as well even though they are shared by all
processes on the system. For example, some applications like CATIA and databases use very large shared
library modules. Note that because we have only used statistics from a single snapshot of the process,
there is no guarantee that the value we get from the formula will be the correct value for the minimum
working set size of a process. To get working set size, one would need to run a tool such as the xrmss
command or take many snapshots during the life of the process and determine the average values from
these snapshots. See “Memory requirements assessment with the rmss command ” on page 127 for
more information.

Memory-leaking programs

A memory leak is a program error that consists of repeatedly allocating memory, using it, and then
neglecting to free it.

A memory leak in a long-running program, such as an interactive application, is a serious problem,
because it can result in memory fragmentation and the accumulation of large numbers of mostly garbage-
filled pages in real memory and page space. Systems have been known to run out of page space because
of a memory leak in a single program.

A memory leak can be detected with the svmon command, by looking for processes whose working
segment continually grows. A leak in a kernel segment can be caused by an mbuf leak or by a device
driver, kernel extension, or even the kernel. To determine if a segment is growing, use the svmon
command with the -i option to look at a process or a group of processes and see if any segment continues
to grow.

Identifying the offending subroutine or line of code is more difficult, especially in AIXwindows
applications, which generate large numbers of malloc() and free() calls. C++ provides a HeapView
Debugger for analyzing/tuning memory usage and leaks. Some third-party programs exist for analyzing
memory leaks, but they require access to the program source code.

126 AIX Version 7.1: Performance management

Some uses of the realloc() subroutine, while not actually programming errors, can have the same effect
as a memory leak. If a program frequently uses the realloc() subroutine to increase the size of a data
area, the working segment of the process can become increasingly fragmented if the storage released by
the realloc() subroutine cannot be reused for anything else.

Use the disclaim() system call and free() call to release memory that is no longer required. The disclaim()
system call must be called before the free() call. It wastes CPU time to free memory after the last
malloc() call, if the program will finish soon. When the program terminates, its working segment is
destroyed and the real memory page frames that contained working segment data are added to the free
list. The following example is a memory-leaking program where the Inuse, Pgspace, and Address
Range values of the private working segment are continually growing:

svmon -P 13548 -i 1 3

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
LPage
13548 pacman 8535 2178 847 8533 N
N N
Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual

0 0 work kernel seg = 4375 2176 847 4375

48412 2 work process private - 2357 2 (¢} 2357
6c01b d work shared library text - 1790 0 0] 1790
4c413 f work shared library data - 11 (] 0 11
3040c 1 pers code,/dev/prodlv:4097 - 2 0 - -
ginger :svmon -P 13548 -i 1 3

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthzrd
LPage
13548 pacman 8589 2178 847 8587 N
N N
Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual

0] 0 work kernel seg = 4375 2176 847 4375
48412 2 work process private - 2411 2 0 2411
6c01b d work shared library text - 1790 0 0 1790
4c413 f work shared library data - 11 (¢} (¢} 11
3040c 1 pers code,/dev/prodlv:4097 - 2 0 - -

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthzrd
LPage
13548 pacman 8599 2178 847 8597 N
N N
Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual

0] 0 work kernel seg = 4375 2176 847 4375

48412 2 work process private - 2421 2 0 2421
6c01b d work shared library text - 1790 0 0 1790
4c413 f work shared library data - 11 (¢} (¢} 11
3040c¢ 1 pers code,/dev/prodlv:4097 - 2 0 - -

Memory requirements assessment with the rmss command

The rmss command, Reduced-Memory System Simulator, provides you with a means to simulate different
sizes of real memories that are smaller than your actual machine, without having to extract and replace
memory boards. Moreover, the xrmss command provides a facility to run an application over a range of
memory sizes, displaying, for each memory size, performance statistics such as the response time of the
application and the amount of paging.

The rmss command is designed to help you answer the question: "How many megabytes of real memory
does a system need to run the operating system and a given application with an acceptable level of
performance?". In the multiuser context, it is designed to help you answer the question: "How many users
can run this application simultaneously in a machine with X megabytes of real memory?"

The main use for the xrmss command is as a capacity planning tool, to determine how much memory a
workload needs. It can also be used as a problem determination tool, particularly for those cases where
having more memory degrades performance.

Performance management 127

To determine whether the xrmss command is installed and available, run the following command:

1lslpp -1I bos.perf.tools

Whenever the xrmss command changes memory size, the minperm and maxperm are not adjusted to the
new parameters and the number of lruable pages is not changed to fit the simulated memory size. This
can lead to an unexpected behavior where the buffer cache will grow out of proportion. As a
consequence, the system can run out of memory.

Itis important to keep in mind that the memory size simulated by the xmss command is the total size of
the machine's real memory, including the memory used by the operating system and any other programs
that may be running. It is not the amount of memory used specifically by the application itself. Because of
the performance degradation it can cause, the xrmss command can be used only by a root user or a
member of the system group.

rmss command

You can use the xrmss command to change the memory size and exit or as a driver program that executes
a specified application multiple times over a range of memory sizes and displays important statistics that
describe the application's performance at each memory size.

The first method is useful when you want to get the look and feel of how your application performs at a
given system memory size, when your application is too complex to be expressed as a single command, or
when you want to run multiple instances of the application. The second method is appropriate when you
have an application that can be invoked as an executable program or shell script file.

-c, -p, and -r flags of the rmss command

The advantage of using the -¢, =p and -r flags of the xrmss command is that they allow you to experiment
with complex applications that cannot be expressed as a single executable program or shell script file. On
the other hand, the disadvantage of using the -¢, -p, and -r options is that they force you to do your own
performance measurements. Fortunately, you can use the command vmstat -s to measure the paging-
space activity that occurred while your application ran.

By running the command vmstat -s, running your application, then running the command vmstat -s
again, and subtracting the number of paging-space page-ins before from the number of paging-space
page-ins after, you can determine the number of paging-space page-ins that occurred while your program
ran. Furthermore, by timing your program, and dividing the number of paging-space page-ins by the
program's elapsed run time, you can obtain the average paging-space page-in rate.

It is also important to run the application multiple times at each memory size, for two reasons:

« When changing memory size, the xrmss command often clears out a lot of memory. Thus, the first time
you run your application after changing memory sizes it is possible that a substantial part of the run
time may be due to your application reading files into real memory. But, since the files may remain in
memory after your application terminates, subsequent executions of your application may result in
substantially shorter elapsed times.

« To get a feel for the average performance of the application at that memory size. It is impossible to
duplicate the system state each time your application runs. Because of this, the performance of your
application can vary significantly from run to run.

To summarize, consider the following set of steps as a desirable way to invoke the xrmss command:

while there are interesting memory sizes to investigate:

change to an interesting memory size using rmss -c;
run the application once as a warm-up;
for a couple of iterations:

use vmstat -s to get the "before" value of paging-space page ins;

run the application, while timing it;

use vmstat -s to get the "after" value of paging-space page ins;

subtract the "before" value from the "after" value to get the
number of page ins that occurred while the application ran;

divide the number of paging-space page ins by the response time
to get the paging-space page-in rate;

128 AIX Version 7.1: Performance management

¥
¥

run rmss -r to restore the system to normal memory size (or reboot)

The calculation of the (after - before) paging I/O numbers can be automated by using the vmstatit
script described in “Disk or memory-related problem” on page 33.

Memory size change
To change the memory size and exit, use the -c flag of the xrmss command.

To change the memory size to 128 MB, for example, use the following:

rmss -c 128

The memory size is an integer or decimal fraction number of megabytes (for example, 128.25).
Additionally, the size must be between 8 MB and the amount of physical real memory in your machine.
Depending on the hardware and software configuration, the xrmss command may not be able to change
the memory size to small sizes, because of the size of inherent system structures such as the kernel.
When the xrmss command is unable to change to a given memory size, it displays an error message.

The rmss command reduces the effective memory size of a system by stealing free page frames from the
list of free frames that is maintained by the VMM. The stolen frames are kept in a pool of unusable frames
and are returned to the free frame list when the effective memory size is to be increased. Also, the xrmss
command dynamically adjusts certain system variables and data structures that must be kept
proportional to the effective size of memory.

It may take a short while (up to 15 to 20 seconds) to change the memory size. In general, the more you
want to reduce the memory size, the longer the xrmss command takes to complete. When successful, the
rmss command responds with the following message:

Simulated memory size changed to 128.00 Mb.

To display the current memory size, use the -p flag, as follows:
rmss -p

The xrmss output is as follows:

Simulated memory size is 128.00 Mb.

Finally, if you want to reset the memory size to the actual memory size of the machine, use the -r flag, as
follows:

rmss -r

No matter what the current simulated memory size, using the -r flag sets the memory size to be the
physical real memory size of the machine.

Because this example was run on a 256 MB machine, the xrmss command responded as follows:

Simulated memory size changed to 256.00 Mb.

Note: The xrmss command reports usable real memory. On machines that contain bad memory or
memory that is in use, the xrmss command reports the amount of real memory as the amount of physical
real memory minus the memory that is bad or in use by the system. For example, the xrmss -r command
might report:

Simulated memory size changed to 79.9062 Mb.

This could be a result of some pages being marked bad or a result of a device that is reserving some pages
for its own use and thus not available to the user.

Performance management 129

Application execution over a range of memory sizes with the rmss command
As a driver program, the xmss command executes a specified application over a range of memory sizes
and displays statistics describing the application's performance at each memory size.

The =s, -f, -d, -n, and -o flags of the xrmss command are used in combination to invoke the xrmss
command as a driver program. The syntax for this invocation style of the xrmss command is as follows:

rmss [-s smemsize] [-f fmemsize] [-d memdelta]
[-n numiterations] [-o outputfile] command

Each of the following flags is discussed in detail below. The -s, -f, and -d flags are used to specify the
range of memory sizes.

-n
This flag is used to specify the number of times to run and measure the command at each memory
size.
-0
This flag is used to specify the file into which to write the xmss report, while command is the
application that you wish to run and measure at each memory size.
-s
This flag specifies the starting size.
-f
This flag specifies the final size.
-d
This flag specifies the difference between sizes.

All values are in integer or decimal fractions of megabytes. For example, if you wanted to run and measure
a command at sizes 256, 224,192, 160 and 128 MB, you would use the following combination:

-s 256 -f 128 -d 32

Likewise, if you wanted to run and measure a command at 128, 160, 192, 224, and 256 MB, you would
use the following combination:

-s 128 -f 256 -d 32

If the -s flag is omitted, the xrmss command starts at the actual memory size of the machine. If the -f flag
is omitted, the rmss command finishes at 8 MB. If the -d flag is omitted, there is a default of 8 MB
between memory sizes.

What values should you choose for the =s, -f, and -d flags? A simple choice would be to cover the memory
sizes of systems that are being considered to run the application you are measuring. However, increments
of less than 8 MB can be useful, because you can get an estimate of how much space you will have when
you settle on a given size. For instance, if a given application thrashes at 120 MB but runs without page-
ins at 128 MB, it would be useful to know where within the 120 to 128 MB range the application starts
thrashing. If it starts at 127 MB, you may want to consider configuring the system with more than 128 MB
of memory, or you may want to try to modify the application so that there is more space. On the other
hand, if the thrashing starts at 121 MB, you know that you have enough space with a 128 MB machine.

The =n flag is used to specify how many times to run and measure the command at each memory size.
After running and measuring the command the specified number of times, the xrmss command displays
statistics describing the average performance of the application at that memory size. To run the command
3 times at each memory size, you would use the following:

-n 3

If the =n flag is omitted, the xrmss command determines during initialization how many times your
application must be run to accumulate a total run time of 10 seconds. The xrmss command does this to
ensure that the performance statistics for short-running programs will not be significantly skewed by
outside influences, such as daemons.

130 AIX Version 7.1: Performance management

Note: If you are measuring a very brief program, the number of iterations required to accumulate 10
seconds of CPU time can be very large. Because each execution of the program takes a minimum of about
2 elapsed seconds of xrmss overhead, specify the =n parameter explicitly for short programs.

What are good values to use for the =n flag? If you know that your application takes much more than 10
seconds to run, you can specify =n 1 so that the command is run twice, but measured only once at each
memory size. The advantage of using the =n flag is that the xrmss command will finish sooner because it
will not have to spend time during initialization to determine how many times to run your program. This
can be particularly valuable when the command being measured is long-running and interactive.

It is important to note that the xrmss command always runs the command once at each memory size as a
warm-up before running and measuring the command. The warm-up is needed to avoid the I/O that
occurs when the application is not already in memory. Although such I/0 does affect performance, it is
not necessarily due to a lack of real memory. The warm-up run is not included in the number of iterations
specified by the =-n flag.

The -o flag is used to specify a file into which to write the xmss report. If the -o flag is omitted, the report
is written into the file rmss. out.

Finally, command is used to specify the application to be measured. It can be an executable program or
shell script, with or without command-line arguments. There are some limitations on the form of the
command however. First, it cannot contain the redirection of input or output (for example, foo > output or
foo < input). This is because the xrmss command treats everything to the right of the command name as
an argument to the command. To redirect, place the command in a shell script file.

Usually, if you want to store the xrmss output in a specific file, use the -0 option. If you want to redirect the
standard output of the rmss command (for example, to concatenate it to the end of an existing file) then
use the Korn shell to enclose the ¥rmss invocation in parentheses, as follows:

(xmss -s 24 -f 8 foo) >> output

rmss command results interpretation
The rmss command generates valuable information.

The example in the “Report generated for the foo program” on page 131 topic was produced by running
the rmss command on an actual application program, although the name of the program has been
changed to foo for anonymity. The specific command to generate the report is as follows:

rmss -s 16 -f 8 -d 1 -n 1 -o rmss.out foo

Report generated for the foo program
The rmss command produced a report for the £oo program.

Hostname: aixhostl.austin.ibm.com
Real memory size: 16.00 Mb

Time of day: Thu Mar 18 19:04:04 2004
Command: foo

Simulated memory size initialized to 16.00 Mb.

Number of iterations per memory size = 1 warm-up + 1 measured = 2.

Memory size Avg. Pageins Avg. Response Time Avg. Pagein Rate
(megabytes) (sec.) (pageins / sec.)
16.00 115.0 123.9 0.9
15.00 112.0 125.1 0.9
14.00 179.0 126.2 1.4
13.00 81.0 125.7 0.6
12.00 403.0 132.0 3.1
11.00 855.0 141.5 6.0
10.00 1161.0 146.8 7.9
9.00 1529.0 161.3 9.5
8.00 2931.0 202.5 14.5

Performance management 131

The report consists of four columns. The leftmost column gives the memory size, while the Avg. Pageins
column gives the average number of page-ins that occurred when the application was run at that memory
size. It is important to note that the Avg. Pageins column refers to all page-in operations, including code,
data, and file reads, from all programs, that completed while the application ran. The Avg. Response Time
column gives the average amount of time it took the application to complete, while the Avg. Pagein Rate
column gives the average rate of page-ins.

