linearnode properties

Linear regression models predict a continuous target based on linear relationships between the target and one or more predictors.

Example

node = stream.create("linear", "My node")
# Build Options tab - Objectives panel
node.setPropertyValue("objective", "Standard")
# Build Options tab - Model Selection panel
node.setPropertyValue("model_selection", "BestSubsets")
node.setPropertyValue("criteria_best_subsets", "ASE")
# Build Options tab - Ensembles panel
node.setPropertyValue("combining_rule_categorical", "HighestMeanProbability")
Table 1. linearnode properties
linearnode Properties Values Property description
target field Specifies a single target field.
inputs [field1 ... fieldN] Predictor fields used by the model.
continue_training_existing_model flag  
objective Standard Bagging Boosting psm psm is used for very large datasets, and requires a Server connection.
use_auto_data_preparation flag  
confidence_level number  
model_selection ForwardStepwise BestSubsets None  
criteria_forward_stepwise AICC Fstatistics AdjustedRSquare ASE  
probability_entry number  
probability_removal number  
use_max_effects flag  
max_effects number  
use_max_steps flag  
max_steps number  
criteria_best_subsets AICC AdjustedRSquare ASE  
combining_rule_continuous Mean Median  
component_models_n number  
use_random_seed flag  
random_seed number  
use_custom_model_name flag  
custom_model_name string  
use_custom_name flag  
custom_name string  
tooltip string  
keywords string  
annotation string