
Enterprise PL/I for z/OS
6.1

Programming Guide

IBM

GI13-5620-00

Contents

Tables..xv

Figures... xxiii

Enterprise PL/I for z/OS Programming Guide.. xxv
First Edition (May 2022)... xxv

Introduction...xxvii
About this document.. xxvii
Runtime environment for Enterprise PL/I for z/OS..xxvii
Using your documentation..xxvii
Notation conventions used in this document..xxviii

Conventions used... xxviii
How to read the syntax notation..xxix
How to read the notational symbols..xxxi

Summary of changes... xxxi
Enhancements in this release...xxxii
Enhancements from V5R3... xxxiii
Enhancements from V5R2... xxxvi
Enhancements from V5R1.. xxxvii
Enhancements from V4R5... xxxix
Enhancements from V4R4...xl
Enhancements from V4R3...xl
Enhancements from V4R2..xli
Enhancements from V4R1.. xliii
Enhancements from V3R9.. xliii
Enhancements from V3R8... xlv
Enhancements from V3R7... xlv
Enhancements from V3R6... xlvii
Enhancements from V3R5.. xlviii
Enhancements from V3R4.. xlix
Enhancements from V3R3...l
Enhancements from V3R2..li
Enhancements from V3R1.. liii
Enhancements from VisualAge PL/I...liii

How to send your comments.. lv
Accessibility... lv

Part 1. Compiling your program..1

Chapter 1. Using compiler options and facilities.. 3
Compile-time option descriptions... 3

AGGREGATE.. 9
ARCH... 9
ASSERT..11
ATTRIBUTES... 11
BACKREG.. 11
BIFPREC..12
BLANK... 12

 iii

BLKOFF..13
BRACKETS...13
CASE..13
CASERULES... 14
CHECK... 14
CMPAT... 15
CODEPAGE.. 16
COMMON...16
COMPILE... 16
COPYRIGHT.. 17
CSECT..17
CSECTCUT... 18
CURRENCY.. 18
DBCS..18
DBRMLIB...19
DD..19
DDSQL... 20
DECIMAL... 20
DECOMP.. 23
DEFAULT..24
DEPRECATE...32
DEPRECATENEXT..33
DISPLAY.. 33
DLL...34
DLLINIT... 34
EXIT...34
EXPORTALL... 34
EXTRN... 35
FILEREF...35
FLAG.. 35
FLOAT.. 36
FLOATINMATH.. 37
GOFF..38
GONUMBER...38
GRAPHIC... 39
HEADER...39
HGPR... 39
IGNORE... 40
INCAFTER... 40
INCDIR.. 40
INCLUDE..41
INCPDS..41
INITAUTO.. 42
INITBASED..42
INITCTL... 43
INITSTATIC... 43
INSOURCE...43
INTERRUPT... 44
JSON..45
LANGLVL..46
LIMITS...47
LINECOUNT...48
LINEDIR.. 48
LIST... 49
LISTVIEW.. 49
LP...50
MACRO.. 50
MAP... 51

iv

MARGINI... 51
MARGINS.. 51
MAXBRANCH...52
MAXINIT..52
MAXGEN.. 53
MAXMEM... 53
MAXMSG..54
MAXNEST.. 54
MAXRUNONIF... 55
MAXSTATIC... 55
MAXSTMT..55
MAXTEMP..55
MDECK...56
MSGSUMMARY..56
NAME...57
NAMES...57
NATLANG...57
NEST..58
NOT..58
NULLDATE... 58
OBJECT... 58
OFFSET..59
OFFSETSIZE..59
ONSNAP.. 59
OPTIMIZE..60
OPTIONS... 61
OR..61
PP.. 62
PPCICS.. 62
PPINCLUDE... 63
PPLIST...63
PPMACRO..63
PPSQL..64
PPTRACE... 64
PRECTYPE... 64
PREFIX.. 65
PROCEED...65
PROCESS... 66
QUOTE... 66
REDUCE...66
RENT..67
RESEXP..68
RESPECT... 68
RTCHECK...68
RULES..70
SEMANTIC...84
SERVICE.. 85
SOURCE...85
SPILL... 85
STATIC...85
STDSYS..86
STMT..86
STORAGE...86
STRINGOFGRAPHIC... 87
SYNTAX... 87
SYSPARM...88
SYSTEM... 88
TERMINAL... 89

 v

TEST.. 89
UNROLL... 92
USAGE... 93
WIDECHAR..94
WINDOW... 94
WRITABLE... 95
XINFO..96
XML..98
XREF.. 99

Blanks, comments and strings in options..99
Changing the default options...100
Specifying options in the %PROCESS or *PROCESS statements... 100
Using % statements... 101
Using the %INCLUDE statement... 102
Using the compiler listing.. 103

Heading information... 103
Options used for compilation... 104
Preprocessor input... 104
SOURCE program..104
Statement nesting level..104
ATTRIBUTE and cross-reference table.. 104
Aggregate length table... 105
Statement offset addresses... 106
Storage offset listing...108
Expressions and attributes listing..109
File reference table...109
Messages and return codes..109
Example.. 111

Chapter 2. PL/I preprocessors.. 115
Include preprocessor...115
Macro preprocessor... 116

Macro preprocessor options...116
Macro preprocessor example...120

SQL preprocessor...121
Programming and compilation considerations..122
SQL preprocessor options.. 124
Coding SQL statements in PL/I applications... 127
Manipulating LOB data... 138
Suppressing SQL preprocessor messages...142

CICS preprocessor... 142
Programming and compilation considerations..143
CICS preprocessor options...143
Coding CICS statements in PL/I applications..143
Writing CICS transactions in PL/I...144
Error-handling ..145

Chapter 3. Using PL/I cataloged procedures..147
IBM-supplied cataloged procedures...147

Compile only (IBMZC)...148
Compile and bind (IBMZCB)...149
Compile, bind, and run (IBMZCBG).. 150
Compile only - 64-bit (IBMQC)...151
Compile and bind - 64-bit (IBMQCB)...152
Compile, bind, and run - 64-bit (IBMQCBG).. 153

Invoking a cataloged procedure.. 155
Specifying multiple cataloged procedure invocations.. 155
Modifying the PL/I cataloged procedures... 156

vi

EXEC statement.. 156
DD statement..157

Chapter 4. Compiling your program.. 159
Invoking the compiler under z/OS UNIX... 159

Input files..159
Specifying compile-time options under z/OS UNIX.. 160
-qoption_keyword.. 160
Single and multiletter flags.. 161

Invoking the compiler under z/OS using JCL.. 161
EXEC statement.. 161
DD statements for the standard data sets...162
Listing (SYSPRINT)... 164
Source Statement Library (SYSLIB)... 164
Specifying options.. 165
Specifying options in the EXEC statement...165
Specifying options in the EXEC statement using an options file... 165

Chapter 5. Link-editing and running for 31-bit programs...167
Link-edit considerations for 31-bit programs... 167

Using the binder in 31-bit programs.. 167
Using the ENTRY card...167

Runtime considerations for 31-bit programs..167
Formatting conventions for PRINT files...168
Changing the format on PRINT files for 31-bit programs..168
Automatic prompting..169
Overriding automatic prompting.. 169
Punctuating long input lines...170
Punctuating GET LIST and GET DATA statements...170
Automatic padding for GET EDIT... 171
Use of SKIP for terminal input..171
ENDFILE..171

SYSPRINT considerations for 31-bit programs...171
Using MSGFILE(SYSPRINT)..172

Using FETCH in your routines in 31-bit applications.. 172
Fetching Enterprise PL/I routines in 31-bit applications.. 172
Fetching PL/I MAIN routines in 31-bit applications..175
Fetching z/OS C routines in 31-bit applications.. 176
Fetching assembler routines in 31-bit applications.. 176

Invoking MAIN under TSO/E..177
Invoking MAIN under z/OS UNIX...178

Chapter 6. Link-editing and running for 64-bit programs...179
Link-edit considerations for 64-bit programs... 179

Using the binder in 64-bit programs.. 179
Using the ENTRY card in 64-bit programs... 179

Runtime considerations for 64-bit programs..179
SYSPRINT considerations for 64-bit programs...180
Using FETCH in your routines in 64-bit applications.. 180

Fetching Enterprise PL/I routines in 64-bit applications.. 180
Fetching PL/I MAIN routines in 64-bit applications..180
Fetching assembler routines in 64-bit applications.. 181

Invoking MAIN under TSO/E..181
Invoking MAIN under z/OS UNIX...182

Chapter 7. Considerations for developing 64-bit applications.. 183
Using compiler options to build 64-bit applications...183
Using attributes HANDLE and POINTER under LP(64)... 184

 vii

HANDLE attribute... 184
POINTER attribute.. 184

Using ENTRY variables under LP(64)...185
Using built-in functions under LP(64)..185
Considerations for SQL programs..186
Communicating with 31-bit routines...188

Part 2. Using I/O facilities.. 191

Chapter 8. Using data sets and files..193
Allocating files..193
Associating data sets with files under z/OS.. 194

Associating several files with one data set.. 196
Associating several data sets with one file.. 196
Concatenating several data sets.. 197
Accessing zFS files under z/OS.. 197

Associating data sets with files under z/OS UNIX...198
Using environment variables..199
Using the TITLE option of the OPEN statement...199
Attempting to use files not associated with data sets...201
How PL/I finds data sets.. 201
Specifying characteristics using DD_DDNAME environment variables.......................................202

Establishing data set characteristics...207
Blocks and records... 208
Information interchange codes..208
Record formats... 208
Data set organization..210
Labels..210
Data Definition (DD) statement.. 211
Using the TITLE option of the OPEN statement...212
Associating PL/I files with data sets.. 212
Specifying characteristics in the ENVIRONMENT attribute.. 214

Chapter 9. Using libraries.. 225
Types of libraries.. 225
Using a library...225
Creating a library.. 226

SPACE parameter..226
Creating and updating a library member...226

Example: Creating new libraries for compiled object modules...227
Example: Placing a load module in an existing library.. 228
Example: Updating a library member.. 228

Extracting information from a library directory...229

Chapter 10. Defining and using consecutive data sets.. 231
Using stream-oriented data transmission...231

Defining files using stream I/O...231
Defining stream files using PL/I dynamic allocation... 231
Specifying ENVIRONMENT options..232
Creating a data set with stream I/O... 235
Accessing a data set with stream I/O.. 237
Using PRINT files with stream I/O... 239
Using SYSIN and SYSPRINT files for 31-bit programs.. 242
Using SYSIN and SYSPRINT files for 64-bit programs.. 243

Controlling input from the terminal... 243
Format of data.. 244
Stream and record files..245

viii

Defining QSAM files using PL/I dynamic allocation.. 245
Capital and lowercase letters.. 246
End-of-file.. 246
COPY option of GET statement..246

Chapter 11. Controlling output to the terminal.. 247
Format of PRINT files...247
Stream and record files..247
Output from the PUT EDIT command..247

Chapter 12. Using record-oriented data transmission...249
Specifying record format..250
Defining files using record I/O... 250
Specifying ENVIRONMENT options... 250

CONSECUTIVE.. 251
ORGANIZATION(CONSECUTIVE)...251
CTLASA|CTL360... 251
LEAVE|REREAD... 253

Creating a data set with record I/O... 254
Essential information..254

Accessing and updating a data set with record I/O.. 255
Essential information..256
Example of consecutive data sets..256

Chapter 13. Defining and using regional data sets...261
Defining REGIONAL(1) data sets using PL/I dynamic allocation..263
Defining files for a regional data set.. 263

Specifying ENVIRONMENT options..263
Using keys with REGIONAL data sets.. 264

Using REGIONAL(1) data sets... 264
Dummy Records..264
Creating a REGIONAL(1) data set.. 265
Accessing and updating a REGIONAL(1) data set... 266

Essential information for creating and accessing regional data sets... 269

Chapter 14. Defining and using VSAM data sets...271
Defining VSAM file using PL/I dynamic allocation.. 271
Using VSAM data sets.. 271

Running a program with VSAM data sets...271
Pairing an alternate index path with a file..272

VSAM organization... 272
Keys for VSAM data sets...274
Choosing a data set type.. 275

Defining files for VSAM data sets...277
Specifying ENVIRONMENT options..278
Performance options.. 280

Defining files for alternate index paths..280
Defining VSAM data sets.. 281
Entry-sequenced data sets..281

Loading an ESDS... 282
Using a SEQUENTIAL file to access an ESDS...282

Key-sequenced and indexed entry-sequenced data sets.. 284
Loading a KSDS or indexed ESDS... 286
Using a SEQUENTIAL file to access a KSDS or indexed ESDS...287
Using a DIRECT file to access a KSDS or indexed ESDS..288
Updating a KSDS...290
Alternate indexes for KSDSs or indexed ESDSs...290

Relative-record data sets...297

 ix

Loading an RRDS...299
Using a SEQUENTIAL file to access an RRDS.. 300
Using a DIRECT file to access an RRDS..301

Using files defined for non-VSAM data sets.. 303
Using shared data sets... 303

Part 3. Improving your program... 305

Chapter 15. Improving performance.. 307
Selecting compiler options for optimal performance... 307

OPTIMIZE... 307
GONUMBER.. 307
ARCH... 307
REDUCE...307
RULES..308
PREFIX.. 309
CONVERSION..310
FIXEDOVERFLOW... 310
DEFAULT..310
Summary of compiler options that improve performance.. 313

Coding for better performance.. 313
DATA-directed input and output.. 313
Input-only parameters... 314
GOTO statements... 314
String assignments... 314
Loop control variables.. 314
PACKAGEs versus nested PROCEDUREs... 315
REDUCIBLE functions...316
Using REPATTERN.. 316
DESCLOCATOR or DESCLIST.. 316
DEFINED versus UNION... 317
Named constants versus static variables.. 317
Avoiding calls to library routines.. 318
Preloading library routines... 319

Part 4. Using interfaces to other products...321

Chapter 16. Using the Sort program... 323
Preparing to use Sort... 323

Choosing the type of Sort... 324
Specifying the sorting field...326
Specifying the records to be sorted... 327
Determining storage needed for Sort...328

Calling the Sort program.. 329
Example 1... 330
Example 2... 331
Example 3... 331
Example 4... 331
Example 5... 331
Determining whether the Sort was successful.. 331
Establishing data sets for Sort... 332

Sort data input and output...333
Data input and output handling routines...333

E15—Input handling routine (Sort Exit E15)..333
E35—Output handling routine (Sort Exit E35)... 335
Calling PLISRTA example... 336
Calling PLISRTB example... 338

x

Calling PLISRTC example... 339
Calling PLISRTD example... 340
Sorting variable-length records example...341

Chapter 17. ILC with C...343
Equivalent data types...343

Simple type equivalence.. 344
Struct type equivalence..344
Enum type equivalence.. 345
File type equivalence..345

Using C functions..345
Matching simple parameter types... 346
Matching string parameter types... 348
Functions returning ENTRYs...349

Linkages..351
Sharing output and input... 352

Sharing output.. 352
Sharing input...353
Using the ATTACH statement... 353
Redirecting C standard streams...353

Summary.. 353

Chapter 18. Interfacing with Java...355
Java Native Interface (JNI)..355
Calling PL/I program from Java... 356
JNI sample program #1 - 'Hello World'.. 356

Step 1: Writing the Java program...356
Step 2: Compiling the Java program..357
Step 3: Writing the PL/I Program... 357
Step 4: Compiling and linking the PL/I program..359
Step 5: Running the sample program.. 359

JNI sample program #2 - Passing a string..360
Step 1: Writing the Java program...360
Step 2: Compiling the Java program..361
Step 3: Writing the PL/I program... 361
Step 4: Compiling and linking the PL/I program..363
Step 5: Running the sample program.. 364

JNI sample program #3 - Passing an integer... 364
Step 1: Writing the Java program...364
Step 2: Compiling the Java program..365
Step 3: Writing the PL/I program... 365
Step 4: Compiling and linking the PL/I program..367
Step 5: Running the sample program.. 367

JNI sample program #4 - Java invocation API... 368
Step 1: Writing the Java program...368
Step 2: Compiling the Java program..368
Step 3: Writing the PL/I program... 369
Step 4: Compiling and linking the PL/I program..372
Step 5: Running the sample program.. 373

Attaching programs to an existing Java VM.. 373
Determining equivalent Java and PL/I data types.. 374

Part 5. Specialized programming tasks...375

Chapter 19. Mixing AMODE 31 and AMODE 64 code... 377
Declarations needed for calls between AMODEs..377
Compiler and linker options needed for calls between AMODEs... 377

 xi

Restrictions on calls between AMODEs...377
Improving performance in calls between AMODEs.. 378

Chapter 20. Using the PLISAXA and PLISAXB XML parsers...381
Overview...381
The PLISAXA built-in subroutine... 382
The PLISAXB built-in subroutine... 382
The SAX event structure.. 383

start_of_document... 383
version_information... 383
encoding_declaration...383
standalone_declaration.. 383
document_type_declaration.. 384
end_of_document... 384
start_of_element...384
attribute_name... 384
attribute_characters... 384
attribute_predefined_reference...384
attribute_character_reference... 384
end_of_element.. 384
start_of_CDATA_section... 385
end_of_CDATA_section...385
content_characters...385
content_predefined_reference.. 385
content_character_reference...385
processing_instruction...385
comment...385
unknown_attribute_reference... 386
unknown_content_reference... 386
start_of_prefix_mapping.. 386
end_of_prefix_mapping... 386
exception.. 386
Parameters to the event functions...386

Coded character sets for XML documents.. 387
Supported EBCDIC code pages..387
Supported ASCII code pages... 388
Specifying the code page... 388

Exceptions.. 389
Example..390
Continuable exception codes...400
Terminating exception codes...404

Chapter 21. Using the PLISAXC and PLISAXD XML parsers...409
Overview...409
The PLISAXC built-in subroutine... 410
The PLISAXD built-in subroutine...410
The SAX event structure.. 411

start_of_document... 411
version_information... 411
encoding_declaration...411
standalone_declaration.. 412
document_type_declaration.. 412
end_of_document... 412
start_of_element...412
attribute_name... 412
attribute_characters... 412
end_of_element.. 412
start_of_CDATA_section... 412

xii

end_of_CDATA_section...413
content_characters...413
processing_instruction...413
comment...413
namespace_declare..413
end_of_input... 413
unresolved_reference.. 414
exception.. 414
Parameters to the event functions...414
Differences in the events..416

Coded character sets for XML documents.. 417
Supported code pages..417
Specifying the code page... 417

Exceptions.. 418
Parsing XML documents with validation..418

XML schema..419
Creating an OSR..420

Example with a simple document... 420
Example of using the PLISAXC built-in subroutine... 420
Example of using the PLISAXD built-in subroutine... 430

Chapter 22. Using PLIDUMP..443
PLIDUMP usage notes..444
Locating variables in the PLIDUMP output..445

Locating AUTOMATIC variables..445
Locating STATIC variables.. 446
Locating CONTROLLED variables... 447

Saved compilation data..450
Copyright...450
Timestamp.. 450
Saved options string... 451

Chapter 23. Interrupts and attention processing... 453
Using ATTENTION ON-units.. 454
Interaction with a debugging tool..454

Chapter 24. Using the Checkpoint/Restart facility... 455
Requesting a checkpoint record.. 455
Defining the checkpoint data set... 456
Requesting a restart...457

Automatic restart after a system failure.. 457
Automatic restart within a program... 457
Getting a deferred restart...457
Modifying checkpoint/restart activity.. 457

Chapter 25. Using user exits... 459
Procedures performed by the compiler user exit..459
Structure of global control blocks... 460
The IBM-supplied compiler exit, IBMUEXIT... 461
Activating the compiler user exit... 461
Customizing the compiler user exit... 461

Modifying SYSUEXIT...461
Writing your own compiler exit...462
Writing the initialization procedure..463
Writing the message filtering procedure..463
Writing the termination procedure...465

Example of suppressing SQL messages.. 465

 xiii

Chapter 26. PL/I descriptors...467
Passing an argument..467

Argument passing by descriptor list...467
Argument passing by locator/descriptor..468

CMPAT(V*) descriptors...468
String descriptors... 468
Array descriptors.. 469

CMPAT(LE) descriptors...470
String descriptors... 470
Array descriptors.. 471

Appendix A. SYSADATA message information... 473
Understanding the SYSADATA file .. 473

Summary record...474
Options record..475
Counter records..475
Literal records.. 476
File records...476
Message records.. 476

Understanding SYSADATA symbol information ... 477
Ordinal type records...477
Ordinal element records.. 478
Symbol records.. 479

Understanding SYSADATA syntax information ...482
Source records... 482
Token records...483
Syntax records..483

Notices..489
Trademarks.. 489

Bibliography.. 491
PL/I publications... 491
Related publications..491

Glossary.. 493

Index.. 515

xiv

Tables

1. How to use Enterprise PL/I publications...xxvii

2. How to use z/OS Language Environment publications...xxviii

3. Compile-time options, abbreviations, and IBM-supplied defaults..3

4. Supported CCSIDs...16

5. SYSTEM option table... 88

6. Including source statements from a library... 103

7. Finding statement number (compiler listing example)..107

8. Finding statement number (runtime message example)...107

9. Using the FLAG option to select the lowest message severity listed.. 110

10. Description of PL/I error codes and return codes..110

11. Compiler listing example.. 111

12. MACRO preprocessor options and IBM-supplied defaults..116

13. Using the macro preprocessor to produce a source deck... 121

14. SQL preprocessor options and IBM-supplied defaults..124

15. The PL/I declaration of SQLCA... 128

16. The PL/I declaration of an SQL descriptor area... 129

17. SQL data types generated from PL/I declarations...133

18. SQL data types generated from SQL TYPE declarations..134

19. SQL data types mapped to PL/I declarations.. 135

20. SQL data types mapped to SQL TYPE declarations... 136

21. SQL statement containing indicator variables... 138

22. pliclob sample program.. 141

23. Invoking a cataloged procedure...148

 xv

24. Cataloged Procedure IBMZC.. 149

25. Cataloged procedure IBMZCB.. 150

26. Cataloged procedure IBMZCBG... 151

27. Cataloged Procedure IBMQC (64-bit).. 152

28. Cataloged Procedure IBMQCB (64-bit)..153

29. Cataloged procedure IBMQCBG (64-bit)... 154

30. Compile-time option flags supported by Enterprise PL/I under z/OS UNIX...161

31. Compiler standard data sets.. 162

32. Declaration of PLITABS...168

33. Sample JCL to compile, link, and run sample fetch program.. 174

34. Sample program to display program arguments from the CPPL under TSO when using
SYSTEM(STD) option.. 177

35. Sample program to display z/OS UNIX arguments and environment variables................................... 178

36. Sample program to display program arguments from the CPPL under TSO when using
SYSTEM(STD) option.. 181

37. Sample program to display z/OS UNIX arguments and environment variables................................... 182

38. Attributes of PL/I file declarations... 214

39. A comparison of data set types available to PL/I record I/O.. 222

40. Information required when you create a library.. 226

41. Creating new libraries for compiled object modules... 227

42. Placing a load module in an existing library...228

43. Creating a library member in a PL/I program...228

44. Updating a library member...229

45. Creating a data set with stream-oriented data transmission..236

46. Writing graphic data to a stream file.. 237

47. Accessing a data set with stream-oriented data transmission... 239

48. Creating a print file via stream data transmission... 241

xvi

49. PL/I structure PLITABS for modifying the preset tab settings.. 242

50. Statements and options allowed for creating and accessing consecutive data sets........................... 249

51. IBM machine code print control characters (CTL360).. 253

52. Effect of LEAVE and REREAD Options.. 253

53. Creating a consecutive data set with record I/O: essential parameters of the DD statement.............254

54. Accessing a consecutive data set with record I/O: essential parameters of the DD statement.......... 255

55. Merge Sort—creating and accessing a consecutive data set... 257

56. Printing record-oriented data transmission...259

57. Statements and options allowed for creating and accessing regional data sets..................................261

58. Creating a REGIONAL(1) data set...266

59. Updating a REGIONAL(1) data set... 268

60. Creating a regional data set: essential parameters of the DD statement... 269

61. DCB subparameters for a regional data set... 270

62. Accessing a regional data set: essential parameters of the DD statement.. 270

63. Types of VSAM data sets and corresponding PL/I data set organization..272

64. Types and advantages of VSAM data sets..273

65. VSAM data sets and allowed file attributes... 276

66. Processing allowed on alternate index paths.. 276

67. Statements and options allowed for loading and accessing VSAM entry-sequenced data sets..........281

68. Defining and loading an ESDS...283

69. Updating an ESDS... 284

70. Statements and options allowed for loading and accessing VSAM indexed data sets.........................284

71. Defining and loading a key-sequenced data set (KSDS)..287

72. Updating a KSDS... 289

73. Creating a unique key alternate index path for an ESDS... 291

 xvii

74. Creating a nonunique key alternate index path for an ESDS... 292

75. Creating a unique key alternate index path for a KSDS... 293

76. Alternate index paths and backward reading with an ESDS..295

77. Using a unique alternate index path to access a KSDS..297

78. Statements and options allowed for loading and accessing VSAM relative-record data sets............. 297

79. Defining and loading a relative-record data set (RRDS).. 300

80. Updating an RRDS...302

81. The entry points and arguments to PLISRTx (x = A, B, C, or D)... 329

82. Skeletal code for an input procedure... 335

83. Skeletal code for an output handling procedure..336

84. PLISRTA—sorting from input data set to output data set.. 337

85. PLISRTB—sorting from input handling routine to output data set.. 338

86. PLISRTC—sorting from input data set to output handling routine.. 339

87. PLISRTD—sorting from input handling routine to output handling routine.. 340

88. Sorting varying-length records using input and output handling routines..341

89. C and PL/I type equivalents..343

90. Simple type equivalence...344

91. Sample struct type equivalence... 344

92. Sample enum type equivalence... 345

93. Start of the C declaration for its FILE type... 345

94. PL/I equivalent for a C file.. 345

95. Sample code to use fopen and fread to dump a file.. 346

96. Declarations for filedump program.. 346

97. C declaration of fread... 346

98. First incorrect declaration of fread...347

xviii

99. Second incorrect declaration of fread..347

100. Third incorrect declaration of fread... 347

101. Code generated for RETURNS BYADDR... 347

102. Correct declaration of fread... 348

103. Code generated for RETURNS BYVALUE..348

104. First incorrect declaration of fopen..348

105. Second incorrect declaration of fopen...348

106. Correct declaration of fopen...348

107. Optimal, correct declaration of fopen.. 349

108. Declaration of fclose...349

109. Commands to compile and run filedump...349

110. Output of running filedump.. 349

111. Sample compare routine for C qsort function..350

112. Sample code to use C qsort function... 350

113. Incorrect declaration of qsort.. 350

114. Correct declaration of qsort... 350

115. Code when parameters are BYADDR... 351

116. Code when parameters are BYVALUE..352

117. Java sample program #2 - Passing a string...361

118. PL/I sample program #2 - Passing a string... 363

119. Java sample program #3 - Passing an integer.. 365

120. PL/I sample program #3 - Passing an integer...367

121. Java sample program #4 - Receiving and printing a string...368

122. PL/I sample program #4 - Calling the Java invocation API (31-bit)...371

123. PL/I sample program #4 - Calling the Java invocation API (64-bit)...372

 xix

124. Java primitive types and PL/I native equivalents..374

125. Sample XML document...383

126. PLISAXA coding example - type declarations... 390

127. PLISAXA coding example - event structure...391

128. PLISAXA coding example - main routine... 392

129. PLISAXA coding example - event routines.. 392

130. PLISAXA coding example - program output.. 400

131. Continuable exceptions.. 400

132. Terminating exceptions.. 404

133. Sample XML document...411

134. PLISAXC coding example - type declarations..421

135. PLISAXC coding example - event structure... 422

136. PLISAXC coding example - main routine... 423

137. PLISAXC coding example - event routines.. 424

138. PLISAXC coding example - program output.. 430

139. PLISAXD coding example - event routines.. 431

140. Output from PLISAXD sample..441

141. Example PL/I routine calling PLIDUMP..443

142. Using an ATTENTION ON-unit..454

143. Example of an user exit input file...462

144. Record types encoded as an ordinal value ... 474

145. Declare for the header part of a record..474

146. Declare for a summary record..475

147. Declare for a counter record ..475

148. Declare for a literal record ...476

xx

149. Declare for a file record.. 476

150. Declare for a message record...477

151. Declare for an ordinal type record ...478

152. Declare for an ordinal element record... 479

153. Symbol indices assigned to the elements of a structure ..479

154. Data type of a variable..481

155. Declare for a source record.. 482

156. Declare for a token record.. 483

157. Declare for the token record kind...483

158. Node indices assigned to the blocks in a program ... 484

159. Declare for a syntax record...484

160. Declare for the syntax record kind... 486

161. Node indices assigned to the syntax records in a program .. 486

162. Declare for the expression kind..487

163. Declare for the number kind...488

164. Declare for the lexeme kind... 488

 xxi

xxii

Figures

1. PAGELENGTH and PAGESIZE... 169

2. Output with automatic prompt... 169

3. Output with no automatic prompt.. 170

4. Fixed-length records...209

5. How the operating system completes the DCB..213

6. American National Standard print and card punch control characters (CTLASA).................................. 252

7. Flow of control for Sort program...325

8. Flowcharts for input and output handling subroutines..334

9. PL/I compiler user exit procedures.. 459

 xxiii

xxiv

Enterprise PL/I for z/OS Programming Guide

Version 6 Release 1

GI13-5620-00

Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 489.

First Edition (May 2022)
This edition applies to Version 6 Release 1 of Enterprise PL/I for z/OS® and to any subsequent releases
and modifications until otherwise indicated in new editions or technical newsletters. Make sure you are
using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation, Department H150/090
555 Bailey Ave
San Jose, CA, 95141-1099
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

Because IBM Enterprise PL/I for z/OS supports the continuous delivery (CD) model and publications are
updated to document the features delivered under the CD model, it is a good idea to check for updates
once every three months.

Copyright International Business Machines Corporation 1999, 2022. All rights reserved.

US Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

© Copyright IBM Corp. 1999, 2022 xxv

xxvi Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Introduction

About this document
This book is for PL/I programmers and system programmers. It helps you understand how to use
Enterprise PL/I for z/OS in order to compile PL/I programs. It also describes the operating system
features that you might need to optimize program performance or handle errors.

Important: Enterprise PL/I for z/OS is referred to as Enterprise PL/I throughout this book.

Runtime environment for Enterprise PL/I for z/OS
Enterprise PL/I uses Language Environment® as its runtime environment. It conforms to the Language
Environment architecture and can share the runtime environment with other Language Environment-
conforming languages.

Language Environment provides a common set of runtime options and callable services. It also improves
interlanguage communication (ILC) between high-level languages (HLL) and the assembler by eliminating
language-specific initialization and termination on each ILC invocation.

Using your documentation
The publications provided with Enterprise PL/I are designed to help you program with PL/I. The
publications provided with Language Environment are designed to help you manage your runtime
environment for applications generated with Enterprise PL/I. Each publication helps you perform a
different task.

The following tables show you how to use the publications you receive with Enterprise PL/I and Language
Environment. You will want to know information about both your compiler and runtime environment. For
the complete titles and order numbers of these and other related publications, see “Bibliography” on
page 491.

PL/I information

Table 1. How to use Enterprise PL/I publications

To… Use…

Evaluate Enterprise PL/I Fact Sheet (Data Sheet)

Understand warranty information Licensed Program Specifications

Plan for and install Enterprise PL/I Enterprise PL/I Program Directory

Understand compiler and runtime changes and
adapt programs to Enterprise PL/I and Language
Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get details on
compiler options

Programming Guide

Get details on PL/I syntax and specifications of
language elements

Language Reference

Diagnose compiler problems and report them to
IBM®

Diagnosis Guide

© Copyright IBM Corp. 1999, 2022 xxvii

Table 1. How to use Enterprise PL/I publications (continued)

To… Use…

Get details on compile-time messages Compile-Time Messages and Codes

Language Environment information

Table 2. How to use z/OS Language Environment publications

To… Use…

Evaluate Language Environment Concepts Guide

Plan for Language Environment Concepts Guide

Runtime Application Migration Guide

Install Language Environment on z/OS z/OS Program Directory

Customize Language Environment on z/OS Customization

Understand Language Environment program
models and concepts

Concepts Guide

Programming Guide

Find syntax for Language Environment runtime
options and callable services

Programming Reference

Develop applications that run with Language
Environment

Programming Guide and your language
Programming Guide

Debug applications that run with Language
Environment, get details on runtime messages,
diagnose problems with Language Environment

Debugging Guide and Run-Time Messages

Develop interlanguage communication (ILC)
applications

Writing Interlanguage Applications

Migrate applications to Language Environment Runtime Application Migration Guide and the
migration guide for each Language Environment-
enabled language

Notation conventions used in this document
This book uses the conventions, diagramming techniques, and notation described in “Conventions used”
on page xxviii and “How to read the notational symbols” on page xxxi to illustrate PL/I and non-PL/I
programming syntax.

Conventions used
Some of the programming syntax in this document uses type fonts to denote different elements:

• Items shown in UPPERCASE letters indicate key elements that must be typed exactly as shown.
• Items shown in lowercase letters indicate user-supplied variables for which you must substitute

appropriate names or values. The variables begin with a letter and can include hyphens, numbers,
or the underscore character (_).

• The term digit indicates that a digit (0 through 9) should be substituted.
• The term do-group indicates that a do-group should be substituted.
• Underlined items indicate default options.

xxviii Introduction

• Examples are shown in monocase type.
• Unless otherwise indicated, separate repeatable items from each other by one or more blanks.

Note: Any symbols shown that are not purely notational, as described in “How to read the notational
symbols” on page xxxi, are part of the programming syntax itself.

For an example of programming syntax that follows these conventions, see “Example of notation” on page
xxxi.

How to read the syntax notation
The following rules apply to the syntax diagrams used in this document:

Arrow symbols
Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
►►───

Indicates the beginning of a statement.
───►

Indicates that the statement syntax is continued on the next line.
►───

Indicates that a statement is continued from the previous line.
───►◄

Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the ►─── symbol and end
with the ───► symbol.

Conventions

• Keywords, their allowable synonyms, and reserved parameters, appear in uppercase for MVS™ and
OS/2 platforms, and lowercase for UNIX platforms. These items must be entered exactly as shown.

• Variables appear in lowercase italics (for example, column-name). They represent user-defined
parameters or suboptions.

• When entering commands, separate parameters and keywords by at least one blank if there is no
intervening punctuation.

• Enter punctuation marks (slashes, commas, periods, parentheses, quotation marks, equal signs)
and numbers exactly as given.

• Footnotes are shown by a number in parentheses, for example, (1).
• A ␣ symbol indicates one blank position.

Required items
Required items appear on the horizontal line (the main path).

REQUIRED_ITEM

Optional Items
Optional items appear below the main path.

REQUIRED_ITEM

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the
statement and is used only for readability.

REQUIRED_ITEM

optional_item

Introduction xxix

Multiple required or optional items
If you can choose from two or more items, they appear vertically in a stack. If you must choose one of
the items, one item of the stack appears on the main path.

REQUIRED_ITEM required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.
REQUIRED_ITEM

optional_choice1

optional_choice2

Repeatable items
An arrow returning to the left above the main line indicates that an item can be repeated.

REQUIRED_ITEM repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

REQUIRED_ITEM

,

repeatable_item

A repeat arrow above a stack indicates that you can specify more than one of the choices in the stack.

Default keywords
IBM-supplied default keywords appear above the main path, and the remaining choices are shown
below the main path. In the parameter list following the syntax diagram, the default choices are
underlined.

REQUIRED_ITEM

default_choice

optional_choice

optional_choice

Fragments
Sometimes a diagram must be split into fragments. The fragments are represented by a letter or
fragment name, set off like this: | A |. The fragment follows the end of the main diagram. The following
example shows the use of a fragment.

STATEMENT item 1 item 2 A

A
item 3

item 4

KEYWORD

item 5

item 6

Substitution-block
Sometimes a set of several parameters is represented by a substitution-block such as <A>. For
example, in the imaginary ⁄VERB command you could enter ⁄VERB LINE 1, ⁄VERB EITHER LINE
1, or ⁄VERB OR LINE 1.

⁄VERB

<A>

LINE line#

xxx Introduction

where <A> is:
EITHER

OR

Parameter endings
Parameters with number values end with the symbol '#', parameters that are names end with 'name',
and parameters that can be generic end with '*'.

⁄MSVERIFY MSNAME msname

SYSID sysid#

The MSNAME keyword in the example supports a name value and the SYSID keyword supports a
number value.

How to read the notational symbols
Some of the programming syntax in this book is presented using notational symbols. This is to maintain
consistency with descriptions of the same syntax in other IBM publications, or to allow the syntax to be
shown on single lines within a table or heading.

• Braces, { }, indicate a choice of entry. Unless an item is underlined, indicating a default, or the items are
enclosed in brackets, you must choose at least one of the entries.

• Items separated by a single vertical bar, |, are alternative items. You can select only one of the group of
items separated by single vertical bars. (Double vertical bars, ||, specify a concatenation operation, not
alternative items. See the PL/I Language Reference for more information on double vertical bars.)

• Anything enclosed in brackets, [], is optional. If the items are vertically stacked within the brackets, you
can specify only one item.

• An ellipsis, ..., indicates that multiple entries of the type immediately preceding the ellipsis are allowed.

Example of notation

The following example of PL/I syntax illustrates the notational symbols described in “How to read the
notational symbols” on page xxxi:

DCL file-reference FILE STREAM
 {INPUT | OUTPUT [PRINT]}
 ENVIRONMENT(option ...);

Interpret this example as follows:

• You must spell and enter the first line as shown, except for file-reference, for which you must substitute
the name of the file you are referencing.

• In the second line, you can specify INPUT or OUTPUT, but not both. If you specify OUTPUT, you can
optionally specify PRINT as well. If you do not specify either alternative, INPUT takes effect by default.

• You must enter and spell the last line as shown (including the parentheses and semicolon), except for
option ..., for which you must substitute one or more options separated from each other by one or more
blanks.

Summary of changes
This section lists the major changes that have been made to this document of Enterprise PL/I for
z/OS for Version 6 Release 1. The changes that are described in this information have an associated
cross-reference for your convenience. The latest technical changes are highlighted in the HTML version, or
marked by vertical bars (|) in the left margin in the PDF version.

Introduction xxxi

Enhancements in this release
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

Performance improvements
• The compiler generates better code for some common usage of FIXED DECIMAL and PICTURE

variables.
• The compiler utilizes some of the new hardware instructions.
• The compiler internally re-formats some user SELECT statements and thereby improving both compile-

time and run-time performance.
• The compiler generates better code for the ORDINALNAME, ORDINALPRED, and ORDINALSUCC built-in

functions.
• The compiler generates better code for the INLIST and INARRAY built-in functions.

Usability enhancements
• The compiler allows extending 31-bit (AMODE 31) PL/I programs to work with 64-bit (AMODE 64) PL/I

programs by providing the addressing space needed to handle your growing PL/I program data without
requiring you to convert the entire application to 64-bit. With this new feature, 31-bit code can invoke
and be invoked by 64-bit code. See Chapter 19, “Mixing AMODE 31 and AMODE 64 code,” on page 377.

• The compiler flags more possible STRINGSIZE conditions.
• The compiler flags EXEC HANDLE CONDITION and EXEC SQL WHENEVER as violations of

RULES(NOGOTO).
• The compiler flags passing INONLY to INOUT, INONLY to OUTONLY, and NONASGN to ASGN.
• The compiler supports +DD: in options strings in IBMZIOP.
• The compiler does not flag risky INONLY parms if OPTIONS(ASSEMBLER).
• The compiler issues new compiler messages for REPATTERN to avoid runtime errors.
• The compiler additionally flags at compile-time both risky and poor-performing code.

Compiler option enhancements
New compiler options:

• The “HGPR” on page 39 compiler option specifies whether the compiler should preserve and restore
the high halves of the 64-bit GPRs.

• The “MAXRUNONIF” on page 55 compiler option flags code that should probably be rewritten using
the INLIST built-in function.

• The “MAXSTATIC” on page 55 compiler option causes the compiler to flag STATIC variables that
exceed a specified size.

Modified compiler options:

• The “ARCH” on page 9 compiler option supports ARCH(14) to generate code that uses instructions
available on the 3931-xxx (IBM z16) models in z/Architecture mode.

• The default of the “BIFPREC” on page 12 compiler option is now BIFPREC(31).
• The CHECKFLOAT suboption of the “DECIMAL” on page 20 compiler option requires the compiler to

generate code that will raise the SIZE condition if the source in a FLOAT to FIXED DECIMAL conversions
is too big.

• The FOFLONADD and NOFOFLONADD suboptions of the “DECIMAL” on page 20 compiler option
require the compiler to generate code that will raise the FIXEDOVERFLOW condition or produce a
truncated result for any use of the ADD or SUBTRACT built-in function.

xxxii Introduction

• The KEEPMINUS suboption of the “DECIMAL” on page 20 compiler option requires the compiler,
under certain circumstances, to generate code that will preserve a "negative zero" in FIXED DECIMAL
assignments.

• The HASH suboption of the “FILEREF” on page 35 compiler option specifies that each line in the file
reference table is followed by a line containing the hex value of a 256-bit SHA-2 hash of that file.

• The “HEADER” on page 39 compiler option introduces an additional pair of suboptions: ALL and FIRST.
The ALL suboption is the default setting.

• The TRIMR and NOTRIMR suboptions of the “JSON” on page 45 compiler option determines if output
from the JSONPUTVALUE and JSONPUTMEMBER functions will be trimmed from the right (or not).

• The PARSE(V2) suboption of the “JSON” on page 45 compiler option allows you to parse JSON text
where the elements of the target structure appear in a different order in the JSON source. It also gives
you more control over how the parser reacts to errors in the JSON source.

• The default of the “LINECOUNT” on page 48 compiler option is now LINECOUNT(31415).
• The UNREFVALUE and NOUNREFVALUE suboptions of the “RULES” on page 70 compiler option control

whether the compiler should flag unreferenced VALUE constants.
• The maximum length for the “SYSPARM” on page 88 compiler option is now 1023.
• The SOURCE suboption of the “TEST” on page 89 compiler option specifies that if the GOFF option is

also specified, then the compiler will include in a no-load class in the generated object file all the source
files in the same compressed format used for the TEST(SEPARATE) option.

• The UUID suboption of the “USAGE” on page 93 compiler option determines if the output of the UUID
and UUID4 built-in functions are in lowercase or uppercase.

• The VALIDDATE suboption of the “USAGE” on page 93 compiler option determines if compiler should
recognize if any dates in 1582 are valid, and if not, the compiler can generate nicer and faster inline
code for the VALIDDATE built-in function for a lot of patterns using YYYY.

• The HASH suboption of the XINFO(XML) compiler option specifies that for each FILENAME line, the
generated XML file is followed by a line containing the hex value of a 256-bit SHA-2 hash of that file
enclosed in the <CONTENTHASH> and </CONTENTHASH> tags.

New macro preprocessor option

• The “EOLCOMM” on page 118 option specifies that the macro preprocessor should recognize // as an
end-of-line comment marker even in text that is part of a macro invocation.

Enhancements from V5R3
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

Usability enhancements
• The compiler flags any occurrence of =+ and =- as likely typos.
• The compiler supports a maximum number of 65535 lines in a page in the listing. See “LINECOUNT” on

page 48.
• The compiler has increased the maximum length of the string passed to the EXIT to 1023. See “EXIT”

on page 34.
• The compiler issues a warning message when the parameter to MAIN is declared as CHAR VARYING

with a specific length (rather than with an indeterminate length specified as CHAR(*) VAR).
• The compiler supports the use of assigning the null string (specified as either '' or ''b) to HANDLE,

OFFSET, ENTRY, and AREA variables.
• The compiler supports control of the NULLINIT values used for POINTERs.

Introduction xxxiii

Compiler option enhancements
New compiler options:

• The “MAXINIT” on page 52 compiler option helps you find code that significantly increases the size of
the generated object.

• The MACRO preprocessor supports the same “ID” on page 118 option as the INCLUDE preprocessor.
• The MACRO preprocessor “IGNORE” on page 119 option specifies whether the MACRO preprocessor

should ignore specific statements.
• The SQL preprocessor “LINEFILE” on page 126 option lets you include a file number as well as a line

number in the DBRM statement number.

Modified compiler options:

• The “DEFAULT” on page 24 compiler option has these new suboptions:
NULLINIT(SYSNULL | NULL)

The NULLINIT suboption of the DEFAULT compiler option helps determine the value assigned to a
POINTER that has the NULLINIT attribute.

LAXQUAL | NOLAXQUAL

The DEFAULT(NOLAXQUAL) options specifies that when the compiler is resolving a reference to a
name without any dot qualification, then if the name is ambiguous in the block where it is first
declared, but is a reference to a scalar in a parent block, then the compiler will resolve the reference
to be that parent block reference.

• The NOLAXINOUT suboption of the “DEFAULT” on page 24 compiler option supports two sets of
suboptions.

• The “ARCH” on page 9 compiler option supports ARCH(13) to generate code that uses instructions
available on the 8561-xxx (IBM z15™) models in z/Architecture® mode.

• The FOFLONDIV and NOFOFLONDIV suboptions of the “DECIMAL” on page 20 compiler option require
the compiler to generate code that will raise the FIXEDOVERFLOW condition or produce a truncated
result for any use of the DIVIDE built-in function.

• The PADDING and NOPADDING suboptions of the “DEFAULT” on page 24 compiler option specify if
the compiler should pad defined structures.

• The “USAGE” on page 93 compiler option has this new suboption:
REGEX(RESET | NORESET)

The REGEX suboption of the USAGE compiler option lets you choose better performance for
repeated REGEX calls when you know what other functions in your applications are dependent
on the C locale.

• The “RULES” on page 70 compiler option has these new suboptions:
COMPLEX | NOCOMPLEX

The NOCOMPLEX suboption of the RULES compiler option lets you enforce the requirement that any
use of the COMPLEX attribute, built-in function or constants should be flagged.

GLOBAL | NOGLOBAL
The NOGLOBAL suboption of the RULES compiler option lets you flag any variable that is used in
a nested subprocedure of the block where the variable is declared as AUTOMATIC, CONTROLLED,
DEFINED, PARAMETER, and ASSIGNABLE STATIC.

LAXEXPORTS | NOLAXEXPORTS
The NOLAXEXPORTS suboption of the RULES compiler option lets you enforce the requirement that
every PACKAGE explicitly name all the routines it exports.

LAXFIELDS | NOLAXFIELDS
The NOLAXFIELDS suboption of the RULES compiler option lets you enforce the requirement that
fields have to be explicitly specified within a SQL SELECT or INSERT.

xxxiv Introduction

LAXOPTIONAL | NOLAXOPTIONAL
The suboption NOLAXOPTIONAL of the RULES compiler option causes the compiler to flag any use
of the OMITTED and PRESENT built-in functions whose parameters are not declared as OPTIONAL.

LAXPACKAGE | NOLAXPACKAGE
The NOLAXPACKAGE suboption of the RULES compiler option lets you enforce the requirement that
all compilation units contain an explicit PACKAGE statement.

LAXPARMS | NOLAXPARMS
The NOLAXPARMS suboption of the RULES compiler option lets you enforce the requirement that
one of the INOUT/INONLY/OUTONLY attributes be specified for all parameters.

LAXSCALE | NOLAXSCALE
The NOLAXSCALE suboption of the RULES compiler option lets you disallow FIXED BIN with any
nonzero scale factor and limit its flagging to only the primary source file.

UNREFSTATIC | NOUNREFSTATIC
The suboption NOUNREFSTATIC of the RULES compiler option will no longer flag PLIXOPT or
PLITABS.

PADDING | NOPADDING
The LOOSE/STRICT suboption of the RULES(NOPADDING) compiler option lets you also find
structures with leading and trailing padding.

• References of names which start with 'CEE', 'DFH', 'DSN', 'EYU', 'IBM', 'PLI', and 'SQL' are excluded from
the RULES(NOLAXENTRY) and RULES(NOLAXQUAL) checking.

• The “JSON” on page 45 compiler option has the following changes:
CASE(LOWER)

The LOWER suboption of the JSON(CASE) compiler option specifies that the names in the JSON text
generated by the JSONPUT built-in functions and expected by the JSONGET built-in functions will
all be in lowercase.

GET(HEEDCASE | IGNORECASE)
The HEEDCASE suboption of the JSON(GET) compiler option specifies that the JSONGET built-in
functions require exactly matching names. The IGNORECASE suboption of the JSON(GET) compiler
option specifies that the JSONGET built-in functions view names as matching if their case is ignored.

• The 64K suboption of the LIMITS(STRING) option lets you set the corresponding limits for strings to
65535. See “LIMITS” on page 47.

• The abbreviations CSTG and STG are accepted as synonyms for CURRENTSIZE and SIZE in the
USAGE(HEX) compiler option. See “USAGE” on page 93.

• The MACRO preprocessor “CASE” on page 117 option has the CASE(ASIS) option as the default.

SQL enhancements
• The SQL preprocessor supports references using elements of DEFINE STRUCTURE statements. See

“Declaring host variables” on page 131.
• The SQL preprocessor supports the ORDINAL attribute in the scalar host variables. See “Declaring

scalar host variables” on page 131.

CICS enhancements
• The CICS preprocessor output now includes a listing of all the CICS options in effect when the

preprocessor is run.

Introduction xxxv

Enhancements from V5R2
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

Performance improvements
• The code for INLIST has been improved when the first argument is CHAR(n) with 1 <= n <= 4 and all the

other arguments are CHAR with length <= n.
• The code for SELECT(x) has been improved when x is CHAR, and when appropriate the compiler will

perform the SELECT via a binary search.

Usability enhancements
• The compiler flags unreachable ASSERT UNREACHABLE statements with a different message than it

flags other unreachable statements.
• The compiler flags MEMCONVERT built-in references that could be converted to the much faster

MEMCU12 or MEMCU21.
• The compiler flags TRANSLATE built-in references that should probably be converted to REPATTERN.
• The compiler expands in the AGGREGATE listing typed structures that are member of other structures.
• The compiler issues an informational message for many of the situations where it turns off INLINE for a

PROCEDURE or BEGIN block.
• The compiler accepts the INLINE option on nested PROCEDUREs and BEGIN blocks.
• The attributes listing shows the contents of the VALUE attribute for CHARACTER and BIT constants of

length 256 or less and also for numeric PICTURE constants.

Compiler option enhancements
• The “ASSERT” on page 11 compiler option controls whether ASSERT statements call a default library

routine that will raise the ASSERTION condition or a routine provided by the user.
• The “CASE” on page 13 compiler option controls whether some names will be shown in uppercase or

in the same format as they appear in the source program.
• The CMPAT(LE) and CMPAT(V1) suboptions have been restored in the “CMPAT” on page 15 compiler

option.
• The “DBRMLIB” on page 19 compiler option controls where the SQL preprocessor should write its

DBRM data set when running under UNIX System Services.
• The “RULES” on page 70 compiler option has these suboptions:

LAXCONV | NOLAXCONV
The NOLAXCONV suboption of the RULES compiler option lets you flag arithmetic expressions
where an operand does not have arithmetic type.

LAXINTERFACE | NOLAXINTERFACE
The NOLAXINTERFACE suboption of the RULES compiler option lets you flag code that does not
contain a valid explicit declare for each of its external PROCEDUREs.

MULTIENTRY | NOMULTIENTRY
The NOMULTIENTRY suboption of the RULES compiler option lets you flag code that contains ENTRY
statements.

MULTIEXIT | NOMULTIEXIT
The NOMULTIEXIT suboption of the RULES compiler option lets you flag code that contains multiple
RETURN statements.

MULTISEMI | NOMULTISEMI
The NOMULTISEMI suboption of the RULES compiler option lets you flag source line that contains
more than one semicolon.

xxxvi Introduction

UNREFCTL | NOUNREFCTL
The NOUNREFCTL suboption of the RULES compiler option lets you flag unreferenced CTL variables.

UNREFDEFINED | NOUNREFDEFINED
The NOUNREFDEFINED suboption of the RULES compiler option lets you flag unreferenced
DEFINED variables.

UNREFENTRY | NOUNREFENTRY
The NOUNREFENTRY suboption of the RULES compiler option lets you flag unreferenced ENTRY
constants.

UNREFFILE | NOUNREFFILE
The NOUNREFFILE suboption of the RULES compiler option lets you flag unreferenced FILE
constants.

UNREFSTATIC | NOUNREFSTATIC
The NOUNREFSTATIC suboption of the RULES compiler option lets you flag unreferenced STATIC
variables.

YY | NOYY
The NOYY suboption of the RULES compiler option lets you flag the use of 2-digit years.

• The NOELSEIF suboption of the “RULES” on page 70 compiler option flags ELSE statements
immediately followed by an IF statement that is enclosed in a simple DO-END.

• The NOGOTO suboption of the “RULES” on page 70 compiler option accepts a LOOSEFORWARD
sub-suboption so that GOTO statements that branch forward are exempted from the NOGOTO flagging.

CICS enhancements
• The CICS preprocessor output now includes a listing of all the CICS options in effect when the

preprocessor run.

Enhancements from V5R1
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

Performance improvements
• Enterprise PL/I now takes additional exploitation of the vector facility.
• Some fixed decimal divides with large precision are now done using the Decimal Floating-Point (DFP)

facility. This might cause some ZERODIVIDE exceptions to be reported as INVALIDOP.

Usability enhancements
• Enterprise PL/I now provides support for compiling code for 64-bit applications. For more information,

see Chapter 7, “Considerations for developing 64-bit applications,” on page 183.
• The compiler now issues a warning message if the option strings in the IBMZIOP are the same as each

other and if a user specifies an option that conflicts with one of those non-overridable options.
• The compiler now also includes information about the compiler options that are used during

compilation in the generated SYSADATA file. All the declarations for SYSADATA records are now
provided in include files in the samples data set SIBMZSAM.

Compiler option enhancements
• The new “BRACKETS” on page 13 compiler option allows you to specify the symbols that the SQL

preprocessor accepts as the left and right brackets in SQL array references. This option makes it easier
to use such language.

• The new “DECOMP” on page 23 compiler option causes the compiler to produce a listing section that
shows all intermediate expressions and their attributes for all expressions used in the source program.

Introduction xxxvii

• The “DECIMAL” on page 20 compiler option has a new suboption, TRUNCFLOAT, which provides you
with finer control over how the compiler handles assignments of float to fixed decimal when truncation
might occur.

• The new “EXPORTALL” on page 34 compiler option controls whether to export all externally defined
procedures and variable so that a DLL application can use them.

• The new “HEADER” on page 39 compiler option lets you control what appears in the middle of each
header line in the compiler listing.

• The “INSOURCE” on page 43 compiler option has two new suboptions, FIRST and ALL, which control
how many source listings appear in the listing file.

• The new “LP” on page 50 compiler option allows you to specify whether the compiler generates 31-bit
code or 64-bit code.

• The “MDECK” on page 56 compiler option has two new suboptions, AFTERALL and AFTERMACRO,
which control when the MDECK is generated.

• The new “NULLDATE” on page 58 compiler option allows you to use the SQL null date as a valid date in
your program.

• The new “OFFSETSIZE” on page 59 compiler option determines the size of OFFSET variables in 64-bit
applications.

• The “RULES” on page 70 compiler option has these new suboptions:
LAXSTMT | NOLAXSTMT

You can use RULES(NOLAXSTMT) to flag any line that has more than one statement.
UNREFBASED | NOUNREFBASED

You can use RULES(NOUNREFBASED) to flag unreferenced BASED variables that are in BASED
storage.

• The NOPROCENDONLY suboption of the “RULES” on page 70 compiler option has two new suboptions,
ALL and SOURCE. They make it easier to stage enforcement of the rules that the END statement for
every procedure must include the name of that procedure.

• The “XREF” on page 99 compiler option has two new suboptions, EXPLICIT and IMPLICIT, which allow
you to determine whether implicit variable references are included in the XREF listing.

Note:

All the compiler option default settings for a release is listed in the member with the name IBMXOvrm,
where v is the version number, r is the release number and m is the modification number which is usually
0 (for example, IBMXO530 for V5R3 and IBMXO510 for V5R1), in the SIBMZSAM data set. The data set
contains IBMXOvrm members for all supported PL/I releases. To see what has changed in the default
settings and what new options are added from one release to the next, you can compare the IBMXOvrm
files for the two releases. You can also use the IBMXOvrm files as templates for creating your own options
files with your preferred settings.

SQL enhancements
• The SQL preprocessor now parses the DEFINE ALIAS, DEFINE ORDINAL, and DEFINE STRUCTURE

statements. If a DEFINE ALIAS statement defines a PL/I type that can be used in SQL statements, a
variable declared with that type can also be used in SQL statements.

• If the “NULLDATE” on page 58 compiler option is specified, the SQL null date, with year, month, and
day all equal to 1, is accepted as a valid date in some of the datetime handling built-in functions.

• The INDFOR attribute makes it easy to declare a structure of indicator variables to match another PL/I
structure.

• To make it easier to change the severity of the DSNH030 SQL preprocessor message, it is now given its
own preprocessor message IBM3317.

xxxviii Introduction

Enhancements from V4R5
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

Performance improvements
• The code that is generated for the EXEC CICS statement executes faster because one MVC is

eliminated.
• Much faster code is generated for MOD and REM of FIXED DEC with precision greater than 15.
• The ARCH option now accepts 11 as its maximum value, and when ARCH(11) is specified, the compiler

generates code that exploits the new hardware instructions on those z systems. This code especially
improves the performance of some instances of the SEARCH, and VERIFY built-in functions.

SQL enhancements
• The validation of an EXEC SQL statement will not stop when the first invalid host variable is found, but

will instead check all host variable references.
• The new SQL preprocessor option (NO)CODEPAGE determines how the compiler CODEPAGE option is

honored by the SQL preprocessor.
• The new SQL preprocessor option (NO)WARNDECP allows you to reduce the amount of “noise” that is

produced by the SQL preprocessor.
• A structure that is used as a host variable can now also have a structure as its indicator variable.
• A named constant, that is, a PL/I variable with the VALUE attribute can now be used as a host variable if

SQL allows a constant in that setting.

Usability enhancements
• The new MAXBRANCH compiler option can help you find excessively complex code.
• The new FILEREF and NOFILEREF compiler options control whether the compiler produces a file

reference table.
• The new JSON compiler option lets you choose the case of the names in the JSON text generated by the

JSONPUT built-in functions and expected by the JSONGET built-in functions.
• The LIMITS compiler option now accepts STRING as a suboption with these values as the threshold for

the length of a BIT, CHARACTER or WIDECHAR variable: 32K, 512K, 8M, and 128M.
• The XML compiler option now lets you choose whether XML attributes generated by the XMLCHAR

built-in function are enclosed in apostrophes or quotation marks.
• The RULES(NOLAXRETURN) compiler option is enhanced so that ERROR will be raised if code falls

through to the END statement in a PROCEDURE with the RETURNS attribute.
• The new ALL | SOURCE suboptions to the RULES(NOLAXNESTED) and RULES(NOPADDING) compiler

options provide finer control over when the compiler flags questionable coding.
• The new FORCE(NOLAXQUAL) attribute and the new FORCE suboption of the RULES(NOLAXQUAL)

option enable users to enforce the NOLAXQUAL rules in a structure-by-structure manner.
• The use of INITIAL on REFER objects will now be flagged with an E-level message.
• The MACRO preprocessor now supports DEPRECATE and DEPRECATENEXT options that allow you to

remove selected macro procedures over a course of planned stages.
• If a FIXED or FLOAT variable has the VALUE attribute, the compiler lists its value as a character string in

the ATTRIBUTES listing.
• The aggregate listing is enhanced to mark arrays of VARYING that contain padding between array

members (for example, when a structure contains an array of CHAR(31) VARYING ALIGNED).
• When SUBSCRIPTRANGE is enabled and an array assignment includes arrays with non-constant

bounds, the compiler now generates code that raises the SUBSCRIPTRANGE condition if the bounds

Introduction xxxix

do not match. If the bounds are all constant, the compiler continues to check at compile-time that they
match.

• If an event in any of the PLISAX event structures is set to null (via the NULLENTRY built-in function
or the UNSPEC pseudovariable), the XML parser will not call that event. This allows you to limit your
XML parsing code to only the events in which you are interested and to improve the performance of the
overall parse at the same time.

• The compiler now flags an attempt to FETCH or RELEASE the procedure that it is currently compiling.

Enhancements from V4R4
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

Performance improvements
• The generation of the pseudo assembler listing is faster than the previous releases.
• The compiler is now compiled with ARCH(7).
• The compiler now flags declarations for variables that do not have the STATIC attribute but have more

than 100 INITIAL items.

Usability enhancements
• The SQL preprocessor now issues more messages when programs contain incorrect syntax. These

messages make it easier to identify the source statement that is in error.
• The new NOINCLUDE option can be used to prohibit the use of the %INCLUDE and %XINCLUDE

statements outside the MACRO preprocessor.
• The included files are now bracketed in the source listing when the %INCLUDE statement is processed

by the final compiler pass.
• The NULLSTRPTR suboption of the DEFAULT option has the new STRICT suboption that flags the

assignments and comparisons of '' to POINTERS as invalid.
• When the STMT option is specified, the source and message listings will include both the logical

statement numbers and the source file numbers.

Enhancements from V4R3
This release provides the following functional enhancements described in this and the other IBM PL/I
books.

Performance improvements
• The ARCH(10) option provides exploitation of the IBM zEnterprise® EC12 System instructions.
• The compiler now generates inline code for VERIFY and SEARCH when they have three arguments and

the second argument is a single character.
• The compiler now generates inline code for more conversions from PICTURE to DFP.
• The compiler now generates inline code for more conversions from BIT to CHAR.
• The compiler now generates inline code for conversions of BIT to WIDECHAR.
• The code generated for TRIM of FIXED DEC is improved.

Usability enhancements
• The SQL preprocessor has the following improvements:

– It supports the ONEPASS option.
– It supports the use of some restricted expressions in the host variable declarations.

xl Introduction

– The listing of the EXEC SQL statement is displayed in a readable format that is similar to the original
source.

– It supports the use of host variables declared with the LIKE attribute.
– It supports the new DEPRECATE option that causes the preprocessor to flag a list of statements that

you want to deprecate.
• The ADATA file now records the use of the following attributes, built-in functions, and statement:

– The INONLY, INOUT, and OUTONLY attributes
– The XMLATTR and XMLOMIT attributes
– The ALLCOMPARE, UTF8, UTF8TOCHAR, and UTF8TOWCHAR built-in functions
– The ASSERT statement

• With the new CASERULES option, you can specify case rules for PL/I keywords. For example, you can
specify the rule that all keywords must be in uppercase.

• The DEPRECATE option has a new STMT suboption that causes the compiler to flag a list of statements
that you want to deprecate.

• The new DEPRECATENEXT option allows for staged deprecation of functions.
• The IGNORE option has a new ASSERT suboption that instructs the compiler to ignore all ASSERT

statements.
• The new (NO)MSGSUMMARY option controls whether the compiler adds a summary of all messages

that are issued during the compilation into the listing.
• The RTCHECK option has the new NULL370 suboption that checks whether a pointer that equals to

the old NULL() value is dereferenced. Pointers that equal to the old NULL() value are these with the
hexadecimal value of 'FF000000'x.

• The RULES option now accepts (NO)CONTROLLED as a suboption that controls whether to flag the use
of the CONTROLLED attribute.

• The RULES option now accepts (NO)LAXNESTED as a suboption that controls whether to flag programs
where nested procedures exist between sections of executable code.

• The RULES option now accepts (NO)RECURSIVE as a suboption that determines whether to flag any use
of the RECURSIVE attribute or any procedure that directly calls itself.

• The RULES(NOUNREF) option now accepts SOURCE | ALL as a suboption that determines whether to
flag all unreferenced variables.

• RULES(NOLAXIF) now also causes the compiler to flag the assignments of the form x = y = z.
• RULES(NOLAXSCALE) now also causes the compiler to flag ROUND(x, p) when p < 0.

Enhancements from V4R2
This release provides the following functional enhancements described in this and the other IBM PL/I
books.

Performance improvements
• The ARCH(9) option provides further exploitation of the IBM zEnterprise 196 (z196) System

instructions, including the high-word, floating-point extension, and population count facilities.
• The new UNROLL compiler option gives you control of loop unrolling.
• The compiler now generates inline code to resolve the ULENGTH and USUBSTR built-in functions for

character strings.
• The compiler now generates inline code for MEMINDEX(p, n, x) where x is WCHAR(1).
• The compiler now generates inline code for STG(x) where x is BASED variable using REFER and meets

both of the following conditions:

– All NONVARYING BIT in x are specified with the ALIGNED attribute.

Introduction xli

– All other elements in x are specified with UNALIGNED.

Debugging improvements
• The compiler now supports typed structures in Debug Tool.

SQL support enhancements
• The SQL Preprocessor has the following significant changes:

– It fully and correctly supports block scoping.
– The preprocessor load module is more than eight times smaller.
– The preprocessor runs faster.
– It supports the use of the SQL TYPE attribute anywhere you can specify a PL/I data type.
– It now supports the following compiler options when processing declarations of host variables. It

applies the defaults correctly and rejects unsuitable host variables as appropriate.

- DEFAULT(ANS | IBM)
- DEFAULT(ASCII | EBCDIC)
- DEFAULT((NO)EVENDEC)
- DEFAULT((NON)NATIVE)
- DEFAUT(SHORT(HEX | IEEE))
- RULES((NO)LAXCTL)

– It now correctly processes the PRECISION attribute.
– It now recognizes the UNSIGNED and COMPLEX attributes and rejects the use of these attributes in

any host variable.
– It now ensures that DSNHMLTR is declared in the outermost procedure that contains codes that need

DSNHMLTR.
– It now handles packages correctly.
– It now ensures that characters in the source code are printable when it generates code to set the

SQLAVDAID.
– It no longer requires that indicator arrays have a lower bound of 1.
– It now generates an SQL parameter list structure that has fewer unions, fewer init clauses, and no

additional declarations based on elements of the structure.

Usability enhancements
• The new PPLIST compiler option conditionally erases the part of the listing that is generated by any

preprocessor phase that produces no messages.
• The compiler issues better messages when a comma is missing in a structure declaration.
• The compiler issues new messages when the source code contains invalid shift-in and shift-out bytes.
• The compiler applies the NONASSIGNABLE attribute to any parameter that is declared with the INONLY

attribute; it flags any assignment to a parameter that is declared as INONLY.
• Under RULES(NOLAXENTRY), the compiler does not flag names that start with DSN.
• Under RULES(NOUNREF), the compiler does not flag names that start with DSN or SQL.
• Under the new NOSELFASSIGN suboption of the RULES compiler option, the compiler flags assignments

of variables to themselves.
• Under the new NOLAXRETURN suboption of the RULES compiler option, the compiler generates codes

to raise the ERROR condition when a RETURN statement is used in some invalid ways.

xlii Introduction

Enhancements from V4R1
This release provides the following functional enhancements described in this and the other IBM PL/I
books.

Debugging improvements
• Under TEST(SEPARATE), the compiler optionally places the statement number table in the debug file

and thus reduces the size of the generated object deck.
• Under TEST(SEPARATE), the compiler includes information identifying the source lines for declarations,

references, and assignments.
• Under TEST(SEPARATE), the compiler generates information to identify the implicit locator reference

when a BASED variable is based on the ADDR of an array element or other complex references.

Performance improvements
• The ARCH(9) option provides exploitation of the IBM zEnterprise System instructions.
• If all the elements of structures using REFER are byte-aligned, the compiler inlines code to resolve

references to these elements rather than through library calls.

Usability enhancements
• The new DEPRECATE compiler option flags variable names and included file names that you want to

deprecate.
• The new SEPARATE suboption of the GONUMBER option is provided to place the generated statement

number table in the separate debug file.
• The new NOGLOBALDO suboption of the RULES option flags all DO loop control variables that are

declared in the parent block.
• The new NOPADDING suboption of the RULES option flags all structures that contain padding.
• The SQL preprocessor now supports the XREF option.
• The new PLISAXD built-in subroutine provides the ability to parse XML documents with validation

against a schema by using the XML System Services parser.

Serviceability enhancements
• The use of either the GOSTMT option or the IMPRECISE option is now flagged as unsupported.
• The compiler now always lists all SQL preprocessor options that are in effect.

Enhancements from V3R9
This release provides the following functional enhancements described in this and the other IBM PL/I
books.

Performance improvements
• UVALID will now be inlined for for strings of length 256 or less.
• Under ARCH(7) and higher, the CU12, CU14, CU21, CU24, CU41, and CU42 instructions will be used to

provide for fast conversions between UTF-8, UFT-16 and UTF-32.
• Under ARCH(7) and higher, the TRTT, TROT, TRTO, and TROO instructions will be used to provide for fast

translations between one- and two-byte buffers.
• Assignments of like arrays of scalars will now be handled as storage copy operations.
• All assignments of BIT VARYING to BIT VARYING will now be inlined.
• All assignments of byte-aligned BIT NONVARYING to BIT VARYING will now be inlined.

Introduction xliii

• The ROUND and ROUNDDEC built-in functions will be inlined when the argument to be rounded is DFP.

Note: From PL/I for z/OS V5.1, the ROUNDDEC built-in function has been renamed as
ROUNDAWAYFROMZERO.

• To simplify the choosing of options for best performance,

– the COMPACT option has been dropped
– The default setting for DEFAULT(REORDER | ORDER) has been changed to DEFAULT(REORDER)
– the TUNE option has been dropped

• Detection of the dereferencing of null pointers exploits the new compare-and-trap instruction under
ARCH(8).

• The compiler has been built with ARCH(6) to improve its performance.

Usability enhancements
• The CICS preprocessor now supports block-scoping and consequently will add the needed local CICS

declares to all non-nested procedures.
• The SQL preprocessor now supports the PL/I rules for the scope of declarations when resolving host

variable references through the new SCOPE option. NOSCOPE is the default for compatibility with
previous releases.

• The MACRO preprocessor will now leave %include, %xinclude, %inscan, and %xinscan statements in
the compiler listing as comments.

• The MACRO preprocessor now provides via the %DO SKIP; statement an easy and clear way to omit
sections of code from a compile.

• The MACRO preprocessor now supports an option called NAMEPREFIX which allows the user to force
macro procedures and variables to start with a specified character.

• The IGNORE compiler option provides the ability to suppress PUT FILE and/or DISPLAY statements
(either of which may have been used for debug purposes but which should be compiled out of the
production version).

• The NULLSTRPTR suboption of the DEFAULT compiler option provides user control of whether sysnull or
null is assigned to a pointer when the source in the assignment is a null string.

• The new MAXGEN option specifies the maximum number of intermediate language statements that
should be generated for any one user statement and will cause the compiler to flag any statement
where this maximum is exceeded.

• The new ONSNAP option will allow the user to request the compiler to insert an ON STRINGRANGE
SNAP; or an ON STRINGSIZE SNAP; statement into the prologue of a MAIN or FROMALIEN proc.

• The new SHORT suboption of the INITAUTO option will limit the INITAUTO option so that it does not
duplicate all of the runtime STORAGE option, but does initialize variables that might be optimized to
registers.

• The new RTCHECK option will generate code to test for the dereferencing of null pointers.
• The compiler will now flag various statements that may be risky:

– code where the result of a FIXED operation has a scale factor less than zero
– ENTRYs used as functions but declared without the RETURNS attribute
– parameters declared as BYVALUE when doing so is ill-advised, e.g. declaring a FIXED DEC parameter

BYVALUE
– FIXED DECIMAL add and multiply operations that might raise FIXEDOVERFLOW

• The RULES option has been expanded to allow more control over and flagging of poor code:

– NOPROCENDONLY will flag END statements for PROCs that don't name the PROC they are closing
– NOSTOP will flag the use of STOP and EXIT
– NOLAXQUAL(STRICT) will flag variables not qualified with their level-1 name

xliv Introduction

– NOLAXSCALE will flag declares of FIXED DEC(p,q) and FIXED BIN(p,q) where q < 0 or p < q
– NOGOTO(LOOSE) will allow GOTOs only if in the same block
– More than one DELAY STATEMENTS can be concurrently executed in different procedures.

Serviceability enhancements
• When the compiler cannot open a file, the compiler will now, if possible, also include the related C

runtime message in the message in the listing.
• If user code requires a DFP conversion at compile time but the compile is running on a machine without

DFP hardware, this error will be trapped and a meaningful error issued.
• If the SQL preprocessor is invoked more than once without INCONLY as its suboption, then the DBRM

library created by the compiler will be empty, and now an E-level message will be issued to warn the
user about this problem.

Enhancements from V3R8
This release provides the following functional enhancements described in this and the other IBM PL/I
books.

Performance improvements
• The ARCH(8) and TUNE(8) options provide exploitation of the z/HE instructions.
• The HGPR option supports using 64-bit registers in 32-bit code.
• The GOFF option supports generation of GOFF objects.
• The PFPO instruction will be exploited in conversions between differing float formats.
• SRSTU will be used in code generated for UTF-16 INDEX.
• Calls to null internal procedures will now be completely removed.

Usability enhancements
• PLISAXC provides for access to the XML System Services parser via a SAX interface.
• The INCDIR option is supported under batch.
• The LISTVIEW option now provides the support previously provided by the AFTERMACRO etc

suboptions of TEST.
• The NOLAXENTRY suboption of the RULES option allows for the flagging of unprototyped ENTRYs.
• The (NO)FOFLONMULT suboption of the DECIMAL option allows for control of whether FOFL is raised in

MULTIPLY of FIXED DECIMAL.
• The HEX and SUBSTR suboptions of the USAGE option provide more user control of the behavior of the

corresponding built-in functions.
• The DDSQL compiler option provides the ability to specify an alternate DD name to be used for EXEC

SQL INCLUDEs.
• The INCONLY suboption provided by the MACRO and SQL preprocessors can request those

preprocessors to perform only INCLUDEs.
• The integrated SQL preprocessor will now generate DB2® precompiler style declares for all *LOB_FILE,

*LOCATOR, ROWID, BINARY and VARBINARY SQL types, in addition to the BLOB, CLOB and DBCLOB
SQL types already supported, when the LOB(Db2) SQL preprocessor option is selected.

Enhancements from V3R7
This release provides the following functional enhancements described in this and the other IBM PL/I
books.

Introduction xlv

Debugging improvements
• The TEST option has been enhanced so that users can choose to view the source in the listing and in the

Debug Tool source window as that source would appear after a user-specified preprocessor had been
run (or after all the preprocessors had been run).

Performance improvements
• The BASR instruction will now be used instead of the BALR instruction.
• The conversions of FIXED DEC with large precision to FLOAT will be inlined and speeded up by the use

of FIXED BIN(63) as an intermediary.
• The CHAR built-in when applied to CHAR expressions will now always be inlined.
• The code generated for conversions of FIXED BIN(p,q) to unscaled FIXED DEC has been significantly

improved.
• TRTR will be used, under ARCH(7), for SEARCHR and VERIFYR in the same situations where TRT would

be used for SEARCH and VERIFY.
• UNPKU will be used to convert some PICTURE to WIDECHAR (rather than making a library call).

Usability enhancements
• IEEE Decimal Floating-Point (DFP) is supported.
• The new MEMCONVERT built-in function will allow the user to convert arbitrary lengths of data between

arbitrary code pages.
• The new ONOFFSET built-in function will allow the user to have easy access to another piece of

information formerly available only in the runtime error message or dump, namely the offset in the user
procedure at which a condition was raised.

• The new STACKADDR built-in function will return the address of the current dynamic save area (register
13 on z/OS) and will make it easier for users to write their own diagnostic code.

• The length of the mnemonic field in the assembler listing will be increased to allow for better support of
the new z/OS instructions that have long mnemonics.

• More of the right margin will be used in the attributes, cross-reference and message listings.
• The CODEPAGE option will now accept 1026 (the Turkish code page) and 1155 (the 1026 code page

plus the Euro symbol).
• The new MAXNEST option allows the user to flag excessive nesting of BEGIN, DO, IF and PROC

statements.
• Under the new (and non-default) suboption NOELSEIF of the RULES option, the compiler will flag any

ELSE statement that is immediately followed by an IF statement and suggest that it be rewritten as a
SELECT statement.

• Under the new (and non-default) suboption NOLAXSTG of the RULES option, the compiler will flag
declares where a variable A is declared as BASED on ADDR(B) and STG(A) > STG(B) not only (as the
compiler did before) when B is AUTOMATIC, BASED or STATIC with constant extents but now also when
B is a parameter declared with constant extents.

• The new QUOTE option will allow the user to specify alternate code points for the quote (") symbol since
this symbol is not code-page invariant.

• The new XML compiler option can be used to specify that the tags in the output of the XMLCHAR built-in
function be either in all upper case or in the case in which they were declared.

• For compilations that produce no messages, the compiler will now include a line saying "no compiler
messages" where the compiler messages would have been listed.

• The MACRO preprocessor will support a new suboption that will allow the user to specify whether it
should process only %INCLUDE statements or whether it should process all macro statements.

xlvi Introduction

• The integrated SQL preprocessor will now generate Db2 precompiler style declares for all *LOB_FILE,
*LOCATOR, ROWID, BINARY and VARBINARY SQL types, in addition to the BLOB, CLOB and DBCLOB
SQL types already supported, when the LOB(Db2) SQL preprocessor option is selected.

Enhancements from V3R6
This release provides the following functional enhancements described in this and the other IBM PL/I
books.

Db2 V9 support
• Support for STDSQL(YES/NO)
• Support for CREATE TRIGGER (aka multiple SQL statements)
• Support for FETCH CONTINUE
• Support for SQL style comments ('--') embedded in SQL statements
• Support for additional SQL TYPES including

– SQL TYPE IS BLOB_FILE
– SQL TYPE IS CLOB_FILE
– SQL TYPE IS DBCLOB_FILE
– SQL TYPE IS XML AS
– SQL TYPE IS BIGINT
– SQL TYPE IS BINARY
– SQL TYPE IS VARBINARY

• The SQL preprocessor will also now list the Db2 coprocessor options

Debugging improvements
• Under TEST(NOSEPNAME), the name of the debug side file will not be saved in the object deck.

Performance improvements
• Support, under ARCH(7), of the z/OS extended-immediate facility
• Exploitation of the CLCLU, MVCLU, PKA, TP and UNPKA instructions under ARCH(6)
• Exploitation of the CVBG and CVDG instructions under ARCH(5)
• Expanded use of CLCLE
• Conversions involving Db2 date-time patterns are now inlined
• The ALLOCATION built-in function is now inlined
• Conversions with a drifting $ have been inlined
• Conditional code has been eliminated from assignments to PIC'(n)Z'
• Conversions from FIXED BIN to a PICTURE that specifies a scale factor have been inlined
• Assignments to BIT variables that have inherited dimensions but which have strides that are divisible by

8 will now be inlined

Usability enhancements
• The MAP output will now also include a list in order of storage offset (per block) of the AUTOMATIC

storage used by the block
• Conformance checking has been extended to include structures
• Listings will now include 7 columns for the line number in a file
• The THREADID built-in function is now supported under z/OS

Introduction xlvii

• The PICSPEC built-in function is now supported
• The new CEESTART option allows you to position the CEESTART csect at the start or end of the object

deck
• The new PPCICS, PPMACRO and PPSQL options allow you to specify the default options to be used by

the corresponding preprocessor
• The ENVIRONMENT option is now included in the ATTRIBUTES listing
• The DISPLAY option now supports a suboption to allow different DESC codes for DISPLAY with REPLY

versus DISPLAY without REPLY
• The message flagging a semicolon in a comment will now include the line number of the line where the

semicolon appears
• Flag assignments that can change a REFER object
• Flag use of KEYED DIRECT files without a KEY/KEYFROM clause
• Flag use of PICTURE as loop control variables

Enhancements from V3R5
This release provides the following functional enhancements described in this and the other IBM PL/I
books.

Debugging improvements
• Under TEST(SEPARATE), the vast majority of debug information will be written to a separate debug file
• AUTOMONITOR will include the target in assignments
• The AT ENTRY hook will now be placed after AUTOMATIC has been initialized, thereby eliminating the

need to step into the block before looking at any variables

Performance improvements
• Generation of branch-relative instructions so that the need for base registers and transfer vectors will

be significantly eliminated
• Support, under ARCH(6), of the z/OS long displacement facility
• Simple structures using REFER will be mapped inlined rather than via a library call
• For structures using REFER still mapped via a library call, less code will be generated if the REFER
specifies the bound for an array of substructures

• Faster processing of duplicate INCLUDEs
• Conversions to PICTURE variables with an I or R in the last position will now be inlined (such

conversions had already been inlined when the last character was a T)
• Conversions to PICTURE variables ending with one or more B's will now be inlined if the corresponding

picture without the B's would have been inlined
• Conversions to from CHARACTER to PICTURE variables consisting only of X's will now be inlined

Usability enhancements
• All parts of the listing, etc will count the source file as file 0, the first include file as file 1, the second

(unique) include file as file 2, etc
• Conformance checking extended to include arrays
• Listings will include the build dates for any preprocessors invoked
• One-byte FIXED BINARY arguments can be suppressed for easier ILC with COBOL
• Alternate DD names may be specified for SYSADATA, SYSXMLSD and SYSDEBUG
• RULES(NOLAXMARGINS) tolerates, under XNUMERIC, sequence numbers

xlviii Introduction

• RULES(NOUNREF) flags unreferenced AUTOMATIC variables
• If an assignment to a variable is done via library call, the message flagging the library call will include

the name of the target variable
• Flag one-time DO loops
• Flag labels used as arguments
• Flag ALLOCATE and FREE of non-PARAMETER CONTROLLED in FETCHABLE if PRV used
• Flag DEFINED and BASED larger than their base even if the base is declared later
• Flag implicit FIXED DEC to 8-byte integer conversions

Enhancements from V3R4
This release provides the following functional enhancements described in this and the other IBM PL/I
books.

Migration enhancements
• Support sharing of CONTROLLED with old code
• Improve default initialization
• Ease decimal precision specification in ADD, DIVIDE and MULTIPLY
• Support old semantics for STRING of GRAPHIC
• Support old semantics for the DEFAULT statement
• Flag declares with storage overlay
• Lift restrictions on RETURN inside BEGIN
• Optionally flag semicolons in comments
• Support EXT STATIC initialized in assembler
• Flag invalid carriage control characters
• Flag more language misuse, especially with RETURN
• Support the REPLACEBY2 built-in function
• Optionally suppress FOFL on decimal assignments that would raise SIZE
• Flag more language handled differently than the old compiler

Performance improvements
• Improve code generated for INDEX and TRANSLATE
• Inline more assignments to pictures
• Improve the code generated for conversions of CHARACTER to PICTURE when the conversion would be

done inline if the source were FIXED DEC
• Improve the code generated for packed decimal conversions
• Improve the code generated for some uses of REFER
• Inline compares of character strings of unknown length
• Reduce the amount of stack storage used for concatenates
• Inline more GET/PUT STRING EDIT statements
• Short-circuit more LE condition handling
• Inline more Or and And of BIN FIXED
• Inline SIGNED FIXED BIN(8) to ALIGNED BIT(8)
• Flag statements where the compiler generates a call to a library routine to map a structure at run time
• Lessen the amount of I/O used to produce the listing

Introduction xlix

Usability enhancements
• Optionally provide offsets in the AGGREGATE listing in hex
• Support DEC(31) only when needed via the LIMITS(FIXEDDEC(15,31)) option
• Allow comments in options
• Optionally flag FIXED DEC declares with even precision
• Optionally flag DEC to DEC assignments that could raise SIZE
• Flag DEC/PIC to PIC assignments that could raise SIZE
• Support LIKE without INIT via the NOINIT attribute
• Ease includes from PDS’s under z/OS UNIX
• Support the LOWERCASE, MACNAME, TRIM and LOWERCASE built-in functions in the MACRO

preprocessor
• Ease introduction of options via PTF
• Optionally disallow use of *PROCESS
• Optionally keep *PROCESS in MDECK
• Support one-time INCLUDE
• Support macro-determined INCLUDE name
• Support runtime string parameter checking
• Flag more possibly uninitialized variables
• Flag unusual compares that are likely to be coding errors
• The output of the STORAGE option is now formatted more nicely, and the output of the LIST option will

now include the hex offset for each block from the start of the compilation unit.

Debugging improvements
• Better support for overlay hooks
• Easier resolution of CONTROLLED variables in LE dumps
• Always include user specified options in the listing

Enhancements from V3R3
This release also provides all of the functional enhancements offered in Enterprise PL/I V3R3, including
the following:

More XML support
The XMLCHAR built-in function will write XML with the names and values of the elements of a referenced
structure to a buffer and return the number of bytes written. This XML can then be passed to other
applications, including code using the PL/I SAX parser, which want to consume it.

Improved performance
• The compilation time under OPT(2) will be significantly less than under Enterprise PL/I V3R2, especially

for large programs.
• The compiler now uses the ED and EDMK instructions for inlined numeric conversions to PICTURE and

CHARACTER. This results in faster, shorter code sequences and also in faster compilations.
• The compiler now generates better code for string comparisons. This also results in faster, shorter code

sequences.
• The compiler now generates shorter, faster code for conversion from FIXED DECIMAL to PICTURE with

trailing overpunch characters.

l Introduction

• The ARCH and TUNE compiler options now accept 5 as a valid sub-option. Under ARCH(5), the compiler
will generate, when appropriate, some new z/Architecture instructions such as NILL, NILH, OILL, OILH,
LLILL, and LLILH.

Easier migration
• The new BIFPREC compiler option controls the precision of the FIXED BIN result returned by various

built-in functions and thus provides for better compatibility with the OS PL/I compiler.
• The new BACKREG compiler option controls which register the compiler uses as the backchain register

and thus allows for easier mixing of old and new object code.
• The new RESEXP compiler option controls the evaluation of restricted expressions in code, and thus

provides for better compatibility with the OS PL/I compiler.
• The new BLKOFF compiler option provides for controlling the way offsets in the compiler's pseudo-

assembler listing are calculated.
• The STORAGE compiler option causes the compiler to produce, as part of the listing, a summary, similar

to that produced by the OS PL/I compiler, of the storage used by each procedure and begin-block.

Improved usability
• The new LAXDEF suboption of the RULES compiler option allows the use of so-called illegal defining

without having the compiler generate E-level messages.
• The new FLOATINMATH compiler option offers easier control of the precision with which math functions

are evaluated.
• The new MEMINDEX, MEMSEARCH(R) and MEMVERIFY(R) built-in functions provide the ability to

search strings larger than 32K.
• The new ROUTCDE and DESC suboptions of the DISPLAY(WTO) compiler option offers control of the

corresponding elements of the WTO.
• The compiler now stores in each object a short string that will be in storage even when the associated

code runs and that records all the options used to produce that object. This allows various tools to
produce better diagnostics.

• The compiler now issues messages identifying more of the places where statements have been merged
or deleted.

• The PLIDUMP output now includes a hex dump of user static.
• The PLIDUMP output now includes the options used to compile each program in the Language

Environment traceback.
• The PLIDUMP output now includes more information on PL/I files.

Improved debug support
• BASED structures using REFER are now supported in DebugTool and in data-directed I/O statements

(with the same restrictions as on all other BASED variables).
• BASED structures that are BASED on scalar members of other structures (which, in turn, may be BASED,

etc) are now supported in DebugTool and in data-directed I/O statements (with the same restriction as
on all other BASED variables).

Enhancements from V3R2
This release also provides all of the functional enhancements offered in Enterprise PL/I V3R2, including
the following:

Introduction li

Improved performance
• The compiler now handles even more conversions by generating inline code which means these

conversions will be done much faster than previously. Also, all conversions done by library call are
now flagged by the compiler.

• The compiler-generated code now uses, in various situations, less stack storage.
• The compiler now generates much better code for references to the TRANSLATE built-in function.
• The compiler-generated code for SUBSCRIPTRANGE checking is now, for arrays with known bounds,

twice as fast as before.
• The ARCH and TUNE options now support 4 as a suboption, thereby allowing exploitation of instructions

new to the zSeries machines.
• ARCH(2), FLOAT(AFP) and TUNE(3) are now the default.

Easier migration
• Compiler defaults have been changed for easier migration and compatibility. The changed defaults are:

– CSECT
– CMPAT(V2)
– LIMITS(EXTNAME(7))
– NORENT

• The compiler now honors the NOMAP, NOMAPIN and NOMAP attributes for PROCs and ENTRYs with
OPTIONS(COBOL).

• The compiler now supports PROCs with ENTRY statements that have differing RETURNS attribute in the
same manner as did the old host compiler.

• The compiler will now assume OPTIONS(RETCODE) for PROCs and ENTRYs with OPTIONS(COBOL).
• The SIZE condition is no longer promoted to ERROR if unhandled.
• Various changes have been made to reduce compile time and storage requirements.
• The OFFSET option will now produce a statement offset table much like the ones it produced under the

older PL/I compilers.
• The FLAG option now has exactly the same meaning as it had under the old compilers, while the

new MAXMSG option lets you decide if the compiler should terminate after a specified number of
messages of a given severity. For example, with FLAG(I) MAXMSG(E,10), you can now ask to see all
I-level messages while terminating the compilation after 10 E-level messages.

• The AGGREGATE listing now includes structures with adjustable extents.
• The STMT option is now supported for some sections of the listing.
• The maximum value allowed for LINESIZE has been changed to 32759 for F-format files and to 32751

for V-format files.

Improved usability
• The defaults for compiler options may now be changed at installation.
• The integrated SQL preprocessor now supports Db2 Unicode.
• The compiler now generates information that allows Debug Tool to support Auto Monitor, whereby

immediately before each statement is executed, all the values of all the variables used in the statement
are displayed.

• The new NOWRITABLE compiler option lets you specify that even under NORENT and at the expense of
optimal performance, the compiler should use no writable static when generating code to handle FILEs
and CONTROLLED.

• The new USAGE compiler option gives you full control over the IBM or ANS behavior of the ROUND and
UNSPEC built-in function without the other effects of the RULES(IBM|ANS) option.

lii Introduction

• The new STDSYS compiler option lets you specify that the compiler should cause the SYSPRINT file to
be equated to the C stdout file.

• The new COMPACT compiler option lets you direct the compiler to favor those optimizations which tend
to limit the growth of the code.

• The LRECL for SYSPRINT has been changed to 137 to match that of the C/C++ compiler.
• POINTERs are now allowed in PUT LIST and PUT EDIT statements: the 8-byte hex value will be output.
• If specified on a STATIC variable, the ABNORMAL attribute will cause that variable to be retained even if

unused.

Enhancements from V3R1
This release also provides all of the functional enhancements offered in Enterprise PL/I V3R1, including
the following:

• Support for multithreading on z/OS
• Support for IEEE floating-point on z/OS
• Support for the ANSWER statement in the macro prepreprocessor
• SAX-style XML parsing via the PLISAXA and PLISAXB built-in subroutines
• Additional built-in functions:

– CS
– CDS
– ISMAIN
– LOWERCASE
– UPPERCASE

Enhancements from VisualAge PL/I
This release also provides all of the functional enhancements offered in VisualAge® PL/I V2R2, including
the following:

• Initial UTF-16 support via the WIDECHAR attribute

There is currently no support yet for

– WIDECHAR characters in source files
– W string constants
– use of WIDECHAR expressions in stream I/O
– implicit conversion to/from WIDECHAR in record I/O
– implicit endianness flags in record I/O

If you create a WIDECHAR file, you should write the endianness flag ('fe_ff'wx) as the first two bytes
of the file.

• DESCRIPTORS and VALUE options supported in DEFAULT statements
• PUT DATA enhancements

– POINTER, OFFSET and other non-computational variables supported
– Type-3 DO specifications allowed
– Subscripts allowed

• DEFINE statement enhancements

– Unspecified structure definitions
– CAST and RESPEC type functions

• Additional built-in functions:

Introduction liii

– CHARVAL
– ISIGNED
– IUNSIGNED
– ONWCHAR
– ONWSOURCE
– WCHAR
– WCHARVAL
– WHIGH
– WIDECHAR
– WLOW

• Preprocessor enhancements

– Support for arrays in preprocessor procedures
– WHILE, UNTIL and LOOP keywords supported in %DO statements
– %ITERATE statement supported
– %LEAVE statement supported
– %REPLACE statement supported
– %SELECT statement supported
– Additional built-in functions:

- COLLATE
- COMMENT
- COMPILEDATE
- COMPILETIME
- COPY
- COUNTER
- DIMENSION
- HBOUND
- INDEX
- LBOUND
- LENGTH
- MACCOL
- MACLMAR
- MACRMAR
- MAX
- MIN
- PARMSET
- QUOTE
- REPEAT
- SUBSTR
- SYSPARM
- SYSTEM
- SYSVERSION
- TRANSLATE
- VERIFY

liv Introduction

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality information.

If you have comments about this document or any other PL/I documentation, contact us in one of these
ways:

• Send an email to compinfo@cn.ibm.com

Be sure to include the name of the document, the publication number of the document, the version
of PL/I, and, if applicable, the specific location (for example, page number) of the text that you are
commenting on.

• Fill out the Readers' Comment Form at the back of this document, and return it by mail or give it to an
IBM representative. If the form has been removed, address your comments to:

International Business Machines Corporation
Reader Comments
H150/090
555 Bailey Avenue
San Jose, CA 95141-1003
USA

• Fax your comments to this U.S. number: (800)426-7773.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

Accessibility
Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully. The accessibility features in z/OS provide accessibility
for Enterprise PL/I.

Accessibility features
z/OS includes the following major accessibility features:

• Interfaces that are commonly used by screen readers and screen-magnifier software
• Keyboard-only navigation
• Ability to customize display attributes such as color, contrast, and font size

z/OS uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-aria/), to ensure
compliance to US Section 508 (https://www.access-board.gov/ict/) and Web Content Accessibility
Guidelines (WCAG) 2.0 (http://www.w3.org/TR/WCAG20/). To take advantage of accessibility features,
use the latest release of your screen reader in combination with the latest web browser that is supported
by this product.

Keyboard navigation
Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/OS services by using IBM Developer for z/OS.

For information about accessing these interfaces, see the following publications:

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Volume I
• IBM Developer for z/OS Documentation

How to send your comments

Introduction lv

mailto:compinfo@cn.ibm.com
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
https://www.access-board.gov/ict/
https://www.access-board.gov/ict/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
https://www.ibm.com/docs/en/zos/2.4.0?topic=tsoe-zos-primer
https://www.ibm.com/docs/en/zos/2.4.0?topic=tsoe-zos-users-guide
https://www.ibm.com/docs/en/zos/2.4.0?topic=ispf-zos-users-guide-vol-i
https://www.ibm.com/docs/en/developer-for-zos

These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

Interface information
The Enterprise PL/I online product documentation is available in IBM Documentation, which is viewable
from a standard web browser.

PDF files have limited accessibility support. With PDF documentation, you can use optional font
enlargement, high-contrast display settings, and can navigate by keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code examples, and text that
contains the period or comma PICTURE symbols, you must set the screen reader to speak all punctuation.

Assistive technology products work with the user interfaces that are found in z/OS. For specific guidance
information, see the documentation for the assistive technology product that you use to access z/OS
interfaces.

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

Accessibility

lvi Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

http://www.ibm.com/able
http://www.ibm.com/able

Part 1. Compiling your program

© Copyright IBM Corp. 1999, 2022 1

2 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 1. Using compiler options and facilities
This chapter describes the options that you can use for the compiler, along with their abbreviations and
IBM-supplied defaults.

Important: PL/I requires access to the Language Environment run time when you compile your
applications.

With Enterprise PL/I, you can develop both 31-bit and 64-bit applications. When you compile code,
use the LP(32) option for 31-bit applications, or the LP(64) option for 64-bit applications. However, the
compiler behavior under LP(64) is different from that under LP(32). For more information, see Chapter
7, “Considerations for developing 64-bit applications,” on page 183 and Chapter 6, “Link-editing and
running for 64-bit programs,” on page 179.

You can override most defaults when you compile your PL/I program. You can also override the defaults
when you install the compiler.

All the compiler option default settings for a release is listed in the member with the name IBMXOvrm,
where v is the version number, r is the release number and m is the modification number which is usually
0 (for example, IBMXO530 for V5R3 and IBMXO510 for V5R1), in the SIBMZSAM data set. The data set
contains IBMXOvrm members for all supported PL/I releases. To see what has changed in the default
settings and what new options are added from one release to the next, you can compare the IBMXOvrm
files for the two releases. You can also use the IBMXOvrm files as templates for creating your own options
files with your preferred settings.

Compile-time option descriptions
Most compiler options have a positive and negative form. The negative form is the positive with NO added
at the beginning (as in TEST and NOTEST). Some options have only a positive form (as in SYSTEM).

There are three types of compiler options:

1. Simple pairs of keywords: a positive form that requests a facility, and an alternative negative form that
inhibits that facility (for example, NEST and NONEST)

2. Keywords that allow you to provide a value list that qualifies the option (for example, FLAG(W))
3. A combination of 1 and 2 above (for example, NOCOMPILE(E))

Table 3 on page 3 lists all the compiler options with abbreviations (if any) and IBM-supplied default
values. If an option has any suboptions that can be abbreviated, those abbreviations are described in the
full description of the option.

For the sake of brevity, some of the options are described loosely in the table (for example, only one
suboption of LANGLVL is mandatory, and similarly, if you specify one suboption of TEST, you do not have
to specify the other). The full and completely accurate syntax is described in the topics that follow.

Table 3. Compile-time options, abbreviations, and IBM-supplied defaults

Compile-time option Abbreviated name z/OS default

AGGREGATE[(DEC|HEX)] | NOAGGREGATE AG | NAG NOAGGREGATE

ARCH(n) - ARCH(10)

ASSERT(ENTRY | CONDITION) - ASSERT(ENTRY)

ATTRIBUTES[(FULL|SHORT)] |
 NOATTRIBUTES

A | NA NA [(FULL)]1

BACKREG(5 | 11) - BACKREG(5)

© Copyright IBM Corp. 1999, 2022 3

Table 3. Compile-time options, abbreviations, and IBM-supplied defaults (continued)

Compile-time option Abbreviated name z/OS default

BIFPREC(15 | 31) - BIFPREC(31)

BLANK('c') - BLANK('t')2

BLKOFF | NOBLKOFF - BLKOFF

BRACKETS('symbol_1symbol_2') - BRACKETS(‘[]’)

CASE(UPPER | ASIS) - CASE(UPPER)

CASERULES(KEYWORD(LOWER |
MIXED | START | UPPER))

- CASERULES(KEYWORD
 (MIXED))

CHECK(STORAGE | NOSTORAGE) - CHECK(NSTG)

CMPAT(LE | V1 | V2 | V3) CMP CMPAT(V2)

CODEPAGE(n) CP CODEPAGE(1140)

COMMON | NOCOMMON - NOCOMMON

COMPILE | NOCOMPILE[(W | E | S)] C | NC NOCOMPILE(S)

COPYRIGHT(’string’) | NOCOPYRIGHT - NOCOPYRIGHT

CSECT | NOCSECT CSE | NOCSE CSECT

CSECTCUT(n) - CSECTCUT(4)

CURRENCY('c') CURR CURRENCY($)

DBCS | NODBCS - NODBCS

DBRMLIB('data-set-name') | NODBRMLIB - NODBRMLIB

DD(ddname-list) - DD(SYSPRINT,SYSIN,
 SYSLIB,SYSPUNCH,
 SYSLIN,SYSADATA,
 SYSXMLSD,SYSDEBUG)

DDSQL(ddname) - DDSQL('')

DECIMAL(CHECKFLOAT | NOCHECKFLOAT,
FOFLONADD | NOFOFLONADD,
FOFLONASGN | NOFOFLONASGN,
FOFLONDIV | NOFOFLONDIV,
FOFLONMULT | NOFOFLONMULT,
FORCEDSIGN | NOFORCEDSIGN,
KEEPMINUS | NOKEEPMINUS,
TRUNCFLOAT | NOTRUNCFLOAT)

DEC DEC(NOCHECKFLOAT,
NOFOFLONADD,
FOFLONASGN,
NOFOFLONDIV,
 NOFOFLONMULT,
 NOFORCEDSIGN,
NOKEEPMINUS,
NOTRUNCFLOAT)

DECOMP | NODECOMP - NODECOMP

DEFAULT(attribute | option) DFT See DEFAULT

4 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 3. Compile-time options, abbreviations, and IBM-supplied defaults (continued)

Compile-time option Abbreviated name z/OS default

DEPRECATE(BUILTIN(built-in-name)
| ENTRY(entry-name) | INCLUDE(filename)
| STMT(statement-name)
| VARIABLE(variable-name))

- DEPRECATE(BUILTIN()
 ENTRY() INCLUDE()
 STMT() VARIABLE())

DEPRECATENEXT(BUILTIN(built-in-name)
| ENTRY(entry-name) | INCLUDE(filename)
| STMT(statement-name)
| VARIABLE(variable-name))

- DEPRECATENEXT(
 BUILTIN() ENTRY()
 INCLUDE() STMT()
 VARIABLE())

DISPLAY
(STD | WTO(ROUTCDE(x) DESC(y) REPLY(z)))

- DISPLAY(WTO)

DLL | NODLL NODLL

DLLINIT | NODLLINIT - NODLLINIT

EXIT | NOEXIT - NOEXIT

EXTRN(FULL | SHORT) - EXTRN(FULL)

EXPORTALL - EXPORTALL

FILEREF | NOFILEREF - FILEREF

FLAG[(I | W | E | S)] F FLAG(W)

FLOAT(DFP | NODFP) - FLOAT(NODFP)

FLOATINMATH(ASIS | LONG | EXTENDED) - FLOATINMATH(ASIS)

GOFF | NOGOFF - NOGOFF

GONUMBER(SEPARATE | NOSEPARATE) | NOGONUMBER GN | NGN NOGONUMBER

GRAPHIC | NOGRAPHIC GR | NGR NOGRAPHIC

IGNORE(ASSERT | DISPLAY | PUT) | NOIGNORE - NOIGNORE

HEADER(SOURCE | FILE) - SOURCE

HGPR(NOPRESERVE | PRESERVE) - NOPRESERVE

INCAFTER([PROCESS(filename)]) - INCAFTER()

INCDIR('directory name') | NOINCDIR - NOINCDIR

INCLUDE | NOINCLUDE - INCLUDE

INCPDS('PDS name') | NOINCPDS - NOINCPDS

INITAUTO([SHORT | FULL]) | NOINITAUTO - NOINITAUTO

INITBASED | NOINITBASED - NOINITBASED

INITCTL | NOINITCTL - NOINITCTL

Chapter 1. Using compiler options and facilities 5

Table 3. Compile-time options, abbreviations, and IBM-supplied defaults (continued)

Compile-time option Abbreviated name z/OS default

INITSTATIC | NOINITSTATIC - NOINITSTATIC

INSOURCE[(FULL|SHORT)(ALL|FIRST)] | NOINSOURCE IS | NIS NOINSOURCE

INTERRUPT | NOINTERRUPT INT | NINT NOINTERRUPT

JSON(CASE(UPPER | ASIS | LOWER),
GET(HEEDCASE | IGNORECASE),TRIMR | NOTRIMR)

- JSON(CASE(UPPER),
GET(HEEDCASE), TRIMR)

LANGLVL(NOEXT | OS) - LANGLVL(OS)

LIMITS(options) - See “LIMITS” on page 47

LINECOUNT(n) LC LINECOUNT(31415)

LINEDIR | NOLINEDIR - NOLINEDIR

LIST | NOLIST - NOLIST

LISTVIEW(SOURCE | AFTERMACRO
| AFTERCICS | AFTERSQL | AFTERALL)

- LISTVIEW(SOURCE)

LP(32 | 64) - LP(32)

MACRO | NOMACRO M | NM NOMACRO

MAP | NOMAP - NOMAP

MARGINI('c') | NOMARGINI MI | NMI NOMARGINI

MARGINS(m,n[,c])| NOMARGINS MAR(m,n) MARGINS
F-format: (2,72)
V-format: (10,100)

MAXBRANCH(max) - MAXBRANCH(2000)

MAXINIT - MAXINIT(64K)

MAXGEN(n) - MAXGEN(100000)

MAXMEM(n) MAXM MAXMEM(1048576)

MAXMSG(I | W | E | S,n) - MAXMSG(W,250)

MAXNEST(BLOCK(x) DO(y) IF(z)) - MAXNEST(BLOCK(17)
DO(17) IF(17))

MAXRUNONIF(n) - MAXRUNONIF(10)

MAXSTMT(n) - MAXSTMT(4096)

MAXTEMP(n) - MAXTEMP(50000)

MDECK | NOMDECK MD | NMD NOMDECK

MSGSUMMARY[(XREF | NOXREF)] | NOMSGSUMMARY - NOMSGSUMMARY

6 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 3. Compile-time options, abbreviations, and IBM-supplied defaults (continued)

Compile-time option Abbreviated name z/OS default

NAME[('external-name')] | NONAME N NONAME

NAMES('lower'[,upper]) - NAMES('#@$','#@$')

NATLANG(ENU | UEN) - NATLANG(ENU)

NEST | NONEST - NONEST

NOT - NOT('¬')

NULLDATE | NONULLDATE - NONULLDATE

OBJECT | NOOBJECT OBJ | NOBJ OBJECT

OFFSET | NOOFFSET OF | NOF NOOFFSET

OFFSETSIZE(n)3 - OFFSETSIZE(4)

ONSNAP(STRINGRANGE, STRINGSIZE) | NOONSNAP - NOONSNAP

OPTIMIZE(0 | 2 | 3) | NOOPTIMIZE OPT | NOPT OPT(0)

OPTIONS[(ALL|DOC)] | NOOPTIONS OP | NOP NOOPTIONS

OR('c') - OR(' | ')

PP(pp-name) | NOPP - NOPP

PPCICS(’string’) | NOPPCICS - NOPPCICS

PPINCLUDE(’string’) | NOPPINCLUDE - NOPPINCLUDE

PPLIST(KEEP | ERASE) - PPLIST(KEEP)

PPMACRO(’string’) | NOPPMACRO - NOPPMACRO

PPSQL(’string’) | NOPPSQL - NOPPSQL

PPTRACE | NOPPTRACE - NOPPTRACE

PREFIX(condition) - See PREFIX

PRECTYPE(ANS | DECDIGIT | DECRESULT) - PRECTYPE(ANS)

PROCEED | NOPROCEED[(W | E | S)] PRO | NPRO NOPROCEED(S)

PROCESS[(KEEP | DELETE)] | NOPROCESS - PROCESS(DELETE)

QUOTE('"') - QUOTE('"')

REDUCE | NOREDUCE - REDUCE

RENT | NORENT - NORENT

RESEXP | NORESEXP - RESEXP

Chapter 1. Using compiler options and facilities 7

Table 3. Compile-time options, abbreviations, and IBM-supplied defaults (continued)

Compile-time option Abbreviated name z/OS default

RESPECT([DATE]) - RESPECT()

RTCHECK(NULLPTR | NONULLPTR | NULL370) - RTCHECK(NONULLPTR)

RULES(options) - See “RULES” on page 70

SEMANTIC | NOSEMANTIC[(W | E | S)] SEM | NSEM NOSEMANTIC(S)

SERVICE('service string') | NOSERVICE SERV | NOSERV NOSERVICE

SOURCE | NOSOURCE S | NS NOSOURCE

SPILL(n) SP SPILL(512)

STATIC(FULL | SHORT) - STATIC(SHORT)

STDSYS | NOSTDSYS - NOSTDSYS

STMT | NOSTMT - NOSTMT

STORAGE | NOSTORAGE STG | NSTG NOSTORAGE

STRINGOFGRAPHIC(CHAR | GRAPHIC) - STRINGOFGRAPHIC
 (GRAPHIC)

SYNTAX | NOSYNTAX[(W | E | S)] SYN | NSYN NOSYNTAX(S)

SYSPARM('string') - SYSPARM('')

SYSTEM(MVS | CICS | IMS | TSO | OS) - SYSTEM(MVS)

TERMINAL | NOTERMINAL TERM | NTERM

TEST(options) | NOTEST - See “TEST” on page 894

UNROLL(AUTO | NO) UNROLL(AUTO)

USAGE(options) - See “USAGE” on page 93

WIDECHAR(BIGENDIAN | LITTLEENDIAN) WCHAR WIDECHAR(BIGENDIAN)

WINDOW(w) - WINDOW(1950)

WRITABLE | NOWRITABLE[(FWS|PRV)] - WRITABLE

XINFO(options) - XINFO(NODEF,NOMSG,
 NOSYM,NOSYN,NOXML)

XML(CASE(UPPER | ASIS)) - XML(CASE(UPPER))

XREF[(FULL | SHORT)(EXPLICIT | IMPLICIT)] | NOXREF X | NX NX [(FULL)]1

8 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 3. Compile-time options, abbreviations, and IBM-supplied defaults (continued)

Compile-time option Abbreviated name z/OS default

Notes:

1. FULL is the default suboption if the suboption is omitted with ATTRIBUTES or XREF.
2. The default value for the BLANK character is the tab character with value '05'x.
3. The OFFSETSIZE option is ignored if the LP(32) option is in effect.
4. (ALL,SYM) is the default suboption if the suboption is omitted with TEST.

The following topics describe the options in alphabetical order. For those options specifying that the
compiler is to list information, only a brief description is included. For details about the generated listing,
see “Using the compiler listing” on page 103.

AGGREGATE
The AGGREGATE option creates an Aggregate Length Table that gives the lengths of arrays and major
structures in the source program in the compiler listing.

NOAGGREGATE

AGGREGATE

(

DECIMAL

HEXADEC)

ABBREVIATIONS: AG, NAG

The suboptions of the AGGREGATE option determine how the offsets of subelements are displayed in the
Aggregate Length Table:

DECIMAL
All offsets are displayed in decimal.

HEXADEC
All offsets are displayed in hexadecimal.

In the Aggregate Length Table, the length of an undimensioned major or minor structure is always
expressed in bytes, but the length might not be accurate if the major or minor structure contains
unaligned bit elements.

The Aggregate Length Table includes structures but not arrays that have non-constant extents. However,
the sizes and offsets of elements within structures with non-constant extents might be inaccurate or
specified as *.

ARCH
The ARCH option specifies the architecture for which the instructions of executable programs are to be
generated. It allows the optimizer to take advantage of specific hardware instruction sets.

ARCH (

10

n)

You can specify the following values for the ARCH level:

10
Generates code that uses instructions available on the 2827-xxx (IBM zEnterprise EC12) and 2828-
xxx (IBM zEnterprise BC12) models in z/Architecture mode.

Specifically, these ARCH(10) machines and their follow-ons add instructions supported by the
following facilities, which can be exploited by the compiler:

• The execution-hint facility
• The load-and-trap facility

Chapter 1. Using compiler options and facilities 9

• The miscellaneous-instructions-extension facility
• The transactional-execution facility

For further information about these facilities, see z/Architecture Principles of Operation.

11
Generates code that uses instructions available on the 2964-xxxx (IBM z13) and 2965-xxxx (IBM
z13s) models in z/Architecture mode.

Specifically, these ARCH(11) machines and their follow-ons add instructions supported by the
following facilities:

• Vector facility

Code compiled with ARCH(11) or a higher ARCH level requires a runtime environment that supports
vector instructions and vector context switching. Vector instructions might run into a runtime abend in
the following environment:

• z/OS versions earlier than the PTF for APAR PI12281 for V2.1.
• z/OS image running on z/VM® versions earlier than the PTF for APAR VM65733 for V6.3.
• CICS Transaction Server versions earlier than the PTF for APAR PI59322 for V5.3.

12
Generates code that uses instructions available on the 3906-xxxx (IBM z14™) model in z/Architecture
mode.

Specifically, these ARCH(12) machines and their follow-ons add instructions that support the
vector packed-decimal facility, which accelerates packed and zoned decimal computation by storing
intermediate results in vector registers instead of in memory.

13
Generates code that uses instructions available on the 8561-xxx (IBM z15™) models in z/Architecture
mode.

Specifically, these ARCH(13) machines and their follow-ons add instructions supported by the
following facilities:

• Vector packed-decimal enhancement facility
• Vector-enhancements facility 2
• Miscellaneous instruction-extensions-facility 3
• Aligned vector load/store hints

14
Generates code that uses instructions available on the 3931-xxxx (IBM z16) model in IBM z/
Architecture mode.

Specifically, this level 14 machine and its follow-ons add instructions supported by the new vector
packed-decimal enhancement facility 2. This new facility adds performance improvements for PL/I
that contain statements using numeric-edited data items.

Notes:

1. If you specify an ARCH value less than 10, the compiler resets it to 10.
2. The x in the model numbers above (such as 2084-xxx) is a wildcard and stands for any alphanumeric

machine of that type.
3. A higher ARCH level includes the facilities of the lower ARCH level. For example, ARCH(14) includes all

the facilities of the lower ARCH levels.
4. You can mix code that is compiled with different ARCH levels without any restrictions.

10 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

ASSERT
The ASSERT option controls whether ASSERT statements call a default library routine that will raise the
ASSERTION condition or a routine provided by the user.

ASSERT (

ENTRY

CONDITION)

The default is ASSERT(ENTRY).

ENTRY
Specifies that ASSERT statements will call user-provided routines with the interfaces documented in
the Enterprise PL/I for z/OS Language Reference.

CONDITION
Specifies that ASSERT statements will call library routines that will raise the ASSERTION condition
with an appropriate ONCODE built-in function.

ATTRIBUTES
The ATTRIBUTES option specifies that the compiler includes a table of source-program identifiers and
their attributes in the compiler listing.

NOATTRIBUTES

ATTRIBUTES

(

FULL

SHORT)

ABBREVIATIONS: A, NA, F, S

FULL
All identifiers and attributes are included in the compiler listing. FULL is the default.

SHORT
Unreferenced identifiers are omitted, making the listing more manageable.

If you include both ATTRIBUTES and XREF (which creates a cross-reference table), the two tables are
combined. However, if the SHORT and FULL suboptions are in conflict, the last option specified is used.
For example, if you specify ATTRIBUTES(SHORT) XREF(FULL), FULL applies to the combined listing.

BACKREG
The BACKREG option controls the backchain register, which is the register used to pass the address of the
automatic storage of a parent routine when a nested routine is invoked.

Note: Under the LP(64) option, the BACKREG option is ignored.

BACKREG (

5

11)

For best compatibility with PL/I for MVS & VM, OS PL/I V2R3, and earlier compilers, use BACKREG(5).

All routines that share an ENTRY VARIABLE must be compiled with the same BACKREG option, and it is
strongly recommended that all code in application be compiled with the same BACKREG option.

Note that code compiled with VisualAge PL/I for OS/390® effectively uses the BACKREG(11) option. Code
compiled with Enterprise PL/I V3R1 or V3R2 also uses the BACKREG(11) option by default.

Chapter 1. Using compiler options and facilities 11

BIFPREC
The BIFPREC option controls the precision of the FIXED BIN result returned by various built-in functions.

BIFPREC (

31

15)

For best compatibility with PL/I for MVS & VM, OS PL/I V2R3, and earlier compilers, use BIFPREC(15).

BIFPREC affects the following built-in functions:

• COUNT
• INDEX
• LENGTH
• LINENO
• ONCOUNT
• PAGENO
• SEARCH
• SEARCHR
• SIGN
• VERIFY
• VERIFYR

The effect of the BIFPREC compiler option is most visible when the result of one of the above built-in
functions is passed to an external function that has been declared without a parameter list. For example,
consider the following code fragment:

 dcl parm char(40) var;
 dcl funky ext entry(pointer, fixed bin(15));
 dcl beans ext entry;
 call beans(addr(parm), verify(parm), ' ');

Suppose that the function beans actually declares its parameters as POINTER and FIXED BIN(15). If the
preceding code is compiled with the option BIFPREC(31) and if it is run on a big-endian system such as
z/OS, the compiler will pass a 4-byte integer as the second argument and the second parameter will be
zero.

Note that the function funky will work on all systems with either option.

The BIFPREC option does not affect the built-in functions DIM, HBOUND and LBOUND. The CMPAT option
determines the precision of the FIXED BIN result returned by these three functions:

• Under CMPAT(V1), these array-handling functions return a FIXED BIN(15) result.
• Under CMPAT(V2) and CMPAT(LE), they return a FIXED BIN(31) result.
• Under CMPAT(V3), they return a FIXED BIN(63) result.

BLANK
The BLANK option specifies up to ten alternate symbols for the blank character.

BLANK (' char ')

Note: Do not code any blanks between the quotation marks.

The IBM-supplied default code point for the BLANK symbol is '05'X.

12 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

char
A single SBCS character

You cannot specify any of the alphabetic characters, digits, or special characters defined in the PL/I
Language Reference.

If you specify the BLANK option, the standard blank symbol is still recognized as a blank.

BLKOFF
The BLKOFF option controls whether the offsets shown in the pseudo-assembler listing (produced by the
LIST option) and the statement offset listing (produced by the OFFSET option) are from the start of the
current module or from the start of the current procedure.

BLKOFF

NOBLKOFF

The pseudo-assembler listing also includes the offset of each block from the start of the current module
(so that the offsets shown for each statement can be translated to either block or module offsets).

BRACKETS
The BRACKETS option specifies the symbols that the SQL preprocessor accepts as the left and right
brackets in SQL array references.

BRACKETS ('

[]

symbol_1 symbol_2 ')

symbol_1
Specifies the symbol recognized as the left bracket in SQL array references.

symbol_2
Specifies the symbol recognized as the right bracket in SQL array references.

Note: The two values specified must be different from each other and must not be characters used in the
PL/I character set or in other PL/I options such as NAMES, NOT, or OR.

The default is BRACKETS(‘[]’).

Related information
“NAMES” on page 57
The NAMES option specifies the extralingual characters that are allowed in identifiers.
“NOT” on page 58
The NOT option specifies up to seven alternate symbols that can be used as the logical NOT operator.
“OR” on page 61
The OR option specifies up to seven alternate symbols as the logical OR operator. These symbols are also
used as the concatenation operator, which is defined as two consecutive logical OR symbols.

CASE
The CASE option controls whether some names will be shown in uppercase or in the same format as they
appear in the source program.

CASE (

UPPER

ASIS)

The default is CASE(UPPER).

UPPER
Specifies that all names will be shown in uppercase.

Chapter 1. Using compiler options and facilities 13

ASIS
Specifies that names will be shown in the case in which they appear in the source in

• The AGGREGATE, ATTRIBUTES, and XREF listings.
• The values returned by the PACKAGENAME, PROCNAME and ORDINALNAME built-in functions.
• PUT DATA output as long as the TEST option is not used and as long as the name is not used in a

GET DATA statement.

CASERULES
The CASERULES option controls the enforcement of case rules for keywords.

CASERULES (KEYWORD (

MIXED

UPPER

LOWER

START

))

LOWER
Instructs the compiler to flag any keyword that is not in lowercase.

MIXED
Instructs the compiler to accept all keywords as they are coded. MIXED is the default.

START
Instructs the compiler to flag any keyword whose first letter is not in uppercase or whose remaining
letters are not in lowercase.

UPPER
Instructs the compiler to flag any keyword that is not in uppercase.

Notes:

1. The CASERULES option does not apply to elements of the OPTIONS and ENVIRONMENT attributes.
2. The CASERULES option does not apply to any of the preprocessors.

CHECK
The CHECK option specifies whether the compiler should generate special code to detect various
programming errors.

CHECK (

,

NOSTORAGE

STORAGE)

ABBREVIATIONS: STG, NSTG

STORAGE | NOSTORAGE
When you specify CHECK(STORAGE), the compiler calls slightly different library routines for
ALLOCATE and FREE statements (except when these statements occur within an AREA).

Note: The STORAGE suboption is not supported under the LP(64) option.

The following built-in functions, described in the PL/I Language Reference, can be used only when
CHECK(STORAGE) has been specified:

• ALLOCSIZE
• CHECKSTG
• UNALLOCATED

14 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

AMODE(24) is not recommended for Enterprise PL/I applications. For code compiled with the
CHECK(STORAGE) option, if you have to use AMODE(24), you must also specify the HEAP(,,BELOW)
runtime option.

CMPAT
The CMPAT option specifies whether object compatibility with OS PL/I Version 1, OS PL/I Version 2, PL/I
for MVS & VM, or Enterprise PL/I for z/OS is to be maintained for programs sharing strings, AREAs, arrays,
or structures.

Note: Under the LP(64) option, the CMPAT option is ignored; effectively, CMPAT(V3) is always on.

CMPAT (

V2

LE

V1

V3

)

ABBREVIATIONS: CMP

LE
Under CMPAT(LE), your program can share strings, AREAs, arrays, or structures only with programs
compiled with VisualAge PL/I for OS/390 or Enterprise PL/I for z/OS and only as long as the
CMPAT(V1) and CMPAT(V2) options were not used when they were compiled. Db2 stored procedures
must not be compiled with CMPAT(LE).

V1
Under CMPAT(V1), you can share strings, AREAs, arrays, or structures with programs compiled with
the OS PL/I compiler and with programs compiled with later PL/I compilers as long as the CMPAT(V1)
option was used.

V2
Under CMPAT(V2), you can share strings, AREAs, arrays, or structures with programs compiled with
the OS PL/I compiler and with programs compiled with later PL/I compilers as long as the CMPAT(V2)
option was used.

V3
Under CMPAT(V3), you can share strings with programs compiled with the OS PL/I compiler and with
programs compiled with later PL/I compilers as long as one of the CMPAT(V*) options was used.
However, you cannot share AREAs, arrays, or structures with any code that was not compiled with
CMPAT(V3).

All the modules in an application must be compiled with the same CMPAT option.

Mixing old and new code still has some restrictions. For information about these restrictions, see the
Enterprise PL/I for z/OS Compiler and Run-Time Migration Guide.

The DFT(DESCLIST) option conflicts with the CMPAT(V*) options. If it is specified with any CMPAT(V*)
option, a message will be issued and the DFT(DESCLOCATOR) option will be assumed.

Under CMPAT(V3), arrays can be declared with any value that an 8-byte integer can assume. However,
unless the LP(64) option is used, the total size of an array currently still has the same limit as an array
declared under CMPAT(V2).

Under CMPAT(V3), the following built-in functions will always return a FIXED BIN(63) result:

• CURRENTSIZE/CSTG
• DIMENSION
• HBOUND
• LBOUND
• LOCATION
• SIZE/STG

Chapter 1. Using compiler options and facilities 15

Because these functions will return 8-byte integer values, under CMPAT(V3), the second option in the
FIXEDBIN suboption of the LIMITS option must be 63.

However, even under CMPAT(V3), statement and format label constants must be specified using 4-byte
integers.

CODEPAGE
The CODEPAGE option specifies the code page used for conversions between CHARACTER and
WIDECHAR, and between CHARACTER and UCHAR. The option also specifies the default code page used
by the PLISAX built-in subroutines.

CODEPAGE (ccsid)

Table 4. Supported CCSIDs

01047
01140
01141
01142
01143
01144
01025

01145
01146
01147
01148
01149
00037
01155

00273
00277
00278
00280
00284
00285

00297
00500
00871
00819
00813
00920

The default CCSID 1140 is an equivalent of CCSID 37 (EBCDIC Latin-1, USA) but includes the Euro
symbol.

COMMON
The COMMON option directs the compiler to generate CM linkage records for EXTERNAL STATIC variables.

Note: Under the LP(64) option, the COMMON option is ignored.

NOCOMMON

COMMON

Under the COMMON option, if the NORENT option applies, CM linkage records will be generated for
EXTERNAL STATIC variables that are not RESERVED and that contain no INITIAL values. This matches
what the OS PL/I compiler does.

Under the NOCOMMON option, SD records will be written as was true in earlier releases of Enterprise
PL/I.

The COMMON option must not be used with the RENT option or with LIMITS(EXTNAME(n)) if n > 7.

COMPILE
The COMPILE option causes the compiler to stop compiling after all semantic checking of the source
program if it produces a message of a specified severity during preprocessing or semantic checking.

Whether the compiler continues or not depends on the severity of the error detected, as specified
by the NOCOMPILE option in the list below. The NOCOMPILE option specifies that processing stops
unconditionally after semantic checking.

16 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

NOCOMPILE

(

S

W

E

)

COMPILE

ABBREVIATIONS: C, NC

COMPILE
Generates code unless a severe error or an unrecoverable error is detected. This suboption is
equivalent to NOCOMPILE(S).

NOCOMPILE
Compilation stops after semantic checking.

NOCOMPILE(W)
No code generation if a warning, an error, a severe error, or an unrecoverable error is detected.

NOCOMPILE(E)
No code generation if an error, a severe error, or an unrecoverable error is detected.

NOCOMPILE(S)
No code generation if a severe error or an unrecoverable error is detected.

If the compilation is terminated by the NOCOMPILE option, the cross-reference listing and attribute listing
can be produced; the other listings that follow the source program will not be produced.

COPYRIGHT
The COPYRIGHT option places a string in the object module, if generated. This string is loaded into
memory with any load module into which this object is linked.

NOCOPYRIGHT

COPYRIGHT (‘copyright string’)

The string is limited to 1000 characters in length. However, if the string is longer than 100 characters, it
will not be shown in the option listing.

To ensure that the string remains readable across locales, only characters from the invariant character set
should be used.

CSECT
The CSECT option ensures that the object module, if generated, contains named CSECTs.

Use this option if you use SMP/E to service your product or to help debug your program.

CSECT

NOCSECT

ABBREVIATIONS: CSE, NOCSE

Under the NOCSECT option, the code and static sections of your object module are given default names.

• The NOCSECT option is meant to prevent conflicts in the binder when linking objects that may have the
same static or code section names. The only way to do this is to replace them with blank names which
the Binder will not complain about. If you examine the object with amblist, you will also find blank name
entries for the static and code section names so this is intended behavior.

Under the CSECT option, the code and static sections of your object module are given names that depend
on the "package name", which is defined as follows:

• If the package statement was used, the "package name" is the leftmost label on the package statement.

Chapter 1. Using compiler options and facilities 17

• Otherwise, the "package name" is the leftmost label on the first procedure statement.

A "modified package name" of length 7 is then formed as follows:

• When the package name is less than 7 characters long, asterisks (*) are prefixed to it to make a modified
package name that is 7 characters long.

• When the package name is more than 7 characters long, the first n and last 7 - n characters are used to
make the modified package name, where n is set by the CSECTCUT option.

• Otherwise, the package name is copied to the modified package name.

The code csect name is built by taking the modified package name and appending a 1 to it.

The static csect name is built by taking the modified package name and appending a 2 to it.

So, for a package named SAMPLE, the code csect name is *SAMPLE1, and the static csect name is
*SAMPLE2.

CSECTCUT
The CSECTCUT option controls how the compiler, when processing the CSECT option, handles long
names.

CSECTCUT (

4

n)

The CSECTCUT option has no effect unless you specify the CSECT option. It also has no effect if the
"package name" used by the CSECT option has 7 or fewer characters.

The value n in the CSECTCUT option must be between 0 and 7.

If the "package name" used by the CSECT option has more than 7 characters, the compiler will collapse
the name to 7 characters by taking the first n and last 7 - n characters.

For example, consider a compilation consisting of one procedure with the name BEISPIEL:

• Under CSECTCUT(3), the compiler collapses the name to BEIPIEL.
• Under CSECTCUT(4), the compiler collapses the name to BEISIEL.

CURRENCY
The CURRENCY option allows you to specify an alternate character to be used in picture strings instead of
the dollar sign.

CURRENCY ('

$

x ')

ABBREVIATIONS: CURR

x
Character that you want the compiler and run time to recognize and accept as the dollar sign in picture
strings

DBCS
The DBCS option ensures that the listing, if generated, is sensitive to the possible presence of DBCS even
though the GRAPHIC option has not been specified.

NODBCS

DBCS

Under z/OS UNIX System Services, the NODBCS option causes the listing, if generated, to show all DBCS
shift-codes as ".".

18 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Under both batch and z/OS UNIX System Services, the NODBCS option ensures that the header text in the
listing page does not contain unmatched shift codes.

The NODBCS option should not be specified if the GRAPHIC option is also specified.

DBRMLIB
The DBRMLIB option specifies where the SQL preprocessor should write its DBRM data set when running
under z/OS UNIX System Services.

NODBRMLIB

DBRMLIB

('data-set-name')

When the DBRMLIB option is specified without a data set name, the DBRM data set will be written to
the current UNIX System Services directory with the same name as the source .pli file but with the
extension .dbrm. For example, if you issue the command

pli -c -qpp=sql -qdbrmlib sample.pli

the DBRM data set will be written to sample.dbrm.

When the DBRMLIB option is specified with a data set name, the data set name must specify the name of
a PDS(E) with attributes required by Db2. The DBRM data set will be written to the data set as a member
with the same name as the source .pli file. For example, if you issue the command

pli -c -qpp=sql -qdbrmlib="USER.TEST.DBRM" sample.pli

the DBRM data set will be written to USER.TEST.DBRM(SAMPLE).

You must specify the DBRMLIB option when the compiler invokes the SQL preprocessor under UNIX
System Services. This option has no effect except when the compiler invokes the SQL preprocessor under
z/OS UNIX System Services.

The default is NODBRMLIB.

DD
Using the DD option, you can specify alternate DD names for the various data sets used by the compiler.

DD

(SYSPRINT

, SYSIN

, SYSLIB

, SYSPUNCH

, SYSLIN

, SYSADATA

, SYSXMLSD

, SYSDEBUG

)

Up to eight DD names can be specified. In order, they specify alternate DD names for the following data
sets:

• SYSPRINT
• SYSIN
• SYSLIB
• SYSPUNCH
• SYSLIN
• SYSADATA
• SYSXMLSD
• SYSDEBUG

Chapter 1. Using compiler options and facilities 19

If you want to use ALTIN as the DD name for the primary compiler source file, you must specify
DD(SYSPRINT,ALTIN). If you specify DD(ALTIN), SYSIN is used as the DDNAME for the primary compiler
source file and ALTIN is used as the DD name for the compiler listing.

You can also use an asterisk (*) to indicate that the default DD name should be used. Thus DD(*,ALTIN) is
equivalent to DD(SYSPRINT,ALTIN).

DDSQL
Using the DDSQL option, you can specify an alternate DD name for the data set that is used by the SQL
preprocessor when the preprocessor resolves EXEC SQL INCLUDE statements.

DDSQL (

''

ddname)

Under the DDSQL('') option, the DD name that is used to resolve EXEC SQL INCLUDE statements is the DD
name for SYSLIB from the DD compiler option.

This option might be useful when you are moving from the SQL precompiler to the integrated SQL
preprocessor.

DECIMAL
The DECIMAL option specifies how the compiler should handle certain FIXED DECIMAL operations and
assignments.

DECIMAL (

,

NOCHECKFLOAT

CHECKFLOAT

NOFOFLONADD

FOFLONADD

FOFLONASGN

NOFOFLONASGN

NOFOFLONDIV

FOFLONDIV

NOFOFLONMULT

FOFLONMULT

NOFORCEDSIGN

FORCEDSIGN

NOKEEPMINUS

KEEPMINUS

NOTRUNCFLOAT

TRUNCFLOAT

)

CHECKFLOAT | NOCHECKFLOAT

Under DECIMAL(CHECKFLOAT), the compiler will generate code to check that the source is not too big
when a FLOAT is converted to FIXED DECIMAL. If it is too big, SIZE will be raised.

Note that your program is in error and results are unpredictable if all of the following are true:

• The source is too large in a conversion of FLOAT to FIXED DECIMAL
• SIZE is not enabled
• DECIMAL(CHECKFLOAT) is not in effect

20 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

NOCHECKFLOAT is the default.

FOFLONADD | NOFOFLONADD

The FOFLONADD option requires the compiler to generate code that will raise the FIXEDOVERFLOW
condition for any use of the ADD built-in function that will produce a FIXED DEC result that is too large
for the precision specified in the built-in function.

Conversely, under the NOFOFLONADD option, the compiler will generate code that will produce a
truncated result for any such use of the ADD built-in function.

Note: The use of the FOFLONADD option changes the default language semantics (which is to
truncate a too large result of the ADD built-in function applied to FIXED DEC - unless the SIZE
condition is enabled).

The default is NOFOFLONADD.

FOFLONASGN | NOFOFLONASGN
When the FOFLONASGN option is enabled and the SIZE condition is disabled, the FOFLONASGN
option requires the compiler to generate code that will raise the FIXEDOVERFLOW condition whenever
a FIXED DECIMAL expression is assigned to a FIXED DECIMAL target and significant digits are lost.

Conversely, under the NOFOFLONASGN option, the compiler will generate code that will not raise the
FIXEDOVERFLOW condition when significant digits are lost in such an assignment.

Whether SIZE or FOFL (or neither) is raised when assigning a FIXED DEC source value to a FIXED DEC
target is dependent on the setting for this option and the enablement of the SIZE and FOFL conditions.

For assignments of FIXED DEC(p2,q2) to FIXED DEC(p1,q1):

• If (p1 - q1) >= (p2 - q2), then SIZE will never be raised, and FOFL will never be raised
• If (p1 - q1) < (p2 - q2)

– If SIZE is enabled, then SIZE will be raised if significant digits are lost, and FOFL will never be
raised

– If SIZE is disabled, then SIZE will never be raised

- If FOFL is enabled and the option DEC(FOFLONASGN) is in effect, then FOFL will be raised if
significant digits are lost

- Otherwise, FOFL will also never be raised

Use of the KEEPMINUS option can override the above logic.

The default is FOFLONASGN.

FOFLONDIV | NOFOFLONDIV
The FOFLONDIV option requires the compiler to generate code that will raise the FIXEDOVERFLOW
condition for any use of the DIVIDE built-in function that will produce a FIXED DEC result that is too
large for the precision specified in the built-in function.

Conversely, under the NOFOFLONDIV option, the compiler will generate code that will produce a
truncated result for any such use of the DIVIDE built-in function.

Note:

1. The use of the FOFLONDIV option changes the default language semantics (which is to truncate a
too large result of the DIVIDE built-in function applied to FIXED DEC - unless the SIZE condition is
enabled).

2. Under the NOFOFLONDIV option, an exception can still be raised by a DIVIDE that produces a
quotient with more digits than allowed by the FIXEDDEC suboption of the LIMITS option.

For example, given a variable A declared as FIXED DEC(5) with the value 31415 and a variable B
declared as FIXED DEC(5) with the value 10, and given that the FIXEDDEC suboption of the LIMITS
option specifies the maximum precision as 15, then:

Chapter 1. Using compiler options and facilities 21

a. DIVIDE(A, B, 13, 11) would produce the result 41.5 which is the truncated value of the FIXED
DEC(15,11) quotient 3141.5

b. DIVIDE(A, B, 13, 12) would raise FOFL because the quotient 3141.5 is too big to fit in a FIXED
DEC(15,12)

The default is NOFOFLONDIV.

FOFLONMULT | NOFOFLONMULT
The FOFLONMULT option requires the compiler to generate code that will raise the FIXEDOVERFLOW
condition for any use of the MULTIPLY built-in function that will produce a FIXED DEC result that is too
large for the precision specified in the built-in function.

Conversely, under the NOFOFLONMULT option, the compiler will generate code that will produce a
truncated result for any such use of the MULTIPLY built-in function.

Note: The use of the FOFLONMULT option changes the default language semantics (which is to
truncate a too large result of the MULTIPLY built-in function applied to FIXED DEC - unless the SIZE
condition is enabled).

The default is NOFOFLONMULT.

FORCEDSIGN | NOFORCEDSIGN
The FORCEDSIGN option forces the compiler to generate extra code to ensure that whenever a FIXED
DECIMAL result with the value zero is generated, the sign nibble of the result will have the value ’C’X.
This option can cause the compiler to generate code that will perform much worse than the code
generated under the NOFORCEDSIGN suboption.

Also, when the FORCEDSIGN option is in effect, more data exceptions might occur when you run
your code. For example, if you assign one FIXED DEC(5) variable to another FIXED DEC(5) variable,
the compiler would normally generate an MVC instruction to perform the move. However, if the
FORCEDSIGN option is in effect, to ensure that the result has the preferred sign, the compiler will
generate a ZAP instruction to perform the move. If the source contains invalid packed decimal data,
the ZAP instruction, but not the MVC instruction, will raise a decimal data exception.

Under DECIMAL(NOFORCEDSIGN), a "negative zero" might be produced by certain calculations.

However, a programmer should rely on getting a negative zero only if they specify the
DEC(KEEPMINUS) option.

The default is NOFORCEDSIGN.

KEEPMINUS | NOKEEPMINUS
Under KEEPMINUS, the compiler will, in some situations, generate special code to preserve a negative
zero.
In particular, if all of the following conditions are met, then FOFL will never be raised, significant digits
can be lost, and a negative zero in the source will be preserved:

• The option DEC(KEEPMINUS) is in effect
• The option DEC(NOFORCEDSIGN) is in effect
• The source is a reference that could be a target in an assignment
• The source and target are REAL
• 0 <= q <= p for the source and target
• q1 <> q2
• SIZE is not enabled or SIZE cannot occur

In these situations, the rules described above under the FOFLONASGN option does not apply if this
set of tests are all true.

Under NOKEEPMINUS, the compiler generates no special code to preserve a negative zero, and the
rules described above under the FOFLONASGN suboption still determine if SIZE, FOFL, or no condition
is raised when a source is too large for the target in an assignment.

22 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

The use of the KEEPMINUS option is strongly not recommended since its logic and effects are harder
to understand and because it can cause the compiler to generate code that performs poorly. It is very
poor programming practice to write code that relies on getting a negative zero.

NOKEEPMINUS is the default.

TRUNCFLOAT | NOTRUNCFLOAT
The TRUNCFLOAT suboption instructs the compiler to handle assignments of hexadecimal float to
fixed decimal when truncation can occur. The suboption does not apply to IEEE FLOAT BINARY or
IEEE FLOAT DECIMAL.

Under TRUNCFLOAT, if a hexadecimal float value is converted to FIXED DEC(p,q) where p <=18 and
abs(q) <= p, and if the source value is too large for the target, the source value will be truncated and
overflow will not be raised.

Under NOTRUNCFLOAT, if the source is too large, then the code is invalid. In the case of a fixed
dec(15,15) target, the result will be ok if the absolute value of the source is less than 1000.

The default is NOTRUNCFLOAT.

DECOMP
The DECOMP option instructs the compiler to generate a listing section that gives a decomposition of
expressions used in the compilation.

NODECOMP

DECOMP

Under the DECOMP option, the compiler generates a listing section that shows all intermediate
expressions and their attributes for all expressions used in the source program.

Under the NODECOMP option, the compiler does not generate this listing section.

The default is NODECOMP.

Chapter 1. Using compiler options and facilities 23

DEFAULT
The DEFAULT option specifies defaults for attributes and options. These defaults are applied only when
the attributes or options are not specified or implied in the source code.

DEFAULT (

,

ALIGNED

UNALIGNED

IBM

ANS

EBCDIC

ASCII

ASSIGNABLE

NONASSIGNABLE

BIN1ARG

NOBIN1ARG

BYADDR

BYVALUE

NONCONNECTED

CONNECTED

DESCLOCATOR

DESCLIST

DESCRIPTOR

NODESCRIPTOR

DUMMY (
ALIGNED

UNALIGNED

)

E (
HEXADEC

IEEE

)

EVENDEC

NOEVENDEC

HEXADEC

IEEE

NOINITFILL

INITFILL

(init_value)

NOINLINE

INLINE

NOLAXQUAL

LAXQUAL

LINKAGE (
OPTLINK

SYSTEM

)

LOWERINC

UPPERINC

NATIVE

NONNATIVE

NATIVEADDR

NONNATIVEADDR

NULLINIT (
NULL

SYSNULL

)

NULL370

NULLSYS

NULLSTRADDR

NONULLSTRADDR

NULLSTRPTR (

NULL

STRICT

SYSNULL

)

REORDER

ORDER

ORDINAL (

MIN

MAX)

NOOVERLAP

OVERLAP

NOPADDING

PADDING

PSEUDODUMMY

NOPSEUDODUMMY

NONRECURSIVE

RECURSIVE

NORETCODE

RETCODE

RETURNS (
BYADDR

BYVALUE

)

SHORT (
HEXADEC

IEEE

)

)

ABBREVIATIONS: DFT, ASGN, NONASGN, NONCONN, CONN, INL, NOINL

24 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

ALIGNED | UNALIGNED
This suboption forces byte-alignment on all of your variables.