Concentrate on the Avg. Pagein Rate column. From 16 MB to 13 MB, the page-in rate is relatively small (<
1.5 page-ins per second). However, from 13 MB to 8 MB, the page-in rate grows gradually at first, and
then rapidly as 8 MB is reached. The Avg. Response Time column has a similar shape: relatively flat at first,
then increasing gradually, and finally increasing rapidly as the memory size is decreased to 8 MB.

Here, the page-in rate actually decreases when the memory size changes from 14 MB (1.4 page-ins per
second) to 13 MB (0.6 page-ins per second). This is not cause for alarm. In an actual system, it is
impossible to expect the results to be perfectly smooth. The important point is that the page-in rate is
relatively low at both 14 MB and 13 MB.

Finally, you can make a couple of deductions from the report. First, if the performance of the application is
deemed unacceptable at 8 MB (as it probably would be), then adding memory would enhance
performance significantly. Note that the response time rises from approximately 124 seconds at 16 MB to
202 seconds at 8 MB, an increase of 63 percent. On the other hand, if the performance is deemed
unacceptable at 16 MB, adding memory will not enhance performance much, because page-ins do not
slow the program appreciably at 16 MB.

Report for a 16 MB remote copy
The following example illustrates a report that was generated (on a client machine) by running the xrmss
command on a command that copied a 16 MB file from a remote (server) machine through NFS.

Hostname: aixhost2.austin.ibm.com

Real memory size: 48.00 Mb

Time of day: Mon Mar 22 18:16:42 2004

Command: cp /mnt/aléMfile /dev/null

Simulated memory size initialized to 48.00 Mb.

Number of iterations per memory size = 1 warm-up + 4 measured = 5.

Memory size Avg. Pageins Avg. Response Time Avg. Pagein Rate

(megabytes) (sec.) (pageins / sec.)
48.00 0.0 2.7 0.0
40.00 0.0 2.7 0.0
32.00 0.0 2.7 0.0
24.00 1520.8 26.9 56.6
16.00 4104.2 67.5 60.8
8.00 4106.8 66.9 61.4

The response time and page-in rate in this report start relatively low, rapidly increase at a memory size of
24 MB, and then reach a plateau at 16 and 8 MB. This report shows the importance of choosing a wide
range of memory sizes when you use the xrmss command. If this user had only looked at memory sizes
from 24 MB to 8 MB, he or she might have missed an opportunity to configure the system with enough
memory to accommodate the application without page-ins.

Hints for usage of the -s, -f, -d, -n, and -o flags

One helpful feature of the xrmss command, when used in this way, is that it can be terminated with the
interrupt key (Ctrl + C by default) without destroying the report that has been written to the output file. In
addition to writing the report to the output file, this causes the xrmss command to reset the memory size
to the physical memory size of the machine.

You can run the xrmss command in the background, even after you have logged out, by using the nohup
command. To do this, precede the xrmss command by the nohup command, and follow the entire
command with an & (ampersand), as follows:

nohup rmss -s 48 -f 8 -o foo.out foo &

132 AIX Version 7.1: Performance management

Guidelines to consider when using the rmss command

No matter which xrmss invocation style you are using, it is important to re-create the end-user
environment as closely as possible.

For instance, are you using the same model CPU, the same model disks, the same network? Will the users
have application files mounted from a remote node via NFS or some other distributed file system? This
last point is particularly important, because pages from remote files are treated differently by the VMM
than pages from local files.

Likewise, it is best to eliminate any system activity that is not related to the desired system configuration
or the application you are measuring. For instance, you do not want to have people working on the same
machine as the xrmss command unless they are running part of the workload you are measuring.

Note: You cannot run multiple invocations of the xmss command simultaneously.

When you have completed all runs of the xmss command, it is best to shut down and reboot the system.
This will remove all changes that the xrmss command has made to the system and will restore the VMM
memory load control parameters to their typical settings.

VMM memory load control tuning with the schedo command

With the schedo command, the root user can affect the criteria used to determine thrashing, the criteria
used to determine which processes to suspend, the length of time to wait after thrashing ends before
reactivating processes, the minimum number of processes exempt from suspension, or reset values to
the defaults.

The VMM memory load control facility, described in “VMM memory load control facility ” on page 45,
protects an overloaded system from thrashing.

For early versions of the operating system, if a large number of processes hit the system at the same time,
memory became overcommitted and thrashing occurred, causing performance to degrade rapidly. A
memory-load control mechanism was developed that could detect thrashing. Certain parameters affect
the function of the load control mechanism.

To determine whether the schedo command is installed and available, run the following command:

1slpp -1I bos.perf.tune

Memory load control tuning

Memory load control is intended to smooth out infrequent peaks in load that might otherwise cause the
system to thrash.

Memory load control trades multiprogramming for throughput and is not intended to act continuously in a
configuration that has too little RAM to handle its normal workload. The design was made for batch jobs
and is not very discriminating. The AIX Workload Manager provides a better solution to protect critical
tasks.

The correct solution to a fundamental, persistent RAM shortage is to add RAM, not to experiment with
memory load control in an attempt to trade off response time for memory. The situations in which the
memory-load-control facility may really need to be tuned are those in which there is more RAM, not less
than the defaults were chosen for. An example would be configurations in which the defaults are too
conservative.

You should not change the memory load control parameter settings unless your workload is consistent
and you believe the default parameters are ill-suited to your workload.

The default parameter settings shipped with the system are always in force unless changed. The default
values of these parameters have been chosen to "fail safe" across a wide range of workloads. Changed
parameters last only until the next system boot. All memory load control tuning activities must be done by
the root user. The system administrator can use the schedo command to change the parameters to tune
the algorithm to a particular workload or to disable it entirely.

Performance management 133

The following example displays the current parameter values with the schedo command:

schedo -a

v_repage_hi = 0
vV_repage_proc = 4
v_sec_wait = 1
v_min_process = 2
v_exempt_secs = 2
pacefork = 10

sched_D = 16

sched_R = 16
timeslice =1
maxspin = 1

%usDelta = 100

affinity_1lim = n/a

idle_migration_barrier = n/a

fixed_pri_global = n/a
big_tick_size =1

force_grq = n/a

The first five parameters specify the thresholds for the memory load control algorithm. These parameters
set rates and thresholds for the algorithm. If the algorithm shows that RAM is overcommitted, the
v_repage_proc, v_min_process, v_sec_wait, and v_exempt_secs values are used. Otherwise, these values
are ignored. If memory load control is disabled, these latter values are not used.

After a tuning experiment, memory load control can be reset to its default characteristics by executing the
command schedo -D.

The v_repage_hi parameter
The v_repage_hi parameter controls the threshold defining memory overcommitment. Memory load
control attempts to suspend processes when this threshold is exceeded during any one-second period.

The threshold is a relationship between two direct measures: the number of pages written to paging
space in the last second (po) and the number of page steals occurring in the last second (fx). You can see
both these values in the vmstat output. The number of page writes is usually much less than the number
of page steals. Memory is overcommitted when the following is true:

po/fr > 1/v_repage_hi or poxv_repage_hi > fr

The schedo -0 v_repage_hi=0 command effectively disables memory load control. If a system has at
least 128 MB of memory, the default value is 0, otherwise the default value is 6. With at least 128 MB of
RAM, the normal VMM algorithms usually correct thrashing conditions on the average more efficiently
than by using memory load control.

In some specialized situations, it might be appropriate to disable memory load control from the outset.
For example, if you are using a terminal emulator with a time-out feature to simulate a multiuser
workload, memory load control intervention may result in some responses being delayed long enough for
the process to be killed by the time-out feature. Another example is, if you are using the xrmss command
to investigate the effects of reduced memory sizes, disable memory load control to avoid interference
with your measurement.

If disabling memory load control results in more, rather than fewer, thrashing situations (with
correspondingly poorer responsiveness), then memory load control is playing an active and supportive
role in your system. Tuning the memory load control parameters then may result in improved
performance or you may need to add RAM.

A lower value of v_repage_hi raises the thrashing detection threshold; that is, the system is allowed to
come closer to thrashing before processes are suspended. Regardless of the system configuration, when
the above po/fr fraction is low, thrashing is unlikely.

To alter the threshold to 4, enter the following:
schedo -o v_repage_hi=4

In this way, you permit the system to come closer to thrashing before the algorithm starts suspending
processes.

134 AIX Version 7.1: Performance management

The v_repage_proc parameter

The v_repage_proc parameter determines whether a process is eligible for suspension and is used to set a
threshold for the ratio of two measures that are maintained for every process: the number of repages (r)
and the number of page faults that the process has accumulated in the last second (f).

A high ratio of repages to page faults means the individual process is thrashing. A process is considered
eligible for suspension (it is thrashing or contributing to overall thrashing) when the following is true:

r/f > 1/v_repage_proc or r*xv_repage_proc > f

The default value of v_repage_proc is 4, meaning that a process is considered to be thrashing (and a
candidate for suspension) when the fraction of repages to page faults over the last second is greater than
25 percent. A low value of v_repage_proc results in a higher degree of individual process thrashing being
allowed before a process is eligible for suspension.

To disable processes from being suspended by the memory load control, do the following:
schedo -o v_repage_proc=0
Note that fixed-priority processes and kernel processes are exempt from being suspended.

The v_min_process parameter

The v_min_process parameter determines a lower limit for the degree of multiprogramming, which is
defined as the number of active processes. Active processes are those that can be run and are waiting for
page I/0. Processes that are waiting for events and processes suspended are not considered active nor is
the wait process considered active.

Setting the minimum multiprogramming level, the v_min_process parameter effectively keeps
v_min_process processes from being suspended. Suppose a system administrator knows that at least ten
processes must always be resident and active in RAM for successful performance, and suspects that
memory load control was too vigorously suspending processes. If the schedo -0 v_min_process=10
command was issued, the system would never suspend so many processes that fewer than ten were
competing for memory. The v_min_process parameter does not count:

The kernel processes

» Processes that have been pinned in RAM with the plock() system call
- Fixed-priority processes with priority values less than 60

« Processes awaiting events

The system default value of v_min_process=2 ensures that the kernel, all pinned processes, and two user
processes will always be in the set of processes competing for RAM.

While v_min_process=2 is appropriate for a desktop, single-user configuration, it is frequently too small
for larger, multiuser, or server configurations with large amounts of RAM.

If the system you are installing is larger than 32 MB, but less than 128 MB, and is expected to support
more than five active users at one time, consider raising the minimum level of multiprogramming of the
VMM memory-load-control mechanism.

As an example, if your conservative estimate is that four of your most memory-intensive applications
should be able to run simultaneously, leaving at least 16 MB for the operating system and 25 percent of
real memory for file pages, you could increase the minimum multiprogramming level from the default of 2
to 4 with the following command:

schedo -o v_min_process=4

On these systems, setting the v_min_process parameter to 4 or 6 may result in the best performance.
Lower values of v_min_process , while allowed, mean that at times as few as one user process may be
active.

When the memory requirements of the thrashing application are known, thev_min_process value can be
suitably chosen. Suppose thrashing is caused by numerous instances of one application of size M. Given

Performance management 135

the system memory size N, thev_min_process parameter should be set to a value close to N/M. Setting the
v_min_process value too low would unnecessarily limit the number of processes that could be active at
the same time.

The v_sec_wait parameter
The v_sec_wait parameter controls the number of one-second intervals during which the po/fx fraction
must remain below 1/v_repage_hi before suspended processes are reactivated.

The default value of one second is close to the minimum value allowed, which is zero. A value of one
second aggressively attempts to reactivate processes as soon as a one-second safe period has occurred.
Large values of v_sec_wait run the risk of unnecessarily poor response times for suspended processes
while the processor is idle for lack of active processes to run.

To alter the wait time to reactivate processes after two seconds, enter the following:

schedo -0 v_sec_wait=2

The v_exempt_secs parameter

Each time a suspended process is reactivated, it is exempt from suspension for a period of v_exempt_secs
elapsed seconds. This ensures that the high cost in disk I/O of paging in the pages of a suspended process
results in a reasonable opportunity for progress.

The default value of v_exempt_secs is 2 seconds.

To alter this parameter, enter the following:

schedo -o v_exempt_secs=1

Suppose thrashing is caused occasionally by an application that uses lots of memory but runs for about T
seconds. The default system setting of 2 seconds for the v_exempt_secs parameter probably causes this
application swapping in and out T/2 times on a busy system. In this case, resetting the v_exempt_secs
parameter to a longer time helps this application progress. System performance improves when this
offending application is pushed through quickly.

VMM page replacement tuning

The memory management algorithm tries to keep the size of the free list and the percentage of real
memory occupied by persistent segment pages within specified bounds.

These bounds, discussed in “Real-memory management ” on page 41, can be altered with the vimo
command, which can only be run by the root user. Changes made by this tool remain in effect until the
next reboot of the system. To determine whether the vmo command is installed and available, run the
following command:

1slpp -1I bos.perf.tune

Executing the vmo command with the -a option displays the current parameter settings.

Note: The vmo command is a self documenting command. You might get different output than the sample
output provided here.

vmo -a
ame_cpus_per_pool = n/a

ame_maxfree_mem = n/a
ame_min_ucpool_size = n/a
ame_minfree_mem = n/a
ams_loan_policy = n/a
enhanced_affinity_affin_time = 1
enhanced_affinity_vmpool_limit = 10
esid_allocator = 1
force_relalias_lite = 0
kernel_heap_psize = 65536
lgpg_regions = O
lgpg_size = 0
low_ps_handling = 1
maxfree = 1088

136 AIX Version 7.1: Performance management

maxperm = 843105
maxpin = 953840
maxpin% = 90
memory_frames = 1048576
memplace_data = 0
memplace_mapped_file = 0
memplace_shm_anonymous = 0
memplace_shm_named = 0
memplace_stack = 0
memplace_text = 0
memplace_unmapped_file = 0
minfree = 960
minperm = 28103
minperm% = 3
msem_nlocks = 0
nokilluid = ©
npskill = 1024
npswarn = 4096
num_locks_per_semid = 1
numpsblks = 131072
pgz_lpgrow = 2
pgz_mode = 2
pinnable_frames = 781272
relalias_percentage = 0
scrub = 0
thrpgio_inval = 1024
thrpgio_npages = 1024
v_pinshm = 0
vm_cpu_thresh = 0
vm_mmap_bmap = 1
vmm_default_pspa = 0
vmm_klock_mode = 2
wlm_memlimit_nonpg = 1

Values for minfree and maxfree parameters

The purpose of the free list is to keep track of real-memory page frames released by terminating
processes and to supply page frames to requesters immediately, without forcing them to wait for page
steals and the accompanying I/O to complete.

