
Enterprise PL/I for z/OS
6.1

Compiler and Run-Time Migration Guide

IBM

GC31-5715-00



 
Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 183.

First Edition (May 2022)

This edition applies to Version 6 Release 1 of Enterprise PL/I for z/OS, 5655-PL6, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level of
the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, Department H150/090
555 Bailey Ave
San Jose, CA, 95141-1099
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

Because IBM® Enterprise PL/I for z/OS® supports the continuous delivery (CD) model and publications are updated to
document the features delivered under the CD model, it is a good idea to check for updates once every three months.
© Copyright International Business Machines Corporation 1999, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.



Contents

Tables.................................................................................................................. xi

Figures............................................................................................................... xiii

About this book....................................................................................................xv
Using your documentation......................................................................................................................... xv
How to send your comments.....................................................................................................................xvi
Accessibility.............................................................................................................................................. xvii

Part 1. Overview....................................................................................................1

Chapter 1. Do I need to recompile?.............................................................................................................3
Migration basics......................................................................................................................................3

Runtime migration - Moving to Language Environment...................................................................4
Compiler migration........................................................................................................................... 4

Migration roadmap................................................................................................................................. 4
Service support for OS PL/I and PL/I for MVS & VM..............................................................................5

Chapter 2. Introducing the new compiler and run time..............................................................................7
Product relationships - compiler, run time, Debug Tool........................................................................7
General PL/I compiler information........................................................................................................ 7
Language Environment's runtime support for other programs.............................................................7
Advantages of the new compiler and run time...................................................................................... 8
Major changes with the new compiler and run time........................................................................... 10
General conversion tasks.....................................................................................................................10

Planning your strategy.................................................................................................................... 10
Moving to the Language Environment run time............................................................................. 11
Recompiling your source with Enterprise PL/I.............................................................................. 11
Adding Enterprise PL/I programs to existing applications............................................................ 11

Part 2. Conversion Strategies............................................................................... 13

Chapter 3. Planning the move to Language Environment.........................................................................15
Preparing to move to the Language Environment runtime library...................................................... 15

Installing Language Environment...................................................................................................15
Assessing storage requirements.................................................................................................... 15
Educating your programmers about Language Environment........................................................ 16

Taking an inventory of your applications............................................................................................. 16
Vendor tools, packages, and products........................................................................................... 16
PL/I applications.............................................................................................................................17
Existing PL/I load modules.............................................................................................................17

Deciding how to phase in Language Environment...............................................................................18
Handling multilanguage conversion............................................................................................... 18
Determining how applications will have access to the library...................................................... 18

Setting up a regression testing procedure...........................................................................................21
Taking performance measurements....................................................................................................21
Cutting over to production use.............................................................................................................21

Chapter 4. Planning to move to the new compiler....................................................................................23

  iii



Preparing to move your source to the new compiler.......................................................................... 23
Installing Enterprise PL/I............................................................................................................... 23
Assessing storage requirements.................................................................................................... 23
Educating your programmers on new compiler features.............................................................. 23

Taking an inventory of your applications............................................................................................. 24
Taking an inventory of vendor tools, packages, and products...................................................... 24
Taking an inventory of PL/I applications........................................................................................24

Prioritizing your applications................................................................................................................25
Determining conversion priority..................................................................................................... 25
Setting up move/no move categories.............................................................................................25

Making application program updates.................................................................................................. 25

Part 3. Moving existing applications to Language Environment..............................29

Chapter 5. Running existing applications under Language Environment.................................................31
Invoking existing applications............................................................................................................. 31

Considerations for non-CICS applications.....................................................................................31
Considerations for CICS applications.............................................................................................32

Link-editing existing applications........................................................................................................ 32

Chapter 6. Considerations before migrating............................................................................................. 33
Differences in runtime options.............................................................................................................33

Deleted runtime options.................................................................................................................33
Replaced runtime options.............................................................................................................. 33
New runtime options...................................................................................................................... 34

Differences in condition handling........................................................................................................ 35
Timing differences.......................................................................................................................... 35
Differences in performing some fixed decimal divides with large precision.................................36
Unhandled condition differences................................................................................................... 36
IBMBXITA and IBMBEER differences.............................................................................................36
ABEND U4039 differences............................................................................................................. 36
Severity differences........................................................................................................................ 36

Differences in PLICALLA and PLICALLB support.................................................................................36
PLICALLA considerations............................................................................................................... 36
PLICALLB considerations............................................................................................................... 37

Differences in preinitialization support............................................................................................... 39
Differences in PLISRTx support........................................................................................................... 39
Differences in multitasking support.....................................................................................................39
Differences in OS PL/I shared library support.....................................................................................40
Differences in DATE/TIME built-in functions.......................................................................................40
Differences in User Return Code..........................................................................................................40
Differences in runtime messages........................................................................................................ 40
Differences in PLIDUMP....................................................................................................................... 41
Differences in storage report............................................................................................................... 42
Differences in Interlanguage Communication support....................................................................... 42
Differences in assembler support........................................................................................................43

Chapter 7. Object module and load module considerations.................................................................... 45
OS PL/I Version 1 object module and load module compatibility...................................................... 45

OS PL/I Version 1 Release 5.1........................................................................................................45
OS PL/I Version 1 Release 5...........................................................................................................46
OS PL/I Version 1 Release 3.0 - Release 4.0................................................................................. 46
OS PL/I earlier than Version 1 Release 3.0....................................................................................47

OS PL/I Version 2 object module and load module compatibility...................................................... 47
Summary of support for OS PL/I object modules and load modules................................................. 47

Chapter 8. Link-Edit considerations.......................................................................................................... 49

iv  



SCEERUN.............................................................................................................................................. 49
Symbol table considerations................................................................................................................49
NCAL linkage editor option...................................................................................................................49
ENTRY cards......................................................................................................................................... 49
Using OS PL/I math routines................................................................................................................50

Chapter 9. Subsystem considerations...................................................................................................... 51
CICS considerations............................................................................................................................. 51

Updating CICS system definition (CSD) file................................................................................... 51
Error handling................................................................................................................................. 51
Restrictions on user-written condition handlers under CICS........................................................51
Macro-level interface......................................................................................................................52
FETCHing a PL/I MAIN Procedure..................................................................................................52
STACK runtime option.....................................................................................................................52
Runtime output............................................................................................................................... 52
Abend codes used by PL/I under CICS.......................................................................................... 52

IMS considerations...............................................................................................................................53
Interfaces to IMS............................................................................................................................ 53
SYSTEM(IMS) compile-time option................................................................................................53
PLICALLA support in IMS............................................................................................................... 53
PSB language options supported................................................................................................... 53
Storage usage considerations........................................................................................................ 53
Coordinated condition handling under IMS................................................................................... 54
Performance enhancement with Library Retention (LRR)............................................................. 54

Db2 considerations.............................................................................................................................. 54

Part 4. Moving to the new compiler.......................................................................55

Chapter 10. Understanding the limitations of the new compiler............................................................. 57
Language Environment requirements..................................................................................................57
Language not supported...................................................................................................................... 57
Language restricted..............................................................................................................................57

RECORD I/O.................................................................................................................................... 57
STREAM I/O.................................................................................................................................... 58
Structure expressions.....................................................................................................................58
Array expressions........................................................................................................................... 59
DEFAULT statement........................................................................................................................ 59
Extents of automatic variables....................................................................................................... 59
Built-in functions............................................................................................................................ 59
DEFINED BIT aggregates................................................................................................................60
OPTIONS(REENTRANT)..................................................................................................................60
iSUB defining...................................................................................................................................60
LABEL arrays................................................................................................................................... 60
DBCS................................................................................................................................................60
GRAPHIC and POSITION................................................................................................................60
Macro preprocessor........................................................................................................................ 61

Options restricted.................................................................................................................................61
Options not supported......................................................................................................................... 61
Restrictions on other interfaces to the compiler.................................................................................62

Batch compilation...........................................................................................................................62
Invoking the compiler from assembler.......................................................................................... 63
Compiling under TSO...................................................................................................................... 63
Specifying INCLUDE data set names..............................................................................................63
Defining the SYSLIN data set..........................................................................................................63

Compiler time and space requirements.............................................................................................. 64
AMODE(24) restrictions....................................................................................................................... 64
EXTERNAL names restricted................................................................................................................64

  v



Listing differences................................................................................................................................ 65
Control block differences..................................................................................................................... 65
ISAM support differences.................................................................................................................... 65

Chapter 11. Understanding the new compiler's options.......................................................................... 67
Understanding the effect of default options on compatibility............................................................ 67

BACKREG(5)....................................................................................................................................67
BIFPREC(15)................................................................................................................................... 68
CMPAT(V2)...................................................................................................................................... 68
EXTRN(FULL)...................................................................................................................................69
LIMITS(EXTNAME(7))..................................................................................................................... 69
NORENT and WRITABLE.................................................................................................................69
SYSTEM........................................................................................................................................... 70

Choosing nondefault options for even more compatibility................................................................. 70
COMMON.........................................................................................................................................70
DFT(NOBIN1ARG)...........................................................................................................................70
DEFAULT(LINKAGE(SYSTEM))........................................................................................................ 70
DFT(OVERLAP)................................................................................................................................71
NOREDUCE......................................................................................................................................71
NORESEXP...................................................................................................................................... 71
RULES(LAXCTL)...............................................................................................................................71
RULES(NOLAXINOUT NOLAXSEMI)............................................................................................... 71
NOWRITABLE..................................................................................................................................72

Choosing options for improved performance...................................................................................... 72
ARCH............................................................................................................................................... 72
BIFPREC(31)................................................................................................................................... 73
DEFAULT(NONASGN)......................................................................................................................73
DEFAULT(CONNECTED).................................................................................................................. 73
DEFAULT(REORDER)....................................................................................................................... 73
DEFAULT(NOOVERLAP).................................................................................................................. 73
OPTIMIZE(2)................................................................................................................................... 74
REDUCE...........................................................................................................................................74
NORENT.......................................................................................................................................... 75
RULES(NOLAXCTL)..........................................................................................................................75

Choosing options for better quality..................................................................................................... 76
RULES(NOLAXDCL)......................................................................................................................... 76
RULES(NOLAXIF)............................................................................................................................ 76
RULES(NOLAXLINK)....................................................................................................................... 77
RULES(NOLAXMARGINS)............................................................................................................... 77
RULES(LAXSTRZ)............................................................................................................................ 77
RULES(NOMULTICLOSE).................................................................................................................78

Choosing options for test..................................................................................................................... 78
CHECK(STORAGE)...........................................................................................................................78
GONUMBER.....................................................................................................................................78
PREFIX............................................................................................................................................ 78
TEST................................................................................................................................................ 79

Chapter 12. Understanding the new compiler's messages......................................................................81
IBM1044: one-byte FIXED BIN........................................................................................................... 81
IBM1053: scaled FIXED BIN evaluation............................................................................................. 81
IBM1065: imprecise float constants................................................................................................... 81
IBM1091: FIXED BIN precision warning............................................................................................. 81
IBM1099: mixed FIXED....................................................................................................................... 82
IBM1181: miscoded DO loops.............................................................................................................83
IBM1206: misuse of BIT operators..................................................................................................... 83
IBM1208: incompletely initialized arrays............................................................................................84
IBM1215: incomplete declares........................................................................................................... 84
IBM1216: incorrect structure declares............................................................................................... 84

vi  



IBM1220: pointless comparisons........................................................................................................85
IBM1927: SIZE condition.....................................................................................................................86
IBM1948: restricted expression evaluation........................................................................................ 86
IBM2063: invalid ALLOCATE................................................................................................................86
IBM2402: storage overlay....................................................................................................................86
IBM2409: RETURN; in a function........................................................................................................ 87
IBM2410: No RETURN in a function.................................................................................................... 87
IBM2412: missing RETURNS option....................................................................................................87
IBM2421: CLOSE in ENDFILE.............................................................................................................. 87
IBM2610: precision interpretation...................................................................................................... 88
IBM2611, IBM2612: duplicate whens................................................................................................ 88
IBM2617: passing labels out of PL/I................................................................................................... 88
IBM2621: missing ON ERROR SYSTEM............................................................................................... 89
IBM2622: warning on poorly coded DO loops.................................................................................... 89
IBM2626: SUBSTR with a zero length................................................................................................. 89
IBM2628: large BYVLAUE parameters................................................................................................ 90
IBM2801: introduction of scaled FIXED BIN...................................................................................... 90
IBM2804: suboptimal compares......................................................................................................... 90
IBM2810: conversion of scaled FIXED BIN........................................................................................ 91
IBM2811: use of PICTURE as DO control variables............................................................................91
IBM2812: poor TRANSLATE and VERIFY............................................................................................ 91
PLIXOPT messages.............................................................................................................................. 91
Using the compiler user exit................................................................................................................ 92

Chapter 13. Understanding when working code must be changed......................................................... 93
Incorrect code...................................................................................................................................... 93

Relying on the order of declarations.............................................................................................. 93
Using invalid FIXED DECIMAL data................................................................................................ 93
Using invalid SUBSTR references................................................................................................... 94
Using dissimilar EXTERNAL declares............................................................................................. 94
Using an incorrect PLITABS declare...............................................................................................94

Initializing variables............................................................................................................................. 94
Initializing AUTOMATIC.................................................................................................................. 94
Initializing BASED........................................................................................................................... 95
Initializing CONTROLLED................................................................................................................ 95
Initializing STATIC...........................................................................................................................95

Retaining unused declarations............................................................................................................ 96
Retaining unused INTERNAL STATIC............................................................................................. 96

Incorrect code that will now raise exceptions.....................................................................................96
FIXEDOVERFLOW when SIZE is disabled...................................................................................... 96
Invalid allocations...........................................................................................................................97

Incorrect code that will now loop endlessly........................................................................................98
Even precision PICTURE loop control variables............................................................................ 98

Assignments that will produce different results................................................................................. 99
Source-target overlap..................................................................................................................... 99
Float-to-float assignments...........................................................................................................100

Other statements that will produce different results....................................................................... 101
STREAM I/O with unprintable characters.................................................................................... 101
Uninitialized EXTERNAL STATIC...................................................................................................101
Incompletely declared FILEs....................................................................................................... 102
Dummy arguments and alignment...............................................................................................102
Dummy arguments and CONTROLLED.........................................................................................102
Pointer arithmetic......................................................................................................................... 103

