KRONECKER
This procedure computes the Kronecker product of two matrices.
Usage
- KRONECKER(matrixAname,matrixBname,matrixCname)
- Parameters
- matrixAname
- The name of input matrix A.
- matrixBname
- The name of input matrix B.
- matrixCname
- The name of output matrix C.
Details
Matrices A and B DO NOT need to have the same dimensions, that is, number of rows and columns. The resulting matrix C has dimensions corresponding to the products of the respective dimensions of A and B. Matrix C must not exist prior to the operation. If A is an m by n matrix and B is a k by l matrix, then the Kronecker product m * k by n * l matrix such that C_{i * k + r, j * l + s} = A_{i, j} * B_{r, s}.
Examples
CALL nzm..SHAPE('1,10,1000,10000', 2, 2, 'A');
CALL nzm..SHAPE('2,5,7,19', 2, 2, 'B');
CALL nzm..KRONECKER('A', 'B', 'C');
CALL nzm..PRINT('C');
CALL nzm..DELETE_MATRIX('A');
CALL nzm..DELETE_MATRIX('B');
CALL nzm..DELETE_MATRIX('C');
SHAPE
-------
t
(1 row)
SHAPE
-------
t
(1 row)
KRONECKER
-----------
t
(1 row)
PRINT
-----------------------------------------------------------------
-- matrix: C --
2, 5, 20, 50
7, 19, 70, 190
2000, 5000, 20000, 50000
7000, 19000, 70000, 190000
(1 row)
DELETE_MATRIX
---------------
t
(1 row)
DELETE_MATRIX
---------------
t
(1 row)
DELETE_MATRIX
---------------
t
(1 row)