Restarting the environment (IBM Cloud Pak for AIOps on Linux)

Learn how to shutdown and restart the Linux cluster where IBM Cloud Pak for AIOps is deployed.

Overview

Use this procedure before a known maintenance window or outage to shut down the Linux cluster where IBM Cloud Pak for AIOps is installed, and to restart the cluster and workloads afterward.

Warning: If you need to shut down the cluster where IBM Cloud Pak for AIOps is installed, then you must use the following procedure. Failure to do so can result in data loss or corruption.

Procedure

  1. Validate the installation
  2. Check the certificates
  3. Prepare to scale down
  4. Scale down the workloads and drain the nodes
  5. Shut down the cluster
  6. Restart the cluster
  7. Scale up the workloads
  8. Validate the installation

1. Validate the installation

Run the describe command:

kubectl describe installations.orchestrator.aiops.ibm.com -n aiops

Review the ComponentStatus fields to confirm that all components are marked as Ready and the phase is Running.

Example output:

Name:         ibm-cp-aiops
Namespace:    aiops
API Version:  orchestrator.aiops.ibm.com/v1alpha1
Kind:         Installation
Spec:
...
Status:
Componentstatus:
   Aimanager:                       Ready
   Aiopsanalyticsorchestrator:      Ready
   Aiopsedge:                       Ready
   Aiopsui:                         Ready
   Asm:                             Ready
   Baseui:                          Ready
   Cluster:                         Ready
   Commonservice:                   Ready
   Elasticsearch:                   Ready
   Flinkdeployment:                 Ready
   Issueresolutioncore:             Ready
   Kafka:                           Ready
   Lifecycleservice:                Ready
   Lifecycletrigger:                Ready
   Rediscp:                         Ready
   Tunnel:                          Ready
   Zenservice:                      Ready
Phase:                   Running

2. Check the certificates

Ensure that none of the certificates have problems or are expired.

Run the following command:

while read l; do echo "$l" | grep '^NAME' || (n=$(echo $l | sed 's/ .*//'); s=$(echo $l | sed 's/^[^ ]* *\([^ ]*\).*/\1/'); x=$(kubectl get secret -n $n $s -o jsonpath='{.data.tls\.crt}' | base64 -d | openssl x509 -noout -enddate 2>/dev/null | sed 's!notAfter=!!'); echo "$l" | sed 's![^ ][^ ]*$!'"$x"'!'); done< <(kubectl get secret -A --field-selector=type==kubernetes.io/tls -o custom-columns=NAMESPACE:.metadata.namespace,NAME:.metadata.name,EXPIRY:.metadata.name)

Example output excerpt:

ibm-licensing   ibm-license-service-cert                                       Jan  8  13:32:07  2025  GMT
ibm-licensing   ibm-license-service-cert-internal                              Jan  7  13:31:12  2026  GMT
ibm-licensing   ibm-licensing-service-prometheus-cert                          Jan  7  13:31:25  2026  GMT
aiops           aimanager-aio-log-anomaly-feedback-learning-cert               Jan  7  14:01:43  2026  GMT
aiops           aimanager-aio-log-anomaly-golden-signals-cert                  Jan  7  14:01:43  2026  GMT
aiops           aimanager-aio-oob-recommended-actions-cert                     Jan  7  14:01:43  2026  GMT
<...>

Renew or re-create any certificates that have problems, are expired, or will expire before the cluster is restarted.

3. Prepare to scale down

  1. Cordon all of the worker and control plane nodes.

    From a control plane node, run the following command for each of the worker and control plane nodes:

    kubectl cordon <node>
    

    Where <node> is the name of the node to cordon.

  2. Make a note of the number of replicas.

    1. Make a note of the number of replicas for each StatefulSet.

      kubectl get statefulsets -n aiops
      

      Example output:

      NAME                                     READY   AGE
      aimanager-ibm-minio                      1/1     42m
      aiops-ibm-elasticsearch-es-server-all    1/1     86m
      aiops-installation-redis-server          3/3     84m
      aiops-ir-analytics-spark-worker          2/2     63m
      aiops-ir-core-ncobackup                  0/0     75m
      aiops-ir-core-ncoprimary                 0/0     76m
      aiops-topology-cassandra                 1/1     83m
      c-example-couchdbcluster-m               1/1     77m
      zen-minio                                3/3     76m
      

      Note:

      • If you do not have a IBM® Netcool® Operations Insight® probe integration, then aiops-ir-core-ncobackup and aiops-ir-core-ncoprimary has zero replicas.
      • If you upgraded from an earlier version of IBM Cloud Pak for AIOps, you also have an icp-mongodb StatefulSet.
    2. Make a note of the number of replicas for each StrimziPodSet.