Code that will not perform as well.....................................................................................................103
FIXED DEC as a loop control........................................................................................................ 103
FIXED BIN(15) as a loop control..................................................................................................103
I/O using TOTAL............................................................................................................................ 103

  vii



Chapter 14. Understanding when working code may need to be changed........................................... 105
Code that will now raise an exception...............................................................................................105

ZERODIVIDE and OVERFLOW promoted to ERROR.................................................................... 105
Conditions raised when disabled................................................................................................. 105
Invalid RETURNs...........................................................................................................................106
GOTO holes................................................................................................................................... 106
The scope of NOFOFL................................................................................................................... 106

Code that will no longer raise exceptions..........................................................................................107
FIXEDOVERFLOW for FIXED BIN................................................................................................. 107
CONVERSION when assigning blanks to numeric variables....................................................... 107
ERROR when mapping excessively large aggregates.................................................................. 107

Storage mapped differently............................................................................................................... 107
One-byte FIXED BIN.....................................................................................................................107

Declarations handled differently....................................................................................................... 108
AREA with INITIAL....................................................................................................................... 108

Conversions handled differently........................................................................................................109
Conversions from float to character.............................................................................................109
Conversions from scaled FIXED BINARY.....................................................................................109

Built-in functions handled differently................................................................................................110
Arithmetic built-in functions with scale factors and FIXED BIN.................................................110
String-handling built-in function for conversion of DBCS character strings............................... 110

MACRO preprocessor differences......................................................................................................111
SQL preprocessor differences........................................................................................................... 111

Chapter 15. Linking your new objects.....................................................................................................113
Prelinker and PDSE considerations................................................................................................... 113
AMODE(24) considerations................................................................................................................113
Using PLICALLA or PLICALLB entry...................................................................................................113
CHANGE cards....................................................................................................................................113

Chapter 16. Using Language Environment with the new compiler........................................................ 115
Using the right runtime options......................................................................................................... 115
Calling PL/I from assembler main programs.....................................................................................116
Understanding when your results might vary................................................................................... 116

Return codes.................................................................................................................................116
When the run time issues messages............................................................................................116
What the runtime messages say.................................................................................................. 117
Where the runtime messages go..................................................................................................117
Math built-ins................................................................................................................................117
Dumps...........................................................................................................................................118
Storage reports............................................................................................................................. 118

Chapter 17. Tuning for better CPU and storage utilization.....................................................................119
Improving CPU utilization.................................................................................................................. 119
Improving storage utilization.............................................................................................................120
Improving performance under subsystems...................................................................................... 120

Chapter 18. Adding Enterprise PL/I programs to existing PL/I applications.........................................123
Object and load module considerations............................................................................................123
Sharing SYSPRINT..............................................................................................................................124
Runtime option considerations..........................................................................................................125
Condition handling considerations.................................................................................................... 125
Partitioning PL/I source programs into units of execution............................................................... 125

Chapter 19. Migrating from earlier Enterprise PL/I to Enterprise PL/I 6.1............................................127
Migrating from Enterprise PL/I V5R3................................................................................................ 127
Migrating from Enterprise PL/I V5R2................................................................................................ 129

viii  



Migrating from Enterprise PL/I V5R1................................................................................................ 131
Migrating from Enterprise PL/I V4R5................................................................................................ 133
Migrating from Enterprise PL/I V4R4................................................................................................ 135
Migrating from Enterprise PL/I V4R3................................................................................................ 136
Migrating from Enterprise PL/I V4R2................................................................................................ 137
Migrating from Enterprise PL/I V4R1................................................................................................ 138
Migrating from Enterprise PL/I Version 3 (all releases)....................................................................140
Messages that are introduced with V6R1..........................................................................................141
Messages that are introduced with V5R3..........................................................................................142
Messages that are introduced with V5R2..........................................................................................144
Messages that are introduced with V5R1..........................................................................................145
Messages that are introduced with V4R5..........................................................................................147
Messages that are introduced with V4R4..........................................................................................148
Messages that are introduced with V4R3..........................................................................................149
Messages that are introduced with V4R2..........................................................................................150
Compiler messages that are introduced with V4R1..........................................................................152
Compiler messages that are introduced with V3R9..........................................................................153
Compiler messages that are introduced with V3R8..........................................................................154
Compiler messages that are introduced with V3R7..........................................................................154
Compiler messages that are introduced with V3R6..........................................................................155
Compiler messages that are introduced with V3R5..........................................................................155
Compiler messages that are introduced with V3R4..........................................................................156
Object compatibility........................................................................................................................... 157
Runtime changes................................................................................................................................158

Part 5.  Subsystem and other language considerations........................................161

Chapter 20. Assembler considerations for PL/I applications................................................................ 163
Considerations for assembler programs mimicking PL/I main procedures.....................................163
Calling PL/I from assembler and Language Environment conforming assembler........................... 163
Condition handling and assembler programs................................................................................... 164
Considerations for using assembler user exits................................................................................. 164

Chapter 21. CICS considerations for PL/I applications..........................................................................165
General CICS considerations............................................................................................................. 165

Updating CICS System Definition (CSD) file.................................................................................165
Macro-level interface....................................................................................................................166

Compiler options for programs that run under CICS........................................................................ 166
Linking CICS applications and runtime considerations.................................................................... 166

Error-handling...............................................................................................................................166
FETCHing a PL/I MAIN procedure................................................................................................166
Runtime output.............................................................................................................................166
Abend codes used by PL/I under CICS........................................................................................ 167

Migrating to the integrated CICS preprocessor.................................................................................167

Chapter 22. IMS considerations for PL/I applications........................................................................... 169
Interfaces to IMS............................................................................................................................... 169
SYSTEM(IMS) compile-time option................................................................................................... 169
PLICALLA support in IMS...................................................................................................................169
PSB language options supported...................................................................................................... 169
Storage usage considerations............................................................................................................170
Coordinated condition handling under IMS.......................................................................................170
Performance enhancement with Library Retention (LRR)................................................................ 170

Chapter 23. Db2 considerations for PL/I applications........................................................................... 171
General Db2 considerations.............................................................................................................. 171
Migrating to the integrated SQL preprocessor.................................................................................. 171

  ix



Programming and compilation considerations............................................................................171
FOR BIT DATA assignment notes................................................................................................. 172

Appendix A. Conversion and migration aids........................................................ 173
OS PL/I Routine Replacement Tool.........................................................................................................173
OS PL/I Version 1 Release 5.1 main load module ZAP.......................................................................... 174
OS PL/I Shared Library replacement tool............................................................................................... 174
OS PL/I Object Module Relinking Tool - APAR PN69803....................................................................... 174

ILC applications..................................................................................................................................175
PLISRTx applications......................................................................................................................... 175

EDGE Portfolio Analyzer.......................................................................................................................... 175
Vendor products...................................................................................................................................... 175

Appendix B. Compiler limit comparison.............................................................. 177

Appendix C. Batch processing sample................................................................ 181

Notices..............................................................................................................183
Programming interface information........................................................................................................184
Trademarks.............................................................................................................................................. 184

Bibliography...................................................................................................... 185
PL/I publications..................................................................................................................................... 185
Related publications................................................................................................................................185

Index................................................................................................................ 187

x  



Tables

1. How to use Enterprise PL/I publications.....................................................................................................xv

2. How to use z/OS Language Environment publications.............................................................................. xvi

3. PL/I compiler IDR values............................................................................................................................ 18

4. Specification of new DDNAMEs.................................................................................................................. 31

5. Mapping of SPIE and STAE Options to the TRAP Option............................................................................33

6. OS PL/I Version 2 Release 3 ERROR ON-Unit and message for an ERROR condition.............................. 35

7. Language Environment ERROR ON-Unit and message for an ERROR condition.......................................35

8. Differences in PLICALLB argument list support......................................................................................... 37

9. Return Code Behavior under Language Environment................................................................................ 40

10. Summary of object module and load module support by Language Environment................................. 47

11. PSB LANG options for IMS/ESA Version 4 Release 1, and later.............................................................. 53

12. PSB LANG options for IMS/ESA Version 4 Release 1, and later............................................................169

13. Language element limits.........................................................................................................................177

  xi



xii  



Figures

1. CESE Output Data Queue............................................................................................................................ 52

2. CESE Output Data Queue..........................................................................................................................167

  xiii



xiv  



About this book

This book provides information to help you to move from a pre-Language Environment runtime library to
IBM Language Environment for z/OS and to upgrade your source programs to IBM Enterprise PL/I for z/OS
Version 6 Release 1. The book suggests solutions to problems that arise because of differences in support
between previous releases of PL/I (OS PL/I, PL/I for MVS & VM, and VisualAge PL/I) and Enterprise PL/I.

Important: The information in this book discusses migration considerations for using Enterprise PL/I 6.1
and z/OS 2.2 (5650-ZOS) Language Environment or later. These two products must be installed in order to
take advantage of the migration enhancements discussed in this book. The use of Enterprise PL/I refers
to Version 6 Release 1 unless indicated otherwise. The use of Language Environment refers to z/OS 2.4
(5650-ZOS) Language Environment or later unless indicated otherwise.

This book is for system programmers, application programmers, and IBM support personnel who are
involved in PL/I product migration. You must have the following prerequisite knowledge to use this book:

• A general understanding of your operating system
• Some knowledge of the PL/I language and options
• Some knowledge of how PL/I uses Language Environment for its runtime environment

Using your documentation
The publications provided with Enterprise PL/I are designed to help you program with PL/I. The
publications provided with Language Environment are designed to help you manage your runtime
environment for applications generated with Enterprise PL/I. Each publication helps you perform a
different task.

The following tables show you how to use the publications you receive with Enterprise PL/I and Language
Environment. You will want to know information about both your compiler and runtime environment. For
the complete titles and order numbers of these and other related publications, see “Bibliography” on
page 185.

PL/I information

Table 1. How to use Enterprise PL/I publications

To… Use…

Evaluate Enterprise PL/I Data Sheet (Fact Sheet)

Understand warranty information Licensed Programming Specifications

Plan for and install Enterprise PL/I Enterprise PL/I Program Directory

Understand compiler and runtime changes and
adapt programs to Enterprise PL/I and Language
Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get details on
compiler options

Programming Guide

Get details on PL/I syntax and specifications of
language elements

Language Reference

Diagnose compiler problems and report them to
IBM

Diagnosis Guide

Get details on compile-time messages Compile-Time Messages and Codes

© Copyright IBM Corp. 1999, 2022 xv



Language Environment information

Table 2. How to use z/OS Language Environment publications

To… Use…

Evaluate Language Environment Concepts Guide

Plan for Language Environment Concepts Guide

Run-Time Migration Guide

Install Language Environment on z/OS z/OS Program Directory

Customize Language Environment on z/OS Customization

Understand Language Environment program
models and concepts

Concepts Guide

Programming Guide

Find syntax for Language Environment runtime
options and callable services

Programming Reference

Develop applications that run with Language
Environment

Programming Guide and your language
Programming Guide

Debug applications that run with Language
Environment, get details on runtime messages,
diagnose problems with Language Environment

Debugging Guide and Run-Time Messages

Develop interlanguage communication (ILC)
applications

Writing Interlanguage Applications

Migrate applications to Language Environment Run-Time Application Migration Guide and the
migration guide for each Language Environment-
enabled language

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality information.

If you have comments about this document or any other PL/I documentation, contact us in one of these
ways:

• Send an email to compinfo@cn.ibm.com

Be sure to include the name of the document, the publication number of the document, the version
of PL/I, and, if applicable, the specific location (for example, page number) of the text that you are
commenting on.

• Fill out the Readers' Comment Form at the back of this document, and return it by mail or give it to an
IBM representative. If the form has been removed, address your comments to:

International Business Machines Corporation
Reader Comments
H150/090
555 Bailey Avenue
San Jose, CA 95141-1003
USA

• Fax your comments to this U.S. number: (800)426-7773.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

How to send your comments

xvi  About this book
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Accessibility
Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully. The accessibility features in z/OS provide accessibility
for Enterprise PL/I.

Accessibility features
z/OS includes the following major accessibility features:

• Interfaces that are commonly used by screen readers and screen-magnifier software
• Keyboard-only navigation
• An accessible command-line interface through a direct attached or networked remote Windows or

Linux® system using AT and terminal emulation software
• Ability to customize display attributes such as color, contrast, and font size

z/OS uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-aria/), to ensure
compliance to US Section 508 (https://www.access-board.gov/ict/) and Web Content Accessibility
Guidelines (WCAG) 2.0 (http://www.w3.org/TR/WCAG20/). To take advantage of accessibility features,
use the latest release of your screen reader in combination with the latest web browser that is supported
by this product.

Keyboard navigation
For information about accessing AIX® interfaces, see Accessibility features for AIX in the IBM System p
and AIX Information Center at publib16.boulder.ibm.com/pseries/index.htm.

Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/OS services by using IBM Developer for z/OS.

For information about accessing these interfaces, see the following publications:

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Volume I
• IBM Developer for z/OS Documentation

These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

Interface information
The PL/I for AIXEnterprise PL/I online product documentation is available in IBM Knowledge Center,
which is viewable from a standard web browser.

PDF files have limited accessibility support. With PDF documentation, you can use optional font
enlargement, high-contrast display settings, and can navigate by keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code examples, and text that
contains the period or comma PICTURE symbols, you must set the screen reader to speak all punctuation.

Assistive technology products work with the user interfaces that are found in AIXz/OS. For specific
guidance information, see the documentation for the assistive technology product that you use to access
AIXz/OS interfaces.

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

Accessibility

About this book  xvii

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
https://www.access-board.gov/ict/
https://www.access-board.gov/ict/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.resources/aix_access.htm
http://publib16.boulder.ibm.com/pseries/index.htm
http://publib16.boulder.ibm.com/pseries/index.htm
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https://www.ibm.com/docs/en/zos/2.4.0?topic=ispf-zos-users-guide-vol-i
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TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

Accessibility
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Chapter 1. Do I need to recompile?
Ideally, programs should be compiled with IBM Enterprise PL/I for z/OS and run with the supported
runtime library (Language Environment). You can reach this ideal state gradually, by starting with a
runtime migration followed by a compiler migration. This chapter explains when and why you might want
to migrate your applications (run time or source).

Terminology clarification
When you use this book, be aware of the following terms:

Enterprise PL/I
Is a general reference to IBM Enterprise PL/I for z/OS Version 6 Release 1.

