svmnode properties

The Support Vector Machine (SVM) node enables you to classify data into one of two groups without overfitting. SVM works well with wide data sets, such as those with a very large number of input fields.

Example

node = stream.create("svm", "My node")
# Expert tab
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("all_probabilities", True)
node.setPropertyValue("kernel", "Polynomial")
node.setPropertyValue("gamma", 1.5)
Table 1. svmnode properties
svmnode Properties Values Property description
all_probabilities flag  
stopping_criteria 1.0E-1 1.0E-2 1.0E-3 (default) 1.0E-4 1.0E-5 1.0E-6 Determines when to stop the optimization algorithm.
regularization number Also known as the C parameter.
precision number Used only if measurement level of target field is Continuous.
kernel RBF(default) Polynomial Sigmoid Linear Type of kernel function used for the transformation.
rbf_gamma number Used only if kernel is RBF.
gamma number Used only if kernel is Polynomial or Sigmoid.
bias number  
degree number Used only if kernel is Polynomial.
calculate_variable_importance flag  
calculate_raw_propensities flag  
calculate_adjusted_
propensities
flag  
adjusted_propensity_partition Test Validation