      kubectl get strimzipodset -n aiops
      

      Example output:

      NAME                                  PODS   READY PODS   CURRENT PODS   AGE
      iaf-system-kafka                      3      3            3              13d
      iaf-system-zookeeper                  3      3            3              13d
      

    3. Make a note of the number of replicas for each Flink deployment by using the following command:

      kubectl get deployment | grep flink | grep -v "operator"
      

      Example output:

      NAME                                              PODS   READY PODS   CURRENT PODS   AGE
      aiops-ir-lifecycle-flink                          1/1     1            1             137m
      aiops-ir-lifecycle-flink-taskmanager              1/1     1            1             137m
      aiops-lad-flink                                   1/1     1            1             139m
      aiops-lad-flink-taskmanager                       2/2     2            2             139m
      

      Notes:

      • If you have a base deployment, then aiops-lad-flink and aiops-lad-flink-taskmanager do not show in the preceding output.
      • If you upgraded from an earlier version of IBM Cloud Pak for AIOps, you also have an icp-mongodb StatefulSet.

4. Scale down the workloads and drain the nodes

  1. Scale down the operator deployments in the IBM Cloud Pak for AIOps namespace.

    kubectl scale deployment -l olm.owner.kind=ClusterServiceVersion -n aiops --replicas=0
    

    Run the following command to check that the number of replicas for each of the operator deployments is now 0.

    kubectl get deployment -n aiops -l olm.owner.kind=ClusterServiceVersion
    

    Example output:

    NAME                                              READY   UP-TO-DATE   AVAILABLE   AGE
    aimanager-operator-controller-manager             0/0     0            0           47m
    aiopsedge-operator-controller-manager             0/0     0            0           47m
    asm-operator                                      0/0     0            0           47m
    iaf-flink-operator-controller-manager             0/0     0            0           54m
    ibm-aiops-orchestrator-controller-manager         0/0     0            0           58m
    ibm-common-service-operator                       0/0     0            0           56m
    ibm-commonui-operator                             0/0     0            0           53m
    ibm-elastic-operator-controller-manager           0/0     0            0           54m
    ibm-events-operator-v5.0.1                        0/0     0            0           54m
    ibm-iam-operator                                  0/0     0            0           54m
    ibm-ir-ai-operator-controller-manager             0/0     0            0           47m
    ibm-redis-cp-operator                             0/0     0            0           49m
    ibm-secure-tunnel-operator                        0/0     0            0           48m
    ibm-watson-aiops-ui-operator-controller-manager   0/0     0            0           48m
    ibm-zen-operator                                  0/0     0            0           54m
    ir-core-operator-controller-manager               0/0     0            0           47m
    ir-lifecycle-operator-controller-manager          0/0     0            0           47m
    operand-deployment-lifecycle-manager              0/0     0            0           55m
    postgresql-operator-controller-manager-1-18-12    0/0     0            0           54m
    

    Note: If you upgraded from an earlier version of IBM Cloud Pak for AIOps, you also have an icp-mongodb-operator deployment.

  2. Scale down the StatefulSets that you noted in step 3.2.

    You can use the Cloud Pak for AIOps console, or create a shell script to do this.

    If you have a base deployment, then remove the following lines from the example shell script:

    kubectl scale deployment aiops-lad-flink --replicas=0 -n aiops
    kubectl scale deployment aiops-lad-flink-taskmanager --replicas=0 -n aiops
    

    Note:

    • If you have a base deployment, then aiops-lad-flink and aiops-lad-flink-taskmanager do not show in the preceding output.
    • If you upgraded from an earlier version of IBM Cloud Pak for AIOps, you also have an icp-mongodb StatefulSet.

    If you upgraded from an earlier version of IBM Cloud Pak for AIOps, then add the following line to the example shell script:

    kubectl scale statefulsets icp-mongodb --replicas=0 -n aiops
    

    Example shell script:

