Diffie-Hellman Key Exchange between 2 Parties
import java.math.BigInteger;
import java.security.AlgorithmParameterGenerator;
import java.security.AlgorithmParameters;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PublicKey;
import java.security.spec.X509EncodedKeySpec;
import java.util.Arrays;
import javax.crypto.Cipher;
import javax.crypto.KeyAgreement;
import javax.crypto.SecretKey;
import javax.crypto.ShortBufferException;
import javax.crypto.interfaces.DHPublicKey;
import javax.crypto.spec.DHParameterSpec;
/**
* This program executes the Diffie-Hellman key agreement protocol
* between 2 parties: Alice and Bob.
*
* By default, preconfigured parameters (1024-bit prime modulus and base
* generator used by SKIP) are used.
* If this program is called with the "-gen" option, a new set of
* parameters is created.
*/
public class DHKeyAgreement2 {
private DHKeyAgreement2() {
}
public static void main(String argv[]) {
try {
String mode = "USE_SKIP_DH_PARAMS";
DHKeyAgreement2 keyAgree = new DHKeyAgreement2();
if (argv.length > 1) {
keyAgree.usage();
throw new Exception("Wrong number of command options");
} else
if (argv.length == 1) {
if (!(argv[0].equals("-gen"))) {
keyAgree.usage();
throw new Exception("Unrecognized flag: " + argv[0]);
}
mode = "GENERATE_DH_PARAMS";
}
keyAgree.run(mode);
} catch (Exception e) {
System.err.println("Error: " + e);
System.exit(1);
}
}
private void run(String mode) throws Exception {
DHParameterSpec dhSkipParamSpec;
if (mode.equals("GENERATE_DH_PARAMS")) {
// Some central authority creates new DH parameters
System.out.println("Creating Diffie-Hellman parameters (takes VERY long) ...");
AlgorithmParameterGenerator paramGen =
AlgorithmParameterGenerator.getInstance("DH");
paramGen.init(512);
AlgorithmParameters params = paramGen.generateParameters();
dhSkipParamSpec =
(DHParameterSpec) params.getParameterSpec(DHParameterSpec.class);
} else {
// use some pre-generated, default DH parameters
System.out.println("Using SKIP Diffie-Hellman parameters");
dhSkipParamSpec = new DHParameterSpec(skip1024Modulus, skip1024Base);
}
/*
* Alice creates her own DH key pair, using the DH parameters from
* earlier code
*/
System.out.println("ALICE: Generate DH keypair ...");
KeyPairGenerator aliceKpairGen = KeyPairGenerator.getInstance("DH");
aliceKpairGen.initialize(dhSkipParamSpec);
KeyPair aliceKpair = aliceKpairGen.generateKeyPair();
// Alice creates and initializes her DH KeyAgreement object
System.out.println("ALICE: Initialization ...");
KeyAgreement aliceKeyAgree = KeyAgreement.getInstance("DH");
aliceKeyAgree.init(aliceKpair.getPrivate());
// Alice encodes her public key, and sends it over to Bob.
byte[] alicePubKeyEnc = aliceKpair.getPublic().getEncoded();
/*
* Let's turn over to Bob. Bob has received Alice's public key
* in encoded format.
* He instantiates a DH public key from the encoded key material.
*/
KeyFactory bobKeyFac = KeyFactory.getInstance("DH");
X509EncodedKeySpec x509KeySpec = new X509EncodedKeySpec(alicePubKeyEnc);
PublicKey alicePubKey = bobKeyFac.generatePublic(x509KeySpec);
/*
* Bob gets the DH parameters associated with Alice's public key.
* He must use the same parameters when he generates his own key
* pair.
