|
The Cox regression node enables you to build a survival model for time-to-event data in the
presence of censored records. The model produces a survival function that predicts the probability
that the event of interest has occurred at a given time (t) for given values of the input
variables.
|
Example
node = stream.create("coxreg", "My node")
node.setPropertyValue("survival_time", "tenure")
node.setPropertyValue("method", "BackwardsStepwise")
# Expert tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("removal_criterion", "Conditional")
node.setPropertyValue("survival", True)
Table 1. coxregnode properties
coxregnode Properties |
Values |
Property description |
survival_time
|
field
|
Cox regression models require a single field containing the survival times. |
target
|
field
|
Cox regression models require a single target field, and one or more input fields. See the
topic Common modeling node properties for more
information. |
method
|
Enter
Stepwise
BackwardsStepwise
|
|
groups
|
field
|
|
model_type
|
MainEffects
Custom
|
|
custom_terms
|
["BP*Sex" "BP*Age"] |
|
mode
|
Expert
Simple
|
|
max_iterations
|
number
|
|
p_converge
|
1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
0
|
|
p_converge
|
1.0E-4
1.0E-5
1.0E-6
1.0E-7
1.0E-8
0
|
|
l_converge
|
1.0E-1
1.0E-2
1.0E-3
1.0E-4
1.0E-5
0
|
|
removal_criterion
|
LR
Wald
Conditional
|
|
probability_entry
|
number
|
|
probability_removal
|
number
|
|
output_display
|
EachStep
LastStep
|
|
ci_enable
|
flag
|
|
ci_value
|
90
95
99
|
|
correlation
|
flag
|
|
display_baseline
|
flag
|
|
survival
|
flag
|
|
hazard
|
flag
|
|
log_minus_log
|
flag
|
|
one_minus_survival
|
flag
|
|
separate_line
|
field
|
|
value
|
number or string
|
If no value is specified for a field, the default option "Mean" will be used for that field.
|