    #!/bin/bash
    
    kubectl scale statefulsets aimanager-ibm-minio --replicas=0 -n aiops
    sleep 2
    kubectl scale statefulsets aiops-installation-redis-server --replicas=0 -n aiops
    sleep 2
    kubectl scale statefulsets aiops-ir-analytics-spark-worker --replicas=0 -n aiops
    sleep 2
    kubectl scale statefulsets aiops-ir-core-ncobackup --replicas=0 -n aiops
    sleep 2
    kubectl scale statefulsets aiops-ir-core-ncoprimary --replicas=0 -n aiops
    sleep 2
    kubectl scale deployment aiops-ir-lifecycle-flink --replicas=0 -n aiops
    sleep 2
    kubectl scale deployment aiops-ir-lifecycle-flink-taskmanager --replicas=0 -n aiops
    sleep 2
    kubectl scale statefulsets aiops-topology-cassandra --replicas=0 -n aiops
    sleep 2
    kubectl scale statefulsets c-example-couchdbcluster-m --replicas=0 -n aiops
    sleep 2
    kubectl scale deployment aiops-lad-flink --replicas=0 -n aiops
    sleep 2
    kubectl scale deployment aiops-lad-flink-taskmanager --replicas=0 -n aiops
    sleep 2
    kubectl scale statefulsets aiops-ibm-elasticsearch-es-server-all --replicas=0 -n aiops
    sleep 2
    kubectl scale statefulsets zen-minio --replicas=0 -n aiops
    sleep 2
    

    Run the following command to check that the number of replicas for each of the StatefulSets is now 0.

    kubectl get statefulsets -n aiops
    

    Example output:

    NAME                                     READY   AGE
    aimanager-ibm-minio                      0/0     42m
    aiops-ibm-elasticsearch-es-server-all    0/0     86m
    aiops-installation-redis-server          0/0     84m
    aiops-ir-analytics-spark-worker          0/0     63m
    aiops-ir-core-ncobackup                  0/0     75m
    aiops-ir-core-ncoprimary                 0/0     76m
    aiops-topology-cassandra                 0/0     83m
    c-example-couchdbcluster-m               0/0     77m
    zen-minio                                0/0     76m
    

  3. Run the following command to check that the number of replicas for each of the Flink Deployments is now 0.

    kubectl get deployments -n aiops | grep flink | grep -v "operator"
    

    Example output:

    NAME                                              READY   UP-TO-DATE   AVAILABLE   AGE
    aiops-ir-lifecycle-flink                          0/0     0            0           137m
    aiops-ir-lifecycle-flink-taskmanager              0/0     0            0           137m
    aiops-lad-flink                                   0/0     0            0           139m
    aiops-lad-flink-taskmanager                       0/0     0            0           139m
    

  4. Shutdown the Kafka and ZooKeeper pods.

    kubectl delete pod -l ibmevents.ibm.com/name=iaf-system-kafka -n aiops
    kubectl delete pod -l ibmevents.ibm.com/name=iaf-system-zookeeper -n aiops
    

    Run the following command to check that the Kafka and ZooKeeper pods have successfully shutdown. If the shutdown is complete, no pods are returned.

    kubectl get pod -l ibmevents.ibm.com/controller=strimzipodset -n aiops
    
  5. Scale down the PostgreSQL pods.

    When shutting down a PostgreSQL cluster, it is best to remove the primary replica last. The following script removes each database replica in the cluster with the primary removed last.

    #!/bin/bash
    
    AIOPS_NAMESPACE=aiops
    
    # Get array of Postgres clusters
    CLUSTERS=($(kubectl get clusters.postgresql.k8s.enterprisedb.io -n "${AIOPS_NAMESPACE}" -o go-template='{{range .items}}{{.metadata.name}}{{" "}}{{end}}'))
    
    # For each Postgres cluster, shutdown primary last
    for cluster_name in "${CLUSTERS[@]}"; do
        primary=$(kubectl get clusters.postgresql.k8s.enterprisedb.io -n "${AIOPS_NAMESPACE}" "${cluster_name}" -o go-template='{{.status.currentPrimary}}')
        instances=($(kubectl get clusters.postgresql.k8s.enterprisedb.io -n "${AIOPS_NAMESPACE}" "${cluster_name}" -o go-template='{{range .status.instanceNames}}{{print . " "}}{{end}}'))
        for instance_name in "${instances[@]}"; do
            # Shutdown non-primary replicas
            if [ "${instance_name}" != "${primary}" ]; then
                kubectl delete pod -n "${AIOPS_NAMESPACE}" "${instance_name}" --ignore-not-found
            fi
        done
    
        # Shutdown the primary once all other replicas are down
        kubectl delete pod -n "${AIOPS_NAMESPACE}" "${primary}" --ignore-not-found
    done
    

    Wait for all the Postgres pods to be deleted. All pods are deleted when the following command returns no pods:

    kubectl get pod -l k8s.enterprisedb.io/podRole=instance -n aiops
    
  6. (Optional) After the StatefulSets and StrimziPodSets are scaled down, drain all of the worker and control plane nodes. This step is not necessary if you are running a backup.

