chaidnode properties

The CHAID node generates decision trees using chi-square statistics to identify optimal splits. Unlike the C&R Tree and QUEST nodes, CHAID can generate nonbinary trees, meaning that some splits have more than two branches. Target and input fields can be numeric range (continuous) or categorical. Exhaustive CHAID is a modification of CHAID that does a more thorough job of examining all possible splits but takes longer to compute.

Example

filenode = stream.createAt("variablefile", "My node", 100, 100)
filenode.setPropertyValue("full_filename", "$CLEO_DEMOS/DRUG1n")
node = stream.createAt("chaid", "My node", 200, 100)
stream.link(filenode, node)

node.setPropertyValue("custom_fields", True)
node.setPropertyValue("target", "Drug")
node.setPropertyValue("inputs", ["Age", "Na", "K", "Cholesterol", "BP"])
node.setPropertyValue("use_model_name", True)
node.setPropertyValue("model_name", "CHAID")
node.setPropertyValue("method", "Chaid")
node.setPropertyValue("model_output_type", "InteractiveBuilder")
node.setPropertyValue("use_tree_directives", True)
node.setPropertyValue("tree_directives", "Test")
node.setPropertyValue("split_alpha", 0.03)
node.setPropertyValue("merge_alpha", 0.04)
node.setPropertyValue("chi_square", "Pearson")
node.setPropertyValue("use_percentage", False)
node.setPropertyValue("min_parent_records_abs", 40)
node.setPropertyValue("min_child_records_abs", 30)
node.setPropertyValue("epsilon", 0.003)
node.setPropertyValue("max_iterations", 75)
node.setPropertyValue("split_merged_categories", True)
node.setPropertyValue("bonferroni_adjustment", True)
Table 1. chaidnode properties
chaidnode Properties Values Property description
target field CHAID models require a single target and one or more input fields. A frequency field can also be specified. See the topic Common modeling node properties for more information.
continue_training_existing_model flag  
objective Standard Boosting Bagging psm psm is used for very large datasets, and requires a Server connection.
model_output_type Single InteractiveBuilder  
use_tree_directives flag  
tree_directives string  
method Chaid ExhaustiveChaid  
use_max_depth Default Custom  
max_depth integer Maximum tree depth, from 0 to 1000. Used only if use_max_depth = Custom.
use_percentage flag  
min_parent_records_pc number  
min_child_records_pc number  
min_parent_records_abs number  
min_child_records_abs number  
use_costs flag  
costs structured Structured property.
trails number Number of component models for boosting or bagging.
set_ensemble_method Voting HighestProbability HighestMeanProbability Default combining rule for categorical targets.
range_ensemble_method Mean Median Default combining rule for continuous targets.
large_boost flag Apply boosting to very large data sets.
split_alpha number Significance level for splitting.
merge_alpha number Significance level for merging.
bonferroni_adjustment flag Adjust significance values using Bonferroni method.
split_merged_categories flag Allow resplitting of merged categories.
chi_square Pearson LR Method used to calculate the chi-square statistic: Pearson or Likelihood Ratio
epsilon number Minimum change in expected cell frequencies..
max_iterations number Maximum iterations for convergence.
set_random_seed integer  
seed number  
calculate_variable_importance flag  
calculate_raw_propensities flag  
calculate_adjusted_propensities flag  
adjusted_propensity_partition Test Validation  
maximum_number_of_models integer