The minfree limit specifies the free-list size below which page stealing to replenish the free list is to be
started. The maxfree parameter is the size above which stealing ends and the minfree value is used to
start page stealing. When the number of persistent pages is equal to or less than the difference between
the values of the maxfree and minfree parameters, or when the number of client pages is equal to or less
than the difference between the values of the maxclient and minfree parameters, page stealing starts.

The objectives in tuning these limits are to ensure the following:

 Any activity that has critical response-time objectives can always get the page frames it needs from the
free list.

« The system does not experience unnecessarily high levels of I/O because of premature stealing of
pages to expand the free list.

The default values of the minfree and maxfree parameters depend on the memory size of the machine.
The difference between the maxfree and minfree parameters should always be equal to or greater than
the value of the maxpgahead parameter, if you are using JFS. For Enhanced JFS, the difference between
the maxfree and minfree parameters should always be equal to or greater than the value of the
j2_maxPageReadAhead parameter. If you are using both JFS and Enhanced JFS, you should set the value
of the minfree parameter to a number that is greater than or equal to the larger pageahead value of the
two file systems.

The minfree and maxfree parameter values are different if there is more than one memory pool. Memory
pools were introduced for MP systems with large amounts of RAM. Each memory pool has its own minfree
and maxfree values. in earlier AIX versions, the minfree and maxfree values shown by the vmo command
are the sum of the minfree and maxfree values for all memory pools. The values shown by vimo command
are per memory pool.

Performance management 137

A less precise but more comprehensive tool for investigating an appropriate size for minfree is the vmstat
command. The following is a portion of vmstat command output on a system where the minfree value is
being reached:

vmstat 1

kthxr memoxy page faults cpu

r b avm fre re pi po fr sr cy in sy cs us sy id wa
2 070668 414 0O 0 O 0 O 0178 7364 257 35 14 0 51
1 070669 755 O 0 O 0 0 0 196 19119 272 40 20 0 41
1 070704 707 0O 0 0 0 O 0 190 8506 272 37 8 0 55
1 070670 725 O 0 O 0 O 0 205 8821 313 41 10 0 49
6 4 73362 123 0 5 36 313 1646 0 361 16256 863 47 53 0 O
5 3 73547 126 0 6 26 152 614 0 324 18243 1248 39 61 0O O
4 473591 124 0 3 11 90 372 0 307 19741 1287 39 61 0O 0
6 4 73540 127 O 4 30 122 358 0 340 20097 970 44 56 0 0
8 3 73825 116 0 18 22 220 781 0 324 16012 934 51 49 0 O
8 4 74309 26 0 45 62 291 1079 0 352 14674 972 44 56 0 0
2 9 75322 O 0O 41 87 283 943 0 403 16950 1071 44 56 0O ©
5 7 75020 74 0 23 119 410 1611 0 353 15908 854 49 51 0 O

In the above example output, you can see that the minfree value of 120 is constantly being reached.
Therefore, page replacement occurs and in this particular case, the free list even reaches 0 at one point.
When that happens, threads needing free frames get blocked and cannot run until page replacement frees
up some pages. To prevent this situation, you might consider increasing the minfree and maxfree values.

If you conclude that you should always have at least 1000 pages free per memory pool, run the following
command:

vmo -o minfree=1000 -o maxfree=1008

To make this a permanent change, include the -p flag:
vmo -o minfree=1000 -o maxfree=1008 -p

The default value of the minfree parameter is increased to 960 per memory pool and the default value of
the maxfree parameter is increased to 1088 per memory pool.

List-based LRU

The LRU algorithm uses lists. In earlier versions of AIX, the page frame table method was also available.
The list-based algorithm provides a list of pages to scan for each type of segment.

The following is a list of the types of segments:
« Working

- Persistent

« Client

« Compressed

If WLM is enabled, there are lists for classes as well.

Reduce memory scanning overhead with the lrubucket parameter
Tuning with the lrubucket parameter can reduce scanning overhead on large memory systems.

The page-replacement algorithm scans memory frames looking for a free frame. During this scan,
reference bits of pages are reset, and if a free frame has not been found, a second scan is done. In the
second scan, if the reference bit is still off, the frame will be used for a new page (page replacement).

On large memory systems, there may be too many frames to scan, so now memory is divided up into
buckets of frames. The page-replacement algorithm will scan the frames in the bucket and then start over
on that bucket for the second scan before moving on to the next bucket. The default number of frames in
this bucket is 131072 or 512 MB of RAM. The number of frames is tunable with the command vmo -o
lrubucket=new value, and the value is in 4 KB frames.

138 AIX Version 7.1: Performance management

Values for minperm and maxperm parameters

The operating system takes advantage of the varying requirements for real memory by leaving in memory
pages of files that have been read or written.

If the file pages are requested again before their page frames are reassigned, this technique saves an I/O
operation. These file pages may be from local or remote (for example, NFS) file systems.

The ratio of page frames used for files versus those used for computational (working or program text)
segments is loosely controlled by the minperm and maxperm values:

- If percentage of RAM occupied by file pages falls below minperm, page-replacement steals both file and
computational pages.

- If percentage of RAM occupied by file pages is between minperm and maxperm, page-replacement
steals only file pages.

In a particular workload, it might be worthwhile to emphasize the avoidance of file I/O. In another
workload, keeping computational segment pages in memory might be more important. To understand
what the ratio is in the untuned state, use the vmstat command with the =v option.

vmstat -v
1048576 memory pages
936784 lruable pages
683159 free pages
1 memory pools
267588 pinned pages
90.0 maxpin percentage
3.0 minperm percentage
90.0 maxperm percentage
5.6 numperm percentage
52533 file pages
0.0 compressed percentage
0 compressed pages
5.6 numclient percentage
90.0 maxclient percentage
52533 client pages
0 remote pageouts scheduled
0 pending disk I/0s blocked with no pbuf
0 paging space I/0s blocked with no psbuf
2228 filesystem I/Os blocked with no fsbuf
31 client filesystem I/0Os blocked with no fsbuf
0 external pager filesystem I/0Os blocked with no fsbuf
29.8 percentage of memory used for computational pages

The numperm percentage value shows the percentage of real memory used by file segments. The value
5.6% corresponds to 52533 file pages in memory.

Enhanced JFS file system cache limit Maxclient
Maxclient represents the maximum number of client pages that can be used for buffer cache.

The enhanced JFS file system uses client pages for its buffer cache. The limit on client pages in real
memory is enforced using maxclient.

The LRU daemon begins to run when the number of client pages is within the number of minfree pages of
maxclient's threshold. The LRU daemon attempts to steal client pages that have not been referenced
recently. If the number of file pages is lower than the value of the minperm parameter, any page that has
not been referenced can be selected for replacement.

Maxclient also affects NFS clients and compressed pages. Also note that maxclient is generally set to a
value that is less than or equal to the maxperm parameter.

Page space allocation
There are several page space allocation policies used in AIX.

« Deferred Page Space Allocation (DPSA)
« Early Page Space Allocation (EPSA)

Performance management 139

Deferred page space allocation
The deferred page space allocation policy is the default policy in AIX.

With deferred page space allocation, the disk block allocation of paging space is delayed until it is
necessary to page out the page, which results in no wasted paging space allocation. This allows the
deferred algorithm to attempt to allocate more paging space than is available. This results in an over-
commitment of paging space.

After a page has been paged out to paging space, the disk block is reserved for that page if that page is
paged back into RAM. Therefore, the paging space percentage-used value may not necessarily reflect the
number of pages only in paging space because some of it may be back in RAM as well. If the page that
was paged back in is working storage of a thread, and if the thread releases the memory associated with
that page or if the thread exits, then the disk block for that page is released. The disk blocks that are in
paging space for pages that have been read back into main memory can be released using the paging
space garbage collection feature. For detailed information, see “Paging space garbage collection” on page
141.

If paging space garbage collection is not enabled, it is very important to properly configure the amount of
paging space. If the file cache is below minperm and if sufficient paging space is not configured, you
might need to tune the system to prevent working storage pages from getting paged out due to file page
activity. If the working storage requirements of the workload are less than the amount of real memory and
if the system is tuned so that file page activity does not cause pageouts of working storage pages, the
amount of paging space needed can be minimal. Some page table area (PTA) segments, which are not
deferred allocation segments are known as internal AIX kernel memory segments. To account for the
paging space reservation required by these segments, the system recommends 512 MB of paging space.
If the system uses a large amount of PTA space, more paging space will be required. This can be
determined by using the svmon -S command.

If the working storage requirements are higher than the amount of real memory, you must have at least as
much paging space configured as the size of the working storage virtual memory. Otherwise, the system
might eventually run out of paging space.

Early page space allocation

If you want to ensure that a process will not be killed due to low paging conditions, this process can
preallocate paging space by using the early page space allocation policy.

This is done by setting an environment variable called PSALLOC to the value of early. This can be done
from within the process or at the command line (PSALLOC=early command). When the process uses the
malloc() subroutine to allocate memory, this memory will now have paging-space disk blocks reserved for
this process, that is, they are reserved for this process so that there is a guarantee that if the process
needed to page out, there will always be paging space slots available for it. If using early policy and if CPU
savings is a concern, you may want to set another environment variable called NODISCLAIM=true so that
each free() subroutine call does not also result in a disclaim() system call.

Paging space and virtual memory

The vmstat command (avm column), ps command (SIZE, SZ), and other utilities report the amount of
virtual memory actually accessed because with DPSA, the paging space might not get touched.

It is safer to use the 1sps -s command rather than the 1sps -a command to look at available paging
space because the command 1sps -a only shows paging space that is actually being used. But the 1sps -
s command includes paging space that is being used along with paging space that was reserved using the
EPSA policy.

140 AIX Version 7.1: Performance management

Paging-space thresholds tuning

If available paging space depletes to a low level, the operating system attempts to release resources by
first warning processes to release paging space and finally by killing processes if there still is not enough
paging space available for the current processes.

Values for the npswarn and npskill parameters

The npswarn and npskill thresholds are used by the VMM to determine when to first warn processes and
eventually when to kill processes.

These two parameters can be set through the vmo command:

npswarn
Specifies the number of free paging-space pages at which the operating system begins sending the
SIGDANGER signal to processes. If the npswarn threshold is reached and a process is handling this
signal, the process can choose to ignore it or do some other action such as exit or release memory
using the disclaim() subroutine.

The value of npswarn must be greater than zero and less than the total number of paging-space pages
on the system. It can be changed with the command vmo -o npswarn=value.

npskill
Specifies the number of free paging-space pages at which the operating system begins killing
processes. If the npskill threshold is reached, a SIGKILL signal is sent to the youngest process.
Processes that are handling SIGDANGER or processes that are using the early page-space allocation
(paging space is allocated as soon as memory is requested) are exempt from being killed. The formula
to determine the default value of npskill is as follows:

npskill = maximum (64, number_of_paging_space_pages/128)

The npskill value must be greater than zero and less than the total number of paging space pages
on the system. It can be changed with the command vmo -o npskill=value.

nokilluid
By setting the nokilluid option to a nonzero value with the vmo -o nokilluid command, user IDs lower
than this value will be exempt from being killed because of low page-space conditions. For example, if
nokilluid is set to 1, processes owned by root will be exempt from being killed when the npskill
threshold is reached.

The fork() retry interval parameter

If a process cannot be forked due to a lack of paging-space pages, the scheduler will retry the fork five
times. In between each retry, the scheduler will delay for a default of 10 clock ticks.

The pacefork parameter of the schedo command specifies the number of clock ticks to wait before
retrying a failed fork() call. For example, if a fork() subroutine call fails because there is not enough space
available to create a new process, the system retries the call after waiting the specified nhumber of clock
ticks. The default value is 10, and because there is one clock tick every 10 ms, the system would retry the
fork() call every 100 ms.

If the paging space is low only due to brief, sporadic workload peaks, increasing the retry interval might
allow processes to delay long enough to be released like in the following example:

schedo -o pacefork=15

In this way, when the system retries the fork() call, there is a higher chance of success because some
processes might have finished their execution and, consequently, released pages from paging space.

Paging space garbage collection

You can use the paging space garbage collection feature to free up paging-space disk blocks under certain
conditions so that you do not have to configure as much paging space as the amount of virtual memory

Performance management 141

used for a particular workload. The garbage collection feature is only available for the deferred page
space allocation policy.

Garbage collection on paging space blocks after a re-pagein

The method of freeing a paging-space disk block after a page has been read back into memory from
paging space is employed by default.

The reason that this is not freed up for every re-pagein is because leaving the blocks in paging space
provides better performance in the case of unmodified working storage pages that are stolen by the LRU
daemon. If pages are stolen, it is not necessary to perform the re-pageout function.

You can tune the following parameters with the vmo command:

Tuning the npsrpgmin parameter:

Item Descriptor

Purpose: Specifies the number of free paging space blocks threshold when re-pagein garbage
collection starts.

Values: Default: MAX (768, npswarn+ (npswarn/2)

Range: 0 to total number of paging space blocks in the system.

Tuning the npsrpgax parameter:

Item Descriptor

Purpose: Specifies the number of free paging space blocks threshold when re-pagin garbage
collection stops.

Values: Default: MAX (1024, npswarn*2)

Tuning the rpgclean parameter:

Item Descriptor

Purpose: Enables or disables the freeing of paging space blocks of pages from the deferred page
space allocation policy on read accesses to them.

Values: Default: 0, which signifies free paging space disk blocks only on pagein of pages that are
being modified. A value of 1 signifies free paging space disk blocks on pagein of a page
being modified or accessed, or read.

Range: 01

Tuning the rpgcontrol parameter:

Item Descriptor

Purpose: Enables or disables the freeing of paging space blocks at pagein of pages from the
deferred page space allocation policy.

Values: Default: 2, which signifies that it always enables freeing of paging space disk blocks on
pagein, regardless of thresholds.

Note: Read accesses are only processed if the value of the rpgcontrol parameter is 1. By
default, only write accesses are always processed.

A value of 0 disables freeing of paging space disk blocks on pagein.
Range: 0112

142 AIX Version 7.1: Performance management

Garbage collection by scrubbing memory

Another method of paging space garbage collection is by scrubbing memory, which is implemented with
the psgc kernel process.

The psgc kernel process frees up paging space disk blocks for modified memory pages that have not yet
been paged out again or for unmodified pages for which a paging space disk block exists.