*/
DHParameterSpec dhParamSpec = ((DHPublicKey) alicePubKey).getParams();
// Bob creates his own DH key pair
System.out.println("BOB: Generate DH keypair ...");
KeyPairGenerator bobKpairGen = KeyPairGenerator.getInstance("DH");
bobKpairGen.initialize(dhParamSpec);
KeyPair bobKpair = bobKpairGen.generateKeyPair();
// Bob creates and initializes his DH KeyAgreement object
System.out.println("BOB: Initialization ...");
KeyAgreement bobKeyAgree = KeyAgreement.getInstance("DH");
bobKeyAgree.init(bobKpair.getPrivate());
// Bob encodes his public key, and sends it over to Alice.
byte[] bobPubKeyEnc = bobKpair.getPublic().getEncoded();
/*
* Alice uses Bob's public key for the first (and only) phase
* of her version of the DH
* protocol.
* Before she can do so, she has to instanticate a DH public key
* from Bob's encoded key material.
*/
KeyFactory aliceKeyFac = KeyFactory.getInstance("DH");
x509KeySpec = new X509EncodedKeySpec(bobPubKeyEnc);
PublicKey bobPubKey = aliceKeyFac.generatePublic(x509KeySpec);
System.out.println("ALICE: Execute PHASE1 ...");
aliceKeyAgree.doPhase(bobPubKey, true);
/*
* Bob uses Alice's public key for the first (and only) phase
* of his version of the DH
* protocol.
*/
System.out.println("BOB: Execute PHASE1 ...");
bobKeyAgree.doPhase(alicePubKey, true);
/*
* At this stage, both Alice and Bob have completed the DH key
* agreement protocol.
* Both generate the (same) shared secret.
*/
byte[] aliceSharedSecret = aliceKeyAgree.generateSecret();
int aliceLen = aliceSharedSecret.length;
byte[] bobSharedSecret = new byte[aliceLen];
int bobLen;
try {
// show example of what happens if you
// provide an output buffer that is too short
bobLen = bobKeyAgree.generateSecret(bobSharedSecret, 1);
} catch (ShortBufferException e) {
System.out.println(e.getMessage());
}
// provide output buffer of required size
bobLen = bobKeyAgree.generateSecret(bobSharedSecret, 0);
System.out.println("Alice secret: " + toHexString(aliceSharedSecret));
System.out.println("Bob secret: " + toHexString(bobSharedSecret));
if (!java.util.Arrays.equals(aliceSharedSecret, bobSharedSecret))
throw new Exception("Shared secrets differ");
System.out.println("Shared secrets are the same");
/*
* Now let's return the shared secret as a SecretKey object
* and use it for encryption. First, we generate SecretKeys for the
* "DES" algorithm (based on the raw shared secret data) and
* then we use DES in ECB mode
* as the encryption algorithm. DES in ECB mode does not require any
* parameters.
*
* Then we use DES in CBC mode, which requires an initialization
* vector (IV) parameter. In CBC mode, you need to initialize the
* Cipher object with an IV, which can be supplied using the
* javax.crypto.spec.IvParameterSpec class. Note that you have to use
* the same IV for encryption and decryption: If you use a different
* IV for decryption than you used for encryption, decryption will
* fail.
*
* Note: If you do not specify an IV when you initialize the
* Cipher object for encryption, the underlying implementation
* will generate a random IV. You will have to retrieve this IV using the
* javax.crypto.Cipher.getParameters() method, which returns an
* instance of java.security.AlgorithmParameters. You need to transfer
* the contents of that object (for example, in encoded format, obtained
* using the AlgorithmParameters.getEncoded() method) to the party who will
* do the decryption. When initializing the Cipher for decryption,
* the (reinstantiated) AlgorithmParameters object must be passed to
* the Cipher.init() method.