If you specify ALIGNED, all variables other than picture, character, bit, graphic, uchar, and widechar
are given the ALIGNED attribute unless the UNALIGNED attribute is explicitly specified (possibly on a
parent structure) or implied by a DEFAULT statement.

If you specify UNALIGNED, all variables are given the UNALIGNED attribute unless the ALIGNED
attribute is explicitly specified (possibly on a parent structure) or implied by a DEFAULT statement.

ALIGNED is the default.

IBM | ANS
The suboption specifies whether to use IBM defaults or ANS SYSTEM defaults. The following table
shows the arithmetic defaults for IBM and ANS.

Attributes DEFAULT(IBM) DEFAULT(ANS)

FIXED DECIMAL (5,0) (10,0)

FIXED BINARY (15,0) (31,0)

FLOAT DECIMAL (6) (6)

FLOAT BINARY (21) (21)

Under the IBM suboption, the default for variables with names beginning from I to N is FIXED BINARY,
and the default for any other variables is FLOAT DECIMAL. If you select the ANS suboption, the default
for all variables is FIXED BINARY.

IBM is the default.

ASCII | EBCDIC
This suboption sets the default for the character set used for the internal representation of character
problem program data.

Specify ASCII only when compiling programs that depend on the ASCII character set collating
sequence. Such a dependency exists, for example, if your program relies on the sorting sequence
of digits or on lowercase and uppercase alphabetics. This dependency also exists in programs that
create an uppercase alphabetic character by changing the state of the high-order bit.

Note: The compiler supports A and E as suffixes on character strings. The A suffix indicates that the
string is meant to represent ASCII data, even if the EBCDIC compiler option is in effect. Alternately,
the E suffix indicates that the string is EBCDIC, even when you select DEFAULT(ASCII).

 '123'A is the same as '313233'X
 '123'E is the same as 'F1F2F3'X

EBCDIC is the default.

ASSIGNABLE | NONASSIGNABLE
This option causes the compiler to apply the specified attribute to all static variables that are not
declared with the ASSIGNABLE or NONASSIGNABLE attribute. The compiler flags statements in which
NONASSIGNABLE variables are the targets of assignments.

ASSIGNABLE is the default.

The NONASSIGNABLE suboption has no effect on either variables with the explicit ASSIGNABLE or
NONASSIGNABLE attribute or structure members that inherit the ASSIGNABLE or NONASSIGNABLE
attribute from a parent.

BIN1ARG | NOBIN1ARG
This suboption controls how the compiler handles 1-byte REAL FIXED BIN arguments passed to an
unprototyped function.

Under BIN1ARG, the compiler passes a FIXED BIN argument as is to an unprototyped function.

Chapter 1. Using compiler options and facilities 25

But under NOBIN1ARG, the compiler assigns any 1-byte REAL FIXED BIN argument passed to an
unprototyped function to a 2-byte FIXED BIN temporary and pass that temporary instead.

Consider the following example:

dcl f1 ext entry;
dcl f2 ext entry(fixed bin(15));

call f1(1b);
call f2(1b);

If you specify DEFAULT(BIN1ARG), the compiler passes the address of a 1-byte FIXED BIN(1)
argument to the routine f1 and the address of a 2-byte FIXED BIN(15) argument to the routine f2.
However, if you specify DEFAULT(NOBIN1ARG), the compiler passes the address of a 2-byte FIXED
BIN(15) argument to both routines.

Note that if the routine f1 is a COBOL routine, passing a 1-byte integer argument to it
might cause problems because COBOL has no support for 1-byte integers. In this case, using
DEFAULT(NOBIN1ARG) might be helpful; but it might be better to specify the argument attributes
in the entry declare statement.

BIN1ARG is the default.

BYADDR | BYVALUE
This suboption sets the default for whether arguments or parameters are passed by reference or by
value. BYVALUE applies only to certain arguments and parameters. See the PL/I Language Reference
for more information.

BYADDR is the default.

CONNECTED | NONCONNECTED
This suboption sets the default for whether parameters are connected or nonconnected. CONNECTED
allows the parameter to be used as a target or source in record-oriented I/O or as a base in string
overlay defining.

NONCONNECTED is the default.

DESCLIST | DESCLOCATOR
When you specify DEFAULT(DESCLIST), the compiler passes all descriptors in a list as a 'hidden' last
parameter.

If you specify DEFAULT(DESCLOCATOR), parameters requiring descriptors are passed using a locator
or descriptor in the same way as previous releases of PL/I. This allows old code to continue to work
even if it passes a structure from one routine to a routine that is expecting to receive a pointer.

The DFT(DESCLIST) option conflicts with the CMPAT(V*) options, and if it is specified with any of
them, a message will be issued and the DFT(DESCLOCATOR) option will be assumed.

DESCLOCATOR is the default.

DESCRIPTOR | NODESCRIPTOR
Using DESCRIPTOR with a PROCEDURE indicates that a descriptor list was passed, while
DESCRIPTOR with ENTRY indicates that a descriptor list should be passed. NODESCRIPTOR results in
more efficient code, but has the following restrictions:

• For PROCEDURE statements, NODESCRIPTOR is invalid if any of the parameters contains the
following:

– An asterisk (*) specified for the bound of an array, the length of a string, or the size of an area
except if it is a VARYING or VARYINGZ string with the NONASSIGNABLE attribute

– The NONCONNECTED attribute
– The UNALIGNED BIT attribute

• For ENTRY declarations, NODESCRIPTOR is invalid if an asterisk (*) is specified for the bound of an
array, the length of a string, or the size of an area in the ENTRY description list.

DESCRIPTOR is the default.

26 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

DUMMY(ALIGNED | UNALIGNED)
This suboption reduces the number of situations in which dummy arguments get created.

DUMMY(ALIGNED) indicates that a dummy argument should be created even if an argument differs
from a parameter only in its alignment. DUMMY(UNALIGNED) indicates that no dummy argument
should be created for a scalar (except a nonvarying bit) or an array of such scalars if it differs from a
parameter only in its alignment.

Consider the following example:

dcl
 1 a1 unaligned,
 2 b1 fixed bin(31),
 2 b2 fixed bin(15),
 2 b3 fixed bin(31),
 2 b4 fixed bin(15);

dcl x entry(fixed bin(31));

call x(b3);

If you specify DEFAULT(DUMMY(ALIGNED)), a dummy argument is created, while if you specify
DEFAULT(DUMMY(UNALIGNED)), no dummy argument is created.

DUMMY(ALIGNED) is the default.

E (HEXADEC | IEEE)
The E suboption determines how many digits will be used for the exponent in E-format items.

If you specify E(IEEE), 4 digits will be used for the exponent in E-format items.

If you specify E(HEXADEC), 2 digits will be used for the exponent in E-format items.

If DFT(E(HEXADEC)) is specified, an attempt to use an expression whose exponent has an absolute
value greater than 99 will cause the SIZE condition to be raised.

If the compiler option DFT(IEEE) is in effect, you should normally also use the option DFT(E(IEEE)).
However, under this option, some E format items that would be valid under DFT(E(HEXADEC)) are not
valid. For instance, under DFT(E(IEEE)), the statement put skip edit(x) (e(15,8)); will be
flagged because the E format item is invalid.

E(HEXADEC) is the default.

EVENDEC | NOEVENDEC
This suboption controls the compiler's tolerance of fixed decimal variables declared with an even
precision.

Under NOEVENDEC, the precision for any fixed decimal variable is rounded up to the next highest
odd number. This may have unintended consequences, for example Db2 SQL expects time duration
variables be FIXED DECIMAL(6), and will reject the NOEVENDEC promotion to DECIMAL(7).

If you specify EVENDEC and then assign 123 to a FIXED DEC(2) variable, the SIZE condition is raised.
If you specify NOEVENDEC, the SIZE condition is not raised.

EVENDEC is the default.

HEXADEC | IEEE
This suboption specifies the default representation that is used to hold all FLOAT variables and all
floating-point intermediate results. This suboption also determines whether the compiler evaluates
floating-point expressions using the hexadecimal or IEEE float instructions and math routines.

It is recommended that you use the IEEE option for programs that communicate with JAVA and also
for programs that pass data to or receive data from platforms where IEEE is the default representation
for floating-point data.

HEXADEC is the default.

INITFILL | NOINITFILL
This suboption controls the default initialization of automatic variables.

Chapter 1. Using compiler options and facilities 27

If you specify INITFILL with a hex value (nn), that value is used to initialize the storage that is used by
all automatic variables in a block each time that block is entered. If you do not enter a hex value, the
default is '00'.

Note that the hex value can be specified with or without quotation marks, but if it is specified with
quotation marks, the string should not have an X suffix.

Under NOINITFILL, the storage that is used by an automatic variable can hold arbitrary bit patterns
unless the variable is explicitly initialized.

INITFILL can cause programs to run slower and should not be specified in production programs.
However, the INITFILL option produces code that runs faster than the LE STORAGE option. Also,
during program development, this option is useful for detecting uninitialized automatic variables: a
program that runs correctly with DFT(INITFILL('00')) and with DFT(INITFILL('ff')) probably has no
uninitialized automatic variables.

NOINITFILL is the default.

INLINE | NOINLINE
This option sets the default for the inline procedure option.

Specifying INLINE allows your code to run faster but, in some cases, also creates a larger executable
file. For more information about how inlining can improve the performance of your application, see
Chapter 15, “Improving performance,” on page 307.

NOINLINE is the default.

LAXQUAL | NOLAXQUAL
This option sets the default for how the compiler resolves unqualified references.

The DEFAULT(NOLAXQUAL) options specifies that when the compiler is resolving a reference to
a name without any dot qualification, then if the name is ambiguous in the block where it is first
declared, but is a reference to a scalar in a parent block, then the compiler will resolve the reference
to be that parent block reference.

The use of the NOLAXQUAL option does not conform to any PL/I standard and is discouraged.

LAXQUAL is the default.

LINKAGE
Here is the linkage convention for procedure invocations:
OPTLINK

The default linkage convention for Enterprise PL/I. This linkage provides the best performance.
SYSTEM

The standard linking convention for system APIs.

Use LINKAGE(OPTLINK) for all routines called by or calling to JAVA and also for all routines called by
or calling to C (unless the C code has been compiled with a nondefault linkage).

Use LINKAGE(SYSTEM) for all non-PL/I routines that expect the high-order bit to be on in the address
of the last (and only the last) parameter.

Note that specifying OPTIONS(ASSEMBLER) for a PROCEDURE or an ENTRY forces LINKAGE(SYSTEM)
regardless of the setting of this option.

LINKAGE(OPTLINK) is the default.

Note: The LINKAGE suboption is ignored under the LP(64) option.

LOWERINC | UPPERINC
If you specify LOWERINC, the compiler requires that the actual file names of INCLUDE files are in
lowercase. If you specify UPPERINC, the compiler requires that the names are in uppercase.

Note: This suboption applies only to compilations under z/OS UNIX.

Under z/OS UNIX, the include name is built with the extension .inc. For example, under the
DFT(LOWERINC) option, the statement %INCLUDE STANDARD; causes the compiler to try to include

28 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

standard.inc. But, under the DFT(UPPERINC) option, the statement %INCLUDE STANDARD;
causes the compiler to try to include STANDARD.INC.

LOWERINC is the default.

NATIVE | NONNATIVE
This suboption affects only the internal representation of fixed binary, ordinal, offset, area, and
varying string data. When the NONNATIVE suboption is in effect, the NONNATIVE attribute is applied
to all such variables not declared with the NATIVE attribute.

You should specify NONNATIVE only to compile programs that depend on the nonnative format for
holding these kind of variables.

If your program bases fixed binary variables on pointer or offset variables (or conversely, pointer or
offset variables on fixed binary variables), specify either of the following combinations of suboptions:

• Both the NATIVE and NATIVEADDR suboptions
• Both the NONNATIVE and NONNATIVEADDR suboptions.

Other combinations produce unpredictable results.

NATIVE is the default.

NATIVEADDR | NONNATIVEADDR
This suboption affects only the internal representation of pointers. When the NONNATIVEADDR
suboption is in effect, the NONNATIVE attribute is applied to all pointer variables not declared with
the NATIVE attribute.

If your program bases fixed binary variables on pointer or offset variables (or conversely, pointer or
offset variables on fixed binary variables), specify either of the following combinations of suboptions:

• Both the NATIVE and NATIVEADDR suboptions
• Both the NONNATIVE and NONNATIVEADDR suboptions.

Other combinations produce unpredictable results.

NATIVEADDR is the default.

NULLINIT(SYSNULL | NULL)
The DEFAULT(NULLINIT) option helps determine the value assigned to a POINTER that has the
NULLINIT attribute:

If DEFAULT(NULLINIT(NULL)) and DEFAULT(NULLSTRPTR(NULL)) and DFT(NULL370) are all in
effect, then the POINTER will be assigned the hex value 'FF_00_00_00' under LP(32) and
'00000000_7FFFFBAD' under LP(64).

Otherwise, the POINTER will be assigned the value SYSNULL().

The default is NULLINIT(NULL).

NULLSYS | NULL370
This suboption determines which value is returned by the NULL built-in function. If you specify
NULLSYS, binvalue(null()) is equal to 0. If you specify NULL370, binvalue(null()) is equal to
'FF_00_00_00'xn under LP(32) and equal to '00000000_7FFFFBAD'xn under LP(64).

NULL370 is the default.

NULLSTRADDR | NONULLSTRADDR
This suboption controls how the compiler handles null strings when null strings are passed as
arguments.

Under NULLSTRADDR, when a null string is specified as an argument in an entry invocation, the
compiler will pass the address of an initialized piece of automatic storage. This is compatible with
what the OS PL/I and PL/I for MVS compilers did.

Chapter 1. Using compiler options and facilities 29

But under NONULLSTRADDR, when a null string is specified as an argument in an entry invocation,
the compiler passes a null pointer as the address of the argument. This is compatible with what early
releases of the Enterprise PL/I compiler did.

NULLSTRADDR is the default.

NULLSTRPTR
This suboption controls how the compiler handles null strings when null strings are assigned to
POINTERs, HANDLEs, and OFFSETs.

Under NULLSTRPTR(SYSNULL), the result of assigning '' to a POINTER, a HANDLE, or an OFFSET is
the same as assigning SYSNULL() to the pointer.

Under NULLSTRPTR(NULL), the result of assigning '' to a POINTER, a HANDLE, or an OFFSET is the
same as assigning NULL() to the pointer.

Under NULLSTRPTR(STRICT), assignments and comparisons of '' to POINTERs, HANDLEs, and
OFFSETs are flagged as invalid.

NULLSTRPTR(NULL) is the default.

ORDER | REORDER
This suboption affects the optimization of the object code. Specifying REORDER allows more
optimization of your code. For detailed information, see Chapter 15, “Improving performance,” on
page 307.

REORDER is the default.

ORDINAL(MIN | MAX)
If you specify ORDINAL(MAX), all ordinals whose definition does not include a PRECISION attribute is
given the attribute PREC(31). Otherwise, they are given the smallest precision that covers their range
of values.

ORDINAL(MIN) is the default.

OVERLAP | NOOVERLAP
If you specify OVERLAP, the compiler presumes the source and target in an assignment can overlap
and generates, as needed, extra code in order to ensure that the result of the assignment is okay.

The OVERLAP suboption applies only to string variables. It has no effect on assignments of FIXED
DECIMAL or other variable types. In those assignments, the source and target must not overlap.

NOOVERLAP produces code that performs better; however, if you use NOOVERLAP, you must ensure
that the source and target never overlap.

NOOVERLAP is the default.

PADDING | NOPADDING
This suboption determines whether defined structures are padded.

If you specify DEFAULT(PADDING), the compiler will round up the size of any structures in DEFINE
STRUCT statements so that they occupy a multiple of their alignment.

If you specify DEFAULT(NOPADDING), the compiler will not perform this rounding but will flag defined
structures whose size are not a multiple of their alignment.

DEFAULT(PADDING) is recommended and must be used when defined structures are passed to C
routines.

NOPADDING is the default.

PSEUDODUMMY | NOPSEUDODUMMY
This suboption determines whether dummy arguments are created when a SUBSTR reference is
specified as an argument to an unprototyped function.

If you specify PSEUDODUMMY, dummy arguments are created when a SUBSTR reference is specified
as an argument to an unprototyped function.

30 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

If you specify NOPSEUDODUMMY, dummy arguments are not created when a SUBSTR reference is
specified as an argument to an unprototyped function.

PSEUDODUMMY is the default.

RECURSIVE | NONRECURSIVE
When you specify DEFAULT(RECURSIVE), the compiler applies the RECURSIVE attribute to all
procedures. If you specify DEFAULT(NONRECURSIVE), all procedures are nonrecursive except
procedures with the RECURSIVE attribute.

NONRECURSIVE is the default.

RETCODE | NORETCODE
If you specify RETCODE, for any external procedure that does not have the RETURNS attribute, the
compiler will generate extra code so that the procedure returns the integer value obtained by invoking
the PLIRETV built-in function just before returning from that procedure.

If you specify NORETCODE, no special code is generated for procedures that do not have the
RETURNS attribute.

NORETCODE is the default.

RETURNS (BYVALUE | BYADDR)
This suboption sets the default for how values are returned by functions. See the PL/I Language
Reference for more information.

You must specify RETURNS(BYADDR) if your application contains ENTRY statements and the ENTRY
statements or the containing procedure statement have the RETURNS option. You must also specify
RETURNS(BYADDR) on the entry declarations for such entries.

RETURNS(BYADDR) is the default.

SHORT (HEXADEC | IEEE)
This suboption improves compatibility with other non-IBM UNIX compilers. SHORT (HEXADEC) maps
FLOAT BIN (p) to a short (4-byte) floating point number if p <= 21. SHORT (IEEE) maps FLOAT BIN (p)
to a short (4-byte) floating point number if p <= 24.

SHORT (HEXADEC) is the default.

Default: DEFAULT(ALIGNED IBM EBCDIC ASSIGNABLE BIN1ARG BYADDR NONCONNECTED
DESCLOCATOR DESCRIPTOR DUMMY(ALIGNED) E(HEXADEC) EVENDEC HEXADEC NOINITFILL
NOINLINE LINKAGE(OPTLINK) LOWERINC NATIVE NATIVEADDR NULL370 NULLSTRPTR(NULL)
NULLSTRADDR REORDER ORDINAL(MIN) NOOVERLAP NOPADDING PSEUDODUMMY NONRECURSIVE
NORETCODE RETURNS(BYADDR) SHORT(HEXADEC))

Chapter 1. Using compiler options and facilities 31

DEPRECATE
This option flags variable names, included file names, and statement names that you want to deprecate
with error messages.

DEPRECATE (

,

BUILTIN (

built-in-name

)

ENTRY (

entry-name

)

INCLUDE (

filename

)

STMT (

statement-name

)

VARIABLE (

variable-name

)

)

BUILTIN
Flags any declaration of built-in-name with the BUILTIN attribute.

built-in-name
Name of the BUILTIN variable

ENTRY
Flags any declaration of entry-name with the ENTRY attribute.

entry-name
Level-1 name

INCLUDE
Flags any %INCLUDE statement that includes filename.

filename
Name of the file

STMT
Flags all statements with the name as statement-name.

statement-name
Name of the statement

The names are identified by the initial keywords of PL/I statements. The STMT option accepts the
following keywords:

allocate assert attach begin call close delay delete

detach display exit fetch flush free get goto

iterate leave locate on open put read release

resignal revert rewrite signal stop wait write

VARIABLE
Flags any declaration of variable name that does not have the BUILTIN or ENTRY attributes.

variable-name
Level-1 name

To specify the DEPRECATE option, you must specify at least one of these suboptions with a possible
empty suboption list. For example, both of the following two specifications are invalid:

• DEPRECATE

32 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

• DEPRECATE(BUILTIN)

Specifying one of the suboptions does not change the setting of any of the other suboptions that are
specified previously.

Specifying a suboption a second time replaces the previous specifications.

In all cases, there is no checking of the suboption lists.

Default: DEPRECATE(BUILTIN() ENTRY() INCLUDE() STMT() VARIABLE())

Examples

• The following specifications are equivalent:

 DEPRECATE(ENTRY(old)) DEPRECATE(BUILTIN(acos))
 DEPRECATE(ENTRY(old) BUILTIN(acos))

• In the following example, x in the first specification is replaced by y:

 DEPRECATE(BUILTIN(x)) DEPRECATE(BUILTIN(y))
 DEPRECATE(BUILTIN(y))

DEPRECATENEXT
The purpose and usage of the DEPRECATENEXT option are the same as the DEPRECATE option, except
that the compiler issues warning messages rather than error messages for items that you will deprecate
in a future development phase.

Default: DEPRECATENEXT(BUILTIN() ENTRY() INCLUDE() STMT() VARIABLE())

For detailed information, see .

DISPLAY
The DISPLAY option determines how the DISPLAY statement performs I/O.

DISPLAY (

WTO

(ROUTCDE (

,

x)

, DESC (

,

y)

, REPLY (

,

z)

)

STD

)

STD
All DISPLAY statements are completed by writing the text to stdout and reading any REPLY text from
stdin.

WTO
All DISPLAY statements without REPLY are completed by WTOs, and all DISPLAY statements with
REPLY are completed by WTORs. This is the default.

The following suboptions are supported:

ROUTCDE
Specifies one or more values to be used as the ROUTCDE in the WTO. The default ROUTCDE is 2.

DESC
Specifies one or more values to be used as the DESC in the WTO. The default DESC is 3.

Chapter 1. Using compiler options and facilities 33

REPLY
Specifies one or more values to be used as the DESC in the WTOR. If omitted, the value from the
DESC option (or the default) is used.

All values specified for the ROUTCDE, DESC and REPLY must between 1 and 16.

DLL
When the DLL option is in effect, the compiler is instructed to produce DLL code. The DLL code can export
or import functions and external variables. The RENT option must also be specified if the DLL option is
specified.

NODLL

DLL

The default is NODLL.

DLLINIT
The DLLINIT option applies OPTIONS(FETCHABLE) to all external procedures that are not MAIN. Use this
option only on compilation units containing one external procedure, and then that procedure should be
linked as a DLL.

NODLLINIT

DLLINIT

NODLLINIT has no effect on your programs.

EXIT
The EXIT option enables the compiler user exit to be invoked.

NOEXIT

EXIT

(inparm_string)

inparm_string
A string that is passed to the compiler user exit routine during initialization. The string can be up to
1023 characters long.

See Chapter 25, “Using user exits,” on page 459 for more information about how to use this option.

EXPORTALL
The EXPORTALL option controls whether to export all externally defined procedures and variable so that a
DLL application can use them.

EXPORTALL

NOEXPORTALL

Under EXPORTALL, all externally defined procedures and variables are exported except those that specify
OPTION(DLLINTERNAL).

Under NOEXPORTALL, no externally defined procedures and variables are exported except those that
specify OPTION(DLLEXTERNAL) or OPTIONS(FETCHABLE).

When linking a module as a DLL that will be simply fetched (rather than accessed through DLL functions),
you must use the NOEXPORTALL option.

The default is EXPORTALL, but NOEXPORTALL is better for performance.

34 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Note: The EXPORTALL option should be in effect for the XINFO(DEF) option to produce more useful
information.

EXTRN
The EXTRN option controls when EXTRNs are emitted for external entry constants.

EXTRN (

FULL

SHORT)

FULL
Emits EXTRNs for all declared external entry constants. This is the default.

SHORT
Emits EXTRNs only for those constants that are referenced.

FILEREF
The (NO)FILEREF option controls whether the compiler produces a file reference table. The NOFILEREF
option eliminates the file reference table from the listing if the compiler issues no messages for the
specified FLAG setting.

FILEREF (

NOHASH

HASH)

NOFILEREF

The HASH suboption of the FILEREF option specifies that each line in the file reference table is followed
by a line containing the hex value of a 256-bit SHA-2 hash of that file.

The compiler will perform this hash by invoking the SHA2INIT256 built-in function when it opens a file. It
will then use the token returned by that function to invoke the SHA2UPDATE256 built-in function after it
reads each line in the file and to invoke the SHA2FINAL256 built-in function after it closes the file.

When hashing the file, the compiler will widen any line shorter than the right margin by filling it with
blanks.

This hash value is the same value that will appear in the generated xml file if the XINFO(XML(HASH))
option is specified.

The default is FILEREF(NOHASH).

FLAG
The FLAG option specifies the minimum severity of error that requires a message listed in the compiler
listing.

FLAG

(

W

I

E

S

)

ABBREVIATION: F

I
List all messages.

W
List all except information messages.

Chapter 1. Using compiler options and facilities 35

E
List all except warning and information messages.

S
List only severe error and unrecoverable error messages.

If messages are below the specified severity or are filtered out by a compiler exit routine, they are not
listed.

FLOAT
The FLOAT option controls the use of the additional floating-point registers and whether Decimal Floating
Point is supported.

FLOAT (

NODFP

DFP)

DFP
The DFP facility is used: all DECIMAL FLOAT data will be held in the DFP format as described in the
z/Architecture Principles of Operation manual, and operations using DECIMAL FLOAT will be carried
using the DFP hardware instructions described therein.

NODFP
The DFP facility is not used.

Under FLOAT(DFP), the following applies:

• The maximum precision for extended DECIMAL FLOAT will be 34 (not 33 as it is for hex float).
• The maximum precision for short DECIMAL FLOAT will be 7 (not 6 as it is for hex float).
• The values for DECIMAL FLOAT for the following built-ins will all have the appropriate changes:

– EPSILON
– HUGE
– MAXEXP
– MINEXP
– PLACES
– RADIX
– TINY

• The following built-in functions will all return the appropriate values for DECIMAL FLOAT (and
values that will be much easier for a human to understand; for example, SUCC(1D0) will be
1.000_000_000_000_001, and the ROUND function will round at a decimal place of course.)

– EXPONENT
– PRED
– ROUND
– SCALE
– SUCC

• Decimal floating-point literals, when converted to "right-units-view", that is, when the exponent has
been adjusted, if needed, so that no nonzero digits follow the decimal point (for example, as would be
done when viewing 3.1415E0 as 31415E-4), must have an exponent within the range of the normal
numbers for the precision given by the literal. These bounds are given by the value of MINEXP-1 and
MAXEXP-1. In particular, the following must hold:

– For short float, -95 <= exponent <= 90
– For long float, -383 <= exponent <= 369
– For extended float, -6143 <= exponent <= 6111

36 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

• When a DECIMAL FLOAT is converted to CHARACTER, the string will hold 4 digits for the exponent (as
opposed to the 2 digits used for hexadecimal float).

• The IEEE and HEXADEC attributes will be accepted only if applied to FLOAT BIN, and the
DEFAULT(IEEE/HEXADEC) option will apply only to FLOAT BIN.

• The mathematical built-in functions (ACOS, COS, SQRT, etc) will accept DECIMAL FLOAT arguments and
use corresponding Language Environment functions to evaluate them. DECIMAL FLOAT exponentiation
will be handled in a similar way.

• Users of DFP need to be wary of the conversions that will arise in operations where one operand
is FLOAT DECIMAL and the other is binary (that is, FIXED BINARY, FLOAT BINARY or BIT). In such
operations, the PL/I language rules dictate that the FLOAT DECIMAL operand be converted to FLOAT
BINARY, and that conversion will require a library call. For example, for an assignment of the form A =
A + B;, where A is FLOAT DECIMAL and B is FIXED BINARY, three conversions will be done and two of
those will be library calls:

1. A will be converted through library call from FLOAT DECIMAL to FLOAT BINARY.
2. B will be converted through inline code from FIXED BINARY to FLOAT BINARY.
3. The sum A + B will be converted through library call from FLOAT BINARY to FLOAT DECIMAL.

The use of the DECIMAL built-in function might help here: if the statement is changed to A = A +
DEC(B);, the library calls will be eliminated. The library calls can also be eliminated by assigning B to a
FLOAT DECIMAL temporary variable and then adding that temporary variable to A.

• The built-in function SQRTF is not supported for DECIMAL FLOAT arguments (because there is no
hardware instruction to which it can be mapped).

• DFP is not supported by the CAST type function.

FLOATINMATH
The FLOATINMATH option specifies that the precision that the compiler should use when invoking the
mathematical built-in functions.

FLOATINMATH (

ASIS

LONG

EXTENDED

)

ASIS
Arguments to the mathematical built-in functions will not be forced to have long or extended floating-
point precision.

LONG
Any argument to a mathematical built-in function with short floating-point precision will be converted
to the maximum long floating-point precision to yield a result with the same maximum long floating-
point precision.

EXTENDED
Any argument to a mathematical built-in function with short or long floating-point precision will be
converted to the maximum extended floating-point precision to yield a result with the same maximum
extended floating-point precision.

A FLOAT DEC expression with precision p has short floating-point precision if p <= 6, long floating-point
precision if 6 < p <= 16, and the expression has extended floating-point precision if p > 16.

A FLOAT BIN expression with precision p has short floating-point precision if p <= 21, long floating-point
precision if 21 < p <= 53, and the expression has extended floating-point precision if p > 53.

The maximum extended floating-point precision depends on the platform.

Chapter 1. Using compiler options and facilities 37

GOFF
The GOFF option instructs the compiler to produce an object file in the Generalized Object File Format
(GOFF).

NOGOFF

GOFF

When the GOFF and OBJECT options are in effect, the compiler produces an object file in GOFF format.

When the NOGOFF and OBJECT options are in effect, the compiler produces an object file in XOBJ format.

The GOFF format supersedes the S/370 Object Module and Extended Object Module formats. It removes
various limitations of the previous format (for example, 16 MB section size) and provides a number of
useful extensions, including native z/OS support for long names and attributes. GOFF incorporates some
aspects of industry standards such as XCOFF and ELF.

When you specify the GOFF option, you must use the binder to bind the output into a PDSE. GOFF is
incompatible with AMODE(24) programs.

The following options are not supported with the GOFF option:

• COMMON
• NOWRITABLE(PRV)

Note: When using GOFF and source files with duplicate file names, the linker might emit an error and
discard one of the code sections. In this case, turn off the CSECT option by specifying NOCSECT.

GONUMBER
The GONUMBER option specifies that the compiler produces additional information that allows line
numbers from the source program to be included in runtime messages.

NOGONUMBER

GONUMBER (

NOSEPARATE

SEPARATE)

ABBREVIATIONS: GN, NGN

SEPARATE
Places the generated statement number table in the separate debug file if the TEST(SEPARATE) option
is specified. When you use GONUMBER(SEPARATE), the statement numbers are not available for
inclusion in runtime messages.

NOSEPARATE
Places the generated statement number table in the object deck.

Alternatively, the line numbers can be derived by using the offset address, which is always included in
runtime messages, and either the table produced by the OFFSET option or the assembler listing produced
by the LIST option.

GONUMBER is forced by the ALL and STMT suboptions of the TEST option.

Note that the GOSTMT option does not exist. The only option that produces information at run time
identifying where an error has occurred is the GONUMBER option. When the GONUMBER option is used,
the term statement in the runtime error messages refers to the line numbers as used by the NUMBER
compiler option, even if the STMT option is in effect.

If the GONUMBER(SEPARATE) option is specified without TEST(SEPARATE), it is changed to
GONUMBER(NOSEPARATE).

If both TEST and NOGONUMBER are specified, the NOGONUMBER option is changed to
GONUMBER(NOSEPARATE).

The default is NOGONUMBER.

38 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

For compatibility, when the GONUMBER option is specified, the default suboption is SEPARATE.

GRAPHIC
The GRAPHIC option specifies that the source program can contain double-byte characters.

The hexadecimal code '0E' is treated as the shift-out control code, and '0F' is treated as the shift-in
control code, wherever they appear in the source program, including occurrences in comments and string
constants.

NOGRAPHIC

GRAPHIC

ABBREVIATIONS: GR, NGR

The GRAPHIC option will also cause the GRAPHIC ENVIRONMENT option to be applied to any STREAM
file used in the compilation.

The GRAPHIC option must be specified if the source program uses any of the following:

• DBCS identifiers
• Graphic string constants
• Mixed-string constants
• Shift codes anywhere else in the source

HEADER
The HEADER option lets you control what appears in the middle of each header line in the compiler listing.

HEADER (

ALL

FILE

FIRST

SOURCE

)

Specifying HEADER(ALL) causes the compiler to put text in all the header lines in the compiler listing.

Specifying HEADER(FILE) causes the compiler to use the name of the source file as the middle of each
header line in the compiler listing.

Specifying HEADER(FIRST) causes the compiler to put text in only the first header line in the compiler
listing.

Specifying HEADER(SOURCE) causes the compiler to use the text in the first source line after any
*PROCESS statements as the middle of each header line in the compiler listing.

The default is HEADER(ALL).

HGPR
The HGPR option specifies whether the compiler should preserve and restore the high halves of the 64-bit
GPRs that it uses in a function.

HGPR (

NOPRESERVE

PRESERVE)

PRESERVE
PRESERVE instructs the compiler to preserve the high halves of the 64-bit GPRs that a function is
using, by saving them in the prolog for the function and restoring them in the epilog. The PRESERVE
suboption is necessary only if the caller is not known to be Enterprise PL/I and/or the z/OS XL C/C++
compiler-generated code.

Chapter 1. Using compiler options and facilities 39

NOPRESERVE
NOPRESERVE lets the compiler omit preserving the high halves of the 64-bit GPRs that a function
is using. Because of performance considerations, the default suboption for HGPR is NOPRESERVE.
HGPR means "High half of 64-bit GPR", which refers to the use of native 64-bit instructions. In
particular, if the application use 8-byte integers, it should benefit from the native 64-bit instructions.

IGNORE
The IGNORE option controls whether ASSERT, DISPLAY, and PUT statements are ignored. When a
statement is ignored, it is as if the statement is replaced by a semicolon.

NOIGNORE

IGNORE (

,

ASSERT

DISPLAY

PUT

)

ASSERT
The compiler ignores all ASSERT statements, including any function references contained in those
statements.

DISPLAY
The compiler ignores all DISPLAY statements, including any function references contained in those
statements.

PUT
The compiler ignores all PUT FILE statements.

INCAFTER
The INCAFTER option specifies a file to be included after a particular statement in your source program.

INCAFTER (

PROCESS (filename)

)

filename
Name of the file to be included after the last PROCESS statement

Currently, PROCESS is the only suboption and specifies the name of a file to be included after the last
PROCESS statement.

Consider the following example:

INCAFTER(PROCESS(DFTS))

This example is equivalent to having the statement %INCLUDE DFTS; after the last PROCESS statement
in your source.

INCDIR
The INCDIR compiler option specifies a directory to be added to the search path used to locate include
files.

NOINCDIR

INCDIR (' directory name ')

40 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

directory name
Name of the directory that should be searched for include files. You can specify the INCDIR option
more than once and the directories are searched in order.

Except under batch, the compiler looks for INCLUDE files in the following order:

1. Current® directory
2. Directories specified with the –I flag or with the INCDIR compiler option
3. /usr/include directory
4. PDS specified with the INCPDS compiler option

Under batch, this option is probably best used with the DFT(LOWERINC) option, and it affects only include
statements of the form %include x;. For these include statements, an zFS file with the name x.inc will
be sought first in the directories specified in this option. If the zFS file is not found, x must be a member
of the pds(e) specified in the syslib dd. For include statements of the form %include dd(x);, no zFS file
will ever be included: the member x must always be a member of the pds named by the specified dd.

INCLUDE
The INCLUDE compiler option controls whether the final pass of the compiler handles %INCLUDE and
%XINCLUDE statements.

INCLUDE

NOINCLUDE

INCLUDE
Both the MACRO preprocessor and the final pass of the compiler handle %INCLUDE and %XINCLUDE
statements.

NOINCLUDE
Only the MACRO preprocessor handles %INCLUDE and %XINCLUDE statements.

INCLUDE is the default.

INCPDS
The INCPDS option specifies a PDS from which the compiler will include files when compiling a program
under z/OS UNIX.

Note: This option applies only to compilations under z/OS UNIX.

NOINCPDS

INCPDS( ‘PDS name’)

PDS name
Name of a PDS from which files will be included

You can specify the INCPDS option more than once, in which case the compiler will search each PDS
named in the order that you specify the INCPDS option.

For example, if you want to compile the program TEST from a PDS named SOURCE.PLI and want to use
the INCLUDE files from the PDS SOURCE.INC, you can specify the following command:

pli -c -qincpds="SOURCE.INC" "//’SOURCE.PLI(TEST)’"

The compiler looks for INCLUDE files in the following order:

1. Current directory
2. Directories specified with the –I flag or with the INCDIR compiler option
3. /usr/include directory

Chapter 1. Using compiler options and facilities 41

4. PDS specified with the INCPDS compiler option

INITAUTO
The INITAUTO option directs the compiler to add an INITIAL attribute to any AUTOMATIC variable
declared without an INITIAL attribute.

NOINITAUTO

INITAUTO

(

FULL

SHORT)

Under INITAUTO(FULL), the compiler adds an INITIAL attribute to any AUTOMATIC variable that does not
have an INITIAL attribute according to its data attributes:

• INIT((*) 0) if it is FIXED or FLOAT
• INIT((*) '') if it is PICTURE, CHAR, BIT, GRAPHIC, UCHAR or WIDECHAR
• INIT((*) SYSNULL()) if it is POINTER or OFFSET
• INIT((*) NULLENTRY()) if it is ENTRY

The compiler will not add an INITIAL attribute to variables with other attributes.

INITAUTO will cause more code to be generated in the prologue for each block containing any
AUTOMATIC variables that are not fully initialized (but unlike the DFT(INITFILL) option, those variables
will now have meaningful initial values) and will have a negative impact on performance.

The INITAUTO option does not apply an INITIAL attribute to any variable declared with the NOINIT
attribute.

Under INITAUTO(SHORT), the compiler adds an INITIAL attribute to an AUTOMATIC variable that does
not have an INITIAL attribute only if it is also a scalar and has one of the following attributes:

• POINTER
• OFFSET
• FIXED BIN
• FLOAT
• NONVARYING BIT
• NONVARYING CHAR(1)
• NONVARYING UCHAR(1)
• NONVARYING WCHAR(1)

As under INITAUTO(FULL), the added INITIAL attribute will be appropriate to the data type.

If you are using the runtime STORAGE option to zero-out all storage, the optimizer might still generate
undesired code for uninitialized AUTOMATIC variables and especially for those that are optimized to
registers. Scalar variables with the data types listed above are those most likely to be optimized to
registers, and hence using INITAUTO(SHORT) might have less of a performance impact than using
DFT(INITFILL); however, the latter would leave the optimizer with no ambiguous code. Moreover, your
code is correct only if all variables are explicitly initialized before use.

INITBASED
The INITBASED option directs the compiler to add an INITIAL attribute to any BASED variable declared
without an INITIAL attribute.

NOINITBASED

INITBASED

42 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

This option performs the same function as INITAUTO except for BASED variables.

The INITBASED option will cause more code to be generated for any ALLOCATE of a BASED variable that
is not fully initialized and will have a negative impact on performance.

The INITBASED option does not apply an INITIAL attribute to any variable declared with the NOINIT
attribute.

INITCTL
The INITCTL option directs the compiler to add an INITIAL attribute to any CONTROLLED variable
declared without an INITIAL attribute.

NOINITCTL

INITCTL

This option performs the same function as INITAUTO except for CONTROLLED variables.

The INITCTL option will cause more code to be generated for any ALLOCATE of a CONTROLLED variable
that is not fully initialized and will have a negative impact on performance.

The INITCTL option does not apply an INITIAL attribute to any variable declared with the NOINIT
attribute.

INITSTATIC
The INITSTATIC option directs the compiler to add an INITIAL attribute to any STATIC variable declared
without an INITIAL attribute.

NOINITSTATIC

INITSTATIC

This option performs the same function as INITAUTO except for STATIC variables.

The INITSTATIC option could make some objects larger and some compilations longer, but should
otherwise have no impact on performance.

The INITSTATIC option does not apply an INITIAL attribute to any variable declared with the NOINIT
attribute.

INSOURCE
The INSOURCE option specifies that the compiler should include a listing of the source program before
the PL/I macro, CICS, or SQL preprocessors translate it.

NOINSOURCE

INSOURCE

(

FULL

SHORT)

(

ALL

FIRST)

ABBREVIATION: IS, NIS

FULL
The INSOURCE listing will ignore %NOPRINT statements and will contain all the source before the
preprocessor translates it.

FULL is the default.

Chapter 1. Using compiler options and facilities 43

SHORT
The INSOURCE listing will heed %PRINT and %NOPRINT statements.

ALL
The INSOURCE listing includes the source listings that are generated by each of the preprocessors
and by the compiler itself. ALL is the default.

FIRST
The INSOURCE listing includes only the source listing that is generated by the first preprocessor.

Under the INSOURCE option, text is included in the listing not according to the logic of the program, but as
each file is read. For example, consider the following simple program, which has a %INCLUDE statement
between the PROC and END statements.

 insource: proc options(main);
 %include member;
 end;

The INSOURCE listing will contain all of the main program before any of the included text from the file
member (and it will contain all of that file before any text included by it - and so on).

Under the INSOURCE(SHORT) option, text included by a %INCLUDE statement inherits the print/noprint
status that was in effect when the %INCLUDE statement was executed, but that print/noprint status is
restored at the end of the included text (however, in the SOURCE listing, the print/noprint status is not
restored at the end of the included text).

INTERRUPT
The INTERRUPT option causes the compiled program to respond to attention requests (interrupts).

NOINTERRUPT

INTERRUPT

ABBREVIATION: INT, NINT

This option determines the effect of attention interrupts when the compiled PL/I program runs under
an interactive system. This option will have an effect only on programs running under TSO. If you
have written a program that relies on raising the ATTENTION condition, you must compile it with the
INTERRUPT option. This option allows attention interrupts to become an integral part of programming.
This gives you considerable interactive control of the program.

If you specify the INTERRUPT option, an established ATTENTION ON-unit gets control when an attention
interrupt occurs. When the execution of an ATTENTION ON-unit is complete, control returns to the point
of interrupt unless directed elsewhere by a GOTO statement. If you do not establish an ATTENTION
ON-unit, the attention interrupt is ignored.

If you specify NOINTERRUPT, an attention interrupt during a program run does not give control to any
ATTENTION ON-units.

If you require the attention interrupt capability only for testing purposes, use the TEST option instead of
the INTERRUPT option.

Related information
“TEST” on page 89
The TEST option specifies the level of testing capability that the compiler generates as part of the object
code. You can use this option to control the location of test hooks and to control whether to generate a
symbol table.
“Interrupts and attention processing” on page 453

44 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

JSON
Using the JSON option, you can choose the case of the names in the JSON text generated by the
JSONPUT built-in functions and expected by the JSONGET built-in functions.

JSON (CASE (

UPPER

LOWER

ASIS

)

GET (

HEEDCASE

IGNORECASE)

TRIMR

NOTRIMR

PARSE (

V1

V2)

)

CASE(UPPER | LOWER | ASIS)
Under the CASE(UPPER) suboption, the names in the JSON text generated by the JSONPUT built-in
functions and expected by the JSONGET built-in functions will all be in upper case.

Under the CASE(LOWER) suboption, the names in the JSON text generated by the JSONPUT built-in
functions and expected by the JSONGET built-in functions will all be in lower case.

Under the CASE(ASIS) suboption, the names in the JSON text generated by the JSONPUT built-
in functions and expected by the JSONGET built-in functions will be in the case used in their
declares. Note that if you use the MACRO preprocessor without using the macro preprocessor option
CASE(ASIS), the source seen by the compiler will have all the names in upper case, which makes
specifying the JSON(CASE(ASIS)) option useless.

The default is CASE(UPPER).

GET(HEEDCASE | IGNORECASE)
Under the GET(HEEDCASE) suboption, the JSONGET built-in functions will demand exactly matching
names.

Under the GET(IGNORECASE) suboption, the JSONGET built-in functions will view names as matching
if their case is ignored.

The default is GET(HEEDCASE).

PARSE(V1 | V2)

Under the option JSON(PARSE(V1)):

• If the JSON source specifies more values for an array than in the target declaration, then the ERROR
condition will be raised (reporting that a closing bracket] was not found when expected)

• If the third argument is a structure, then the names in the JSON text must match those in the
structure. If not, the ERROR condition is raised.

Note: Under this option, it is not necessary to specify name-value pairs for all the elements in the
structure, but any names specified must be in the same order as they are in the structure.

Under the compiler option JSON(PARSE(V2)):

• If the JSON source specifies more values for an array than in the target declaration:

– If SUBSCRIPTRANGE is enabled, then the SUBSCRIPTRANGE condition will be raised
– Otherwise, the excess values will be ignored

• If the third argument is a structure and a name in the JSON text does not match any name in the
structure:

Chapter 1. Using compiler options and facilities 45

– If CONFORMANCE is enabled, then the CONFORMANCE condition will be raised and the
ONJSONNAME built-in function will return the unmatched name

– Otherwise, the name and its JSON-value will be ignored

Note: Under this option, it is not necessary to specify name-value pairs for all the elements in the
structure, and it is not necessary that the names are specified in the same order as they are in the
structure.

The default is PARSE(V1).

TRIMR | NOTRIMR

Under the JSON(TRIMR) option, output from the JSONPUTVALUE and JSONPUTMEMBER functions
will be trimmed from the right.

Under the JSON(NOTRIMR) option, output from the JSONPUTVALUE and JSONPUTMEMBER
functions will not be trimmed from the right.

If the JSONTRIMR attribute is specified for a field in a structure, that attribute will override the
JSON(NOTRIMR) option for that field.

The default is TRIMR.

LANGLVL
The LANGLVL option specifies the level of PL/I language definition that you want the compiler to accept.

LANGLVL (

OS

NOEXT)

NOEXT
Only the following ENVIRONMENT options are accepted:

Bkwd
Consecutive
Ctlasa
Deblock

Genkey
Graphic
Indexed
Keylength

Keyloc
Organization
Recsize
Regional

Relative
Scalarvarying
Vsam

OS
All ENVIRONMENT options are allowed. For a complete list of the ENVIRONMENT options, see Table
38 on page 214.

46 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

LIMITS
The LIMITS option specifies various implementation limits.

LIMITS (

,

EXTNAME (

7

n)

FIXEDBIN (

31

63

,

63

31

)

FIXEDDEC (

15

31

,

15

31

)

NAME (

100

n)

STRING (

32K

64K

512K

8M

128M

)

)

EXTNAME
Specifies the maximum length for the EXTERNAL name. The maximum value for n is 100; the
minimum value is 7.

FIXEDDEC
Specifies the maximum precision for FIXED DECIMAL to be either 15 or 31. The default is
FIXEDDEC(15,31).

If FIXEDDEC(15,31) is specified, you can declare FIXED DECIMAL variables with precision greater
than 15, but unless an expression contains an operand with precision greater than 15, the compiler
uses 15 as the maximum precision for all arithmetic.

FIXEDDEC(15,31) will provide much better performance than FIXEDDEC(31).

FIXEDDEC(15) and FIXEDDEC(15,15) are equivalent; similarly, FIXEDDEC(31) and FIXEDDEC(31,31)
are equivalent.

FIXEDDEC(31,15) is not allowed.

FIXEDBIN
Specifies the maximum precision for SIGNED FIXED BINARY to be either 31 or 63. The default is
(31,63).

If FIXEDBIN(31,63) is specified, you can declare 8-byte integers, but unless an expression contains
an 8-byte integer, the compiler uses 4-byte integers for all integer arithmetic.

Note, however, that specifying the FIXEDBIN(31,63) or FIXEDBIN(63) option might cause the
compiler to use 8-byte integer arithmetic for expressions mixing data types. For example, if a FIXED
BIN(31) value is added to a FIXED DEC(13) value, the compiler will produce a FIXED BIN result,
and under LIMITS(FIXEDBIN(31,63)) that result would have a precision greater than 31 (because
the FIXED DEC precision is greater than 9). When this occurs, the compiler will issue informational
message IBM2809.

Chapter 1. Using compiler options and facilities 47

FIXEDBIN(31,63) will provide much better performance than FIXEDBIN(63).

FIXEDBIN(31) and FIXEDBIN(31,63) are equivalent; similarly, FIXEDBIN(63) and FIXEDBIN(63,63)
are equivalent.

FIXEDBIN(63,31) and FIXEDBIN(31,31) are not allowed.

The maximum precision for UNSIGNED FIXED BINARY is one greater, that is, 32 and 64.

NAME
Specifies the maximum length of variable names in your program. The maximum value for n is 100;
the minimum value is 31.

STRING
Accepts these values as the threshold for the length of a BIT, CHARACTER, GRAPHIC, UCHAR,
or WIDECHAR variable: 32K, 64K, 512K, 8M, and 128M. The following table shows these values'
corresponding limits and required options that must be in effect:

Values Corresponding limits (Threshold) Required options must be in effect

32k 32767

64k 65535 BIFPREC(31)

512k 524287 BIFPREC(31) and CMPAT(V3)

8M 8388607 BIFPREC(31) and CMPAT(V3)

128M 134217727 BIFPREC(31) and CMPAT(V3)

Note:

• 32K is the default value.
• The maximum value allowed for VARYING is 64K.
• The BIFPREC(31) option must be in effect to use STRING(64K), but the CMPAT(V3) option is not

needed.

The STRING(64K) option permits VARYING strings to be longer even though they will still have a
2-byte length prefix (unlike VARYING4 strings which have a 4-byte length prefix). But if the STRING
limit is greater than 64K, a CHAR VARYING variable can be used as a SQL VARCHAR only if its length is
less than 64K.

LINECOUNT
The LINECOUNT option specifies the number of lines per page for compiler listings, including blank and
heading lines.

LINECOUNT (

31415

n)

ABBREVIATION: LC

n
The number of lines in a page in the listing. The value range is 10 - 65535, with 0 also accepted.
Under LINECOUNT(0), there will be page breaks only when a new section of the listing starts.

LINEDIR
The LINEDIR option specifies that the compiler should accept %LINE directives.

NOLINEDIR

LINEDIR

48 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

If the LINEDIR option is specified, the compiler will reject all %INCLUDE statements. If the LINEDIR
option is specified, the compiler will also reject the use of the SEPARATE suboption of the TEST option.

LIST
The LIST option specifies that the compiler should produce a pseudo-assembler listing.

NOLIST

LIST

Specifying the LIST option will increase the time and region required for a compilation. The OFFSET and
MAP options can provide the information you need at much less cost.

The pseudo-assembler listing will also include at the end of the listing for each block the offset of the first
instruction in that block from the start of the whole compilation unit.

LISTVIEW
The LISTVIEW option specifies whether the compiler should show the source in the source listing or
whether it should show the source after it has been processed by one or more of the preprocessors.

The LISTVIEW option is ignored if the NOSOURCE option is in effect. The LISTVIEW option is ignored if
there is a severe error in one of the preprocessors.

LISTVIEW (

SOURCE

AFTERALL

AFTERCICS

AFTERMACRO

AFTERSQL

)

SOURCE
Causes the source listing to show the unadulterated source and, more importantly perhaps, it will
cause IBM Debug Tool to bring up this as the source view.

AFTERALL
Causes the source listing to show the source as if it came from the MDECK from the last invocation, if
any, of the last preprocessor, and, more importantly perhaps, it will cause Debug Tool to bring up this
as the source view if the SEPARATE suboption of the TEST compiler option is also specified.

AALL can be used as an abbreviation for AFTERALL.

AFTERCICS
Causes the source listing to show the source as if it came from the MDECK from the last invocation, if
any, of the CICS preprocessor, and, more importantly perhaps, it will cause Debug Tool to bring up this
as the source view if the SEPARATE suboption of the TEST compiler option is also specified.

ACICS can be used as an abbreviation for AFTERCICS.

AFTERMACRO
Causes the source listing to show the source as if it came from the MDECK from the last invocation, if
any, of the MACRO preprocessor, and, more importantly perhaps, it will cause Debug Tool to bring up
this as the source view if the SEPARATE suboption of the TEST compiler option is also specified.

AMACRO can be used as an abbreviation for AFTERMACRO.

AFTERSQL
Causes the source listing to show the source as if it came from the MDECK from the last invocation, if
any, of the SQL preprocessor, and, more importantly perhaps, it will cause Debug Tool to bring up this
as the source view if the SEPARATE suboption of the TEST compiler option is also specified.

ASQL can be used as an abbreviation for AFTERSQL.

Chapter 1. Using compiler options and facilities 49

If the TEST option is specified and a suboption other than SOURCE is specified for LISTVIEW, the
SEPARATE suboption must also be specified for the TEST option.

The following example shows the differing effects of the AFTERMACRO, AFTERSQL, and AFTERALL
suboptions.

Suppose the PP option is PP(MACRO('INCONLY'), SQL, MACRO).

• Under LISTVIEW(AFTERMACRO), the "source" in the listing and in the Debug Tool source window if
TEST(SEP) were specified would appear as if it came from the MDECK that the second invocation of the
MACRO preprocessor would have produced.

• Under LISTVIEW(AFTERSQL), the "source" in the listing and in the Debug Tool source window if
TEST(SEP) were specified would appear as if it came from the MDECK that the invocation of the
SQL preprocessor would have produced (and hence %DCL and other macro statements would still be
visible).

• Under LISTVIEW(AFTERALL), the "source" would be as under the LISTVIEW(AFTERMACRO) option
because the MACRO preprocessor is the last in the PP option.

LP
The LP option specifies whether the compiler generates 31-bit code or 64-bit code. It also determines the
default size of POINTER and HANDLE and related variables.

LP (

32

64)

32
Under LP(32), the compiler generates 31-bit code. In addition, type size_t resolves to FIXED BIN(31).
The default size of POINTER and HANDLE is four bytes.

64
Under LP(64), the compiler generates 64-bit code. In addition, type size_t resolves to FIXED BIN(63).
The default size of POINTER and HANDLE is eight bytes.

Note: Under LP(64), some compiler options are not applicable. For more information, see “Using
compiler options to build 64-bit applications” on page 183.

The default is LP(32).

Related information
“Considerations for developing 64-bit applications” on page 183
You can use Enterprise PL/I to develop 31-bit or 64-bit applications. For your applications to support
the 64-bit environment, you might need to adapt your code as appropriate. This section describes
considerations in development and compilation that you must take into account.
“Link-editing and running for 64-bit programs” on page 179
After compilation with LP(64), your 64-bit program consists of one or more object modules that contain
unresolved references to each other, as well as references to the Language Environment runtime library.
These references are resolved during link-editing (statically) or during execution (dynamically).

MACRO
The MACRO option invokes the MACRO preprocessor.

NOMACRO

MACRO

ABBREVIATIONS: M, NM

You can also invoke the MACRO preprocessor through the PP(MACRO) option. However, the use of both
the MACRO option and the PP(MACRO) option in the same compilation is not recommended.

50 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Related information
“PP” on page 62
The PP option specifies which (and in what order) preprocessors are invoked before compilation.
“Macro preprocessor” on page 116
Macros allow you to write commonly used PL/I code in a way that hides implementation details and
the data that is manipulated and exposes only the operations. In contrast with a generalized subroutine,
macros allow generation of only the code that is needed for each individual use. You can invoke the macro
preprocessor by specifying either the MACRO option or the PP(MACRO) option.

MAP
The MAP option specifies that the compiler produces additional information that can be used to locate
static and automatic variables in dumps.

NOMAP

MAP

MARGINI
The MARGINI option specifies a character that the compiler will place in the column preceding the
left-hand margin, and also in the column following the right-hand margin, of the listings produced by the
INSOURCE and SOURCE options.

NOMARGINI

MARGINI (' c ')

ABBREVIATIONS: MI, NMI

c
The character to be printed as the margin indicator

Note: NOMARGINI is equivalent to MARGINI(' ').

MARGINS
The MARGINS option specifies which part of each compiler input record contains PL/I statements, and
the position of the ANS control character that formats the listing, if the SOURCE option, the INSOURCE
option, or both apply. The compiler does not process data that is outside these limits, but it does include it
in the source listings.

The PL/I source is extracted from the source input records so that the first data byte of a record
immediately follows the last data byte of the previous record. For variable records, you must ensure
that when you need a blank, you explicitly insert it between margins of the records.

MARGINS (

2

m ,

72

n
, c

)

NOMARGINS

ABBREVIATION: MAR

m
The column number of the leftmost character (first data byte) that is processed by the compiler. It
must not exceed 100.

n
The column number of the rightmost character (last data byte) that is processed by the compiler. It
should be greater than m, but must not exceed 200.

Chapter 1. Using compiler options and facilities 51

Variable-length records are effectively padded with blanks to give them the maximum record length.

c
The column number of the ANS printer control character. It must not exceed 200, and it should be
outside the values specified for m and n. A value of 0 for c indicates that no ANS control character is
present. Only the following control characters can be used:
(blank)

Skip one line before printing
0

Skip two lines before printing
–

Skip three lines before printing
+

No skip before printing
1

Start new page

Any other character is an error and is replaced by a blank.

Do not use a value of c that is greater than the maximum length of a source record, because this
causes the format of the listing to be unpredictable. To avoid this problem, put the carriage control
characters to the left of the source margins for variable-length records.

Specifying MARGINS(,,c) is an alternative to using %PAGE and %SKIP statements (described in the
PL/I Language Reference).

The IBM-supplied default for fixed-length records is MARGINS(2,72). For variable-length and undefined-
length records, the IBM-supplied default is MARGINS(10,100). This specifies that there is no printer
control character.

Use the MARGINS option to override the default for the primary input in a program. The secondary input
must have the same margins as the primary input.

The NOMARGINS option will suppress any previously encountered instance of the MARGINS option. The
purpose of this option is to allow your installation to have a default set of compile-time options that use
a MARGINS option tailored for their fixed format source preferences while retaining the ability to use
variable source format files.

You would usually specify the NOMARGINS option, if you use it at all, as part of the parameter-string
passed to the compiler. The compiler will ignore NOMARGINS if it finds the option in a %PROCESS
statement.

MAXBRANCH
The MAXBRANCH option flags blocks that have too many branches. Branches include all conditional
jumps and each WHEN in a SELECT statement that can be turned into a branch table.

MAXBRANCH (max)

max
The limit that measures the cyclomatic or conditional complexity of the block. The default is 2000.

A statement of the form "if a then ...; else ..." adds 1 to the total number of branches in its containing
block, and a statement of the form "if a = 0 | b = 0 then ..." adds 2.

MAXINIT
The MAXINIT option determines when the compiler flags code that will generate large object files when
the VALUE type function is applied to a typed structure.

MAXINIT( max)

52 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

max
Specifies the maximum number of bytes that can be used when the VALUE type function is applied to
a typed structure. The compiler flags all statements that use more bytes than the amount specified by
max.

You should examine statements that are flagged under this option. If you code them differently or if
you change the definition of the typed structure, you might be able to reduce the size of the object file
produced by the compiler.

The default is MAXINIT(64K).

MAXGEN
The MAXGEN option specifies the maximum number of intermediate language statements that should be
generated for any user statement. The option will cause the compiler to flag any statement where this
maximum is exceeded.

MAXGEN ( size)

The number of intermediate language statements generated for any user statement might vary depending
on the compiler release, the compiler maintenance level, and the compiler options in effect. This option
is intended only to help you find statements for which excessive amounts of code are generated, which
might indicate that they are perhaps are poorly coded.

However, note that using a preprocessor might cause the number of intermediate language statements
generated for some statements to be very large. In such a situation, it might be better either to set the
MAXGEN threshold to be larger or to use the LISTVIEW(AFTERALL) option.

The default is MAXGEN(100000).

MAXMEM
When you compile with OPTIMIZE, the MAXMEM option limits the amount of memory used for local tables
of specific, memory-intensive optimizations to the specified number of kilobytes.

The range of memory that you can specify for MAXMEM is 1 - 2097152. The default is 1048576.

If you specify the maximum value of 2097152, the compiler will assume that unlimited memory is
available. If you specify any smaller value for MAXMEM, the compiler, especially when the OPT(2) option
is in effect, might issue a message saying that optimization is inhibited and that you should try using a
larger value for MAXMEM.

Use the MAXMEM option if you know that less (or more) memory is available than implied by the default
value.

If the memory specified by the MAXMEM option is insufficient for a particular optimization, the
compilation is completed in such a way that the quality of the optimization is reduced, and a warning
message is issued.

MAXMEM ( size)

ABBREVIATIONS: MAXM

When a large size is specified for MAXMEM, compilation might be aborted because of insufficient virtual
storage, depending on the source file being compiled, the size of the subprogram in the source, and the
virtual storage available for the compilation.

The advantage of using the MAXMEM option is that, for large and complex applications, the compiler
produces a slightly less-optimized object module and generates a warning message, instead of
terminating the compilation with an error message of insufficient virtual storage.

Chapter 1. Using compiler options and facilities 53

MAXMSG
The MAXMSG option specifies the maximum number of messages with a given severity (or higher) that the
compilation should produce.

MAXMSG

(

,

W

I

E

S

250

n

)

I
Count all messages.

W
Count all except information messages.

E
Count all except warning and information messages.

S
Count only severe error and unrecoverable error messages.

n
Terminate the compilation if the number of messages exceeds this value. If messages are below the
specified severity or are filtered out by a compiler exit routine, they are not counted in the number.
Enter a value in the range 0 - 32767. If you specify 0, the compilation terminates when the first error
of the specified severity is encountered.

MAXNEST
The MAXNEST option specifies the maximum nesting of various kinds of statements that are allowed
before the compiler flags your program as too complex.

MAXNEST (

,

BLOCK (

17

x)

DO (

17

x)

IF (

17

z)

)

BLOCK
Specifies the maximum nesting of BEGIN and PROCEDURE statements.

DO
Specifies the maximum nesting of DO statements.

IF
Specifies the maximum nesting of IF statements.

The value range of any nesting limit is 1 - 50.

The default is MAXNEST(BLOCK(17) DO(17) IF(17)).

54 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

MAXRUNONIF
This option specifies a threshold value that tells the compiler to issue a message that flags any IF
statement which has a conditional expression of the form (a = y1 | a = y2 | ... | a = yn) where all the y's are
constants and n is greater than or equal to the MAXRUNONIF threshold.

Depending on the number of comparisons in the IF-expression, the compiler message will suggest
converting the expression to an INLIST reference or converting the IF statement to a SELECT statement.
For example, MAXRUNONIF(4) would cause the compiler to flag a statement of the form:

if code = 'DE' | code = 'FR' | code = 'ES' | code = 'IT' then

and suggest that it be converted into:

if inlist(code, 'DE', 'FR', 'ES', 'IT') then

The default for this option is MAXRUNONIF(10).

MAXSTATIC
The MAXSTATIC option causes the compiler to flag STATIC variables that exceed a specified size.

MAXSTATIC( max)

max
Specifies the maximum size of a STATIC variable. The compiler flags all STATIC variables that use
more bytes than the amount specified by max.

The default is MAXSTATIC(1M).

MAXSTMT
The MAXSTMT option causes the compiler to flag blocks that have a larger number of executable
statements than a specified number. Under optimize, the compiler will also turn off optimization for any
block that has more than the specified number of executable statements.

MAXSTMT( m
,n

)

m
Specifies the cutoff value for OPT(2). The default is 4096.

n
Optional. Specifies the cutoff value for OPT(3). The default is 8192.

If MAXSTMT(m) is specified, n is set to m. So specifying MAXSTMT(4096) is equivalent to
MAXSTMT(4096,4096).

When a large m is specified for MAXSTMT, if some blocks have a large number of executable statements,
compilation might be aborted if there is not enough virtual storage available.

Note: Executable statements are those for which the compiler needs to generate code, and don't
correspond one to one with the source language statements identified by the STMT option. For example,
DECLARE/DEFINE statements don't generate executable code, and are thus not counted for MAXSTMT
purposes.

MAXTEMP
The MAXTEMP option determines when the compiler flags statements that are using an excessive amount
of storage for compiler-generated temporaries.

MAXTEMP (max)

Chapter 1. Using compiler options and facilities 55

max
The limit for the number of bytes that can be used for compiler-generated temporaries. The compiler
flags any statement that uses more bytes than the amount specified by max. The default for max is
50000.

You should examine statements that are flagged under this option. If you code them differently, you might
be able to reduce the amount of stack storage required by your code.

MDECK
The MDECK option specifies that the preprocessor produces a copy of its output either on the file defined
by the SYSPUNCH DD statement under z/OS or on the .dek file under z/OS UNIX.

NOMDECK

MDECK (

AFTERALL

AFTERMACRO)

ABBREVIATIONS: MD, NMD

The MDECK option allows you to retain the output from the preprocessor as a file of 80-column records.
This option is applicable only when the MACRO option is in effect.

AFTERALL
Causes the file to be generated after the invocation of the last preprocessor.

AFTERMACRO
Causes the file to be generated after the last invocation (if any) of the macro preprocessor.

Related information
“MACRO” on page 50
The MACRO option invokes the MACRO preprocessor.

MSGSUMMARY
The MSGSUMMARY option determines whether the compiler adds a summary of all messages that are
issued during compilation into the listing.

NOMSGSUMMARY

MSGSUMMARY (
NOXREF

XREF

)

MSGSUMMARY(NOXREF)
The compiler adds a message summary to the listing. The summary is after the file reference table
in the listing. It is sorted by compiler component and within each component by severity and then by
message number.

The summary includes the following information:

• One instance of each message that is produced in the compilation
• The number of times that each message is produced

MSGSUMMARY(XREF)
The compiler adds a message summary to the listing. The summary is the same as the one added
when MSGSUMMARY(NOXREF) is specified with one difference: after each message the summary lists
all the line or statement numbers where the message is issued.

NOMSGSUMMARY
No message summary is produced.

NOMSGSUMMARY is the default. When MSGSUMMARY is specified, MSGSUMMARY(NOXREF) is the
default.

56 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

For the compiler listing example with a message summary generated by using MSGSUMMARY, see Table
11 on page 111.

NAME
The NAME option specifies that the TEXT file created by the compiler will contain a NAME record.

NONAME

NAME

('name')

ABBREVIATIONS: N

If no name is specified as a suboption of the NAME option, then the name used is determined as follows:

• If there is a PACKAGE statement, the leftmost name on it is used.
• Otherwise, the leftmost name on the first PROCEDURE statement is used.

The length of the name must not be greater than 8 characters if the LIMITS(EXTNAME(n)) option is used
with n <= 8.

NAMES
The NAMES option specifies the extralingual characters that are allowed in identifiers.

Extralingual characters are those characters other than the 26 alphabetic, 10 digit, and special characters
defined in the PL/I Language Reference.

NAMES ('  extraling_char '

,
'  upp_extraling_char '

)

extralingual_char
An extralingual character

upp_extraling_char
The extralingual character that you want interpreted as the uppercase version of the corresponding
character in the first suboption

If you omit the second suboption, PL/I uses the character specified in the first suboption as both the
lowercase and the uppercase values. If you specify the second suboption, you must specify the same
number of characters as you specify in the first suboption.

The default is NAMES('@#$' '@#$').

NATLANG
The NATLANG option specifies the language for compiler messages, headers, and so on.

NATLANG (

ENU

UEN)

ENU
All compiler messages, headers, and so on will be in mixedcase English.

Chapter 1. Using compiler options and facilities 57

UEN
All compiler messages, headers, and so on will be in uppercase English.

NEST
The NEST option specifies that the listing resulting from the SOURCE option indicates the block level and
the do-group level for each statement.

NONEST

NEST

NOT
The NOT option specifies up to seven alternate symbols that can be used as the logical NOT operator.

NOT (' char ')

char
A single SBCS character

You cannot specify any of the alphabetic characters, digits, and special characters defined in the PL/I
Language Reference, except for the standard logical NOT symbol (¬). You must specify at least one valid
character.

When you specify the NOT option, the standard NOT symbol is no longer recognized unless you specify it
as one of the characters in the character string.

For example, NOT('~') means that the tilde character, 'A1'X, will be recognized as the logical NOT operator,
and the standard NOT symbol, '¬', '5F'X, will not be recognized. Similarly, NOT('~¬') means that either the
tilde or the standard NOT symbol will be recognized as the logical NOT operator.

The IBM-supplied default code point for the NOT symbol is '5F'X. The logical NOT sign might appear as a
logical NOT symbol (¬) or a caret symbol (‸) on your keyboard.

NULLDATE
The NULLDATE option instructs the compiler to accept the SQL null date as a valid date in some datetime
handling built-in functions.

NONULLDATE

NULLDATE

Under the NULLDATE option, the VALIDDATE and REPATTERN built-in functions will accept the SQL null
date (with year, day, and month all equal to one) as a valid date.

The default is NONULLDATE.

OBJECT
The OBJECT option specifies that the compiler creates an object module. Under batch z/OS, the compiler
stores the object in the data set defined by the SYSLIN DD, and underz/OS UNIX, the compiler creates a .o
file.

OBJECT

NOOBJECT

ABBREVIATIONS: OBJ, NOBJ

58 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Under the NOOBJECT option, the compiler does not create an object module. However, under the
NOOBJECT option, the compiler will complete all of its syntactic and semantic analysis phases as well as
all of its detection of uninitialized variables, and hence it could produce more messages than under the
NOCOMPILE, NOSEMANTIC, or NOSYNTAX option.

Under the NOOBJECT option, the LIST, MAP, OFFSET, and STORAGE options will be ignored.

OFFSET
The OFFSET option specifies that the compiler is to print a table of line numbers for each procedure and
BEGIN block with their offset addresses relative to the primary entry point of the procedure. This table
can be used to identify a statement from a runtime error message if the GONUMBER option is not used.

NOOFFSET

OFFSET

OFFSETSIZE
The OFFSETSIZE option determines the size of OFFSET variables in 64-bit applications.

OFFSETSIZE (

4

8)

4
Under OFFSETSIZE(4), all OFFSET variables are four bytes in size. This is the default.

8
Under OFFSETSIZE(8), all OFFSET variables are eight bytes in size.

Any code that shares either OFFSET or AREA variables must be compiled with the same value for the
OFFSETSIZE option.

The OFFSETSIZE option is ignored if the LP(32) option is in effect.

ONSNAP
For a PROCEDURE with either the OPTIONS(MAIN) or the OPTIONS(FROMALIEN) attribute, the ONSNAP
option specifies that the compiler should insert an ON STRINGRANGE SNAP; statement, an ON
STRINGSIZE SNAP; statement, or both into the prologue code for that PROCEDURE. This can make
it easier to determine the calling chain if the corresponding conditions are raised in other routines called
from such a PROCEDURE.

NOONSNAP

ONSNAP (

,

STRINGRANGE

STRINGSIZE

)

The ONSNAP option has no affect on a PROCEDURE without either of these attributes.

Chapter 1. Using compiler options and facilities 59

OPTIMIZE
The OPTIMIZE option specifies the type of optimization required.

NOOPTIMIZE

OPTIMIZE

(

0

TIME

2

3

)

ABBREVIATIONS: OPT, NOPT

NOOPTIMIZE
Is the equivalent of OPTIMIZE(0).

OPTIMIZE(0)
Specifies fast compilation speed, but inhibits optimization.

OPTIMIZE(2) or OPTIMIZE(TIME)
Is the equivalent of OPTIMIZE(3). The OPTIONS listing will show OPTIMIZE(3).

OPTIMIZE(3)
Optimizes the machine instructions generated to produce a more efficient object program. This type
of optimization can also reduce the amount of storage required for the object code.

It is strongly recommended that the DFT(REORDER) option be used with the OPTIMIZE option. In fact,
the effect of OPTIMIZE is severely limited for any PROCEDURE or BEGIN-block for which all of the
following conditions are true:

• The ORDER option applies to the block.
• The block contains ON-units for hardware-detected conditions (such as ZERODIVIDE).
• The block has labels that are the (potential) target of branches out of those ON-units.

The use of OPTIMIZE(3) could result in a substantial increase in compile time over NOOPTIMIZE and a
substantial increase in the space required. For example, compiling a large program at OPTIMIZE(3) might
take several minutes and could require a region of 100M or more.

During optimization the compiler can move code to increase runtime efficiency. As a result, statement
numbers in the program listing might not correspond to the statement numbers used in runtime
messages. Users may also see incorrect statements reported by diagnostic products, such as Fault
Analyzer and CEEDUMP, which use the statement number table.

Note that the use of OPTIMIZE(3) severely limits the functionality of the TEST option, as follows:

• If the HOOK suboption of TEST is in effect, only block hooks will be generated.
• If the NOHOOK suboption of TEST is in effect, attempts to list or change a variable might fail (because

the variable might have been optimized into a register), and attempts to stop at a particular statement
might cause the debugger to stop several times (because the statement might have split up into several
parts).

The use of the PREFIX option with one or more of the checkout conditions (SIZE, STRINGRANGE,
STRINGSIZE, and SUBSCRIPTRANGE) can significantly increase the time and space needed for a
compilation.

Related information
“Improving performance” on page 307

60 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Many considerations for improving the speed of your program are independent of the compiler that you
use and the platform on which it runs. This chapter, however, identifies those considerations that are
unique to the PL/I compiler and the code it generates.

OPTIONS
The OPTIONS option specifies that the compiler includes a list showing the compiler options to be used
during this compilation in the compiler listing.

NOOPTIONS

OPTIONS

(

DOC

ALL)

ABBREVIATIONS: OP, NOP

This list includes all options applied by default, those specified in the PARM parameter of an EXEC
statement or in the invoking command (pli), those specified in a %PROCESS statement, those specified in
the IBM_OPTIONS environment variable under z/OS, and all those incorporated from any options file.

Under OPTIONS(DOC), the OPTIONS listing will include only those options (and suboptions) documented
in this document at the time of the compiler’s release.

Under OPTIONS(ALL), the OPTIONS listing will also include any option added by PTF after the compiler’s
release.

OR
The OR option specifies up to seven alternate symbols as the logical OR operator. These symbols are also
used as the concatenation operator, which is defined as two consecutive logical OR symbols.

OR (' char ')

Note: Do not code any blanks between the quotation marks.

The IBM-supplied default code point for the OR symbol (|) is '4F'X.

char
A single SBCS character

You cannot specify any of the alphabetic characters, digits, and special characters defined in the PL/I
Language Reference, except for the standard logical OR symbol (|). You must specify at least one valid
character.

If you specify the OR option, the standard OR symbol is no longer recognized unless you specify it as one
of the characters in the character string.

For example, OR('\') means that the backslash character, 'E0'X, will be recognized as the logical OR
operator, and two consecutive backslashes will be recognized as the concatenation operator. The
standard OR symbol, '|', '4F'X, will not be recognized as either operator. Similarly, OR('\|') means that
either the backslash or the standard OR symbol will be recognized as the logical OR operator, and either
symbol or both symbols can be used to form the concatenation operator.

Chapter 1. Using compiler options and facilities 61

PP
The PP option specifies which (and in what order) preprocessors are invoked before compilation.

NOPP

PP (

,

pp-name

(pp-string)

)

pp-name
The name given to a particular preprocessor. CICS, INCLUDE, MACRO and SQL are the only
preprocessors currently supported. Using an undefined name causes a diagnostic error.

pp-string
A string, delimited by quotation marks, of up to 100 characters representing the options
for the corresponding preprocessor. For example, PP(MACRO('CASE(ASIS)')) invokes the MACRO
preprocessor with the option CASE(ASIS).

Preprocessor options are processed from left to right, and if two options conflict, the last (rightmost)
option is used. For example, if you invoke the MACRO preprocessor with the option string 'CASE(ASIS)
CASE(UPPER)', then the option CASE(UPPER) is used.

You can specify a maximum of 31 preprocessor steps, and you can specify the same preprocessor more
than once with the exception of the CICS and SQL preprocessors. The CICS preprocessor must be invoked
at most once, and the SQL preprocessor must be invoked no more than twice. The SQL preprocessors can
be invoked twice only if the first specification specifies INCONLY as its option.

If the MACRO option is specified along with the PP option, the MACRO preprocessor will be added to
the beginning of the list of preprocessors in the PP option unless it is already the first in that list. So,
specifying MACRO and PP(SQL MACRO) will cause the PP option to become PP(MACRO SQL MACRO),
and the MACRO preprocessor will be invoked twice. However, specifying MACRO and PP(MACRO SQL) will
leave the PP option unchanged, and the MACRO preprocessor will be invoked only once. However, the use
of both the MACRO option and the PP(MACRO) option in the same compilation is not recommended.

If you specify the PP option more than once, the compiler effectively concatenates them. So
specifying PP(SQL) PP(CICS) is the same as specifying PP(SQL CICS). This also means that if you
specifies PP(MACRO SQL('CCSID0')) and PP(MACRO SQL('CCSID0 DATE(ISO)')), the resulting PP option
is PP(MACRO SQL('CCSID0') MACRO SQL('CCSID0 DATE(ISO)')), and both the MACRO preprocessor and
the SQL preprocessor will be invoked twice, and the second invocation of the SQL preprocessor will be in
error. If you do this to override the earlier SQL options, it might be better not to specify the preprocessor
options in the PP option, but rather to specify them through the PPSQL option, that is, specify PP(MACRO
SQL) PPSQL('CCSID0 DATE(ISO)').

Related information
“PL/I preprocessors” on page 115
When you use the PL/I compiler, you can specify one or more of the integrated preprocessors in your
program. You can specify the include preprocessor, the macro preprocessor, the SQL preprocessor, or the
CICS preprocessor, and specify the order in which you want them to be called.

PPCICS
The PPCICS option specifies options to be passed to the CICS preprocessor if it is invoked.

NOPPCICS

PPCICS (' options string ')

Specifying PPCICS('EDF') PP(CICS) is the same as specifying PP(CICS('EDF')).

62 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

This option has no effect unless the PP(CICS) option is specified. However, if you want to specify a set
of CICS preprocessor options that should be used if and when the CICS preprocessor is invoked, you can
specify this option in the installation options exit. Then whenever you specify PP(CICS), the set of options
specified in the PPCICS option will be used.

Also, any options specified when the preprocessor is invoked overrule those specified in the PPCICS
option. So specifying PPCICS('EDF') PP(CICS('NOEDF')) is the same as specifying PP(CICS('EDF NOEDF'))
or the even simpler PP(CICS('NOEDF')).

The options string is limited to 1000 characters in length. However, if the string is longer than 100
characters, it will not be shown in the options listing.

PPINCLUDE
The PPINCLUDE option specifies options to be passed to the INCLUDE preprocessor if it is invoked.

NOPPINCLUDE

PPINCLUDE (' options string ')

Specifying PPINCLUDE('ID(-inc)') PP(INCLUDE) is the same as specifying PP(INCLUDE('ID(-inc)')).

This option has no effect unless the PP(INCLUDE) option is specified. However, if you want to specify a set
of INCLUDE preprocessor options that should be used if and when the INCLUDE preprocessor is invoked,
you can specify this option in the installation options exit. Then whenever you specify PP(INCLUDE), the
set of options specified in the PPINCLUDE option will be used.

Also, any options specified when the preprocessor is invoked overrule those specified in the PPINCLUDE
option. So specifying PPINCLUDE('ID(-inc)') PP(INCLUDE('ID(+include)')) is the same as specifying
PP(INCLUDE('ID(-inc) ID(+include)')) or the even simpler PP(INCLUDE('ID(+include)')).

The options string is limited to 1000 characters in length. However, if the string is longer than 100
characters, it will not be shown in the options listing.

PPLIST
The PPLIST option controls whether the compiler keeps or erases the part of the listing that is generated
by each preprocessor phase.

PPLIST (

KEEP

ERASE)

When you specify PPLIST(KEEP), the compiler keeps the part of the listing that is generated by each
preprocessor phase.

When you specify PPLIST(ERASE), the compiler erases the part of the listing that is generated by any
preprocessor phase that produces no messages.

The compiler does not count messages that are suppressed by the EXIT and FLAG options. Therefore,
specifying both FLAG(W) and PPLIST(ERASE) causes the compiler to suppress all output from any
preprocessor that produces no warning, error, or severe messages.

PPLIST(KEEP) is the default.

PPMACRO
The PPMACRO option specifies options to be passed to the MACRO preprocessor if it is invoked.

NOPPMACRO

PPMACRO (‘options string’)

options string
See “Macro preprocessor options” on page 116

Chapter 1. Using compiler options and facilities 63

Specifying PPMACRO('CASE(ASIS)') PP(MACRO) is the same as specifying PP(MACRO('CASE(ASIS)')).

This option has no effect unless the PP(MACRO) option is specified. However, if you want to specify a set
of MACRO preprocessor options that should be used if and when the MACRO preprocessor is invoked,
you can specify this option in the installation options exit. Then whenever you specify the MACRO or
PP(MACRO) options, the set of options specified in the PPMACRO option will be used.

Also, any options specified when the preprocessor is invoked overrule those specified in the PPMACRO
option. So specifying PPMACRO('CASE(ASIS)') PP(MACRO('CASE(UPPER)')) is the same as specifying
PP(MACRO('CASE(ASIS) CASE(UPPER)')) or the even simpler PP(MACRO('CASE(UPPER)')).

The options string is limited to 1000 characters in length. However, if the string is longer than 100
characters, it will not be shown in the options listing.

PPSQL
The PPSQL option specifies options to be passed to the SQL preprocessor.

NOPPSQL

PPSQL (‘options string’)

options string
See “SQL preprocessor options” on page 124

Specifying PPSQL('APOSTSQL') PP(SQL) is the same as specifying PP(SQL('APOSTSQL')).

This option has no effect unless the PP(SQL) option is specified. However, if you want to specify a set
of options that should be used if the SQL preprocessor is invoked, you can specify this option in the
installation options exit. Then, whenever you specify PP(SQL), the set of options in the PPSQL option are
used.

Also, any options that are specified when the preprocessor is invoked overrule those that are specified
in the PPSQL option. Therefore, specifying PPSQL('APOSTSQL') PP(SQL('QUOTESQL')) is the same as
specifying PP(SQL('APOSTSQL QUOTESQL')) or the even simpler PP(SQL('QUOTESQL')).

The options string is limited to 1000 characters in length. However, if the string is longer than 100
characters, it will not be shown in the options listing.

PPTRACE
The PPTRACE option specifies that when a deck file is written for a preprocessor, every nonblank line in
that file is preceded by a line containing a %LINE directive. The directive indicates the original source file
and line to which the nonblank line should be attributed.

NOPPTRACE

PPTRACE

PRECTYPE
The PRECTYPE option determines how the compiler derives the attributes for the MULTIPLY, DIVIDE, ADD
and SUBTRACT built-in functions when the operands are FIXED and at least one is FIXED BIN.

PRECTYPE (

ANS

DECDIGIT

DECRESULT

)

ANS
Under PRECTYPE(ANS), the value p in BIF(x,y,p) and in BIF(x,y,p,0) is interpreted as specifying a
binary number of digits, the operation is performed as a binary operation, and the result has the
attributes FIXED BIN(p,0).

64 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

However, for BIF(x,y,p,q) if q is not zero, the operation will be performed as a decimal operation, and
the result will have the attributes FIXED DEC(t,u) where t and u are the decimal equivalents of p and
q, namely t = 1 + ceil(p / 3.32) and u = ceil(q / 3.32). In this case, x, y, p, and q are effectively all
converted to decimal (in contrast to the DECDIGIT suboption, which converts only x and y to decimal
and does so even if q is zero). The compiler will issue the informational message 1BM1053 in this
situation.

DECDIGIT
Under PRECTYPE(DECDIGIT), the value p in BIF(x,y,p) and BIF(x,y, p,0) is interpreted as specifying
a decimal number of digits, the operation is performed as a binary operation, and the result has the
attributes FIXED BIN(s) where s is the corresponding binary equivalent to p (namely s = ceil(3.32*p)).
For an instance of BIF(x,y,p, q) where q is not zero, the results under PRECTYPE(DECDIGIT) are the
same as the results under PRECTYPE(DECRESULT).

DECRESULT
Under PRECTYPE(DECRESULT), the value p in BIF(x,y,p) and the values p and q in BIF(x,y,p,q)
are interpreted as specifying a decimal number of digits, the operation is performed as a decimal
operation, and the result has the attributes FIXED DEC(p,0) or FIXED DEC(p,q) respectively. The result
is the same as would be produced if the DECIMAL built-in were applied to x and y.

PREFIX
The PREFIX option enables or disables the specified PL/I conditions in the compilation unit being
compiled without you having to change the source program. The specified condition prefixes are logically
prefixed to the beginning of the first PACKAGE or PROCEDURE statement.

PREFIX (

,

condition

)

condition
Any condition that can be enabled or disabled in a PL/I program, as explained in the PL/I Language
Reference.

The use of the PREFIX option with one or more of the checkout conditions (CONFORMANCE, SIZE,
STRINGRANGE, STRINGSIZE, and SUBSCRIPTRANGE) can significantly increase the time and space
needed for a compilation.

Default: PREFIX(NOCONFORMANCE CONVERSION FIXEDOVERFLOW INVALIDOP OVERFLOW NOSIZE
NOSTRINGRANGE NOSTRINGSIZE NOSUBSCRIPTRANGE UNDERFLOW ZERODIVIDE)

PROCEED
The PROCEED option stops the compiler after processing by a preprocessor is completed depending on
the severity of messages issued by previous preprocessors.

NOPROCEED

(

S

W

E

)

PROCEED

ABBREVIATIONS: PRO, NPRO

PROCEED
Is equivalent to NOPROCEED(S).

Chapter 1. Using compiler options and facilities 65

NOPROCEED
Ends the processing after the preprocessor has finished compiling.

NOPROCEED(S)
The invocation of preprocessors and the compiler does not continue if a severe or an unrecoverable
error is detected in this stage of preprocessing.

NOPROCEED(E)
The invocation of preprocessors and the compiler does not continue if an error, a severe error, or an
unrecoverable error is detected in this stage of preprocessing.

NOPROCEED(W)
The invocation of preprocessors and the compiler does not continue if a warning, an error, a severe
error, or an unrecoverable error is detected in this stage of preprocessing.

PROCESS
The PROCESS option determines whether *PROCESS statements are allowed and, if they are allowed,
whether they are written to the MDECK file.

PROCESS

(

DELETE

KEEP)

NOPROCESS

Under the NOPROCESS option, the compiler will flag any *PROCESS statement with an E-level message.

Under the PROCESS(KEEP) option, the compiler will not flag *PROCESS statements, and the compiler will
retain any *PROCESS statements in the MDECK output.

Under the PROCESS(DELETE) option, the compiler will not flag *PROCESS statements, but the compiler
will not retain any *PROCESS statements in the MDECK output.

QUOTE
The QUOTE option specifies an alternate symbol that can be used as the quote character.

QUOTE ('

"

char ')

Note: Do not code any blanks between the quotation marks.

The IBM-supplied default code point for the QUOTE symbol is '"'.

char
A single SBCS character

You cannot specify any of the alphabetic characters, digits, and special characters defined in the PL/I
Language Reference, except for the standard QUOTE symbol (").

You must specify a valid character.

The QUOTE option is ignored if the GRAPHIC option is also specified.

REDUCE
The REDUCE option specifies that the compiler is permitted to reduce an assignment of a null string to a
structure into simpler operations - even if that means padding bytes might be overwritten.

The REDUCE option also allows the compiler to reduce the assignment of matching structures into a
simple aggregate move - even if the structures contain POINTER fields.

66 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

REDUCE

NOREDUCE

The NOREDUCE option specifies that the compiler must decompose an assignment of a null string to a
structure into a series of assignments of the null string to the base members of the structure.

Under the NOREDUCE option, BY NAME assignments that can be reduced to aggregate moves are not
reduced if the elements that would be moved together have the AREA or VARYING(Z) attributes.

The REDUCE option causes fewer lines of code to be generated for an assignment of a null string to a
structure, and that usually means your compilation is quicker and your code runs much faster. However,
padding bytes might be zeroed out.

For instance, in the following structure, there is one byte of padding between field12 and field13.

 dcl
 1 sample ext,
 5 field10 bin fixed(31),
 5 field11 bin fixed(15),
 5 field12 bit(8),
 5 field13 bin fixed(31);

Now consider the assignment sample = ’’;.

Under the NOREDUCE option, it will cause four assignments to be generated, and the padding byte will be
unchanged.

However, under REDUCE, the assignment will be reduced to one operation, but the padding byte will be
zeroed out.

The NOREDUCE option makes the compiler act more like the OS PL/I and the PL/I for MVS compilers.
These compilers would reduce an assignment of matching structures into a simple aggregate move unless
the structures contain POINTER fields. The NOREDUCE option will make this compiler act the same way.

RENT
Your code is "naturally reentrant" if it does not alter any of its static variables. The RENT option specifies
that the compiler is to take code that is not naturally reentrant and make it reentrant.

For a detailed description of reentrancy, see the z/OS Language Environment Programming Guide. If you
use the RENT option, the Linkage Editor cannot directly process the object module that is produced; you
must use PDSEs.

Note: Under the LP(64) option, the RENT option is ignored; effectively, RENT is always on.

NORENT

RENT

The NORENT option specifies that the compiler is not to specifically generate reentrant code from
nonreentrant code. Any naturally reentrant code remains reentrant.

If you link a module (either MAIN or FETCHABLE) containing one or more programs compiled with the
RENT option, you must specify DYNAM=DLL and REUS=RENT on the link step.

If you specify the options NORENT and LIMITS(EXTNAME(n)) (with n <= 7), the text decks generated by
the compiler will have the same format as those generated by the older PL/I compilers. If you use any
other options, you must use PDSEs.

The code generated under the NORENT option might not be reentrant unless the NOWRITABLE option is
also specified.

The use of the NORENT does preclude the use of some features of the compiler. In particular, note the
following considerations:

• DLLs cannot be built.

Chapter 1. Using compiler options and facilities 67

• Reentrant, writeable static is not supported.
• A STATIC ENTRY VARIABLE cannot have an INITIAL value.

You can mix RENT and NORENT code subject to the following restrictions:

• Code compiled with RENT cannot be mixed with code compiled with NORENT if they share any
EXTERNAL STATIC variables.

• Code compiled with RENT cannot call an ENTRY VARIABLE set in code compiled with NORENT.
• Code compiled with RENT can fetch a module containing code compiled with NORENT.
• Code compiled with NORENT code cannot fetch a module containing any code compiled with RENT

unless the ENTRY for that module has been declared with OPTIONS(RENT).
• Code compiled with NORENT WRITABLE cannot be mixed with code compiled with NORENT

NOWRITABLE if they share any external CONTROLLED variables.

Given the above restrictions, the following is still valid:

• A NORENT routine, called say mnorent, statically links and calls a RENT routine, called say mrent.
• The RENT routine mrent then fetches and calls a separately-linked module with an entry point

compiled with RENT.

RESEXP
The RESEXP option specifies that the compiler is permitted to evaluate all restricted expressions at
compile time even if this would cause a condition to be raised and the compilation to end with S-level
messages.

RESEXP

NORESEXP

Under the NORESEXP compiler option, the compiler will still evaluate all restricted expression occurring in
declarations, including those in INITIAL value clauses.

For example, under the NORESEXP option, the compiler will not flag the following statement (and the
ZERODIVIDE exception will be raised at run time).

 if preconditions_not_met then
 x = 1 / 0;

RESPECT
The RESPECT option causes the compiler to honor any specification of the DATE attribute and to apply the
DATE attribute to the result of the DATE built-in function.

RESPECT (

DATE

)

Using the default, RESPECT(), causes the compiler to ignore any specification of the DATE attribute and
ensures that the compiler does not apply the DATE attribute to the result of the DATE built-in function.

RTCHECK
The RTCHECK option specifies that extra code is generated to force the ERROR condition to be raised if a
null pointer is dereferenced, that is, if the pointer is used to change or obtain the value of a variable.

RTCHECK (

NONULLPTR

NULLPTR

NULL370

)

68 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

NULLPTR
Extra code is generated to force the ERROR condition to be raised if a null pointer, that is, a pointer
equal to SYSNULL(), is dereferenced.

NULL370
Extra code is generated to force the ERROR condition to be raised if a pointer equal to the
DEFAULT(NULL370) value is dereferenced. This value has a hexadecimal value of 'FF000000'x under
LP(32) and '00000000_7FFFFBAD'x under LP(64).

NONULLPTR
No extra code is generated to force the ERROR condition to be raised if a null pointer is dereferenced.

The default is RTCHECK(NONULLPTR).

Note: When a null pointer is dereferenced, a compare-and-trap data exception occurs.

Chapter 1. Using compiler options and facilities 69

RULES
The RULES option allows or disallows certain language capabilities and lets you choose semantics when
alternatives are available. It can help you diagnose common programming errors.

RULES (

,

IBM

ANS

BYNAME

NOBYNAME

COMPLEX

NOCOMPLEX

(

ALL

SOURCE)

CONTROLLED

NOCONTROLLED

NODECSIZE

DECSIZE

ELSEIF

NOELSEIF

EVENDEC

NOEVENDEC

GLOBAL

NOGLOBAL

(

ALL

SOURCE)

GLOBALDO

NOGLOBALDO

GOTO

NOGOTO

(

STRICT

LOOSE

LOOSEFORWARD

)

NOLAXBIF

LAXBIF

LAXCONV

NOLAXCONV

(

ALL

SOURCE)

NOLAXCTL

LAXCTL

NOLAXDCL

LAXDCL

NOLAXDEF

LAXDEF

LAXEXPORTS

NOLAXEXPORTS

LAXFIELDS

NOLAXFIELDS

LAXINTERFACE

NOLAXINTERFACE

LAXENTRY

NOLAXENTRY

(

STRICT

LOOSE)

NOLAXIF

LAXIF

LAXINOUT

NOLAXINOUT

(

ALL

SOURCE) (

LOOSE

STRICT)

LAXLINK

NOLAXLINK

LAXMARGINS

NOLAXMARGINS

(

STRICT

XNUMERIC)

LAXNESTED

NOLAXNESTED

(

ALL

SOURCE)

LAXOPTIONAL

NOLAXOPTIONAL

(

ALL

SOURCE)

LAXPACKAGE

NOLAXPACKAGE

LAXPARMS

NOLAXPARMS

(

ALL

SOURCE)

LAXPUNC

NOLAXPUNC

LAXQUAL

NOLAXQUAL

(

LOOSE

STRICT

FULL

) (

ALL

FORCE)

LAXRETURN

NOLAXRETURN

NOLAXSCALE

(

LOOSE

STRICT) (

ALL

SOURCE)

LAXSCALE

LAXSEMI

NOLAXSEMI

LAXSTG

NOLAXSTG

LAXSTMT

NOLAXSTMT

(

ALL

SOURCE)

NOLAXSTRZ

LAXSTRZ

)

70 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

RULES (

,

NOMULTICLOSE

MULTICLOSE

MULTIENTRY

NOMULTIENTRY

(

ALL

SOURCE)

MULTIEXIT

NOMULTIEXIT

(

ALL

SOURCE)

MULTISEMI

NOMULTISEMI

(

ALL

SOURCE)

PADDING

NOPADDING

(

ALL

SOURCE) (

LOOSE

STRICT)

PROCENDONLY

NOPROCENDONLY

(

ALL

SOURCE)

RECURSIVE

NORECURSIVE

SELFASSIGN

NOSELFASSIGN

UNREF

NOUNREF (

ALL

SOURCE)

UNREFBASED

NOUNREFBASED (

ALL

SOURCE)

UNREFCTL

NOUNREFCTL (

ALL

SOURCE)

UNREFDEFINED

NOUNREFDEFINED (

ALL

SOURCE)

UNREFENTRY

NOUNREFENTRY (

ALL

SOURCE)

UNREFDEFFILE

NOUNREFDEFFILE (

ALL

SOURCE)

UNREFSTATIC

NOUNREFSTATIC (

ALL

SOURCE)

UNREFVALUE

NOUNREFEVALUE (

ALL

SOURCE)

UNSET

NOUNSET (

ALL

SOURCE)

YY

NOYY

)

IBM | ANS
Under the IBM suboption:

• For operations requiring string data, data with the BINARY attribute is converted to BIT.
• For arithmetic operations, the following rules apply:

Chapter 1. Using compiler options and facilities 71

1. If one operand is FIXED BIN and one is FIXED DEC, then the result is FIXED BIN even if the
FIXED DEC operand has a scale factor greater than zero.

For example, if x is FIXED BIN(15) and y is FIXED BIN(31), then

x + 2 has the attributes FIXED BIN(16,0)

x + 2.1 has the attributes FIXED BIN(20,4)

y + 2 has the attributes FIXED BIN(31,0)

y + 2.1 has the attributes FIXED BIN(31,4)
2. If both operands are unscaled FIXED BIN, then the result is unscaled FIXED BIN except some

divisions may produce a result with a non-zero scale factor.

For example, if x is FIXED BIN(15) and y is FIXED BIN(31), then

x / 2 has the attributes FIXED BIN(31,16)

y / 2 has the attributes FIXED BIN(31,0)
• Nonzero scale factors are permitted in FIXED BIN declarations.
• If the result of any precision-handling built-in function (ADD, BINARY, and so on) has FIXED BIN

attributes, the specified or implied scale factor can be nonzero.
• Declaring a variable with the OPTIONS attribute implies the ENTRY attribute.

Under the ANS suboption:

• For operations requiring string data, data with the BINARY attribute is converted to CHARACTER.
• For arithmetic operations, the following rules apply:

1. If one operand is FIXED BIN and one is FIXED DEC, then the result is

– FIXED BIN if the FIXED DEC operand has a scale factor of zero
– FIXED DEC if the FIXED DEC operand has a scale factor greater than zero

For example, if x is FIXED BIN(15) and y is FIXED BIN(31), then

x + 2 has the attributes FIXED BIN(16,0)

x + 2.1 has the attributes FIXED DEC(7,1)

y + 2 has the attributes FIXED BIN(31,0)

y + 2.1 has the attributes FIXED DEC(13,1)
2. If both operands are unscaled FIXED BIN, then the result is unscaled FIXED BIN even for

division.

For example, if x is FIXED BIN(15) and y is FIXED BIN(31), then

x / 2 has the attributes FIXED BIN(15,0)

y / 2 has the attributes FIXED BIN(31,0)
• Nonzero scale factors are not permitted in FIXED BIN declares.
• If the result of any precision-handling built-in function (ADD, BINARY, and so on) has FIXED BIN

attributes, the specified or implied scale factor must be zero.
• Declaring a variable with the OPTIONS attribute does not imply the ENTRY attribute.

Also, under RULES(ANS), the following errors, which the old compilers ignored, produce E-level
messages:

• Specifying a string constant as the argument to the STRING built-in
• Giving too many asterisks as subscripts in an array reference
• Qualifying a CONTROLLED variable with a POINTER reference (as if the CONTROLLED variable were

BASED)

72 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

The default is RULES(IBM).

BYNAME | NOBYNAME
Specifying NOBYNAME causes the compiler to flag all BYNAME assignments with an E-level message.

The default is RULES(BYNAME).

COMPLEX | NOCOMPLEX
Specifying RULES(NOCOMPLEX) causes the compiler to flag any use of the COMPLEX attribute or
built-in function, and any use of numbers with an I suffix.

If you specify RULES(COMPLEX), the compiler will not flag such statements.

ALL
Under ALL, all violations of RULES(NOCOMPLEX) are flagged. ALL is the default.

SOURCE
Under SOURCE, only those violations that occur in the primary source file are flagged.

The default is RULES(COMPLEX). When you specify RULES(NOCOMPLEX), the default is ALL.

CONTROLLED | NOCONTROLLED
Specifying NOCONTROLLED causes the compiler to flag any use of the CONTROLLED attribute.

Specifying CONTROLLED causes the compiler not to flag the use of the CONTROLLED attribute.

The default is RULES(CONTROLLED).

DECSIZE | NODECSIZE
Specifying DECSIZE causes the compiler to flag any assignment of a FIXED DECIMAL expression to a
FIXED DECIMAL variable when the SIZE condition is disabled if the SIZE condition could be raised by
the assignment.

Specifying RULES(DECSIZE) might cause the compiler to produce many messages because when SIZE
is disabled, any statement of the form X = X + 1 will be flagged if X is FIXED DECIMAL.

The default is RULES(NODECSIZE).

ELSEIF | NOELSEIF
Specifying NOELSEIF causes the compiler to flag any ELSE statement that is immediately followed by
an IF statement and suggest that it be rewritten as a SELECT statement.

This option can be useful in enforcing that SELECT statements be used rather than a series of nested
IF-THEN-ELSE statements.

The RULES(NOELSEIF) compiler option now also flags ELSE statements immediately followed by an IF
statement that is enclosed in a simple DO-END.

The default is RULES(ELSEIF).

EVENDEC | NOEVENDEC
Specifying NOEVENDEC causes the compiler to flag any FIXED DECIMAL declaration that specifies an
even precision.

The default is RULES(EVENDEC).

GLOBAL | NOGLOBAL
Specifying RULES(NOGLOBAL) causes the compiler to flag any variable that is used in a nested
subprocedure of the block where the variable is declared with one of the following storage attributes:

AUTOMATIC
CONTROLLED
DEFINED
PARAMETER
ASSIGNABLE STATIC

If you specify RULES(GLOBAL), the compiler will not flag such usage.

Chapter 1. Using compiler options and facilities 73

ALL
Under ALL, all violations of RULES(NOGLOBAL) are flagged.

SOURCE
Under SOURCE, only those violations that occur in the primary source file are flagged.

The default is RULES(GLOBAL). When you specify RULES(NOGLOBAL), the default is ALL.

GLOBALDO | NOGLOBALDO
Specifying NOGLOBALDO instructs the compiler to flag all DO loops with control variables that are
declared in a parent block.

Using a variable declared in a parent as a DO loop control variable will cause the loop performance
to be much worse than if the variable is declared in the block in which it is used as a DO loop control
variable.

The default is RULES(GLOBALDO).

GOTO | NOGOTO
Specifying NOGOTO(STRICT) causes the compiler to flag any GOTO statement to a label constant
unless the GOTO is exiting an ON-unit.

Specifying NOGOTO(LOOSE) causes the compiler to flag any GOTO statement to a label constant
unless the GOTO is exiting an ON-unit or unless the target label constant is in the same block as the
GOTO statement.

Specifying NOGOTO(LOOSEFORWARD) causes the compiler to flag any GOTO statement to a label
constant unless the GOTO is exiting an ON-unit or unless the target label constant is in the same block
as the GOTO statement and comes after the GOTO statement.

Specifying RULES(NOGOTO) will cause the compiler to flag the use of the EXEC HANDLE CONDITION
and EXEC SQL WHENEVER statements as errors.

The default is RULES(GOTO). When you specify RULES(NOGOTO), the default is STRICT.

LAXBIF | NOLAXBIF
Specifying LAXBIF causes the compiler to build a contextual declaration for built-in functions, such as
NULL, even when used without an empty parameter list.

The default is RULES(NOLAXBIF).

LAXCONV | NOLAXCONV
Specifying RULES(LAXCONV) causes the compiler not to flag arithmetic expressions where an
operand does not have arithmetic type.

Specifying RULES(NOLAXCONV) causes the compiler to flag arithmetic expressions where an operand
does not have arithmetic type.

ALL
Under ALL, all violations of RULES(NOLAXCONV) are flagged. ALL is the default.

SOURCE
Under SOURCE, only those violations that occur in the primary source file are flagged.

The default is RULES(LAXCONV). When you specify RULES(NOLAXCONV), the default is ALL.

LAXCTL | NOLAXCTL
Specifying LAXCTL allows a CONTROLLED variable to be declared with a constant extent and yet to be
allocated with a differing extent. NOLAXCTL requires that if a CONTROLLED variable is to be allocated
with a varying extent, that extent must be specified as an asterisk or as a non-constant expression.

The following code is illegal under NOLAXCTL:

 dcl a bit(8) ctl;
 alloc a;
 alloc a bit(16);

But this code would still be valid under NOLAXCTL:

74 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

 dcl b bit(n) ctl;
 dcl n fixed bin(31) init(8);
 alloc b;
 alloc b bit(16);

The default is RULES(NOLAXCTL).

LAXDCL | NOLAXDCL
Specifying LAXDCL allows implicit declarations. NOLAXDCL disallows all implicit and contextual
declarations except for BUILTINs and for files SYSIN and SYSPRINT.

The default is RULES(NOLAXDCL).

LAXDEF | NOLAXDEF
Specifying LAXDEF allows so-called illegal defining to be accepted without any compiler messages
(rather than the E-level messages that the compiler would usually produce).

The default is RULES(NOLAXDEF).

LAXENTRY | NOLAXENTRY
Specifying LAXENTRY allows unprototyped entry declarations. Specifying NOLAXENTRY causes the
compiler to flag all unprototyped entry declarations except declarations of names which start with
'CEE', 'DFH', 'DSN', 'EYU', 'IBM', 'PLI', and 'SQL'.

Note: If an ENTRY should have no parameter, it must be declared as ENTRY() rather than simply as
ENTRY.

STRICT
Specifying RULES(NOLAXENTRY(STRICT)) causes the compiler to flag unprototyped entry
declarations that have the OPTIONS(ASM) attribute.

LOOSE
Specifying RULES(NOLAXENTRY(LOOSE)) causes the compiler not to flag unprototyped entry
declarations that have the OPTIONS(ASM) attribute.

The default is RULES(LAXENTRY). When you specify RULES(NOLAXENTRY), the default is STRICT.

LAXEXPORTS | NOLAXEXPORTS
Specifying NOLAXEXPORTS causes the compiler to flag any compilation with EXTERNAL routines that
have a PACKAGE statement not specifying an EXPORTS clause with a list of routines to be exported.

If you specify LAXEXPORTS, the compiler will not flag such compilation units.

The default is RULES(LAXEXPORTS).

LAXFIELDS | NOLAXFIELDS
Specifying RULES(NOLAXFIELDS) causes the compiler to flag the following SQL statements:

• EXEC SQL SELECT*
• EXEC SQL INSERT INTO <name> not followed by a parenthesized list of field names

Specifying RULES(LAXFIELDS) causes the compiler not to flag such statements.

The default is RULES(LAXFIELDS).

LAXIF | NOLAXIF
Specifying RULES(NOLAXIF) causes the compiler to flag any IF, WHILE, UNTIL, and WHEN clauses
that do not have the attributes BIT(1) NONVARYING. It also causes the compiler to flag the
assignments of the form x=y=z, but it does not flag assignments of the x=(y=z) form.

The following code will all be flagged under NOLAXIF:

dcl i fixed bin;
dcl b bit(8);
 .
 .
 .
if i then …
if b then …

Chapter 1. Using compiler options and facilities 75

The default is RULES(NOLAXIF).

LAXINOUT | NOLAXINOUT

Specifying NOLAXINOUT causes the compiler to assume that all parameters with the explicit INOUT
attribute are input (and possibly output) parameters and hence to issue a warning if the compiler
thinks such a parameter has not been set.

If you specify STRICT as a suboption to RULES(NOLAXINOUT), then the compiler will assume any
ASSIGNABLE BYADDR parameter is INOUT and will flag its use when possibly unset.

ALL
Under ALL, all violations of RULES(NOLAXINOUT) are flagged. ALL is the default.

SOURCE
Under SOURCE, only those violations that occur in the primary source file are flagged.

The default is RULES(LAXINOUT). When you specify RULES(NOLAXINOUT), LOOSE and ALL are
defaults.

LAXINTERFACE | NOLAXINTERFACE
Specifying NOLAXINTERFACE causes the compiler to flag code that does not contain a matching
explicit declaration for each of its external non-MAIN PROCEDUREs.

Under NOLAXINTERFACE:

• If there is a PACKAGE statement, then every exported non-MAIN procedure must have an explicit
declaration at package scope, and that explicit declaration must match the implicit declaration
derived from its procedure statement.

• If there is no PACKAGE statement, then the outermost procedure, if not MAIN, must contain an
explicit declaration for it, and that explicit declaration must match the implicit declaration derived
from its procedure statement match.

The default is RULES(LAXINTERFACE).

LAXLINK | NOLAXLINK
Specifying NOLAXLINK causes the compiler to flag any assign or compare of two ENTRY variables or
constants if any of the following do not match:

• The parameter description lists

For instance, if A1 is declared as ENTRY(CHAR(8)) and A2 as ENTRY(POINTER) VARIABLE, under
RULES(NOLAXLINK) the compiler will flag an attempt to assign A1 to A2.

• The RETURNS attribute

For instance, if A3 is declared as ENTRY RETURNS(FIXED BIN(31)) and A4 as an ENTRY VARIABLE
without the RETURNS attribute, under RULES(NOLAXLINK) the compiler will flag an attempt to
assign A3 to A4.

• The LINKAGE and other OPTIONS suboptions

For instance, if A5 is declared as ENTRY OPTIONS(ASM) and A6 as an ENTRY VARIABLE without the
OPTIONS attribute, under RULES(NOLAXLINK) the compiler will flag an attempt to assign A5 to A6.
This is because the OPTIONS(ASM) in the declare of A5 implies that A5 has LINKAGE(SYSTEM)), and
in contrast, because A6 has no OPTIONS attribute, it will have LINKAGE(OPTLINK) by default).

The default is RULES(LAXLINK).

LAXMARGINS | NOLAXMARGINS
Specifying NOLAXMARGINS causes the compiler to flag, depending on the setting of the STRICT and
XNUMERIC suboption, lines containing nonblank characters after the right margin. This can be useful
in detecting code, such as a closing comment, that has accidentally been pushed out into the right
margin.

If the NOLAXMARGINS and STMT options are used together with one of the preprocessors, any
statements that would be flagged because of the NOLAXMARGINS option will be reported as

76 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

statement zero (because statement numbering occurs only after all the preprocessors are finished,
but the detection of text outside the margins occurs as soon as the source is read).

STRICT
Under STRICT, the compiler flags any line that contains nonblank characters after the right margin.

XNUMERIC
Under XNUMERIC, the compiler flags any line that contains nonblank characters after the right
margin except if the right margin is column 72 and columns 73 through 80 all contain numeric
digits.

The default is RULES(LAXMARGINS). When you specify RULES(NOLAXMARGINS), the default is
STRICT.

LAXNESTED | NOLAXNESTED
Specifying RULES(LAXNESTED) causes the compiler not to flag the executable code in a procedure
that follows any subprocedures.

Specifying RULES(NOLAXNESTED) causes the compiler to flag any executable code in a procedure
that follows any subprocedures.

ALL
Under ALL, all violations of RULES(NOLAXNESTED) are flagged. ALL is the default.

SOURCE
Under SOURCE, only those violations that occur in the primary source file are flagged.

The default is RULES(LAXNESTED). When you specify RULES(NOLAXNESTED), the default is ALL.

LAXOPTIONAL | NOLAXOPTIONAL
Specifying RULES(NOLAXOPTIONAL) causes the compiler to flag any use of the OMITTED and
PRESENT built-in functions whose parameters are not declared as OPTIONAL.
ALL

Under ALL, all violations of RULES(NOLAXOPTIONAL) are flagged. ALL is the default.
SOURCE

Under SOURCE, only those violations that occur in the primary source file are flagged.
For example, given

Test: proc(a, b);
 declare a fixed bin(31);
 declare b fixed bin(31) optional;

Then under RULES(NOLAXOPTIONAL), the compiler will flag OMITTED(a).

The default is RULES(LAXOPTIONAL). When you specify RULES(NOLAXOPTIONAL), the default is ALL.

LAXPACKAGE | NOLAXPACKAGE
Specifying NOLAXPACKAGE causes the compiler to flag any compilation that does not contain an
explicit PACKAGE statement.

If you specify LAXPACKAGE, the compiler will not flag such compilation units.

The default is RULES(LAXPACKAGE).

LAXPARMS | NOLAXPARMS
Specifying RULES(NOLAXPARMS) causes the compiler to flag any parameter that does not have one
of the attributes INOUT/INONLY/OUTONLY either explicitly specified or implied by a different attribute
(such as BYVALUE).

If you specify RULES(LAXPARMS), the compiler will not flag such statements.

ALL
Under ALL, all violations of RULES(NOLAXPARMS) are flagged. ALL is the default.

SOURCE
Under SOURCE, only those violations that occur in the primary source file are flagged.

Chapter 1. Using compiler options and facilities 77

The default is RULES(LAXPARMS). When you specify RULES(NOLAXPARMS), the default is ALL.

LAXPUNC | NOLAXPUNC
Specifying NOLAXPUNC causes the compiler to flag with an E-level message any place where it
assumes punctuation is missing.

For instance, given the statement I = (1 * (2);, the compiler assumes that a closing right
parenthesis is meant before the semicolon. Under RULES(NOLAXPUNC), this statement will be
flagged with an E-level message; otherwise, it will be flagged with a W-level message.

The default is RULES(LAXPUNC).

LAXQUAL | NOLAXQUAL
Specifying NOLAXQUAL causes the compiler to flag any reference to structure members that are
not level 1. References which names start with 'CEE', 'DFH', 'DSN', 'EYU', 'IBM', 'PLI', and 'SQL' are
excluded from the NOLAXQUAL checking.
LOOSE

Specifying RULES(NOLAXQUAL(LOOSE)) causes the compiler to flag any reference to structure
members that are not level 1 and are not dot qualified. Consider the following example:

dcl
 1 a,
 2 b,
 3 b fixed bin,
 3 c fixed bin;

c = 11; /* would be flagged */
b.c = 13; /* would not be flagged */
a.c = 17; /* would not be flagged */

STRICT
Specifying RULES(NOLAXQUAL(STRICT)) causes the compiler to flag any reference to structure
members that do not include the level-1 name. Consider the following example:

dcl
 1 a,
 2 b,
 3 b fixed bin,
 3 c fixed bin;

c = 11; /* would be flagged */
b.c = 13; /* would be flagged */
a.c = 17; /* would not be flagged */

FULL
Specifying RULES(NOLAXQUAL(FULL)) causes the compiler to flag any reference to a structure
member that does not include all of its parents' names.

ALL
Under ALL, all violations of RULES(NOLAXQUAL) are flagged. ALL is the default.

FORCE
Under FORCE, only those violations that occur in structures with the FORCE(NOLAXQUAL)
attribute are flagged.

The default is RULES(LAXQUAL). When you specify RULES(NOLAXQUAL), LOOSE and ALL are defaults.

LAXRETURN | NOLAXRETURN
Specifying NOLAXRETURN causes the compiler to generate code to raise the ERROR condition when a
RETURN statement is used in either of the following ways:

• With an expression in a procedure that is coded without the RETURNS option
• Without an expression in a procedure that is coded with the RETURNS option

ERROR will also be raised if the code falls through to the END statement in a PROCEDURE with the
RETURNS attribute.

The default is RULES(LAXRETURN).

78 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

LAXSCALE | NOLAXSCALE
Specifying NOLAXSCALE causes the compiler to flag any FIXED DEC(p,q) declaration where q < 0 or p
< q.

It also causes the compiler to flag ROUND(x,p) when p < 0.

The message issued when the compiler flags ROUND(x,p) is different from that issued when the
compiler flags a FIXED DEC(p,q) declaration. Therefore, you can use the EXIT option to suppress
the message issued when ROUND(x,p) is flagged and keep the message for other questionable
declarations.

If you specify STRICT as a suboption to RULES(NOLAXSCALE), then the compiler will also flag any
FIXED BIN(p,q) where q > 0. LOOSE is the default.
ALL

Under ALL, all violations of RULES(NOLAXSCALE) are flagged. ALL is the default.
SOURCE

Under SOURCE, only those violations that occur in the primary source file are flagged.

The default is RULES(NOLAXSCALE). When you specify RULES(NOLAXSCALE), ALL is the default.

LAXSEMI | NOLAXSEMI
Specifying NOLAXSEMI causes the compiler to flag any semicolons appearing inside comments.

The default is RULES(LAXSEMI).

LAXSTG | NOLAXSTG
Specifying NOLAXSTG causes the compiler to flag declarations where a variable A is declared as
BASED on ADDR(B) and STG(A) > STG(B) even (and this is the key part) if B is a parameter.

Note that even with NOLAXSTG specified, if B has subscripts, no IBM2402I E-level message will be
produced.

The compiler would already flag this kind of problem if B were in AUTOMATIC or STATIC storage, but
it does not, by default, flag this when B is a parameter (because some programmers declare B with
placeholder attributes that do not describe the actual argument). For situations where parameter and
argument declarations match (or should match), specifying RULES(NOLAXSTG) can help detect more
storage overlay problems.

The default is RULES(LAXSTG).

LAXSTMT | NOLAXSTMT
Specifying NOLAXSTMT causes the compiler to flag any line that has more than one statement.
ALL

Specifying RULES(NOLAXSTMT(ALL)) causes the compiler to flag all violations of NOLAXSTMT. ALL
is the default.

SOURCE
Specifying RULES(NOLAXSTMT(SOURCE)) causes the compiler to flag only those violations in the
primary source file.

Additionally, NOLAXSTMT accepts EXCEPT with a (possibly empty) list of keywords that are not be
flagged when a second statement on a line begins with one of these keywords. For example, this can
allow DO; to appear on the same line as an IF … THEN statement.

The following keywords are allowed in EXCEPT:

Chapter 1. Using compiler options and facilities 79

allocate
assert
attach
begin
call
cancel
close
declare
define
delay
delete
detach
display
do
else
end
exit
fetch
flush
free
get
go
goto

halt
if
iterate
leave
locate
on
open
otherwise
put
read
reinit
release
resignal
return
revert
rewrite
select
signal
stop
unlock
wait
when
write

The default is RULES(LAXSTMT). When you specify RULES(NOLAXSTMT), the default is ALL.

LAXSTRZ | NOLAXSTRZ
Specifying LAXSTRZ causes the compiler not to flag any bit or character variable that is initialized to
or assigned a constant value that is too long if the excess bits are all zeros (or if the excess characters
are all blank).

The default is RULES(NOLAXSTRZ).

MULTICLOSE | NOMULTICLOSE
Specifying NOMULTICLOSE causes the compiler to flag all statements that force the closure of
multiple groups of statement with an E-level message.

The default is RULES(NOMULTICLOSE).

MULTIENTRY | NOMULTIENTRY
Specifying NOMULTIENTRY causes the compiler to flag code that contains multiple ENTRY
statements.
ALL

Specifying NOMULTIENTRY(ALL) causes the compiler to flag all violations of
RULES(NOMULTIENTRY).

SOURCE
Specifying NOMULTIENTRY(SOURCE) causes the compiler to flag only those violations that occur
in the primary source file.

The default is RULES(MULTIENTRY). When you specify RULES(NOMULTIENTRY), the default sub-
suboption is ALL.

MULTIEXIT | NOMULTIEXIT
Specifying NOMULTIEXIT causes the compiler to flag code that contains multiple RETURN
statements.
ALL

Specifying NOMULTIEXIT(ALL) causes the compiler to flag all violations of RULES(NOMULTIEXIT).

80 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

SOURCE
Specifying NOMULTIEXIT(SOURCE) causes the compiler to flag only those violations that occur in
the primary source file.

The default is RULES(MULTIEXIT). When you specify RULES(NOMULTIEXIT), the default sub-
suboption is ALL.

MULTISEMI | NOMULTISEMI
Specifying NOMULTISEMI causes the compiler to flag any line that contains more than one semicolon
not in a comment or string.
ALL

Specifying NOMULTISEMI(ALL) causes the compiler to flag all violations of RULES(NOMULTISEMI).
SOURCE

Specifying NOMULTISEMI(SOURCE) causes the compiler to flag only those violations that occur in
the primary source file.

The default is RULES(MULTISEMI). When you specify RULES(NOMULTISEMI), the default sub-
suboption is ALL.

PADDING | NOPADDING
Specifying NOPADDING causes the compiler to flag structures that contain padding.
ALL

Specifying NOPADDING(ALL) causes the compiler to flag all violations of RULES(NOPADDING)
corresponding to the setting of the LOOSE/STRICT suboption.

SOURCE
Specifying NOPADDING(SOURCE) causes the compiler to flag only those violations that occur in
the primary source file.

LOOSE
Specifying NOPADDING(LOOSE) causes the compiler to flag structures that contain internal
padding.

STRICT
Specifying NOPADDING(STRICT) causes the compiler to flag structures that contain any

• internal padding
• padding before the structure (so-called hang bytes or bits). This occurs when the structure

is n-byte aligned but does not have a multiple of n bytes before its first element with that
alignment; or the structure does not have a multiple of 8 bits before its first element with byte
(or greater) alignment.

• padding after the structure. This occurs when the size of the structure is not a multiple of its
alignment; or the structure does not have a multiple of 8 bits after its last element with byte (or
greater) alignment.

The default is RULES(PADDING). When you specify RULES(NOPADDING), the default sub-suboption
are ALL and LOOSE.

PROCENDONLY | NOPROCENDONLY
Specifying NOPROCENDONLY causes any END statement that closes a PROCEDURE to be flagged
if the END statement does not name the PROCEDURE, that is, if the END keyword is immediately
followed by a semicolon.
ALL

Under RULES(NOPROCENDONLY(ALL)), the compiler flags all violations of NOPROCENDONLY. ALL
is the default.

SOURCE
Under RULES(NOPROCENDONLY(SOURCE)), the compiler flags only those violations in the primary
source file.

The default is RULES(PROCENDONLY). When you specify RULES(NOPROCENDONLY), the default sub-
suboption is ALL.

Chapter 1. Using compiler options and facilities 81

RECURSIVE | NORECURSIVE
Specifying NORECURSIVE causes the compiler to flag any use of the RECURSIVE attribute or any
procedure that directly calls itself.

Specifying RECURSIVE causes the compiler not to flag the use of the RECURSIVE attribute or any
procedure that directly calls itself.

Note: Do not use RULES(NORECURSIVE) and DFT(RECURSIVE) together.

The default is RULES(RECURSIVE).

SELFASSIGN | NOSELFASSIGN
Specifying NOSELFASSIGN causes the compiler to flag all assignments where the source and the
target are the same.

The default is RULES(SELFASSIGN).

UNREF | NOUNREF
Specifying NOUNREF causes the compiler to flag any level-1 AUTOMATIC variable that is not
referenced and that, if it is a structure or union, contains no subelement that is referenced. NOUNREF
ignores variables with names that start with any of the following prefixes: DSN, DFH, EYU, and SQL.
ALL

Specifying RULES(NOUNREF(ALL)) causes the compiler to flag all unreferenced variables. When
NOUNREF is specified, ALL is the default.

SOURCE
Specifying RULES(NOUNREF(SOURCE)) causes the compiler to flag unreferenced variables that
are not declared in an INCLUDE file.

The default is RULES(UNREF). When you specify RULES(NOUNREF), the default sub-suboption is ALL.

UNREFBASED | NOUNREFBASED
Specifiying NOUNREFBASED causes the compiler to flag unreferenced BASED variables that are in
BASED storage.
ALL

Specifying RULES(NOUNREFBASED(ALL)) causes the compiler to flag all unreferenced BASED
variables.

SOURCE
Specifying RULES(NOUNREFBASED(SOURCE)) causes the compiler to flag unreferenced BASED
variables that are not declared in an INCLUDE file.

The default is RULES(UNREFBASED). When you specify RULES(NOUNREFBASED), the default sub-
suboption is ALL.

UNREFCTL | NOUNREFCTL
Specifiying NOUNREFCTL causes the compiler to flag unreferenced CTL variables.
ALL

Specifying RULES(NOUNREFCTL(ALL)) causes the compiler to flag all unreferenced CTL variables.
SOURCE

Specifying RULES(NOUNREFCTL(SOURCE)) causes the compiler to flag unreferenced CTL
variables that are not declared in an INCLUDE file.

The default is RULES(UNREFCTL). When you specify RULES(NOUNREFCTL), the default sub-suboption
is ALL.

UNREFDEFINED | NOUNREFDEFINED
Specifiying NOUNREFDEFINED causes the compiler to flag unreferenced DEFINED variables.
ALL

Specifying RULES(NOUNREFDEFINED(ALL)) causes the compiler to flag all unreferenced DEFINED
variables.

82 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

SOURCE
Specifying RULES(NOUNREFDEFINED(SOURCE)) causes the compiler to flag unreferenced
DEFINED variables that are not declared in an INCLUDE file.

The default is RULES(UNREFDEFINED). When you specify RULES(UNREFDEFINED), the default sub-
suboption is ALL.

UNREFENTRY | NOUNREFENTRY
Specifying NOUNREFENTRY causes the compiler to flag unreferenced ENTRY constants.
ALL

Specifying RULES(NOUNREFENTRY(ALL)) causes the compiler to flag all unreferenced ENTRY
constants.

SOURCE
Specifying RULES(NOUNREFENTRY(SOURCE)) causes the compiler to flag unreferenced ENTRY
constants that are not declared in an INCLUDE file.

The default is RULES(UNREFENTRY). When you specify RULES(NOUNREFENTRY), the default
suboption is ALL.

UNREFFILE | NOUNREFFILE
Specifying NOUNREFFILE causes the compiler to flag unreferenced FILE constants.
ALL

Specifying RULES(NOUNREFFILE(ALL)) causes the compiler to flag all unreferenced FILE
constants.

SOURCE
Specifying RULES(NOUNREFFILE(SOURCE)) causes the compiler to flag unreferenced FILE
constants that are not declared in an INCLUDE file.

The default is RULES(UNREFFILE). When you specify RULES(NOUNREFFILE), the default suboption is
ALL.

UNREFSTATIC | NOUNREFSTATIC
Specifying NOUNREFSTATIC causes the compiler to flag all unreferenced STATIC variables except
PLIXOPT and PLITABS.
ALL

Specifying RULES(NOUNREFSTATIC(ALL)) causes the compiler to flag all unreferenced STATIC
variables.

SOURCE
Specifying RULES(NOUNREFSTATIC(SOURCE)) causes the compiler to flag unreferenced STATIC
variables that are not declared in an INCLUDE file.

The default is RULES(UNREFSTATIC). When you specify RULES(NOUNREFSTATIC), the default
suboption is ALL.

UNREFVALUE | NOUNREFVALUE
Specifying NOUNREFVALUE causes the compiler to flag unreferenced VALUE constants.
ALL

Specifying RULES(NOUNREFVALUE(ALL)) causes the compiler to flag all unreferenced VALUE
constants.

SOURCE
Specifying RULES(NOUNREFVALUE(SOURCE)) causes the compiler to flag unreferenced VALUE
constants that are not declared in an INCLUDE file.

The default is RULES(UNREFVALUE). When you specify RULES(NOUNREFVALUE), the default
suboption is ALL.

UNSET | NOUNSET

Specifying NOUNSET causes the compiler to flag the use of automatic variables that possibly have not
been explicitly assigned a value.

Chapter 1. Using compiler options and facilities 83

The compiler follows this logic in determining when to flag these possible problems:

• If an automatic variable has possibly not been assigned a value

– If it has been initialized

- Under RULES(UNSET), use of its value is not flagged.
- Under RULES(NOUNSET), use of its value is flagged.

– If it has not been initialized, use of its value is flagged.
• Otherwise, use of its value is not flagged.

This option is intended to help move users away from mindlessly applying an INIT value to everything.

The default is RULES(UNSET). When you specify RULES(NOUNSET), the default is ALL.

YY | NOYY
Specifying NOYY causes the compiler to flag the use of 2-digit years, including:

• date-time patterns with the year specified as YY or ZY,
• the DATE attribute without a date-time pattern (since that implies a pattern of YYMMDD),
• Y4DATE, Y4JULIAN, and Y4YEAR built-in functions,
• DATE built-in function,
• date-time functions with a window argument.

The default is RULES(YY).

Default: RULES (IBM BYNAME COMPLEX CONTROLLED NODECSIZE EVENDEC ELSEIF GLOBAL
GLOBALDO GOTO NOLAXBIF LAXCONV NOLAXCTL NOLAXDCL NOLAXDEF LAXENTRY LAXEXPORTS
NOLAXFIELDS NOLAXIF LAXINOUT LAXINTERFACE LAXLINK LAXNESTED LAXOPTIONAL LAXPACKAGE
LAXPARMS LAXPUNC LAXMARGINS(STRICT) LAXQUAL LAXRETURN NOLAXSCALE LAXSEMI LAXSTG
LAXSTMT NOLAXSTRZ NOMULTICLOSE MULTIENTRY MULTIEXIT MULTISEMI PADDING PROCENDONLY
RECURSIVE SELFASSIGN UNREF UNREFBASED UNREFCTL UNREFDEFINED UNREFENTRY UNREFFILE
UNREFSTATIC YY)

SEMANTIC
The SEMANTIC option specifies that the execution of the semantic checking stage depends on the
severity of messages issued before this stage of processing.

NOSEMANTIC

(

S

W

E

)

SEMANTIC

ABBREVIATIONS: SEM, NSEM

SEMANTIC
Equivalent to NOSEMANTIC(S).

NOSEMANTIC
Processing stops after syntax checking. No semantic checking is performed.

NOSEMANTIC (S)
No semantic checking is performed if a severe error or an unrecoverable error has been encountered.

NOSEMANTIC (E)
No semantic checking is performed if an error, a severe error, or an unrecoverable error has been
encountered.

84 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

NOSEMANTIC (W)
No semantic checking is performed if a warning, an error, a severe error, or an unrecoverable error has
been encountered.

Semantic checking is not performed if certain kinds of severe errors are found. If the compiler cannot
validate that all references resolve correctly (for example, if built-in function or entry references are found
with too few arguments) the suitability of any arguments in any built-in function or entry reference is not
checked.

SERVICE
The SERVICE option places a string in the object module, if generated. This string is loaded into memory
with any load module into which this object is linked, and if the LE dump includes a traceback, this string
will be included in that traceback.

NOSERVICE

SERVICE ('service string')

ABBREVIATIONS: SERV, NOSERV

The string is limited to 64 characters in length.

To ensure that the string remains readable across locales, only characters from the invariant character set
should be used.

SOURCE
The SOURCE option specifies that the compiler includes a listing of the source program in the compiler
listing. The source program listed is either the original source input or, if any preprocessors were used, the
output from the last preprocessor. However, the LISTVIEW option can change what appears in the listing
when this option is in effect.

NOSOURCE

SOURCE

ABBREVIATIONS: S, NS

SPILL
The SPILL option specifies the size of the spill area to be used for the compilation. When too many
registers are in use at once, the compiler dumps some of the registers into temporary storage that is
called the spill area.

SPILL ( size)

ABBREVIATIONS: SP

If you have to expand the spill area, you will receive a compiler message telling you the size to which
you should increase it. When you know the spill area that your source program requires, you can specify
the required size (in bytes) as shown in the syntax diagram above. The maximum spill area size is 3900.
Typically, you need to specify this option only when compiling very large programs with OPTIMIZE.

STATIC
The STATIC option controls whether INTERNAL STATIC variables are retained in the object module even if
unreferenced.

STATIC (

SHORT

FULL)

Chapter 1. Using compiler options and facilities 85

SHORT
INTERNAL STATIC will be retained in the object module only if used.

FULL
All INTERNAL STATIC with INITIAL will be retained in the object module.

If INTERNAL STATIC variables are used as "eyecatchers", you should specify the STATIC(FULL) option to
ensure that they will be in the generated object module.

STDSYS
The STDSYS option specifies that the compiler should cause the SYSPRINT file to be equated to the C
stdout file and the SYSIN file to be equated to the C stdin file.

Note: Under the LP(64) option, the STDSYS option is ignored; effectively, STDSYS is always on.

NOSTDSYS

STDSYS

Using the STDSYS option might make it easier to develop and debug a mixed PL/I and C application.

When SYSPRINT is equated to stdout, its LINESIZE cannot be greater than 132 (the largest value allowed
by C).

STMT
The STMT option specifies that statements in the source program are to be counted and that this
statement number is used to identify statements in the compiler listings resulting from the AGGREGATE,
ATTRIBUTES, SOURCE, and XREF options.

NOSTMT

STMT

The default is NOSTMT.

If the STMT option is specified, then the listing will have the same format as under NOSTMT except that
in certain parts of the listing there will be an additional column immediately to the right of the column
which shows the source line and file numbers. This additional column will show the logical PL/I statement
number, if any.

In particular, there will be such a column in the SOURCE listing, the AGGREGATE listing, the ATTRIBUTES/
XREF listing, the GENERIC listing, the DECOMP listing, and the listing showing all the compiler messages.
If Refs: or Sets: information is shown, then the numbers shown will always be the source line and file
numbers.

Note that the GOSTMT option does not exist. The only option that produces information at run time
identifying where an error has occurred is the GONUMBER option. When the GONUMBER option is used,
the term statement in the runtime error messages refers to line numbers.

STORAGE
The STORAGE option directs the compiler to produce as part of the listing a summary of the storage used
by each procedure and begin-block.

NOSTORAGE

STORAGE

ABBREVIATIONS: STG, NSTG

The STORAGE output also includes the amount of storage used for the internal static for the compilation.

86 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

STRINGOFGRAPHIC
The STRINGOFGRAPHIC option determines whether the result of the STRING built-in function when
applied to a GRAPHIC aggregate has the attribute CHARACTER or GRAPHIC.

STRINGOFGRAPHIC (

GRAPHIC

CHARACTER)

ABBREVIATIONS: CHAR, G

CHARACTER
Under STRINGOFGRAPHIC(CHAR), if the STRING built-in is applied to an array or a structure of
UNALIGNED NONVARYING GRAPHIC variables, the result will have the CHARACTER attribute.

GRAPHIC
Under STRINGOFGRAPHIC(GRAPHIC), if the STRING built-in is applied to an array or a structure of
GRAPHIC variables, the result will have the GRAPHIC attribute.

SYNTAX
The SYNTAX option specifies that the compiler continues into syntax checking after preprocessing when
you specify the MACRO option, unless an unrecoverable error has occurred. Whether the compiler
continues with the compilation depends on the severity of the error, as specified by the NOSYNTAX
option.

NOSYNTAX

(

S

W

E

)

SYNTAX

ABBREVIATIONS: SYN, NSYN

SYNTAX
Continues syntax checking after preprocessing unless a severe error or an unrecoverable error has
occurred. SYNTAX is equivalent to NOSYNTAX(S).

NOSYNTAX
Processing stops unconditionally after preprocessing.

NOSYNTAX(W)
No syntax checking if a warning, an error, a severe error, or an unrecoverable error is detected.

NOSYNTAX(E)
No syntax checking if the compiler detects an error, a severe error, or an unrecoverable error.

NOSYNTAX(S)
No syntax checking if the compiler detects a severe error or an unrecoverable error.

If the NOSYNTAX option terminates the compilation, no cross-reference listing, attribute listing, or other
listings that follow the source program is produced.

You can use this option to prevent wasted runs when debugging a PL/I program that uses the
preprocessor.

If the NOSYNTAX option is in effect, any specification of the CICS preprocessor through the CICS, XOPT
or XOPTS options will be ignored. This allows the MACRO preprocessor to be invoked before the compiler
invokes the CICS translator.

Chapter 1. Using compiler options and facilities 87

SYSPARM
The SYSPARM option specifies the value of the string that is returned by the macro facility built-in function
SYSPARM.

SYSPARM ('string')

string
Can be up to 1023 characters long. A null string is the default.

For more information about the macro facility, see the PL/I Language Reference.

SYSTEM
The SYSTEM option specifies the format used to pass parameters to the MAIN PL/I procedure, and
generally indicates the host system under which the program runs.

SYSTEM (

MVS

CICS

IMS

OS

TSO

)

Table 5 on page 88 shows the type of parameter list you can expect, and how the program runs under
the specified host system. It also shows the implied settings of NOEXECOPS. Your MAIN procedure must
receive only those types of parameter lists that are indicated as valid in this table. Additional runtime
information for the SYSTEM option is provided in the z/OS Language Environment Programming Guide.

Table 5. SYSTEM option table

SYSTEM option Type of parameter list Program runs as NOEXECOPS implied

SYSTEM(MVS) Single CHARACTER string or no
parameters

z/OS application program NO

Otherwise, arbitrary parameter
list

YES

SYSTEM(CICS) Pointer(s) CICS transaction YES

SYSTEM(IMS) Pointer(s) IMS application program YES

SYSTEM(OS) z/OS UNIX parameter list z/OS UNIX application program YES

SYSTEM(TSO) Pointer to CPPL1 TSO command processor YES

Note:

1. See “Invoking MAIN under TSO/E” on page 177 for more details about how to invoke a MAIN procedure under TSO.

Under SYSTEM(IMS), all pointers are presumed to be passed by value (BYVALUE), but under
SYSTEM(MVS) they are presumed to be passed by address (BYADDR).

MAIN procedures run under CICS must be compiled with SYSTEM(CICS) or SYSTEM(MVS).

It is highly recommended that NOEXECOPS be specified in the MAIN procedure OPTIONS option for code,
such as a Db2 stored procedure, compiled with SYSTEM(MVS) but run where runtime options would not
be passed.

The compiler will flag any MAIN program compiled with SYSTEM(MVS) if it has either more than one
parameter or a single parameter that is not CHARACTER VARYING. It is probably better to compile such
MAIN programs with SYSTEM(OS) because the library then simply passes on to MAIN the parameter list
without any scanning for options or other massaging of the parameter list.

88 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

TERMINAL
The TERMINAL option determines whether diagnostic and information messages produced during
compilation are displayed on the terminal.

Note: This option applies only to compilations under z/OS UNIX.

TERMINAL

NOTERMINAL

ABBREVIATIONS: TERM, NTERM

TERMINAL
Messages are displayed on the terminal.

NOTERMINAL
No information or diagnostic compiler messages are displayed on the terminal.

TEST
The TEST option specifies the level of testing capability that the compiler generates as part of the object
code. You can use this option to control the location of test hooks and to control whether to generate a
symbol table.

The NOTEST option suppresses the generation of all testing information.

NOTEST

TEST (

,

ALL

BLOCK

NONE

PATH

STMT

HOOK

NOHOOK

NOSEPARATE

SEPARATE

SEPNAME

NOSEPNAME

NOSOURCE

SOURCE

SYM

NOSYM

)

ALL
Causes the compiler to generate a statement table, and if the HOOK suboption is in effect, inserts
hooks at all possible locations and generates a statement table.

Note: Under opt(2) and opt(3), hooks are set only at block boundaries.

BLOCK
Causes the compiler to generate a statement table, and if the HOOK suboption is in effect, tells the
compiler to insert hooks at block boundaries (block entry and block exit).

Chapter 1. Using compiler options and facilities 89

NONE
No hooks are put into the program.

PATH
Causes the compiler to generate a statement table, and if the HOOK suboption is in effect, tells the
compiler to insert hooks at these places:

• Before the first statement enclosed by an iterative DO statement
• Before the first statement of the true part of an IF statement
• Before the first statement of the false part of an IF statement
• Before the first statement of a true WHEN or OTHERWISE statement of a SELECT group
• Before the statement following a user label, excluding labeled FORMAT statements

If a statement has multiple labels, only one hook is inserted.
• At CALLs or function references - both before and after control is passed to the routine
• At block boundaries

STMT
Causes the compiler to generate a statement table, and if the HOOK suboption is in effect, inserts
hooks at statement boundaries and block boundaries.

HOOK
Causes the compiler to insert hooks into the generated code if any of the TEST suboptions ALL, STMT,
BLOCK, or PATH are in effect.

NOHOOK
Causes the compiler not to insert hooks into the generated code.

For IBM Debug Tool to generate overlay hooks, one of the suboptions ALL, PATH, STMT, or BLOCK
must be specified, but HOOK need not be specified, and NOHOOK would in fact be recommended.

If NOHOOK is specified, ENTRY and EXIT breakpoints are the only PATH breakpoints at which Debug
Tool will stop.

SEPARATE
Causes the compiler to place most of the debug information it generates into a separate debug file.
Using this option will substantially reduce the size of the object deck created by the compiler when
the TEST option is in effect.

If your program contains GET or PUT DATA statements, the separate debug file will contain less debug
information because those statements require that symbol table information be placed into the object
deck.

The generated debug information always includes a compressed version of the source that is passed
to the compiler. This means that the source might be specified by using SYSIN DD *, or that the source
might be a temporary data set that is created by an earlier job step (for example, the source might be
the output of the old SQL or CICS precompilers). The suboptions that you specify for the LISTVIEW
option control the content of the source.

