Tracking Spark (Scala/Java)
Databand provides a set of Java libraries for tracking JVM-specific applications such as Spark jobs written in Scala or Java. Follow this guide to start tracking JVM applications.
Configuring SDK
Make sure you have followed Installing JVM DBND guide to integrate DBND libraries into your Spark application. Use Installing on Spark Cluster to configure
your Spark Cluster. Following properties are required for proper tracking: DBND__CORE__DATABAND_URL
, DBND__CORE__DATABAND_ACCESS_TOKEN
, DBND__TRACKING
.
Tracking Job Metadata
The sections below describe different options available for tracking pipeline metadata.
Logging Metrics
You can log any custom metrics that are important for pipeline and data observability. Examples include custom metrics for data quality information, like data counts or null counts, and custom KPIs particular to your data.
To enable logging of strings and numeric values, use the ai.databand.log.DbndLogger.logMetric()
method:
DbndLogger.logMetric("data", data);
Tracking Pipeline Functions With Annotations
If you have a more complex pipeline structure, or want to present your pipeline functions and store metadata as separate tasks, you can add annotations to your pipeline code. Method annotation will both enable input/output tracking for each method and link them visually.
To mark the methods that you want to track with the @Task
annotation, use:
import ai.databand.annotations.Task
object ScalaSparkPipeline {
@Task
def main(args: Array[String]): Unit = {
// init code
// ...
// task 1
val imputed = unitImputation(rawData, columnsToImpute, 10)
// task 2
val clean = dedupRecords(imputed, keyColumns)
// task 3
val report = createReport(clean)
}
@Task
protected def unitImputation(rawData: DataFrame, columnsToImpute: Array[String], value: Int): DataFrame = {
// ...
}
@Task
protected def dedupRecords(data: Dataset[Row], keyColumns: Array[String]): DataFrame = {
// ...
}
@Task
protected def createReport(data: Dataset[Row]): Dataset[Row] = {
// ...
}
}
import ai.databand.annotations.Task;
public class ProcessDataSpark {
@Task
public void processCustomerData(String inputFile, String outputFile) {
// setup code...
// task 1
Dataset<Row> imputed = unitImputation(rawData, columnsToImpute, 10);
// task 2
Dataset<Row> clean = dedupRecords(imputed, keyColumns);
// task 3
Dataset<Row> report = createReport(clean);
// ...
}
@Task
protected Dataset<Row> unitImputation(Dataset<Row> rawData, String[] columnsToImpute, int value) {
// ...
}
@Task
protected Dataset<Row> dedupRecords(Dataset<Row> data, String[] keyColumns) {
// ...
}
@Task
protected Dataset<Row> createReport(Dataset<Row> data) {
// ...
}
}
To use annotations and track the flow of tasks with annotations, the Databand Java agent instruments your application and should be included in the application startup script. See Installing JVM SDK and Agent and Installing DBND on Spark Cluster .
Your job has been submitted with the following parameter:
spark-submit ... --conf "spark.driver.extraJavaOptions=-javaagent:REPLACE_WITH_PATH_TO_AGENT/dbnd-agent-${DBND_VERSION}-all.jar
Logging Dataset Operations
Databand allows you to track your dataset operations. You need to use DbndLogger.logDatasetOperation()
:
import ai.databand.log.DbndLogger;
//...
@Task("create_report")
public void ingestData(String path) {
Dataset<Row> data = sql.read().json(path);
// 1. Track simple:
DbndLogger.logDatasetOperation(path, DatasetOperationType.READ, data);
//2. Track passed/failed operation with error details:
try {
...
DbndLogger.logDatasetOperation(path, DatasetOperationType.READ, data);
} catch {
case e: Exception =>
DbndLogger.logDatasetOperation(path, DatasetOperationType.READ, DatasetOperationStatus.NOK, data, e)
}
//3. Track failed operation:
DbndLogger.logDatasetOperation(path, DatasetOperationType.READ, DatasetOperationStatus.NOK, data)
// track without preview/schema:
DbndLogger.logDatasetOperation(path, DatasetOperationType.READ, DatasetOperationStatus.OK, data, false, false);
}
//...
