MULTIPLE IMPUTATION
MULTIPLE IMPUTATION
is available in Sampling and
Testing.
The MULTIPLE IMPUTATION
procedure performs multiple imputation
of missing data values. Given a dataset containing missing values, it outputs one or more datasets
in which missing values are replaced with plausible estimates. The procedure also summarizes missing
values in the working dataset.
MULTIPLE IMPUTATION varlist
[/IMPUTE [METHOD={AUTO** }]
{FCS }
{MONOTONE}
{NONE }
[NIMPUTATIONS={5**}]
{int}
[SCALEMODEL = {LINEAR**}]
{PMM(k) }
[INTERACTIONS = {NONE**}]
{TWOWAY}
[MAXPCTMISSING={NONE**}]
{num }
[MAXCASEDRAWS={50**}]
{int }
[MAXPARAMDRAWS={2**}]
{int}
[MAXITER={10**}]
{int }
[SINGULAR={1E-12**}]]
{num }
[MAXMODELPARAM={100**}]
{int }
[/CONSTRAINTS varlist ([MIN={NONE**}]
{num }
[MAX={NONE**}]
{num }
[RND={NO** }]
{num }
[ROLE={BOTH**}])]
{DEP }
{IND }
[/MISSINGSUMMARIES [OVERALL**]
[VARIABLES[([MAXVARS={25**}][MINPCTMISSING={10**}])]
{int } {num }
[PATTERNS]
[NONE]]
[/IMPUTATIONSUMMARIES [MODELS**] [DESCRIPTIVES[(varlist)]] [NONE]]
[/ANALYSISWEIGHT var]
[/OUTFILE [IMPUTATIONS = 'savfile' | 'dataset']]
[FCSITERATIONS = 'savfile' | 'dataset']
** Default if the subcommand or keyword is omitted.
This command reads the active dataset and causes execution of any pending commands. See the topic Command Order for more information.
Syntax for
the MULTIPLE IMPUTATION
command can be generated
from the Analyze Patterns and Impute Missing Data Values dialogs.
Release History
Release 27.0.1
- IMPUTE subcommand's SCALEMODEL keyword updated to support a single numeric parameter (k) on the predictive mean matching (PMM) method.
Release 17.0
- Command introduced.
Example
DATASET DECLARE imputedData.
MULTIPLE IMPUTATION x y z
/OUTFILE IMPUTATIONS = imputedData.