discriminantnode properties

Discriminant analysis makes more stringent assumptions than logistic regression but can be a valuable alternative or supplement to a logistic regression analysis when those assumptions are met.

Example

node = stream.create("discriminant", "My node")
node.setPropertyValue("target", "custcat")
node.setPropertyValue("use_partitioned_data", False)
node.setPropertyValue("method", "Stepwise")
Table 1. discriminantnode properties
discriminantnode Properties Values Property description
target field Discriminant models require a single target field and one or more input fields. Weight and frequency fields are not used. See the topic Common modeling node properties for more information.
method Enter Stepwise  
mode Simple Expert  
prior_probabilities AllEqual ComputeFromSizes  
covariance_matrix WithinGroups SeparateGroups  
means flag Statistics options in the Advanced Output dialog box.
univariate_anovas flag  
box_m flag  
within_group_covariance flag  
within_groups_correlation flag  
separate_groups_covariance flag  
total_covariance flag  
fishers flag  
unstandardized flag  
casewise_results flag Classification options in the Advanced Output dialog box.
limit_to_first number Default value is 10.
summary_table flag  
leave_one_classification flag  
combined_groups flag  
separate_groups_covariance flag Matrices option Separate-groups covariance.
territorial_map flag  
combined_groups flag Plot option Combined-groups.
separate_groups flag Plot option Separate-groups.
summary_of_steps flag  
F_pairwise flag  
stepwise_method WilksLambda UnexplainedVariance MahalanobisDistance SmallestF RaosV  
V_to_enter number  
criteria UseValue UseProbability  
F_value_entry number Default value is 3.84.
F_value_removal number Default value is 2.71.
probability_entry number Default value is 0.05.
probability_removal number Default value is 0.10.
calculate_variable_importance flag  
calculate_raw_propensities flag  
calculate_adjusted_propensities flag  
adjusted_propensity_partition Test Validation