neuralnetnode properties

Important: A newer version of the Neural Net modeling node, with enhanced features, is available in this release and is described in the next section (neuralnetwork). Although you can still build and score a model with the previous version, we recommend updating your scripts to use the new version. Details of the previous version are retained here for reference.

Example

node = stream.create("neuralnet", "My node")
# "Fields" tab
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("targets", ["Drug"])
node.setPropertyValue("inputs", ["Age", "Na", "K", "Cholesterol", "BP"])
# "Model" tab
node.setPropertyValue("use_partitioned_data", True)
node.setPropertyValue("method", "Dynamic")
node.setPropertyValue("train_pct", 30)
node.setPropertyValue("set_random_seed", True)
node.setPropertyValue("random_seed", 12345)
node.setPropertyValue("stop_on", "Time")
node.setPropertyValue("accuracy", 95)
node.setPropertyValue("cycles", 200)
node.setPropertyValue("time", 3)
node.setPropertyValue("optimize", "Speed")
# "Multiple Method Expert Options" section
node.setPropertyValue("m_topologies", "5 30 5; 2 20 3, 1 10 1")
node.setPropertyValue("m_non_pyramids", False)
node.setPropertyValue("m_persistence", 100)
Table 1. neuralnetnode properties
neuralnetnode Properties Values Property description
targets [field1 ... fieldN] The Neural Net node expects one or more target fields and one or more input fields. Frequency and weight fields are ignored. See the topic Common modeling node properties for more information.
method Quick Dynamic Multiple Prune ExhaustivePrune RBFN  
prevent_overtrain flag  
train_pct number  
set_random_seed flag  
random_seed number  
mode Simple Expert  
stop_on Default Accuracy Cycles Time Stopping mode.
accuracy number Stopping accuracy.
cycles number Cycles to train.
time number Time to train (minutes).
continue flag  
show_feedback flag  
binary_encode flag  
use_last_model flag  
gen_logfile flag  
logfile_name string  
alpha number  
initial_eta number  
high_eta number  
low_eta number  
eta_decay_cycles number  
hid_layers One Two Three  
hl_units_one number  
hl_units_two number  
hl_units_three number  
persistence number  
m_topologies string  
m_non_pyramids flag  
m_persistence number  
p_hid_layers One Two Three  
p_hl_units_one number  
p_hl_units_two number  
p_hl_units_three number  
p_persistence number  
p_hid_rate number  
p_hid_pers number  
p_inp_rate number  
p_inp_pers number  
p_overall_pers number  
r_persistence number  
r_num_clusters number  
r_eta_auto flag  
r_alpha number  
r_eta number  
optimize Speed Memory Use to specify whether model building should be optimized for speed or for memory.
calculate_variable_importance flag Note: The sensitivity_analysis property used in previous releases is deprecated in favor of this property. The old property is still supported, but calculate_variable_importance is recommended.
calculate_raw_propensities flag  
calculate_adjusted_propensities flag  
adjusted_propensity_partition Test Validation