PL/I
Is a general reference to the following products:

• OS PL/I
• PL/I for MVS & VM
• VisualAge PL/I
• Enterprise PL/I

new PL/I compilers
Refers to the following compiler products:

• VisualAge PL/I
• Enterprise PL/I

old PL/I compilers
Refers to the following compiler products:

• OS PL/I V2R3 and earlier
• PL/I for MVS & VM

Important migration note
It is important to understand, from the very beginning, that the old and new PL/I compilers are completely
different from each other. The new PL/I compilers are written in PL/I, and do not make use of certain
techniques that the old PL/I compilers did. They are so different, in fact, that from the perspective of
Language Environment, they are considered different languages, each with its own signature CSECT.

In the past, migrating from an old PL/I compiler to another old PL/I compiler was not that difficult.
With the introduction of the new Enterprise PL/I compiler, the migration process might be much more
complicated than before. Migrating to the new Enterprise PL/I compiler must be a well researched,
planned, and executed project if you want to have a smooth transition.

Migration basics
The migration process involves runtime migration (moving your applications to a new runtime) and
compiler migration (compiling your source programs with the new compiler).

As part of the migration process, you will also need to do inventory assessment and testing. You are not
required to migrate your runtime and source concurrently.

For more details on the migration process, see “General conversion tasks” on page 10.

For information about performing an inventory assessment and test plan, see “Taking an inventory of your
applications” on page 16.
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Runtime migration - Moving to Language Environment
Every PL/I program requires runtime library routines to execute.

Do not make more than one PL/I runtime library available to your applications at execution time.
For example, there should be one and only one PL/I runtime library, such as SCEERUN for Language
Environment, in LNKLST. If you have more than one, you will either get hard-to-find errors or have an
unused load library in your concatenation. In addition, if you have more than one runtime library in your
concatenation, you have an invalid configuration that is not supported by IBM.

If you have not already moved to Language Environment and are using a pre-Language Environment
PL/I compiler, such as OS PL/I V2R3, you will need to read Chapter 3, “Planning the move to Language
Environment,” on page 15.

If you have already moved to Language Environment and are migrating to the new IBM Enterprise PL/I
for z/OS compiler, you can begin reading about compiler migration in Chapter 4, “Planning to move to the
new compiler,” on page 23.

Compiler migration
It is strongly recommended that you recompile all your source with the new Enterprise PL/I compiler
(unless you have already recompiled all your source with VisualAge PL/I). Because the Enterprise PL/I
compiler is a completely different compiler from the old PL/I compilers, recompiling your source might be
the best way to avoid the limitations imposed by mixing new PL/I objects and load modules with old PL/I
objects and load modules.

Compiler migration can be done all at once or by separate execution units. For information about how to
divide your PL/I source into separate execution units, see “Partitioning PL/I source programs into units of
execution” on page 125.

If you decide to mix old PL/I modules with Enterprise PL/I modules, there are limited circumstances in
which this mix will work. For details, see “Object and load module considerations” on page 123.

In a few cases, some changes to your code will be necessary when you move from OS PL/I to Enterprise
PL/I. For details, see Chapter 13, “Understanding when working code must be changed,” on page 93 and
Chapter 14, “Understanding when working code may need to be changed,” on page 105.

If you have already moved to Language Environment and are migrating to the new IBM Enterprise PL/I for
z/OS compiler, you can begin reading about migrating to the new compiler in Chapter 4, “Planning to move
to the new compiler,” on page 23.

If you are migrating to the PL/I for MVS & VM compiler, you must use the IBM PL/I for MVS & VM Compiler
and Run-Time Migration Guide.

Migration roadmap
This topic provides a short summary of migration possibilities.

Migrating from OS PL/I or from PL/I for MVS & VM
• If you are NOT currently migrated to Language Environment, you can migrate to Language Environment
first, and then migrate to Enterprise PL/I for z/OS. In this case, you can begin with Chapter 3, “Planning
the move to Language Environment,” on page 15 and then continue with Part 3, “Moving existing
applications to Language Environment,” on page 29.

• If you are migrating from OS PL/I, it is recommended that you migrate to PL/I for MVS & VM first. In this
case, you must follow the IBM PL/I for MVS & VM Compiler and Run-Time Migration Guide.

• If you have already migrated to Language Environment, you can migrate to Enterprise PL/I for z/OS. In
this case, you can begin with Chapter 2, “Introducing the new compiler and run time,” on page 7, and
then continue with Chapter 4, “Planning to move to the new compiler,” on page 23 and Part 4, “Moving
to the new compiler,” on page 55.
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Migrating from VisualAge PL/I or an earlier release of Enterprise PL/I
Review Part 4, “Moving to the new compiler,” on page 55, paying special attention to Chapter 19,
“Migrating from earlier releases of Enterprise PL/I to Enterprise PL/I 6.1,” on page 127.

For additional information concerning subsystems, see Part 5, “ Subsystem and other language
considerations,” on page 161.

Service support for OS PL/I and PL/I for MVS & VM
IBM will continue to provide service support for the execution of programs compiled with the OS PL/I
compiler when these programs use the Language Environment runtime library versions of the PL/I library
routines.

Note: The CICS TS (Transaction Server) release that follows CICS TS Version 2 Release 2 will not support
OS PL/I modules. You must move from OS PL/I to a Language Environment-enabled PL/I compiler to use
CICS after CICS TS V2R2.

For more information about this support and its restrictions, see Chapter 7, “Object module and load
module considerations,” on page 45.
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Chapter 2. Introducing the new compiler and run
time

This chapter provides an overview of the Enterprise PL/I compiler (IBM Enterprise PL/I for z/OS) and the
common run time (Language Environment) and introduces you to the terminology used throughout this
book.

Product relationships - compiler, run time, Debug Tool
IBM Enterprise PL/I for z/OS is IBM's strategic PL/I compiler for the z Systems platform. Language
Environment provides a language runtime environment. Debug Tool provides significantly improved
debugging functions.
IBM Enterprise PL/I for z/OS

Enterprise PL/I is comprised of features from OS PL/I, PL/I for MVS & VM, and VisualAge PL/I
with additional features such as Unicode support, XML parsing capabilities, improved C and Java
interoperability, integrated CICS preprocessor, and integrated SQL preprocessor.

Language Environment
Language Environment provides a single language runtime environment for COBOL, PL/I, C, and
FORTRAN. In addition to support for existing applications, Language Environment also provides
common condition handling, improved interlanguage communication (ILC), reusable libraries, and
more efficient application development of interlanguage applications. Application development is
simplified by the use of common conventions, common runtime facilities, and a set of shared callable
services. Language Environment is required to run Enterprise PL/I programs.

Debug Tool
You can use Debug Tool to debug Enterprise PL/I programs and other Language Environment-
conforming language programs including COBOL and C/C++. Debug Tool provides significantly
improved debugging functions over previous PL/I debugging tools.

General PL/I compiler information
You must have access to Language Environment when you compile your Enterprise PL/I application. When
you compile your application and you use existing JCL, ensure that your STEPLIB or JOBLIB statement
includes SCEERUN (the Language Environment runtime library), or that SCEERUN is in LNKLST.

You can use the IBMZC cataloged procedure to compile PL/I applications.

Your compile step should include the following:

//PLI      EXEC PGM=IBMZPLI,REGION=4000K
//STEPLIB  DD  DSN=&LNGPRFX;.SIBMZCMP,DISP=SHR
//         DD  DSN=&LIBPRFX;.SCEERUN2,DISP=SHR

Reading about the cataloged procedures provided with Enterprise PL/I can help you understand the use
of SCEERUN2 during compilation. See "Using PL/I cataloged procedures" in the Enterprise PL/I for z/OS
Programming Guide for more details.

Language Environment's runtime support for other programs
Enterprise PL/I uses Language Environment as its runtime environment. Language Environment provides
a single language runtime environment for COBOL, PL/I, C, and FORTRAN.

Language Environment is the common runtime environment for the following language compilers:

C/370
C/C++
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COBOL for MVS & VM
COBOL for OS/390 & VM
Fortran
PL/I for MVS & VM
Enterprise PL/I

Language Environment provides a common set of runtime options and callable services. It also improves
interlanguage communication (ILC) between high-level languages (HLL) and the assembler by eliminating
language-specific initialization and termination on each ILC invocation. Language Environment provides
compatibility support for existing applications with a few restrictions.

Advantages of the new compiler and run time
The new IBM Enterprise PL/I for z/OS compiler has many new features and advantages. This topic gives
you an overview of the enhancements that you can enjoy.

• A native datatype to process UTF-8 strings
• FETCH improvements:

– FETCHed routines can FETCH other routines.
– FETCHed routines can perform same I/O as MAIN.
– FETCHed routines can have their own CONTROLLED.

• 31 digit DECIMAL and PICTURE precision
• Increased limits:

– Internal and external names can have up to 100 characters.
– There is no compiler limit on the number of FILEs and CONTROLLED variables.
– Up to 4095 parameters are allowed per PROCEDURE.
– The maximum number of lines per page for compiler listings is 65535.

• Support for many new 390 instructions (such as AHI and ALCR)
• Support for writeable reentrant static and DLLs
• Easier compatibility and interoperability with C/C++
• Better integer support:

– Maximum precision of 63 for signed FIXED BIN
– UNSIGNED attribute supported (with a maximum precision of 64)
– Signed FIXED BIN(7) mapped to one byte (as is UNSIGNED FIXED BIN(8))

• Many powerful new language features, including these:

– PACKAGEs (the ANSI alternative to secondary ENTRYs)
– DO FOREVER (as a good alternate to DO WHILE( 1 = 1 ); )
– Delimiting strings with " (double quotation marks)
– Using underscores to make constants more readable (e.g. "0011_0101"b )
– Compound assignments (for example, x += 1;)
– RESIGNAL (for more powerful exception handling)
– // specifies that the rest of a line is a comment
– The type reference can consist of possibly a series of identifier separated by dots

• Many powerful new attributes, including these:

– ABNORMAL (like volatile in C)
– NONASSIGNABLE (like const in C)
– BYVALUE
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– LIMITED ENTRY (for C function pointers)
– ORDINAL (for strongly-typed enums)
– RESERVED (for C-like static)
– UNION
– UNSIGNED
– VALUE (for named constants)
– VARYINGZ (for C-style null-terminated strings)
– JSONOMIT
– XMLNAME

• Over 150 new built-in functions, including these:

– HEX and HEXIMAGE (for debugging)
– PROCNAME and SOURCELINE (for tracing)
– PLIMOVE, PLIFILL and COMPARE (like memcpy, memset, and memcmp)
– IAND, IOR, IEOR, and NOT (for bitwise integer operations)
– COPY (the "nice" REPEAT as defined by ANSI)
– LOWERASCII, LOWERLATIN1, UPPERASCII, and UPPERLATIN1 (for casing)
– JSONGETVALUE and JSONGETMEMBER(for JSON support)
– BINSEARCH and BINSEARCHX (for binary searching)
– QUICKSORT and QUICKSORTX (for array sorting)

• Full z/OS UNIX System Services support, including these

– Source, object and listing files in zFS
– I/O to zFS files

• Improved macro facility:

– Deck file preserves case of source.
– Macro variables can now be arrays.
– Many more built-in functions are supported.
– These statements are supported: ANSWER, ITERATE, LEAVE, SELECT (in open code and in macros),

and REPLACE.
– WHILE, UNTIL, and LOOP keywords are supported in %DO statements.
– The same ID option as the INCLUDE preprocessor is supported.

• Support for multithreading
• Support for UTF-16 Unicode
• Support for IEEE floating-point
• SAX-style XML parsing
• XML generation
• Integrated CICS preprocessor
• Integrated SQL preprocessor

For more information, see the PL/I Language Reference and the Enterprise PL/I for z/OS Programming
Guide.
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Major changes with the new compiler and run time
With Enterprise PL/I, existing PL/I applications are affected by several areas such as removed or changed
compiler options, different default compiler options, and restrictions in combining old and new load
modules.

The following list of concerns is merely a representative list that reflects what has been important to
some customers. It does not indicate what is important to any one individual customer. More details are
provided in the rest of this book.

• Enterprise PL/I supports only Language Environment releases currently in support.
• Enterprise PL/I has no support for VM.
• Enterprise PL/I has no support for multitasking (but it does support multithreading).
• Code that is incorrect or invalid (for instance, code that uses uninitialized variables) might not run the

same. This might not seem like an important problem, but it has been a significant issue for most of the
customers that have migrated.

• You might need to specify some nondefault options to get the most compatible behavior from the
compiler and to get the best performance from the compiler.

• Programs might need to be tuned for optimal performance. In particular, the use of the runtime option
RPTSTG(ON), while useful when you are tuning performance, is much more costly now to leave on in a
production program.

• Recompiling all your PL/I source is recommended. If this is not done, you need to carefully select the
compiler options for compiling Enterprise PL/I code that will be mixed with older PL/I objects. You will
also need to divide your source into partitions according to how they use FILEs, CONTROLLED variables
and conditions. For more information, see “Object and load module considerations” on page 123.

General conversion tasks
Depending on your needs, you will most likely need to complete one or more of the general conversion
tasks.

• Plan your strategy.
• Move to the Language Environment runtime library.
• Recompile your source with Enterprise PL/I.
• Add Enterprise PL/I programs to existing applications.

Planning your strategy
Before moving to the Language Environment runtime library or recompiling your source programs with
Enterprise PL/I, develop a conversion strategy. A thorough strategy will help ensure a smooth transition to
the new compiler and run time.

Your conversion strategy might be to move to Language Environment, and then gradually recompile your
existing applications with Enterprise PL/I as needed. This book provides separate strategies for moving to
the new run time and for recompiling your PL/I source.

If you are not currently on Language Environment and want information about how to plan your move, see
Chapter 3, “Planning the move to Language Environment,” on page 15.

If you have already moved to Language Environment and want information about moving to the new
compiler, see Chapter 4, “Planning to move to the new compiler,” on page 23.
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Moving to the Language Environment run time
You can run existing load modules under Language Environment and receive the same results as with
pre-Language Environment libraries.

For important compatibility information, see Chapter 5, “Running existing applications under Language
Environment,” on page 31.

For information about moving applications that are running under older PL/I run time, see Chapter 6,
“Considerations before migrating,” on page 33.

In almost all cases, you will need to link-edit existing applications with Language Environment or
recompile programs with Enterprise PL/I. To determine which programs require link-editing with
Language Environment, see Chapter 8, “Link-Edit considerations,” on page 49.

Recompiling your source with Enterprise PL/I
The new Enterprise PL/I compiler has many powerful, new features of which you might want to take
advantage. There are also some differences between this new compiler and the previous PL/I compilers.

