TensorRT model conversion

You can enable or disable NVIDIA TensorRT model conversion and configure the precision by which different model types are converted.

Configure TensorRT model conversion

To configure the TensorRT model conversion, edit the vision-edge-properties file in the following directory location:

<installation root directory>/volume/run/var/config/vision-edge-properties

From this directory location, you can complete the following conversion configurations:

  • Enable or disable a TensorRT conversion
  • Configure the precision at which different model types are converted.

Parameters to enable TensorRT model conversion

The following table details the parameters that control whether or not TensorRT model conversion is enabled for the different model types.

Table 1. Parameters to enable TensorRT model conversion
Parameter TRUE/FALSE Disable TensorRT model conversion
DLE_DISABLE_TENSORRT TRUE All model types. The value of this parameter overrides any model-specific settings.
DLE_DISABLE_TENSORRT_GOOGLENET TRUE GoogleNet models only.
DLE_DISABLE_TENSORRT_SSD TRUE SSD models only.
DLE_DISABLE_TENSORRT_YOLOV3 TRUE YOLOv3 models only.
DLE_DISABLE_TENSORRT_TINY_YOLOV3 TRUE Tiny YOLOv3 models only.

TensorRT model conversion precision

Models that are converted to 16-bit reduced precision run more efficiently and take up less GPU memory than models that maintain 32-bit precision. A model converted to 16-bit reduced precision can result in a small loss in accuracy.

The following table details the conversion values TensorRT model conversion.

Note: You must restart Maximo® Visual Inspection Edge for changes to take effect.

TensorRT model conversion values

Table 2. TensorRT model conversion values
Value Description
fp16

Models are converted to 16-bit floating point, reduced precision.

pf32 Models maintain 32-bit floating point precision.

Parameters for TensorRT model precision

The following table details the parameters that determine the TensorRT model precision that is used during TensorRT model conversion.

Table 3. Parameters for TensorRT model conversion
Parameter Model type that is set for TensorRT model precision
DLE_TENSORRT_PRECISION_GOOGLENET fp16/fp32 GoogLeNet
DLE_TENSORRT_PRECISION_SSD fp16/fp32 SSD
DLE_TENSORRT_PRECISION_YOLOV3 fp16/fp32 YOLOv3
DLE_TENSORRT_PRECISION_TINY_YOLOV3 fp16/fp32 Tiny YOLOv3