The psgc kernel process uses the following tunable parameters that you can tune with the vmo command:

Tuning the npsscrubmin parameter includes the following fields:

Item Descriptor

Purpose: Specifies the number of free paging space blocks at which scrubbing of memory pages
starts to free disk blocks from pages from the deferred page space allocation policy.

Values: Default: MAX (768, the value of the npsrpgmin parameter)

Range: 0 to total number of paging space blocks in the system.

Tuning the npsscrubmax parameter includes the following fields:

Item Descriptor

Purpose: Specifies the number of free paging space blocks at which scrubbing of memory pages
stops to free disk blocks from pages from the deferred page space allocation policy.

Values: Default: MAX (1024, the value of the npsrpgmax parameter)

Range: 0 to total number of paging space blocks in the system.

Tuning the scrub parameter includes the following fields:

Item Descriptor

Purpose: Enables or disables the freeing of paging space disk blocks from pages in memory from
pages of the deferred page space allocation Policy.

Values: Default: 0, which completely disables memory scrubbing. If the value is set to 1,
scrubbing of memory of paging space disk blocks is enabled when the number of system
free paging space blocks is below the value of the npsscrubmin parameter and above
the value of the npsscrubmax parameter.

Range: 01

Tuning the scrubclean parameters includes the following fields:

Item Descriptor

Purpose: Enables or disables the freeing of paging space disk blocks from pages in memory from
pages of the deferred page space allocation policy that are not modified.

Values: Default: 0, which signifies free paging space disk blocks only for modified pages in
memoryIf the value is set to 1, frees paging space disk blocks for modified or
unmodified pages.

Range: 01

Shared memory

By using the shmat() or mmap() subroutines, files can be explicitly mapped into memory. This process
avoids buffering and avoids system-call overhead.

The memory areas are known as the shared memory segments or regions. For the 32-bit applications that
were affected, the segment 14 was released to provide 11 shared memory segments that do not include

Performance management 143

the shared library data or shared library text segments. This method applies for processes with segments
3-12 and 14. Each of these segments is 256 MB in size. Applications can read or write the file by reading

or writing to the segment. Applications can avoid overhead of read or write system calls by manipulating

pointers in these mapped segments.

Files or data can also be shared among multiple processes or threads. However, this requires
synchronization between these processes or threads and handling of such request depends on the
application. Typical use of the shared memory is by database applications, which uses the database as a
large database buffer cache.

Paging space is allocated for shared memory regions similar to the process private segment. The paging
space is used when the pages are accessed, if deferred page space allocation policy is turned off.

Extended Shared Memory

Extended Shared Memoryallows a 32-bit process to allocate shared memory segments as small as one
byte, rounded to the nearest page. This feature is available to processes that have the variable EXTSHM
set to either ON, 1SEG, or MSEG in their process environment.

Extended Shared Memory essentially removes the limitation of only 11 shared memory regions. 64-bit
processes are not affected by the EXTSHM variable.

Setting EXTSHM to ON has the same effect as setting the variable to 1SEG. With either setting, any
shared memory less than 256 MB is created internally as a mmap segment, and thus has the same
performance implications of mmap. Any shared memory greater or equal to 256 MB is created internally
as a working segment.

If EXTSHM is set to MSEG, all shared memory is created internally as a mmap segment, allowing for
better memory utilization.

There is no limit on the number of shared memory regions that a process can attach. File mapping is
supported as before, but consumes address space that is a multiple of 256 MB (segment size). Resizing a
shared memory region is not supported in this mode. Kernel processes have the same behavior.

Extended Shared Memory has the following restrictions:

« I/O support is restricted in the same manner as for memory-mapped regions.
« Only the uphysio() type of I/0 is supported (no raw I/0).

« These shared memory regions cannot be used as I/O buffers where the unpinning of the buffer occurs in
an interrupt handler. For example, these regions cannot be used for async I/0 buffers.

« The segments cannot be pinned using the plock() subroutine because memory-mapped segments
cannot be pinned with the plock() subroutine.

1 TB Segment Aliasing

1 TB segment aliasing improves performance by using 1 TB segment translations on Shared Memory
Regions with 256 MB segment size. This support is provided on all 64 bit applications that use Shared
Memory Regions. Both directed and undirected shared memory attachments are eligible for 1 TB segment
aliasing.

If an application qualifies to have its Shared Memory Regions to use 1 TB aliases, the AIX operating
system uses 1 TB segments translations without changing the application. This requires using the
shm_1tb_shared VMO tunable, shm_1tb_unshared VMO tunable, and esid_allocator VMO
tunable.

The shm_1tb_shared VMO tunable can be set on a per-process basis using the"SHM_1TB_SHARED="
VMM_CNTRL environment variable. The default value is set dynamically at boot time base on the
capabilities of the processor. If a single Shared Memory Region has the required number of ESIDs, it is
automatically changed to a shared alias. The acceptable values are in the range of 0 to 4 KB
(approximately require 256 MB ESIDs in a 1 TB range).

144 AIX Version 7.1: Performance management

The shm_1tb_unshared VMO tunable can be set on a per-process basis using
the"SHM_1TB_UNSHARED="VMM_CNTRL environment variable. The default value is set to 256. The
acceptable values are in a rage of 0 to 4 KB. The default value is set cautiously (requiring the population of
up to 64 GB address space) before moving to an unshared 1 TB alias. The threshold number is set to 256
MB segments at which a shared memory region is promoted to use a 1 TB alias. Lower values must
cautiously use the shared memory regions to use a 1 TB alias. This can lower the segment look-aside
buffer (SLB) misses but can also increase the page table entry (PTE) misses, if many shared memory
regions that are not used across processes are aliased.

The esid_allocator VMO tunable can be set on a per-process basis using the "ESID_ALLOCATOR="
VMM_CNTRL environment variable. The default value is set to 0 for AIX Version 6.1 and 1 for AIX Version
7.0. Values can be either 0 or 1. When set to 0, the old allocator for undirected attachments is enabled.
Otherwise, a new address space allocation policy is used for undirected attachments. This new address
space allocator attaches any undirected allocation (such as SHM, and MMAP) to a new address range of
0x0A00000000000000 - OXOAFFFFFFFFFFFFFF in the address space of the application. The allocator
optimizes the allocations in order to provide the best possible chances of 1 TB alias promotion. Such
optimization can result in address space "holes", which are considered normal when using undirected
attachments. Directed attachments is done for 0x0700000000000000 - 0xO7FFFFFFFFFFFFFF range,
thus preserving compatibility with earlier version. In certain cases where this new allocation policy
creates a binary compatibility issue, the legacy allocator behavior can be restored by setting the tunable
to 0.

Shared memory regions that were not qualified for shared alias promotion are grouped into 1 TB regions.
In a group of shared memory regions in a 1 TB region of the application's address space, if the application
exceeds the threshold value of 256 MB segments, they are promoted to use an unshared 1 TB alias. In
applications where the shared memory is frequently attached and detached, lower values of the unshared
alias threshold result in performance degradation.

To avoid polluting the environments name space, all environment tunables are used under the master
tunable VMM_CNTRL. The master tunable is specified with the@ symbol separating the commands. An
example for using VMM_CNTRL is:

VMM_CNTRL=SHM_1TB_UNSHARED=32@SHM_1TB_SHARED=5

All environment variable settings are inherited by the child on a fork (), and initialized to the system
default values at exec (). All 32-bit applications are not affected by either VMO or environment variable
tunable changes.

AlL VMO tunables and environment variables have analogous vin_pattx commands. The exception is
esid_allocator tunable. This tunable is not present in the vm_pattx options to avoid situations where
portions of the shared memory address space are allocated before running the command.

AIX memory affinity support

IBM POWER processor-based platform SMP hardware systems contain modules that are capable of
supporting single, dual, or multiple processor chips depending on the particular system. Each of these
modules contain multiple processors and the system memory is attached to these modules. While any
processor can access all of the memory in the system, a processor has faster access, and higher
bandwidth when addressing memory that is attached to its own module rather than memory attached to
the other modules in the system.

When memory affinity is enabled, each module has its own vmpool, which contains one or more memory
pools. Each memory pool has its own page replacement daemon, 1xud. The amount of memory in each
pool is based on how much memory is available in the module or allocated to the VMM by the hypervisor
layer.

AIX® provides memory affinity by allocating memory for a process from the module containing the
processor that caused the page fault. Each module has its own vmpool, which contains one or more
memory pools. Each memory pool has its own page replacement daemon, 1rud. The amount of memory
in each pool is based on how much memory is available in the module or allocated to the VMM by the

Performance management 145

hypervisor layer. Placement of user memory can be configured using the MEMORY_AFFINITY
environment variable.

The operating system provides memory affinity by organizing its data structures along module
boundaries. The default memory allocation policy rotates among the MCMs. In order to obtain preferential
local MCM memory allocation, an application must export the MEMORY_AFFINITY environment variable
as follows:

MEMORY_AFFINITY=MCM

This behavior is propagated across a fork. However, for this behavior to be retained across a call to the
exec function, the variable must be contained in the environment string passed to the exec function call.

Related information

The vmo command and “VMM page replacement tuning” on page 136.

The bindprocessox command or subroutine.

WLM Class and Resource Set Attributes.

Performance impact of local MCM memory allocation

The effect that local MCM memory allocation has on a specific application is difficult to predict. Some
applications are unaffected, some might improve, and others might degrade.

Most applications must be bound to processors to get a performance benefit from memory affinity. This is
needed to prevent the AIX dispatcher from moving the application to processors in different MCMs while
the application executes.

The most likely way to obtain a benefit from memory affinity is to limit the application to running only on
the processors contained in a single MCM. This can be done with the bindprocessox command and the
bindprocessor() function. It can also be done with the resource set affinity commands and services.

When the application requires more processors than contained in a single MCM, the performance benefit
through memory affinity depends on the memory allocation and access patterns of the various threads in
the application. Applications with threads that individually allocate and reference unique data areas may
see improved performance. Applications that share memory among all the threads are more likely to get a
degradation from memory affinity.

Memory placement with the vmo command

You can allocate user memory with parameters of the vmo command. You can also decide on whether you
want to use the first-touch scheduling policy or the round-robin scheduling policy.

With the first-touch scheduling policy, memory is allocated from the chip module that the thread was
running on when it first touched that memory segment, which is the first page fault. With the round-robin
scheduling policy, which is the default for all memory types, memory allocation is striped across each of
the vmpools.

The following parameters of the vmo command control the placement of user memory and can either
have a value of 1, signifying the first touch scheduling policy, or 2, signifying the round-robin scheduling
policy:

memplace_data
This parameter specifies the memory placement for the following types of data:

« Data of the main executable that is either initialized or uninitialized
- Heap segment data

 Shared library data

« Data of object modules that are loaded at run-time

The default value for this parameter is 2.

146 AIX Version 7.1: Performance management

memplace_mapped_file
This parameter specifies the memory placement for files that are mapped into the address space of a
process, such as the shmat() function and the mmap() function. The default value for this parameter
is 2.

memplace_shm_anonymous
This parameter specifies the memory placement for anonymous shared memory that acts as working
storage memory that is created by a call to the shmget() function or the mmap() function. The
memory can only be accessed by the creating process or its descendants and it is not associated with
a name or a key. The default value for this parameter is 2.

memplace_shm_named
This parameter specifies the memory placement for named shared memory that acts as working
storage memory that is created by a call to the shmget() function or the shm_open() function. It is
associated with a name or a key that allows more than one process to access it simultaneously. The
default value for this parameter is 2.

memplace_stack
This parameter specifies the memory placement for the program stack. The default value for this
parameter is 2.

memplace_text
This parameter specifies the memory placement for the application text of the main executable, but
not for its dependencies. The default value for this parameter is 2.

memplace_unmapped_file
This parameter specifies the memory placement for unmapped file access, such as with the read() or
write() functions. The default value for this parameter is 2.

Memory placement with the MEMORY_AFFINITY environment variable

At the process level, you can configure the placement of user memory with the MEMORY_AFFINITY
environment variable, which overrides memory placement with the parameters of the vmo command.

The following table lists the possible values for the MEMORY_AFFINITY environment variable:

Value Behavior
MCM Private memory is local and shared memory is local.
SHM=RR Both System V and Posix Real-Time shared memory are striped across the MCMs.

Applies to 4 KB and large-page-backed shared memory objects. This value is only
valid for the 64-bit kernel and if the MCM value is also defined.

LRU=EARLY The LRU daemon starts on local memory as soon as low thresholds, such as the
minfree parameter, are reached. It does not wait for all the system pools to reach the
low thresholds. This value is only valid if the MCM value is also defined.

You can set multiple values for the MEMORY_AFFINITY environment variable by separating each value
with the at sign, (@).

Large pages

The main purpose for large page usage is to improve system performance for high performance
computing (HPC) applications or any memory-access-intensive application that uses large amounts of
virtual memory. The improvement in system performance stems from the reduction of translation
lookaside buffer (TLB) misses due to the ability of the TLB to map to a larger virtual memory range.

Large pages also improve memory prefetching by eliminating the need to restart prefetch operations on 4
KB boundaries. AIX supports large page usage by both 32-bit and 64-bit applications.

The POWERA4 large page architecture requires all the virtual pages in a 256 MB segment to be the same
size. AIX supports this architecture by using a mixed mode process model such that some segments in a
process are backed with 4 KB pages, while other segments are backed with 16 MB pages. Applications

Performance management 147

can request that their heap segments or memory segments be backed with large pages. For detailed
information, refer to “Application configuration for large pages” on page 148.

AIX maintains separate 4 KB and 16 MB physical memory pools. You can specify the amount of physical
memory in the 16 MB memory pool using the vmo command. The large page pool is dynamic, so the
amount of physical memory that you specify takes effect immediately and does not require a system
reboot. The remaining physical memory backs the 4 KB virtual pages.

AIX treats large pages as pinned memory. AIX does not provide paging support for large pages. The data
of an application that is backed by large pages remains in physical memory until the application
completes. A security access control mechanism prevents unauthorized applications from using large
pages or large page physical memory. The security access control mechanism also prevents unauthorized
users from using large pages for their applications. For non-root user ids, you must enable the
CAP_BYPASS_RAC_VMM capability with the chusex command in order to use large pages. The following
example demonstrates how to grant the CAP_BYPASS_RAC_VMM capability as the superuser:

chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE <user id>

Application configuration for large pages

There are several ways to configure applications to use large pages.

Large page usage to back data and heap segments

You must determine an application's large page data or heap usage when you execute the application

because the application cannot switch modes after it starts executing. Large page usage is inherited by
the children process of the fork() function.