To read about the differences between the Enterprise PL/I compiler and the previous PL/I compilers, see
Chapter 10, “Understanding the limitations of the new compiler,” on page 57.

To find out more about the new compiler options, see Chapter 11, “Understanding the new compiler's
options,” on page 67.

To determine which programs must be changed and then recompiled with Enterprise PL/I, see Chapter
13, “Understanding when working code must be changed,” on page 93 and Chapter 14, “Understanding
when working code may need to be changed,” on page 105.

Adding Enterprise PL/I programs to existing applications
You can create new Enterprise PL/I programs (or recompile existing programs with Enterprise PL/I) and
run them with existing applications under Language Environment.

When adding Enterprise PL/I programs to existing applications, you need to be aware of the limitations
of mixing old and new PL/I modules. For details, see Chapter 18, “Adding Enterprise PL/I programs to
existing PL/I applications,” on page 123.

Chapter 2. Introducing the new compiler and run time  11



12  Enterprise PL/I for z/OS: Enterprise PL/I for z/OS 6.1 Compiler and Runtime Migration Guide



Part 2. Conversion Strategies
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Chapter 3. Planning the move to Language
Environment

This chapter describes a general strategy for moving your runtime environment to Language Environment.

The following tasks are necessary, and are performed roughly in the following order:

• Prepare to move to the Language Environment runtime library.
• Take an inventory of your applications.
• Decide how to phase in Language Environment.
• Set up a regression testing procedure.
• Cut over to production use.

If you have already moved to Language Environment, you do not need to read this chapter and can
proceed to reading Chapter 4, “Planning to move to the new compiler,” on page 23.

Important: Enterprise PL/I Version 6 Release 1 programs can only run with the Language Environment
element of z/OS 2.4 (5650-ZOS) or later.

Preparing to move to the Language Environment runtime library
In preparing to move to Language Environment, you need to install Language Environment, assess storage
requirements, and educate your programmers about Language Environment.

You can do these tasks concurrently.

Installing Language Environment
This topic lists the documents that you can follow to install Language Environment.

Installing Language Environment on z/OS
To install z/OS, including the Language Environment element, see the z/OS Program Directory, or consult
your ServerPac: Installing Your Order.

Installing Language Environment on OS/390
To install OS/390, including the Language Environment element, see the OS/390 Program Directory, or
consult your ServerPac: Installing Your Order.

Important: To ensure that the Language Environment runtime results are compatible with pre-Language
Environment results, you might need to change the default runtime options. See “Differences in runtime
options” on page 33 for more details.

Assessing storage requirements
Storage requirements for Language Environment are larger than for pre-Language Environment PL/I
libraries.

DASD storage requirements
During conversion, you will need DASD storage for the Language Environment runtime libraries as
well as any pre-Language Environment runtime libraries. When you have finished moving to Language
Environment, you will be able to free the storage reserved for the previous PL/I runtime libraries.

To determine the amount of DASD storage required by Language Environment, see the following
document:
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• On z/OS: z/OS Program Directory
• On OS/390: OS/390 Program Directory

Virtual storage requirements
Virtual storage requirements for running PL/I programs with Language Environment will increase over the
OS PL/I run time. For both CICS and non-CICS applications, the amount of increase depends on many
factors, such as these:

• The values used for the Language Environment runtime storage options: STACK, LIBSTACK, HEAP,
ANYHEAP, and BELOWHEAP

• The value used for the Language Environment runtime option ALL31
• Which runtime routines are in the LPA (link pack area) or the ELPA (extended link pack area)

Note: You can use the information generated by the Language Environment RPTSTG(ON) runtime option
to help tune your storage options during the tuning phase. For details, see the z/OS Language Environment
Programming Reference. Be sure to reset this option to RPTSTG(OFF) before putting the PL/I application
into production, because it will greatly worsen performance.

Educating your programmers about Language Environment
Before moving to Language Environment, ensure that your application programmers are familiar with the
features of Language Environment and the differences between the pre-Language Environment run time
and the Language Environment run time.

When your programmers are familiar with Language Environment, they can better prepare for the move to
Language Environment. For example, they can assist in taking an inventory of applications.

For information about Enterprise PL/I and Language Environment education available through IBM,
you can call 1-800-IBM-TEACH. You can also get information directly from user groups (such as
SHARE), and from the Language Environment Documentation (https://www.ibm.com/docs/en/zos/2.3.0?
topic=zos-language-environment).

Taking an inventory of your applications
When planning your move to the Language Environment run time, you need to take a comprehensive
inventory of the applications that you intend to run on Language Environment.

You must include these in this inventory:

• Vendor tools, packages, and products
• PL/I applications

The Edge Portfolio Analyzer can help you take an inventory of your existing load modules.

Related information
“EDGE Portfolio Analyzer” on page 175

Vendor tools, packages, and products
Before you can begin moving your run time to Language Environment, you need to know if your vendor
tools, packages, and products are designed to run under Language Environment.

Verify these:

• All packages will run under Language Environment, especially if you do not have the source code for
them.

• Source code for packages, if you do have the source, is able to be compiled with the Enterprise PL/I
compiler.

• Code generators generate source code that is able to be compiled with the Enterprise PL/I compiler.

16  Enterprise PL/I for z/OS: Enterprise PL/I for z/OS 6.1 Compiler and Runtime Migration Guide

https://www.ibm.com/docs/en/zos/2.3.0?topic=zos-language-environment
https://www.ibm.com/docs/en/zos/2.3.0?topic=zos-language-environment
https://www.ibm.com/docs/en/zos/2.3.0?topic=zos-language-environment


• Development tools and debuggers that issue their own ESPIE or ESTAE coordinate with Language
Environment.

For information about how to obtain a list of vendor products that are enabled for Language Environment,
see “Vendor products” on page 175.

PL/I applications
When taking an inventory of your PL/I applications, you need to gather information about the program
attributes that affect moving to Language Environment. This information includes how and what to test
and what will affect performance under Language Environment.

For your inventory, determine these:

For moving your applications to Language Environment:

• Which programs have been compiled with OS PL/I and which programs have been compiled with
PL/I for MVS & VM

• Which programs have been linked with PL/I shared libraries
• Runtime options used (and how specified)
• Which PL/I programs call or are called by assembler programs
• Which PL/I programs are multitasking
• Which PL/I programs use interlanguage communication (COBOL, C, or FORTRAN)
• Which PL/I programs are used under CICS, IMS, Db2, or other subsystems
• Frequency and types of abends expected

For regression testing:

• Test cases required and available

For performance measurements:

• Amount of storage used
• Frequency of execution of reusable/common modules
• Program execution time (both CPU and elapsed)

Existing PL/I load modules
Knowing what versions of PL/I load modules you have in your libraries is important in planning your
migration to Language Environment. The Edge Portfolio Analyzer can help you take an inventory of your
existing load modules.

Another tool that will give you some information about your load modules is the AMBLIST utility.
AMBLIST is provided by IBM and is usually found in SYS1.LINKLIST. Using the LISTIDR control statement,
you can obtain listings of selected CSECT identification records (IDR). One of the fields in the IDR contains
the name of the translator, or compiler in the case of PL/I, that was used to compile the CSECT. The
following example is a sample output from AMBLIST:

---------------------------------------------------------------------------
CSECT       TRANSLATOR        VR.MD                 YR/DY
MYPLI       5655-H31          32.00                 2003/171
MYPLI2      5655-B22          22.01                 2001/073
D1          566896201         02.01                 1972/271
UNRES       566896201         02.01                 1992/034
---------------------------------------------------------------------------

Using the text in the TRANSLATOR column, you can determine which PL/I compiler created the module.
See Table 3 on page 18 for the Translator field values for the various PL/I compilers.
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Table 3. PL/I compiler IDR values

PL/I compiler version Translator identification record

OS PL/I V1 Release 5.1 5734-PL1

OS PL/I V2.3 5668-910

PL/I for MVS & VM 5688-235

VisualAge PL/I for OS/390 V2R2 5655-B22

Enterprise PL/I for z/OS Version 3 5655-H31

Enterprise PL/I for z/OS Version 4 5655-W67

Enterprise PL/I for z/OS Version 5 5655-PL5

Deciding how to phase in Language Environment
When you are ready to use Language Environment in production mode, you need to determine these:

• How to handle multilanguage conversion
• How applications will have access to the library

Handling multilanguage conversion
If you have PL/I applications with ILC, move them to the Language Environment run time after you have
converted each of the languages involved.

For example, move a PL/I-COBOL application to Language Environment after you have moved your PL/
I-only and COBOL-only applications to Language Environment.

Note: Do not install two different libraries for a given language in LNKLST/LPALST. For example, if you
install Language Environment with the PL/I component in LNKLST/LPALST, do not have the OS PL/I library
or the PL/I for MVS & VM library installed in LNKLST/LPALST.

After Language Environment has been installed in LNKLST, all of your PL/I applications will run under
Language Environment by default.

Determining how applications will have access to the library
Two general methods are available for moving Language Environment into production: adding Language
Environment to the LNKLST/LPALST, or using a STEPLIB approach.

LNKLST/LPALST
After you add Language Environment to the LNKLST/LPALST, Language Environment is available to all of
your applications.

To ensure that all applications are functioning correctly under Language Environment before adding
Language Environment to your LNKLST/LPALST, you can temporarily install Language Environment in
LNKLST/LPALST or use STEPLIB.

Do not make more than one PL/I runtime library available to your applications at execution time.
For example, there should be one and only one PL/I runtime library, such as SCEERUN for Language
Environment, in LNKLST. If you have more than one, you will either get hard-to-find errors, or you will
have an unused load library in your concatenation. When you add Language Environment to LNKLST/
LPALST, remove any other PL/I runtime libraries.

Suggestions for temporarily installing in LNKLST/LPALST or using STEPLIB
• Install Language Environment in LNKLST/LPALST on a test or development machine first.
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• Use the SETPROG MVS system command to temporarily modify the LNKLST or LPA, without having
to perform an IPL of the system. For information about using the SETPROG command, see z/OS MVS
System Commands, SA22-7627 or OS/390 MVS System Commands, GC28-1781.

• Perform an IPL over a weekend and install Language Environment in LNKLST/LPALST. Verify over the
weekend that your applications run under Language Environment.

Note: Although many elements of z/OS and OS/390 depend on the Language Environment runtime
library, neither z/OS nor OS/390 requires Language Environment to be installed in LNKLST. (However,
Language Environment must be installed in the same zone as z/OS and OS/390.) If you choose not
to place Language Environment in LNKLST, you must use STEPLIB to access Language Environment in
the individual z/OS or OS/390 PROCs that require Language Environment. For information about which
elements require Language Environment, see the z/OS Program Directory for z/OS or OS/390 Program
Directory for OS/390 that applies to your system.

STEPLIB
You can choose to phase in Language Environment gradually by using the STEPLIB approach. In this way,
you phase in one region (CICS or IMS), batch (group of applications), or user (TSO) at a time.

Although using STEPLIB means changing your JCL, a gradual conversion can be easier than moving all of
your applications at one time. Also note that when you use STEPLIB, programs will run slower than when
they access the runtime library through LNKLST/LPALST, and more virtual storage will be used.

Note: If you have multiple processors linked together with channel-to-channel connections, you must
treat the entire system as one processor and should convert subsystem by subsystem. In addition to
revising your JCL to STEPLIB to the Language Environment run time during initial setup, you might also
need to specify CEEDUMP DD if the default allocation for CEEDUMP does not meet your shop's needs.
(CEEDUMP is the ddname where Language Environment writes its dump output.)

Problems with STEPLIB and IMS programs
When you use STEPLIB on IMS/DC online to access the Language Environment run time, any Language
Environment library routines that you have preloaded will not be loaded into read-only storage.

If your application has an error and overwrites non-application storage, preloaded runtime routines can
become corrupted and eventually cause abends when used. At refresh time, these preloaded routines
marked reentrant are not refreshed unless loaded from the LPA or the LNKLST/LPALST. Thus, the abends
will recur.

Note: This is a 20-year-old problem with MVS (OS/390), IMS, and STEPLIB, and is mentioned here
because of the proposed STEPLIB approach for gradually moving to Language Environment.

You can use either of the following methods to prevent this problem:

• Install Language Environment into the LNKLST/LPALST.
• Do not preload any runtime routines. (This will slow performance.)

How to minimize the impact
• Keep your certification of Language Environment as short as possible. (The sooner it is certified, the

sooner you can install in LNKLST/LPALST.)
• Watch for different applications abending in the same region, which would indicate that you need to

follow the recovery procedure.

How to recover
If you do notice several different applications abending in the same region, stop the region and restart
with these IMS commands:

1. Determine the region number by issuing the following command:

'/DISPLAY ACTIVE'

Chapter 3. Planning the move to Language Environment  19



2. Stop the region by issuing the following command:

'/STOP REGION region#'

3. Restart the region by issuing the following command:

'/START REGION region-name'

STEPLIB example
This example shows how to phase in Language Environment by using the STEPLIB method, for an
organization that has a central development center (all compiling and linking is done in one location) and
separate production sites.

This is a very conservative approach, but it has been used by many customers who require absolutely no
disruption in production applications.

1. Certify Language Environment and Enterprise PL/I at the central development center.

a. Run tests with captured data on your current run time, and save all results.
b. Install Language Environment in a STEPLIB environment. This means that unchanged jobs will run

with your current run time, and that some users can use the Language Environment run time by
using STEPLIB JCL to access the Language Environment runtime library.

c. Run tests with captured data on the Language Environment run time, using the STEPLIB
environment, and compare the results to your current run time. Run parallel tests throughout
the certification cycle to ensure that your applications produce the same results when run with
Language Environment as they did with your current run time.

d. Compile your test applications with Enterprise PL/I. Use STEPLIB to access the Language
Environment runtime library, and rerun the certification tests.

2. Install Language Environment on the central development center's system and test.

a. Run parallel tests of the nonconverted versions of your existing applications by using STEPLIB to
access your current run time.

b. Run all new applications in the Language Environment runtime environment before releasing to
production runs.

3. Prepare a backout strategy by saving the procedures for installing your current run time in case you
need to back out the Language Environment run time.

4. Install the Language Environment run time at one production site.

a. Continue to run parallel tests of the nonconverted versions of your existing applications with your
current run time in the STEPLIB environment.

b. Run the Language Environment run time for one month at this production site.
5. Install the Language Environment run time at all production sites.

a. Continue to run parallel tests of the nonconverted versions of your existing applications with your
current run time in the STEPLIB environment.

b. Run the Language Environment run time for one month at all production sites.
c. After one month, delete the entire contents of your current run time library.

