Regression functions (REGR_AVGX, REGR_AVGY, REGR_COUNT, ...)
The regression functions support the fitting of an ordinaryleastsquares regression line of the form y = a * x + b to a set of number pairs.
The schema is SYSIBM.
 expression1
 An expression that returns a value of any builtin numeric data type. It is interpreted as a value of the dependent variable (that is, a
y value
).  expression2
 An expression that returns a value of any builtin numeric data type. It is interpreted as a value of the independent variable (that is, an
x value
).
The REGR_COUNT function returns the number of nonnull number pairs used to fit the regression line.
The REGR_INTERCEPT (or REGR_ICPT) function returns the yintercept of the regression line (b
in the equation mentioned previously).
The REGR_R2 function returns the coefficient of determination (Rsquared
or goodnessoffit
) for the regression.
The REGR_SLOPE function returns the slope of the line (a
in the equation mentioned previously).
The REGR_AVGX, REGR_AVGY, REGR_SXX, REGR_SXY, and REGR_SYY functions return quantities that can be used to compute various diagnostic statistics needed for the evaluation of the quality and statistical validity of the regression model.
The data type of the result of REGR_COUNT is integer. For the remaining functions, if either argument is DECFLOAT(n), the data type of the result is DECFLOAT(34); otherwise, the data type of the result is doubleprecision floatingpoint. If either argument is a special decimal floatingpoint value, the rules for general arithmetic operations for decimal floatingpoint apply. See General Arithmetic Operation Rules for DECFLOAT for more information.
The result can be null. When not null, the result of REGR_R2 is between 0 and 1, and the result of both REGR_SXX and REGR_SYY is nonnegative.
Each function is applied to the set of (expression1, expression2) pairs derived from the argument values by the elimination of all pairs for which either expression1 or expression2 is null.
REGR_SLOPE(expression1,expression2) =
COVARIANCE(expression1,expression2)/VARIANCE(expression2)
REGR_INTERCEPT(expression1, expression2) =
AVG(expression1)  REGR_SLOPE(expression1, expression2) * AVG(expression2)
REGR_R2(expression1, expression2) =
POWER(CORRELATION(expression1, expression2), 2) if VARIANCE(expression1)>0
REGR_R2(expression1, expression2) = 1 if VARIANCE(expression1)=0
REGR_AVGX(expression1, expression2) = AVG(expression2)
REGR_AVGY(expression1, expression2) = AVG(expression1)
REGR_SXX(expression1, expression2) =
REGR_COUNT(expression1, expression2) * VARIANCE(expression2)
REGR_SYY(expression1, expression2) =
REGR_COUNT(expression1, expression2) * VARIANCE(expression1)
REGR_SXY(expression1, expression2) =
REGR_COUNT(expression1, expression2) * COVARIANCE(expression1, expression2)
If the set is not empty and VARIANCE(expression2) is equal to zero, then the regression line either has infinite slope or is undefined. In this case, the functions REGR_SLOPE, REGR_INTERCEPT, and REGR_R2 each return a null value, and the remaining functions return values as defined previously. If the set is empty, REGR_COUNT returns zero and the remaining functions return a null value.
The order in which the values are aggregated is undefined, but every intermediate result must be within the range of the result data type.
The regression functions are all computed simultaneously during a single pass through the data. In general, it is more efficient to use the regression functions to compute the statistics needed for a regression analysis than to perform the equivalent computations using ordinary column functions such as AVERAGE, VARIANCE, COVARIANCE, and so forth.
 Adjusted R2
 1  ( (1  REGR_R2) * ((REGR_COUNT  1) / (REGR_COUNT  2)) )
 Standard error
 SQRT( (REGR_SYY(POWER(REGR_SXY,2)/REGR_SXX))/(REGR_COUNT2) )
 Total sum of squares
 REGR_SYY
 Regression sum of squares
 POWER(REGR_SXY,2) / REGR_SXX
 Residual sum of squares
 (Total sum of squares)(Regression sum of squares)
 t statistic for slope
 REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)
 t statistic for yintercept
 REGR_INTERCEPT/((Standard error) * SQRT((1/REGR_COUNT)+(POWER(REGR_AVGX,2)/REGR_SXX))
Examples

Using the EMPLOYEE table, compute an ordinaryleastsquares regression line that expresses the bonus of an employee in department (WORKDEPT)
'A00'
as a linear function of the employee's salary. Set the host variables SLOPE, ICPT, RSQR (doubleprecision floating point) to the slope, intercept, and coefficient of determination of the regression line, respectively. Also set the host variables AVGSAL and AVGBONUS to the average salary and average bonus, respectively, of the employees in department'A00'
, and set the host variable CNT (integer) to the number of employees in department'A00'
for whom both salary and bonus data are available. Store the remaining regression statistics in host variables SXX, SYY, and SXY.SELECT REGR_SLOPE(BONUS,SALARY), REGR_INTERCEPT(BONUS,SALARY), REGR_R2(BONUS,SALARY), REGR_COUNT(BONUS,SALARY), REGR_AVGX(BONUS,SALARY), REGR_AVGY(BONUS,SALARY), REGR_SXX(BONUS,SALARY), REGR_SYY(BONUS,SALARY), REGR_SXY(BONUS,SALARY) INTO :SLOPE, :ICPT, :RSQR, :CNT, :AVGSAL, :AVGBONUS, :SXX, :SYY, :SXY FROM EMPLOYEE WHERE WORKDEPT = 'A00'
When using the sample table, the host variables are set to the following approximate values:SLOPE: +1.71002671916749E002 ICPT: +1.00871888623260E+002 RSQR: +9.99707928128685E001 CNT: 3 AVGSAL: +4.28333333333333E+004 AVGBONUS: +8.33333333333333E+002 SXX: +2.96291666666667E+008 SYY: +8.66666666666667E+004 SXY: +5.06666666666667E+006