*/
System.out.println("Return shared secret as SecretKey object ...");
// Bob
// Note: The call to bobKeyAgree.generateSecret reset the key
// agreement object, so we call doPhase again prior to another
// generateSecret call
bobKeyAgree.doPhase(alicePubKey, true);
SecretKey bobDesKey = bobKeyAgree.generateSecret("DES");
// Alice
// Note: The call to aliceKeyAgree.generateSecret reset the key
// agreement object, so we call doPhase again prior to another
// generateSecret call
aliceKeyAgree.doPhase(bobPubKey, true);
SecretKey aliceDesKey = aliceKeyAgree.generateSecret("DES");
/*
* Bob encrypts, using DES in ECB mode
*/
Cipher bobCipher = Cipher.getInstance("DES/ECB/PKCS5Padding");
bobCipher.init(Cipher.ENCRYPT_MODE, bobDesKey);
byte[] cleartext = "This is just an example".getBytes();
byte[] ciphertext = bobCipher.doFinal(cleartext);
/*
* Alice decrypts, using DES in ECB mode
*/
Cipher aliceCipher = Cipher.getInstance("DES/ECB/PKCS5Padding");
aliceCipher.init(Cipher.DECRYPT_MODE, aliceDesKey);
byte[] recovered = aliceCipher.doFinal(ciphertext);
if (!java.util.Arrays.equals(cleartext, recovered))
throw new Exception(
"DES in CBC mode recovered text is " + "different from cleartext");
System.out.println("DES in ECB mode recovered text is " + "same as cleartext");
/*
* Bob encrypts, using DES in CBC mode
*/
bobCipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
bobCipher.init(Cipher.ENCRYPT_MODE, bobDesKey);
cleartext = "This is just an example".getBytes();
ciphertext = bobCipher.doFinal(cleartext);
// Retrieve the parameter that was used, and transfer it to Alice in
// encoded format
byte[] encodedParams = bobCipher.getParameters().getEncoded();
/*
* Alice decrypts, using DES in CBC mode
*/
// Instantiate AlgorithmParameters object from parameter encoding
// obtained from Bob
AlgorithmParameters params = AlgorithmParameters.getInstance("DES");
params.init(encodedParams);
aliceCipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
aliceCipher.init(Cipher.DECRYPT_MODE, aliceDesKey, params);
recovered = aliceCipher.doFinal(ciphertext);
if (!java.util.Arrays.equals(cleartext, recovered))
throw new Exception(
"DES in CBC mode recovered text is " + "different from cleartext");
System.out.println("DES in CBC mode recovered text is " + "same as cleartext");
}
/*
* Converts a byte to hex digit and writes to the supplied buffer
*/
private void byte2hex(byte b, StringBuffer buf) {
char[] hexChars = { '0', '1', '2', '3', '4', '5', '6', '7', '8',
'9', 'A', 'B', 'C', 'D', 'E', 'F' };
int high = ((b & 0xf0) >> 4);
int low = (b & 0x0f);
buf.append(hexChars[high]);
buf.append(hexChars[low]);
}
/*
* Converts a byte array to hex string
*/
private String toHexString(byte[] block) {
StringBuffer buf = new StringBuffer();
int len = block.length;
for (int i = 0; i < len; i++) {
byte2hex(block[i], buf);
if (i < len - 1) {
buf.append(":");
}
}
return buf.toString();
}
/*
* Prints the usage of this test.