Try to move the largest units of work that you can move. Moving entire online regions, applications, or run
units at once ensures that interactions between programs within an application or run unit can be tested.
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Setting up a regression testing procedure
Because there are so many possible combinations of coding techniques, the only way to determine
whether your applications will run under Language Environment and receive the expected results is to set
up a procedure for regression testing.

Move your applications to a test environment, and ensure that you receive the expected results when
running under Language Environment.

Regression testing will help you identify these issues:

• Source code changes required as indicated in Chapter 14, “Understanding when working code may
need to be changed,” on page 105.

• Storage usage differences between your current run time and the Language Environment run time.
• CPU time differences between your current run time and the Language Environment run time.

During testing, run your existing applications in parallel on both your current run time and under the
Language Environment run time to verify that the results are the same. Take performance measurements
of your existing applications to compare with Language Environment.

After the program runs correctly, test it separately and also test it with other programs in a run unit. By
testing it against a variety of data, you can exercise all the program processing features to help ensure
that there are no unexpected execution differences.

Analyze program output and, if the results are not correct, use Debug Tool or the Language Environment
dump output to uncover any errors and correct those errors. Make any further changes that you need and
then rerun, and, if necessary, continue to debug.

Note: Although most applications will run under Language Environment with the same results as on
their existing run time, results could differ depending on coding styles, resource utilization, performance,
abend behavior, or more strict adherence to IBM conventions in Language Environment. For information
about situations where existing code might behave differently, see Chapter 14, “Understanding when
working code may need to be changed,” on page 105.

Taking performance measurements
After your applications are running under Language Environment in a test environment, take performance
measurements—especially on any time-critical or response-critical applications.

After you have compared runtime performance between Language Environment and your current
runtime environment and identified which applications, if any, need performance improvements, you can
investigate the methods available to tune your programs and improve performance. For example, you can
modify storage values by using the Language Environment runtime options.

Cutting over to production use
When your testing shows the entire application (or group of applications, if running more than one
application in an IMS region, or on TSO) receives the expected results, you can move the entire unit over
to production use. However, you must be prepared for unexpected errors.

You can prepare for recovery as follows:

• Under z/OS and OS/390, run the old version as a substitute from the latest productivity checkpoint.
• Under Db2, CICS, and IMS, return to the last commit point and then continue processing from that point

by using the unmigrated PL/I program. (For Db2, use an SQL ROLLBACK WORK statement.)
• For batch applications, use your shop's backup and restore facilities to recover.

After you move your existing applications to production use under the Language Environment run time,
monitor your applications for a short time to ensure that they continue to work properly. Then, you can run
with the confidence that you had in your previous run time.
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Chapter 4. Planning to move to the new compiler
This chapter describes a general strategy for moving your source programs to Enterprise PL/I.

The following tasks are necessary, and are performed roughly in the following order:

1. Prepare to move your source to the new compiler.
2. Take an inventory of your applications.
3. Make application program updates.

Because of the loss of service support for older PL/I compilers, you must eventually move all of your PL/I
source programs to the new compiler. Although this is not an immediate requirement, at some future date
the older compilers and any supported fixes will not be available. At that point, you will be forced to do a
'quick' migration, and this might be a very inconvenient time.

Before you can move your source programs to the new compiler, you must move your applications to
Language Environment.

Preparing to move your source to the new compiler
In preparing to move your source to the new Enterprise PL/I compiler, you need to install Enterprise PL/I,
assess storage requirements, and educate your programmers on new compiler features.

You can do these tasks concurrently.

Installing Enterprise PL/I
If you have not installed Enterprise PL/I, install the compiler.

For z/OS or OS/390, see the Program Directory for your product.

Assessing storage requirements
Enterprise PL/I object programs can execute in 31-bit or 64-bit addressing mode and can reside above
the 16-MB line, which frees storage below the 16-MB line. You can use the freed storage for programs or
data that must reside below the 16-MB line.

During the compiler migration, you will need DASD storage for your current PL/I compilers as well as for
the Enterprise PL/I compiler. When you have completed the compiler migration, and if you have moved all
of your OS PL/I, PL/I for MVS & VM, or VisualAge PL/I programs to Enterprise PL/I, you will be able to free
the storage reserved for your current PL/I compiler.

The load module produced from the same source code when compiled with Enterprise PL/I might be
larger than when compiled with OS PL/I or PL/I for MVS & VM.

Educating your programmers on new compiler features
Early in the conversion effort, ensure that your application programmers are familiar with the features
of Enterprise PL/I and the relationship and interdependencies between Enterprise PL/I, Language
Environment, Debug Tool, and any other application productivity tools your shop uses.

In addition, your programmers will need to be familiar with Language Environment runtime options,
condition handling, and callable services.

Choosing the right compiler options for your environment is a critical task. The options you choose can
vary widely depending on whether you are looking for optimum performance or maximum compatibility
with previous versions of PL/I. For more information about choosing compiler options, see Chapter 11,
“Understanding the new compiler's options,” on page 67.
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For information about Enterprise PL/I and Language Environment education available through IBM,
you can call 1-800-IBM-TEACH. You can also get information directly from Language Environment
publications or technical conferences such as SHARE, or the IBM Technical Interchange.

After your programmers are familiar with Enterprise PL/I features, they can assist you in taking the
inventory of programs.

Related information
“Taking an inventory of your applications” on page 24
In planning to move your PL/I source programs to Enterprise PL/I, you need to take a comprehensive
inventory of applications in which you have programs that you intend to compile with Enterprise PL/I.

Taking an inventory of your applications
In planning to move your PL/I source programs to Enterprise PL/I, you need to take a comprehensive
inventory of applications in which you have programs that you intend to compile with Enterprise PL/I.

By taking an inventory of your applications, you get a detailed picture of the work that is required. You
need to take an inventory of the following applications:

• Vendor tools, packages, and products
• PL/I applications

The Edge Portfolio Analyzer can help you take an inventory of your existing load modules.

Related information
“EDGE Portfolio Analyzer” on page 175

Taking an inventory of vendor tools, packages, and products
Before you can begin moving your source, you need to know if your vendor tools, packages, and products
are designed to work with Enterprise PL/I.

• Verify whether PL/I code generators generate PL/I programs that can be compiled with Enterprise PL/I.
• Verify whether PL/I packages can be compiled with Enterprise PL/I.

Taking an inventory of PL/I applications
When you assess your PL/I applications, you must consider various factors.

For each program in your PL/I applications, include at least the following information in your inventory:

OS PL/I, PL/I for MVS & VM, and VisualAge PL/I:

• Programmer responsible
• Compiler used
• Compiler options used, especially CMPAT
• Precompiler options used
• PL/I modules
• INCLUDE library members used in PL/I programs
• Called or FETCHed subprograms
• Calling or FETCHing programs
• Frequency of execution
• Test cases required and available

If you are planning to mix old PL/I modules with Enterprise PL/I modules, you will also want the following
information in your inventory:

• Use of CONTROLLED variables

24  Enterprise PL/I for z/OS: Enterprise PL/I for z/OS 6.1 Compiler and Runtime Migration Guide



• Use of FILE variables and constants

For information about the partitioning of PL/I source programs into units of execution based on the above
information, see “Partitioning PL/I source programs into units of execution” on page 125.

Prioritizing your applications
Using the complete inventory, you can now prioritize the conversion effort.

1. Assign complexity ratings to each item in your completed inventory and determine each program or
application's resulting overall complexity rating.

2. Determine the conversion priority of each program or application.

Determining conversion priority
After you have determined the complexity rating for each program in your inventory, you can make
informed decisions about the programs that you want to move to the new Enterprise PL/I compiler, and
the order in which you want to move them.

Consider the following when deciding on conversion priorities:

• If your application is at the limits of the storage available below the 16-MB line, it is a prime candidate
for conversion to Enterprise PL/I. With z/OS or OS/390 architecture, you can obtain virtual storage
constraint relief.

• If the program cannot run under Language Environment, you must convert it.

After you determine the priority of each program that you need to move and the effort required to move
those programs, you can decide the order in which you want to convert your applications and programs.

Setting up move/no move categories
By using the conversion priorities that you have established and taking into account program importance
and frequency of execution, you can list most of your programs in the order that you want to convert them
to Enterprise PL/I.

There might be some programs that you do not want to convert at all, such as these programs:

• Programs for which you have no source code, that will never need recompilation, and that run correctly
under Language Environment.

• Programs of low importance to your organization that run correctly under Language Environment and
that would take a very high conversion effort.

• Programs that are being phased out of production.

Note, however, that there might be restrictions on running existing modules mixed with programs that
have been moved to the new Enterprise PL/I compiler. See Chapter 18, “Adding Enterprise PL/I programs
to existing PL/I applications,” on page 123.

Making application program updates
The following application programming tasks are necessary when you convert your source. You must
decide what size your program updates will be.

For example, you can choose to update programs along with your regular maintenance, or you can divide
your programs into functional groups and update the source group by group. Some customers have
followed the "big bang" process and have made all their program updates at once. However you decide to
proceed, these tasks should be performed in roughly the following order:

Save the existing source as a back-up—a benchmark to compare to and a version to recover to—if the
converted modules have problems.

1. Update the job and module documentation.
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It is extremely important that all updates be properly documented. PL/I itself is reasonably self-
documenting. However, keep a log of the compiler options you specify and the reasons for specifying
them. Also document any special system considerations. This is an iterative process and should be
performed throughout the conversion programming task.

2. Update the available source code.

Update the source code manually or with tools that you have developed. For information about when
source code must or might need to be changed, see Chapter 13, “Understanding when working code
must be changed,” on page 93 and Chapter 14, “Understanding when working code may need to be
changed,” on page 105.

3. Compile, link-edit, and run.

After the source has been updated, you can process the program as you would for a newly written
Enterprise PL/I program. (You need the Language Environment run time installed.) If, during the
compile process, you see new messages and wish to understand them better, see Chapter 12,
“Understanding the new compiler's messages,” on page 81.

4. Debug.

Analyze program output and, if the results are not correct, use Debug Tool or the Language
Environment dump output to uncover any errors.

5. Test the converted programs.

After moving your source to Enterprise PL/I, set up a procedure for regression testing. Regression
testing will help to identify these issues:

• Code that must be changed
• File attribute mismatches
• Storage initialization issues
• Performance differences
• AMODE issues

After you have established a regression testing procedure, and after your programs run correctly, test
them against a variety of data:

• Locally—each program separately
• Globally—programs in a run unit in interaction with each other

In this way, you can exercise all the program processing features to help ensure that there are no
unexpected execution differences.

The importance of regression testing cannot be stressed enough. You should consider the move from
an old PL/I compiler to Enterprise PL/I as a move to a different, though similar, language, and plan your
testing accordingly.

6. Repeat when necessary.

Make any further corrections that you need, and then recompile, relink, rerun, and, if necessary,
continue to debug.

7. Cut over to production mode.

When your testing shows that the entire application receives the expected results, you can move the
entire unit over to production mode. (This assumes that your production system is already using
the Language Environment run time. If not, use “STEPLIB” on page 19 to access the Language
Environment run time.)

In case of unexpected errors, be prepared for recovery:

• Under z/OS or OS/390, run the old version as a substitute from the latest productivity checkpoint.
• Under Db2 and IMS, return to the last commit point, and then continue processing from that point

using the unmigrated PL/I program. (For Db2, use an SQL ROLLBACK WORK statement.)
• For non-CICS applications, use your shop's backup and restore facilities to recover.
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8. Run in production mode.

After cut over, monitor the application for a short time to ensure that you are getting the results
expected. After that, your source conversion task is completed.
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Part 3. Moving existing applications to Language
Environment

Important: This part is intended for users who are migrating from OS PL/I and are not currently on
Language Environment. If you are currently using PL/I for MVS & VM, VisualAge PL/I, or Enterprise PL/I,
you can go directly to Part 4, “Moving to the new compiler,” on page 55.
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Chapter 5. Running existing applications under
Language Environment

Depending on the characteristics of your applications, you might need to make application modifications
and perform some Language Environment customization tasks to ensure that your current applications
run under Language Environment.

• Invoke existing applications.
• Link-edit existing applications.

Other factors also apply to ensure compatibility, depending on if you are moving your run time from OS
PL/I or PL/I for MVS & VM. For details, see Chapter 6, “Considerations before migrating,” on page 33.

Invoking existing applications
To access Language Environment, you will need to change the procedures you use for invoking
applications. The procedures required for non-CICS applications are different than the procedures for
CICS applications.

Note: Make sure your program names do not begin with AFH, CEE, EDC, IBM, IGZ, ILB, or FOR. These
prefixes are reserved for Language Environment library routine module names.

Considerations for non-CICS applications
This section provides details about the changes in invoke procedures required for non-CICS applications.

For more information about how to prepare and run your programs with Language Environment, see the
z/OS Language Environment Programming Guide.

Specifying the correct library
To invoke existing applications when running under Language Environment, you need to replace your
current library with the Language Environment SCEERUN library.

Specifying alternate DDNAMES (optional)
With Language Environment, you can indicate the destination for Language Environment output by
changing the ddname in the MSGFILE runtime option to the ddname you want.

Table 4 on page 31 lists the default ddnames for Language Environment output.

Table 4. Specification of new DDNAMEs

Output Default ddname

Messages SYSOUT

Runtime options report (RPTOPTS) SYSOUT

Storage reports (RPTSTG) SYSOUT

Dumps CEEDUMP

All of the ddnames in the above table are dynamically allocated.

You do not need to alter your JCL, CLISTs, or Rexx EXECs to define the ddnames for Language
Environment messages, reports, or dumps unless the defaults used by Language Environment do not
meet the needs of your shop. The Language Environment default destinations are as follows:

• On z/OS and OS/390: SYSOUT=*
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Considerations for CICS applications
To run Language Environment on CICS, you need to perform several required steps.

For details on how to invoke PL/I applications running on CICS under Language Environment, including
how to specify the Language Environment runtime library SCEERUN, see the following documents:

• For z/OS, z/OS Language Environment Customization
• For OS/390, OS/390 Language Environment Customization

Output differences when using Language Environment on CICS

Under CICS, Language Environment output goes to a transient data queue named CESE. Each record
written to the file has a header that includes the terminal ID, the transaction ID, date, and time. The
transient data queue (CESE) receives the following types of Language Environment output:

• Messages
• Runtime options report (RPTOPTS)
• Storage reports (RPTSTG)
• Dumps
• PL/I Stream output

Link-editing existing applications
After determining which of your existing applications either require or will benefit from link-editing with
Language Environment, you need to specify the correct library name.