If SEPARATE is used in a batch compilation, the JCL for that compilation must include a DD card for
SYSDEBUG that must name a data set with RECFM=FB and with 80 <= LRECL <= 1024.

This suboption cannot be used with the LINEDIR compiler option.

NOSEPARATE
Causes the compiler to place all of the debug information it generates into the object deck.

Under this option, the generated debug information will not include a compressed version of the
source passed to the compiler. This means that the source must in a data set that can be found by
Debug Tool when you try to debug the program.

SEPNAME
Causes the compiler to place the name of the separate debug file into the object deck.

This option is ignored if the SEPARATE option is not in effect.

90 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

NOSEPNAME
Causes the compiler not to place the name of the separate debug file into the object deck.

This option is ignored if the SEPARATE option is not in effect.

SOURCE
Causes the compiler to include in a no-load class in the generated object file all the source files in
the same compressed format used for the TEST(SEPARATE) option when the GOFF option is also
specified.

NOSOURCE
Causes the compiler not to include in a no-load class in the generated object file all the source files
in the same compressed format used for the TEST(SEPARATE) option when the GOFF option is also
specified.

SYM
Creates a symbol table that allows you to examine variables by name.

NOSYM
No symbol table is generated.

Notes:

• Under LP(64), no hooks are generated, and the SEP or NOSEP compiler option is ignored.
• Under opt(2) or opt(3), hooks are set only at block boundaries. This means that debugging of optimized

code is effectively limited to tracing entry and exit to PROCEDUREs and BEGIN blocks.
• You must use Debug Tool Version 6 (or later) to debug code compiled with the SEPARATE compiler

option.
• There is no support for an input file that spans concatenated data sets.

Specifying TEST(NONE,NOSYM) causes the compiler to set the option to NOTEST.

Use of TEST(NONE,SYM) is strongly discouraged, and it is unclear what is intended when you specify
these settings. You would probably be much better off if you specified TEST(ALL,SYM,NOHOOK) or
TEST(STMT,SYM,NOHOOK).

Any TEST option other than NOTEST and TEST(NONE,NOSYM) will automatically provide the attention
interrupt capability for program testing.

If the program has an ATTENTION ON-unit that you want invoked, you must compile the program with
either of the following options:

• The INTERRUPT option
• A TEST option other than NOTEST or TEST(NONE,NOSYM)

Note: ATTENTION is supported only under TSO.

The TEST option will imply GONUMBER.

Because the TEST option can increase the size of the object code and can affect performance, you might
want to limit the number and placement of hooks.

If the TEST option is specified, no inlining will occur.

Structures with REFER are supported in the symbol table.

If TEST(SYM) is in effect, the compiler will generate tables to enable the automonitor feature of Debug
Tool. These tables might substantially increase the size of the object module unless the TEST(SEPARATE)
option is in effect. When the automonitor feature of Debug Tool is activated, these tables are used to
display the values of the variables used in a statement before the statement executes - as long as the
variable has computational type or has the attribute POINTER, OFFSET or HANDLE. If the statement is
an assignment statement, the value of the target is also displayed; however, if the target has not been
initialized or assigned previously, its value is meaningless.

Any variable declared with an * for its name is not visible when you use Debug Tool. Additionally, if an * is
used as the name of a parent structure or substructure, all of its children are also invisible. Therefore, it

Chapter 1. Using compiler options and facilities 91

might be better to use a single underscore for the name of any structure elements that you want to leave
"unnamed".

UNROLL
The UNROLL option controls loop unrolling under optimization. Loop unrolling is an optimization that
replicates a loop body multiple times and adjusts the loop control code accordingly.

UNROLL (

AUTO

NO)

AUTO
Indicates that the compiler is permitted to unroll loops that it determines are appropriate for
unrolling.

Specifying the UNROLL option can increase the size of the object code that is generated.

NO
Indicates that the compiler is not permitted to unroll loops.

The UNROLL option is ignored when the NOOPTIMIZE option is in effect.

Loop unrolling improves the performance of a program by exposing instruction level parallelism for
instruction scheduling and software pipelining. It also creases code in the new loop body, which might
increase pressure on register allocation, cause register spilling, and thus cause a loss in performance.

Therefore, before you unroll a loop, take the following steps to check if the UNROLL option improves the
performance of a particular application:

1. Compile the program with the usual options.
2. Run the program with a representative workload.
3. Recompile the program with the UNROLL option.
4. Rerun the program under the same conditions.

UNROLL(AUTO) is the default.

92 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

USAGE
Using the USAGE option, you can choose different semantics for selected built-in functions.

USAGE (

,

HEX (

SIZE

CURRENTSIZE)

REGEX (

RESET

NORESET)

ROUND (

IBM

ANS)

SUBSTR (

STRICT

LOOSE)

UNSPEC (

IBM

ANS)

UUID (

UPPER

LOWER)

VALIDDATE (

LOOSE

STRICT)

)

HEX(SIZE | CURRENTSIZE)
Under the HEX(SIZE) suboption, when HEX is applied to a VARYING or VARYINGZ string, it will a
return a hex string that represents the maximum amount of storage used by the string.

Under the HEX(CURRENTSIZE) suboption, when HEX is applied to a VARYING or VARYINGZ string, it
will a return a hex string that represents the current amount of storage used by the string.

CSTG and STG are accepted synonyms for CURRENTSIZE and SIZE in the USAGE(HEX) option,
respectively.

REGEX(RESET | NORESET)
Under the REGEX (RESET) suboption, with each invocation of the REGEX built-in function, if the
codepage argument to the REGEX function is different than the codepage corresponding to the
current locale, then that locale value will be saved and restored before exiting the REGEX function.
It can cause a significant drop in performance if the REGEX function is invoked repeatedly with a
codepage that does not correspond to the current locale.

Under the REGEX (NORESET) suboption, if the locale needs to be changed to match the codepage
argument, then the local value will not be saved and restored. It can be much better for performance,
but it also means that if you have other code that depends on that original locale setting, then that
code might not work as expected.

ROUND(IBM | ANS)
Under the ROUND(IBM) suboption, the second argument to the ROUND built-in function is ignored if
the first argument has the FLOAT attribute.

Under the ROUND(ANS) suboption, the ROUND built-in function is implemented as described in the
PL/I Language Reference.

SUBSTR(STRICT | LOOSE)
Under the SUBSTR(STRICT) suboption, if x has CHARACTER type, you are giving the compiler
permission to assign a length of MIN(z, MAXLENGTH(x)) or a length of z to a SUBSTR(x,y,z) built-in
function reference.

Under the SUBSTR(LOOSE) suboption, the same reference will return a string whose length is z.

Chapter 1. Using compiler options and facilities 93

The SUBSTR(LOOSE) suboption might be useful for those who have SUBSTR(x,y,z) references where
x is a CHAR(1) BASED variable.

If STRINGRANGE is enabled, then under either setting of this option, STRINGRANGE will be raised
when z > MAXLENGTH(x).

UNSPEC(IBM | ANS)
Under the UNSPEC(IBM) suboption, UNSPEC cannot be applied to a structure, and if applied to an
array, returns an array of bit strings.

Under the UNSPEC(ANS) suboption, UNSPEC can be applied to structures, and when applied to a
structure or an array, UNSPEC returns a single bit string.

UUID(UPPER | LOWER)

If the USAGE(UUID(LOWER)) compiler option is in effect, all alphabetic characters in the string
returned by UUID and UUID4 will be in lowercase. Using this option will produce UUID values that
conform to the international standards.

If the USAGE(UUID(UPPER)) compiler option is in effect, all alphabetic characters in the string
returned by UUID and UUID4 will be in uppercase.

VALIDDATE(LOOSE | STRICT)

If the USAGE(VALIDDATE(LOOSE)) option is in effect, the compiler will assume that no date in 1582 is
valid (rather than just the dates before October 15, 1582), and hence the compiler can generate nicer
and faster inline code for the VALIDDATE built-in function for a lot of patterns using YYYY.

If the USAGE(VALIDDATE(STRICT)) option is in effect, the compiler will accept as valid in the
VALIDDATE function the dates from the Lilian calendar that have a year value of 1582.

Default: USAGE(HEX(SIZE) REGEX(RESET) ROUND(IBM) SUBSTR(STRICT) UNSPEC(IBM) UUID(UPPER))
VALIDDATE(LOOSE)

WIDECHAR
The WIDECHAR option specifies the format in which WIDECHAR data will be stored.

WIDECHAR (

BIGENDIAN

LITTLEENDIAN)

BIGENDIAN
Indicates that WIDECHAR data will be stored in big-endian format. For instance, the WIDECHAR value
for the UTF-16 character 1 will be stored as '0031'x.

LITTLEENDIAN
Indicates that WIDECHAR data will be stored in little-endian format. For instance, the WIDECHAR
value for the UTF-16 character 1 will be stored as '3100'x.

WX constants should always be specified in big-endian format. Thus the value '1' should always be
specified as '0031'wx, even if under the WIDECHAR(LITTLEENDIAN) option, it is stored as '3100'x.

WINDOW
The WINDOW option sets the value for the w window argument used in various date-related built-in
functions.

WINDOW (

1950

w)

w
Either an unsigned integer that represents the start of a fixed window or a negative integer that
specifies a "sliding" window. For example, WINDOW(-20) indicates a window that starts 20 years
before the year when the program runs.

94 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

WRITABLE
The WRITABLE option specifies that the compiler can treat static storage as writable (and if it does, this
will make the resultant code nonreentrant).

This option has no effect on programs compiled with the RENT option.

Note: The WRITABLE option is ignored under the LP(64) option.

WRITABLE

NOWRITABLE

(

FWS

PRV)

The NORENT WRITABLE options allow the compiler to write on static storage to implement the following
constants or variables:

• CONTROLLED variables
• FETCHABLE ENTRY constants
• FILE constants

Under the NORENT WRITABLE options, a module using CONTROLLED variables, performing I/O, or using
FETCH is not reentrant.

The NORENT NOWRITABLE options require the compiler not to write on static storage for the following
constants or variables:

• CONTROLLED variables
• FETCHABLE ENTRY constants
• FILE constants

Under the NORENT NOWRITABLE options, a module using CONTROLLED variables, performing I/O, or
using FETCH is reentrant.

The FWS and PRV suboptions determine how the compiler handles CONTROLLED variables:

FWS
Upon entry to an EXTERNAL procedure, the compiler makes a library call to find storage it can use to
address the CONTROLLED variables in that procedure (and any subprocedures).

PRV
The compiler will use the same pseudoregister variable mechanism used by the old OS PL/I compiler
to address CONTROLLED variables.

Hence, under the NORENT NOWRITABLE(PRV) options, old and new code can share CONTROLLED
variables.

However, this also means that under the NORENT NOWRITABLE(PRV) options, the use of
CONTROLLED variables is subject to all the same restrictions as under the old compiler.

Under the NORENT NOWRITABLE(FWS) options, the following application might not perform as well as if
they were compiled with the RENT or WRITABLE options:

• Applications that use CONTROLLED variables
• Applications that assign FILE CONSTANTs to FILE VARIABLEs

The performance of an application under NORENT NOWRITABLE(FWS) might be especially bad if it uses
many CONTROLLED variables in many PROCEDUREs.

Under the NOWRITABLE option, the following variables and constants cannot be declared in a PACKAGE
outside a PROCEDURE:

• CONTROLLED variables

Chapter 1. Using compiler options and facilities 95

• FETCHABLE ENTRY constants
• FILE constants

Code compiled with NORENT WRITABLE cannot be mixed with code compiled with NORENT
NOWRITABLE if they share any external CONTROLLED variables. In general, you should avoid mixing
code compiled with WRITABLE with code compiled with NOWRITABLE.

Related information
“RENT” on page 67
Your code is "naturally reentrant" if it does not alter any of its static variables. The RENT option specifies
that the compiler is to take code that is not naturally reentrant and make it reentrant.

XINFO
The XINFO option specifies that the compiler should generate additional files with extra information
about the current compilation unit.

XINFO (

,

NODEF

DEF

NOMSG

MSG

NOSYM

SYM

NOSYN

SYN

NOXML

XML (

NOHASH

HASH)

)

DEF
A definition side-deck file is created. This file lists the following information for the compilation unit:

• All defined EXTERNAL procedures
• All defined EXTERNAL variables
• All statically referenced EXTERNAL routines and variables
• All dynamically called fetched modules

Under batch, this file is written to the file specified by the SYSDEFSD DD statement. Under z/OS UNIX
System Services, this file is written to the same directory as the object deck and has the extension
def.

For instance, given the program:

 defs: proc;
 dcl (b,c) ext entry;
 dcl x ext fixed bin(31) init(1729);
 dcl y ext fixed bin(31) reserved;
 call b(y);
 fetch c;
 call c;
 end;

The following def file would be produced:

 EXPORTS CODE
 DEFS
 EXPORTS DATA

96 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

 X
 IMPORTS
 B
 Y
 FETCH
 C

The def file can be used to be build a dependency graph or cross-reference analysis of your
application.

Note: The EXPORTALL option should be in effect for the XINFO(DEF) option to produce the above
information.

NODEF
No definition side-deck file is created.

MSG
Message information is generated to the ADATA file.

Under batch, the ADATA file is generated to the file specified by the SYSADATA DD statement. Under
z/OS UNIX, the ADATA is generated in the same directory as the object file and has the extension adt.

NOMSG
No message information is generated to the ADATA file. If neither MSG nor SYM is specified, no ADATA
file is generated.

SYM
Symbol information is generated to the ADATA file.

Under batch, the ADATA file is generated to the file specified by the SYSADATA DD statement. Under
z/OS UNIX, the ADATA file is generated in the same directory as the object file and has the extension
adt.

NOSYM
No symbol information is generated to the ADATA file.

SYN
Syntax information is generated to the ADATA file. Specifying the XINFO(SYN) option can greatly
increase the amount of storage, both in memory and for the file produced, required by the compiler.

Under batch, the ADATA file is generated to the file specified by the SYSADATA DD statement. Under
z/OS UNIX, the ADATA file is generated in the same directory as the object file and has the extension
adt.

NOSYN
No syntax information is generated to the ADATA file.

XML(HASH | NOHASH)
An XML side-file is created. This XML file includes the following:

• The file reference table for the compilation
• The block structure of the program compiled
• The messages produced during the compilation

Under batch, this file is written to the file specified by the SYSXMLSD DD statement. Under z/OS UNIX
System Services, this file is written to the same directory as the object deck and has the extension
xml.

The DTD file for the XML produced is as follows:

 <?xml encoding="UTF-8"?>

 <!ELEMENT PACKAGE ((PROCEDURE)*,(MESSAGE)*,FILEREFERNCETABLE)>
 <!ELEMENT PROCEDURE (BLOCKFILE,BLOCKLINE,(PROCEDURE)*,(BEGINBLOCK)*)>
 <!ELEMENT BEGINBLOCK (BLOCKFILE,BLOCKLINE,(PROCEDURE)*,(BEGINBLOCK)*)>
 <!ELEMENT MESSAGE (MSGNUMBER,MSGLINE?,MSGFILE?,MSGTEXT)>
 <!ELEMENT FILE (FILENUMBER,INCLUDEDFROMFILE?,INCLUDEDONLINE?,FILENAME)>
 <!ELEMENT FILEREFERENCETABLE (FILECOUNT,FILE+)>

 <!ELEMENT BLOCKFILE (#PCDATA)>

Chapter 1. Using compiler options and facilities 97

 <!ELEMENT BLOCKLINE (#PCDATA)>
 <!ELEMENT MSGNUMBER (#PCDATA)>
 <!ELEMENT MSGLINE (#PCDATA)>
 <!ELEMENT MSGFILE (#PCDATA)>
 <!ELEMENT MSGTEXT (#PCDATA)>
 <!ELEMENT FILECOUNT (#PCDATA)>
 <!ELEMENT FILENUMBER (#PCDATA)>
 <!ELEMENT FILENAME (#PCDATA)>
 <!ELEMENT INCLUDEFROMFILE (#PCDATA)>
 <!ELEMENT INCLUDEDONLINE (#PCDATA)>

The HASH suboption of the XINFO(XML) option specifies that for each FILENAME line, the generated
XML file is followed by a line containing the hex value of a 256-bit SHA-2 hash of that file enclosed in
the <CONTENTHASH> and </CONTENTHASH> tags.

The compiler will perform this hash by invoking the SHA2INIT256 built-in function when it opens
a file. It will then use the token returned by that function to invoke the SHA2UPDATE256 built-in
function after it reads each line in the file and to invoke the SHA2FINAL256 built-in function after it
closes the file.

When hashing the file, the compiler will widen any line shorter than the right margin by filling it with
blanks.

This hash value is the same value that will appear in the listing if the FILEREF(HASH) option is
specified.

NOXML
No XML side-file is created.

Related information
“SYSADATA message information” on page 473
When you specify the MSG suboption of the XINFO compile-time option, the compiler generates a
SYSADATA file.

XML
The XML option specifies the case of the names in the XML generated by the XMLCHAR built-in function.

XML (

,

CASE (

UPPER

ASIS)

XMLATTR (

APOSTROPHE

QUOTE)

)

CASE(UPPER | ASIS)
Under the CASE(UPPER) suboption, the names in the XML generated by the XMLCHAR built-in function
will all be in uppercase.

Under the CASE(ASIS) suboption, the names in the XML generated by the XMLCHAR built-in function
will be in the case used in their declarations. Note that if you use the MACRO preprocessor without
using the macro preprocessor option CASE(ASIS), the source seen by the compiler will have all the
names in uppercase - and that would make specifying the XML(CASE(ASIS)) option useless.

XMLATTR(APOSTROPHE | QUOTE)
Under the XMLATTR(APOSTROPHE) suboption, all XML attributes generated by the XMLCHAR built-in
function are enclosed in apostrophes.

Under the XMLATTR(QUOTE) suboption, all XML attributes generated by the XMLCHAR built-in
function are enclosed in quotation marks. Under CODEPAGE(1026) and COEPAGE(1155), the hex
value for the quote character is 'FC'x, and under all other supported EBCDIC code pages, it is '7F'x.

98 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

XREF
The XREF option provides a cross-reference table of names used in the program together with the
numbers of the statements in which they are declared or referenced in the compiler listing.

NOXREF

XREF (
,

FULL

SHORT

IMPLICIT

EXPLICIT

)

ABBREVIATIONS: X, NX

FULL
Under XREF(FULL), all identifiers and attributes are included in the compiler listing. FULL is the
default.

SHORT
Under XREF(SHORT), unreferenced identifiers are omitted from the compiler listing.

EXPLICIT
Under XREF(EXPLICIT), a reference to a structure causes only that structure to be included in the
compiler listing.

IMPLICIT
Under XREF(IMPLICIT), a reference to a structure causes the structure and all of its members to be
included in the compiler listing. IMPLICIT is the default.

The only names not included in the cross reference listing created when you use the XREF option are label
references on END statements. For example, assume that statement number 20 in the procedure PROC1
is END PROC1;. In this situation, statement number 20 does not appear in the cross reference listing for
PROC1.

If you specify both the XREF and ATTRIBUTES options, the two listings are combined. If there is a
conflict between SHORT and FULL, the usage is determined by the last option specified. For example,
ATTRIBUTES(SHORT) XREF(FULL) results in the FULL option for the combined listing.

Related information
“Cross-reference table” on page 105
If you specify ATTRIBUTES and XREF, the cross-reference table and the attribute table are combined. The
list of attributes for a name is identified by the file number and the line number.

Blanks, comments and strings in options
Wherever you can use a blank when specifying an option, you can also specify as many blanks or
comments as you wish. However, there are a few rules that you must take notice of.

If a comment is specified in %PROCESS line or in a line in an options file, the comment must end on the
same line as which it begins.

Similarly, if a comment starts in the command line or in the PARM= specification, it must also end there.

The same rule applies to strings: if a string is specified in %PROCESS line or in a line in an options file, the
string must end on the same line as which it begins. Similarly, if a string starts in the command line or in
the PARM= specification, it must also end there.

Chapter 1. Using compiler options and facilities 99

Changing the default options
If you want to change the supplied default compiler options, during installation of the compiler, you
should edit and submit sample job IBMZWIOP.

This job will let you specify options that will be applied before any other options, thus effectively changing
the default options. This job will also let you specify options that will be applied after all other options,
thus effectively changing the default options and preventing them from being overridden.

If you want to change the defaults for the macro preprocessor options, you can also do this at installation
time by specifying the appropriate PPMACRO option as part of this job. The PPCICS and PPSQL options let
you make the corresponding changes for the CICS and SQL preprocessors respectively.

Consult the instructions in the sample job for more information.

Specifying options in the %PROCESS or *PROCESS statements
The %PROCESS or *PROCESS statement identifies the start of each external procedure and allows
compiler options to be specified for each compilation. You can use either %PROCESS or *PROCESS in
your program; they are equally acceptable.

Note: For consistency and readability, %PROCESS or *PROCESS statements are always referred to as
%PROCESS.

The options you specify in %PROCESS statements apply to the compilation of the source statements to
the end of input or the next %PROCESS statement.

To specify options in the %PROCESS statement, code as follows:

%PROCESS options;

where options is a list of compiler options.

You must end the list of options with a semicolon, and the options list should not extend beyond the
default right-hand source margin. The percent sign (%) or asterisk (*) must appear in the first column of
the record. The keyword PROCESS can follow in the next byte (column) or after any number of blanks. You
must separate option keywords by a comma or at least one blank.

The number of characters is limited only by the length of the record. If you do not wish to specify any
options, code as follows:

%PROCESS;

If you find it necessary to continue the %PROCESS statement onto the next record, terminate the first
part of the list after any delimiter, and continue on the next record. You cannot split keywords or keyword
arguments across records. You can continue a %PROCESS statement on several lines, or start a new
%PROCESS statement. The following example shows multiple adjacent %PROCESS statements:

%PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
%PROCESS LIST TEST ;

Compile-time options, their abbreviated syntax, and their IBM-supplied defaults are shown in Table 3 on
page 3.

You can use the PROCINC statement to include a file containing additional PROCESS statements.

To specify the file to be included, code the %PROCINC statement as follows:

 %PROCINC dataset-name;

where dataset-name is the name of a file to be included.

You must end the PROCINC statement with a semicolon, and the statement must not extend beyond the
default right-hand source margin. The percent sign (%) or asterisk (*) must appear in the first column of
the record. The keyword PROCINC can follow in the next byte (column) or after any number of blanks.

100 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

There must be at least one blank after the PROCINC keyword.

The included dataset must contain only %PROCESS and %PROCINC statements (plus any number of
blanks lines).

How the compiler determines whether there are any %PROCESS or %PROCINC statements depends on
the format of the initial source file:

F or FB format
If the first character in the record is an asterisk (*) or a percent sign (%), the compiler will check
whether the next nonblank characters are PROCESS or PROCINC.

V or VB format
If the first character in the record is a numeric, the compiler will assume that the first 8 characters
are sequence numbers, and if the ninth character is an asterisk (*) or a percent sign (%), it will check
whether the next nonblank characters are PROCESS or PROCINC. However, if the first character is
not a numeric but an asterisk (*) or a percent sign (%), the compiler will check if the next nonblank
characters are PROCESS or PROCINC.

U format
If the first character in the record is an asterisk (*) or a percent sign (%), the compiler will check if the
next nonblank characters are PROCESS or PROCINC.

Using % statements
Statements that direct the operation of the compiler begin with a percent (%) symbol. You can use %
statements to control the source program listing and to include external strings in the source program. %
statements must not have label or condition prefixes and cannot be a unit of a compound statement. You
should place each % statement on a line by itself.

The usage of each % control statement is listed below. For a complete description of these statements,
see the PL/I Language Reference.

%INCLUDE
Directs the compiler to incorporate external text into the source program.

%XINCLUDE
Directs the compiler to incorporate external text into the source program if it has not been previously
included.

%PRINT
Directs the compiler to resume printing the source and insource listings.

%NOPRINT
Directs the compiler to suspend printing the source and insource listings until a %PRINT statement is
encountered.

%PAGE
Directs the compiler to print the statement immediately after a %PAGE statement in the program
listing on the first line of the next page.

%POP
Directs the compiler to restore the status of the %PRINT and %NOPRINT saved by the most recent
%PUSH.

%PUSH
Saves the current status of the %PRINT and %NOPRINT in a push down stack on a last-in, first-out
basis.

%SKIP
Specifies the number of lines to be skipped.

Chapter 1. Using compiler options and facilities 101

Using the %INCLUDE statement
%INCLUDE statements are used to include additional PL/I files at specified points in a compilation unit.

For information about how to use the %INCLUDE statement to incorporate source text from a library into
a PL/I program, see the PL/I Language Reference.

For a batch compilation
A library is an z/OS partitioned data set that can be used to store other data sets called members.
Source text that you might want to insert into a PL/I program using a %INCLUDE statement must exist
as a member within a library. For further information about the process of defining a source statement
library to the compiler, see “Source Statement Library (SYSLIB)” on page 164.

The statement %INCLUDE DD1 (INVERT); specifies that the source statements in member INVERT
of the library defined by the DD statement with the name DD1 are to be inserted consecutively into
the source program. The compilation job step must include appropriate DD statements.

If you omit the ddname, the ddname SYSLIB is assumed. In such a case, you must include a DD
statement with the name SYSLIB. (The IBM-supplied cataloged procedures do not include a DD
statement with this name in the compilation procedure step.)

For a z/OS UNIX compilation
The name of the actual include file must be lowercase, unless you specify UPPERINC. For example,
if you use the include statement %include sample, the compiler can find the file sample.inc
but cannot find the file SAMPLE.inc. Even if you use the include statement %include SAMPLE, the
compiler still looks for sample.inc.

The compiler looks for INCLUDE files in the following order:

1. Current directory
2. Directories specified with the –I flag or with the INCDIR compiler option
3. /usr/include directory
4. PDS specified with the INCPDS compiler option

The first file found by the compiler is included into your source.

A %PROCESS statement in source text included by a %INCLUDE statement results in an error in the
compilation.

Table 6 on page 103 shows the use of a %INCLUDE statement to include the source statements for FUN
in the procedure TEST. The library HPU8.NEWLIB is defined in the DD statement with the qualified name
PLI.SYSLIB, which is added to the statements of the cataloged procedure for this job. Because the source
statement library is defined by a DD statement with the name SYSLIB, the %INCLUDE statement need not
include a ddname.

It is not necessary to invoke the preprocessor if your source program and any text to be included do not
contain any macro statements.

102 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 6. Including source statements from a library

 //OPT4#9 JOB
 //STEP3 EXEC IBMZCBG,PARM.PLI='INC,S,A,X,NEST'
 //PLI.SYSLIB DD DSN=HPU8.NEWLIB,DISP=OLD
 //PLI.SYSIN DD *
 TEST: PROC OPTIONS(MAIN) REORDER;
 DCL ZIP PIC '99999'; /* ZIP CODE */
 DCL EOF BIT INIT('0'B);
 ON ENDFILE(SYSIN) EOF = '1'B;
 GET EDIT(ZIP) (COL(1), P'99999');
 DO WHILE(¬EOF);
 PUT SKIP EDIT(ZIP, CITYFUN(ZIP)) (P'99999', A(16));
 GET EDIT(ZIP) (COL(1), P'99999');
 END;
 %PAGE;
 %INCLUDE FUN;
 END; /* TEST */
 //GO.SYSIN DD *
 95141
 95030
 94101
 //

Using the compiler listing
During compilation, the compiler generates a listing, most of which is optional, that contains information
about the source program, the compilation, and the object module.

The following description of the listing refers to its appearance on a printed page.

Note: Although the compiler listing is for your use, it is not a programming interface and is subject to
change.

If compilation terminates before reaching a particular stage of processing, the corresponding listings do
not appear.

Heading information
The first page of the listing is identified by the product number, the compiler version number, a string
specifying when the compiler was built, and the date and the time compilation began. This page and
subsequent pages are numbered.

The listing will then show any options that have been specified for this compilation. These options will be
shown even if the NOOPTIONS option has been specified and will include, in order, the following options:

• The initial install options (those are the options set at install time and which are applied before any
other options)

• Under z/OS UNIX, any options specified in the IBM_OPTIONS environment variable
• Any options specified in the parameter string passed to the compiler (that is, in the command line under

z/OS UNIX or in the PARM= under batch)
• Any options specified in options files named in the compiler parameter string

This will include the name of each options file and its contents in the same form as read by the compiler.
• Any options specified in *PROCESS or %PROCESS lines in the source
• The final install options (those are the options set at installation and which are applied after any other

options)

Near the end of the listing you will find either a statement that no errors or warning conditions were
detected during the compilation, or a message that one or more errors were detected. For information
about the format of the messages, see “Messages and return codes” on page 109. The second to the
last line of the listing shows the time taken for the compilation. The last line of the listing is END OF
COMPILATION OF xxxx, where xxxx is the external procedure name. If you specify the NOSYNTAX

Chapter 1. Using compiler options and facilities 103

compiler option, or if the compiler aborts early in the compilation, the external procedure name xxxx is
not included and the line truncates to END OF COMPILATION.

The following topics describe the optional parts of the listing in the order in which they appear.

Options used for compilation
If you specify the OPTIONS option, a complete list of the options specified for the compilation, including
the default options, appears on the following pages.

The listing shows the settings of all the options finally in effect during the compilation. If the setting of an
option differs from the default setting after the initial install options were applied, that line is marked with
a plus sign (+).

Preprocessor input
If you specify both the MACRO and INSOURCE options, the compiler lists input to the preprocessor, one
record per line, each line numbered sequentially at the left.

If the preprocessor detects an error or the possibility of an error, it prints a message on the page or
pages following the input listing. The format of these messages is the same as the format for the compiler
messages described in “Messages and return codes” on page 109.

SOURCE program
If you specify the SOURCE option, the compiler lists one record per line. These records always include the
source line and file numbers. However, if a file contains 999999 or more lines, the compiler flags the file
as too large and lists only the last 6 digits in the source line numbers for that file.

If the input records contain printer control characters, or %SKIP or %PAGE statements, the lines are
spaced accordingly.

Use the %NOPRINT statement to stop the printing of the listing.

Use the %PRINT statement to restart the printing of the listing.

If you specify the MACRO option, the source listing shows the included text in place of the %INCLUDE
statements in the primary input data set.

Statement nesting level
If you specify the NEST option, the block level and the DO-level are printed to the right of the statement or
line number under the headings LEV and NT respectively.

See the following example:

 Line.File LV NT
 1.0 A: PROC OPTIONS(MAIN);
 2.0 1 B: PROC;
 3.0 2 DCL K(10,10) FIXED BIN (15);
 4.0 2 DCL Y FIXED BIN (15) INIT (6);
 5.0 2 DO I=1 TO 10;
 6.0 2 1 DO J=1 TO 10;
 7.0 2 2 K(I,J) = N;
 8.0 2 2 END;
 9.0 2 1 BEGIN;
 10.0 3 1 K(1,1)=Y;
 11.0 3 1 END;
 12.0 2 1 END B;
 13.0 1 END A;

ATTRIBUTE and cross-reference table
If you specify the ATTRIBUTES option, the compiler prints an attribute table containing a list of the
identifiers in the source program together with their declared and default attributes. If you specify the

104 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

XREF option, the compiler prints a cross-reference table containing a list of the identifiers in the source
program together with the file and line numbers of the statements in which they appear.

If you specify both ATTRIBUTES and XREF, the two tables are combined. In these tables, if you explicitly
declare an identifier, the compiler will list file number and line number of its DECLARE. Contextually
declared variables are marked by +++++, and other implicitly declared variables are marked by *****.

Attribute table
The attribute table contains a list of the identifiers in the source program together with their declared and
default attributes.

The compiler never includes the attributes INTERNAL and REAL. You can assume them unless the
respective conflicting attributes, EXTERNAL and COMPLEX, appear.

For a file identifier, the attribute FILE always appears, and the attribute EXTERNAL appears if it applies;
otherwise, the compiler lists only explicitly declared attributes.

The OPTIONS attribute will not appear unless the ENTRY attribute applies, and then only the following
options will appear as appropriate:

• ASSEMBLER
• COBOL
• FETCHABLE
• NODESCRIPTOR
• RETCODE

The compiler prints the dimension attribute for an array first. It prints the bounds as in the array
declaration, but expressions are replaced by asterisks unless they have been reduced by the compiler
to a constant, in which case the value of the constant is shown.

For a character string, a bit string, a graphic string, or an area variable, the compiler prints the length, as in
the declaration, but expressions are replaced by asterisks unless they have been reduced by the compiler
to a constant, in which case the value of the constant is shown.

Cross-reference table
If you specify ATTRIBUTES and XREF, the cross-reference table and the attribute table are combined. The
list of attributes for a name is identified by the file number and the line number.

An identifier appears in the Sets: part of the cross-reference table under the following conditions:

• It is the target of an assignment statement.
• It is used as a loop control variable in DO loops.
• It is used in the SET option of an ALLOCATE or LOCATE statement.
• It is used in the REPLY option of a DISPLAY statement.

If there are unreferenced identifiers, they are displayed in a separate table.

Aggregate length table
An aggregate length table is obtained by the AGGREGATE option. The table includes structures but
not arrays that have non-constant extents, but the sizes and offsets of elements within structures with
non-constant extents can be inaccurate or specified as *.

For the aggregates listed, the table contains the following information:

• Where the aggregate is declared
• The name of the aggregate and each element within the aggregate
• The byte offset of each element from the beginning of the aggregate
• The length of each element

Chapter 1. Using compiler options and facilities 105

• The total length of each aggregate, structure, and substructure
• The total number of dimensions for each element

Be careful when interpreting the data offsets indicated in the data length table. An odd offset does not
necessarily represent a data element without halfword, fullword, or even double word alignment. If you
specify or infer the aligned attribute for a structure or its elements, the proper alignment requirements
are consistent with respect to other elements in the structure, even though the table does not indicate the
proper alignment relative to the beginning of the table.

If there is padding between two structure elements, a /*PADDING*/ comment appears with appropriate
diagnostic information.

Statement offset addresses
If the LIST compile option is used, the compiler includes a pseudo-assembler listing in the compiler
listing. This listing includes, for each instruction, an offset whose meaning depends on the setting of the
BLKOFF compiler option.

• Under the BLKOFF option, this offset is the offset of the instruction from the primary entry point for the
function or subroutine to which it belongs. Thus under this option, the offsets are reset with each new
block.

• Under the NOBLKOFF option, this offset is the offset of the instruction from the start of the compilation
unit. Thus under this option, the offsets are cumulative.

The pseudo-assembler listing also includes, at the end of the code for each block, the offset of the block
from the start of the current module (so that the offsets shown for each statement can be translated to
either block or module offsets).

These offsets can be used with the offset given in a runtime error message to determine the statement to
which the message applies.

The OFFSET option produces a table that gives for each statement, the offset of the first instruction
belonging to that statement.

In the example shown in Table 7 on page 107, the message indicates that the condition was raised
at offset +98 from the SUB1 entry. The compiler listing excerpt shows this offset associated with line
number 8. The runtime output from this erroneous statement is shown if Table 8 on page 107.

106 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 7. Finding statement number (compiler listing example)

Compiler Source
 Line.File
 1.0
 2.0 TheMain: proc options(main);
 3.0 call sub1();
 4.0 Sub1: proc;
 5.0 dcl (i, j) fixed bin(31);
 6.0
 7.0 i = 0; j = 0;
 8.0 j = j / i;
 9.0 put skip data(j);
 10.0 end Sub1;
 11.0 end TheMain;

 . . .

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

000000 000002 | THEMAIN DS 0D
000000 47F0 F024 000002 | B 36(,r15)
000004 01C3C5C5 CEE eyecatcher
000008 000000B0 DSA size
00000C 000001F8 =A(PPA1-THEMAIN)
000010 47F0 F001 000002 | B 1(,r15)

 . . .

000000 000004 | SUB1 DS 0D
000000 47F0 F024 000004 | B 36(,r15)
000004 01C3C5C5 CEE eyecatcher
000008 00000140 DSA size
00000C 00000190 =A(PPA1-SUB1)
000010 47F0 F001 000004 | B 1(,r15)

...

000086 5020 D0B8 000007 | ST r2,I(,r13,184)
00008A 1842 000007 | LR r4,r2
00008C 5040 D0BC 000007 | ST r4,J(,r13,188)
000090 5800 D0B8 000008 | L r0,I(,r13,184)
000094 8E40 0020 000008 | SRDA r4,32
000098 1D40 000008 | DR r4,r0
00009A 1805 000008 | LR r0,r5
00009C 5000 D0BC 000008 | ST r0,J(,r13,188)
0000A0 4100 D0C0 000009 | LA r0,_temp1(,r13,192)
0000A4 5000 D130 000009 | ST r0,_temp2(,r13,304)
0000A8 A708 5A88 000009 | LHI r0,H'23176'
0000AC 4000 D0EC 000009 | STH r0,_temp1(,r13,236)
0000B0 5800 6004 000009 | L r0,SYSPRINT(,r6,4)
0000B4 5000 D12C 000009 | ST r0,_temp2(,r13,300)
0000B8 4100 0001 000009 | LA r0,1
0000BC 5000 D0C0 000009 | ST r0,_temp1(,r13,192)
0000C0 4100 D128 000009 | LA r0,_temp2(,r13,296)

...

Table 8. Finding statement number (runtime message example)

Message :

IBM0301S ONCODE=320 The ZERODIVIDE condition was raised.
 From entry point SUB1 at compile unit offset +00000098
 at entry offset +00000098 at address 0EB00938.

Chapter 1. Using compiler options and facilities 107

Entry offsets given in dump and ON-unit SNAP error messages can be compared with this table and
the erroneous statement discovered. The statement is identified by finding the section of the table that
relates to the block named in the message and then finding the largest offset less than or equal to the
offset in the message. The statement number associated with this offset is the one needed.

Storage offset listing
If the MAP compile option is used, the compiler includes a storage offset listing in the compiler listing.

This listing gives the location in storage of the following level-1 variables if they are used in the program:

• AUTOMATIC
• CONTROLLED except for PARAMETERs
• STATIC except for ENTRY CONSTANTs that are not FETCHABLE

The listing might also include some compiler generated temporaries.

For an AUTOMATIC variable with adjustable extents, there will be two entries in this table:

• An entry with _addr prefixing the variable name - this entry gives the location of the address of the
variable

• An entry with _desc prefixing the variable name - this entry gives the location of the address of the
variable's descriptor

For STATIC and CONTROLLED variables, the storage location will depend on the RENT/NORENT compiler
option, and if the NORENT option is in effect, the location of CONTROLLED variables will also depend on
the WRITABLE/NOWRITABLE compiler option.

The first column in the Storage Offset Listing is labeled IDENTIFIER and holds the name of the variable
whose location appears in the fourth column.

The second column in the Storage Offset Listing is labeled DEFINITION and holds a string in the format
"B-F:N", where

• B is the number of the block where the variable is declared.

You can find the name of the block corresponding to this block number in the Block Name List, which
will proceed the Storage Offset Listing (and the Pseudo Assembly Listing, if any).

• F is the number of the source file where the variable is declared.

You can find the name of the file corresponding to this file number in the File Reference Table, which will
appear very near the end of the entire compilation listing.

• N is the number of the source line where the variable is declared in that source file.

The third column in the Storage Offset Listing is labeled ATTRIBUTES and indicates the storage class of
the variable.

The fourth column in the Storage Offset Listing is unlabeled and tells how to find the location of the
variable.

This storage offset listing is sorted by block and by variable name, and it also includes only user variables.
However, specifying the MAP option also causes the compiler to produce the following maps:

• A "static map" that lists all STATIC variables but sorted by hex offset
• An "automatic map" that lists, for each block, all AUTOMATIC variables but sorted by hex offset

The mapping rules of the PL/I language might require that a structure be offset by up to 8 bytes from
where it would seem to start. For example, consider the AUTOMATIC structure A declared as follows:

 dcl
 1 A,
 2 B char(2),
 2 C fixed bin(31);

108 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Because C must be aligned on a 4-byte boundary, 2 bytes of padding will be needed for this structure.
However, PL/I places those 2 bytes not after B, but before B. These 2 bytes of "padding" before a
structure starts are referred to as the hang bytes for the structure.

These hang bytes will also be reflected in the "automatic map" generated by the compiler. The "storage
offset listing" will show the offset and length for A without including its hang bytes:

 A Class = automatic, Location = 186 : 0xBA(r13), Length = 6

In contrast, the "automatic map" will show the offset and length for A with its hang bytes included:

 OFFSET (HEX) LENGTH (HEX) NAME

 98 8 #MX_TEMP1
 A0 18 _Sfi
 B8 8 A

Expressions and attributes listing
If you use the DECOMP compiler option, the compiler includes, in the compiler listing, a section that
shows all intermediate expressions and their attributes for all expressions used in the source program.
Related information
“DECOMP” on page 23
The DECOMP option instructs the compiler to generate a listing section that gives a decomposition of
expressions used in the compilation.

File reference table
The file reference table provides information about the files read during the compilation.

The file reference table consists of three columns that list the following file information:

• The number assigned by the compiler to the file
• The included-from data for the file
• The name of the file

The first entry in the included-from column is blank because the first file listed is the source file.
Subsequent entries in this column show the line number of the include statement followed by a period
and the file number of the source file containing the include statement.

If the file is a member of a PDS or PDSE, the file name lists the fully qualified data set name and the
member name.

If the file is included by a subsystem (such as Librarian), the file name will have the form
DD:ddname(member), where

• ddname is the ddname specified on the %INCLUDE statement (or SYSLIB if no ddname was specified).
• member is the member name specified on the %INCLUDE statement.

Messages and return codes
If the preprocessor or the compiler detects an error, or the possibility of an error, messages are
generated. For every compilation job or job step, the compiler generates a return code that indicates
the degree of success or failure.

Messages
Messages generated by the preprocessor appear in the listing immediately after the listing of the
statements processed by the preprocessor. You can generate your own messages in the preprocessing
stage by using the %NOTE statement. Such messages might be used to show how many times a particular
replacement had been made. Messages generated by the compiler appear at the end of the listing.

Chapter 1. Using compiler options and facilities 109

For compilations that produce no messages, the compiler will include a line saying no compiler
messages where the compiler messages would have been listed.

Messages are displayed in the following format:

PPPnnnnI X

PPP
Is the prefix identifying the origin of the message (for example, IBM indicates the PL/I compiler).

nnnn
Is the 4-digit message number.

X
Identifies the severity code.

All messages are graded according to their severity, and the severity codes are I, W, E, S, and U.

The compiler lists only messages that have a severity equal to or greater than that specified by the FLAG
option, as shown in Table 9 on page 110.

Table 9. Using the FLAG option to select the lowest message severity listed

Type of message Option

Information FLAG(I)

Warning FLAG(W)

Error FLAG(E)

Severe Error FLAG(S)

Unrecoverable Error Always listed

For information about the text of each message, an explanation of each message, and any recommended
programmer response for the message, see the Enterprise PL/I Messages and Codes.

Return codes
For every compilation job or job step, the compiler generates a return code that indicates to the operating
system the degree of success or failure it achieved. For z/OS, this code appears in the end-of-step
message that follows the listing of the job control statements and job scheduler messages for each step.

Table 10 on page 110 provides an explanation of each severity code and its comparable return code.

Table 10. Description of PL/I error codes and return codes

Severity
code

Return
code

Message type Description

I 0000 Informational The compiled program should run correctly. The compiler might inform
you of a possible inefficiency in your code or some other condition of
interest.

W 0004 Warning A statement might be in error (warning) even though it is syntactically
valid. The compiled program should run correctly, but it might produce
different results than expected or be significantly inefficient.

E 0008 Error A simple error fixed by the compiler. The compiled program should run
correctly, but it might produce different results than expected.

S 0012 Severe An error not fixed by the compiler. If the program is compiled and an
object module is produced, it should not be used.

U 0016 Unrecoverable An error that forces termination of the compilation. An object module is
not successfully created.

110 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 10. Description of PL/I error codes and return codes (continued)

Severity
code

Return
code

Message type Description

Note: Compiler messages are printed in groups according to these severity levels.

Example
This example of the compiler listing is generated when the compiler compiles the following msgsumm
program with these options: PP(SQL,MACRO,CICS), SOURCE, FLAG(I), INSOURCE, MSGSUMMARY(XREF).

 msgsumm: proc;

 exec sql include sqlca;

 exec cics what now;

 exec cics not this;

 %dcl z0 fixed bin;
 %dcl z1 fixed dec;
 end;

Note: The program is intentionally incorrect. Because the MSGSUMMARY option is specified, the compiler
includes the Summary of Messages section at the end of the listing. This section also includes the
line numbers associated with each of the messages in the summary because the XREF suboption to the
MSGSUMMARY option is specified.

Table 11. Compiler listing example

5655-PL6 IBM(R) Enterprise PL/I for z/OS 6.1 (Built:20220429) 2022.05.09 12:58:42 Page 1
 Options Specified
 Install:
 Command: +DD:OPTIONS
 File: DD:OPTIONS
 PP(SQL,MACRO,CICS),S,F(I),IS,MSGSUMMARY(XREF)
 Install:
5655-PL6 IBM(R) Enterprise PL/I for z/OS msgsumm: proc; 2022.05.09 12:58:42 Page 2
 SQL (Built:20220407) Preprocessor Source
 Line.File
 1.0 msgsumm: proc;
 2.0
 3.0 exec sql include sqlca;
 4.0
 5.0 exec cics what now;
 6.0 exec cics not this;
 7.0
 8.0 %dcl z0 fixed bin;
 9.0 %dcl z1 fixed dec;
 10.0
 11.0 end;
5655-PL6 IBM(R) Enterprise PL/I for z/OS msgsumm: proc; 2022.05.09 12:58:42 Page 3
 SQL Preprocessor Options Used
 CCSID0
 NOCODEPAGE
 DEPRECATE(STMT())
 NOEMPTYDBRM
 NOINCONLY
 LINEONLY
 NOWARNDECP
 DB2 for z/OS Coprocessor Options Used
 APOST
 APOSTSQL
 ATTACH(TSO)
 CCSID(500)
 CONNECT(2)
 DEC(15)
 DECP(DSNHDECP)
 FLOAT(S390)
 NEWFUN(V11)
 TWOPASS
 PERIOD
 STDSQL(NO)
 SQL(DB2)
 NOXREF
 NO SOURCE
 DSNHDECP LOADED FROM - (DSN.DB2VB10.SDSNLOAD(DSNHDECP))
5655-PL6 IBM(R) Enterprise PL/I for z/OS msgsumm: proc; 2022.05.09 12:58:42 Page 4
 SQL Preprocessor Messages
 Message Line.File Message Description
 IBM3250I W 3.0 DSNH053I DSNHPSRV NO SQL STATEMENTS WERE FOUND

Chapter 1. Using compiler options and facilities 111

Table 11. Compiler listing example (continued)

5655-PL6 IBM(R) Enterprise PL/I for z/OS msgsumm: proc; 2022.05.09 12:58:42 Page 5
 MACRO (Built:20220315) Preprocessor Source
 Line.File
 1.0 msgsumm: proc;
 1.0
 2.0
 3.0
 3.0 /*$*$*$
 3.0 exec sql include sqlca
 3.0 $*$*$*/
 3.0 DCL
 3.0 1 SQLCA ,
 3.0 2 SQLCAID CHAR(8),
 3.0 2 SQLCABC FIXED BIN(31),
 3.0 2 SQLCODE FIXED BIN(31),
 3.0 2 SQLERRM CHAR(70) VAR,
 3.0 2 SQLERRP CHAR(8),
 3.0 2 SQLERRD(6) FIXED BIN(31),
 3.0 2 SQLWARN,
 3.0 3 SQLWARN0 CHAR(1),
 3.0 3 SQLWARN1 CHAR(1),
 3.0 3 SQLWARN2 CHAR(1),
 3.0 3 SQLWARN3 CHAR(1),
 3.0 3 SQLWARN4 CHAR(1),
 3.0 3 SQLWARN5 CHAR(1),
 3.0 3 SQLWARN6 CHAR(1),
 3.0 3 SQLWARN7 CHAR(1),
 3.0 2 SQLEXT,
 3.0 3 SQLWARN8 CHAR(1),
 3.0 3 SQLWARN9 CHAR(1),
 3.0 3 SQLWARNA CHAR(1),
 3.0 3 SQLSTATE CHAR(5);
 3.0
 4.0
 5.0 exec cics what now;
 6.0 exec cics not this;
 7.0
 8.0 %dcl z0 fixed bin;
 9.0 %dcl z1 fixed dec;
 10.0
 11.0 end;

Compiler listing example (continued)

5655-PL6 IBM(R) Enterprise PL/I for z/OS msgsumm: proc; 2022.05.09 12:58:42 Page 6
 MACRO Messages
 Message Line.File Message Description
 IBM3552I E 8.0 The statement element BIN is invalid. The statement will be ignored.
 IBM3552I E 9.0 The statement element DEC is invalid. The statement will be ignored.
 IBM3258I W 8.0 Missing ; assumed before BIN.
 IBM3258I W 9.0 Missing ; assumed before DEC.
5655-PL6 IBM(R) Enterprise PL/I for z/OS msgsumm: proc; 2022.05.09 12:58:42 Page 7
 CICS (Built:20220315) Preprocessor Source
 Line.File
 1.0 msgsumm: proc;
 1.0
 2.0
 3.0
 3.0 /*$*$*$
 3.0 exec sql include sqlca
 3.0 $*$*$*/
 3.0 DCL
 3.0 1 SQLCA ,
 3.0 2 SQLCAID CHAR(8),
 3.0 2 SQLCABC FIXED BIN(31),
 3.0 2 SQLCODE FIXED BIN(31),
 3.0 2 SQLERRM CHAR(70) VAR,
 3.0 2 SQLERRP CHAR(8),
 3.0 2 SQLERRD(6) FIXED BIN(31),
 3.0 2 SQLWARN,
 3.0 3 SQLWARN0 CHAR(1),
 3.0 3 SQLWARN1 CHAR(1),
 3.0 3 SQLWARN2 CHAR(1),
 3.0 3 SQLWARN3 CHAR(1),
 3.0 3 SQLWARN4 CHAR(1),
 3.0 3 SQLWARN5 CHAR(1),
 3.0 3 SQLWARN6 CHAR(1),
 3.0 3 SQLWARN7 CHAR(1),
 3.0 2 SQLEXT,
 3.0 3 SQLWARN8 CHAR(1),
 3.0 3 SQLWARN9 CHAR(1),
 3.0 3 SQLWARNA CHAR(1),
 3.0 3 SQLSTATE CHAR(5);
 3.0
 4.0
 5.0 exec cics what now;
 6.0 exec cics not this;
 7.0
 10.0
 11.0 end;

Compiler listing example (continued)

112 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 11. Compiler listing example (continued)

5655-PL6 IBM(R) Enterprise PL/I for z/OS msgsumm: proc; 2022.05.09 12:58:42 Page 8
 CICS Messages
 Message Line.File Message Description
 IBM3750I S 5.0 DFH7059I S WHAT COMMAND IS NOT VALID AND IS NOT TRANSLATED.
 IBM3750I S 6.0 DFH7059I S NOT COMMAND IS NOT VALID AND IS NOT TRANSLATED.
5655-PL6 IBM(R) Enterprise PL/I for z/OS msgsumm: proc; 2022.05.09 12:58:42 Page 9
 No Compiler Messages
 File Reference Table
 File Included From Name
 0 DD:SYSIN
5655-PL6 IBM(R) Enterprise PL/I for z/OS msgsumm: proc; 2022.05.09 12:58:42 Page 10
 Summary of Messages
 Component Message Total Default Message Description
 SQL IBM3250I W 1 DSNH053I DSNHPSRV NO SQL STATEMENTS WERE FOUND
 Refs: 3.0
 MACRO IBM3552I E 2 The statement element %1 is invalid. The statement will be ignored.
 Refs: 8.0 9.0
 MACRO IBM3258I W 2 Missing %1 assumed before %2.
 Refs: 8.0 9.0
 CICS IBM3750I S 2 DFH7059I S WHAT COMMAND IS NOT VALID AND IS NOT TRANSLATED.
 Refs: 5.0 6.0
 Compiler <none>

 Component Return Code Messages (Total/Suppressed) Time
 SQL 4 1 / 0 0 secs
 MACRO 8 4 / 0 0 secs
 CICS 12 2 / 0 0 secs
 Compiler 0 0 / 0 0 secs
 End of compilation

Compiler listing example (continued)

Chapter 1. Using compiler options and facilities 113

114 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 2. PL/I preprocessors
When you use the PL/I compiler, you can specify one or more of the integrated preprocessors in your
program. You can specify the include preprocessor, the macro preprocessor, the SQL preprocessor, or the
CICS preprocessor, and specify the order in which you want them to be called.

• The include preprocessor processes special include directives and incorporates external source files.
• The macro preprocessor, based on %statements and macros, modifies your source program.
• The SQL preprocessor modifies your source program and translates EXEC SQL statements into PL/I

statements.
• The CICS preprocessor modifies your source program and translates EXEC CICS statements into PL/I

statements.

Each preprocessor supports a number of options that you can use to tailor the processing to your needs.

The compile-time options MDECK, INSOURCE, and SYNTAX are meaningful only when you also specify
the PP option.

Related information
“MDECK” on page 56
The MDECK option specifies that the preprocessor produces a copy of its output either on the file defined
by the SYSPUNCH DD statement under z/OS or on the .dek file under z/OS UNIX.
“INSOURCE” on page 43
The INSOURCE option specifies that the compiler should include a listing of the source program before
the PL/I macro, CICS, or SQL preprocessors translate it.
“SYNTAX” on page 87
The SYNTAX option specifies that the compiler continues into syntax checking after preprocessing when
you specify the MACRO option, unless an unrecoverable error has occurred. Whether the compiler
continues with the compilation depends on the severity of the error, as specified by the NOSYNTAX
option.

Include preprocessor
The include preprocessor allows you to incorporate external source files into your programs by using
include directives other than the PL/I directive %INCLUDE.

The following syntax diagram illustrates the options supported by the INCLUDE preprocessor:

PP (INCLUDE (' ID(<directive>) '))

ID
Specifies the name of the include directive. Any line that starts with this directive as the first set of
nonblank characters is treated as an include directive.

The specified directive must be followed by one or more blanks, an include member name, and finally
an optional semicolon. Syntax for ddname(membername) is not supported.

In the following example, the first include directive is valid and the second one is not:

 ++include payroll
 ++include syslib(payroll)

Example 1

The following example causes all lines that start with -INC (and possibly preceding blanks) to be treated
as include directives:

Include preprocessor

© Copyright IBM Corp. 1999, 2022 115

 pp(include('id(-inc)'))

Example 2

The following example causes all lines that start with ++INCLUDE (and possibly preceding blanks) to be
treated as include directives:

 pp(include('id(++include)'))

Macro preprocessor
Macros allow you to write commonly used PL/I code in a way that hides implementation details and
the data that is manipulated and exposes only the operations. In contrast with a generalized subroutine,
macros allow generation of only the code that is needed for each individual use. You can invoke the macro
preprocessor by specifying either the MACRO option or the PP(MACRO) option.

You can specify PP(MACRO) without any options or with options described in “Macro preprocessor
options” on page 116.

The defaults for all these options cause the macro preprocessor to behave the same as the OS PL/I V2R3
macro preprocessor.

If options are specified, the list must be enclosed in quotation marks (single or double, as
long as they match); for example, to specify the FIXED(BINARY) option, you must specify
PP(MACRO(’FIXED(BINARY)’)).

If you want to specify more than one option, you must separate them with a comma or one or
more blanks. For example, to specify the CASE(ASIS) and RESCAN(UPPER) options, you can specify
PP(MACRO(’CASE(ASIS) RESCAN(UPPER)’)) or PP(MACRO("CASE(ASIS),RESCAN(UPPER)")). You can
specify the options in any order.

The macro preprocessing facilities of the compiler are described in the PL/I Language Reference.

Macro preprocessor options
This section describes the options that the macro preprocessor supports.

Table 12. MACRO preprocessor options and IBM-supplied defaults

MACRO Preprocessor option Abbreviated name z/OS default

CASE(UPPER | ASIS) - CASE(ASIS)

DBCS(EXACT | INEXACT) - DBCS(INEXACT)

DEPRECATE
(ENTRY(entry name))

- -

DEPRECATENEXT
(ENTRY(entry name))

- -

EOLCOMM | NOEOLCOMM - EOLCOMM

FIXED(DECIMAL | BINARY) - FIXED(DECIMAL)

ID('directive') - -

IGNORE(NOPRINT) | NOIGNORE - NOIGNORE

INCONLY | NOINCONLY - NOINCONLY

Macro preprocessor

116 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 12. MACRO preprocessor options and IBM-supplied defaults (continued)

MACRO Preprocessor option Abbreviated name z/OS default

NAMEPREFIX(character)
| NONAMEPREFIX

- NONAMEPREFIX

RESCAN(ASIS | UPPER) - RESCAN(ASIS)

CASE
This option specifies whether the preprocessor should convert the input text to uppercase.

CASE (

ASIS

UPPER)

UPPER
The input text is to be converted to uppercase.

ASIS
The input text is left "as is".

CASE(ASIS) is the default.

Under the GRAPHIC option, CASE(ASIS) is always in effect.

DBCS
This option specifies whether the preprocessor should normalize DBCS during text replacement.

DBCS (

INEXACT

EXACT)

EXACT
The input text is left "as is", and the preprocessor will treat <kk.B> and <kk>B as different names.

INEXACT
The input text is "normalized", and the preprocessor will treat <kk.B> and <kk>B as two versions of
the same name.

DEPRECATE
This option flags the usage of macro procedures that you want to deprecate with error messages.

DEPRECATE (

,

ENTRY (

,

entry-name))

ENTRY
Flags any usage of a macro procedure with name entry-name.

Macro preprocessor

Chapter 2. PL/I preprocessors 117

DEPRECATENEXT
This option flags the usage of macro procedures that you want to deprecate with warning messages.

DEPRECATENEXT (

,

ENTRY (

,

entry-name))

ENTRY
Flags any usage of a macro procedure with name entry-name.

EOLCOMM
EOLCOMM specifies that the macro preprocessor should recognize // as an end-of-line comment marker
even in text that is part of a macro invocation.

EOLCOMM

NOEOLCOMM

Consider the following macro invocation:

 %dcl trace entry;

 Trace(level // 8);

Under EOLCOMM, this is effectively passing "level" as the argument to the macro, and the next lines must
contain the ")" that closes the macro invocation.

However, under NOEOLCOMM, the text "level // 8" is passed as the argument to the macro, and the ")"
closes the macro invocation.

EOLCOMM is the default.

FIXED
This option specifies the default base for FIXED variables.

FIXED (

DECIMAL

BINARY)

DECIMAL
FIXED variables will have the attributes REAL FIXED DEC(5).

BINARY
FIXED variables will have the attributes REAL SIGNED FIXED BIN(31).

ID
This option specifies the name of the include directive. Any line that starts with this directive as the first
set of nonblank characters is treated as an include directive.

ID (' directive ')

The specified directive must be followed by one or more blanks, an include member name, and finally an
optional semicolon. Syntax for ddname(membername) is not supported.

Given

PP(MACRO("ID('++INCLUDE')"))

Macro preprocessor

118 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

then the MACRO preprocessor would treat any line that has as its first nonblank characters ++INCLUDE
followed by a blank and an identifier as if the ++INCLUDE X were really %INCLUDE X; (with a semicolon
added only if none was present after the X in the original source).

IGNORE
This option specifies whether the MACRO preprocessor should ignore specific statements.

NOIGNORE

IGNORE (NOPRINT)

IGNORE
Specifies that the preprocessor should ignore specific statements.

IGNORE has one required suboption: NOPRINT. IGNORE(NOPRINT) specifies that the MACRO
preprocessor should ignore %NOPRINT statements.

NOIGNORE
Specifies that the preprocessor should not ignore any %NOPRINT statement.

The default is NOIGNORE.

INCONLY
The INCONLY option specifies that the preprocessor should process only %INCLUDE and %XINCLUDE
statements.

The NOINCONLY option specifies that the preprocessor should process all preprocessor statements, not
only %INCLUDE and %XINCLUDE statements.

NOINCONLY

INCONLY

When the INCONLY option is in effect, you can use neither INCLUDE nor XINCLUDE as a macro:

• Procedure name
• Statement label
• Variable name

The INCONLY option and the NOINCONLY option are mutually exclusive.

For compatibility, the default is NOINCONLY.

NAMEPREFIX
The NAMEPREFIX option specifies that the names of preprocessor procedures and variables must start
with the specified character.

The NONAMEPREFIX option specifies that the names of preprocessor procedures and variables are not
required to start with one particular character.

NONAMEPREFIX

NAMEPREFIX ( character)

The character should be specified "as is" and should not be enclosed in quotation marks.

The default is NONAMEPREFIX.

Macro preprocessor

Chapter 2. PL/I preprocessors 119

RESCAN
This option specifies how the preprocessor should handle the case of identifiers when rescanning text.

RESCAN (

ASIS

UPPER)

UPPER
Rescans will not be case-sensitive.

ASIS
Rescans will be case-sensitive.

To see the effect of this option, consider the following code fragment:

 %dcl eins char ext;
 %dcl text char ext;

 %eins = 'zwei';

 %text = 'EINS';
 display(text);

 %text = 'eins';
 display(text);

When you compile with PP(MACRO('RESCAN(ASIS)')), in the second display statement, the value of text
is replaced by eins, but no further replacement occurs. This is because under RESCAN(ASIS), eins does
not match the macro variable eins; the former is left as is while the latter is in uppercase. Hence the
following text is generated:

 DISPLAY(zwei);

 DISPLAY(eins);

But when you compile with PP(MACRO('RESCAN(UPPER)')), in the second display statement, the value of
text is replaced by eins , but further replacement does occur because under RESCAN(UPPER), eins
does match the macro variable eins (both are in uppercase). Hence the following text is generated:

 DISPLAY(zwei);

 DISPLAY(zwei);

In summary, RESCAN(UPPER) ignores case while RESCAN(ASIS) does not.

Macro preprocessor example
This example shows how to use the preprocessor to produce a source deck.

In the example shown in Table 13 on page 121, according to the value assigned to the preprocessor
variable USE, the source statements represent either a subroutine (CITYSUB) or a function (CITYFUN).

The DSNAME used for SYSPUNCH specifies a source program library on which the preprocessor output
will be placed. Normally compilation will continue and the preprocessor output will be compiled.

Macro preprocessor

120 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 13. Using the macro preprocessor to produce a source deck

 //OPT4#8 JOB
 //STEP2 EXEC IBMZC,PARM.PLI='MACRO,MDECK,NOCOMPILE,NOSYNTAX'
 //PLI.SYSPUNCH DD DSNAME=HPU8.NEWLIB(FUN),DISP=(NEW,CATLG),UNIT=SYSDA,
 // SPACE=(TRK,(1,1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)
 //PLI.SYSIN DD *
 /* GIVEN ZIP CODE, FINDS CITY */
 %DCL USE CHAR;
 %USE = 'FUN' /* FOR SUBROUTINE, %USE = 'SUB' */ ;
 %IF USE = 'FUN' %THEN %DO;
 CITYFUN: PROC(ZIPIN) RETURNS(CHAR(16)) REORDER; /* FUNCTION */
 %END;
 %ELSE %DO;
 CITYSUB: PROC(ZIPIN, CITYOUT) REORDER; /* SUBROUTINE */
 DCL CITYOUT CHAR(16); /* CITY NAME */
 %END;
 DCL (LBOUND, HBOUND) BUILTIN;
 DCL ZIPIN PIC '99999'; /* ZIP CODE */
 DCL 1 ZIP_CITY(7) STATIC, /* ZIP CODE - CITY NAME TABLE */
 2 ZIP PIC '99999' INIT(
 95141, 95014, 95030,
 95051, 95070, 95008,
 0), /* WILL NOT LOOK AT LAST ONE */
 2 CITY CHAR(16) INIT(
 'SAN JOSE', 'CUPERTINO', 'LOS GATOS',
 'SANTA CLARA', 'SARATOGA', 'CAMPBELL',
 'UNKNOWN CITY'); /* WILL NOT LOOK AT LAST ONE */
 DCL I FIXED BIN(31);
 DO I = LBOUND(ZIP,1) TO /* SEARCH FOR ZIP IN TABLE */
 HBOUND(ZIP,1)-1 /* DON'T LOOK AT LAST ELEMENT */
 WHILE(ZIPIN ¬= ZIP(I));
 END;
 %IF USE = 'FUN' %THEN %DO;
 RETURN(CITY(I)); /* RETURN CITY NAME */
 %END;
 %ELSE %DO;
 CITYOUT=CITY(I); /* RETURN CITY NAME */
 %END;
 END;

SQL preprocessor
In general, the coding for your PL/I program is the same whether or not you want it to access a Db2
database. However, to retrieve, update, insert, and delete Db2 data and use other Db2 services, you must
use SQL statements. You can use dynamic and static EXEC SQL statements in PL/I applications.

To communicate with Db2, you need to do the following:

• Code any SQL statements you need, delimiting them with EXEC SQL.
• Use the Db2 precompiler, or if using Db2® for z/OS Version 9 Release 1 or later, compile with the PL/I

PP(SQL()) compiler option.

Before you can take advantage of the EXEC SQL support, you must have authority to access a Db2 system.
Contact your local Db2 Database Administrator for your authorization.

Macro preprocessor

Chapter 2. PL/I preprocessors 121

Programming and compilation considerations
When you use the PL/I SQL preprocessor, the PL/I compiler handles your source program containing
embedded SQL statements at compile time, without your having to use a separate precompile step.
Although the use of a separate precompile step continues to be supported, use of the PL/I SQL
preprocessor is recommended.

Interactive debugging with IBM Debug Tool is enhanced when you use the preprocessor because you see
only the SQL statements while debugging (and not the generated PL/I source). However, you must have
Db2 for z/OS Version 9 Release 1, or later to use the SQL preprocessor.

Using the preprocessor lifts some of the Db2 precompiler's restrictions on SQL programs. When you
process SQL statements with the preprocessor, you can do the following:

• Use nested SQL INCLUDE statements.
• Use fully-qualified names for structured host variables.
• Include SQL statements at any level of a nested PL/I program, instead of in only the top-level source
file.

• Use the SQL TYPE attribute anywhere you can specify a PL/I data type. All such attributes can be
factored and can be used in structure elements, in arrays, and with any storage class like BASED.

• Use variables declared with the LIKE attribute as host variables.

All PL/I statements must be syntactically correct, because the SQL preprocessor scans the source looking
for EXEC SQL statements, DECLARE statements, and statements that delimit blocks of declarations. If
a statement is coded incorrectly, this might mislead the preprocessor when the preprocessor looks for
the END statement to a BEGIN, DO, PACKAGE, PROCEDURE, or SELECT statement, and that can cause
the preprocessor to be unable to resolve some host variable references correctly. To help identify such
incorrect code, the SQL preprocessor flags errors as follows:

• Left parentheses without matching right parentheses
• SELECT statements that do not end with a semicolon
• IF statements that do not contain a THEN keyword
• Statements that start with an invalid symbol

If your source contains both MACRO and SQL statements:

• If you want to invoke the SQL and MACRO preprocessors without using the SQL preprocessor's
INCONLY option, then you must invoke the MACRO preprocessor first. In that case, EXEC SQL
statements are allowed anywhere executable PL/I statements are allowed.

• If you want to invoke the SQL and MACRO preprocessors with the SQL preprocessor's INCONLY option,
then you can invoke the SQL preprocessor before the MACRO preprocessor. In that case, EXEC SQL
statements are allowed only if they are immediately preceded by a semicolon (with possibly intervening
whitespace and comments, of course).

The SQL preprocessor supports DBCS in the same manner as the PL/I compiler does. When the GRAPHIC
PL/I compiler option is in effect, some source language elements can be written in DBCS and SBCS
characters. In particular, you can use DBCS characters in the source program in following places:

• Inside comments
• As part of statement labels and identifiers
• In G or M literals

The following restrictions apply to the use of PL/I built-in functions, compiler options, and statements
when you program and compile SQL statements:

• When EXEC SQL statements are translated to PL/I, the following built-in functions might be included
in the generated code. If you use any of the following built-in functions as the names of elements in
structures, you must also explicitly declare them as BUILTIN:

– ADDR

Programming and compilation considerations

122 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

– LENGTH
– MAXLENGTH
– PTRVALUE
– SYSNULL

• You must not use PL/I type functions, such as BIND(: t,p:), in EXEC SQL statements.
• When compiling with the preprocessor, you must not use these compiler options:

– DFT(ASCII)
– DFT(IEEE)

• Do not use DECLARE STATEMENT statements in SQL queries, because the PL/I preprocessor always
ignores these statements.

Compiling with the SQL preprocessor option generates a Db2 database request module (DBRM) along
with the usual PL/I compiler output such as object module and listing. As input to the Db2 bind process,
the DBRM data set contains information about the SQL statements and host variables in the program.
Not all of the information in the DBRM is important in terms of the bind or runtime processing, however.
For example, if the HOST value in the DBRM specifies a language other than PL/I, there is no reason to
be concerned. All this means that the other language is selected as the installation default for the HOST
value, which does not affect the bind or runtime processing of your program.

If the EMPTYDBRM option is in effect and if the source meets one of the following conditions, the
preprocessor issues a message indicating that no statements required translation, and does not create a
DBRM:

• The source contains no EXEC SQL statements.
• The source contains only EXEC SQL INCLUDE statements other than EXEC SQL INCLUDE SQLCA and

EXEC SQL INCLUDE SQLDA.

The PL/I compiler listing includes the error diagnostics (such as syntax errors in the SQL statements) that
the preprocessor generates. The listing of the EXEC SQL statement is displayed in a readable format that
is similar to the original source.

To use the preprocessor, you need to do the following:

• Specify the following option when you compile your program:

 PP(SQL('options'))

This compiler option indicates that you want the compiler to invoke the integrated SQL preprocessor.
Specify a list of SQL processing options in the parenthesis after the SQL keyword. The options can be
separated by a comma or by a space and the list of options must be enclosed in quotation marks (single
or double, as long as they match).

For example, PP(SQL('DATE(USA),TIME(USA)') tells the preprocessor to use the USA format for
both DATE and TIME data types.

In addition, for LOB support you must specify the following option:

 LIMITS(FIXEDBIN(31,63) FIXEDDEC(15,31))

An alternative way to specify SQL preprocessor options is to use the PPSQL compiler option. For
information about how to use it, see “PPSQL” on page 64.

• Include DD statements for the following data sets in the JCL for your compile step:

– Db2 load library (prefix.SDSNLOAD)

The SQL preprocessor calls Db2 modules to do the SQL statement processing. Therefore, you need to
include the name of the Db2 load library data set in the STEPLIB concatenation for the compile step.

– Library for SQL INCLUDE statements

Programming and compilation considerations

Chapter 2. PL/I preprocessors 123

If your program contains SQL INCLUDE member-name statements that specify secondary input to the
source program, you need to include the name of the data set that contains member-name in the
SYSLIB concatenation for the compile step.

– DBRM library

The compilation of the PL/I program generates a Db2 database request module (DBRM), and the
DBRMLIB DD statement is required to designate the data set to which the DBRM is written.

The DBRMLIB DD statement must name a data set that can be opened and closed more than once
during the compilation.

For example, you might have the following lines in your JCL:

//STEPLIB DD DSN=DSNA10.SDSNLOAD,DISP=SHR
//SYSLIB DD DSN=PAYROLL.MONTHLY.INCLUDE,DISP=SHR
//DBRMLIB DD DSN=PAYROLL.MONTHLY.DBRMLIB.DATA(MASTER),DISP=SHR

SQL preprocessor options
This section describes the options that the SQL preprocessor supports.

Two groups of options can be passed to the SQL preprocessor: those handled by the PL/I SQL
preprocessor and those handled by the Db2 coprocessor. You must specify these options in the options
string of the PP(SQL('option-list')) option, and the options can be intermingled in the options string.

When you specify SQL preprocessor options, the list of options must be enclosed in a pair of quotation
marks. For example, to specify the CCSID0 option, you must specify PP(SQL('CCSID0')).

Table 14 on page 124 lists the PL/I SQL preprocessor options with abbreviations (if any) and the IBM-
supplied default values. This table uses a vertical bar (|) to separate mutually exclusive options, and
brackets ([]) to indicate that you can sometimes omit the enclosed option.

For more information about Db2 coprocessor options, see the Db2 for z/OS Application Programming and
SQL Guide.

Table 14. SQL preprocessor options and IBM-supplied defaults

SQL Preprocessor option Abbreviated name z/OS default

CCSID0 | NOCCSID0 - CCSID0

CODEPAGE | NOCODEPAGE - NOCODEPAGE

DEPRECATE(STMT([EXPLAIN |
GRANT | REVOKE |
SET_CURRENT_SQLID]))

- DEPRECATE(STMT())

EMPTYDBRM | NOENTRYDBRM - NOENTRYDBRM

HOSTCOPY | NOHOSTCOPY - HOSTCOPY

INCONLY | NOINCONLY - NOINCONLY

LINEFILE | LINEONLY - LINEONLY

WARNDECP | NOWARNDECP - NOWARNDECP

CCSID0
The CCSID0 option specifies that no host variable other than WIDECHAR is to be assigned a CCSID value
by the PL/I SQL preprocessor.

The NOCCSID0 option allows host variables to be assigned a CCSID value by the PL/I SQL preprocessor.

SQL preprocessor options

124 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

CCSID0

NOCCSID0

If your program updates FOR BIT DATA columns with a data type that is not BIT data, choose CCSID0.
CCSID0 informs Db2 that the host variable is not associated with a CCSID, allowing the assignment to be
made. Otherwise, if a host variable that is associated with a CCSID that is not BIT data is assigned to a
FOR BIT DATA column, a Db2 error occurs.

WIDECHAR is always assigned a CCSID value of 1200.

For compatibility with older PL/I programs that used the Db2 precompiler, enable CCSID0.

CCSID0 and NOCCSID0 are mutually exclusive options.

The default is CCSID0.

CODEPAGE
When the CODEPAGE option is in effect, the compiler CODEPAGE option is always used as the CCSID for
SQL host variables of character type.

When the NOCODEPAGE option is in effect, the compiler CODEPAGE option is used as the CCSID for SQL
host variables of character type only if the SQL preprocessor option NOCCSID0 is also in effect.

NOCODEPAGE

CODEPAGE

The default is NOCODEPAGE.

DEPRECATE
The DEPRECATE option indicates that the preprocessor flags the specified statements as deprecated.

DEPRECATE (STMT (

,

EXPLAIN

GRANT

REVOKE

SET_CURRENT_SQLID

))

STMT
Specifies a list of statements that the preprocessor should flag as deprecated. The list can be empty.

EXPLAIN
The EXPLAIN SQL statement.

GRANT
The GRANT SQL statement.

REVOKE
The REVOKE SQL statement.

SET_CURRENT_SQLID
The SET CURRENT SQLID SQL statement.

The default is DEPRECATE(STMT()).

SQL preprocessor options

Chapter 2. PL/I preprocessors 125

EMPTYDBRM
The EMPTYDBRM option specifies that the SQL preprocessor always creates a DBRM even if the code
contains no EXEC SQL statements. However, the SQL preprocessor does not create a DBRM when the
INCONLY option is invoked.

The NOENTRYDBRM option specifies that the SQL preprocessor does not create a DBRM.

NOENTRYDBRM

EMPTYDBRM

The default is NOENTRYDBRM.

HOSTCOPY
The HOSTCOPY option determines if the SQL preprocessor, when running under LP(64), generates code to
copy host variables to and from below-the-bar storage around each EXEC SQL statement.

If the NOHOSTCOPY is specified, the SQL preprocessor does not generate this code. However, it is then
the user's responsibility to ensure that all host variables reside in below-the-bar storage (for example, by
making them BASED variables whose base pointers are obtained via the ALLOC31 built-in function).

HOSTCOPY

NOHOSTCOPY

The default is HOSTCOPY.

The HOSTCOPY option is ignored under LP(32).

INCONLY
The INCONLY option specifies that the SQL preprocessor should process only EXEC SQL INCLUDE
statements except for includes of the SQL communication area (SQLCA) and the SQL descriptor area
(SQLDA). No code is generated by the SQL preprocessor when this option is in effect.

The NOINCONLY option specifies that the SQL preprocessor should process all statements, not only EXEC
SQL INCLUDE statements.

NOINCONLY

INCONLY

When you specify the INCONLY option, the compiler does not produce the SQL options listing, because all
other options are ignored under INCONLY.

The INCONLY option and the NOINCONLY option are mutually exclusive.

For compatibility, the default is NOINCONLY.

LINEFILE
The LINEFILE option specifies that the DBRM statement number field should encode both the file number
and the line number for each SQL statement.

LINEONLY

LINEFILE

SQL preprocessor options

126 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

When the LINEFILE option is in effect, the DBRM statement number field encodes both the file number
and the line number for each SQL statement. In particular, the file number will be in the first 12 bits of the
statement number and the line number will be in the remaining 20 digits.

When the LINEONLY option is in effect, the DBRM statement number field just encodes the line number
for each SQL statement.

As in the rest of the compile processing, the compiler assigns the number 0 to the primary source file, the
number 1 to the first include file, etc. So, if all the SQL statements are in the primary source file, there is
no difference between LINEFILE and LINEONLY.

For compatibility, LINEONLY is the default.

WARNDECP
When the WARNDECP option is in effect, the preprocessor issues a warning message if the compilation
uses the DSNHDECP module supplied with Db2.

When the NOWARNDECP option is in effect, no warning message is issued.

NOWARNDECP

WARNDECP

The default is NOWARNDECP.

PL/I-specific notes for SQL processor options
The topic describes some rules that you must follow when specifying SQL processor options FLOAT,
ONEPASS, and STDSQL.

When you specify the following SQL processor options for the PL/I compiler, the following rules apply:

FLOAT
An error message is issued if the FLOAT option is different from the PL/I DEFAULT(HEXADEC | IEEE)
option.

ONEPASS | TWOPASS
Under the option ONEPASS, you must declare all host variables before they are used by any SQL
statement.

STDSQL
Under the option STDSQL(YES), you must declare all host variables between SQL BEGIN DECLARE
SECTION and SQL END DECLARE SECTION statements.

Coding SQL statements in PL/I applications
You can code SQL statements in your PL/I applications by using the language defined in Db2 UDB for z/OS
SQL Reference. This section describes specific requirements for your SQL code.

Defining the SQL communications area
A PL/I program that contains SQL statements must include either an SQLCODE variable (if the
STDSQL(86) preprocessor option is used) or an SQL communications area (SQLCA).

As shown in Table 15 on page 128, part of an SQLCA consists of an SQLCODE variable and an SQLSTATE
variable.

• The SQLCODE value is set by the Database Services after each SQL statement is executed. An
application can check the SQLCODE value to determine whether the last SQL statement was successful.

• The SQLSTATE variable can be used as an alternative to the SQLCODE variable when the compiler
analyzes the result of an SQL statement. Like the SQLCODE variable, the SQLSTATE variable is set by the
Database Services after each SQL statement is executed.

SQL preprocessor options

Chapter 2. PL/I preprocessors 127

To include the SQLCA declaration, use the EXEC SQL INCLUDE statement:

 exec sql include sqlca;

The SQLCA structure must not be defined within an SQL declare section. The scope of the SQLCODE and
SQLSTATE declarations must include the scope of all SQL statements in the program.

Table 15. The PL/I declaration of SQLCA

 Dcl
 1 Sqlca,
 2 sqlcaid char(8), /* Eyecatcher = 'SQLCA ' */
 2 sqlcabc fixed binary(31), /* SQLCA size in bytes = 136 */
 2 sqlcode fixed binary(31), /* SQL return code */
 2 sqlerrmc char(70) var, /* Error message tokens */
 2 sqlerrp char(8), /* Diagnostic information */
 2 sqlerrd(0:5) fixed binary(31), /* Diagnostic information */
 2 sqlwarn, /* Warning flags */
 3 sqlwarn0 char(1),
 3 sqlwarn1 char(1),
 3 sqlwarn2 char(1),
 3 sqlwarn3 char(1),
 3 sqlwarn4 char(1),
 3 sqlwarn5 char(1),
 3 sqlwarn6 char(1),
 3 sqlwarn7 char(1),
 2 sqlext,
 3 sqlwarn8 char(1),
 3 sqlwarn9 char(1),
 3 sqlwarna char(1),
 3 sqlstate char(5); /* State corresponding to SQLCODE */

Defining SQL descriptor areas
Unlike the SQLCA, there can be more than one SQL descriptor area (SQLDA) in a program, and an SQLDA
can have any valid name.

The following statements require an SQLDA:

PREPARE statement-name INTO descriptor-name FROM host-variable
EXECUTE…USING DESCRIPTOR descriptor-name
FETCH…USING DESCRIPTOR descriptor-name
OPEN…USING DESCRIPTOR descriptor-name
DESCRIBE statement-name INTO descriptor-name

To include an SQLDA, use the EXEC SQL INCLUDE statement:

 exec sql include sqlda;

The SQLDA must not be defined within an SQL declare section.

SQL preprocessor options

128 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 16. The PL/I declaration of an SQL descriptor area

 Dcl
 1 Sqlda based(Sqldaptr),
 2 sqldaid char(8), /* Eye catcher = 'SQLDA ' */
 2 sqldabc fixed binary(31), /* SQLDA size in bytes=16+44*SQLN*/
 2 sqln fixed binary(15), /* Number of SQLVAR elements*/
 2 sqld fixed binary(15), /* # of used SQLVAR elements*/
 2 sqlvar(Sqlsize refer(sqln)), /* Variable Description */
 3 sqltype fixed binary(15), /* Variable data type */
 3 sqllen fixed binary(15), /* Variable data length */
 3 sqldata pointer, /* Pointer to variable data value*/
 3 sqlind pointer, /* Pointer to Null indicator*/
 3 sqlname char(30) var ; /* Variable Name */

 Dcl
 1 Sqlda2 based(Sqldaptr),
 2 sqldaid2 char(8), /* Eye catcher = 'SQLDA ' */
 2 sqldabc2 fixed binary(31), /* SQLDA size in bytes=16+44*SQLN*/
 2 sqln2 fixed binary(15), /* Number of SQLVAR elements*/
 2 sqld2 fixed binary(15), /* # of used SQLVAR elements*/
 2 sqlvar2(Sqlsize refer(sqln2)), /* Variable Description */
 3 sqlbiglen,
 4 sqllongl fixed binary(31),
 4 sqlrsvdl fixed binary(31),
 3 sqldatal pointer,
 3 sqltname char(30) var;

 dcl Sqlsize fixed binary(15); /* number of sqlvars (sqln) */
 dcl Sqldaptr pointer;
 dcl Sqltripled char(1) value(’3’);
 dcl Sqldoubled char(1) value(’2’);
 dcl Sqlsingled char(1) value(’ ’);

Embedding SQL statements
The first statement of your program must be a PROCEDURE or PACKAGE statement. You can add any SQL
statement to your program wherever executable statements can appear.

You can also add the following SQL statements in a PACKAGE and outside of any procedure:

• EXEC SQL BEGIN DECLARE SECTION
• EXEC SQL END DECLARE SECTION
• EXEC SQL DECLARE if no executable code needs to be generated for the statement
• EXEC SQL INCLUDE

Each SQL statement must begin with EXEC (or EXECUTE) SQL and end with a semicolon (;).

For example, an UPDATE statement might be coded as follows:

 exec sql update DSN8A10.DEPT
 set Mgrno = :Mgr_Num
 where Deptno = :Int_Dept;

Comments
In addition to SQL statements, comments can be included in embedded SQL statements wherever a blank
is allowed.

If a comment appears inside a SQL statement, the forward slash (/) that closes the comment is shown as
a greater than sign (>) in the listing. The following example illustrates how the compiler will show a given
SQL statement in the source listing.

The following example SQL statement contains comments:

 exec sql insert into table /* some text */ values(:data);

SQL preprocessor options

Chapter 2. PL/I preprocessors 129

The compiler will show it in the source listing as follows:

 /*$*$*$
 exec sql insert into table /* some text *> values(:data)
 $*$*$*/

SQL style comments ('--') are supported when embedded in SQL statements.

Continuation for SQL statements
The line continuation rules for SQL statements are the same as those for other PL/I statements.

Including code
You can include SQL statements or PL/I host variable declaration statements by placing the following SQL
statement in the source code. Place it at the point where the statements are to be embedded.

 exec sql include member;

Margins
You must code SQL statements in columns m through n, where m and n are specified in the
MARGINS(m,n) compiler option.

Names
You can use any valid PL/I variable name for a host variable. The length of a host variable name must not
exceed the value n specified in the LIMITS(NAME(n)) compiler option.

Statement labels
With the exception of the END DECLARE SECTION statement and the INCLUDE text-file-name statement,
executable SQL statements, like PL/I statements, can have a label prefix.

WHENEVER statement
The target for the GOTO clause in an SQL WHENEVER statement must be a label in the PL/I source code
and must be within the scope of any SQL statements affected by the WHENEVER statement.

Using host variables
All host variables used in SQL statements must be explicitly declared, and all host variables within an SQL
statement must be preceded by a colon (:).

Subscripts must not be used in host variable references.

The following topics describe the details of using host variables:

• “Using arrays as host variables” on page 130
• “Declaring host variables” on page 131
• “Declaring scalar host variables” on page 131
• “Determining equivalent SQL and PL/I data types” on page 133
• “Determining compatibility of SQL and PL/I data types” on page 137

Using arrays as host variables
You can use an array as a host variable only in the following two ways:

• As an array of indicator variables for a host structure
• As an array of host variables when used in any of the following statements:

– A FETCH statement for a multiple row fetch
– An INSERT statement with a multiple row insert

SQL preprocessor options

130 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

– A multiple row MERGE statement

All such arrays must be one-dimensional, have the CONNECTED attribute, and have constant bounds.

All other use of arrays as host variables is invalid.

Declaring host variables
Host variable declarations can be made at the same place as regular PL/I variable declarations.

Only a subset of valid PL/I declarations are recognized as valid host variable declarations.

The SQL preprocessor supports the DEFINE ALIAS, DEFINE ORDINAL, and DEFINE STRUCTURE
statements with the following restrictions:

• A variable that is declared with a DEFINE ALIAS type can be used in SQL statements, if the underlying
base type is allowed in SQL statements.

• A variable that is declared with a DEFINE ORDINAL type can be used in SQL statements, if the ordinal is
NATIVE and is 2 or 4 bytes in size.

• A reference that includes elements of a DEFINE STRUCTURE type can be used as a host variable, but it
can not be used as an indicator variable.

The preprocessor does not use the data attribute defaults specified in the PL/I DEFAULT statement. If the
declaration for a variable is not recognized, any statement that references the variable might result in the
message:
'The host variable token ID is not valid'

To use a structure that is declared with LIKE or an element of this structure as a host variable, the
declaration for the LIKE object must be visible to the SQL preprocessor. For example, the LIKE object
must not be in a %INCLUDE file that has not been included.

You can use restricted expressions in host variable declarations to define the bounds of an array or the
length of a string as long as the expression has one of the following forms:

• A prefix operator applied to an expression where the expression can be collapsed to an integer
• An add operator or a subtract operator applied to two expressions where both expressions can be

collapsed to integers
• A multiply operator applied to two expressions where both expressions can be collapsed to integers
• A reference to a named constant where the reference can be collapsed to an integer
• One of these built-in functions: INDICATORS, HBOUND, HBOUNDACROSS, LENGTH, and MAXLENGTH
• A number that is an integer

Although you can use a named constant to define the bounds and lengths of a host variable, you cannot
use a named constant itself as a host variable except if both of the following conditions apply:

• DB2 allows a simple, unnamed constant at that place in the EXEC SQL statement.
• The named constant has any of these attributes:

– CHARACTER, in which case the VALUE attribute of the named constant must specify a character
string.

– FIXED, in which case the VALUE attribute of the named constant must specify a decimal number or an
expression that can be reduced, with the same restrictions as above, to an integer constant.

Only the names and data attributes of the variables are used by the preprocessor; the alignment, scope,
and storage attributes are ignored.

Declaring scalar host variables
You must declare a scalar host variable with one of the following data attributes:

CHARACTER, GRAPHIC, or WIDECHAR
Host variables that are declared with the CHARACTER, GRAPHIC, or WIDECHAR attributes are called
string host variables. The following restrictions apply to the string host variable:

SQL preprocessor options

Chapter 2. PL/I preprocessors 131

• It must have either the NONVARYING or VARYING attribute.
• If it has the VARYING attribute, it must have the NATIVE attribute.

FIXED BINARY, FIXED DECIMAL, or FLOAT
Host variables that are declared with the FIXED and BINARY, FIXED and DECIMAL, or FLOAT
attributes are called numeric host variables. The following restrictions apply to the numeric host
variable:

• It must have the REAL attribute.
• If it has the FIXED and BINARY attributes, it must have the SIGNED and NATIVE attributes, a zero

scale factor, and a precision greater than 7.
• If it has the FIXED and DECIMAL attributes, it must have a nonnegative scale factor that is smaller

than its precision.
• If it has the FLOAT and DECIMAL attributes, it must have a precision that is less than 17 unless the

FLOAT(DFP) option is in effect.
• If it has the FLOAT and BINARY attributes, it must have a precision that is less than 54.

ORDINAL
Host variables that are declared with the ORDINAL attribute are also called numeric host variables.
The following restrictions apply to these numeric host variables:

• If SIGNED, it must have a precision greater than 7, and if UNSIGNED it must have a precision greater
than 8.

• It must have the NATIVE attribute.

SQL TYPE
Host variables that are declared with the SQL TYPE attribute are called SQL TYPE host variables. The
attribute specification must conform to one of the following syntax diagrams:
BINARY

SQL TYPE IS BINARY (length)

VARBINARY
SQL TYPE IS VARBINARY (length)

Result set locator
SQL TYPE IS RESULT_SET_LOCATOR

ROWID
SQL TYPE IS ROWID

Table locator
SQL TYPE IS TABLE LIKE table-name AS LOCATOR

LOB file reference
SQL TYPE IS BLOB_FILE

CLOB_FILE

DBCLOB_FILE

LOB locator
SQL TYPE IS BLOB_LOCATOR

CLOB_LOCATOR

DBCLOB_LOCATOR

SQL preprocessor options

132 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

LOB variable
SQL TYPE IS BLOB

CLOB

DBCLOB

(length

K

M

G

)

BLOB
You can also use BINARY LARGE OBJECT as an alternative to BLOB.

CLOB
You can also use either CHARACTER LARGE OBJECT or CHAR LARGE OBJECT as an
alternative to CLOB.

XML LOB variable
SQL TYPE IS XML AS BLOB

CLOB

DBCLOB

(length

K

M

G

)

BLOB
You can also use BINARY LARGE OBJECT as an alternative to BLOB.

CLOB
You can also use either CHARACTER LARGE OBJECT or CHAR LARGE OBJECT as an
alternative to CLOB.

XML file reference
SQL TYPE IS XML AS BLOB_FILE

CLOB_FILE

DBCLOB_FILE

The following constant declarations are generated by the SQL preprocessor. You can use them to set
the file option variable when you use the file reference host variables:

DCL SQL_FILE_READ FIXED BIN(31) VALUE(2);
DCL SQL_FILE_CREATE FIXED BIN(31) VALUE(8);
DCL SQL_FILE_OVERWRITE FIXED BIN(31) VALUE(16);
DCL SQL_FILE_APPEND FIXED BIN(31) VALUE(32);

Determining equivalent SQL and PL/I data types
The base SQLTYPE and SQLLEN of host variables are determined according to Table 17 on page 133 and
Table 18 on page 134. If a host variable appears with an indicator variable, the SQLTYPE is the base
SQLTYPE plus one.

To determine the PL/I data type that is equivalent to a given SQL data type, you can use Table 19 on page
135 and Table 20 on page 136.

Table 17. SQL data types generated from PL/I declarations

PL/I data type SQLTYPE of
host
variable

SQLLEN of host
variable

SQL data type

BIN FIXED(p), 7 < p <= 15 500 2 SMALLINT

BIN FIXED(p), 15 < p <= 31 496 4 INTEGER

BIN FIXED(p), 31 < p <= 63 492 8 BIGINT

SQL preprocessor options

Chapter 2. PL/I preprocessors 133

Table 17. SQL data types generated from PL/I declarations (continued)

PL/I data type SQLTYPE of
host
variable

SQLLEN of host
variable

SQL data type

DEC FIXED(p,s), 0<=p<=15 and
0<=s<=p

484 p (byte 1)

s (byte 2)

DECIMAL(p,s)

BIN FLOAT(p), 1 ≤ p ≤ 21 480 4 REAL or FLOAT(n) 1<=n<=21

BIN FLOAT(p), 22 ≤ p ≤ 53 480 8 DOUBLE PRECISION

or

FLOAT(n), 22<=n<=53

Table 17. SQL data types generated from PL/I declarations

Under FLOAT(NODFP):

DEC FLOAT(p), 1 ≤ p ≤ 6 480 4 FLOAT (single precision)

DEC FLOAT(p), 7 ≤ p ≤ 16 480 8 FLOAT (double precision)

Under FLOAT(DFP):

DEC FLOAT(p), 1 ≤ p ≤ 7 996 4 DECFLOAT (single precision)

DEC FLOAT(p), 8 ≤ p ≤ 16 996 8 DECFLOAT (double precision)

DEC FLOAT(p), 17 ≤ p ≤ 34 996 16 DECFLOAT (extended decimal)

Table 17. SQL data types generated from PL/I declarations

CHAR(n) 452 n CHAR(n)

CHAR(n) VARYING 448 n VARCHAR(n)

GRAPHIC(n), 1 ≤ n ≤ 127 468 n GRAPHIC(n)

GRAPHIC(n) VARYING 464 n VARGRAPHIC(n)

SIGNED ORDINAL PREC(p), 7 < p <=
15

500 2 SMALLINT

SIGNED ORDINAL PREC(p), 15 < p <=
31

496 4 INTEGER

UNSIGNED ORDINAL PREC(p), 8 < p
<= 16

500 2 SMALLINT

UNSIGNED ORDINAL PREC(p), 16 < p
<= 32

496 4 INTEGER

Table 18. SQL data types generated from SQL TYPE declarations

PL/I data type SQLTYPE of host
variable

SQLLEN of host
variable

SQL data type

SQL TYPE IS BLOB(n)
1<n<2147483647

404 n BLOB(n)

SQL TYPE IS CLOB(n)
1<n<2147483647

408 n CLOB(n)

SQL preprocessor options

134 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 18. SQL data types generated from SQL TYPE declarations (continued)

PL/I data type SQLTYPE of host
variable

SQLLEN of host
variable

SQL data type

SQL TYPE IS DBCLOB(n)
1<n<1073741823 (2)

412 n DBCLOB(n) (2)

SQL TYPE IS ROWID 904 40 ROWID

SQL TYPE IS VARBINARY(n)
1<n<32704

908 n VARBINARY(n)

SQL TYPE IS BINARY(n)
1<n<255

912 n BINARY(n)

SQL TYPE IS BLOB_FILE 916 267 BLOB File Reference (1)

SQL TYPE IS CLOB_FILE 920 267 CLOB File Reference (1)

SQL TYPE IS DBCLOB_FILE 924 267 DBCLOB File Reference (1)

SQL TYPE IS BLOB_LOCATOR 960 4 BLOB Locator (1)

SQL TYPE IS CLOB_LOCATOR 964 4 CLOB Locator (1)

SQL TYPE IS DBCLOB_LOCATOR 968 4 DBCLOB Locator (1)

SQL TYPE IS
RESULT_SET_LOCATOR

972 4 Result Set Locator

SQL TYPE IS TABLE LIKE table-
name AS LOCATOR

976 4 Table Locator (1)

Notes:

1. Do not use this data type as a column type.
2. n is the number of double-byte characters.

Table 19. SQL data types mapped to PL/I declarations

SQL data type PL/I equivalent Notes®

SMALLINT BIN FIXED(15)

INTEGER BIN FIXED(31)

BIGINT BIN FIXED(63)

DECIMAL(p,s) DEC FIXED(p)

or

DEC FIXED(p,s)

p = precision and s = scale; 1 ≤ p ≤ 31 and 0 ≤
s ≤ p

Under FLOAT(NODFP):

REAL or FLOAT(n) BIN FLOAT(p)

or

DEC FLOAT(m)

1 ≤ p ≤ 21 and 1 ≤ m ≤ 6

DOUBLE PRECISION, DOUBLE, or
FLOAT(n)

BIN FLOAT(p) or DEC
FLOAT(m)

22 ≤ p ≤ 53 and 7 ≤ m ≤ 16

SQL preprocessor options

Chapter 2. PL/I preprocessors 135

Under FLOAT(DFP):

DECFLOAT DEC FLOAT(m) Short Decimal Float 1 ≤ m ≤ 7

DECFLOAT DEC FLOAT(m) Long Decimal Float 8 ≤ m ≤ 16

DECFLOAT DEC FLOAT(m) Extended Decimal Float 17 ≤ m ≤ 34

CHAR(n) CHAR(n) 1 ≤ n ≤ 32767

VARCHAR(n) CHAR(n) VAR

GRAPHIC(n) GRAPHIC(n) n is a positive integer that refers to the
number of double-byte characters, not to the
number of bytes; 1 ≤ n ≤ 16383

VARGRAPHIC(n) GRAPHIC(n) VAR n is a positive integer that refers to the
number of double-byte characters, not to the
number of bytes; 1 ≤ n ≤ 16383

DATE CHAR(n) n must be at least 10.

TIME CHAR(n) n must be at least 8.

TIMESTAMP CHAR(n) n must be at least 26.

Table 20. SQL data types mapped to SQL TYPE declarations

SQL data type PL/I equivalent Notes

Result set locator SQL TYPE IS
RESULT_SET_LOCATOR

Use this data type only for receiving result
sets. Do not use this data type as a column
type.

Table locator SQL TYPE IS TABLE LIKE
table-name AS LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive rows
of a transition table. Do not use this data type
as a column type.

BLOB locator SQL TYPE IS BLOB_LOCATOR Use this data type only to manipulate data in
BLOB columns. Do not use this data type as a
column type.

CLOB locator SQL TYPE IS CLOB_LOCATOR Use this data type only to manipulate data in
CLOB columns. Do not use this data type as a
column type.

DBCLOB locator SQL TYPE IS
DBCLOB_LOCATOR

Use this data type only to manipulate data in
DBCLOB columns. Do not use this data type as
a column type.

BLOB file reference SQL TYPE IS BLOB_FILE Use this data type only as a reference to a
BLOB file. Do not use this data type as a
column type.

CLOB file reference SQL TYPE IS CLOB_FILE Use this data type only as a reference to a
CLOB file. Do not use this data type as a
column type.

DBCLOB file reference SQL TYPE IS DBCLOB_FILE Use this data type only as a reference to a
DBCLOB file. Do not use this data type as a
column type.

BLOB(n) SQL TYPE IS BLOB(n) 1<n<2147483647

SQL preprocessor options

136 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 20. SQL data types mapped to SQL TYPE declarations (continued)

SQL data type PL/I equivalent Notes

CLOB(n) SQL TYPE IS CLOB(n) 1<n<2147483647

DBCLOB(n) SQL TYPE IS DBCLOB(n) n is the number of double-byte characters.
1<n<1073741823

ROWID SQL TYPE IS ROWID

XML AS SQL TYPE IS XML AS ... Used to describe an XML version of a BLOB,
CLOB, DBCLOB, BLOB_FILE, CLOB_FILE, or
DBCLOB_FILE

Determining compatibility of SQL and PL/I data types
PL/I host variables in SQL statements must be type-compatible with the columns that use them:

• Numeric data types are compatible with each other. A SMALLINT, INTEGER, DECIMAL, or FLOAT column
is compatible with a PL/I host variable of BIN FIXED(15), BIN FIXED(31), DECIMAL(p,s), BIN FLOAT(n)
where n is in the range 22 - 53, or DEC FLOAT(m) where m is in the range 7 - 16.

• Character data types are compatible with each other. A CHAR or VARCHAR column is compatible with a
fixed-length or varying-length PL/I character host variable.

• Datetime data types are compatible with character host variables. A DATE, TIME, or TIMESTAMP
column is compatible with a fixed-length or varying-length PL/I character host variable.

When necessary, the Database Manager automatically converts a fixed-length character string to a
varying-length string or a varying-length string to a fixed-length character string.

Using host structures
A PL/I host structure name can be a structure name with members that are not structures or unions.

In the following example, B is the name of a host structure consisting of the scalars C1 and C2.

 dcl 1 A,
 2 B,
 3 C1 char(...),
 3 C2 char(...);

Host structures are limited to two levels. A host structure can be thought of as a named collection of host
variables.

Each leaf element of a host structure must have one of the following valid host data attributes as
discussed in “Declaring host variables” on page 131:

• CHARACTER, GRAPHIC, or WIDECHAR
• FIXED BINARY, FIXED DECIMAL, or FLOAT
• SQL TYPE

Using indicator variables
An indicator variable is a two-byte integer (BIN FIXED(15)), an array of two-byte integers, or a structure
that contains only two-byte integers (or arrays thereof).

On retrieval, an indicator variable is used to show whether its associated host variable has been assigned
a null value. On assignment to a column, a negative indicator variable is used to indicate that a null value
should be assigned.

A structure can be used as an indicator variable only when the associated host variable is also a structure.

Indicator variables are declared in the same way as host variables and the declarations of the two can be
mixed in any way that seems appropriate to the programmer.

Determining compatibility of SQL and PL/I data types

Chapter 2. PL/I preprocessors 137

The SQL Preprocessor does not require that indicator arrays have a lower bound of one.

An indicator variable must have the attribute REAL NATIVE SIGNED FIXED BIN(15).

The following example shows how to declare variables for the statement shown in Table 21 on page 138.

Table 21. SQL statement containing indicator variables

 exec sql fetch Cls_Cursor into :Cls_Cd,
 :Day :Day_Ind,
 :Bgn :Bgn_Ind,
 :End :End_Ind;

You can declare variables as follows:

 exec sql begin declare section;
 dcl Cls_Cd char(7);
 dcl Day bin fixed(15);
 dcl Bgn char(8);
 dcl End char(8);
 dcl (Day_Ind, Bgn_Ind, End_Ind) bin fixed(15);
 exec sql end declare section;

Host structure example
This example shows the declaration of a host structure and an indicator array followed by an SQL
statement that can be used to retrieve the data into the host structure.

 dcl 1 games,
 5 sunday,
 10 opponents char(30),
 10 gtime char(10),
 10 tv char(6),
 10 comments char(120) var;
 dcl indicator(4) fixed bin (15);

 exec sql
 fetch cursor_a
 into :games.sunday:indicator;

Manipulating LOB data
LOBS, CLOBS, and BLOBS can be as large as 2,147,483,647 bytes long (2 Gigabytes). Double Byte CLOBS
can be 1,073,741,823 characters long (1 Gigabyte). To use large object (LOB) data from a Db2 table, use
techniques like LOB locators and LOB file references to manipulate the data while the data is still in the
database.

Declaring a host variable to hold all of the LOB data can be inefficient or impractical, because this requires
your program to allocate large amounts of storage and requires Db2 to move large amounts of data.
Therefore, it is recommended that you use the following techniques to manipulate LOB data:

• LOB locators

Using LOB locators, you can manipulate LOB data without moving the LOB data into host variables. By
using LOB locators, you need much smaller amounts of memory for your programs.

• LOB file references

You can use LOB file reference variables to import or export data between a LOB column and an external
file outside the Db2 system.

For more information about these techniques to minimize the moving around of large pieces of data, see
the Db2 for z/OS Application Programming and SQL Guide, or the IBM Redbooks® publication, LOBs with
Db2 for z/OS: Stronger and Faster.

See pliclob sample program for an example of how to manipulate CLOBs in a PL/I and Db2 environment.

Host structure example

138 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

LOB locators
You can use LOB Locators to avoid materialization of the LOB data and all the underlying activities
associated with it.

The benefits of using LOB locators are listed as follows:

• Saving storage when manipulating LOBs with LOB locators
• Manipulating data without retrieving it from the database
• Avoiding the use of large amounts of storage to hold the LOB
• Avoiding the time and resource expenditures for moving large pieces of data thereby improving

performance

LOB locators are especially useful under the following circumstances:

• When you need only a small part of the LOB
• When you do not have enough memory for the entire LOB
• When performance is important
• In a client or server environment to avoid moving data over the network from one system to another

The following code example is from pliclob sample program. The sample program uses LOB locators to
identify and manipulate sections of the resume CLOB from the dsn8a10.emp_photo_resume Db2 V10
table. (The numbers that precede each line are not part of the program, but are used in the explanation
after the program.)

1. dcl hv_loc_resume sql type is clob_locator;
2. exec sql
3. select resume into :hv_loc_resume
4. from dsn8a10.emp_photo_resume
5. where empno = :hv_empno;
6.
7. exec sql
8. set :start_resume = (posstr(:hv_loc_resume, 'Resume:'));

In lines 2 - 5, LOB locator hv_loc_resume is set to the location of the resume of the employee number
hv_empno in the emp_photo_resume table. In lines 7 - 8, the start_resume host variable is set to the
beginning of the 'Resume:' section of the resume. Then you can start manipulating the resume data
while the resume is still in the data base.

LOB file reference variables
You can use LOB file reference variables to import or export data between a LOB column and an external
file outside the Db2 system.

The benefits of using LOB file reference variables are listed as follows:

• Uses less processing time than moving LOB data with a host variable. The movement of the data would
not be overlapped with any Db2 processing or network transfer time.

• Uses less application storage. LOB data is moved directly from Db2 to a file and is not materialized in
the memory of the application.

The following code example is from pliclob sample program. The sample program uses LOB file
references to create a new, trimmed down version of the resume in an external file. (The numbers that
precede each line are not part of the program, but are used in the explanation after the program.)

1. dcl hv_clob_file sql type is clob_file;
2. name_string = '/SYSTEM/tmp/pliclob2.txt';
3. hv_clob_file.sql_lob_file_name_len = length(name_string);
4. hv_clob_file.sql_lob_file_name = name_string;
5. hv_clob_file.sql_lob_file_options = ior(sql_file_overwrite);
6.
7. exec sql
8. values (substr(:hv_loc_resume,:start_resume,
9. :start_pers_info-:start_resume)
10. || substr(:hv_loc_resume,:start_work_hist,

Host structure example

Chapter 2. PL/I preprocessors 139

11. :start_interests-:start_work_hist)
12.)
13. into :hv_clob_file;

The host variable hv_clob_file is declared as a LOB file reference. In lines 2 - 4, the file name field of
the LOB file reference is set to the fully qualified file name and file name length is set to its length. The
overwrite option is set so any existing file is overwritten (line 5). For details of these and other file
options, see the Db2 for z/OS Application Programming and SQL Guide.

Next the SQL VALUES statement is used to concatenate the resume name and work history sections of
the resume directly into the hv_clob_file LOB file reference, as in lines 8 - 13.

Example: pliclob sample program
This sample PL/I program shows how to manipulate CLOBs in a PL/I and Db2 environment.

You must have the Db2 supplied sample database installed for this program to run properly. This sample
assumes Db2 V10 and table dsn8a10.emp_photo_resume. If you use a different version of Db2, you
must change the table reference.

Notes:

• When you use the LOB locators and LOB file reference variables, the resume CLOB is still within the
database and not in memory or storage.

• The format of the resume CLOB in the database remains unchanged, with the reformatting of the
resume taking place only in the second file that was written out.

Host structure example

140 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 22. pliclob sample program

 pliclob: procedure options(main);
 display('begin pliclob');
 exec sql include sqlca;

 dcl hv_empno char(06);
 dcl name_string char(256) var;
 dcl hv_resume sql type is clob(50k);
 dcl hv_clob_file sql type is clob_file;
 dcl hv_loc_resume sql type is clob_locator;

 dcl start_resume fixed bin(31);
 dcl start_pers_info fixed bin(31);
 dcl start_dept_info fixed bin(31);
 dcl start_education fixed bin(31);
 dcl start_work_hist fixed bin(31);
 dcl start_interests fixed bin(31);

 /* Extract resume CLOB for employee '000130' into a file in z/OS */
 /* UNIX file system. The contents of this file shows the initial */
 /* format of the resume CLOB in the data base. */
 /* Note: this program must have 'write' access to the directory */
 /* designated in the 'name_string' variable. */
 name_string = '/SYSTEM/tmp/pliclob1.txt';
 hv_clob_file.sql_lob_file_name_len = length(name_string);
 hv_clob_file.sql_lob_file_name = name_string;
 hv_clob_file.sql_lob_file_options = ior(sql_file_overwrite);

 hv_empno = '000130';
 exec sql
 select resume into :hv_clob_file
 from dsn8a10.emp_photo_resume
 where empno = :hv_empno;
 display('file1 sqlca.sqlcode = ' || sqlca.sqlcode);

 /* Next, a CLOB locator is used to locate the resume CLOB for */
 /* employee number '000130' in the data base. Then a series of */
 /* Db2 SET statements using the posstr Db2 function finds the */
 /* beginning position of each section within the resume. */
 exec sql
 select resume into :hv_loc_resume
 from dsn8a10.emp_photo_resume
 where empno = :hv_empno;
 display('select resume sqlcode = '|| sqlca.sqlcode);

 exec sql set :start_resume =
 (posstr(:hv_loc_resume, 'Resume:'));
 display('first set sqlcode = '|| sqlca.sqlcode);

 exec sql set :start_pers_info =
 (posstr(:hv_loc_resume, 'Personal Information'));
 display('second set sqlcode = '|| sqlca.sqlcode);

Host structure example

Chapter 2. PL/I preprocessors 141

Table 22. pliclob sample program (continued)

 exec sql set :start_dept_info =
 (posstr(:hv_loc_resume, 'Department Information'));
 display('third set sqlcode = '|| sqlca.sqlcode);

 exec sql set :start_education =
 (posstr(:hv_loc_resume, 'Education'));
 display('fourth set sqlcode = '|| sqlca.sqlcode);

 exec sql set :start_work_hist =
 (posstr(:hv_loc_resume, 'Work History'));
 display('fifth set sqlcode = '|| sqlca.sqlcode);

 exec sql set :start_interests =
 (posstr(:hv_loc_resume, 'Interests'));
 display('sixth set sqlcode = '|| sqlca.sqlcode);

 /* Finally, by using the CLOB locator and the start references */
 /* of each section in the resume, along with the Db2 substr and */
 /* concatenate (||) functions, the resume CLOB is written out to */
 /* a second file in a slightly different format: */
 /* 1. the Personal Information section is omitted due to */
 /* privacy concerns. */
 /* 2. the sections within the resume are written out in this */
 /* order: Resume, Work History, Education then Department */
 /* Information. */
 /* */
 /* After the second file is written out, the changes to the */
 /* resume CLOB can be verified by comparing the contents of the */
 /* two files pliclob1.txt and pliclob2.txt. */
 /* */
 /* Note: this program must have 'write' access to the directory */
 /* designated in the 'name_string' variable. */
 name_string = '/SYSTEM/tmp/pliclob2.txt';
 hv_clob_file.sql_lob_file_name_len = length(name_string);
 hv_clob_file.sql_lob_file_name = name_string;
 hv_clob_file.sql_lob_file_options = ior(sql_file_overwrite);

 exec sql
 values (substr(:hv_loc_resume,:start_resume,
 :start_pers_info-:start_resume)
 || substr(:hv_loc_resume,:start_work_hist,
 :start_interests-:start_work_hist)
 || substr(:hv_loc_resume,:start_education,
 :start_work_hist-:start_education)
 || substr(:hv_loc_resume,:start_dept_info,
 :start_education-:start_dept_info)
)
 into :hv_clob_file;

 display('file2 sqlca.sqlcode = ' || sqlca.sqlcode);
 display('End pliclob');

 end;

pliclob sample program (continued)

Suppressing SQL preprocessor messages
You can use the IBM-supplied compiler user exit (IBMUEXIT) to suppress a message or to change the
severity of a message.

See “Example of suppressing SQL messages” on page 465 for an example of suppressing the
preprocessor messages by modifying the user exit.

CICS preprocessor
You can use EXEC CICS statements in PL/I applications that run as transactions under CICS.

If you do not specify the PP(CICS) option, EXEC CICS statements are parsed and variable references in
them are validated. If they are correct, no messages are issued as long as the NOCOMPILE option is in

Suppressing SQL preprocessor messages

142 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

effect. If you do not invoke the CICS translator and the COMPILE option is in effect, the compiler will issue
S-level messages.

The compiler will invoke the CICS preprocessor if you specify the CICS suboption of the PP option. For
compatibility, the compiler will also invoke the CICS preprocessor if any of these options is in effect: CICS,
XOPT, or XOPTS. However, you should not specify any of these options together with the PP(CICS) option.

Programming and compilation considerations
When you are developing programs for execution under CICS, all the EXEC CICS commands must be
translated in one of two ways:

• By the command language translator provided by CICS in a job step before the PL/I compilation
• By the PL/I CICS preprocessor as part of the PL/I compilation (this requires CICS TS 2.2 or later)

To use the CICS preprocessor, you must also specify the PP(CICS) and DFT(EBCDIC) compile time
options. All data passed to CICS must be in the NATIVE format.

Unless you specify CICS as one of the suboptions of the PP(CICS) option, the compiler will flag any EXEC
CICS statements in the source. Similarly, it will flag any EXEC CPSM or EXEC DLI statements if you do not
specify CPSM or DLI respectively as a suboption of the PP(CICS) option.

If your CICS program is a MAIN procedure, you must also compile it with the SYSTEM(CICS) or
SYSTEM(MVS) option. If you compile with SYSTEM(MVS), the PTFs for runtime APAR PQ91318 must be
applied. NOEXECOPS is implied with this option and all parameters passed to the MAIN procedure must
be POINTERs. For a description of the SYSTEM compile time option, see “SYSTEM” on page 88.

If your want your CICS program to be reentrant and if your program uses FILEs or CONTROLLED variables,
you must compile it with the NOWRITABLE as well.

If your CICS program includes any files or uses any macros that contain EXEC CICS statements, you
must also run the MACRO preprocessor before your code is translated (in either of the ways described
above). If you are using the CICS preprocessor, you can specify this with one PP option as illustrated in
the following example:

 pp (macro(…) cics(…))

The CICS preprocessor will add a set of declares for CICS variables and APIs to all non-nested
procedures. Consequently, it keeps tracks of all statements that require a matching END statement, and if
some of these statements are missing or incorrect, the preprocessor might be misled and not insert these
declares. The preprocessor will also terminate with a severe message if such statements are nested more
than 150 deep.

Finally, in order to use the CICS preprocessor, you must have the CICS SDFHLOAD data set as part of the
STEPLIB DD for the PL/I compiler.

CICS preprocessor options
There are many options supported by the CICS translator.

For a description of these options, see the CICS Application Programming Guide.

Note that these options should be enclosed in quotation marks (single or double, as long as they
match). For instance, to invoke the CICS preprocessor with the EDF option, you must specify the option
PP(CICS(’EDF’)).

Coding CICS statements in PL/I applications
You can code CICS statements in your PL/I applications by using the language defined in CICS on Open
Systems Application Programming Guide. Specific requirements for your CICS code are described in the
sections that follow.

Programming and compilation considerations

Chapter 2. PL/I preprocessors 143

Embedding CICS statements
If you use the CICS translator rather than the integrated preprocessor, the first statement of your PL/I
program must be a PROCEDURE statement. You can add CICS statements to your program wherever
executable statements can appear. Each CICS statement must begin with EXEC (or EXECUTE) CICS and
end with a semicolon (;).

For example, the GETMAIN statement might be coded as follows:

 EXEC CICS GETMAIN SET(BLK_PTR) LENGTH(STG(BLK));

Comments
In addition to the CICS statements, PL/I comments can be included in embedded CICS statements
wherever a blank is allowed.

Continuation for CICS statements
Line continuation rules for CICS statements are the same as those for other PL/I statements.

Including code
If included code contains EXEC CICS statements or if your program uses PL/I macros that generate EXEC
CICS statements, you must use one of the following options:

• The MACRO compile-time option
• The MACRO option of the PP option (before the CICS option of the PP option)

Margins
CICS statements must be coded within the columns specified in the MARGINS compile-time option.

Statement labels
EXEC CICS statements, like PL/I statements, can have a label prefix.

Writing CICS transactions in PL/I
You can use PL/I with CICS facilities to write application programs (transactions) for CICS subsystems.
If you do this, CICS provides facilities, which would normally be provided directly by the operating
system, to the PL/I program. These facilities include most data management facilities and all job and task
management facilities.

You must observe the following restrictions on PL/I CICS programs:

• Macro-level CICS is not supported.
• You cannot use PL/I input or output except for the following:

– PUT FILE(SYSPRINT)
– DISPLAY
– CALL PLIDUMP

• You cannot use the PLISRTx built-in subroutines.
• Routines written in a language other than PL/I cannot be called from a PL/I CICS program if those

routines contain their own EXEC CICS statements. If you want to communicate with a non-PL/I program
that contains EXEC CICS statements, you must use EXEC CICS LINK or EXEC CICS XCTL.

Although PUT FILE(SYSPRINT) is permitted under CICS, you should generally not use it in production
programs because it might degrade performance.

Because the CICS EIB address is only generated by either the CICS translator or the PL/I CICS
preprocessor for an OPTIONS(MAIN) program, you must establish the addressability to the EIB for the
OPTIONS(FETCHABLE) routine in one of the following ways:

• Use this command:

Writing CICS transactions in PL/I

144 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

EXEC CICS ADDRESS EIB(DFHEIPTR)

• Pass the EIB address as an argument to the CALL statement that invokes the external procedure.

Error-handling
Language Environment prohibits the use of some EXEC CICS commands in any PL/I ON-unit or in any
code called from a PL/I ON-unit.

The following EXEC CICS commands are not allowed in ON-unit:

• EXEC CICS ABEND
• EXEC CICS HANDLE AID
• EXEC CICS HANDLE ABEND
• EXEC CICS HANDLE CONDITION
• EXEC CICS IGNORE CONDITION
• EXEC CICS POP HANDLE
• EXEC CICS PUSH HANDLE

All other EXEC CICS commands are allowed within an ON-unit. However, you must code them by using the
NOHANDLE option, the RESP option, or the RESP2 option.

Error-handling

Chapter 2. PL/I preprocessors 145

Error-handling

146 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 3. Using PL/I cataloged procedures
This chapter describes the standard cataloged procedures supplied by IBM for use with the IBM
Enterprise PL/I for z/OS compiler. It explains how to invoke them, and how to temporarily or permanently
modify them.

The Language Environment SCEERUN2 data set must be located in STEPLIB and accessible to the
compiler when you use any of the cataloged procedures.

A cataloged procedure is a set of job control statements, stored in a library, that includes one or more
EXEC statements, each of which can be followed by one or more DD statements. You can retrieve the
statements by naming the cataloged procedure in the PROC parameter of an EXEC statement in the input
stream.

You can use cataloged procedures to save time and reduce Job Control Language (JCL) errors. If the
statements in a cataloged procedure do not match your requirements exactly, you can easily modify them
or add new statements for the duration of a job. You should review these procedures and modify them to
obtain the most efficient use of the facilities available and to allow for your own conventions.

IBM-supplied cataloged procedures
This section describes PL/I cataloged procedures supplied for use with Enterprise PL/I for z/OS.

For a description of the individual statements for compiling and link editing, see “Invoking the compiler
under z/OS using JCL” on page 161 and the z/OS Language Environment Programming Guide.

The following PL/I cataloged procedures are supplied for use with Enterprise PL/I for z/OS:

IBMZC
Compile only

IBMZCB
Compile and bind

IBMZCBG
Compile, bind, and run

IBMQC
Compile only (64-bit)

IBMQCB
Compile and bind (64-bit)

IBMQCBG
Compile, bind, and run (64-bit)

Cataloged procedures IBMZCB, IBMZCBG, IBMQCB, and IBMQCBG use features of the program
management binder introduced in DFSMS/MVS 1.4. These procedures produce a program object in a
PDSE.

These cataloged procedures do not include a DD statement for the input data set; you must always
provide one. The example shown in Table 23 on page 148 illustrates the JCL statements you might use to
invoke the cataloged procedure IBMZCBG to compile, bind, and run a PL/I program.

Enterprise PL/I requires a minimum REGION size of 32M. Large programs require more storage. If you
do not specify REGION on the EXEC statement that invokes the cataloged procedure you are running, the
compiler uses the default REGION size for your site. The default size might or might not be adequate,
depending on the size of your PL/I program.

If you compile your programs with optimization turned on, the REGION size (and time) required might be
much, much larger. For an example of specifying REGION on the EXEC statement, see Table 23 on page
148.

© Copyright IBM Corp. 1999, 2022 147

Example: Invoking a cataloged procedure

Table 23. Invoking a cataloged procedure

 //COLEGO JOB
 //STEP1 EXEC IBMZCBG, REGION.PLI=32M
 //PLI.SYSIN DD *
 .
 .
 .
 (insert PL/I program to be compiled here)
 .
 .
 .
 /*

Compile only (IBMZC)
The IBMZC cataloged procedure, shown in Table 24 on page 149, includes only one procedure step,
in which the options specified for the compilation are OBJECT and OPTIONS. (IBMZPLI is the symbolic
name of the compiler.) In common with the other cataloged procedures that include a compilation
procedure step, IBMZC does not include a DD statement for the input data set; you must always supply an
appropriate statement with the qualified ddname PLI.SYSIN.

The OBJECT compile-time option causes the compiler to place the object module, in a syntax suitable for
input to the linkage editor, in the standard data set defined by the DD statement with the name SYSLIN.
This statement defines a temporary data set named &&LOADSET on a sequential device; if you want to
retain the object module after the end of your job, you must substitute a permanent name for &&LOADSET
(that is, a name that does not start with &&) and specify KEEP in the appropriate DISP parameter for the
last procedure step that used the data set. You can do this by providing your own SYSLIN DD statement,
as shown below. The data set name and disposition parameters on this statement will override those on
the IBMZC procedure SYSLIN DD statement. In this example, the compile step is the only step in the job.

 //PLICOMP EXEC IBMZC
 //PLI.SYSLIN DD DSN=MYPROG,DISP=SHR
 //PLI.SYSIN DD ...

The term MOD in the DISP parameter in Table 24 on page 149 allows the compiler to place more than one
object module in the data set, and PASS ensures that the data set is available to a later procedure step
providing a corresponding DD statement is included there.

The SYSLIN SPACE parameter allows an initial allocation of 1 cylinder and, if necessary, 15 further
allocations of 1 cylinder (a total of 16 cylinders).

148 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 24. Cataloged Procedure IBMZC

//IBMZC PROC LNGPRFX='IBMZ.V6R1M0',LIBPRFX='CEE',
// SYSLBLK=3200
//*
//***
//* Licensed Materials - Property of IBM *
//* 5655-PL6 *
//* Copyright IBM Corp. 1999, 2022 All Rights Reserved *
//* *
//* US Government Users Restricted Rights - Use, duplication or *
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
//* *
//***
//*
//* IBM Enterprise PL/I for z/OS
//* Version 6 Release 1 Modification 0
//*
//* COMPILE A PL/I PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IBMZ.V6R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET
//*
//* USER MUST SUPPLY //PLI.SYSIN DD STATEMENT THAT IDENTIFIES
//* LOCATION OF COMPILER INPUT
//*
//***
//* COMPILE STEP
//***
//PLI EXEC PGM=IBMZPLI,PARM='OBJECT,OPTIONS'
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(CYL,(1,1)),DCB=(LRECL=80,BLKSIZE=&SYSLBLK)
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024

Compile and bind (IBMZCB)
The IBMZCB cataloged procedure, shown in Table 25 on page 150, includes two procedure steps: PLI,
which is identical to cataloged procedure IBMZC, and BIND, which invokes the Program Management
binder (symbolic name IEWBLINK) to bind the object module produced in the first procedure step.

Input data for the compilation procedure step requires the qualified ddname PLI.SYSIN. The COND
parameter in the EXEC statement BIND specifies that this procedure step should be bypassed if the
return code produced by the compiler is greater than 8 (that is, if a severe error or an unrecoverable error
occurs during compilation).

Chapter 3. Using PL/I cataloged procedures 149

Table 25. Cataloged procedure IBMZCB

//IBMZCB PROC LNGPRFX='IBMZ.V6R1M0',LIBPRFX='CEE',
// SYSLBLK=3200,GOPGM=GO
//*
//***
//* Licensed Materials - Property of IBM *
//* 5655-PL6 *
//* Copyright IBM Corp. 1999, 2022 All Rights Reserved *
//* *
//* US Government Users Restricted Rights - Use, duplication or *
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
//* *
//***
//*
//* IBM Enterprise PL/I for z/OS
//* Version 6 Release 1 Modification 0
//*
//* COMPILE AND BIND A PL/I PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IBMZ.V6R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET
//* GOPGM GO MEMBER NAME FOR PROGRAM OBJECT
//*
//***
//* COMPILE STEP
//***
//PLI EXEC PGM=IBMZPLI,PARM='OBJECT,OPTIONS'
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(CYL,(1,1)),DCB=(LRECL=80,BLKSIZE=&SYSLBLK)
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//***
//* BIND STEP
//***
//BIND EXEC PGM=IEWBLINK,COND=(8,LT,PLI)
//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=*.PLI.SYSLIN,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(1024,(50,20,1)),DSNTYPE=LIBRARY
//SYSDEFSD DD DUMMY
//SYSIN DD DUMMY

The Program Management binder always places the program objects it creates in the standard data
set defined by the DD statement with the name SYSLMOD. This statement in the cataloged procedure
specifies a new temporary library &&GOSET, in which the program object will be placed and given the
member name GO. In specifying a temporary library, the cataloged procedure assumes that you will run
the program object in the same job; if you want to retain the program object, you must substitute your
own statement for the DD statement with the name SYSLMOD.

Compile, bind, and run (IBMZCBG)
The IBMZCBG cataloged procedure, shown in Table 26 on page 151, includes three procedure steps:
PLI, BIND, and GO. PLI and BIND are identical to the two procedure steps of IBMZCB, and GO runs the
program object created in the step BIND. The GO step is executed only if no severe or unrecoverable
errors occurred in the preceding procedure steps.

Input data for the compilation procedure step should be specified in a DD statement with the name
PLI.SYSIN, and for the GO step in a DD statement with the name GO.SYSIN.

150 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 26. Cataloged procedure IBMZCBG

//IBMZCBG PROC LNGPRFX='IBMZ.V6R1M0',LIBPRFX='CEE',
// SYSLBLK=3200,GOPGM=GO
//*
//***
//* Licensed Materials - Property of IBM *
//* 5655-PL6 *
//* Copyright IBM Corp. 1999, 2022 All Rights Reserved *
//* *
//* US Government Users Restricted Rights - Use, duplication or *
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
//* *
//***
//*
//* IBM Enterprise PL/I for z/OS
//* Version 6 Release 1 Modification 0
//*
//* COMPILE, BIND, AND RUN A PL/I PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IBMZ.V6R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET
//* GOPGM GO MEMBER NAME FOR PROGRAM OBJECT
//*
//***
//* COMPILE STEP
//***
//PLI EXEC PGM=IBMZPLI,PARM='OBJECT,OPTIONS'
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(CYL,(1,1)),DCB=(LRECL=80,BLKSIZE=&SYSLBLK)
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//***
//* BIND STEP
//***
//BIND EXEC PGM=IEWBLINK,COND=(8,LT,PLI)
//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=*.PLI.SYSLIN,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(1024,(50,20,1)),DSNTYPE=LIBRARY
//SYSDEFSD DD DUMMY
//SYSIN DD DUMMY
//***
//* RUN STEP
//***
//GO EXEC PGM=*.BIND.SYSLMOD,COND=((8,LT,PLI),(8,LE,BIND))
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Compile only - 64-bit (IBMQC)
The IBMQC cataloged procedure, shown in Table 27 on page 152, includes only one procedure step,
in which the options specified for the compilation are OBJECT and OPTIONS. (IBMZPLI is the symbolic
name of the compiler.) In common with the other cataloged procedures that include a compilation
procedure step, IBMQC does not include a DD statement for the input data set; you must always supply
an appropriate statement with the qualified ddname PLI.SYSIN.

The LP(64) compile-time option tells the compiler to generate 64-bit code. The OBJECT compile-time
option causes the compiler to place the object module, in a syntax suitable for input to the linkage editor,
in the standard data set defined by the DD statement with the name SYSLIN. This statement defines a
temporary data set named &&LOADSET on a sequential device; if you want to retain the object module
after the end of your job, you must substitute a permanent name for &&LOADSET (that is, a name that
does not start with &&) and specify KEEP in the appropriate DISP parameter for the last procedure step

Chapter 3. Using PL/I cataloged procedures 151

that used the data set. You can do this by providing your own SYSLIN DD statement, as shown below. The
data set name and disposition parameters on this statement will override those on the IBMQC procedure
SYSLIN DD statement. In this example, the compile step is the only step in the job.

//PLICOMP EXEC IBMQC
//PLI.SYSLIN DD DSN=MYPROG,DISP=SHR
//PLI.SYSIN DD ...

The term MOD in the DISP parameter in Table 27 on page 152, allows the compiler to place more than
one object module in the data set, and PASS ensures that the data set is available to a later procedure
step providing a corresponding DD statement is included there.

The SYSLIN SPACE parameter allows an initial allocation of 1 cylinder and, if necessary, 15 further
allocations of 1 cylinder (a total of 16 cylinders).

Table 27. Cataloged Procedure IBMQC (64-bit)

//IBMQC PROC LNGPRFX='IBMZ.V6R1M0',LIBPRFX='CEE',
// SYSLBLK=3200
//*
//***
//* Licensed Materials - Property of IBM *
//* 5655-PL6 *
//* Copyright IBM Corp. 1999, 2022 All Rights Reserved *
//* *
//* US Government Users Restricted Rights - Use, duplication or *
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
//* *
//***
//*
//* IBM Enterprise PL/I for z/OS
//* Version 6 Release 1 Modification 0
//*
//* COMPILE A 64-BIT PL/I PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IBMZ.V6R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET
//*
//* USER MUST SUPPLY //PLI.SYSIN DD STATEMENT THAT IDENTIFIES
//* LOCATION OF COMPILER INPUT
//*
//***
//* COMPILE STEP
//***
//PLI EXEC PGM=IBMZPLI,PARM='LP(64),OBJECT,OPTIONS'
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(CYL,(1,1)),DCB=(LRECL=80,BLKSIZE=&SYSLBLK)
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//SYSUT2 DD DSN=&&SYSUT2,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//SYSUT3 DD DSN=&&SYSUT3,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024

Compile and bind - 64-bit (IBMQCB)
The IBMQCB cataloged procedure, shown in Table 28 on page 153, includes two procedure steps: PLI,
which is identical to cataloged procedure IBMQC, and BIND, which invokes the Program Management
binder (symbolic name IEWBLINK) to bind the object module produced in the first procedure step.

Input data for the compilation procedure step requires the qualified ddname PLI.SYSIN. The COND
parameter in the EXEC statement BIND specifies that this procedure step should be bypassed if the
return code produced by the compiler is greater than 8 (that is, if a severe error or an unrecoverable error
occurs during compilation).

152 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

For binding 64-bit programs, the DYNAM(DLL) binder option is required, and the options CASE(MIXED),
AMODE(64), and RMODE(ANY) are strongly recommended. In addition, the PL/I side-deck IBMPQV11 and
the C side-deck file CELQS003 must be included as input to the binder.

Table 28. Cataloged Procedure IBMQCB (64-bit)

//IBMQCB PROC LNGPRFX='IBMZ.V6R1M0',LIBPRFX='CEE',
// SYSLBLK=3200,GOPGM=GO
//*
//***
//* Licensed Materials - Property of IBM *
//* 5655-PL6 *
//* Copyright IBM Corp. 1999, 2022 All Rights Reserved *
//* *
//* US Government Users Restricted Rights - Use, duplication or *
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
//* *
//***
//*
//* IBM Enterprise PL/I for z/OS
//* Version 6 Release 1 Modification 0
//*
//* COMPILE AND BIND A 64-BIT PL/I PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IBMZ.V6R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET
//* GOPGM GO MEMBER NAME FOR PROGRAM OBJECT
//*
//***
//* COMPILE STEP
//***
//PLI EXEC PGM=IBMZPLI,PARM='LP(64),OBJECT,OPTIONS'
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(CYL,(1,1)),DCB=(LRECL=80,BLKSIZE=&SYSLBLK)
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//SYSUT2 DD DSN=&&SYSUT2,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//SYSUT3 DD DSN=&&SYSUT3,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//***
//* BIND STEP
//***
//BIND EXEC PGM=IEWBLINK,COND=(8,LT,PLI),
// PARM='CASE(MIXED),DYNAM(DLL),AMODE=64,RMODE=ANY,LIST,MAP,XREF'
//SYSLIB DD DSN=&LIBPRFX..SCEEBND2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=*.PLI.SYSLIN,DISP=(OLD,DELETE)
// DD DSN=&LIBPRFX..SCEELIB(CELQS003),DISP=SHR
// DD DSN=&LIBPRFX..SCEELIB(IBMPQV11),DISP=SHR
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(1024,(50,20,1)),DSNTYPE=LIBRARY
//SYSDEFSD DD DUMMY
//SYSIN DD DUMMY

The Program Management binder always places the program objects it creates in the standard data
set defined by the DD statement with the name SYSLMOD. This statement in the cataloged procedure
specifies a new temporary library &&GOSET, in which the program object will be placed and given the
member name GO. In specifying a temporary library, the cataloged procedure assumes that you will run
the program object in the same job; if you want to retain the program object, you must substitute your
own statement for the DD statement with the name SYSLMOD.

Compile, bind, and run - 64-bit (IBMQCBG)
The IBMQCBG cataloged procedure, shown in Table 29 on page 154, includes three procedure steps:
PLI, BIND, and GO. PLI and BIND are identical to the two procedure steps of IBMQCB, and GO runs the

Chapter 3. Using PL/I cataloged procedures 153

program object created in the step BIND. The GO step is executed only if no severe or unrecoverable
errors occurred in the preceding procedure steps.

Input data for the compilation procedure step should be specified in a DD statement with the name
PLI.SYSIN, and for the GO step in a DD statement with the name GO.SYSIN.

Table 29. Cataloged procedure IBMQCBG (64-bit)

//IBMQCBG PROC LNGPRFX='IBMZ.V6R1M0',LIBPRFX='CEE',
// SYSLBLK=3200,GOPGM=GO
//*
//***
//* Licensed Materials - Property of IBM *
//* 5655-PL6 *
//* Copyright IBM Corp. 1999, 2022 All Rights Reserved *
//* *
//* US Government Users Restricted Rights - Use, duplication or *
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
//* *
//***
//*
//* IBM Enterprise PL/I for z/OS
//* Version 6 Release 1 Modification 0
//*
//* COMPILE, BIND, AND RUN A 64-BIT PL/I PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IBMZ.V6R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET
//* GOPGM GO MEMBER NAME FOR PROGRAM OBJECT
//*
//***
//* COMPILE STEP
//***
//PLI EXEC PGM=IBMZPLI,PARM='LP(64),OBJECT,OPTIONS'
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(CYL,(1,1)),DCB=(LRECL=80,BLKSIZE=&SYSLBLK)
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//SYSUT2 DD DSN=&&SYSUT2,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//SYSUT3 DD DSN=&&SYSUT3,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//***
//* BIND STEP
//***
//BIND EXEC PGM=IEWBLINK,COND=(8,LT,PLI),
// PARM='CASE(MIXED),DYNAM(DLL),AMODE=64,RMODE=ANY,LIST,MAP,XREF'
//SYSLIB DD DSN=&LIBPRFX..SCEEBND2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=*.PLI.SYSLIN,DISP=(OLD,DELETE)
// DD DSN=&LIBPRFX..SCEELIB(CELQS003),DISP=SHR
// DD DSN=&LIBPRFX..SCEELIB(IBMPQV11),DISP=SHR
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(1024,(50,20,1)),DSNTYPE=LIBRARY
//SYSDEFSD DD DUMMY
//SYSIN DD DUMMY
//***
//* RUN STEP
//***
//GO EXEC PGM=*.BIND.SYSLMOD,COND=((8,LT,PLI),(8,LE,BIND))
//STEPLIB DD DSN=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

154 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Invoking a cataloged procedure
To invoke a cataloged procedure, specify its name in the PROC parameter of an EXEC statement.

For example, to use the cataloged procedure IBMZC, you can include the following statement in the
appropriate position among your other job control statements in the input stream:

 //stepname EXEC PROC=IBMZC

You do not need to code the keyword PROC. If the first operand in the EXEC statement does not begin
with PGM= or PROC=, the job scheduler interprets it as the name of a cataloged procedure. The following
statement is equivalent to that given above:

 //stepname EXEC IBMZC

If you include the parameter MSGLEVEL=1 in your JOB statement, the operating system will include the
original EXEC statement in its listing, and will add the statements from the cataloged procedure. In the
listing, cataloged procedure statements are identified by XX or X/ as the first two characters; X/ signifies a
statement that was modified for the current invocation of the cataloged procedure.

You might be required to modify the statements of a cataloged procedure for the duration of the job step
in which it is invoked, either by adding DD statements or by overriding one or more parameters in the
EXEC or DD statements. For example, cataloged procedures that invoke the compiler require the addition
of a DD statement with the name SYSIN to define the data set containing the source statements. Also,
whenever you use more than one standard link-edit procedure step in a job, you must modify all but the
first cataloged procedure that you invoke if you want to run more than one of the load modules.

Specifying multiple cataloged procedure invocations
You can invoke different cataloged procedures, or invoke the same cataloged procedure several times, in
the same job.

No special problems are likely to arise unless more than one of these cataloged procedures involves a
link-edit procedure step, in which case you must take the following precautions to ensure that all your
load modules can be run.

When the linkage editor creates a load module, it places the load module in the standard data set defined
by the DD statement with the name SYSLMOD. When the binder creates a program object, it places the
program object in the PDSE defined by the DD statement with the name SYSLMOD. In the absence of a
linkage editor NAME statement, the linkage editor or the binder uses the member name specified in the
DSNAME parameter as the name of the module. In the standard cataloged procedures, the DD statement
with the name SYSLMOD always specifies a temporary library &&GOSET with the member name GO.

If you use the cataloged procedure IBMZCBG twice within the same job to compile, bind, and run two PL/I
programs, and do not name each of the two program objects that the binder creates, the first program
object runs twice, and the second one not at all.

To prevent this, use one of the following methods:

• Delete the library &&GOSET at the end of the GO step. In the first invocation of the cataloged procedure
at the end of the GO step, add a DD statement with the syntax:

 //GO.SYSLMOD DD DSN=&&GOSET,
 // DISP=(OLD,DELETE)

• Modify the DD statement with the name SYSLMOD in the second and subsequent invocations of the
cataloged procedure so as to vary the names of the load modules; for example, //BIND.SYSLMOD DD
DSN=&&GOSET(GO1), and so on.

• Use the NAME linkage editor option to give a different name to each program object and change each
job step EXEC statement to specify the running of the program object with the name for that job step.

Chapter 3. Using PL/I cataloged procedures 155

To assign a membername to the program object, you can use the linkage editor NAME option with the
DSNAME parameter on the SYSLMOD DD statement. When you use this procedure, the membername
must be identical to the name on the NAME option if the EXEC statement that runs the program refers to
the SYSLMOD DD statement for the name of the module to be run.

Another option is to give each program a different name by using GOPGM on the EXEC procedure
statement, as in the following example:

 // EXEC IBMZCBG,GOPGM=GO2

Modifying the PL/I cataloged procedures
You can modify a cataloged procedure temporarily by including parameters in the EXEC statement that
invokes the cataloged procedure, or by placing additional DD statements after the EXEC statement.

Temporary modifications apply only for the duration of the job step in which the procedure is invoked.
They do not affect the main copy of the cataloged procedure in the procedure library.

Temporary modifications can apply to EXEC or DD statements in a cataloged procedure. To change a
parameter of an EXEC statement, you must include a corresponding parameter in the EXEC statement
that invokes the cataloged procedure. To change one or more parameters of a DD statement, you must
include a corresponding DD statement after the EXEC statement that invokes the cataloged procedure.
Although you cannot add a new EXEC statement to a cataloged procedure, you can always include
additional DD statements.

