tcmnode Properties

Temporal causal modeling attempts to discover key causal relationships in time series data. In temporal causal modeling, you specify a set of target series and a set of candidate inputs to those targets. The procedure then builds an autoregressive time series model for each target and includes only those inputs that have the most significant causal relationship with the target.
Table 1. tcmnode properties
tcmnode Properties Values Property description
custom_fields Boolean  
dimensionlist [dimension1 ... dimensionN]  
data_struct Multiple Single  
metric_fields fields  
both_target_and_input [f1 ... fN]  
targets [f1 ... fN]  
candidate_inputs [f1 ... fN]  
forced_inputs [f1 ... fN]  
use_timestamp Timestamp Period  
input_interval None Unknown Year Quarter Month Week Day Hour Hour_nonperiod Minute Minute_nonperiod Second Second_nonperiod  
period_field string  
period_start_value integer  
num_days_per_week integer  
start_day_of_week Sunday Monday Tuesday Wednesday Thursday Friday Saturday  
num_hours_per_day integer  
start_hour_of_day integer  
timestamp_increments integer  
cyclic_increments integer  
cyclic_periods list  
output_interval None Year Quarter Month Week Day Hour Minute Second  
is_same_interval Same Notsame  
cross_hour Boolean  
aggregate_and_distribute list  
aggregate_default Mean Sum Mode Min Max  
distribute_default Mean Sum  
group_default Mean Sum Mode Min Max  
missing_imput Linear_interp Series_mean K_mean K_meridian Linear_trend None  
k_mean_param integer  
k_median_param integer  
missing_value_threshold integer  
conf_level integer  
max_num_predictor integer  
max_lag integer  
epsilon number  
threshold integer  
is_re_est Boolean  
num_targets integer  
percent_targets integer  
fields_display list  
series_display list  
network_graph_for_target Boolean  
sign_level_for_target number  
fit_and_outlier_for_target Boolean  
sum_and_para_for_target Boolean  
impact_diag_for_target Boolean  
impact_diag_type_for_target Effect Cause Both  
impact_diag_level_for_target integer  
series_plot_for_target Boolean  
res_plot_for_target Boolean  
top_input_for_target Boolean  
forecast_table_for_target Boolean  
same_as_for_target Boolean  
network_graph_for_series Boolean  
sign_level_for_series number  
fit_and_outlier_for_series Boolean  
sum_and_para_for_series Boolean  
impact_diagram_for_series Boolean  
impact_diagram_type_for_series Effect Cause Both  
impact_diagram_level_for_series integer  
series_plot_for_series Boolean  
residual_plot_for_series Boolean  
forecast_table_for_series Boolean  
outlier_root_cause_analysis Boolean  
causal_levels integer  
outlier_table Interactive Pivot Both  
rmsp_error Boolean  
bic Boolean  
r_square Boolean  
outliers_over_time Boolean  
series_transormation Boolean  
use_estimation_period Boolean  
estimation_period Times Observation  
observations list  
observations_type Latest Earliest  
observations_num integer  
observations_exclude integer  
extend_records_into_future Boolean  
forecastperiods integer  
max_num_distinct_values integer  
display_targets FIXEDNUMBER PERCENTAGE  
goodness_fit_measure ROOTMEAN BIC RSQUARE  
top_input_for_series Boolean  
aic Boolean  
rmse Boolean