The Language Environment link-edit library is the same for non-CICS applications as for CICS
applications.

Under z/OS and OS/390
Include the Language Environment SCEELKED in the SYSLIB concatenation.

Note: If you link-edit with the NCAL linkage editor option, ensure that all of the required runtime routines
from SCEELKED are included in the load module. Otherwise, unpredictable errors will occur (typically a
program check).

There are some names in the SCEELKED library that do not follow IBM naming conventions, and that can
conflict with your subprogram names. For example, if you have a statically called subroutine named DUMP
and if SCEELKED is ahead of your private subroutine library in the concatenation at link-edit time, your
references to DUMP will be resolved in SCEELKED. In this example, the FORTRAN routine AFHUDUMS will
be link-edited in, and you could get incorrect results, loss of function, or slower performance as a result.
(Another common name is ABORT, which is an entry point in EDC4$05C, a C runtime library routine.)

There are a couple of ways to avoid these problems:

• You can check the names in the SCEELKED data set against the names of your private subroutines. If
there are any duplicates, you can rename your private subroutines so that they do not have the same
names as the names in the SCEELKED data set.

• Another way is to place your private subroutine libraries before SCEELKED in the SYSLIB concatenation.
However, doing this could result in losing function that is available under Language Environment, if
your application contains Fortran or C/C++ programs. Changing the name of your subroutine to avoid
the conflict with the Language Environment subroutine is preferable to placing your private subroutine
libraries ahead of SCEELKED.

To determine which applications require link-editing with Language Environment, see Chapter 8, “Link-
Edit considerations,” on page 49.
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Chapter 6. Considerations before migrating
This chapter discusses the functional differences between OS PL/I run time and Language Environment.
Consider these differences before migrating your applications to Language Environment.

Language Environment is now part of z/OS and OS/390, and you can start migrating your applications to
Language Environment before installing a Language Environment-enabled PL/I compiler such as PL/I for
MVS & VM, VisualAge PL/I, or Enterprise PL/I.

Differences in runtime options
Language Environment runtime options replace PL/I runtime options. Most PL/I runtime options have an
equivalent Language Environment runtime option that provides the same function. This section describes
differences in the use of runtime options.

You should adapt your applications to allow for the following differences:

Deleted runtime options
• The OS PL/I COUNT option is ignored.
• The OS PL/I FLOW option is ignored.
• The OS PL/I HEAP option is always in effect. This means that when you allocate storage for BASED and

CONTROLLED variables, the storage always comes from HEAP storage. The storage does not come from
a PL/I Initial Storage Area (ISA). HEAP(0) is not supported and, if used, is ignored.

Replaced runtime options
• The Language Environment NATLANG option replaces the OS PL/I LANGUAGE option.
• The Language Environment RPTSTG option replaces the OS PL/I REPORT option.
• The Language Environment TRAP option replaces both OS PL/I SPIE and STAE options. The following

table shows how the OS PL/I SPIE and STAE options map to Language Environment's TRAP option: 

Table 5. Mapping of SPIE and STAE Options to the TRAP Option

OS PL/I Language
Environment

Action

SPIE|NOSPIE TRAP(ON|OFF) If SPIE|NOSPIE is specified in input, TRAP is set
according to the option TRAP(ON) for SPIE, and
TRAP(OFF) for NOSPIE.

STAE|NOSTAE TRAP(ON|OFF) If STAE|NOSTAE is specified in input, TRAP is set
according to the option TRAP(ON) for STAE, and
TRAP(OFF) for NOSTAE.

SPIE STAE or

SPIE NOSTAE or
STAE NOSPIE
 
NOSPIE NOSTAE

TRAP(ON)

 
 
 
TRAP(OFF)

If both SPIE|NOSPIE and STAE|NOSTAE are specified
together in input, TRAP is set according to both
options: TRAP(OFF) when both options are negative,
and TRAP(ON) otherwise. TRAP(ON) must be in effect
for applications to run successfully.

Note: Applications performing their own condition management often conflict with Language
Environment condition management. See your z/OS Language Environment Programming Guide for more
information about Language Environment condition handling.
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• The Language Environment STACK option replaces both OS PL/I ISASIZE and ISAINC options. You do
not need to change and recompile source code that contains ISASIZE and ISAINC. In addition, object
modules and/or load modules containing the PLIXOPT string will run under Language Environment with
the ISASIZE and ISAINC honored as before.

STACK(,,ANY) can be used for an OS PL/I application relinked with Language Environment that does not
contain any edited stream I/O.

Your application must run in AMODE(31) to use STACK(,,ANY).

Under CICS, ALL31(ON) and STACK(,,ANY) are the defaults; however, because STACK(,,BELOW) is
required for OS PL/I applications that have not been relinked with Language Environment, you must
change the default to STACK(,,BELOW) during installation, or explicitly specify STACK(,,BELOW) for any
OS PL/I applications that have not been relinked.

New runtime options
• The Language Environment ABTERMENC option controls which type of return/abend code your

application receives at abnormal termination. ABTERMENC(RETCODE) allows your application to
receive a runtime return code, which is equivalent to the way OS PL/I worked.

• The Language Environment ERRCOUNT option limits the number of conditions that are handled at run
time. ERRCOUNT(0) specifies that there is no limit, which is equivalent to the way the OS PL/I worked.

• The Language Environment DEPTHCONDLMT option limits the extent to which conditions can be nested.
To maintain compatibility, specify DEPTHCONDLMT(0), which means there is an unlimited depth.

• The Language Environment XUFLOW option determines if the UNDERFLOW condition is raised when
underflow occurs. XUFLOW(AUTO) preserves PL/I semantics with regard to raising the UNDERFLOW
condition.

• The Language Environment ALL31 option controls AMODE switching among library routines. You should
set ALL31(0N) if all of your applications are AMODE(31).

When you pass runtime options in the MVS GO step, your runtime options string must end with a slash (⁄)
to distinguish it from a main procedure parameter string. If you omit the slash, the string is passed as the
main procedure parameter.

The following runtime options are needed to provide compatibility with OS PL/I:

• ABTERMENC(RETCODE)
• ERRCOUNT(0)
• DEPTHCONDLMT(0)
• STORAGE(,,CLEAR)
• TRAP(ON)
• XUFLOW(AUTO | ON)

Note that before you use the CLEAR suboption of the STORAGE option, you must have the appropriate
PTFs for APAR PK02614 installed. Also, the use of the option might not be entirely effective for Enterprise
PL/I code: see the discussion later in this book on initializing variables.

For more information about runtime options, see the z/OS Language Environment Programming Reference.

For OS PL/I applications, the options specified in the PLIXOPT string is processed as the application-
specific options. If you provide the Language Environment CEEUOPT, CEEUOPT is ignored.

If the main load module contains ILC, the PLIXOPT string is ignored. In this case, you must provide
CEEUOPT for the application-specific options.
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Differences in condition handling

Timing differences
PL/I condition handling semantics remain supported under Language Environment; however, the timing of
issuing the runtime message for an ERROR condition with respect to the ERROR ON-Unit is different.

It is different in the following way:

• The runtime message for an ERROR condition is issued only if there is no ERROR ON-Unit established,
or if the ERROR ON-Unit does not recover from the condition by using a GOTO out of block. You can use
a GOTO out of the ERROR ON-Unit to avoid a message for a PL/I ERROR condition.

For PL/I conditions whose implicit action includes issuing a message and raising the ERROR condition, the
timing of issuing the message is unchanged.

Table 6 on page 35 shows when the runtime message for an ERROR condition is issued under OS PL/I
with respect to the ERROR On-Unit.

Table 6. OS PL/I Version 2 Release 3 ERROR ON-Unit and message for an ERROR condition

Condition No ON-Units ERROR ON-Unit No GOTO ERROR ON-Unit GOTO

ERROR condition raised1 Message Message prior to ON-unit Message prior to ON-unit

ZERODIVIDE condition
raised2

Message Message prior to ON-unit Message prior to ON-unit

Notes:
1

Taking the square root of a negative number, data exception, and so on.
2

With no ZERODIVIDE ON-unit; thus, an implicit action is taken. Message is printed; ERROR condition
is raised.

Table 7 on page 35 shows when the runtime message for an ERROR condition is issued under Language
Environment with respect to the ERROR On-Unit.

Table 7. Language Environment ERROR ON-Unit and message for an ERROR condition

Condition No ON-units ERROR ON-unit No GOTO ERROR ON-unit GOTO

ERROR condition raised1 Message Message after ON-unit No message

ZERODIVIDE condition
raised2

Message Message prior to ON-unit Message prior to ON-unit

Notes:
1

Taking the square root of a negative number, data exception, and so on.
2

With no ZERODIVIDE ON-unit; thus, an implicit action is taken. Message is printed; ERROR condition
is raised.

The SNAP traceback message produced by ON ERROR SNAP continues to be issued before the ERROR
ON-unit receives control. The SNAP traceback message is not identical to the regular ERROR message.
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Differences in performing some fixed decimal divides with large precision
As of Enterprise PL/I V5R1, some fixed decimal divides with large precision are done using the
Decimal Floating-Point (DFP) facility. This might cause some ZERODIVIDE exceptions to be reported as
INVALIDOP.

Unhandled condition differences
If your OS PL/I application used to force an abend for an unhandled condition under OS PL/I run
time by using OS PL/I assembler user exit IBMBXITA or abend exit IBMBEER, you can use the
ABTERMENC(ABEND) option or the CEEBXITA user exit to force an abend under Language Environment.

To force an abend under Language Environment, use one of the following methods:

• Run your application with Language Environment ABTERMENC(ABEND) option. You cannot specify your
own abend code with the runtime option.

• Use Language Environment assembler user exit CEEBXITA to force an abend with your own abend code.

IBMBXITA and IBMBEER differences
Language Environment provides limited support for OS PL/I IBMBXITA and IBMBEER.

See “Considerations for using assembler user exits” on page 164 for details.

ABEND U4039 differences
An UNHANDLED condition of severity 2 or higher now produces an abend U4039 and optionally a system
dump if SYSUDUMP or SYSABEND ddname is present.

If ABTERMENC(RETCODE) is in effect, your application continues the termination with an abend code.
If you do not want to see the U4039 abend, Language Environment provides you with the facilities to
suppress it.

See "Abnormal Termination Exit" in z/OS Language Environment Installation and Customization under
OS/390 or z/OS Language Environment Customization for ways to suppress or change the U4039 abend.

Severity differences
Severities of some PL/I conditions are different under Language Environment.

See PL/I Language Reference for the severities.

Differences in PLICALLA and PLICALLB support
The interfaces described in this section are not recommended for use under Language Environment.

PLICALLA considerations
Language Environment provides support for OS PL/I applications that use the PLICALLA entry point. You
can also relink your program under Language Environment.

See “OS PL/I Routine Replacement Tool” on page 173 about details on how to relink an application under
Language Environment.

You can use PLICALLA as the primary entry point of a FETCHed/CALLed PL/I main load module; however,
the calling routine must pass only user arguments which are passed to a subroutine. If runtime options
are passed, they are treated as user arguments.

If you develop a new PL/I application and you want the main procedure to receive user arguments like a
subroutine, do one of the following:

• Receive control directly from IMS as follows:

– Using CEESTART or PLISTART as the primary entry point of the load module
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– Specifying the SYSTEM(IMS) compile-time option
• Receive control from an assembler program or a procedure by using a FETCH or CALL statement as

follows:

– Using CEESTART or PLISTART as the primary entry point of the load module
– Specifying the NOEXECOPS option and the SYSTEM(MVS) compile-time option
– Specifying either the BYADDR option or the BYVALUE option as necessary and appropriate for the

mechanism that the assembler code used to pass the parameters.

Language Environment support of PLICALLA is not available in the following environments:

CICS environment
Preinitialized environment
Nested enclave environment except the PL/I FETCHable main

PLICALLB considerations
Language Environment provides support for PL/I applications that use the PLICALLB entry point.

The following table shows the PLICALLB parameter mapping between OS PL/I and Language
Environment.

Table 8. Differences in PLICALLB argument list support

OS PL/I Language Environment

Address of the length of ISA storage for a
nonmultitasking program or the major task in
a multitasking program

Mapped to STACK(init_size)

Address of ISA storage Used as the initial STACK segment

Address of the length of ISA storage for each
subtask

Mapped to NONIPTSTACK(init_size)

Address of the maximum number of
concurrent subtasks

Mapped to PLITASKCOUNT(max_thread)

Address of the options word, in which the
following runtime options can be specified:

Supported as follows:

REPORT
SPIE|STAE
COUNT
FLOW
HEAP suboptions
TASKHEAP suboptions

REPORT mapped to RPTSTG
SPIE|STAE mapped to TRAP
COUNT ignored
FLOW  ignored
HEAP(,,KEEP|FREE)|(,,ANY|BELOW)
THREADHEAP(,,KEEP|FREE)|(,,ANY|BELOW)

Address of HEAP storage length for a
nonmultitasking program or the major task in
a multitasking program

Mapped to HEAP(init_size)

Address of HEAP storage Used as the initial HEAP segment

Address of HEAP increment for a
nonmultitasking program or the major task in
a multitasking program

Mapped to HEAP(,incr_size)

Address of HEAP for subtasks Mapped to THREADHEAP(,increment)

Address of ISA increment for a
nonmultitasking program or the major task in
a multitasking program

Mapped to STACK(,incr_size)
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Table 8. Differences in PLICALLB argument list support (continued)

OS PL/I Language Environment

Address of ISA increment for each subtask
(optional for a nontasking application)

Mapped to NONIPTSTACK(,incr_size)

When the above argument list is passed in through the PLICALLB entry point, the argument in the list
must either point to an address or be zero. The high-order bit ON in an argument indicates the end of the
argument list. R1 must contain the address of the argument list.

With Language Environment, the runtime options passed through the PLICALLB entry point are processed
as options specified on invocation of the application and have a higher precedence than CEEUOPT or
PLIXOPT options. The assembler user exit cannot be used to alter the runtime options passed through the
PLICALLB invocation.

