IBM Cloud Pak® for Data Version 4.8 will reach end of support (EOS) on 31 July, 2025. For more information, see the Discontinuance of service announcement for IBM Cloud Pak for Data Version 4.X.
Upgrade to IBM Software Hub Version 5.1 before IBM Cloud Pak for Data Version 4.8 reaches end of support. For more information, see Upgrading from IBM Cloud Pak for Data Version 4.8 to IBM Software Hub Version 5.1.
Geospatial data analysis
You can use the geospatio-temporal library to expand your data science analysis in Python notebooks to include location analytics by gathering, manipulating and displaying imagery, GPS, satellite photography and historical data.
The gespatio-temporal library is available in all IBM Watson Studio Spark with Python runtime environments.
Key functions
The geospatio-temporal library includes functions to read and write data, topological functions, geohashing, indexing, ellipsoidal and routing functions.
Key aspects of the library include:
- All calculated geometries are accurate without the need for projections.
- The geospatial functions take advantage of the distributed processing capabilities provided by Spark.
- The library includes native geohashing support for geometries used in simple aggregations and in indexing, thereby improving storage retrieval considerably.
- The library supports extensions of Spark distributed joins.
- The library supports the SQL/MM extensions to Spark SQL.
Getting started with the library
Before you can start using the library in a notebook, you must register STContext in your notebook to access the st functions.
To register STContext:
from pyst import STContext
stc = STContext(spark.sparkContext._gateway)
Next steps
After you have registered STContext in your notebook, you can begin exploring the spatio-temporal library for:
- Functions to read and write data
- Topological functions
- Geohashing functions
- Geospatial indexing functions
- Ellipsoidal functions
- Routing functions
Check out the following sample Python notebooks to learn how to use these different functions in Python notebooks:
- Use the spatio-temporal library for location analytics
- Use spatial indexing to query spatial data
- Spatial queries in PySpark
Create an application that uses the spatio-temporal library and runs as a Spark job on your Cloud Pak for Data cluster by using the Spark jobs REST APIs of Analytics Engine powered by Apache Spark:
Parent topic: Notebooks and scripts