*/
private void usage() {
System.err.print("DHKeyAgreement usage: ");
System.err.println("[-gen]");
}
// The 1024 bit Diffie-Hellman modulus values used by SKIP
private static final byte skip1024ModulusBytes[] = {
(byte)0xF4, (byte)0x88, (byte)0xFD, (byte)0x58,
(byte)0x4E, (byte)0x49, (byte)0xDB, (byte)0xCD,
(byte)0x20, (byte)0xB4, (byte)0x9D, (byte)0xE4,
(byte)0x91, (byte)0x07, (byte)0x36, (byte)0x6B,
(byte)0x33, (byte)0x6C, (byte)0x38, (byte)0x0D,
(byte)0x45, (byte)0x1D, (byte)0x0F, (byte)0x7C,
(byte)0x88, (byte)0xB3, (byte)0x1C, (byte)0x7C,
(byte)0x5B, (byte)0x2D, (byte)0x8E, (byte)0xF6,
(byte)0xF3, (byte)0xC9, (byte)0x23, (byte)0xC0,
(byte)0x43, (byte)0xF0, (byte)0xA5, (byte)0x5B,
(byte)0x18, (byte)0x8D, (byte)0x8E, (byte)0xBB,
(byte)0x55, (byte)0x8C, (byte)0xB8, (byte)0x5D,
(byte)0x38, (byte)0xD3, (byte)0x34, (byte)0xFD,
(byte)0x7C, (byte)0x17, (byte)0x57, (byte)0x43,
(byte)0xA3, (byte)0x1D, (byte)0x18, (byte)0x6C,
(byte)0xDE, (byte)0x33, (byte)0x21, (byte)0x2C,
(byte)0xB5, (byte)0x2A, (byte)0xFF, (byte)0x3C,
(byte)0xE1, (byte)0xB1, (byte)0x29, (byte)0x40,
(byte)0x18, (byte)0x11, (byte)0x8D, (byte)0x7C,
(byte)0x84, (byte)0xA7, (byte)0x0A, (byte)0x72,
(byte)0xD6, (byte)0x86, (byte)0xC4, (byte)0x03,
(byte)0x19, (byte)0xC8, (byte)0x07, (byte)0x29,
(byte)0x7A, (byte)0xCA, (byte)0x95, (byte)0x0C,
(byte)0xD9, (byte)0x96, (byte)0x9F, (byte)0xAB,
(byte)0xD0, (byte)0x0A, (byte)0x50, (byte)0x9B,
(byte)0x02, (byte)0x46, (byte)0xD3, (byte)0x08,
(byte)0x3D, (byte)0x66, (byte)0xA4, (byte)0x5D,
(byte)0x41, (byte)0x9F, (byte)0x9C, (byte)0x7C,
(byte)0xBD, (byte)0x89, (byte)0x4B, (byte)0x22,
(byte)0x19, (byte)0x26, (byte)0xBA, (byte)0xAB,
(byte)0xA2, (byte)0x5E, (byte)0xC3, (byte)0x55,
(byte)0xE9, (byte)0x2F, (byte)0x78, (byte)0xC7
};
// The SKIP 1024 bit modulus
private static final BigInteger skip1024Modulus =
new BigInteger(1, skip1024ModulusBytes);
// The base used with the SKIP 1024 bit modulus
private static final BigInteger skip1024Base = BigInteger.valueOf(2);
}
Diffie-Hellman Key Exchange between 3 Parties
import java.math.BigInteger;
import java.security.Key;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.util.Arrays;
import javax.crypto.KeyAgreement;
import javax.crypto.spec.DHParameterSpec;
/**
* This program executes the Diffie-Hellman key agreement protocol
* between 3 parties: Alice, Bob, and Carol.
*
* We use the same 1024-bit prime modulus and base generator that are
* used by SKIP.
*/
public class DHKeyAgreement3 {
private DHKeyAgreement3() {
}
public static void main(String argv[]) {
try {
DHKeyAgreement3 keyAgree = new DHKeyAgreement3();
keyAgree.run();
} catch (Exception e) {
System.err.println("Error: " + e);
System.exit(1);
}
}
private void run() throws Exception {
DHParameterSpec dhSkipParamSpec;
System.out.println("Using SKIP Diffie-Hellman parameters");
dhSkipParamSpec = new DHParameterSpec(skip1024Modulus, skip1024Base);
// Alice creates her own DH key pair
System.out.println("ALICE: Generate DH keypair ...");
KeyPairGenerator aliceKpairGen = KeyPairGenerator.getInstance("DH");