To summarize, the runtime options passed in have the following precedence (from highest to lowest)
among Language Environment option specification methods:

1. Options defined at installation time that have the non-overrideable attribute
2. Options specified via the PLICALLB entry point
3. Options specified in the PLIXOPT string or in CEEUOPT
4. Option defaults defined at installation time

The user arguments passed to the PL/I main routine have the following precedence (from highest to
lowest):

1. Output from CXIT_PARM or AUE_PARM of the assembler user exit
2. User arguments passed in via the PLICALLB entry

Note: The input to CXIT_PARM or AUE_PARM of the assembler user exit is the first argument in the
PLICALLB parameter list, that is, the address of a vector of user argument addresses.

Language Environment encourages the use of above-16M-line storage. For compatibility with OS PL/I,
Language Environment maps the user-supplied ISA and HEAP storage to STACK and HEAP. With this
mapping, however, Language Environment still needs to issue some GETMAINs. Because user-supplied
ISA/HEAP storage is usually below the 16M line, below-16M-line storage can be quickly consumed under
Language Environment. How Language Environment manages storage is described in the z/OS Language
Environment Programming Guide.

Language Environment manages storage differently from OS PL/I. It divides storage into more categories
than the OS PL/I-supported ISA and HEAP. As a result, mapping the user-supplied OS PL/I ISA or
HEAP storage to Language Environment STACK or HEAP storage still requires GETMAINs during run time.
Further, Language Environment provides diagnostics to ensure the user-supplied length of ISA or HEAP
storage is a multiple of 8 bytes and the address is on a double-word boundary.

Language Environment also ensures that the location of the user-supplied ISA or HEAP storage matches
the location specification in the STACK or HEAP runtime option. The user-supplied HEAP storage is
ignored when all of the following conditions are true:

1. User-supplied heap storage is above the 16M line.
2. The ANYWHERE suboption of the HEAP option is in effect.
3. The main program is in AMODE(24).

Language Environment allocates below-16M-line storage using the init_sz24 and incr_sz24 suboptions
specified in the HEAP option.

Language Environment support of PLICALLB is not available in the following environments:

CICS
IMS
Preinitialized environment
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Nested enclave environment

Only one main routine is supported by the PLICALLB entry point.

Differences in preinitialization support
Enterprise PL/I does not support the old preinitialization scheme and you might want to consider
redesigning your applications.

Language Environment preinitialization services should be used with Enterprise PL/I in the redesigned
applications. However, if you want to run your preinitialized programs under Language Environment in the
interim while waiting for them to be redesigned, this section describes the differences that you might
want to consider before the migration.

The PL/I preinitialized program interface is supported with the following changes:

• The PL/I preinitialized program interface no longer supports the REINITIALIZE request modifier code. If
you attempt to use this function, it is diagnosed with the 4093-136 abend code.

• If the routine specified in the CALL request is not statically linked with the assembler driver and it
contains ILC, you must ensure the ILC environment is initialized by including the same ILC in the routine
specified in the INIT request.

• The TERM request no longer returns 1000 return code as OS PL/I run time did.
• Some of the return and reason codes for the service vector defined by OS PL/I have changed.

You must use the return and reason codes for the service vector defined by Language Environment
preinitialization services as described in z/OS Language Environment Programming Reference.

Language Environment preinitialization services support multiple preinitialization environments under
the same TCB. Multiple preinitialization environments under the same TCB is not supported by OS
PL/I. To understand how the service works, see "Using Preinitialization Services" in the z/OS Language
Environment Programming Guide.

Differences in PLISRTx support
OS PL/I applications containing PLISRTx invocations are supported by Language Environment for OS/390
& VM Release 1.4 or later; however, you must relink your applications if you are using Language
Environment Release 1.3 as your run time.

It is a good idea to relink your load module with Language Environment, regardless of the release you are
using, for the following reasons:

• Relinking allows the library routine to access the Language Environment-provided DFSORT interface for
a more integrated language and sort environment.

• Relinking allows the library routine to replace the 24-bit DFSORT parameter list with the extended
31-bit DFSORT parameter list.

You can relink your OS PL/I PLISRTx applications by using one of the following methods:

• Relinking the object module by using “OS PL/I Object Module Relinking Tool - APAR PN69803” on page
174

• Replacing the library routine by using “OS PL/I Routine Replacement Tool” on page 173
• Relinking the object module directly with Language Environment

Differences in multitasking support
Enterprise PL/I does not support multitasking.

You must change your applications to use multithreading, or use the PL/I for MVS & VM compiler. Note
also that you must use the POSIX(ON) runtime option for Enterprise PL/I multithreading code.
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Differences in OS PL/I shared library support
Enterprise PL/I does not support the old OS PL/I shared library.

Differences in DATE/TIME built-in functions
The DATETIME and TIME built-in functions now return the number of milliseconds in all environments.

The syntax and description of these built-in functions are in the PL/I Language Reference.

Differences in User Return Code
Language Environment supports a FIXED BIN(31) four-byte user return code value for PLIRETC,
PLIRETV, and OPTIONS(RETCODE). This support removes the restriction of maximum value 999. OS PL/I
applications must be relinked with Language Environment in order to take advantage of the four-byte user
return-code value.

The following table shows how PL/I user return code is supported:

Table 9. Return Code Behavior under Language Environment

Function OS PL/I load module OS PL/I object module
linked with Language
Environment

Enterprise PL/I load
module

PLIRETC built-in
function

2-byte value with
restriction of 999

4-byte value without
restriction of 999

4-byte value without
restriction of 999

PLIRETV built-in
function

2-byte value Lower 2 bytes of a 4-
byte value

4-byte value

RETCODE option Lower 2 bytes of R15 Lower 2 bytes of R15 2-byte value

For PLIRETC, relinked OS PL/I load modules can set a 4-byte user return code value.

Under Language Environment, the PL/I user return code is always reset to zero upon return from the
PLISRTx invocation. This is not the case with OS PL/I run time.

Differences in runtime messages
The format and content of runtime messages are different. If you have applications that analyze runtime
messages, you must change the applications to allow for the differences.

The following list describes some of the differences:

• The message number in the message prefix is four digits instead of three digits in the form IBMnnnnx,
where nnnn represents the message number and x represents the severity of the message.

• The message severity in the message prefix can be I, W, E, S, or C.
• The message text of some mixed-case English and Japanese messages has been enhanced. The

message text of uppercase English messages remains unchanged.

For details, see Language Environment Debugging Guide and Run-Time Messages.

Under Language Environment, runtime messages go to the MSGFILE destination specified in the runtime
option MSGFILE. The default for MSGFILE destination is SYSOUT. The user output still goes to SYSPRINT.
MSGFILE(SYSPRINT) is supported under Enterprise PL/I only after you have applied the PTFs for the
runtime APAR PQ78307. For more information about the MSGFILE option, see the z/OS Language
Environment Programming Guide.
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Differences in PLIDUMP
PLIDUMP now produces a Language Environment-style dump. The way you use PLIDUMP and the dump
output is different.

The following list the differences in the way you use PLIDUMP and the output produced. Compile unit
refers to the primary entry point of the external procedure, and Compile unit name refers to the name of
the external procedure.

• The ddname of the dump output file can be CEEDUMP, PLIDUMP, or PL1DUMP. If you do not define one
of these files, Language Environment creates a default CEEDUMP file to contain the dump output. The
LRECL of the dump output file must be at least 133 bytes to prevent dump records from wrapping, not
the 121 bytes required by OS PL/I.

• When you use the hexadecimal (H) option of PLIDUMP, you must specify the ddname CEESNAP for MVS,
or the file name CEESNAP for VM; otherwise, the H option is ignored. This data set contains the SNAP
dump output.

When you specify the hexadecimal (H) option under MVS, the output from SNAP includes all system
control program information (SDATA=ALL). OS PL/I provides only partial information (SDATA=CB, Q, and
TRT).

• When you use ILC, the dump output contains information related to other languages (for example,
C/C++ or COBOL).

• The identifier character string is limited to 60 bytes rather than the 90 bytes OS PL/I supported.
• The traceback section lists the compile-unit name associated with each entry point name. When the

entry point is a secondary entry point, the primary entry point name associated with the actual entry
point is not listed.

The traceback section also contains offsets relative to the address of the compile unit, as well as offsets
relative to the address of the real entry point.

• Runtime messages are in a separate section; they are no longer part of the traceback section.
• When you specify the BLOCK (B) option of PLIDUMP, the condition handler save areas appear in the

block section of the dump. If you do not specify the BLOCK option of PLIDUMP, the condition handler
save areas do not appear in the dump.

• If the program was compiled with the TEST compile-time option, and a begin-block has a label,
the begin-block is identified as Label:BEGIN block.. Otherwise, the begin-block is identified as
%BLOCKnn, where nn is the block count for the begin-block.

• Compiler-generated ILC subroutines now appear in the traceback section. They are identified as the
compile unit name concatenated with the suffix ILC.

• PL/I library routines that have Language Environment-defined Program Prologue Areas (PPAs) are
identified by name in the dump. If the library routines do not have Language Environment PPAs, they are
identified as Library(PL/I).

• A HEX dump of STATIC storage is included in the Language Environment-formatted dump. If more than
one routine from a compilation unit is on the stack when a dump is produced, static will be dumped only
once for that compilation unit.

• Assembler routines that conform to the rules for mimicking PL/I routines are identified by their CSECT
names in the dump output.

• PLIDUMP now conforms to National Language Support standards.
• PLIDUMP can supply information across multiple Language Environment enclaves. For example, if an

application running in one enclave FETCHes a main procedure (an action that creates another enclave),
PLIDUMP contains information about both procedures.
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Differences in storage report
The format, contents, and destination of the runtime storage report have changed.

Language Environment provides storage information equivalent to OS PL/I. The details of the storage
report is described in the z/OS Language Environment Programming Reference.

The PLIXHD declaration is no longer used to provide the heading for the runtime storage report. Instead,
use Language Environment's Callable Service, CEE3RPH, to specify the heading. If you do not use
CEE3RPH, the heading includes the main procedure name, date, and time of execution.

Differences in Interlanguage Communication support
There are some restrictions on support for ILC applications containing OS PL/I and other pre-Language
Environment language programs.

The restrictions fall into three groups:

• Fully supported load modules

Load modules containing OS PL/I and pre-Language Environment C/370 programs are supported under
Language Environment.

• Load modules that you must relink

Load modules containing OS PL/I and VS COBOL II Release 3 (or later) programs must be relinked with
Language Environment.

OS PL/I Version 2 Release 3 provides a migration aid, APARs PN69803 and PN69804, to allow you to do
relinking while you are under the OS PL/I Version 2 Release 3 environment. As long as the application is
relinked with PN69803 and PN69804 under OS PL/I Version 2 Release 3, the application is supported
under Language Environment. See “OS PL/I Object Module Relinking Tool - APAR PN69803” on page
174 for details of the migration aid.

• Unsupported ILC

ILC between OS PL/I and the following languages is not supported:

– Fortran (earlier than Language Environment Release 5)
– OS/VS COBOL
– VS COBOL II Version 1 Release 2 or earlier releases

For more information, see Language Environment for OS/390 & VM Writing Interlanguage Communication
Applications or z/OS Language Environment Writing Interlanguage Communication Applications.

The behavior of certain applications that use ILC might be different:

• Condition handling might behave differently. The major causes of differences in condition handling are
that the INTER option is now ignored, and that PL/I condition handling facilities can deal with conditions
occurring in non-PL/I routines whether or not you specify INTER.

• Under OS PL/I, in applications that used ILC, the environment initialization and termination of the
involved languages, including PL/I, could occur multiple times. With Language Environment, there is
only one runtime environment, and language-specific initialization and termination occurs only once.
Changes in behavior that you might see include opening and closing of files, releasing of allocated
storage, and invocation of establish ON-units.

Note: If you have designed your own code to manage your runtime environments, you should remove it
as part of your migration efforts. This private code is incompatible with Language Environment and will
conflict with the runtime environment.

For a complete description of how ILC works in the Language Environment runtime environment, see
either Language Environment for OS/390 & VM Writing Interlanguage Communication Applications or z/OS
Language Environment Writing Interlanguage Communication Applications.
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Differences in assembler support
With Language Environment, assembler programs that call a PL/I routine must follow the calling
conventions defined by Language Environment (for example, Register 13 pointing to a save area, save
areas properly back-chained, and the first word of the save area being zero).

For detailed information, see the z/OS Language Environment Programming Guide.

If your OS PL/I main program is called by an assembler program and you want to convert your assembler
program to use Language Environment-conforming assembler, you must either recompile your OS PL/I
program without OPTIONS(MAIN), or ensure the entry point receiving control is the real entry point of the
PL/I program. In either case, the called PL/I program is treated as a subroutine. Either of these programs
run under the same Language Environment enclave, where the assembler program is the main program
and the called PL/I program is a subroutine.

Your Language Environment-conforming assembler main program must explicitly include the Language
Environment-PL/I for MVS & VM signature CSECT, CEESG010, when calling an OS PL/I subroutine to
ensure the Language Environment-PL/I-specific runtime environment is initialized. There are three ways
Language Environment-conforming assembler can pass control to an OS PL/I subroutine:

1. Branch to a statically linked PL/I subroutine.
2. Use the Language Environment macro CEELOAD and branch to a separately linked PL/I subroutine.
3. Use assembler instructions such as LOAD and BALR to a separately linked PL/I subroutine.

The condition-handling behavior of the LINK from assembler is now clearly defined. For detailed
information, see the z/OS Language Environment Programming Guide.

Assembler programs that find the main parameter list
Assembler programs called from PL/I that use the save area back chain to find the parameter list passed
to the PL/I main program will no longer work when running on Language Environment. This is because the
number of save areas between the assembler program and the save area of the program that invoked the
PL/I main program has changed.

Assembler programs that need to find the parameter list passed to the PL/I main program can use the
CEEEDB_R13_PARENT field in the Language Environment EDB to obtain the save area address of the
program that invoked the PL/I main program.
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Chapter 7. Object module and load module
considerations

This chapter describes factors that affect the compatibility of OS PL/I object modules and load modules in
Language Environment.

The discussions include both OS PL/I Version 1 and OS PL/I Version 2 object modules and load modules.

All of the library routines in a load module must be from the same release of the runtime library. For
example, Language Environment stubs, OS PL/I shared library stubs, and OS PL/I resident library routines
cannot exist in the same load module.

To find out what tools are available to help you migrate your libraries to the Language Environment
runtime environment, see Appendix A, “Conversion and migration aids,” on page 173.

OS PL/I Version 1 object module and load module compatibility
Language Environment supports object modules and load modules for OS PL/I Version 1 with some
restrictions. You can continue to use most of your Version 1 object modules and load modules if you
observe the rules described in this section.

