Chi Square test: Exact

  • Asymptotic. The significance level based on the asymptotic distribution of a test statistic. Typically, a value of less than 0.05 is considered significant. The asymptotic significance is based on the assumption that the data set is large. If the data set is small or poorly distributed, this may not be a good indication of significance.
  • Monte Carlo Estimate. An unbiased estimate of the exact significance level, calculated by repeatedly sampling from a reference set of tables with the same dimensions and row and column margins as the observed table. The Monte Carlo method allows you to estimate exact significance without relying on the assumptions required for the asymptotic method. This method is most useful when the data set is too large to compute exact significance, but the data do not meet the assumptions of the asymptotic method.
  • Exact. The probability of the observed outcome or an outcome more extreme is calculated exactly. Typically, a significance level less than 0.05 is considered significant, indicating that there is some relationship between the row and column variables.