aliceKpairGen.initialize(dhSkipParamSpec);
KeyPair aliceKpair = aliceKpairGen.generateKeyPair();
// Bob creates his own DH key pair
System.out.println("BOB: Generate DH keypair ...");
KeyPairGenerator bobKpairGen = KeyPairGenerator.getInstance("DH");
bobKpairGen.initialize(dhSkipParamSpec);
KeyPair bobKpair = bobKpairGen.generateKeyPair();
// Carol creates her own DH key pair
System.out.println("CAROL: Generate DH keypair ...");
KeyPairGenerator carolKpairGen = KeyPairGenerator.getInstance("DH");
carolKpairGen.initialize(dhSkipParamSpec);
KeyPair carolKpair = carolKpairGen.generateKeyPair();
// Alice initialize
System.out.println("ALICE: Initialize ...");
KeyAgreement aliceKeyAgree = KeyAgreement.getInstance("DH");
aliceKeyAgree.init(aliceKpair.getPrivate());
// Bob initialize
System.out.println("BOB: Initialize ...");
KeyAgreement bobKeyAgree = KeyAgreement.getInstance("DH");
bobKeyAgree.init(bobKpair.getPrivate());
// Carol initialize
System.out.println("CAROL: Initialize ...");
KeyAgreement carolKeyAgree = KeyAgreement.getInstance("DH");
carolKeyAgree.init(carolKpair.getPrivate());
// Alice uses Carol's public key
Key ac = aliceKeyAgree.doPhase(carolKpair.getPublic(), false);
// Bob uses Alice's public key
Key ba = bobKeyAgree.doPhase(aliceKpair.getPublic(), false);
// Carol uses Bob's public key
Key cb = carolKeyAgree.doPhase(bobKpair.getPublic(), false);
// Alice uses Carol's result
aliceKeyAgree.doPhase(cb, true);
// Bob uses Alice's result
bobKeyAgree.doPhase(ac, true);
// Carol uses Bob's result
carolKeyAgree.doPhase(ba, true);
// Alice, Bob and Carol compute their secrets
byte[] aliceSharedSecret = aliceKeyAgree.generateSecret();
System.out.println("Alice secret: " + toHexString(aliceSharedSecret));
byte[] bobSharedSecret = bobKeyAgree.generateSecret();
System.out.println("Bob secret: " + toHexString(bobSharedSecret));
byte[] carolSharedSecret = carolKeyAgree.generateSecret();
System.out.println("Carol secret: " + toHexString(carolSharedSecret));
// Compare Alice and Bob
if (!java.util.Arrays.equals(aliceSharedSecret, bobSharedSecret))
throw new Exception("Alice and Bob differ");
System.out.println("Alice and Bob are the same");
// Compare Bob and Carol
if (!java.util.Arrays.equals(bobSharedSecret, carolSharedSecret))
throw new Exception("Bob and Carol differ");
System.out.println("Bob and Carol are the same");
}
/*
* Converts a byte to hex digit and writes to the supplied buffer
*/
private void byte2hex(byte b, StringBuffer buf) {
char[] hexChars = { '0', '1', '2', '3', '4', '5', '6', '7', '8',
'9', 'A', 'B', 'C', 'D', 'E', 'F' };
int high = ((b & 0xf0) >> 4);
int low = (b & 0x0f);
buf.append(hexChars[high]);
buf.append(hexChars[low]);
}
/*
* Converts a byte array to hex string
*/
private String toHexString(byte[] block) {
StringBuffer buf = new StringBuffer();
int len = block.length;
for (int i = 0; i < len; i++) {
byte2hex(block[i], buf);
if (i < len - 1) {
buf.append(":");
}
}
return buf.toString();
}
/*
* Prints the usage of this test.