EXEC statement
You can modify a cataloged procedure temporarily by including parameters in the EXEC statement that
invokes the cataloged procedure.

If a parameter of an EXEC statement that invokes a cataloged procedure has an unqualified name, the
parameter applies to all the EXEC statements in the cataloged procedure. The effect on the cataloged
procedure depends on the parameters, as follows:

• PARM applies to the first procedure step and nullifies any other PARM parameters.
• COND and ACCT apply to all the procedure steps.
• TIME and REGION apply to all the procedure steps and override existing values.

For example, the following statement has these effects:

 //stepname EXEC IBMZCBG,PARM='OFFSET',REGION=32M

• Invokes the cataloged procedure IBMZCBG.
• Substitutes the option OFFSET for OBJECT and OPTIONS in the EXEC statement for procedure step PLI.
• Nullifies the PARM parameter in the EXEC statement for procedure step BIND.
• Specifies a region size of 32M for all three procedure steps.

To change the value of a parameter in only one EXEC statement of a cataloged procedure, or to add a new
parameter to one EXEC statement, you must identify the EXEC statement by qualifying the name of the
parameter with the name of the procedure step. For example, to alter the region size for procedure step
PLI only in the preceding example, code as follows:

 //stepname EXEC PROC=IBMZCBG,PARM='OFFSET',REGION.PLI=90M

A new parameter specified in the invoking EXEC statement completely overrides the corresponding
parameter in the procedure EXEC statement.

156 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

You can nullify all the options specified by a parameter by coding the keyword and equal sign without
a value. For example, to suppress the bulk of the linkage editor listing when invoking the cataloged
procedure IBMZCBG, code as follows:

 //stepname EXEC IBMZCBG,PARM.BIND=

DD statement
You can modify a cataloged procedure temporarily by placing additional DD statements after the EXEC
statement.

To add a DD statement to a cataloged procedure, or to modify one or more parameters of an existing DD
statement, you must include a DD statement with the form procstepname.ddname in the appropriate
position in the input stream. If ddname is the name of a DD statement already present in the procedure
step identified by procstepname, the parameters in the new DD statement override the corresponding
parameters in the existing DD statement; otherwise, the new DD statement is added to the procedure
step. For example, the following statement adds a DD statement to the procedure step PLI of cataloged
procedure IBMZC:

 //PLI.SYSIN DD *

The following statement modifies the existing DD statement SYSPRINT (causing the compiler listing to be
transmitted to the system output device of class C).

 //PLI.SYSPRINT DD SYSOUT=C

Overriding DD statements must appear after the procedure invocation and in the same order as they
appear in the cataloged procedure. Additional DD statements can appear after the overriding DD
statements are specified for that step.

To override a parameter of a DD statement, code either a revised form of the parameter or a replacement
parameter that performs a similar function (for example, SPLIT for SPACE). To nullify a parameter, code
the keyword and equal sign without a value. You can override DCB subparameters by coding only those
you want to modify; that is, the DCB parameter in an overriding DD statement does not necessarily
override the entire DCB parameter of the corresponding statement in the cataloged procedures.

Chapter 3. Using PL/I cataloged procedures 157

158 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 4. Compiling your program
This chapter describes how to invoke the compiler under z/OS UNIX System Services (z/OS UNIX) and the
job control statements used for compiling under z/OS.

The Language Environment SCEERUN data set must be accessible to the compiler when you compile your
program.

Invoking the compiler under z/OS UNIX
To compile your program under the z/OS UNIX environment, use the pli command.

pli

command_line_option input_file

command_line_option
You can specify a command_line_option in the following ways:

• -qoption
• Option flag (usually a single letter preceded by -)

If you specify compile time options on the command line, the format differs from the format if you set
them in your source file using %PROCESS statements. See “Specifying compile-time options under
z/OS UNIX” on page 160.

input_file
The z/OS UNIX file specification for your program files.

If you omit the extension from your file specification, the compiler assumes the extension .pli. If
you omit the complete path, the compiler assumes the current directory.

Input files
The pli command compiles PL/I source files, links the resulting object files with any object files and
libraries specified on the command line in the order indicated, and produces a single executable file.

The pli command accepts the following types of files:

Source files—.pli
All .pli files are source files for compilation. The pli command sends source files to the compiler
in the order they are listed. If the compiler cannot find a specified source file, it produces an error
message and the pli command proceeds to the next file if one exists.

All zFS source files must be line-delimited and encoded in EBCDIC.

You may also compile a source file that is in a PDS(E). For example, if you want to compile the member
SAMPLE from the PDS file USER.SOURCE.PLI, you could do this via the command

pli -c "//'USER.SOURCE.PLI(SAMPLE)'"

where the data set name 'USER.SOURCE.PLI(SAMPLE)' is enclosed by a leading "// ".

Object files—.o
All .o files are object files. The pli command sends all object files along with library files to the
linkage editor at link-edit time unless you specify the -c option. After it compiles all the source files,
the compiler invokes the linkage editor to link-edit the resulting object files with any object files
specified in the input file list, and produces a single executable output file.

© Copyright IBM Corp. 1999, 2022 159

Library files—.a
The pli command sends all of the library files (.a files) to the linkage editor at link-edit time.

Specifying compile-time options under z/OS UNIX
Enterprise PL/I provides compile-time options to change any of the default settings of the compiler. You
can specify options on the command line, and they remain in effect for all compilation units in the file
unless %PROCESS statements in your source program override them.

See “Compile-time option descriptions” on page 3 for a description of these options.

When you specify options on the command line, they override the default settings of the option. They are
overridden by options set in the source file.

You can specify compile-time options on the command line in three ways:

• -qoption_keyword (compiler-specific)
• Single and multiletter flags
• -q+/u/myopts.txt

Under z/OS UNIX, if the user exit input file is in, for example,

 /a/b/ibmuexit.inf

then you can either specify export DD_SYSUEXIT=/a/b/ibmuexit.inf before compiling with the
-qexit option, or compile with -qexit=//a/b/ibmuexit.inf where the // symbols are required.

-qoption_keyword
You can specify options on the command line by using the -qoption format.

-q option_keyword

 =

:

suboption

suboption=argument

You can have multiple -qoptions on the same command line, but they must be separated by blanks.
Option keywords can appear in either uppercase or lowercase, but you must specify the -q in lowercase.

Some compile-time options allow you to specify suboptions. These suboptions are indicated on the
command line with an equal sign following the -qoption_keyword. Multiple suboptions must be separated
with a colon(:) and no intervening blanks.

An option, for example, that contains multiple suboptions is RULES. To specify RULES(LAXDCL) on the
command line, enter the following command:

-qrules=ibm:laxdcl

The LIMITS option is slightly more complex because each of its suboptions also has an argument. You can
specify LIMITS(EXTNAME(31),FIXEDDEC(15)) on the command line as shown in the following example:

-qlimits=extname=31:fixeddec=15

Related information
“RULES” on page 70
The RULES option allows or disallows certain language capabilities and lets you choose semantics when
alternatives are available. It can help you diagnose common programming errors.
“LIMITS” on page 47

Specifying compile-time options

160 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

The LIMITS option specifies various implementation limits.

Single and multiletter flags
The z/OS UNIX family of compilers uses a number of common conventional flags. Each language has its
own set of additional flags.

Some flag options have arguments that form part of the flag. In the following example, /home/test3/
include is an include directory to be searched for INCLUDE files.

pli samp.pli -I/home/test3/include

Each flag option should be specified as a separate argument.

Table 30. Compile-time option flags supported by Enterprise PL/I under z/OS UNIX

Option Description

-c Compile only.

-e Create names and entries for a fetchable load module.

-I<dir>* Add path <dir> to the directories to be searched for INCLUDE files. -I must
be followed by a path and only a single path is allowed per -I option. To add
multiple paths, use multiple -I options. There should not be any spaces between
-I and the path name.

-O, -O2 Optimize generated code. This option is equivalent to -qOPT=2.

-q<option>* Pass it to the compiler. <option> is a compile-time option. Each option should be
delimited by a comma and each suboption should be delimited by an equal sign
or a colon. There should not be any spaces between -q and <option>.

-v Display compile and link steps, and execute them.

-# Display compile and link steps, but do not execute them.

Note: *You must specify an argument where indicated; otherwise, the results are unpredictable.

Invoking the compiler under z/OS using JCL
Although you will probably use cataloged procedures rather than supply all the JCL statements required
for a job step that invokes the compiler, you must be familiar with these statements so that you can make
the best use of the compiler and, if necessary, override the statements of the cataloged procedures.

So-called "batch compilation", whereby one compilation produces more than one object deck, is not
supported.

Invoking the compiler by BPXBATCH is also not supported.

The following section describes the JCL needed for compilation. The IBM-supplied cataloged procedures
described in “IBM-supplied cataloged procedures” on page 147 contain these statements. You need to
code them yourself only if you are not using the cataloged procedures.

EXEC statement
The basic EXEC statement is //stepname EXEC PGM.

512K is required for the REGION parameter of this statement.

If you compile your programs with optimization turned on, the REGION size (and time) required might be
much, much larger.

The PARM parameter of the EXEC statement can be used to specify one or more of the optional facilities
provided by the compiler. These facilities are described under “Specifying options in the EXEC statement”

Specifying compile-time options

Chapter 4. Compiling your program 161

on page 165. See Chapter 1, “Using compiler options and facilities,” on page 3 for a description of the
options.

DD statements for the standard data sets
The compiler requires several standard data sets. The number of data sets depends on the optional
facilities specified. You must define these data sets in DD statements.

You must define these data sets in DD statements with the standard ddnames shown, together with
other characteristics of the data sets, in Table 31 on page 162. The DD statements SYSIN, SYSUT1, and
SYSPRINT are always required.

You can store any of the standard data sets on a direct access device, but you must include the SPACE
parameter in the DD statement. This parameter defines the data set to specify the amount of auxiliary
storage required. The amount of auxiliary storage allocated in the IBM-supplied cataloged procedures
should suffice for most applications.

Table 31. Compiler standard data sets

Standard DDNAME Contents of data set Possible
device
classes1

Record
format
(RECFM)

Record size (LRECL)

SYSDEBUG TEST(SEPARATE) output SYSDA F,FB >=80 and <=1024

SYSDEFSD XINFO(DEF) output SYSDA F,FB 128

SYSIN Input to the compiler SYSSQ F,FB,U <101(100)

VB,V <105(104)

SYSLIB Source statements for INCLUDE
files

SYSDA F,FB,U <101

V,VB <105

SYSLIN Object module SYSSQ FB 80

SYSPRINT Listing, including messages SYSSQ VBA 137 if MARGINS <= 100)

255 (if MARGINS > 100)

SYSPUNCH Preprocessor output, compiler
output

SYSSQ

SYSCP

FB 80

or

MARGINS() value

SYSUT1 Temporary workfile SYSDA F 4051

SYSUT2 Temporary workfile SYSDA FB 3200

SYSUT3 Temporary workfile SYSDA FB 3200

SYSXMLSD XINFO(XML) output SYSDA VB 16383

SYSADATA XINFO(MSG) output SYSDA U 1024

Specifying compile-time options

162 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 31. Compiler standard data sets (continued)

Standard DDNAME Contents of data set Possible
device
classes1

Record
format
(RECFM)

Record size (LRECL)

1. Descriptions of device classes
SYSSQ

Sequential device
SYSDA

Direct access device

Block size can be specified except for SYSUT1. The block size and logical record length for SYSUT1 is
chosen by the compiler.

Notes:

1. The only value for compile-time SYSPRINT that can be overridden is BLKSIZE.
2. SYSUT2 and SYSUT3 are required only under LP(64) and only if the GONUMBER or TEST option is in effect.

Input (SYSIN)
Input to the compiler must be a data set defined by a DD statement with the name SYSIN.

This data set must have the CONSECUTIVE organization. The input must be one or more external PL/I
procedures. If you want to compile more than one external procedure in a single job or job step, precede
each procedure, except possibly the first, with a %PROCESS statement.

80-byte records are commonly used as the input medium for PL/I source programs. The input data set
can be on a direct access device or on some other sequential media. The input data set can contain either
fixed-length records (blocked or unblocked), variable-length records (coded or uncoded), or undefined-
length records. The maximum record size is 100 bytes.

The maximum number of lines in the input file is 999999.

When data sets are concatenated for input to the compiler, the concatenated data sets must have similar
characteristics (for example, block size and record format).

Output (SYSLIN, SYSPUNCH)
Output in the form of one or more object modules from the compiler will be stored in the data set SYSLIN
if you specify the OBJECT compile-time option. This data set is defined by the DD statement.

The object module is always in the form of 80-byte fixed-length records, blocked or unblocked. If the
BLKSIZE is specified for SYSLIN and is not 80, the LRECL must be specified as 80.

The SYSLIN DD must name either a temporary data set or a permanent data set: it cannot specify a
concatenation of data sets of any type.

The SYSLIN DD must specify a sequential data set, not a PDS or PDSE.

The data set defined by the DD statement with the name SYSPUNCH is also used to store the output from
the preprocessor if you specify the MDECK compile-time option.

Temporary workfile (SYSUT1)
The compiler requires a data set for use as a temporary workfile. It is defined by a DD statement with
the name SYSUT1, and is known as the spill file. It must be on a direct access device, and must not be
allocated as a multivolume data set.

The spill file is used as a logical extension to main storage and is used by the compiler and by the
preprocessor to contain text and dictionary information. The LRECL and BLKSIZE for SYSUT1 is chosen by
the compiler based on the amount of storage available for spill file pages.

Specifying compile-time options

Chapter 4. Compiling your program 163

The DD statements given in this publication and in the cataloged procedures for SYSUT1 request a space
allocation in blocks of 1024 bytes. This is to ensure that adequate secondary allocations of direct access
storage space are acquired.

Temporary workfile (SYSUT2, SYSUT3)
The compiler requires SYSUT2 and SYSUT3 as temporary data sets when compiling programs under the
LP(64) option and the GONUMBER or TEST option is in effect.

For large programs, if there is not enough space available in the SYSUT2 or the SYSUT3 data set, then the
compiler might abend.

Listing (SYSPRINT)
The compiler generates a listing that includes all the source statements that it processed, information
relating to the object module, and, when necessary, messages.

Most of the information included in the listing is optional, and you can specify those parts that you require
by including the appropriate compile-time options. For details about the information that can appear and
the associated compile-time options, see “Using the compiler listing” on page 103.

You must define the data set, in which you want the compiler to store its listing, in a DD statement
with the name SYSPRINT. This data set must have the CONSECUTIVE organization. Although the listing
is usually printed, it can be stored on any sequential or direct access device. For printed output, the
following statement will suffice if your installation follows the convention that output class A refers to a
printer:

//SYSPRINT DD SYSOUT=A

Source Statement Library (SYSLIB)
If you use the %INCLUDE statement to introduce source statements into the PL/I program from a library,
you can either define the library in a DD statement with the name SYSLIB, or choose your own ddname (or
ddnames) and specify a ddname in each %INCLUDE statement.

The DD statement should specify a PDS or PDSE, but not the actual member. For example, to include the
file HEADER from the library SYSLIB by using the data set INCLUDE.PLI, you can use one of the following
%INCLUDE statements:

• %INCLUDE HEADER;
• %INCLUDE SYSLIB(HEADER);

The DD statement should be specified as follows:

SYSLIB DD DISP=SHR,DSN=INCLUDE.PLI

But the following statement is not valid:

SYSLIB DD DISP=SHR,DSN=INCLUDE.PLI(HEADER)

All %INCLUDE files must have the same record format (fixed, variable, or undefined), the same logical
record length, and the same left and right margins as the SYSIN source file.

The BLOCKSIZE of the library must be less than or equal to 32760 bytes.

The maximum number of lines in any one include file is 999999.

Specifying compile-time options

164 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Specifying options
For each compilation, the IBM-supplied or installation default for a compile-time option applies unless it
is overridden by specifying the option in a %PROCESS statement or in the PARM parameter of an EXEC
statement.

An option specified in the PARM parameter overrides the default value, and an option specified in a
%PROCESS statement overrides both the value specified in the PARM parameter and the default value.

Note: When conflicting attributes are specified either explicitly or implicitly by the specification of other
options, the latest implied or explicit option is accepted. No diagnostic message is issued to indicate that
any options are overridden in this way.

Specifying options in the EXEC statement
To specify options in the EXEC statement, code PARM= followed by the list of options. You can list the
options in any order. You must separate the options with commas, and enclose the list within single
quotation marks.

See the following example:

//STEP1 EXEC PGM=IBMZPLI,PARM='OBJECT,LIST'

If any option has quotation marks, for example MARGINI('c'), you must duplicate the quotation marks.
The length of the option list must not exceed 100 characters, including the separating commas. However,
you can use the abbreviated syntax of options, if available, to save space. If you need to continue the
statement onto another line, you must enclose the list of options in parentheses (instead of in quotation
marks), enclose the options list on each line in quotation marks, and ensure that the last comma on each
line except the last line is outside the quotation marks. The following example illustrates all these points:

//STEP1 EXEC PGM=IBMZPLI,PARM=('AG,A',
// 'C,F(I)',
// 'M,MI(''X''),NEST,STG,X')

If you are using a cataloged procedure and want to specify options explicitly, you must include the PARM
parameter in the EXEC statement that invokes it, qualifying the keyword PARM with the name of the
procedure step that invokes the compiler, as in the following example:

//STEP1 EXEC nnnnnnn,PARM.PLI='A,LIST'

Specifying options in the EXEC statement using an options file
Another way to specify options in the EXEC statement is by declaring all your options in an options file and
coding the following:

//STEP1 EXEC PGM=IBMZPLI,PARM='+DD:OPTIONS'

This method allows you to provide a consistent set of options that you frequently use. This is especially
effective if you want other programmers to use a common set of options. It also gets you past the
100-character limit.

The MARGINS option does not apply to options files: the data in column 1 will be read as part of the
options. Also, if the file is F-format, any data after column 72 will be ignored.

The parm string can contain "normal" options and can point to more than one options file. For instance, to
specify the option LIST as well as options from both the file in the GROUP DD and the file in the PROJECT
DD, you can specify the following:

 PARM='LIST +DD:GROUP +DD:PROJECT'

The options in the PROJECT file have precedence over options in the GROUP file.

Specifying compile-time options

Chapter 4. Compiling your program 165

Also, in this case, the LIST option might be turned off by a NOLIST option specified in either of the options
files. To ensure that the LIST option is on, you can specify the following:

 PARM='+DD:GROUP +DD:PROJECT LIST'

You can also use options files under z/OS UNIX. For example, in z/OS UNIX, to compile sample.pli with
options from the file /u/pli/group.opt, you can use the following command:

 pli -q+/u/pli/group.opt sample.pli

Earlier releases of the compiler used the character '@' as the trigger character that preceded the options
file specification. This character is not part of the invariant set of EBCDIC code points, and for that reason
the character '+', which is invariant, is preferred. However, the '@' character can still be used as long as it
is specified with the hex value '7C'x.

Specifying compile-time options

166 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 5. Link-editing and running for 31-bit
programs

After compilation with LP(32), your 31-bit program consists of one or more object modules that contain
unresolved references to each other, as well as references to the Language Environment runtime library.
These references are resolved during link-editing (statically) or during execution (dynamically).

After you compile your PL/I program, the next step is to link and run your program with test data to verify
that it produces the results you expect.

Language Environment provides the runtime environment and services you need to execute your program.
For instructions on linking and running PL/I and all other Language Environment-conforming language
programs, see the z/OS Language Environment Programming Guide. For information about migrating your
existing PL/I programs to Language Environment, see the Enterprise PL/I for z/OS Compiler and Run-Time
Migration Guide.

Link-edit considerations for 31-bit programs
If you compile with the option RENT or the option LIMITS(EXTNAME(n)) with n > 8, you must use a PDSE
for your linker output.

Using the binder in 31-bit programs
You must place the binder output into a PDSE.

When linking a DLL, you must specify any needed definition side-decks during the bind step.

Using the ENTRY card
If you are building a module that will be fetched and that has an Enterprise PL/I routine as its entry point,
the ENTRY card should specify the name of that PL/I entry point.

If the module is to be fetched from Enterprise PL/I, you can specify CEESTART on the ENTRY card,
although this is strongly not recommended. However, if the module is to be fetched from COBOL or the
assembler, the ENTRY card absolutely must specify the name of the PL/I entry point into the module and
not CEESTART.

Runtime considerations for 31-bit programs
You can specify runtime options as parameters passed to the program initialization routine. You can
also specify runtime options in the PLIXOPT variable. It might also prove beneficial, from a performance
standpoint, if you alter your existing programs by using the PLIXOPT variable to specify your runtime
options and recompiling your programs.

For a description of using PLIXOPT, see the z/OS Language Environment Programming Guide.

To simplify input/output at the terminal, various conventions have been adopted for stream files that are
assigned to the terminal. Three areas are affected:

1. Formatting of PRINT files
2. The automatic prompting feature
3. Spacing and punctuation rules for input

Note: No prompting or other facilities are provided for record I/O at the terminal, so you are strongly
advised to use stream I/O for any transmission to or from a terminal.

© Copyright IBM Corp. 1999, 2022 167

Formatting conventions for PRINT files
When a PRINT file is assigned to the terminal, it is assumed that it will be read as it is being printed.
Spacing is therefore reduced to a minimum to reduce printing time.

The following rules apply to the PAGE, SKIP, and ENDPAGE keywords:

• PAGE options or format items result in three lines being skipped.
• SKIP options or format items larger than SKIP (2) result in three lines being skipped. SKIP (2) or less is

treated in the usual manner.
• The ENDPAGE condition is never raised.

Changing the format on PRINT files for 31-bit programs
If you want normal spacing to apply to output from a PRINT file at the terminal, you must supply your own
tab table for PL/I.

Follow these steps:

1. Declare an external structure called PLITABS in the main program or in a program linked with the main
program.

2. Initializing the element PAGELENGTH to the number of lines that can fit on your page. This value
differs from PAGESIZE, which defines the number of lines you want to print on the page before
ENDPAGE is raised (see Figure 1 on page 169).

If you require a PAGELENGTH of 64 lines, declare PLITABS as shown in Table 32 on page 168. For
information about overriding the tab table, see “Overriding the tab control table” on page 241.

If your code contains a declare for PLITABS, ensure that the values and the first field in the PLITABS
structure must are all valid. This field is supposed to hold the offset to the field specifying the number of
tabs set by the structure, and the Enterprise PL/I library code will not work correctly if this is not true.

If compiling with the RENT option, PLITABS must be declared with the NONASGN attribute. It is
recommended that PLITABS should always be declared with the NONASGN attribute, because the
NONASGN attribute can also be specified when compiling with NORENT.

Table 32. Declaration of PLITABS. This declaration gives the standard page size, line size, and tabulating
positions.

DCL 1 PLITABS STATIC EXTERNAL NONASGN,
 (2 OFFSET INIT (14),
 2 PAGESIZE INIT (60),
 2 LINESIZE INIT (120),
 2 PAGELENGTH INIT (64),
 2 FILL1 INIT (0),
 2 FILL2 INIT (0),
 2 FILL3 INIT (0),
 2 NUMBER_OF_TABS INIT (5),
 2 TAB1 INIT (25),
 2 TAB2 INIT (49),
 2 TAB3 INIT (73),
 2 TAB4 INIT (97),
 2 TAB5 INIT (121)) FIXED BIN (15,0);

168 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Figure 1. PAGELENGTH and PAGESIZE

Automatic prompting
When the program requires input from a file that is associated with a terminal, it issues a prompt. This
takes the form of printing a colon on the next line and then skipping to column 1 on the line following the
colon. This gives you a full line to enter your input.

See the following example:

:
(space for entry of your data)

This type of prompt is referred to as a primary prompt.

Overriding automatic prompting
You can override the primary prompt by making a colon the last item in the request for the data. You
cannot override the secondary prompt.

For example, the following two PL/I statements result in the terminal displaying output shown in Figure 2
on page 169.

PUT SKIP EDIT ('ENTER TIME OF PERIHELION') (A);
GET EDIT (PERITIME) (A(10));

ENTER TIME OF PERIHELION
: (automatic prompt)
(space for entry of data)

Figure 2. Output with automatic prompt

Chapter 5. Link-editing and running for 31-bit programs 169

However, if the first statement has a colon at the end of the output as follows, the automatic prompt is
overridden; Figure 3 on page 170 shows the sequence that is displayed on the terminal.

PUT EDIT ('ENTER TIME OF PERIHELION:') (A);

ENTER TIME OF PERIHELION: (space for entry of data)

Figure 3. Output with no automatic prompt

Note: The override remains in force for only one prompt. You will be automatically prompted for the next
item unless the automatic prompt is again overridden.

Punctuating long input lines
To transmit data that requires two or more lines of space at the terminal as one data item, you must use
an SBCS hyphen as the line continuation character. Type an SBCS hyphen as the last character in each line
except the last line.

For example, you must enter data as follows to transmit this sentence: this data must be
transmitted as one unit.

:'this data must be transmitted -
+:as one unit.'

Transmission does not occur until you press ENTER after unit.'. The hyphen is removed. The item
transmitted is called a logical line.

Note: To transmit a line whose last data character is a hyphen or a PL/I minus sign, enter two hyphens at
the end of the line, followed by a null line as the next line. See the following example:

xyz--
(press ENTER only on this line)

Punctuating GET LIST and GET DATA statements
For GET LIST and GET DATA statements, a comma is added to the end of each logical line transmitted
from the terminal, if the programmer omits it. Thus there is no need to enter blanks or commas to delimit
items if they are entered on separate logical lines.

Given the PL/I statement GET LIST(A,B,C);, you can enter data as follows at the terminal:

:1
+:2
+:3

This rule also applies when you enter character-string data. Therefore, a character string must transmit as
one logical line. Otherwise, commas are placed at the break points. For example, suppose you enter the
following data:

:'COMMAS SHOULD NOT BREAK
+:UP A CLAUSE.'

The resulting string is COMMAS SHOULD NOT BREAK, UP A CLAUSE.

The comma is not added if a hyphen was used as a line continuation character.

170 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Automatic padding for GET EDIT
For a GET EDIT statement, you do not need to enter blanks at the end of the line. The data will be padded
to the specified length.

For example, given the PL/I statement GET EDIT (NAME) (A(15));, you can enter the 5 characters
SMITH, and the data will be padded with ten blanks so that the program receives the fifteen characters:

'SMITH '

Note: A single data item must transmit as a logical line. Otherwise, the first line transmitted will be
padded with the necessary blanks and taken as the complete data item.

Use of SKIP for terminal input
All uses of SKIP for input are interpreted as SKIP(1) when the file is allocated to the terminal. SKIP(1) is
treated as an instruction to ignore all unused data on the currently available logical line.

ENDFILE
You can enter end-of-file at the terminal by typing a logical line that consists of the two characters /*.

Any further attempts to use the file without closing it result in the ENDFILE condition being raised.

SYSPRINT considerations for 31-bit programs
The PL/I standard SYSPRINT file is shared by multiple enclaves within an application. You can issue I/O
requests, for example STREAM PUT, from the same or different enclaves. These requests are handled
using the standard PL/I SYSPRINT file as a file that is common to the entire application. The SYSPRINT
file is implicitly closed only when the application terminates, not at the termination of the enclave.

The standard PL/I SYSPRINT file contains user-initiated output only, such as STREAM PUTs. Runtime
library messages and other similar diagnostic output are directed to the Language Environment MSGFILE.
See the z/OS Language Environment Programming Guide for details on redirecting SYSPRINT file output to
the Language Environment MSGFILE.

To be shared by multiple enclaves within an application, the PL/I SYSPRINT file must be declared as an
EXTERNAL FILE constant with a file name of SYSPRINT and also have the attributes STREAM and OUTPUT
as well as the (implied) attribute of PRINT, when OPENed. This is the standard SYSPRINT file as defaulted
by the compiler.

There exists only one standard PL/I SYSPRINT FILE within an application and this file is shared by
all enclaves within the application. For example, the SYSPRINT file can be shared by multiple nested
enclaves within an application or by a series of enclaves that are created and terminated within an
application by the Language Environment preinitialization function. To be shared by an enclave within an
application, the PL/I SYSPRINT file must be declared in that enclave. The standard SYSPRINT file cannot
be shared by passing it as a file argument between enclaves. The declared attributes of the standard
SYSPRINT file should be the same throughout the application, as with any EXTERNALly declared constant.
PL/I does not enforce this rule. Both the TITLE option and the MSGFILE(SYSPRINT) option attempt to
route SYSPRINT to another data set. As such, if the two options are used together, there will be a conflict
and the TITLE option will be ignored.

Having a common SYSPRINT file within an application can be an advantage to applications that utilize
enclaves that are closely tied together. However, since all enclaves in an application write to the same
shared data set, this might require some coordination among the enclaves.

The SYSPRINT file is opened (implicitly or explicitly) when first referenced within an enclave of the
application. When the SYSPRINT file is CLOSEd, the file resources are released (as though the file had
never been opened) and all enclaves are updated to reflect the closed status.

Chapter 5. Link-editing and running for 31-bit programs 171

If SYSPRINT is utilized in a multiple enclave application, the LINENO built-in function only returns the
current line number until after the first PUT or OPEN in an enclave has been issued. This is required in
order to maintain full compatibility with old programs.

The COUNT built-in function is maintained at an enclave level. It always returns a value of zero until the
first PUT in the enclave is issued. If a nested child enclave is invoked from a parent enclave, the value of
the COUNT built-in function is undefined when the parent enclave regains control from the child enclave.

The TITLE option can be used to associate the standard SYSPRINT file with different operating system
data sets, keeping in mind that a particular open association has to be closed before another one is
opened. This association is retained across enclaves for the duration of the open.

PL/I condition handling associated with the standard PL/I SYSPRINT file retains its current semantics and
scope. For example, an ENDPAGE condition raised within a child enclave will only invoke an established
ON-unit within that child enclave. It does not cause invocation of an ON-unit within the parent enclave.

The tabs for the standard PL/I SYSPRINT file can vary when PUTs are done from different enclaves, if the
enclaves contain a user PLITABS table.

If the PL/I SYSPRINT file is utilized as a RECORD file or as a STREAM INPUT file, PL/I supports it at an
individual enclave or task level, but not as a shareable file among enclaves. If the PL/I SYSPRINT file
is open at the same time with different file attributes (for example, RECORD and STREAM) in different
enclaves of the same application, results are unpredictable.

SYSPRINT can also be shared between code compiled by Enterprise PL/I and by older PL/I compilers, but
the following conditions must all apply:

• SYSPRINT must be declared as STREAM OUTPUT.
• The application must not be running under TSO.
• If the runtime option MSGFILE(SYSPRINT) is in effect, there must be no preinitialized programs and no

stored procedures in the application.

Using MSGFILE(SYSPRINT)
Any file attributes that are specified in the ENVIRONMENT option of the file declaration for SYSPRINT
STREAM PRINT are ignored.

Any attributes that are specified on the OPEN statement for SYSPRINT are ignored.

When you use the OPEN statement to open the PL/I SYSPRINT STREAM PRINT file, the file is marked
as opened in the PL/I control blocks, but it is actually opened by the Language Environment.

When you use the CLOSE statements to close the PL/I SYSPRINT STREAM PRINT file, the file is
marked as closed in the PL/I control blocks, but Language Environment still keeps it open.

The synchronization between the Language Environment messages and PL/I user-specified output is not
provided, so the order of the output is unpredictable.

The use of MSGFILE(SYSPRINT) restricts the line size specified by the LINESIZE option to a maximum of
225 characters.

Using FETCH in your routines in 31-bit applications
In Enterprise PL/I, you can fetch routines compiled by PL/I, C, COBOL, or the assembler.

Fetching Enterprise PL/I routines in 31-bit applications
Almost all the restrictions imposed by the older PL/I compilers on fetched modules have been removed.
So a fetched module can now perform the following operations:

• Fetch other modules.
• Perform any I/O operations on any PL/I file. The file can be opened either by the fetched module, by the

main module, or by some other fetched module.

172 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

• ALLOCATE and FREE its own CONTROLLED variables.

There are, however, a few restrictions on an Enterprise PL/I module that is to be fetched:

1. OPTIONS(FETCHABLE) should be specified on the PROCEDURE statement of the fetched routine if
there is no ENTRY card provided during the link-edit step.

2. The ENTRY card should specify the name of that PL/I entry point.

• If the module is to be fetched from Enterprise PL/I, you can specify CEESTART on the ENTRY card,
although this is strongly not recommended.

• However, if the module is to be fetched from COBOL or the assembler, the ENTRY card absolutely
must specify the name of the PL/I entry point into the module and not CEESTART.

3. If the RENT compiler option was used to compile any of the fetched code, the module must be linked
as a DLL.

4. If the NORENT compiler option was used to compile the fetching code, unless the ENTRY for that
module has been declared with OPTIONS(RENT), the fetched module must satisfy at least one of the
following conditions:

• It is a MAIN module.
• It consists only of NORENT code.
• It has as its entry point code compiled with the C or Enterprise PL/I compiler with the NORENT

option in effect. In this case, the module can also contain code compiled with the RENT option, but
calling that code is not supported.

5. If the RENT compiler option was used to compile the fetching code, the ENTRY that is fetched must
not be declared in the fetching module as OPTIONS(COBOL) or OPTIONS(ASM). If you want to avoid
passing descriptors in this situation, you should specify the OPTIONS(NODESCRIPTOR) attribute on
the ENTRY declare.

6. An Enterprise PL/I routine can not fetch itself.

In the case of a nonreentrant and nonreusable module that is loaded multiple times, the order of
processing occurs in a last-in first-out order.

For example, if Program A loads module LOADMODA, then calls Program B, which also loads
LOADMODA, and then issues a DELETE against LOADMODA, the copy of LOADMODA to be deleted
is the one associated with Program B. At this point, the copy of LOADMODA associated with Program A
still exists.

In other words, the DELETE requested against LOADMODA will release the last copy that was loaded,
regardless of which program issues the request.

NORENT WRITABLE code is serially usable, and for that reason, the pointer that is used to represent a
FETCHABLE constant is zeroed out in the prologue code of any NORENT WRITABLE routine. While this
ensures that the code is serially reusable while also providing the correct PL/I semantics, it does impose
a restriction on the use of FETCH with TITLE in NORENT WRITABLE code: if a routine that did a FETCH A
TITLE('B') is exited and reentered, it must re-execute the FETCH A TITLE('B'), before executing any CALL
A statements (otherwise, it would do an implicit FETCH of A (but without any TITLE) before making the
CALL).

As an illustration of some of these restrictions, consider the following sample programs.

*process s list;
 Mainrtn: Proc Options(main nodescriptor);

 Dcl Fetrtn entry(char(5), char(5)) ext
 options(fetchable nodescriptor);
 Dcl string1 char(5);
 Dcl string2 char(5);

 on error begin;
 on error system;
 call plidump('H');
 end;

 string1 = 'hello';

Chapter 5. Link-editing and running for 31-bit programs 173

 string2 = 'there';

 put skip list(procname() || ' Before fetch of FETRTN routine');
 Fetch Fetrtn;

 put skip list(procname() || ' Before call of FETRTN routine');
 Call Fetrtn(string1, string2);

 put skip list(procname() || ' Before release of FETRTN routine');
 Release Fetrtn;

 End ;

*process list s map options;
 Fetrtn: proc(parm1, parm2) options(fetchable nodescriptor);

 dcl parm1 char(5) byaddr;
 dcl parm2 char(5) byaddr;

 put skip list(procname() || ' ' || parm1);
 put skip list(procname() || ' ' || parm2);

 end Fetrtn;

In accordance with Item 1 above, the PROCEDURE statement for the fetched routine FETRTN has
OPTIONS(FETCHABLE) specified.

In accordance with Item 3 above, the linker option DYNAM=DLL must be specified when linking the
routine into a DLL. The DLL must be linked either into a PDSE or into a temporary data set (in which case
DSNTYPE=LIBRARY must be specified on the SYSLMOD DD statement).

Sample JCL to compile, link, and run the above sample programs is provided in the following table:

Table 33. Sample JCL to compile, link, and run sample fetch program

//***
//* compile the fetched program
//***
//PLIF EXEC PGM=IBMZPLI
//STEPLIB DD DSN=IBMZ.V6R1M0.SIBMZCMP,DISP=SHR
// DD DSN=CEE.SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
// SPACE=(CYL,(3,1))
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//SYSIN DD *
*process list s map options;
 Fetrtn: proc(parm1, parm2) options(fetchable nodescriptor);

 dcl parm1 char(5) byaddr;
 dcl parm2 char(5) byaddr;

 put skip list(procname() || ' ' || parm1);
 put skip list(procname() || ' ' || parm2);

 end Fetrtn;
//***
//* link the fetched program
//***
//LKEDF EXEC PGM=IEWL,PARM='XREF,LIST,LET,DYNAM=DLL',
// COND=(7,LT,PLIF),REGION=5000K
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLMOD DD DSN=my.pdse.dataset(FETRTN),DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(CYL,(3,1)),
// DCB=BLKSIZE=1024
//SYSPRINT DD SYSOUT=*
//SYSDEFSD DD DUMMY
//SYSLIN DD DSN=&&LOADSET,DISP=SHR
// DD DDNAME=SYSIN
//SYSIN DD *
 ENTRY FETRTN

174 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 33. Sample JCL to compile, link, and run sample fetch program (continued)

//***
//* compile the MAIN program
//***
//PLIM EXEC PGM=IBMZPLI,PARM='SOURCE,LIST',REGION=256K
//STEPLIB DD DSN=IBMZ.V6R1M0.SIBMZCMP,DISP=SHR
// DD DSN=CEE.SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET2,DISP=(MOD,PASS),UNIT=SYSSQ,
// SPACE=(CYL,(3,1))
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//SYSIN DD *
*process s list;
 Mainrtn: Proc Options(main nodescriptor);

 Dcl Fetrtn entry(char(5) byaddr,
 char(5) byaddr)
 ext
 options(fetchable nodescriptor);

 Dcl string1 char(5);
 Dcl string2 char(5);

 on error begin;
 on error system;
 call plidump('H');
 end;

 string1 = 'hello';
 string2 = 'there';

 put skip list(procname() || ' Before fetch of FETRTN routine');
 Fetch Fetrtn;

 put skip list(procname() || ' Before call of FETRTN routine');
 Call Fetrtn(string1, string2);

 put skip list(procname() || ' Before release of FETRTN routine');
 Release Fetrtn;

 End ;
//***
//* link the MAIN program
//***
//LKEDM EXEC PGM=IEWL,PARM='XREF,LIST,LET,DYNAM=DLL',
// COND=(9,LT,PLIM),REGION=5000K
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLMOD DD DSN=my.pdse.dataset(MAINRTN),DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(CYL,(3,1)),
// DCB=BLKSIZE=1024
//SYSPRINT DD SYSOUT=*
//SYSDEFSD DD DUMMY
//SYSLIN DD DSN=&&LOADSET2,DISP=SHR
// DD DDNAME=SYSIN
//***
//* invoke the MAIN program
//***
//GO EXEC PGM=MAINRTN,COND=(7,LT),PARM='XPLINK(ON)/'
//STEPLIB DD DISP=SHR,DSN=CEE.SCEERUN
// DD DSN=my.pdse.dataset,DISP=SHR
//SYSPRINT DD SYSOUT=*

Sample JCL to compile, link, and run sample fetch program (continued)

Fetching PL/I MAIN routines in 31-bit applications
In an Enterprise PL/I application, you can also fetch a PL/I MAIN program. When a FETCH of a PL/I MAIN
program occurs, a child enclave is created.

You must follow these rules:

• You cannot pass any runtime options to a fetched MAIN program in the parameter string.

Chapter 5. Link-editing and running for 31-bit programs 175

• If the SYSTEM(MVS) compiler option is specified, you can pass an arbitrary parameter list, but if the
parameter is anything other than a single CHAR VARYING string, the compiler flags the MAIN routine
with a warning message.

• You must not specify OPTIONS(ASM) or OPTIONS(NODESCRIPTOR) in the ENTRY declaration for the
fetched MAIN routine in the fetching program.

• Avoid passing runtime options because attempts to parse them might produce LE informational
messages regarding invalid runtime options. If NOEXECOPS is specified in the fetched MAIN routine, the
passed char varying string is not parsed for the runtime options.

• If no parameters are passed to the fetched MAIN program, the fetching program should either specify
OPTIONS(LINKAGE(SYSTEM)) in its ENTRY declaration for the fetched MAIN routine, or be compiled
with DEFAULT(LINKAGE(SYSTEM)).

Examples

Here is the sample of the PL/I fetched MAIN program:

 FMAIN: proc(parm) options(main,noexecops);
 DCL parm char(*) var;
 DCL SYSPRINT print;
 DCL PLIXOPT CHAR(11) VAR INIT('RPTOPTS(ON)')
 STATIC EXTERNAL;
 Put skip list("FMAIN parm: "|| parm);
 Put skip list("FMAIN finished ");
 End FMAIN;

Here is the sample of the PL/I MAIN program that fetches another PL/I MAIN program:

 MainFet: Proc Options(main);
 Dcl Parm char(1000) var;
 Dcl SYSPRINT print;
 Dcl Fmain entry(char(*) var) ;
 Put skip list("MainFet: start ");
 Parm = 'local-parm';
 Put skip list("MainFet parm: "|| Parm);
 Fetch Fmain;
 Call Fmain(Parm);
 Release Fmain;
 Put skip list("MainFet:testcase finished ");
 End;

Fetching z/OS C routines in 31-bit applications
Unless the NORENT option has been specified, the ENTRY declaration in the routine that fetches a z/OS C
routine must not specify OPTIONS(COBOL) or OPTIONS(ASM)—these should be specified only for COBOL
or ASM routines not linked as DLLs.

The z/OS C documentation provides instructions on how to compile and link a z/OS C DLL.

Fetching assembler routines in 31-bit applications
Unless the NORENT option has been specified, the ENTRY declaration in the routine that fetches an
assembler routine must specify OPTIONS(ASM).

When fetching data-only assembler modules, you must use the FETCH A SET(P) construct to ensure that
pointer P is set correctly. Note however that if the AMODEs of the fetching and fetched module are not
both AMODE(31), the pointer P will point to an AMODE changing glue code rather than the module itself.
If AMODE differences are a consideration, it is recommended to have the assembler module return the
address of the table.

176 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Invoking MAIN under TSO/E
If you compile your MAIN program with the SYSTEM(MVS) option, you can invoke the program by using
the TSO CALL command or as a TSO command processor. Both the runtime options and parameters can
be passed in the same way as under MVS batch.

For example, if the MAIN program TSOARG1 was link-edited as a member of a data set named
userid.TEST.load, it can be invoked as follows:

 CALL TEST(TSOARG1) 'RPTSTG(ON),TRAP(ON)/THIS IS MY ARGUMENT'
 or
 CALL TEST(TSOARG1) '/THIS IS MY ARGMENT'
 or
 TSOARG1 TRAP(ON)/THIS IS MY ARGUMENT
 or
 TSOARG1 /THIS IS MY ARGUMENT

Note: The data set containing TSOARG1 (userid.TEST.load) must be in the standard TSO program
search list to run the program without using the CALL statement. This can be accomplished by issuing the
TSO command:

 TSOLIB ACTIVATE DSN('userid.TEST.load')

However, if you compile your MAIN program with the SYSTEM(TSO) option, the program will be passed
a pointer to the Command Processor Parameter List (CPPL). In this case, NOEXECOPS is in effect. Your
program can be invoked as a TSO command, but it cannot be invoked by a TSO CALL statement. See the
following example:

 TSOARG2 This is my argument

The program in Table 34 on page 177 uses the SYSTEM(TSO) interface to address and display the
program arguments from the CPPL.

Table 34. Sample program to display program arguments from the CPPL under TSO when using
SYSTEM(STD) option

 *process system(tso);
 tsoarg2: proc (cppl_ptr) options(main);
 dcl cppl_ptr pointer;
 dcl 1 cppl based(cppl_ptr),
 2 cpplcbuf pointer,
 2 cpplupt pointer,
 2 cpplpscb pointer,
 2 cpplect pointer;
 dcl 1 cpplbuf based(cpplcbuf),
 2 len fixed bin(15),
 2 offset fixed bin(15),
 2 argstr char(1000);
 dcl my_argument char(1000) varying;
 dcl my_argument_len fixed bin(31);
 dcl length builtin;

 my_argument_len = len - offset - 4;
 if my_argument_len = 0 then
 my_argument = '';
 else
 my_argument = substr(argstr,offset + 1, my_argument_len);
 display('Program args: ' || my_argument);
 end tsoarg2;

Whether your MAIN program is invoked as a command or by CALL, you can always specify runtime
options through the PLIXOPT string.

Chapter 5. Link-editing and running for 31-bit programs 177

Invoking MAIN under z/OS UNIX
Under z/OS UNIX, you can compile a MAIN program with the SYSTEM(MVS) or SYSTEM(OS) option;
however, the number and format of the parameters passed to the program differs based on the option
that you use.

If you compile a MAIN program with the SYSTEM(MVS) option, the program will be passed, as usual, one
CHARACTER VARYING string containing the parameters specified when it was invoked.

However, if you compile a MAIN program with the SYSTEM(OS) option, the program will be passed 7
parameters as specified in the z/OS UNIX manuals. These 7 parameters include the following:

• The argument count (which includes the name of the executable as the first "argument")
• The address of an array of addresses of the arguments
• The address of an array of addresses of the arguments as null-terminated character strings
• The count of environment variables set
• The address of an array of addresses of the lengths of the environment variables
• The address of an array of addresses of the environment variables as null-terminated character strings

The program in Table 35 on page 178 uses the SYSTEM(OS) interface to address and display the
individual arguments and environment variables.

Table 35. Sample program to display z/OS UNIX arguments and environment variables

 *process display(std) system(os);

 sayargs:
 proc(argc, pArgLen, pArgStr, envc, pEnvLen, pEnvStr, pParmSelf)
 options(main, noexecops);

 dcl argc fixed bin(31) nonasgn byaddr;
 dcl pArgLen pointer nonasgn byvalue;
 dcl pArgStr pointer nonasgn byvalue;
 dcl envc fixed bin(31) nonasgn byaddr;
 dcl pEnvLen pointer nonasgn byvalue;
 dcl pEnvStr pointer nonasgn byvalue;
 dcl pParmSelf pointer nonasgn byvalue;

 dcl q(4095) pointer based;
 dcl bxb fixed bin(31) based;
 dcl bcz char(31) varz based;

 display('argc = ' || argc);
 do jx = 1 to argc;
 display('pargStr(jx) =' || pArgStr->q(jx)->bcz);
 end;
 display('envc = ' || envc);
 do jx = 1 to envc;
 display('pEnvStr(jx) =' || pEnvStr->q(jx)->bcz);
 end;

 end;

178 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 6. Link-editing and running for 64-bit
programs

After compilation with LP(64), your 64-bit program consists of one or more object modules that contain
unresolved references to each other, as well as references to the Language Environment runtime library.
These references are resolved during link-editing (statically) or during execution (dynamically).

After you compile your PL/I program, the next step is to link and run your program with test data to verify
that it produces the results that you expect.

Language Environment provides the runtime environment and services that you need to execute your
program. For instructions on linking and running PL/I and all other Language Environment-conforming
language programs, see the z/OS Language Environment Programming Guide for 64-bit Virtual Addressing
Mode. For information about migrating your existing PL/I programs to Language Environment, see the
Enterprise PL/I for z/OS Compiler and Run-Time Migration Guide.

Link-edit considerations for 64-bit programs
It is important to note that the bind step for 64-bit code is significantly different than the traditional bind
step for 31-bit code.

Using the binder in 64-bit programs
You must place the binder output into a PDSE dataset.

You must specify DYNAM(DLL) and AMODE(64) as parameters on the bind step. The following options are
also strongly recommended:

CASE(MIXED), RMODE(ANY)

If CEE is the prefix for your LE 2.4 (or later) datasets, then in the bind step

• SYSLIB must include:

// DD DISP=SHR,DSN=CEE.SCEEBND2

• SYSLIB must not include SCEELKED or any 31-bit link-edit datasets
• SYSLIN must include:

// DD DISP=SHR,DSN=CEE.SCEELIB(IBMPQV11)
// DD DISP=SHR,DSN=CEE.SCEELIB(CELQS003)

The PROCs IBMQCB or IBMQCBG in SIBMZPRC can be used as examples that include full bind steps for
64-bit programs.

Using the ENTRY card in 64-bit programs
If you are building a module that will be fetched and that has an Enterprise PL/I routine as its entry point,
the ENTRY card must specify CELQSTRT.

Runtime considerations for 64-bit programs
You can specify runtime options as parameters passed to the program initialization routine. You can
also specify runtime options in the PLIXOPT variable. It might also prove beneficial, from a performance
standpoint, if you alter your existing programs by using the PLIXOPT variable to specify your runtime
options and recompiling your programs.

For a description of using PLIXOPT, see the z/OS Language Environment Programming Guide.

© Copyright IBM Corp. 1999, 2022 179

To simplify input/output at the terminal, various conventions have been adopted for stream files that are
assigned to the terminal. Three areas are affected:

1. Formatting of PRINT files
2. The automatic prompting feature
3. Spacing and punctuation rules for input

Note: No prompting or other facilities are provided for record I/O at the terminal, so you are strongly
advised to use stream I/O for any transmission to or from a terminal.

SYSPRINT considerations for 64-bit programs
For 64-bit programs, SYSPRINT is equated to the C stdout file. In addition, shared SYSPRINT is not
supported.

The LINESIZE of SYSPRINT cannot be greater than 132 (the largest value allowed by C).

Compiling with LP(64) implies the STDSYS option is in effect. This means that for 64-bit stream files, data
with low hex values '00'x, '0C'x through '0F'x, and '15'x will be converted to '4B'x.

For more information and limitations about the STDSYS option, see:

• “STDSYS” on page 86
• Chapter 1, “Using compiler options and facilities,” on page 3
• STREAM I/O with unprintable characters in Enterprise PL/I for z/OS Compiler and Run-time Migration

Guide

Using FETCH in your routines in 64-bit applications
In Enterprise PL/I, you can fetch routines compiled by PL/I, C, or the assembler.

Fetching Enterprise PL/I routines in 64-bit applications
A fetched module can perform FETCH, I/O, ALLOCATE, and FREE operations. However, a few restrictions
still apply.

A fetched module can perform the following operations:

• Fetch other modules.
• Perform any I/O operations on any PL/I file. The file can be opened either by the fetched module, by the

main module, or by some other fetched module.
• ALLOCATE and FREE its own CONTROLLED variables.

There are, however, a few restrictions on an Enterprise PL/I module that is to be fetched:

1. You must specify OPTIONS(FETCHABLE) on the PROCEDURE statement of the fetched routine if no
ENTRY card is provided during the link-edit step.

2. The ENTRY card must specify CELQSTRT.
3. Because under LP(64) RENT is effectively always on, the ENTRY that is fetched must not be declared in

the fetching module as OPTIONS(COBOL) or OPTIONS(ASM). If you want to avoid passing descriptors
in this situation, you must specify the OPTIONS(NODESCRIPTOR) attribute on the ENTRY declaration.

4. An Enterprise PL/I routine cannot fetch itself.

Fetching PL/I MAIN routines in 64-bit applications
A 64-bit PL/I MAIN routine cannot fetch a 64-bit PL/I MAIN routine.

180 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Fetching assembler routines in 64-bit applications
The ENTRY declaration in the routine that fetches an assembler routine must specify OPTIONS(ASM). The
assembler routine must be linked with AMODE=64. LINKAGE(SYSTEM) should be specified.

When fetching data-only assembler modules, you must use the FETCH A SET(P) construct to ensure that
pointer P is set correctly.

Invoking MAIN under TSO/E
If you compile your MAIN program with the SYSTEM(MVS) option, you can invoke the program by using
the TSO CALL command or as a TSO command processor. Both the runtime options and parameters can
be passed in the same way as under MVS batch.

For example, if the MAIN program TSOARG1 was link-edited as a member of a data set named
userid.TEST.load, it can be invoked as follows:

 CALL TEST(TSOARG1) 'RPTSTG(ON),TRAP(ON)/THIS IS MY ARGUMENT'
 or
 CALL TEST(TSOARG1) '/THIS IS MY ARGMENT'
 or
 TSOARG1 TRAP(ON)/THIS IS MY ARGUMENT
 or
 TSOARG1 /THIS IS MY ARGUMENT

Note: The data set containing TSOARG1 (userid.TEST.load) must be in the standard TSO program
search list to run the program without using the CALL statement. This can be accomplished by issuing the
TSO command:

 TSOLIB ACTIVATE DSN('userid.TEST.load')

However, if you compile your MAIN program with the SYSTEM(TSO) option, the program will be passed
a pointer to the Command Processor Parameter List (CPPL). In this case, NOEXECOPS is in effect. Your
program can be invoked as a TSO command, but it cannot be invoked by a TSO CALL statement. Note that
the pointers in the parameter list are 31-bit pointers. See the following example:

 TSOARG2 This is my argument

The program in Table 36 on page 181 uses the SYSTEM(TSO) interface to address and display the
program arguments from the CPPL.

Table 36. Sample program to display program arguments from the CPPL under TSO when using
SYSTEM(STD) option

 *process system(tso);
 tsoarg2: proc (cppl_ptr) options(main);
 dcl cppl_ptr pointer;
 dcl 1 cppl based(cppl_ptr),
 2 cpplcbuf pointer(32),
 2 cpplupt pointer(32),
 2 cpplpscb pointer(32),
 2 cpplect pointer(32);
 dcl 1 cpplbuf based(cpplcbuf),
 2 len fixed bin(15),
 2 offset fixed bin(15),
 2 argstr char(1000);
 dcl my_argument char(1000) varying;
 dcl my_argument_len fixed bin(31);
 dcl length builtin;

 my_argument_len = len - offset - 4;
 if my_argument_len = 0 then
 my_argument = '';
 else
 my_argument = substr(argstr,offset + 1, my_argument_len);
 display('Program args: ' || my_argument);
 end tsoarg2;

Chapter 6. Link-editing and running for 64-bit programs 181

Whether your MAIN program is invoked as a command or by CALL, you can always specify runtime
options through the PLIXOPT string.

Invoking MAIN under z/OS UNIX
Under z/OS UNIX, you can compile a MAIN program with the SYSTEM(MVS) or SYSTEM(OS) option;
however, the number and format of the parameters passed to the program differs based on the option
that you use.

If you compile a MAIN program with the SYSTEM(MVS) option, the program will be passed, as usual, one
CHARACTER VARYING string containing the parameters specified when it was invoked.

However, if you compile a MAIN program with the SYSTEM(OS) option, the program will be passed 7
parameters as specified in the z/OS UNIX manuals. These 7 parameters include the following:

• The argument count (which includes the name of the executable as the first "argument")
• The address of an array of addresses of the arguments
• The address of an array of addresses of the arguments as null-terminated character strings
• The count of environment variables set
• The address of an array of addresses of the lengths of the environment variables
• The address of an array of addresses of the environment variables as null-terminated character strings

The program in Table 37 on page 182 uses the SYSTEM(OS) interface to address and display the
individual arguments and environment variables.

Table 37. Sample program to display z/OS UNIX arguments and environment variables

 *process display(std) system(os);

 sayargs:
 proc(argc, pArgLen, pArgStr, envc, pEnvLen, pEnvStr, pParmSelf)
 options(main, noexecops);

 dcl argc fixed bin(31) nonasgn byaddr;
 dcl pArgLen pointer nonasgn byvalue;
 dcl pArgStr pointer nonasgn byvalue;
 dcl envc fixed bin(31) nonasgn byaddr;
 dcl pEnvLen pointer nonasgn byvalue;
 dcl pEnvStr pointer nonasgn byvalue;
 dcl pParmSelf pointer nonasgn byvalue;

 dcl q(4095) pointer based;
 dcl bxb fixed bin(31) based;
 dcl bcz char(31) varz based;

 display('argc = ' || argc);
 do jx = 1 to argc;
 display('pargStr(jx) =' || pArgStr->q(jx)->bcz);
 end;
 display('envc = ' || envc);
 do jx = 1 to envc;
 display('pEnvStr(jx) =' || pEnvStr->q(jx)->bcz);
 end;

 end;

182 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 7. Considerations for developing 64-bit
applications

You can use Enterprise PL/I to develop 31-bit or 64-bit applications. For your applications to support
the 64-bit environment, you might need to adapt your code as appropriate. This section describes
considerations in development and compilation that you must take into account.

Using compiler options to build 64-bit applications
To compile code for 64-bit applications, you must use the LP(64) compiler option. You must be aware
that under LP(64), some compiler options or suboptions are not supported, and that some options or
suboptions are ignored during compilation.

Note the following compiler options when you compile code under LP(64):

“BACKREG” on page 11
This option is ignored.

“CHECK” on page 14
The STORAGE suboption is not supported under LP(64). This means that you cannot use the following
built-in functions:

• ALLOCSIZE
• CHECKSTG
• UNALLOCATED

“CMPAT” on page 15
This option is ignored; effectively, CMPAT(V3) is always on under LP(64).

“COMMON” on page 16
This option is ignored.

“DEFAULT” on page 24
The following suboptions are ignored under LP(64):

• LINKAGE

“RENT” on page 67
This option is ignored; effectively, RENT is always on under LP(64).

“STDSYS” on page 86
This option is ignored; effectively, STDSYS is always on under LP(64).

“WRITABLE” on page 95
This option is ignored.

Related information
“LP” on page 50

© Copyright IBM Corp. 1999, 2022 183

The LP option specifies whether the compiler generates 31-bit code or 64-bit code. It also determines the
default size of POINTER and HANDLE and related variables.

Using attributes HANDLE and POINTER under LP(64)
The default size and alignment of HANDLE and POINTER under LP(64) are different from the default
under LP(32).

HANDLE attribute
Under LP(32), the default is HANDLE(32); under LP(64), the default is HANDLE(64).
Syntax

HANDLE

(32

64

)

structure_type_name

A HANDLE(32) is four bytes in size and by default fullword-aligned.

A HANDLE(64) is eight bytes in size and by default doubleword-aligned.

HANDLE(64) is valid only under LP(64).

Assigning a HANDLE(32) to a HANDLE(64) is always valid; the reverse is valid only if the first four bytes of
the HANDLE(64) are zero.

Because of the change in the size and alignment of handles, structures that contain them might have
padding bytes.

Related information
“LP” on page 50
The LP option specifies whether the compiler generates 31-bit code or 64-bit code. It also determines the
default size of POINTER and HANDLE and related variables.

POINTER attribute
Under LP(32), the default is POINTER(32); under LP(64), the default is POINTER(64).
Syntax

POINTER

(32

64

)

A POINTER(32) is four bytes in size and by default fullword-aligned.

A POINTER(64) is eight bytes in size and by default doubleword-aligned.

POINTER(64) is valid only under LP(64).

Assigning a POINTER(32) to a POINTER(64) is always valid; the reverse is valid only if the first four bytes
of the POINTER(64) are zero.

Because of the change in the size and alignment of pointers, structures that contain them might have
padding bytes.

Related information
“LP” on page 50

184 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

The LP option specifies whether the compiler generates 31-bit code or 64-bit code. It also determines the
default size of POINTER and HANDLE and related variables.

Using ENTRY variables under LP(64)
Under LP(64), all ENTRY variables, whether they have the LIMITED attribute or not, are eight bytes in size
and are by default doubleword-aligned. Therefore, a structure that contains an ENTRY variable might now
have padding bytes.

Using built-in functions under LP(64)
When you develop 64-bit applications, you must be aware that the argument and return types of some
built-in functions are different.

Built-in functions that return a FIXED BIN(63) value under LP(64)
The following built-in functions return a FIXED BIN(63) value under LP(64), but under LP(32) they return a
FIXED BIN(31) value.

AUTOMATIC
AVAILABLEAREA
BASE64DECODE
BASE64DECODE8
BASE64DECODE16
BASE64ENCODE
BASE64ENCODE8
BASE64ENCODE16
CURRENTSTORAGE
FILEID
FILEREAD
FILESEEK
FILETELL
HEXENCODE
HEXENCODE8
HEXDECODE
HEXDECODE8
JSONGETARRAYEND
JSONGETARRAYSTART
JSONGETCOLON
JSONGETCOMMA
JSONGETMEMBER
JSONGETOBJECTEND
JSONGETOBJECTSTART
JSONGETVALUE
JSONPUTARRAYEND
JSONPUTARRAYSTART
JSONPUTCOLON
JSONPUTCOMMA
JSONPUTMEMBER

JSONPUTOBJECTEND
JSONPUTOBJECTSTART
JSONPUTVALUE
JSONVALID
MEMCONVERT
MEMCU12
MEMCU14
MEMCU21
MEMCU24
MEMCU12
MEMCU41
MEMCU42
MEMINDEX
MEMSEARCH
MEMSEARCHR
MEMVERIFY
MEMVERIFYR
LOCATION
LOCSTG
OFFSETDIFF
POINTERDIFF
STORAGE
WSCOLLAPSE
WSCOLLAPSE16
WSREPLACE
WSREPLACE16
XMLCHAR
XMLSCRUB
XMLSCRUB16

Built-in functions whose integer arguments are converted to FIXED BIN(63) under
LP(64)
The following built-in functions have one or more arguments that represent the size of a piece of storage.
These arguments are converted to FIXED BIN(63) under LP(64), if necessary.

Chapter 7. Considerations for developing 64-bit applications 185

ALLOCATE
BASE64DECODE
BASE64DECODE8
BASE64DECODE16
BASE64ENCODE
BASE64ENCODE8
BASE64ENCODE16
CHECKSUM
COMPARE
FILEWRITE
HEXENCODE
HEXENCODE8
HEXDECODE
HEXDECODE8
JSONGETARRAYEND
JSONGETARRAYSTART
JSONGETCOLON
JSONGETCOMMA
JSONGETMEMBER
JSONGETOBJECTEND
JSONGETOBJECTSTART
JSONGETVALUE
JSONPUTARRAYEND
JSONPUTARRAYSTART
JSONPUTCOLON
JSONPUTCOMMA
JSONPUTMEMBER
JSONPUTOBJECTEND
JSONPUTOBJECTSTART
JSONPUTVALUE
JSONVALID
MEMCONVERT

MEMCU12
MEMCU14
MEMCU21
MEMCU24
MEMCU41
MEMCU42
MEMINDEX
MEMSEARCH
MEMSEARCHR
MEMVERIFY
MEMVERIFYR
PLIASCII
PLIEBCDIC
PLIFILL
PLIMOVE
PLIOVER
PLISAXA
PLISAXB
PLISAXC
PLISAXD
PLITRAN11
PLITRAN12
PLITRAN21
PLITRAN22
WSCOLLAPSE
WSCOLLAPSE16
WSREPLACE
WSREPLACE16
XMLCHAR
XMLSCRUB
XMLSCRUB16

Built-in functions that are not supported under LP(64)
Under LP(64), you cannot use the following built-in functions because the STORAGE suboption of the
CHECK compiler option is not supported:

• ALLOCSIZE
• CHECKSTG
• UNALLOCATED

Note: Under 64-bit, the PLISRT built-in functions are only supported in LE V2R2 and later.

Considerations for SQL programs
To use the same source to develop 32-bit and 64-bit applications, it is recommended that you declare
sqlda or sqlda2 by using the EXEC SQL INCLUDE statement, and that the sqldabc field be set to use
stg(sqlvar(1)) as the size of sqlvar. If your SQL program is not following these recommendations,
you might need to change your code to develop a 64-bit application.

If needed, you can make these changes to existing 32-bit SQL programs without changing their behavior.
These changes can make these programs easier to port.

186 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Declaring sqlda
If sqlda is not declared with the EXEC SQL INCLUDE sqlda statement, you must change the
declaration for sqlda by adding the following field after the sqllen field:

 char(length(hex(sysnull()))/2 - 4),

For example, assume that in your program the sqlda structure is declared as follows:

dcl
 1 fsqlda based(fsqldaptr),
 2 sqldaid char(8),
 2 sqldabc fixed bin(31),
 2 sqln fixed bin(15),
 2 sqld fixed bin(15),
 2 sqlvar(fsqlsize refer(sqln)),
 3 sqltype fixed bin(15),
 3 sqllen fixed bin(15),
 3 sqldata pointer,
 3 sqlind pointer,
 3 sqlname char(30) var;

You must change the declaration as follows:

dcl
 1 fsqlda based(fsqldaptr),
 2 sqldaid char(8),
 2 sqldabc fixed bin(31),
 2 sqln fixed bin(15),
 2 sqld fixed bin(15),
 2 sqlvar(fsqlsize refer(sqln)),
 3 sqltype fixed bin(15),
 3 sqllen fixed bin(15),
 3 * char(length(hex(sysnull()))/2 - 4),
 3 sqldata pointer,
 3 sqlind pointer,
 3 sqlname char(30) var;

Declaring sqlda2
If sqlda2 is not declared with the EXEC SQL INCLUDE sqlda2 statement, you must change the
declaration for sqlda2 by adding the following field after the sqlrsvdl field:

 char(length(hex(sysnull())) - 8),

For example, assume that in your program the sqlda2 structure is declared as follows:

dcl
 1 fsqlda2 based(fsqldaptr),
 2 sqldaid2 char(8),
 2 sqldabc2 fixed bin(31),
 2 sqln2 fixed bin(15),
 2 sqld2 fixed bin(15),
 2 sqlvar2(fsqlsize refer(sqln2)),
 3 sqlbiglen,
 4 sqllongl fixed bin(31),
 4 sqlrsvdl fixed bin(31),
 3 sqldatal pointer,
 3 sqltname char(30) var;

You must change the declaration as follows:

dcl
 1 fsqlda2 based(fsqldaptr),
 2 sqldaid2 char(8),
 2 sqldabc2 fixed bin(31),
 2 sqln2 fixed bin(15),
 2 sqld2 fixed bin(15),
 2 sqlvar2(fsqlsize refer(sqln2)),
 3 sqlbiglen,
 4 sqllongl fixed bin(31),
 4 sqlrsvdl fixed bin(31),

Chapter 7. Considerations for developing 64-bit applications 187

 3 * char(length(hex(sysnull())) - 8),
 3 sqldatal pointer,
 3 sqltname char(30) var;

Setting sqldabc
If the sqldabc field is set to 44 as the size of sqlvar, you must set it to use stg(sqlvar(1)) instead.

For example, the statement sqlda.sqldabc = 16 + (44 * sqlda.sqld); should be changed to
sqlda.sqldabc = 16 + (stg(sqlda.sqlvar(1)) * sqlda.sqld);.

You can code as follows:

SQLDABC = LEN_SQLDA + SQLN * LEN_SQLVAR;

You must change the declaration for LEN_SQLVAR as follows:

Original
declaration:

DCL LEN_SQLVAR FIXED BIN(15) VALUE(44);

Updated
declaration:

DCL LEN_SQLVAR FIXED BIN(15) VALUE(STG(SQLDA.SQLVAR(1)));

Communicating with 31-bit routines
You can call 31-bit LE-enabled code from 64-bit LE-enabled code and vice versa. For more details, see
Chapter 19, “Mixing AMODE 31 and AMODE 64 code,” on page 377.

To facilitate communicating with non-Language Environment based 31-bit routines, a generic interface is
provided to load, call and release a 31-bit routine. A function to retrieve the entry point address for the
loaded module is also provided.

Invoke IBMPC32I to load a 31-bit routine. It takes a pointer to an 8-byte character string that holds the
name of the module as input and returns a file handle to be used for the call and release functions.

 dcl <load32> ext("_IBMPC32I")
 entry(char(8) byaddr
inonly)
 returns(pointer byvalue)
 options(nodescriptor linkage(optlink));

Invoke IBMPC32C to call a 31-bit routine. It takes two parameters as input: the first parameter is the
file handle returned from the IBMPC32I call, and the second parameter is the user parameter list to
the 31-bit routine. Note that the user parameter list has to reside in below-the-bar storage. IBMPC32C
returns the register 15 value from the called 31-bit routine.

 dcl <call32> ext("_IBMPC32C")
 entry(pointer byvalue, pointer byvalue)
 returns(fixed bin(31) byvalue)
 options(nodescriptor linkage(optlink));

Invoke IBMPC32T to release a 31-bit routine. It takes the file handle as a parameter.

 dcl <rel32> ext("_IBMPC32T")
 entry(pointer byvalue)
 options(nodescriptor linkage(optlink));

Invoke IBMPC32E to get the entry point address of the loaded module. It takes the file handle as a
parameter and returns the entry point address of the loaded module. Note that it is not valid to branch to
this address directly.

 dcl <epa32> ext("_IBMPC32E")
 entry(pointer byvalue)
 returns(pointer byvalue)
 options(nodescriptor linkage(optlink));

188 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

The following code fragment example shows how the above interfaces can be used. DSNALI is a 31-bit
Db2 facility.

 dcl load32 ext("_IBMPC32I")
 entry(char(8) byaddr inonly)
 returns(pointer byvalue)
 options(nodescriptor);

 dcl call32 ext("_IBMPC32C")
 entry(pointer byvalue, pointer byvalue)
 returns(fixed bin(31) byvalue)
 options(nodescriptor);

 dcl file_pointer pointer;
 dcl plist_pointer pointer;
 dcl 1 dsnali_plist based(plist_pointer),
 3 args_list(10) pointer(32),
 3 content union,
 5 connect,
 7 functioncode char(12),
 7 subsystemid char(4),
 7 tecb fixed bin(31),
 7 secb fixed bin(31),
 7 ribpointer ptr(32),
 7 returncode fixed bin(31),
 7 reasoncode fixed bin(31),
 5 open,
 7 functioncode char(12),
 7 subsystemid char(4),
 7 planname char(8),
 7 returncode fixed bin(31),
 7 reasoncode fixed bin(31);

 dcl lastargflag bit(1) based;

 plist_pointer = alloc31(stg(dsnali_plist));
 file_pointer = load32("DSNALI");

 /* set up argument list for CONNECT function for DSNALI call */
 args_list(1) = addr(connect.functioncode);
 args_list(2) = addr(connect.subsystemid);
 args_list(3) = addr(connect.tecb);
 args_list(4) = addr(connect.secb);
 args_list(5) = addr(connect.ribpointer);
 args_list(6) = addr(connect.returncode) ;
 args_list(7) = addr(connect.reasoncode) ;

 /* mark last argument */
 addr(args_list(7)).lastargflag = '1'b;

 /* set up values for CONNECT function parameters */
 connect.functioncode = 'CONNECT';
 connect.subsystemid = 'DB2S';
 connect.tecb = 0;
 connect.secb = 0;
 connect.ribpointer = sysnull;
 connect.returncode = 0;
 connect.reasoncode = 0;

 /* invoke DSNALI with CONNECT function */
 rc = call32(file_pointer, plist_pointer);

 ...

 /* set up argument list for OPEN function for DSNALI call */
 args_list(1) = addr(open.functioncode);
 args_list(2) = addr(open.subsystemid);
 args_list(3) = addr(open.planname);
 args_list(4) = addr(open.returncode);
 args_list(5) = addr(open.reasoncode);

 /* mark last argument */
 addr(args_list(5)).lastargflag = '1'b;

 /* set up values for OPEN function parameters */
 open.functioncode = 'OPEN';

Chapter 7. Considerations for developing 64-bit applications 189

 open.subsystemid = 'DB2S';
 open.planname = 'TESTCASE';
 open.returncode = 0;
 open.reasoncode = 0;

 /* invoke DSNALI with OPEN function */
 rc = call32(file_pointer, plist_pointer) ;

190 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Part 2. Using I/O facilities

© Copyright IBM Corp. 1999, 2022 191

192 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 8. Using data sets and files
This chapter describes how to allocate files and associate data sets with the files known within your
program. It introduces the five major types of data sets, describes how they are organized and accessed,
and helps you learn how to specify some of the file and data set characteristics.

Your PL/I programs process and transmit units of information called records. A collection of records is
called a data set. Data sets are physical collections of information external to PL/I programs; they can be
created, accessed, or modified by programs written in PL/I or other languages or by the utility programs of
the operating system.

Your PL/I program recognizes and processes information in a data set by using a symbolic or logical
representation of the data set called a file.

Note: INDEXED implies VSAM and is supported only under batch.

Note: Regional data sets are not supported for 64-bit programs.

Allocating files
For any type of file, including sequential, VSAM, REGIONAL(1), and zFS, you can define the external name
by using the following methods:

• In the MVS or TSO environment:

– A ddname in the JCL
– An environment variable name
– The TITLE option of the OPEN statement

• In the z/OS UNIX System Services environment:

– An environment variable name
– The TITLE option of the OPEN statement

For zFS files under the batch environment, the following rules apply:

• If FILEDATA is not specified, the default setting is TEXT.
• If the record format or the ENVIRONMENT option is not specified, the default is V with the LF type.
• If FILEDATA is BINARY, only fixed-length files are valid. Error message MSGIBM0210S is issued when

FILEDATA=BINARY is specified with varying-length files.
• For varying-length files, files are assumed to be TYPE=LF; that is, the records are delimited with the LF

(x'15') character.
• For data files that contain delimiters, specify FILEDATA=TEXT, so the PL/I library can handle the

delimiters properly.

Dynamic allocation
A PL/I program dynamically allocates the file by using the attributes that are specified by the environment
variable or the TITLE option.

To use PL/I dynamic allocation, you must specify the file names by using the DSN() format for MVS data
sets or the PATH() format for zFS files. All options and attributes must be in uppercase, except for the
pathname suboption of the PATH option, which is case-sensitive. Do not use temporary data set names in
the DSN() option. See the following examples to specify file names:

OPEN FILE(FILEIN) TITLE('DSN(USER.FILE.EXT),SHR');
OPEN FILE(FILEIN) TITLE('PATH(/usr/FILE.EXT)');

© Copyright IBM Corp. 1999, 2022 193

EXPORT DD_FILE="DSN(USER.FILE.EXT),SHR"
EXPORT DD_FILE="PATH(/usr/FILE.EXT)"

The following rules of precedence apply in determining when the dynamic allocation takes place:

1. If one of the following DD statements exists for the file, it is used. This rule is not valid in the z/OS
UNIX System Services environment.

• JCL DD
• TSO ALLOCATE
• User-initiated dynamic allocation

2. If a DD statement does not exist for the file and the TITLE option is specified in the OPEN statement,
the TITLE option is used by associating it with the external name for the file.

3. If a DD statement does not exist for the file and the TITLE option is not specified, but an environment
variable exists for the file, the environment variable is used by associating it with the external name for
the file.

For MVS data sets, the Enterprise PL/I run time checks the contents of the environment variable or TITLE
option at each OPEN statement:

• If a file with the same external name was dynamically allocated by a previous OPEN statement, and the
contents of the environment variable or the TITLE option have changed since that OPEN statement, the
run time dynamically deallocates the previous allocation and reallocates the file by using the options
that are currently set in the environment variable or specified in the TITLE option.

• If the contents of the environment variable or the TITLE option have not changed, the run time uses the
current allocation without deallocating or reallocating.

For zFS files, the DD statement is deallocated and reallocated at each subsequent OPEN statement.

Note:

1. When you use the DSN() or the PATH() format specification for PL/I dynamic allocation, if a DD
statement and the TITLE option of the OPEN statement are both specified for a file, the DD statement
is used and the TITLE option is ignored.

2. Under the z/OS UNIX System Services environment, user-initiated dynamic allocation is not supported.
If it is attempted, the UNDEFINEDFILE condition is raised, even when the TITLE option or the
environment variable is used, because the external name is in use.

Associating data sets with files under z/OS
A file used within a PL/I program has a PL/I file name. The physical data set external to the program has
a name by which it is known to the operating system: a data set name or dsname. In some cases the data
set has no name; it is known to the system by the device on which it exists.

The operating system needs a way to recognize which physical data set is referred to by your program, so
you must write a data definition or DD statement, external to your program, that associates the PL/I file
name with a dsname.

For example, if you have the following file declaration in your program, you must create a DD statement
with a data definition name (ddname) that matches the name of the PL/I file.

DCL STOCK FILE STREAM INPUT;

The DD statement specifies a physical data set name (dsname) and gives its characteristics:

//GO.STOCK DD DSN=PARTS.INSTOCK, . . .

For more detail about writing DD statements, refer to the job control language (JCL) manuals for your
system.

194 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

There is more than one way to associate a data set with a PL/I file. You associate a data set with a PL/I
file by ensuring that the ddname of the DD statement that defines the data set is the same as one of the
following:

• The declared PL/I file name
• The character-string value of the expression specified in the TITLE option of the associated OPEN

statement.

You must choose your PL/I file names so that the corresponding ddnames conform to the following
restrictions:

• If a file is opened implicitly, or if no TITLE option is included in the OPEN statement that explicitly opens
the file, the ddname uses the file name by default. If the file name is longer than 8 characters, the
default ddname is composed of the first 8 characters of the file name.

• The character set of the JCL does not contain the break character (_). Consequently, this character
cannot appear in ddnames. Do not use break characters among the first 8 characters of file names,
unless the file is to be opened with a TITLE option with a valid ddname as its expression. The alphabetic
extender characters $, @, and #, however, are valid for ddnames, but the first character must be one of
the letters A through Z.

Because external names are limited to 7 characters, an external file name of more than 7 characters is
shortened into a concatenation of the first 4 and the last 3 characters of the file name. Such a shortened
name is not, however, the name used as the ddname in the associated DD statement.

Consider the following statements:

1. OPEN FILE(SAMPLE);
2. OPEN FILE(OLDSAMPLE);
3. READ FILE(DETAIL) ...;

When statement number 1 is run, the file name SAMPLE is taken to be the same as the ddname of a DD
statement in the current job step. When statement number 2 is run, the name OLDSAMPL is taken to be
the same as the ddname of a DD statement in the current job step. (The first 8 characters of a file name
form the ddname. If OLDSAMPLE is an external name, it will be shortened by the compiler to OLDSPLE
for use within the program.) If statement number 3 causes implicit opening of the file DETAIL, the name
DETAIL is taken to be the same as the ddname of a DD statement in the current job step.

In each of the above cases, a corresponding DD statement must appear in the job stream; otherwise, the
UNDEFINEDFILE condition is raised. The three DD statements could start as follows:

1. //SAMPLE DD ...
2. //OLDSAMPL DD ...
3. //DETAIL DD ...

If the file reference in the statement that explicitly or implicitly opens the file is not a file constant, the
DD statement name must be the same as the value of the file reference. The following example illustrates
how a DD statement should be associated with the value of a file variable:

DCL PRICES FILE VARIABLE,
 RPRICE FILE;
 PRICES = RPRICE;
 OPEN FILE(PRICES);

The DD statement should associate the data set with the file constant RPRICE, which is the value of the
file variable PRICES:

//RPRICE DD DSNAME=...

Use of a file variable also allows you to manipulate a number of files at various times by a single
statement. See the following example:

DECLARE F FILE VARIABLE,
 A FILE,

Chapter 8. Using data sets and files 195

 B FILE,
 C FILE;
 .
 .
 .
 DO F=A,B,C;
 READ FILE (F) ...;
 .
 .
 .
 END;

The READ statement reads the three files A, B, and C, each of which can be associated with a different
data set. The files A, B, and C remain open after the READ statement is executed in each instance.

The following OPEN statement illustrates use of the TITLE option:

OPEN FILE(DETAIL) TITLE('DETAIL1');

For this statement to be executed successfully, you must have a DD statement in the current job step with
DETAIL1 as its ddname. It could start as follows:

//DETAIL1 DD DSNAME=DETAILA,...

Thus, you associate the data set DETAILA with the file DETAIL through the ddname DETAIL1.

Associating several files with one data set
You can use the TITLE option to associate two or more PL/I files with the same external data set, provided
the following conditions are met:

• The first file association is closed before a second file association is opened against the same TITLE
name.

• The two files have the same file attributes.

If you want to use the same DD statement for two or more files, you cannot specify file attributes for the
first file, and use default file attributes for any other file using the same DD statement. This applies to both
input and output files. Separate DD statements should be used.

For more information, refer to the DFSMS Using Data Sets manual.

In the following example, INVNTRY is the name of a DD statement defining a data set to be associated
with two files:

 OPEN FILE (FILE1) TITLE('INVNTRY');

 CLOSE FILE (FILE1);

 OPEN FILE (FILE2) TITLE('INVNTRY');

Associating several data sets with one file
You can use the TITLE option to associate several data sets with one file.

The file name can, at different times, represent entirely different data sets. Consider the following OPEN
statement:

OPEN FILE(DETAIL) TITLE('DETAIL1');

For this statement to be executed successfully, a DD statement must be specified in the current job step
with DETAIL1 as its ddname:

//DETAIL1 DD DSNAME=DETAILA,...

196 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

The file DETAIL1 is associated with the data set named in the DSNAME parameter of the DD statement
DETAIL1. If you close and reopen the file, you can specify a different ddname in the TITLE option to
associate the file with a different data set.

Using the TITLE option, you can choose dynamically, at open time, one among several data sets to be
associated with a particular file name. Consider the following example:

DO IDENT='A','B','C';
 OPEN FILE(SAMPLE)
 TITLE('SAMPLE1'||IDENT);
 .
 .
 .
 CLOSE FILE(SAMPLE);
END;

In this example, when SAMPLE is opened during the first iteration of the do-group, the associated ddname
is taken to be SAMPLE1A. After processing, the file is closed, dissociating the file name and the ddname.
During the second iteration of the do-group, SAMPLE is opened again. This time, SAMPLE is associated
with the ddname SAMPLE1B. Similarly, during the final iteration of the do-group, SAMPLE is associated
with the ddname SAMPLE1C.

Concatenating several data sets
For input only, you can concatenate two or more sequential or regional data sets (that is, link them so that
they are processed as one continuous data set) by omitting the ddname from all but the first of the DD
statements that describe the data sets.

For example, the following DD statements cause the data sets LIST1, LIST2, and LIST3 to be treated as a
single data set for the duration of the job step in which the statements appear:

⁄⁄GO.LIST DD DSNAME=LIST1,DISP=OLD
⁄⁄ DD DSNAME=LIST2,DISP=OLD
⁄⁄ DD DSNAME=LIST3,DISP=OLD

When read from a PL/I program, the concatenated data sets need not be on the same volume.

You cannot process concatenated data sets backward.

Accessing zFS files under z/OS
You can access zFS files from a batch program by specifying the zFS file name in the DD statement or in
the TITLE option of the OPEN statement.

For example, to access the zFS file /u/USER/sample.txt by using the DD zFS, you can code the DD
statement as follows:

 //zFS DD PATH='/u/USER/sample.txt',PATHOPTS=ORDONLY,DSNTYPE=zFS

To access the same file by using the TITLE option of the OPEN statement, you can code as follows:

 OPEN FILE(zFS) TITLE('//u/USER/sample.txt');

Note the two forward slashes in the TITLE option: the first indicates that what follows is a file name
(rather than a DD name), and the second is the start of the fully qualified zFS file name. You must use fully
qualified names when zFS files are referenced under batch, because there is no current directory that can
be used to complete a file specification.

You can access zFS files from a batch program using PL/I dynamic allocation by specifying the zFS file
name using one of the following methods:

• The DD statement
• The TITLE option of the OPEN statement
• The PUTENV built-in function

Chapter 8. Using data sets and files 197

• The PLIXOPT string using the ENVAR option

The following example shows how to access zFS files by using these methods:

 //zFS DD PATH='/u/USER/sample.txt',PATHOPTS=ORDONLY...

 OPEN FILE(zFS) TITLE('PATH(/u/USER/sample.txt)');

 xx = putenv('DD_zFS=/u/USER/sample.txt');

 Dcl plixopt char(100) var ext static
 init('ENVAR("DD_zFS=PATH(/u/USER/sample.txt)")');

Note: To use PL/I dynamic allocation, specify the file names by using the DSN() format for MVS data sets,
or the PATH() format for zFS files.

PL/I decides how to treat zFS files under batch in the following order:

1. If ENV(F) is specified in the file declaration, the file is assumed to consist of fixed length records.
2. If ENV(V) is specified in the file declaration, the file is assumed to consist of lf-delimited records.
3. If FILEDATA=BINARY is specified on the file's DD statement, the file is assumed to consist of fixed

length records.
4. Otherwise the file is assumed to consist of lf-delimited records.

To access a fixed length z/OS file from UNIX, the record size of the file must be specified either in the
ENVIRONMENT attribute of the file or in the TITLE option on the OPEN statement.

• If the file declaration does not contain ENV(F RECSIZE(...)), you must specify the data set name and
these attributes in the TITLE option. For example, for a file of fixed length 80-byte records, you could
specify a TITLE option as follows:

 '/dataset.name,type(fixed),recsize(80)'

• If the ENVIRONMENT attribute specifies only one of F or RECSIZE, you must specify the data set name
and the omitted attribute in the TITLE option.

• If the ENVIRONMENT attribute specifies both F and RECSIZE, you need to specify only the data set
name in the TITLE option.

Associating data sets with files under z/OS UNIX
A file used within a PL/I program has a PL/I file name. A data set also has a name by which it is known to
the operating system.

PL/I needs a way to recognize the data sets to which the PL/I files in your program refer, so you must
provide an identification of the data set to be used, or allow PL/I to use a default identification.

You can identify the data set explicitly using either an environment variable or the TITLE option of the
OPEN statement.

To use PL/I dynamic allocation, you must specify the file names by using the DSN() format for MVS data
sets, or the PATH() format for zFS files.

To access zFS files from z/OS UNIX program using PL/I dynamic allocation, you can specify the zFS
filename by using one of the following methods:

• The TITLE option of the OPEN statement
• The PUTENV built-in function
• The PLIXOPT string using the ENVAR option
• The EXPORT statement

198 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Using environment variables
Use the export command to establish an environment variable that identifies the data set to be
associated with a PL/I file, and, optionally, to specify the characteristics of that data set. The information
provided by the environment variable is called data definition (or DD) information.

These environment variable names have the form DD_DDNAME, where the DDNAME is the name of a PL/I
file constant (or an alternate DDNAME, as defined below). If the filename refers to an zFS file, the filename
must be properly qualified. Otherwise, the PL/I library assumes that the filename refers to an MVS data
set.

Examples

• declare MyFile stream output;
export DD_MYFILE=/datapath/mydata.dat

where /datapath/mydata.dat refers to an zFS file. The filename is fully-qualified.
• export DD_MYFILE=./mydata.dat

where ./mydata.dat refers to an zFS file in the current directory.
• export DD_MYFILE=mydata.dat

where mydata.dat refers to an MVS data set.

The following examples show that the zFS files are accessed when you use PL/I dynamic allocation:

export DD_zFS="PATH(/u/USER/sample.txt)"
export DD_FILE="DSN(USER.FILE.EXT),SHR"

If you are familiar with the IBM mainframe environment, you can think of the environment variable much
like the following statement:

DD statement in z/OS
ALLOCATE statement in TSO

For more information about the syntax and options you can use with the DD_DDNAME environment
variable, see “Specifying characteristics using DD_DDNAME environment variables” on page 202.

Under z/OS UNIX, where more types of varying length zFS files are supported than under batch, PL/I
treats an zFS file as follows:

1. If ENV(F) is specified in the file declaration, the file is assumed to consist of fixed length records.
2. If a TYPE is specified in the file's EXPORT statement, the file is assumed to consist of records of that

type.
3. Otherwise the file is assumed to consist of lf-delimited records.

Using the TITLE option of the OPEN statement
You can use the TITLE option of the OPEN statement to identify the data set to be associated with a PL/I
file, and, optionally, to provide additional characteristics of that data set.

TITLE (' expression ')

The expression must yield a character string with the following syntax:

Chapter 8. Using data sets and files 199

alternate_ddname

/ filespec

,dd_option

DSN (dsname) , dsn_option

PATH (pathname)

DD (ddname (membername))

Note: The DD option is available for 64-bit only.

alternate_ddname
The name of an alternate DD_DDNAME environment variable

An alternate DD_DDNAME environment variable is not named after a file constant. For example, if
you have a file named INVENTRY in your program and you establish two DD_DDNAME environment
variables with the first named INVENTRY and the second named PARTS, you can associate the file
with the second one by using this statement:

open file(Inventry) title('PARTS');

filespec
Any valid file specification on the system you are using

The maximum length of filespec is 1023 characters.

dd_option
One or more options allowed in a DD_DDNAME environment variable

For more information about the options of the DD_DDNAME environment variable, see “Specifying
characteristics using DD_DDNAME environment variables” on page 202.

dsname
The fully qualified MVS data set name

dsn_option
One or more DSN options

For more information about the DSN options, see “Defining QSAM files using PL/I dynamic allocation”
on page 245, “Defining REGIONAL(1) data sets using PL/I dynamic allocation” on page 263, and
“Defining VSAM file using PL/I dynamic allocation” on page 271.

pathname
The fully qualified zFS path name

ddname
DD name associated with the DD statement of the PDS or PDSE

membername
Name of the member in the PDS or PDSE

Here is an example of using the OPEN statement in this manner with a z/OS DSN:

open file(Payroll) title('⁄June.Dat,append(n),recsize(52)');

Note the required leading forward slash in the TITLE option. This leading forward slash indicates that
what follows is a file name (rather than a DD name). In this case, June.Dat refers to an MVS data set.

200 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

If June.Dat is an zFS file, the OPEN statement example is as follows:

open file(Payroll) title('⁄⁄u⁄USER⁄June.Dat,append(n),recsize(52)');

Note the two forward slashes in the TITLE option: the first indicates that what follows is a file name
(rather than a DD name), and the second is the start of the fully qualified zFS file name.

You can also specify relative zFS file names in place of fully qualified names. See the following example:

open file(Payroll) title('.⁄June.Dat,append(n),recsize(52)');

The data set name June.Dat will be prefixed with the pathname of the current z/OS UNIX directory.

With this form, PL/I obtains all DD information either from the TITLE expression or from the
ENVIRONMENT attribute of a file declaration - a DD_DDNAME environment variable is not referenced.

When using the DD option for 64-bit, you must specify a PDS or PDSE membername with the DD name.
Note that in the DD statement that is associated with this OPEN, the DSN field must specify the PDS or
PDSE name without the member name.

The following combination shows how to use the OPEN statement with the DD name and PDS or PDSE
member name combination:

OPEN FILE(QSAM01) title('DD(QSAM(MEMFILE))');

//QSAM DD DSN=USER.PDS.DATA,DISP=SHR

Note: To add or delete one or more records within a PDS or PDSE member, you must rewrite the entire
member in another partof the library. For a sample program, see “Example: Updating a library member”
on page 228. For more information about processing PDS or PDSE members, see Chapter 9, “Using
libraries,” on page 225.

The following examples show how to use the OPEN statement with PL/I dynamic allocation support:

• For a z/OS data set:

OPEN FILE(QSAM01) title('DSN(USER.FILE.EXT),SHR');

• For an zFS file:

OPEN FILE(QSAM01) title('PATH(/u/USER/sample.txt)');

Attempting to use files not associated with data sets
If you attempt to use a file that has not been associated with a data set, (either through the use of
the TITLE option of the OPEN statement or by establishing a DD_DDNAME environment variable), the
UNDEFINEDFILE condition is raised.

The only exceptions are the files SYSIN and SYSPRINT; these default to stdin and stdout, respectively.

How PL/I finds data sets
PL/I establishes the path for creating new data sets or accessing existing data sets in one of the following
ways:

• The current directory
• The paths as defined by the export DD_DDNAME environment variable

Chapter 8. Using data sets and files 201

Specifying characteristics using DD_DDNAME environment variables
You use the export command to establish an environment variable that identifies the data set to
be associated with a PL/I file, and, optionally, provide additional characteristics of that data set. This
information provided by the environment variable is called data definition (or DD) information.
DD_DDNAME syntax

DD_DDNAME = " filespec

, option

DSN (dsname) , dsn_option

PATH (pathname)

DD (ddname (membername))

"

Note: The DD option is available for 64-bit only.

Blanks are acceptable within the syntax. In addition, the syntax of the statement is not checked at
the time the command is entered. It is verified when the data set is opened. If the syntax is wrong,
UNDEFINEDFILE is raised with the oncode 96.

DD_DDNAME
The name of the environment variable

The DDNAME must be in uppercase and can be either the name of a file constant or an alternate
DDNAME that you specify in the TITLE option of your OPEN statement. For more information, see
“Using the TITLE option of the OPEN statement” on page 199.

If you use an alternate DDNAME that is longer than 31 characters, only the first 31 characters are
used in forming the environment variable name.

filespec
The specifications of a file or the name of a device to be associated with the PL/I file

option
The options that you can specify as DD information

dsname
The fully-qualified MVS data set name

pathname
The fully-qualified zFS path name

ddname
Name of the environment variable

membername
Name of the member in the PDS or PDSE

The following topics describe the options that you can specify as DD information. Note that these options
do not apply to the DSN(), PATH(), or DD(ddname(membername)) formats.

APPEND
The APPEND option specifies whether an existing data set is to be extended or re-created.

APPEND (

Y

N)

202 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Y
Specifies that new records are to be added to the end of a sequential data set, or inserted in a relative
or indexed data set.

N
Specifies that, if the file exists, it is to be re-created.

The APPEND option applies only to OUTPUT files. APPEND is ignored under the following conditions:

• The file does not exist.
• The file does not have the OUTPUT attribute.
• The organization is REGIONAL(1).

BUFSIZE
The BUFSIZE option specifies the number of bytes for a buffer.

BUFSIZE ( n)

RECORD output is buffered by default and has a default value for BUFSIZE of 64k. STREAM output is
buffered, but not by default; the default BUFSIZE value for STREAM output is zero.

If the value of BUFSIZE is zero, the number of bytes for buffering is equal to the value specified in the
RECSIZE or LRECL option.

The BUFSIZE option is valid only for a consecutive binary file. If the file is used for terminal input, you
should assign the value of zero to BUFSIZE for increased efficiency.

CHARSET for record I/O
This version of the CHARSET option applies only to consecutive files using record I/O. It allows the user to
use ASCII data files as input files and specify the character set of output files.

CHARSET (

ASIS

EBCDIC

ASCII

)

Choose a suboption of CHARSET based on what form the file has (input) or what form you want the file to
have (output).

CHARSET for stream I/O
This version of the CHARSET option applies for stream input and output files. It allows the user to use
ASCII data files as input files and specify the character set of output files.

If you attempt to specify ASIS when using stream I/O, no error is issued and character sets are treated as
EBCDIC.

CHARSET (

EBCDIC

ASCII)

Choose a suboption of CHARSET based on what form the file has (input) or what form you want the file to
have (output).

Chapter 8. Using data sets and files 203

DELAY
The DELAY option specifies the number of milliseconds to delay before the compiler retries an operation
that fails when a file or record lock cannot be obtained by the system.

DELAY (

0

n)

This option is applicable only to VSAM files.

DELIMIT
The DELIMIT option specifies whether the input file contains field delimiters.

A field delimiter is a blank or a user-defined character that separates the fields in a record. This is
applicable for sort input files only.

DELIMIT (

N

Y)

The sort utility distinguishes text files from binary files with the presence of field delimiters. Input files
that contain field delimiters are processed as text files; otherwise, they are considered to be binary files.
The library needs this information in order to pass the correct parameters to the sort utility.

LRECL
The LRECL option is the same as the RECSIZE option.

LRECL ( n)

If LRECL is not specified and not implied by a LINESIZE value (except for TYPE(FIXED) files, the default is
1024.

LRMSKIP
The LRMSKIP option allows output to begin on the nth line of the first page for the first SKIP format item
to be executed after a file is opened. n refers to the value specified with the SKIP option of the PUT or GET
statement.

LRMSKIP (

N

Y)

If n is zero or 1, output begins on the first line of the first page.

PROMPT
The PROMPT option specifies whether colons should be visible as prompts for stream input from the
terminal.

PROMPT (

N

Y)

PUTPAGE
The PUTPAGE option specifies whether the form feed character should be followed by a carriage return
character. This option applies only to printer-destined files.

Printer-destined files are stream output files declared with the PRINT attribute, or record output files
declared with the CTLASA environment option.

204 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

PUTPAGE (

NOCR

CR)

NOCR
Indicates that the form feed character ('0C'x) is not followed by a carriage return character ('0D'x).

CR
Indicates that the carriage return character is appended to the form feed character. This option should
be specified if output is sent to non-IBM printers.

RECCOUNT
The RECCOUNT option specifies the maximum number of records that can be loaded into a relative or
regional data set that is created during the PL/I file opening process.

Note: The RECCOUNT option is not supported for 64-bit programs.

RECCOUNT ( n)

The RECCOUNT option is ignored if PL/I does not create or re-create the data set.

The default for the RECCOUNT option is 50.

Note: Under z/OS, it is recommended that you omit the TITLE option with both the /filespec parameter
and RECCOUNT parameter for improved functionality and performance of REGIONAL(1) data sets. In such
a case, the number of records that will be loaded into the file depends on the space allocated to the first
extent of the data set. See Chapter 13, “Defining and using regional data sets,” on page 261 for additional
information.

RECSIZE
The RECSIZE option specifies the length of records in the data set. For regional and fixed-length data sets,
RECSIZE specifies the length of each record in the data set; for all other data set types, RECSIZE specifies
the maximum length that records can have.

RECSIZE (

512

n)

SAMELINE
The SAMELINE option specifies whether the system prompt occurs on the same line as the statement that
prompts for input.

SAMELINE (

N

Y)

The following examples show the results of certain combinations of the PROMPT and SAMELINE options.

Example 1

Given the statement PUT SKIP LIST('ENTER:');, output is as follows:

prompt(y) sameline(y) ENTER: (cursor)

prompt(y) sameline(n) ENTER:
 (cursor)

Chapter 8. Using data sets and files 205

prompt(n) sameline(y) ENTER: (cursor)

prompt(n) sameline(n) ENTER:
 (cursor)

Example 2

Given the statement PUT SKIP LIST('ENTER');, output is as follows:

prompt(y) sameline(y) ENTER: (cursor)

prompt(y) sameline(n) ENTER
 :
 (cursor)

prompt(n) sameline(y) ENTER (cursor)

prompt(n) sameline(n) ENTER
 (cursor)

SKIP0
The SKIP0 option specifies where the line cursor moves when SKIP(0) statement is coded in the source
program. SKIP0 applies to terminal files that are not linked as PM applications.

SKIP0 (

N

Y)

SKIP0(N)
Specifies that the cursor moves to the beginning of the next line.

SKIP0(Y)
Specifies that the cursor moves to the beginning of the current line.

The following example shows how you could make the output to the terminal skip zero lines so that the
cursor moves to the beginning of the current output line:

 export DD_SYSPRINT='stdout:,SKIP0(Y)'

TYPE
The TYPE option specifies the format of records in a native file.

TYPE (

LF

CRLF

TEXT

FIXED

CRLFEOF

U

)

CRLF
Specifies that records are delimited by the CR - LF character combination. ('CR' and 'LF' represent
the ASCII values of carriage return and line feed, '0D'x and '0A'x, respectively. For an output file, PL/I

206 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

places the characters at the end of each record; for an input file, PL/I discards the characters. For both
input and output, the characters are not counted in consideration for RECSIZE.

The data set must not contain any record that is longer than the value determined for the record
length of the data set.

LF
Specifies that records are delimited by the LF character combination. ('LF' represents the ASCII
values of feed or '0A'x.) For an output file, PL/I places the characters at the end of each record; for an
input file, PL/I discards the characters. For both input and output, the characters are not counted in
consideration for RECSIZE.

The data set must not contain any record that is longer than the value determined for the record
length of the data set.

TEXT
Equivalent to LF.

FIXED
Specifies that each record in the data set has the same length. The length determined for records in
the data set is used to recognize record boundaries.

All characters in a TYPE(FIXED) file are considered as data, including control characters if they exist.
Make sure the record length you specify reflects the presence of these characters, or make sure the
record length you specify accounts for all characters in the record.

CRLFEOF
Except for output files, this suboption specifies the same information as CRLF. When one of these files
is closed for output, an end-of-file marker is appended to the last record.

U
Indicates that records are unformatted. These unformatted files cannot be used by any record or
stream I/O statements except OPEN and CLOSE. You can read from a TYPE(U) file only by using
the FILEREAD built-in function. You can write to a TYPE(U) file only by using the FILEWRITE built-in
function.

The TYPE option applies only to CONSECUTIVE files, except that it is ignored for printer-destined files
with ASA(N) applied.

If your program attempts to access an existing data set with TYPE(FIXED) in effect and the length of
the data set is not a multiple of the logical record length you specify, PL/I raises the UNDEFINEDFILE
condition.

When nonprint files with the TYPE(FIXED) attribute are used, SKIP is replaced by trailing blanks to the
end of the line. If TYPE(LF) is being used, SKIP is replaced by LF with no trailing blanks.

Establishing data set characteristics
A data set consists of records stored in a particular format that the operating system data management
routines understand. When you declare or open a file in your program, you are describing to PL/I and to
the operating system the characteristics of the records that file will contain.

You can also use JCL or an expression in the TITLE option of the OPEN statement to describe to the
operating system the characteristics of the data in data sets or in the PL/I files associated with the data
sets.

You do not always need to describe your data both within the program and outside it; often one
description will serve for both data sets and their associated PL/I files. There are, in fact, advantages
to describing the characteristics of your data in only one place.

To effectively describe your program data and the data sets you will be using, you need to understand
how the operating system moves and stores data.

Chapter 8. Using data sets and files 207

Blocks and records
The items of data in a data set are arranged in blocks separated by interblock gaps (IBG). (Some manuals
refer to these as interrecord gaps.)

A block is the unit of data transmitted to and from a data set. Each block contains one record, part of a
record, or several records. You can specify the block size in the BLKSIZE parameter of the DD statement
or in the BLKSIZE option of the ENVIRONMENT attribute.

A record is the unit of data transmitted to and from a program. You can specify the record length in the
LRECL parameter of the DD statement, in the TITLE option of the OPEN statement, or in the RECSIZE
option of the ENVIRONMENT attribute.

When writing a PL/I program, you need consider only the records that you are reading or writing; but when
you describe the data sets that your program will create or access, you must be aware of the relationship
between blocks and records.

Blocking conserves storage space in a magnetic storage volume because it reduces the number of
interblock gaps, and it can increase efficiency by reducing the number of input/output operations required
to process a data set. Records are blocked and deblocked by the data management routines.

Information interchange codes
The normal code in which data is recorded is the Extended Binary Coded Decimal Interchange Code
(EBCDIC).

Each character in the ASCII code is represented by a 7-bit pattern and there are 128 such patterns. The
ASCII set includes a substitute character (the SUB control character) that is used to represent EBCDIC
characters having no valid ASCII code. The ASCII substitute character is translated to the EBCDIC SUB
character, which has the bit pattern 00111111.

Record formats
The records in a data set have one of the following formats:

Fixed-length
Variable-length
Undefined-length.

Records can be blocked if required. The operating system will deblock fixed-length and variable-length
records, but you must provide code in your program to deblock undefined-length records.

You specify the record format in the RECFM parameter of the DD statement, in the TITLE option of the
OPEN statement, or as an option of the ENVIRONMENT attribute.

Fixed-length records

You can specify the following formats for fixed-length records:

F
Fixed-length, unblocked

FB
Fixed-length, blocked

FS
Fixed-length, unblocked, standard

FBS
Fixed-length, blocked, standard.

In a data set with fixed-length records, as shown in Figure 4 on page 209, all records have the same
length. If the records are blocked, each block usually contains an equal number of fixed-length records
(although a block can be truncated). If the records are unblocked, each record constitutes a block.

208 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Figure 4. Fixed-length records

Because it bases blocking and deblocking on a constant record length, the operating system processes
fixed-length records faster than variable-length records.

Variable-length records

You can specify the following formats for variable-length records:

V
Variable-length, unblocked

VB
Variable-length, blocked

VS
Variable-length, unblocked, spanned

VBS
Variable-length, blocked, spanned

V-format allows both variable-length records and variable-length blocks. A 4-byte prefix of each record
and the first 4 bytes of each block contain control information for use by the operating system (including
the length in bytes of the record or block). Because of these control fields, variable-length records cannot
be read backward.

V-format signifies unblocked variable-length records. Each record is treated as a block containing only
one record. The first 4 bytes of the block contain block control information, and the next 4 contain record
control information.

VB-format signifies blocked variable-length records. Each block contains as many complete records as it
can accommodate. The first 4 bytes of the block contain block control information, and a 4-byte prefix of
each record contains record control information.

Spanned Records: A spanned record is a variable-length record in which the length of the record can
exceed the size of a block. If this occurs, the record is divided into segments and accommodated in
two or more consecutive blocks by specifying the record format as either VS or VBS. Segmentation and
assembly are handled by the operating system. The use of spanned records allows you to select a block
size, independently of record length, that will combine optimum use of auxiliary storage with maximum
efficiency of transmission.

VS-format is similar to V-format. Each block contains only one record or segment of a record. The first
4 bytes of the block contain block control information, and the next 4 contain record or segment control
information (including an indication of whether the record is complete or is a first, intermediate, or last
segment).

Chapter 8. Using data sets and files 209

VBS-format differs from VS-format in that each block contains as many complete records or segments
as it can accommodate; each block is, therefore, approximately the same size (although there can be a
variation of up to 4 bytes, because each segment must contain at least 1 byte of data).

Undefined-length records

U-format allows the processing of records that do not conform to F- and V-formats. The operating system
and the compiler treat each block as a record; your program must perform any required blocking or
deblocking.

Data set organization
The data management routines of the operating system can handle a number of types of data sets, which
differ in the way data is stored within them and in the allowed means of access to the data.

The following table shows the three main types of non-VSAM data sets and the corresponding keywords
describing their PL/I organization1.

Type of data set PL/I organization

Sequential CONSECUTIVE or ORGANIZATION(consecutive)

Indexed INDEXED or ORGANIZATION(indexed)

Direct REGIONAL or ORGANIZATION(relative)

A fourth type, partitioned, has no corresponding PL/I organization.

PL/I also provides support for three types of VSAM data organization: ESDS, KSDS, and RRDS. For more
information about VSAM data sets, see Chapter 14, “Defining and using VSAM data sets,” on page 271.

In a sequential (or CONSECUTIVE) data set, records are placed in physical sequence. Given one record,
the location of the next record is determined by its physical position in the data set. Sequential
organization can be selected for direct access devices.

An indexed sequential (or INDEXED) data set must reside on a direct access volume. An index or a set
of indexes maintained by the operating system gives the location of certain principal records. This allows
direct retrieval, replacement, addition, and deletion of records, as well as sequential processing.

A direct (or REGIONAL) data set must reside on a direct access volume. The data set is divided into
regions, each of which contains one or more records. A key that specifies the region number allows direct
access to any record; sequential processing is also possible.

In a partitioned data set, independent groups of sequentially organized data, each called a member,
reside in a direct access data set. The data set includes a directory that lists the location of each member.
Partitioned data sets are often called libraries. The compiler includes no special facilities for creating
and accessing partitioned data sets. Each member can be processed as a CONSECUTIVE data set by a
PL/I program. For more information about using partitioned data sets as libraries, see Chapter 9, “Using
libraries,” on page 225.

Labels
The operating system uses internal labels to identify direct access volumes and to store data set
attributes (for example, record length and block size). The attribute information must originally come
from a DD statement or from your program.

IBM standard labels have two parts: the initial volume label and header labels. The initial volume
label identifies a volume and its owner; the header labels precede and follow each data set on the

1 Do not confuse the terms sequential and direct with the PL/I file attributes SEQUENTIAL and DIRECT.
The attributes refer to how the file is to be processed, and not to the way the corresponding data set is
organized.

210 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

volume. Header labels contain system information, device-dependent information (for example, recording
technique), and data set characteristics.

Direct access volumes have IBM standard labels. Each volume is identified by a volume label, which is
stored on the volume. This label contains a volume serial number and the address of a volume table of
contents (VTOC). The table of contents, in turn, contains a label, called a data set control block (DSCB), for
each data set stored on the volume.

Data Definition (DD) statement
A data definition (DD) statement is a job control statement that defines a data set to the operating system,
and is a request to the operating system for the allocation of input/output resources. If the data sets are
not dynamically allocated, each job step must include a DD statement for each data set that is processed
by the step.

The z/OS MVS JCL User's Guide describes the syntax of job control statements. The operand field of the
DD statement can contain keyword parameters that describe the location of the data set (for example,
volume serial number and identification of the unit on which the volume will be mounted) and the
attributes of the data itself (for example, record format).

The DD statement enables you to write PL/I source programs that are independent of the data sets and
input/output devices they will use. You can modify the parameters of a data set or process different data
sets without recompiling your program.

The LEAVE and REREAD options of the ENVIRONMENT attribute allow you to use the DISP parameter to
control the action taken when the end of a magnetic-tape volume is reached or when a magnetic-tape
data set is closed. For information about the LEAVE and REREAD options, see “LEAVE|REREAD” on page
253.

Write validity checking, which was standard in PL/I Version 1, is no longer performed. Write validity
checking can be requested through the OPTCD subparameter of the DCB parameter of the JCL DD
statement. See the OS/VS2 Job Control Language manual.

Use of the conditional subparameters
If you use the conditional subparameters of the DISP parameter for data sets processed by PL/I
programs, the step abend facility must be used.

The step abend facility is obtained as follows:

1. The ERROR condition should be raised or signaled whenever the program is to terminate execution
after a failure that requires the application of the conditional subparameters.

2. The PL/I user exit must be changed to request an ABEND.

Data set characteristics
The DCB (data control block) parameter of the DD statement allows you to describe the characteristics
of the data in a data set and the way it will be processed at run time. Whereas the other parameters of
the DD statement deal chiefly with the identity, location, and disposal of the data set, the DCB parameter
specifies information required for the processing of the records themselves.

The subparameters of the DCB parameter are described in the OS/VS2 Job Control Language.

The DCB parameter contains subparameters that describe the following data characteristics:

• The organization of the data set and how it will be accessed (CYLOFL, DSORG, LIMCT, NTM, and OPTCD
subparameters)

• Device-dependent information such as the line spacing for a printer (CODE, FUNC, MODE, OPTCD=J,
PRTSP, and STACK subparameters)

• The record format (BLKSIZE, KEYLEN, LRECL, and RECFM subparameters)
• The ASA control characters (if any) that will be inserted in the first byte of each record (RECFM

subparameter)

Chapter 8. Using data sets and files 211

You can specify BLKSIZE, LRECL, KEYLEN, and RECFM (or their equivalents) in the ENVIRONMENT
attribute of a file declaration in your PL/I program instead of in the DCB parameter.

You cannot use the DCB parameter to override information already established for the data set in your
PL/I program (by the file attributes declared and the other attributes that are implied by them). DCB
subparameters that attempt to change information already supplied are ignored.

For a new data set, the attributes of the file defined in the program will be used if there is a conflict with
the DD statement.

You might see message IEC225I with RC=4 issued when closing PDS files. This message can be safely
ignored.

The following example of the DCB parameter specifies that fixed-length records, 40 bytes in length, are to
be grouped together in a block 400 bytes long:

DCB=(RECFM=FB,BLKSIZE=400,LRECL=40)

Using the TITLE option of the OPEN statement
You can use the TITLE option of the OPEN statement to identify the data set to be associated with a PL/I
file and, optionally, to provide additional characteristics of the data set.
Related information
“Using the TITLE option of the OPEN statement” on page 199
You can use the TITLE option of the OPEN statement to identify the data set to be associated with a PL/I
file, and, optionally, to provide additional characteristics of that data set.

Associating PL/I files with data sets
The execution of a PL/I OPEN statement associates a file with a data set. The execution of a PL/I CLOSE
statement dissociates a file from the data set with which it was associated.

Opening a file
The execution of a PL/I OPEN statement associates a file with a data set. This requires merging of the
information describing the file and the data set. If any conflict is detected between file attributes and data
set characteristics, the UNDEFINEDFILE condition is raised.

Subroutines of the PL/I library create a skeleton data control block for the data set. They use the file
attributes from the DECLARE and OPEN statements and any attributes implied by the declared attributes,
to complete the data control block as far as possible. (See Figure 5 on page 213.) They then issue an
OPEN macro instruction, which calls the data management routines to check that the correct volume is
mounted and to complete the data control block.

The data management routines examine the data control block to see what information is still needed and
then look for this information, first in the DD statement, and finally, if the data set exists and has standard
labels, in the data set labels. For new data sets, the data management routines begin to create the labels
(if they are required) and to fill them with information from the data control block.

For INPUT data sets, the PL/I program can override the DCB attributes as long as there is no conflict
in attributes. For OUTPUT data sets, the PL/I program cannot override the DCB attributes. However, if
any DCB attributes are missing from the data set when it is opened, they will be obtained from the PL/I
program, if provided.

When the DCB fields are filled in from these sources, control returns to the PL/I library subroutines. If any
fields still are not filled in, the PL/I OPEN subroutine provides default information for some of them. For
example, if LRECL is not specified, it is provided from the value given for BLKSIZE.

212 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Figure 5. How the operating system completes the DCB

Using system-determined block size
If you use the system-determined block size function of the Data Facility Product on z/OS, DFP
determines the optimal block size for the device type that is assigned.

When you create a new DASD data set, the system derives the optimum block size and saves it in the data
set label when all of the following conditions are true:

• Block size is not available or specified from any source. BLKSIZE=0 can be specified.
• You specify LRECL, or it is in the data class. The data set does not have to be SMS managed.
• You specify RECFM, or it is in the data class. It must be fixed or variable.
• You specify DSORG as PS or PO, or if you omit DSORG, it is PS or PO in the data class.

When system-determined block size is active, DFP determines the block size and places it in the data
set label before PL/I opens the file. Therefore, if the PL/I program specifies a block size with its
ENVIRONMENT option, it must not be in conflict with the value from the system-determined block size.

For detailed information about system-determined block size, see z/OS DFSMS Using Data Sets.

Closing a file
The execution of a PL/I CLOSE statement dissociates a file from the data set with which it was associated.

The PL/I library subroutines first issue a CLOSE macro instruction; when control returns from the data
management routines, the subroutines release the data control block that was created when the file was
opened. The data management routines complete the writing of labels for new data sets and update the
labels of existing data sets.

Chapter 8. Using data sets and files 213

Specifying characteristics in the ENVIRONMENT attribute
You can use various options in the ENVIRONMENT attribute to specify data characteristics. Each type of
file has different attributes and environment options.

The ENVIRONMENT attribute
You use the ENVIRONMENT attribute of a PL/I file declaration file to specify information about the
physical organization of the data set associated with a file, and describe other related information. The
format of this information must be a parenthesized option list.

ENVIRONMENT (option-list)

Abbreviation: ENV

You can specify the options in any order, separated by blanks or commas.

The following example illustrates the syntax of the ENVIRONMENT attribute in the context of a complete
file declaration (the options specified are for VSAM).

DCL FILENAME FILE RECORD SEQUENTIAL
 INPUT ENV(VSAM GENKEY);

Table 38 on page 214 summarizes the ENVIRONMENT options and file attributes. Certain qualifications
on their use are presented in the notes and comments in the table.

Table 38. Attributes of PL/I file declarations

Data set type

S
t
r
e
a
m

Record

Legend:
C

Checked for VSAM
D

Default
I

Must be specified or implied
N

Ignored for VSAM
O

Optional
S

Must be specified
-

Invalid

File
Type

C
o
n
s
e
c
u
t
i
v
e

Sequential Direct

Consecutive

B
u
f
f
e
r
e
d

U
n
b
u
f
f
e
r
e
d

R
e
g
i
o
n
a
l

T
e
l
e
p
r
o
c
e
s
s
i
n
g

I
n
d
e
x
e
d

V
S
A
M

R
e
g
i
o
n
a
l

I
n
d
e
x
e
d

V
S
A
M

File attributes1 Attributes implied

File I I I I I I I I I I

Input1 D D D D D D D D D D File

214 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Output O O O O O O O O O O File

Environment I I I S S S S S S S File

Stream D - - - - - - - - - File

Print1 O - - - - - - - - - File stream output

Record - I I I I I I I I I File

Update - O O O - O O O O O File record

Sequential - D D D - D D - - D File record

Buffered - D - - I D D - - S File record

Keyed2 - - - O I O O I I O File record

Direct - - - - - - S S S S File record keyed

ENVIRONMENT options Comments

F|FB|FS|FBS|V|
 VB|VS|VBS||U

I

S

S

-

-

-

N

-

-

N

VS and VBS are invalid
 with Stream

F|FB|U S S - - - - N - - N ASCII data sets only

F|V|U - - - S - - N S - N Only F for REGIONAL(1)

F|FB|V|VB - - - - - S N - S N

RECSIZE(n) I I I I S I C I I C
RECSIZE and/or BLKSIZE
must be specified for
consecutive

BLKSIZE(n) I I I I - I N I I N indexed, and regional files

SCALARVARYING - O O O - O O O O O Invalid for ASCII data sets

CONSECUTIVE D D D - - - O - - O Allowed for VSAM ESDS

LEAVE|REREAD O O O - - - - - - -

CTLASA|CTL360 - O O - - - - - - - Invalid for ASCII data sets

Chapter 8. Using data sets and files 215

GRAPHIC O - - - - - - - - -

INDEXED - - - - - S O - S O Allowed for VSAM ESDS

KEYLOC(n) - - - - - O - - O -

ORGANIZATION D - - - - - - - - -

GENKEY - - - - - O O - O O INPUT or UPDATE files only;
 KEYED is required

REGIONAL(1) - - - S - - - S - -

VSAM - - - - - - S - - S

BKWD - - - - - - O - - O

REUSE

-

-

-

-

-

-

O

-

-

O

OUTPUT file only

Notes:

1. A file with the INPUT attribute cannot have the PRINT attribute.
2. Keyed is required for INDEXED and REGIONAL output.

Those ENVIRONMENT options that apply to more than one data set organization are described in the
topics that follow. In addition, in the following sections, each option is described with each data set
organization to which it applies.

Related information
“Defining and using VSAM data sets” on page 271
This chapter covers VSAM (the Virtual Storage Access Method) organization for record-oriented data
transmission, VSAM ENVIRONMENT options, compatibility with other PL/I data set organizations, and
the statements you use to load and access the three types of VSAM data sets that PL/I supports—entry-
sequenced, key-sequenced, and relative record.

Data set organization options
The following options specify the data set organization:

CONSECUTIVE

INDEXED

REGIONAL (1)

VSAM

Each option is described in the discussion of the data set organization to which it applies.

Other ENVIRONMENT options
You can use a constant or variable with those ENVIRONMENT options that require integer arguments,
such as block sizes and record lengths. The variable must not be subscripted or qualified, and must have
attributes FIXED BINARY(31,0) and STATIC.

The following list shows ENVIRONMENT options and equivalent DCB parameters.

216 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

ENVIRONMENT option DCB subparameter

Record format RECFM1

RECSIZE LRECL

BLKSIZE BLKSIZE

CTLASA|CTL360 RECFM

KEYLENGTH KEYLEN

Note: 1VS must be specified as an ENVIRONMENT option, not in the DCB.

Record formats for record-oriented data transmission
Record formats supported depend on the data set organization.

F

FS

FB

FBS

V

VS

VB

VBS

U

Records can have one of the following formats:

Fixed-length F
FB
FS
FBS

unblocked
blocked
unblocked, standard
blocked, standard

Variable-length V
VB
VS
VBS

unblocked
blocked
spanned
blocked, spanned

Undefined-length U (cannot be blocked)

When U-format records are read into a varying-length string, PL/I sets the length of the string to the block
length of the retrieved data.

These record format options do not apply to VSAM data sets. If you specify a record format option for a
file associated with a VSAM data set, the option is ignored.

You can specify VS-format records only for data sets with consecutive organization.

Record formats for stream-oriented data transmission
For information about the record format options for stream-oriented data transmission, see “Using
stream-oriented data transmission” on page 231.

Chapter 8. Using data sets and files 217

RECSIZE option
The RECSIZE option specifies the record length.

RECSIZE (record-length)

For files associated with VSAM data sets, record-length is the sum of the following:

1. The length required for data

For variable-length and undefined-length records, this is the maximum length.
2. Any control bytes required

Variable-length records require 4 (for the record-length prefix); fixed-length and undefined-length
records do not require any.

For VSAM data sets, the maximum and average lengths of the records are specified to the Access Method
Services utility when the data set is defined. If you include the RECSIZE option in the file declaration for
checking purposes, you should specify the maximum record size. If you specify RECSIZE and it conflicts
with the values defined for the data set, the UNDEFINEDFILE condition is raised.

You can specify record-length as an integer or as a variable with attributes FIXED BINARY(31,0) STATIC.

The value is subject to the following conventions:

Maximum:
Fixed-length, and undefined (except ASCII data sets): 32760

V-format, and VS- and VBS-format with UPDATE files: 32756

VS- and VBS-format with INPUT and OUTPUT files: 16777215

ASCII data sets: 9999

VSAM data sets: 32761

Note: For VS- and VBS-format records longer than 32,756 bytes, you must specify the length in the
RECSIZE option of ENVIRONMENT, and for the DCB subparameter of the DD statement you must
specify LRECL=X. If RECSIZE exceeds the allowed maximum for INPUT or OUTPUT, either a record
condition occurs or the record is truncated. UPDATE files are not supported with LRECL=X.

Zero value:
A search for a valid value is made first in the DD statement for the data set associated with the file and
second in the data set label:

If neither of these provides a value, the default action is taken (see “Record format, BLKSIZE, and
RECSIZE defaults” on page 220).

Negative Value:
The UNDEFINEDFILE condition is raised.

BLKSIZE option
The BLKSIZE option specifies the maximum block size on the data set.

BLKSIZE (block-size)

block-size is the sum of the following:

1. The total length(s) of one of the following:

• A single record
• A single record and either one or two record segments
• Several records
• Several records and either one or two record segments

218 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

• Two record segments
• A single record segment.

For variable-length records, the length of each record or record segment includes the 4 control bytes
for the record or segment length.

The preceding list summarizes all the possible combinations of records and record segments options:
fixed- or variable-length, blocked or unblocked, spanned or unspanned. When specifying a block size
for spanned records, note that each record and each record segment requires 4 control bytes for the
record length and that these quantities are in addition to the 4 control bytes required for each block.

2. Any further control bytes required

• Variable-length blocked records require 4 (for the block size).
• Fixed-length and undefined-length records do not require any further control bytes.

3. Any block prefix bytes required (ASCII data sets only)

block-size can be specified as an integer, or as a variable with attributes FIXED BINARY(31,0) STATIC.

The value is subject to the following conventions:
Maximum:

32760
Zero value:

If you set BLKSIZE to 0, under z/OS the Data Facility Product sets the block size. For more
information, see “Record format, BLKSIZE, and RECSIZE defaults” on page 220.

Negative value:
The UNDEFINEDFILE condition is raised.

The relationship of block size to record length depends on the record format:

FB-format or FBS-format
The block size must be a multiple of the record length.

VB-format:
The block size must be equal to or greater than the sum of the following:

1. The maximum length of any record
2. Four control bytes

VS-format or VBS-format:
The block size can be less than, equal to, or greater than the record length.

Notes:

• Use the BLKSIZE option with unblocked (F- or V-format) records in either of the following ways:

– Specify the BLKSIZE option, but not the RECSIZE option. Set the record length equal to the block size
(minus any control or prefix bytes), and leave the record format unchanged.

– Specify both BLKSIZE and RECSIZE and ensure that the relationship of the two values is compatible
with blocking for the record format you use. Set the record format to FB or VB, whichever is
appropriate.

• If for FB-format or FBS-format records the block size equals the record length, the record format is set
to F.

• The BLKSIZE option does not apply to VSAM data sets, and is ignored if you specify it for one.

Chapter 8. Using data sets and files 219

Record format, BLKSIZE, and RECSIZE defaults
If you do not specify either the record format, block size, or record length for a non-VSAM data set, a
default action is taken.
Record format:

A search is made in the associated DD statement or data set label. If the search does not provide a
value, the UNDEFINEDFILE condition is raised, except for files associated with dummy data sets or
the foreground terminal, in which case the record format is set to U.

Block size or record length:
If one of these is specified, a search is made for the other in the associated DD statement or data set
label. If the search provides a value, and if this value is incompatible with the value in the specified
option, the UNDEFINEDFILE condition is raised. If the search is unsuccessful, a value is derived from
the specified option (with the addition or subtraction of any control or prefix bytes).

If neither is specified, the UNDEFINEDFILE condition is raised, except for files associated with dummy
data sets, in which case BLKSIZE is set to 121 for F-format or U-format records and to 129 for
V-format records. For files associated with the foreground terminal, RECSIZE is set to 120.

If you are using z/OS with the Data Facility Product system-determined block size, DFP determines
the optimum block size for the device type assigned. If you specify BLKSIZE(0) in either the DD
assignment or the ENVIRONMENT statement, DFP calculates BLKSIZE by using the record length,
record format, and device type.

GENKEY option — key classification
The GENKEY (generic key) option applies only to INDEXED and VSAM key-sequenced data sets. You
can use this option to classify keys recorded in a data set and use a SEQUENTIAL KEYED INPUT or
SEQUENTIAL KEYED UPDATE file to access records according to their key classes.

GENKEY

A generic key is a character string that identifies a class of keys; all keys that begin with the string are
members of that class. For example, the recorded keys “ABCD”, “ABCE”, and “ABDF” are all members of
the classes identified by the generic keys “A” and “AB”, and the first two are also members of the class
“ABC”; and the three recorded keys can be considered to be unique members of the classes “ABCD”,
“ABCE”, and “ABDF”, respectively.

The GENKEY option allows you to start sequential reading or updating of a VSAM data set from the first
record that has a key in a particular class, and for an INDEXED data set from the first nondummy record
that has a key in a particular class. You identify the class by including its generic key in the KEY option
of a READ statement. Subsequent records can be read by READ statements without the KEY option. No
indication is given when the end of a key class is reached.

Although you can retrieve the first record that has a key in a particular class by using a READ with the
KEY option, you cannot obtain the actual key unless the records have embedded keys, because the KEYTO
option cannot be used in the same statement as the KEY option.

In the following example, a key length of more than 3 bytes is assumed:

DCL IND FILE RECORD SEQUENTIAL KEYED
 UPDATE ENV (GENKEY);
 .
 .
 .
 READ FILE(IND) INTO(INFIELD)
 KEY ('ABC');
 .
 .
 .
NEXT: READ FILE (IND) INTO (INFIELD);
 .
 .
 .
 GO TO NEXT;

220 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

The first READ statement causes the first nondummy record in the data set whose key begins with “ABC”
to be read into INFIELD; each time the second READ statement is executed, the nondummy record with
the next higher key is retrieved. Repeated execution of the second READ statement results in reading
records from higher key classes, because no indication is given when the end of a key class is reached. It
is your responsibility to check each key if you do not wish to read beyond the key class. Any subsequent
execution of the first READ statement will reposition the file to the first record of the key class “ABC”.

If the data set contains no records with keys in the specified class, or if all the records with keys in the
specified class are dummy records, the KEY condition is raised. The data set is then positioned either at
the next record that has a higher key or at the end of the file.

The presence or absence of the GENKEY option affects the execution of a READ statement which supplies
a source key that is shorter than the key length specified in the KEYLEN subparameter. This KEYLEN
subparameter is found in the DD statement that defines the indexed data set. If you specify the GENKEY
option, it causes the source key to be interpreted as a generic key, and the data set is positioned to the
first nondummy record in the data set whose key begins with the source key. If you do not specify the
GENKEY option, a READ statement's short source key is padded on the right with blanks to the specified
key length, and the data set is positioned to the record that has this padded key (if such a record exists).
For a WRITE statement, a short source key is always padded with blanks.

Use of the GENKEY option does not affect the result of supplying a source key whose length is greater
than or equal to the specified key length. The source key, truncated on the right if necessary, identifies a
specific record (whose key can be considered to be the only member of its class).

SCALARVARYING option — varying-length strings
You use the SCALARVARYING option in the input/output of varying-length strings; you can use it with
records of any format.

SCALARVARYING

When storage is allocated for a varying-length string, the compiler includes a 2-byte prefix that specifies
the current length of the string. For an element varying-length string, this prefix is included on output, or
recognized on input, only if SCALARVARYING is specified for the file.

When you use locate mode statements (LOCATE and READ SET) to create and read a data set with
element varying-length strings, you must specify SCALARVARYING to indicate that a length prefix is
present, because the pointer that locates the buffer is always assumed to point to the start of the length
prefix.

When you specify SCALARVARYING and element varying-length strings are transmitted, you must allow
two bytes in the record length to include the length prefix.

A data set created with SCALARVARYING should be accessed only by a file that also specifies
SCALARVARYING.

You must not specify SCALARVARYING and CTLASA/CTL360 for the same file, because this causes the
first data byte to be ambiguous.

KEYLENGTH option
The KEYLENGTH option specifies the length of the recorded key for KEYED files. You can specify
KEYLENGTH for INDEXED files.

KEYLENGTH (n)

n
Specifies the length of the recorded key for KEYED files

If you include the KEYLENGTH option in a VSAM file declaration for checking purposes, and if the key
length you specify in the option conflicts with the value defined for the data set, the UNDEFINEDFILE
condition is raised.

Chapter 8. Using data sets and files 221

ORGANIZATION option
The ORGANIZATION option specifies the organization of the data set associated with the PL/I file.

ORGANIZATION (

CONSECUTIVE

INDEXED

RELATIVE

)

CONSECUTIVE
Specifies that the files is associated with a consecutive data set. A consecutive file can be either a
native data set or a VSAM, ESDS, RRDS, or KSDS data set.

RELATIVE
Specifies that the file is associated with a relative data set. RELATIVE specifies that the data set
contains records that do not have recorded keys. A relative file is a VSAM direct data set. Relative keys
range from 1 to nnnn.

Data set types used by PL/I record I/O
Data sets with the RECORD attribute are processed by record-oriented data transmission in which data
is transmitted to and from auxiliary storage exactly as it appears in the program variables; no data
conversion takes place. A record in a data set corresponds to a variable in the program.

Table 39 on page 222 shows the facilities that are available with the various types of data sets that can be
used with PL/I record I/O.

Table 39. A comparison of data set types available to PL/I record I/O

 VSAM
KSDS

VSAM
ESDS

VSAM
RRDS

INDEXED

CONSECUTIVE

REGIONAL
(1)

SEQUENCE Key
order

Entry
order

Num-
bered

Key
order

Entry
order

By
region

DEVICES DASD DASD DASD DASD DASD,
card, etc.

DASD

ACCESS

1
By key

2
Sequential

3
Backward

123

123

123

12

2

12

Alternate
index
 access
 as above

123

123

No

No

No

No

How
extended

With
new
keys

At
end

In
empty
slots

With
new
keys

At
end

In
empty
slots

222 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 39. A comparison of data set types available to PL/I record I/O (continued)

 VSAM
KSDS

VSAM
ESDS

VSAM
RRDS

INDEXED

CONSECUTIVE

REGIONAL
(1)

DELETION

1
Space reusable

2
Space not
reusable

Yes, 1

No

Yes, 1

Yes, 2

No

Yes, 1

The following sections describe how to use Record I/O data sets for different types of data sets:

• Chapter 10, “Defining and using consecutive data sets,” on page 231
• Chapter 13, “Defining and using regional data sets,” on page 261
• Chapter 14, “Defining and using VSAM data sets,” on page 271

Setting environment variables under z/OS UNIX
Some environment variables can be set and exported for use with z/OS UNIX. To set the environment
variables system wide so all users have access to them, add the lines suggested in the subsections to
the file /etc/profile. To set them for a specific user only, add them to the file .profile in the user's
home directory.

The variables are set the next time the user logs on.

The following example illustrates how to set environment variables:

LANG=ja_JP
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/prime/%N
LIBPATH=/home/joe/usr/lib:/home/joe/mylib:/usr/lib
export LANG NLSPATH LIBPATH

Rather than using the last statement in the previous example, you can add export to each of the
preceding lines (export LANG=ja_JP...).

You can use the ECHO command to determine the current setting of an environment variable. To define
the value of BYPASS, you can use either of the following two examples:

echo $LANG

echo $LIBPATH

PL/I standard files (SYSPRINT and SYSIN) under z/OS UNIX
SYSIN is read from stdin and SYSPRINT is directed to stdout by default. If you want either to be
associated differently, you must use the TITLE option of the OPEN statement, or establish a DD_DDNAME
environment variable naming a data set or another device.
Related information
“Setting environment variables under z/OS UNIX” on page 223
Some environment variables can be set and exported for use with z/OS UNIX. To set the environment
variables system wide so all users have access to them, add the lines suggested in the subsections to

Chapter 8. Using data sets and files 223

the file /etc/profile. To set them for a specific user only, add them to the file .profile in the user's
home directory.

Redirecting standard input, output, and error devices under z/OS UNIX
You can redirect standard input, standard output, and standard error devices to a file.

For example, you can use redirection in the following program:

Hello2: proc options(main);
 put list('Hello!');
end;

After compiling and linking the program, you can invoke it from the command line by entering the
following command:

hello2 > hello2.out

If you want to combine stdout and stderr in a single file, enter the following command:

hello2 > hello2.out 2>&1

As is true with display statements, the greater than sign redirects the output to the file that is specified
after it, in this case hello2.out. This means that the word 'Hello' is written in the file hello2.out.
Note also that the output includes printer control characters because the PRINT attribute is applied to
SYSPRINT by default.

READ statements can also access data from stdin.

Taking advantage of LBI
You can improve the performance of tape data sets by using the large block interface (LBI) for large block
sizes. For tape devices that support LBI, PL/I uses this facility which allows block sizes to exceed 32760.

LBI is not supported for spanned or UPDATE files. In addition, PL/I does not provide LBI support for
U-format files. LBI is only supported in 31-bit mode.

Using a block size that exceeds 32760 might result in your not being able to read the tape on another
system. A tape that you create with a block size greater than 32760 can be read only on a system that has
a tape device that supports block sizes greater than 32760. If you specify a block size that is too large for
the file, the device, or the operating system level, a runtime message is issued.

224 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 9. Using libraries
Within the z/OS operating system, the terms partitioned data set, partitioned data set/extension, and
library are synonymous and refer to a type of data set that can be used for the storage of other data sets
(usually programs in the form of source, object, or load modules).

A library must be stored on direct access storage and be wholly contained in one volume. It contains
independent, consecutively organized data sets, called members. Each member has a unique name, not
more than 8 characters long, which is stored in a directory that is part of the library. All the members of
one library must have the same data characteristics because only one data set label is maintained.

You can create members individually until there is insufficient space left for a new entry in the directory,
or until there is insufficient space for the member itself. You can access members individually by
specifying the member name.

Use DD statements or their conversational mode equivalent to create and access members.

You can delete members by using the IBM utility program IEHPROGM. This program deletes the member
name from the directory so that the member can no longer be accessed, but you cannot use the space
occupied by the member itself again unless you re-create the library or compress the unused space by
using, for example, the IBM utility program IEBCOPY. If you attempt to delete a member by using the
DISP parameter of a DD statement, it causes the whole data set to be deleted.

Types of libraries
Types of libraries include the system program library, the system procedure library, and private program
libraries.

You can use the following types of libraries with a PL/I program:

• The system program library SYS1.LINKLIB or its equivalent

This library can contain all system processing programs such as compilers and the linkage editor.
• Private program libraries

These libraries usually contain user-written programs. It is often convenient to create a temporary
private library to store the load module output from the linkage editor until it is executed by a later job
step in the same job. The temporary library will be deleted at the end of the job. Private libraries are also
used for automatic library call by the linkage editor and the loader.

• The system procedure library SYS1.PROCLIB or its equivalent

This library contains the job control procedures that have been cataloged for your installation.

Using a library
A PL/I program can use a library directly.

If you are adding a new member to a library, its directory entry will be made by the operating system
when the associated file is closed, using the member name specified as part of the data set name.

If you are accessing a member of a library, its directory entry can be found by the operating system from
the member name that you specify as part of the data set name.

More than one member of the same library can be processed by the same PL/I program, but only one
such file can be open as output at any one time. You access different members by giving the member
name in a DD statement.

© Copyright IBM Corp. 1999, 2022 225

Creating a library
To create a library, include in your job step a DD statement containing the information required for
creating a library.

See Table 40 on page 226 for the information required when you create a library. The information required
is similar to that for a consecutively organized data set (see “Defining files using record I/O” on page 250)
except for the SPACE parameter.

Table 40. Information required when you create a library

Information required Parameter of DD statement

Type of device that will be used UNIT=

Serial number of the volume that will contain the library VOLUME=SER

Name of the library DSNAME=

Amount of space required for the library SPACE=

Disposition of the library DISP=

SPACE parameter
You can use the SPACE parameter in a DD statement to specify the amount of space required for the
library that you want to create.

The SPACE parameter in a DD statement that defines a library must always be of the form:

SPACE=(units,(quantity,increment,directory))

The third term (increment) is optional, and you can indicate its absence by a comma. The last term, which
specifies the number of directory blocks to be allocated, is required.

The amount of auxiliary storage required for a library depends on the number and sizes of the members
to be stored in it and on how often members will be added or replaced. (Space occupied by deleted
members is not released.) The number of directory blocks required depends on the number of members
and the number of aliases. You can specify an incremental quantity in the SPACE parameter that allows
the operating system to obtain more space for the data set, if such is necessary at the time of creation
or at the time a new member is added; the number of directory blocks, however, is fixed at the time of
creation and cannot be increased.

Example

In the following example, the DD statement requests the job scheduler to allocate 5 cylinders of the DASD
with a volume serial number 3412 for a new library name ALIB and to enter this name in the system
catalog. The last term of the SPACE parameter requests that part of the space allocated to the data set be
reserved for ten directory blocks.

⁄⁄ PDS DD UNIT=SYSDA,VOL=SER=3412,
⁄⁄ DSNAME=ALIB,
⁄⁄ SPACE=(CYL,(5,,10)),
⁄⁄ DISP=(,CATLG)

Creating and updating a library member
When you create and update library members, you must follow the guidelines in this topic.

The members of a library must have identical characteristics. Otherwise, you might later have difficulty
retrieving them. Identical characteristics are necessary because the volume table of contents (VTOC) will
contain only one data set control block (DSCB) for the library and not one for each member. When you use

226 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

a PL/I program to create a member, the operating system creates the directory entry; you cannot place
information in the user data field.

When you create a library and a member at the same time, your DD statement must include all the
parameters listed under “Creating a library” on page 226 (although you can omit the DISP parameter if
the data set is to be temporary). The DSNAME parameter must include the member name in parentheses.
For example, DSNAME=ALIB(MEM1) names the member MEM1 in the data set ALIB. If the member
is placed in the library by the linkage editor, you can use the linkage editor NAME statement or the
NAME compile-time option instead of including the member name in the DSNAME parameter. You must
also describe the characteristics of the member (such as, record format, and so on) either in the DCB
parameter or in your PL/I program. These characteristics will also apply to other members added to the
data set.

When creating a member to be added to an existing library, you do not need the SPACE parameter. The
original space allocation applies to the whole of the library and not to an individual member. Furthermore,
you do not need to describe the characteristics of the member, because these are already recorded in the
DSCB for the library.

To add two more members to a library in one job step, you must include a DD statement for each member,
and you must close one file that refers to the library before you open another.

Example: Creating new libraries for compiled object modules
This example uses the cataloged procedure IBMZC to compile a simple PL/I program and place the object
module in a new library named EXLIB. The DD statement that defines the new library and names the
object module overrides the DD statement SYSLIN in the cataloged procedure.

The PL/I program is a function procedure that, given two values in the form of the character string
produced by the TIME built-in function, returns the difference in milliseconds.

Table 41. Creating new libraries for compiled object modules

 //OPT10#1 JOB
 //TR EXEC IBMZC
 //PLI.SYSLIN DD UNIT=SYSDA,DSNAME=HPU8.EXLIB(ELAPSE),
 // SPACE=(TRK,(1,,1)),DISP=(NEW,CATLG)
 //PLI.SYSIN DD *
 ELAPSE: PROC(TIME1,TIME2);
 DCL (TIME1,TIME2) CHAR(9),
 H1 PIC '99' DEF TIME1,
 M1 PIC '99' DEF TIME1 POS(3),
 MS1 PIC '99999' DEF TIME1 POS(5),
 H2 PIC '99' DEF TIME2,
 M2 PIC '99' DEF TIME2 POS(3),
 MS2 PIC '99999' DEF TIME2 POS(5),
 ETIME FIXED DEC(7);
 IF H2<H1 THEN H2=H2+24;
 ETIME=((H2*60+M2)*60000+MS2)-((H1*60+M1)*60000+MS1);
 RETURN(ETIME);
 END ELAPSE;
 /*

Chapter 9. Using libraries 227

Example: Placing a load module in an existing library
The example uses the cataloged procedure IBMZCL to compile and link-edit a PL/I program and place the
load module in the existing library HPU8.CCLM.