You can configure an application to request large page backing of initialized program data, uninitialized
program data (BSS), and heap segments with the following methods:

« “Marking the executable file to request large pages” on page 148

« “Setting an environment variable to request large pages” on page 149

You can specify if you want an application to use large pages for data or heap segments in either of the
following modes:

« “Advisory mode” on page 149

- “Mandatory mode” on page 149

32-bit applications that use large pages for their data and heap segments use the large page 32-bit
process model because of the page protection granularity of large pages. Other process models use 4 KB
pages with different protection attributes in the same segment, which does not work when the protection
granularity is 16 MB.

Marking the executable file to request large pages
The XCOFF header in an executable file contains the blpdata flag to indicate that an application wants to
use large pages to back the data and heap segments.

To mark an executable file to request large pages, use the following command:

ldedit -blpdata <filename>

If you decide to no longer use large pages to back the data and heap segments, use the following
command to clear the large page flag:

ldedit -bnolpdata <filename>

You can also set the blpdata option when linking and binding with the cc command.

148 AIX Version 7.1: Performance management

Setting an environment variable to request large pages

You can use the LDR_CNTRL environment variable to configure an application to use large pages for the
application's data and heap segments. The environment variable takes precedence over the blpdata flag
in the executable file.

The following options are available with the LDR_CNTRL environment variable:

« The LDR_CNTRL=LARGE_PAGE_DATA=Y option specifies that the application that is executed should
use large pages for its data and heap segments, which is the same as marking the executable file to use
large pages.

« The LDR_CNTRL=LARGE_PAGE_DATA=N option specifies that the application that is executed should
not use large pages for its data and heap segments, which overrides the setting in an executable
marked to use large pages.

« The LDR_CNTRL=LARGE_PAGE_DATA=M option specifies that the application that is executed should
use large pages in mandatory mode for its data and heap segments.

Note: Set the large page environment variable only for specific applications that might benefit from large
page usage. Otherwise, you might experience some performance degradation of your system.

Advisory mode

In advisory mode it is possible for an application to have some of its heap segments backed by large
pages and some of them backed by 4 KB pages. The 4 KB pages back the data or heap segments when
there are not enough large pages available to back the segment.

In advisory mode, the application uses large pages if possible, depending on the following conditions:
« The userid is authorized to use large pages.

« The system hardware has the large page architectural feature.

 You defined a large page memory pool.

« There are enough pages in the large page memory pool to back the entire segment with large pages.

If any of the above conditions are not met, the application's data and heap segments are backed with 4
KB pages.

Executable files that are marked to use large pages run in advisory mode.

Mandatory mode
In mandatory mode, if an application requests a heap segment and there are not enough large pages to
satisfy the request, the allocation request fails, which causes most applications to terminate with an error.

If you use the mandatory mode, you must monitor the size of the large page pool and ensure that the pool
does not run out of large pages. Otherwise, your mandatory mode large page applications fail.

Large page usage to back shared memory segments

To back shared memory segments of an application with large pages, you must specify the SHM_LGPAGE
and SHM_PIN flags in the shmget() function. If large pages are unavailable, the 4 KB pages back the
shared memory segment.

The physical memory that backs large page shared memory and large page data and heap segments
comes from the large page physical memory pool. You must ensure that the large page physical memory
pool contains enough large pages for both shared memory and data and heap large page usage.

Performance management 149

System configuration for large pages

You must configure your system to use large pages and you must also specify the amount of physical
memory that you want to allocate to back large pages.

By default, the system does not have any memory allocated to the large page physical memory pool. You
can use the vmo command to configure the size of the large page physical memory pool. The following
example allocates 1 GB of memory to the large page physical memory pool:

vmo -r -o lgpg_regions=64 -o 1lgpg_size=16777216

To use large pages for shared memory, you must enable the SHM_PIN shmget() system call with the
following command, which persists across system reboots:

vmo -p -o v_pinshm=1

To see how many large pages are in use on your system, use the vmstat -l command as in the following

example:
vmstat -1
kthr memory page faults cpu large-page
r b avm fre re pi po fr sr cy in sy cs us sy id wa alp flp
2 1 52238 124523 (0] (0] (0] (0] (0] 0 142 41 73 0 3 97 0 16 16

From the above example, you can see that there are 16 active large pages, alp, and 16 free large pages,
tlp.

Considerations for using large pages

Large page support is a special purpose performance improvement feature and is not recommended for
general use. Note that not all applications benefit from using large pages. In fact, some applications, such
as applications that perform a large number of fork() functions, are prone to performance degradation
when using large pages.

Rather than using the LDR_CNTRL environment variable, consider marking specific executable files to use
large pages, because it limits the large page usage to the specific application that benefits from large page
usage.

If you are considering using large pages, think about the overall performance impact on your system.
While some specific applications might benefit from large page usage, you might see a performance
degradation in the overall system performance due to the reduction of 4 KB page storage available on the
system. If your system has sufficient physical memory such that reducing the number of 4 KB pages does
not significantly hinder the performance of the system, then you might consider using large pages.

Multiple page size support

The POWERS5+ processor supports four virtual memory page sizes: 4 KB, 64 KB, 16 MB, and 16 GB. The
IBM Power Systems processor-based servers also support using 64 KB pages in segments with base page
size 4 KB. AIX uses this process to provide the performance benefits of 64 KB pages when useful or
resorting to 4 KB pages where 64 KB pages would waste too much memory, such as allocated but not
used by the application.

Using a larger virtual memory page size like 64 KB for an application’s memory can significantly improve
the application's performance and throughput due to hardware efficiencies associated with larger page
sizes. Using a larger page size can decrease the hardware latency of translating a virtual page address to a
physical page address. This decrease in latency is due to improving the efficiency of hardware translation
caches like a processor’s translation lookaside buffer (TLB). Because a hardware translation cache only
has a limited number of entries, using larger page sizes increases the amount of virtual memory that can
be translated by each entry in the cache. This increases the amount of memory that can be accessed by
an application without incurring hardware translation delays.

150 AIX Version 7.1: Performance management

While 16 MB and 16 GB pages are only intended for very high performance environments, 64 KB pages
are considered general-purpose, and most workloads will likely see a benefit from using 64 KB pages
rather than 4 KB pages.

Supported page sizes by processor type

Use the pagesize command with the -a option to determine all of the page sizes supported by AIX on a
particular system.

AIX 6.1 and later supports segments with two page sizes: 4 KB and 64 KB. By default, processes use
these variable page size segments. This is overridden by the existing page size selection mechanism.

Table 2. Page size support by AIX and different System p hardware

Requires User Restrict
Page Size Required Hardware Configuration ed
4 KB ALL No No
64 KB POWERS5+ or later No No
16 MB POWER4 or later Yes Yes
16 GB POWERS5+ or later Yes Yes
Table 3. Supported segment page sizes
Segment Base Page Size | Supported Page Sizes Minimum Required Hardware
4 KB 4 KB/64 KB POWER6®
64 KB 64 KB POWERS5+
16 MB 16 MB POWER4
16 GB 16 GB POWER5+

As with all previous versions of AIX, 4 KB is the default page size. A process will continue to use 4 KB
pages unless a user specifically requests another page size be used.

64 KB page size support

Because the 64 KB page size is easy to use and because it is expected that many applications will see
performance benefits when using the 64 KB page size rather than the 4 KB page size, AIX has rich support
for the 64 KB page size.

No system configuration changes are necessary to enable a system to use the 64 KB page size. On
systems that support the 64 KB page size, the AIX kernel automatically configures the system to use it.
Pages that are 64 KB in size are fully pageable, and the size of the pool of 64 KB page frames on a system
is dynamic and fully managed by AIX. AIX will vary the number of 4 KB and 64 KB page frames on a
system to meet demand on the different page sizes. Both the svmon and vmstat commands can be used
to monitor the number of 4 KB and 64 KB page frames on a system.

Dynamic variable page size support

Processors prior to POWER6 only supported a single page size per segment. The system administrator or
user had to choose the optimal page size for a specific application based on its memory footprint.

Selecting 4 KB pages wasted the least amount of memory since only those 4 KB pages actually
referenced were used. Larger page sizes could potentially waste a lot of memory (allocated, but never
used), depending on the working set locality, and get an appreciable performance boost with fewer virtual
to physical translations being needed. Additionally, page sizes greater than 4 KB requires user
intervention to explicitly select a specific page size.

Performance management 151

POWERG introduces the concept of mixed page sizes within a single segment. The architecture supports
various permutations of the different page sizes; however, POWER6 only supports mixing 4 KB and 64 KB
page sizes. AIX 6.1 takes advantage this new hardware capability to combine the conservative memory
usage aspects of the 4 KB page size in sparsely referenced memory regions with the performance
benefits of the 64 KB page size in densely referenced memory regions, and it does so automatically
without user intervention. This AIX feature is referred to as Dynamic Variable Page Size Support (VPSS).
To avoid backward compatibility issues, VPSS is disabled in segments that currently have an explicit page
size selected by the user (see Multiple page size application support).

The default setting for a variable page size segment uses 4 KB pages and 4 KB translations in a 64 KB
sized and aligned region until all 16 4 KB pages are referenced. Once all 16 pages are referenced, a check
is made to make sure they all have the same state (such as same read/write page protection, no-exec
protection, storage key protection, and not in I/O state). If they do, then 4 KB translations are removed
and replaced with a 64 KB translation.

The 64 KB translations are used as long as all 16 4 KB pages continue to have the same state. If any one
of them changes state (for example, through the mprotect subroutine, or LRU stealing one of them. They
are then demoted to ordinary 4 KB pages until they recover their uniform state.

Some applications might prefer to use a larger page size, even when a 64 KB region is not fully referenced.
The page size promotion aggressiveness factor (PSPA) can be used to reduce the memory referenced
requirement at which point a group of 4 KB pages is promoted to a 64 KB page size. The PSPA can be set
for the whole system through the vmm_default_pspa vmo tunable or for a specific process through the
vin_pattr command.

As with 64 KB page size support, the svmon command has been updated to report variable page size
usage. For more information about the vmo command, see Commands Reference, Volume 6 .

Page sizes for very high-performance environments

In addition to 4 KB and 64 KB page sizes, AIX supports 16 MB pages, also called large pages, and 16 GB
pages, also called huge pages. These page sizes are intended to be used only in high-performance
environments, and AIX will not automatically configure a system to use these page sizes.

AIX must be configured to use these page sizes. The number of pages of each of these page sizes must
also be configured. AIX can not automatically change the number of configured 16 MB or 16 GB pages
based on demand.

The memory allocated to 16 MB large pages can only be used for 16 MB large pages, and the memory
allocated to 16 GB huge pages can only be used for 16 GB huge pages. Thus, pages of these sizes should
only be configured in high-performance environments. Also, the use of 16 MB and 16 GB pages is
restricted: in order to allocate pages of these sizes, a user must have the CAP_BYPASS_RAC_VMM and
CAP_PROPAGATE capabilities, or root authority.

Configuring the number of large pages
Use the vmo command to configure the number of 16 MB large pages on a system.

The following example allocates 1 GB of 16 MB large pages:
vmo -r -o lgpg_regions=64 -o lgpg_size=16777216

In the example, the large page configuration changes will not take effect until you run the bosboot
command and reboot the system. On systems that support dynamic logical partitioning (DLPAR), the -r
option can be omitted from the previous command to dynamically configure 16 MB large pages without
rebooting the system. For more information about Pub Caret 16 MB large pages, see “Large pages” on

page 147.

Configuring the number of huge pages
Huge pages must be configured through a system's Hardware Management Console (HMC).

1. On the managed system, go to Properties > Memory > Advanced Options > Show Details to change
the number of 16 GB pages.

152 AIX Version 7.1: Performance management

2. Assign 16 GB huge pages to a partition by changing the partition's profile.

Multiple page size application support

You can specify page sizes to use for four regions of a 32-bit or 64-bit process's address space.

These page sizes can be configured with an environment variable or with settings in an application's
XCOFF binary with the 1dedit or 1d commands as follows:

LDR_CNTRL environment
Region ld or ldedit option variable Description
Data -bdatapsize DATAPSIZE Initialized data, bss, heap
Stack -bstackpsize STACKPSIZE Initial thread stack
Text -btextpsize TEXTPSIZE Main executable text
Shared none SHMPSIZE Shared memory allocated by
Memory the process

You can specify a different page size to use for each of the four regions of a process's address space. For
both interfaces, a page size should be specified in bytes. The specified page size may be qualified with a
suffix to indicate the unit of the size. The supported suffixes are:

« K (kilobyte)

« M (megabyte)

« G (gigabyte)

These can be specified in upper or lower case.

Only the 4 KB and 64 KB page sizes are supported for all four memory regions. The 16 MB page size is
only supported for the process data. process text, and process shared memory regions. The 16 GB page
size is only supported for a process shared memory region.

By selecting a non-default page size, you explicitly disable the use of smaller page sizes than the page
size that was selected in the same segment.

If an unsupported page size is specified, the kernel will use the next smallest supported page size. If
there is no page size smaller than the specified page size, the kernel will use the 4 KB page size.

Support for specifying the page size to use for a process's shared memory with the SHMPSIZE
environment variable is available. On previous versions of AIX, the SHMPSIZE environment variable is
ignored. The SHMPSIZE environment variable only applies to system V shared memory regions created by
the process when it calls the shmget subroutine, ra_shmget subroutine, and ra_shmgetv subroutine.
The SHMPSIZE environment variable does not apply to EXTSHM shared memory regions and POSIX real
time shared memory regions. A process's SHMPSIZE environment variable does not apply to shared
memory regions because the process is using shared memory regions that was created by other
processes.

Setting the preferred page sizes of an application with the ldedit or ld commands
You can set an application's preferred page sizes in its XCOFF/XCOFF64 binary with the 1dedit or 1d
commands.

The 1d or cc commands can be used to set these page size options when you are linking an executable:

1d -o mpsize.out -btextpsize:4K -bstackpsize:64K subl.o sub2.0
cc -0 mpsize.out —-btextpsize:4K -bstackpsize:64K subl.o sub2.o

The 1dedit command can be used to set these page size options in an existing executable:

ldedit -btextpsize=4K -bdatapsize=64K -bstackpsize=64K mpsize.out

Performance management 153

Note: The 1dedit command requires that the value for a page size option be specified with an equal sign
(=), but the 1d and cc commands require the value for a page size option be specified with a colon (2).

Setting the preferred page sizes of an application with an environment variable
You can set the preferred page sizes of a process with the LDR_CNTRL environment variable.

