|
The k-Nearest Neighbor (KNN) node associates a new case with the category or value of
the k objects nearest to it in the predictor space, where k is an integer. Similar
cases are near each other and dissimilar cases are distant from each other.
|
Example
node = stream.create("knn", "My node")
# Objectives tab
node.setPropertyValue("objective", "Custom")
# Settings tab - Neighbors panel
node.setPropertyValue("automatic_k_selection", False)
node.setPropertyValue("fixed_k", 2)
node.setPropertyValue("weight_by_importance", True)
# Settings tab - Analyze panel
node.setPropertyValue("save_distances", True)
Table 1. knnnode properties
knnnode Properties |
Values |
Property description |
analysis
|
PredictTarget
IdentifyNeighbors
|
|
objective
|
Balance
Speed
Accuracy
Custom
|
|
normalize_ranges
|
flag
|
|
use_case_labels
|
flag
|
Check box to enable next option. |
case_labels_field
|
field
|
|
identify_focal_cases
|
flag
|
Check box to enable next option. |
focal_cases_field
|
field
|
|
automatic_k_selection
|
flag
|
|
fixed_k
|
integer
|
Enabled only if automatic_k_selectio is False . |
minimum_k
|
integer
|
Enabled only if automatic_k_selectio is
True . |
maximum_k
|
integer
|
|
distance_computation
|
Euclidean
CityBlock
|
|
weight_by_importance
|
flag
|
|
range_predictions
|
Mean
Median
|
|
perform_feature_selection
|
flag
|
|
forced_entry_inputs
|
[field1 ... fieldN] |
|
stop_on_error_ratio
|
flag
|
|
number_to_select
|
integer
|
|
minimum_change
|
number
|
|
validation_fold_assign_by_field
|
flag
|
|
number_of_folds
|
integer
|
Enabled only if validation_fold_assign_by_field is
False
|
set_random_seed
|
flag
|
|
random_seed
|
number
|
|
folds_field
|
field
|
Enabled only if validation_fold_assign_by_field is True
|
all_probabilities
|
flag
|
|
save_distances
|
flag
|
|
calculate_raw_propensities
|
flag
|
|
calculate_adjusted_propensities
|
flag
|
|
adjusted_propensity_partition
|
Test
Validation
|
|