ml function create
Create a function with the defined payload. A function is code that can be deployed as an online or batch deployment.
Syntax
cpd-cli ml function create \
[--context=<catalog-project-or-space-id>] \
[--cpd-config=<cpd-config-location>] \
[--cpd-scope=<cpd-config-location>] \
[--custom=<map<key,value>>] \
[--description=<resource-description>] \
[--jmes-query=<jmespath-query>] \
[--model-references=<function-model-references>] \
[--name=<resource-name>] \
[--output=json|yaml|table] \
[--output-file=<output-file-location>] \
--profile=<cpd-configuration-profile-name> \
[--project-id=<cpd-project-id>] \
[--quiet] \
[--raw-output=true|false] \
[--sample-scoring-input=<sample-scoring-data>] \
[--schemas=<expected-data-schemas>] \
--software-spec=<software-specification> \
--space-id=<space-identifier> \
[--tags=<tag1,tag2,...>] \
[--type=<function-type>] \
[--verbose]
Arguments
The ml function create
command has
no arguments.
Options
Option | Description |
---|---|
--context |
Specify the configuration context
name.
|
--cpd-config |
The Cloud Pak for Data
configuration location (for example, $HOME/.cpd-cli/config).
|
--cpd-scope |
The Cloud Pak for Data space, project, or catalog scope (for example, cpd://default-context/spaces/7bccdda4-9752-4f37-868e-891de6c48135).
|
--custom |
Specify user-defined properties as key-value pairs.
|
--description |
Specify a resource
description.
|
|
Display command
help.
|
--jmes-query |
Provide a JMESPath query to customize the output.
|
--model-references |
Specify a list of model references (if any) that are used by the function. The specified references are provided by the function owner and are used only for tracking usage.
|
--name |
Specify a resource name.
|
--output |
Specify an output format.
Valid formats include json, yaml, or text (the default
format).
|
--output-file |
Specify a file path where all output is redirected.
|
--profile |
The profile-name from the Cloud
Pak for Data configuration.
|
--project-id |
Specify a Cloud Pak for Data project instance that contains the resource.
|
--quiet |
Suppress verbose messages.
|
--raw-output |
When set to true, single values in
JSON output mode are not surrounded by quotes.
|
--sample-scoring-input |
Specify the sample scoring data.
|
--schemas |
Specify the expected data schemas. Schemas that are defined here take precedent over any schemas that are provided in the data references.
|
--software-spec |
Specify a software specification (SoftwareSpecRel object).
|
--space-id |
Specify a space identifier.
|
--tags |
Specify tags that can be used when searching for resources.
|
--type |
Specify a function type to create. Only the 'python' type is currently supported. Functions expect a *.gzip file that contains a python file that defines the function. The Python functions specify what must be run when the function is deployed and what must be run when the scoring function is called. You can customize what preparation Watson Machine Learning does in the environment when you deploy the function, as well as what steps Watson Machine Learning takes to generate the output when you later call the API. The function consists of the outer function (any place that is not within the score function) and the inner score function. The code that sits in the outer function runs when the function is deployed. The environment is then frozen and ready to be used whenever the online scoring or batch inline job processing API is called. The code that sits in the inner score function runs when the online scoring or batch inline job processing API is called (in the environment customized by the outer function). The following Python
example illustrates the
behavior:
For more information, see Deploying Python functions in Watson Machine Learning.
|
--verbose |
Logs include more detailed
messages.
|