*/
private void usage() {
System.err.print("DHKeyAgreement usage: ");
System.err.println("[-gen]");
}
// The 1024 bit Diffie-Hellman modulus values used by SKIP
private static final byte skip1024ModulusBytes[] = {
(byte)0xF4, (byte)0x88, (byte)0xFD, (byte)0x58,
(byte)0x4E, (byte)0x49, (byte)0xDB, (byte)0xCD,
(byte)0x20, (byte)0xB4, (byte)0x9D, (byte)0xE4,
(byte)0x91, (byte)0x07, (byte)0x36, (byte)0x6B,
(byte)0x33, (byte)0x6C, (byte)0x38, (byte)0x0D,
(byte)0x45, (byte)0x1D, (byte)0x0F, (byte)0x7C,
(byte)0x88, (byte)0xB3, (byte)0x1C, (byte)0x7C,
(byte)0x5B, (byte)0x2D, (byte)0x8E, (byte)0xF6,
(byte)0xF3, (byte)0xC9, (byte)0x23, (byte)0xC0,
(byte)0x43, (byte)0xF0, (byte)0xA5, (byte)0x5B,
(byte)0x18, (byte)0x8D, (byte)0x8E, (byte)0xBB,
(byte)0x55, (byte)0x8C, (byte)0xB8, (byte)0x5D,
(byte)0x38, (byte)0xD3, (byte)0x34, (byte)0xFD,
(byte)0x7C, (byte)0x17, (byte)0x57, (byte)0x43,
(byte)0xA3, (byte)0x1D, (byte)0x18, (byte)0x6C,
(byte)0xDE, (byte)0x33, (byte)0x21, (byte)0x2C,
(byte)0xB5, (byte)0x2A, (byte)0xFF, (byte)0x3C,
(byte)0xE1, (byte)0xB1, (byte)0x29, (byte)0x40,
(byte)0x18, (byte)0x11, (byte)0x8D, (byte)0x7C,
(byte)0x84, (byte)0xA7, (byte)0x0A, (byte)0x72,
(byte)0xD6, (byte)0x86, (byte)0xC4, (byte)0x03,
(byte)0x19, (byte)0xC8, (byte)0x07, (byte)0x29,
(byte)0x7A, (byte)0xCA, (byte)0x95, (byte)0x0C,
(byte)0xD9, (byte)0x96, (byte)0x9F, (byte)0xAB,
(byte)0xD0, (byte)0x0A, (byte)0x50, (byte)0x9B,
(byte)0x02, (byte)0x46, (byte)0xD3, (byte)0x08,
(byte)0x3D, (byte)0x66, (byte)0xA4, (byte)0x5D,
(byte)0x41, (byte)0x9F, (byte)0x9C, (byte)0x7C,
(byte)0xBD, (byte)0x89, (byte)0x4B, (byte)0x22,
(byte)0x19, (byte)0x26, (byte)0xBA, (byte)0xAB,
(byte)0xA2, (byte)0x5E, (byte)0xC3, (byte)0x55,
(byte)0xE9, (byte)0x2F, (byte)0x78, (byte)0xC7
};
// The SKIP 1024 bit modulus
private static final BigInteger skip1024Modulus =
new BigInteger(1, skip1024ModulusBytes);
// The base used with the SKIP 1024 bit modulus
private static final BigInteger skip1024Base = BigInteger.valueOf(2);
}
Blowfish Example
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;
/**
* This program generates a Blowfish key, retrieves its raw bytes, and
* then reinstantiates a Blowfish key from the key bytes.
* The reinstantiated key is used to initialize a Blowfish cipher for
* encryption.
*/
public class BlowfishKey {
public static void main(String[] args) throws Exception {
KeyGenerator kgen = KeyGenerator.getInstance("Blowfish");
SecretKey skey = kgen.generateKey();
byte[] raw = skey.getEncoded();
SecretKeySpec skeySpec = new SecretKeySpec(raw, "Blowfish");
Cipher cipher = Cipher.getInstance("Blowfish");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
byte[] encrypted = cipher.doFinal("This is just an example".getBytes());
}
}
HMAC-MD5 Example
import javax.crypto.KeyGenerator;
import javax.crypto.Mac;
import javax.crypto.SecretKey;
/**
* This program demonstrates how to generate a secret-key object for
* HMAC-MD5, and initialize an HMAC-MD5 object with it.
*/
public class initMac {
public static void main(String[] args) throws Exception {
// Generate secret key for HMAC-MD5
KeyGenerator kg = KeyGenerator.getInstance("HmacMD5");
SecretKey sk = kg.generateKey();
// Get instance of Mac object implementing HMAC-MD5, and
// initialize it with the secret key
Mac mac = Mac.getInstance("HmacMD5");
mac.init(sk);
byte[] result = mac.doFinal("Hi There".getBytes());
}
}
Other Examples
Other example
code can be found in the samples
topic in jceDocs_samples.zip.