Bayesian One Sample Inference: Normal Priors

You can specify the following prior distribution criteria for your Bayesian One-Sample Inference:

Note: Many applied researchers may question the need to specify a prior. Reference priors minimize the concern where the prior is generally overwhelmed as the data increases. When informative prior information is specified, Bayesian methods can effectively use the information. The requirement to specify a prior should not be viewed as a deterrent to using Bayesian analysis.
Prior on Variance/Precision
Provides options for defining variance and precision values.
Variance
Select to specify the prior distribution for the variance parameter. When this option is selected, the Prior Distribution list provides the following options:
Note: When the data variance is already specified for some variables, the following settings are ignored for those variables.
  • Diffuse - the default setting. Specifies the diffuse prior.
  • Inverse Chi-Square - Specifies the distribution and parameters for inverse-χ2020), where ν0 > 0 is the degree of freedom, and σ20 > 0 is the scale parameter.
  • Inverse Gamma - Specifies the distribution and parameters for inverse-Gamma(α0, β0), where α0> 0 is the shape parameter, and β0 > 0 is the scale parameter.
  • Jeffreys S2 - Specifies the non-informative prior ∝ 1/σ20.

    0.

  • Jeffreys S4 - Specifies the non-informative prior ∝ 1/σ40.
Precision
Select to specify the prior distribution for the precision parameter. When this option is selected, the Prior Distribution list provides the following options:
  • Gamma - Specifies the distribution and parameters for Gamma (α0, β0), where α0 > 0 is the shape parameter, and β0 > 0 is the scale parameter.
  • Chi-Square - Specifies the distribution and parameters for χ20), where ν0 > 0 is the degree of freedom.
Shape Parameter
Specify the shape parameter a0 for Inverse-Gamma distribution. You must enter a single value that is greater than 0.
Scale Parameter
Specify the scale parameter b0 for Inverse-Gamma distribution. You must enter a single value that is greater than 0. The larger the scale parameter, the more spread out the distribution.
Prior on Mean Given Variance/Precision
Specify the prior distribution for the mean parameter that is conditional on the variance or the precision parameter.
Normal

Specifies the distribution and parameters for Normal(μ0, K-10σ20) on variance or Normal(μ0, K020) on precision, where μ0∈ (-∞, ∞) and σ2 > 0.

Location Parameter
Enter a numeric value that specifies the location parameter for the distribution.
Scale Parameter
Specify the scale parameter b0 for Inverse-Gamma distribution. You must enter a single value that is greater than 0.
Kappa

Specify the value of K0 in Normal(μ0, K-10σ20) or Normal(μ0, K020). You must enter a single value that is greater than 0 (1 is the default value).

Diffuse
The default setting that specifies the diffuse prior ∝ 1.