    From a control plane node, run the following command for each of the worker and control plane nodes:

    kubectl drain <node>
    

    Where <node> is the name of the node to drain.

    Note: Some pods, such as storage pods, do not stop because this would violate the disruption budget. If this problem occurs, run the commands in each node until only the storage pods are left, and then stop the command and drain the next node.

5. Shut down the cluster

  1. Shut down all the worker nodes on the cluster.

  2. Shut down all the control plane nodes on the cluster.

6. Restart the cluster

  1. Re-export the environment variables that you saved in step 1.1.

  2. Restart the cluster nodes in the following order:

    1. Restart the control plane nodes. Check whether all the control plane nodes are in ready status by running the following command:

      kubectl get nodes
      
    2. Restart the worker nodes. Check whether all worker nodes are in ready status by running the following command:

      kubectl get nodes
      
  3. After all the nodes are up, uncordon the control plane and worker nodes.

    From a control plane node, run the following command for each of the worker and control plane nodes:

    kubectl uncordon <node>
    

    Where <node> is the name of the node to uncordon.

7. Scale up the workloads

Scaling up the workloads in the following order helps to minimize startup time and resource contention issues.

  1. Scale the events operator back up.

    kubectl scale deployment --replicas=1 $(kubectl get deployment -o custom-columns=NAME:.metadata.name --no-headers -n aiops  | grep '^ibm-events-operator-') -n aiops
    
  2. Check whether the Kafka and Zookeeper pods are running again. This can take a few minutes.

    kubectl get pod -l ibmevents.ibm.com/controller=strimzipodset -n aiops
    

    Example output when the Kafka and Zookeeper pods are running:

    NAME                                    READY   STATUS    RESTARTS   AGE
    iaf-system-kafka-0                      1/1     Running   0          13d
    iaf-system-kafka-1                      1/1     Running   0          13d
    iaf-system-kafka-2                      1/1     Running   0          13d
    iaf-system-zookeeper-0                  1/1     Running   0          13d
    iaf-system-zookeeper-1                  1/1     Running   0          13d
    iaf-system-zookeeper-2                  1/1     Running   0          13d
    
  3. You need to scale up each of the StatefulSets to the number of replicas as noted in step 3.2.

    1. Scale up Cassandra, Elasticsearch, and Spark StatefulSets in the following order:

      • aiops-topology-cassandra
      • aiops-ibm-elasticsearch-es-server-all
      • aiops-ir-analytics-spark-worker

      Run the following command to scale up each StatefulSet:

      kubectl scale statefulsets <statefulset> --replicas=<number of replicas> -n aiops
      

      Where:

      • <statefulset> is the StatefulSet to be scaled up
      • <number_of_replicas> is the number of replicas the StatefulSet it to be scaled up to

      For example,

      kubectl scale statefulsets aiops-topology-cassandra --replicas=1 -n aiops
      
    2. Scale the Flink deployments in the following order:

      • aiops-ir-lifecycle-flink
      • aiops-ir-lifecycle-flink-taskmanager
      • aiops-lad-flink
      • aiops-lad-flink-taskmanager

      Note: If you have a base deployment, then do not scale up aiops-lad-flink and aiops-lad-flink-taskmanager.

      Run the following command to scale up the Flink deployments:

      kubectl scale deployment <flink_deployment> --replicas=<number of replicas> -n aiops
      

      Where <flink_deployment> is the name of the Flink deployment.

    3. Scale the following StatefulSets in the specified order:

      • aiops-ir-core-ncoprimary
      • aiops-ir-core-ncobackup
      • c-example-couchdbcluster-m
      • aiops-installation-redis-server
      • aimanager-ibm-minio
      • zen-minio

      Run the following command to scale up each StatefulSet:

      kubectl scale statefulsets <statefulset> --replicas=<number of replicas> -n aiops
      

      Where:

      • <statefulset> is the StatefulSet to be scaled up
      • <number_of_replicas> is the number of replicas the StatefulSet it to be scaled up to
  4. Scale up the operator deployments.

    kubectl scale deployment -l olm.owner.kind=ClusterServiceVersion -n aiops --replicas=1
    

8. Validate the installation

Note: After a complete cluster restart, it might take approximately an hour for the installation to start running again.

Run the describe command:

kubectl describe installations.orchestrator.aiops.ibm.com -n aiops

Review the ComponentStatus fields to confirm that all components are marked as Ready and the phase is Running.