As an example, the following command will cause the mpsize.out process to use 4 KB pages for its
data, 64 KB pages for its text, 64 KB pages for its stack, and 64 KB pages for its shared memory on
supported hardware:

$ LDR_CNTRL=DATAPSIZE=4K@TEXTPSIZE=64K@SHMPSIZE=64K mpsize.out

The page size environment variables override any page size settings in an executable's XCOFF header.
Also, the DATAPSIZE environment variable overrides any LARGE_PAGE_DATA environment variable
setting.

Multiple page size application support considerations
Issues concerning 32-bit processes, thread stacks, shared libraries, or large page data can affect the
ability of AIX to support multiple page sizes.

32-bit Processes

With the default AIX 32-bit process address space model, the initial thread stack and data of a process
are located in the same PowerPC® 256 MB segment. Currently, only one page size can be used in a
segment. Thus, if different page sizes are specified for the stack and data of a standard 32-bit process,
the smaller page size will be used for both.

A 32-bit process can use different page sizes for its initial thread stack and data by using one of the
alternate address space models for large and very large program support that locate a process's data
heap in a segment other than its stack.

Thread Stacks

By default, the thread stacks for a multi-threaded process come fromthe data heap of a process. Thus, for
a multi-threaded process, the stack page size setting will only apply to the stack for the initial thread of a
process. The stacks for subsequent threads will be allocated from the data heap of a process, and these
stacks will use pages of the size specified by the data page size setting.

Also, using 64 KB pages rather than 4 KB pages for the data of a multi-threaded process can reduce the
maximum number of threads a process can create due to alignment requirements for stack guard pages.
Applications that encounter this limit can disable stack guard pages and allow for more threads to be
created by setting the AIXTHREAD_GUARDPAGES environment variable to O.

Shared Libraries

On systems that support 64 KB pages, AIX will use 64 KB pages for the global shared library text regions
to improve performance.

Large Page Data

The DATAPSIZE environment variable will override the LARGE_PAGE_DATA environment variable. Also, the
DATAPSIZE settings in an application's XCOFF binary will override any lpdata setting in the same binary.

Variable large page size support

The IBM Power Systems processor-based servers support mixing of 4 KB, 64 KB, and 16 MB page sizes
within a single segment.

The AIX operating system supports the use of 16 MB pages to improve high-performance environments,
however, the memory pages are not flexible or easy to manage. The 16 MB pages cannot be paged out
and a new 16 MB page cannot be automatically created.

The IBM Power Systems processor-based servers support 16 MB mixed pages that give the operating
system the flexibility of managing memory on a 4 KB or 64 KB granularity while providing applications the

154 AIX Version 7.1: Performance management

advantage of accessing the memory by using 16 MB hardware page translations. The use of this hardware
feature on the AIX operating system is called Variable large page size support (VLPSS).

The VLPSS collocates a 16 MB sized and aligned region of user memory to a block of physically contiguous
4 KB or 64 KB pages. These memory pages are accessible through a single 16 MB translation. Because a
single 16 MB page translation is used, the underlying 4 KB and 64 KB pages must have the same page
attributes and must be resident in memory. The page attributes include read/write page protection,
storage key protection, and no-execute protection.

The 16 MB VLPSS pages can be demoted from 16 MB translations to the original 4 KB or 64 KB page size
translations by the operating system. The pages are demoted when the operating system needs to page
out parts of the memory to a paging device or when the application changes the page attributes fora 16
MB region so that they are not uniform. True 16 MB pages do not have this flexibility.

Applications can take advantage of the VPLSS feature by using the vm_pattr system call, and by
specifying the VM_PA_SET_PSIZE_EXTENDED command. The operating system can choose to accept the
advice from the vm_pattr system call or reject the advice in case the system is affected.

The 16 MB page size is a larger amount of contiguous memory when compared to the 64 KB dynamic
variable page size. Collocating and promoting memory to use VLPSS is an expensive operation that can
have negative systemwide performance implications. Therefore, promoting memory to 16 MB page size
has limitations that the Dynamic variable page size support does not have.

The VLPSS feature is restricted to users who have the CAP_BYPASS_RAC_VMM and CAP_PROPAGATE
capabilities or who have the root authority.

The 16 MB user memory regions must be fully resident in memory to qualify for the VLPSS feature. The
operating system needs a large amount of system memory to use the VLPSS feature. The minimum
memory size required for this feature is 16 GB.

Page size and shared memory

You can select the page size to use for System V shared memory with the SHM_PAGESIZE command to
the shmctl() system call.

By selecting a non-default page size, you explicitly disable the use of smaller page sizes than the page
size that was selected in the same segment.

See the shmctl() topic in Technical Reference: Base Operating System and Extensions, Volume 2 for more
information on using shmctl() to select the page size for a shared memory region.

Page sizes determination of a process using the ps command

The ps command can be used to monitor the base page sizes being used for a process's data, stack, and
text.

The following example shows the output of the ps =Z command. The DPGSZ column displays the data
page size of a process; the SPGSZ column displays the stack page size of a process; and the TPGSZ
column displays the text page size of a process.

ps -Z
PID TTY TIME DPGSZ SPGSZ TPGSZ CMD
311342 pts/4 0:00 4K 4K 4K ksh
397526 pts/4 0:00 4K 4K 4K ps
487558 pts/4 0:00 64K 64K 4K sleep

Page size monitoring with the vmstat command
The vmstat command has two options available to display memory statistics for a specific page size.

vmstat -p
Displays global vmstat information along with a break-down of statistics per page size.

vmstat -P
Displays per page size statistics.

Performance management 155

Both options take a comma-separated list of specific page sizes or the keyword all to indicate
information should be displayed for all supported page sizes that have one or more page frames. The
following example displays per-page size information for all of the page sizes with page frames on a
system:

vmstat -P all
System configuration: mem=4096MB

pgsz memoxy page
siz avm fre re pi po fr ST cy

4K 542846 202832 329649 0 0 0 0 0 0
64K 31379 961 30484 0 0 0 0 0 0

System-wide page size monitoring with the symon command
The svmon command can be used to display page size use across the system.

The svmon command has been enhanced to provide a per-page size break-down of statistics. For
example, to display global statistics about each page size, the =G option can be used with the svmon
command:

svmon -G

size inuse free pin virtual
memory 8208384 5714226 2494158 453170 5674818
pg space 262144 20653

work pers clnt
pin 453170 0 0
in use 5674818 110 39298
PageSize PoolSize inuse pgsp pin virtual
s 4 KB - 5379122 20653 380338 5339714
m 64 KB = 20944 (0] 4552 20944

For more information, see the svmon command in the Commands Reference, Volume 5.

Memory use considerations for larger page sizes

When you are evaluating the potential performance impacts of using a larger page size for an application,
the memory use of a workload must be considered.

Using a larger page size can result in an increased memory footprint of a workload due to memory
fragmentation. The svmon and vmstat commands can be used to monitor a workload’s memory use to
determine if a workload’s memory footprint increases when using larger page sizes.

When considering a 64 KB page size, use the default page size instead and allow the operating system to
decide which page size to use. If the application's working set is densely populated, such that full 64 KB
regions are needed, then selecting 64 KB pages would be appropriate since there would be little memory
wasted (such as allocated but never used).

Continuous Memory Optimization

The continuous memory optimization program runs page consolidation and promotion dynamically.

Dynamic Variable Page Size Support

The capability of AIX Version 6.1 to combine the conservative memory usage of 4 KB page size in sparsely
referenced memory regions with the performance benefits of 64 KB page size in densely referenced
memory regions, automatically without user intervention is termed as dynamic variable page size support
(DVPSS).

DVPSS is based on the capability of POWER®6 to support mixed page sizes within a single segment. The
architecture supports various permutations of different page sizes; however POWER6 supports combining
4 KB and 64 KB page sizes.

156 AIX Version 7.1: Performance management

The default setting for a variable page size segment is 4 KB pages and 4 KB translations in a 64 KB sized
and aligned region until all the 16 4 KB pages are referenced. When all the 16 pages are referenced,
DVPSS checks the state to have the same state (such as same read or write page protection, no execution
protection, storage key protection, and not in I/O state). If they do, then 4 KB translations are removed
and replaced with a 64 KB translation.

Continuous Program Optimization Agent (CPOagent)

The limitation in supporting the DVPPS method by the operating system is that all 16 4 KB pages must be
referenced before promoting page size to 64 KB. The CPOagent helps to overcome this limitation by using
continuous memory optimization that performs page consolidation and promotion dynamically. This
feature applies to AIX 6.1 Technology level 6 and above.

You can access CPOagent at:
usr/lib/perf/CPOagent

Syntax
CPOagent [-f configuration file]

Flag

Item Description

-f Changes the default configuration file name. If this option is not specified, the
file name is assumed to be available at /usxr/1ib/pexrf/CPOagent.ct file
location.

The CPOagent does not run, by default. The root user can start the CPOagent explicitly. When started, the
CPOagent runs in the background to identify the candidate processes that can benefit from larger page
sizes. The candidate processes are identified based on the memory and processor usage exceeding the
specified threshold value.

Note: The CPOagent currently can promote page size to 64 KB.

CPOagent Configuration File

When CPOagent is started, it reads and parses the information in the configuration file. The configuration
file is a stanza file with fields that includes:

TCPU=<n1>
TMEM=<n2>
PATI=<n3>
PATM=<n4>
PPTS=<n5>
TOPM=<n6>
PFLR=<c>

The description of fields in the configuration file follows:

Fields Description
TCPU Specifies the CPU usage threshold per process, in percentage
Default: 25

Minimum: 10

Maximum: 100

Performance management 157

Fields Description

TMEM Specifies the memory usage threshold per process, in MB
Default: 1
Minimum: 1
PATI Specifies the page analysis time interval (PATI), in minutes. It specifies the time

interval at which candidate processes are analyzed to identify the pages that
can be consolidated and promoted to a higher size.

Default: 15
Minimum: 5
Maximum: 60

PATM Specifies the page analysis time monitor (PATM), in seconds. It specifies the
amount of time page usage statistics to be collected for identifying candidate
pages for page consolidation and promotion.

Default: 30
Minimum: 5
Maximum: 180

PPTS Specifies the page promotion trigger samples (PPTS). It specifies the number of
samples to be collected before triggering a page promotion.

Default: 4
Minimum: 4
TOPM Specifies the number of top CPU consuming processes per CPU that must be
considered for page consolidation and promotion.
Default: 2
Minimum: 1
PFLR Specifies the wildcard and the process that matches the wildcard are

considered by CPOagent for page consolidation and promotion. It is referred as
process filter wildcard (PFLR).

Advantages of using CPOagent
The advantage of using the CPOagent mechanism includes:

 Applications are transparent to the changes. Therefore, there is no need to make changes to the
applications.

« The page promotion is run based on the policies set by the administrator in CPOagent. ct file, which is
dependent on the workload demand on CPU and memory resources. This helps in efficient page
promotion. This process allows fine granularity of control over dynamic variable page size support
ensuring that page promotion is run for those applications with a requirement.

A sample scenario

Consider an application, StressEngine that is running on a system. The application has high CPU and
Memory consumption. Without CPOagent, the StressEngine application cannot exploit dynamic
variable page size support, until all 16 pages of a specific segment are referenced and the pages are in
same state. The page size can be checked with the process report generated by the svmon command.

svmon -P 8454254 -0 pgsz=on,unit=MB,segment=on
Unit: MB

158 AIX Version 7.1: Performance management

Pid Command Inuse Pin Pgsp Virtual

8454254 StressEngine 157.87 42.3 0 157.84
PageSize Inuse Pin Pgsp Virtual
s 4 KB 64.2 0.02 0 64.2
m 64 KB 93.7 42.3 0 93.7
Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
86£49b 2 work process private s 64.1 0.02 0 64.1
9000 d work shared library text m 47.9 0 0 47.9
8002 0 work fork tree m 45.8 42.3 0 45.8
children=939blc, O
80fdc3 f work shared library data s 0.09 0 0 0.09
85fd37 1 clnt code,/dev/hd1:10 s 0.02 0 - -

If the CPOagent is started, and it has the following sample CPOagent.cf file

TCPU=25
TMEM=50
PATI=15
PATM=30
PPTS=4
TOPM=2
PFLR=Stressx*

According to the configuration file, CPOagent cycles for 15 minutes (PATI =15). For a specific 15 minutes
interval, it monitors the CPU and memory usage of the process that are running. Top 2 processes (TOPM
=2) with the process name having Stress (PFLR = Stress*), CPU Usage exceeding 25% (TCPU = 25), and
memory usage exceeding 50 MB (TMEM = 50) are the candidates for page consolidation and promotion.
This process verifies by collecting four samples (PPTS = 4) before triggering the algorithm for page
consolidation and promotion. Additionally, the page usage statistics is collected for 30 seconds (PATM
=30) to identify the candidate pages for page consolidation and promotion. Now with CPOagent running, it
will not wait for all 16 pages of a specific segment to be referenced. CPOagent evaluates if the application
needs Page Consolidation and promotion by referring to the CPOagent. cf configuration file and the
application’s demand on CPU and Memory resources. The promoted pages are evident from the process
report generated by the svmon command.

svmon -P 8454254 -0 pgsz=on,unit=MB,segment=on

Unit: MB
Pid Command Inuse Pin Pgsp Virtual
8454254 StressEngine 157.87 42.3 0 157.84
PageSize Inuse Pin Pgsp Virtual
s 4 KB 64.2 0.02 0 64.2
m 64 KB 93.7 42.3 0 93.7
Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
86149b 2 work process private sm 64.1 0.02 (0] 64.1
9000 d work shared library text m 47.9 0 0 47.9
8002 0 work fork tree m 45.8 42.3 0 45.8
children=939bilc, 0
80fdc3 f work shared library data sm 0.09 0 0 0.09
85fd37 1 clnt code,/dev/hd1:10 S 0.02 0 - -

VMM thread interrupt offload

The VMM thread interrupt offload (VTIOL) infrastructure allows the VMM to offload the processing of the
iodone () service to kernel threads.

The VTIOL function is used to reduce the possibilities in which the iodone () process impacts the
performance of a high priority thread. The VTIOL function handles the iodone () service by using
background threads instead of interrupting the high priority process. The VMM uses several heuristics for
determining whether to offload the processing of the iodone () service. For example, certain I/O
operations that do not have explicit waiter threads, such as background write operations and read-
ahead operations can be offloaded. I/O operations with explicit waitex threads might indicate that the
I/0O operations must be completed on a higher priority. In these cases, the I/O operations are not
offloaded, and are processed at the interrupt level.

Performance management 159

Logical volume and disk I/O performance

This topic focuses on the performance of logical volumes and locally attached disk drives.

If you are not familiar with the operating system concepts of volume groups, logical and physical volumes,
or logical and physical partitions, read Performance overview of fixed-disk storage management.

