simgennode properties

The Simulation Generate node provides an easy way to generate simulated data—either from scratch using user specified statistical distributions or automatically using the distributions obtained from running a Simulation Fitting node on existing historical data. This is useful when you want to evaluate the outcome of a predictive model in the presence of uncertainty in the model inputs.
Table 1. simgennode properties
simgennode properties Data type Property description
fields Structured property See example
correlations Structured property See example
keep_min_max_setting boolean  
refit_correlations boolean  
max_cases integer Minimum value is 1000, maximum value is 2,147,483,647
create_iteration_field boolean  
iteration_field_name string  
replicate_results boolean  
random_seed integer  
parameter_xml string Returns the parameter Xml as a string

fields example

This is a structured slot parameter with the following syntax:

simgennode.setPropertyValue("fields", [
    [field1, storage, locked, [distribution1], min, max],
    [field2, storage, locked, [distribution2], min, max],
    [field3, storage, locked, [distribution3], min, max]
])

distribution is a declaration of the distribution name followed by a list containing pairs of attribute names and values. Each distribution is defined in the following way:

[distributionname, [[par1], [par2], [par3]]]

simgennode = modeler.script.stream().createAt("simgen", u"Sim Gen", 726, 322)
simgennode.setPropertyValue("fields", [["Age", "integer", False, ["Uniform",[["min","1"],["max","2"]]], "", ""]])

For example, to create a node that generates a single field with a Binomial distribution, you might use the following script:

simgen_node1 = modeler.script.stream().createAt("simgen", u"Sim Gen", 200, 200)
simgen_node1.setPropertyValue("fields", [["Education", "Real", False, ["Binomial", [["n", 32],
 ["prob", 0.7]]], "", ""]])

The Binomial distribution takes 2 parameters: n and prob. Since Binomial does not support minimum and maximum values, these are supplied as an empty string.

Note: You cannot set the distribution directly; you use it in conjunction with the fields property.

The following examples show all the possible distribution types. Note that the threshold is entered as thresh in both NegativeBinomialFailures and NegativeBinomialTrial.

stream = modeler.script.stream()

simgennode = stream.createAt("simgen", u"Sim Gen", 200, 200)

beta_dist = ["Field1", "Real", False, ["Beta",[["shape1","1"],["shape2","2"]]], "", ""]
binomial_dist = ["Field2", "Real", False, ["Binomial",[["n" ,"1"],["prob","1"]]], "", ""]
categorical_dist = ["Field3", "String", False, ["Categorical", [["A",0.3],["B",0.5],["C",0.2]]], "", ""]
dice_dist = ["Field4", "Real", False, ["Dice", [["1" ,"0.5"],["2","0.5"]]], "", ""]
exponential_dist = ["Field5", "Real", False, ["Exponential", [["scale","1"]]], "", ""]
fixed_dist = ["Field6", "Real", False, ["Fixed", [["value","1" ]]], "", ""]
gamma_dist = ["Field7", "Real", False, ["Gamma", [["scale","1"],["shape"," 1"]]], "", ""]
lognormal_dist = ["Field8", "Real", False, ["Lognormal", [["a","1"],["b","1" ]]], "", ""]
negbinomialfailures_dist = ["Field9", "Real", False, ["NegativeBinomialFailures",[["prob","0.5"],["thresh","1"]]], "", ""]
negbinomialtrial_dist = ["Field10", "Real", False, ["NegativeBinomialTrials",[["prob","0.2"],["thresh","1"]]], "", ""]
normal_dist = ["Field11", "Real", False, ["Normal", [["mean","1"] ,["stddev","2"]]], "", ""]
poisson_dist = ["Field12", "Real", False, ["Poisson", [["mean","1"]]], "", ""]
range_dist = ["Field13", "Real", False, ["Range", [["BEGIN","[1,3]"] ,["END","[2,4]"],["PROB","[[0.5],[0.5]]"]]], "", ""]
triangular_dist = ["Field14", "Real", False, ["Triangular", [["min","0"],["max","1"],["mode","1"]]], "", ""]
uniform_dist = ["Field15", "Real", False, ["Uniform", [["min","1"],["max","2"]]], "", ""]
weibull_dist = ["Field16", "Real", False, ["Weibull", [["a","0"],["b","1 "],["c","1"]]], "", ""]

simgennode.setPropertyValue("fields", [\
beta_dist, \
binomial_dist, \
categorical_dist, \
dice_dist, \
exponential_dist, \
fixed_dist, \
gamma_dist, \
lognormal_dist, \
negbinomialfailures_dist, \
negbinomialtrial_dist, \
normal_dist, \
poisson_dist, \
range_dist, \
triangular_dist, \
uniform_dist, \
weibull_dist
])

correlations example

This is a structured slot parameter with the following syntax:

simgennode.setPropertyValue("correlations", [
    [field1, field2, correlation],
    [field1, field3, correlation],
    [field2, field3, correlation]
])

Correlation can be any number between +1 and -1. You can specify as many or as few correlations as you like. Any unspecified correlations are set to zero. If any fields are unknown, the correlation value should be set on the correlation matrix (or table) and is shown in red text. When there are unknown fields, it is not possible to execute the node.