Table 42. Placing a load module in an existing library

 //OPT10#2 JOB
 //TRLE EXEC IBMZCL
 //PLI.SYSIN DD *
 MNAME: PROC OPTIONS(MAIN);
 .
 .
 .
 program
 .
 .
 .

 END MNAME;
 /*
 //LKED.SYSLMOD DD DSNAME=HPU8.CCLM(DIRLIST),DISP=OLD

Example: Updating a library member
To use a PL/I program to add or delete one or more records within a member of a library, you must rewrite
the entire member in another part of the library. This is rarely an economic proposition because the space
originally occupied by the member cannot be used again. You must use two files in your PL/I program, but
both can be associated with the same DD statement.

The program shown in Table 44 on page 229 updates the member created by the program in Table 43 on
page 228. It copies all the records of the original member except those that contain only blanks.

Table 43. Creating a library member in a PL/I program

 //OPT10#3 JOB
 //TREX EXEC IBMZCBG
 //PLI.SYSIN DD *
 NMEM: PROC OPTIONS(MAIN);
 DCL IN FILE RECORD SEQUENTIAL INPUT,
 OUT FILE RECORD SEQUENTIAL OUTPUT,
 P POINTER,
 IOFIELD CHAR(80) BASED(P),
 EOF BIT(1) INIT('0'B);
 OPEN FILE(IN),FILE (OUT);
 ON ENDFILE(IN) EOF='1'B;
 READ FILE(IN) SET(P);
 DO WHILE (¬EOF);
 PUT FILE(SYSPRINT) SKIP EDIT (IOFIELD) (A);
 WRITE FILE(OUT) FROM(IOFIELD);
 READ FILE(IN) SET(P);
 END;
 CLOSE FILE(IN),FILE(OUT);
 END NMEM;
 /*
 //GO.OUT DD UNIT=SYSDA,DSNAME=HPU8.ALIB(NMEM),
 // DISP=(NEW,CATLG),SPACE=(TRK,(1,1,1)),
 // DCB=(RECFM=FB,BLKSIZE=3600,LRECL=80)
 //GO.IN DD *
 MEM: PROC OPTIONS(MAIN);
 /* this is an incomplete dummy library member */

228 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 44. Updating a library member

 //OPT10#4 JOB
 //TREX EXEC IBMZCBG
 //PLI.SYSIN DD *
 UPDTM: PROC OPTIONS(MAIN);
 DCL (OLD,NEW) FILE RECORD SEQUENTIAL,
 EOF BIT(1) INIT('0'B),
 DATA CHAR(80);
 ON ENDFILE(OLD) EOF = '1'B;
 OPEN FILE(OLD) INPUT,FILE(NEW) OUTPUT TITLE('OLD');
 READ FILE(OLD) INTO(DATA);
 DO WHILE (¬EOF);
 PUT FILE(SYSPRINT) SKIP EDIT (DATA) (A);
 IF DATA=' ' THEN ;
 ELSE WRITE FILE(NEW) FROM(DATA);
 READ FILE(OLD) INTO(DATA);
 END;
 CLOSE FILE(OLD),FILE(NEW);
 END UPDTM;
 /*
 //GO.OLD DD DSNAME=HPU8.ALIB(NMEM),DISP=(OLD,KEEP)

Extracting information from a library directory
The directory of a library is a series of records (entries) at the beginning of the data set. There is at least
one directory entry for each member. Each entry contains a member name, the relative address of the
member within the library, and a variable amount of user data.

User data is information inserted by the program that created the member. An entry that refers to a
member (load module) written by the linkage editor includes user data in a standard format, described in
the systems manuals.

If you use a PL/I program to create a member, the operating system creates the directory entry for you
and you cannot write any user data. However, you can use assembler language macro instructions to
create a member and write your own user data. The method for using macro instructions to do this is
described in the data management manuals.

Chapter 9. Using libraries 229

230 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 10. Defining and using consecutive data sets
This chapter covers consecutive data set organization and the ENVIRONMENT options that define
consecutive data sets for stream and record-oriented data transmission. It then covers how to create,
access, and update consecutive data sets for each type of transmission.

In a data set with consecutive organization, records are organized solely on the basis of their successive
physical positions; when the data set is created, records are written consecutively in the order in which
they are presented. You can retrieve the records only in the order in which they were written. See Table 38
on page 214 for valid file attributes and ENVIRONMENT options for consecutive data sets.

Using stream-oriented data transmission
This section covers how to define data sets for use with PL/I files that have the STREAM attribute. It
covers the ENVIRONMENT options you can use and how to create and access data sets. The essential
parameters of the DD statements you use in creating and accessing these data sets are summarized in
tables, and several examples of PL/I programs are included to illustrate the text.

Data sets with the STREAM attribute are processed by stream-oriented data transmission, which allows
your PL/I program to ignore block and record boundaries and treat a data set as a continuous stream of
data values in character or graphic form.

You create and access data sets for stream-oriented data transmission by using the list-, data-, and
edit-directed input and output statements described in the PL/I Language Reference.

For output, PL/I converts the data items from program variables into character form if necessary, and
builds the stream of characters or graphics into records for transmission to the data set.

For input, PL/I takes records from the data set and separates them into the data items requested by your
program, converting them into the appropriate form for assignment to program variables.

You can use stream-oriented data transmission to read or write graphic data. There are terminals,
printers, and data-entry devices that, with the appropriate programming support, can display, print, and
enter graphics. You must be sure that your data is in a format acceptable for the intended device or for a
print utility program.

Defining files using stream I/O
You can define files for stream-oriented data transmission by a file declaration.

DCL filename FILE STREAM
 INPUT | {OUTPUT [PRINT]}
 ENVIRONMENT(options);

For information about the default file attributes, see Table 38 on page 214. For information about the FILE
attribute, see the PL/I Language Reference. For more information about the PRINT attribute, see “Using
PRINT files with stream I/O” on page 239. For information about the options of the ENVIRONMENT
attribute, see “Specifying ENVIRONMENT options” on page 232.

Defining stream files using PL/I dynamic allocation
To define the stream files, you can use a DD statement, an environment variable, or the TITLE option of
the OPEN statement.

When an environment variable or the TITLE option is used, the name must be in uppercase. Specify the
MVS data set in one of the following ways:

• DSN(data-set-name)
• DSN(data-set-name(member-name))

© Copyright IBM Corp. 1999, 2022 231

data-set-name must be fully qualified and cannot be a temporary data set; for example, it must not start
with &.

Specify the zFS file as follows:

PATH(absolute-path-name)

You can specify the following attributes in any order after the DSN keyword:

NEW, OLD, SHR, or MOD
TRACKS or CYL
SPACE(n,m)
VOL(volser)
UNIT(type)
KEEP, DELETE, CATALOG, or UNCATALOG
STORCLAS(storageclass)
MGMTCLAS(managementclass)
DATACLAS(dataclass)
CLOSE
NORECALL
RELEASE

Note: You cannot create a PDS or PDSE by using an environment variable or the TITLE option of the OPEN
statement, but you can create a new member in an existing PDS or PDSE.

The CLOSE, NORECALL, and RELEASE attributes map to the same attributes of the BPXWDYN interface.
Refer to the z/OS Using REXX and z/OS UNIX System Services for details about BPXWDYN and the SVC 99
services that it supports.

Specifying ENVIRONMENT options
This topic describes the ENVIRONMENT options that define consecutive data sets for stream and record-
oriented data transmission.

Table 38 on page 214 summarizes the ENVIRONMENT options. The following options are applicable to
stream-oriented data transmission:

CONSECUTIVE or ORGANIZATION(CONSECUTIVE)
F|FB|FS|FBS|V|VB|VS|VBS|U
RECSIZE(record-length)
BLKSIZE(block-size)
GRAPHIC
LEAVE|REREAD

For information about how to specify these options for stream-oriented data transmission, see the
following topics.

Option See this topic

CONSECUTIVE “CONSECUTIVE” on page 233

F|FB|FS|FBS|V|VB|VS|VBS|U “Record format options” on page 233

RECSIZE “RECSIZE” on page 233

BLKSIZE “BLKSIZE option” on page 218

GRAPHIC “GRAPHIC” on page 234

LEAVE|REREAD “LEAVE|REREAD” on page 253

232 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

CONSECUTIVE
STREAM files must have CONSECUTIVE data set organization; however, it is not necessary to specify this
in the ENVIRONMENT options because CONSECUTIVE is the default data set organization.

The CONSECUTIVE option for STREAM files is the same as that described in “Data set organization” on
page 210.

CONSECUTIVE

Record format options
Although record boundaries are ignored in stream-oriented data transmission, record format is important
when you create a data set. This is not only because record format affects the amount of storage space
occupied by the data set and the efficiency of the program that processes the data, but also because the
data set can later be processed by record-oriented data transmission.

Having specified the record format, you need not concern yourself with records and blocks as long as you
use stream-oriented data transmission. You can consider your data set a series of characters or graphics
arranged in lines, and you can use the SKIP option or format item (and, for a PRINT file, the PAGE and
LINE options and format items) to select a new line.

F

FS

FB

FBS

V

VS

VB

VBS

U

Records can have one of the following formats, which are described in details in “Record formats” on
page 208.

Fixed-length F
FB
FS
FBS

unblocked
blocked
unblocked, standard
blocked, standard

Variable-length V
VB
VS
VBS

unblocked
blocked

Undefined-length U (cannot be blocked)

Blocking and deblocking of records are performed automatically.

RECSIZE

RECSIZE for stream-oriented data transmission is the same as that described in “Specifying
characteristics in the ENVIRONMENT attribute” on page 214. Additionally, a value specified by the

Chapter 10. Defining and using consecutive data sets 233

LINESIZE option of the OPEN statement overrides a value specified in the RECSIZE option. LINESIZE
is discussed in the PL/I Language Reference.

Additional record-size considerations for list- and data-directed transmission of graphics are given in the
PL/I Language Reference.

Defaults for record format, BLKSIZE, and RECSIZE
If you do not specify the record format, BLKSIZE, or RECSIZE option in the ENVIRONMENT attribute, or in
the associated DD statement or data set label, PL/I determines the default values.

• Input files:

Defaults are applied as for record-oriented data transmission, described in “Record format, BLKSIZE,
and RECSIZE defaults” on page 220.

• Output files:
Record format

Set to VB-format.
Record length

The specified or default LINESIZE value is used:

– PRINT files:

- F, FB, FBS, or U: line size + 1
- V or VB: line size + 5

– Non-PRINT files:

- F, FB, FBS, or U: linesize
- V or VB: linesize + 4

Block Size
Files associated with SYSOUT:

– F, FB, or FBS: record length
– V or VB: record length + 4

New or temporary data set:

– Optimum block size determined by DFP

GRAPHIC
Specify the GRAPHIC option for edit-directed I/O.

GRAPHIC

The ERROR condition is raised for list- and data-directed I/O if you have graphics in input or output data
and do not specify the GRAPHIC option.

For edit-directed I/O, the GRAPHIC option specifies that left and right delimiters are added to DBCS
variables and constants on output, and that input graphics will have left and right delimiters. If you do not
specify the GRAPHIC option, left and right delimiters are not added to output data, and input graphics do
not require left and right delimiters. When you do specify the GRAPHIC option, the ERROR condition is
raised if left and right delimiters are missing from the input data.

For information about the graphic data type and about the G-format item for edit-directed I/O, see the
PL/I Language Reference.

234 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Creating a data set with stream I/O
To create a data set, you must give the operating system certain information either in your PL/I program
or in the DD statement that defines the data set.

For z/OS UNIX, use one of the following methods to provide the additional information:

• TITLE option of the OPEN statement
• DD_DDNAME environment variable
• ENVIRONMENT attribute

The following topics describe the essential information that you need to provide to create a data set and
discuss some of the optional information you can supply.

Essential information
When your application creates a STREAM file, PL/I will derive a line-size value for that file.

PL/I derives the line-size value from one of the following sources in order of declining precedence.

• LINESIZE option of the OPEN statement
• RECSIZE option of the ENVIRONMENT attribute
• RECSIZE option of the TITLE option of the OPEN statement
• RECSIZE option of the DD_DDNAME environment variable
• PL/I-supplied default value

If a LINESIZE value is supplied but a RECSIZE valus is not, PL/I derives the record-length value as
follows:

• For a V-format PRINT file, the value is LINESIZE + 5.
• For a V-format non-PRINT file, the value is LINESIZE + 4.
• For a F-format PRINT file, the value is LINESIZE + 1.
• In all other cases, the value is LINESIZE.

If a LINESIZE value is not supplied but a RECSIZE value is, PL/I derives the line-size value from RECSIZE
as follows:

• For a V-format PRINT file, the value is RECSIZE - 5.
• For a V-format non-PRINT file, the value is RECSIZE - 4.
• For a F-format PRINT file, the value is RECSIZE - 1.
• In all other cases, the value is RECSIZE.

If neither LINESIZE nor RECSIZE is supplied, PL/I determines a default line-size value based on the
attributes of the file and the type of associated data set. If PL/I cannot supply an appropriate default line
size, the UNDEFINEDFILE condition is raised.

A default line-size value is supplied for an OUTPUT file under the following conditions:

• The file has the PRINT attribute. In this case, the value is obtained from the tab control table.
• The associated data set is the terminal (stdout: or stderr:). In this case, the value is 120.

Note that if the LINESIZE option is specified (on the OPEN statement) and RECSIZE is also specified (in
the ENVIRONMENT attribute, the TITLE option, or the DD statement), and if the record size value is too
small to hold the LINESIZE (taking into account the record format and appropriate control byte overhead),
the following occurs:

• If you are using Language Environment for z/OS 1.9 or earlier releases, for DD SYSOUT= files, the
LINESIZE option will be used to determine a new record size that matches the given LINESIZE; for DD
DSN= files and all other files, the UNDEFINEDFILE condition will be raised.

Chapter 10. Defining and using consecutive data sets 235

• If you are using Language Environment for z/OS releases subsequent to 1.9, the UNDEFINEDFILE
condition will be raised for all files.

Example: Creating a data set with stream-oriented data transmission
This example shows how to use edit-directed stream-oriented data transmission to create a data set on a
direct access storage device.

The data read from the input stream by the file SYSIN includes a field VREC that contains five unnamed
7-character subfields; the field NUM defines the number of these subfields that contain information. The
output file WORK transmits to the data set the whole of the field FREC and only those subfields of VREC
that contain information.

Table 45. Creating a data set with stream-oriented data transmission

 //EX7#2 JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD *
 PEOPLE: PROC OPTIONS(MAIN);
 DCL WORK FILE STREAM OUTPUT,
 1 REC,
 2 FREC,
 3 NAME CHAR(19),
 3 NUM CHAR(1),
 3 PAD CHAR(25),
 2 VREC CHAR(35),
 EOF BIT(1) INIT('0'B),
 IN CHAR(80) DEF REC;
 ON ENDFILE(SYSIN) EOF='1'B;
 OPEN FILE(WORK) LINESIZE(400);
 GET FILE(SYSIN) EDIT(IN)(A(80));
 DO WHILE (¬EOF);
 PUT FILE(WORK) EDIT(IN)(A(45+7*NUM));
 GET FILE(SYSIN) EDIT(IN)(A(80));
 END;
 CLOSE FILE(WORK);
 END PEOPLE;
 /*
 //GO.WORK DD DSN=HPU8.PEOPLE,DISP=(NEW,CATLG),UNIT=SYSDA,
 // SPACE=(TRK,(1,1))
 //GO.SYSIN DD *
 R.C.ANDERSON 0 202848 DOCTOR
 B.F.BENNETT 2 771239 PLUMBER VICTOR HAZEL
 R.E.COLE 5 698635 COOK ELLEN VICTOR JOAN ANN OTTO
 J.F.COOPER 5 418915 LAWYER FRANK CAROL DONALD NORMAN BRENDA
 A.J.CORNELL 3 237837 BARBER ALBERT ERIC JANET
 E.F.FERRIS 4 158636 CARPENTER GERALD ANNA MARY HAROLD
 /*

Example: Writing graphic data to a stream file
This example shows a program that uses list-directed output to write graphics to a stream file.

This example assumes that you have an output device that can print graphic data. The program reads
employee records and selects persons living in a certain area. It then edits the address field, inserting one
graphic blank between each address item, and prints the employee number, name, and address.

236 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 46. Writing graphic data to a stream file

 //EX7#3 JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD *
 % PROCESS GRAPHIC;
 XAMPLE1: PROC OPTIONS(MAIN);
 DCL INFILE FILE INPUT RECORD,
 OUTFILE FILE OUTPUT STREAM ENV(GRAPHIC);
 /* GRAPHIC OPTION MEANS DELIMITERS WILL BE INSERTED ON OUTPUT FILES. */
 DCL
 1 IN,
 3 EMPNO CHAR(6),
 3 SHIFT1 CHAR(1),
 3 NAME,
 5 LAST G(7),
 5 FIRST G(7),
 3 SHIFT2 CHAR(1),
 3 ADDRESS,
 5 ZIP CHAR(6),
 5 SHIFT3 CHAR(1),
 5 DISTRICT G(5),
 5 CITY G(5),
 5 OTHER G(8),
 5 SHIFT4 CHAR(1);
 DCL EOF BIT(1) INIT('0'B);
 DCL ADDRWK G(20);
 ON ENDFILE (INFILE) EOF = '1'B;
 READ FILE(INFILE) INTO(IN);
 DO WHILE(¬EOF);
 DO;
 IF SUBSTR(ZIP,1,3)¬='300'
 THEN LEAVE;
 L=0;
 ADDRWK=DISTRICT;
 DO I=1 TO 5;
 IF SUBSTR(DISTRICT,I,1)= < >
 THEN LEAVE; /* SUBSTR BIF PICKS 3P */
 END; /* THE ITH GRAPHIC CHAR */
 L=L+I+1; /* IN DISTRICT */
 SUBSTR(ADDRWK,L,5)=CITY;
 DO I=1 TO 5;
 IF SUBSTR(CITY,I,1)= < >
 THEN LEAVE;
 END;
 L=L+I;
 SUBSTR(ADDRWK,L,8)=OTHER;
 PUT FILE(OUTFILE) SKIP /* THIS DATA SET */
 EDIT(EMPNO,IN.LAST,FIRST,ADDRWK) /* REQUIRES UTILITY */
 (A(8),G(7),G(7),X(4),G(20)); /* TO PRINT GRAPHIC */
 /* DATA */
 END; /* END OF NON-ITERATIVE DO */
 READ FILE(INFILE) INTO (IN);
 END; /* END OF DO WHILE(¬EOF) */
 END XAMPLE1;
 /*
 //GO.OUTFILE DD SYSOUT=A,DCB=(RECFM=VB,LRECL=121,BLKSIZE=129)
 //GO.INFILE DD *
 ABCDEF<
>300099< 3 3 3 3 3 3 3 >
 ABCD <
>300011< 3 3 3 3 >
 /*

Accessing a data set with stream I/O
A data set accessed through stream-oriented data transmission does not require to be created by stream-
oriented data transmission, but it must have CONSECUTIVE organization, and all the data in it must be in
character or graphic form. You can open the associated file for input, and read the records the data set
contains; or you can open the file for output, and extend the data set by adding records at the end.

To access a data set, you must use one of the following ways to identify it:

• ENVIRONMENT attribute
• DD_DDNAME environment variable

Chapter 10. Defining and using consecutive data sets 237

• TITLE option of the OPEN statement

The following topics describe the essential information you must include in the DD statement and discuss
some of the optional information you can supply. The discussions do not apply to data sets in the input
stream.

Essential information
When your application accesses an existing STREAM file, PL/I must obtain a record-length value for that
file.

If the data set does not have a record-length, the value can come from one of the following sources:

• The LINESIZE option of the OPEN statement
• The RECSIZE option of the ENVIRONMENT attribute
• The RECSIZE option of the DD_DDNAME environment variable
• The RECSIZE option of the TITLE option of the OPEN statement
• PL/I-supplied default value

If you are using an existing OUTPUT file, or if you supply a RECSIZE value, PL/I determines the record-
length value as described in “Creating a data set with stream I/O” on page 235.

PL/I uses a default record-length value for an INPUT file under the following conditions:

• The file is SYSIN, value = 80
• The file is associated with the terminal (stdout: or stderr:), value = 120

Record format
When using stream-oriented data transmission to access a data set, you do not need to know the record
format of the data set (except when you must specify a block size); each GET statement transfers a
discrete number of characters or graphics to your program from the data stream.

If you do give record-format information, it must be compatible with the actual structure of the data set.
For example, if a data set is created with F-format records, a record size of 600 bytes, and a block size of
3600 bytes, you can access the records as if they are U-format with a maximum block size of 3600 bytes;
but if you specify a block size of 3500 bytes, your data will be truncated.

Example: Accessing a data set with stream-oriented data transmission
This example shows a program that accesses a data set with stream-oriented data transmission.

The program in Table 47 on page 239 reads the data set created by the program in Table 45 on page 236
and uses the file SYSPRINT to list the data that it contains.

Each set of data is read, by the GET statement, into two variables: FREC, which always contains 45
characters; and VREC, which always contains 35 characters. At each execution of the GET statement,
VREC consists of the number of characters generated by the expression 7*NUM, together with sufficient
blanks to bring the total number of characters to 35. The DISP parameter of the DD statement could read
simply DISP=OLD; if DELETE is omitted, an existing data set will not be deleted.

238 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 47. Accessing a data set with stream-oriented data transmission

 //EX7#5 JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD *
 PEOPLE: PROC OPTIONS(MAIN);
 DCL WORK FILE STREAM INPUT,
 1 REC,
 2 FREC,
 3 NAME CHAR(19),
 3 NUM CHAR(1),
 3 SERNO CHAR(7),
 3 PROF CHAR(18),
 2 VREC CHAR(35),
 IN CHAR(80) DEF REC,
 EOF BIT(1) INIT('0'B);
 ON ENDFILE(WORK) EOF='1'B;
 OPEN FILE(WORK);
 GET FILE(WORK) EDIT(IN,VREC)(A(45),A(7*NUM));
 DO WHILE (¬EOF);
 PUT FILE(SYSPRINT) SKIP EDIT(IN)(A);
 GET FILE(WORK) EDIT(IN,VREC)(A(45),A(7*NUM));
 END;
 CLOSE FILE(WORK);
 END PEOPLE;
 /*
 //GO.WORK DD DSN=HPU8.PEOPLE,DISP=(OLD,DELETE)

Using PRINT files with stream I/O
Both the operating system and the PL/I language include features that facilitate the formatting of printed
output.

The operating system allows you to use the first byte of each record for a print control character. The
control characters, which are not printed, cause the printer to skip to a new line or page. (Tables of print
control characters are given in Figure 6 on page 252 and Table 51 on page 253.)

In a PL/I program, the use of a PRINT file provides a convenient means of controlling the layout of
printed output from stream-oriented data transmission. The compiler automatically inserts print control
characters in response to the PAGE, SKIP, and LINE options and format items.

You can apply the PRINT attribute to any STREAM OUTPUT file, even if you do not intend to print the
associated data set directly. When a PRINT file is associated with a direct access data set, the print
control characters have no effect on the layout of the data set, but appear as part of the data in the
records.

PRINT files opened with FB or VB will cause the UNDEFINEDFILE condition to be raised. PRINT files
should be opened with the "A" option, that is, FBA or VBA.

The compiler reserves the first byte of each record transmitted by a PRINT file for an American National
Standard print control character, and inserts the appropriate characters automatically.

A PRINT file uses only the following five print control characters:
Character

Action

Space 1 line before printing (blank character)
0

Space 2 lines before printing
-

Space 3 lines before printing
+

No space before printing
1

Start new page

Chapter 10. Defining and using consecutive data sets 239

The compiler handles the PAGE, SKIP, and LINE options or format items by padding the remainder of the
current record with blanks and inserting the appropriate control character in the next record. If SKIP or
LINE specifies more than a 3-line space, the compiler inserts sufficient blank records with appropriate
control characters to accomplish the required spacing. In the absence of a print control option or format
item, when a record is full, the compiler inserts a blank character (single line space) in the first byte of the
next record.

If a PRINT file is being transmitted to a terminal, the PAGE, SKIP, and LINE options will never cause more
than 3 lines to be skipped, unless formatted output is specified.

Controlling printed line length
You can limit the length of the printed line produced by a PRINT file either by specifying a record length
in your PL/I program (ENVIRONMENT attribute) or in a DD statement, or by giving a line size in an OPEN
statement (LINESIZE option).

The record length must include the extra byte for the print control character, that is, it must be 1 byte
larger than the length of the printed line (5 bytes larger for V-format records). The value you specify in the
LINESIZE option refers to the number of characters in the printed line; the compiler adds the print control
character.

The blocking of records has no effect on the appearance of the output produced by a PRINT file, but it
does result in more efficient use of auxiliary storage when the file is associated with a data set on a direct
access device. If you use the LINESIZE option, ensure that your line size is compatible with your block
size. For F-format records, block size must be an exact multiple of (line size+1); for V-format records,
block size must be at least 9 bytes greater than line size.

Although you can vary the line size for a PRINT file during execution by closing the file and opening it
again with a new line size, you must do so with caution if you are using the PRINT file to create a data set
on a direct access device. You cannot change the record format that is established for the data set when
the file is first opened. If the line size you specify in an OPEN statement conflicts with the record format
already established, the UNDEFINEDFILE condition is raised. To prevent this, either specify V-format
records with a block size at least 9 bytes greater than the maximum line size you intend to use, or ensure
that the first OPEN statement specifies the maximum line size. (Output destined for the printer can be
stored temporarily on a direct access device, unless you specify a printer by using UNIT=, even if you
intend it to be fed directly to the printer.)

Because PRINT files have a default line size of 120 characters, you need not give any record format
information for them. In the absence of other information, the compiler assumes V-format records. The
complete default information is as follows:

BLKSIZE=129
LRECL=125
RECFM=VBA

Example

Table 48 on page 241 illustrates the use of a PRINT file and the printing options of stream-oriented data
transmission statements to format a table and write it onto a direct access device for printing on a later
occasion. The table comprises the natural sines of the angles from 0° to 359° 54' in steps of 6'.

The statements in the ENDPAGE ON-unit insert a page number at the bottom of each page, and set up the
headings for the following page.

The DD statement defining the data set created by this program includes no record-format information.
The compiler infers the following from the file declaration and the line size specified in the statement that
opens the file TABLE:

Record format =
V (the default for a PRINT file)

Record size =
98 (line size + 1 byte for print control character + 4 bytes for record control field)

240 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Block size =
102 (record length + 4 bytes for block control field)

The program in Table 56 on page 259 uses record-oriented data transmission to print the table created by
the program in Table 48 on page 241.

Table 48. Creating a print file via stream data transmission. The example in Table 56 on page 259 will
print the resultant file.

%PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
%PROCESS LIST;

 SINE: PROC OPTIONS(MAIN);
 DCL TABLE FILE STREAM OUTPUT PRINT;
 DCL DEG FIXED DEC(5,1) INIT(0); /* INIT(0) FOR ENDPAGE */
 DCL MIN FIXED DEC(3,1);
 DCL PGNO FIXED DEC(2) INIT(0);
 DCL ONCODE BUILTIN;

 ON ERROR
 BEGIN;
 ON ERROR SYSTEM;
 DISPLAY ('ONCODE = '|| ONCODE);
 END;

 ON ENDPAGE(TABLE)
 BEGIN;
 DCL I;
 IF PGNO ¬= 0 THEN
 PUT FILE(TABLE) EDIT ('PAGE',PGNO)
 (LINE(55),COL(80),A,F(3));
 IF DEG ¬= 360 THEN
 DO;
 PUT FILE(TABLE) PAGE EDIT ('NATURAL SINES') (A);
 IF PGNO ¬= 0 THEN
 PUT FILE(TABLE) EDIT ((I DO I = 0 TO 54 BY 6))
 (SKIP(3),10 F(9));
 PGNO = PGNO + 1;
 END;
 ELSE
 PUT FILE(TABLE) PAGE;
 END;

 OPEN FILE(TABLE) PAGESIZE(52) LINESIZE(93);
 SIGNAL ENDPAGE(TABLE);

 PUT FILE(TABLE) EDIT
 ((DEG,(SIND(DEG+MIN) DO MIN = 0 TO .9 BY .1) DO DEG = 0 TO 359))
 (SKIP(2), 5 (COL(1), F(3), 10 F(9,4)));
 PUT FILE(TABLE) SKIP(52);
 END SINE;

Overriding the tab control table
Data-directed and list-directed output to a PRINT file are aligned on preset tabulator positions. For 31-bit
programs, you can customize the tab control table. However, user-defined PLITAB is not supported for
64-bit programs, which means that you cannot override the tab control table.

See Table 32 on page 168 and Table 49 on page 242 for examples of declaring a tab table. The definitions
of the fields in the table are as follows:

OFFSET OF TAB COUNT:
Halfword binary integer that gives the offset of Tab count, the field that indicates the number of tabs
to be used

PAGESIZE:
Halfword binary integer that defines the default page size

This page size is used for dump output to the PLIDUMP data set as well as for stream output.

LINESIZE:
Halfword binary integer that defines the default line size

Chapter 10. Defining and using consecutive data sets 241

PAGELENGTH:
Halfword binary integer that defines the default page length for printing at a terminal

FILLERS:
Three halfword binary integers, reserved for future use

TAB COUNT:
Halfword binary integer that defines the number of tab position entries in the table (maximum 255)

If tab count = 0, any specified tab positions are ignored.

Tab1–Tabn:
n halfword binary integers that define the tab positions within the print line

The first position is numbered 1, and the highest position is numbered 255. The value of each tab
should be greater than that of the tab preceding it in the table; otherwise, it is ignored. The first data
field in the printed output begins at the next available tab position.

You can override the default PL/I tab settings for your program by causing the linkage editor to resolve
an external reference to PLITABS. To cause the reference to be resolved, supply a table with the name
PLITABS, in the format described above.

If compiling with the RENT option, PLITABS must be declared with the NONASGN attribute. It is
recommended that PLITABS should always be declared with the NONASGN attribute, because the
NONASGN attribute can also be specified when compiling with NORENT.

To supply this tab table, include a PL/I structure in your source program with the name PLITABS, which
you must declare to be STATIC EXTERNAL in your MAIN procedure or in a program linked with your MAIN
procedure. An example of the PL/I structure is shown in Table 49 on page 242. This example creates
three tab settings, in positions 30, 60, and 90, and uses the defaults for page size and line size. Note that
TAB1 identifies the position of the second item printed on a line; the first item on a line always starts at
the left margin. The first item in the structure is the offset to the NO_OF_TABS field. The FILL fields must
not be omitted.

Table 49. PL/I structure PLITABS for modifying the preset tab settings

DCL 1 PLITABS STATIC EXT NONASGN,
 2 (OFFSET INIT(14),
 PAGESIZE INIT(60),
 LINESIZE INIT(120),
 PAGELENGTH INIT(0),
 FILL1 INIT(0),
 FILL2 INIT(0),
 FILL3 INIT(0),
 NO_OF_TABS INIT(3),
 TAB1 INIT(30),
 TAB2 INIT(60),
 TAB3 INIT(90)) FIXED BIN(15,0);

Using SYSIN and SYSPRINT files for 31-bit programs
If you code a GET statement without the FILE option in your program, the compiler inserts the file name
SYSIN. If you code a PUT statement without the FILE option, the compiler inserts the name SYSPRINT.

If you do not declare SYSPRINT, the compiler gives the file the attribute PRINT in addition to the normal
default attributes. Here is the complete set of attributes:

FILE STREAM OUTPUT PRINT EXTERNAL

Because SYSPRINT is a PRINT file, the compiler also supplies a default line size of 120 characters and a
V-format record. You need give only a minimum of information in the corresponding DD statement; if your
installation uses the usual convention that the system output device of class A is a printer, the following is
sufficient:

 //SYSPRINT DD SYSOUT=A

242 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Note: SYSIN and SYSPRINT are established in the User Exit during initialization. IBM-supplied defaults for
SYSIN and SYSPRINT are directed to the terminal.

You can override the attributes given to SYSPRINT by the compiler by explicitly declaring or opening the
file. For more information about the interaction between SYSPRINT and the z/OS Language Environment
message file option, see the z/OS Language Environment Programming Guide.

The compiler does not supply any special attributes for the input file SYSIN; if you do not declare it, it
receives only the default attributes. The data set associated with SYSIN is usually in the input stream; if it
is not in the input stream, you must supply full DD information.

Related information
“SYSPRINT considerations for 31-bit programs” on page 171

Using SYSIN and SYSPRINT files for 64-bit programs
For 64-bit programs, SYSPRINT is equated to the C stdout file; and SYSIN is equated to the C stdin file.
Related information
“SYSPRINT considerations for 64-bit programs” on page 180
For 64-bit programs, SYSPRINT is equated to the C stdout file. In addition, shared SYSPRINT is not
supported.

Controlling input from the terminal
You can enter data at the terminal for an input file in your PL/I program if you do the following:

1. Declare the input file explicitly or implicitly with the CONSECUTIVE environment option (all stream files
meet this condition).

2. Allocate the input file to the terminal.

You can usually use the standard default input file SYSIN because it is a stream file and can be allocated
to the terminal.

You are prompted for input to stream files by a colon (:). You will see the colon each time a GET statement
is executed in the program. The GET statement causes the system to go to the next line. You can then
enter the required data. If you enter a line that does not contain enough data to complete execution of the
GET statement, a further prompt, which is a plus sign followed by a colon (+:), is displayed.

By adding a hyphen to the end of any line that is to continue, you can delay transmission of the data to
your program until you enter two or more lines.

If you include output statements that prompt you for input in your program, you can inhibit the initial
system prompt by ending your own prompt with a colon. For example, the GET statement could be
preceded by a PUT statement as follows:

PUT SKIP LIST('ENTER NEXT ITEM:');

To inhibit the system prompt for the next GET statement, your own prompt must meet the following
conditions:

1. It must be either list-directed or edit-directed, and if list-directed, must be to a PRINT file.
2. The file transmitting the prompt must be allocated to the terminal. If you are merely copying the file at

the terminal, the system prompt is not inhibited.

Under TSO, there is support of an environment variable called TSO_INPUT_OPT to help control the input
from a terminal in a more flexible way than the default way described above.

The syntax for the TSO_INPUT_OPT environment variable, which must be in uppercase, is as follows:

TSO_INPUT_OPT = option

Chapter 10. Defining and using consecutive data sets 243

When you specify the options, which can be in uppercase or lowercase, blanks are not allowed. If more
than one option is specified, they have to be separated by a comma. In addition, the syntax of the
statement is not checked at the time the command is entered. It is verified when the data set is opened. If
the syntax is wrong, the UNDEFINEDFILE condition is raised with the oncode 96.

You can specify the following options:

PROMPT
The PROMPT option specifies whether a colon should be visible as prompts for stream input from the
terminal.

PROMPT (

N

Y)

SAMELINE
The SAMELINE option specifies whether the system prompt occurs on the same line as the statement
that prompts for input.

SAMELINE (

N

Y)

For more information about how these options affect your input and output to the terminal, see the
examples in “SAMELINE” on page 205.

One way to specify this environment variable under TSO is through the PLIXOPT string. See the following
example:

 DCL PLIXOPT char(50) var ext static
 init('ENVAR("TSO_INPUT_OPT=PROMPT(Y),SAMELINE(Y)")');

Format of data
The data you enter at the terminal should have exactly the same format as stream input data in batch
mode, but there are a few variations.

• Simplified punctuation for input

If you enter separate items of input on separate lines, there is no need to enter intervening blanks or
commas; the compiler will insert a comma at the end of each line.

For instance, in response to the statement:

GET LIST(I,J,K);

your terminal interaction could be as follows:

:
1
+:2
+:3

with a carriage return following each item. It would be equivalent to:

:
1,2,3

If you wish to continue an item onto another line, you must end the first line with a continuation
character. Otherwise, for a GET LIST or GET DATA statement, a comma will be inserted, and for a GET
EDIT statement, the item will be padded (see next paragraph).

• Automatic padding for GET EDIT

There is no need to enter blanks at the end of a line of input for a GET EDIT statement. The item you
enter will be padded to the correct length.

244 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

For instance, consider the following PL/I statement:

GET EDIT(NAME)(A(15));

You can enter the five characters, SMITH, followed immediately by a carriage return. The item will be
padded with 10 blanks, so that the program receives a string 15 characters long. If you want to continue
an item on a second or subsequent line, you must add a continuation character to the end of every line
except the last; the first line transmitted would otherwise be padded and treated as the complete data
item.

• SKIP option or format item

A SKIP in a GET statement asks the program to ignore data not yet entered. All uses of SKIP(n) where n
is greater than one are taken to mean SKIP(1). SKIP(1) means that all unused data on the current line is
ignored.

Stream and record files
You can allocate both stream and record files to the terminal. However, no prompting is provided for
record files.

If you allocate more than one file to the terminal and one or more of them is a record file, the output of the
files will not necessarily be synchronized. The order in which data is transmitted to and from the terminal
is not guaranteed to be the same order in which the corresponding PL/I I/O statements are executed.

Also, record file input from the terminal is received in uppercase letters because of a TCAM restriction. To
avoid problems, you should use stream files wherever possible.

Defining QSAM files using PL/I dynamic allocation
You can define QSAM or zFS files by using a DD statement, an environment variable, or the TITLE option of
the OPEN statement.

When an environment variable or the TITLE option is used, the name must be in uppercase. Specify the
MVS data set in one of the following ways:

• DSN(data-set-name)
• DSN(data-set-name (member-name))

data-set-name must be fully qualified and cannot be a temporary data set; for example, it must not start
with &.

Specify the zFS file as follows:

PATH (absolute-path-name)

The following attributes can be specified in any order after the DSN keyword:

NEW, OLD, SHR, or MOD
TRACKS or CYL
SPACE(n,m)
VOL(volser)
UNIT(type)
KEEP, DELETE, CATALOG, or UNCATALOG
STORCLAS(storageclass)
MGMTCLAS(managementclass)
DATACLAS(dataclass)
CLOSE
NORECALL
RELEASE

Note: You cannot create a PDS or PDSE by using an environment variable or the TITLE option of the OPEN
statement, but you can create a new member in an existing PDS or PDSE.

Chapter 10. Defining and using consecutive data sets 245

The CLOSE, NORECALL, and RELEASE attributes map to the same attributes of the BPXWDYN interface.
Refer to the z/OS Using REXX and z/OS UNIX System Services for details about BPXWDYN and the SVC 99
services that it supports.

Capital and lowercase letters
For stream files, character strings are transmitted to the program as entered in lowercase or uppercase.
For record files, all characters become uppercase.

End-of-file
The characters /* in positions one and two of a line that contains no other characters are treated as an
end-of-file marker; that is, they raise the ENDFILE condition.

Under the UNIX System Services environment, you can also use the key sequence ESC-D as the end-of-
file marker. ESC is predefined as a specific character, and you need to use this predefined character in the
sequence.

COPY option of GET statement
The GET statement can specify the COPY option; but if the COPY file, as well as the input file, is allocated
to the terminal, no copy of the data will be printed.

246 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 11. Controlling output to the terminal

At your terminal you can obtain data from a PL/I file that meets the following conditions:

1. The file is declared explicitly or implicitly with the CONSECUTIVE environment option. All stream files
meet this condition.

2. The file is allocated to the terminal.

The standard print file SYSPRINT generally meets both these conditions.

Format of PRINT files
Data from SYSPRINT or other PRINT files is not normally formatted into pages at the terminal. Three lines
are always skipped for PAGE and LINE options and format items. The ENDPAGE condition is normally
never raised. SKIP(n) where n is greater than three causes only three lines to be skipped. SKIP(0)
is implemented by backspacing, and should therefore not be used with terminals that do not have a
backspace feature.

You can cause a PRINT file to be formatted into pages by inserting a tab control table in your program.
The table must be called PLITABS, and its contents are explained in “Overriding the tab control table”
on page 241. You must initialize the element PAGELENGTH to the length of page you require—that is, the
length of the sheet of paper on which each page is to be printed, expressed as the maximum number
of lines that could be printed on it. You must initialize the element PAGESIZE to the actual number of
lines to be printed on each page. After the number of lines in PAGESIZE has been printed on a page,
ENDPAGE is raised, for which standard system action is to skip the number of lines equal to PAGELENGTH
minus PAGESIZE, and then start printing the next page. For other than standard layout, you must initialize
the other elements in PLITABS to the values shown in Table 32 on page 168. You can also use PLITABS
to alter the tabulating positions of list-directed and data-directed output. You can use PLITABS for
SYSPRINT when you need to format page breaks in ILC applications. Set PAGESIZE to 32767 and use the
PUT PAGE statement to control page breaks.

Although some types of terminals have a tabulating facility, tabulating of list-directed and data-directed
output is always achieved by transmission of blank characters.

Stream and record files
You can allocate both stream and record files to the terminal. However, if you allocate multiple files to
the terminal among which one is SYSPRINT or a record file, the output of the files is not necessarily
synchronized.

There is no guarantee that the order in which data is transmitted between the program and the terminal is
the same as the order in which the corresponding PL/I output statements are executed.

Output from the PUT EDIT command
The format of the output from a PUT EDIT command to a terminal is line mode TPUTs with Start of field
and end of field characters appearing as blanks on the screen.

© Copyright IBM Corp. 1999, 2022 247

248 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 12. Using record-oriented data transmission
PL/I supports various types of data sets with the RECORD attribute. This section covers how to use
consecutive data sets.

Table 50 on page 249 lists the statements and options that you can use to create and access a
consecutive data set using record-oriented data transmission.

Table 50. Statements and options allowed for creating and accessing consecutive data sets

File declaration1 Valid statements2 with options you must
specify

Other options you can
specify

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

SET(pointer-reference)

SEQUENTIAL OUTPUT WRITE FILE(file-reference)
FROM(reference);

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

SEQUENTIAL INPUT READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE(expression);

SEQUENTIAL UPDATE

BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference);

FROM(reference)

© Copyright IBM Corp. 1999, 2022 249

Table 50. Statements and options allowed for creating and accessing consecutive data sets (continued)

File declaration1 Valid statements2 with options you must
specify

Other options you can
specify

SEQUENTIAL UPDATE READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference)
FROM(reference);

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT.
2. The statement READ FILE (file-reference); is a valid statement and is equivalent to READ
FILE(file-reference) IGNORE (1);.

Related information
“Creating a data set with record I/O” on page 254
When you create a consecutive data set, you must open the associated file for SEQUENTIAL OUTPUT. You
can use either the WRITE or LOCATE statement to write records.

Specifying record format
If you give record-format information, it must be compatible with the actual structure of the data set.

For example, if you create a data set with FB-format records, with a record size of 600 bytes and a block
size of 3600 bytes, you can access the records as if they were U-format with a maximum block size of
3600 bytes. If you specify a block size of 3500 bytes, your data is truncated.

Defining files using record I/O
You define files for record-oriented data transmission by using a file declaration.

DCL filename FILE RECORD
 INPUT | OUTPUT | UPDATE
 SEQUENTIAL
 BUFFERED
 ENVIRONMENT(options);

For information about the default file attributes, see Table 38 on page 214. The file attributes are
described in the PL/I Language Reference. For information about the options of the ENVIRONMENT
attribute, see “Specifying ENVIRONMENT options” on page 250.

Specifying ENVIRONMENT options
This section describes the ENVIRONMENT options that are applicable to consecutive data sets.

The following ENVIRONMENT options are applicable to consecutive data sets:

F|FB|FS|FBS|V|VB|U
RECSIZE(record-length)
BLKSIZE(block-size)
SCALARVARYING

CONSECUTIVE or ORGANIZATION(CONSECUTIVE)
CTLASA|CTL360
LEAVE|REREAD

250 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

See the following topics for information about these options.

ENVIRONMENT options See these topics

F|FB|FS|FBS|V|VB|U • “The ENVIRONMENT attribute” on page 214
• “Record formats for record-oriented data transmission” on page

217

RECSIZE(record-length) • “The ENVIRONMENT attribute” on page 214
• “RECSIZE option” on page 218

BLKSIZE(block-size) • “The ENVIRONMENT attribute” on page 214
• “BLKSIZE option” on page 218

SCALARVARYING • “The ENVIRONMENT attribute” on page 214
• “SCALARVARYING option — varying-length strings” on page 221

CONSECUTIVE “CONSECUTIVE” on page 251

ORGANIZATION(CONSECUTIVE) “ORGANIZATION(CONSECUTIVE)” on page 251

CTLASA|CTL360 “CTLASA|CTL360” on page 251

LEAVE|REREAD “LEAVE|REREAD” on page 253

See Table 38 on page 214 to find which options you must specify, which are optional, and which are
defaults.

CONSECUTIVE
The CONSECUTIVE option defines a file with consecutive data set organization.

CONSECUTIVE

CONSECUTIVE is the default.

Related information
“Data set organization” on page 210
The data management routines of the operating system can handle a number of types of data sets, which
differ in the way data is stored within them and in the allowed means of access to the data.

ORGANIZATION(CONSECUTIVE)
The ORGANIZATION(CONSECUTIVE) option specifies that the file is associated with a consecutive data
set.

The file can be either a native data set or a VSAM data set.

Related information
“ORGANIZATION option” on page 222
The ORGANIZATION option specifies the organization of the data set associated with the PL/I file.

CTLASA|CTL360
The printer control options CTLASA and CTL360 apply only to OUTPUT files associated with consecutive
data sets. They specify that the first character of a record is to be interpreted as a control character.

CTLASA

CTL360

Chapter 12. Using record-oriented data transmission 251

The CTLASA option specifies American National Standard Vertical Carriage Positioning Characters or
American National Standard Pocket Select Characters (Level 1). The CTL360 option specifies IBM
machine-code control characters.

The American National Standard control characters, listed in Figure 6 on page 252, cause the specified
action to occur before the associated record is printed or punched.

The machine code control characters differ according to the type of device. The IBM machine code control
characters for printers are listed in Table 51 on page 253.

Code
Action

Space 1 line before printing (blank code)

0
Space 2 lines before printing

-
Space 3 lines before printing

+
Suppress space before printing

1
Skip to channel 1

2
Skip to channel 2

3
Skip to channel 3

4
Skip to channel 4

5
Skip to channel 5

6
Skip to channel 6

7
Skip to channel 7

8
Skip to channel 8

9
Skip to channel 9

A
Skip to channel 10

B
Skip to channel 11

C
Skip to channel 12

V
Select stacker 1

W
Select stacker 2

Figure 6. American National Standard print and card punch control characters (CTLASA)

252 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 51. IBM machine code print control characters (CTL360)

Print and
Then Act

Code byte

Action

Act immediately
(no printing)

Code byte

00000001 Print only (no space) —

00001001 Space 1 line 00001011

00010001 Space 2 lines 00010011

00011001 Space 3 lines 00011011

10001001 Skip to channel 1 10001011

10010001 Skip to channel 2 10010011

10011001 Skip to channel 3 10011011

10100001 Skip to channel 4 10100011

10101001 Skip to channel 5 10101011

10110001 Skip to channel 6 10110011

10111001 Skip to channel 7 10111011

11000001 Skip to channel 8 11000011

11001001 Skip to channel 9 11001011

11010001 Skip to channel 10 11010011

11011001 Skip to channel 11 11011011

11100001 Skip to channel 12 11100011

LEAVE|REREAD
The magnetic tape handling options LEAVE and REREAD specify the action to be taken when the end of a
magnetic tape volume is reached, or when a data set on a magnetic tape volume is closed.

The LEAVE option prevents the tape from being rewound. The REREAD option rewinds the tape to allow
reprocessing of the data set. If you do not specify either of these, the action at end-of-volume or on
closing of a data set is controlled by the DISP parameter of the associated DD statement.

LEAVE

REREAD

If a data set is first read or written forward and then read backward in the same program, specify the
LEAVE option to prevent rewinding when the file is closed (or, with a multivolume data set, when volume
switching occurs).

Table 52 on page 253 summarizes the effects of the LEAVE and REREAD options.

Table 52. Effect of LEAVE and REREAD Options

ENVIRONMENT option DISP parameter Action

REREAD — Positions the current volume to
reprocess the data set.

LEAVE — Positions the current volume at the
logical end of the data set.

Chapter 12. Using record-oriented data transmission 253

Table 52. Effect of LEAVE and REREAD Options (continued)

ENVIRONMENT option DISP parameter Action

Neither REREAD nor LEAVE PASS Positions the volume at the end of
the data set.

DELETE Rewinds the current volume.

KEEP
CATLG
UNCATLG

Rewinds and unloads the current
volume.

Creating a data set with record I/O
When you create a consecutive data set, you must open the associated file for SEQUENTIAL OUTPUT. You
can use either the WRITE or LOCATE statement to write records.

Table 50 on page 249 shows the statements and options for creating a consecutive data set.

When creating a data set, you must identify it to the operating system in a DD statement. Table 53 on page
254 summarizes the essential information that you must include in the DD statement and the optional
information that you can supply.

Table 53. Creating a consecutive data set with record I/O: essential parameters of the DD statement

Storage device When required What you must state Parameters

All Always Output device UNIT= or SYSOUT=

or

VOLUME=REF=

Block size1 DCB=(BLKSIZE=...

Direct access only Always Storage space
required

SPACE=

Direct access Data set to be used by another job step
but not required at end of job

Disposition DISP=

Data set to be kept after end of job Disposition DISP=

Name of data set DSNAME=

Data set to be on particular device Volume serial number VOLUME=SER=

or

VOLUME=REF=

Note:

1. Or you can specify the block size in your PL/I program by using the ENVIRONMENT attribute.

Essential information
When creating a data set, you must identify it to the operating system in a DD statement. This topic
describes the essential information that you must include in the statement.

When you create a consecutive data set, you must specify the following essential information in the DD
statement:

• The name of data set to be associated with your PL/I file

254 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

A data set with consecutive organization can exist on any type of device.
• The record length

You can specify the record length by using the RECSIZE option of the ENVIRONMENT attribute, of the
DD_DDNAME environment variable, or of the TITLE option of the OPEN statement.

For files associated with the terminal device (stdout: or stderr:), PL/I uses a default record length of 120
when the RECSIZE option is not specified.

Accessing and updating a data set with record I/O
After you create a consecutive data set, you can open the file that accesses it for sequential input, for
sequential output, or, for data sets on direct access devices, for updating.

See Table 55 on page 257 for an example of a program that accesses and updates a consecutive data
set. If you open the file for output and extend the data set by adding records at the end, you must specify
DISP=MOD in the DD statement. If you do not, the data set will be overwritten. If you open a file for
updating, you can update only records in their existing sequence, and if you want to insert records, you
must create a new data set. Table 50 on page 249 shows the statements and options for accessing and
updating a consecutive data set.

When you access a consecutive data set by a SEQUENTIAL UPDATE file, you must retrieve a record with
a READ statement before you can update it with a REWRITE statement; however, every record that is
retrieved need not be rewritten. A REWRITE statement will always update the last record read.

Consider the following statement:

READ FILE(F) INTO(A);
 .
 .
 .
READ FILE(F) INTO(B);
 .
 .
 .
REWRITE FILE(F) FROM(A);

The REWRITE statement updates the record that was read by the second READ statement. The record
that was read by the first statement cannot be rewritten after the second READ statement has been
executed.

You cannot update a consecutive data set on magnetic tape except by adding records at the end. To
replace or insert records, you must read the data set and write the updated records into a new data set.

You can read a consecutive data set on magnetic tape forward only. Reading backward is not supported.

To access a data set, you must identify it to the operating system in a DD statement. Table 54 on page 255
summarizes the DD statement parameters needed to access a consecutive data set.

Table 54. Accessing a consecutive data set with record I/O: essential parameters of the DD statement

Parameters What you must state When required

DSNAME= Name of data set Always

DISP= Disposition of data set Always

UNIT= or VOLUME=REF= Input device If data set not cataloged (all devices)

VOLUME=SER= Volume serial number If data set not cataloged (direct access)

DCB=(BLKSIZE= Block size1 If data set does not have standard labels

Note:

1. Or you could specify the block size in your PL/I program by using the ENVIRONMENT attribute.

Chapter 12. Using record-oriented data transmission 255

The following topics describe the essential information that you must include in the DD statement, and
discuss some of the optional information that you can supply. The discussions do not apply to data sets in
the input stream.

Essential information
If the data set is cataloged, you need to supply only the following information in the DD statement:

• The name of the data set (DSNAME parameter)

The operating system will locate the information describing the data set in the system catalog, and, if
necessary, will request the operator to mount the volume containing it.

• Confirmation that the data set exists (DISP parameter)

If you open the data set for output with the intention of extending it by adding records at the end, code
DISP=MOD; otherwise, opening the data set for output will result in it being overwritten.

If the data set is not cataloged, you must additionally specify the device that will read the data set, and for
direct access devices, give the serial number of the volume that contains the data set (UNIT and VOLUME
parameters).

Example of consecutive data sets

Example: Merge Sort—creating and accessing a consecutive data set

Table 55 on page 257 illustrates creating and accessing consecutive data sets. The program merges the
contents of two data sets, in the input stream, and writes them onto a new data set, &&TEMP; each of the
original data sets contains 15-byte fixed-length records arranged in EBCDIC collating sequence. The two
input files, INPUT1 and INPUT2, have the default attribute BUFFERED, and locate mode is used to read
records from the associated data sets into the respective buffers. Access of based variables in the buffers
should not be attempted after the file has been closed.

256 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 55. Merge Sort—creating and accessing a consecutive data set

 //EXAMPLE JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD *
 %PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
 %PROCESS LIST;

 MERGE: PROC OPTIONS(MAIN);
 DCL (INPUT1, /* FIRST INPUT FILE */
 INPUT2, /* SECOND INPUT FILE */
 OUT) FILE RECORD SEQUENTIAL; /* RESULTING MERGED FILE*/
 DCL SYSPRINT FILE PRINT; /* NORMAL PRINT FILE */

 DCL INPUT1_EOF BIT(1) INIT('0'B); /* EOF FLAG FOR INPUT1 */
 DCL INPUT2_EOF BIT(1) INIT('0'B); /* EOF FLAG FOR INPUT2 */
 DCL OUT_EOF BIT(1) INIT('0'B); /* EOF FLAG FOR OUT */
 DCL TRUE BIT(1) INIT('1'B); /* CONSTANT TRUE */
 DCL FALSE BIT(1) INIT('0'B); /* CONSTANT FALSE */

 DCL ITEM1 CHAR(15) BASED(A); /* ITEM FROM INPUT1 */
 DCL ITEM2 CHAR(15) BASED(B); /* ITEM FROM INPUT2 */
 DCL INPUT_LINE CHAR(15); /* INPUT FOR READ INTO */
 DCL A POINTER; /* POINTER VAR */
 DCL B POINTER; /* POINTER VAR */

 ON ENDFILE(INPUT1) INPUT1_EOF = TRUE;
 ON ENDFILE(INPUT2) INPUT2_EOF = TRUE;
 ON ENDFILE(OUT) OUT_EOF = TRUE;

 OPEN FILE(INPUT1) INPUT,
 FILE(INPUT2) INPUT,
 FILE(OUT) OUTPUT;

 READ FILE(INPUT1) SET(A); /* PRIMING READ */
 READ FILE(INPUT2) SET(B);

 DO WHILE ((INPUT1_EOF = FALSE) & (INPUT2_EOF = FALSE));
 IF ITEM1 > ITEM2 THEN
 DO;
 WRITE FILE(OUT) FROM(ITEM2);
 PUT FILE(SYSPRINT) SKIP EDIT('1>2', ITEM1, ITEM2)
 (A(5),A,A);
 READ FILE(INPUT2) SET(B);
 END;
 ELSE
 DO;
 WRITE FILE(OUT) FROM(ITEM1);
 PUT FILE(SYSPRINT) SKIP EDIT('1<2', ITEM1, ITEM2)
 (A(5),A,A);
 READ FILE(INPUT1) SET(A);
 END;
 END;

Chapter 12. Using record-oriented data transmission 257

Table 55. Merge Sort—creating and accessing a consecutive data set (continued)

 DO WHILE (INPUT1_EOF = FALSE); /* INPUT2 IS EXHAUSTED */
 WRITE FILE(OUT) FROM(ITEM1);
 PUT FILE(SYSPRINT) SKIP EDIT('1', ITEM1) (A(2),A);
 READ FILE(INPUT1) SET(A);
 END;

 DO WHILE (INPUT2_EOF = FALSE); /* INPUT1 IS EXHAUSTED */
 WRITE FILE(OUT) FROM(ITEM2);
 PUT FILE(SYSPRINT) SKIP EDIT('2', ITEM2) (A(2),A);
 READ FILE(INPUT2) SET(B);
 END;

 CLOSE FILE(INPUT1), FILE(INPUT2), FILE(OUT);
 PUT FILE(SYSPRINT) PAGE;
 OPEN FILE(OUT) SEQUENTIAL INPUT;

 READ FILE(OUT) INTO(INPUT_LINE); /* DISPLAY OUT FILE */
 DO WHILE (OUT_EOF = FALSE);
 PUT FILE(SYSPRINT) SKIP EDIT(INPUT_LINE) (A);
 READ FILE(OUT) INTO(INPUT_LINE);
 END;
 CLOSE FILE(OUT);

 END MERGE;
 /*
 //GO.INPUT1 DD *
 AAAAAA
 CCCCCC
 EEEEEE
 GGGGGG
 IIIIII
 /*
 //GO.INPUT2 DD *
 BBBBBB
 DDDDDD
 FFFFFF
 HHHHHH
 JJJJJJ
 KKKKKK
 /*
 //GO.OUT DD DSN=&&TEMP,DISP=(NEW,DELETE),UNIT=SYSDA,
 // DCB=(RECFM=FB,BLKSIZE=150,LRECL=15),SPACE=(TRK,(1,1))

Merge Sort—creating and accessing a consecutive data set (continued)

Example: Printing record-oriented data transmission

The program in Table 56 on page 259 uses record-oriented data transmission to print the table created by
the program in Table 48 on page 241.

258 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 56. Printing record-oriented data transmission

%PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
%PROCESS LIST;

 PRT: PROC OPTIONS(MAIN);
 DCL TABLE FILE RECORD INPUT SEQUENTIAL;
 DCL PRINTER FILE RECORD OUTPUT SEQL
 ENV(V BLKSIZE(102) CTLASA);
 DCL LINE CHAR(94) VAR;

 DCL TABLE_EOF BIT(1) INIT('0'B); /* EOF FLAG FOR TABLE */
 DCL TRUE BIT(1) INIT('1'B); /* CONSTANT TRUE */
 DCL FALSE BIT(1) INIT('0'B); /* CONSTANT FALSE */

 ON ENDFILE(TABLE) TABLE_EOF = TRUE;

 OPEN FILE(TABLE),
 FILE(PRINTER);

 READ FILE(TABLE) INTO(LINE); /* PRIMING READ */

 DO WHILE (TABLE_EOF = FALSE);
 WRITE FILE(PRINTER) FROM(LINE);
 READ FILE(TABLE) INTO(LINE);
 END;

 CLOSE FILE(TABLE),
 FILE(PRINTER);
 END PRT;

Chapter 12. Using record-oriented data transmission 259

260 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 13. Defining and using regional data sets
This chapter covers regional data set organization, data transmission statements, and ENVIRONMENT
options that define regional data sets. It also includes information about how to create and access
regional data sets for each type of regional organization.

Note: Regional data sets are not supported for 64-bit programs.

A data set with regional organization is divided into regions, each of which is identified by a region
number, and each of which can contain one record or more than one record, depending on the type of
regional organization. The regions are numbered in succession, beginning with zero, and a record can be
accessed by specifying its region number, and perhaps a key, in a data transmission statement.

Regional data sets are confined to direct access devices.

Regional organization of a data set allows you to control the physical placement of records in the data
set, and to optimize the access time for a particular application. Such optimization is not available with
consecutive or indexed organization, in which successive records are written either in strict physical
sequence or in logical sequence depending on ascending key values; neither of these methods takes full
advantage of the characteristics of direct access storage devices.

You can create a regional data set in a manner similar to a consecutive or indexed data set, presenting
records in the order of ascending region numbers; alternatively, you can use direct access, in which you
present records in random sequence and insert them directly into preformatted regions. After you create
a regional data set, you can access it by using a file with the attributes SEQUENTIAL or DIRECT as well as
INPUT or UPDATE. You do not need to specify either a region number or a key if the data set is associated
with a SEQUENTIAL INPUT or SEQUENTIAL UPDATE file. When the file has the DIRECT attribute, you can
retrieve, add, delete, and replace records at random.

Records within a regional data set are either actual records containing valid data or dummy records.

The major advantage of regional organization over other types of data set organization is that it allows you
to control the relative placement of records; by judicious programming, you can optimize record access in
terms of device capabilities and the requirements of particular applications.

Direct access of regional data sets is quicker than that of indexed data sets, but regional data sets
have the disadvantage that sequential processing can present records in random sequence; the order of
sequential retrieval is not necessarily that in which the records were presented, nor need it be related to
the relative key values.

Table 57 on page 261 lists the data transmission statements and options that you can use to create and
access a regional data set.

Table 57. Statements and options allowed for creating and accessing regional data sets

File declaration1 Valid statements2 with options you
must include

Other options you can also
include

SEQUENTIAL OUTPUT WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FROM(file-reference)
KEYFROM(expression);

SET(pointer-reference)

© Copyright IBM Corp. 1999, 2022 261

Table 57. Statements and options allowed for creating and accessing regional data sets (continued)

File declaration1 Valid statements2 with options you
must include

Other options you can also
include

SEQUENTIAL INPUT READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

KEYTO(reference)

KEYTO(reference)

SEQUENTIAL UPDATE3 READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference);

KEYTO(reference)

KEYTO(reference)

FROM(reference)

DIRECT OUTPUT WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DIRECT INPUT READ FILE(file-reference)
INTO(reference)
KEY(expression);

DIRECT UPDATE READ FILE(file-reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY(expression);

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT; if you use
any of the options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-
reference) IGNORE(1);.

3. When you create new data sets, the file must not have the UPDATE attribute.

262 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Defining REGIONAL(1) data sets using PL/I dynamic allocation
You can define REGIONAL(1) data sets by using a DD statement, an environment variable, or the TITLE
option of the OPEN statement.

When an environment variable or the TITLE option is used, the name must be in uppercase. Specify the
MVS data set as follows:

DSN(data-set-name)

data-set-name must be fully qualified and cannot be a temporary data set; for example, it must not start
with &.

You must specify one of the following attributes after the DSN keyword:

OLD
SHR

Defining files for a regional data set
You can use a file declaration to define a regional data set.

Defining a sequential regional data set
To define a sequential regional data set, use a file declaration with the following attributes:

DCL filename FILE RECORD
 INPUT | OUTPUT | UPDATE
 SEQUENTIAL
 BUFFERED
 [KEYED]
 ENVIRONMENT(options);

Because BUFFERED and UNBUFFERED will be treated the same for REGIONAL(1) data sets, you can
specify either option in the ENVIRONMENT option. For example, the FROM option is not required on
a REWRITE for a SEQUENTIAL UNBUFFERED file and the LOCATE statement is allowed for OUTPUT
SEQUENTIAL data sets even if UNBUFFERED is specified.

Defining a direct regional data set
To define a direct regional data set, use a file declaration with the following attributes:

DCL filename FILE RECORD
 INPUT | OUTPUT | UPDATE
 DIRECT
 ENVIRONMENT(options);

For information about the default file attributes, see Table 38 on page 214. For detailed information
about the file attributes, see the PL/I Language Reference. For information about the suboptions of the
ENVIRONMENT option, see “Specifying ENVIRONMENT options” on page 263.

Specifying ENVIRONMENT options
This section describes ENVIRONMENT options that are applicable to regional data sets.

The following ENVIRONMENT options are applicable to regional data sets:

REGIONAL({1})
F
RECSIZE(record-length)
BLKSIZE(block-size)
SCALARVARYING

Chapter 13. Defining and using regional data sets 263

REGIONAL
You can use the REGIONAL option to define a file with regional organization.

REGIONAL (1)

1
Specifies REGIONAL(1).

REGIONAL(1)
Specifies that the data set contains F-format records that do not have recorded keys. Each region in
the data set contains only one record; therefore, each region number corresponds to a relative record
within the data set (that is, region numbers start with 0 at the beginning of the data set).

Although REGIONAL(1) data sets have no recorded keys, you can use REGIONAL(1) DIRECT INPUT or
UPDATE files to process data sets that do have recorded keys.

RECSIZE(record-length)
BLKSIZE(block-size)

If both RECSIZE and BLKSIZE are specified, they must specify the same value.

REGIONAL(1) organization is most suited to applications where there are no duplicate region numbers,
and where most of the regions will be filled (reducing wasted space in the data set).

Using keys with REGIONAL data sets
There are two kinds of keys, recorded keys and source keys.

A recorded key is a character string that immediately precedes each record in the data set to identify that
record; its length cannot exceed 255 characters. A source key is the character value of the expression
that appears in the KEY or KEYFROM option of a data transmission statement to identify the record to
which the statement refers. When you access a record in a regional data set, the source key gives a region
number, and can also give a recorded key.

Unlike the keys for indexed data sets, recorded keys in a regional data set are never embedded within the
record.

Using REGIONAL(1) data sets
In a REGIONAL(1) data set, because there are no recorded keys, the region number serves as the sole
identification of a particular record.

The character value of the source key should represent an unsigned decimal integer that should not
exceed 16777215, although the actual number of records allowed can be smaller, depending on a
combination of record size, device capacity, and limits of your access method. For direct regional(1)
files with fixed format records, the maximum number of tracks that can be addressed by relative track
addressing is 65536. If the region number exceeds this figure, it is treated as modulo 16777216; for
instance, 16777226 is treated as 10. Only the characters 0 through 9 and the blank character are valid in
the source key; leading blanks are interpreted as zeros. Embedded blanks are not allowed in the number;
the first embedded blank, if any, terminates the region number. If more than 8 characters appear in the
source key, only the rightmost 8 are used as the region number; if there are fewer than 8 characters,
blanks (interpreted as zeros) are inserted on the left.

Dummy Records
Records in a REGIONAL(1) data set are either actual records containing valid data or dummy records. A
dummy record in a REGIONAL(1) data set is identified by the constant (8)'1'B in its first byte.

Although such dummy records are inserted in the data set either when it is created or when a record is
deleted, they are not ignored when the data set is read; your PL/I program must be prepared to recognize
them. You can replace dummy records with valid data. Note that if you insert (8)'1'B in the first byte, the
record can be lost if you copy the file onto a data set that has dummy records that are not retrieved.

264 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Creating a REGIONAL(1) data set
You can create a REGIONAL(1) data set either sequentially or by direct access.

Table 57 on page 261 shows the statements and options for creating a regional data set.

When you use a SEQUENTIAL OUTPUT file to create the data set, the opening of the file causes all tracks
on the data set to be cleared, and a capacity record to be written at the beginning of each track to
record the amount of space available on that track. You must present records in ascending order of region
numbers; any region you omit from the sequence is filled with a dummy record. If there is an error in the
sequence, or if you present a duplicate key, the KEY condition is raised. When the file is closed, any space
remaining at the end of the current extent is filled with dummy records.

If you use a DIRECT OUTPUT file to create the data set, the whole primary extent allocated to the data
set is filled with dummy records when the file is opened. You can present records in random order; if you
present a duplicate, the existing record will be overwritten.

For sequential creation, the data set can have up to 15 extents, which can be on more than one volume.
For direct creation, the data set can have only one extent, and can therefore reside on only one volume.

Example

Table 58 on page 266 illustrates how to create a REGIONAL(1) data set. The data set is a list of
telephone numbers with the names of the subscribers to whom they are allocated. The telephone
numbers correspond with the region numbers in the data set, the data in each occupied region being
a subscriber's name.

Chapter 13. Defining and using regional data sets 265

Table 58. Creating a REGIONAL(1) data set

 //EX9 JOB
 //STEP1 EXEC IBMZCBG,PARM.PLI='NOP,MAR(1,72)',PARM.BIND='LIST'
 //PLI.SYSIN DD *
 CRR1: PROC OPTIONS(MAIN);
 /* CREATING A REGIONAL(1) DATA SET - PHONE DIRECTORY */

 DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(REGIONAL(1));
 DCL SYSIN FILE INPUT RECORD;
 DCL SYSIN_REC BIT(1) INIT('1'B);
 DCL 1 CARD,
 2 NAME CHAR(20),
 2 NUMBER CHAR(2),
 2 CARD_1 CHAR(58);
 DCL IOFIELD CHAR(20);

 ON ENDFILE (SYSIN) SYSIN_REC = '0'B;
 OPEN FILE(NOS);
 READ FILE(SYSIN) INTO(CARD);

 DO WHILE(SYSIN_REC);
 IOFIELD = NAME;
 WRITE FILE(NOS) FROM(IOFIELD) KEYFROM(NUMBER);
 PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);
 READ FILE(SYSIN) INTO(CARD);
 END;

 CLOSE FILE(NOS);
 END CRR1;
 /*
 //GO.SYSLMOD DD DSN=&&GOSET,DISP=(OLD,DELETE)
 //GO.NOS DD DSN=MYID.NOS,UNIT=SYSDA,SPACE=(20,100),
 // DCB=(RECFM=F,BLKSIZE=20,DSORG=DA),DISP=(NEW,KEEP)
 //GO.SYSIN DD *
 ACTION,G. 12
 BAKER,R. 13
 BRAMLEY,O.H. 28
 CHEESNAME,L. 11
 CORY,G. 36
 ELLIOTT,D. 85
 FIGGINS,E.S. 43
 HARVEY,C.D.W. 25
 HASTINGS,G.M. 31
 KENDALL,J.G. 24
 LANCASTER,W.R. 64
 MILES,R. 23
 NEWMAN,M.W. 40
 PITT,W.H. 55
 ROLF,D.E. 14
 SHEERS,C.D. 21
 SURCLIFFE,M. 42
 TAYLOR,G.C. 47
 WILTON,L.W. 44
 WINSTONE,E.M. 37
 /*

Accessing and updating a REGIONAL(1) data set
After you create a REGIONAL(1) data set, you can open the file that accesses it for SEQUENTIAL INPUT or
UPDATE, or for DIRECT INPUT or UPDATE. You can open it for OUTPUT only if the existing data set is to be
overwritten.

Table 57 on page 261 shows the statements and options for accessing a regional data set.

Sequential access
To open a SEQUENTIAL file that is used to process a REGIONAL(1) data set, use either the INPUT or
UPDATE attribute.

You must not include the KEY option in data transmission statements, but the file can have the KEYED
attribute, because you can use the KEYTO option. If the target character string referenced in the KEYTO
option has more than 8 characters, the value returned (the 8-character region number) is padded on the

266 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

left with blanks. If the target string has fewer than 8 characters, the value returned is truncated on the
left.

Sequential access is in the order of ascending region numbers. All records are retrieved, whether dummy
or actual, and you must ensure that your PL/I program recognizes dummy records.

Using sequential input with a REGIONAL(1) data set, you can read all the records in ascending region-
number sequence, and in sequential update you can read and rewrite each record in turn.

The rules governing the relationship between READ and REWRITE statements for a SEQUENTIAL UPDATE
file that accesses a REGIONAL(1) data set are identical to those for a consecutive data set.

Related information
“Defining and using consecutive data sets” on page 231
This chapter covers consecutive data set organization and the ENVIRONMENT options that define
consecutive data sets for stream and record-oriented data transmission. It then covers how to create,
access, and update consecutive data sets for each type of transmission.

Direct access
To open a DIRECT file that is used to process a REGIONAL(1) data set, you can use either the INPUT or
the UPDATE attribute. All data transmission statements must include source keys; the DIRECT attribute
implies the KEYED attribute.

Use DIRECT UPDATE files to retrieve, add, delete, or replace records in a REGIONAL(1) data set according
to the following conventions:

Retrieval
All records, whether dummy or actual, are retrieved. Your program must recognize dummy records.

Addition
A WRITE statement substitutes a new record for the existing record (actual or dummy) in the region
specified by the source key.

Deletion
The record you specify by the source key in a DELETE statement is converted to a dummy record.

Replacement
The record you specify by the source key in a REWRITE statement, whether dummy or actual, is
replaced.

Example
This example illustrates how to update a REGIONAL(1) data set.

The program shown in Table 59 on page 268 updates the data set and lists its contents. Before each new
or updated record is written, the existing record in the region is tested to ensure that it is a dummy; this is
necessary because a WRITE statement can overwrite an existing record in a REGIONAL(1) data set even
if it is not a dummy. Similarly, during the sequential reading and printing of the contents of the data set,
each record is tested and dummy records are not printed.

Chapter 13. Defining and using regional data sets 267

Table 59. Updating a REGIONAL(1) data set

 //EX10 JOB
 //STEP2 EXEC IBMZCBG,PARM.PLI='NOP,MAR(1,72)',PARM.BIND='LIST'
 //PLI.SYSIN DD *
 ACR1: PROC OPTIONS(MAIN);
 /* UPDATING A REGIONAL(1) DATA SET - PHONE DIRECTORY */
 DCL NOS FILE RECORD KEYED ENV(REGIONAL(1));
 DCL SYSIN FILE INPUT RECORD;
 DCL (SYSIN_REC,NOS_REC) BIT(1) INIT('1'B);
 DCL 1 CARD,
 2 NAME CHAR(20),
 2 (NEWNO,OLDNO) CHAR(2),
 2 CARD_1 CHAR(1),
 2 CODE CHAR(1),
 2 CARD_2 CHAR(54);
 DCL IOFIELD CHAR(20);
 DCL BYTE CHAR(1) DEF IOFIELD;

 ON ENDFILE(SYSIN) SYSIN_REC = '0'B;
 OPEN FILE (NOS) DIRECT UPDATE;
 READ FILE(SYSIN) INTO(CARD);

 DO WHILE(SYSIN_REC);
 SELECT(CODE);
 WHEN('A','C') DO;
 IF CODE = 'C' THEN
 DELETE FILE(NOS) KEY(OLDNO);
 READ FILE(NOS) KEY(NEWNO) INTO(IOFIELD);
 IF UNSPEC(BYTE) = (8)'1'B
 THEN WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);
 ELSE PUT FILE(SYSPRINT) SKIP LIST ('DUPLICATE:',NAME);
 END;
 WHEN('D') DELETE FILE(NOS) KEY(OLDNO);
 OTHERWISE PUT FILE(SYSPRINT) SKIP LIST ('INVALID CODE:',NAME);
 END;
 READ FILE(SYSIN) INTO(CARD);
 END;

 CLOSE FILE(SYSIN),FILE(NOS);
 PUT FILE(SYSPRINT) PAGE;
 OPEN FILE(NOS) SEQUENTIAL INPUT;
 ON ENDFILE(NOS) NOS_REC = '0'B;
 READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
 DO WHILE(NOS_REC);
 IF UNSPEC(BYTE) ¬= (8)'1'B
 THEN PUT FILE(SYSPRINT) SKIP EDIT (NEWNO,IOFIELD)(A(2),X(3),A);
 PUT FILE(SYSPRINT) SKIP EDIT (IOFIELD) (A);
 READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
 END;
 CLOSE FILE(NOS);
 END ACR1;
 /*

 //GO.NOS DD DSN=J44PLI.NOS,DISP=(OLD,DELETE),UNIT=SYSDA,VOL=SER=nnnnnn
 //GO.SYSIN DD *
 NEWMAN,M.W. 5640 C
 GOODFELLOW,D.T. 89 A
 MILES,R. 23 D
 HARVEY,C.D.W. 29 A
 BARTLETT,S.G. 13 A
 CORY,G. 36 D
 READ,K.M. 01 A
 PITT,W.H. 55
 ROLF,D.F. 14 D
 ELLIOTT,D. 4285 C
 HASTINGS,G.M. 31 D
 BRAMLEY,O.H. 4928 C
 /*

Updating a REGIONAL(1) data set (continued)

268 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Essential information for creating and accessing regional data sets
To create a regional data set, in your PL/I program or in the DD statement, you must give the operating
system certain information that defines the data set.

You must supply the following information when creating a regional data set:

• Device that will write your data set (UNIT or VOLUME parameter of DD statement)
• Block size

You can specify the block size either in your PL/I program (in the BLKSIZE option of the ENVIRONMENT
attribute) or in the DD statement (BLKSIZE subparameter). If you do not specify a record length,
unblocked records are the default and the record length is determined from the block size. If you do
specify a record length, it must be equal to the block size.

If you want to keep a data set (that is, you do not want the operating system to delete it at the end of
your job), the DD statement must name the data set and indicate how it is to be disposed of (DSNAME and
DISP parameters). The DISP parameter alone will suffice if you want to use the data set in a later step but
do not need it after the end of your job.

If you want your data set stored on a particular direct access device, you must indicate the volume serial
number in the DD statement (SER or REF subparameter of VOLUME parameter). If you do not supply
a serial number for a data set that you want to keep, the operating system allocates one, informs the
operator, and prints the number on your program listing.

Table 60 on page 269 summarizes all the essential parameters required in a DD statement to create a
regional data set. Table 61 on page 270 lists the DCB subparameters that are needed. See your z/OS MVS
JCL User's Guide for a description of the DCB subparameters.

You cannot place a regional data set on a system output (SYSOUT) device.

In the DCB parameter, if you specify the DSORG parameter, you must specify the data set organization
as direct by coding DSORG=DA. You cannot specify the DUMMY or DSN=NULLFILE parameters in a DD
statement for a regional data set. Using DSORG=DA might cause message IEC225I to be issued. This
message can be safely ignored.

Table 60. Creating a regional data set: essential parameters of the DD statement

Parameters What you must state When required

UNIT=

or

VOLUME=REF=

Output device1 Always

SPACE= Storage space required2 Always

DCB= Data control block information

See Table 61 on page 270.

Always

DISP= Disposition Data set to be used in another job step
but not required in another job

DISP= Disposition Data set to be kept after end of job

DSNAME= Name of data set

VOLUME=SER=

or

VOLUME=REF=

Volume serial number Data set to be on particular volume

Chapter 13. Defining and using regional data sets 269

Table 60. Creating a regional data set: essential parameters of the DD statement (continued)

Parameters What you must state When required

Notes:

1. Regional data sets are confined to direct access devices.
2. For sequential access, the data set can have up to 15 extents, which can be on more than one volume. For

creation with DIRECT access, the data set can have only one extent.

To access a regional data set, you must identify it to the operating system in a DD statement. The
following paragraphs indicate the minimum information you must include in the DD statement; this
information is summarized in Table 62 on page 270.

If the data set is cataloged, you need to supply only the following information in your DD statement:

• The name of the data set (DSNAME parameter)

The operating system locates the information that describes the data set in the system catalog and, if
necessary, requests the operator to mount the volume that contains it.

• Confirmation that the data set exists (DISP parameter)

If the data set is not cataloged, you must, in addition, specify the device that will read the data set and
give the serial number of the volume that contains the data set (UNIT and VOLUME parameters).

When opening a multiple-volume regional data set for sequential update, the ENDFILE condition is raised
at the end of the first volume.

Table 61. DCB subparameters for a regional data set

Subparameters To specify When required

RECFM=F Record format1 Always

BLKSIZE= Block size1

DSORG=DA Data set organization

1Or you can specify the block size in the ENVIRONMENT attribute.

Table 62. Accessing a regional data set: essential parameters of the DD statement

Parameters What you must state When required

DSNAME= Name of data set Always

DISP= Disposition of data set

UNIT=

or

VOLUME=REF=

Input device If data set not cataloged

VOLUME=SER= Volume serial number

270 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 14. Defining and using VSAM data sets
This chapter covers VSAM (the Virtual Storage Access Method) organization for record-oriented data
transmission, VSAM ENVIRONMENT options, compatibility with other PL/I data set organizations, and
the statements you use to load and access the three types of VSAM data sets that PL/I supports—entry-
sequenced, key-sequenced, and relative record.

The chapter is concluded by a series of examples showing the PL/I statements, Access Method Services
commands, and JCL statements necessary to create and access VSAM data sets.

Enterprise PL/I provides no support for ISAM datasets.

For additional information about the facilities of VSAM, the structure of VSAM data sets and indexes, the
way in which they are defined by Access Method Services, and the required JCL statements, see the VSAM
publications for your system.

Defining VSAM file using PL/I dynamic allocation
You can define VSAM data sets by using a DD statement, an environment variable, or the TITLE option of
the OPEN statement.

When an environment variable or the TITLE option is used, the name must be in uppercase. Specify the
MVS data set as follows:

DSN(data-set-name)

data-set-name must be fully qualified and cannot be a temporary data set; for example, it must not start
with &.

You must specify one of the following attributes after the DSN keyword:

OLD
SHR

Using VSAM data sets
If your program needs to use VSAM data sets, you must specify a DD statement to give the program
access to the data sets. Your program can also access key sequenced and entry sequenced data sets
through alternate index paths.

Running a program with VSAM data sets
To allow your program to access VSAM data sets, you must provide certain information in your DD
statement.

Before you execute a program that accesses a VSAM data set, you need to know the following
information:

• The name of the VSAM data set
• The name of the PL/I file
• Whether you intend to share the data set with other users

Then you can write the required DD statement to access the data set:

 //filename DD DSNAME=dsname,DISP=OLD|SHR

© Copyright IBM Corp. 1999, 2022 271

For example, if your file is named PL1FILE, your data set is named VSAMDS, and you want exclusive
control of the data set, enter the following statement:

 //PL1FILE DD DSNAME=VSAMDS,DISP=OLD

To share your data set, use DISP=SHR.

Enterprise PL/I has no support for ISAM data sets.

To optimize VSAM's performance by controlling the number of VSAM buffers used for your data set, see
the VSAM publications.

Pairing an alternate index path with a file
When using an alternate index, you simply specify the name of the path in the DSNAME parameter of the
DD statement associating the base data set/alternate index pair with your PL/I file.

Before using an alternate index, you must be aware of the restrictions on processing; these are
summarized in Table 66 on page 276.

Given a PL/I file called PL1FILE and the alternate index path called PERSALPH, the DD statement required
is as follows:

//PL1FILE DD DSNAME=PERSALPH,DISP=OLD

VSAM organization
There are three types of VSAM data sets. Each type roughly corresponds to a PL/I data set organization.
All three types of VSAM data sets are ordered, and they can all have keys associated with their records.
Both sequential and keyed access are possible with all three types.

Table 63. Types of VSAM data sets and corresponding PL/I data set organization

VSAM data set type Corresponding PL/I data set organization

Key-sequenced data sets (KSDS) Indexed data set

Entry-sequenced data sets (ESDS) Consecutive data set

Relative record data sets (RRDS) Regional data set

Although only key-sequenced data sets have keys as part of their logical records, keyed access is also
possible for entry-sequenced data sets (using relative-byte addresses) and relative record data sets
(using relative record numbers).

All VSAM data sets are held on direct access storage devices, and a virtual storage operating system is
required to use them.

The physical organization of VSAM data sets differs from those used by other access methods. VSAM
does not use the concept of blocking, and, except for relative record data sets, records need not be of a
fixed length. In data sets with VSAM organization, the data items are arranged in control intervals, which
are in turn arranged in control areas. For processing purposes, the data items within a control interval
are arranged in logical records. A control interval can contain one or more logical records, and a logical
record can span two or more control intervals. Concern about blocking factors and record length is largely
removed by VSAM, although records cannot exceed the maximum specified size. VSAM allows access to
the control intervals, but this type of access is not supported by PL/I.

VSAM data sets can have two types of indexes—prime and alternate. A prime index is the index to a KSDS
that is established when you define a data set; it always exists and can be the only index for a KSDS. You
can have one or more alternate indexes on a KSDS or an ESDS. Defining an alternate index for an ESDS
enables you to treat the ESDS, in general, as a KSDS. An alternate index on a KSDS enables a field in the
logical record different from that in the prime index to be used as the key field. Alternate indexes can be

272 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

either nonunique, in which duplicate keys are allowed, or unique, in which they are not. The prime index
can never have duplicate keys.

Any change in a data set that has alternate indexes must be reflected in all the indexes if they are to
remain useful. This activity is known as index upgrade, and is done by VSAM for any index in the index
upgrade set of the data set. (For a KSDS, the prime index is always a member of the index upgrade set.)
However, you must avoid making changes in the data set that would cause duplicate keys in the prime
index or in a unique alternate index.

Before using a VSAM data set for the first time, you need to define it to the system with the DEFINE
command of Access Method Services, which you can use to completely define the type, structure, and
required space of the data set. This command also defines the data set's indexes (together with their key
lengths and locations) and the index upgrade set if the data set is a KSDS or has one or more alternate
indexes. A VSAM data set is thus "created" by Access Method Services.

The operation of writing the initial data into a newly created VSAM data set is referred to as loading in this
publication.

Use the three different types of data sets according to the following purposes:

• Use entry-sequenced data sets for data that you primarily access in the order in which it was created (or
the reverse order).

• Use key-sequenced data sets when you normally access records through keys within the records (for
example, a stock-control file where the part number is used to access a record).

• Use relative record data sets for data in which each item has a particular number, and you normally
access the relevant record by that number (for example, a telephone system with a record associated
with each number).

You can access records in all types of VSAM data sets either directly by a key, or sequentially (backward or
forward). You can also use a combination of the two ways: Select a starting point with a key and then read
forward or backward from that point.

You can create alternate indexes for key-sequenced and entry-sequenced data sets. You can then access
your data in many sequences or by one of many keys. For example, you could take a data set held or
indexed in order of employee number and index it by name in an alternate index. Then you could access
it in alphabetic order, in reverse alphabetic order, or directly by using the name as a key. You could also
access it in the same kind of combinations by employee number.

Table 64 on page 273 shows how the same data could be held in the three different types of VSAM data
sets and illustrates their respective advantages and disadvantages.

Table 64. Types and advantages of VSAM data sets

Data set type Method of loading Method of reading Method of updating Pros and cons

Key-Sequenced Sequentially in order
or prime index which
must be unique

KEYED by
specifying key of
record in prime
index

SEQUENTIAL
backward or
forward in order of
any index

Positioning by
key followed by
sequential reading
either backward or
forward

KEYED specifying a
unique key in any
index

SEQUENTIAL
following positioning
by unique key

Record deletion
allowed

Record insertion
allowed

Advantages:
Complete access and
updating

Disadvantages:
Records must be in
order of prime index
before loading

Uses: For uses where
access will be related
to key

Chapter 14. Defining and using VSAM data sets 273

Table 64. Types and advantages of VSAM data sets (continued)

Data set type Method of loading Method of reading Method of updating Pros and cons

Entry-Sequenced Sequentially
(forward only)

The RBA of each
record can be
obtained and used
as a key

SEQUENTIAL
backward or
forward

KEYED using RBA

Positioning by
key followed by
sequential either
backward or
forward

New records at end
only

Existing records
cannot have length
changed

Record deletion not
allowed

Advantages: Simple
fast creation

No requirement for a
unique index

Disadvantages:
Limited updating
facilities

Uses: For uses where
data will primarily be
accessed sequentially

Relative Record Sequentially starting
from slot 1

KEYED specifying
number of slot

Positioning by
key followed by
sequential writes

KEYED specifying
numbers as key

Sequential forward
or backward
omitting empty
records

Sequentially starting
at a specified slot
and continuing with
next slot

Keyed specifying
numbers as key

Record deletion
allowed

Record insertion into
empty slots allowed

Advantages: Speedy
access to record by
number

Disadvantages:
Structure tied to
numbering sequences

Fixed length records

Uses: For use where
records will be
accessed by number

Keys for VSAM data sets
All VSAM data sets can have keys associated with their records.

For key-sequenced data sets, and for entry-sequenced data sets accessed through an alternate index, the
key is a defined field within the logical record. For entry-sequenced data sets, the key is the relative byte
address (RBA) of the record. For relative-record data sets, the key is a relative record number.

Keys for indexed VSAM data sets
Keys for key-sequenced data sets and for entry-sequenced data sets that are accessed through an
alternate index are part of the logical records recorded on the data set. You define the length and location
of the keys when you create the data set.

For information about how you can reference the keys in the KEY, KEYFROM, and KEYTO options, see the
topics about the KEY(expression) option, KEYFROM(expression) option, and KEYTO(reference) option in
the PL/I Language Reference.

Relative byte addresses (RBA)
Relative byte addresses allow you to use keyed access on an ESDS associated with a KEYED SEQUENTIAL
file.

The RBAs, or keys, are character strings of length 4, and their values are defined by VSAM. You cannot
construct or manipulate RBAs in PL/I; you can, however, compare their values in order to determine the
relative positions of records within the data set. RBAs are not normally printable.

You can obtain the RBA for a record by using the KEYTO option, either on a WRITE statement when you
are loading or extending the data set, or on a READ statement when the data set is being read. You can
subsequently use an RBA obtained in either of these ways in the KEY option of a READ or REWRITE
statement.

274 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Do not use an RBA in the KEYFROM option of a WRITE statement.

VSAM allows use of the relative byte address as a key to a KSDS, but this use is not supported by PL/I.

Relative record numbers
Records in an RRDS are identified by a relative record number that starts at 1 and increments by 1 for
each succeeding record. You can use these relative record numbers as keys for keyed access to the data
set.

Keys used as relative record numbers are character strings of length 8. The character value of a source
key you use in the KEY or KEYFROM option must represent an unsigned integer. If the source key is
not 8 characters long, it is truncated or padded with blanks (interpreted as zeros) on the left. The value
returned by the KEYTO option is a character string of length 8, with leading zeros suppressed.

Choosing a data set type
When you plan your program, you must first decide which type of data set to use. There are three types of
VSAM data sets and five types of non-VSAM data sets available to you.

VSAM data sets can provide all the function of the other types of data sets, plus additional functions
available only in VSAM. VSAM can usually match other data set types in performance, and often improve
upon it. However, VSAM is more subject to performance degradation through misuse of function.

For a comparison of all eight types of data sets, see Table 39 on page 222; however, many factors in the
choice of data set type for a large installation are beyond the scope of this document.

When choosing between the VSAM data set types, you should base your choice on the most common
sequence in which you will require your data. You can use the following procedure to help ensure a
combination of data sets and indexes that provide the function you require.

1. Determine the type of data and how it will be accessed.

a. Primarily sequentially — favors ESDS.
b. Primarily by key — favors KSDS.
c. Primarily by number — favors RRDS.

2. Determine how you will load the data set. Note that you must load a KSDS in key sequence; thus an
ESDS with an alternate index path can be a more practical alternative for some applications.

3. Determine whether you require access through an alternate index path. These are only supported on
KSDS and ESDS. If you require an alternate index path, determine whether the alternate index will have
unique or nonunique keys. Use of nonunique keys can limit key processing. However, it might also be
impractical to assume that you will use unique keys for all future records; if you attempt to insert a
record with a nonunique key in an index that you have created for unique keys, it will cause an error.

4. When you have determined the data sets and paths that you require, ensure that the operations you
have in mind are supported. Table 65 on page 276 might be helpful.

Do not try to access a dummy VSAM data set, because you will receive an error message indicating that
you have an undefined file.

Table 65 on page 276 shows the compatible file attribute combinations based on the type of VSAM data
sets.

Chapter 14. Defining and using VSAM data sets 275

Table 65. VSAM data sets and allowed file attributes

SEQUENTIAL KEYED SEQUENTIAL DIRECT

INPUT ESDS

KSDS

RRDS

Path(N)

Path(U)

ESDS

KSDS

RRDS

Path(N)

Path(U)

KSDS

RRDS

Path(U)

OUTPUT ESDS

RRDS

ESDS

KSDS

RRDS

KSDS

RRDS

Path(U)

UPDATE ESDS

KSDS

RRDS

Path(N)

Path(U)

ESDS

KSDS

RRDS

Path(N)

Path(U)

KSDS

RRDS

Path(U)

Key:
ESDS

Entry-sequenced data set
KSDS

Key-sequenced data set
RRDS

Relative record data set
Path(N)

Alternate index path with nonunique keys
Path(U)

Alternate index path with unique keys

Notes:

• You can combine the attributes on the left with those at the top of the figure for the data sets and
paths shown. For example, only an ESDS and an RRDS can be SEQUENTIAL OUTPUT.

• PL/I does not support dummy VSAM data sets.

Table 66. Processing allowed on alternate index paths

Base cluster type
Alternate index key
type Processing Restrictions

KSDS Unique key As normal KSDS Cannot modify key of
access.

Nonunique key Limited keyed access Cannot modify key of
access.

276 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 66. Processing allowed on alternate index paths (continued)

Base cluster type
Alternate index key
type Processing Restrictions

ESDS Unique key As KSDS No deletion.

Cannot modify key of
access.

Nonunique key Limited keyed access No deletion.

Cannot modify key of
access.

Related information
“Entry-sequenced data sets” on page 281
This topic describes the statements and options that are allowed for files associated with an entry-
sequenced data set (ESDS).
“Key-sequenced and indexed entry-sequenced data sets” on page 284
An indexed data set can be a key-sequenced data set (KSDS) with its prime index; it can also be a KSDS
or an entry-sequenced data set (ESDS) with an alternate index. This topic describes the statements and
options that are allowed for files associated with indexed VSAM data sets.
“Relative-record data sets” on page 297
This topic describes the statements and options that are allowed for files associated with VSAM relative-
record data sets (RRDS).

Defining files for VSAM data sets
This topic describes the file declaration that you can use to define a sequential or direct VSAM data set.

Defining sequential VSAM data set
You define a sequential VSAM data set by using a file declaration with the following attributes:

DCL filename FILE RECORD
 INPUT | OUTPUT | UPDATE
 SEQUENTIAL
 BUFFERED
 [KEYED]
 ENVIRONMENT(options);

Defining direct VSAM data set
You define a direct VSAM data set by using a file declaration with the following attributes:

DCL filename FILE RECORD
 INPUT | OUTPUT | UPDATE
 DIRECT
 [KEYED]
 ENVIRONMENT(options);

Table 38 on page 214 shows the default attributes. The file attributes are described in the PL/I
Language Reference. For information about the options of the ENVIRONMENT attribute, see “Specifying
ENVIRONMENT options” on page 278.

Some combinations of the file attributes INPUT, OUTPUT, or UPDATE and DIRECT, SEQUENTIAL, or KEYED
SEQUENTIAL are allowed only for certain types of VSAM data sets. Table 65 on page 276 shows the
compatible combinations.

Chapter 14. Defining and using VSAM data sets 277

Specifying ENVIRONMENT options
This section describes the ENVIRONMENT options that are applicable to VSAM data sets.

Many of the options of the ENVIRONMENT attribute affecting data set structure are not needed for VSAM
data sets. If you specify them, they are either ignored or used for checking purposes. If those that are
checked conflict with the values defined for the data set, the UNDEFINEDFILE condition is raised when an
attempt is made to open the file.

You can use the following ENVIRONMENT options for VSAM data sets:

BKWD
BUFND (n)
BUFNI (n)
BUFSP (n)
GENKEY
PASSWORD (password-specification)
REUSE
SCALARVARYING
SKIP
VSAM

GENKEY and SCALARVARYING options have the same effect as they do when you use them for non-VSAM
data sets. Note that under VSAM RLS, options BUFND, BUFNI, and BUFSP are ignored.

The options that are checked for a VSAM data set are RECSIZE and, for a key-sequenced data set,
KEYLENGTH and KEYLOC. Table 38 on page 214 shows which options are ignored for VSAM. Table 38 on
page 214 also shows the required and default options.

For VSAM data sets, you specify the maximum and average lengths of the records to the Access Method
Services utility when you define the data set. If you include the RECSIZE option in the file declaration for
checking purposes, specify the maximum record size. If the RECSIZE value that you specify conflicts with
the values defined for the data set, the UNDEFINEDFILE condition is raised.

BKWD
The BKWD option specifies backward processing for a SEQUENTIAL INPUT or SEQUENTIAL UPDATE file
associated with a VSAM data set.

BKWD

Sequential reads (that is, reads without the KEY option) retrieve the previous record in sequence. For
indexed data sets, the previous record is, in general, the record with the next lower key. However, if you
are accessing the data set through a nonunique alternate index, records with the same key are recovered
in their normal sequence. For example, consider the following records, where C1, C2, and C3® have the
same key:

A B C1 C2 C3 D E

The records are recovered in the following sequence:

E D C1 C2 C3 B A

When a file with the BKWD option is opened, the data set is positioned at the last record. ENDFILE is
raised in the normal way when the start of the data set is reached.

Do not specify the BKWD option with either the REUSE option or the GENKEY option. Also, the WRITE
statement is not allowed for files declared with the BKWD option.

BUFND
The BUFND option specifies the number of data buffers required for a VSAM data set.

BUFND ( n)

278 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

n
Specifies an integer, or a variable with attributes FIXED BINARY(31) STATIC.

Multiple data buffers help performance when the file has the SEQUENTIAL attribute and you are
processing long group of contiguous records sequentially.

BUFNI
The BUFNI option specifies the number of index buffers required for a VSAM key-sequence data set.

BUFNI ( n)

n
Specifies an integer, or a variable with attributes FIXED BINARY(31) STATIC.

Multiple index buffers help performance when the file has the KEYED attribute. Specify at least as many
index buffers as there are levels in the index.

BUFSP
The BUFSP option specifies, in bytes, the total buffer space required for a VSAM data set (for both the
data and index components).

BUFSP ( n)

n
Specifies an integer, or a variable with attributes FIXED BINARY(31) STATIC.

It is usually preferable to specify the BUFNI and BUFND options rather than BUFSP.

GENKEY
The GENKEY (generic key) option applies only to INDEXED and VSAM key-sequenced data sets. You
can use this option to classify keys recorded in a data set and use a SEQUENTIAL KEYED INPUT or
SEQUENTIAL KEYED UPDATE file to access records according to their key classes.

For detailed information, see “GENKEY option — key classification” on page 220.

PASSWORD
When you define a VSAM data set to the system (by using the DEFINE command of Access Method
Services), you can associate READ and UPDATE passwords with it. From that point on, you must include
the appropriate password in the declaration of any PL/I file that you use to access the data set.

PASSWORD (password-specification)

password-specification
Specifies a character constant or character variable that specifies the password for the type of access
your program requires. If you specify a constant, it must not contain a repetition factor; if you specify
a variable, it must be level-1, element, static, and unsubscripted.

The character string is padded or truncated to 8 characters and passed to VSAM for inspection. If the
password is incorrect, the system operator is given a number of chances to specify the correct password.
You specify the number of chances to be allowed when you define the data set. After this number of
unsuccessful tries, the UNDEFINEDFILE condition is raised.

REUSE
The REUSE option specifies that an OUTPUT file associated with a VSAM data set is to be used as a work
file.

REUSE

Chapter 14. Defining and using VSAM data sets 279

The data set is treated as an empty data set each time the file is opened. Any secondary allocations for
the data set are released, and the data set is treated exactly as if it were being opened for the first time.

Do not associate a file that has the REUSE option with a data set that has alternate indexes or the BKWD
option, and do not open it for INPUT or UPDATE.

The REUSE option takes effect only if you specify REUSE in the Access Method Services DEFINE CLUSTER
command.

SKIP
The SKIP option specifies that the VSAM OPTCD "SKP" is to be used whenever possible. It is applicable to
key-sequenced data sets that you access by means of a KEYED SEQUENTIAL INPUT or UPDATE file.

SKIP

You should specify this option for the file if your program accesses individual records scattered
throughout the data set, but does so primarily in ascending key order.

Omit this option if your program reads large numbers of records sequentially without the use of the KEY
option, or if it inserts large numbers of records at specific points in the data set (mass sequential insert).

It is never an error to specify (or omit) the SKIP option; its effect on performance is significant only in the
circumstances described.

VSAM
You must specify the VSAM option for VSAM data sets.

VSAM

Performance options
You can specify the buffer options in the AMP parameter of the DD statement; they are explained in your
Access Method Services manual.

For more information about optimizing VSAM performance, refer to the DFSMS Using Data Sets manual.
For more information about shared resources, refer to the MVS Batch Local Shared Resources manual.

Defining files for alternate index paths
VSAM allows you to define alternate indexes on key sequenced and entry sequenced data sets.

Using alternate indexes, you can access key sequenced data sets in a number of ways other than from
the prime index; you can also index and access entry sequenced data sets by key or sequentially in order
of the keys. Consequently, data created in one form can be accessed in a large number of different ways.
For example, an employee file might be indexed by personnel number, by name, and also by department
number.

When an alternate index has been built, you actually access the data set through a third object known as
an alternate index path that acts as a connection between the alternate index and the data set.

Two types of alternate indexes are allowed—unique key and nonunique key. For a unique key alternate
index, each record must have a different alternate key. For a nonunique key alternate index, any number
of records can have the same alternate key. In the example suggested above, the alternate index using
the names can be a unique key alternate index (provided each person had a different name). The alternate
index using the department number would be a nonunique key alternate index because more than one
person would be in each department.

In most respects, you can treat a data set accessed through a unique key alternate index path like a
KSDS accessed through its prime index. You can access the records by key or sequentially, you can update
records, and you can add new records. If the data set is a KSDS, you can delete records, and alter the
length of updated records. Restrictions and allowed processing are shown in Table 66 on page 276. When

280 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.idad400/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.iea/iea.htm

you add or delete records, all indexes associated with the data set are by default altered to reflect the
new situation.

In data sets accessed through a nonunique key alternate index path, the record accessed is determined
by the key and the sequence. The key can be used to establish positioning so that sequential access can
follow. The use of the key accesses the first record with that key. When the data set is read backwards,
only the order of the keys is reversed. The order of the records with the same key remains the same
whichever way the data set is read.

Defining VSAM data sets
You can use the DEFINE CLUSTER command of Access Method Services to define and catalog VSAM data
sets.

To use the DEFINE command, you need to know the following information:

• The name and password of the master catalog if the master catalog is password protected
• The name and password of the VSAM private catalog you are using if you are not using the master

catalog
• Whether VSAM space for your data set is available
• The type of VSAM data set you are going to create
• The volume on which your data set is to be placed
• The average and maximum record size in your data set
• The position and length of the key for an indexed data set
• The space to be allocated for your data set
• How to code the DEFINE command
• How to use the Access Method Services program

When you have the information, you can code the DEFINE command and then define and catalog the data
set by using Access Method Services.

Entry-sequenced data sets
This topic describes the statements and options that are allowed for files associated with an entry-
sequenced data set (ESDS).

Table 67. Statements and options allowed for loading and accessing VSAM entry-sequenced data sets

File declaration1 Valid statements with options you
must include

Other options you can also
include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

KEYTO(reference)

SET(pointer-reference)

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);

KEYTO(reference) or
KEY(expression)3

KEYTO(reference) or
KEY(expression)3

IGNORE(expression)

Chapter 14. Defining and using VSAM data sets 281

Table 67. Statements and options allowed for loading and accessing VSAM entry-sequenced data sets
(continued)

File declaration1 Valid statements with options you
must include

Other options you can also
include

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)2

WRITE FILE(file-reference)
FROM(reference);

REWRITE FILE(file-reference);

KEYTO(reference) or
KEY(expression)3

KEYTO(reference) or
KEY(expression)3

IGNORE(expression)

KEYTO(reference)

FROM(reference)
and/or
KEY(expression)3

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT; if you use
either of the options KEY or KEYTO, it must also include the attribute KEYED.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-
reference) IGNORE (1);.

3. The expression used in the KEY option must be a relative byte address, previously obtained by the KEYTO
option.

Loading an ESDS
When an ESDS is being loaded, the associated file must be opened for SEQUENTIAL OUTPUT. The records
are retained in the order in which they are presented.

You can use the KEYTO option to obtain the relative byte address of each record as it is written. You can
subsequently use these keys to achieve keyed access to the data set.

Using a SEQUENTIAL file to access an ESDS
You can open a SEQUENTIAL file that is used to access an ESDS with either the INPUT or the UPDATE
attribute. If you use either of the options KEY or KEYTO, the file must also have the KEYED attribute.

Sequential access is in the order that the records were originally loaded into the data set. You can use
the KEYTO option on the READ statements to recover the RBAs of the records that are read. If you use
the KEY option, the record that is recovered is the one with the RBA you specify. Subsequent sequential
access continues from the new position in the data set.

For an UPDATE file, the WRITE statement adds a new record at the end of the data set. With a REWRITE
statement, the record rewritten is the one with the specified RBA if you use the KEY option; otherwise, it is
the record accessed on the previous READ. You must not attempt to change the length of the record that
is being replaced with a REWRITE statement.

The DELETE statement is not allowed for entry-sequenced data sets.

282 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Defining and loading an ESDS
This topic shows an example PL/I program that defines and loads an entry-sequenced data set (ESDS).
The program writes to the data set by using a SEQUENTIAL OUTPUT file.

In the program shown in Table 68 on page 283, the data set is defined with the DEFINE CLUSTER
command and given the name PLIVSAM.AJC1.BASE. The NONINDEXED keyword causes an ESDS to be
defined.

The PL/I program writes to the data set by using a SEQUENTIAL OUTPUT file and a WRITE FROM
statement. The DD statement for the file contains the DSNAME of the data set given in the NAME
parameter of the DEFINE CLUSTER command.

You can obtain the RBA of the records as keys in a KEYED file for subsequent use. To do this, you must
declare a suitable variable to hold the key and use the WRITE...KEYTO statement. See the following
example:

DCL CHARS CHAR(4);
WRITE FILE(FAMFILE) FROM (STRING)
 KEYTO(CHARS);

Note that the keys would not normally be printable, but could be retained for subsequent use.

The cataloged procedure IBMZCBG is used. Because the same program (in Table 68 on page 283) can
be used for adding records to the data set, it is retained in a library. For more information about the
procedure of adding records, see the example in “Updating an ESDS” on page 284.

Table 68. Defining and loading an ESDS

 //OPT9#7 JOB
 //STEP1 EXEC PGM=IDCAMS,REGION=512K
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 DEFINE CLUSTER -
 (NAME(PLIVSAM.AJC1.BASE) -
 VOLUMES(nnnnnn) -
 NONINDEXED -
 RECORDSIZE(80 80) -
 TRACKS(2 2))
 /*
 //STEP2 EXEC IBMZCLG
 //PLI.SYSIN DD *
 CREATE: PROC OPTIONS(MAIN);

 DCL
 FAMFILE FILE SEQUENTIAL OUTPUT ENV(VSAM),
 IN FILE RECORD INPUT,
 STRING CHAR(80),
 EOF BIT(1) INIT('0'B);

 ON ENDFILE(IN) EOF='1'B;

 READ FILE(IN) INTO (STRING);
 DO I=1 BY 1 WHILE (¬EOF);
 PUT FILE(SYSPRINT) SKIP EDIT (STRING) (A);
 WRITE FILE(FAMFILE) FROM (STRING);
 READ FILE(IN) INTO (STRING);
 END;

 PUT SKIP EDIT(I-1,' RECORDS PROCESSED')(A);
 END;
 /*
 //LKED.SYSLMOD DD DSN=HPU8.MYDS(PGMA),DISP=(NEW,CATLG),
 // UNIT=SYSDA,SPACE=(CYL,(1,1,1))
 //GO.FAMFILE DD DSNAME=PLIVSAM.AJC1.BASE,DISP=OLD
 //GO.IN DD *
 FRED 69 M
 ANDY 70 M
 SUZAN 72 F
 /*

Chapter 14. Defining and using VSAM data sets 283

Updating an ESDS
This topic shows an example of adding a new record at the end of an ESDS.

This example is based on the PL/I program shown in Table 68 on page 283. That program can also be
used for adding records to the data set. In the program, the data set PLIVSAM.AJC1.BASE is defined with
the DEFINE CLUSTER command.

Table 69 on page 284 shows the addition of a new record at the end of the ESDS. A SEQUENTIAL
OUTPUT file is used, and the data set associated with it, PLIVSAM.AJC1.BASE, is specified in the DSNAME
parameter.

Table 69. Updating an ESDS

 //OPT9#8 JOB
 //STEP1 EXEC PGM=PGMA
 //STEPLIB DD DSN=HPU8.MYDS(PGMA),DISP=(OLD,KEEP)
 // DD DSN=CEE.SCEERUN,DISP=SHR
 //SYSPRINT DD SYSOUT=A
 //FAMFILE DD DSN=PLIVSAM.AJC1.BASE,DISP=SHR
 //IN DD *
 JANE 75 F
 //

You can rewrite existing records in an ESDS, provided that the length of the record is not changed. You can
use a SEQUENTIAL or KEYED SEQUENTIAL update file to do this. If you use keys, they can be the RBAs or
keys of an alternate index path.

Delete statements are not allowed for ESDS.

Key-sequenced and indexed entry-sequenced data sets
An indexed data set can be a key-sequenced data set (KSDS) with its prime index; it can also be a KSDS
or an entry-sequenced data set (ESDS) with an alternate index. This topic describes the statements and
options that are allowed for files associated with indexed VSAM data sets.

Except where otherwise stated, the description in Table 70 on page 284 applies to all indexed VSAM data
sets.

Table 70. Statements and options allowed for loading and accessing VSAM indexed data sets

File declaration1 Valid statements with options you
must include

Other options you can also
include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FILE(file-reference)
KEYFROM(expression);

SET(pointer-reference)

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

284 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 70. Statements and options allowed for loading and accessing VSAM indexed data sets (continued)

File declaration1 Valid statements with options you
must include

Other options you can also
include

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

REWRITE FILE(file-reference);

DELETE FILE(file-reference)

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

FROM(reference) and/or
KEY(expression)

KEY(expression)

DIRECT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

DIRECT OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DIRECT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

DELETE FILE(file-reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

Chapter 14. Defining and using VSAM data sets 285

Table 70. Statements and options allowed for loading and accessing VSAM indexed data sets (continued)

File declaration1 Valid statements with options you
must include

Other options you can also
include

Notes:

1. The complete file declaration would include the attributes FILE and RECORD. If you use any of the
options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED in the declaration.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-
reference) IGNORE(1);.

3. Do not associate a SEQUENTIAL OUTPUT file with a data set accessed through an alternate index.
4. Do not associate a DIRECT file with a data set accessed through a nonunique alternate index.
5. DELETE statements are not allowed for a file associated with an ESDS accessed through an alternate

index.

Loading a KSDS or indexed ESDS
When a KSDS is being loaded, you must open the associated file for KEYED SEQUENTIAL OUTPUT. You
must present the records in ascending key order, and you must use the KEYFROM option.

Note that you must use the prime index for loading the data set; you cannot load a VSAM data set through
an alternate index.

If a KSDS already contains some records and you open the associated file with the SEQUENTIAL and
OUTPUT attributes, you can add records only at the end of the data set. The rules given in the previous
paragraph apply; in particular, the first record you present must have a key greater than the highest key
present on the data set.

Table 71 on page 287 shows the DEFINE command used to define a KSDS. The data set is given the name
PLIVSAM.AJC2.BASE and defined as a KSDS because of the use of the INDEXED operand. The position of
the keys within the record is defined in the KEYS operand.

Within the PL/I program, a KEYED SEQUENTIAL OUTPUT file is used with a WRITE...FROM...KEYFROM
statement. The data is presented in ascending key order. A KSDS must be loaded in this manner.

The file is associated with the data set by a DD statement that uses the name given in the DEFINE
command as the DSNAME parameter.

286 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 71. Defining and loading a key-sequenced data set (KSDS)

 //OPT9#12 JOB
 // EXEC PGM=IDCAMS,REGION=512K
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 DEFINE CLUSTER -
 (NAME(PLIVSAM.AJC2.BASE) -
 VOLUMES(nnnnnn) -
 INDEXED -
 TRACKS(3 1) -
 KEYS(20 0) -
 RECORDSIZE(23 80))
 /*
 // EXEC IBMZCBG
 //PLI.SYSIN DD *
 TELNOS: PROC OPTIONS(MAIN);

 DCL DIREC FILE RECORD SEQUENTIAL OUTPUT KEYED ENV(VSAM),
 CARD CHAR(80),
 NAME CHAR(20) DEF CARD POS(1),
 NUMBER CHAR(3) DEF CARD POS(21),
 OUTREC CHAR(23) DEF CARD POS(1),
 EOF BIT(1) INIT('0'B);

 ON ENDFILE(SYSIN) EOF='1'B;

 OPEN FILE(DIREC) OUTPUT;

 GET FILE(SYSIN) EDIT(CARD)(A(80));
 DO WHILE (¬EOF);
 WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);
 GET FILE(SYSIN) EDIT(CARD)(A(80));
 END;

 CLOSE FILE(DIREC);

 END TELNOS;
 /*
 //GO.DIREC DD DSNAME=PLIVSAM.AJC2.BASE,DISP=OLD
 //GO.SYSIN DD *
 ACTION,G. 162
 BAKER,R. 152
 BRAMLEY,O.H. 248
 CHEESEMAN,D. 141
 CORY,G. 336
 ELLIOTT,D. 875
 FIGGINS,S. 413
 HARVEY,C.D.W. 205
 HASTINGS,G.M. 391
 KENDALL,J.G. 294
 LANCASTER,W.R. 624
 MILES,R. 233
 NEWMAN,M.W. 450
 PITT,W.H. 515
 ROLF,D.E. 114
 SHEERS,C.D. 241
 SUTCLIFFE,M. 472
 TAYLOR,G.C. 407
 WILTON,L.W. 404
 WINSTONE,E.M. 307
 //

Using a SEQUENTIAL file to access a KSDS or indexed ESDS
You can open a SEQUENTIAL file that is used to access a KSDS with either the INPUT or the UPDATE
attribute.

For READ statements without the KEY option, the records are recovered in ascending key order (or in
descending key order if the BKWD option is used). You can obtain the key of a record recovered in this way
by using the KEYTO option.

If you use the KEY option, the record recovered by a READ statement is the one with the specified key.
Such a READ statement positions the data set at the specified record; subsequent sequential reads will
recover the following records in sequence.

Chapter 14. Defining and using VSAM data sets 287

WRITE statements with the KEYFROM option are allowed for KEYED SEQUENTIAL UPDATE files. You can
make insertions anywhere in the data set, without respect to the position of any previous access. If you
are accessing the data set through a unique index, the KEY condition is raised if an attempt is made to
insert a record with the same key as a record that already exists on the data set. For a nonunique index,
subsequent retrieval of records with the same key is in the order that they were added to the data set.

REWRITE statements with or without the KEY option are allowed for UPDATE files. If you use the KEY
option, the record that is rewritten is the first record with the specified key; otherwise, it is the record that
was accessed by the previous READ statement. When you rewrite a record by using an alternate index, do
not change the prime key of the record.

Using a DIRECT file to access a KSDS or indexed ESDS
You can open a DIRECT file that is used to access an indexed VSAM data set with the INPUT, OUTPUT, or
UPDATE attribute. Do not use a DIRECT file to access the data set through a nonunique index.

If you use a DIRECT OUTPUT file to add records to the data set, and if an attempt is made to insert a
record with the same key as a record that already exists, the KEY condition is raised.

If you use a DIRECT INPUT or DIRECT UPDATE file, you can read, write, rewrite, or delete records in the
same way as for a KEYED SEQUENTIAL file.

Table 72 on page 289 shows one method to update a KSDS by using the prime index.

288 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 72. Updating a KSDS

 //OPT9#13 JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD *
 DIRUPDT: PROC OPTIONS(MAIN);

 DCL DIREC FILE RECORD KEYED ENV(VSAM),
 ONCODE BUILTIN,
 OUTREC CHAR(23),
 NUMBER CHAR(3) DEF OUTREC POS(21),
 NAME CHAR(20) DEF OUTREC,
 CODE CHAR(1),
 EOF BIT(1) INIT('0'B);

 ON ENDFILE(SYSIN) EOF='1'B;

 ON KEY(DIREC) BEGIN;
 IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT
 ('NOT FOUND: ',NAME)(A(15),A);
 IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT
 ('DUPLICATE: ',NAME)(A(15),A);
 END;

 OPEN FILE(DIREC) DIRECT UPDATE;

 GET FILE(SYSIN) EDIT (NAME,NUMBER,CODE)
 (COLUMN(1),A(20),A(3),A(1));
 DO WHILE (¬EOF);
 PUT FILE(SYSPRINT) SKIP EDIT (' ',NAME,'#',NUMBER,' ',CODE)
 (A(1),A(20),A(1),A(3),A(1),A(1));
 SELECT (CODE);
 WHEN('A') WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);
 WHEN('C') REWRITE FILE(DIREC) FROM(OUTREC) KEY(NAME);
 WHEN('D') DELETE FILE(DIREC) KEY(NAME);
 OTHERWISE PUT FILE(SYSPRINT) SKIP EDIT
 ('INVALID CODE: ',NAME) (A(15),A);
 END;
 GET FILE(SYSIN) EDIT (NAME,NUMBER,CODE)
 (COLUMN(1),A(20),A(3),A(1));
 END;

 CLOSE FILE(DIREC);
 PUT FILE(SYSPRINT) PAGE;
 OPEN FILE(DIREC) SEQUENTIAL INPUT;

 EOF='0'B;
 ON ENDFILE(DIREC) EOF='1'B;

 READ FILE(DIREC) INTO(OUTREC);
 DO WHILE(¬EOF);
 PUT FILE(SYSPRINT) SKIP EDIT(OUTREC)(A);
 READ FILE(DIREC) INTO(OUTREC);
 END;
 CLOSE FILE(DIREC);
 END DIRUPDT;

 /*
 //GO.DIREC DD DSNAME=PLIVSAM.AJC2.BASE,DISP=OLD
 //GO.SYSIN DD *
 NEWMAN,M.W. 516C
 GOODFELLOW,D.T. 889A
 MILES,R. D
 HARVEY,C.D.W. 209A
 BARTLETT,S.G. 183A
 CORY,G. D
 READ,K.M. 001A
 PITT,W.H.
 ROLF,D.F. D
 ELLIOTT,D. 291C
 HASTINGS,G.M. D
 BRAMLEY,O.H. 439C
 /*

Updating a KSDS (continued)

Chapter 14. Defining and using VSAM data sets 289

A DIRECT update file is used and the data is altered according to a code that is passed in the records in
the file SYSIN:

A
Add a new record

C
Change the number of an existing name

D
Delete a record

At the label NEXT, the name, number, and code are read in and action taken according to the value of
the code. A KEY ON-unit is used to handle any incorrect keys. When the updating is finished (at the label
PRINT), the file DIREC is closed and reopened with the attributes SEQUENTIAL INPUT. The file is then
read sequentially and printed.

The file is associated with the data set by a DD statement that uses the DSNAME PLIVSAM.AJC2.BASE
defined in the Access Method Services DEFINE CLUSTER command in Table 71 on page 287.

Updating a KSDS
There are a number of methods of updating a KSDS. For mass sequential insertion, use a KEYED
SEQUENTIAL UPDATE file.

This method gives faster performance because the data is written onto the data set only when strictly
necessary and not after every write statement, and also because the balance of free space within the data
set is retained.

You can use the following statements to achieve effective mass sequential insertion:

DCL DIREC KEYED SEQUENTIAL UPDATE
 ENV(VSAM);
WRITE FILE(DIREC) FROM(OUTREC)
 KEYFROM(NAME);

The PL/I input/output routines detect that the keys are in sequence and make the correct requests to
VSAM. If the keys are not in sequence, this too is detected and no error occurs, although the performance
advantage is lost.

The example shown in Table 72 on page 289 uses a DIRECT file to update a KSDS. This method is suitable
for the data as is shown in the example.

Alternate indexes for KSDSs or indexed ESDSs
Alternate indexes allow you to access KSDSs or indexed ESDSs in various ways, by using either unique or
nonunique keys.

Creating unique key alternate index path for ESDS
This topic provides an example that illustrates how to create a unique key alternate index path for an
ESDS.

Table 73 on page 291 shows the creation of a unique key alternate index path for the ESDS defined and
loaded in Table 68 on page 283. Using this path, the data set is indexed by the name of the child in the
first 15 bytes of the record.

The following Access Method Services commands are used:

DEFINE ALTERNATEINDEX
Defines the alternate index as a data set to VSAM.

BLDINDEX
Places the pointers to the relevant records in the alternate index.

290 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

DEFINE PATH
Defines an entity that can be associated with a PL/I file in a DD statement.

DD statements are required for the INFILE and OUTFILE operands of BLDINDEX and for the sort files.
Ensure that the correct names are specified at the various points.

Table 73. Creating a unique key alternate index path for an ESDS

 //OPT9#9 JOB
 //STEP1 EXEC PGM=IDCAMS,REGION=512K
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 DEFINE ALTERNATEINDEX -
 (NAME(PLIVSAM.AJC1.ALPHIND) -
 VOLUMES(nnnnnn) -
 TRACKS(4 1) -
 KEYS(15 0) -
 RECORDSIZE(20 40) -
 UNIQUEKEY -
 RELATE(PLIVSAM.AJC1.BASE))
 /*
 //STEP2 EXEC PGM=IDCAMS,REGION=512K
 //DD1 DD DSNAME=PLIVSAM.AJC1.BASE,DISP=SHR
 //DD2 DD DSNAME=PLIVSAM.AJC1.ALPHIND,DISP=SHR
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 BLDINDEX INFILE(DD1) OUTFILE(DD2)
 DEFINE PATH -
 (NAME(PLIVSAM.AJC1.ALPHPATH) -
 PATHENTRY(PLIVSAM.AJC1.ALPHIND))
 //

Creating nonunique key alternate index path for ESDS
This topic provides an example that illustrates how to create a nonunique key alternate index path for an
ESDS.

Table 74 on page 292 shows the creation of a nonunique key alternate index path for an ESDS. The
alternate index enables the data to be selected by the gender of the children. This enables the girls or the
boys to be accessed separately and every member of each group to be accessed by use of the key.

The following Access Method Services commands are used:

DEFINE ALTERNATEINDEX
Defines the alternate index as a data set to VSAM.

BLDINDEX
Places the pointers to the relevant records in the alternate index.

DEFINE PATH
Defines an entity that can be associated with a PL/I file in a DD statement.

DD statements are required for the INFILE and OUTFILE operands of BLDINDEX and for the sort files.
Ensure that the correct names are specified at the various points.

In this example, the NONUNIQUEKEY operand specifies that the index has nonunique keys. When
creating an index with nonunique keys, ensure that the RECORDSIZE you specify is large enough. In a
nonunique alternate index, each alternate index record contains pointers to all the records that have the
associated index key. The pointer takes the form of an RBA for an ESDS and the prime key for a KSDS.
When a large number of records might have the same key, a large record is required.

Chapter 14. Defining and using VSAM data sets 291

Table 74. Creating a nonunique key alternate index path for an ESDS

 //OPT9#10 JOB
 //STEP1 EXEC PGM=IDCAMS,REGION=512K
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 /* care must be taken with recordsize */
 DEFINE ALTERNATEINDEX -
 (NAME(PLIVSAM.AJC1.SEXIND) -
 VOLUMES(nnnnnn) -
 TRACKS(4 1) -
 KEYS(1 37) -
 RECORDSIZE(20 400) -
 NONUNIQUEKEY -
 RELATE(PLIVSAM.AJC1.BASE))
 /*
 //STEP2 EXEC PGM=IDCAMS,REGION=512K
 //DD1 DD DSNAME=PLIVSAM.AJC1.BASE,DISP=SHR
 //DD2 DD DSNAME=PLIVSAM.AJC1.SEXIND,DISP=SHR
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 BLDINDEX INFILE(DD1) OUTFILE(DD2)
 DEFINE PATH -
 (NAME(PLIVSAM.AJC1.SEXPATH) -
 PATHENTRY(PLIVSAM.AJC1.SEXIND))
 //

Creating unique key alternate index path for KSDS
This topic provides an example that illustrates how to create a unique key alternate index path for a KSDS.

Table 75 on page 293 shows the creation of a unique key alternate index path for a KSDS. The data set is
indexed by the telephone number, enabling the number to be used as a key to discover the name of the
person on that extension. Also, the data set can be listed in numerical order to show which numbers are
not used.

In this example, the UNIQUEKEY operand specifies that keys are unique.

The following Access Method Services commands are used:

DEFINE ALTERNATEINDEX
Defines the data set that will hold the alternate index data.

BLDINDEX
Places the pointer to the relevant records in the alternate index.

DEFINE PATH
Defines the entity that can be associated with a PL/I file in a DD statement.

DD statements are required for the INFILE and OUTFILE of BLDINDEX and for the sort files. Be careful not
to confuse the names involved.

292 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 75. Creating a unique key alternate index path for a KSDS

 //OPT9#14 JOB
 //STEP1 EXEC PGM=IDCAMS,REGION=512K
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 DEFINE ALTERNATEINDEX -
 (NAME(PLIVSAM.AJC2.NUMIND) -
 VOLUMES(nnnnnn) -
 TRACKS(4 4) -
 KEYS(3 20) -
 RECORDSIZE(24 48) -
 UNIQUEKEY -
 RELATE(PLIVSAM.AJC2.BASE))
 /*
 //STEP2 EXEC PGM=IDCAMS,REGION=512K
 //DD1 DD DSNAME=PLIVSAM.AJC2.BASE,DISP=SHR
 //DD2 DD DSNAME=PLIVSAM.AJC2.NUMIND,DISP=SHR
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 BLDINDEX INFILE(DD1) OUTFILE(DD2)
 DEFINE PATH -
 (NAME(PLIVSAM.AJC2.NUMPATH) -
 PATHENTRY(PLIVSAM.AJC2.NUMIND))
 //

When creating an alternate index with a unique key, ensure that no further records could be included with
the same alternate key. In practice, a unique key alternate index would not be entirely satisfactory for a
telephone directory as it would not allow two people to have the same number. Similarly, the prime key
would prevent one person having two numbers. A solution would be to have an ESDS with two nonunique
key alternate indexes, or to restructure the data format to allow more than one number per person and to
have a nonunique key alternate index for the numbers.

Detecting nonunique alternate index keys
If you are accessing a VSAM data set through an alternate index path, the presence of nonunique keys can
be detected by the SAMEKEY built-in function.

After each retrieval, SAMEKEY indicates whether any further records exist with the same alternate index
key as the record just retrieved. Hence, it is possible to stop at the last of a series of records with
nonunique keys without having to read beyond the last record. SAMEKEY (file-reference) returns '1'B if
the input/output statement has completed successfully and the accessed record is followed by another
with the same key; otherwise, it returns '0'B.

Using alternate indexes with ESDSs

Table 76 on page 295 shows the use of alternate indexes and backward reading on an ESDS. The program
has four files:

BASEFLE
Reads the base data set forward.

BACKFLE
Reads the base data set backward.

ALPHFLE
Is the alphabetic alternate index path indexing the children by name.

SEXFILE
Is the alternate index path that corresponds to the gender of the children.

There are DD statements for all the files. They connect BASEFLE and BACKFLE to the base data set by
specifying the name of the base data set in the DSNAME parameter, and connect ALPHFLE and SEXFILE
by specifying the names of the paths given in Table 73 on page 291 and Table 74 on page 292.

Chapter 14. Defining and using VSAM data sets 293

The program uses SEQUENTIAL files to access the data and print it first in the normal order, then in the
reverse order. At the label AGEQUERY, a DIRECT file is used to read the data associated with an alternate
index key in the unique alternate index.

Finally, at the label SPRINT, a KEYED SEQUENTIAL file is used to print a list of the females in the family,
using the nonunique key alternate index path. The SAMEKEY built-in function is used to read all the
records with the same key. The names of the females will be accessed in the order in which they were
originally entered. This will happen whether the file is read forward or backward. For a nonunique key
path, the BKWD option only affects the order in which the keys are read; the order of items with the same
key remains the same as it is when the file is read forward.

At the end of the example, the Access Method Services DELETE command is used to delete the base data
set. When this is done, the associated alternate indexes and paths will also be deleted.

Using alternate indexes with KSDSs

Table 77 on page 297 shows the use of a path with a unique alternate index key to update a KSDS and
then to access and print it in the order of the alternate index.

The alternate index path is associated with the PL/I file by a DD statement that specifies the name of
the path (PLIVSAM.AJC2.NUMPATH, given in the DEFINE PATH command in Table 75 on page 293) as the
DSNAME.

In the first section of the program, a DIRECT OUTPUT file is used to insert a new record by using the
alternate index key. Note that any alteration made with an alternate index must not alter the prime key or
the alternate index key of access of an existing record. Also, the alternation must not add a duplicate key
in the prime index or in any unique key alternate index.

In the second section of the program (at the label PRINTIT), the data set is read in the order of the
alternate index keys by using a SEQUENTIAL INPUT file. It is then printed onto SYSPRINT.

294 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 76. Alternate index paths and backward reading with an ESDS

 //OPT9#15 JOB
 //STEP1 EXEC IBMZCLG
 //PLI.SYSIN DD *
 READIT: PROC OPTIONS(MAIN);
 DCL BASEFLE FILE SEQUENTIAL INPUT ENV(VSAM),
 /*File to read base data set forward */
 BACKFLE FILE SEQUENTIAL INPUT ENV(VSAM BKWD),
 /*File to read base data set backward */
 ALPHFLE FILE DIRECT INPUT ENV(VSAM),
 /*File to access via unique alternate index path */
 SEXFILE FILE KEYED SEQUENTIAL INPUT ENV(VSAM),
 /*File to access via nonunique alternate index path */
 STRING CHAR(80), /*String to be read into */
 1 STRUC DEF (STRING),
 2 NAME CHAR(25),
 2 DATE_OF_BIRTH CHAR(2),
 2 FILL CHAR(10),
 2 SEX CHAR(1);
 DCL NAMEHOLD CHAR(25),SAMEKEY BUILTIN;
 DCL EOF BIT(1) INIT('0'B);

 /*Print out the family eldest first*/

 ON ENDFILE(BASEFLE) EOF='1'B;
 PUT EDIT('FAMILY ELDEST FIRST')(A);
 READ FILE(BASEFLE) INTO (STRING);
 DO WHILE(¬EOF);
 PUT SKIP EDIT(STRING)(A);
 READ FILE(BASEFLE) INTO (STRING);
 END;
 CLOSE FILE(BASEFLE);
 PUT SKIP(2);
 /*Close before using data set from other file not
 necessary but good practice to prevent potential
 problems*/

 EOF='0'B;
 ON ENDFILE(BACKFLE) EOF='1'B;
 PUT SKIP(3) EDIT('FAMILY YOUNGEST FIRST')(A);
 READ FILE(BACKFLE) INTO(STRING);
 DO WHILE(¬EOF);
 PUT SKIP EDIT(STRING)(A);
 READ FILE(BACKFLE) INTO (STRING);
 END;

 CLOSE FILE(BACKFLE);
 PUT SKIP(2);

 /*Print date of birth of child specified in the file
 SYSIN*/
 ON KEY(ALPHFLE) BEGIN;
 PUT SKIP EDIT
 (NAMEHOLD,' NOT A MEMBER OF THE SMITH FAMILY') (A);
 GO TO SPRINT;
 END;

Chapter 14. Defining and using VSAM data sets 295

Table 76. Alternate index paths and backward reading with an ESDS (continued)

 AGEQUERY:
 EOF='0'B;
 ON ENDFILE(SYSIN) EOF='1'B;
 GET SKIP EDIT(NAMEHOLD)(A(25));
 DO WHILE(¬EOF);
 READ FILE(ALPHFLE) INTO (STRING) KEY(NAMEHOLD);
 PUT SKIP (2) EDIT(NAMEHOLD,' WAS BORN IN ',
 DATE_OF_BIRTH)(A,X(1),A,X(1),A);
 GET SKIP EDIT(NAMEHOLD)(A(25));
 END;
 SPRINT:
 CLOSE FILE(ALPHFLE);
 PUT SKIP(1);

 /*Use the alternate index to print out all the females in the
 family*/
 ON ENDFILE(SEXFILE) GOTO FINITO;
 PUT SKIP(2) EDIT('ALL THE FEMALES')(A);
 READ FILE(SEXFILE) INTO (STRING) KEY('F');
 PUT SKIP EDIT(STRING)(A);
 DO WHILE(SAMEKEY(SEXFILE));
 READ FILE(SEXFILE) INTO (STRING);
 PUT SKIP EDIT(STRING)(A);
 END;

 FINITO:
 END;
 /*
 //GO.BASEFLE DD DSN=PLIVSAM.AJC1.BASE,DISP=SHR
 //GO.BACKFLE DD DSN=PLIVSAM.AJC1.BASE,DISP=SHR
 //GO.ALPHFLE DD DSN=PLIVSAM.AJC1.ALPHPATH,DISP=SHR
 //GO.SEXFILE DD DSN=PLIVSAM.AJC1.SEXPATH,DISP=SHR
 //GO.SYSIN DD *
 ANDY
 /*
 //STEP2 EXEC PGM=IDCAMS,REGION=512K
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 DELETE -
 PLIVSAM.AJC1.BASE
 //

Alternate Index Paths and Backward Reading with an ESDS (continued)

296 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 77. Using a unique alternate index path to access a KSDS

 //OPT9#16 JOB
 //STEP1 EXEC IBMZCLG,REGION.GO=256K
 //PLI.SYSIN DD *
 ALTER: PROC OPTIONS(MAIN);
 DCL NUMFLE1 FILE RECORD DIRECT OUTPUT ENV(VSAM),
 NUMFLE2 FILE RECORD SEQUENTIAL INPUT ENV(VSAM),
 IN FILE RECORD,
 STRING CHAR(80),
 NAME CHAR(20) DEF STRING,
 NUMBER CHAR(3) DEF STRING POS(21),
 DATA CHAR(23) DEF STRING,
 EOF BIT(1) INIT('0'B);

 ON KEY (NUMFLE1) BEGIN;
 PUT SKIP EDIT('DUPLICATE NUMBER')(A);
 END;

 ON ENDFILE(IN) EOF='1'B;

 READ FILE(IN) INTO (STRING);
 DO WHILE(¬EOF);
 PUT FILE(SYSPRINT) SKIP EDIT (STRING) (A);
 WRITE FILE(NUMFLE1) FROM (STRING) KEYFROM(NUMBER);
 READ FILE(IN) INTO (STRING);
 END;

 CLOSE FILE(NUMFLE1);

 EOF='0'B;
 ON ENDFILE(NUMFLE2) EOF='1'B;

 READ FILE(NUMFLE2) INTO (STRING);
 DO WHILE(¬EOF);
 PUT SKIP EDIT(DATA)(A);
 READ FILE(NUMFLE2) INTO (STRING);
 END;

 PUT SKIP(3) EDIT('****SO ENDS THE PHONE DIRECTORY****')(A);
 END;
 /*
 //GO.IN DD *
 RIERA L 123
 /*
 //NUMFLE1 DD DSN=PLIVSAM.AJC2.NUMPATH,DISP=OLD
 //NUMFLE2 DD DSN=PLIVSAM.AJC2.NUMPATH,DISP=OLD
 //STEP2 EXEC PGM=IDCAMS,COND=EVEN
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 DELETE -
 PLIVSAM.AJC2.BASE
 //

Relative-record data sets
This topic describes the statements and options that are allowed for files associated with VSAM relative-
record data sets (RRDS).

Table 78. Statements and options allowed for loading and accessing VSAM relative-record data sets

File declaration1 Valid statements with options you
must include

Other options you can also
include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

KEYFROM(expression) or
KEYTO(reference)

SET(pointer-reference)

Chapter 14. Defining and using VSAM data sets 297

Table 78. Statements and options allowed for loading and accessing VSAM relative-record data sets (continued)

File declaration1 Valid statements with options you
must include

Other options you can also
include

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

WRITE FILE(file-reference)
FROM(reference);

REWRITE FILE(file-reference);

DELETE FILE(file-reference);

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

KEYFROM(expression) or
KEYTO(reference)

FROM(reference)
and/or
KEY(expression)

KEY(expression)

DIRECT OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DIRECT INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

298 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 78. Statements and options allowed for loading and accessing VSAM relative-record data sets (continued)

File declaration1 Valid statements with options you
must include

Other options you can also
include

DIRECT UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

DELETE FILE(file-reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

Notes:

1. The complete file declaration would include the attributes FILE and RECORD. If you use any of the options
KEY, KEYFROM, or KEYTO, your declaration must also include the attribute KEYED.

The UNLOCK statement for DIRECT UPDATE files is ignored if you use it for files associated with a VSAM
RRDS.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-
reference) IGNORE(1);.

Loading an RRDS
When an RRDS is being loaded, you must open the associated file for OUTPUT. Use either a DIRECT or a
SEQUENTIAL file.

For a DIRECT OUTPUT file, each record is placed in the position specified by the relative record number
(or key) in the KEYFROM option of the WRITE statement (see “Keys for VSAM data sets” on page 274).

For a SEQUENTIAL OUTPUT file, use WRITE statements with or without the KEYFROM option. If you
specify the KEYFROM option, the record is placed in the specified slot; if you omit it, the record is placed
in the slot following the current position. There is no requirement for the records to be presented in
ascending relative record number order. If you omit the KEYFROM option, you can obtain the relative
record number of the written record by using the KEYTO option.

If you want to load an RRDS sequentially, without use of the KEYFROM or KEYTO options, your file is not
required to have the KEYED attribute.

It is an error to attempt to load a record into a position that already contains a record: if you use the
KEYFROM option, the KEY condition is raised; if you omit it, the ERROR condition is raised.

In Table 79 on page 300, the data set is defined with a DEFINE CLUSTER command and given the name
PLIVSAM.AJC3.BASE. The fact that it is an RRDS is determined by the NUMBERED keyword. In the PL/I
program, it is loaded with a DIRECT OUTPUT file and a WRITE...FROM...KEYFROM statement is used.

If the data had been in order and the keys in sequence, it would have been possible to use a SEQUENTIAL
file and write into the data set from the start. The records would then have been placed in the next

Chapter 14. Defining and using VSAM data sets 299

available slot and given the appropriate number. The number of the key for each record could have been
returned by using the KEYTO option.

The PL/I file is associated with the data set by the DD statement, which uses as the DSNAME the name
given in the DEFINE CLUSTER command.

Table 79. Defining and loading a relative-record data set (RRDS)

 //OPT9#17 JOB
 //STEP1 EXEC PGM=IDCAMS,REGION=512K
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 DEFINE CLUSTER -
 (NAME(PLIVSAM.AJC3.BASE) -
 VOLUMES(nnnnnn) -
 NUMBERED -
 TRACKS(2 2) -
 RECORDSIZE(20 20))
 /*
 //STEP2 EXEC IBMZCBG
 //PLI.SYSIN DD *
 CRR1: PROC OPTIONS(MAIN);
 DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(VSAM),
 CARD CHAR(80),
 NAME CHAR(20) DEF CARD,
 NUMBER CHAR(2) DEF CARD POS(21),
 IOFIELD CHAR(20),
 EOF BIT(1) INIT('0'B);
 ON ENDFILE (SYSIN) EOF='1'B;
 OPEN FILE(NOS);
 GET FILE(SYSIN) EDIT(CARD)(A(80));
 DO WHILE (¬EOF);
 PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);
 IOFIELD=NAME;
 WRITE FILE(NOS) FROM(IOFIELD) KEYFROM(NUMBER);
 GET FILE(SYSIN) EDIT(CARD)(A(80));
 END;
 CLOSE FILE(NOS);
 END CRR1;
 /*
 //GO.NOS DD DSN=PLIVSAM.AJC3.BASE,DISP=OLD
 //GO.SYSIN DD *
 ACTION,G. 12
 BAKER,R. 13
 BRAMLEY,O.H. 28
 CHEESNAME,L. 11
 CORY,G. 36
 ELLIOTT,D. 85
 FIGGINS.E.S. 43
 HARVEY,C.D.W. 25
 HASTINGS,G.M. 31
 KENDALL,J.G. 24
 LANCASTER,W.R. 64
 MILES,R. 23
 NEWMAN,M.W. 40
 PITT,W.H. 55
 ROLF,D.E. 14
 SHEERS,C.D. 21
 SURCLIFFE,M. 42
 TAYLOR,G.C. 47
 WILTON,L.W. 44
 WINSTONE,E.M. 37
 //

Using a SEQUENTIAL file to access an RRDS
You can open a SEQUENTIAL file that is used to access an RRDS with either the INPUT or the UPDATE
attribute. If you use any of the options KEY, KEYTO, or KEYFROM, your file must also have the KEYED
attribute.

