References (PROPORTIONS command)

Agresti, A. A., & Coull, B. A. 1998. Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician, 52(2): 199-126.

Agresti, A. A., & Caffo, B. 2000. Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The American Statistician, 54(4): 280-288.

Agresti, A. A., & Min, Y. 2005. Simple improved confidence intervals for comparing matched proportions. Statistics in Medicine, 24(5), 729-740.

Bonett, D. G., & Price, R. M. 2012. Adjusted Wald confidence interval for a difference of binomial proportions based on paired data. Journal of Educational and Behavioral Statistics, 37(4), 479-488.

Brown, L. D., T. Cai, and A. DasGupta. 2001. Interval estimation for a binomial proportion. Statistical Science, 16(2), 101-133.

Clopper, C., & Pearson, E. S. 1934. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26, 404-413.

Fagerland, M. W., Lydersen, S., & Laake, P. 2013. The McNemar test for binary matched-pairs data: mid-pand asymptotic are better than exact conditional. BMC Medical Research Methodology, 13, 91-98.

Fagerland, M. W., Lydersen, S., & Laake, P. 2014. Recommended tests and confidence intervals for paired binomial proportions. Statistics in Medicine, 33(16), 2850-2875.

Fagerland, M. W., Lydersen, S., & Laake, P. 2015. Recommended confidence intervals for two independent binomial proportions. Statistical Methods in Medical Research, 24(2), 224-254.

Newcombe, R. G. 1998a. Two-sided confidence intervals for the single proportion:Comparison of seven methods. Statistics in Medicine, 17: 857-872.

Newcombe, R. G. 1998b. Interval estimation for the difference between independent proportions: Comparison of eleven methods. Statistics in Medicine, 17: 873-890.

Newcombe, R. G. 1998c. Improved confidence intervals for the difference between binomial proportions based on paired data. Statistics in Medicine, 17: 2635-2650.

Wilson, E. B. 1927. Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 22, 209-212.