For more details, see Dataset Logging.
Job Logging
Databand support logs limit and head/tail logging. Following properties are responsible for controlling it:
DBND__LOG__PREVIEW_HEAD_BYTES
specifies how many bytes should be fetched from log headDBND__LOG__PREVIEW_TAIL_BYTES
specifies how many bytes should be fetched from log tail
Enabling Tracking Spark metrics and I/O
Databand can capture Spark Executor metrics, and any I/O operation by your spark code. Please check Tracking Spark/JVM Applications for more information.
These listeners can be enabled via configuration . We suggest you use this method.
For trying out this feature you can add it programmatically to your spark application. Add the Databand Spark Listener to your Spark context:
import ai.databand.annotations.Task
import ai.databand.spark.DbndSparkListener
import org.apache.spark.sql.{Dataset, Row, SparkSession}
object CreateReport {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder
.appName("CreateReportSparkScala")
.getOrCreate
val listener = new DbndSparkListener
spark.sparkContext.addSparkListener(listener)
}
}
import ai.databand.annotations.Task;
import ai.databand.spark.DbndSparkListener;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SparkSession;
public class CreateReport {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("CreateReportSparkJava")
.getOrCreate();
DbndSparkListener listener = new DbndSparkListener();
spark.sparkContext().addSparkListener(listener);
//...
}
}
Spark with Deequ for Data Quality Metrics
Installation
A prerequisite for using Deequ is adding deequ
JARs and ai.databand:dbnd-api-deequ
to your project dependencies:
libraryDependencies ++= Seq(
"com.amazon.deequ" % "deequ" % "x.x.x-spark-x.x"
"ai.databand" % "dbnd-api-deequ" % "0.xx.x",
)
<dependencyManagement>
<dependencies>
<dependency>
<groupId>com.amazon.deequ</groupId>
<artifactId>deequ</artifactId>
<version>x.x.x-spark-x.x</version>
</dependency>
<dependency>
<groupId>ai.databand</groupId>
<artifactId>dbnd-api-deequ</artifactId>
<version>0.xx.x</version>
</dependency>
</dependencies>
</dependencyManagement>
dependencies {
implementation 'com.amazon.deequ:deequ:x.x.x-spark-x.x'
implementation 'ai.databand:dbnd-api-deequ:0.xx.x'
}
DBND JVM Deequ Metrics Repository
Databand utilizes a custom MetricsRepository and DbndResultKey. You need to explicitly add both to the code:
import ai.databand.deequ.DbndMetricsRepository
@Task
protected def dedupRecords(data: Dataset[Row], keyColumns: Array[String]): Dataset[Row] = {
val dedupedData = data.dropDuplicates(keyColumns)
// custom metrics repository
val metricsRepo = new DbndMetricsRepository(new InMemoryMetricsRepository)
// capturing dataset verification results
VerificationSuite()
.onData(dedupedData)
.addCheck(
Check(CheckLevel.Error, "Dedup testing")
.isUnique("name")
.isUnique("id")
.isComplete("name")
.isComplete("id")
.isPositive("score"))
.useRepository(metricsRepo)
.saveOrAppendResult(new DbndResultKey("dedupedData"))
.run()
// using metrics repositoty to capture dataset profiling results
ColumnProfilerRunner()
.onData(dedupedData)
.useRepository(metricsRepo)
.saveOrAppendResult(new DbndResultKey("dedupedData"))
.run()
}
If you already use a metrics repository, you can wrap it inside Databand's new DbndMetricsRepository(new InMemoryMetricsRepository)
. Databand will first submit the metrics to the wrapped repository and to the Databand tracker
afterward.
To distinguish metric keys, you should use a special DbndResultKey
. We recommend giving your checks/profiles names that will allow you to clearly distinguish them in the Databand's monitoring UI.
A Note on Scala/Spark Compatibility
Databand library is Scala/Spark-agnostic and can be used with any combination of Scala/Spark. However, the Deequ version should be selected carefully to match your needs. Please refer to Deequ docs and select the exact version from the list of available versions.