For READ statements without the KEY option, the records are recovered in ascending relative record
number order. Any empty slots in the data set are skipped.

300 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

If you use the KEY option, the record recovered by a READ statement is the one with the relative record
number you specify. Such a READ statement positions the data set at the specified record; subsequent
sequential reads will recover the following records in sequence.

WRITE statements with or without the KEYFROM option are allowed for KEYED SEQUENTIAL UPDATE
files. You can make insertions anywhere in the data set, regardless of the position of any previous access.
For WRITE with the KEYFROM option, the KEY condition is raised if an attempt is made to insert a record
with the same relative record number as a record that already exists on the data set. If you omit the
KEYFROM option, an attempt is made to write the record in the next slot, relative to the current position.
The ERROR condition is raised if this slot is not empty.

You can use the KEYTO option to recover the key of a record that is added by means of a WRITE statement
without the KEYFROM option.

REWRITE statements, with or without the KEY option, are allowed for UPDATE files. If you use the KEY
option, the record that is rewritten is the record with the relative record number you specify; otherwise, it
is the record that was accessed by the previous READ statement.

You can use DELETE statements, with or without the KEY option, to delete records from the data set.

Using a DIRECT file to access an RRDS
A DIRECT file used to access an RRDS can have the OUTPUT, INPUT, or UPDATE attribute. You can read,
write, rewrite, or delete records exactly as though a KEYED SEQUENTIAL file were used.

Table 80 on page 302 shows an RRDS being updated. A DIRECT UPDATE file is used and new records are
written by key. There is no need to check for the records being empty, because the empty records are not
available under VSAM.

In the second half of the program, starting at the label PRINT, the updated file is printed out. Again there
is no need to check for the empty records as there is in REGIONAL(1).

The PL/I file is associated with the data sets by a DD statement that specifies the DSNAME
PLIVSAM.AJC3.BASE, the name given in the DEFINE CLUSTER command in Table 80 on page 302.

At the end of the example, the DELETE command is used to delete the data set.

Chapter 14. Defining and using VSAM data sets 301

Table 80. Updating an RRDS

 //* NOTE: WITH A WRITE STATEMENT AFTER THE DELETE FILE STATEMENT,
 //* A DUPLICATE MESSAGE IS EXPECTED FOR CODE 'C' ITEMS
 //* WHOSE NEWNO CORRESPONDS TO AN EXISTING NUMBER IN THE LIST,
 //* FOR EXAMPLE, ELLIOT.
 //* WITH A REWRITE STATEMENT AFTER THE DELETE FILE STATEMENT,
 //* A NOT FOUND MESSAGE IS EXPECTED FOR CODE 'C' ITEMS
 //* WHOSE NEWNO DOES NOT CORRESPOND TO AN EXISTING NUMBER IN
 //* THE LIST, FOR EXAMPLE, NEWMAN AND BRAMLEY.
 //OPT9#18 JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD *
 ACR1: PROC OPTIONS(MAIN);
 DCL NOS FILE RECORD KEYED ENV(VSAM),NAME CHAR(20),
 (NEWNO,OLDNO) CHAR(2),CODE CHAR(1),IOFIELD CHAR(20),
 BYTE CHAR(1) DEF IOFIELD, EOF BIT(1) INIT('0'B),
 ONCODE BUILTIN;
 ON ENDFILE(SYSIN) EOF='1'B;
 OPEN FILE(NOS) DIRECT UPDATE;
 ON KEY(NOS) BEGIN;
 IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT
 ('NOT FOUND:',NAME)(A(15),A);
 IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT
 ('DUPLICATE:',NAME)(A(15),A);
 END;
 GET FILE(SYSIN) EDIT(NAME,NEWNO,OLDNO,CODE)
 (COLUMN(1),A(20),A(2),A(2),A(1));
 DO WHILE (¬EOF);
 PUT FILE(SYSPRINT) SKIP EDIT (' ',NAME,'#',NEWNO,OLDNO,' ',CODE)
 (A(1),A(20),A(1),2(A(2)),X(5),2(A(1)));
 SELECT(CODE);
 WHEN('A') WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);
 WHEN('C') DO;
 DELETE FILE(NOS) KEY(OLDNO);
 WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);
 END;
 WHEN('D') DELETE FILE(NOS) KEY(OLDNO);
 OTHERWISE PUT FILE(SYSPRINT) SKIP EDIT
 ('INVALID CODE: ',NAME)(A(15),A);
 END;

302 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 80. Updating an RRDS (continued)

 GET FILE(SYSIN) EDIT(NAME,NEWNO,OLDNO,CODE)
 (COLUMN(1),A(20),A(2),A(2),A(1));
 END;
 CLOSE FILE(NOS);
 PRINT:
 PUT FILE(SYSPRINT) PAGE;
 OPEN FILE(NOS) SEQUENTIAL INPUT;
 EOF='0'B;
 ON ENDFILE(NOS) EOF='1'B;
 READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
 DO WHILE (¬EOF);
 PUT FILE(SYSPRINT) SKIP EDIT(NEWNO,IOFIELD)(A(5),A);
 READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
 END;
 CLOSE FILE(NOS);
 END ACR1;

 /*
 //GO.NOS DD DSN=PLIVSAM.AJC3.BASE,DISP=OLD
 //GO.SYSIN DD *
 NEWMAN,M.W. 5640C
 GOODFELLOW,D.T. 89 A
 MILES,R. 23D
 HARVEY,C.D.W. 29 A
 BARTLETT,S.G. 13 A
 CORY,G. 36D
 READ,K.M. 01 A
 PITT,W.H. 55
 ROLF,D.F. 14D
 ELLIOTT,D. 4285C
 HASTINGS,G.M. 31D
 BRAMLEY,O.H. 4928C
 //STEP3 EXEC PGM=IDCAMS,REGION=512K,COND=EVEN
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 DELETE -
 PLIVSAM.AJC3.BASE
 //

Updating an RRDS (continued)

Using files defined for non-VSAM data sets

Using shared data sets
PL/I allows cross-region or cross-system sharing of data sets. The support for this type of sharing is
provided by VSAM.

For details about the support, see the following DFSMS manuals:

• DFSMS: Using Data Sets
• DFSMS: Access Method Services for Catalogs

Chapter 14. Defining and using VSAM data sets 303

304 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Part 3. Improving your program

© Copyright IBM Corp. 1999, 2022 305

306 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 15. Improving performance
Many considerations for improving the speed of your program are independent of the compiler that you
use and the platform on which it runs. This chapter, however, identifies those considerations that are
unique to the PL/I compiler and the code it generates.

Selecting compiler options for optimal performance
The compiler options you choose can greatly improve the performance of the code generated by the
compiler; however, like most performance considerations, there are trade-offs associated with these
choices.

Fortunately, you can weigh the trade-offs associated with compiler options without editing your source
code because these options can be specified on the command line or in the configuration file.

If you want to avoid details, the least complex way to improve the performance of generated code is to
specify the following (nondefault) compiler options:

OPT(2) or OPT(3)
DFT(REORDER)

The following topics describe, in more detail, performance improvements and trade-offs associated with
specific compiler options.

OPTIMIZE
You can specify the OPTIMIZE option to improve the speed of your program; otherwise, the compiler
makes only basic optimization efforts.

Choosing OPTIMIZE(2) directs the compiler to generate code for better performance. Usually, the
resultant code is shorter than when the program is compiled under NOOPTIMIZE. Sometimes, however,
a longer sequence of instructions runs faster than a shorter sequence. This occurs, for instance, when
a branch table is created for a SELECT statement where the values in the WHEN clauses contain gaps.
The increased number of instructions generated is usually offset by the execution of fewer instructions in
other places.

GONUMBER
You can specify the GONUMBER option to generate a statement number table that is used for debugging.

This added information can be extremely helpful when you debug, but including statement number tables
increases the size of your executable file. Larger executable files can take longer to load.

ARCH
You can use the highest value in the ARCH option to instruct the compiler to select from the largest set of
instructions available under z/OS. This allows the compiler to generate the most optimal code.

REDUCE
The REDUCE option specifies that the compiler is permitted to reduce an assignment of a null string to a
structure into a simple copy operation - even if that means padding bytes might be overwritten.

The REDUCE option will cause fewer lines of code to be generated for an assignment of a null string to a
structure, and that will usually mean your compilation will be quicker and your code will run much faster.
However, padding bytes might be zeroed out.

Improving performance

© Copyright IBM Corp. 1999, 2022 307

For instance, in the following structure, there is one byte of padding between field11 and field12.

 dcl
 1 sample ext,
 5 field10 bin fixed(31),
 5 field11 dec fixed(13),
 5 field12 bin fixed(31),
 5 field13 bin fixed(31),
 5 field14 bit(32),
 5 field15 bin fixed(31),
 5 field16 bit(32),
 5 field17 bin fixed(31);

Now consider the assignment sample = ’’;.

Under the NOREDUCE option, eight assignments will be generated, but the padding byte will be
unchanged.

However, under REDUCE, the assignment will be reduced to three operations.

RULES
Most of the RULES suboptions affect only the severity with which certain coding practices, such as not
declaring variables, are flagged and have no impact on performance. However, these suboptions do have
an impact on performance.

IBM/ANS
When you use the RULES(IBM) option, the compiler supports scaled FIXED BINARY and, what is more
important for performance, generates scaled FIXED BINARY results in some operations.

Under RULES(ANS), scaled FIXED BINARY is not supported and scaled FIXED BINARY results are never
generated. This means that the code generated under RULES(ANS) always runs at least as fast as the
code generated under RULES(IBM), and sometimes runs faster.

For example, consider the following code fragment:

dcl (i,j,k) fixed bin(15);
 .
 .
 .
i = j / k;

Under RULES(IBM), the result of the division has the attributes FIXED BIN(31,16). This means that a
shift instruction is required before the division and several more instructions are needed to perform the
assignment.

Under RULES(ANS), the result of the division has the attributes FIXED BIN(15,0). This means that a shift
is not needed before the division, and no extra instructions are needed to perform the assignment.

(NO)GLOBALDO
Specifying NOGLOBALDO instructs the compiler to flag all DO loops with control variables that are
declared in a parent block. This is a good way to catch instances of an ill-advised programming practice
that is very bad for performance.

For example, if you have code that assigns the positive elements of an array B to an array A via the code:

 do jx = 1 to hbound(a);
 if b(jx) <= 0 then;
 else
 a(jx) = b(jx);
 end;

It is best that JX be declared in the same PROCEDURE that contains this loop.

Specifying RULES(NOGLOBALDO) will cause the compile to flag any code where this is not true.

Improving performance

308 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

(NO)LAXCTL
Under RULES(LAXCTL), a CONTROLLED variable can be declared with constant extents and yet allocated
with different extents. However, this coding practice severely impacts performance. It is recommended
that you use the RULES(NOLAXCTL) option to disallow such practice.

For instance, under RULES(LAXCTL), you can declare a structure as follows:

 dcl
 1 a controlled,
 2 b char(17),
 2 c char(29);

However, you can then allocate it as follows:

 allocate
 1 a,
 2 b char(170),
 2 c char(290);

Whenever the compiler sees a reference to the structure A or to any member of that structure, the
compiler is forced to assume that it knows nothing about the lengths, dimensions, or offsets of the fields
in the structure. This can severely degrade performance.

Under RULES(NOLAXCTL), if you want to allocate a CONTROLLED variable with a variable extent, that
extent must be declared either with an asterisk or with a nonconstant expression. Consequently, under
RULES(NOLAXCTL), when a CONTROLLED variable is declared with constant extents, the compiler can
generate much better code for any reference to that variable.

PREFIX
The PREFIX option determines whether selected PL/I conditions are enabled by default. The default
suboptions for PREFIX are set to conform to the PL/I language definition; however, overriding the defaults
can have a significant effect on the performance of your program.

These are the default suboptions:

NOCONFORMANCE
CONVERSION
INVALIDOP
FIXEDOVERFLOW
OVERFLOW
INVALIDOP
NOSIZE
NOSTRINGRANGE
NOSTRINGSIZE
NOSUBSCRIPTRANGE
UNDERFLOW
ZERODIVIDE

By specifying the SIZE, STRINGRANGE, STRINGSIZE, or SUBSCRIPTRANGE suboptions, the compiler
generates extra code that helps you pinpoint various problem areas in your source that would otherwise
be hard to find. This extra code, however, can slow program performance significantly.

Improving performance

Chapter 15. Improving performance 309

CONVERSION
When you disable the CONVERSION condition, some character-to-numeric conversions are done inline
and without checking the validity of the source; therefore, specifying NOCONVERSION also affects
program performance.

FIXEDOVERFLOW
On some platforms, the FIXEDOVERFLOW condition is raised by the hardware and the compiler does not
need to generate any extra code to detect it.

DEFAULT
Using the DEFAULT option, you can select attribute defaults. As is true with the PREFIX option, the
suboptions for DEFAULT are set to conform to the PL/I language definition. Changing the defaults in some
instances can affect performance.

Some of the suboptions, such as IBM/ANS and ASSIGNABLE/NONASSIGNABLE, have no effect on
program performance. But other suboptions can affect performance to varying degrees and, if applied
inappropriately, can make your program invalid. The following topics provide more information about
some suboptions of more importance.

BYADDR or BYVALUE

When the DEFAULT(BYADDR) option is in effect, arguments are passed by reference (as required by PL/I)
unless an attribute in an entry declaration indicates otherwise. As arguments are passed by reference,
the address of the argument is passed from one routine (calling routine) to another (called routine) as the
variable itself is passed. Any change made to the argument while in the called routine is reflected in the
calling routine when it resumes execution.

Program logic often depends on passing variables by reference. Passing a variable by reference, however,
can hinder performance in two ways:

1. Every reference to that parameter requires an extra instruction.
2. Because the address of the variable is passed to another routine, the compiler is forced to make

assumptions about when that variable might change and generate very conservative code for any
reference to that variable.

Consequently, you should pass parameters by value using the BYVALUE suboption whenever your
program logic allows. Even if you use the BYADDR attribute to indicate that one parameter should be
passed by reference, you can use the DEFAULT(BYVALUE) option to ensure that all other parameters are
passed by value.

A BYVALUE argument should be one that could reasonably be passed in a register. Hence its type should
be one of the following:

• REAL FIXED BIN
• REAL FLOAT
• POINTER
• OFFSET
• HANDLE
• LIMITED ENTRY
• FILE
• ORDINAL
• CHAR(1)
• WCHAR(1)
• ALIGNED BIT(n) with n less than or equal to 8

Improving performance

310 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Moreover, when using BYVALUE parameters with assembler code, you must note that any BYVALUE
parameter that does not require a multiple of 4 bytes will be widened so that 4 bytes are used in the
parameter list.

If a procedure receives and modifies only one parameter that is passed by BYADDR, consider converting
the procedure to a function that receives that parameter by value. The function would then end with a
RETURN statement containing the updated value of the parameter.

Procedure with BYADDR parameter

a: proc(parm1, parm2, ..., parmN);

 dcl parm1 byaddr ...;
 dcl parm2 byvalue ...;
 .
 .
 .
 dcl parmN byvalue ...;

 /* program logic */

end;

Faster, equivalent function with BYVALUE parameter

a: proc(parm1, parm2, ..., parmN)
 returns(... /* attributes of parm1 */);

 dcl parm1 byvalue ...;
 dcl parm2 byvalue ...;
 .
 .
 .
 dcl parmN byvalue ...;

 /* program logic */

 return(parm1);

end;

(NON)CONNECTED
The DEFAULT(NONCONNECTED) option indicates that the compiler assumes that any aggregate
parameters are NONCONNECTED. References to elements of NONCONNECTED aggregate parameters
require the compiler to generate code to access the parameter's descriptor, even if the aggregate is
declared with constant extents.

The compiler does not generate these instructions if the aggregate parameter has constant extents and
is CONNECTED. Consequently, if your application never passes nonconnected parameters, your code is
more optimal if you use the DEFAULT(CONNECTED) option.

(NO)DESCRIPTOR
The DEFAULT(DESCRIPTOR) option indicates that, by default, a descriptor is passed for any string, area,
or aggregate parameter; however, the descriptor is used only if the parameter has nonconstant extents or
if the parameter is an array with the NONCONNECTED attribute.

In this case, the instructions and space required to pass the descriptor provide no benefit and
incur substantial cost (the size of a structure descriptor is often greater than size of the structure
itself). Consequently, by specifying DEFAULT(NODESCRIPTOR) and using OPTIONS(DESCRIPTOR) only
as needed on PROCEDURE statements and ENTRY declarations, your code runs more optimally.

Improving performance

Chapter 15. Improving performance 311

(NO)INLINE
The NOINLINE suboption indicates that procedures and begin blocks should not be inlined. Inlining
occurs only when you specify optimization.

Inlining user code eliminates the overhead of the function call and linkage, and also exposes the
function's code to the optimizer, resulting in faster code performance. Inlining produces the best
results when the overhead for the function is nontrivial, for example, when functions are called within
nested loops. Inlining is also beneficial when the inlined function provides additional opportunities for
optimization, such as when constant arguments are used.

For programs containing many procedures that are not nested, consider the following information:

• If the procedures are small and only called from a few places, you can increase performance by
specifying INLINE.

• If the procedures are large and called from several places, inlining duplicates code throughout the
program. This increase in the size of the program might offset any increase of speed. In this case,
you might prefer to leave NOINLINE as the default and specify OPTIONS(INLINE) only on individually
selected procedures.

When you use inlining, you need more stack space. When a function is called, its local storage is allocated
at the time of the call and freed when it returns to the calling function. If that same function is inlined, its
storage is allocated when the function that calls it is entered, and is not freed until that calling function
ends. Ensure that you have enough stack space for the local storage of the inlined functions.

LINKAGE
This LINKAGE suboption specifies the default linkage that the compiler should use when the LINKAGE
suboption of the OPTIONS attribute or option for an entry has not been specified. The compiler supports
various linkages, each with its unique performance characteristics.

When you invoke an ENTRY provided by an external entity (such as an operating system), you must use
the linkage previously defined for that ENTRY.

As you create your own applications, however, you can choose the linkage convention. The OPTLINK
linkage is strongly recommended because it provides significantly better performance than other linkage
conventions.

(RE)ORDER
The DEFAULT(ORDER) option indicates that the ORDER option is applied to every block, meaning that
variables in that block referenced in ON-units (or blocks dynamically descendant from ON-units) have
their latest values. This effectively prohibits almost all optimization on such variables.

Consequently, if your program logic allows, use DEFAULT(REORDER) to generate superior code.

NOOVERLAP
The DEFAULT(NOOVERALP) option lets the compiler assume that the source and target in an assignment
do not overlap, and it can therefore generate smaller and faster code.

However, if you use this option, you must ensure that the source and target in assignment do not overlap.
For example, under the DEFAULT(NOOVERLAP) option, the assignment in this example is invalid:

 dcl c char(20);
 substr(c,2,5) = substr(c,1,5);

Improving performance

312 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

RETURNS(BYVALUE) or RETURNS(BYADDR)
When the DEFAULT(RETURNS(BYVALUE)) option is in effect, the BYVALUE attribute is applied to all
RETURNS description lists that do not specify BYADDR. This means that these functions return values in
registers, when possible, in order to produce the most optimal code.

Summary of compiler options that improve performance
In summary, the following options (if appropriate for your application) can improve performance:

• OPTIMIZE(3)
• ARCH(14)
• REDUCE
• RULES(ANS NOLAXCTL NOGLOBALDO)
• DEFAULT with the following suboptions

BYVALUE
CONNECTED
NODESCRIPTOR
INLINE
LINKAGE(OPTLINK)
REORDER
NOOVERLAP
RETURNS(BYVALUE)

Coding for better performance
As you write code, there is generally more than one correct way to accomplish a given task. Many
important factors influence the coding style you choose, including readability and maintainability. The
following topics discuss choices that you can make while coding that potentially affect the performance of
your program.

DATA-directed input and output
Using GET DATA and PUT DATA statements for debugging can prove very helpful. When you use these
statements, however, you generally pay the price of decreased performance. This cost to performance is
usually very high when you use either GET DATA or PUT DATA without a variable list.

Many programmers use PUT DATA statements in their ON ERROR code as illustrated in the following
example:

on error
 begin;
 on error system;
 .
 .
 .
 put data;
 .
 .
 .
 end;

In this case, the program would perform more optimally by including a list of selected variables with the
PUT DATA statement.

The ON ERROR block in the previous example contained an ON ERROR system statement before the PUT
DATA statement. This prevents the program from getting caught in an infinite loop if an error occurs in
the PUT DATA statement (which could occur if any variables to be listed contained invalid FIXED DECIMAL
values) or elsewhere in the ON ERROR block.

Coding for better performance

Chapter 15. Improving performance 313

Input-only parameters
If a procedure has a BYADDR parameter that it uses as input only, it is best to declare that parameter
as NONASSIGNABLE (rather than letting it get the default attribute of ASSIGNABLE). If that procedure is
later called with a constant for that parameter, the compiler can put that constant in static storage and
pass the address of that static area.

This practice is particularly useful for strings and other parameters that cannot be passed in registers
(input-only parameters that can be passed in registers are best declared as BYVALUE).

In the following declaration, for instance, the first parameter to getenv is an input-only CHAR VARYINGZ
string:

dcl getenv entry(char(*) varyingz nonasgn byaddr,
 pointer byaddr)
 returns(native fixed bin(31) optional)
 options(nodescriptor);

If this function is invoked with the string IBM_OPTIONS, the compiler can pass the address of that string
rather than assigning it to a compiler-generated temporary storage area and passing the address of that
area.

GOTO statements
A GOTO statement that uses either a label in another block or a label variable severely limits
optimizations that the compiler might perform.

If a label array is initialized and declared AUTOMATIC, either implicitly or explicitly, any GOTO to an
element of that array will hinder optimization. However, if the array is declared as STATIC, the compiler
assumes the CONSTANT attribute for it and no optimization is hindered.

String assignments
When one string is assigned to another, the compiler ensures that the target has the correct value even
if the source and target overlap, and that the source string is truncated if it is longer than the target. This
assurance comes at the cost of some extra instructions.

The compiler attempts to generate these extra instructions only when necessary, but often you, as the
programmer, know they are not necessary when the compiler cannot be sure. For instance, if the source
and target are based character strings and you know they cannot overlap, you could use the PLIMOVE
built-in function to eliminate the extra code the compiler would otherwise be forced to generate.

In the following example, faster code is generated for the second assignment statement:

dcl based_Str char(64) based;
dcl target_Addr pointer;
dcl source_Addr pointer;

target_Addr->based_Str = source_Addr->based_Str;

call plimove(target_Addr, source_Addr, stg(based_Str));

If you have any doubts about whether the source and target might overlap or whether the target is big
enough to hold the source, you should not use the PLIMOVE built-in.

Loop control variables
Program performance improves if you define your loop control variables appropriately.

For better program performance, use one of the following types for your loop control variables. You should
rarely, if ever, use other types of variables.

FIXED BINARY with zero scale factor
FLOAT
ORDINAL

Coding for better performance

314 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

HANDLE
POINTER
OFFSET

Performance also improves if loop control variables are not members of arrays, structures, or unions. The
compiler issues a warning message when they are. Loop control variables that are AUTOMATIC and not
used for any other purpose give you the optimal code generation.

If a loop control variable is a FIXED BINARY, performance is best if it has precision 31 and is SIGNED.

Performance is decreased if your program depends not only on the value of a loop control variable, but
also on its address. For example, the performance is decreased if the ADDR built-in function is applied to
the variable or if the variable is passed by reference (BYADDR) to another routine.

PACKAGEs versus nested PROCEDUREs
Calling nested procedures requires that an extra hidden parameter (the backchain pointer) is passed. As a
result, the fewer nested procedures that your application contains, the faster it runs.

To improve the performance of your application, you can convert a mother-daughter pair of nested
procedures into level-1 sister procedures inside of a package. This conversion is possible if your nested
procedure does not rely on any of the automatic and internal static variables declared in its parent
procedures.

If procedure b in “Example with nested procedures” on page 315 does not use any of the variables
declared in a, you can improve the performance of both procedures by reorganizing them into the package
illustrated in “Example with packaged procedures” on page 315.

Example with nested procedures

a: proc;

 dcl (i,j,k) fixed bin;
 dcl ib based fixed bin;
 .
 .
 .
 call b(addr(i));
 .
 .
 .
 b: proc(px);
 dcl px pointer;
 display(px->ib);
 end;
end;

Example with packaged procedures

p: package exports(a);

 dcl ib based fixed bin;

 a: proc;

 dcl (i,j,k) fixed bin;
 .
 .
 .
 call b(addr(i));
 .
 .
 .
 end;

 b: proc(px);
 dcl px pointer;
 display(px->ib);
 end;

Coding for better performance

Chapter 15. Improving performance 315

end p;

REDUCIBLE functions
REDUCIBLE indicates that a procedure or an entry need not be invoked multiple times if the argument(s)
stays unchanged, and that the invocation of the procedure has no side effects.

For example, a user-written function that computes a result based on unchanging data should be declared
REDUCIBLE. A function that computes a result based on changing data, such as a random number or time
of day, should be declared IRREDUCIBLE.

In the following example, f is invoked only once because REDUCIBLE is part of the declaration. If
IRREDUCIBLE had been used in the declaration, f would be invoked twice.

dcl (f) entry options(reducible) returns(fixed bin);

select;
 when(f(x) < 0)
 .
 .
 .
 when(f(x) > 0)
 .
 .
 .
 otherwise
 .
 .
 .
end;

Using REPATTERN
You can use the REPATTERN built-in function to write code that will convert data from one date/time
pattern to another.

For example, the fastest way to get today’s date and time in this pattern 'YYYY-MM-DD HH:MI:SS.999999'
would be to use the TIMESTAMP and REPATTERN built-in functions as follows:

repattern(timestamp(),
 'YYYY-MM-DD HH:MI:SS.999999',
 'YYYY-MM-DD-HH.MI.SS.999999')

DESCLOCATOR or DESCLIST
When the DEFAULT(DESCLOCATOR) option is in effect, the compiler passes arguments requiring
descriptors (such as strings and structures) through a descriptor locator in much the same way that
the old compiler did.

This option allows you to invoke an entry point that is not always passed all of the arguments that it
declares.

This option also allows you to continue the somewhat unwise programming practice of passing a structure
and receiving it as a pointer.

However, the code generated by the compiler for DEFAULT(DESCLOCATOR) might, in some situations,
perform less well than that for DEFAULT(DESCLIST).

Related information
“PL/I descriptors” on page 467

Coding for better performance

316 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

This chapter describes PL/I parameter passing conventions between PL/I routines at run time.

DEFINED versus UNION
The UNION attribute is more powerful than the DEFINED attribute and provides more functions. In
addition, the compiler generates better code for union references.

In the following example, the pair of variables b3 and b4 perform the same function as b1 and b2, but the
compiler generates more optimal code for the pair in the union.

dcl b1 bit(32);
dcl b2 bit(16) def b1;

dcl
 1 * union,
 2 b3 bit(32),
 2 b4 bit(16);

Code that uses UNIONs instead of the DEFINED attribute is subject to less misinterpretation. Variable
declarations in unions are in a single location making it easy to realize that when one member of the
union changes, all of the others change also. This dynamic change is less obvious in declarations that use
DEFINED variables because the declare statements can be several lines apart.

Named constants versus static variables
You can define named constants by declaring a variable with the VALUE attribute. If you use static
variables with the INITIAL attribute and you do not alter the variable, you should declare the variable
a named constant by using the VALUE attribute. The compiler does not treat NONASSIGNABLE scalar
STATIC variables as true named constants.

The compiler generates better code whenever expressions are evaluated during compilation, so you can
use named constants to produce efficient code with no loss in readability. For example, identical object
code is produced for the two usages of the VERIFY built-in function in the following example:

dcl numeric char value('0123456789');

jx = verify(string, numeric);

jx = verify(string, '0123456789');

The following examples illustrate how you can use the VALUE attribute to get optimal code without
sacrificing readability.

Example with optimal code but no meaningful names

dcl x bit(8) aligned;

select(x);
 when('01'b4)
 .
 .
 .
 when('02'b4)
 .
 .
 .
 when('03'b4)
 .
 .
 .
end;

Example with meaningful names but not optimal code

dcl (a1 init('01'b4)
 ,a2 init('02'b4)
 ,a3 init('03'b4)
 ,a4 init('04'b4)

Coding for better performance

Chapter 15. Improving performance 317

 ,a5 init('05'b4)
) bit(8) aligned static nonassignable;

dcl x bit(8) aligned;

select(x);
 when(a1)
 .
 .
 .
 when(a2)
 .
 .
 .
 when(a3)
 .
 .
 .
end;

Example with optimal code and meaningful names

dcl (a1 value('01'b4)
 ,a2 value('02'b4)
 ,a3 value('03'b4)
 ,a4 value('04'b4)
 ,a5 value('05'b4)
) bit(8);

dcl x bit(8) aligned;

select(x);
 when(a1)
 .
 .
 .
 when(a2)
 .
 .
 .
 when(a3)
 .
 .
 .
end;

Avoiding calls to library routines
The bitwise operations (prefix NOT, infix AND, infix OR, and infix EXCLUSIVE OR) are often evaluated by
calls to library routines.

These operations are, however, handled without a library call if either of the following conditions is true:

• Both operands are bit(1).
• Both operands are aligned and have the same constant length.

For certain assignments, expressions, and built-in function references, the compiler generates calls to
library routines. If you avoid these calls, your code generally runs faster.

To help you determine when the compiler generates such calls, the compiler generates a message
whenever a conversion is done by a library routine.

When your code refers to a member of a BASED structure with REFER, the compiler often has to generate
one or more calls to a library routine to map the structure at run time. These calls can be expensive, and
so when the compiler makes these calls, it will issue a message so that you can locate these potential
hot-spots in your code.

If you do have code that uses BASED structures with REFER, which the compiler flags with this message,
you might get better performance by passing the structure to a subroutine that declares a corresponding
structure with * extents. This will cause the structure to be mapped once at the CALL statement, but there
will no further remappings when it is accessed in the called subroutine.

Coding for better performance

318 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Preloading library routines
The PL/I library contains one RMODE 24 routine, IBMPOIOA, that is used for low-level system i/o
functions. If your code does RECORD i/o or uses SYSPRINT as a STREAM OUTPUT file (without compiling
with the STDSYS option), you will significantly improve your performance if you preload this routine or put
it into the (E)LPA.

Coding for better performance

Chapter 15. Improving performance 319

Coding for better performance

320 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Part 4. Using interfaces to other products

© Copyright IBM Corp. 1999, 2022 321

322 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 16. Using the Sort program
The compiler provides an interface called PLISRTx (x = A, B, C, or D) that allows you to make use of the
IBM-supplied Sort programs.

To use the Sort program with PLISRTx, you must do the following:

1. Include a call to one of the entry points of PLISRTx, passing it the information on the fields to be
sorted. This information includes the length of the records, the maximum amount of storage to use, the
name of a variable to be used as a return code, and other information required to carry out the sort.

2. Specify the data sets required by the Sort program in JCL DD statements.

When used from PL/I, the Sort program sorts records of all normal lengths on a large number of sorting
fields. Data of most types can be sorted into ascending or descending order. The source of the data to be
sorted can be either a data set or a user-written PL/I procedure that the Sort program will call each time
a record is required for the sort. Similarly, the destination of the sort can be a data set or a PL/I procedure
that handles the sorted records.

Using PL/I procedures allows processing to be done before or after the sort itself, thus allowing a
complete sorting operation to be handled completely by a call to the sort interface. It is important to
understand that the PL/I procedures handling input or output are called from the Sort program itself and
will effectively become part of it.

PL/I can operate with DFSORT or a program with the same interface. DFSORT is a release of the program
product 5740-SM1. DFSORT has many built-in features you can use to eliminate the need for writing
program logic (for example, INCLUDE, OMIT, OUTREC, and SUM statement plus the many ICETOOL
operators). See DFSORT Application Programming Guide for details and Getting Started with DFSORT for a
tutorial.

The following information applies to DFSORT. Because you can use programs other than DFSORT, the
actual capabilities and restrictions vary. For these capabilities and restrictions, see DFSORT Application
Programming Guide or the equivalent publication for your sort product.

To use the Sort program, you must include the correct PL/I statements in your source program and
specify the correct data sets in your JCL.

Preparing to use Sort
Before using Sort, you must determine the type of sort you require, the length and format of the sorting
fields in the data, the length of your data records, and the amount of auxiliary and main storage you will
allow for sorting.

To determine the PLISRTx entry point that you will use, you must decide the source of your unsorted data,
and the destination of your sorted data. You must choose between data sets and PL/I subroutines. Using
data sets is simpler to understand and gives faster performance. Using PL/I subroutines gives you more
flexibility and more function, enabling you to manipulate or print the data before it is sorted, and to make
immediate use of it in its sorted form. If you decide to use an input or output handling subroutine, see
“Data input and output handling routines” on page 333.

The entry points and the source and destination of data are as follows:

Entry point Source Destination

PLISRTA Data set Data set

PLISRTB Subroutine Data set

PLISRTC Data set Subroutine

PLISRTD Subroutine Subroutine

© Copyright IBM Corp. 1999, 2022 323

Having determined the entry point you are using, you must now determine these about your data set:

• The position of the sorting fields; these can be either the complete record or any part or parts of it
• The type of data these fields represent, for example, character or binary
• Whether you want the sort on each field to be in ascending or descending order
• Whether you want equal records to be retained in the order of the input, or whether their order can be

altered during sorting

Specify these options on the SORT statement, which is the first argument to PLISRTx. Then, you must
determine these about the records to be sorted:

• Whether the record format is fixed or varying
• The length of the record, which is the maximum length for varying

Specify these on the RECORD statement, which is the second argument to PLISRTx.

Finally, you must decide on the amount of main and auxiliary storage you will allow for the Sort program.
For further details, see “Determining storage needed for Sort” on page 328.

Choosing the type of Sort
In your PL/I program, you specify a sort by using a CALL statement to the sort interface subroutine
PLISRTx. This subroutine has four entry points: x=A, B, C, and D. Each specifies a different source for the
unsorted data and destination for the data when it has been sorted.

For example, a call to PLISRTA specifies that the unsorted data (the input to sort) is on a data set, and that
the sorted data (the output from sort) is to be placed on another data set. The CALL PLISRTx statement
must contain an argument list giving the Sort program information about the data set to be sorted, the
fields on which it is to be sorted, the amount of space available, the name of a variable into which Sort
will place a return code indicating the success or failure of the sort, and the name of any output or input
handling procedure that can be used.

The sort interface routine builds an argument list for the Sort program from the information supplied by
the PLISRTx argument list and the choice of PLISRTx entry point. Control is then transferred to the Sort
program. If you have specified an output- or input-handling routine, this will be called by the Sort program
as many times as is necessary to handle each of the unsorted or sorted records. When the sort operation
is complete, the Sort program returns to the PL/I calling procedure communicating its success or failure
in a return code, which is placed in one of the arguments passed to the interface routine. The return code
can then be tested in the PL/I routine to discover whether processing should continue. Figure 7 on page
325 is a simplified flowchart showing this operation.

324 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Figure 7. Flow of control for Sort program

Within the Sort program itself, the flow of control between the Sort program and input- and output-
handling routines is controlled by return codes. The Sort program calls these routines at the appropriate
point in its processing. (Within the Sort program, and its associated documentation, these routines are
known as user exits. The routine that passes input to be sorted is the E15 sort user exit. The routine
that processes sorted output is the E35 sort user exit.) From the routines, Sort expects a return code
indicating either that it should call the routine again, or that it should continue with the next stage of
processing.

You must remember the following important points about Sort:

• It is a self-contained program that handles the complete sort operation.

Chapter 16. Using the Sort program 325

• It communicates with the caller, and with the user exits that it calls, through return codes.

Specifying the sorting field
This topic describes the required PL/I statements that you must specify to use Sort from PL/I. The SORT
statement is the first argument to PLISRTx.

The syntax of the SORT statement must be a character string expression that takes the form:

'bSORTbFIELDS=(start1,length1,form1,seq1,
...startn,lengthn,formn,seqn)[,other options]b'

See the following example:

' SORT FIELDS=(1,10,CH,A) '

b
Represents one or more blanks. Blanks shown are mandatory. No other blanks are allowed.

start,length,form,seq
Defines a sorting field. You can specify any number of sorting fields, but there is a limit on the total
length of the fields. If more than one field is to be sorted on, the records are sorted first according to
the first field, and then those that are of equal value are sorted according to the second field, and so
on. If all the sorting values are equal, the order of equal records will be arbitrary unless you use the
EQUALS option. (See later in this definition list.) Fields can overlay each other.

For DFSORT (5740-SM1), the maximum total length of the sorting fields is restricted to 4092 bytes
and all sorting fields must be within 4092 bytes of the start of the record. Other sort products might
have different restrictions.
start

Specifies the starting position within the record. Specify the value in bytes except for binary data
where you can use a "byte.bit" notation. The first byte in a string is considered to be byte 1, and
the first bit is bit 0. (Thus the second bit in byte 2 is referred to as 2.1.) For varying length records,
you must include the 4-byte length prefix, making 5 the first byte of data.

length
Specifies the length of the sorting field. Specify the value in bytes except for binary where you can
use "byte.bit" notation. The length of sorting fields is restricted according to their data type.

form
Specifies the format of the data. This is the format assumed for the purpose of sorting. All data
passed between PL/I routines and Sort must be in the form of character strings. The main data
types and the restrictions on their length are shown below. Additional data types are available
for special-purpose sorts. See the DFSORT Application Programming Guide or the equivalent
publication for your sort product.

Code Data type and length

CH Character 1–4096

ZD Zoned decimal, signed 1–32

PD Packed decimal, signed 1–32

FI Fixed point, signed 1–256

BI Binary, unsigned 1 bit to 4092 bytes

FL Floating-point, signed 1–256

The sum of the lengths of all fields must not exceed 4092 bytes.

seq
Specifies the sequence in which the data will be sorted:

326 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

A
Ascending (that is, 1,2,3,...)

D
Descending (that is, ...,3,2,1)

Note: You cannot specify E, because PL/I does not provide a method of passing a user-supplied
sequence.

other options
You can specify a number of other options, depending on your Sort program. You must separate them
from the FIELDS operand and from each other by commas. Do not place blanks between operands.
FILSZ=y

Specifies the number of records in the sort and allows for optimization by Sort. If y is only
approximate, E should precede y.

SKIPREC=y
Specifies that y records at the start of the input file are to be ignored before Sort starts sorting the
remaining records.

CKPT or CHKPT
Specifies that checkpoints are to be taken. If you use this option, you must provide a SORTCKPT
data set. In addition, when you install DFSORT, you must specify the 16NCKPT=NO installation
option.

EQUALS|NOEQUALS
Specifies whether the order of equal records will be preserved as it was in the input (EQUALS) or
will be arbitrary (NOEQUALS). You could improve sort performance by using the NOEQUALS. The
default option is chosen when Sort is installed. The IBM-supplied default is NOEQUALS.

DYNALLOC=(d,n)
(OS/VS Sort only) Specifies that the program dynamically allocates intermediate storage.
d

Specifies the device type (3380, and so on).
n

Specifies the number of work areas.

Specifying the records to be sorted
This topic describes the required PL/I statements that you must specify to use Sort from PL/I. The
RECORD statement is the second argument to PLISRTx.

The syntax of the RECORD statement must be a character string expression, which, when evaluated, takes
the following syntax:

'bRECORDbTYPE=rectype[,LENGTH=(L1,[,,L4,L5])]b'

See the following example:

' RECORD TYPE=F,LENGTH=(80) '

b
Represents one or more blanks. Blanks shown are mandatory. No other blanks are allowed.

TYPE
Specifies the type of record as follows:
F

Fixed length
V

Varying length EBCDIC
D

Varying length ASCII

Chapter 16. Using the Sort program 327

Even when you use input and output routines to handle the unsorted and sorted data, you must
specify the record type as it applies to the work data sets used by Sort.

If varying length strings are passed to Sort from an input routine (E15 exit), you should normally
specify V as a record format. However, if you specify F, the records are padded to the maximum length
with blanks.

LENGTH
Specifies the length of the record to be sorted. You can omit LENGTH if you use PLISRTA or PLISRTC,
because the length will be taken from the input data set. Note that there is a restriction on the
maximum and minimum length of the record that can be sorted. For varying length records, you must
include the 4-byte prefix.
L1

Specifies the length of the record to be sorted. For VSAM data sets sorted as varying records, it is
the maximum record size + 4.

,,
Represents two arguments that are not applicable to Sort when called from PL/I. You must include
the commas if the arguments that follow are used.

L4
Specifies the minimum length of record when varying length records are used. If supplied, it is
used by Sort for optimization purposes.

L5
Specifies the modal (most common) length of record when varying length records are used. If
supplied, it is used by Sort for optimization purposes.

Maximum record lengths: The length of a record can never exceed the maximum length specified by the
user. The maximum record length for variable length records is 32756 bytes, and for fixed length records,
it is 32760 bytes.

Determining storage needed for Sort
Sort requires both main and auxiliary storage.

Main storage
The minimum main storage for DFSORT is 88K bytes, but for best performance, more storage (on the
order of 1 megabyte or more) is recommended. DFSORT can take advantage of storage above 16M virtual
or extended architecture processors. Under z/OS, DFSORT can also take advantage of expanded storage.
You can specify that Sort use the maximum amount of storage available by passing a storage parameter in
the following manner:

DCL MAXSTOR FIXED BINARY (31,0);
UNSPEC(MAXSTOR)='00000000'B||UNSPEC('MAX');
CALL PLISRTA
 (' SORT FIELDS=(1,80,CH,A) ',
 ' RECORD TYPE=F,LENGTH=(80) ',
 MAXSTOR,
 RETCODE,
 'TASK');

If files are opened in E15 or E35 exit routines, enough residual storage should be allowed for the files to
open successfully.

Auxiliary storage
Calculating the minimum auxiliary storage for a particular sorting operation is a complicated task.
To achieve maximum efficiency with auxiliary storage, use direct access storage devices (DASDs)
whenever possible. For more information about improving program efficiency, see the DFSORT Application
Programming Guide, particularly the information about dynamic allocation of workspace that allows
DFSORT to determine the auxiliary storage needed and allocate it for you.

328 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

If you are interested only in providing enough storage to ensure that the sort will work, make the total size
of the SORTWK data sets large enough to hold three sets of the records being sorted. (You will not gain
any advantage by specifying more than three if you have enough space in three data sets.)

However, because this suggestion is an approximation, it might not work, so you should check the sort
manuals. If this suggestion does work, you will probably have wasted space.

Calling the Sort program
You should write the CALL PLISRTx statement with some care. This topic lists the entry points and
arguments that you can use.

Table 81. The entry points and arguments to PLISRTx (x = A, B, C, or D)

Entry points Arguments

PLISRTA
Sort input: data set
Sort output: data set

(sort statement,record statement,storage,return code
[,data set prefix,message level, sort technique])

PLISRTB
Sort input: PL/I subroutine
Sort output: data set

(sort statement,record statement,storage,return code,input routine
[,data set prefix,message level,sort technique])

PLISRTC
Sort input: data set
Sort output: PL/I subroutine

(sort statement,record statement,storage,return code,output routine
[,data set prefix,message level,sort technique])

PLISRTD
Sort input: PL/I subroutine
Sort output: PL/I subroutine

(sort statement,record statement,storage,return code,input routine,output
routine[,data set prefix,message level,sort technique])

Sort statement Character string expression containing the Sort program SORT statement.
Describes sorting fields and format. See “Specifying the sorting field” on page
326.

Record statement Character string expression containing the Sort program RECORD statement.
Describes the length and record format of data. See “Specifying the records to
be sorted” on page 327.

Storage Fixed binary expression giving maximum amount of main storage to be used
by the Sort program. Must be >88K bytes for DFSORT. See also “Determining
storage needed for Sort” on page 328.

Return code Fixed binary variable of precision (31,0) in which Sort places a return code
when it has completed. The meaning of the return code is:

0=Sort successful
16=Sort failed
20=Sort message data set missing

Input routine (PLISRTB and PLISRTD only.) Name of the PL/I external or internal procedure
used to supply the records for the Sort program at sort exit E15.

Output routine (PLISRTC and PLISRTD only.) Name of the PL/I external or internal procedure to
which Sort passes the sorted records at sort exit E35.

Chapter 16. Using the Sort program 329

Table 81. The entry points and arguments to PLISRTx (x = A, B, C, or D) (continued)

Entry points Arguments

ddname prefix Character string expression of four characters that replaces the default prefix
of 'SORT' in the ddnames of the sort data sets SORTIN, SORTOUT and
SORTWKnn, and if used, SORTCNTL. Thus if the argument is “TASK”, the
ddnames TASKIN, TASKOUT, TASKWKnn, and TASKCNTL can be used. This
facility enables multiple invocations of Sort to be made in the same job step.
The four characters must start with an alphabetic character and must not be
one of the reserved names PEER, BALN, CRCX, OSCL, POLY, DIAG, SYSC, or
LIST. You must code a null string for this argument if you require either of the
following arguments but do not require this argument.

Message level Character string expression of two characters indicating how Sort's diagnostic
messages are to be handled, as follows:

NO No messages to SYSOUT
AP All messages to SYSOUT
CP Critical messages to SYSOUT

SYSOUT will normally be allocated to the printer, hence the use of the
mnemonic letter “P”. Other codes are also allowed for certain of the
Sort programs. For further details on these codes, see DFSORT Application
Programming Guide. You must code a null string for this argument if you require
the following argument but you do not require this argument.

Sort technique (This is not used by DFSORT; it appears for compatibility reasons only.)
Character string of length 4 that indicates the type of sort to be carried out,
as follows:

PEER Peerage sort
BALN Balanced
CRCX Criss-cross sort
OSCL Oscillating
POLY Polyphase sort

Normally the Sort program will analyze the amount of space available and
choose the most effective technique without any action from you. You should
use this argument only as a bypass for sorting problems or when you are
certain that performance could be improved by another technique. See DFSORT
Application Programming Guide for further information.

The following examples indicate the form that the CALL PLISRTx statement normally takes.

Example 1
This example shows a call to PLISRTA, sorting 80-byte records from SORTIN to SORTOUT, using 1048576
(1 megabyte) of storage and a return code, RETCODE, declared as FIXED BINARY (31,0).

CALL PLISRTA (' SORT FIELDS=(1,80,CH,A) ',
 ' RECORD TYPE=F,LENGTH=(80) ',
 1048576,
 RETCODE);

330 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Example 2
This example is the same as example 1 except that the input, output, and work data sets are called
TASKIN, TASKOUT, TASKWK01, and so forth.

This might occur if Sort was being called twice in one job step.

CALL PLISRTA (' SORT FIELDS=(1,80,CH,A) ',
 ' RECORD TYPE=F,LENGTH=(80) ',
 1048576,
 RETCODE,
 'TASK');

Example 3
This example is the same as example 1 except that the sort is to be undertaken on two fields (first, bytes
1 to 10, which are characters, and then, if these are equal, bytes 11 and 12, which contain a binary field).

Both fields are to be sorted in ascending order.

CALL PLISRTA (' SORT FIELDS=(1,10,CH,A,11,2,BI,A) ',
 ' RECORD TYPE=F,LENGTH=(80) ',
 1048576,
 RETCODE);

Example 4
This example shows a call to PLISRTB.

The input is to be passed to Sort by the PL/I routine PUTIN. The sort is to be carried out on characters 1 to
10 of an 80-byte fixed length record.

CALL PLISRTB (' SORT FIELDS=(1,10,CH,A) ',
 ' RECORD TYPE=F,LENGTH=(80) ',
 1048576,
 RETCODE,
 PUTIN);

Example 5
This example shows a call to PLISRTD.

The input is to be supplied by the PL/I routine PUTIN and the output is to be passed to the PL/I routine
PUTOUT. The record to be sorted is 84 bytes varying (including the length prefix). It is to be sorted on
bytes 1 through 5 of the data in ascending order, then if these fields are equal, on bytes 6 through 10 in
descending order. (Note that the 4-byte length prefix is included so that the actual values used are 5 and
10 for the starting points.) If both these fields are the same, the order of the input is to be retained. (The
EQUALS option does this.)

CALL PLISRTD (' SORT FIELDS=(5,5,CH,A,10,5,CH,D),EQUALS ',
 ' RECORD TYPE=V,LENGTH=(84) ',
 1048576,
 RETCODE,
 PUTIN, /*input routine (sort exit E15)*/
 PUTOUT); /*output routine (sort exit E35)*/

Determining whether the Sort was successful
When the sort is completed, Sort sets a return code in the variable named in the fourth argument of the
call to PLISRTx.

It then returns control to the statement that follows the CALL PLISRTx statement. The value returned
indicates the success or failure of the sort as follows:

Chapter 16. Using the Sort program 331

0
Sort successful

16
Sort failed

20
Sort message data set missing

You must declare the variable to which the return code is passed as FIXED BINARY (31,0). It is standard
practice to test the value of the return code after the CALL PLISRTx statement and take appropriate action
according to the success or failure of the operation.

See the following example (assuming that the return code is called RETCODE):

IF RETCODE¬=0 THEN DO;
 PUT DATA(RETCODE);
 SIGNAL ERROR;
END;

If the job step that follows the sort depends on the success or failure of the sort, you should set the value
returned in the Sort program as the return code from the PL/I program. This return code is then available
for the following job step. The PL/I return code is set by a call to PLIRETC. You can call PLIRETC with the
value returned from Sort:

CALL PLIRETC(RETCODE);

You should not confuse this call to PLIRETC with the calls made in the input and output routines, where a
return code is used for passing control information to Sort.

Establishing data sets for Sort
If DFSORT is installed in a library not known to the system, you must specify the DFSORT library in a
JOBLIB or STEPLIB DD statement.

When you call Sort, the following sort data sets must not be open:

SYSOUT
A data set (normally the printer) on which messages from the Sort program will be written.

Sort work data sets: SORTWK01–SORTWK32

Note: If you specify more than 32 sort work data sets, DFSORT will only use the first 32.

****WK01–****WK32
From 1 to 32 working data sets that are used in the sorting process

These must be direct access. For a discussion of space required and number of data sets, see
“Determining storage needed for Sort” on page 328.

**** represents the four characters that you can specify as the data set prefix argument in calls to
PLISRTx. This allows you to use data sets with prefixes other than SORT. They must start with an
alphabetic character and must not be the names PEER, BALN, CRCX, OSCL, POLY, SYSC, LIST, or
DIAG.

Input data set: SORTIN

****IN
The input data set that is used when PLISRTA and PLISRTC are called

See ****WK01–****WK32 for a detailed description.

Output data set: SORTOUT

332 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

****OUT
The output data set that is used when PLISRTA and PLISRTB are called

See ****WK01–****WK32 for a detailed description.

Checkpoint data set: SORTCKPT
Data set that is used to hold checkpoint data, if the CKPT or CHKPT option is used in the SORT
statement argument and the DFSORT 16NCKPT=NO installation option is specified

For information about this program DD statement, see DFSORT Application Programming Guide.

DFSPARM SORTCNTL
Data set from which additional or changed control statements can be read (optional)

For additional information about this program DD statement, see DFSORT Application Programming
Guide.

See ****WK01–****WK32 for a detailed description.

Sort data input and output
The source of the data to be sorted is provided either directly from a data set or indirectly by a routine
(Sort Exit E15) written by the user. Similarly, the destination of the sorted output is either a data set or a
routine (Sort Exit E35) provided by the user.

PLISRTA is the simplest of all of the interfaces because it sorts from data set to data set. For an example
of a PLISRTA program, see Table 84 on page 337. Other interfaces require the input handling routine, the
output handling routine, or both.

Data input and output handling routines
The input handling and output handling routines are called by Sort when PLISRTB, PLISRTC, or PLISRTD is
used.

The routines must be written in PL/I, and can be either internal or external procedures. If they are internal
to the routine that calls PLISRTx, they behave in the same way as ordinary internal procedures in respect
of scope of names. The input and output procedure names must themselves be known in the procedure
that makes the call to PLISRTx.

The routines are called individually for each record required by Sort or passed from Sort. Therefore,
each routine must be written to handle one record at a time. Variables declared as AUTOMATIC within
the procedures will not retain their values between calls. Consequently, items such as counters, which
need to be retained from one call to the next, should either be declared as STATIC or be declared in the
containing block.

The E15 and E35 sort exits must not be MAIN procedures.

E15—Input handling routine (Sort Exit E15)
Input routines are normally used to process the data in some way before it is sorted.

You can use input routines to print the data, as shown in Table 85 on page 338 and Table 87 on page 340,
or to generate or manipulate the sorting fields to achieve the correct results.

The input handling routine is used by Sort when a call is made to either PLISRTB or PLISRTD. When Sort
requires a record, it calls the input routine, which should return a record in character string format, with
return code 12. This return code means that the record passed is to be included in the sort. Sort continues
to call the routine until return code 8 is passed. Return code 8 means that all records have already been
passed, and that Sort is not to call the routine again. If a record is returned when the return code is 8, it is
ignored by Sort.

The data returned by the routine must be a character string. It can be fixed or varying. If it is varying, you
should normally specify V as the record format in the RECORD statement, which is the second argument
in the call to PLISRTx. However, you can specify F, in which case the string will be padded to its maximum

Chapter 16. Using the Sort program 333

length with blanks. The record is returned with a RETURN statement, and you must specify the RETURNS
attribute in the PROCEDURE statement. The return code is set in a call to PLIRETC. A flowchart for a
typical input routine is shown in the following figureFigure 8 on page 334.

Figure 8. Flowcharts for input and output handling subroutines

Skeletal code for a typical input routine is shown in Table 82 on page 335.

334 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 82. Skeletal code for an input procedure

E15: PROC RETURNS (CHAR(80));
 /*---*/
 /*RETURNS attribute must be used specifying length of data to be */
 /* sorted, maximum length if varying strings are passed to Sort. */
 /*---*/
 DCL STRING CHAR(80); /*--*/
 /*A character string variable will normally be*/
 /* required to return the data to Sort */
 /*--*/

 IF LAST_RECORD_SENT THEN
 DO;
 /*---*/
 /*A test must be made to see if all the records have been sent, */
 /*if they have, a return code of 8 is set up and control returned*/
 /*to Sort */
 /*---*/

 CALL PLIRETC(8); /*---*/
 /* Set return code of 8, meaning last record */
 /* already sent. */
 /*---*/
 RETURN('');
 END;

 ELSE
 DO;
 /*--*/
 /* If another record is to be sent to Sort, do the*/
 /* necessary processing, set a return code of 12 */
 /* by calling PLIRETC, and return the data as a */
 /* character string to Sort */
 /*--*/

 ****(The code to do your processing goes here)

 CALL PLIRETC (12); /*--------------------------------------*/
 /* Set return code of 12, meaning this */
 /* record is to be included in the sort */
 /*--------------------------------------*/
 RETURN (STRING); /*Return data with RETURN statement*/
 END;

 END; /*End of the input procedure*/

For examples of an input routine, see Table 85 on page 338 and Table 87 on page 340.

In addition to return codes 12 (include current record in sort) and 8 (all records sent), Sort allows the
use of return code 16 (Sort failed). This return code ends the sort and causes Sort to return to your PL/I
program with return code 16.

Note: A call to PLIRETC sets a return code that will be passed by your PL/I program, and will be available
to any job steps that follow it. When an output handling routine has been used, it is good practice to reset
the return code with a call to PLIRETC after the call to PLISRTx to avoid receiving a nonzero completion
code. By calling PLIRETC with the return code from Sort as the argument, you can make the PL/I return
code reflect the success or failure of the sort. This practice is shown in Table 86 on page 339.

E35—Output handling routine (Sort Exit E35)
Output handling routines are normally used for any processing that is necessary after the sort.

For example, you can use output handling routines to print the sorted data, as shown in Table 86 on page
339 and Table 87 on page 340, or to use the sorted data to generate further information. The output
handling routine is used by Sort when a call is made to PLISRTC or PLISRTD. When the records have been
sorted, Sort passes them, one at a time, to the output handling routine. The output routine then processes
them as required. When all the records have been passed, Sort sets up its return code and returns to the
statement after the CALL PLISRTx statement. Sort does not indicate to the output handling routine that
the last record has been reached. Any end-of-data handling must therefore be done in the procedure that
calls PLISRTx.

Chapter 16. Using the Sort program 335

The record is passed from Sort to the output routine as a character string, and you must declare a
character string parameter in the output handling subroutine to receive the data. The output handling
subroutine must also pass return code 4 to Sort to indicate that it is ready for another record. You set the
return code by a call to PLIRETC.

To stop the sort, pass return code 16 to Sort. This will result in Sort returning to the calling program with
return code 16–Sort failed.

The record passed to the routine by Sort is a character string parameter. If you specify the record type
as F in the second argument in the call to PLISRTx, you should declare the parameter with the length of
the record. If you specify the record type as V, you should declare the parameter as adjustable, as in the
following example:

DCL STRING CHAR(*);

Table 88 on page 341 shows a program that sorts varying length records.

A flowchart for a typical output handling routine is given in Figure 8 on page 334. Skeletal code for a
typical output handling routine is shown in Table 83 on page 336.

Table 83. Skeletal code for an output handling procedure

E35: PROC(STRING); /*The procedure must have a character string
 parameter to receive the record from Sort*/

 DCL STRING CHAR(80); /*Declaration of parameter*/

 (Your code goes here)

 CALL PLIRETC(4); /*Pass return code to Sort indicating that the next
 sorted record is to be passed to this procedure.*/
 END E35; /*End of procedure returns control to Sort*/

You should note that a call to PLIRETC sets a return code that will be passed by your PL/I program, and
will be available to any job steps that follow it. When you have used an output handling routine, it is good
practice to reset the return code with a call to PLIRETC after the call to PLISRTx to avoid receiving a
nonzero completion code. By calling PLIRETC with the return code from Sort as the argument, you can
make the PL/I return code reflect the success or failure of the sort. This practice is shown in the examples
that follow this topic.

Calling PLISRTA example
This topic shows an example of a PLISRTA program.

After each time that the PL/I input- and output-handling routines communicate the return code
information to the Sort program, the return code field is reset to zero; therefore, it is not used as a
regular return code other than its specific use for the Sort program.

For details on handling conditions, especially those that occur during the input- and output-handling
routines, see z/OS Language Environment Programming Guide.

336 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 84. PLISRTA—sorting from input data set to output data set

 //OPT14#7 JOB ...
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD *
 EX106: PROC OPTIONS(MAIN);
 DCL RETURN_CODE FIXED BIN(31,0);

 CALL PLISRTA (' SORT FIELDS=(7,74,CH,A) ',
 ' RECORD TYPE=F,LENGTH=(80) ',
 1048576
 RETURN_CODE);
 SELECT (RETURN_CODE);
 WHEN(0) PUT SKIP EDIT
 ('SORT COMPLETE RETURN_CODE 0') (A);
 WHEN(16) PUT SKIP EDIT
 ('SORT FAILED, RETURN_CODE 16') (A);
 WHEN(20) PUT SKIP EDIT
 ('SORT MESSAGE DATASET MISSING ') (A);
 OTHER PUT SKIP EDIT (
 'INVALID SORT RETURN_CODE = ', RETURN_CODE) (A,F(2));
 END /* select */;
 CALL PLIRETC(RETURN_CODE);
 /*set PL/I return code to reflect success of sort*/
 END EX106;
 //GO.SORTIN DD *
 003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
 002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
 003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
 059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
 073872HOME TAVERN, WESTLEIGH
 000931FOREST, IVER, BUCKS
 /*
 //GO.SYSPRINT DD SYSOUT=A
 //GO.SORTOUT DD SYSOUT=A
 //GO.SYSOUT DD SYSOUT=A
 //GO.SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,2)
 /*

Chapter 16. Using the Sort program 337

Calling PLISRTB example
This topic shows an example of a PLISRTB program, which calls an input routine to get data and places
sorted records on a data set.

Table 85. PLISRTB—sorting from input handling routine to output data set

 //OPT14#8 JOB ...
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD *
 EX107: PROC OPTIONS(MAIN);
 DCL RETURN_CODE FIXED BIN(31,0);

 CALL PLISRTB (' SORT FIELDS=(7,74,CH,A) ',
 ' RECORD TYPE=F,LENGTH=(80) ',
 1048576
 RETURN_CODE,
 E15X);
 SELECT(RETURN_CODE);
 WHEN(0) PUT SKIP EDIT
 ('SORT COMPLETE RETURN_CODE 0') (A);
 WHEN(16) PUT SKIP EDIT
 ('SORT FAILED, RETURN_CODE 16') (A);
 WHEN(20) PUT SKIP EDIT
 ('SORT MESSAGE DATASET MISSING ') (A);
 OTHER PUT SKIP EDIT
 ('INVALID RETURN_CODE = ',RETURN_CODE)(A,F(2));
 END /* select */;
 CALL PLIRETC(RETURN_CODE);
 /*set PL/I return code to reflect success of sort*/

 E15X: /* INPUT HANDLING ROUTINE GETS RECORDS FROM THE INPUT
 STREAM AND PUTS THEM BEFORE THEY ARE SORTED*/
 PROC RETURNS (CHAR(80));
 DCL SYSIN FILE RECORD INPUT,
 INFIELD CHAR(80);

 ON ENDFILE(SYSIN) BEGIN;
 PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT')(A);
 CALL PLIRETC(8); /* signal that last record has
 already been sent to sort*/
 INFIELD = '';
 GOTO ENDE15;
 END;

 READ FILE (SYSIN) INTO (INFIELD);
 PUT SKIP EDIT (INFIELD)(A(80)); /*PRINT INPUT*/
 CALL PLIRETC(12); /* request sort to include current
 record and return for more*/
 ENDE15:
 RETURN(INFIELD);
 END E15X;
 END EX107;
 /*
 //GO.SYSIN DD *
 003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
 002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
 003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
 059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
 073872HOME TAVERN, WESTLEIGH
 000931FOREST, IVER, BUCKS
 /*
 //GO.SYSPRINT DD SYSOUT=A
 //GO.SORTOUT DD SYSOUT=A
 //GO.SYSOUT DD SYSOUT=A
 //*
 //GO.SORTCNTL DD *
 OPTION DYNALLOC=(3380,2),SKIPREC=2
 /*

338 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Calling PLISRTC example
This topic shows an example of a PLISRTC program, which sorts records in an input data set and calls an
output handling routine to print sorted data.

Table 86. PLISRTC—sorting from input data set to output handling routine

 //OPT14#9 JOB ...
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD *
 EX108: PROC OPTIONS(MAIN);

 DCL RETURN_CODE FIXED BIN(31,0);

 CALL PLISRTC (' SORT FIELDS=(7,74,CH,A) ',
 ' RECORD TYPE=F,LENGTH=(80) ',
 1048576
 RETURN_CODE,
 E35X);
 SELECT(RETURN_CODE);
 WHEN(0) PUT SKIP EDIT
 ('SORT COMPLETE RETURN_CODE 0') (A);
 WHEN(16) PUT SKIP EDIT
 ('SORT FAILED, RETURN_CODE 16') (A);
 WHEN(20) PUT SKIP EDIT
 ('SORT MESSAGE DATASET MISSING ') (A);
 OTHER PUT SKIP EDIT
 ('INVALID RETURN_CODE = ', RETURN_CODE) (A,F(2));
 END /* select */;
 CALL PLIRETC (RETURN_CODE);
 /*set PL/I return code to reflect success of sort*/

 E35X: /* output handling routine prints sorted records*/
 PROC (INREC);
 DCL INREC CHAR(80);
 PUT SKIP EDIT (INREC) (A);
 CALL PLIRETC(4); /*request next record from sort*/
 END E35X;
 END EX108;
 /*
 //GO.STEPLIB DD DSN=SYS1.SORTLINK,DISP=SHR
 //GO.SYSPRINT DD SYSOUT=A
 //GO.SYSOUT DD SYSOUT=A
 //GO.SORTIN DD *
 003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
 002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
 003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
 059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
 073872HOME TAVERN, WESTLEIGH
 000931FOREST, IVER, BUCKS
 /*
 //GO.SORTCNTL DD *
 OPTION DYNALLOC=(3380,2),SKIPREC=2
 /*

Chapter 16. Using the Sort program 339

Calling PLISRTD example
This topic shows an example of a PLISRTD program, which calls the input handling routine to print
unsorted data and calls the output handling routine to print sorted data.

Table 87. PLISRTD—sorting from input handling routine to output handling routine

 //OPT14#10 JOB ...
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD *
 EX109: PROC OPTIONS(MAIN);
 DCL RETURN_CODE FIXED BIN(31,0);
 CALL PLISRTD (' SORT FIELDS=(7,74,CH,A) ',
 ' RECORD TYPE=F,LENGTH=(80) ',
 1048576
 RETURN_CODE,
 E15X,
 E35X);

 SELECT(RETURN_CODE);
 WHEN(0) PUT SKIP EDIT
 ('SORT COMPLETE RETURN_CODE 0') (A);
 WHEN(20) PUT SKIP EDIT
 ('SORT MESSAGE DATASET MISSING ') (A);
 OTHER PUT SKIP EDIT
 ('INVALID RETURN_CODE = ', RETURN_CODE) (A,F(2));
 END /* select */;

 CALL PLIRETC(RETURN_CODE);
 /*set PL/I return code to reflect success of sort*/

 E15X: /* Input handling routine prints input before sorting*/
 PROC RETURNS(CHAR(80));
 DCL INFIELD CHAR(80);

 ON ENDFILE(SYSIN) BEGIN;
 PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT. ',
 'SORTED OUTPUT SHOULD FOLLOW')(A);
 CALL PLIRETC(8); /* Signal end of input to sort*/
 INFIELD = '';
 GOTO ENDE15;
 END;

 GET FILE (SYSIN) EDIT (INFIELD) (A(80));
 PUT SKIP EDIT (INFIELD)(A);
 CALL PLIRETC(12); /*Input to sort continues*/
 ENDE15:
 RETURN(INFIELD);
 END E15X;

 E35X: /* Output handling routine prints the sorted records*/
 PROC (INREC);

 DCL INREC CHAR(80);
 PUT SKIP EDIT (INREC) (A);
 NEXT: CALL PLIRETC(4); /* Request next record from sort*/
 END E35X;
 END EX109;

 /*
//GO.SYSOUT DD SYSOUT=A
//GO.SYSPRINT DD SYSOUT=A
//GO.SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//GO.SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,1)
//GO.SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,1)
//GO.SYSIN DD *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*

340 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Sorting variable-length records example
This example shows a program that sorts varying length records.

Table 88. Sorting varying-length records using input and output handling routines

 //OPT14#11 JOB ...
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD *
 /* PL/I EXAMPLE USING PLISRTD TO SORT VARIABLE-LENGTH
 RECORDS */

 EX1306: PROC OPTIONS(MAIN);
 DCL RETURN_CODE FIXED BIN(31,0);
 CALL PLISRTD (' SORT FIELDS=(11,14,CH,A) ',
 ' RECORD TYPE=V,LENGTH=(84,,,24,44) ',
 /*NOTE THAT LENGTH IS MAX AND INCLUDES
 4 BYTE LENGTH PREFIX*/
 1048576
 RETURN_CODE,
 PUTIN,
 PUTOUT);

 SELECT(RETURN_CODE);
 WHEN(0) PUT SKIP EDIT (
 'SORT COMPLETE RETURN_CODE 0') (A);
 WHEN(16) PUT SKIP EDIT (
 'SORT FAILED, RETURN_CODE 16') (A);
 WHEN(20) PUT SKIP EDIT (
 'SORT MESSAGE DATASET MISSING ') (A);
 OTHER PUT SKIP EDIT (
 'INVALID RETURN_CODE = ', RETURN_CODE)
 (A,F(2));
 END /* SELECT */;

 CALL PLIRETC(RETURN_CODE);
 /*SET PL/I RETURN CODE TO REFLECT SUCCESS OF SORT*/
 PUTIN: PROC RETURNS (CHAR(80) VARYING);
 /*OUTPUT HANDLING ROUTINE*/
 /*NOTE THAT VARYING MUST BE USED ON RETURNS ATTRIBUTE
 WHEN USING VARYING LENGTH RECORDS*/
 DCL STRING CHAR(80) VAR;

 ON ENDFILE(SYSIN) BEGIN;
 PUT SKIP EDIT ('END OF INPUT')(A);
 CALL PLIRETC(8);
 STRING = '';
 GOTO ENDPUT;
 END;

 GET EDIT(STRING)(A(80));
 I=INDEX(STRING||' ',' ')-1;/*RESET LENGTH OF THE*/
 STRING = SUBSTR(STRING,1,I); /* STRING FROM 80 TO */
 /* LENGTH OF TEXT IN */
 /* EACH INPUT RECORD.*/

Chapter 16. Using the Sort program 341

Table 88. Sorting varying-length records using input and output handling routines (continued)

 PUT SKIP EDIT(I,STRING) (F(2),X(3),A);
 CALL PLIRETC(12);
 ENDPUT: RETURN(STRING);
 END;
 PUTOUT:PROC(STRING);
 /*OUTPUT HANDLING ROUTINE OUTPUT SORTED RECORDS*/
 DCL STRING CHAR (*);
 /*NOTE THAT FOR VARYING RECORDS THE STRING
 PARAMETER FOR THE OUTPUT-HANDLING ROUTINE
 SHOULD BE DECLARED ADJUSTABLE BUT CANNOT BE
 DECLARED VARYING*/
 PUT SKIP EDIT(STRING)(A); /*PRINT THE SORTED DATA*/
 CALL PLIRETC(4);
 END; /*ENDS PUTOUT*/
 END;
 /*
 //GO.SYSIN DD *
 003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
 002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
 003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
 059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
 073872HOME TAVERN, WESTLEIGH
 000931FOREST, IVER, BUCKS
 /*
 //GO.SYSPRINT DD SYSOUT=A
 //GO.SORTOUT DD SYSOUT=A
 //GO.SYSOUT DD SYSOUT=A
 //GO.SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
 //GO.SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,1)
 //*

Sorting varying-length records using input and output handling routines (continued)

342 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 17. ILC with C
This chapter describes some aspects of InterLanguage Communication (ILC) between PL/I and C. The
examples illustrate how to use many of the data types common to both languages and help you write PL/I
code that either calls or is called by C.

Equivalent data types
This topic lists the common C and PL/I data type equivalents.

Table 89. C and PL/I type equivalents

C type Matching PL/I type

char[...] char(...) varyingz

wchar[...] wchar(...) varyingz

signed char fixed bin(7)

unsigned char unsigned fixed bin(8)

short fixed bin(15)

unsigned short unsigned fixed bin(16)

int fixed bin(31)

unsigned int unsigned fixed bin(32)

long long fixed bin(63)

unsigned long long unsigned fixed bin(64)

float float bin(21)

double float bin(53)

long double float bin(p) (p >= 54)

enum ordinal

typedef define alias

struct define struct

union define union

© Copyright IBM Corp. 1999, 2022 343

Table 89. C and PL/I type equivalents (continued)

C type Matching PL/I type

struct * handle

Simple type equivalence
This example illustrates the translation of the simple typedef for time_t from the C header file time.h.

Table 90. Simple type equivalence

 typedef long time_t;

 define alias time_t fixed bin(31);

Struct type equivalence
This example illustrates the translation of the simple struct for tm from the C header file time.h.

Table 91. Sample struct type equivalence

 struct tm {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
 };

 define structure
 1 tm
 ,2 tm_sec fixed bin(31)
 ,2 tm_min fixed bin(31)
 ,2 tm_hour fixed bin(31)
 ,2 tm_mday fixed bin(31)
 ,2 tm_mon fixed bin(31)
 ,2 tm_year fixed bin(31)
 ,2 tm_wday fixed bin(31)
 ,2 tm_yday fixed bin(31)
 ,2 tm_isdst fixed bin(31)
 ;

344 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Enum type equivalence
This example illustrates the translation of the simple enum __device_t from the C header file stdio.h.

Table 92. Sample enum type equivalence

 typedef enum {
 __disk = 0,
 __terminal = 1,
 __printer = 2,
 __tape = 3,
 __tdq = 5,
 __dummy = 6,
 __memory = 8,
 __hfs = 9,
 __hiperspace = 10
 } __device_t;

 define ordinal __device_t (
 __disk value(0)
 , __terminal value(1)
 , __printer value(2)
 , __tape value(3)
 , __tdq value(4)
 , __dummy value(5)
 , __memory value(8)
 , __zfs value(9)
 , __hiperspace value(10)
);

File type equivalence
A C file declaration depends on the platform, but it often starts as follows:

Table 93. Start of the C declaration for its FILE type

 struct __file {
 unsigned char *__bufPtr;
 ... } FILE;

What is needed is a pointer (or token) for a file, so this translation can be finessed as follows:

Table 94. PL/I equivalent for a C file

 define struct 1 file;
 define alias file_Handle handle file;

Using C functions
Suppose the programmer wants to write a program to read a file and dump it as formatted hex, by using
the C functions fopen and fread.

The code for this program is straightforward:

Chapter 17. ILC with C 345

Table 95. Sample code to use fopen and fread to dump a file

 filedump:
 proc(fn) options(noexecops main);

 dcl fn char(*) var;

 %include filedump;

 file = fopen(fn, 'rb');

 if file = sysnull() then
 do;
 display('file could not be opened');
 return;
 end;

 do forever;
 unspec(buffer) = ''b;

 read_In = fread(addr(buffer), 1, stg(buffer), file);

 if read_In = 0 then
 leave;

 display(heximage(addr(buffer),16,' ') || ' '
 || translate(buffer,(32)'.',unprintable));

 if read_In < stg(buffer) then
 leave;
 end;

 call fclose(file);
 end filedump;

Most of the declarations in the INCLUDE file filedump are obvious:

Table 96. Declarations for filedump program

 define struct 1 file;
 define alias file_Handle handle file;

 define alias size_t unsigned fixed bin(32);
 define alias int signed fixed bin(31);

 dcl file type(file_Handle);
 dcl read_In fixed bin(31);
 dcl buffer char(16);

 dcl unprintable char(32) value(substr(collate(),1,32));

Matching simple parameter types
It would be easy to mistranslate the declarations for the C functions. For instance, the declaration for the
C function fread shown in Table 97 on page 346 can be translated to the declaration as shown in Table
98 on page 347.

Table 97. C declaration of fread

 size_t fread(void *,
 size_t,
 size_t,
 FILE *);

346 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 98. First incorrect declaration of fread

 dcl fread ext
 entry(pointer,
 type size_t,
 type size_t,
 type file_Handle)
 returns(type size_t);

On some platforms, this would not link successfully because C names are case sensitive. In order to
prevent this kind of linker problem, it is best to specify the name in mixed case by using the extended
form of the external attribute. So, for instance, the declaration for fread would be better as follows:

Table 99. Second incorrect declaration of fread

 dcl fread ext('fread')
 entry(pointer,
 type size_t,
 type size_t,
 type file_Handle)
 returns(type size_t);

But this would not run right, because while PL/I parameters are byaddr by default, C parameters are
byvalue by default. To fix this issue, add the byvalue attribute to the parameters:

Table 100. Third incorrect declaration of fread

 dcl fread ext('fread')
 entry(pointer byvalue,
 type size_t byvalue,
 type size_t byvalue,
 type file_Handle byvalue)
 returns(type size_t);

But note how the return value is set in Table 101 on page 347: a fourth parameter (the address of the
temporary _temp5) is passed to the function fread, which is then expected to place the return code in
the integer at that address. This is the convention for how values are returned when the byaddr attribute
applies to returns, and PL/I uses this convention by default.

Table 101. Code generated for RETURNS BYADDR

 * read_In = fread(addr(buffer), 1, stg(buffer), file);
 *
 L r4,FILE(,r13,176)
 L r1,fread(,r5,12)
 LA r2,_temp5(,r13,420)
 LA r8,BUFFER(,r13,184)
 L r15,&EPA_&WSA(,r1,8)
 L r0,&EPA_&WSA(,r1,12)
 ST r0,_CEECAA_(,r12,500)
 LA r1,#MX_TEMP1(,r13,152)
 ST r8,#MX_TEMP1(,r13,152)
 LA r8,1
 ST r8,#MX_TEMP1(,r13,156)
 ST r7,#MX_TEMP1(,r13,160)
 ST r4,#MX_TEMP1(,r13,164)
 ST r2,#MX_TEMP1(,r13,168)
 BALR r14,r15
 L r0,_temp5(,r13,420)
 ST r0,READ_IN(,r13,180)

This would not run right, because C return values are byvalue. To fix this error, add one more byvalue
attribute.

Chapter 17. ILC with C 347

Table 102. Correct declaration of fread

 dcl fread ext('fread')
 entry(pointer byvalue,
 type size_t byvalue,
 type size_t byvalue,
 type file_Handle byvalue)
 returns(type size_t byvalue);

Note how the return value is set now in Table 103 on page 348: no extra address is passed, and the return
value is simply returned in register 15.

Table 103. Code generated for RETURNS BYVALUE

 * read_In = fread(addr(buffer), 1, stg(buffer), file);
 *
 L r2,FILE(,r13,176)
 L r1,fread(,r5,12)
 LA r7,BUFFER(,r13,184)
 L r15,&EPA_&WSA(,r1,8)
 L r0,&EPA_&WSA(,r1,12)
 ST r0,_CEECAA_(,r12,500)
 LA r1,#MX_TEMP1(,r13,152)
 ST r7,#MX_TEMP1(,r13,152)
 LA r7,1
 ST r7,#MX_TEMP1(,r13,156)
 ST r4,#MX_TEMP1(,r13,160)
 ST r2,#MX_TEMP1(,r13,164)
 BALR r14,r15
 LR r0,r15
 ST r0,READ_IN(,r13,180)

Matching string parameter types
Now that fread is translated correctly, suppose a programmer tries this translation for fopen:

Table 104. First incorrect declaration of fopen

 dcl fopen ext('fopen')
 entry(char(*) varyingz byvalue,
 char(*) varyingz byvalue)
 returns(byvalue type file_handle);

But C has no strings, only pointers, and these pointers would be passed by value (byvalue); so the
strings should be by reference (byaddr):

Table 105. Second incorrect declaration of fopen

 dcl fopen ext('fopen')
 entry(char(*) varyingz byaddr,
 char(*) varyingz byaddr)
 returns(byvalue type file_handle);

But PL/I passes descriptors with strings and C does not understand them, so they must be suppressed. To
suppress the descriptors, add options(nodescriptor) to the declaration:

Table 106. Correct declaration of fopen

 dcl fopen ext('fopen')
 entry(char(*) varyingz byaddr,
 char(*) varyingz byaddr)
 returns(byvalue type file_handle)
 options (nodescriptor);

348 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

This will work, but is not optimal because the parameters are input-only; if the parameter is a constant,
the nonassignable attribute will prevent a copy being made and passed. Hence, the best translation of
the declaration of fopen is as follows:

Table 107. Optimal, correct declaration of fopen

 dcl fopen ext('fopen')
 entry(char(*) varyingz nonasgn byaddr,
 char(*) varyingz nonasgn byaddr)
 returns(byvalue type file_handle)
 options (nodescriptor);

At this point, the declare for the fclose function presents few surprises except perhaps for the
optional attribute in the returns specification. This attribute allows you to invoke the fclose function
through a CALL statement and not have to dispose of the return code. But note that if the file were an
output file, the return code on fclose should always be checked because the last buffer is written out
only when the file is closed and that write could fail for lack of space.

Table 108. Declaration of fclose

 dcl fclose ext('fclose')
 entry(type file_handle byvalue)
 returns(optional type int byvalue)
 options (nodescriptor);

Now, on z/OS UNIX, you can compile and run the programs with the commands:

Table 109. Commands to compile and run filedump

 pli -qdisplay=std filedump.pli

 filedump filedump.pli

This will produce the following output:

Table 110. Output of running filedump

 15408689 938584A4 94977A40 97999683 . filedump: proc
 4D86955D 409697A3 899695A2 4D959685 (fn) options(noe
 A7858396 97A24094 8189955D 5E151540 xecops main);..

Functions returning ENTRYs
The C quicksort function qsort takes a compare routine. For instance, to sort an array of integers, the
following function (which use the byvalue attribute twice) could be used:

Chapter 17. ILC with C 349

Table 111. Sample compare routine for C qsort function

 comp2:
 proc(key, element)
 returns(fixed bin(31) byvalue);

 dcl (key, element) pointer byvalue;
 dcl word based fixed bin(31);

 select;
 when(key->word < element->word)
 return(-1);
 when(key->word = element->word)
 return(0);
 otherwise
 return(+1);
 end;
 end;

And the C qsort function could be used with this compare routine to sort an array of integers, as in the
following code fragment:

Table 112. Sample code to use C qsort function

 dcl a(1:4) fixed bin(31) init(19,17,13,11);

 put skip data(a);

 call qsort(addr(a), dim(a), stg(a(1)), comp2);

 put skip data(a);

But because C function pointers are not the same as PL/I ENTRY variables, the C qsort function must not
be declared simply as follows:

Table 113. Incorrect declaration of qsort

 dcl qsort ext('qsort')
 entry(pointer,
 fixed bin(31),
 fixed bin(31),
 entry returns(byvalue fixed bin(31))
)
 options(byvalue nodescriptor);

Recall that a PL/I ENTRY variable might point to a nested function (and thus requires a backchain address
as well as an entry point address). But a C function pointer is limited in pointing to a non-nested function
only, and so a PL/I ENTRY variable and a C function pointer do not even use the amount of storage.

However, a C function pointer is equivalent to the PL/I type LIMITED ENTRY. Therefore, the C qsort
function could be declared as follows:

Table 114. Correct declaration of qsort

 dcl qsort ext('qsort')
 entry(pointer,
 fixed bin(31),
 fixed bin(31),
 limited entry
 returns(byvalue fixed bin(31))
)
 options(byvalue nodescriptor);

350 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Linkages
On z/OS, there are two crucial facts about linkages:

• IBM C, JAVA and Enterprise PL/I use the same linkage by default.
• This linkage is not the system linkage.

For a traditional PL/I application where all parameters are byaddr, the differences between the code
generated when a function has the default linkage and the code generated when the function has the
system linkage would usually not matter. But if the parameters are byvalue (as they usually are in C and
JAVA), the differences can break your code.

In fact, there is only a small difference if the parameters are byaddr. In Table 115 on page 351, the only
difference between the code generated for a function with the default linkage and for one with the system
linkage is that the high-order bit is turned on for the last parameter of the system linkage call.

This difference is transparent to most programs.

Table 115. Code when parameters are BYADDR

 dcl dfta ext entry(fixed bin(31) byaddr
 ,fixed bin(31) byaddr);
 dcl sysa ext entry(fixed bin(31) byaddr
 ,fixed bin(31) byaddr)
 options(linkage(system));

 * call dfta(n, m);
 *
 LA r0,M(,r13,172)
 LA r2,N(,r13,168)
 L r15,=V(DFTV)(,r3,126)
 LA r1,#MX_TEMP1(,r13,152)
 ST r2,#MX_TEMP1(,r13,152)
 ST r0,#MX_TEMP1(,r13,156)
 BALR r14,r15
 *
 * call sysa(n, m);
 *
 LA r0,M(,r13,172)
 LA r2,N(,r13,168)
 O r0,=X'80000000'
 L r15,=V(SYSV)(,r3,130)
 LA r1,#MX_TEMP1(,r13,152)
 ST r2,#MX_TEMP1(,r13,152)
 ST r0,#MX_TEMP1(,r13,156)
 BALR r14,r15

But, there is a big difference if the parameters are byvalue rather than byaddr. In Table 116 on page
352, for the function with the default linkage, register 1 points to the values of the integers passed, while
for the function with the system linkage, register 1 points to the addresses of those values.

This difference is not transparent to most programs.

Chapter 17. ILC with C 351

Table 116. Code when parameters are BYVALUE

 dcl dftv ext entry(fixed bin(31) byvalue
 ,fixed bin(31) byvalue);
 dcl sysv ext entry(fixed bin(31) byvalue
 ,fixed bin(31) byvalue)
 options(linkage(system));

 * call dftv(n, m);
 *
 L r2,N(,r13,168)
 L r0,M(,r13,172)
 L r15,=V(DFTV)(,r3,174)
 LA r1,#MX_TEMP1(,r13,152)
 ST r2,#MX_TEMP1(,r13,152)
 ST r0,#MX_TEMP1(,r13,156)
 BALR r14,r15
 *
 * call sysv(n, m);
 *
 L r1,N(,r13,168)
 L r0,M(,r13,172)
 ST r0,#wtemp_1(,r13,176)
 LA r0,#wtemp_1(,r13,176)
 ST r1,#wtemp_2(,r13,180)
 LA r2,#wtemp_2(,r13,180)
 O r0,=X'80000000'
 L r15,=V(SYSV)(,r3,178)
 LA r1,#MX_TEMP1(,r13,152)
 ST r2,#MX_TEMP1(,r13,152)
 ST r0,#MX_TEMP1(,r13,156)
 BALR r14,r15

Sharing output and input
This section provides information about sharing output and input with a C program by specifying the
STDSYS option.

For more information and limitations about the STDSYS option, see the following information:

• “STDSYS” on page 86 in Chapter 1, “Using compiler options and facilities,” on page 3.
• Stream I/O with unprintable characters in Enterprise PL/I for z/OS Compiler and Run-Time Migration

Guide.

Sharing output
If you want to share SYSPRINT with a C program, you must compile your PL/I code with the STDSYS
option.

By default, DISPLAY statements use WTO’s to display their output. If you specify the DISPLAY(STD)
compiler option, DISPLAY statements will use the C puts function to display their output. This can be
particularly useful under z/OS UNIX.

Behavior of the standard C stream for sharing output under MVS batch, TSO batch, IMS batch, and IMS
interactive is as follows:

1. stdout goes first to DD:SYSPRINT.
2. If DD:SYSPRINT does not exist, stdout looks for DD:SYSTERM.
3. If neither DD:SYSTERM nor DD:SYSERR exists, the library opens a sysout=* data set by using DD

SYSPRINT and sends the stdout stream to it.

352 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Sharing input
To share SYSIN with a C program, you must compile the application with the STDSYS option and open
SYSIN as an input stream file. Avoid using the DD names that are reserved by the C Library.

You can also copy SYSIN to a temporary data set in a prior job step and use that as SYSIN in your PL/I job
step; it can be shared when it is not allocated to an instream file.

An input stream file can be opened only once when it is allocated to the SYSIN DD in JCL.

Behavior of the standard C stream for sharing input under MVS batch, TSO batch, IMS batch, and IMS
interactive is as follows:

1. stdin goes to DD:SYSIN.
2. If DD:SYSIN does not exist, all read operations from stdin fails.

Using the ATTACH statement
The ATTACH statement in a PL/I program uses the underlying pthread library to perform thread
management. When the ATTACH statement is issued, the pthread library tries to allocate standard C
stream files.

After the ATTACH statement is issued, any attempt to open SYSIN by the application fails when SYSIN is
an instream file that is allocated to the SYSIN DD in JCL (for example, ⁄⁄SYSIN DD * or ⁄⁄SYSIN DD
DATA). A SYSIN OPEN FAILED error is issued.

Redirecting C standard streams
Use the STDSYS option in all mixed PL/I and C applications and all multithreading applications.

If you compile your program with the NOSTDSYS option, it might conflict with the use of the SYSIN DD
name and the SYSPRINT DD name in C.

For example, if your program has the ATTACH statement, it starts the C environment directly. Starting the
C environment causes the SYSIN and SYSPRINT streams to be opened and closed independent of your
PL/I application programs. In same cases, SYSIN might fail to open, or the SYSPRINT data set might be
overwritten.

Summary
This topic provides a summary of the key points described in this section.

• C is case sensitive.
• Parameters should be BYVALUE.
• Return values should be BYVALUE.
• String parameters should be BYADDR.
• Arrays and structures should also be BYADDR.
• No descriptors should be passed.
• Input-only strings should be NONASSIGNABLE.
• C function pointers map to LIMITED ENTRYs.
• The IBM C compilers and the IBM PL/I compilers use the same default linkage (and it matters).

Chapter 17. ILC with C 353

354 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 18. Interfacing with Java
This chapter gives a brief description of Java™ and the Java Native Interface (JNI) and explains why you
might be interested in using it with PL/I.

This chapter describes a simple Java-PL/I application and provides information about compatibility
between the two languages. Instructions on how to build and run the Java-PL/I sample applications
assume that the work is being done in the z/OS UNIX System Services environment of z/OS.

Before you can communicate with Java from PL/I, you need to have Java installed on your z/OS system.
Contact your local System Administrator for more information about how to set up your z/OS Java
environment. For more information, refer to the IBM Java’s support website at https://www.ibm.com/
support/pages/java-sdk-products-zos.

These sample programs have been compiled and tested with IBM SDK for z/OS, Java Technology Edition
Version 8.0, and IBM Semeru Runtime Certified Edition for z/OS Version 11.0. To determine the level of
Java in your z/OS UNIX System Services environment, enter this command from the command line:

java -version

The active Java version is then displayed, as in the following example:

java version "11.0.15" 2022-04-19
IBM Semeru Runtime Certified Edition for z/OS 11.0.15.0 (build 11.0.15+10)
IBM J9 VM 11.0.15.0 (build z/OS-Release-11.0.15.0-b01, JRE 11 z/OS s390x-64-Bit

IBM Java Version 8.0 is available in 31-bit and 64-bit. IBM Semeru is 64-bit only. Ensure the proper
libraries are accessible in your environment.

For communication with 64-bit Java, the simplest and most straightforward method is to use 64-bit PL/I.

For communication between 64-bit Java and 31-bit PL/I, we recommend having the 64-bit Java program
call a 64-bit PL/I interface routine, which can call the 31-bit PL/I routine. For PL/I 31-bit and 64-bit
interoperability, the Enterprise PL/I for z/OS 6.1 compiler is required. For more details about this feature,
see Chapter 19, “Mixing AMODE 31 and AMODE 64 code,” on page 377.

Java Native Interface (JNI)
Java provides a platform for building highly robust, scalable and reliable modern enterprise apps.
Developers can build batch and transactional apps, microservices, and more by using Java’s APIs,
libraries, and frameworks. The Java Native Interface (JNI) is the Java interface to native programming
languages and is part of the Java Development Kits.

Writing programs that use JNI is one way of ensuring that your code is portable across many platforms.

The JNI allows Java code that runs within a Java Virtual Machine (JVM) to operate with applications and
libraries written in other languages, such as PL/I. In addition, the Invocation API allows you to embed a
Java Virtual Machine into your PL/I applications.

Java is a fairly complete programming language; however, there are situations in which you want to call
a program written in another programming language. You can do this from Java with a method call to a
native language, known as a native method.

These are some reasons to use native methods:

• The native language has a special capability that your application needs and that the standard Java
class libraries lack.

• You already have many existing applications in your native language and you wish to make them
accessible to a Java application.

• You want to implement an intensive series of complicated calculations in your native language and have
your Java applications call these functions.

© Copyright IBM Corp. 1999, 2022 355

https://www.ibm.com/support/pages/java-sdk-products-zos
https://www.ibm.com/support/pages/java-sdk-products-zos

• You or your programmers have a broader skill set in your native language and you do not wish to loose
this advantage.

Programming through the JNI lets you use native methods to do many different operations:

• A native method can utilize Java objects in the same way that a Java method uses these objects.
• A native method can create Java objects, including arrays and strings, and then inspect and use these

objects to perform its tasks.
• A native method can inspect and use objects created by Java application code.
• A native method can update Java objects that it created or were passed to it, and these updated objects

can then be made available to the Java application.

Finally, native methods can also easily call already existing Java methods, capitalizing on the functionality
already incorporated in the Java programming framework. In these ways, both the native language side
and the Java side of an application can create, update, and access Java objects and then share these
objects between them.

With Java, the use of direct byte buffers allows it to access data stored in memory owned by the
native application. This off-heap (off Java heap) memory is one way of marshalling data across language
boundaries, which helps with performance. Refer to the IBM Java manuals for more detailed information.

Calling PL/I program from Java
When a PL/I program is called from a Java program, all files opened in PL/I must be explicitly closed in
PL/I before PL/I returns control to Java for the last time.

Similarly, all modules that are fetched in the PL/I program must be released.

JNI sample program #1 - 'Hello World'
The first sample program is another variation of the "Hello World!" program. The "Hello World!"
program has one Java class, callingPLI.java. The native method, written in PL/I, is contained in
hiFromPLI.pli.

Here is a brief overview of the steps to create this sample program:

1. Write a Java program that defines a class containing a native method, loads the native load library, and
calls the native method.

2. Compile the Java program to create a Java class.
3. Write a PL/I program that implements the native method and displays the "Hello!" text.
4. Compile and link the PL/I program.
5. Run the Java program that calls the native method in the PL/I program.

Step 1: Writing the Java program
1. Declare the native method.

All methods, whether Java methods or native methods, must be declared within a Java class. The
only difference in the declaration of a Java method and a native method is the keyword native. The
native keyword tells Java that the implementation of this method will be found in a native library that
will be loaded during the execution of the program. You can declare the native method as follows:

public native void callToPLI();

In the above statement, the void means that there is no return value expected from this native
method call. The empty parentheses in the method name callToPLI() means that there are no
parameters being passed on the call to the native method.

2. Load the native library so that the native library will be loaded at execution time.

356 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

You can use the following Java statement to load the native library:

 static {
 System.loadLibrary("hiFromPLI");
 }

In the above statement, the Java System method System.loadLibrary(...) is called to find and
load the native library. The PL/I shared library, libhiFromPLI.so, will be created during the step
that compiles and links the PL/I program.

3. Write the Java Main method.

The callingPLI class also includes a main method to instantiate the class and call the native
method. The main method instantiates callingPLI and calls the callToPLI() native method.

The complete definition of the callingPLI class, including all the points addressed above in this
topic, is as follows:

 public class callingPLI {
 public native void callToPLI();
 static {
 System.loadLibrary("hiFromPLI");
 }
 public static void main(String[] argv) {
 callingPLI callPLI = new callingPLI();
 callPLI.callToPLI();
 System.out.println("And Hello from Java, too!");
 }
 }

Step 2: Compiling the Java program
Use the Java compiler to compile the callingPLI class into an executable form.
You can use the following command:

javac callingPLI.java

Step 3: Writing the PL/I Program
The PL/I implementation of the native method looks much like any other PL/I subroutine.

Useful PL/I compiler options
The sample programs contain a series of *PROCESS statements that define the important compiler
options.

• 31-bit

*Process Limits(Extname(100)) Margins(1, 100) ;
*Process Display(Std) Dllinit Extrn(Short);
*Process Rent Default(ASCII IEEE);

• 64-bit

*Process Limits(Extname(100)) Margins(1, 100) ;
*Process Display(Std) Dllinit Extrn(Short);
*Process LP(64) Default(ASCII IEEE);

Here is a brief description of them and why they are useful:

Extname(100)
Allows for longer, Java style, external names.

Margins(1,100)
Extending the margins gives you more room for Java style names and identifiers.

Chapter 18. Interfacing with Java 357

Display(Std)
Writes the "Hello World" text to stdout, not through WTOs. In the z/OS UNIX environment WTOs
would not be seen by the user.

Dllinit
Includes the initialization code needed for creating a DLL.

Extrn(Short)
EXTRNs are emitted only for those constants that are referenced.

Default(ASCII IEEE)
ASCII specifies that CHARACTER and PICTURE data is held in ASCII - the form in which it is held by
JAVA.
IEEE specifies that FLOAT data is held in IEEE format - the form in which it is held by JAVA.

RENT
Ensures that code is reentrant even if it writes on static variables.

Note: For 64-bit, add the LP(64) compiler option. The RENT option can also be removed as LP(64) implies
RENT.

Correct form of PL/I procedure name and procedure statement
The PL/I procedure name must conform to the Java naming convention in order to be located by the Java
Class Loader at execution time. The Java naming scheme consists of three parts. The first part identifies
the routine to the Java environment, the second part is the name of the Java class that defines the native
method, and the third part is the name of the native method itself.

Here is a breakdown of PL/I procedure name Java_callingPLI_callToPLI in the sample program:

Java
All native methods resident in dynamic libraries must begin with Java.

_callingPLI
The name of the Java class that declares the native method.

_callToPLI
The name of the native method itself.

Note: There is an important difference between coding a native method in PL/I and in C. The javah tool,
which is supplied with the JDK, generates the form of the external references required for C programs.
When you write your native methods in PL/I and follow the rules above for naming your PL/I external
references, performing the javah step is not necessary for PL/I native methods.

In addition, the following options must be specified in the OPTIONS option on the PROCEDURE
statement:

• FromAlien
• NoDescriptor
• ByValue

The complete procedure statement for the sample program is as follows:

 Java_callingPLI_callToPLI:
 Proc(JNIEnv , MyJObject)
 External("Java_callingPLI_callToPLI")
 Options(FromAlien NoDescriptor ByValue);

JNI include file
The two PL/I include files that contain the PL/I definitions of the Java Native interface are ibmzjni.inc,
which in turn includes ibmzjnim.inc. These include files are included with this statement:

 %include ibmzjni;

358 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

The ibmzjni and ibmzjnim include files are provided in the PL/I SIBMZSAM data set.

The complete PL/I procedure
For completeness, here are the entire PL/I programs that define the native method:

• 31-bit

*Process Limits(Extname(100)) Margins(1, 100) ;
*Process Display(Std) Dllinit Extrn(Short);
*Process Rent Default(ASCII IEEE);
PliJava_Demo: Package Exports(*);

 Java_callingPLI_callToPLI:
 Proc(JNIEnv , MyJObject)
 External("Java_callingPLI_callToPLI")
 Options(FromAlien NoDescriptor ByValue);

 %include ibmzjni;
 Dcl myJObject Type jObject;

 Display('Hello from Enterprise PL/I!');

End;

• 64-bit

*Process Limits(Extname(100)) Margins(1, 100) ;
*Process Display(Std) Dllinit Extrn(Short);
*Process LP(64) Default(ASCII IEEE);
PliJava_Demo: Package Exports(*);

 Java_callingPLI_callToPLI:
 Proc(JNIEnv , MyJObject)
 External("Java_callingPLI_callToPLI")
 Options(FromAlien NoDescriptor ByValue);

 %include ibmzjni;
 Dcl myJObject Type jObject;

 Display('Hello from Enterprise PL/I!');

End;

Step 4: Compiling and linking the PL/I program
1. Compile the PL/I sample program with the following command:

 pli -c hiFromPLI.pli

2. Link the resulting PL/I object deck into a shared library with the following commands:

• 31-bit

c89 -o libhiFromPLI.so hiFromPLI.o

• 64-bit

c89 -Wl,”LP64,DLL” -o libhiFromPLI.so hiFromPLI.o

Ensure to include the lib prefix on the name of the PL/I shared library; otherwise, the Java class
loader cannot find it.

Step 5: Running the sample program
Run the Java-PL/I sample program with this command:

 java callingPLI

Chapter 18. Interfacing with Java 359

The output of the sample program is as follows:

 Hello from Enterprise PL/I!
 And Hello from Java, too!

The first line written from the PL/I native method. The second line is from the calling Java class after
returning from the PL/I native method call.

Ensure the shared library location is added to LIBPATH or referenced by the java.library.path
property.

JNI sample program #2 - Passing a string
This sample program passes a string back and forth between Java and PL/I.

See Table 117 on page 361 for the complete listing of the jPassString.java program. The Java
portion has one Java class, jPassString.java. The native method, written in PL/I, is contained in
passString.pli. Much of the information from “JNI sample program #1 - 'Hello World'” on page 356
applies to this sample program as well. The following topics discuss only new or different aspects for this
sample program.

Step 1: Writing the Java program
1. Declare the native method.

public native void pliShowString();

2. Load the native library.

 static {
 System.loadLibrary("passString");
 }

3. Write the Java Main method.

The jPassString class also includes a main method to instantiate the class and call the native
method. The main method instantiates jPassString and calls the pliShowString() native
method.

This sample program prompts the user for a string and reads that value in from the command line. This
is done within a try/catch statement as shown in Table 117 on page 361.

360 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 117. Java sample program #2 - Passing a string

 // Read a string, call PL/I, display new string upon return
 import java.io.*;

 public class jPassString{

 /* Field to hold Java string */
 String myString;

 /* Load the PL/I native library */
 static {
 System.loadLibrary("passString");
 }

 /* Declare the PL/I native method */
 public native void pliShowString();

 /* Main Java class */
 public static void main(String[] arg) {

 System.out.println(" ");

 /* Instantiate Java class and initialize string */
 jPassString myPassString = new jPassString();
 myPassString.myString = " ";

 /* Prompt user for a string */
 try {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(System.in));

 /* Process until 'quit' received */
 while (!myPassString.myString.equalsIgnoreCase("quit")) {
 System.out.println(
 "From Java: Enter a string or 'quit' to quit.");
 System.out.print("Java Prompt > ");
 /* Get string from command line */
 myPassString.myString = in.readLine();
 if (!myPassString.myString.equalsIgnoreCase("quit"))
 {
 /* Call PL/I native method */
 myPassString.pliShowString();
 /* Return from PL/I and display new string */
 System.out.println(" ");
 System.out.println(
 "From Java: String set by PL/I is: "
 + myPassString.myString);
 }
 }
 } catch (IOException e) {
 }
 }
 }

Step 2: Compiling the Java program
Use the Java compiler to compile the Java code.
You can use the following command:

javac jPassString.java

Step 3: Writing the PL/I program
All of the information about writing the PL/I "Hello World" sample program, as described in “Step 3:
Writing the PL/I Program” on page 357, applies to this program as well.

Correct form of PL/I procedure name and procedure statement
The PL/I procedure name for this program is Java_jPassString_pliShowString.

Chapter 18. Interfacing with Java 361

The complete procedure statement for the sample program is as follows:

 Java_jPassString_pliShowString:
 Proc(JNIEnv , myjobject)
 external("Java_jPassString_pliShowString")
 Options(FromAlien NoDescriptor ByValue);

JNI include file
The two PL/I include files that contain the PL/I definitions of the Java Native interface are ibmzjni.inc,
which in turn includes ibmzjnim.inc. These include files are included with this statement:

 %include ibmzjni;

The ibmzjni and ibmzjnim include files are provided in the PL/I SIBMZSAM data set.

The complete PL/I procedure
The complete PL/I program is shown in Table 118 on page 363. This sample PL/I program makes several
calls through JNI.

Upon entry, a reference to the calling Java Object, myObject is passed into the PL/I procedure. The PL/I
program uses this reference to get information from the calling object. The first piece of information is the
Class of the calling object, which is retrieved through the GetObjectClass JNI function. This Class value
is then used by the GetFieldID JNI function to get the identity of the Java string field in the Java object.
This Java field is further identified by the name of the field, myString, and the JNI field descriptor,
Ljava/lang/String;, which identifies the field as a Java String field. The value of the Java string field
is then retrieved by the GetObjectField JNI function. Before PL/I can use the Java string value, it must
be unpacked into a form that PL/I can understand. The GetStringUTFChars JNI function converts the
Java string into a PL/I varyingz string, which is then displayed by the PL/I program.

After displaying the retrieved Java string, the PL/I program prompts the user for a PL/I string to be used
to update the string field in the calling Java object. The PL/I string value is converted to a Java string by
the NewString JNI function. This new Java string is then used to update the string field in the calling
Java object by the SetObjectField JNI function.

When the PL/I program ends, control is returned to Java, where the newly updated Java string is
displayed by the Java program.

362 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 118. PL/I sample program #2 - Passing a string

*Process Limits(Extname(100)) Margins(1, 100) ;
*Process Display(Std) Dllinit Extrn(Short);
*Process Rent Default(ASCII IEEE);
plijava_demo: package exports(*);

 Java_passString_pliShowString:
 Proc(JNIEnv , myJObject)
 external("Java_jPassString_pliShowString")
 Options(FromAlien NoDescriptor ByValue);

 %include ibmzjni;

 Dcl myBool Type jBoolean;
 Dcl myClazz Type jClass;
 Dcl myFID Type jFieldID;
 Dcl myJObject Type jObject;
 Dcl myJString Type jString;
 Dcl newJString Type jString;
 Dcl myID Char(9) Varz static init('myString');
 Dcl mySig Char(18) Varz static
 init('Ljava/lang/String;');
 Dcl pliStr Char(132) Varz Based(pliStrPtr);
 Dcl (pliReply, pliReplyA) Char(132) Varz;
 Dcl pliStrPtr Pointer;
 Dcl nullPtr Pointer;

 Display(' ');

 /* Get information about the calling Class */
 myClazz = GetObjectClass(JNIEnv, myJObject);

 /* Get Field ID for String field from Java */
 myFID = GetFieldID(JNIEnv, myClazz, myID, mySig);

 /* Get the Java String in the string field */
 myJString = GetObjectField(JNIEnv, myJObject, myFID);

 /* Convert the Java String to a PL/I string */
 pliStrPtr = GetStringUTFChars(JNIEnv, myJString, myBool);

 Display('From PLI: String retrieved from Java is: ' || pliStr);
 Display('From PLI: Enter a string to be returned to Java:')
 reply(pliReplyA);

 /* Convert to EBCDIC */
 Call PLIEBCDIC(addr(pliReply), addr(pliReplyA), len(pliReplyA));

 /* Convert the new PL/I string to a Java String */
 newJString = NewString(JNIEnv, trim(pliReply), length(pliReply));

 /* Change the Java String field to the new string value */
 nullPtr = SetObjectField(JNIEnv, myJObject, myFID, newJString);

 End;

end;

Note: The example shown is for 31-bit. For 64-bit, add the LP(64) compiler option.

Step 4: Compiling and linking the PL/I program
1. Compile the PL/I sample program with the following command:

 pli -c passString.pli

2. Link the resulting PL/I object deck into a shared library with the following commands:

• 31-bit

c89 -o libpassString.so passString.o

Chapter 18. Interfacing with Java 363

• 64-bit

c89 -Wl,”LP64,DLL” -o libpassString.so passString.o

Ensure to include the lib prefix on the name; otherwise, the PL/I shared library or the Java class
loader cannot find it.

Step 5: Running the sample program
Run the Java-PL/I sample program with this command:

 java jPassString

The output of the sample program, complete with the prompts for user input from both Java and PL/I, is
as follows:

 >java jPassString

 From Java: Enter a string or 'quit' to quit.
 Java Prompt > A string entered in Java

 From PLI: String retrieved from Java is: A string entered in Java
 From PLI: Enter a string to be returned to Java:
 A string entered in PL/I

 From Java: String set by PL/I is: A string entered in PL/I
 From Java: Enter a string or 'quit' to quit.
 Java Prompt > quit
 >

Ensure the shared library location is added to LIBPATH or referenced by the java.library.path
property.

JNI sample program #3 - Passing an integer
This sample program passes an integer back and forth between Java and PL/I.

See Table 119 on page 365 for the complete listing of the jPassInt.java program. The Java portion
has one Java class, jPassInt.java. The native method, written in PL/I, is contained in passInt.pli.
Much of the information from “JNI sample program #1 - 'Hello World'” on page 356 applies to this
sample program as well. The following topics discuss only new or different aspects for this sample
program.

Step 1: Writing the Java program
1. Declare the native method.

public native void pliShowInt();

2. Load the native library.

 static {
 System.loadLibrary("passInt");
 }

3. Write the Java Main method.

The jPassInt class also includes a main method to instantiate the class and call the native method.
The main method instantiates jPassInt and calls the pliShowInt() native method.

This sample program prompts the user for an integer and reads that value in from the command line.
This is done within a try/catch statement as shown in Table 119 on page 365.

364 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 119. Java sample program #3 - Passing an integer

 // Read an integer, call PL/I, display new integer upon return
 import java.io.*;
 import java.lang.*;

 public class jPassInt{

 /* Fields to hold Java string and int */
 int myInt;
 String myString;

 /* Load the PL/I native library */
 static {
 System.loadLibrary("passInt");
 }

 /* Declare the PL/I native method */
 public native void pliShowInt();

 /* Main Java class */
 public static void main(String[] arg) {

 System.out.println(" ");

 /* Instantiate Java class and initialize string */
 jPassInt pInt = new jPassInt();
 pInt.myInt = 1024;
 pInt.myString = " ";

 /* Prompt user for an integer */
 try {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(System.in));

 /* Process until 'quit' received */
 while (!pInt.myString.equalsIgnoreCase("quit")) {
 System.out.println
 ("From Java: Enter an Integer or 'quit' to quit.");
 System.out.print("Java Prompt > ");
 /* Get string from command line */
 pInt.myString = in.readLine();
 if (!pInt.myString.equalsIgnoreCase("quit"))
 {
 /* Set int to integer value of String */
 pInt.myInt = Integer.parseInt(pInt.myString);
 /* Call PL/I native method */
 pInt.pliShowInt();
 /* Return from PL/I and display new string */
 System.out.println(" ");
 System.out.println
 ("From Java: Integer set by PL/I is: " + pInt.myInt);
 }
 }
 } catch (IOException e) {
 }
 }

 }

Step 2: Compiling the Java program
Use the Java compiler to compile the Java code.
You can use the following command:

 javac jPassInt.java

Step 3: Writing the PL/I program
All of the information about writing the PL/I "Hello World" sample program, as described in “Step 3:
Writing the PL/I Program” on page 357, applies to this program as well.

Chapter 18. Interfacing with Java 365

Correct form of PL/I procedure name and procedure statement
The PL/I procedure name for this program is Java_jPassInt_pliShowInt.

The complete procedure statement for the sample program is as follows:

 Java_passNum_pliShowInt:
 Proc(JNIEnv , myjobject)
 external("Java_jPassInt_pliShowInt")
 Options(FromAlien NoDescriptor ByValue);

JNI include file
The two PL/I include files that contain the PL/I definitions of the Java native interface are ibmzjni.inc,
which in turn includes ibmzjnim.inc. These include files are included with this statement:

 %include ibmzjni;

The ibmzjni and ibmzjnim include files are provided in the PL/I SIBMZSAM data set.

The complete PL/I procedure
The complete PL/I program is shown in Table 120 on page 367. This sample PL/I program makes several
calls through the JNI.

Upon entry, a reference to the calling Java object, myObject, is passed into the PL/I procedure. The PL/I
program uses this reference to get information from the calling object. The first piece of information is
the Class of the calling object, which is retrieved by the GetObjectClass JNI function. This Class value
is then used by the GetFieldID JNI function to get the identity of the Java integer field in the Java
object. This Java field is further identified by the name of the field, myInt, and the JNI field descriptor,
I, which identifies the field as an integer field. The value of the Java integer field is then retrieved by the
GetIntField JNI function, which is then displayed by the PL/I program.

After displaying the retrieved Java integer, the PL/I program prompts the user for a PL/I integer to be
used to update the integer field in the calling Java object. The PL/I integer value is then used to update
the integer field in the calling Java object by the SetIntField JNI function.

When the PL/I program ends, control is returned to Java, where the newly updated Java integer is
displayed by the Java program.

366 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 120. PL/I sample program #3 - Passing an integer

 *Process Limits(Extname(100)) Margins(1, 100) ;
 *Process Display(Std) Dllinit Extrn(Short);
 *Process Rent Default(ASCII IEEE);
 plijava_demo: package exports(*);

 Java_passNum_pliShowInt:
 Proc(JNIEnv , myjobject)
 external("Java_jPassInt_pliShowInt")
 Options(FromAlien NoDescriptor ByValue);

 %include ibmzjni;

 Dcl myClazz Type jClass;
 Dcl myFID Type jFieldID;
 Dcl myJInt Type jInt;
 dcl rtnJInt Type jInt;
 Dcl myJObject Type jObject;
 Dcl pliReply Char(132) Varz;
 Dcl nullPtr Pointer;

 Display(' ');

 /* Get information about the calling Class */
 myClazz = GetObjectClass(JNIEnv, myJObject);

 /* Get Field ID for int field from Java */
 myFID = GetFieldID(JNIEnv, myClazz, "myInt", "I");

 /* Get Integer value from Java */
 myJInt = GetIntField(JNIEnv, myJObject, myFID);

 display('From PLI: Integer retrieved from Java is: ' || trim(myJInt));
 display('From PLI: Enter an integer to be returned to Java:')
 reply(pliReply);

 rtnJInt = pliReply;

 /* Set Integer value in Java from PL/I */
 nullPtr = SetIntField(JNIEnv, myJObject, myFID, rtnJInt);

 End;

 end;

Note: The example shown is for 31-bit. For 64-bit, add the LP(64) compiler option.

Step 4: Compiling and linking the PL/I program
1. Compile the PL/I sample program with the following command:

 pli -c passInt.pli

2. Link the resulting PL/I object deck into a shared library with the following commands:

• 31-bit

c89 -o libpassInt.so passInt.o

• 64-bit

c89 -Wl,”LP64,DLL” -o libpassInt.so passInt.o

Ensure to include the lib prefix on the name; otherwise, the PL/I shared library or the Java class
loader cannot find it.

Step 5: Running the sample program
Run the Java-PL/I sample program with this command:

Chapter 18. Interfacing with Java 367

 java jPassInt

The output of the sample program, complete with the prompts for user input from both Java and PL/I, is
as follows:

 >java jPassInt

 From Java: Enter an Integer or 'quit' to quit.
 Java Prompt > 12345

 From PLI: Integer retrieved from Java is: 12345
 From PLI: Enter an integer to be returned to Java:
 54321

 From Java: Integer set by PL/I is: 54321
 From Java: Enter an Integer or 'quit' to quit.
 Java Prompt > quit
 >

Ensure the shared library location is added to LIBPATH or referenced by the java.library.path
property.

JNI sample program #4 - Java invocation API
This sample program is a little different from the previous samples. In this sample, PL/I invokes Java first
through the Java invocation API, creating an embedded Java Virtual Machine (JVM). PL/I then calls a Java
method, passing to it a string that the Java method then displays.

The PL/I sample program is named createJVM.pli and the Java method it calls is contained in
javaPart.java.

Step 1: Writing the Java program
Because this sample does not use a PL/I native method, there is no need to declare one. Instead, the
Java portion for this sample is just a simple Java method.

Write the Java Main method.

The javaPart class contains only one statement. This statement prints out a short 'Hello World...'
from Java, and then appends the string that was passed to it from the PL/I program. The entire class is
shown in Table 121 on page 368.

Table 121. Java sample program #4 - Receiving and printing a string

// Receive a string from PL/I then display it after saying "Hello"
public class javaPart {
 public static void main(String[] args) {
 System.out.println("From Java - Hello World... " + args[0]);
 }
}

Step 2: Compiling the Java program
Use the Java compiler to compile the Java code.
You can use the following command:

 javac javaPart.java

368 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Step 3: Writing the PL/I program
Most of the information about writing the PL/I "Hello World" sample program, as described in “Step 3:
Writing the PL/I Program” on page 357, applies to this program as well. However, because in this sample
PL/I is calling Java, there are some additional points to consider.

Correct form of PL/I procedure name and procedure statement
Because in this sample the PL/I program is calling Java, the PL/I program is MAIN. There is no need to be
concerned about the external name of this PL/I program because it is not referenced.

The complete procedure statement for the sample program is as follows:

createJVM: Proc Options(Main);

JNI include file
The two PL/I include files that contain the PL/I definitions of the Java native interface are ibmzjni.inc,
which in turn includes ibmzjnim.inc. Even though in this sample PL/I is calling Java, these include files
are still necessary. These include files are included with this statement:

 %include ibmzjni;

The ibmzjni and ibmzjnim include files are provided in the PL/I SIBMZSAM data set.

Linking the PL/I program with the Java library
Note: This section applies to 31-bit only.

Because this PL/I sample program calls Java, the program must link to the Java library. The Java libraries
are linked with XPLINK and the PL/I modules are not. PL/I can still link to and call XPLINK libraries
but you must use the PLIXOPT variable to specify the XPLINK=ON runtime option. You can declare the
PLIXOPT variable as follows:

 Dcl PLIXOPT Char(40) Varying Ext Static Init('XPLINK(ON)'e);

For a description of PLIXOPT, see the z/OS Language Environment Programming Guide.

Using the Java invocation API
This PL/I sample program calls the Java invocation API JNI_CreateJavaVM to create its own embedded
JVM. This API requires certain structures to be set up and initialized correctly as shown in Table 122 on
page 371.

1. JNI_GetDefaultJavaVMInitArgs is called to get the default initialization options.
2. These default options are modified with the addition of the java.class.path information.
3. JNI_CreateJavaVM is called to create the embedded JVM.

The complete PL/I program
The complete PL/I programs for 31-bit and 64-bit are shown in Table 122 on page 371 and Table 123 on
page 372 respectively. The sample PL/I programs make several calls through the JNI.

In this sample, the reference to the Java object, a newly created JVM in this case, is not passed
in but is instead returned from the call to the JNI_CreateJavaVM API. The PL/I program uses this
reference to get information from the JVM. The first piece of information is the Class containing the Java
method to call. This Class is found by the FindClass JNI function. The Class value is then used by the
GetStaticMethodID JNI function to get the identity of the Java method that will be called.

Chapter 18. Interfacing with Java 369

Before calling this Java method, convert the PL/I string into a format that Java understands. The PL/I
program holds the string in ASCII format. Java strings are stored in UTF format. In addition, Java strings
are not really strings as PL/I programmers understand them but are themselves a Java class and can only
be modified through methods. To create a Java string, use the NewStringUTF JNI function. This function
returns a Java object called myJString that contains the PL/I string converted to UTF. Next create a Java
object array by calling the NewObjectArray JNI function, passing to it the reference to the myJString
object. This function returns a reference to a Java object array containing the string for the Java method
to display.

Now the Java method can be called by the CallStaticVoidMethod JNI function and will then display
the string passed to it. After displaying the string, the PL/I program destroys the embedded JVM by using
the DestroyJavaVM JNI function and the PL/I program completes.

The complete source is shown in Table 122 on page 371 and Table 123 on page 372.

370 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 122. PL/I sample program #4 - Calling the Java invocation API (31-bit)

*Process Margins(1, 100) ;
*Process Display(STD) Rent;
*Process Default(ASCII) Or('|');
createJVM: Proc Options(Main);

 %include ibmzjni;

 Dcl myJObjArray Type jobjectArray;
 Dcl myClass Type jclass;
 Dcl myMethodID Type jmethodID;
 Dcl myJString Type jstring;
 Dcl myRC Fixed Bin(31) Init(0);
 Dcl myPLIStr Char(50) Varz
 Init('... a PLI string in a Java Virtual Machine!');
 Dcl OptStr1 char(1024) varz;
 Dcl OptStr2 char(1024) varz;
 Dcl myNull Pointer;
 Dcl VM_Args Like JavaVMInitArgs;
 Dcl myOptions Like JavaVMOption;
 Dcl PLIXOPT Char(40) Varying Ext Static Init('XPLINK(ON)'e);

 Display('From PL/I - Beginning execution of createJVM...');
 VM_Args.version = JNI_VERSION_10;

 myRC = JNI_GetDefaultJavaVMInitArgs(addr(VM_Args));
 OptStr1 = "-Djava.class.path=.:";
 OptStr2 = "-Djava.compiler=NONE";

 myOptions(1).theOptions = addr(OptStr1);
 myOptions(2).theOptions = addr(OptStr2);
 VM_Args.nOptions = 2;
 VM_Args.JavaVMOption = addr(myOptions);

 /* Create the Java VM */
 myrc = JNI_CreateJavaVM(
 addr(jvm_ptr),
 addr(JNIEnv),
 addr(VM_Args));

 /* Get the Java Class for the javaPart class */
 myClass = FindClass(JNIEnv, "javaPart");

 /* Get static method ID */
 myMethodID = GetStaticMethodID(JNIEnv, myClass,"main",
 "([Ljava/lang/String;)V");

 /* Create a Java String Object from the PL/I string. */
 myJString = NewStringUTF(JNIenv, myPLIStr);
 myJObjArray = NewObjectArray(JNIEnv, 1,
 FindClass(JNIEnv,"java/lang/String"), myJString);

 Display('From PL/I - Calling Java method in new JVM from PL/I...');
 Display(' ');
 myNull = CallStaticVoidMethod(JNIEnv, myClass,
 myMethodID, myJObjArray);

 /* destroy the Java VM */
 Display(' ');
 Display('From PL/I - Destroying the new JVM from PL/I...');
 myRC = DestroyJavaVM(JavaVM);

 end;

The DCL PLIXOPT string is valid for 31-bit, but not for 64-bit.

Chapter 18. Interfacing with Java 371

Table 123. PL/I sample program #4 - Calling the Java invocation API (64-bit)

*Process Margins(1, 100) ;
*Process Display(STD) LP(64);
*Process Default(ASCII) Or('|');
createJVM: Proc Options(Main);

 %include ibmzjni;

 Dcl myJObjArray Type jobjectArray;
 Dcl myClass Type jclass;
 Dcl myMethodID Type jmethodID;
 Dcl myJString Type jstring;
 Dcl myRC Fixed Bin(31) Init(0);
 Dcl myPLIStr Char(50) Varz
 Init('... a PLI string in a Java Virtual Machine!');
 Dcl OptStr1 char(1024) varz;
 Dcl OptStr2 char(1024) varz;
 Dcl myNull Pointer;
 Dcl VM_Args Like JavaVMInitArgs;
 Dcl myOptions Like JavaVMOption;

 Display('From PL/I - Beginning execution of createJVM...');
 VM_Args.version = JNI_VERSION_10;

 myRC = JNI_GetDefaultJavaVMInitArgs(addr(VM_Args));
 OptStr1 = "-Djava.class.path=.:";
 OptStr2 = "-Djava.compiler=NONE";

 myOptions(1).theOptions = addr(OptStr1);
 myOptions(2).theOptions = addr(OptStr2);
 VM_Args.nOptions = 2;
 VM_Args.JavaVMOption = addr(myOptions);

 /* Create the Java VM */
 myrc = JNI_CreateJavaVM(
 addr(jvm_ptr),
 addr(JNIEnv),
 addr(VM_Args));

 /* Get the Java Class for the javaPart class */
 myClass = FindClass(JNIEnv, "javaPart");

 /* Get static method ID */
 myMethodID = GetStaticMethodID(JNIEnv, myClass,"main",
 "([Ljava/lang/String;)V");

 /* Create a Java String Object from the PL/I string. */
 myJString = NewStringUTF(JNIenv, myPLIStr);
 myJObjArray = NewObjectArray(JNIEnv, 1,
 FindClass(JNIEnv,"java/lang/String"), myJString);

 Display('From PL/I - Calling Java method in new JVM from PL/I...');
 Display(' ');
 myNull = CallStaticVoidMethod(JNIEnv, myClass,
 myMethodID, myJObjArray);

 /* destroy the Java VM */
 Display(' ');
 Display('From PL/I - Destroying the new JVM from PL/I...');
 myRC = DestroyJavaVM(JavaVM);

 end;

Step 4: Compiling and linking the PL/I program
1. Compile the PL/I sample program with the following command:

 pli -c createJVM.pli

2. Link the resulting PL/I object deck into a shared library with the following commands:

• 31-bit

c89 -o createJVM createJVM.o $JAVA_HOME/lib/j9vm/libjvm.x

372 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

• 64-bit

c89 -Wl,”LP64,DLL” -o createJVM createJVM.o $JAVA_HOME/lib/j9vm/libjvm.x

Notice the reference to the $JAVA_HOME environment variable. This variable should point to
the directory where your Java product is installed. For example, to set up this variable in your
environment, you can use the following command:

 export JAVA_HOME="/usr/lpp/java/J11.0_64"

In this case, the Java product is assumed to be installed in /usr/lpp/java/J11.0_64.

Step 5: Running the sample program
Run the Java-PL/I sample program with this command:

 createJVM

The output of the sample program is as follows:

From PL/I - Beginning execution of createJVM...
From PL/I - Calling Java method in new JVM from PL/I...
From Java - Hello World... ... a PLI string in a Java Virtual Machine!
From PL/I - Destroying the new JVM from PL/I...

Attaching programs to an existing Java VM
You can use the Java invocation API to attach your program to an existing Java VM that was not created
by your program.

When your PL/I application is running within an IMS JMP (Java messaging processing) region, IMS already
created a Java VM. You can take the following steps to attach your program to the Java VM. Then you can
call any functions that you need through the Java native interface.

1. Locate the Java VM instance to attach your program to by using the JNI_GetCreatedJavaVMs API.
In this IMS environment, only one Java VM is created, so you ask for only one Java VM pointer to be
returned. You can code the call as follows:

 rc = JNI_GetCreatedJavaVMs(jvm_ptr, 1, nVMs);

jvm_ptr
Is a pointer to a Java VM and is declared in the IBMZJNI include file. Java returns the address of
the Java VM in this variable when the call returns successfully.

nVMs
Is a fixed bin(31) variable that Java updates with the number of Java VM addresses when it
returns. nVMs is 1 if the call is successful.

2. Acquire JNI environment pointer for the Java VM.
You can use the GetEnv function in the JNIInvokeInterface_ structure that is declared in the
IBMZJNI include file:

 rc = GetEnv(jvm_ptr, JNIEnv, JNI_VERSION_10);

jvm_ptr
Is the pointer to the Java VM instance.

JNIEnv
Is a pointer that Java sets to the JNI environment pointer for the Java VM instance.

JNI_VERSION_10
Is a constant holding the value of an interface version number, which is also declared in the
IBMZJNI include file.

Chapter 18. Interfacing with Java 373

Now that you have the JNI environment pointer for the Java VM, you can make calls to any of the JNI
functions through the Java native interface.

Determining equivalent Java and PL/I data types
When you communicate with Java from PL/I, you need to match the data types between the two
programming languages.

This table shows Java primitive types and their PL/I equivalents.

Table 124. Java primitive types and PL/I native equivalents

Java type PL/I type Size in Bits

Boolean jboolean 8, unsigned

byte jbyte 8

char jchar 16, unsigned

short jshort 16

int jint 32

long jlong 64

float jfloat 21

double jdouble 53

void jvoid n/a

374 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Part 5. Specialized programming tasks

© Copyright IBM Corp. 1999, 2022 375

376 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 19. Mixing AMODE 31 and AMODE 64 code
You can call 31-bit LE-enabled code from 64-bit LE-enabled code and vice versa. This is limited to
FETCHABLE routines and requires designating that such routines are going to run in the opposite AMODE.
You must use the ENTRY OPTIONS attributes AMODE31 and AMODE64 to specify this.

Declarations needed for calls between AMODEs

For 31-bit calling 64-bit
Declare the 64-bit routine with the attributes:

OPTIONS(FETCHABLE AMODE64 NODESCRIPTOR) ENTRY(...)

where the (...) specifies at least how many parameters are being passed. For example, if passing no
parameters, specify it as ENTRY(), but if passing two parameters, then specify it at least as ENTRY(*, *).

You may then call the routine as you would call any other routine as long as you follow the restrictions
below.

For 64-bit calling 31-bit
Declare the 31-bit routine with the attributes:

OPTIONS(FETCHABLE AMODE31 NODESCRIPTOR CMPAT(xx) LINKAGE(yy)) ENTRY(...)

where the (...) specifies at least how many parameters are being passed. For example, if passing no
parameters, specify it as ENTRY(), but if passing two parameters, then specify it at least as ENTRY(*, *).

The xx in CMPAT(xx) must be one of V1, V2, or V3.

The yy in LINKAGE(yy) must be either OPTLINK or SYSTEM.

You may then call the routine as you would call any other routine as long as you follow the restrictions
below.

Compiler and linker options needed for calls between AMODEs

For 64-bit calling 31-bit
The 31-bit procedure called from 64-bit must be compiled with the RENT option (but it may be linked with
or fetch code compiled with NORENT).

The 31-bit fetchable module must be linked with the DYNAM=DLL option.

Restrictions on calls between AMODEs
The following restrictions apply to calls between routines running in different AMODEs:

• If an ENTRY or PROCEDURE with OPTIONS(AMODE31) or OPTIONS(AMODE64) has a BYVALUE
parameter, then the type of that parameter must be one of the types POINTER, HANDLE, ORDINAL,
or REAL FIXED BIN.

• If an ENTRY or PROCEDURE with OPTIONS(AMODE31) or OPTIONS(AMODE64) has the
RETURNS(BYVALUE ...) attribute, then the RETURNS attribute must specify either an ORDINAL type
or an unscaled REAL FIXED BIN of 4 bytes or less.

© Copyright IBM Corp. 1999, 2022 377

• An entry constant with OPTIONS(AMODE31) or OPTIONS(AMODE64) must specify a (possibly empty)
parenthesized list of no more than 64 parameters. If it has no arguments, it must be declared as
ENTRY().

• An entry constant with OPTIONS(AMODE31) or OPTIONS(AMODE64) cannot be assigned either
implicitly or explicitly to another ENTRY.

• Any exception that occurs in one AMODE must be handled in that AMODE.
• Any GOTO statement in one AMODE must not cross over any routines in the opposite AMODE.
• All array and structure arguments passed to an ENTRY with OPTIONS(AMODE31) must be references

(not array or structure expressions).
• If a parameter is a POINTER, HANDLE, or an aggregate containing POINTERs or HANDLEs, then those

POINTERs and HANDLEs must have the attributes POINTER(32) and HANDLE(32).
• It is recommended to use the RELEASE function to release the fetched routine and its associated

storage.

For example, to pass a pointer to a singly-linked list of integers, the structure for that list must be declared
as follows:

 dcl
 1 list_element based,
 2 list_next pointer(32),
 2 list_int fixed bin(31);

Similarly, when passing a variable X from 64-bit to 31-bit, you must not specify that parameter as
ADDR(X) unless you know X is in AMODE 31 storage.

Instead, you should specify the parameter simply as X. For instance, if A31 is a 31-bit routine that
receives the address of a CHAR(100) VARYING variable, instead of coding

 DCL A31 ENTRY(POINTER BYVALUE)
 OPTIONS(FETCHABLE AMODE31 NODESCRIPTOR CMPAT(V2) LINKAGE(OPTLINK));

 DCL X CHAR(100) VARYING;

 CALL A31(ADDR(X));

you should code

 DCL A31 ENTRY(CHAR(100) VARYING BYADDR)
 OPTIONS(FETCHABLE AMODE31 NODESCRIPTOR CMPAT(V2) LINKAGE(OPTLINK));

 DCL X CHAR(100) VARYING;

 CALL A31(X);

Improving performance in calls between AMODEs

Code that is purely AMODE 31 or purely AMODE 64 will almost always perform better than code that
mixes AMODEs. Mixing AMODE should be limited to only those situations where it is absolutely necessary.

The AMODE31 and AMODE64 keywords should be specified only on those procedures that will be called
from the opposite AMODE.

When such procedures are exited, the generated epilogue code will flush all open files, and this could hurt
performance in an application that did not mix AMODEs.

When 64-bit code makes a call to 31-bit code, the compiler will generate code to

1. allocate AMODE 31 storage for all of the parameters
2. copy the parameters to that AMODE 31 storage
3. make the call

378 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

4. copy the AMODE 31 storage back to the parameters
5. free the allocated storage

For the example above, the generated code would allocate 102 bytes (the storage needed to hold a
CHR(100) VARYING variable) in AMODE 31 storage, copy X to that storage, make the call to A31, and
when control was returned to back to AMODE 64, it would copy that storage back to X.

If you have code with such calls and if you know that a parameter is INONLY or OUTONLY, it is much
better for performance to declare it with that attribute.

For the example above, if you know that A31 will use, but not set, the passed parameter, then you should
declare A31 as follows:

 DCL A31 ENTRY(CHAR(100) VARYING BYADDR INONLY)
 OPTIONS(FETCHABLE AMODE31 NODESCRIPTOR CMPAT(V2) LINKAGE(OPTLINK));

In this case, the compiler will generate code to copy X to AMODE 31 storage before the call is made, but
the compiler will not generate code to copy that storage back to X after the call. Step 4 above will be
skipped.

If you know that A31 will set, but not use, the passed parameter, then you should declare A31 as follows:

 DCL A31 ENTRY(CHAR(100) VARYING BYADDR OUTONLY)
 OPTIONS(FETCHABLE AMODE31 NODESCRIPTOR CMPAT(V2) LINKAGE(OPTLINK));

In this case, the compiler will generate code to allocate AMODE 31 storage for the parameter before the
call is made, but the compiler will not generate code to copy X to that storage at this time. The compiler
will generate code to copy that AMODE 31 storage back to X after the call. Step 2 above will be skipped.

But you must be careful to specify INONLY and OUTONLY only when it matches how your code behaves.
For example, if a parameter passed from the 64-bit code to the 31-bit code is a structure, then you must
specify INONLY only if no element of the structure is changed by the 31-bit code.

Chapter 19. Mixing AMODE 31 and AMODE 64 code 379

380 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 20. Using the PLISAXA and PLISAXB XML
parsers

The PLISAXx (x = A or B) built-in subroutines provide basic XML parsing capability, which allows programs
to consume inbound XML documents, check them for well-formedness, and react to their contents.

These subroutines do not provide XML generation, which must instead be accomplished by the PL/I
program logic or by using the XMLCHAR built-in function.

PLISAXA and PLISAXB have no special environmental requirements. They execute in all the principal
runtime environments, including CICS, IMS, MQ Series, z/OS batch, and TSO.

PLISAXA and PLISAXB do have some important limits:

• They have no support for XML name spaces.
• They have no support for Unicode UTF-8 documents.
• They require that the entire XML document be passed to them (either in a buffer or a file) before they do

any parsing of it.

The PLISAXC and PLISAXD built-in subroutines do not have these limits.

Related information
“Using the PLISAXC and PLISAXD XML parsers” on page 409
The PLISAXC and PLISAXD built-in subroutines provide basic XML parsing capability, which allows
programs to consume inbound XML documents, check them for well-formedness, and react to their
contents.

Overview
There are two major types of interfaces for XML parsing: event-based and tree-based.

For an event-based API, the parser reports events to the application through callbacks. Such events
include the start of the document, the beginning of an element, and so on. The application provides
handlers to deal with the events reported by the parser. The Simple API for XML (SAX) is an example of an
industry-standard event-based API.

For a tree-based API such as the Document Object Model (DOM), the parser translates the XML into an
internal tree-based representation. Interfaces are provided to navigate the tree.

IBM PL/I provides a SAX-like event-based interface for parsing XML documents. The parser invokes
an application-supplied handler for parser events, passing references to the corresponding document
fragments.

The parser has the following characteristics:

• It provides high-performance, but nonstandard interfaces.
• It supports XML files encoded in either Unicode UTF-16 or any of several single-byte code pages listed

in “Coded character sets for XML documents” on page 387.
• The parser is nonvalidating, but does partially check well-formedness, and generates exception events

if it discovers any.

XML documents have two levels of conformance: well-formedness and validity, both of which are defined
in the XML standard, which you can find at http://www.w3c.org/XML/. Recapitulating these definitions, an
XML document is well-formed if it complies with the basic XML grammar, and with a few specific rules,
such as the requirement that the names on start and end element tags must match. A well-formed XML
document is also valid if it has an associated document type declaration (DTD) and if it complies with the
constraints expressed in the DTD.

© Copyright IBM Corp. 1999, 2022 381

For each parser event, you must provide a PL/I function that accepts the appropriate parameters and
returns the appropriate return value - as in the example code shown in Table 125 on page 383. Note
in particular that the return value must be returned by value (BYVALUE). Also, these functions must all
use the OPTLINK linkage. You can use the DEFAULT(LINKAGE(OPTLINK)) option to specify this linkage, or
you can specify it on the individual PROCEDUREs and ENTRYs through the OPTIONS(LINKAGE(OPTLINK))
attribute.

The PLISAXA built-in subroutine
You can use the PLISAXA built-in subroutine to invoke the XML parser for an XML document that is in a
buffer in your program.

PLISAXA( e, p , x , n
, c

)

e
An event structure

p
A pointer value or "token" that the parser will pass back to the event functions

x
The address of the buffer containing the input XML

n
The number of bytes of data in that buffer

c
A numeric expression specifying the purported codepage of that XML

Notes:

• If the XML is contained in a CHARACTER VARYING or WIDECHAR VARYING string, you must use the
ADDRDATA built-in function to obtain the address of the first data byte.

• If the XML is contained in a WIDECHAR string, the value for the number of bytes is twice the value
returned by the LENGTH built-in function.

The PLISAXB built-in subroutine
You can use the PLISAXB built-in subroutine to invoke the XML parser for an XML document in a file.

PLISAXB( e, p , x
, c

)

e
An event structure

p
A pointer value or "token" that the parser will pass back to the event functions

x
A character string expression specifying the input file

c
A numeric expression specifying the purported codepage of that XML

Under batch, the character string specifying the input file should have the form file://dd:ddname,
where ddname is the name of the DD statement specifying the file.

Under z/OS UNIX, the character string specifying the input file should have the form file://filename,
where filename is the name of a z/OS UNIX file.

Under both batch and z/OS UNIX, the character string specifying the input file should have no leading or
trailing blanks.

382 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

The input XML file must be less than 2G in size. Moreover, because the parser will read the entire file into
memory, the REGION for your program must be large enough for the parser to obtain a piece of storage
that can contain all of the document.

The SAX event structure
The event structure is a structure consisting of 24 LIMITED ENTRY variables that point to functions that
the parser will invoke for various "events".

All these ENTRYs must use the OPTLINK linkage.

The library routines that support the XML parsers recognize whether an event in any of the PLISAX event
structures is set to null (through the NULLENTRY built-in function or through use of UNSPEC), and do not
call it in that case. This allows you to limit your XML parsing code to only the events in which you are
interested and to improve the performance of the overall parse at the same time.

Table 125. Sample XML document

 xmlDocument =
 '<?xml version="1.0" standalone="yes"?>'
 || '<!--This document is just an example-->'
 || '<sandwich>'
 || '<bread type="baker"s best"/>'
 || '<?spread please use real mayonnaise ?>'
 || '<meat>Ham & turkey</meat>'
 || '<filling>Cheese, lettuce, tomato, etc.</filling>'
 || '<![CDATA[We should add a <relish> element in future!]]>'
 || '</sandwich>'
 || 'junk';

In the order of their appearance in this structure, the parser might recognize the following events:

Note: The descriptions of each event refer to the example of an XML document in Table 125 on page 383.
In these descriptions, the term XML text refers to the string based on the pointer and length passed to the
event.

start_of_document
This event occurs once, at the beginning of parsing the document. The parser passes the address and
length of the entire document, including any line-control characters, such as LF (Line Feed) or NL (New
Line). For the example shown in Table 125 on page 383, the document is 305 characters in length.

version_information
This event occurs within the optional XML declaration for the version information. The parser passes the
address and length of the text containing the version value (1.0 for the example shown in Table 125 on
page 383).

encoding_declaration
This event occurs within the XML declaration for the optional encoding declaration. The parser passes the
address and length of the text containing the encoding value.

standalone_declaration
This event occurs within the XML declaration for the optional standalone declaration. The parser passes
the address and length of the text containing the standalone value (yes for the example shown in Table
125 on page 383).

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 383

document_type_declaration
This event occurs when the parser finds a document type declaration. Document type declarations begin
with the character sequence <!DOCTYPE and end with a > character, with some fairly complicated
grammar rules describing the content in between. The parser passes the address and length of the text
containing the entire declaration, including the opening and closing character sequences, and it is the only
event where XML text includes the delimiters. The example shown in Table 125 on page 383 does not
have a document type declaration.

end_of_document
This event occurs once, when document parsing has completed.

start_of_element
This event occurs once for each element start tag or empty element tag. The parser passes the address
and length of the text containing the element name. For the first start_of_element event during parsing of
the example shown in Table 125 on page 383, this is the string sandwich.

attribute_name
This event occurs for each attribute in an element start tag or empty element tag after the parser
recognizes a valid name. The parser passes the address and length of the text containing the attribute
name. The only attribute name in the example shown in Table 125 on page 383 is type.

attribute_characters
This event occurs for each fragment of an attribute value. The parser passes the address and length of the
text containing the fragment. An attribute value normally consists of a single string only, even if it is split
across lines:

 <element attribute="This attribute value is
 split across two lines"/>

The attribute value might consist of multiple pieces, however. For instance, the value of the type attribute
in the example shown in Table 125 on page 383 consists of three fragments: the string baker, the single
character ', and the string s best. The parser passes these fragments as three separate events. It
passes each string, baker and s best, as attribute_characters events, and the single character ' as an
attribute_predefined_reference event.

