Time-Dependent Covariates

There are two kinds of time dependent covariates:

  • If you want to test the proportional hazards assumption with respect to a particular covariate or estimate an extended Cox regression model that allows nonproportional hazards, you can do so by defining your time-dependent covariate as a function of the time variable T_ and the covariate in question. A common example would be the simple product of the time variable and the covariate, but more complex functions can be specified as well. Testing the significance of the coefficient of the time-dependent covariate will tell you whether the proportional hazards assumption is reasonable.
  • Some variables may have different values at different time periods but aren't systematically related to time. In such cases, you need to define a segmented time-dependent covariate, which can be done using logical expressions. Logical expressions take the value 1 if true and 0 if false. Using a series of logical expressions, you can create your time-dependent covariate from a set of measurements. For example, if you have blood pressure measured once a week for the four weeks of your study (identified as BP1 to BP4), you can define your time-dependent covariate as (T_ < 1) * BP1 + (T_ >= 1 & T_ < 2) * BP2 + (T_ >= 2 & T_ < 3) * BP3 + (T_ >= 3 & T_ < 4) * BP4. Notice that exactly one of the terms in parentheses will be equal to 1 for any given case and the rest will all equal 0. In other words, this function means that if time is less than one week, use BP1; if it is more than one week but less than two weeks, use BP2, and so on.

Next