Deciding on the number and types of hard disks, and the sizes and placements of paging spaces and
logical volumes on those hard disks is a critical pre-installation process because of the performance
implications. For an extensive discussion of the considerations for pre-installation disk configuration
planning, see Disk pre-installation guidelines.

Related concepts

Disk preinstallation guidelines

The mechanisms for defining and expanding logical volumes attempt to make the best possible default
choices. However, satisfactory disk-I/O performance is much more likely if the installer of the system
tailors the size and placement of the logical volumes to the expected data storage and workload
requirements.

Monitoring disk I/0
There are several issues you should consider to determine your course of action when you are monitoring
disk I/0.

« Find the most active files, file systems, and logical volumes:

Can "hot" file systems be better located on the physical drive or be spread across multiple physical
drives? (1slv, iostat, filemon)

Are "hot" files local or remote? (filemon)

Does paging space dominate disk utilization? (vmstat, £ilemon)

Is there enough memory to cache the file pages being used by running processes? (vmstat, svmon)

Does the application perform a lot of synchronous (non-cached) file I/0?
 Determine file fragmentation:

— Are "hot" files heavily fragmented? (fileplace)
« Find the physical volume with the highest utilization:

— Is the type of drive or I/O adapter causing a bottleneck? (iostat, £ilemon)

Construction of a pre-tuning baseline
Before you make significant changes in your disk configuration or tuning parameters, it is a good idea to
build a baseline of measurements that record the current configuration and performance.

Wait I/0 time reporting

AIX Version 6.1 and later contain enhancements to the method used to compute the percentage of
processor time spent waiting on disk I/O (wio time).

An idle CPU is marked as wio if an outstanding I/O was started on that CPU.

Also, waiting on I/O to NFS mounted file systems is reported as wait I/O time.

160 AIX Version 7.1: Performance management

Assessing disk performance with the iostat command

Begin the assessment by running the iostat command with an interval parameter during your system's
peak workload period or while running a critical application for which you need to minimize I/0O delays.

The following shell script runs the iostat command in the background while a copy of a large file runs in
the foreground so that there is some I/O to measure:

iostat 5 3 >io.out &
cp bigl /dev/null

The AIX operating system maintains a history of disk activity. If the disk I/O history is disabled, the
following message is displayed when you run the iostat command:

Disk history since boot not available.

The interval disk I/0 statistics are unaffected by this.

To enable disk I/O history, from the command line enter smit chgsys and then select true from the
Continuously maintain DISK I/O history field.

The following examples show that you must consider all available data on the system to troubleshoot a
problem.

1. The following command stores three data samples on a system, which has three disks in the i0.out
file. These samples are collected at an interval of 5 seconds between samples.

iostat -T 5 3 > /tmp/io.out &
cp bigfile /dev/null

System configuration: lcpu=4 drives=4 ent=1.00 paths=3 vdisks=2

tty: tin tout avg-cpu: % user % sys % idle 9% iowait physc % entc time
1.2 9.6 0.6 1.4 98.0 0.0 0.0 2.7 13:26:46
Disks: % tm_act Kbps tps Kb_read Kb_wrtn time
cdo 0.0 0.0 0.0 0 0 13:26:46
hdiskl 0.0 0.0 0.0 0 0 13:26:46
hdisk0® 0.0 0.0 0.0 0 0 13:26:46
hdisk2 0.0 0.0 0.0 0 0 13:26:46
tty: tin tout avg-cpu: % user % sys % idle 9% iowait physc % entc time
0.2 3.6 0.3 13.8 75.1 10.8 0.2 16.8 13:26:51
Disks: % tm_act Kbps tps Kb_read Kb_wrtn time
cdo 0.0 0.0 0.0 0 0 13:26:51
hdiskl 0.0 0.0 0.0 0 0 13:26:51
hdisk0® 62.8 52428.8 205.4 262144 0 13:26:51
hdisk2 0.0 0.0 0.0 0 0 13:26:51
tty: tin tout avg-cpu: % user % sys % idle 9% iowait physc % entc time
0.0 0.0 0.5 1.5 97.9 0.1 0.0 2.8 13:26:56
Disks: % tm_act Kbps tps Kb_read Kb_wrtn time
cdo 0.0 0.0 0.0 0 0 13:26:56
hdiskl 0.0 0.0 0.0 0 0 13:26:56
hdisk0® 0.4 0.8 0.2 0 4 13:26:56
hdisk2 2.6 33.6 7.8 0 168 13:26:56

Note: If the iostat command is run without specifying a time interval, the output indicates a
summary of the system data since the last system reboot, and not the current values.

 The first and third intervals show that the three disks were mostly idle, along with the CPU utilization,
which is also shown as idle in the tty report.

« The second interval shows the activity that is generated by using the cp command, which was
started for this test. This activity can be viewed on both the CPU activity (tty report) which shows
13.9% sys CPU and also on the disk report. The ¢p command took 3.14 seconds to run during this
interval. In the report, the second interval shows 62.8 % for the hdisk0 disk under the tm_act
metric. This example means that the hdisk0 disk was busy for 62.8 % of the time interval (5
seconds). If the cp command is the only process generating disk I/0 to hdiskO, then the cp

Performance management 161

command took 62.8% of the 5 second interval, or 3.14 seconds, which is the total time the cp
command took to run.

2. The following command stores five data samples with a 2 seconds interval between samples on a
system, which has three disks in the i0.out?2 file:
iostat -T 2 5 > /tmp/io2.out &

cp bigfile /dev/null
System configuration: lcpu=4 drives=4 ent=1.00 paths=3 vdisks=2

tty: tin tout avg-cpu: % user % sys % idle % iowait physc % entc time
3.0 24.0 0.4 0.8 98.8 0.0 0.0 1.8 13:29:51
Disks: % tm_act Kbps tps Kb_read Kb_wrtn time
cd0O 0.0 0.0 0.0 0 0 13:29:51
hdiskl 0.0 0.0 0.0 0 0 13:29:51
hdisk0® 0.0 0.0 0.0 0 0 13:29:51
hdisk2 0.0 0.0 0.0 0 0 13:29:51
tty: tin tout avg-cpu: % user % sys % idle % iowait physc % entc time
0.5 1.0 0.2 8.2 85.5 6.1 0.1 10.1 13:29:53
Disks: % tm_act Kbps tps Kb_read Kb_wrtn time
cd0O 0.0 0.0 0.0 0 0 13:29:53
hdiskl 0.0 0.0 0.0 0 0 13:29:53
hdisk0® 39.5 30464.0 120.5 60928 0 13:29:53
hdisk2 0.0 0.0 0.0 0 0 13:29:53
tty: tin tout avg-cpu: % user % sys % idle % iowait physc % entc time
0.0 0.0 0.2 21.5 62.9 15.4 0.3 25.7 13:29:55
Disks: % tm_act Kbps tps Kb_read Kb_wrtn time
cd0 0.0 0.0 0.0 0 0 13:29:55
hdiskl 0.0 0.0 0.0 0 0 13:29:55
hdisk0® 100.0 83712.0 327.0 167424 0 13:29:55
hdisk2 0.0 0.0 0.0 0 0 13:29:55
tty: tin tout avg-cpu: % user % sys % idle % iowait physc % entc time
0.0 8.0 1.3 7.2 87.5 4.0 0.1 10.4 13:29:57
Disks: % tm_act Kbps tps Kb_read Kb_wrtn time
cd0O 0.0 0.0 0.0 0 0 13:29:57
hdiskl 0.0 0.0 0.0 0 0 13:29:57
hdisk0® 20.9 16898.0 66.5 33792 4 13:29:57
hdisk2 10.4 82.0 19.0 0 164 13:29:57
tty: tin tout avg-cpu: % user % sys % idle % iowait physc % entc time
0.0 0.0 0.2 0.6 99.2 0.0 0.0 1.3 13:29:59
Disks: % tm_act Kbps tps Kb_read Kb_wrtn time
cd0O 0.0 0.0 0.0 0 0 13:29:59
hdiskl 0.0 0.0 0.0 0 0 13:29:59
hdisk0® 0.0 0.0 0.0 0 0 13:29:59
hdisk2 0.0 0.0 0.0 0 0 13:29:59

« The first and fifth interval show that the three disks were mostly idle, along with the CPU utilization,
which is also shown as idle in the tty report.

« The second interval shows the activity that is generated by using the c¢p command, which was started
for this test. The ¢p command took 3.14 seconds to run during this interval. In the report, the second
interval shows 39.5 % for the hdisk® disk under the tm_act metric. In third and fourth interval shows
100 % and 20.9 % respectively for the hdiskO disk under the tm_act metric. This means that the
hdisk0 disk was busy for 100 % of the time interval (2 seconds) during the third interval and the
hdisk0 disk was busy for 20.9 % of the time interval (2 seconds) during the fourth interval.

Both examples shows that the %tm_act variable only indicates that the disk was busy. You cannot use the
%tm_act variable to evaluate a performance problem. To troubleshoot an issue, you might need to
consider other options such as running the iostat -D flag, which provides real service times (both read and
write) and queuing information for the disks on the system.

Related concepts

The iostat command

162 AIX Version 7.1: Performance management

The iostat command is the fastest way to get a first impression, whether or not the system has a disk
I/0-bound performance problem.
Related reference

Continuous performance monitoring with the iostat command
The iostat command is useful for determining disk and CPU usage.

TTY report
The two columns of TTY information (tin and tout) in the iostat output show the number of characters
read and written by all TTY devices.

This includes both real and pseudo TTY devices. Real TTY devices are those connected to an
asynchronous port. Some pseudo TTY devices are shells, telnet sessions, and aixterm windows.

Because the processing of input and output characters consumes CPU resources, look for a correlation
between increased TTY activity and CPU utilization. If such a relationship exists, evaluate ways to improve
the performance of the TTY subsystem. Steps that could be taken include changing the application
program, modifying TTY port parameters during file transfer, or perhaps upgrading to a faster or more
efficient asynchronous communications adapter.

Microprocessor report
The microprocessor statistics columns (% user, % sys,% idle,and % iowait) provide a breakdown of
microprocessor usage.

This information is also reported in the vmstat command output in the columns labeled us, sy, id, and
wa. For a detailed explanation for the values, see “vmstat command” on page 91. Also note the change
made to % iowait described in “Wait I/O time reporting ” on page 160.

On systems running one application, high I/O wait percentage might be related to the workload. On
systems with many processes, some will be running while others wait for I/O. In this case, the % iowait
can be small or zero because running processes "hide" some wait time. Although % iowait is low, a
bottleneck can still limit application performance.

If the iostat command indicates that a microprocessor-bound situation does not exist, and % iowait
time is greater than 20 percent, you might have an I/O or disk-bound situation. This situation could be
caused by excessive paging due to a lack of real memory. It could also be due to unbalanced disk load,
fragmented data or usage patterns. For an unbalanced disk load, the same iostat report provides the
necessary information. But for information about file systems or logical volumes, which are logical
resources, you must use tools such as the £ilemon or £ileplace commands.

Drive report
The drive report contains performace-related information for physical drives.

When you suspect a disk I/O performance problem, use the iostat command. To avoid the information
about the TTY and CPU statistics, use the -d option. In addition, the disk statistics can be limited to the
important disks by specifying the disk names.

Remember that the first set of data represents all activity since system startup.

Disks:
Shows the names of the physical volumes. They are either hdisk or cd followed by a number. If
physical volume names are specified with the iostat command, only those names specified are
displayed.

% tm_act
Indicates the percentage of time that the physical disk was active (bandwidth utilization for the drive)
or, in other words, the total time disk requests are outstanding. A drive is active during data transfer
and command processing, such as seeking to a new location. The "disk active time" percentage is
directly proportional to resource contention and inversely proportional to performance. As disk use
increases, performance decreases and response time increases. In general, when the utilization
exceeds 70 percent, processes are waiting longer than necessary for I/O to complete because most
UNIX processes block (or sleep) while waiting for their I/O requests to complete. Look for busy versus

Performance management 163

idle drives. Moving data from busy to idle drives can help alleviate a disk bottleneck. Paging to and
from disk will contribute to the I/O load.

Kbps
Indicates the amount of data transferred (read or written) to the drive in KB per second. This is the
sum of Kb_read plus Kb_wrtn, divided by the seconds in the reporting interval.

tps
Indicates the number of transfers per second that were issued to the physical disk. A transfer is an I/O
request through the device driver level to the physical disk. Multiple logical requests can be combined
into a single I/0 request to the disk. A transfer is of indeterminate size.

Kb_read
Reports the total data (in KB) read from the physical volume during the measured interval.

Kb_wrtn
Shows the amount of data (in KB) written to the physical volume during the measured interval.

Taken alone, there is no unacceptable value for any of the above fields because statistics are too closely
related to application characteristics, system configuration, and type of physical disk drives and adapters.
Therefore, when you are evaluating data, look for patterns and relationships. The most common
relationship is between disk utilization (%tm_act) and data transfer rate (tps).

To draw any valid conclusions from this data, you have to understand the application's disk data access
patterns such as sequential, random, or combination, as well as the type of physical disk drives and
adapters on the system. For example, if an application reads/writes sequentially, you should expect a high
disk transfer rate (Kbps) when you have a high disk busy rate (%tm_act). Columns Kb_read and
Kb_wrtn can confirm an understanding of an application's read/write behavior. However, these columns
provide no information on the data access patterns.

Generally you do not need to be concerned about a high disk busy rate (%tm_act) as long as the disk
transfer rate (Kbps) is also high. However, if you get a high disk busy rate and a low disk transfer rate, you
may have a fragmented logical volume, file system, or individual file.

Discussions of disk, logical volume and file system performance sometimes lead to the conclusion that
the more drives you have on your system, the better the disk I/O performance. This is not always true
because there is a limit to the amount of data that can be handled by a disk adapter. The disk adapter can
also become a bottleneck. If all your disk drives are on one disk adapter, and your hot file systems are on
separate physical volumes, you might benefit from using multiple disk adapters. Performance
improvement will depend on the type of access.

To see if a particular adapter is saturated, use the iostat command and add up all the Kbps amounts for
the disks attached to a particular disk adapter. For maximum aggregate performance, the total of the
transfer rates (Kbps) must be below the disk adapter throughput rating. In most cases, use 70 percent of
the throughput rate. In the AIX operating system, the -a or -A option will display this information.

Assessing disk performance with the vmstat command

To prove that the system is I/O bound, it is better to use the iostat command.

