IDAX.PPV - Calculate the positive predictive value from a confusion matrix
Use this stored procedure to calculate the positive predictive value for a class from a confusion matrix. The positive predictive value is the ratio of the number of records, or correctly classified records, for the specified class divided by the total number of predictions for this class.
Authorization
The privileges held by the authorization ID of the statement must include the IDAX_USER role.
Syntax
IDAX.PPV(in parameter_string varchar(32672))
Parameter descriptions
- parameter_string
- Mandatory one-string parameter that contains pairs of <parameter>=<value> entries that are separated by a comma.
Returned information
Double the positive predictive value as a result set.
Example
CALL IDAX.SPLIT_DATA('intable=samples.customer_churn,traintable=cust_train,testtable=cust_test,id=cust_id,fraction=0.30');
CALL IDAX.GROW_DECTREE('model=cust_dt, intable=cust_train, id=cust_id, target=censor, incolumn=duration:ignore;censor:nom, minsplit=2');
CALL IDAX.PREDICT_DECTREE('model=cust_dt, intable=cust_test, outtable=cust_dt_out');
call IDAX.CONFUSION_MATRIX('intable=cust_test, id=cust_id, target=censor, resulttable=cust_dt_out, matrixtable=cust_dt_cm');
call IDAX.PPV('matrixTable=cust_dt_cm, class=0');