ts properties
![]() |
The Time Series node estimates exponential smoothing, univariate Autoregressive Integrated Moving Average (ARIMA), and multivariate ARIMA (or transfer function) models for time series data and produces forecasts of future performance. This Time Series node is similar to the previous Time Series node that was deprecated in SPSS® Modeler version 18. However, this newer Time Series node is designed to harness the power of IBM® SPSS Analytic Server to process big data, and display the resulting model in the output viewer that was added in SPSS Modeler version 17. |
ts Properties |
Values | Property description |
---|---|---|
targets
|
field | The Time Series node forecasts one or more targets, optionally using one or more input fields as predictors. Frequency and weight fields are not used. See the topic Common modeling node properties for more information. |
candidate_inputs
|
[field1 ... fieldN] | Input or predictor fields used by the model. |
use_period
|
flag | |
date_time_field
|
field | |
input_interval
|
None
Unknown
Year
Quarter
Month
Week
Day
Hour
Hour_nonperiod
Minute
Minute_nonperiod
Second
Second_nonperiod |
|
period_field
|
field | |
period_start_value
|
integer | |
num_days_per_week
|
integer | |
start_day_of_week
|
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday |
|
num_hours_per_day
|
integer | |
start_hour_of_day
|
integer | |
timestamp_increments
|
integer | |
cyclic_increments
|
integer | |
cyclic_periods
|
list | |
output_interval
|
None
Year
Quarter
Month
Week
Day
Hour
Minute
Second |
|
is_same_interval
|
flag | |
cross_hour
|
flag | |
aggregate_and_distribute
|
list | |
aggregate_default
|
Mean
Sum
Mode
Min
Max |
|
distribute_default
|
Mean
Sum |
|
group_default
|
Mean
Sum
Mode
Min
Max |
|
missing_imput
|
Linear_interp
Series_mean
K_mean
K_median
Linear_trend |
|
k_span_points
|
integer | |
use_estimation_period
|
flag | |
estimation_period
|
Observations
Times
|
|
date_estimation
|
list | Only available if you use date_time_field
|
period_estimation
|
list | Only available if you use use_period
|
observations_type
|
Latest
Earliest
|
|
observations_num
|
integer | |
observations_exclude
|
integer | |
method
|
ExpertModeler
Exsmooth
Arima
|
|
expert_modeler_method
|
ExpertModeler
Exsmooth
Arima
|
|
consider_seasonal
|
flag | |
detect_outliers
|
flag | |
expert_outlier_additive
|
flag | |
expert_outlier_level_shift
|
flag | |
expert_outlier_innovational
|
flag | |
expert_outlier_level_shift
|
flag | |
expert_outlier_transient
|
flag | |
expert_outlier_seasonal_additive
|
flag | |
expert_outlier_local_trend
|
flag | |
expert_outlier_additive_patch
|
flag | |
consider_newesmodels
|
flag | |
exsmooth_model_type
|
Simple
HoltsLinearTrend
BrownsLinearTrend
DampedTrend
SimpleSeasonal
WintersAdditive
WintersMultiplicative
DampedTrendAdditive
DampedTrendMultiplicative
MultiplicativeTrendAdditive
MultiplicativeSeasonal
MultiplicativeTrendMultiplicative
MultiplicativeTrend |
Specifies the Exponential Smoothing method. Default is Simple . |
futureValue_type_method |
Compute
specify |
If For each predictor, you can choose from a list of functions (blank, mean of recent points, most
recent value) or use
specify to enter values manually. To specify individual fields
and properties, use the extend_metric_values property. For
example:
|
exsmooth_transformation_type
|
None
SquareRoot
NaturalLog
|
|
arima.p
|
integer | |
arima.d
|
integer | |
arima.q
|
integer | |
arima.sp
|
integer | |
arima.sd
|
integer | |
arima.sq
|
integer | |
arima_transformation_type
|
None
SquareRoot
NaturalLog
|
|
arima_include_constant
|
flag | |
tf_arima.p.
fieldname
|
integer | For transfer functions. |
tf_arima.d.
fieldname
|
integer | For transfer functions. |
tf_arima.q.
fieldname
|
integer | For transfer functions. |
tf_arima.sp.
fieldname
|
integer | For transfer functions. |
tf_arima.sd.
fieldname
|
integer | For transfer functions. |
tf_arima.sq.
fieldname
|
integer | For transfer functions. |
tf_arima.delay.
fieldname
|
integer | For transfer functions. |
tf_arima.transformation_type.
fieldname
|
None
SquareRoot
NaturalLog
|
For transfer functions. |
arima_detect_outliers
|
flag | |
arima_outlier_additive
|
flag | |
arima_outlier_level_shift
|
flag | |
arima_outlier_innovational
|
flag | |
arima_outlier_transient
|
flag | |
arima_outlier_seasonal_additive
|
flag | |
arima_outlier_local_trend
|
flag | |
arima_outlier_additive_patch
|
flag | |
max_lags
|
integer | |
cal_PI
|
flag | |
conf_limit_pct
|
real | |
events
|
fields | |
continue
|
flag | |
scoring_model_only
|
flag | Use for models with very large numbers (tens of thousands) of time series. |
forecastperiods |
integer | |
extend_records_into_future |
flag | |
extend_metric_values |
fields | Allows you to provide future values for predictors. |
conf_limits |
flag | |
noise_res |
flag | |
max_models_output |
integer | Controls how many models are shown in output. Default is 10 . Models are not
shown in output if the total number of models built exceeds this value. Models are still available
for scoring. |