Related information
“attribute_predefined_reference” on page 384

attribute_predefined_reference
This event occurs in attribute values for the five predefined entity references &, ', >, <, and ". The parser
passes a CHAR(1) or WIDECHAR(1) value that contains one of &, ', >, <, or " respectively.

attribute_character_reference
This event occurs in attribute values for numeric character references (Unicode code points or "scalar
values") of the form &#dd; or &#xhh;, where d represents decimal digits and h represents hexadecimal
digits. The parser passes a FIXED BIN(31) value that contains the corresponding integer value.

end_of_element
This event occurs once for each element end tag or empty element tag when the parser recognizes the
closing angle bracket of the tag. The parser passes the address and length of the text containing the
element name.

384 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

start_of_CDATA_section
This event occurs at the start of a CDATA section. CDATA sections begin with the string <![CDATA[and
end with the string]]>, and are used to "escape" blocks of text containing characters that would
otherwise be recognized as XML markup. The parser passes the address and length of the text containing
the opening characters <![CDATA[. The parser passes the content of a CDATA section between these
delimiters as a single content-characters event. For the example shown in Table 125 on page 383, the
content-characters event is passed the text We should add a <relish> element in future!.

end_of_CDATA_section
This event occurs when the parser recognizes the end of a CDATA section. The parser passes the address
and length of the text containing the closing character sequence,]]>.

content_characters
This event represents the "heart" of an XML document: the character data between element start and end
tags. The parser passes the address and length of the text containing the data, which usually consists of a
single string only, even if it is split across lines:

 <element1>This character content is
 split across two lines</element1>

If the content of an element includes any references or other elements, the complete content might
comprise several segments. For instance, the content of the meat element in the example shown in
Table 125 on page 383 consists of the string Ham , the character &, and the string turkey. Notice
the trailing and leading spaces, respectively, in these two string fragments. The parser passes these
three content fragments as separate events. It passes the string content fragments, Ham and turkey,
as content_characters events, and the single & character as a content_predefined_reference event. The
parser also uses the content_characters event to pass the text of CDATA sections to the application.

content_predefined_reference
This event occurs in element content for the five pre-defined entity references &, ', >, <, and ". The parser
passes a CHAR(1) or WIDECHAR(1) value that contains one of &, ', >, <, or "respectively.

content_character_reference
This event occurs in element content for numeric character references (Unicode code points or "scalar
values") of the form &#dd; or &#xhh;, where d represents decimal digits and h represents hexadecimal
digits. The parser passes a FIXED BIN(31) value that contains the corresponding integer value.

processing_instruction
Processing instructions (PIs) allow XML documents to contain special instructions for applications. This
event occurs when the parser recognizes the name following the PI opening character sequence, <?. The
event also covers the data following the processing instruction (PI) target, up to but not including the PI
closing character sequence, ?>. Trailing but not leading white space characters in the data are included.
The parser passes the address and length of the text containing the target, spread in the example shown
in Table 125 on page 383, and passes the address and length of the text containing the data (please
use real mayonnaise in the example).

comment
This event occurs for any comments in the XML document. The parser passes the address and length of
the text between the opening comment delimiter <!-- and the closing comment delimiter -->. In the
example shown in Table 125 on page 383, the text of the only comment is This document is just
an example.

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 385

unknown_attribute_reference
This event occurs within attribute values for entity references other than the five predefined entity
references, listed for the event attribute_predefined_character. The parser passes the address and length
of the text containing the entity name.

unknown_content_reference
This event occurs within element content for entity references other than the five predefined entity
references listed for the content_predefined_character event. The parser passes the address and length
of the text containing the entity name.

start_of_prefix_mapping
This event is currently not generated.

end_of_prefix_mapping
This event is currently not generated.

exception
The parser generates this event when it detects an error in processing the XML document.

Parameters to the event functions
All of these functions must return a BYVALUE FIXED BIN(31) value that is a return code to the parser. For
the parser to continue normally, this value should be zero.

All of these functions will be passed as the first argument a BYVALUE POINTER that is the token value
passed originally as the second argument to the built-in function.

With the following exceptions, all of the functions will also be passed a BYVALUE POINTER and a
BYVALUE FIXED BIN(31) that supply the address and length of the text element for the event. The
following functions and events are different:

end_of_document
No argument other than the user token is passed.

attribute_predefined_reference
In addition to the user token, one additional argument is passed: a BYVALUE CHAR(1), or, for a UTF-16
document, a BYVALUE WIDECHAR(1) that holds the value of the predefined character.

content_predefined_reference
In addition to the user token, one additional argument is passed: a BYVALUE CHAR(1), or, for a UTF-16
document, a BYVALUE WIDECHAR(1) that holds the value of the predefined character.

attribute_character_reference
In addition to the user token, one additional argument is passed: a BYVALUE FIXED BIN(31) that
holds the value of the numeric reference.

content_character_reference
In addition to the user token, one additional argument is passed: a BYVALUE FIXED BIN(31) that
holds the value of the numeric reference.

processing_instruction
In addition to the user token, four additional arguments are passed:

1. A BYVALUE POINTER that is the address of the target text
2. A BYVALUE FIXED BIN(31) that is the length of the target text
3. A BYVALUE POINTER that is the address of the data text
4. A BYVALUE FIXED BIN(31) that is the length of the data text

386 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

exception
In addition to the user token, three additional arguments are passed:

1. A BYVALUE POINTER that is the address of the offending text
2. A BYVALUE FIXED BIN(31) that is the byte offset of the offending text within the document
3. A BYVALUE FIXED BIN(31) that is the value of the exception code

Coded character sets for XML documents
The PLISAX built-in subroutine supports only XML documents in WIDECHAR encoded in Unicode UTF-16,
or in CHARACTER encoded in one of the explicitly supported single-byte character sets listed in this
section.

The parser uses up to three sources of information about the encoding of your XML document, and signals
an exception XML event if it discovers any conflicts between these sources:

1. The parser determines the basic encoding of a document by inspecting its initial characters.
2. If step 1 succeeds, the parser then looks for any encoding declaration.
3. Finally, it refers to the codepage value on the PLISAX built-in subroutine call. If this parameter was

omitted, it defaults to the value provided by the CODEPAGE compiler option value that you specified
explicitly or by default.

If the XML document begins with an XML declaration that includes an encoding declaration specifying one
of the supported code pages listed in this section, the parser honors the encoding declaration if it does
not conflict with either the basic document encoding or the encoding information from the PLISAX built-in
subroutine. If the XML document does not have an XML declaration at all, or if the XML declaration omits
the encoding declaration, the parser uses the encoding information from the PLISAX built-in subroutine to
process the document, as long as it does not conflict with the basic document encoding.

Supported EBCDIC code pages
In the following table, the first number is for the Euro Country Extended Code Page (ECECP), and the
second is for Country Extended Code Page (CECP).

CCSID Description

01047 Latin 1 / Open Systems

01140, 00037 USA, Canada, etc.

01141, 00273 Austria, Germany

01142, 00277 Denmark, Norway

01143, 00278 Finland, Sweden

01144, 00280 Italy

01145, 00284 Spain, Latin America (Spanish)

01146, 00285 UK

01147, 00297 France

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 387

CCSID Description

01148, 00500 International

01149, 00871 Iceland

Supported ASCII code pages

CCSID Description

00813 ISO 8859-7 Greek / Latin

00819 ISO 8859-1 Latin 1 / Open Systems

00920 ISO 8859-9 Latin 5 (ECMA-128, Turkey TS-5881)

Specifying the code page
If your document does not include an encoding declaration in the XML declaration, or if it does not
have an XML declaration at all, the parser uses the encoding information provided by the PLISAX built-in
subroutine call together with the basic encoding of the document.

You can also specify the encoding information for the document in the XML declaration, with which
most XML documents begin. The following example is an XML declaration that includes an encoding
declaration:

 <?xml version="1.0" encoding="ibm-1140"?>

If your XML document includes an encoding declaration, ensure that it is consistent with the encoding
information provided by the PLISAX built-in subroutine and with the basic encoding of the document. If
there is any conflict between the encoding declaration, the encoding information provided by the PLISAX
built-in subroutine, and the basic encoding of the document, the parser signals an exception XML event.

You can specify the encoding declaration by using a number or an alias.

Specifying the encoding declaration using a number

You can specify the CCSID number (with or without any number of leading zeroes), prefixed by any of the
following (in any mixture of uppercase or lowercase characters).

IBM_
IBM-

CP
CP_
CP-

CCSID_
CCSID-

Specifying the encoding declaration using an alias

You can use any of the following supported aliases (in any mixture of lowercase and uppercase
characters).

Code page Supported aliases

037 EBCDIC-CP-US, EBCDIC-CP-CA, EBCDIC-CP-WT, EBCDIC-CP-NL

500 EBCDIC-CP-BE, EBCDIC-CP-CH

388 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Code page Supported aliases

813 ISO-8859-7, ISO_8859-7

819 ISO-8859-1, ISO_8859-1

920 ISO-8859-9, ISO_8859-9

1200 UTF-16

Exceptions
For most exceptions, the XML text contains the part of the document that was parsed up to including
the point where the exception was detected. For encoding conflict exceptions, which are signaled before
parsing begins, the length of the XML text is zero, or the XML text contains just the encoding declaration
value from the document.

The example shown in Table 125 on page 383 contains one item that causes an exception event, the
superfluous junk following the sandwich element end tag.

There are two kinds of exceptions:

1. Exceptions that allow you to continue parsing optionally

Continuable exceptions have exception codes in the range 1 through 99, 100001 through 165535, or
200001 through 265535. The exception event in the example has an exception number of 1 and thus
is continuable.

2. Fatal exceptions, which do not allow continuation

Fatal exceptions have exception codes greater than 99 (but less than 100000).

Returning from the exception event function with a nonzero return code normally causes the parser to
stop processing the document, and return control to the program that invoked the PLISAXA or PLISAXB
built-in subroutine.

For continuable exceptions, returning from the exception event function with a zero return code requests
the parser to continue processing the document, although further exceptions might subsequently occur.
See “Continuable exception codes” on page 400 for details of the actions that the parser takes when you
request continuation.

A special case applies to exceptions with exception numbers in the ranges 100001 through 165535
and 200001 through 265535. These ranges of exception codes indicate that the document's CCSID
(determined by examining the beginning of the document, including any encoding declaration) is not
identical to the CCSID value provided (explicitly or implicitly) by the PLISAXA or PLISAXB built-in
subroutine, even if both CCSIDs are for the same basic encoding, EBCDIC or ASCII.

For these exceptions, the exception code passed to the exception event contains the document's CCSID,
plus 100000 for EBCDIC CCSIDs, or 200000 for ASCII CCSIDs. For instance, if the exception code
contains 101140, the document's CCSID is 01140. The CCSID value provided by the PLISAXA or PLISAXB
built-in subroutine is set either explicitly as the last argument on the call or implicitly when the last
argument is omitted and the value of the CODEPAGE compiler option is used.

Depending on the value of the return code after returning from the exception event function for these
CCSID conflict exceptions, the parser takes one of three actions:

1. If the return code is zero, the parser proceeds using the CCSID provided by the built-in subroutine.
2. If the return code contains the document's CCSID (that is, the original exception code value minus

100000 or 200000), the parser proceeds using the document's CCSID. This is the only case where the
parser continues after a nonzero value is returned from one of the parsing events.

3. Otherwise, the parser stops processing the document, and returns control to the PLISAXA or PLISAXB
built-in subroutine, which will raise the ERROR condition.

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 389

Example
This example illustrates the use of the PLISAXA built-in subroutine.

The example uses the example XML document shown in Table 125 on page 383.

Table 126. PLISAXA coding example - type declarations

 saxtest: package exports(saxtest);

 define alias event
 limited entry(pointer, pointer, fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_end_of_document
 limited entry(pointer)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_predefined_ref
 limited entry(pointer, char(1))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink) nodescriptor);

 define alias event_character_ref
 limited entry(pointer, fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_pi
 limited entry(pointer, pointer, fixed bin(31),
 pointer, fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_exception
 limited entry(pointer, pointer, fixed bin(31),
 fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

390 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 127. PLISAXA coding example - event structure

 saxtest: proc options(main);

 dcl
 1 eventHandler static

 ,2 e01 type event
 init(start_of_document)
 ,2 e02 type event
 init(version_information)
 ,2 e03 type event
 init(encoding_declaration)
 ,2 e04 type event
 init(standalone_declaration)
 ,2 e05 type event
 init(document_type_declaration)
 ,2 e06 type event_end_of_document
 init(end_of_document)
 ,2 e07 type event
 init(start_of_element)
 ,2 e08 type event
 init(attribute_name)
 ,2 e09 type event
 init(attribute_characters)
 ,2 e10 type event_predefined_ref
 init(attribute_predefined_reference)
 ,2 e11 type event_character_ref
 init(attribute_character_reference)
 ,2 e12 type event
 init(end_of_element)
 ,2 e13 type event
 init(start_of_CDATA)
 ,2 e14 type event
 init(end_of_CDATA)
 ,2 e15 type event
 init(content_characters)
 ,2 e16 type event_predefined_ref
 init(content_predefined_reference)
 ,2 e17 type event_character_ref
 init(content_character_reference)
 ,2 e18 type event_pi
 init(processing_instruction)
 ,2 e19 type event
 init(comment)
 ,2 e20 type event
 init(unknown_attribute_reference)
 ,2 e21 type event
 init(unknown_content_reference)
 ,2 e22 type event
 init(start_of_prefix_mapping)
 ,2 e23 type event
 init(end_of_prefix_mapping)
 ,2 e24 type event_exception
 init(exception)
 ;

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 391

Table 128. PLISAXA coding example - main routine

 dcl token char(8);

 dcl xmlDocument char(4000) var;

 xmlDocument =
 '<?xml version="1.0" standalone="yes"?>'
 || '<!--This document is just an example-->'
 || '<sandwich>'
 || '<bread type="baker"s best"/>'
 || '<?spread please use real mayonnaise ?>'
 || '<meat>Ham & turkey</meat>'
 || '<filling>Cheese, lettuce, tomato, etc.</filling>'
 || '<![CDATA[We should add a <relish> element in future!]]>'.
 || '</sandwich>'
 || 'junk';

 call plisaxa(eventHandler,
 addr(token),
 addrdata(xmlDocument),
 length(xmlDocument));

 end;

Table 129. PLISAXA coding example - event routines

 dcl chars char(32000) based;

 start_of_document:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' length=' || tokenlength);

 return(0);
 end;

 version_information:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

 encoding_declaration:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

392 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 129. PLISAXA coding example - event routines (continued)

 standalone_declaration:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

 document_type_declaration:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

 end_of_document:
 proc(userToken)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;

 put skip list(lowercase(procname()));

 return(0);
 end;

PLISAXA coding example - event routines (continued)

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 393

Table 129. PLISAXA coding example - event routines (continued)

 start_of_element:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

 attribute_name:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

 attribute_characters:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

PLISAXA coding example - event routines (continued)

394 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 129. PLISAXA coding example - event routines (continued)

 attribute_predefined_reference:
 proc(userToken, reference)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink) nodescriptor);

 dcl userToken pointer;
 dcl reference char(1);

 put skip list(lowercase(procname())
 || ' ' || hex(reference));

 return(0);
 end;

 attribute_character_reference:
 proc(userToken, reference)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl reference fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || hex(reference));

 return(0);
 end;

 end_of_element:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

PLISAXA coding example - event routines (continued)

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 395

Table 129. PLISAXA coding example - event routines (continued)

 start_of_CDATA:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

 end_of_CDATA:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

 content_characters:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

PLISAXA coding example - event routines (continued)

396 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 129. PLISAXA coding example - event routines (continued)

 content_predefined_reference:
 proc(userToken, reference)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink) nodescriptor);

 dcl userToken pointer;
 dcl reference char(1);

 put skip list(lowercase(procname())
 || ' ' || hex(reference));

 return(0);
 end;

 content_character_reference:
 proc(userToken, reference)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl reference fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || hex(reference));

 return(0);
 end;

 processing_instruction:
 proc(userToken, piTarget, piTargetLength,
 piData, piDataLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl piTarget pointer;
 dcl piTargetLength fixed bin(31);
 dcl piData pointer;
 dcl piDataLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(piTarget->chars,1,piTargetLength) ||
'>');

 return(0);
 end;

PLISAXA coding example - event routines (continued)

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 397

Table 129. PLISAXA coding example - event routines (continued)

 comment:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

 unknown_attribute_reference:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

 unknown_content_reference:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

PLISAXA coding example - event routines (continued)

398 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 129. PLISAXA coding example - event routines (continued)

 start_of_prefix_mapping:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

 end_of_prefix_mapping:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>'
);

 return(0);
 end;

 exception:
 proc(userToken, xmlToken, currentOffset, errorID)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl currentOffset fixed bin(31);
 dcl errorID fixed bin(31);

 put skip list(lowercase(procname())
 || ' errorid =' || errorid);

 return(0);
 end;
end;

PLISAXA coding example - event routines (continued)

The preceding program produces the following output:

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 399

Table 130. PLISAXA coding example - program output

 start_of_dcoument length=
 305
 version_information <1.0>
 standalone_declaration <yes>
 comment <This document is just an example>
 start_of_element <sandwich>
 start_of_element <bread>
 attribute_name <type>
 attribute_characters <baker>
 attribute_predefined_reference 7D
 attribute_characters <s best>
 end_of_element <bread>
 processing_instruction <spread>
 start_of_element <meat>
 content_characters <Ham >
 content_predefined_reference 50
 content_characters < turkey>
 end_of_element <meat>
 start_of_element <filling>
 content_characters <Cheese, lettuce, tomato, etc.>
 end_of_element <filling>
 start_of_cdata <<![CDATA[>
 content_characters <We should add a <relish> element in future!>
 end_of_cdata <]]>
 end_of_element <sandwich>
 exception errorid = 1
 content_characters <j>
 exception errorid = 1
 content_characters <u>
 exception errorid = 1
 content_characters <n>
 exception errorid = 1
 content_characters <k>
 end_of_document

Continuable exception codes
This topic describes the exception codes and the action that the parser takes when you request it to
continue after the exception.

In the following table, each value of the exception code parameter passed to the exception event is listed
in the Number column. For each exception code, a description is provided along with the actions that the
parser takes when you request it to continue after the exception. In these descriptions, the term XML text
refers to the string based on the pointer and length passed to the event.

Table 131. Continuable exceptions

Number Description Parser action on continuation

1 The parser found an invalid character while
scanning white spaces outside element
content.

The parser generates a content_characters
event with the XML text containing the
(single) invalid character. Parsing continues at
the character after the invalid character.

2 The parser found an invalid start of a
processing instruction, element, comment, or
document type declaration outside element
content.

The parser generates a content_characters
event with the XML text containing the 2- or
3-character invalid initial character sequence.
Parsing continues at the character after the
invalid sequence.

3 The parser found a duplicate attribute name. The parser generates an attribute_name
event with the XML text containing the
duplicate attribute name.

400 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 131. Continuable exceptions (continued)

Number Description Parser action on continuation

4 The parser found the markup character < in
an attribute value.

Before generating the exception event, the
parser generates an attribute_characters
event for any part of the attribute value
preceding the < character. After the
exception event, the parser generates an
attribute_characters event with the XML text
containing <. Parsing then continues at the
character after the <.

5 The start and end tag names of an element
did not match.

The parser generates an end_of_element
event with the XML text containing the
mismatched end name.

6 The parser found an invalid character in
element content.

The parser includes the invalid character
in the XML text for the subsequent
content_characters event.

7 The parser found an invalid start of an
element, comment, processing instruction, or
CDATA section in element content.

Before generating the exception event, the
parser generates a content_characters event
for any part of the content preceding the <
markup character. After the exception event,
the parser generates a content_characters
event with the XML text containing 2
characters: the < followed by the invalid
character. Parsing continues at the character
after the invalid character.

8 The parser found in element content the
CDATA closing character sequence]]>
without the matching opening character
sequence <![CDATA[.

Before generating the exception event, the
parser generates a content_characters event
for any part of the content preceding
the]]> character sequence. After the
exception event, the parser generates a
content_characters event with the XML text
containing the 3-character sequence]]>.
Parsing continues at the character after this
sequence.

9 The parser found an invalid character in a
comment.

The parser includes the invalid character in
the XML text for the subsequent comment
event.

10 The parser found in a comment the character
sequence -- not followed by >.

The parser assumes that the -- character
sequence terminates the comment, and
generates a comment event. Parsing
continues at the character after the --
sequence.

11 The parser found an invalid character in a
processing instruction data segment.

The parser includes the invalid character
in the XML text for the subsequent
processing_instruction event.

12 A processing instruction target name was xml
in lowercase, uppercase, or mixed-case.

The parser generates a
processing_instruction event with the XML
text containing xml in the original case.

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 401

Table 131. Continuable exceptions (continued)

Number Description Parser action on continuation

13 The parser found an invalid digit in a
hexadecimal character reference (of the form
�).

The parser generates an attribute_characters
or content_characters event with the XML
text containing the invalid digit. Parsing of the
reference continues at the character after this
invalid digit.

14 The parser found an invalid digit in a decimal
character reference (of the form &#dddd;).

The parser generates an attribute_characters
or content_characters event with the XML
text containing the invalid digit. Parsing of the
reference continues at the character after this
invalid digit.

15 The encoding declaration value in the XML
declaration did not begin with lowercase or
uppercase A through Z.

The parser generates the encoding event
with the XML text containing the encoding
declaration value as it was specified.

16 A character reference did not refer to a legal
XML character.

The parser generates an
attribute_character_reference event or a
content_character_reference event with XML-
NTEXT containing the single Unicode
character specified by the character
reference.

17 The parser found an invalid character in an
entity reference name.

The parser includes the invalid
character in the XML text for the
subsequent unknown_attribute_reference or
unknown_content_reference event.

18 The parser found an invalid character in an
attribute value.

The parser includes the invalid character
in the XML text for the subsequent
attribute_characters event.

Note: The PL/I XML parser will deviate from
the standard and accept "<" as valid in an
attribute string.

50 The document was encoded in EBCDIC, and
the CODEPAGE compiler option specified
a supported EBCDIC code page, but the
document encoding declaration did not
specify a recognizable encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

51 The document was encoded in EBCDIC, and
the document encoding declaration specified
a supported EBCDIC encoding, but the parser
does not support the code page specified by
the CODEPAGE compiler option.

The parser uses the encoding specified by the
document encoding declaration.

52 The document was encoded in EBCDIC, and
the CODEPAGE compiler option specified
a supported EBCDIC code page, but the
document encoding declaration specified an
ASCII encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

402 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 131. Continuable exceptions (continued)

Number Description Parser action on continuation

53 The document was encoded in EBCDIC, and
the CODEPAGE compiler option specified
a supported EBCDIC code page, but the
document encoding declaration specified a
supported Unicode encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

54 The document was encoded in EBCDIC, and
the CODEPAGE compiler option specified
a supported EBCDIC code page, but the
document encoding declaration specified a
Unicode encoding that the parser does not
support.

The parser uses the encoding specified by the
CODEPAGE compiler option.

55 The document was encoded in EBCDIC, and
the CODEPAGE compiler option specified
a supported EBCDIC code page, but the
document encoding declaration specified an
encoding that the parser does not support.

The parser uses the encoding specified by the
CODEPAGE compiler option.

56 The document was encoded in ASCII, and
the CODEPAGE compiler option specified
a supported ASCII code page, but the
document encoding declaration did not
specify a recognizable encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

57 The document was encoded in ASCII, and
the document encoding declaration specified
a supported ASCII encoding, but the parser
does not support the code page specified by
the CODEPAGE compiler option.

The parser uses the encoding specified by the
document encoding declaration.

58 The document was encoded in ASCII, and
the CODEPAGE compiler option specified
a supported ASCII code page, but the
document encoding declaration specified a
supported EBCDIC encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

59 The document was encoded in ASCII, and
the CODEPAGE compiler option specified
a supported ASCII code page, but the
document encoding declaration specified a
supported Unicode encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

60 The document was encoded in ASCII, and
the CODEPAGE compiler option specified
a supported ASCII code page, but the
document encoding declaration specified a
Unicode encoding that the parser does not
support.

The parser uses the encoding specified by the
CODEPAGE compiler option.

61 The document was encoded in ASCII, and
the CODEPAGE compiler option specified
a supported ASCII code page, but the
document encoding declaration specified an
encoding that the parser does not support.

The parser uses the encoding specified by the
CODEPAGE compiler option.

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 403

Table 131. Continuable exceptions (continued)

Number Description Parser action on continuation

100001 through
165535

The document was encoded in EBCDIC;
the encoding specified by the CODEPAGE
compiler option and the encoding specified
by the document encoding declaration are
both supported EBCDIC code pages, but are
not the same. The exception code contains
the CCSID for the encoding declaration plus
100000.

If you return zero from the exception event,
the parser uses the encoding specified by
the CODEPAGE compiler option. If you return
the CCSID from the document encoding
declaration (by subtracting 100000 from
the exception code), the parser uses this
encoding.

200001 through
265535

The document was encoded in ASCII;
the encoding specified by the CODEPAGE
compiler option and the encoding specifies by
the document encoding declaration are both
supported ASCII code pages, but are not the
same. The exception code contains the CCSID
for the encoding declaration plus 200000.

If you return zero from the exception event,
the parser uses the encoding specified by
the CODEPAGE compiler option. If you return
the CCSID from the document encoding
declaration (by subtracting 200000 from
the exception code), the parser uses this
encoding.

Terminating exception codes
This topic describes the terminating exception codes.

Table 132. Terminating exceptions

Number Description

100 The parser reached the end of the document while scanning the start of the XML
declaration.

101 The parser reached the end of the document while looking for the end of the XML
declaration.

102 The parser reached the end of the document while looking for the root element.

103 The parser reached the end of the document while looking for the version
information in the XML declaration.

104 The parser reached the end of the document while looking for the version
information value in the XML declaration.

106 The parser reached the end of the document while looking for the encoding
declaration value in the XML declaration.

108 The parser reached the end of the document while looking for the standalone
declaration value in the XML declaration.

109 The parser reached the end of the document while scanning an attribute name.

110 The parser reached the end of the document while scanning an attribute value.

111 The parser reached the end of the document while scanning a character reference
or an entity reference in an attribute value.

112 The parser reached the end of the document while scanning an empty element tag.

113 The parser reached the end of the document while scanning the root element name.

114 The parser reached the end of the document while scanning an element name.

115 The parser reached the end of the document while scanning character data in
element content.

404 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 132. Terminating exceptions (continued)

Number Description

116 The parser reached the end of the document while scanning a processing
instruction in element content.

117 The parser reached the end of the document while scanning a comment or CDATA
section in element content.

118 The parser reached the end of the document while scanning a comment in element
content.

119 The parser reached the end of the document while scanning a CDATA section in
element content.

120 The parser reached the end of the document while scanning a character reference
or an entity reference in element content.

121 The parser reached the end of the document while scanning after the close of the
root element.

122 The parser found a possible invalid start of a document type declaration.

123 The parser found a second document type declaration.

124 The first character of the root element name was not a letter, _, or :.

125 The first character of the first attribute name of an element was not a letter, _, or :.

126 The parser found an invalid character either in or following an element name.

127 The parser found a character other than = following an attribute name.

128 The parser found an invalid attribute value delimiter.

130 The first character of an attribute name was not a letter, _, or :.

131 The parser found an invalid character either in or following an attribute name.

132 An empty element tag was not terminated by a > following the /.

133 The first character of an element end tag name was not a letter, _, or :.

134 An element end tag name was not terminated by a >.

135 The first character of an element name was not a letter, _, or :.

136 The parser found an invalid start of a comment or CDATA section in element
content.

137 The parser found an invalid start of a comment.

138 The first character of a processing instruction target name was not a letter, _, or :.

139 The parser found an invalid character in or following a processing instruction target
name.

140 A processing instruction was not terminated by the closing character sequence ?>.

141 The parser found an invalid character following & in a character reference or an
entity reference.

142 The version information was not present in the XML declaration.

143 'version' in the XML declaration was not followed by a =.

144 The version declaration value in the XML declaration is either missing or improperly
delimited.

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 405

Table 132. Terminating exceptions (continued)

Number Description

145 The version information value in the XML declaration specified a bad character, or
the start and end delimiters did not match.

146 The parser found an invalid character following the version information value closing
delimiter in the XML declaration.

147 The parser found an invalid attribute instead of the optional encoding declaration in
the XML declaration.

148 encoding in the XML declaration was not followed by a =.

149 The encoding declaration value in the XML declaration is either missing or
improperly delimited.

150 The encoding declaration value in the XML declaration specified a bad character, or
the start and end delimiters did not match.

151 The parser found an invalid character following the encoding declaration value
closing delimiter in the XML declaration.

152 The parser found an invalid attribute instead of the optional standalone declaration
in the XML declaration.

153 'standalone' in the XML declaration was not followed by a =.

154 The standalone declaration value in the XML declaration is either missing or
improperly delimited.

155 The standalone declaration value was neither yes nor no only.

156 The standalone declaration value in the XML declaration specified a bad character,
or the start and end delimiters did not match.

157 The parser found an invalid character following the standalone declaration value
closing delimiter in the XML declaration.

158 The XML declaration was not terminated by the proper character sequence ?>, or
contained an invalid attribute.

159 The parser found the start of a document type declaration after the end of the root
element.

160 The parser found the start of an element after the end of the root element.

300 The document was encoded in EBCDIC, but the CODEPAGE compiler option
specified a supported ASCII code page.

301 The document was encoded in EBCDIC, but the CODEPAGE compiler option
specified Unicode.

302 The document was encoded in EBCDIC, but the CODEPAGE compiler option
specified an unsupported code page.

303 The document was encoded in EBCDIC, but the CODEPAGE compiler option is
unsupported and the document encoding declaration was either empty or contained
an unsupported alphabetic encoding alias.

304 The document was encoded in EBCDIC, but the CODEPAGE compiler option is
unsupported and the document did not contain an encoding declaration.

305 The document was encoded in EBCDIC, but the CODEPAGE compiler option is
unsupported and the document encoding declaration did not specify a supported
EBCDIC encoding.

406 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 132. Terminating exceptions (continued)

Number Description

306 The document was encoded in ASCII, but the CODEPAGE compiler option specified
a supported EBCDIC code page.

307 The document was encoded in ASCII, but the CODEPAGE compiler option specified
Unicode.

308 The document was encoded in ASCII, but the CODEPAGE compiler option did not
specify a supported EBCDIC code page, ASCII, or Unicode.

309 The CODEPAGE compiler option specified a supported ASCII code page, but the
document was encoded in Unicode.

310 The CODEPAGE compiler option specified a supported EBCDIC code page, but the
document was encoded in Unicode.

311 The CODEPAGE compiler option specified an unsupported code page, but the
document was encoded in Unicode.

312 The document was encoded in ASCII, but both the encoding provided externally and
the encoding specified by the document encoding declaration are unsupported.

313 The document was encoded in ASCII, but the CODEPAGE compiler option is
unsupported and the document did not contain an encoding declaration.

314 The document was encoded in ASCII, but the CODEPAGE compiler option is
unsupported and the document encoding declaration did not specify a supported
ASCII encoding.

315 The document was encoded in UTF-16 Little Endian, which the parser does not
support on this platform.

316 The document was encoded in UCS4, which the parser does not support.

317 The parser cannot determine the document encoding. The document may be
damaged.

318 The document was encoded in UTF-8, which the parser does not support.

319 The document was encoded in UTF-16 Big Endian, which the parser does not
support on this platform.

501, 502, 503 An internal error occurred in PLISAX(A|B). Contact IBM support.

500 Memory allocation failed for the PLISAXA internal data structures. Increase the
amount of storage available to the application program.

520 Memory allocation failed for the PLISAXB internal data structures. Increase the
amount of storage available to the application program.

521 An internal error occurred in PLISAX(A|B). Contact IBM support.

523 PLISAXB encountered a file I/O error.

524 Memory allocation failed in PLISAXB while attempting to cache the XML document
from the file system. Increase the amount of storage available to the application
program.

525 An unsupported URI scheme was specified to PLISAXB.

526 The XML document provided to PLISAXB was less than the minimum of 4 characters
or was too large.

527, 560 An internal error occurred in PLISAX(A|B). Contact IBM support.

Chapter 20. Using the PLISAXA and PLISAXB XML parsers 407

Table 132. Terminating exceptions (continued)

Number Description

561 No event handler was specified to either PLISAX(A|B).

562, 563, 580, 581 An internal error occurred in PLISAX(A|B). Contact IBM support.

600 through 99999 Internal error. Report the error to your service representative.

408 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 21. Using the PLISAXC and PLISAXD XML
parsers

The PLISAXC and PLISAXD built-in subroutines provide basic XML parsing capability, which allows
programs to consume inbound XML documents, check them for well-formedness, and react to their
contents.

The XML parser used by PLISAXC is non-validating, but does partially check for well-formedness errors,
and generates exception events if it discovers any.

The PLISAXD built-in subroutine provides XML parsing with validation capability. It determines whether
an inbound XML documentation conforms to a set of rules specified in an inbound XML schema.

The PLISAXC and PLISAXD subroutines do not provide XML generation, which must instead be
accomplished by the PL/I program logic or by the XMLCHAR built-in function.

PLISAXC and PLISAXD have no special environmental requirements except that it is not supported in
AMODE 24. It executes in all the principal runtime environments, including CICS, IMS, MQ Series, z/OS
batch, and TSO.

Because the PLISAXC and PLISAXD built-in subroutines and the PLISAXA and PLISAXB built-in
subroutines do have much similarity, some information in this section repeats information in Chapter
20, “Using the PLISAXA and PLISAXB XML parsers,” on page 381.

Overview
There are two major types of interfaces for XML parsing: event-based and tree-based.

For an event-based API, the parser reports events to the application through callbacks. Such events
include the start of the document, the beginning of an element, and so on. The application provides
handlers to deal with the events reported by the parser. The Simple API for XML (SAX) is an example of an
industry-standard event-based API.

For a tree-based API such as the Document Object Model (DOM), the parser translates the XML into an
internal tree-based representation. Interfaces are provided to navigate the tree.

IBM PL/I compiler provides, by using PLISAXC or PLISAXD, a SAX-like event-based interface for
parsing XML documents. The parser invokes an application-supplied handler for parser events, passing
references to the corresponding document fragments.

The parser has the following characteristics:

• It provides high-performance, but nonstandard interfaces.
• It supports XML files encoded in either Unicode UTF-16, UTF-8 or any of several single-byte code pages

listed in “Coded character sets for XML documents” on page 417.

XML documents have two levels of conformance: well-formedness and validity, both of which are defined
in the XML standard, which you can find at http://www.w3c.org/XML/. Recapitulating these definitions, an
XML document is well-formed if it complies with the basic XML grammar, and with a few specific rules,
such as the requirement that the names on start and end element tags must match. A well-formed XML
document is also valid if it has an associated document type declaration (DTD) and if it complies with the
constraints expressed in the DTD.

For each parser event, you must provide a PL/I function that accepts the appropriate parameters and
returns the appropriate return value - as in the example code shown in Table 133 on page 411.

Notes:

• For these functions, the return value must be returned by value (BYVALUE).

© Copyright IBM Corp. 1999, 2022 409

• For these functions, the linkage used must be the OPTLINK linkage. You can use the
DEFAULT(LINKAGE(OPTLINK)) option to specify this linkage, or you can specify it on the individual
PROCEDUREs and ENTRYs by using the OPTIONS(LINKAGE(OPTLINK)) attribute.

The PLISAXC built-in subroutine
The PLISAXC built-in subroutine allows you to invoke the XML parser for an XML document that is in one
or more buffers in your program.

PLISAXC( e, p , x , n
, c

)

e
An event structure.

p
A pointer value or "token" that the parser will pass back to the event functions.

x
The address of the initial buffer containing the input XML.

n
The number of bytes of data in that buffer.

If the XML is contained in a UCHAR string, the value for the number of bytes is returned by the
BYTELENGTH built-in function.

c
A numeric expression specifying the codepage of that XML.

Notes:

• If the XML is contained in a VARYING or VARYING4 string, you must use the ADDRDATA built-in function
to obtain the address of the first data byte.

• If the XML is contained in a WIDECHAR string, the value for the number of bytes is twice the value
returned by the LENGTH built-in function.

The PLISAXD built-in subroutine
The PLISAXD built-in subroutine allows you to invoke the XML parser with the validation capability. Both
the XML document and the Optimized Schema Representation (OSR) file are in one or more buffers in your
program.

PLISAXD( e, p , x , n, o
, c

)

e
An event structure.

p
A pointer value or "token" that the parser passes back to the event functions.

x
The address of the initial buffer containing the input XML.

n
The number of bytes of data in that buffer.

If the XML is contained in a UCHAR string, the value for the number of bytes is returned by the
BYTELENGTH built-in function.

o
The address of the buffer containing the input OSR.

410 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

c
A numeric expression specifying the codepage of the XML document.

Note:

• If the XML is contained in a VARYING or VARYING4 string, you must use the ADDRDATA built-in function
to obtain the address of the first data byte.

• If the XML is contained in a WIDECHAR string, the value for the number of bytes is twice the value
returned by the LENGTH built-in function.

• An OSR is the preprocessed version of a schema. For more information about OSR, see XML System
Services User’s Guide and Reference.

The SAX event structure
The event structure is a structure consisting of 19 LIMITED ENTRY variables, which point to functions that
the parser invokes for various "events".

All of these ENTRYs must use the OPTLINK linkage.

The library routines that support the XML parsers recognize if an event in any of the PLISAX event
structures is set to null (through the NULLENTRY built-in function or through use of UNSPEC) and do not
call it in that case. This allows you to limit your XML parsing code to only the events in which you are
interested and to improve the performance of the overall parse at the same time.

All of these ENTRYs have a first (and sometimes the only) parameter: the user token passed by the
program to PLISAXC and PLISAXD.

In this section, the descriptions of these 19 events refer to the example of an XML document in Table 133
on page 411. In these descriptions, the term XML text refers to the string based on the pointer and length
passed to the event.

Table 133. Sample XML document

 xmlDocument =
 '<?xml version="1.0" standalone="yes"?>'
 || '<!--This document is just an example-->'
 || '<sandwich>'
 || '<bread type="baker"s best"/>'
 || '<?spread please use real mayonnaise ?>'
 || '<meat>Ham & turkey</meat>'
 || '<filling>Cheese, lettuce, tomato, etc.</filling>'
 || '<![CDATA[We should add a <relish> element in future!]]>'
 || '</sandwich>';

Depending on the contents of the XML documents, the parser might recognize the following events:

start_of_document
This event occurs once, at the beginning of parsing the document. The parser passes no parameters to
this event (except the user token).

version_information
This event occurs within the optional XML declaration for the version information. The parser passes the
address and length of the text containing the version value (1.0 for the example shown in Table 133 on
page 411).

encoding_declaration
This event occurs within the XML declaration for the optional encoding declaration. The parser passes the
address and length of the text containing the encoding value.

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 411

standalone_declaration
This event occurs within the XML declaration for the optional standalone declaration. The parser passes
the address and length of the text containing the standalone value (yes for the example shown in Table
133 on page 411).

document_type_declaration
This event occurs when the parser finds a document type declaration. Document type declarations begin
with the character sequence <!DOCTYPE and end with a > character, with some fairly complicated
grammar rules describing the content in between. The parser passes the address and length of the text
containing the entire declaration, including the opening and closing character sequences, and it is the only
event where XML text includes the delimiters. The example shown in Table 133 on page 411 does not
have a document type declaration.

end_of_document
This event occurs once, when document parsing has completed. The parser passes no parameters to this
event (except the user token).

start_of_element
This event occurs once for each element start tag or empty element tag. The parser passes the address
and length of the text containing the element name as well as any applicable namespace information. For
the first start_of_element event during parsing of the example shown in Table 133 on page 411, this is the
string sandwich.

attribute_name
This event occurs for each attribute in an element start tag or empty element tag after the parser
recognizes a valid name. The parser passes the address and length of the text containing the attribute
name as well as any applicable namespace information. The only attribute name in the example shown in
Table 133 on page 411 is type.

attribute_characters
This event occurs for each attribute value. The parser passes the address and length of the text containing
the fragment. An attribute value normally consists of a single string only, even if it is split across lines:

 <element attribute="This attribute value is
 split across two lines"/>

The parser also passes a flag byte, which indicates whether the next event provides additional characters
that form part of the content. This can be true when there is a lot of data between the start and end tags.

end_of_element
This event occurs once for each element end tag or empty element tag when the parser recognizes the
closing angle bracket of the tag. The parser passes the address and length of the text containing the
element name as well as any applicable namespace information.

start_of_CDATA_section
This event occurs at the start of a CDATA section. CDATA sections begin with the string <![CDATA[and
end with the string]]>, and are used to "escape" blocks of text containing characters that would
otherwise be recognized as XML markup. The parser passes no parameters to this event (except the user
token). After this event, the parser passes the content of the CDATA section between these delimiters
as one or more content-characters events. For the example shown in Table 133 on page 411, the
content-characters event is passed the text We should add a <relish> element in future!.

412 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

end_of_CDATA_section
This event occurs when the parser recognizes the end of a CDATA section. The parser passes no
parameters to this event (except the user token).

content_characters
This event represents the "heart" of an XML document: the character data between element start and end
tags. The parser passes the address and length of the text containing the data, which usually consists of a
single string only, even if it is split across lines:

 <element1>This character content is
 split across two lines</element1>

The parser also passes a flag byte, which indicates if the next event provides additional characters that
form part of the content. This can be true when there is a lot of data between the start and end tags.

The parser also uses the content_characters event to pass the text of CDATA sections to the application.

processing_instruction
Processing instructions (PIs) allow XML documents to contain special instructions for applications. This
event occurs when the parser recognizes the name following the PI opening character sequence <?. The
event also covers the data following the processing instruction (PI) target, up to but not including the PI
closing character sequence ?>. Trailing but not leading white space characters in the data are included.
The parser passes the address and length of the text containing the target, spread in the example shown
in Table 133 on page 411, and passes the address and length of the text containing the data (please
use real mayonnaise in the example).

The parser also passes a flag byte, which indicates whether the next event provides additional characters
that form part of the content. This can be true when there is a lot of data between the start and end tags.

comment
This event occurs for any comments in the XML document. The parser passes the address and length of
the text between the opening comment delimiter <!-- and the closing comment delimiter -->. In the
example shown in Table 133 on page 411, the text of the only comment is This document is just
an example.

The parser also passes a flag byte, which indicates whether the next event provides additional characters
that form part of the content. This can be true when there is a lot of data between the start and end tags.

namespace_declare
This event occurs for any namespace declarations in the XML document. The parser passes the address
and length of the namespace prefix (if any) as well as the address and length of the namespace uri. If
there is no namespace prefix, the passed length will be zero and the value of the address should not be
used. There is no corresponding event in the PLIXSAXA and PLISAXB built-in subroutines.

end_of_input
This event occurs whenever the parser reaches the end of the current input buffer. The parser passes
(along with the BYVALUE user token) two BYADDR parameters: the address and length of the next buffer
for it to process. Note that this and the content character events are the only events that have any
BYADDR parameters, but this is the only event that has parameters that the called event should change.
There is no corresponding event in the PLIXSAXA and PLISAXB built-in subroutines, and it is this event
that allows PLISAXC and PLISAXD to parse an XML document of arbitrary size.

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 413

unresolved_reference
This event occurs for any unresolved references in the XML document. The parser passes the address and
length of the unresolved reference.

exception
The parser generates this event when it detects an error in processing the XML document.

Parameters to the event functions
All of these functions must return a BYVALUE FIXED BIN(31) value that is a return code to the parser. If
any value other than zero is returned, the parser will terminate.

All of these functions are passed a BYVALUE POINTER as the first argument. This pointer is the token
value that is passed originally as the second argument to the built-in function.

With the following exceptions, all of the functions will also be passed a BYVALUE POINTER and a
BYVALUE FIXED BIN(31) that supply the address and length of the text element for the event. The
following functions and events are different:

start_of_document
No argument other than the user token is passed.

end_of_document
No argument other than the user token is passed.

start_of_CDATA
No argument other than the user token is passed.

end_of_CDATA
No argument other than the user token is passed.

start_of_element
In addition to the usual three parameters, four additional arguments are passed:

1. A BYVALUE POINTER that is the address of the namespace prefix
2. A BYVALUE FIXED BIN(31) that is the length of the namespace prefix
3. A BYVALUE POINTER that is the address of the namespace uri
4. A BYVALUE FIXED BIN(31) that is the length of the namespace uri

end_of_element
In addition to the usual three parameters, four additional arguments are passed:

1. A BYVALUE POINTER that is the address of the namespace prefix
2. A BYVALUE FIXED BIN(31) that is the length of the namespace prefix
3. A BYVALUE POINTER that is the address of the namespace uri
4. A BYVALUE FIXED BIN(31) that is the length of the namespace uri

attribute_name
In addition to the usual three parameters, four additional arguments are passed:

1. A BYVALUE POINTER that is the address of the namespace prefix
2. A BYVALUE FIXED BIN(31) that is the length of the namespace prefix
3. A BYVALUE POINTER that is the address of the namespace uri
4. A BYVALUE FIXED BIN(31) that is the length of the namespace uri

attribute_characters
In addition to the usual three parameters, one additional argument is passed:

• a BYVALUE ALIGNED BIT(8) flag byte that indicates the following information:

414 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

– Whether more content characters will be presented in the next event - this is true if the first bit is
on, that is, this is true if this field anded with '80'BX is nonnull

– Whether there are no characters that need to be escaped if converted back to XML - this is true if
the second bit is on, that is, this is true if this field anded with '40'BX is nonnull

Note that this entry must also be declared with OPTIONS(NODESCRIPTOR).

namespace_declare
In addition to the user token, four additional arguments passed:

1. A BYVALUE POINTER that is the address of the namespace prefix
2. A BYVALUE FIXED BIN(31) that is the length of the namespace prefix
3. A BYVALUE POINTER that is the address of the namespace uri
4. A BYVALUE FIXED BIN(31) that is the length of the namespace uri

content_characters
In addition to the usual three parameters, one additional argument is passed:

• A BYVALUE ALIGNED BIT(8) flag byte that indicates the following information:

– Whether more content characters will be presented in the next event - this is true if the first bit is
on, that is, this is true if this field anded with '80'BX is nonnull

– Whether there are no characters that need to be escaped if converted back to XML - this is true if
the second bit is on, that is, this is true if this field anded with '40'BX is nonnull

Note that this entry must also be declared with OPTIONS(NODESCRIPTOR).

end_of_input
In addition to the user token, two additional arguments are passed:

1. A BYADDR POINTER that is the address of the next input buffer
2. A BYADDR FIXED BIN(31) that is the length of the next input buffer

processing_instruction
In addition to the user token, five additional arguments are passed:

1. A BYVALUE POINTER that is the address of the target text
2. A BYVALUE FIXED BIN(31) that is the length of the target text
3. A BYVALUE POINTER that is the address of the data text
4. A BYVALUE FIXED BIN(31) that is the length of the data text
5. A BYVALUE ALIGNED BIT(8) flag byte that indicates the following information:

• Whether more content characters will be presented in the next event - this is true if the first bit is
on, that is, this is true if this field anded with '80'BX is nonnull

• Whether there are no characters that need to be escaped if converted back to XML - this is true if
the second bit is on, that is, this is true if this field anded with '40'BX is nonnull

Note that this entry must also be declared with OPTIONS(NODESCRIPTOR).

comment
In addition to the usual three parameters, one additional argument is passed:

• A BYVALUE ALIGNED BIT(8) flag byte that indicates the following information:

– Whether more content characters will be presented in the next event - this is true if the first bit is
on, that is, this is true if this field anded with '80'BX is nonnull

– Whether there are no characters that need to be escaped if converted back to XML - this is true if
the second bit is on, that is, this is true if this field anded with '40'BX is nonnull

Note that this entry must also be declared with OPTIONS(NODESCRIPTOR).

exception
In addition to the user token, three additional arguments are passed:

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 415

1. A BYVALUE FIXED BIN(31) that is the byte offset of the offending text within the document
2. A BYVALUE FIXED BIN(31) that is the return code for the exception
3. A BYVALUE FIXED BIN(31) that is the reason code for the exception

Differences in the events
The following events are part of the PLISAXA and PLISAXB event structure, but are not in PLISAXC and
PLISAXD:

• attribute_predefined_reference
• attribute_character_reference
• content_predefined_reference
• content_character_reference
• unknown_attribute_reference
• unknown_content_reference
• start_of_prefix_mapping
• end_of_prefix_mapping

The following events are not part of the PLISAXA and PLISAXB event structure, but are in PLISAXC and
PLISAXD:

• namespace_declare
• unresolved_reference
• end_of_input

Some of the events that are common to PLISAXA and PLISAXB, PLISAXC and PLISAXD are passed
different parameters (apart from the omnipresent user token):

start_of_document
is passed no parameters

start_of_element
is passed namespace data as well

end_of_element
is passed namespace data as well

attribute_name
is passed namespace data as well

attribute_characters
is passed a flag byte as well

start_of_cdata
is passed no parameters

end_of_cdata
is passed no parameters

content_characters
is passed a flag byte as well

processing_instruction
is passed a flag byte as well

comment
is passed a flag byte as well

exception
is passed a return and reason code instead of an error id

416 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Coded character sets for XML documents
The PLISAXC and PLISAXD built-in subroutines support only XML documents in WIDECHAR encoded in
UTF-16, in UCHAR encoded in UTF-8, or in CHARACTER encoded either in UTF-8 or one of the explicitly
supported single-byte character sets listed in this section.

The parser uses up to three sources of information about the encoding of your XML document, and signals
an exception XML event if it discovers any conflicts between these sources:

1. The parser determines the basic encoding of a document by inspecting its initial characters.
2. If step 1 succeeds, the parser then looks for any encoding declaration.
3. Finally, it refers to the codepage value on the PLISAXC or PLISAXD built-in subroutine call. If this

parameter was omitted, it defaults to the value provided by the CODEPAGE compiler option value that
you specified explicitly or by default.

If the XML document begins with an XML declaration that includes an encoding declaration specifying
one of the supported code pages, the parser honors the encoding declaration if it does not conflict with
either the basic document encoding or the encoding information from the PLISAXC or PLISAXD built-in
subroutine. If the XML document does not have an XML declaration at all, or if the XML declaration omits
the encoding declaration, the parser uses the encoding information from the PLISAXC or PLISAXD built-in
subroutine to process the document, as long as it does not conflict with the basic document encoding.

Supported code pages
In the following table, the first number is for the Euro Country Extended Code Page (ECECP), and the
second is for Country Extended Code Page (CECP).

CCSID Description

01208 Unicode UTF-8

01047 Latin 1 / Open Systems

01140, 00037 USA, Canada, etc.

01141, 00273 Austria, Germany

01142, 00277 Denmark, Norway

01143, 00278 Finland, Sweden

01144, 00280 Italy

01145, 00284 Spain, Latin America (Spanish)

01146, 00285 UK

01147, 00297 France

01148, 00500 International

01149, 00871 Iceland

Specifying the code page
If your document does not include an encoding declaration in the XML declaration, or if it does not have
an XML declaration at all, the parser uses the encoding information provided by the PLISAXC or PLISAXD
built-in subroutine call along with the basic encoding of the document.

You can also specify the encoding information for the document in the XML declaration, with which
most XML documents begin. The following example is an XML declaration that includes an encoding
declaration:

 <?xml version="1.0" encoding="ibm-1140"?>

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 417

If your XML document includes an encoding declaration, ensure that it is consistent with the encoding
information provided by the PLISAXC or PLISAXD built-in subroutine and with the basic encoding of the
document. If there is any conflict between the encoding declaration, the encoding information provided
by the PLISAXC or PLISAXD built-in subroutine, and the basic encoding of the document, the parser
signals an exception XML event.

You can specify the encoding declaration by using a number or an alias.

Specifying the encoding declaration using a number

You can specify the CCSID number (with or without any number of leading zeroes), prefixed by any of the
following (in any mixture of uppercase or lowercase characters):

IBM_
IBM-

CP
CP_
CP-

CCSID_
CCSID-

Specifying the encoding declaration using an alias

You can use any of the following supported aliases (in any mixture of lowercase and uppercase
characters).

Code page Supported aliases

037 EBCDIC-CP-US, EBCDIC-CP-CA, EBCDIC-CP-WT, EBCDIC-CP-NL

500 EBCDIC-CP-BE, EBCDIC-CP-CH

813 ISO-8859-7, ISO_8859-7

819 ISO-8859-1, ISO_8859-1

920 ISO-8859-9, ISO_8859-9

1200 UTF-16

Exceptions
If an exception event occurs, the reason and return codes passed to it are those from the XML System
Services parser, and the documentation provided with that parser explains what these return and reason
codes mean.

Parsing XML documents with validation
The PLISAXD built-in subroutine not only parses XML documents in the same manner as PLISAXC, but
also determines whether an inbound XML document conforms to a set of rules specified in an inbound
XML schema.

When you use the PLISAXD built-in subroutine, the inbound schema used for XML validation must be in a
preprocessed format known as an Optimized Schema Representation (OSR).

The following topics contain the description of the XML schema and the way to build an OSR for an XML
schema. For an example of using PLISAXD built-in subroutine to parse XML documents with validation,
see “Example of using the PLISAXD built-in subroutine” on page 430.

418 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

XML schema
An XML schema is a mechanism, defined by the W3C, for describing and constraining the structure and
content of XML documents.

Through its support for datatypes and namespaces, an XML schema has the potential to provide the
standard structure for XML elements and attributes. Therefore, an XML schema, which is itself expressed
in XML, can effectively define a class of XML documents of a given type, for example, stock item.

The following sample XML document describes an item for stock keeping purposes:

 '<?xml version="1.0" standalone="yes"?>'
 || '<!--Document for stock keeping example-->'
 || '<stockItem itemNumber="453-SR">'
 || '<itemName>Stainless steel rope thimbles</itemName>'
 || '<quantityOnHand>23</quantityOnHand>'
 || '<stockItem>';

The stock keeping example document is both well formed and valid according to the following schema
called stock.xsd. (The numbers that precede each line are not part of the schema, but are used in the
explanation after the schema.)

1. <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
2.
3. <xsd:element name="stockItem" type="stockItemType"/>
4.
5. <xsd:complexType name="stockItemType">
6. <xsd:sequence>
7. <xsd:element name="itemName" type="xsd:string" minOccurs="0"/>
8. <xsd:element name="quantityOnHand">
9. <xsd:simpleType>
10. <xsd:restriction base="xsd:nonNegativeInteger">
11. <xsd:maxExclusive value="100"/>
12. </xsd:restriction>
13. </xsd:simpleType>
14. </xsd:element>
15. </xsd:sequence>
16. <xsd:attribute name="itemNumber" type="SKU" use="required"/>
17. </xsd:complexType>
18.
19. <xsd:simpleType name="SKU">
20. <xsd:restriction base="xsd:string">
21. <xsd:pattern value="\d{3}-[A-Z]{2}"/>
22. </xsd:restriction>
23. </xsd:simpleType>
24.
25. </xsd:schema>

The schema declares (line 3) that the root element is stockItem, which has a mandatory itemNumber
attribute (line 16) of type SKU, and includes a sequence (lines 6 - 15) of other elements:

• An optional itemName element of type string (line 7)
• A required quantityOnHand element that has a constrained range of 1 - 99 based on the type
nonNegativeInteger (lines 8 - 14)

Type declarations can be inline and unnamed, as in lines 9 - 13, which includes the maxExclusive facet
to specify the legal values for the quantityOnHand element.

For the itemNumber attribute, by contrast, the named type SKU is declared separately in lines 19 - 23,
which includes a pattern facet that uses regular expression syntax to specify that the legal values for that
type consist of (in order) 3 digits, a hyphen-minus, and then two uppercase letters.

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 419

Creating an OSR
To generate a schema in the OSR format from a text-form schema, use the z/OS UNIX command
xsdosrg, which invokes the OSR generator provided by z/OS UNIX System Services.

For example, to convert the text-form schema in the stock.xsd file to a schema in preprocessed format
in the stock.osr file, you can use the following z/OS UNIX command:

xsdosrg -v –o /u/HLQ/xml/stock.osr /u/HLQ/xml/stock.xsd

/u/HLQ/xml/ is the directory where the stock.osr and stock.xsd files are located.

If you want to copy the generated OSR file into a PDS, use the z/OS UNIX cp command. To specify
an MVS data set name, precede the name with double slashes (//). For example, to copy the zFS file
stock.osr into a fixed block record format PDS called HLQ.XML.OSR with record length 80, you can use
the following command:

cp –p /u/HLQ/xml/stock.osr “//’HLQ.XML.OSR(STOCK)’”

To omit the fully qualified name of the PDS, you can eliminate the single quotation mark in the cp
statement such as follows:

cp –p /u/HLQ/xml/stock.osr “//XML.OSR(STOCK)”

For more information, see the XML System Services User's Guide and Reference.

Example with a simple document
This section contains two examples that illustrate the use of the PLISAXC and PLISAXD built-in
subroutines.

Example of using the PLISAXC built-in subroutine
This example illustrates the use of the PLISAXC built-in subroutine.

The example uses the example XML document shown in Table 133 on page 411. This example does
not use namespaces, and all the input is passed when PLISAXC is first invoked (and as a result, the
end_of_input event should not be invoked).

420 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 134. PLISAXC coding example - type declarations

 saxtest: package exports(saxtest);

 define alias event
 limited entry(pointer, pointer, fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_with_flag
 limited entry(pointer, pointer, fixed bin(31),
 bit(8) aligned)
 returns(byvalue fixed bin(31))
 options(nodescriptor byvalue linkage(optlink));

 define alias event_with_namespace
 limited entry(pointer, pointer, fixed bin(31),
 pointer, fixed bin(31),
 pointer, fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_without_data
 limited entry(pointer)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_pi
 limited entry(pointer, pointer, fixed bin(31),
 pointer, fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_namespace_dcl
 limited entry(pointer, pointer, fixed bin(31),
 pointer, fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_exception
 limited entry(pointer, fixed bin(31),
 fixed bin(31),
 fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_end_of_input
 limited entry(pointer,
 pointer byaddr,
 fixed bin(31) byaddr)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 421

Table 135. PLISAXC coding example - event structure

 saxtest: proc options(main);

 dcl
 1 eventHandler static

 ,2 e01 type event_without_data
 init(start_of_document)

 ,2 e02 type event
 init(version_information)

 ,2 e03 type event
 init(encoding_declaration)

 ,2 e04 type event
 init(standalone_declaration)

 ,2 e05 type event
 init(document_type_declaration)

 ,2 e06 type event_without_data
 init(end_of_document)

 ,2 e07 type event_with_namespace
 init(start_of_element)

 ,2 e08 type event_with_namespace
 init(attribute_name)

 ,2 e09 type event_with_flag
 init(attribute_characters)

 ,2 e10 type event_with_namespace
 init(end_of_element)

 ,2 e11 type event_without_data
 init(start_of_CDATA)

 ,2 e12 type event_without_data
 init(end_of_CDATA)

 ,2 e13 type event_with_flag
 init(content_characters)

 ,2 e14 type event_pi
 init(processing_instruction)

 ,2 e15 type event_with_flag
 init(comment)

 ,2 e16 type event_namespace_dcl
 init(namespace_declare)

 ,2 e17 type event_end_of_input
 init(end_of_input)

 ,2 e18 type event
 init(unresolved_reference)

 ,2 e19 type event_exception
 init(exception)
 ;

422 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 136. PLISAXC coding example - main routine

 dcl token char(8);

 dcl xmlDocument char(4000) var;

 xmlDocument =
 '<?xml version="1.0" standalone="yes"?>'
 || '<!--This document is just an example-->'
 || '<sandwich>'
 || '<baker type="baker"s best"/>
 || '<?spread please use real mayonnaise ?>'
 || '<meat>Ham & turkey</meat>'
 || '<filling>Cheese, lettuce, tomato, etc.</filling>'
 || '<![CDATA[We should add a <relish> element in future!]]>'.
 || '</sandwich>'
 || ' ';

 call plisaxc(eventHandler,
 addr(token),
 addrdata(xmlDocument),
 length(xmlDocument));

 end;

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 423

Table 137. PLISAXC coding example - event routines

 dcl chars char(32000) based;

 start_of_document:
 proc(userToken)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' length=' || tokenlength);

 return(0);
 end;

 version_information:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 return(0);
 end;

 encoding_declaration:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 return(0);
 end;

 standalone_declaration:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 return(0);
 end;

424 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 137. PLISAXC coding example - event routines (continued)

 document_type_declaration:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 return(0);
 end;

 namespace_declare:
 proc(userToken, nsPrefix, nsPrefixLength,
 nsUri, nsUriLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl nsPrefix pointer;
 dcl nsPrefixLength fixed bin(31);
 dcl nsUri pointer;
 dcl nsUriLength fixed bin(31);

 put skip list(lowercase(procname()));
 put skip list('prefix = '
 || ' <' || substr(nsPrefix->chars,1,nsPrefixlength) || '>');
 put skip list('Uri = '
 || ' <' || substr(nsUri->chars,1,nsUrilength) || '>');

 return(0);
 end;

 end_of_document:
 proc(userToken)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;

 put skip list(lowercase(procname()));

 return(0);
 end;

PLISAXC coding example - event routines (continued)

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 425

Table 137. PLISAXC coding example - event routines (continued)

 start_of_element:
 proc(userToken, xmlToken, TokenLength,
 nsPrefix, nsPrefixLength,
 nsUri, nsUriLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl nsPrefix pointer;
 dcl nsPrefixLength fixed bin(31);
 dcl nsUri pointer;
 dcl nsUriLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 return(0);
 end;

 attribute_name:
 proc(userToken, xmlToken, TokenLength,
 nsPrefix, nsPrefixLength,
 nsUri, nsUriLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl nsPrefix pointer;
 dcl nsPrefixLength fixed bin(31);
 dcl nsUri pointer;
 dcl nsUriLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 return(0);
 end;

 end_of_element:
 proc(userToken, xmlToken, TokenLength,
 nsPrefix, nsPrefixLength,
 nsUri, nsUriLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl nsPrefix pointer;
 dcl nsPrefixLength fixed bin(31);
 dcl nsUri pointer;
 dcl nsUriLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 return(0);
 end;

PLISAXC coding example - event routines (continued)

426 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 137. PLISAXC coding example - event routines (continued)

 content_characters:
 proc(userToken, xmlToken, TokenLength, flags)
 returns(byvalue fixed bin(31))
 options(nodescriptor, byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl flags bit(8) aligned;

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 if flags = ''b then;
 else
 put skip list('!!flags = ' || flags);

 return(0);
 end;

 attribute_characters:
 proc(userToken, xmlToken, TokenLength, flags)
 returns(byvalue fixed bin(31))
 options(nodescriptor, byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl flags bit(8) aligned;

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 if flags = ''b then;
 else
 put skip list('!!flags = ' || flags);

 return(0);
 end;

 start_of_CDATA:
 proc(userToken)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;

 put skip list(lowercase(procname()));

 return(0);
 end;

 end_of_CDATA:
 proc(userToken)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;

 put skip list(lowercase(procname()));

 return(0);
 end;

PLISAXC coding example - event routines (continued)

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 427

Table 137. PLISAXC coding example - event routines (continued)

 processing_instruction:
 proc(userToken,
 piTarget, piTargetLength,
 piData, piDataLength,
 flags)
 returns(byvalue fixed bin(31))
 options(nodescriptor, byvalue linkage(optlink));

 dcl userToken pointer;
 dcl piTarget pointer;
 dcl piTargetLength fixed bin(31);
 dcl piData pointer;
 dcl piDataLength fixed bin(31);
 dcl flags bit(8) aligned;

 put skip list(lowercase(procname())
 || ' <' || substr(piTarget->chars,1,piTargetLength) || '>');

 if flags = ''b then;
 else
 put skip list('!!flags = ' || flags);

 return(0);
 end;

 comment:
 proc(userToken, xmlToken, TokenLength, flags)
 returns(byvalue fixed bin(31))
 options(nodescriptor, byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl flags bit(8) aligned;

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

if flags = ''b then;
 else
 put skip list('!!flags = ' || flags);

 return(0);
 end;

 unresolved_reference:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(nodescriptor, byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 return(0);
 end;

PLISAXC coding example - event routines (continued)

428 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 137. PLISAXC coding example - event routines (continued)

 exception:
 proc(userToken, currentOffset, return_code, reason_code)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl currentOffset fixed bin(31);
 dcl return_code fixed bin(31);
 dcl reason_code fixed bin(31);

 put skip list(lowercase(procname())
 || ' return_code =' || hex(return_code)
 || ', reason_code =' || hex(reason_code)
 || ', offset =' || currentOffset);

 return(0);
 end;

 end_of_input:
 proc(userToken, addr_xml, length_xml)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl addr_xml byaddr pointer;
 dcl length_xml byaddr fixed bin(31);

 return(1);
 end;
end;

PLISAXC coding example - event routines (continued)

The preceding program produces the following output:

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 429

Table 138. PLISAXC coding example - program output

 start_of_document
 version_information <1.0>
 standalone_declaration <yes>
 comment <This document is just an example>
 start_of_element <sandwich>
 prefix = <>
 Uri = <>
 start_of_element <bread>
 prefix = <>
 Uri = <>
 attribute_name <type>
 prefix = <>
 Uri = <>
 attribute_characters <baker"s best>
 end_of_element <bread>
 prefix = <>
 Uri = <>
 processing_instruction <spread>
 piData = <please use real mayonnaise >
 start_of_element <meat>
 prefix = <>
 Uri = <>
 content_characters <Ham & turkey>
 end_of_element <meat>
 prefix = <>
 Uri = <>
 start_of_element <filling>
 prefix = <>
 Uri = <>
 content_characters <Cheese, lettuce, tomato, etc.>
 !!flags = 01000000
 end_of_element <filling>
 prefix = <>
 Uri = <>
 start_of_cdata
 content_characters <We should add a <relish> element in future >
 end_of_cdata
 end_of_element <sandwich>
 prefix = <>
 Uri = <>
 end_of_document

Example of using the PLISAXD built-in subroutine
This example illustrates the use of the PLISAXD built-in subroutine.

The example uses the example XML document shown in Table 133 on page 411 and the XML schema
cited in the examples in “Example of using the PLISAXC built-in subroutine” on page 420.

This example includes the validation of 8 different XML files against the same stock.osr schema. In the
following output, you can see which XML documents in the saxdtest program fail validation against the
schema.

The PLISAXD built-in subroutine requires the XML schema file to be read into a buffer. The OSR file in the
following example is in a PDS. The initial size of the OSR buffer is set to 4096. If you have a larger OSR file,
you can increase the initial size of the OSR buffer accordingly.

If the inbound schema file were in an zFS file instead, you could use the following code to read the OSR
file into the buffer:

dcl osrin file input stream environment(u);
dcl fileddint builtin;
dcl fileread builtin;

/* Read the zFS OSR file into buffer*/

open file(osrin);
osr_length = fileddint(osrin, 'filesize');
osr_ptr = allocate(osr_length);
rc = fileread(osrin,osr_ptr,osr_length);

430 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

To run a program by using an OSR in a PDS, you can specify the following DD statement in the JCL:

//OSRIN DD DSN=HLQ.XML.OSR(STOCK),DISP=SHR

If the associated ddname OSRIN is an zFS file, use the following JCL statement instead:

//OSRIN DD PATH=“/u/HLQ/xml/stock.osr”

Table 139. PLISAXD coding example - event routines

 saxdtest: package exports(saxdtest);
 /**/
 /* saxdtest: Test PL/I XML validation support */
 /* expected output: */
 /* */
 /* SAXDTEST: PL/I XML Validation sample */
 /* SAXDTEST: Document Successfully parsed */
 /* SAXDTEST: Document Successfully parsed */
 /* Invalid: missing attribute itemNumber. */
 /* exception return_code =00000018, reason_code =8613 */
 /* Invalid: unexpected attribute warehouse. */
 /* exception return_code =00000018, reason_code =8612 */
 /* Invalid: illegal attribute value 123-Ab. */
 /* exception return_code =00000018, reason_code =8809 */
 /* Invalid: missing element quantityOnHand. */
 /* exception return_code =00000018, reason_code =8611 */
 /* Invalid: unexpected element comment. */
 /* exception return_code =00000018, reason_code =8607 */
 /* Invalid: out-of-range element value 100 */
 /* exception return_code =00000018, reason_code =8803 */
 /* */
 /**/

 define alias event
 limited entry(pointer, pointer, fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_with_flag
 limited entry(pointer, pointer, fixed bin(31),
 bit(8) aligned)
 returns(byvalue fixed bin(31))
 options(nodescriptor byvalue linkage(optlink));

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 431

Table 139. PLISAXD coding example - event routines (continued)

 define alias event_with_namespace
 limited entry(pointer, pointer, fixed bin(31),
 pointer, fixed bin(31),
 pointer, fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_without_data
 limited entry(pointer)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_pi
 limited entry(pointer, pointer, fixed bin(31),
 pointer, fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_namespace_dcl
 limited entry(pointer, pointer, fixed bin(31),
 pointer, fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_exception
 limited entry(pointer, fixed bin(31),
 fixed bin(31),
 fixed bin(31))
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 define alias event_end_of_input
 limited entry(pointer,
 pointer byaddr,
 fixed bin(31) byaddr)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

PLISAXD coding example - event routines (continued)

432 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 139. PLISAXD coding example - event routines (continued)

 saxdtest: proc options(main);

 dcl
 1 eventHandler static

 ,2 e01 type event_without_data
 init(start_of_document)

 ,2 e02 type event
 init(version_information)

 ,2 e03 type event
 init(encoding_declaration)

 ,2 e04 type event
 init(standalone_declaration)

 ,2 e05 type event
 init(document_type_declaration)

 ,2 e06 type event_without_data
 init(end_of_document)

 ,2 e07 type event_with_namespace
 init(start_of_element)

 ,2 e08 type event_with_namespace
 init(attribute_name)

 ,2 e09 type event_with_flag
 init(attribute_characters)

 ,2 e10 type event_with_namespace
 init(end_of_element)

 ,2 e11 type event_without_data
 init(start_of_CDATA)

 ,2 e12 type event_without_data
 init(end_of_CDATA)

 ,2 e13 type event_with_flag
 init(content_characters)

 ,2 e14 type event_pi
 init(processing_instruction)

 ,2 e15 type event_with_flag
 init(comment)

 ,2 e16 type event_namespace_dcl
 init(namespace_declare)

 ,2 e17 type event_end_of_input
 init(end_of_input)

 ,2 e18 type event
 init(unresolved_reference)

 ,2 e19 type event_exception
 init(exception)
 ;

PLISAXD coding example - event routines (continued)

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 433

Table 139. PLISAXD coding example - event routines (continued)

 dcl token char(45);

 dcl rc fixed bin(31);
 dcl i fixed bin(31);
 dcl xml_document(8) char(300) var;
 dcl xml_valid_msg(8) char(45) var;
 dcl osr_ptr pointer;
 dcl record char(80);
 dcl osr_index fixed bin;
 dcl osr_buf_tail fixed bin;
 dcl temp_osr pointer;
 dcl buf_size fixed bin(31) init(4096);
 dcl rec_size fixed bin(31);
 dcl osr_length fixed bin(31);
 dcl buf_length fixed bin(31);
 dcl eof fixed bin(31) init(0);
 dcl osrin file input;

 on endfile(osrin) begin;
 eof = 1;
 end;

 /* read the entire PDS osr file into the buffer */

 put skip list ('SAXDTEST: PL/I XML Validation sample ');

 osr_length = buf_size;
 osr_index = 0;
 osr_buf_tail = 0;
 rec_size = length(record);

 osr_ptr = allocate(osr_length);

 do while (eof = 0);

 read file(osrin) into(record);
 osr_buf_tail += rec_size;
 if osr_buf_tail > buf_size then
 do;
 buf_length = osr_length;
 osr_length +=buf_size;
 temp_osr = allocate(osr_length);

 call plimove(temp_osr, osr_ptr, buf_length);
 call plifree(osr_ptr);
 osr_ptr = temp_osr;
 osr_buf_tail = rec_size;

 call plimove(osr_ptr+osr_index, addr(record), rec_size);
 osr_index += rec_size;
 end;
 else
 do;
 call plimove(osr_ptr+osr_index, addr(record), rec_size);
 osr_index +=rec_size;
 end;

 end;

PLISAXD coding example - event routines (continued)

434 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 139. PLISAXD coding example - event routines (continued)

 /* Valid XMLFILE */
 xml_document(1) = '<stockItem itemNumber="453-SR">'
 || '<itemName>Stainless steel rope thimbles</itemName>'
 || '<quantityOnHand>23</quantityOnHand>'
 || '</stockItem>';

 xml_valid_msg(1) = 'Valid XMLFILE ';
 /* Valid: the ITEMNAME element can be omitted */
 xml_document(2) = '<stockItem itemNumber="453-SR">'
 || '<quantityOnHand>23</quantityOnHand>'
 || '</stockItem>';

 xml_valid_msg(2) = 'Valid: the ITEMNAME element can be omitted.';

 /* Invalid: missing attribute itemNumber */
 xml_document(3) = '<stockItem>'
 || '<itemName>Stainless steel rope thimbles</itemName>'
 || '<quantityOnHand>23</quantityOnHand>'
 || '</stockItem>';

 xml_valid_msg(3) = 'Invalid: missing attribute itemNumber.';

 /* Invalid: unexpected attribute warehouse */
 xml_document(4) = '<stockItem itemNumber="453-SR" warehouse="NY">'
 || '<itemName>Stainless steel rope thimbles</itemName>'
 || '<quantityOnHand>23</quantityOnHand>'
 || '</stockItem>';

 xml_valid_msg4) = 'Invalid: unexpected attribute warehouse.';

 /* Invalid: illegal attribute value 123-Ab */
 xml_document(5) = '<stockItem itemNumber="123-Ab">'
 || '<itemName>Stainless steel rope thimbles</itemName>'
 || '<quantityOnHand>23lt;/quantityOnHand>'
 || '</stockItem>';

 xml_valid_msg(5) = 'Invalid: illegal attribute value 123-Ab.';

 /* Invalid: missing element quantityOnHand */
 xml_document(6) = '<stockItem itemNumber="074-UN">'
 || '<itemName>Stainless steel rope thimbles</itemName>'
 || '</stockItem>';

 xml_valid_msg(6) = 'Invalid: missing element quantityOnHand.';

 /* Invalid: unexpected element comment */
 xml_document(7) = '<stockItem itemNumber="453-SR">'
 || '<itemName>Stainless steel rope thimbles</itemName>'
 || '<quantityOnHand>1</quantityOnHand>'
 || '<commnet>Nylon bristles</comment>'
 || '</stockItem>';

 xml_valid_msg(7) = 'Invalid: unexpected element comment.';

 /* Invalid: out-of-range element value 100 */
 xml_document(8) = '<stockItem itemNumber="123-AB">'
 || '<itemName>Paintbrush</itemName>'
 || '<quantityOnHand>100</quantityOnHand>'
 || '</stockItem>';

 xml_valid_msg(8) = 'Invalid: out-of-range element value 100';

PLISAXD coding example - event routines (continued)

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 435

Table 139. PLISAXD coding example - event routines (continued)

 do i = 1 to hbound(xml_document);;
 token = xml_valid_msg(i);
 call plisaxd(eventHandler,
 addr(token),
 addrdata(xml_document(i)),
 length(xml_document(i)),
 osr_ptr,
 37);
 end;

 close file(osrin);
 call plifree(osr_ptr);

 end;

 start_of_document:
 proc(userToken)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;

 return(0);
 end;

 version_information:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 return(0);
 end;

 encoding_declaration:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 return(0);
 end;

 standalone_declaration:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 return(0);
 end;

PLISAXD coding example - event routines (continued)

436 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 139. PLISAXD coding example - event routines (continued)

 document_type_declaration:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 return(0);
 end;

 end_of_document:
 proc(userToken)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;

 put skip list('SAXDTEST: Document Successfully parsed ');

 return(0);
 end;

 start_of_element:
 proc(userToken, xmlToken, TokenLength,
 nsPrefix, nsPrefixLength,
 nsUri, nsUriLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl nsPrefix pointer;
 dcl nsPrefixLength fixed bin(31);
 dcl nsUri pointer;
 dcl nsUriLength fixed bin(31);

 return(0);
 end;

PLISAXD coding example - event routines (continued)

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 437

Table 139. PLISAXD coding example - event routines (continued)

 attribute_name:
 proc(userToken, xmlToken, tokenLength,
 nsPrefix, nsPrefixLength,
 nsUri, nsUriLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl nsPrefix pointer;
 dcl nsPrefixLength fixed bin(31);
 dcl nsUri pointer;
 dcl nsUriLength fixed bin(31);

 return(0);
 end;

 attribute_characters:
 proc(userToken, xmlToken, TokenLength, flags)
 returns(byvalue fixed bin(31))
 options(nodescriptor, byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl flags bit(8) aligned;

 put skip list(lowercase(procname())
 ||' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 if flags = ''b then;
 else
 put skip list('!!flags = ' || flags);

 return(0);
 end;

 end_of_element:
 proc(userToken, xmlToken, TokenLength,
 nsPrefix, nsPrefixLength,
 nsUri, nsUriLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl nsPrefix pointer;
 dcl nsPrefixLength fixed bin(31);
 dcl nsUri pointer;
 dcl nsUriLength fixed bin(31);

 return(0);
 end;

PLISAXD coding example - event routines (continued)

438 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 139. PLISAXD coding example - event routines (continued)

 start_of_CDATA:
 proc(userToken)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;

 return(0);
 end;

 end_of_CDATA:
 proc(userToken)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;

 return(0);
 end;

 content_characters:
 proc(userToken, xmlToken, TokenLength, flags)
 returns(byvalue fixed bin(31))
 options(nodescriptor, byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl flags bit(8) aligned;

 if flags = ''b then;
 else

 return(0);
 end;

 processing_instruction:
 proc(userToken,
 piTarget, piTargetLength,
 piData, piDataLength,
 flags)
 returns(byvalue fixed bin(31))
 options(nodescriptor, byvalue linkage(optlink));

 dcl userToken pointer;
 dcl piTarget pointer;
 dcl piTargetLength fixed bin(31);
 dcl piData pointer;
 dcl piDataLength fixed bin(31);
 dcl flags bit(8) aligned;

 put skip list(lowercase(procname())
 || ' <' || substr(piTarget->chars,1,piTargetLength) || '>');

 if flags = ''b then;
 else
 put skip list('!!flags = ' || flags);

 return(0);
 end;

PLISAXD coding example - event routines (continued)

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 439

Table 139. PLISAXD coding example - event routines (continued)

 comment:
 proc(userToken, xmlToken, TokenLength, flags)
 returns(byvalue fixed bin(31))
 options(nodescriptor, byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);
 dcl flags bit(8) aligned;

 put skip list(lowercase(procname())
 || ' <' || substr(xmltoken->chars,1,tokenlength) || '>');

 if flags = ''b then;
 else
 put skip list('!!flags = ' || flags); return(0);
 end;

 namespace_declare:
 proc(userToken, nsPrefix, nsPrefixLength,
 nsUri, nsUriLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl nsPrefix pointer;
 dcl nsPrefixLength fixed bin(31);
 dcl nsUri pointer;
 dcl nsUriLength fixed bin(31);

 return(0);
 end;

 unresolved_reference:
 proc(userToken, xmlToken, TokenLength)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl xmlToken pointer;
 dcl tokenLength fixed bin(31);

 return(0);
 end;

 exception:
 proc(userToken, currentOffset, return_code, reason_code)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl currentOffset fixed bin(31);
 dcl return_code fixed bin(31);
 dcl reason_code fixed bin(31);
 dcl validmsg char(45) based;

 put skip list(userToken -> validmsg);
 put skip list(lowercase(procname())
 || ' return_code =' || hex(return_code)
 || ', reason_code =' || substr(hex(reason_code),5,4));

 return(0);
 end;

PLISAXD coding example - event routines (continued)

440 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 139. PLISAXD coding example - event routines (continued)

 end_of_input:
 proc(userToken, addr_xml, length_xml)
 returns(byvalue fixed bin(31))
 options(byvalue linkage(optlink));

 dcl userToken pointer;
 dcl addr_xml byaddr pointer;
 dcl length_xml byaddr fixed bin(31);

 return(0);
 end;

PLISAXD coding example - event routines (continued)

Table 140 on page 441 shows the result of the sample program. For those documents that are not valid,
the PLISAXD built-in subroutine invokes the XML exception event with the return code and reason code
listed. For a detailed description of each return code and reason code, see XML System Services User’s
Guide and Reference.

Table 140. Output from PLISAXD sample

SAXDTEST: PL/I XML Validation sample
SAXDTEST: Document Successfully parsed
SAXDTEST: Document Successfully parsed
Invalid: missing attribute itemNumber.
exception return_code =00000018, reason_code =8613
Invalid: unexpected attribute warehouse.
exception return_code =00000018, reason_code =8612
Invalid: illegal attribute value 123-Ab.
exception return_code =00000018, reason_code =8809
Invalid: missing element quantityOnHand.
exception return_code =00000018, reason_code =8611
Invalid: unexpected element comment.
exception return_code =00000018, reason_code =8607
Invalid: out-of-range element value 100
exception return_code =00000018, reason_code =8803

Chapter 21. Using the PLISAXC and PLISAXD XML parsers 441

442 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 22. Using PLIDUMP
This section provides information about dump options and the syntax used to call PLIDUMP, and
describes PL/I-specific information included in the dump that can help you debug your routine.

Note: PLIDUMP conforms to National Language Support standards.

Table 141 on page 443 shows an example of a PL/I routine calling PLIDUMP to produce a z/OS Language
Environment dump. In this example, the main routine PLIDMP calls PLIDMPA, which then calls PLIDMPB.
The call to PLIDUMP is made in routine PLIDMPB.

Table 141. Example PL/I routine calling PLIDUMP

%PROCESS MAP SOURCE STG LIST OFFSET LC(101);
 PLIDMP: PROC OPTIONS(MAIN) ;

 Declare (H,I) Fixed bin(31) Auto;
 Declare Names Char(17) Static init('Bob Teri Bo Jason');
 H = 5; I = 9;
 Put skip list('PLIDMP Starting');
 Call PLIDMPA;

 PLIDMPA: PROC;
 Declare (a,b) Fixed bin(31) Auto;
 a = 1; b = 3;
 Put skip list('PLIDMPA Starting');
 Call PLIDMPB;

 PLIDMPB: PROC;
 Declare 1 Name auto,
 2 First Char(12) Varying,
 2 Last Char(12) Varying;
 First = 'Teri';
 Last = 'Gillispy';
 Put skip list('PLIDMPB Starting');
 Call PLIDUMP('TBFC','PLIDUMP called from procedure PLIDMPB');
 Put Data;
 End PLIDMPB;

 End PLIDMPA;

 End PLIDMP;

The syntax and options for PLIDUMP are as follows:

PLIDUMP ( character-string-expression 1 , character-string-expression 2)

character-string-expression 1
A dump options character string consisting of one or more of the following options:
A

Requests information relevant to all tasks in a multitasking program.
B

BLOCKS (PL/I hexadecimal dump).
C

Continue. The routine continues after the dump.
E

Exit from current task of a multitasking program. The program continues to run after the
requested dump is completed.

F
FILES.

H
STORAGE.

© Copyright IBM Corp. 1999, 2022 443

This includes all Language Environment storage, and hence all the BASED and CONTROLLED
storage acquired through ALLOCATE statements.

Note: A ddname of CEESNAP should be specified with the H option to produce a SNAP dump of a
PL/I routine, but if this is omitted, Language Environment will issue a message but still produce a
dump with useful information.

K
BLOCKS (when running under CICS). The Transaction Work Area is included.

NB
NOBLOCKS.

NF
NOFILES.

NH
NOSTORAGE.

NK
NOBLOCKS (when running under CICS).

NT
NOTRACEBACK.

O
Only information relevant to the current task in a multitasking program.

S
Stop. The enclave is terminated with a dump.

T
TRACEBACK.

T, F, and C are the default options.

character-string-expression 2
A user-identified character string up to 80 characters long that is printed as the dump header.

PLIDUMP usage notes
If you use PLIDUMP, the following considerations apply:

• If a routine calls PLIDUMP a number of times, use a unique user-identifier for each PLIDUMP invocation.
This simplifies identifying the beginning of each dump.

• A DD statement with the ddname PLIDUMP, PL1DUMP, or CEEDUMP can be used to define the data set
for the dump.

• The data set defined by the PLIDUMP, PL1DUMP, or CEEDUMP DD statement should specify a
logical record length (LRECL) of at least 133 to prevent dump records from wrapping. If SYSOUT
is used as the target in any one of these DDs, you must specify MSGFILE(SYSOUT,FBA,133,0) or
MSGFILE(SYSOUT,VBA,137,0) to ensure that the lines are not wrapped.

• When you specify the H option in a call to PLIDUMP, the PL/I library issues an OS SNAP macro to obtain
a dump of virtual storage. The first invocation of PLIDUMP results in a SNAP identifier of 0. For each
successive invocation, the ID is increased by one to a maximum of 256, after which the ID is reset to 0.

• Support for SNAP dumps using PLIDUMP is only provided under z/OS. SNAP dumps are not produced in
a CICS environment.

– If the SNAP is not successful, the CEE3DMP DUMP file displays the message:
Snap was unsuccessful

– If the SNAP is successful, CEE3DMP displays the message:
Snap was successful; snap ID = nnn

where nnn corresponds to the SNAP identifier described above. An unsuccessful SNAP does not
increment the identifier.

444 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

• If you want the program unit name, program unit address, and program unit offset to be listed
correctly in the dump traceback table, ensure that your PL/I program unit is compiled with a
compile-time option other than TEST(NONE,NOSYM). For example, you can specify the option as
TEST(NOSYM,NOHOOK,BLOCK).

If you want to ensure portability across system platforms, use PLIDUMP to generate a dump of your PL/I
routine.

Locating variables in the PLIDUMP output
To find variables in the PLIDUMP output, you should compile your program with the MAP option. The MAP
option will cause the compiler to add to the listing a table showing the offset within AUTOMATIC and
STATIC storage of all level-1 variables that are AUTOMATIC or STATIC.

To find a variable that is an element in a structure, it is also useful if you compile your program with the
AGGREGATE option. This option will cause the compiler to add to the listing a table showing the offsets of
all the elements of all the structures in your program.

Locating AUTOMATIC variables
To find an AUTOMATIC variable in the dump, you should find its offset within automatic using the output
from the MAP option (and if necessary the AGGREGATE option).

If PLIDUMP has been invoked with the B option, the dump output will contain a hex dump of the dynamic
save area (DSA) for each block. This is the automatic storage for that block.

For example, consider the following simple program:

Compiler Source
 Line.File
 2.0 test: proc options(main);
 3.0
 4.0 dcl a fixed bin(31);
 5.0 dcl b fixed bin(31);
 6.0
 7.0 on error
 8.0 begin;
 9.0 call plidump('TFBC');
 10.0 end;
 11.0
 12.0 a = 0;
 13.0 b = 29;
 14.0 b = 17 / a;

The result of the compiler MAP option for this program looks like this, except that there is actually one
more column on the right and the columns are actually spaced much further apart:

* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *
 IDENTIFIER DEFINITION ATTRIBUTES

 A 1-0:4 Class = automatic, Location = 160 : 0xA0(r13),
 B 1-0:5 Class = automatic, Location = 164 : 0xA4(r13),

So, A is located at hex A0 off of register 13 and B is located at hex A4 off of register 13, where register 13
points to the DSA.

Because in this program PLIDUMP is called with the B option, it will include a hexadecimal dump of
automatic storage for each block in the current calling chain. This will look like the following (again with
the right columns cutoff):

Dynamic save area (TEST): 0AD963C8
 +000000 0AD963C8 10000000 0AD96188 00000000 00000000
 +000020 0AD963E8 00000000 00000000 00000000 00000000
 +000040 0AD96408 00000000 00000000 00000000 0AD96518
 +000060 0AD96428 00000000 00000000 00000000 00000000
 +000080 0AD96448 - +00009F 0AD96467 same as above
 +0000A0 0AD96468 00000000 0000001D 00100000 00000000
 +0000C0 0AD96488 0B300000 0A700930 0AD963C8 00000000

Chapter 22. Using PLIDUMP 445

 +0000E0 0AD964A8 00000000 00000000 00000000 00000000
 +000100 0AD964C8 0AA47810 0A70E6D0 0AD96540 0AD960F0
 +000120 0AD964E8 00000001 0A70F4F8 0AD96318 00000000
 +000140 0AD96508 00000000 00000000 00000000 00000000

Because A is at hex offset A0 and B is at hex offset A4 in AUTOMATIC, the dump shows that A and B have
the (expected) hex values of 00000000 and 0000001D respectively.

Note that under the compiler options OPT(2) and OPT(3), some variables, particularly FIXED BIN and
POINTER scalar variables, might never be allocated storage and thus could not be found in the dump
output.

Locating STATIC variables
If you compiled your code with the RENT option, static variables are located in the Writeable Static Area
(WSA) for the current load module.

The offset of a variable within the WSA can be found from the output of the MAP option, and the WSA is
held in the Language Environment control block called the CAA. The value of the WSA is also listed in the
Language Environment dump.

However, if you compiled your code with the NORENT option, EXTERNAL STATIC is found as usual (using
the linker listing and the output of the compiler's MAP option). INTERNAL STATIC will be dumped as part
of the Language Environment dump (if PLIDUMP was called with the B option).

Note that unlike the older PL/I compilers, the address of static is not dedicated to any one register.

For example, consider the program above with the variables changed to STATIC:

Compiler Source
 Line.File
 2.0 test: proc options(main);
 3.0
 4.0 dcl a fixed bin(31) static;
 5.0 dcl b fixed bin(31) static;
 6.0
 7.0 on error
 8.0 begin;
 9.0 call plidump('TFBC');
 10.0 end;
 11.0
 12.0 a = 0;
 13.0 b = 29;
 14.0 b = 17 / a;

When the program is compiled with the NORENT option, the result of the compiler MAP option for this
program looks like this, except that there is actually one more column on the right and the columns are
actually spaced much further apart:

* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *
 IDENTIFIER DEFINITION ATTRIBUTES

 A 1-0:4 Class = static, Location = 0 : 0x0 + CSECT ***TEST2
 B 1-0:5 Class = static, Location = 4 : 0x4 + CSECT ***TEST2

So, A is located at hex offset 00 into the static CSECT for the compilation unit TEST while B is located at
hex offset 04.

Because in this program PLIDUMP is called with the B option, it will include a hexadecimal dump of static
storage for each compilation in the current calling chain. This will look like (again with the right columns
cutoff):

Static for procedure TEST Timestamp: 2004.08.12
 +000000 0FC00AA0 00000000 0000001D 0FC00DC8 0FC00AC0
 +000020 0FC00AC0 0FC00AA8 00444042 00A3AE01 0FC009C8
 +000040 0FC00AE0 6E3BFFE0 00000000 00000000 00000000
 +000060 0FC00B00 00000000 00000000 00000000 00000000
 +000000 0AD963C8 10000000 0AD96188 00000000 00000000

446 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

So, A at hex offset 00 has the (expected) hex value 00000000, and B at hex offset 04 has the (also
expected) hex value 0000001D or the decimal value 29.

Locating CONTROLLED variables
CONTROLLED variables are essentially LIFO stacks, and each CONTROLLED variable has an "anchor" that
points to the top of that stack. The key to locating a CONTROLLED variable is to locate this anchor, and its
location depends on the compiler options.

In the rest of this discussion of CONTROLLED variables, the program source is the same program as in
Table 141 on page 443, but with the storage class changed to CONTROLLED:

Compiler Source
 Line.File
 2.0 test: proc options(main);
 3.0
 4.0 dcl a fixed bin(31) controlled;
 5.0 dcl b fixed bin(31) controlled;
 6.0
 7.0 on error
 8.0 begin;
 9.0 call plidump('TFBHC');
 10.0 end;
 11.0
 12.0 allocate a, b;
 13.0 a = 0;
 14.0 b = 29;
 15.0 b = 17 / a;

Under NORENT WRITABLE

The result of the compiler MAP option looks like this, except that again there is actually one more column
on the right and the columns are actually spaced much further apart:

* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *
 IDENTIFIER DEFINITION ATTRIBUTES

 A 1-0:4 Class = static, Location = 8 : 0x8 + CSECT ***TEST2
 B 1-0:5 Class = static, Location = 12 : 0xC + CSECT ***TEST2

Note that these lines describe the location of the anchors for A and B (not the location of A and B
themselves). So the anchor for A is located at hex 08 into the static CSECT for the compilation unit TEST,
and the anchor for B is located at hex 0C.

If PLIDUMP is called with the B option, it will include a hexadecimal dump of static storage for each
compilation in the current calling chain. This will look like (again with the right columns cutoff):

Static for procedure TEST Timestamp: . . .

 +000000 0FC00A88 0FC00DB0 0FC00AA8 102B8A30 102B8A50
 +000020 0FC00AA8 0FC00A88 00444042 00A3AE01 0FC009B0
 +000040 0FC00AC8 6E3BFFE0 00000000 00000000 00000000

So the anchor for A is at 102B8A30 and the anchor for B is at 102B8A50. But because these are
CONTROLLED variables, their storage was obtained through ALLOCATE statements, and hence these
addresses point into heap storage. But If PLIDUMP is called with the H option, it will include a
hexadecimal dump of heap storage. This will look like (again with the right columns cutoff):

Enclave Storage:
 Initial (User) Heap
 +000000 102B7018 C8C1D5C3 0FC0F990 0FC0F990 00000000
 . . .
 +001A00 102B8A18 102B7018 00000020 0FC00A90 00000014
 00000000 00000000 00000000 00000000
 +001A20 102B8A38 102B7018 00000020 0FC00A94 00000014
 00000000 00000000 0000001D 00000000

Chapter 22. Using PLIDUMP 447

Because the anchor for A was at 102B8A30, A has the hex value 00000000, and because the anchor for B
was at 102B8A50, B has the (expected) hex value 0000001D.

Under NORENT NOWRITABLE(FWS)

The result of the compiler MAP option under these options looks like this, except that again there is
actually one more column on the right and the columns are actually spaced much further apart:

 * * * * * S T O R A G E O F F S E T L I S T I N G * * * * *
 IDENTIFIER DEFINITION ATTRIBUTES

 A 1-0:4 Class = automatic, Location = 236 : 0xEC(r13)
 B 1-0:5 Class = automatic, Location = 240 : 0xF0(r13)

Note: Under these options, there is an extra level of indirection in locating CONTROLLED variables, and
hence the lines above describe the locations of the addresses of the anchors for A and B. So the address
of the anchor for A is located at hex EC into the automatic for the block TEST, and the anchor for B is
located at hex F0.

Because PLIDUMP is called with the B option, it will include a hexadecimal dump of automatic storage for
each block in the current calling chain. This will look like (again with the right columns cutoff):

 Dynamic save area (TEST): 102973C8
 +000000 102973C8 10000000 10297188 00000000 8FC007DA

 +0000E0 102974A8 0FC00998 00000000 00000000 102B8A40
 102B8A28 10297030 102977D0 8FDF3D7E

So the address of the anchor for A is 102B8A40 and the address of the anchor for B is 102B8A28.

Because PLIDUMP was also called with the H option, it will include a hexadecimal dump of heap storage.
This will look like (again with the right columns cutoff):

 Enclave Storage:
 Initial (User) Heap
 +000000 102B7018 C8C1D5C3 0FC0F990 0FC0F990 00000000
 . . .
 +001A00 102B8A18 102B7018 00000018 00000000 0FC00A78
 102B8A80 00000000 102B7018 00000018
 +001A20 102B8A38 102B8A20 0FC00A74 102B8A60 00000000
 102B7018 00000020 102B8A40 00000014
 +001A40 102B8A58 00000000 00000000 00000000 00000000
 102B7018 00000020 102B8A28 00000014
 +001A60 102B8A78 00000000 00000000 0000001D 00000000
 00000000 00000000 00000000 00000000

Because the address of the anchor for B was at 102B8A28, the anchor for B is at 102B8A80, and B has,
as expected, the hex value 0000001D or decimal 29.

Under NORENT NOWRITABLE(PRV)

The MAP listing when the program is compiled with these options would look like this:

* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *
 IDENTIFIER DEFINITION ATTRIBUTES

 ***TEST3 1-0:4 Class = ext def, Location = CSECT ***TEST3
 ***TEST4 1-0:5 Class = ext def, Location = CSECT ***TEST4
_PRV_OFFSETS 1-0:1 Class = static, Location = 8 : 0x8 + CSECT ***TEST2

The key here is the last line in this output: _PRV_OFFSETS is a static table that holds the offset into the
PRV table for each CONTROLLED variable. This static table is generated only if the MAP option is specified.

448 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

To interpret this table, the compiler will also produce, immediately after the block names table, another,
usually small, listing, which for our program would look like this:

 PRV Offsets

 Number Offset Name
 1 8 A
 1 C B

This table lists the hex offset within the runtime _PRV_OFFSETS table for each of the named
CONTROLLED variables. The block number (in the first column) can be used to distinguish variables with
the same name but declared in different blocks.

Because the _PRV_OFFSETS table is in static storage (at hex offset 8) and because PLIDUMP was called
with the B option, it will appear in the dump output, which would look like this:

Static for procedure TEST Timestamp: . . .
 +000000 10908EC8 02020240 00000005 6DD7D9E5 6DD6C6C6
 00000000 00000004 D00000A0 00100000
 +000020 10908EE8 6E3BFFE0 00000000 00000000 00000000
 00000000 90010000 00000000 00000000

So the offset of A in the PRV table is 0, and the offset of B in the PRV table is 4. Note also the eyecatcher
"_PRV_OFF" that occupies the first 8 bytes of the _PRV_OFFSETs table.

The PRV table is always located at offset 4 within the CAA, which, because PLIDUMP was called with the
H option, will be in the dump output. The CAA looks like this:

Control Blocks Associated with the Thread:
 CAA: 0A7107D0
 +000000 0A7107D0 00000800 0ADB7DE0 0AD97018 0ADB7018
 00000000 00000000 00000000 00000000

So the address of the PRV table is 0ADB7DE0, and it will also be in the dump output amongst the HEAP
storage:

 Enclave Storage:
 Initial (User) Heap
 +000000 102B7018 C8C1D5C3 0FC0F990 0FC0F990 00000000
 . . .
 +000DC0 0ADB7DD8 00000000 00000000 0ADB8A38 0ADB8A58
 0ADB7018 00000488 00000000 00000000

So the PRV table contains 0ADB8A38 0ADB8A58 and so on, and because, as derived from the
_PRV_OFFSETS table, the offset of A into the PRV table is 0 and the offset of B is 4, these are also
the addresses of A and B respectively.

These addresses will also appear in the HEAP storage in the dump:

 Enclave Storage:
 Initial (User) Heap
 +000000 102B7018 C8C1D5C3 0FC0F990 0FC0F990 00000000
 . . .
 +001A00 0ADB8A18 00000000 00000000 0ADB7018 00000020
 00000000 00000014 0A7107D4 00000000
 +001A20 0ADB8A38 00000000 00000000 0ADB7018 00000020
 00000004 00000014 0A7107D4 00000000
 +001A40 0ADB8A58 0000001D 00000000 00000000 00000000
 00000000 00000000 00000000 00000000

So because the address of A is 0ADB8A38, the hex value of A is, as expected, 00000000, and because
the address of B is 0ADB8A58, the hex value of B is, also as expected, 0000001D.

Chapter 22. Using PLIDUMP 449

Saved compilation data
During a compilation, the compiler saves various information about the compilation in the load module.
This information can be very useful in debugging and in future migration efforts. This section describes
the information saved.

Copyright
If you specify the COPYRIGHT compiler option, the compiler will save the COPYRIGHT string as a
CHARACTER VARYING string placed immediately before the timestamp data in the object.

This string will be followed by as many blanks as necessary so that the string plus these blanks will
occupy a multiple of 4 bytes.

Timestamp
The compiler saves in every load module a timestamp, which is a 20-byte character string of the form
YYYYMMDDHHMISSVNRNML, which records the date and time of the compilation as well as the version of
the compiler that produced this string.

The elements of the string have the following meanings:

YYYY
The year of the compilation

MM
The month of the compilation

DD
The day of the compilation

HH
The hour of the compilation

MI
The minute of the compilation

SS
The second of the compilation

VN
The version number of the compiler

RN
The release number of the compiler

ML
The maintenance level of the compiler

The timestamp can be located from the PPA2: at offset 12 in the PPA2 is a four-byte integer giving the
offset (possibly negative) to the timestamp from the address of the PPA2.

The PPA2, in turn, can be located from the PPA1: at offset 4 in the PPA1 is a four-byte integer giving the
offset (possibly negative) to the PPA2 from the entry point address corresponding to that PPA1.

You can locate the PPA1 as follows:

• If the code was compiled with LP(32), you can locate the PPA1 from the entry point address for a block:
at offset 12 from the entry point address is a four-byte integer giving the offset (possibly negative) to the
PPA1 from the entry point address.

• If the code was compiled with LP(64), the offset to the PPA1 is in the fullword eight bytes in front of
each entry point address.

450 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Saved options string
The compiler stores in the load module a 32-byte string that records the compiler options used in building
the load module.

The declaration for the saved options string is provided in the include file ibmvsos in the samples data
set SIBMZSAM.

For most of the fields in the structure, the meaning of the field is obvious given its name, but a few of the
fields need some explanation:

• sos_words holds the number of the bytes in the structure divided by 4.
• sos_version is the version number for this structure. It is not a compiler version number.
• The size of the structure and what fields have been set depends on the version number.

The saved options string is located after the timestamp in one of two ways:

1. If the service option has been specified, the string specified in the service option follows immediately
after the timestamp as a character varying string. Then the saved options string follows after the
service string as a second character varying string.

2. If the service option has not been specified, the saved options string follows immediately after the
timestamp as a character varying string.

The length of the varying string that holds the saved options string might be longer than the size of the
saved options string itself.

The presence (or absence) of the service string is indicated in the PPA2 by the flag byte at decimal offset
20 in the PPA2: if the result of anding this byte with '20'bx is not zero, then the service string is present.

In some earlier releases of the PL/I compiler, the compiler did not place a saved options string in the load
module. The presence (or absence) of the saved options string is indicated in the PPA2 by the flag byte at
decimal offset 20 in the PPA2: if the result of anding this byte with '02'bx is not zero, the saved options
string is present.

Chapter 22. Using PLIDUMP 451

452 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 23. Interrupts and attention processing

To enable a PL/I program to recognize attention interrupts, two operations must be possible:

• You must be able to create an interrupt. This is done in different ways depending upon both the terminal
you use and the operating system.

• Your program must be prepared to respond to the interrupt. You can write an ON ATTENTION statement
in your program so that the program receives control when the ATTENTION condition is raised.

Note: If the program has an ATTENTION ON-unit that you want invoked, you must compile the program
with either of the following options:

– The INTERRUPT option (supported only in TSO)
– A TEST option other than NOTEST or TEST(NONE,NOSYM)

Compiling this way causes INTERRUPT(ON) to be in effect, unless you explicitly specify
INTERRUPT(OFF) in PLIXOPT.

You can find the procedure used to create an interrupt in the IBM instruction manual for the operating
system and terminal that you are using.

There is a difference between the interrupt (the operating system recognized your request) and the raising
of the ATTENTION condition.

An interrupt is your request that the operating system notify the running program. If a PL/I program
was compiled with the INTERRUPT compile-time option, instructions are included that test an internal
interrupt switch at discrete points in the program. The internal interrupt switch can be set if any program
in the load module was compiled with the INTERRUPT compile-time option.

The internal switch is set when the operating system recognizes that an interrupt request was made.
The execution of the special testing instructions (polling) raises the ATTENTION condition. If a debugging
tool hook (or a CALL PLITEST) is encountered before the polling occurs, the debugging tool can be given
control before the ATTENTION condition processing starts.

Polling ensures that the ATTENTION condition is raised between PL/I statements, rather than within the
statements.

Table 142 on page 454 shows a skeleton program, an ATTENTION ON-unit, and several situations where
polling instructions will be generated. In the program, polling will occur at the following:

• LABEL1
• Each iteration of the DO
• The ELSE PUT SKIP ... statement
• Block END statements

© Copyright IBM Corp. 1999, 2022 453

Table 142. Using an ATTENTION ON-unit

%PROCESS INTERRUPT;
 .
 .
 .
 ON ATTENTION
 BEGIN;
 DCL X FIXED BINARY(15);
 PUT SKIP LIST ('Enter 1 to terminate, 0 to continue.');
 GET SKIP LIST (X);
 IF X = 1 THEN
 STOP;
 ELSE
 PUT SKIP LIST ('Attention was ignored');
 END;
 .
 .
 .
 LABEL1:
 IF EMPNO ...
 .
 .
 .
 DO I = 1 TO 10;
 .
 .
 .
 END;
 .
 .
 .

Using ATTENTION ON-units
You can use processing within the ATTENTION ON-unit to terminate potentially endless looping in a
program.

Control is given to an ATTENTION ON-unit when polling instructions recognize that an interrupt has
occurred. Normal return from the ON-unit is to the statement following the polling code.

Interaction with a debugging tool
If the program has the TEST(ALL) or TEST(ERROR) runtime option in effect, an interrupt causes the
debugging tool to receive control the next time a hook is encountered. This might be before the program's
polling code recognizes that the interrupt occurred.

Later, when the ATTENTION condition is raised, the debugging tool receives control again for condition
processing.

454 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 24. Using the Checkpoint/Restart facility
This chapter describes the PL/I Checkpoint/Restart feature, which provides a convenient method of
taking checkpoints during the execution of a long-running program in a batch environment.

At points specified in the program, information about the current status of the program is written as a
record on a data set. If the program terminates due to a system failure, you can use this information to
restart the program close to the point where the failure occurred, avoiding the need to rerun the program
completely.

This restart can be either automatic or deferred. An automatic restart is one that takes place immediately
(provided the operator authorizes it when requested by a system message). A deferred restart is one that
is performed later as a new job.

You can request an automatic restart from within your program without a system failure having occurred.

PL/I Checkpoint/Restart uses the Advanced Checkpoint/Restart Facility of the operating system. This
facility is described in the books listed in “Bibliography” on page 491.

To use checkpoint/restart, you must do the following operations:

• Request, at suitable points in your program, that a checkpoint record is written. This is done with the
built-in subroutine PLICKPT.

• Provide a data set on which the checkpoint record can be written.
• To ensure the desired restart activity, you might need to specify the RD parameter in the EXEC or JOB

statement (see the z/OS JCL Reference).

Note: You should be aware of the restrictions affecting data sets used by your program. These are
detailed in the “Bibliography” on page 491.

Requesting a checkpoint record
Each time you want a checkpoint record to be written, you must invoke, from your PL/I program, the
built-in subroutine PLICKPT.

CALL PLICKPT

(ddname

, check-id

, org

, code

)

The four arguments are all optional. If you do not use an argument, you need not specify it unless you
specify another argument that follows it in the given order. In this case, you must specify the unused
argument as a null string ('').

ddname
Is a character string constant or variable specifying the name of the DD statement defining the data
set that is to be used for checkpoint records. If you omit this argument, the system will use the default
ddname SYSCHK.

check-id
Is a character string constant or variable specifying the name that you want to assign to the
checkpoint record so that you can identify it later. If you omit this argument, the system will supply a
unique identification and print it at the operator's console.

© Copyright IBM Corp. 1999, 2022 455

org
Is a character string constant or variable with the attributes CHARACTER(2) whose value indicates,
in operating system terms, the organization of the checkpoint data set. You can specify the following
values:
PS

Indicates sequential (that is, CONSECUTIVE) organization.
PO

Represents partitioned organization.

If you omit this argument, PS is assumed.

code
Is a variable with the attributes FIXED BINARY (31), which can receive a return code from PLICKPT.
The return code has the following values:
0

A checkpoint has been successfully taken.
4

A restart has been successfully made.
8

A checkpoint has not been taken. The PLICKPT statement should be checked.
12

A checkpoint has not been taken. Check for a missing DD statement, a hardware error, or
insufficient space in the data set. A checkpoint will fail if taken while a DISPLAY statement with
the REPLY option is still incomplete.

16
A checkpoint has been taken, but ENQ macro calls are outstanding and will not be restored on
restart. This situation will not normally arise for a PL/I program.

Defining the checkpoint data set
You must include a DD statement in the job control procedure to define the data set in which the
checkpoint records are to be placed.

This data set can have either CONSECUTIVE or partitioned organization. You can use any valid ddname. If
you use the ddname SYSCHK, you do not need to specify the ddname when invoking PLICKPT.

You must specify a data set name only if you want to keep the data set for a deferred restart. The I/O
device can be any direct access device.

To obtain only the last checkpoint record, specify status as NEW (or OLD if the data set already exists).
This will cause each checkpoint record to overwrite the previous one.

To retain more than one checkpoint record, specify status as MOD. This will cause each checkpoint record
to be added after the previous one.

If the checkpoint data set is a library, "check-id" is used as the member-name. Thus a checkpoint will
delete any previously taken checkpoint with the same name.

For direct access storage, you should allocate enough primary space to store as many checkpoint records
as you will retain. You can specify an incremental space allocation, but it will not be used. A checkpoint
record is approximately 5000 bytes longer than the area of main storage allocated to the step.

No DCB information is required, but you can include any of the following, where applicable:

OPTCD=W, OPTCD=C, RECFM=UT

For information about these subparameters, see the z/OS MVS JCL User's Guide.

456 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Requesting a restart
A restart can be automatic or deferred.

You can make automatic restarts after a system failure or from within the program itself. The system
operator must authorize all automatic restarts when requested by the system.

Automatic restart after a system failure
If a system failure occurs after a checkpoint has been taken, the automatic restart will occur at the last
checkpoint if you have specified RD=R (or omitted the RD parameter) in the EXEC or JOB statement.

If a system failure occurs before any checkpoint has been taken, an automatic restart, from the beginning
of the job step, can still occur if you have specified RD=R in the EXEC or JOB statement.

After a system failure occurs, you can still force automatic restart from the beginning of the job step
by specifying RD=RNC in the EXEC or JOB statement. By specifying RD=RNC, you are requesting an
automatic step restart without checkpoint processing if another system failure occurs.

Automatic restart within a program
You can request a restart at any point in your program.

The rules for the restart are the same as for a restart after a system failure. To request the restart, you
must execute the statement:

CALL PLIREST;

To effect the restart, the compiler terminates the program abnormally, with a system completion code of
4092. Therefore, to use this facility, the system completion code 4092 must not have been deleted from
the table of eligible codes at system generation.

Getting a deferred restart
To ensure that automatic restart activity is canceled, but that the checkpoints are still available for a
deferred restart, specify RD=NR in the EXEC or JOB statement when the program is first executed.

RESTART = (stepname

, check-id

)

If you subsequently require a deferred restart, you must submit the program as a new job, with the
RESTART parameter in the JOB statement. Use the RESTART parameter to specify the job step at which
the restart is to be made and, if you want to restart at a checkpoint, the name of the checkpoint record.

For a restart from a checkpoint, you must also provide a DD statement that defines the data set containing
the checkpoint record. The DD statement must be named SYSCHK. The DD statement must occur
immediately before the EXEC statement for the job step.

Modifying checkpoint/restart activity
You can cancel automatic restart activity from any checkpoints taken in your program.

To cancel automatic restart, execute this statement:

CALL PLICANC;

However, if you specified RD=R or RD=RNC in the JOB or EXEC statement, automatic restart can still take
place from the beginning of the job step.

Also, any checkpoints already taken are still available for a deferred restart.

Chapter 24. Using the Checkpoint/Restart facility 457

You can cancel any automatic restart and the taking of checkpoints, even if they were requested in your
program, by specifying RD=NC in the JOB or EXEC statement.

458 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 25. Using user exits
PL/I provides a number of user exits that you can use to customize the PL/I product to suit your needs.

The PL/I products supply default exits and the associated source files.

If you want the exits to perform functions that are different from those supplied by the default exits, it is
recommended that you modify the supplied source files as appropriate.

At times, it is useful to be able to tailor the compiler to meet the needs of your organization. For example,
you might want to suppress certain messages or alter the severity of others. You might want to perform a
specific function with each compilation, such as logging statistical information about the compilation into
a file. A compiler user exit handles this type of function.

With PL/I, you can write your own user exit or use the exit provided with the product, either 'as is' or
modified, depending on what you want to do with it. The user exit source code provided with the product
is available in the member IBMUEXIT in the samples data set SIBMZSAM.

This chapter provides the following information:

• Procedures that the compiler user exit supports
• How to activate the compiler user exit
• IBMUEXIT, the IBM-supplied compiler user exit
• Requirements for writing your own compiler user exit

Procedures performed by the compiler user exit
The compiler user exit performs three specific procedures: initialization, interception and filtering of
compiler messages, and termination.

As illustrated in Figure 9 on page 459, the compiler passes control to the initialization procedure, the
message filter procedure, and the termination procedure. Each of these three procedures, in turn, passes
control back to the compiler when the requested procedure is completed.

Figure 9. PL/I compiler user exit procedures

Each of the three procedures is passed two different control blocks:

© Copyright IBM Corp. 1999, 2022 459

• A global control block that contains information about the compilation. This is passed as the first
parameter.

• A function-specific control block that is passed as the second parameter. The content of this control
block depends upon which procedure has been invoked. For detailed information, see “Writing the
initialization procedure” on page 463, “Writing the message filtering procedure” on page 463, and
“Writing the termination procedure” on page 465.

Related information
“Structure of global control blocks” on page 460
The global control block is passed to each of the three user exit procedures (initialization, filtering, and
termination) whenever they are invoked.

Structure of global control blocks
The global control block is passed to each of the three user exit procedures (initialization, filtering, and
termination) whenever they are invoked.

The following code and accompanying explanations describe the contents of each field in the global
control block.

 Dcl
 1 Uex_UIB native based,
 2 Uex_UIB_Length fixed bin(31),

 2 Uex_UIB_Exit_token pointer(32), /* for user exit's use */

 2 Uex_UIB_User_char_str pointer(32), /* to exit option str */
 2 Uex_UIB_User_char_len fixed bin(31),

 2 Uex_UIB_Filename_str pointer(32), /* to source filename */
 2 Uex_UIB_Filename_len fixed bin(31),

 2 Uex_UIB_return_code fixed bin(31), /* set by exit procs */
 2 Uex_UIB_reason_code fixed bin(31), /* set by exit procs */

 2 Uex_UIB_Exit_Routs, /* exit entries set at
 initialization */
 3 (Uex_UIB_Termination,
 Uex_UIB_Message_Filter, /* call for each msg */
 *, *, *, *)
 limited entry (
 , / to Uex_UIB */
 , / to a request area */
);

Data Entry Fields
Uex_UIB_ Length

Contains the length of the control block in bytes. The value is storage (Uex_UIB).
Uex_UIB_Exit_token

Used by the user exit procedure. For example, the initialization might set it to a data structure that is
used by both the message filter and the termination procedures.

Uex_UIB_User_char_str
Points to an optional character string, if you specify it. For example, pli filename (EXIT
('string'))…fn can be a character string up to thirty-one characters in length.

Uex_UIB_char_len
Contains the length of the string pointed to by the User_char_str. The compiler sets this value.

Uex_UIB_Filename_str
Contains the name of the source file that you are compiling, and includes the drive and subdirectories
as well as the filename. The compiler sets this value.

Uex_UIB_Filename_len
Contains the length of the name of the source file pointed to by the Filename_str. The compiler
sets this value.

460 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Uex_UIB_return_code
Contains the return code from the user exit procedure. The user sets this value.

Uex__UIB_reason_code
Contains the procedure reason code. The user sets this value.

Uex_UIB_Exit_Routs
Contains the exit entries set up by the initialization procedure.

Uex_UIB_Termination
Contains the entry that is to be called by the compiler at termination time. The user sets this value.

Uex_UIB_Message_Filter
Contains the entry that is to be called by the compiler whenever a message needs to be generated.
The user sets this value.

The IBM-supplied compiler exit, IBMUEXIT
IBM supplies you with the sample compiler user exit, IBMUEXIT, which filters messages for you.

This compiler exit monitors messages and, based on the message number that you specify, suppresses
the message or changes the severity of the message.

The user exit source code provided with the product is available in the member IBMUEXIT in the samples
data set SIBMZSAM.

Activating the compiler user exit
To activate the compiler user exit, you must specify the EXIT compile-time option.

The EXIT compile-time option allows you to specify a user-option-string that specifies the DDname for the
user exit input file. If you do not specify a string, SYSUEXIT is used as the DDname for the user exit input
file.

The user-option-string is passed to the user exit functions in the global control block. For additional
information, see "Uex_UIB_User_char_str" in “Structure of global control blocks” on page 460.

Under z/OS UNIX, if the user exit input file is in, for example,

 /a/b/ibmuexit.inf

then you can either specify export DD_SYSUEXIT=/a/b/ibmuexit.inf before compiling with the
-qexit option, or compile with -qexit=//a/b/ibmuexit.inf where the // symbols are required.

Related information
“EXIT” on page 34
The EXIT option enables the compiler user exit to be invoked.

Customizing the compiler user exit
You can write your own compiler user exit or simply use the one supplied with the compiler. In either
case, the name of the fetchable file for the compiler user exit must be IBMUEXIT.

This section describes how to complete the following tasks:

• Modify the user exit input file for customized message filtering.
• Create your own compiler user exit.

Modifying SYSUEXIT
Rather than spending the time to write a completely new compiler user exit, you can simplify modify the
user exit input file.

Edit the file to indicate which message numbers you want to suppress, and which message number
severity levels you want to change. A sample file is shown in Table 143 on page 462.

Chapter 25. Using user exits 461

Table 143. Example of an user exit input file

 Fac Id Msg No Severity Suppress Comment
+--------+--------+----------+----------+--------------------------------
 'IBM' 1042 -1 1 String spans multiple lines
 'IBM' 1044 -1 1 FIXED BIN 7 mapped to 1 byte
 'IBM' 1047 8 0 Order inhibits optimization
 'IBM' 1052 -1 1 Nodescriptor with * extent arg
 'IBM' 1059 0 0 Select without OTHERWISE
 'IBM' 1169 0 1 Precision of result determined

The first two lines are header lines and are ignored by IBMUEXIT. The remaining lines contain input
separated by a variable number of blanks.

Each column of the file is relevant to the compiler user exit:

• The first column should contain the letters 'IBM' in single quotation marks for all compiler messages
to which you want the exit to apply.

• The second column contains the four digit message number.
• The third column shows the new message severity. Severity -1 indicates that the severity should be left

as the default value.
• The fourth column indicates whether the message is to be suppressed. Specify one of the following

values:
1

Suppresses the message.
0

Prints the message.
• The comment field, found in the last column, is for your information, and is ignored by IBMUEXIT.

The first two lines are header lines and are ignored by IBMUEXIT. The remaining lines contain input
separated by a variable number of blanks.

Each column of the file is relevant to the compiler user exit:

• The first column should contain the letters 'IBM' in single quotation marks for all compiler messages
to which you want the exit to apply.

• The second column contains the four digit message number.
• The third column shows the new message severity. Severity -1 indicates that the severity should be left

as the default value.
• The fourth column indicates whether the message is to be suppressed. Specify one of the following

values:
1

Suppresses the message.
0

Prints the message.
• The comment field, found in the last column, is for your information, and is ignored by IBMUEXIT.

Writing your own compiler exit
To write your own user exit, you can use IBMUEXIT as a model. When you write the exit, make sure it
covers the areas of initialization, message filtering, and termination.

The user exit source code provided with the product is available in the member IBMUEXIT in the samples
data set SIBMZSAM.

The compiler user exit must be compiled with the LP(64) and NOEXPORTALL options and linked as a
64-bit fetchable DLL. Your code can invoke 31-bit code by putting that 31-bit code into a 31-bit fetchable
DLL and then using the AMODE31 ENTRY option to invoke the 31-bit code (as described in the Language

462 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Reference Manual and elsewhere in this book). To make this easier, all storage passed to the user exit
routines by the compiler will be below the bar, and every POINTER will be a POINTER(32).

Writing the initialization procedure
Your initialization procedure should perform any initialization required by the exit, such as opening files
and allocating storage.

Code the initialization procedure-specific control block as follows:

Dcl 1 Uex_ISA native based,
 2 Uex_ISA_Length_fixed bin(31); /* storage(Uex_ISA) * /

For information about the global control block syntax for the initialization procedure, see “Structure of
global control blocks” on page 460.

Upon completion of the initialization procedure, you should set the return/reason codes to the following:

0/0
Continue compilation

4/n
Reserved for future use

8/n
Reserved for future use

12/n
Reserved for future use

16/n
Abort compilation

Writing the message filtering procedure
The message filtering procedure permits you to either suppress messages or alter the severity of
messages.

You can increase the severity of any of the messages but you can decrease the severity only of ERROR
(severity code 8) or WARNING (severity code 4) messages.

The procedure-specific control block contains information about the messages. It is used to pass
information back to the compiler indicating how a particular message should be handled.

The following example shows a procedure-specific message filter control block:

Dcl 1 Uex_MFX native based,
 2 Uex_MFX_Length fixed bin(31),

 2 Uex_MFX_Facility_Id char(3), /* of component writing
 message */
 2 * char(1),
 2 Uex_MFX_Message_no fixed bin(31),
 2 Uex_MFX_Severity fixed bin(15),
 2 Uex_MFX_New_Severity fixed bin(15), /* set by exit proc */
 2 Uex_MFX_Inserts fixed bin(15),
 2 Uex_MFX_Inserts_Data(6 refer(Uex_MFX_Inserts)),
 3 Uex_MFX_Ins_Type fixed bin(7),
 3 Uex_MFX_Ins_Type_Data union unaligned,
 4 * char(8),
 4 Uex_MFX_Ins_Bin8 fixed bin(63),
 4 Uex_MFX_Ins_Bin fixed bin(31),
 4 Uex_MFX_Ins_Str,
 5 Uex_MFX_Ins_Str_Len fixed bin(15),
 5 Uex_MFX_Ins_Str_Addr pointer(32),
 4 Uex_MFX_Ins_Series,
 5 Uex_MFX_Ins_Series_Sep char(1),
 5 Uex_MFX_Ins_Series_Addr pointer(32);

Uex_MFX_Ins_Series_Addr points to this structure:

Chapter 25. Using user exits 463

 dcl
 1 series based,
 2 series_count fixed bin(31),
 2 series_string(1 refer(series_Count)) pointer(32);

Data Entry Fields
Uex_MFX_Length

Contains the length of the control block in bytes. The value is storage (Uex_MFX).
Uex_MFX_Facility_Id

Contains the ID of the facility; for the compiler, the ID is IBM. The compiler sets this value.
Uex_MFX_Message_no

Contains the message number that the compiler is going to generate. The compiler sets this value.
Uex_MFX_Severity

Contains the severity level of the message; it can be from one to fifteen characters in length. The
compiler sets this value.

Uex_MFX_New_Severity
Contains the new severity level of the message; it can be from one to fifteen characters in length. The
user sets this value.

Uex_MFX_Inserts
Contains the number of inserts for the message; it can range from zero to six. The compiler sets this
value.

Uex_MFX_Inserts_Data
Contains fields to describe each of the inserts. The compiler sets these values.

Uex_MFX_Ins_Type
Contains the type of the insert. These are the possible insert types:
Uex_Ins_Type_Xb31

Is used for a FIXED BIN(31) and has the value 1.
Uex_Ins_Type_Char

Is used for a CHAR string and has the value 2.
Uex_Ins_Type_Series

Is used for a series of CHAR strings and has the value 3.
Uex_Ins_Type_Xb63

Is used for a FIXED BIN(63) and has the value 4.

The compiler sets this value.

Uex_MFX_Ins_Bin
Contains the integer value for an insert that has integer type. The compiler sets this value.

Uex_MFX_Ins_Str_Len
Contains the length (in bytes) for an insert that has character type. The compiler sets this value.

Uex_MFX_Ins_Str_Addr
Contains the address of the character string for an insert that has character type. The compiler sets
this value.

Uex_MFX_Ins_Series_Sep
Contains the character that should be inserted between each element for an insert that has series
type. Typically, this is a blank, period, or comma. The compiler sets this value.

Uex_MFX_Ins_Series_Addr
Contains the address of the series of varying character strings for an insert that has series type. The
address points to a FIXED BIN(31) field holding the number of strings to concatenate followed by the
addresses of those strings. The compiler sets this value.

Upon completion of the message filtering procedure, set the return/reason codes to one of the following:

464 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

0/0
Continue compilation, output message

0/1
Continue compilation, do not output message

4/n
Reserved for future use

8/n
Reserved for future use

16/n
Abort compilation

Writing the termination procedure
You should use the termination procedure to perform any cleanup required, such as closing files. You
might also want to write out final statistical reports based on information collected during the error
message filter procedures and the initialization procedures.

Code the termination procedure-specific control block as follows:

Dcl 1 Uex_ISA native based,
 2 Uex_ISA_Length_fixed bin(31); /* storage(Uex_ISA) */

For information about the global control block syntax for the termination procedure, see “Structure of
global control blocks” on page 460. Upon completion of the termination procedure, set the return/reason
codes to one of the following:

0/0
Continue compilation

4/n
Reserved for future use

8/n
Reserved for future use

12/n
Reserved for future use

16/n
Abort compilation

Example of suppressing SQL messages
The member IBMUEXSQ in the samples data set SIBMZSAM contains source code that is a modified
version of the user exit which examines the message inserts and suppresses two SQL informational
messages and one SQL warning message.

This version of the user exit must be compiled with the LP(64) and NOEXPORTALL options and linked as a
64-bit fetchable DLL.

Chapter 25. Using user exits 465

466 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Chapter 26. PL/I descriptors
This chapter describes PL/I parameter passing conventions between PL/I routines at run time.

For additional information about Language Environment runtime environment considerations, other than
descriptors, see the z/OS Language Environment Programming Guide. This includes runtime environment
conventions and assembler macros supporting these conventions.

Passing an argument
When a string, an array, or a structure is passed as an argument, the compiler passes a descriptor for that
argument unless the called routine is declared with OPTIONS(NODESCRIPTOR).

There are two methods for passing such descriptors:

• By descriptor list
• By descriptor locator

Note the following key features about each of these two methods:

• When arguments are passed with a descriptor list

– The number of arguments passed is one greater than the number of arguments specified if any of the
arguments needs a descriptor.

– An argument passed with a descriptor can be received as a pointer passed by value (BYVALUE).
– The compiler uses this method when the DEFAULT(DESCLIST) compiler option is in effect.

• When arguments are passed by descriptor locator

– The number of arguments passed always matches the number of arguments specified.
– An argument passed with a descriptor can be received as a pointer passed by reference (BYADDR).
– The compiler uses this method when the DEFAULT(DESCLOCATOR) compiler option is in effect.

Argument passing by descriptor list
When arguments and their descriptors are passed with a descriptor list, an extra argument is passed
whenever at least one argument needs a descriptor.

This extra argument is a pointer to a list of pointers. The number of entries in this list equals the number
of arguments passed. For arguments that do not require a descriptor, the corresponding pointer in the
descriptor list is set to SYSNULL. For arguments that do require a descriptor, the corresponding pointer in
the descriptor list is set to the address of that argument's descriptor.

For example, suppose the routine sample is declared as follows:

declare sample entry(fixed bin(31), varying char(*))
 options(byaddr descriptor);

Assume that sample is called as in the following statement:

call sample(1, 'test');

The following three arguments are passed to the routine:

• Address of a fixed bin(31) temporary with the value 1
• Address of a varying char(4) temporary with the value test
• Address of a descriptor list consisting of the following:

– SYSNULL()
– Address of the descriptor for a varying char(4) string

© Copyright IBM Corp. 1999, 2022 467

Argument passing by locator/descriptor
When arguments and their descriptors are passed by locator/descriptor, whenever an argument requires a
descriptor, the address of a locator/descriptor for the argument is passed instead.

Except for strings, the locator/descriptor is a pair of pointers. The first pointer is the address of the data;
the second pointer is the address of the descriptor. For strings, under CMPAT(LE), the locator/descriptor
is still such a pair of pointers. But under the other CMPAT options, the locator/descriptor consists of the
address of the string and then the string descriptor itself.

For example, suppose that the routine sample is declared as follows:

declare sample entry(fixed bin(31), varying char(*))
 options(byaddr descriptor);

Assume that sample is called as in the following statement:

call sample(1, 'test');

The following two arguments are passed to the routine:

• The address of a fixed bin(31) temporary with the value 1
• The address of a locator/descriptor that consists of the following address and descriptor:

– The address of a varying char(4) temporary with the value test
– Under CMPAT(LE), the address of the CMPAT(LE) descriptor for a varying char(4) string
– Under CMPAT(V*), the CMPAT(V*) descriptor for a varying char(4) string

CMPAT(V*) descriptors
Unlike LE descriptors, the CMPAT(V*) descriptors are not self-describing. However, the string descriptors
are the same for all CMPAT(V*) options, and they also share the same codepage encoding as the LE string
descriptors.

String descriptors
In a string descriptor, the first 2 bytes specify the maximum length for the string. This maximum length is
always held in native format.

The third byte contains various flags (to indicate, for example, if the string length in a VARYING string
is held in littleendian or bigendian format or if the data in a WIDECHAR string is held in littleendian or
bigendian format).

In a string descriptor for a nonvarying bit string, the fourth byte gives the bit offset.

In a string descriptor for a CHARACTER string, the fourth byte encodes the compiler CODEPAGE option.

The declare for a string descriptor under CMPAT(V1) and CMPAT(V2) is as follows:

declare
 1 dso_string based,
 2 dso_string_length fixed bin(15),
 2 dso_string_flags,
 3 dso_string_is_varying bit(1),
 3 dso_string_is_varyingz bit(1),
 3 dso_string_has_nonnative_len bit(1), /* for varying */
 3 dso_string_is_ascii bit(1), /* for char */
 3 dso_string_has_nonnative_data bit(1), /* for wchar */
 3 * bit(1), /* reserved, '0'b */
 3 * bit(1), /* reserved, '0'b */
 3 * bit(1), /* reserved, '0'b */
 2 * union,
 3 dso_String_Codepage ordinal ccs_Codepage_Enum,
 3 dso_string_bitofs fixed bin(8) unsigned,
 2 dso_string_end char(0);

468 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

The declare for a string descriptor under CMPAT(V3) is as follows:

declare
 1 dso_longstr based,
 2 dso_longstr_info,
 3 * fixed bin(8) unsigned,
 3 dso_datatype fixed bin(8) unsigned,
 3 * union,
 4 dso_longstr_bitofs fixed bin(8) unsigned,
 4 dso_longstr_codepage type ccs_Codepage_Enum,
 3 dso_longstr_info2,
 4 dso_longstr_has_nonnative_len bit(1), /* for varying */
 4 dso_longstr_is_ebcdic bit(1), /* for char */
 4 dso_longstr_has_nonnative_data bit(1), /* for wchar */
 4 * bit(1),
 4 dso_longstr_is_varying bit(1),
 4 dso_longstr_is_varyingz bit(1),
 4 dso_longstr_is_varying4 bit(1),
 4 * bit(1),
 2 dso_longstr_length fixed bin(31),
 2 dso_longstr_end char(0);

The possible values for the codepage encoding are defined as follows:

define ordinal
 ccs_Codepage_Enum
 (ccs_Codepage_01047 value(1)
 ,ccs_Codepage_01140
 ,ccs_Codepage_01141
 ,ccs_Codepage_01142
 ,ccs_Codepage_01143
 ,ccs_Codepage_01144
 ,ccs_Codepage_01145
 ,ccs_Codepage_01146
 ,ccs_Codepage_01147
 ,ccs_Codepage_01148
 ,ccs_Codepage_01149
 ,ccs_Codepage_00819
 ,ccs_Codepage_00813
 ,ccs_Codepage_00920
 ,ccs_Codepage_00037
 ,ccs_Codepage_00273
 ,ccs_Codepage_00277
 ,ccs_Codepage_00278
 ,ccs_Codepage_00280
 ,ccs_Codepage_00284
 ,ccs_Codepage_00285
 ,ccs_Codepage_00297
 ,ccs_Codepage_00500
 ,ccs_Codepage_00871
 ,ccs_Codepage_01026
 ,ccs_Codepage_01155
) unsigned prec(8);

Array descriptors
In the following declares, the upper bound for the arrays is declared as 15, but it should be understood
that the actual upper bound will always match the number of dimensions in the array it describes.

The declare for a CMPAT(V1) array descriptor is as follows:

declare
 1 dso_v1 based,
 2 dso_v1_rvo fixed bin(31), /* relative virtual origin */
 2 dso_v1_data(1:15),
 3 dso_v1_stride fixed bin(31), /* multiplier */
 3 dso_v1_hbound fixed bin(15), /* hbound */
 3 dso_v1_lbound fixed bin(15); /* lbound */

The declare for a CMPAT(V2) array descriptor is as follows:

declare
 1 dso_v2 based,
 2 dso_v2_rvo fixed bin(31), /* relative virtual origin */
 2 dso_v2_data(1:15),

Chapter 26. PL/I descriptors 469

 3 dso_v2_stride fixed bin(31), /* multiplier */
 3 dso_v2_hbound fixed bin(31), /* hbound */
 3 dso_v2_lbound fixed bin(31); /* lbound */

The declare for a CMPAT(V3) array descriptor is as follows:

declare
 1 dso_v3 based,
 2 dso_v3_rvo fixed bin(63), /* relative virtual origin */
 2 dso_v3_data(1:15),
 3 dso_v3_stride fixed bin(63), /* multiplier */
 3 dso_v3_hbound fixed bin(63), /* hbound */
 3 dso_v3_lbound fixed bin(63); /* lbound */

CMPAT(LE) descriptors
Every LE descriptor starts with a 4-byte field. The first byte specifies the descriptor type (scalar, array,
structure, or union). The remaining three bytes are zero unless they are set by the particular descriptor
type.

The declare for a descriptor header is as follows:

declare
 1 dsc_Header based(sysnull()),
 2 dsc_Type fixed bin(8) unsigned,
 2 dsc_Datatype fixed bin(8) unsigned,
 2 * fixed bin(8) unsigned,
 2 * fixed bin(8) unsigned;

These are possible values for the dsc_Type field:

declare
 dsc_Type_Unset fixed bin(8) value(0),
 dsc_Type_Element fixed bin(8) value(2),
 dsc_Type_Array fixed bin(8) value(3),
 dsc_Type_Structure fixed bin(8) value(4),
 dsc_Type_Union fixed bin(8) value(4);

String descriptors
In a string descriptor, the second byte of the header indicates the string type (character, bit, graphic,
uchar, or widechar as well as nonvarying, varying or varyingz).

In a string descriptor for a nonvarying bit string, the third byte of the header gives the bit offset.

In a string descriptor for a CHARACTER string, the third byte of the header encodes the compiler
CODEPAGE option.

In a string descriptor for a varying string, the fourth byte has a bit indicating if the string length is held in
nonnative format.

In a string descriptor for a character string, the fourth byte also has a bit indicating if the string data is in
EBCDIC.

The declare for a string descriptor is as follows:

declare
 1 dsc_String based(sysnull()),
 2 dsc_String_Header,
 3 * fixed bin(8) unsigned,
 3 dsc_String_Type fixed bin(8) unsigned,
 3 * union,
 4 dsc_String_Codepage ordinal ccs_Codepage_Enum,
 4 dsc_String_BitOfs fixed bin(8) unsigned,
 3 *,
 4 dsc_String_Has_Nonnative_Len bit(1),
 4 dsc_String_Is_Ebcdic bit(1),
 4 dsc_String_Has_Nonnative_Data bit(1),

470 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

 4 * bit(5),
 2 dsc_String_Length fixed bin(31); /* max length of string */

These are the possible values for the dsc_String_Type field:

declare
 dsc_datatype_unset fixed bin(7) value(0),
 dsc_datatype_char_nonvarying fixed bin(7) value(2),
 dsc_datatype_char_varyingz fixed bin(7) value(3),
 dsc_datatype_char_varying2 fixed bin(7) value(4),
 dsc_datatype_char_varying4 fixed bin(7) value(5),
 dsc_datatype_bit_nonvarying fixed bin(7) value(6),
 dsc_datatype_bit_varying2 fixed bin(7) value(7),
 dsc_datatype_bit_varying4 fixed bin(7) value(8),
 dsc_datatype_graphic_nonvarying fixed bin(7) value(9),
 dsc_datatype_graphic_varyingz fixed bin(7) value(10),
 dsc_datatype_graphic_varying2 fixed bin(7) value(11),
 dsc_datatype_graphic_varying4 fixed bin(7) value(12),
 dsc_datatype_widechar_nonvarying fixed bin(7) value(13),
 dsc_datatype_widechar_varyingz fixed bin(7) value(14),
 dsc_datatype_widechar_varying2 fixed bin(7) value(15),
 dsc_datatype_widechar_varying4 fixed bin(7) value(16),
 dsc_datatype_uchar_nonvarying fixed bin(7) value(17),
 dsc_datatype_uchar_varyingz fixed bin(7) value(18),
 dsc_datatype_uchar_varying2 fixed bin(7) value(19),
 dsc_datatype_uchar_varying4 fixed bin(7) value(20);

Array descriptors
The declare for an array descriptor is as follows:

declare
 1 dsc_Array based(sysnull()),
 2 dsc_Array_Header like dsc_Header,
 2 dsc_Array_EltLen fixed bin(31), /* Length of array element */
 2 dsc_Array_Rank fixed bin(31), /* Count of dimensions */
 2 dsc_Array_RVO fixed bin(31), /* Relative virtual origin */
 2 dsc_Array_Data(1: 1 refer(dsc_Array_Rank)),
 3 dsc_Array_LBound fixed bin(31), /* LBound */
 3 dsc_Array_Extent fixed bin(31), /* HBound - LBound + 1 */
 3 dsc_Array_Stride fixed bin(31); /* Multiplier */

Chapter 26. PL/I descriptors 471

472 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Appendix A. SYSADATA message information
When you specify the MSG suboption of the XINFO compile-time option, the compiler generates a
SYSADATA file.

The SYSADATA file contains the following records:

• Counter records
• Literal records
• File records
• Message records
• Options record

The full set of declarations for all the ADATA records are available in the members ibmwxin and ibmwxop
in the samples data set SIBMZSAM.

You should note that the records in the file are not necessarily produced in the order listed above; for
example, literal and file records might be interleaved. If you are writing code that reads a SYSADATA file,
you should not rely on the order of the records in the file except for the following exceptions:

• Counter records are the first records in the file.
• Each literal record precedes any reference to the literal it defines.
• Each file record precedes any reference to the file it describes.

Understanding the SYSADATA file
The SYSADATA file is a sequential binary file.

Under z/OS batch, the compiler writes the SYSADATA records to the file specified by the SYSADATA DD
statement, and that file must not be a member of a PDS. On all other systems, the compiler writes to a file
with the extension adt.

Each record in the file contains a header. This 12-byte header has fields that are the same for all records
in the file:
Compiler

A number representing the compiler that produced the data. For PL/I, the number is 40.
Edition number

The edition number of the compiler that produced the data. For this product, it is the number 2.
SYSADATA level

A number representing the level of SYSADATA that this file format represents. For this product, it is
the number 4.

The header also has some fields that vary from record to record:

• Record type
• Whether the record is continued onto the next record

Possible record types are encoded as an ordinal value as shown in Table 144 on page 474.

