Industry accelerators
The industry accelerators that are provided by IBM are a set of artifacts that help you address common business issues.
Each industry accelerator is designed to help you solve a specific business problem, whether it's preventing credit card fraud in the banking industry or optimizing the efficiency of your contact center. Browse the Accelerators catalog for the Cloud Pak for Data industry accelerators and download the ones you want.
Most accelerators include a Sample analytics project with everything you need to analyze data, build a model, and display results. The sample projects include detailed instructions, data sets, Juptyer notebooks, models, and R Shiny applications. Use these sample projects as templates for your own data science needs to learn specific techniques, or to demonstrate the capabilities of Watson™ Studio and other AI and analytics services.
Most accelerators also include a Business glossary that consists of terms and categories for data governance. The terms and categories provide meaning to the accelerator and act as the information architecture for the accelerator.
Sample analytics project
An analytics project contains the assets that you need to build and train the models that are associated with the accelerator. You import the project with data science assets.
- Audience
- Data scientists or business analysts who analyze data and build models to solve business problems.
- Contents
- A readme file that provides instructions.
- Requirements
- All users have permission to create analytics projects.
- Process overview
- Each accelerator provides detailed instructions. These steps provide an overview of the process
for sample projects:
- Import the analytics project. See Importing a project.
- Follow the instructions in the README to run the notebooks and perform other tasks.
- Next steps
- You can use the sample project as a template by adding your own data and following the same
steps to go from data to deployed model. You might need to explore and cleanse your data. Because
your data and schema are likely different from the sample data, the patterns that you find in your
data will not match the patterns in the sample data. You can use the examples and code to adapt the
model for your data and to retrain the model with your data.
To use a sample project as a template for your own data, follow these general steps:
- Add your data to the project.
- If necessary, cleanse or shape your data.
- Update and retrain the model with your data.
Business glossary
A business glossary helps you describe your data with a standard vocabulary. You import categories and business terms as governance artifacts.
- Audience
- Data stewards and other users who are responsible for creating governance artifacts to govern data.
- Contents
- A set of business terms to describe data, with logical relationships between terms. See Business terms.
- Requirements
- The Watson Knowledge Catalog service.
- Process overview
- Each accelerator provides detailed instructions that you can access after you download the
accelerator. These general steps provide an overview of the process:
- Import the category.
- Import the business terms.
- Publish the business terms so that they are available in all catalogs and during automated discovery.
- Assign business terms to columns in data sets with one of these methods:
- Add business terms to a data asset in a catalog on the asset's Overview page. See Editing asset properties.
- Some accelerators provide a Jupyter notebook that assigns terms to the data sets included in the sample project.
- Run automated discovery so that business terms are automatically assigned to columns in the discovered data assets. See Discovering assets (Watson Knowledge Catalog).