However, the vmstat command could point to that direction by looking at the wa column, as discussed in
“vmstat command” on page 91. Other indicators for I/O bound are:

- The disk xfer part of the vmstat output

To display a statistic about the logical disks (a maximum of four disks is allowed), use the following
command:

vmstat hdisk® hdiskl 1 8

kthr memory page faults cpu disk xfer
r b avm fre re pi po fr sr cy in sy ¢cs us sy idwa 12 3 4

O O 345627743 00 © 0O O O 0131 149 28 0 199 0 00

O O 345627743 O © ©6 O O 060131 77 30 0 199 0 00

1 0 3498 27152 © 0O © © O 01531088 35 11087 2 011

O 1 3499 26543 0O O 0O O © 0199 1530 38 1 19 0 80 O 59

O 1 3499 25406 O © 0O O © 0187 2472 38 226 0 72 0O 53

164 AIX Version 7.1: Performance management

O O 3456 24329 © O 06 O O 0178 1301 37 2 12 20 66 O 4
O 0 3456 24329 O 0O 06 06 0 0124 58 19 0 099 0 00
O O 3456 24329 0 © 06 © O 0123 58 23 0 099 0 00

2

The disk xfer part provides the number of transfers per second to the specified physical volumes that
occurred in the sample interval. One to four physical volume names can be specified. Transfer statistics
are given for each specified drive in the order specified. This count represents requests to the physical
device. It does not imply an amount of data that was read or written. Several logical requests can be
combined into one physical request.

« The in column of the vmstat output

This column shows the number of hardware or device interrupts (per second) observed over the
measurement interval. Examples of interrupts are disk request completions and the 10 millisecond
clock interrupt. Since the latter occurs 100 times per second, the in field is always greater than 100. But
the vmstat command also provides a more detailed output about the system interrupts.

e The vmstat -i output
The -i parameter displays the number of interrupts taken by each device since system startup. But, by

adding the interval and, optionally, the count parameter, the statistic since startup is only displayed in
the first stanza; every trailing stanza is a statistic about the scanned interval.

vmstat -i 1 2
priority level type count module(handler)
0

0 hardware 0 i_misc_pwr(a868c)

0 1 hardware 0 i_scu(a8680)

0 2 hardware 0 i_epow(954e0)

0 2 hardware 0 /etc/drivers/ascsiddpin(189acd4)
1 2 hardware 194 /etc/drivers/rsdd(1941354)

3 10 hardware 10589024 /etc/drivers/mpsdd(1977a88)

3 14 hardware 101947 /etc/drivers/ascsiddpin(189ab8c)
5 62 hardware 61336129 clock(952c4)
10 63 hardware 13769 i_softoff(9527c)

priority level type count module(handler)

0 0 hardware 0 i_misc_pwr(a868c)

0 1 hardware 0 i_scu(a8680)

0 2 hardware 0 i_epow(954€0)

0 2 hardware 0 /etc/drivers/ascsiddpin(189acd4)
1 2 hardware 0 /etc/drivers/rsdd(1941354)

3 10 hardware 25 /etc/drivers/mpsdd(1977a88)

3 14 hardware 0 /etc/drivers/ascsiddpin(189ab8c)
5 62 hardware 105 clock(952c4)
10 63 hardware 0 i_softoff(9527c)

Note: The output will differ from system to system, depending on hardware and software configurations
(for example, the clock interrupts may not be displayed in the vmstat -i output although they will be
accounted for under the in column in the normal vmstat output). Check for high numbers in the count
column and investigate why this module has to execute so many interrupts.

Assessing disk performance with the sar command

The saxr command is a standard UNIX command used to gather statistical data about the system.

With its numerous options, the sax command provides queuing, paging, TTY, and many other statistics.
The sax -d option generates real-time disk I/O statistics.

sar -d 3 3
AIX konark 3 4 0002506F4C00 08/26/99

12:09:50 device %busy avque r+w/s blks/s avwait avserv
12:09:53 hdisk0® 1 0.0 0 5 0.0 0.0
hdiskl 0 0.0 0 1 0.0 0.0
cdo 0 0.0 0 0 0.0 0.0
12:09:56 hdisk0® 0 0.0 0 0 0.0 0.0
hdiskl 0 0.0 0 1 0.0 0.0
cdo 0 0.0 0 0 0.0 0.0
12:09:59 hdisk® 1 0.0 1 4 0.0 0.0
hdiskl 0 0.0 0 1 0.0 0.0

Performance management 165

cdo 0 0.0 0 0 0.0 0.0

Average hdisk0® 0 0.0 0 3 0.0 0.0
hdiskl 0 0.0 0 1 0.0 0.0
cdo 0 0.0 0 0 0.0 0.0

The fields listed by the sax -d command are as follows:

%busy
Portion of time device was busy servicing a transfer request. This is the same as the %tm_act column
in the iostat command report.

avque
Average number of requests outstanding from the adapter to the device during that time. There may
be additional I/O operations in the queue of the device driver. This number is a good indicator if an I/O
bottleneck exists.

r+w/s
Number of read/write transfers from or to device. This is the same as tps in the iostat command
report.

blks/s
Number of bytes transferred in 512-byte units

avwait
Average number of transactions waiting for service (queue length). Average time (in milliseconds) that
transfer requests waited idly on queue for the device. This number is currently not reported and
shows 0.0 by default.

avserv
Number of milliseconds per average seek. Average time (in milliseconds) to service each transfer
request (includes seek, rotational latency, and data transfer times) for the device. This number is
currently not reported and shows 0.0 by default.

Assessing logical volume fragmentation with the lslv command
The 1s1v command shows, among other information, the logical volume fragmentation.

To check logical volume fragmentation, use the command 1slv -l lvname, as follows:

1slv -1 hd2

hd2: /usr
PV COPIES IN BAND DISTRIBUTION
hdisk® 114:000:000 22% 000:042:026:000:046

The output of COPIES shows the logical volume hd2 has only one copy. The IN BAND shows how well the
intrapolicy, an attribute of logical volumes, is followed. The higher the percentage, the better the
allocation efficiency. Each logical volume has its own intrapolicy. If the operating system cannot meet this
requirement, it chooses the best way to meet the requirements. In our example, there are a total of 114
logical partitions (LP); 42 LPs are located on middle, 26 LPs on center, and 46 LPs on inner-edge. Since
the logical volume intrapolicy is center, the in-band is 22 percent (26 / (42+26+46). The DISTRIBUTION
shows how the physical partitions are placed in each part of the intrapolicy; that is:

edge : middle : center : inner-middle : inner-edge

See “Position on physical volume ” on page 182 for additional information about physical partitions
placement.

Assessing physical placement of data with the lslv command

If the workload shows a significant degree of I/O dependency, you can investigate the physical placement
of the files on the disk to determine if reorganization at some level would yield an improvement.

To see the placement of the partitions of logical volume hd11 within physical volume hdiskO0, use the
following:

166 AIX Version 7.1: Performance management

1slv -p hdisk0® hdi1l
/home/op

hdisk@:hd11:

USED
USED

USED
USED

USED
USED

USED
0052

0059
0069

USED
USED

USED
USED

USED
USED

USED
0053

0060
0070

USED
USED

USED
USED

USED
USED

USED
0054

0061
0071

USED
USED

USED
USED

USED
USED

USED
0055

0062
0072

USED
USED

USED
USED

USED
USED

USED
0056

0063
0073

USED
USED

USED
USED

USED
USED

USED
0057

0064
0074

USED
USED

USED
USED

USED
USED
0058

0065
0075

USED

USED

USED

USED

0066

USED

USED

USED

USED

0067

Look for the rest of hd11 on hdisk1 with the following;:

1slv -p hdiskl hd11l
/home/op

hdiskl:hd11:

0035
0045

USED
USED

USED
USED

0001
0011

0018
0028

0036
0046

USED
USED

USED
USED

0002
0012

0019
0029

0037
0047

USED
USED

USED
USED

0003
0013

0020
0030

0038
0048

USED
USED

USED
USED

0004
0014

0021
0031

0039
0049

USED
USED

USED
USED

0005
0015

0022
0032

0040
0050

USED
USED

USED
USED

0006
0016

0023
0033

0041
0051

USED
USED

USED
0007
0017

0024
0034

0042

USED

USED

0008

0025

0043

USED

USED

0009

0026

USED

USED

USED

USED

0068

0044

USED

USED

0010

0027

1-10
11-17

18-27
28-34

35-44
45-50

51-60
61-67

68-77
78-84

1-10
11-17

18-27
28-34

35-44
45-50

51-60
61-67

68-77
78-84

From top to bottom, five blocks represent edge, middle, center, inner-middle, and inner-edge,

respectively.

« A USED indicates that the physical partition at this location is used by a logical volume other than the
one specified. A number indicates the logical partition number of the logical volume specified with the
1slv -p command.

- A FREE indicates that this physical partition is not used by any logical volume. Logical volume
fragmentation occurs if logical partitions are not contiguous across the disk.

« A STALE physical partition is a physical partition that contains data you cannot use. You can also see the
STALE physical partitions with the 1spv -m command. Physical partitions marked as STALE must be
updated to contain the same information as valid physical partitions. This process, called
resynchronization with the syncvg command, can be done at vary-on time, or can be started anytime
the system is running. Until the STALE partitions have been rewritten with valid data, they are not used
to satisfy read requests, nor are they written to on write requests.

In the previous example, logical volume hd11 is fragmented within physical volume hdisk1, with its first
logical partitions in the inner-middle and inner regions of hdiskl, while logical partitions 35-51 are in the
outer region. A workload that accessed hd11 randomly would experience unnecessary I/O wait time as
longer seeks might be needed on logical volume hd11. These reports also indicate that there are no free

physical partitions in either hdiskO or hdisk1.

Assessing file placement with the fileplace command

To see how the file copied earlier, bigl, is stored on the disk, we can use the £fileplace command. The
fileplace command displays the placement of a file's blocks within a logical volume or within one or
more physical volumes.

To determine whether the £ileplace command is installed and available, run the following command:

1lslpp -1I perfagent.tools

Use the following command:

Performance management 167

fileplace -pv bigl

File: bigl Size: 3554273 bytes Vol: /dev/hd10
Blk Size: 4096 Frag Size: 4096 Nfrags: 868 Compress: no
Inode: 19 Mode: -rwxr-xr-x Owner: hoetzel Group: system

Physical Addresses (mirror copy 1) Logical Fragment

0001584-0001591 hdiskO 8 frags 32768 Bytes, 0.9% 0001040-0001047
0001624-0001671 hdisko 48 frags 196608 Bytes, 5.5% 0001080-0001127
0001728-0002539 hdisk® 812 frags 3325952 Bytes, 93.5% 0001184-0001995

868 frags over space of 956 frags: space efficiency = 90.8%
3 fragments out of 868 possible: sequentiality = 99.8%

This example shows that there is very little fragmentation within the file, and those are small gaps. We
can therefore infer that the disk arrangement of big1l is not significantly affecting its sequential read-
time. Further, given that a (recently created) 3.5 MB file encounters this little fragmentation, it appears
that the file system in general has not become particularly fragmented.

Occasionally, portions of a file may not be mapped to any blocks in the volume. These areas are implicitly
filled with zeroes by the file system. These areas show as unallocated logical blocks. A file that has
these holes will show the file size to be a larger number of bytes than it actually occupies (that is, the 1s -l
command will show a large size, whereas the du command will show a smaller size or the number of
blocks the file really occupies on disk).

The £ileplace command reads the file's list of blocks from the logical volume. If the file is new, the
information may not be on disk yet. Use the sync command to flush the information. Also, the
fileplace command will not display NFS remote files (unless the command runs on the server).

Note: If a file has been created by seeking to various locations and writing widely dispersed records, only
the pages that contain records will take up space on disk and appear on a £fileplace report. The file
system does not fill in the intervening pages automatically when the file is created. However, if such a file
is read sequentially (by the cp or tax commands, for example) the space between records is read as
binary zeroes. Thus, the output of such a cp command can be much larger than the input file, although the
data is the same.

Space efficiency and sequentiality

Higher space efficiency means files are less fragmented and probably provide better sequential file
access. A higher sequentiality indicates that the files are more contiguously allocated, and this will
probably be better for sequential file access.

Space efficiency =
Total number of fragments used for file storage / (Largest fragment physical address - Smallest
fragment physical address + 1)

Sequentiality =
(Total number of fragments - Number of grouped fragments +1) / Total number of fragments

If you find that your sequentiality or space efficiency values become low, you can use the reoxgvg
command to improve logical volume utilization and efficiency (see “Reorganizing logical volumes ” on
page 187). To improve file system utilization and efficiency, see “File system reorganization” on page 220.

In this example, the Largest fragment physical address - Smallest fragment physical address + 1 is:
0002539 - 0001584 + 1 = 956 fragments; total used fragments is: 8 + 48 + 812 = 868; the space
efficiency is 868 / 956 (90.8 percent); the sequentiality is (868 - 3 + 1) / 868 = 99.8 percent.

Because the total number of fragments used for file storage does not include the indirect blocks location,
but the physical address does, the space efficiency can never be 100 percent for files larger than 32 KB,
even if the file is located on contiguous fragments.

168 AIX Version 7.1: Performance management

Assessing paging space I/0 with the vmstat command
The vmstat reports indicate the amount of paging-space I/0 taking place.

I/0 to and from paging spaces is random, mostly one page at a time. Both of the following examples show
the paging activity that occurs during a C compilation in a machine that has been artificially shrunk using
the ¥rmss command. The pi and po (paging-space page-ins and paging-space page-outs) columns show
the amount of paging-space I/0 (in terms of 4096-byte pages) during each 5-second interval. The first
report (summary since system reboot) has been removed. Notice that the paging activity occurs in bursts.

vmstat 5 8

kthr memozxy page faults cpu

r b avm fre re pi po fr sr cy in sy c¢s us sy id wa
O 172379 434 0 66 ©0 0 2 0376 192 478 9 387 1
0 172379 391 0 8 0 O O 0 631 2967 775 10 1 83 6
0 172379 391 0 6 O O 0 0 625 2672 790 5 392 0
O 172379 175 0O 7 © 0 0 0 721 3215 868 8 4 72 16
2 171384 877 0 12 13 44 150 0 662 3049 853 7 12 40 41
0 2 71929 127 © 35 30 182 666 0 709 2838 977 15 13 0 71
O 171938 122 O O 8 32 122 0O 608 3332 787 10 4 75 11
O 171938 122 6 O O 3 12 0 611 2834 733 5 3 75 17

The following "before and after" vmstat -s reports show the accumulation of paging activity. Remember
that it is the paging space page ins and paging space page outs that represent true paging-space I/0. The
(unqualified) page ins and page outs report total I/0, that is both paging-space I/0 and the ordinary file
I/0, perform