© Copyright IBM Corp. 1999, 2022 473

Table 144. Record types encoded as an ordinal value

 Define ordinal xin_Rect
 (Xin_Rect_Msg value(50), /* Message record */
 Xin_Rect_Fil value(57), /* File record */
 Xin_Rect_Opt value(60), /* Options record */
 Xin_Rect_Sum value(61), /* Summary record */
 Xin_Rect_Rep value(62), /* Replace record */
 Xin_Rect_Src value(63), /* Source record */
 Xin_Rect_Tok value(64), /* Token record */
 Xin_Rect_Sym value(66), /* Symbol record */
 Xin_Rect_Lit value(67), /* Literal record */
 Xin_Rect_Syn value(69), /* Syntax record */
 Xin_Rect_Ord_Type value(80), /* Ordinal type record */
 Xin_Rect_Ord_Elem value(81), /* Ordinal element record */
 Xin_Rect_Ctr value(82)) /* Counter record */
 prec(15);

The declare for the header part of a record is shown in Table 145 on page 474.

Table 145. Declare for the header part of a record

 Dcl
 1 Xin_Hdr based, /* Header portion */
 /* */
 2 Xin_Hdr_Prod /* Language code */
 fixed bin(8) unsigned, /* */
 /* */
 2 Xin_Hdr_Rect /* Record type */
 unal ordinal xin_Rect, /* */
 /* */
 2 Xin_Hdr_Level /* SYSADATA level */
 fixed bin(8) unsigned, /* */
 /* */
 2 * union, /* */
 3 xin_Hdr_Flags bit(8), /* flags */
 3 *, /* */
 4 * bit(6), /* Reserved */
 4 Xin_Hdr_Little_Endian /* ints are little endian */
 bit(1), /* */
 4 Xin_Hdr_Cont bit(1), /* Record continued in next rec */
 /* */
 2 Xin_Hdr_Edition /* compiler "edition" */
 fixed bin(8) unsigned, /* */
 /* */
 2 Xin_Hdr_Fill bit(32), /* reserved */
 /* */
 2 Xin_Hdr_Data_Len /* length of data part */
 fixed bin(16) unsigned, /* */
 /* */
 2 Xin_Hdr_End char(0); /* */

Summary record
The record with type Xin_Rect_Sum is the summary record and is the first record in the file.

Its declare is shown in Table 146 on page 475.

474 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 146. Declare for a summary record

 Dcl
 1 Xin_Sum Based(), /* summary record */
 /* */
 2 Xin_Sum_Hdr /* standard header */
 like Xin_Hdr, /* */
 /* */
 2 Xin_Sum_Max_Severity /* max severity from compiler */
 fixed bin(32) unsigned, /* */
 /* */
 2 Xin_Sum_Left_Margin /* left margin */
 fixed bin(16) unsigned, /* */
 /* */
 2 Xin_Sum_Right_Margin /* right margin */
 fixed bin(16) unsigned, /* */
 /* */
 2 xin_Sum_Rsrvd(15) /* reserved */
 fixed bin(32) unsigned; /* */

Options record
The record with type Xin_Rect_Opt is the options record. It lists all the compiler options that are in effect
during compilation.

The declaration for the options record is provided in the member ibmwxop in the samples data set
SIBMZSAM.

Counter records
Each counter record specifies, for a subsequent record type, how many records of that type the file
contains and how many bytes those records occupy.

Table 147. Declare for a counter record

Dcl
 1 xin_Ctr based, /* counter/size record */
 /* */
 2 xin_Ctr_Hdr /* standard header */
 like xin_Hdr, /* */
 /* */
 2 xin_Ctr_Rect /* record type */
 unal ordinal xin_Rect, /* */
 /* */
 2 * /* */
 fixed bin(16) unsigned, /* */
 /* */
 2 xin_Ctr_Count /* count of that record type */
 fixed bin(31) unsigned, /* */
 /* */
 2 xin_Ctr_Size /* size used */
 fixed bin(31) unsigned; /* */

Appendix A. SYSADATA message information 475

Literal records
Each literal record assigns a number, called a literal index, that is used by later records to refer to the
characters named in this particular record.

Table 148. Declare for a literal record

Dcl
 1 xin_Lit based, /* literal record */
 /* */
 2 xin_Lit_Hdr /* standard header */
 like xin_Hdr, /* */
 /* */
 2 xin_Lit_Inx /* adata index for literal */
 fixed bin(31) unsigned, /* */
 /* */
 2 xin_Lit_Len /* length of literal */
 fixed bin(31) unsigned, /* */
 /* */
 2 xin_Lit_Val char(2000); /* literal value */

File records
Each file record assigns a number, called a file index, that is used by later records to refer to the file
described by this record. The described file might be the primary PL/I source file or an INCLUDEd file.
Each file record specifies a literal index for the fully qualified name of the file.

For an INCLUDEd file, each file record also contains the file index and source line number from where the
INCLUDE request came. (For primary source files, these fields are zero.)

Table 149. Declare for a file record

Dcl
 1 xin_Fil based, /* file record */
 /* */
 2 xin_Fil_Hdr /* standard header */
 like xin_Hdr, /* */
 /* */
 2 xin_Fil_File_Id /* file id from whence it */
 fixed bin(31) unsigned, /* was INCLUDEd */
 /* */
 2 xin_Fil_Line_No /* line no within that file */
 fixed bin(31) unsigned, /* */
 /* */
 2 xin_Fil_Id /* id assigned to this file */
 fixed bin(31) unsigned, /* */
 /* */
 2 xin_Fil_Name /* literal index of the */
 fixed bin(31) unsigned; /* fully qualified file name */

Message records
Each message record describes a message issued during the compilation. Message records are not
generated for suppressed messages.

Each message record contains the following data:

• The file index and source line number for the file and line to which the message is attributed. If the
message pertains to the compilation as a whole, these fields are zero.

• The identifier (for example, IBM1502) and severity associated with the message.
• The text of the message.

The declare for a message record is as follows:

476 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 150. Declare for a message record

Dcl
 1 xin_Msg based, /* message record */
 /* */
 2 xin_Msg_Hdr /* standard header */
 like xin_Hdr, /* */
 /* */
 2 xin_Msg_File_Id /* file id */
 fixed bin(31) unsigned, /* */
 /* */
 2 xin_Msg_Line_No /* line no within file */
 fixed bin(31) unsigned, /* */
 /* */
 2 xin_Msg_Id /* identifier (i.e. IBM1502) */
 char(16), /* */
 /* */
 2 xin_Msg_Severity /* severity (0, 4, 8, 12 or 16) */
 fixed bin(15) signed, /* */
 /* */
 2 xin_Msg_Length /* length of message */
 fixed bin(16) unsigned, /* */
 /* */
 2 Xin_Msg_Text /* actual message */
 char(100 refer(xin_Msg_Length));

Understanding SYSADATA symbol information
When you specify the SYM suboption of the XINFO compile-time option, the compiler generates a
SYSADATA file that contains symbol information in addition to the records generated for the MSG
suboption.

The following records contain symbol information:

• Ordinal type records
• Ordinal element records
• Symbol records

Symbol records are not generated for built-in functions, generic variables, or variables with non-constant
extents.

Ordinal type records
Each ordinal type record assigns a number, called an ordinal type index, that is used by later records to
refer to an ordinal type described by this record. The name of the type is indicated by a literal index. Each
ordinal type record contains the file index and source line number for the file and line in which the ordinal
type was declared.

Each ordinal type record contains:

• A count of the number of values defined by that type
• The precision associated with the type
• Bits indicating if it is signed or unsigned

Appendix A. SYSADATA message information 477

Table 151. Declare for an ordinal type record

declare /* */
 1 xin_Ord_Type based, /* */
 /* */
 2 xin_Ord_Type_Hdr /* standard header */
 like xin_Hdr, /* */
 /* */
 2 xin_Ord_Type_File_Id /* file id */
 fixed bin(31) unsigned, /* */
 /* */
 2 xin_Ord_Type_Line_No /* line no within file */
 fixed bin(31) unsigned, /* */
 /* */
 2 xin_Ord_Type_Id /* identifying number */
 fixed bin(31), /* */
 /* */
 2 xin_Ord_Type_Count /* count of elements */
 fixed bin(31), /* */
 /* */
 2 xin_Ord_Type_Prec /* precision for ordinal */
 fixed bin(08) unsigned, /* */
 /* */
 2 *, /* */
 3 xin_Ordinal_Type_Signed /* signed attribute applies */
 bit(1), /* */
 3 xin_Ordinal_Type_Unsigned /* unsigned attribute applies */
 bit(1), /* */
 3 * /* unused */
 bit(6), /* */
 /* */
 2 * /* unused */
 char(2), /* */
 /* */
 2 xin_Ord_Type_Name /* type name */
 fixed bin(31); /* */

Ordinal element records
Each ordinal type record is immediately followed by a series of records (as many as specified by the
ordinal type count) that describes the values named by that ordinal. Each ordinal element record assigns
a number, called an ordinal element index, that is used by later records to refer to an ordinal element
described by this record.

The name of the element is indicated by a literal index. Each ordinal element record contains the file index
and source line number for the file and line in which the ordinal element was declared.

Additionally, each ordinal element record contains the following data:

• The ordinal type index of the ordinal type to which it belongs
• The value for that element

478 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 152. Declare for an ordinal element record

declare /* */
 1 xin_Ord_Elem based, /* */
 /* */
 2 xin_Ord_Elem_Hdr /* standard header */
 like xin_Hdr, /* */
 /* */
 2 xin_Ord_Elem_File_Id /* file id */
 fixed bin(31) unsigned, /* */
 /* */
 2 xin_Ord_Elem_Line_No /* line no within file */
 fixed bin(31) unsigned, /* */
 /* */
 2 xin_Ord_Elem_Id /* identifying number */
 fixed bin(31), /* */
 /* */
 2 xin_Ord_Elem_Type_Id /* id of ordinal type */
 fixed bin(31), /* */
 /* */
 2 xin_Ord_Elem_Value /* ordinal value */
 fixed bin(31), /* */
 /* */
 2 xin_Ord_Elem_Name /* ordinal name */
 fixed bin(31); /* */

Symbol records
The declaration for the symbol record is in the member ibmwxin in the samples data set SIBMZSAM.
Each symbol record assigns a number that is called a symbol index. The index is used by later records to
refer to the symbol described by this record.

For example, the index can be used as the name of a user variable or constant. The name of the identifier
is indicated by a literal index. Each symbol record contains the file index and source line number for the
file and line in which the symbol was declared.

If the identifier is part of a structure or union, the symbol record contains a symbol index for each of the
following:

• The first sibling, if any
• The parent, if any
• The first child, if any

Consider the following structure:

 dcl
 1 a
 , 3 b fixed bin
 , 3 c fixed bin
 , 3 d
 , 5 e fixed bin
 , 5 f fixed bin
 ;

The symbol indices assigned to the elements of the preceding structure would be as follows:

Table 153. Symbol indices assigned to the elements of a structure

 symbol index sibling parent child
 ----- ----- ------- ------ -----
 a 1 0 0 2
 b 2 3 1 0
 c 3 4 1 0
 d 4 0 1 5
 e 5 6 4 0
 f 6 0 4 0

Appendix A. SYSADATA message information 479

Each symbol record also contains a series of bit(1) fields that indicate if various attributes apply to this
variable.

Each symbol record also contains the following elements:

User-given structure level
This is a user-given structure level for the identifier. For the element c of the structure above, the value
is 3. For non-structure members, the value is set to 1.

Logican structure level
The logical structure level for the identifier For the element c of the structure above, the value is 2. For
non-structure members, the value is set to 1.

Dimensions

The number of dimensions declared for the variable not counting any inherited dimensions.

The number of dimensions for the variable including all inherited dimensions.

Offset
The offset into the outermost parent structure.

Elemental size
Elemental size is in bytes unless the variable is bit aligned, in which case it is in bits. In either case,
this does not factor any in dimensions.

Size
Size in bytes with its dimensions factored in.

Alignment
Identified by the following:

• 0 for bit-aligned
• 7 for byte-aligned
• 15 for halfword-aligned
• 31 for fullword-aligned
• 63 for quadword-aligned

A union within the record is dedicated to describing information that is dependent on the variable's
storage class:

Static variables
If the variable is declared as external with a separate external name (dcl x ext('y')), the literal index of
that name is specified.

Based variables
If the variable is declared as based on another mapped variable that is not an element of an array, the
symbol index of that variable is specified.

Defined variables
If the variable is declared as defined on another mapped variable that is not an element of an array,
the symbol index of that variable is specified here. If its position attribute is constant, it is also
specified.

The variable's data type is specified by the ordinal shown in Table 154 on page 481.

480 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 154. Data type of a variable

define
 ordinal
 xin_Data_Kind
 (xin_Data_Kind_Unset
 ,xin_Data_Kind_Character
 ,xin_Data_Kind_Bit
 ,xin_Data_Kind_Graphic
 ,xin_Data_Kind_Fixed
 ,xin_Data_Kind_Float
 ,xin_Data_Kind_Picture
 ,xin_Data_Kind_Pointer
 ,xin_Data_Kind_Offset
 ,xin_Data_Kind_Entry
 ,xin_Data_Kind_File
 ,xin_Data_Kind_Label
 ,xin_Data_Kind_Format
 ,xin_Data_Kind_Area
 ,xin_Data_Kind_Task
 ,xin_Data_Kind_Event
 ,xin_Data_Kind_Condition
 ,xin_Data_Kind_Structure
 ,xin_Data_Kind_Union
 ,xin_Data_Kind_Descriptor
 ,xin_Data_Kind_Ordinal
 ,xin_Data_Kind_Handle
 ,xin_Data_Kind_Type
 ,xin_Data_Kind_Builtin
 ,xin_Data_Kind_Generic
 ,xin_Data_Kind_Widechar
) prec(8) unsigned;

A union within the record is dedicated to describing information that is dependent on the variable's data
type. Most of this information is self-explanatory (for example, the precision for an arithmetic type) except
perhaps for the following variables:

Picture variables
The literal index of the picture specification is specified.

Entry variables
If the variable has the returns attribute, the symbol index of the returns description is specified.

Ordinal variables
The ordinal type index is specified.

Typed variables and handles
The symbol index of the underlying type is specified.

String and area variables
The type and value of the extent is specified in addition to the symbol index of the returns description.
The type of the extent is encoded by the values:

declare
 (xin_Extent_Constant value(01)
 ,xin_Extent_Star value(02)
 ,xin_Extent_Nonconstant value(04)
 ,xin_Extent_Refer value(08)
 ,xin_Extent_In_Error value(16)
)
 fixed bin;

If the element has any dimensions, the type and values for its lower and upper bounds are specified at the
very end of the record. These fields are not present if the element has no dimensions.

Note that the attributes flags reflect the attributes after the compiler has applied all defaults. So, for
example, every numeric variable (including numeric PICTURE variables) has either the REAL or COMPLEX
attribute flag set.

Appendix A. SYSADATA message information 481

Understanding SYSADATA syntax information
When you specify the SYN suboption of the XINFO compile-time option, the compiler generates a
SYSADATA file that contains syntax information in addition to the records generated for the MSG and
SYM suboptions.

The following records contain syntax information:

• Source records
• Token records
• Syntax records

Source records
Each source record assigns a number, called a source id, that is used by later records to refer to the
source line described by this record. The line might be from the primary PL/I source file or an INCLUDE
file, as indicated by the source file id and line number fields in the record. The rest of the record holds the
actual data in the source line.

Table 155. Declare for a source record

Dcl
 1 Xin_Src based, /* source record */
 /* */
 2 Xin_Src_Hdr /* standard header */
 like Xin_Hdr, /* */
 /* */
 2 Xin_Src_File_Id /* file id */
 fixed bin(32) unsigned, /* */
 /* */
 2 Xin_Src_Line_No /* line no within file */
 fixed bin(32) unsigned, /* */
 /* */
 2 Xin_Src_Id /* id for this source record */
 fixed bin(32) unsigned, /* */
 /* */
 2 Xin_Src_Length /* length of text */
 fixed bin(16) unsigned, /* */
 /* */
 2 Xin_Src_Text /* actual text */
 char(137 refer(xin_Src_Length));

482 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Token records
Each token record assigns a number, called a token index, that is used by later records to refer to a token
recognized by the PL/I compiler. The record also identifies the type of the token plus the column and line
on which it started and ended.

Table 156. Declare for a token record

Dcl
 1 Xin_Tok based, /* token record */
 /* */
 2 Xin_Tok_Hdr /* standard header */
 like Xin_Hdr, /* */
 /* */
 2 Xin_Tok_Inx /* adata index for token */
 fixed bin(32) unsigned, /* */
 /* */
 2 Xin_Tok_Begin_Line /* starting line no within file */
 fixed bin(32) unsigned, /* */
 /* */
 2 Xin_Tok_End_Line_Offset /* offset of end line from first */
 fixed bin(16) unsigned, /* */
 /* */
 2 Xin_Tok_Kind_Value /* token kind */
 ordinal xin_Tok_Kind, /* */
 /* */
 2 Xin_Tok_Rsrvd /* reserved */
 fixed bin(8) unsigned, /* */
 /* */
 2 Xin_Tok_Begin_Col /* starting column */
 fixed bin(16) unsigned, /* */
 /* */
 2 Xin_Tok_End_Col /* ending column */
 fixed bin(16) unsigned; /* */

The ordinal xin_Tok_Kind identifies the type of the token record.

Table 157. Declare for the token record kind

 Define
 ordinal
 xin_Tok_Kind
 (xin_Tok_Kind_Unset
 ,xin_Tok_Kind_Lexeme
 ,xin_Tok_Kind_Comment
 ,xin_Tok_Kind_Literal
 ,xin_Tok_Kind_Identifier
 ,xin_Tok_Kind_Keyword
) prec(8) unsigned;

Syntax records
Each syntax record assigns a number, called a node id, that is used by later records to refer to other
syntax records. The first syntax record will have kind xin_Syn_Kind_Package, and if the compilation unit
has any procedures, the child node of this record will point to the first of these procedures. The parent,
sibling and child nodes will then provide a map with the appropriate relationships of all the procedures
and begin blocks in the compilation unit.

Consider the following simple program:

 a: proc;
 call b;
 call c;
 b: proc;
 end b;
 c: proc;
 call d;
 d: proc;
 end d;

Appendix A. SYSADATA message information 483

 end c;
 end a;

The node indices are assigned to the blocks of the preceding program as follows:

Table 158. Node indices assigned to the blocks in a program

 symbol index sibling parent child
 ----- ----- ------- ------ -----
 - 1 0 0 2
 a 2 0 1 3
 b 3 4 2 0
 c 4 0 2 5
 d 5 0 4 0

Table 159. Declare for a syntax record

Dcl
 1 Xin_Syn based, /* syntax record */
 /* */
 2 Xin_Syn_Hdr /* standard header */
 like Xin_Hdr, /* */
 /* */
 2 Xin_Syn_Node_Id /* node id */
 fixed bin(32) unsigned, /* */
 /* */
 2 Xin_Syn_Node_Kind /* node type */
 ordinal xin_syn_kind, /* */
 /* */
 2 Xin_Syn_Node_Exp_Kind /* node sub type */
 ordinal xin_exp_kind, /* */
 /* */
 2 * /* reserved */
 fixed bin(16) unsigned, /* */
 /* */
 2 Xin_Syn_Parent_Node_Id /* node id of parent */
 fixed bin(32) unsigned, /* */
 /* */
 2 Xin_Syn_Sibling_Node_Id /* node id of sibling */
 fixed bin(32) unsigned, /* */
 /* */
 2 Xin_Syn_Child_Node_Id /* node id of child */
 fixed bin(32) unsigned, /* */
 /* */
 2 xin_Syn_First_Tok /* id of first spanned token */
 fixed bin(32) unsigned, /* */
 /* */
 2 xin_Syn_Last_Tok /* id of last spanned token */
 fixed bin(32) unsigned, /* */

484 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Table 159. Declare for a syntax record (continued)

 /* */
 2 * union, /* qualifier for node */
 /* */
 3 Xin_Syn_Int_Value /* used if int */
 fixed bin(31), /* */
 /* */
 3 Xin_Syn_Literal_Id /* used if name, number, picture */
 fixed bin(31), /* */
 /* */
 3 Xin_Syn_Node_Lex /* used if lexeme, assignment, */
 ordinal xin_Lex_kind, /* infix_op, prefix_op */
 /* */
 3 Xin_Syn_Node_Voc /* used if keyword, end_for_do */
 ordinal xin_Voc_kind, /* */
 /* */
 3 Xin_Syn_Block_Node /* used if call_begin */
 fixed bin(31), /* to hold node of begin block */
 /* */
 3 Xin_Syn_Bif_Id /* used if bif_rfrnc */
 fixed bin(32) unsigned, /* */
 /* */
 3 Xin_Syn_Sym_Id /* used if label, unsub_rfrnc, */
 fixed bin(32) unsigned, /* subscripted_rfrnc */
 /* */
 3 Xin_Syn_Proc_Data, /* used if package, proc or begin*/
 /* */
 4 Xin_Syn_First_Sym /* id of first contained sym */
 fixed bin(32) unsigned, /* */
 /* */
 4 Xin_Syn_Block_Sym /* id of sym for this block */
 fixed bin(32) unsigned, /* */

Declare for a syntax record (continued)

 /* */
 3 Xin_Syn_Number_Data, /* used if number */
 /* */
 4 Xin_Syn_Number_Id /* id of literal */
 fixed bin(32) unsigned, /* */
 /* */
 4 Xin_Syn_Number_Type /* type */
 ordinal xin_Number_Kind,/* */
 /* */
 4 Xin_Syn_Number_Prec /* precision */
 fixed bin(8) unsigned, /* */
 /* */
 4 Xin_Syn_Number_Scale /* scale factor */
 fixed bin(7) signed, /* */
 /* */
 4 Xin_Syn_Number_Bytes /* bytes it would occupy */
 fixed bin(8) unsigned, /* in its internal form */
 /* */
 3 Xin_Syn_String_Data, /* used if char_string, */
 /* bit_string, graphic_string */
 /* */
 4 Xin_Syn_String_Id /* id of literal */
 fixed bin(32) unsigned, /* */
 /* */
 4 Xin_Syn_String_Len /* string length in its units */
 fixed bin(32) unsigned, /* */
 /* */
 3 Xin_Syn_Stmt_Data, /* used if stmt */
 /* */
 4 Xin_Syn_File_Id /* file id */
 fixed bin(32) unsigned, /* */
 /* */
 4 Xin_Syn_Line_No /* line no within file */
 fixed bin(32) unsigned, /* */
 /* */
 2 * char(0); /* */

Declare for a syntax record (continued)

The ordinal xin_Syn_Kind identifies the type of the syntax record.

Appendix A. SYSADATA message information 485

Table 160. Declare for the syntax record kind

Define
 ordinal
 xin_Syn_Kind
 (xin_Syn_Kind_Unset
 ,xin_Syn_Kind_Lexeme
 ,xin_Syn_Kind_Asterisk
 ,xin_Syn_Kind_Int
 ,xin_Syn_Kind_Name
 ,xin_Syn_Kind_Expression
 ,xin_Syn_Kind_Parenthesized_Expr
 ,xin_Syn_Kind_Argument_List
 ,xin_Syn_Kind_Keyword
 ,xin_Syn_Kind_Proc_Stmt
 ,xin_Syn_Kind_Begin_Stmt
 ,xin_Syn_Kind_Stmt
 ,xin_Syn_Kind_Substmt
 ,xin_Syn_Kind_Label
 ,xin_Syn_Kind_Invoke_Begin
 ,xin_Syn_Kind_Assignment
 ,xin_Syn_Kind_Assignment_Byname
 ,xin_Syn_Kind_Do_Fragment
 ,xin_Syn_Kind_Keyed_List
 ,xin_Syn_Kind_Iteration_Factor
 ,xin_Syn_Kind_If_Clause
 ,xin_Syn_Kind_Else_Clause
 ,xin_Syn_Kind_Do_Stmt
 ,xin_Syn_Kind_Select_Stmt
 ,xin_Syn_Kind_When_Stmt
 ,xin_Syn_Kind_Otherwise_Stmt
 ,xin_Syn_Kind_Procedure
 ,xin_Syn_Kind_Package
 ,xin_Syn_Kind_Begin_Block
 ,xin_Syn_Kind_Picture
 ,xin_Syn_Kind_Raw_Rfrnc
 ,xin_Syn_Kind_Generic_Desc
) prec(8) unsigned;

Consider the following simple program:

 a: proc(x);
 dcl x char(8);
 x = substr(datetime(),1,8);
 end;

The node indices are assigned to the blocks of the preceding program as follows:

Table 161. Node indices assigned to the syntax records in a program

 node_kind index sibling parent child
 ----------- ----- ------- ------ -----
 package 1 0 0 2
 procedure 2 0 1 0
 expression 3 0 0 0
 stmt 4 5 2 6
 stmt 5 10 2 11
 label 6 7 4 0
 keyword 7 8 4 0
 expression 8 9 4 0
 lexeme 9 0 4 0
 stmt 10 0 2 18
 assignment 11 12 5 13
 lexeme 12 0 5 0
 expression 13 14 11 0
 expression 14 0 11 15
 expression 15 16 14 0
 expression 16 17 14 0
 expression 17 0 14 0
 keyword 18 19 10 0
 lexeme 19 0 10 0

486 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

The procedure record contains the identifier (in the block_sym field) for the symbol record for ENTRY A.
This symbol record contains, in turn, the node identifier (in the first_stmt_id field) for the first statement
in that procedure.

Note that for the statement records, the sibling node identifier points to the next statement record, if any;
the child node identifier points to the first element of that statement record.

The records for the PROCEDURE statement consists of 4 records:

• A label record
• A keyword record (for the PROCEDURE keyword)
• An expression record (for the parameter X) with expression kind of unsub_rfrnc and a sym_id for the

symbol X
• A lexeme record (for the semicolon)

The records for the assignment statement consists of 2 records:

• An assignment record that has 2 children:

– An expression record (for the target X) with expression kind of unsub_rfrnc and a sym_id for the
symbol X

– An expression record (for the source) with expression kind of builtin_rfrnc and a sym_id for the
symbol SUBSTR, and this record has itself 3 children:

- An expression record (for the first argument) with expression kind of builtin_rfrnc and a sym_id for
the symbol DATETIME

- An expression record (for the second argument) with expression kind of number and a literal_id for
the value 1

- An expression record (for the third argument) with expression kind of number and a literal_id for
the value 8

• A lexeme record (for the semicolon)

The records for the END statement consists of 2 records:

• A keyword record (for the END keyword)
• A lexeme record (for the semicolon)

The ordinal xin_Exp_Kind identifies the type of an expression for a syntax record that describes an
expression. Some of these records will have nonzero child nodes; for example:

• An infix op, such as a minus for a subtraction, will have a child node that describes its lefthand operand
(and the sibling node of that operand will describe the righthand operator).

• A prefix op, such as a minus for a negation, will have a child node that describes its operand.

Table 162. Declare for the expression kind

 Define
 ordinal
 xin_Exp_Kind
 (xin_Exp_Kind_Unset
 ,xin_Exp_Kind_Bit_String
 ,xin_Exp_Kind_Char_String
 ,xin_Exp_Kind_Graphic_String
 ,xin_Exp_Kind_Number
 ,xin_Exp_Kind_Infix_Op
 ,xin_Exp_Kind_Prefix_Op
 ,xin_Exp_Kind_Builtin_Rfrnc
 ,xin_Exp_Kind_Entry_Rfrnc
 ,xin_Exp_Kind_Qualified_Rfrnc
 ,xin_Exp_Kind_Unsub_Rfrnc
 ,xin_Exp_Kind_Subscripted_Rfrnc
 ,xin_Exp_Kind_Type_Func
 ,xin_Exp_Kind_Widechar_String
) prec(8) unsigned;

Appendix A. SYSADATA message information 487

The ordinal xin_Number_Kind identifies the type of a number for a syntax record that describes a number.

Table 163. Declare for the number kind

 Define
 ordinal
 xin_Number_Kind
 (xin_Number_Kind_Unset
 ,xin_Number_Kind_Real_Fixed_Bin
 ,xin_Number_Kind_Real_Fixed_Dec
 ,xin_Number_Kind_Real_Float_Bin
 ,xin_Number_Kind_Real_Float_Dec
 ,xin_Number_Kind_Cplx_Fixed_Bin
 ,xin_Number_Kind_Cplx_Fixed_Dec
 ,xin_Number_Kind_Cplx_Float_Bin
 ,xin_Number_Kind_Cplx_Float_Dec
) prec(8) unsigned;

The ordinal xin_Lex_Kind identifies the type of a lexeme for a syntax record that describes a lexical unit.

• In these ordinal names, "vrule" means "vertical rule", which is used, for instance, as the "or" symbol.
• In these ordinal names, "dbl" means "double", so that dbl_Vrule is a doubled vertical rule that is used,

for instance, as the "concatenate" symbol.

Table 164. Declare for the lexeme kind

 Define
 ordinal
 xin_Lex_Kind
 (xin_Lex_Undefined
 ,xin_Lex_Period
 ,xin_Lex_Colon
 ,xin_Lex_Semicolon
 ,xin_Lex_Lparen
 ,xin_Lex_Rparen
 ,xin_Lex_Comma
 ,xin_Lex_Equals
 ,xin_Lex_Gt
 ,xin_Lex_Ge
 ,xin_Lex_Lt
 ,xin_Lex_Le
 ,xin_Lex_Ne
 ,xin_Lex_Lctr
 ,xin_Lex_Star
 ,xin_Lex_Dbl_Colon
 ,xin_Lex_Not
 ,xin_Lex_Vrule
 ,xin_Lex_Dbl_Vrule
 ,xin_Lex_And
 ,xin_Lex_Dbl_Star
 ,xin_Lex_Plus
 ,xin_Lex_Minus
 ,xin_Lex_Slash
 ,xin_Lex_Equals_Gt
 ,xin_Lex_Lparen_Colon
 ,xin_Lex_Colon_Rparen
 ,xin_Lex_Plus_Equals
 ,xin_Lex_Minus_Equals
 ,xin_Lex_Star_Equals
 ,xin_Lex_Slash_Equals
 ,xin_Lex_Vrule_Equals
 ,xin_Lex_And_Equals
 ,xin_Lex_Dbl_Star_Equals
 ,xin_Lex_Dbl_Vrule_Equals
 ,xin_Lex_Dbl_Slash
) unsigned prec(16);

The ordinal xin_Voc_Kind identifies the keyword for a syntax record that describes an item from the
compiler's "vocabulary".

The declaration for the voc kind is provided in the member ibmwxin in the samples data set SIBMZSAM.

488 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user⋘s responsibility
to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

 IBM Corporation
 J74/G4
 555 Bailey Avenue
 San Jose, CA 95141-1099
 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

 Intellectual Property Licensing
 Legal and Intellectual Property Law
 IBM Japan, Ltd.
 3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
 THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
 EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
 TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.

Intel is a registered trademark of Intel Corporation in the United States and other countries.

© Copyright IBM Corp. 1999, 2022 489

http://www.ibm.com/legal/copytrade
http://www.ibm.com/legal/copytrade

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States and
other countries.

Pentium is a registered trademark of Intel Corporation in the United States and other countries.

Unicode is a trademark of the Unicode Consortium.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product or service names may be the trademarks or service marks of others.

If you are viewing this information in softcopy, the photographs and color illustrations may not appear.

490 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Bibliography

PL/I publications

Enterprise PL/I for z/OS
Programming Guide, GI13-5620
Language Reference, SC31-5716
Messages and Codes, GC31-5717
Compiler and Run-Time Migration Guide, GC31-5715

PL/I for MVS & VM
Installation and Customization under MVS, SC26-3119
Language Reference, SC26-3114
Compile-Time Messages and Codes, SC26-3229
Diagnosis Guide, SC26-3149
Migration Guide, SC26-3118
Programming Guide, SC26-3113
Reference Summary, SX26-3821

Enterprise PL/I for AIX®

Programming Guide, SC14-7319
Language Reference, SC14-7320
Messages and Codes, GC14-7321
Installation Guide, GC14-7322

Related publications

Db2 for z/OS
Administration Guide, SC27-8844
Application Programming and SQL Guide, SC27-8845
Command Reference, SC27-8848
Messages, GC27-8855
Codes, GC27-8847
SQL Reference, SC27-8859
LOBs with Db2 for z/OS: Stronger and Faster, SG24-7270
See also the Db2 for z/OS Product Documentation

DFSORT
Application Programming Guide, SC23-6878
Installation and Customization, SC23-6881

IMS/ESA®

Application Programming: Database Manager, SC26-8015
Application Programming: Database Manager Summary, SC26-8037
Application Programming: Design Guide, SC26-8016

© Copyright IBM Corp. 1999, 2022 491

https://www-01.ibm.com/support/docview.wss?uid=swg27047206

Application Programming: Transaction Manager, SC26-8017
Application Programming: Transaction Manager Summary, SC26-8038
Application Programming: EXEC DL/I Commands for CICS and IMS™, SC26-8018
Application Programming: EXEC DL/I Commands for CICS and IMS Summary, SC26-8036
IMS/ESA V6R1 Bookindex, GC27-1557

TXSeries® for Multiplatforms
Encina Administration Guide Volume 2: Server Administration, SC09-4474
Encina SFS Programming Guide, SC09-4483
See the TXSeries for Multiplatforms Knowledge Center

z/Architecture
Principles of Operation, SA22-7832
See Principles of Operation online

z/OS Language Environment
Concepts Guide, SA38-0687
Debugging Guide, GA32-0908
RunTime Messages, SA38-0686
Customization, SA38-0685
Programming Guide, SA38-0682
Programming Guide for 64-bit Virtual Addressing Mode, SA38-0689
Programming Reference, SA38-0683
RunTime Application Migration Guide, GA32-0912
Vendor Interfaces, SA38-0688
Writing Interlanguage Communication Applications, SA38-0684
See also the z/OS Language Environment Knowledge Center

z/OS MVS
JCL Reference, SA23-1385
JCL User's Guide, SA23-1386
System Commands, SA38-0666
See z/OS MVS Knowledge Center

z/OS TSO/E
Command Reference, SA32-0975
User's Guide, SA32-0971

z/OS UNIX System Services
z/OS UNIX System Services Command Reference, SA23-2280
z/OS UNIX System Services Programming: Assembler Callable Services Reference, SA23-2281
z/OS UNIX System Services User's Guide, SA23-2279

Unicode and character representation
z/OS Support for Unicode: Using Conversion Services, SC33-7050
z/OS Unicode Services User's Guide and Reference, SA38-0680

492 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

https://www.ibm.com/support/knowledgecenter/SSAL2T_9.1.0/com.ibm.cics.tx.doc/ic-homepage.html
http://www-01.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.cee/cee.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.iea/iea.htm

Glossary

This glossary defines terms for all platforms and releases of PL/I. It might contain terms that this manual
does not use. If you do not find the terms for which you are looking, see the index in this manual or IBM
Dictionary of Computing, SC20-1699.

A

access
To reference or retrieve data.

action specification
In an ON statement, the ON-unit or the single keyword SYSTEM, either of which specifies the action to
be taken whenever the appropriate condition is raised.

activate (a block)
To initiate the execution of a block. A procedure block is activated when it is invoked. A begin-block is
activated when it is encountered in the normal flow of control, including a branch. A package cannot
be activated.

activate (a preprocessor variable or preprocessor entry point)
To make a macro facility identifier eligible for replacement in subsequent source code. The
%ACTIVATE statement activates preprocessor variables or preprocessor entry points.

active
The state of a block after activation and before termination. The state in which a preprocessor variable
or preprocessor entry name is said to be when its value can replace the corresponding identifier in
source program text. The state in which an event variable is said to be during the time it is associated
with an asynchronous operation. The state in which a task variable is said to be when its associated
task is attached. The state in which a task is said to be before it has been terminated.

actual origin (AO)
The location of the first item in the array or structure.

additive attribute
A file description attribute for which there are no defaults, and which, if required, must be stated
explicitly or implied by another explicitly stated attribute. Contrast with alternative attribute.

adjustable extent
The bound (of an array), the length (of a string), or the size (of an area) that might be different
for different generations of the associated variable. Adjustable extents are specified as expressions
or asterisks (or by REFER options for based variables), which are evaluated separately for each
generation. They cannot be used for static variables.

aggregate
See data aggregate.

aggregate expression
An array, structure, or union expression.

aggregate type
For any item of data, the specification whether it is structure, union, or array.

allocated variable
A variable with which main storage is associated and not freed.

allocation
The reservation of main storage for a variable. A generation of an allocated variable. The association of
a PL/I file with a system data set, device, or file.

alignment
The storing of data items in relation to certain machine-dependent boundaries (for example, a
fullword or halfword boundary).

© Copyright IBM Corp. 1999, 2022 493

alphabetic character
Any of the characters A through Z of the English alphabet and the alphabetic extenders #, $, and @
(which can have a different graphic representation in different countries).

alphameric character
An alphabetic character or a digit.

alternative attribute
A file description attribute that is chosen from a group of attributes. If none is specified, a default is
assumed. Contrast with additive attribute.

ambiguous reference
A reference that is not sufficiently qualified to identify one and only one name known at the point of
reference.

area
A portion of storage within which based variables can be allocated.

argument
An expression in an argument list as part of an invocation of a subroutine or function.

argument list
A parenthesized list of zero or more arguments, separated by commas, following an entry name
constant, an entry name variable, a generic name, or a built-in function name. The list becomes the
parameter list of the entry point.

arithmetic comparison
A comparison of numeric values. See also bit comparison, character comparison.

arithmetic constant
A fixed-point constant or a floating-point constant. Although most arithmetic constants can be signed,
the sign is not part of the constant.

arithmetic conversion
The transformation of a value from one arithmetic representation to another.

arithmetic data
Data that has the characteristics of base, scale, mode, and precision. Coded arithmetic data and
pictured numeric character data are included.

arithmetic operators
Either of the prefix operators + and -, or any of the following infix operators: + - * ⁄ **

array
A named, ordered collection of one or more data elements with identical attributes, grouped into one
or more dimensions.

array expression
An expression whose evaluation yields an array of values.

array of structures
An ordered collection of identical structures specified by giving the dimension attribute to a structure
name.

array variable
A variable that represents an aggregate of data items that must have identical attributes. Contrast
with structure variable.

ASCII
American National Standard Code for Information Interchange.

assignment
The process of giving a value to a variable.

asynchronous operation
The overlap of an input⁄output operation with the execution of statements. The concurrent execution
of procedures using multiple flows of control for different tasks.

494 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

attachment of a task
The invocation of a procedure and the establishment of a separate flow of control to execute
the invoked procedure (and procedures it invokes) asynchronously, with execution of the invoking
procedure.

attention
An occurrence, external to a task, that could cause a task to be interrupted.

attribute
A descriptive property associated with a name to describe a characteristic represented. A descriptive
property used to describe a characteristic of the result of evaluation of an expression.

automatic storage allocation
The allocation of storage for automatic variables.

automatic variable
A variable whose storage is allocated automatically at the activation of a block and released
automatically at the termination of that block.

B

base
The number system in which an arithmetic value is represented.

base element
A member of a structure or a union that is itself not another structure or union.

base item
The automatic, controlled, or static variable or the parameter upon which a defined variable is
defined.

based reference
A reference that has the based storage class.

based storage allocation
The allocation of storage for based variables.

based variable
A variable whose storage address is provided by a locator. Multiple generations of the same variable
are accessible. It does not identify a fixed location in storage.

begin-block
A collection of statements delimited by BEGIN and END statements, forming a name scope. A begin-
block is activated either by the raising of a condition (if the begin-block is the action specification
for an ON-unit) or through the normal flow of control, including any branch resulting from a GOTO
statement.

binary
A number system whose only numerals are 0 and 1.

binary digit
See bit.

binary fixed-point value
An integer consisting of binary digits and having an optional binary point and optional sign. Contrast
with decimal fixed-point value.

binary floating-point value
An approximation of a real number in the form of a significand, which can be considered as a binary
fraction, and an exponent, which can be considered as an integer exponent to the base of 2. Contrast
with decimal floating-point value.

bit
A 0 or a 1. The smallest amount of space of computer storage.

bit comparison
A left-to-right, bit-by-bit comparison of binary digits. See also arithmetic comparison, character
comparison.

Glossary 495

bit string constant
A series of binary digits enclosed in and followed immediately by the suffix B. Contrast with character
constant. A series of hexadecimal digits enclosed in single quotes and followed by the suffix B4.

bit string
A string composed of zero or more bits.

bit string operators
The logical operators not and exclusive-or (¬), and (&), and or (|).

bit value
A value that represents a bit type.

block
A sequence of statements, processed as a unit, that specifies the scope of names and the allocation of
storage for names declared within it. A block can be a package, procedure, or a begin-block.

bounds
The upper and lower limits of an array dimension.

break character
The underscore symbol (_). It can be used to improve the readability of identifiers. For instance, a
variable could be called OLD_INVENTORY_TOTAL instead of OLDINVENTORYTOTAL.

built-in function
A predefined function supplied by the language, such as SQRT (square root).

built-in function reference
A built-in function name, which has an optional argument list.

built-in name
The entry name of a built-in subroutine.

built-in subroutine
Subroutine that has an entry name that is defined at compile-time and is invoked by a CALL
statement.

buffer
Intermediate storage, used in input/output operations, into which a record is read during input and
from which a record is written during output.

C

call
To invoke a subroutine by using the CALL statement or CALL option.

character comparison
A left-to-right, character-by-character comparison according to the collating sequence. See also
arithmetic comparison, bit comparison.

character string constant
A sequence of characters enclosed in single quotes; for example, 'Shakespeare''s 'Hamlet:''.

character set
A defined collection of characters. See also ASCII and EBCDIC.

character string picture data
Picture data that has only a character value. This type of picture data must have at least one A or X
picture specification character. Contrast with numeric picture data.

closing (of a file)
The dissociation of a file from a data set or device.

coded arithmetic data
Data items that represent numeric values and are characterized by their base (decimal or binary),
scale (fixed-point or floating-point), and precision (the number of digits each can have). This data is
stored in a form that is acceptable, without conversion, for arithmetic calculations.

combined nesting depth
The deepest level of nesting, determined by counting the levels of PROCEDURE/BEGIN/ON, DO,
SELECT, and IF...THEN...ELSE nestings in the program.

496 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

comment
A string of zero or more characters used for documentation that are delimited by ⁄* and *⁄.

commercial character

• CR (credit) picture specification character
• DB (debit) picture specification character

comparison operator
An operator that can be used in an arithmetic, string locator, or logical relation to indicate the
comparison to be done between the terms in the relation. The comparison operators are:

= (equal to)
> (greater than)
< (less than)
>= (greater than or equal to)
<= (less than or equal to)
¬= (not equal to)
¬> (not greater than)
¬< (not less than)

compile time
In general, the time during which a source program is translated into an object module. In PL/I, it is
the time during which a source program can be altered, if desired, and then translated into an object
program.

compiler options
Keywords that are specified to control certain aspects of a compilation, such as: the nature of the
object module generated, the types of printed output produced, and so forth.

complex data
Arithmetic data, each item of which consists of a real part and an imaginary part.

composite operator
An operator that consists of more than one special character, such as <=, **, and ⁄*.

compound statement
A statement that contains other statements. In PL/I, IF, ON, OTHERWISE, and WHEN are the only
compound statements. See statement body.

concatenation
The operation that joins two strings in the order specified, forming one string whose length is equal to
the sum of the lengths of the two original strings. It is specified by the operator ||.

condition
An exceptional situation, either an error (such as an overflow), or an expected situation (such as the
end of an input file). When a condition is raised (detected), the action established for it is processed.
See also established action and implicit action.

condition name
Name of a PL/I-defined or programmer-defined condition.

condition prefix
A parenthesized list of one or more condition names prefixed to a statement. It specifies whether the
named conditions are to be enabled or disabled.

connected aggregate
An array or structure whose elements occupy contiguous storage without any intervening data items.
Contrast with nonconnected aggregate.

connected reference
A reference to connected storage. It must be apparent, prior to execution of the program, that the
storage is connected.

connected storage
Main storage of an uninterrupted linear sequence of items that can be referred to by a single name.

Glossary 497

constant
An arithmetic or string data item that does not have a name and whose value cannot change.
An identifier declared with the VALUE attribute. An identifier declared with the FILE or the ENTRY
attribute but without the VARIABLE attribute.

constant reference
A value reference which has a constant as its object

contained block, declaration, or source text
All blocks, procedures, statements, declarations, or source text inside a begin, procedure, or a
package block. The entire package, procedure, and the BEGIN statement and its corresponding END
statements are not contained in the block.

containing block
The package, procedure, or begin-block that contains the declaration, statement, procedure, or other
source text in question.

contextual declaration
The appearance of an identifier that has not been explicitly declared in a DECLARE statement, but
whose context of use allows the association of specific attributes with the identifier.

control character
A character in a character set whose occurrence in a particular context specifies a control function.
One example is the end-of-file (EOF) marker.

control format item
A specification used in edit-directed transmission to specify positioning of a data item within the
stream or printed page.

control variable
A variable that is used to control the iterative execution of a DO statement.

controlled parameter
A parameter for which the CONTROLLED attribute is specified in a DECLARE statement. It can be
associated only with arguments that have the CONTROLLED attribute.

controlled storage allocation
The allocation of storage for controlled variables.

controlled variable
A variable whose allocation and release are controlled by the ALLOCATE and FREE statements, with
access to the current generation only.

control sections
Grouped machine instructions in an object module.

conversion
The transformation of a value from one representation to another to conform to a given set of
attributes. For example, converting a character string to an arithmetic value such as FIXED BINARY
(15,0).

cross section of an array
The elements represented by the extent of at least one dimension of an array. An asterisk in the place
of a subscript in an array reference indicates the entire extent of that dimension.

current generation
The generation of an automatic or controlled variable that is currently available by referring to the
name of the variable.

D

data
Representation of information or of value in a form suitable for processing.

data aggregate
A data item that is a collection of other data items.

data attribute
A keyword that specifies the type of data that the data item represents, such as FIXED BINARY.

498 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

data-directed transmission
The type of stream-oriented transmission in which data is transmitted. It resembles an assignment
statement and is of the form name = constant.

data item
A single named unit of data.

data list
In stream-oriented transmission, a parenthesized list of the data items used in GET and PUT
statements. Contrast with format list.

data set
A collection of data external to the program that can be accessed by reference to a single file name. A
device that can be referenced.

data specification
The portion of a stream-oriented transmission statement that specifies the mode of transmission
(DATA, LIST, or EDIT) and includes the data list(s) and, for edit-directed mode, the format list(s).

data stream
Data being transferred from or to a data set by stream-oriented transmission, as a continuous stream
of data elements in character form.

data transmission
The transfer of data from a data set to the program or vice versa.

data type
A set of data attributes.

DBCS
In the character set, each character is represented by two consecutive bytes.

deactivated
The state in which an identifier is said to be when its value cannot replace a preprocessor identifier in
source program text. Contrast with active.

debugging
Process of removing bugs from a program.

decimal
The number system whose numerals are 0 through 9.

decimal digit picture character
The picture specification character 9.

decimal fixed-point constant
A constant consisting of one or more decimal digits with an optional decimal point.

decimal fixed-point value
A rational number consisting of a sequence of decimal digits with an assumed position of the decimal
point. Contrast with binary fixed-point value.

decimal floating-point constant
A value made up of a significand that consists of a decimal fixed-point constant, and an exponent that
consists of the letter E followed by an optionally signed integer constant not exceeding three digits.

decimal floating-point value
An approximation of a real number, in the form of a significand, which can be considered as a decimal
fraction, and an exponent, which can be considered as an integer exponent to the base 10. Contrast
with binary floating-point value.

decimal picture data
See numeric picture data.

declaration
The establishment of an identifier as a name and the specification of a set of attributes (partial or
complete) for it. A source of attributes of a particular name.

default
Describes a value, attribute, or option that is assumed when none has been specified.

Glossary 499

defined variable
A variable that is associated with some or all of the storage of the designated base variable.

delimit
To enclose one or more items or statements with preceding and following characters or keywords.

delimiter
All comments and the following characters: percent, parentheses, comma, period, semicolon, colon,
assignment symbol, blank, pointer, asterisk, and single quote. They define the limits of identifiers,
constants, picture specifications, iSUBs, and keywords.

descriptor
A control block that holds information about a variable, such as area size, array bounds, or string
length.

digit
One of the characters 0 through 9.

dimension attribute
An attribute that specifies the number of dimensions of an array and indicates the bounds of each
dimension.

disabled
The state of a condition in which no interrupt occurs and no established action will take place.

do-group
A sequence of statements delimited by a DO statement and ended by its corresponding END
statement, used for control purposes. Contrast with block.

do-loop
See iterative do-group.

dummy argument
Temporary storage that is created automatically to hold the value of an argument that cannot be
passed by reference.

dump
Printout of all or part of the storage used by a program as well as other program information, such as a
trace of an error's origin.

E

EBCDIC
(Extended Binary-Coded Decimal Interchange Code). A coded character set consisting of 8-bit coded
characters.

edit-directed transmission
The type of stream-oriented transmission in which data appears as a continuous stream of characters
and for which a format list is required to specify the editing desired for the associated data list.

element
A single item of data as opposed to a collection of data items such as an array; a scalar item.

element expression
An expression whose evaluation yields an element value.

element variable
A variable that represents an element; a scalar variable.

elementary name
See base element.

enabled
The state of a condition in which the condition can cause an interrupt and then invocation of the
appropriate established ON-unit.

end-of-step message
message that follows the listng of the job control statements and job scheduler messages and
contains return code indicating success or failure for each step.

500 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

entry constant
The label prefix of a PROCEDURE statement (an entry name). The declaration of a name with the
ENTRY attribute but without the VARIABLE attribute.

entry data
A data item that represents an entry point to a procedure.

entry expression
An expression whose evaluation yields an entry name.

entry name
An identifier that is explicitly or contextually declared to have the ENTRY attribute (unless the
VARIABLE attribute is given) or An identifier that has the value of an entry variable with the ENTRY
attribute implied.

entry point
A point in a procedure at which it can be invoked. primary entry point and secondary entry point.

entry reference
An entry constant, an entry variable reference, or a function reference that returns an entry value.

entry variable
A variable to which an entry value can be assigned. It must have both the ENTRY and VARIABLE
attributes.

entry value
The entry point represented by an entry constant or variable; the value includes the environment of
the activation that is associated with the entry constant.

environment (of an activation)
Information associated with and used in the invoked block regarding data declared in containing
blocks.

environment (of a label constant)
Identity of the particular activation of a block to which a reference to a statement-label constant
applies. This information is determined at the time a statement-label constant is passed as an
argument or is assigned to a statement-label variable, and it is passed or assigned along with the
constant.

established action
The action taken when a condition is raised. See also implicit action and ON-statement action.

epilogue
Those processes that occur automatically at the termination of a block or task.

evaluation
The reduction of an expression to a single value, an array of values, or a structured set of values.

event
An activity in a program whose status and completion can be determined from an associated event
variable.

event variable
A variable with the EVENT attribute that can be associated with an event. Its value indicates whether
the action has been completed and the status of the completion.

explicit declaration
The appearance of an identifier (a name) in a DECLARE statement, as a label prefix, or in a parameter
list. Contrast with implicit declaration.

exponent characters
The following picture specification characters:

1. K and E, which are used in floating-point picture specifications to indicate the beginning of the
exponent field.

2. F, the scaling factor character, specified with an integer constant that indicates the number of
decimal positions the decimal point is to be moved from its assumed position to the right (if the
constant is positive) or to the left (if the constant is negative).

Glossary 501

expression
A notation, within a program, that represents a value, an array of values, or a structured set of values.
A constant or a reference appearing alone, or a combination of constants and⁄or references with
operators.

extended alphabet
The uppercase and lowercase alphabetic characters A through Z, $, @ and #, or those specified in the
NAMES compiler option.

extent
The range indicated by the bounds of an array dimension, by the length of a string, or by the size of an
area. The size of the target area if this area were to be assigned to a target area.

external name
A name (with the EXTERNAL attribute) whose scope is not necessarily confined only to one block and
its contained blocks.

external procedure
A procedure that is not contained in any other procedure. A level-2 procedure contained in a package
that is also exported.

external symbol
Name that can be referred to in a control section other than the one in which it is defined.

External Symbol Dictionary (ESD)
Table containing all the external symbols that appear in the object module.

extralingual character
Characters (such as $, @, and #) that are not classified as alphanumeric or special. This group
includes characters that are determined with the NAMES compiler option.

F

factoring
The application of one or more attributes to a parenthesized list of names in a DECLARE statement,
eliminating the repetition of identical attributes for multiple names.

field (in the data stream)
That portion of the data stream whose width, in number of characters, is defined by a single data or
spacing format item.

field (of a picture specification)
Any character-string picture specification or that portion (or all) of a numeric character picture
specification that describes a fixed-point number.

file
A named representation, within a program, of a data set or data sets. A file is associated with the data
set(s) for each opening.

file constant
A name declared with the FILE attribute but not the VARIABLE attribute.

file description attributes
Keywords that describe the individual characteristics of each file constant. See also alternative
attribute and additive attribute.

file expression
An expression whose evaluation yields a value of the type file.

file name
A name declared for a file.

file variable
A variable to which file constants can be assigned. It has the attributes FILE and VARIABLE and
cannot have any of the file description attributes.

fixed-point constant
See arithmetic constant.

502 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

fix-up
A solution, performed by the compiler after detecting an error during compilation, that allows the
compiled program to run.

floating-point constant
See arithmetic constant.

flow of control
Sequence of execution.

format
A specification used in edit-directed data transmission to describe the representation of a data item
in the stream (data format item) or the specific positioning of a data item within the stream (control
format item).

format constant
The label prefix on a FORMAT statement.

format data
A variable with the FORMAT attribute.

format label
The label prefix on a FORMAT statement.

format list
In stream-oriented transmission, a list specifying the format of the data item on the external medium.
Contrast with data list.

fully qualified name
A name that includes all the names in the hierarchical sequence above the member to which the
name refers, as well as the name of the member itself.

function (procedure)
A procedure that has a RETURNS option in the PROCEDURE statement. A name declared with the
RETURNS attribute. It is invoked by the appearance of one of its entry names in a function reference
and it returns a scalar value to the point of reference. Contrast with subroutine.

function reference
An entry constant or an entry variable, either of which must represent a function, followed by a
possibly empty argument list. Contrast with subroutine call.

G

generation (of a variable)
The allocation of a static variable, a particular allocation of a controlled or automatic variable, or the
storage indicated by a particular locator qualification of a based variable or by a defined variable or
parameter.

generic descriptor
A descriptor used in a GENERIC attribute.

generic key
A character string that identifies a class of keys. All keys that begin with the string are members of
that class. For example, the recorded keys 'ABCD', 'ABCE', and 'ABDF', are all members of the classes
identified by the generic keys 'A' and 'AB', and the first two are also members of the class 'ABC';
and the three recorded keys can be considered to be unique members of the classes 'ABCD', 'ABCE',
'ABDF', respectively.

generic name
The name of a family of entry names. A reference to the generic name is replaced by the entry name
whose parameter descriptors match the attributes of the arguments in the argument list at the point
of invocation.

group
A collection of statements contained within larger program units. A group is either a do-group or a
select-group and it can be used wherever a single statement can appear, except as an on-unit.

H

Glossary 503

hex
See hexadecimal digit.

hexadecimal
Pertaining to a numbering system with a base of sixteen; valid numbers use the digits 0 through 9 and
the characters A through F, where A represents 10 and F represents 15.

hexadecimal digit
One of the digits 0 through 9 and A through F. A through F represent the decimal values 10 through
15, respectively.

I

identifier
A string of characters, not contained in a comment or constant, and preceded and followed by
a delimiter. The first character of the identifier must be one of the 26 alphabetic characters
and extralingual characters, if any. The other characters, if any, can additionally include extended
alphabetic, digit, or the break character.

IEEE
Institute of Electrical and Electronics Engineers.

implicit
The action taken in the absence of an explicit specification.

implicit action
The action taken when an enabled condition is raised and no ON-unit is currently established for the
condition. Contrast with ON-statement action.

implicit declaration
A name not explicitly declared in a DECLARE statement or contextually declared.

implicit opening
The opening of a file as the result of an input or output statement other than the OPEN statement.

infix operator
An operator that appears between two operands.

inherited dimensions
For a structure, union, or element, those dimensions that are derived from the containing structures.
If the name is an element that is not an array, the dimensions consist entirely of its inherited
dimensions. If the name is an element that is an array, its dimensions consist of its inherited
dimensions plus its explicitly declared dimensions. A structure with one or more inherited dimensions
is called a nonconnected aggregate. Contrast with connected aggregate.

input⁄output
The transfer of data between auxiliary medium and main storage.

insertion point character
A picture specification character that is, on assignment of the associated data to a character string,
inserted in the indicated position. When used in a P-format item for input, the insertion character is
used for checking purposes.

integer
An optionally signed sequence of digits or a sequence of bits without a decimal or binary point. An
optionally signed whole number, commonly described as FIXED BINARY (p,0) or FIXED DECIMAL
(p,0).

integral boundary
A byte multiple address of any 8-bit unit on which data can be aligned. It usually is a halfword,
fullword, or doubleword (2-, 4-, or 8-byte multiple respectively) boundary.

interleaved array
An array that refers to nonconnected storage.

interleaved subscripts
Subscripts that exist in levels other than the lowest level of a subscripted qualified reference.

504 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

internal block
A block that is contained in another block.

internal name
A name that is known only within the block in which it is declared, and possibly within any contained
blocks.

internal procedure
A procedure that is contained in another block. Contrast with external procedure.

interrupt
The redirection of the program's flow of control as the result of raising a condition or attention.

invocation
The activation of a procedure.

invoke
To activate a procedure.

invoked procedure
A procedure that has been activated.

invoking block
A block that activates a procedure.

iteration factor
In an INITIAL attribute specification, an expression that specifies the number of consecutive
elements of an array that are to be initialized with the given value. In a format list, an expression that
specifies the number of times a given format item or list of format items is to be used in succession.

iterative do-group
A do-group whose DO statement specifies a control variable and⁄or a WHILE or UNTIL option.

K

key
Data that identifies a record within a direct access data set. See source key and recorded key.

keyword
An identifier that has a specific meaning in PL/I when used in a defined context.

keyword statement
A simple statement that begins with a keyword, indicating the function of the statement.

known (applied to a name)
Recognized with its declared meaning. A name is known throughout its scope.

L

label
A name prefixed to a statement. A name on a PROCEDURE statement is called an entry constant; a
name on a FORMAT statement is called a format constant; a name on other kinds of statements is
called a label constant. A data item that has the LABEL attribute.

label constant
A name written as the label prefix of a statement (other than PROCEDURE, ENTRY, FORMAT, or
PACKAGE) so that, during execution, program control can be transferred to that statement through a
reference to its label prefix.

label data
A label constant or the value of a label variable.

label prefix
A label prefixed to a statement.

label variable
A variable declared with the LABEL attribute. Its value is a label constant in the program.

leading zeroes
Zeros that have no significance in an arithmetic value. All zeros to the left of the first nonzero in a
number.

Glossary 505

level number
A number that precedes a name in a DECLARE statement and specifies its relative position in the
hierarchy of structure names.

level-one variable
A major structure or union name. Any unsubscripted variable not contained within a structure or
union.

lexically
Relating to the left-to-right order of units.

library
An MVS partitioned data set or a CMS MACLIB that can be used to store other data sets called
members.

list-directed
The type of stream-oriented transmission in which data in the stream appears as constants separated
by blanks or commas and for which formatting is provided automatically.

locator
A control block that holds the address of a variable or its descriptor.

locator/descriptor
A locator followed by a descriptor. The locator holds the address of the variable, not the address of the
descriptor.

locator qualification
In a reference to a based variable, either a locator variable or function reference connected by an
arrow to the left of a based variable to specify the generation of the based variable to which the
reference refers. It might be an implicit reference.

locator value
A value that identifies or can be used to identify the storage address.

locator variable
A variable whose value identifies the location in main storage of a variable or a buffer. It has the
POINTER or OFFSET attribute.

locked record
A record in an EXCLUSIVE DIRECT UPDATE file that has been made available to one task only and
cannot be accessed by other tasks until the task using it relinquishes it.

logical level (of a structure or union member)
The depth indicated by a level number when all level numbers are in direct sequence (when the
increment between successive level numbers is one).

logical operators
The bit-string operators not and exclusive-or (¬), and (&), and or (|).

loop
A sequence of instructions that is executed iteratively.

lower bound
The lower limit of an array dimension.

M

main procedure
An external procedure whose PROCEDURE statement has the OPTIONS (MAIN) attribute. This
procedure is invoked automatically as the first step in the execution of a program.

major structure
A structure whose name is declared with level number 1.

member
A structure, union, or element name in a structure or union. Data sets in a library.

minor structure
A structure that is contained within another structure or union. The name of a minor structure is
declared with a level number greater than one and greater than its parent structure or union.

506 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

mode (of arithmetic data)
An attribute of arithmetic data. It is either real or complex.

multiple declaration
Two or more declarations of the same identifier internal to the same block without different
qualifications. Two or more external declarations of the same identifier.

multiprocessing
The use of a computing system with two or more processing units to execute two or more programs
simultaneously.

multiprogramming
The use of a computing system to execute more than one program concurrently, using a single
processing unit.

multitasking
A facility that allows a program to execute more than one PL/I procedure simultaneously.

N

name
Any identifier that the user gives to a variable or to a constant. An identifier appearing in a context
where it is not a keyword. Sometimes called a user-defined name.

nesting
The occurrence of:

• A block within another block
• A group within another group
• An IF statement in a THEN clause or in an ELSE clause
• A function reference as an argument of a function reference
• A remote format item in the format list of a FORMAT statement
• A parameter descriptor list in another parameter descriptor list
• An attribute specification within a parenthesized name list for which one or more attributes are

being factored

nonconnected storage
Storage occupied by nonconnected data items. For example, interleaved arrays and structures with
inherited dimensions are in nonconnected storage.

null locator value
A special locator value that cannot identify any location in internal storage. It gives a positive
indication that a locator variable does not currently identify any generation of data.

null statement
A statement that contains only the semicolon symbol (;). It indicates that no action is to be taken.

null string
A character, graphic, or bit string with a length of zero.

numeric-character data
See decimal picture data.

numeric picture data
Picture data that has an arithmetic value as well as a character value. This type of picture data cannot
contain the characters 'A' or 'X.'

O

object
A collection of data referred to by a single name.

offset variable
A locator variable with the OFFSET attribute, whose value identifies a location in storage relative to
the beginning of an area.

Glossary 507

ON-condition
An occurrence, within a PL/I program, that could cause a program interrupt. It can be the detection of
an unexpected error or of an occurrence that is expected, but at an unpredictable time.

ON-statement action
The action explicitly established for a condition that is executed when the condition is raised. When
the ON-statement is encountered in the flow of control for the program, it executes, establishing
the action for the condition. The action executes when the condition is raised if the ON-unit is still
established or a RESIGNAL statement reestablishes it. Contrast with implicit action.

ON-unit
The specified action to be executed when the appropriate condition is raised.

opening (of a file)
The association of a file with a data set.

operand
The value of an identifier, constant, or an expression to which an operator is applied, possibly in
conjunction with another operand.

operational expression
An expression that consists of one or more operators.

operator
A symbol specifying an operation to be performed.

option
A specification in a statement that can be used to influence the execution or interpretation of the
statement.

P

package constant
The label prefix on a PACKAGE statement.

packed decimal
The internal representation of a fixed-point decimal data item.

padding
One or more characters, graphics, or bits concatenated to the right of a string to extend the string
to a required length. One or more bytes or bits inserted in a structure or union so that the following
element within the structure or union is aligned on the appropriate integral boundary.

parameter
A name in the parameter list following the PROCEDURE statement, specifying an argument that will be
passed when the procedure is invoked.

parameter descriptor
The set of attributes specified for a parameter in an ENTRY attribute specification.

parameter descriptor list
The list of all parameter descriptors in an ENTRY attribute specification.

parameter list
A parenthesized list of one or more parameters, separated by commas and following either the
keyword PROCEDURE in a procedure statement or the keyword ENTRY in an ENTRY statement. The
list corresponds to a list of arguments passed at invocation.

partially qualified name
A qualified name that is incomplete. It includes one or more, but not all, of the names in the
hierarchical sequence above the structure or union member to which the name refers, as well as
the name of the member itself.

picture data
Numeric data, character data, or a mix of both types, represented in character form.

picture specification
A data item that is described using the picture characters in a declaration with the PICTURE attribute
or in a P-format item.

508 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

picture specification character
Any of the characters that can be used in a picture specification.

PL/I character set
A set of characters that has been defined to represent program elements in PL/I.

PL/I prompter
Command processor program for the PLI command that checks the operands and allocates the data
sets required by the compiler.

point of invocation
The point in the invoking block at which the reference to the invoked procedure appears.

pointer
A type of variable that identifies a location in storage.

pointer value
A value that identifies the pointer type.

pointer variable
A locator variable with the POINTER attribute that contains a pointer value.

precision
The number of digits or bits contained in a fixed-point data item, or the minimum number of
significant digits (excluding the exponent) maintained for a floating-point data item.

prefix
A label or a parenthesized list of one or more condition names included at the beginning of a
statement.

prefix operator
An operator that precedes an operand and applies only to that operand. The prefix operators are plus
(+), minus (-), and not (¬).

preprocessor
A program that examines the source program before the compilation takes place.

preprocessor statement
A special statement appearing in the source program that specifies the actions to be performed by the
preprocessor. It is executed as it is encountered by the preprocessor.

primary entry point
The entry point identified by any of the names in the label list of the PROCEDURE statement.

priority
A value associated with a task, that specifies the precedence of the task relative to other tasks.

problem data
Coded arithmetic, bit, character, graphic, and picture data.

problem-state program
A program that operates in the problem state of the operating system. It does not contain input/
output instructions or other privileged instructions.

procedure
A collection of statements, delimited by PROCEDURE and END statements. A procedure is a program
or a part of a program, delimits the scope of names, and is activated by a reference to the procedure
or one of its entry names. See also external procedure and internal procedure.

procedure reference
An entry constant or variable. It can be followed by an argument list. It can appear in a CALL
statement or the CALL option, or as a function reference.

program
A set of one or more external procedures or packages. One of the external procedures must have the
OPTIONS(MAIN) specification in its procedure statement.

program control data
Area, locator, label, format, entry, and file data that is used to control the processing of a PL/I
program.

Glossary 509

prologue
The processes that occur automatically on block activation.

pseudovariable
Any of the built-in function names that can be used to specify a target variable. It is usually on the
left-hand side of an assignment statement.

Q

qualified name
A hierarchical sequence of names of structure or union members, connected by periods, used to
identify a name within a structure. Any of the names can be subscripted.

R

range (of a default specification)
A set of identifiers and/or parameter descriptors to which the attributes in a DEFAULT statement
apply.

record
The logical unit of transmission in a record-oriented input or output operation. A collection of one or
more related data items. The items usually have different data attributes and usually are described by
a structure or union declaration.

recorded key
A character string identifying a record in a direct access data set where the character string itself is
also recorded as part of the data.

record-oriented data transmission
The transmission of data in the form of separate records. Contrast with stream data transmission.

recursive procedure
A procedure that can be called from within itself or from within another active procedure.

reentrant procedure
A procedure that can be activated by multiple tasks, threads, or processes simultaneously without
causing any interference between these tasks, threads, and processes.

REFER expression
The expression preceding the keyword REFER, which is used as the bound, length, or size when the
based variable containing a REFER option is allocated, either by an ALLOCATE or LOCATE statement.

REFER object
The variable in a REFER option that holds or will hold the current bound, length, or size for the
member. The REFER object must be a member of the same structure or union. It must not be
locator-qualified or subscripted, and it must precede the member with the REFER option.

reference
The appearance of a name, except in a context that causes explicit declaration.

relative virtual origin (RVO)
The actual origin of an array minus the virtual origin of an array.

remote format item
The letter R followed by the label (enclosed in parentheses) of a FORMAT statement. The format
statement is used by edit-directed data transmission statements to control the format of data being
transmitted.

repetition factor
A parenthesized unsigned integer constant that specifies:

1. The number of times the string constant that follows is to be repeated.
2. The number of times the picture character that follows is to be repeated.

repetitive specification
An element of a data list that specifies controlled iteration to transmit one or more data items,
generally used in conjunction with arrays.

510 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

restricted expression
An expression that can be evaluated by the compiler during compilation, resulting in a constant.
Operands of such an expression are constants, named constants, and restricted expressions.

returned value
The value returned by a function procedure.

RETURNS descriptor
A descriptor used in a RETURNS attribute, and in the RETURNS option of the PROCEDURE and ENTRY
statements.

S

scalar variable
A variable that is not a structure, union, or array.

scale
A system of mathematical notation whose representation of an arithmetic value is either fixed-point or
floating-point.

scale factor
A specification of the number of fractional digits in a fixed-point number.

scaling factor
See scale factor.

scope (of a condition prefix)
The portion of a program throughout which a particular condition prefix applies.

scope (of a declaration or name)
The portion of a program throughout which a particular name is known.

secondary entry point
An entry point identified by any of the names in the label list of an entry statement.

select-group
A sequence of statements delimited by SELECT and END statements.

selection clause
A WHEN or OTHERWISE clause of a select-group.

self-defining data
An aggregate that contains data items whose bounds, lengths, and sizes are determined at program
execution time and are stored in a member of the aggregate.

separator
See delimiter.

shift
Change of data in storage to the left or to the right of original position.

shift-in
Symbol used to signal the compiler at the end of a double-byte string.

shift-out
Symbol used to signal the compiler at the beginning of a double-byte string.

sign and currency symbol characters
The picture specification characters. S, +, -, and $ (or other national currency symbols enclosed in <
and >).

simple parameter
A parameter for which no storage class attribute is specified. It can represent an argument of any
storage class, but only the current generation of a controlled argument.

simple statement
A statement other than IF, ON, WHEN, and OTHERWISE.

source
Data item to be converted for problem data.

Glossary 511

source key
A key referred to in a record-oriented transmission statement that identifies a particular record within
a direct access data set.

source program
A program that serves as input to the source program processors and the compiler.

source variable
A variable whose value participates in some other operation, but is not modified by the operation.
Contrast with target variable.

spill file
Data set named SYSUT1 that is used as a temporary workfile.

standard default
The alternative attribute or option assumed when none has been specified and there is no applicable
DEFAULT statement.

standard file
A file assumed by PL/I in the absence of a FILE or STRING option in a GET or PUT statement. SYSIN is
the standard input file and SYSPRINT is the standard output file.

standard system action
Action specified by the language to be taken for an enabled condition in the absence of an ON-unit for
that condition.

statement
A PL/I statement, composed of keywords, delimiters, identifiers, operators, and constants, and
terminated by a semicolon (;). Optionally, it can have a condition prefix list and a list of labels. See also
keyword statement and null statement.

statement body
A statement body can be either a simple or a compound statement.

statement label
See label constant.

static storage allocation
The allocation of storage for static variables.

static variable
A variable that is allocated before execution of the program begins and that remains allocated for the
duration of execution.

stream-oriented data transmission
The transmission of data in which the data is treated as though it were a continuous stream of
individual data values in character form. Contrast with record-oriented data transmission.

string
A contiguous sequence of characters, graphics, or bits that is treated as a single data item.

string variable
A variable declared with the BIT, CHARACTER, or GRAPHIC attribute, whose values can be either bit,
character, or graphic strings.

structure
A collection of data items that need not have identical attributes. Contrast with array.

structure expression
An expression whose evaluation yields a structure set of values.

structure of arrays
A structure that has the dimension attribute.

structure member
See member.

structuring
The hierarchy of a structure, in terms of the number of members, the order in which they appear, their
attributes, and their logical level.

512 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

subroutine
A procedure that has no RETURNS option in the PROCEDURE statement. Contrast with function.

subroutine call
An entry reference that must represent a subroutine, followed by an optional argument list that
appears in a CALL statement. Contrast with function reference.

subscript
An element expression that specifies a position within a dimension of an array. If the subscript is an
asterisk, it specifies all of the elements of the dimension.

subscript list
A parenthesized list of one or more subscripts, one for each dimension of the array, which together
uniquely identify either a single element or cross section of the array.

subtask
A task that is attached by the given task or any of the tasks in a direct line from the given task to the
last attached task.

synchronous
A single flow of control for serial execution of a program.

T

target
Attributes to which a data item (source) is converted.

target reference
A reference that designates a receiving variable (or a portion of a receiving variable).

target variable
A variable to which a value is assigned.

task
The execution of one or more procedures by a single flow of control.

task name
An identifier used to refer to a task variable.

task variable
A variable with the TASK attribute whose value gives the relative priority of a task.

termination (of a block)
Cessation of execution of a block, and the return of control to the activating block by means of a
RETURN or END statement, or the transfer of control to the activating block or to some other active
block by means of a GO TO statement.

termination (of a task)
Cessation of the flow of control for a task.

truncation
The removal of one or more digits, characters, graphics, or bits from one end of an item of data when a
string length or precision of a target variable has been exceeded.

type
The set of data attributes and storage attributes that apply to a generation, a value, or an item of data.

U

undefined
Indicates something that a user must not do. Use of a undefined feature is likely to produce different
results on different implementations of a PL/I product. In that case, the application program is in
error.

union
A collection of data elements that overlay each other, occupying the same storage. The members can
be structures, unions, elementary variables, or arrays. They need not have identical attributes.

union of arrays
A union that has the DIMENSION attribute.

Glossary 513

upper bound
The upper limit of an array dimension.

V

value reference
A reference used to obtain the value of an item of data.

variable
A named entity used to refer to data and to which values can be assigned. Its attributes remain
constant, but it can refer to different values at different times.

variable reference
A reference that designates all or part of a variable.

virtual origin (VO)
The location where the element of the array whose subscripts are all zero are held. If such an element
does not appear in the array, the virtual origin is where it would be held.

Z

zero-suppression characters
The picture specification characters Z and *, which are used to suppress zeros in the corresponding
digit positions and replace them with blanks or asterisks respectively.

514 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

Index

Special Characters
*PROCESS, specifying options in 100
/ (forward slash) 200
% statements 101
%INCLUDE 118
%INCLUDE statement

control statement 101
source statement library 164

%NOPRINT
control statement 101

%NOPRINT statement 101, 119
%PAGE

control statement 101
%PAGE statement 101
%POP statement 101
%PRINT

control statement 101
%PRINT statement 101
%PROCESS, specifying options in 100
%PUSH statement 101
%SKIP

control statement 101
%SKIP statement 101
++INCLUDE 118

Numerics
31 and 64 interoperability 377

A
access

ESDS 284
REGIONAL(1) data set 267
relative-record data set 301

access method services
regional data set 269
REGIONAL(1) data set

direct access 267
sequential access 266

ACCT EXEC statement parameter 156
aggregate

length table 105
AGGREGATE compiler option 9
ALIGNED compiler suboption 25
ALL option

hooks location suboption 89
ALLOCATE statement 105
alternate ddname under z/OS UNIX, in TITLE option 200
AMP parameter 271
ANS

compiler suboption 25
APPEND option under z/OS UNIX 202
ARCH compiler option 9, 307
argument passing

by descriptor list 467

argument passing (continued)
by descriptor-locator 468

array descriptor
array descriptor 469, 471

ASCII
compiler suboption

description 25
assembler routines

FETCHing 176, 181
ASSERT compiler option 11
ASSIGNABLE compiler suboption 25
ATTENTION ON-units 454
attention processing

attention interrupt,effect of 44
ATTENTION ON-units 454
debugging tool 454
main description 453

attribute table 105
ATTRIBUTES option 11
automatic

padding 171
prompting

overriding 169
using 169

restart
after system failure 457
checkpoint/restart facility 455
within a program 457

auxiliary storage for sort 328
avoiding calls to library routines 318

B
BACKREG compiler option 11
batch compile

OS/390 159, 161
BIFPREC compiler option 12
BIN1ARG compiler suboption 25
BKWD option 214, 278
BLANK compiler option 12
BLKOFF compiler option 13
BLKSIZE

ENVIRONMENT
comparison with DCB subparameter 216
for record I/O 218

option of ENVIRONMENT
for stream I/O 232

subparameter 211
block

and record 208
size

maximum 219
object module 163
PRINT files 240
record length 219
regional data sets 270
specifying 208

Index 515

BRACKETS 13
BRACKETS compiler option 13
BUFFERS option

for stream I/O
232

BUFND option 278
BUFNI option 279
BUFSIZE option under z/OS UNIX 203
BUFSP option 279
BYADDR

description 310
effect on performance 311
using with DEFAULT option 26

BYVALUE
description 310
effect on performance 311
using with DEFAULT option 26

C
C routines

FETCHing 176
capacity record

REGIONAL(1) 265
carriage control character 52, 239
carriage return-line feed (CR - LF) 206
CASE 117
CASERULES compiler option 14
cataloged procedure

compile and bind 149, 152
compile only 148
Compile only - 64-bit 151
compile, bind, and run 150, 153
compile, input data for 150, 153
description of 147
invoking 155
listing 155
modifying

DD statement 157
EXEC statement 156

multiple invocations 155
under OS/390

IBM-supplied 147
to invoke 155
to modify 156

character string attribute table 105
characters

carriage control 52, 239
print control 52, 239

CHECK compiler option 14
checkpoint data

for sort 333
checkpoint data, defining, PLICKPT built-in suboption 456
checkpoint/restart

deferred restart 457
PLICANC statement 457

checkpoint/restart facility
CALL PLIREST statement 457
checkpoint data set 456
description of 455
modify activity 457
PLICKPT built-in subroutine 455
request checkpoint record 455
request restart 457

checkpoint/restart facility (continued)
RESTART parameter 457
return codes 455

CHKPT sort option 327
CICS

preprocessor options 143
support 142

CKPT sort option 327
CMPAT compiler option 15
COBOL

map structure 105
CODE subparameter 211
CODEPAGE compiler option 16
coding

CICS statements 143
improving performance 313
SQL statements 127

comments
within options 99

communications area, SQL 127
compilation

user exit
activating 461
customizing 461
example 465
IBMUEXIT 461
procedures 459

compile and bind, input data for 149, 152
COMPILE compiler option 16
compile-time options

under z/OS UNIX
160

compiler
% statements 101
DBCS identifier 39
descriptions of options 3
general description of 159
graphic string constant 39
invoking 159
JCL statements, using 161
listing

aggregate length table 105
attribute table 105
block level 104
cross-reference table 105
DO-level 104
file reference table 109
heading information 103
include source program 43
input to compiler 104
input to preprocessor 104
messages 109
printing options 164
return codes 110
SOURCE option program 104
source program 85
stack storage used 86
statement offset addresses 106
SYSPRINT 164
using 103

mixed string constant 39
PROCESS statement 100
reduce storage requirement 60
severity of error condition 16

516 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

compiler (continued)
temporary workfile (SYSUT1) 163
under OS/390 batch 161

compiler options
abbreviations 9
AGGREGATE 9
ARCH 9, 307
ASSERT 11
ATTRIBUTES 11
BACKREG 11
BIFPREC 12
BLANK 12
BLKOFF 13
CASERULES 14
CHECK 14
CMPAT 15
CODEPAGE 16
COMPILE 16
COPYRIGHT 17
CSECT 17
CSECTCUT 18
CURRENCY 18
DBCS 18
DBRMLIB 19
DD 19
DDSQL 20
default 3
DEFAULT 24, 310
DEPRECATE 32
DEPRECATENEXT 33
description of 3
DISPLAY 33
DLL 34
DLLINIT 34
EXIT 34
EXTRN 35
FILEREF 35
FLAG 35
FLOAT 36
FLOATINMATH 37
GOFF 38
GONUMBER 38, 307
GRAPHIC 39
IGNORE 40
INCAFTER 40
INCDIR 40
INCLUDE 41
INSOURCE 43
INTERRUPT 44
LANGLVL 46
LIMITS 47
LINECOUNT 48
LINEDIR 48
LIST 49
LISTVIEW 49
MACRO 50
MAP 51
MARGINI 51
MARGINS 51
MAXBRANCH 52
MAXGEN 53
MAXINIT 52
MAXMEM 53
MAXMSG 54

compiler options (continued)
MAXNEST 54
MAXRUNONIF 55
MAXSTATIC 55
MAXSTMT 55
MAXTEMP 55
MDECK 56
MSGSUMMARY 56
NAME 57
NAMES 57
NATLANG 57
NEST 58
NOMARGINS 51
NOT 58
OBJECT 58
OFFSET 59
OFFSETSIZE 59
ONSNAP 59
OPTIMIZE 60, 307
OPTIONS 61
OR 61
PP 62
PPCICS 62
PPINCLUDE 63
PPLIST 63
PPMACRO 63
PPSQL 64
PPTRACE 64
PRECTYPE 64
PREFIX 65, 309
PROCEED 65
QUOTE 66
REDUCE 66, 307
RENT 67
RESEXP 68
RESPECT 68
RTCHECK 68
RULES 70, 308
SEMANTIC 84
SERVICE 85
SOURCE 85
SPILL 85
STATIC 85
STDSYS 86
STMT 86
STORAGE 86
STRINGOFGRAPHIC 87
SYNTAX 87
SYSPARM 88
SYSTEM 88
TERMINAL 89
TEST 89
UNROLL 92
USAGE 93
WIDECHAR 94
WINDOW 94
WRITABLE 95
XINFO 96
XML 45, 98
XREF 99

compiling
under z/OS UNIX
159

concatenating

Index 517

concatenating (continued)
data sets 197
external references 195

COND EXEC statement parameter 156
conditional compilation 16
conditional subparameter 211
CONNECTED compiler suboption

description 26
effect on performance 311

CONSECUTIVE
option of ENVIRONMENT 233, 251

consecutive data sets
controlling input from the terminal

capital and lowercase letters 246
condition format 243
COPY option of GET statement 246
defining QSAM files 245
end-of-file 246
format of data 244
stream and record files 245

controlling output to the terminal
conditions 247
format of PRINT files 247
output from the PUT EDIT command 247
stream and record files 247

defining and using 231
input from the terminal 243
output to the terminal 247
record-oriented data transmission

accessing and updating a data set 255
creating a data set 254
defining files 250
specifying ENVIRONMENT options 250
statements and options allowed 249

record-oriented I/O 249
stream-oriented data transmission

accessing a data set 237
creating a data set 235
defining files 231
specifying ENVIRONMENT options 232
using PRINT files 239
using SYSIN and SYSPRINT files 242

control
area 272
CONTROL option

EXEC statement 165
interval 272

control blocks
function-specific 459
global control 462

control characters
carriage 52, 239
print 52, 239

COPY option 246
COPYRIGHT compiler option 17
COPYRIGHT option 450
counter records, SYSADATA 475
cross-reference table

compiler listing 105
using XREF option 104

CSECT compiler option 17
CSECTCUT compiler option 18
CTLASA and CTL360 options

ENVIRONMENT option

CTLASA and CTL360 options (continued)
ENVIRONMENT option (continued)

for consecutive data sets 251
SCALARVARYING 221

CURRENCY compiler option 18
customizing

user exit
modifying SYSUEXIT 461
structure of global control blocks 460
writing your own compiler exit 462

CYLOFL subparameter
DCB parameter 211

D
data

conversion under z/OS UNIX 199
files

creating under z/OS UNIX
201

sort program
PLISRT(x) command 336

sorting
description of 323

types
equivalent Java and PL/I 374
equivalent SQL and PL/I 133

data definition (DD) information under z/OS UNIX 199
data set

associating PL/I files with
closing a file 213
opening a file 212
specifying characteristics in the ENVIRONMENT
attribute 214

associating several data sets with one file 196
blocks and records 208
checkpoint 456
conditional subparameter characteristics 211
consecutive stream-oriented data 231
data set control block (DSCB) 211
ddnames 162
defining for dump

DD statement 444
logical record length 444

defining relative-record 299
direct 210
dissociating from a file

system-determined block size 213
dissociating from PL/I file 197
establishing characteristics 207
indexed

sequential 210
information interchange codes 208
label modification 212
labels 210, 225
libraries

extracting information 229
SPACE parameter 226
types of 225
use 225

organization
conditional subparameters 211
data definition (DD) statement 211
types of 210

518 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

data set (continued)
partitioned 225
record format defaults 217
record formats

fixed-length 208
undefined-length 210
variable-length 209

records 208
regional 261
REGIONAL(1)

accessing and updating 266
creating 265

sequential 210
sort program

checkpoint data set 333
input data set 332
output data set 332
sort work data set 332

sorting
SORTWK 328

source statement library 164
SPACE parameter 162
stream files 231
temporary 163
to establish characteristics 207
types of

comparison 222
used by PL/I record I/O
222

unlabeled 210
using 193
VSAM

blocking 272
data set type 275
defining 281
defining files 277
dummy data set 275
indexed data set 284
keys 274
mass sequential insert 290
organization 272
running a program 271
specifying ENVIRONMENT options 278
VSAM option 280

VSAM.
performance options 280

data set under OS/390
associating one data set with several files 196
concatenating 197
zFS 197

data set under z/OS UNIX
associating a PL/I file with a data set

how PL/I finds data sets 201
using environment variables under 199
using the TITLE option of the OPEN statement 199
using unassociated files 201

DD_DDNAME environment variable 198
default identification 198
establishing a path 201
establishing characteristics

DD_DDNAME environment variable 202
extending on output 202
maximum number of regions 205
number of regions 205

data set under z/OS UNIX (continued)
recreating output 202

data sets
allocating files 193
associating data sets with files 194
closing 213
defining data sets under OS/390 195

data-directed I/O
coding for performance 313

date/time built-in functions
patterns 316

DBCS 117
DBCS compiler option 18
DBCS identifier compilation 39
DBRMLIB compiler option 19
DCB subparameter

equivalent ENVIRONMENT options 217
main discussion of 211
overriding in cataloged procedure 157
regional data set 270

DD (data definition) information under z/OS UNIX 199
DD compiler option 19
DD information under z/OS

UNIX
TITLE statement 199

DD statement
%INCLUDE 102
add to cataloged procedure 157
cataloged procedure, modifying 157
checkpoint/restart 455
create a library 226
modifying cataloged procedure 156
OS/390 batch compile 162
regional data set 269
standard data set

input (SYSIN) 163
output (SYSLIN, SYSPUNCH) 163

DD Statement
modify cataloged procedure 157

DD_DDNAME environment variables
alternate ddname under z/OS UNIX 200
APPEND 202
DELAY 204
DELIMIT 204
LRECL 204
LRMSKIP 204
PROMPT 204
PUTPAGE 204
RECCOUNT 205
RECSIZE 205
SAMELINE 205
SKIP0 206
specifying characteristics under z/OS UNIX
202
TYPE 206

ddname
%INCLUDE 102
standard data sets 162

DDSQL compiler option 20
deblocking of records 208
declaration

of files under OS/390 193, 194
declaring

host variables, SQL preprocessor 131

Index 519

DECOMP 23
DECOMP compiler option 23
DEFAULT compiler option

description and syntax 24
suboptions

ALIGNED 25
ASCII or EBCDIC 25
ASSIGNABLE or NONASSIGNABLE 25
BIN1ARG or NOBIN1ARG 25
BYADDR or BYVALUE 26
CONNECTED or NONCONNECTED 26
DESCLIST or DESCLOCATOR 26
DESCRIPTOR or NODESCRIPTOR 26
DUMMY 27
E 27
EVENDEC or NOEVENDEC 27
HEXADEC 27
IBM or ANS 25
INITFILL or NOINITFILL 27
INLINE or NOINLINE 28
LAXQUAL or NOLAXQUAL 28
LINKAGE 28
LOWERINC | UPPERINC 28
NATIVE or NONNATIVE 29
NATIVEADDR or NONNATIVEADDR 29
NULLINIT 29
NULLSTRADDR or NONULLSTRADDR 29
NULLSTRPTR 30
NULLSYS or NULL370 29
ORDER or REORDER 30
ORDINAL(MIN | MAX) 30
OVERLAP | NOOVERLAP 30
PADDING or NOPADDING 30
PSEUDODUMMY or NOPSEUDODUMMY 30
RECURSIVE or NONRECURSIVE 31
RETCODE 31
RETURNS 31
SHORT 31

deferred restart 457
define data set

associating several data sets with one file 196
associating several files with one data set 196
closing a file 213
concatenating several data sets 197
ENVIRONMENT attribute 214
ESDS 283
opening a file

system-determined block size 213
specifying characteristics 214

define file
associating several files with one data set 196
closing a file 213
concatenating several data sets 197
ENVIRONMENT attribute 214
opening a file

system-determined block size 213
regional data set

ENV options 263
keys 264

specifying characteristics 214
VSAM data set 277

define file under OS/390
associating several data sets with one file 196

DEFINED

DEFINED (continued)
versus UNION 317

DELAY option under z/OS
UNIX

description 204
DELIMIT option under z/OS

UNIX
description 204

DEPRECATE 117
DEPRECATE compiler option 32
DEPRECATENEXT 118
DEPRECATENEXT compiler option 33
DESCLIST compiler suboption 26
DESCLOCATOR compiler suboption 26
descriptor 467
descriptor area, SQL 128
DESCRIPTOR compiler option

effect on performance 311
DESCRIPTOR compiler suboption

description 26
descriptor list, argument passing 467
descriptor-locator, argument passing 468
DFSORT 323
direct data sets 210
DIRECT file

indexed ESDS with VSAM
accessing data set 288
updating data set 290

RRDS
access data set 301

DISP parameter
consecutive data sets 256
to delete a data set 225

DISPLAY compiler option 33
DLL

linking considerations and side-decks 167, 179
RENT compiler option and fetching 173

DLL compiler option 34
DLLINIT compiler option 34
DSA

saved in PLIDUMP built-in subroutine for each block 445
DSCB (data set control block) 211, 226
DSNAME parameter

for consecutive data sets 256
DSORG subparameter 211
DUMMY compiler suboption 27
dummy records

REGIONAL(1) data set 264
VSAM 275

dump
calling PLIDUMP 443
defining data set for

DD statement 444
logical record length 444

identifying beginning of 444
PLIDUMP built-in subroutine 443
producing z/OS Language Environment dump
443
SNAP 444

DYNALLOC sort option 327

E
E compiler message 109

520 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

E compiler suboption 27
E15 input handling routine 333
E35 output handling routine 335
EBCDIC

compiler suboption 25
EBCDIC (Extended Binary Coded Decimal Interchange Code)
208
embedded

CICS statements 143
SQL statements 129

ENDFILE
under OS/390 171

Enterprise PL/I library
Enterprise PL/I for z/OS library
xxvii
Language Environment library xxviii

entry-sequenced data set
defining 283
VSAM

loading an ESDS 282
SEQUENTIAL file 282
statements and options 281

ENVIRONMENT attribute
list 214
specifying characteristics under z/OS

UNIX
BUFSIZE 203

ENVIRONMENT options
BLKSIZE option

comparison with DCB subparameter 216
CONSECUTIVE 233, 251
CTLASA and CTL360

comparison with DCB subparameter 216
equivalent DCB subparameters 217
GRAPHIC option 234
KEYLENGTH option

comparison with DCB subparameter 216
LEAVE and REREAD 253
organization options 216
record format options 233
RECSIZE option

comparison with DCB subparameter 216
record format 234
usage 233

regional data set 263
VSAM

BKWD option 278
BUFND option 278
BUFNI option 279
BUFSP option 279
GENKEY option 279
PASSWORD option 279
REUSE option 279
SKIP option 280
VSAM option 280

environment variables
setting under z/OS UNIX
223

EOLCOMM 118
EQUALS sort option 327
error

severity of error compilation 16
error devices

redirecting 224

ESDS (entry-sequenced data set)
defining 283
nonunique key alternate index path 291
unique key alternate index path 291
VSAM

loading 282
statements and options 281

EVENDEC compiler suboption 27
examples

calling PLIDUMP 443
EXEC SQL statements 121
EXEC statement

cataloged procedure, modifying 156
compiler 161
introduction 161
maximum length of option list 165
minimum region size 161
modify cataloged procedure 156
OS/390 batch compile 159, 161
PARM parameter 165
to specify options 165

Exit (E15) input handling routine 333
Exit (E35) output handling routine 335
EXIT compiler option 34
export command 202
EXPORTALL 34
EXPORTALL compiler option 34
extended binary coded decimal interchange code (EBCDIC)
208
EXTERNAL attribute 105
external references

concatenating names 195
EXTRN compiler option 35

F
F option of ENVIRONMENT

for record I/O 217
for stream I/O 232,
233

F-format records 208
FB option of ENVIRONMENT

for record I/O 217
for stream I/O 232, 233

FB-format records 208
FBS option of ENVIRONMENT

for record I/O 217
for stream I/O 232

FETCH
assembler routines 176, 181
Enterprise PL/I routines 172, 180
OS/390 C routines 176
PL/I MAIN Routines 175, 180

field for sorting 326
file

allocating files 193
associating data sets with files 194
closing 213
defining data sets under OS/390 195
establishing characteristics 207

FILE attribute 105
file records, SYSADATA 476
FILEREF compiler option 35
filespec 202

Index 521

FILLERS, for tab control table 241
FILSZ sort option 327
filtering messages 461
FIXED

TYPE option under z/OS UNIX
207

fixed-length records 208
FLAG compiler option 35
flags, specifying compile-time options 161
FLOAT option 36
FLOATINMATH compiler option 37
flowchart for sort 334
format notation, rules for xxix
forward slash (/) 200
FS option of ENVIRONMENT

for record I/O 217
for stream I/O 232

FUNC subparameter
usage 211

Functions
using C functions with ILC 345

G
GENKEY option

key classification 220
usage 214
VSAM 278

GET DATA statement 170
GET EDIT statement 171
GET LIST statement 170
global control blocks

writing the initialization procedure 463
writing the message filtering procedure 463
writing the termination procedure 465

GOFF compiler option 38
GONUMBER compiler option

definition 38
GOTO statements 314
graphic data 231
GRAPHIC option

compiler 39
of ENVIRONMENT 214, 234
stream I/O 232

graphic string constant compilation 39

H
handling routines

data for sort
input (sort exit E15) 333
output (sort exit E35) 335
PLISRTB 338
PLISRTC 339
PLISRTD 340
to determine success 331
variable length records 341

HEADER 39
HEADER compiler option 39
header label 210
HEXADEC compiler suboption 27
hook

location suboptions 89

host
structures 137
variables, using in SQL statements 130, 131

I
I compiler message 109
IBM compiler suboption 25
IBMQC cataloged procedure 151
IBMQCB cataloged procedure 152
IBMQCBG cataloged procedure 153
IBMUEXIT compiler exit 461
IBMZC cataloged procedure 148
IBMZCB cataloged procedure 149
IBMZCBG cataloged procedure 150
ID 118
identifiers

not referenced 11
source program 11

IEC225I 212, 269
IGNORE 119
IGNORE option 40
ILC

linkage considerations 351
with C

data types 343
Enum data type 345
File type 345
Functions returning ENTRYs 349
parameter matching 346
Redirecting C standard streams 353
sharing input 353
sharing output 352
string parameter type matching 348
structure data type 344
Using the ATTACH statement 353

improving application performance 307
INCAFTER compiler option 40
INCDIR compiler option 40
INCLUDE compiler option 41
include preprocessor

syntax 115
INCLUDE statement

compiler 102
INCONLY 119
INDEXAREA option 214
indexed data sets

indexed sequential data set 210
indexed ESDS (entry-sequenced data set)

DIRECT file 288
loading 286
SEQUENTIAL file 287

indicator variables, SQL 137
information interchange codes 208
INITFILL compiler suboption 27
initial volume label 210
initialization procedure of compiler user exit 463
INLINE compiler suboption 28
input

data for PLISRTA 336
data for sort 333
defining data sets for stream files 231
redirecting 224
routines for sort program 333

522 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

input (continued)
SEQUENTIAL 254
skeletal code for sort 336
sort data set 332

input/output
compiler

data sets 163
data for compile and bind 149, 152
in cataloged procedures 148, 151
OS/390, punctuating long lines 170
skeletal code for sort 334
sort data set 332

INSOURCE option 43
Inter Language Communication

linkage considerations 351
Redirecting C standard streams 353
Using the ATTACH statement 353
with C

data types 343
Enum data type 345
File type 345
Functions returning ENTRYs 349
parameter matching 346
sharing input 353
sharing output 352
string parameter type matching 348
structure data type 344
using C functions 345

interactive program
attention interrupt 44

interblock gap (IBG) 208
interchange codes 208
INTERNAL attribute 105
INTERRUPT compiler option 44
interrupts

attention interrupts under interactive system 44
ATTENTION ON-units 454
debugging tool 454
main description 453

invoking
cataloged procedure

link-editing multitasking programs 156
multiple invocations 155

J
Java 356, 357, 359–361, 363–365, 367–369, 372, 373
JAVA 355
Java code, compiling 357, 361, 365, 368
Java code, writing 356, 360, 364, 368
JCL (job control language)

improving efficiency 147
using during compilation 161

jni
JNI sample program 356, 360, 364, 368

K
key indexed VSAM data set 274
key-sequenced data sets

accessing with a DIRECT file 288
accessing with a SEQUENTIAL file 287
loading 286

key-sequenced data sets (continued)
statements and options for 284

KEYLEN subparameter 211
KEYLENGTH option 214, 221
KEYLOC option

usage 214
keys

alternate index
nonunique 291
unique 290

REGIONAL(1) data set
dummy records 264

VSAM
indexed data set 274
relative byte address 274
relative record number 275

KEYTO option
under VSAM 282

KSDS (key-sequenced data set)
define and load 286
unique key alternate index path 292
updating 288
VSAM

DIRECT file 288
loading 286
SEQUENTIAL file 287

KSDS with VSAM
indexed ESDS with VSAM

access data set 287
accessing data set 288
updating data set 290

L
label

for data sets 210
LANGLVL compiler option 46
Language Environment library xxviii
LAXQUAL compiler suboption 28
LEAVE and REREAD options

ENVIRONMENT option
for consecutive data sets 253

length of record
specifying under z/OS UNIX
205

library
compiled object modules 228
creating a data set library 226
creating and updating a library member 226
directory 226
extracting information from a library directory 229
general description of 210
how to use 225
information required to create 226
placing a load module 228
source statement 164
source statement library 159
SPACE parameter 226
structure 229
system procedure (SYS1.PROCLIB) 225
types of 225
using 225

LIMCT subparameter 211, 270
LIMITS compiler option 47

Index 523

line
length 240
numbers in messages 38

line feed (LF)
definition 207

LINE option 233, 240
LINECOUNT compiler option 48
LINEDIR compiler option 48
LINESIZE option

for tab control table 241
OPEN statement 233

link-editing
description of 167, 179

LINKAGE compiler suboption
effect on performance 312
syntax 28

linkage considerations with ILC 351
LIST compiler option 49
listing

cataloged procedure 155
compiler

aggregate length table 105
ATTRIBUTE and cross-reference table 104
ddname list 3
file reference table 109
heading information 103
messages 109
options 104
preprocessor input 104
return codes 110
SOURCE option program 104
statement nesting level 104
statement offset addresses 106
storage offset listing 108

OS/390 batch compile 159, 164
source program 85
statement offset address 106
storage offset listing 108
SYSPRINT 164

LISTVIEW compiler option 49
literal records, SYSADATA 476
logical not 58
logical or 61
loops

control variables 314
LOWERINC compiler suboption 28
LP 50
LP compiler option 50
LRECL option under z/OS UNIX 204
LRECL subparameter 208, 211
LRMSKIP option under z/OS UNIX 204

M
MACRO option 50
macro preprocessor

macro definition 116
Macro preprocessor options

CASE option 117
DBCS option 117
DEPRECATE option 117
DEPRECATENEXT option 118
EOLCOMM option 118
FIXED option 118

Macro preprocessor options (continued)
ID option 118
IGNORE option 119
INCONLY option 119
NAMEPREFIX option 119
RESCAN option 120

main storage for sort 328
MAP compiler option 51
MARGINI compiler option 51
MARGINS compiler option 51
mass sequential insert 290
MAXBRANCH compiler option 52
MAXGEN compiler option 53
MAXINIT compiler option 52
MAXMEM compiler option 53
MAXMSG compiler option 54
MAXRUNONIF compiler option 55
MAXSTATIC compiler option 55
MAXSTMT compiler option 55
MAXTEMP compiler option 55
MDECK compiler option

description 56
message

compiler list 109
printed format 242
runtime message line numbers 38

message records, SYSADATA 476
messages

filter function 463
modifying in compiler user exit 461

mixed string constant compilation 39
MODE subparameter

usage 211
module

create and store object module 58
MSGSUMMARY compiler option 56
multiple

invocations
cataloged procedure 155

N
NAME compiler option 57
named constants

defining 317
versus static variables 317

NAMEPREFIX 119
NAMES compiler option 57
NATIVE compiler suboption

description 29
NATIVEADDR compiler suboption 29
NATLANG compiler option 57
negative value

block-size 219
record length 218

NEST option 58
NOBIN1ARG compiler suboption 25
NODESCRIPTOR compiler suboption 26
NOEQUALS sort option 327
NOEVENDEC compiler suboption 27
NOIGNORE 119
NOINITFILL compiler suboption 27
NOINLINE compiler suboption 28
NOINTERRUPT compiler option 44

524 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

NOLAXQUAL compiler suboption 28
NOMAP option 105
NOMARGINS compiler option 51
NONASSIGNABLE compiler suboption 25
NONCONNECTED compiler suboption 26
NONE, hooks location suboption 89
NONNATIVE compiler suboption 29
NONNATIVEADDR compiler suboption 29
NONRECURSIVE compiler suboption 31
NONULLSTRADDR compiler suboption 29
NOOVERLAP compiler suboption

effect on performance 312
NOPADDING compiler suboption 30
NOPSEUDODUMMY compiler suboption 30
NOSYNTAX compiler option 87
NOT compiler option 58
note statement 109
NTM subparameter

usage 211
NULL370 compiler suboption 29
NULLDATE 58
NULLDATE compiler option 58
NULLINIT compiler suboption 29
NULLSTRADDR compiler suboption 29
NULLSTRPTR compiler suboption 30
NULLSYS compiler suboption 29

O
object

module
create and store 58
record size 163

OBJECT compiler option
definition 58

offset
of tab count 241
table 106

OFFSET compiler option 59
OFFSETSIZE compiler option 59
ONSNAP compiler option 59
OPEN statement

subroutines of PL/I library 212
TITLE option 212, 224

Operating system
data definition (DD) information under z/OS UNIX
199

OPTCD subparameter 211
optimal coding

coding style 313
compiler options 307

OPTIMIZE compiler option 307
OPTIMIZE option 60
options

for compiling 104
for creating regional data set 261
saved options string in PLIDUMP 451
specifying comments within 99
specifying strings within 99
to specify for compilation 165

OPTIONS option 61
options record, SYSADATA 475
options under z/OS UNIX

DD_DDNAME environment variables

options under z/OS UNIX (continued)
DD_DDNAME environment variables (continued)

APPEND 202
DELAY 204
DELIMIT 204
LRECL 204
LRMSKIP 204
PROMPT 204
PUTPAGE 204
RECCOUNT 205
RECSIZE 205
SAMELINE 205
SKIP0 206
TYPE 206

PL/I ENVIRONMENT attribute
BUFSIZE 203

using
DD information 199
TITLE 199

OR compiler option 61
ORDER compiler suboption

description 30
effect on performance 312

ORDINAL compiler suboption 30
ordinal element records, SYSADATA 478
ordinal type records, SYSADATA 477
ORGANIZATION option

usage 214
OS/390

batch compilation
DD statement 162
EXEC statement 161, 165
listing (SYSPRINT) 164
source statement library (SYSLIB) 164
specifying options 165
temporary workfile (SYSUT1) 163

general compilation 159
long input lines 170

output
data for PLISRTA 336
data for sort 333
defining data sets for stream files 231
limit preprocessor output 56
redirecting 224
routines for sort program 333
SEQUENTIAL 254
skeletal code for sort 336
sort data set 332
SYSLIN 163
SYSPUNCH 163

OVERLAP compiler suboption 30

P
PACKAGEs versus nested PROCEDUREs 315
PADDING compiler suboption 30
PAGE option 233
PAGELENGTH, for tab control table 241
PAGESIZE, for tab control table 241
parameter passing

argument passing 467
CMPAT(LE) descriptors 470
CMPAT(V*) descriptors 468

PARM parameter

Index 525

PARM parameter (continued)
for cataloged procedure 156
specify options 165

passing an argument 467
PASSWORD option 279
performance

VSAM options 280
performance improvement

coding for performance
avoiding calls to library routines 318
DATA-directed input and output 313
DEFINED versus UNION 317
GOTO statements 314
input-only parameters 314
loop control variables 314
named constants versus static variables 317
PACKAGEs versus nested PROCEDUREs 315
preloading calls to library routines 319
REDUCIBLE functions 316
string assignments 314

selecting compiler options
ARCH 307
DEFAULT 310
GONUMBER 307
OPTIMIZE 307
PREFIX 309
REDUCE 307
RULES 308

PL/I
compiler

user exit procedures 459
files

associating with a data set under z/OS UNIX
198

PL/I code, compiling 359, 363, 367, 372
PL/I code, linking 359, 363, 367, 372
PL/I code, writing 357, 361, 365, 369
PL/I dynamic allocation

access zFS files under z/OS 197
allocate data sets 193
associating data sets with files under z/OS UNIX
198
define files

QSAM files 245
REGIONAL(1) data sets 263
stream files 231
VSAM file 271

PL/I MAIN Routines
FETCHing 175, 180

PLICANC statement, and checkpoint/request 457
PLICKPT built-in subroutine 455
PLIDUMP built-in subroutine

calling to produce a z/OS Language Environment dump
443
DSA saved for each block 445
H option 444
output

locating variables in 445
program unit name in dump traceback table 445
saved load module timestamp 450
saved options string 451
syntax of 443
user-identifier 444
variables

PLIDUMP built-in subroutine (continued)
variables (continued)

locating AUTOMATIC variables in 445
locating CONTROLLED variables in 447
locating in PLIDUMP output 445
locating STATIC variables in 446

PLIREST statement 457
PLIRETC built-in subroutine

return codes for sort 332
PLISAXA 381, 382
PLISAXB 381, 382
PLISAXC 409, 410
PLISAXD 409, 410
PLISRTA interface 336
PLISRTB interface 338
PLISRTC interface 339
PLISRTD interface 340
PLITABS external structure

control section 242
declaration 168

PLIXOPT variable 167, 179
PP compiler option 62
PPCICS compiler option 62
PPINCLUDE compiler option 63
PPLIST compiler option 63
PPMACRO compiler option 63
PPSQL compiler option 64
PPTRACE compiler option 64
PRECTYPE compiler option 64
PREFIX compiler option

using default suboptions 309
preloading library routines 319
preprocessing

%INCLUDE statement 102
input 104
limit output to 80 bytes 56
source program 50
with MACRO 50

preprocessor options
CCSID0 124
CODEPAGE 125
DEPRECATE 125
EMPTYDBRM 126
HOSTCOPY 126
INCONLY 126
LINEFILE 126
LINEONLY 126
WARNDECP 127

preprocessors
available with PL/I 115
CICS options 143
include 115
macro preprocessor 116
SQL options 124
SQL preprocessor 121

print
PRINT file

format 247
line length 240
stream I/O 239

print control character 52, 239
PRINT file

formatting conventions 168
punctuating output

526 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

PRINT file (continued)
punctuating output (continued)

record I/O 256
procedure

cataloged, using under OS/390 147
compile and bind - 64-bit (IBMQCB) 152
compile and bind (IBMZCB) 149
Compile only - 64-bit (IBMQC) 151
compile only (IBMZC) 148
compile, bind, and run - 64-bit (IBMQCBG) 153
compile, bind, and run (IBMZCBG) 150

PROCEED compiler option 65
PROCESS statement

description 100
override option defaults 165

program unit name in dump traceback table 445
PROMPT option under z/OS UNIX 204
prompting

automatic, overriding 169
automatic, using 169

PRTSP subparameter
usage 211

PSEUDODUMMY compiler suboption 30
punctuation

automatic prompting
overriding 169
using 169

OS/390
automatic padding for GET EDIT 171
continuation character 170
entering ENDFILE at terminal 171
GET DATA statement 170
GET LIST statement 170
SKIP option 171

output from PRINT files 168
PUT EDIT command 247
PUTPAGE option under z/OS UNIX 204

Q
QUOTE compiler option 66

R
REAL attribute 105
RECCOUNT option under z/OS UNIX 205
RECFM subparameter

in organiza tion of data set 211
usage 211

record
checkpoint

data set 456
deblocking 208
maximum size for compiler input 163
sort program 327

record format
fixed-length records 208
options 233
stream I/O 238
to specify 250
types 208
undefined-length records 210
variable-length records 209

record I/O
data set

access 255
consecutive data sets 256
create 254
types of 222

data transmission 249
ENVIRONMENT option 250
format 217
record format 250

record length
regional data sets 261
specify 208
value of 218

RECORD statement 327
recorded key

regional data set 264
records

length under z/OS UNIX
205

RECSIZE option
consecutive data set 233
defaults 234
definition 218
description under z/OS UNIX
205
for stream I/O 232, 233

RECURSIVE compiler suboption 31
REDUCE compiler option

effect on performance 307
reduce storage requirement 60
REDUCIBLE functions 316
region

REGION parameter 156
size, EXEC statement 161

regional data sets
DD statement

accessing 270
creating 269

defining files for
regional data set 263
specifying ENVIRONMENT options 263
using keys 264

operating system requirement 269
REGIONAL(1) data set

accessing and updating 266
creating 265
using 264

REGIONAL option of ENVIRONMENT 264
REGIONAL(1) data sets

defining files for
regional data set 263

regions under z/OS UNIX 205
relative byte address (RBA) 274
relative record number 275
relative-record data sets

accessing with a DIRECT file 301
accessing with a SEQUENTIAL file 300
loading 299
statements and options for 297

RENT compiler option 67
REORDER compiler suboption

description 30
effect on performance 312

Index 527

RESCAN 120
RESEXP compiler option 68
RESPECT compiler option 68
restarting

requesting 457
RESTART parameter 457
to request

automatic after system failure 457
automatic within a program 457
deferred restart 457
to cancel 457
to modify 457

RETCODE compiler suboption 31
return code

checkpoint/restart routine 455
PLIRETC 332

return codes
in compiler listing 110

RETURNS compiler suboption 31, 313
REUSE option 214, 279
RRDS (relative record data set)

define 300
load with VSAM 299
updating 301
VSAM

DIRECT file 301
loading 299
SEQUENTIAL file 300

RTCHECK compiler option 68
RULES compiler option

effect on performance 308
run time

message line numbers 38
run-time

OS/390 considerations
automatic prompting 169
formatting conventions 168
GET EDIT statement 171
GET LIST and GET DATA statements 170
punctuating long lines 170
SKIP option 171

using PLIXOPT 167, 179

S
S compiler message 109
SAMELINE option under z/OS UNIX 205
sample program, running 359, 364, 367, 373
saved options string in PLIDUMP 451
SAX parser 381, 409
SCALARVARYING option 221
SEMANTIC compiler option 84
sequential access

REGIONAL(1) data set 266
sequential data set 210
SEQUENTIAL file

ESDS with VSAM
defining and loading 283
updating 284

indexed ESDS with VSAM
access data set 287

RRDS, access data set 300
serial number volume label 211
SERVICE compiler option 85

shift code compilation 39
SHORT compiler suboption 31
SKIP option

in stream I/O 233
under OS/390 171

SKIP0 option under z/OS UNIX 206
SKIPREC sort option 327
sorting

assessing results 331
calling sort 329
CHKPT option 327
choosing type of sort 324
CKPT option 327
data 323
data input and output 333
description of 323
DYNALLOC option 327
E15 input handling routine 333
EQUALS option 327
FILSZ option 327
maximum record length 328
PLISRT 323
PLISRTA(x) command 336, 341
preparation 323
RECORD statement 333
RETURN statement 333
SKIPREC option 327
SORTCKPT 333
SORTCNTL 333
SORTIN 332
sorting field 326
SORTLIB 332
SORTOUT 332
SORTWK 328, 332
storage

auxiliary 328
main 328

writing input/output routines
333

source
key

in REGIONAL(1) data sets 264
listing

location 51
program

compiler list 104
data set 163
identifiers 11
included in compiler list 43
list 85
preprocessor 50
shifting outside text 51

SOURCE compiler option 85
source records, SYSADATA 482
source statement library 164
SPACE parameter

library 226
standard data sets 162

specifying compile-time options
using flags under 161

SPILL compiler option 85
spill file 163
SQL preprocessor

communications area 127

528 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

SQL preprocessor (continued)
descriptor area 128
EXEC SQL statements 121
options 124
using host structures 137
using host variables 130
using IBMUEXIT with 142
using indicator variables 137

SQL preprocessor options 124–127
SQLCA 127
SQLDA 128
STACK subparameter

usage 211
standard data set 162
standard files (SYSPRINT and SYSIN) 223
statement

nesting level 104
offset addresses 106

statements 101
STATIC compiler option 85
STDSYS compiler option 86
step abend 211
STMT compiler option 86
STMT suboption of test 89
storage

blocking print files 240
library data sets 226
report in listing 86
sort program

auxiliary storage 328
main storage 328

standard data sets 162
to reduce requirement 60

STORAGE compiler option 86
stream and record files 245, 247
STREAM attribute 231
stream I/O

consecutive data sets 231
data set

access 237
create 235
record format 238

DD statement 236, 238
ENVIRONMENT options 232
file

define 231
PRINT file 239
SYSIN and SYSPRINT files 242

record formats for data transmission 217
string

graphic string constant compilation 39
string assignments 314
string descriptors

string descriptors 468, 470
STRINGOFGRAPHIC compiler option 87
structure of global control blocks

writing the initialization procedure 463
writing the message filtering procedure 463
writing the termination procedure 465

SUB control character 208
summary of changes xxxi
summary record, SYSADATA 474
symbol records, SYSADATA 479
symbol table 89

SYNTAX option 87
syntax records, SYSADATA 483
syntax, diagrams, how to read xxix
SYS1.PROCLIB (system procedure library) 225
SYSADATA information, counter records 475
SYSADATA information, file records 476
SYSADATA information, introduction 473
SYSADATA information, literal records 476
SYSADATA information, message records 476
SYSADATA information, options record 475
SYSADATA information, ordinal element records 478
SYSADATA information, ordinal type records 477
SYSADATA information, source records 482
SYSADATA information, summary record 474
SYSADATA information, symbol information 477
SYSADATA information, symbol records 479
SYSADATA information, syntax information 482
SYSADATA information, syntax records 483
SYSADATA information, token records 483
SYSCHK default 455, 456
SYSIN

sharing with C 353
SYSIN and SYSPRINT files 242
SYSLIB

%INCLUDE 102
preprocessing 164

SYSLIN 163
SYSOUT 332
SYSPARM compiler option 88
SYSPRINT

and z/OS UNIX 223
compiler listing written to 164
effect of STDSYS option on 86
required DD statement 162
shared with older PL/I 172
sharing between enclaves 171
sharing with C 352, 353
specifying on the DD option 19
using MSGFILE(SYSPRINT) 172
using with the PUT statement 242

SYSPUNCH 163
system

failure 457
restart after failure 457
SYSTEM compiler options

SYSTEM(CICS) 88
SYSTEM(IMS) 88
SYSTEM(MVS) 88
SYSTEM(OS) 88
SYSTEM(TSO) 88
type of parameter list 88

SYSUT1 compiler data set 163

T
tab control table 241
temporary workfile

SYSUT1 163
terminal

input
capital and lowercase letters 246
COPY option of GET statement 246
defining QSAM files 245
end of file 246

Index 529

terminal (continued)
input (continued)

format of data 244
stream and record files 245

output
format of PRINT file 247
output from PUT EDIT command 247
stream and record files 247

TERMINAL compiler option 89
terminating

compilation 16
termination procedure

compiler user exit 465
example of procedure-specific control block 465
syntax

global 460
specific 465

TEST compiler option
definition 89

TIME parameter 156
TIMESTAMP

saved load module timestamp in PLIDUMP 450
TITLE option

associating standard SYSPRINT file 172
description under z/OS UNIX 199
using 212, 224

TITLE option under OS/390
specifying character string value 195

TITLE option under z/OS UNIX
using files not associated with data sets 201

token records, SYSADATA 483
traceback table

program unit name in 445
trailer label 210
TYPE option under z/OS UNIX 206

U
U compiler message 109
U option of ENVIRONMENT

for record I/O 217
for stream I/O 232,
233

U-format 210
undefined-length records 210
UNDEFINEDFILE condition

BLKSIZE error 219
line size conflict in OPEN 240
raising when opening a file under z/OS UNIX
207

UNDEFINEDFILE condition under OS/390
DD statement error 195

UNDEFINEDFILE condition under z/OS UNIX
using files not associated with data sets 207

UNIT parameter
consecutive data sets 256

unreferenced identifiers 11
UNROLL compiler option 92
updating

ESDS 284
REGIONAL(1) data set 267
relative-record data set 301

UPPERINC compiler suboption 28
USAGE compiler option 93

user exit
compiler 459
customizing

modifying SYSUEXIT 461
structure of global control blocks 460
writing your own compiler exit 462

functions 459
sort 325

using
arrays as host variable, SQL preprocessor 130

using host variables, SQL preprocessor 130

V
V option of ENVIRONMENT

for record I/O 217
for stream I/O 232,
233

variable-length records
format 209
sort program 341

VB option of ENVIRONMENT
for record I/O 217
for stream I/O 232, 233

VB-format records 209
VBS option of ENVIRONMENT

for stream I/O 232
VOLUME parameter

consecutive data sets 256
volume serial number

direct access volumes 211
regional data sets 269

VS option of ENVIRONMENT
for stream I/O 232

VSAM (virtual storage access method)
data sets

alternate index paths 280
alternate indexes 290
blocking 272
choosing a type 275
defining 271, 281
defining files for 277
dummy data set 275
entry-sequenced 281
key-sequenced and indexed entry-sequenced 284
keys for 274
organization 272
performance options 280
relative record 297
running a program with 271
specifying ENVIRONMENT options 278
using 271

defining files
ENV option 278
performance option 280

indexed data set
load statement and options 284

mass sequential insert 290
relative-record data set 299
VSAM option 280

VTOC 211

530 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

W
W compiler message 109
WIDECHAR compiler option 94
WINDOW compiler option 94
work data sets for sort 332
WRITABLE compiler option 95

X
XINFO compiler option 96
XML

support in the SAX parser 381, 409
XML compiler option 45, 98
XREF compiler option 99

Z
z/OS UNIX

compile-time options
specifying 160

compiling under 159
DD_DDNAME environment variable 202
export command 202
setting environment variables 223
specifying compile-time options

command line 160
using flags 161

zero value 218

Index 531

532 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Programming Guide

IBM®

Product Number: 5655-PL6

GI13-5620-00

	Contents
	Tables
	Figures
	Enterprise PL/I for z/OS Programming Guide
	First Edition (May 2022)

	Introduction
	About this document
	Runtime environment for Enterprise PL/I for z/OS
	Using your documentation
	Notation conventions used in this document
	Conventions used
	How to read the syntax notation
	How to read the notational symbols

	Summary of changes
	Enhancements in this release
	Enhancements from V5R3
	Enhancements from V5R2
	Enhancements from V5R1
	Enhancements from V4R5
	Enhancements from V4R4
	Enhancements from V4R3
	Enhancements from V4R2
	Enhancements from V4R1
	Enhancements from V3R9
	Enhancements from V3R8
	Enhancements from V3R7
	Enhancements from V3R6
	Enhancements from V3R5
	Enhancements from V3R4
	Enhancements from V3R3
	Enhancements from V3R2
	Enhancements from V3R1
	Enhancements from VisualAge PL/I

	How to send your comments
	Accessibility

	Part 1. Compiling your program
	Chapter 1. Using compiler options and facilities
	Compile-time option descriptions
	AGGREGATE
	ARCH
	ASSERT
	ATTRIBUTES
	BACKREG
	BIFPREC
	BLANK
	BLKOFF
	BRACKETS
	CASE
	CASERULES
	CHECK
	CMPAT
	CODEPAGE
	COMMON
	COMPILE
	COPYRIGHT
	CSECT
	CSECTCUT
	CURRENCY
	DBCS
	DBRMLIB
	DD
	DDSQL
	DECIMAL
	DECOMP
	DEFAULT
	DEPRECATE
	DEPRECATENEXT
	DISPLAY
	DLL
	DLLINIT
	EXIT
	EXPORTALL
	EXTRN
	FILEREF
	FLAG
	FLOAT
	FLOATINMATH
	GOFF
	GONUMBER
	GRAPHIC
	HEADER
	HGPR
	IGNORE
	INCAFTER
	INCDIR
	INCLUDE
	INCPDS
	INITAUTO
	INITBASED
	INITCTL
	INITSTATIC
	INSOURCE
	INTERRUPT
	JSON
	LANGLVL
	LIMITS
	LINECOUNT
	LINEDIR
	LIST
	LISTVIEW
	LP
	MACRO
	MAP
	MARGINI
	MARGINS
	MAXBRANCH
	MAXINIT
	MAXGEN
	MAXMEM
	MAXMSG
	MAXNEST
	MAXRUNONIF
	MAXSTATIC
	MAXSTMT
	MAXTEMP
	MDECK
	MSGSUMMARY
	NAME
	NAMES
	NATLANG
	NEST
	NOT
	NULLDATE
	OBJECT
	OFFSET
	OFFSETSIZE
	ONSNAP
	OPTIMIZE
	OPTIONS
	OR
	PP
	PPCICS
	PPINCLUDE
	PPLIST
	PPMACRO
	PPSQL
	PPTRACE
	PRECTYPE
	PREFIX
	PROCEED
	PROCESS
	QUOTE
	REDUCE
	RENT
	RESEXP
	RESPECT
	RTCHECK
	RULES
	SEMANTIC
	SERVICE
	SOURCE
	SPILL
	STATIC
	STDSYS
	STMT
	STORAGE
	STRINGOFGRAPHIC
	SYNTAX
	SYSPARM
	SYSTEM
	TERMINAL
	TEST
	UNROLL
	USAGE
	WIDECHAR
	WINDOW
	WRITABLE
	XINFO
	XML
	XREF

	Blanks, comments and strings in options
	Changing the default options
	Specifying options in the %PROCESS or *PROCESS statements
	Using % statements
	Using the %INCLUDE statement
	Using the compiler listing
	Heading information
	Options used for compilation
	Preprocessor input
	SOURCE program
	Statement nesting level
	ATTRIBUTE and cross-reference table
	Attribute table
	Cross-reference table

	Aggregate length table
	Statement offset addresses
	Storage offset listing
	Expressions and attributes listing
	File reference table
	Messages and return codes
	Example

	Chapter 2. PL/I preprocessors
	Include preprocessor
	Macro preprocessor
	Macro preprocessor options
	CASE
	DBCS
	DEPRECATE
	DEPRECATENEXT
	EOLCOMM
	FIXED
	ID
	IGNORE
	INCONLY
	NAMEPREFIX
	RESCAN

	Macro preprocessor example

	SQL preprocessor
	Programming and compilation considerations
	SQL preprocessor options
	CCSID0
	CODEPAGE
	DEPRECATE
	EMPTYDBRM
	HOSTCOPY
	INCONLY
	LINEFILE
	WARNDECP
	PL/I-specific notes for SQL processor options

	Coding SQL statements in PL/I applications
	Defining the SQL communications area
	Defining SQL descriptor areas
	Embedding SQL statements
	Comments
	Continuation for SQL statements
	Including code
	Margins
	Names
	Statement labels
	WHENEVER statement

	Using host variables
	Using arrays as host variables
	Declaring host variables
	Declaring scalar host variables
	Determining equivalent SQL and PL/I data types
	Determining compatibility of SQL and PL/I data types

	Using host structures
	Using indicator variables
	Host structure example

	Manipulating LOB data
	LOB locators
	LOB file reference variables
	Example: pliclob sample program

	Suppressing SQL preprocessor messages

	CICS preprocessor
	Programming and compilation considerations
	CICS preprocessor options
	Coding CICS statements in PL/I applications
	Embedding CICS statements
	Comments
	Continuation for CICS statements
	Including code
	Margins
	Statement labels

	Writing CICS transactions in PL/I
	Error-handling

	Chapter 3. Using PL/I cataloged procedures
	IBM-supplied cataloged procedures
	Compile only (IBMZC)
	Compile and bind (IBMZCB)
	Compile, bind, and run (IBMZCBG)
	Compile only - 64-bit (IBMQC)
	Compile and bind - 64-bit (IBMQCB)
	Compile, bind, and run - 64-bit (IBMQCBG)

	Invoking a cataloged procedure
	Specifying multiple cataloged procedure invocations
	Modifying the PL/I cataloged procedures
	EXEC statement
	DD statement

	Chapter 4. Compiling your program
	Invoking the compiler under z/OS UNIX
	Input files
	Specifying compile-time options under z/OS UNIX
	-qoption_keyword
	Single and multiletter flags

	Invoking the compiler under z/OS using JCL
	EXEC statement
	DD statements for the standard data sets
	Input (SYSIN)
	Output (SYSLIN, SYSPUNCH)
	Temporary workfile (SYSUT1)
	Temporary workfile (SYSUT2, SYSUT3)

	Listing (SYSPRINT)
	Source Statement Library (SYSLIB)
	Specifying options
	Specifying options in the EXEC statement
	Specifying options in the EXEC statement using an options file

	Chapter 5. Link-editing and running for 31-bit programs
	Link-edit considerations for 31-bit programs
	Using the binder in 31-bit programs
	Using the ENTRY card

	Runtime considerations for 31-bit programs
	Formatting conventions for PRINT files
	Changing the format on PRINT files for 31-bit programs
	Automatic prompting
	Overriding automatic prompting
	Punctuating long input lines
	Punctuating GET LIST and GET DATA statements
	Automatic padding for GET EDIT
	Use of SKIP for terminal input
	ENDFILE

	SYSPRINT considerations for 31-bit programs
	Using MSGFILE(SYSPRINT)

	Using FETCH in your routines in 31-bit applications
	Fetching Enterprise PL/I routines in 31-bit applications
	Fetching PL/I MAIN routines in 31-bit applications
	Fetching z/OS C routines in 31-bit applications
	Fetching assembler routines in 31-bit applications

	Invoking MAIN under TSO/E
	Invoking MAIN under z/OS UNIX

	Chapter 6. Link-editing and running for 64-bit programs
	Link-edit considerations for 64-bit programs
	Using the binder in 64-bit programs
	Using the ENTRY card in 64-bit programs

	Runtime considerations for 64-bit programs
	SYSPRINT considerations for 64-bit programs
	Using FETCH in your routines in 64-bit applications
	Fetching Enterprise PL/I routines in 64-bit applications
	Fetching PL/I MAIN routines in 64-bit applications
	Fetching assembler routines in 64-bit applications

	Invoking MAIN under TSO/E
	Invoking MAIN under z/OS UNIX

	Chapter 7. Considerations for developing 64-bit applications
	Using compiler options to build 64-bit applications
	Using attributes HANDLE and POINTER under LP(64)
	HANDLE attribute
	POINTER attribute

	Using ENTRY variables under LP(64)
	Using built-in functions under LP(64)
	Considerations for SQL programs
	Communicating with 31-bit routines

	Part 2. Using I/O facilities
	Chapter 8. Using data sets and files
	Allocating files
	Associating data sets with files under z/OS
	Associating several files with one data set
	Associating several data sets with one file
	Concatenating several data sets
	Accessing zFS files under z/OS

	Associating data sets with files under z/OS UNIX
	Using environment variables
	Using the TITLE option of the OPEN statement
	Attempting to use files not associated with data sets
	How PL/I finds data sets
	Specifying characteristics using DD_DDNAME environment variables
	APPEND
	BUFSIZE
	CHARSET for record I/O
	CHARSET for stream I/O
	DELAY
	DELIMIT
	LRECL
	LRMSKIP
	PROMPT
	PUTPAGE
	RECCOUNT
	RECSIZE
	SAMELINE
	SKIP0
	TYPE

	Establishing data set characteristics
	Blocks and records
	Information interchange codes
	Record formats
	Fixed-length records
	Variable-length records
	Undefined-length records

	Data set organization
	Labels
	Data Definition (DD) statement
	Use of the conditional subparameters
	Data set characteristics

	Using the TITLE option of the OPEN statement
	Associating PL/I files with data sets
	Opening a file
	Closing a file

	Specifying characteristics in the ENVIRONMENT attribute
	The ENVIRONMENT attribute
	Record formats for record-oriented data transmission
	Record formats for stream-oriented data transmission
	RECSIZE option
	BLKSIZE option
	Record format, BLKSIZE, and RECSIZE defaults
	GENKEY option — key classification
	SCALARVARYING option — varying-length strings
	KEYLENGTH option
	ORGANIZATION option
	Data set types used by PL/I record I/O
	Setting environment variables under z/OS UNIX
	PL/I standard files (SYSPRINT and SYSIN) under z/OS UNIX
	Redirecting standard input, output, and error devices under z/OS UNIX
	Taking advantage of LBI

	Chapter 9. Using libraries
	Types of libraries
	Using a library
	Creating a library
	SPACE parameter

	Creating and updating a library member
	Example: Creating new libraries for compiled object modules
	Example: Placing a load module in an existing library
	Example: Updating a library member

	Extracting information from a library directory

	Chapter 10. Defining and using consecutive data sets
	Using stream-oriented data transmission
	Defining files using stream I/O
	Defining stream files using PL/I dynamic allocation
	Specifying ENVIRONMENT options
	CONSECUTIVE
	Record format options
	RECSIZE
	Defaults for record format, BLKSIZE, and RECSIZE
	GRAPHIC

	Creating a data set with stream I/O
	Essential information
	Example: Creating a data set with stream-oriented data transmission
	Example: Writing graphic data to a stream file

	Accessing a data set with stream I/O
	Essential information
	Record format
	Example: Accessing a data set with stream-oriented data transmission

	Using PRINT files with stream I/O
	Controlling printed line length
	Overriding the tab control table

	Using SYSIN and SYSPRINT files for 31-bit programs
	Using SYSIN and SYSPRINT files for 64-bit programs

	Controlling input from the terminal
	Format of data
	Stream and record files
	Defining QSAM files using PL/I dynamic allocation
	Capital and lowercase letters
	End-of-file
	COPY option of GET statement

	Chapter 11. Controlling output to the terminal
	Format of PRINT files
	Stream and record files
	Output from the PUT EDIT command

	Chapter 12. Using record-oriented data transmission
	Specifying record format
	Defining files using record I/O
	Specifying ENVIRONMENT options
	CONSECUTIVE
	ORGANIZATION(CONSECUTIVE)
	CTLASA|CTL360
	LEAVE|REREAD

	Creating a data set with record I/O
	Essential information

	Accessing and updating a data set with record I/O
	Essential information
	Example of consecutive data sets

	Chapter 13. Defining and using regional data sets
	Defining REGIONAL(1) data sets using PL/I dynamic allocation
	Defining files for a regional data set
	Specifying ENVIRONMENT options
	REGIONAL

	Using keys with REGIONAL data sets

	Using REGIONAL(1) data sets
	Dummy Records
	Creating a REGIONAL(1) data set
	Accessing and updating a REGIONAL(1) data set
	Sequential access
	Direct access
	Example

	Essential information for creating and accessing regional data sets

	Chapter 14. Defining and using VSAM data sets
	Defining VSAM file using PL/I dynamic allocation
	Using VSAM data sets
	Running a program with VSAM data sets
	Pairing an alternate index path with a file

	VSAM organization
	Keys for VSAM data sets
	Keys for indexed VSAM data sets
	Relative byte addresses (RBA)
	Relative record numbers

	Choosing a data set type

	Defining files for VSAM data sets
	Specifying ENVIRONMENT options
	BKWD
	BUFND
	BUFNI
	BUFSP
	GENKEY
	PASSWORD
	REUSE
	SKIP
	VSAM

	Performance options

	Defining files for alternate index paths
	Defining VSAM data sets
	Entry-sequenced data sets
	Loading an ESDS
	Using a SEQUENTIAL file to access an ESDS
	Defining and loading an ESDS
	Updating an ESDS

	Key-sequenced and indexed entry-sequenced data sets
	Loading a KSDS or indexed ESDS
	Using a SEQUENTIAL file to access a KSDS or indexed ESDS
	Using a DIRECT file to access a KSDS or indexed ESDS
	Updating a KSDS
	Alternate indexes for KSDSs or indexed ESDSs
	Creating unique key alternate index path for ESDS
	Creating nonunique key alternate index path for ESDS
	Creating unique key alternate index path for KSDS
	Detecting nonunique alternate index keys
	Using alternate indexes with ESDSs
	Using alternate indexes with KSDSs

	Relative-record data sets
	Loading an RRDS
	Using a SEQUENTIAL file to access an RRDS
	Using a DIRECT file to access an RRDS

	Using files defined for non-VSAM data sets
	Using shared data sets

	Part 3. Improving your program
	Chapter 15. Improving performance
	Selecting compiler options for optimal performance
	OPTIMIZE
	GONUMBER
	ARCH
	REDUCE
	RULES
	IBM/ANS
	(NO)GLOBALDO
	(NO)LAXCTL

	PREFIX
	CONVERSION
	FIXEDOVERFLOW
	DEFAULT
	BYADDR or BYVALUE
	(NON)CONNECTED
	(NO)DESCRIPTOR
	(NO)INLINE
	LINKAGE
	(RE)ORDER
	NOOVERLAP
	RETURNS(BYVALUE) or RETURNS(BYADDR)

	Summary of compiler options that improve performance

	Coding for better performance
	DATA-directed input and output
	Input-only parameters
	GOTO statements
	String assignments
	Loop control variables
	PACKAGEs versus nested PROCEDUREs
	REDUCIBLE functions
	Using REPATTERN
	DESCLOCATOR or DESCLIST
	DEFINED versus UNION
	Named constants versus static variables
	Avoiding calls to library routines
	Preloading library routines

	Part 4. Using interfaces to other products
	Chapter 16. Using the Sort program
	Preparing to use Sort
	Choosing the type of Sort
	Specifying the sorting field
	Specifying the records to be sorted
	Determining storage needed for Sort

	Calling the Sort program
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Determining whether the Sort was successful
	Establishing data sets for Sort

	Sort data input and output
	Data input and output handling routines
	E15—Input handling routine (Sort Exit E15)
	E35—Output handling routine (Sort Exit E35)
	Calling PLISRTA example
	Calling PLISRTB example
	Calling PLISRTC example
	Calling PLISRTD example
	Sorting variable-length records example

	Chapter 17. ILC with C
	Equivalent data types
	Simple type equivalence
	Struct type equivalence
	Enum type equivalence
	File type equivalence

	Using C functions
	Matching simple parameter types
	Matching string parameter types
	Functions returning ENTRYs

	Linkages
	Sharing output and input
	Sharing output
	Sharing input
	Using the ATTACH statement
	Redirecting C standard streams

	Summary

	Chapter 18. Interfacing with Java
	Java Native Interface (JNI)
	Calling PL/I program from Java
	JNI sample program #1 - 'Hello World'
	Step 1: Writing the Java program
	Step 2: Compiling the Java program
	Step 3: Writing the PL/I Program
	Step 4: Compiling and linking the PL/I program
	Step 5: Running the sample program

	JNI sample program #2 - Passing a string
	Step 1: Writing the Java program
	Step 2: Compiling the Java program
	Step 3: Writing the PL/I program
	Step 4: Compiling and linking the PL/I program
	Step 5: Running the sample program

	JNI sample program #3 - Passing an integer
	Step 1: Writing the Java program
	Step 2: Compiling the Java program
	Step 3: Writing the PL/I program
	Step 4: Compiling and linking the PL/I program
	Step 5: Running the sample program

	JNI sample program #4 - Java invocation API
	Step 1: Writing the Java program
	Step 2: Compiling the Java program
	Step 3: Writing the PL/I program
	Step 4: Compiling and linking the PL/I program
	Step 5: Running the sample program

	Attaching programs to an existing Java VM
	Determining equivalent Java and PL/I data types

	Part 5. Specialized programming tasks
	Chapter 19. Mixing AMODE 31 and AMODE 64 code
	Declarations needed for calls between AMODEs
	Compiler and linker options needed for calls between AMODEs
	Restrictions on calls between AMODEs
	Improving performance in calls between AMODEs

	Chapter 20. Using the PLISAXA and PLISAXB XML parsers
	Overview
	The PLISAXA built-in subroutine
	The PLISAXB built-in subroutine
	The SAX event structure
	start_of_document
	version_information
	encoding_declaration
	standalone_declaration
	document_type_declaration
	end_of_document
	start_of_element
	attribute_name
	attribute_characters
	attribute_predefined_reference
	attribute_character_reference
	end_of_element
	start_of_CDATA_section
	end_of_CDATA_section
	content_characters
	content_predefined_reference
	content_character_reference
	processing_instruction
	comment
	unknown_attribute_reference
	unknown_content_reference
	start_of_prefix_mapping
	end_of_prefix_mapping
	exception
	Parameters to the event functions

	Coded character sets for XML documents
	Supported EBCDIC code pages
	Supported ASCII code pages
	Specifying the code page
	Specifying the encoding declaration using a number
	Specifying the encoding declaration using an alias

	Exceptions
	Example
	Continuable exception codes
	Terminating exception codes

	Chapter 21. Using the PLISAXC and PLISAXD XML parsers
	Overview
	The PLISAXC built-in subroutine
	The PLISAXD built-in subroutine
	The SAX event structure
	start_of_document
	version_information
	encoding_declaration
	standalone_declaration
	document_type_declaration
	end_of_document
	start_of_element
	attribute_name
	attribute_characters
	end_of_element
	start_of_CDATA_section
	end_of_CDATA_section
	content_characters
	processing_instruction
	comment
	namespace_declare
	end_of_input
	unresolved_reference
	exception
	Parameters to the event functions
	Differences in the events

	Coded character sets for XML documents
	Supported code pages
	Specifying the code page
	Specifying the encoding declaration using a number
	Specifying the encoding declaration using an alias

	Exceptions
	Parsing XML documents with validation
	XML schema
	Creating an OSR

	Example with a simple document
	Example of using the PLISAXC built-in subroutine
	Example of using the PLISAXD built-in subroutine

	Chapter 22. Using PLIDUMP
	PLIDUMP usage notes
	Locating variables in the PLIDUMP output
	Locating AUTOMATIC variables
	Locating STATIC variables
	Locating CONTROLLED variables
	Under NORENT WRITABLE
	Under NORENT NOWRITABLE(FWS)
	Under NORENT NOWRITABLE(PRV)

	Saved compilation data
	Copyright
	Timestamp
	Saved options string

	Chapter 23. Interrupts and attention processing
	Using ATTENTION ON-units
	Interaction with a debugging tool

	Chapter 24. Using the Checkpoint/Restart facility
	Requesting a checkpoint record
	Defining the checkpoint data set
	Requesting a restart
	Automatic restart after a system failure
	Automatic restart within a program
	Getting a deferred restart
	Modifying checkpoint/restart activity

	Chapter 25. Using user exits
	Procedures performed by the compiler user exit
	Structure of global control blocks
	The IBM-supplied compiler exit, IBMUEXIT
	Activating the compiler user exit
	Customizing the compiler user exit
	Modifying SYSUEXIT
	Writing your own compiler exit
	Writing the initialization procedure
	Writing the message filtering procedure
	Writing the termination procedure

	Example of suppressing SQL messages

	Chapter 26. PL/I descriptors
	Passing an argument
	Argument passing by descriptor list
	Argument passing by locator/descriptor

	CMPAT(V*) descriptors
	String descriptors
	Array descriptors

	CMPAT(LE) descriptors
	String descriptors
	Array descriptors

	Appendix A. SYSADATA message information
	Understanding the SYSADATA file
	Summary record
	Options record
	Counter records
	Literal records
	File records
	Message records

	Understanding SYSADATA symbol information
	Ordinal type records
	Ordinal element records
	Symbol records

	Understanding SYSADATA syntax information
	Source records
	Token records
	Syntax records

	Notices
	Trademarks

	Bibliography
	PL/I publications
	Related publications

	Glossary
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