If a load module contains an OS PL/I Version 1 object module but is linked with OS PL/I Version 2 resident
library, the load module is considered an OS PL/I Version 2 load module and the rules for OS PL/I Version
2 apply. If the load module contains OS PL/I Version 1 Release 1.0 - 2.3 object modules, however, the
object module must be recompiled.

If a load module contains the OS PL/I abend exit, IBMBEER, the abend exit is ignored by Language
Environment. See “Considerations for using assembler user exits” on page 164 for more information on
this topic.

OS PL/I Version 1 Release 5.1

Object module
The object module is supported.

Load module not using shared library
• Main load module for MVS non-CICS nonmultitasking

The OS PL/I bootstrap routine, IBMBPIRA, always linked with a user load module, contains features
such as the fast initialization and termination that are not compatible with Language Environment.
A sample ZAP, IBMRZAPM, is provided in Language Environment SCEESAMP to help you deactivate
those incompatible features. The sample ZAP is described in “OS PL/I Version 1 Release 5.1 main load
module ZAP” on page 174.

ZAPped load modules continue to work under OS PL/I V1.5.1 and V2, as well as Language Environment;
however, performance degradation might occur if the original load module contains the fast initialization
and termination feature.

If you do not ZAP your load module, you must do one of the following steps:

– Relink your object module with Language Environment or OS PL/I Version 2.
– Use the “OS PL/I Routine Replacement Tool” on page 173 to replace the library routines in the load

module with Language Environment stubs.
• Main load module for MVS non-CICS multitasking

The load module is supported.
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• Main load module under CICS

The load module is not supported.
• Main load module under VM

The OS PL/I VM-specific bootstrap routine, DMSIBM, contains features that are not compatible with
Language Environment. A sample ZAP, IBMRZAPV, is provided in Language Environment SCEESAMP
to help you deactivate the incompatible features. The sample ZAP is described in “OS PL/I Version 1
Release 5.1 main load module ZAP” on page 174.

The ZAPped load module is supported under Language Environment only. It no longer works under OS
PL/I Version 1 or Version 2. If you do not ZAP your load module, you must do one of the following steps:

– Relink your object module with Language Environment or OS PL/I Version 2.
– Use the “OS PL/I Routine Replacement Tool” on page 173 to replace the library routines in the load

module with Language Environment stubs.
• FETCHed subroutine load module

The load module is supported.

Load module using the shared library
The load module is supported as long as the OS PL/I V1R5.1 Shared Library was created with all PLRSHR
options and the Shared Library, including the multitasking Shared Library, is replaced with Language
Environment stubs. The Shared Library needs to be replaced only once during Language Environment
installation.

If the Shared Library was not created with all PLRSHR options or the Shared Library is not replaced with
Language Environment stubs, the object module must be relinked with Language Environment or OS PL/I
Version 2, or you can replace the Shared Library stubs in the load module with Language Environment
stubs. After the object module is relinked or the load module is replaced, the OS PL/I Shared Library
feature is no longer used.

Note that Enterprise PL/I doesn't support the shared library. If you intend to migrate to Enterprise PL/I,
you should stop using the shared library. Under Language Environment, PL/I uses stubs instead of full size
resident modules and there is no need to use the shared library.

OS PL/I Version 1 Release 5
OS PL/I Version 1 Release 5 provides support only for MVS applications. VM and CICS are not supported
in Release 5.0.

Object module
The object module is supported.

Load module
The load module is not supported, whether or not you use the shared library. You must relink your
object module with Language Environment or OS PL/I Version 2, or you can use the “OS PL/I Routine
Replacement Tool” on page 173 to replace the library routines in the load module with Language
Environment stubs.

OS PL/I Version 1 Release 3.0 - Release 4.0

Object module
• Under MVS

The object module is supported except for the CICS macro language.
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• Under VM

The object module is supported.

Load module
The load module is not supported, whether or not you use the shared library. You must relink your
object module with Language Environment or OS PL/I Version 2, or you can use the “OS PL/I Routine
Replacement Tool” on page 173 to replace the library routines in the load module with Language
Environment stubs.

OS PL/I earlier than Version 1 Release 3.0
Object modules or load modules created earlier than Release 3.0 are not supported, and you must
recompile your application with a Language Environment-supported PL/I compiler or OS PL/I Version 2.

OS PL/I Version 2 object module and load module compatibility
In most cases, object modules and load modules created with OS PL/I Version 2 do not require relinking.

Earlier sections of this migration guide discuss OS PL/I features in more detail. Some of these features do
require relinking, however, and a few are no longer supported.

Language Environment supports OS PL/I applications that contain the PL/I assembler user exit,
IBMxXITA. See “Considerations for using assembler user exits” on page 164 for more information on
this topic.

Summary of support for OS PL/I object modules and load modules
This topic summarizes the PL/I object module and load module support described in this section.

Exceptions to support are shown in the footnotes and are described elsewhere in a related section.

Table 10. Summary of object module and load module support by Language Environment

Support description V2 V1R5.1 V1R5.0 V1R3.0-
V1R4.0

Earlier than
V1R3.0

Main load module Yes3 Yes1,3 No No No

Fetched subroutine load
module

Yes3 Yes3 No No No

Object module Yes Yes Yes Yes2 No

Exceptions:

1. MVS non-CICS nonmultitasking load modules and VM load modules are not supported unless specific action
is taken. Review “Load module not using shared library” on page 45 for what action you need to take to
enable support for these modules.

2. CICS macro language is not supported as described in “Object module” on page 46 under “OS PL/I Version
1 Release 3.0 - Release 4.0” on page 46.

3. Shared library must be created with all PLRSHR options and must be replaced with Language Environment
stubs. Review “Differences in OS PL/I shared library support” on page 40 for actions you need to take to
make this happen.
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Chapter 8. Link-Edit considerations
This chapter describes factors you must consider when you link-edit an object module produced by OS
PL/I.

Topics discussed include symbol tables and math routines.

SCEERUN
When you run your OS PL/I application under Language Environment and you use existing JCL, ensure
that your STEPLIB or JOBLIB statement includes SCEERUN, unless you TASKLIB or LINKLIB which
already includes SCEERUN.

Symbol table considerations
If you link-edit an object module produced by different releases of PL/I, and if the object module contains
symbol tables for external variables, the symbol table that appears in the resultant load module must be
the one produced by the most recent release of PL/I.

The compiler produces an object module that contains external symbol table control sections (CSECTs) if
your program includes one or more of the following PL/I features for external variables:

• GET DATA statements
• PUT DATA statements
• The TEST(SYM) compile-time option

If your program uses one or more of these features with external variables, you must ensure that the
correct symbol table appears in your load module. Place the object module produced by the most recent
release of PL/I ahead of all other object modules in the link-edit job stream. If more than one object
module produces a symbol table CSECT with the same name, the linkage editor keeps the symbol table
CSECT that it encounters first and discards the other symbol tables.

For example, suppose that you link-edit an object module produced by OS PL/I Version 1 Release 5.1
with an object module produced by OS PL/I Version 2 Release 3. Put the object module produced by OS
PL/I Version 2 Release 3 ahead of the object module produced by OS PL/I Version 1 Release 5.1 in the
link-edit job stream. By doing this, the linkage editor keeps the symbol table produced by OS PL/I Version
2 Release 3 if both object modules produce symbol tables.

NCAL linkage editor option
Under Language Environment, the NCAL linkage editor option continues to be required when you link-edit
your subroutine object modules for future use.

Load modules must not contain Language Environment stubs nor OS PL/I resident library routines.

ENTRY cards
The entry point for a MAIN program compiled with the OS PL/I compiler is PLISTART, but the entry point is
CEESTART if the MAIN is compiled with the PL/I for MVS & VM compiler or any later compiler.

If an ENTRY card must be used during the building of a batch application, you should not use CEESTART
for a program compiled with the OS PL/I compiler.
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Using OS PL/I math routines
Language Environment provides a set of math routines, including routines for exponentiation. For most
commonly used routines, Language Environment produces more accurate results than OS PL/I.

Some of the Language Environment routines also have better performance than OS PL/I. You should use
the Language Environment-provided math routines.

Language Environment also provides the OS PL/I math routines to help you to migrate to Language
Environment; however, the OS PL/I math routines are provided for compatibility only and will be
withdrawn in the future.

If your application must use the OS PL/I math routines under Language Environment, place SIBMMATH in
front of SCEELKED when you link-edit your object module.

Enterprise PL/I for z/OS does not provide the math routines that were in OS PL/I.
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Chapter 9. Subsystem considerations
This chapter discusses subsystem-specific considerations that you need to know when you migrate your
applications running under CICS, IMS, and Db2.

CICS considerations
Language Environment provides the same level of OS PL/I object module and load module support as for
non-CICS.

See Chapter 7, “Object module and load module considerations,” on page 45 for details.

If you are running under CICS Version 3 Release 3, you must ensure that the CICS APAR PN38032 is
installed. Without PN38032, your application trying to use Language Environment will receive the APLE
abend.

The CICS Storage Protect facility was introduced under CICS 3.3. This provides more data integrity and
security for the application program and especially for the entire CICS region. Because of the new feature,
you might discover that some of the successfully running OS PL/I applications start to fail with ASRA(0C4)
abend and the CICS message DFHSR0622.

If the above problem is happening in your OS PL/I application program, you can try either of the following
two methods to fix your problem:

1. Set the CICS system initialization parameter RENTPGM=NOPROTECT. This sets the protection of the
user program in user key. The default for RENTPGM is PROTECT.

2. Relink your OS PL/I application program under Language Environment with APAR PN38032 installed.

If the stream output function is used in your OS PL/I CICS application, especially the PUT DATA;
statement, it might trigger the above error. PL/I stream output function is intended for debugging
purposes only. For performance reasons, it is recommended that you do not use it in production
programs.

Updating CICS system definition (CSD) file
When you bring up a CICS region with Language Environment, you must ensure the module names listed
in Language Environment CEECCSD are defined in the CSD.

You can locate CEECCSD in SCEESAMP. If you use the CICS Version 4 autoinstall facility, you do not need
to define Language Environment modules manually in the CSD.

Error handling
A diagnostic message is issued only if there is no ERROR ON-unit established in the program, or the
ERROR ON-unit does not recover from the condition by using a GOTO out of block.

Restrictions on user-written condition handlers under CICS
Some EXEC CICS commands cannot be used within a user-written condition handler established by
CEEHDLR, or within any routine called by the user-written condition handler.

The following EXEC CICS commands are not allowed:

• EXEC CICS ABEND
• EXEC CICS HANDLE AID
• EXEC CICS HANDLE ABEND
• EXEC CICS HANDLE CONDITION
• EXEC CICS IGNORE CONDITION
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• EXEC CICS POP HANDLE
• EXEC CICS PUSH HANDLE

All other EXEC CICS commands are allowed within a user-written condition handler. However, they must
be coded by using the NOHANDLE option, the RESP option, or the RESP2 option. This prevents additional
conditions being raised due to a CICS service failure.

Macro-level interface
The CICS macro-level interface is not supported.

FETCHing a PL/I MAIN Procedure
CICS does not support PL/I FETCHing a PL/I MAIN procedure.

STACK runtime option
This topic gives you an overview of the Language Environment support for the STACK runtime option.

Language Environment supports PL/I for MVS & VM applications that use the runtime option
STACK(,,ANY).

Language Environment also supports STACK(,,ANY) for OS PL/I applications that have been relinked with
Language Environment as long as the applications meet the following conditions:

• The application contains no edited stream I/O (for example, EDIT was not used in a PUT statement).
• The application specifies AMODE(31).

Runtime output
When a program is compiled with DISPLAY(STD), all runtime output is transmitted to a CICS transient
data queue CESE.

When a program is compiled with DISPLAY(WTO), the DISPLAY output is routed to the CICS JESLOG. All
other runtime output is transmitted to a CICS transient data queue CESE.

Language Environment ignores the MSGFILE option under CICS. Figure 1 on page 52 shows format of
the output data queue.

Figure 1. CESE Output Data Queue

In addition, PL/I transient queues CPLI and CPLD are no longer used. As a result, you do not need to
specify entries for the CPLI and CPLD in the CICS Destination Control Table (DCT).

Abend codes used by PL/I under CICS
The APLx abend codes that were issued under OS PL/I Version 2 are no longer issued. Instead, Language
Environment-defined abend codes are issued.

For more information about Language Environment abend codes, see z/OS Language Environment Run-
Time Messages.
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IMS considerations
Language Environment provides the same level of OS PL/I object and load module support for IMS as for
non-IMS.

See Chapter 7, “Object module and load module considerations,” on page 45 for details.

Interfaces to IMS
Language Environment supports the PLITDLI, ASMTDLI, and EXEC DLI interfaces from a PL/I routine.

SYSTEM(IMS) compile-time option
The SYSTEM(IMS) option, available in OS PL/I Version 2, was supported for PL/I IMS applications only.

The main procedure of an IMS application must use the POINTER data type for its parameters.

PLICALLA support in IMS
The OS PL/I PLICALLA entry point is supported under Language Environment; however, it is not a
recommended interface for IMS and support can be withdrawn at any time.

Instead, use the SYSTEM(IMS) compile-time option and the PLISTART or CEESTART entry point.

Language Environment provides the same support for OS PL/I PLICALLA applications; however, if you
recompile your main load module with PL/I for MVS & VM and want to continue to use PLICALLA, you
must follow additional rules. See “PLICALLA considerations” on page 36 for details.

PSB language options supported
Language Environment supports PL/I applications with the following PSBGEN LANG options in the
supported releases of IMS:

IMS/ESA Version 4
Table 11 on page 53 shows support for PSB LANG options in IMS/ESA Version 4 Release 1, and later
releases. 

Table 11. PSB LANG options for IMS/ESA Version 4 Release 1, and later

SYSTEM option Entry point LANG=

IMS CEESTART, PLISTART PLI or other values except
PASCAL

IMS PLICALLA1 PLI

Omitted CEESTART, PLISTART Illegal

Omitted PLICALLA1 PLI

Note:

1. Supported only for compatibility.

Storage usage considerations
With IMS/ESA Version 3 Release 1, the parameters passed to the IMS interfaces are no longer restricted
to the area below the 16M line.

The parameters will most likely be placed above the 16M line if you use the following methods:

• Use the ANYWHERE suboption of the HEAP runtime option. It applies to variables with the
CONTROLLED or BASED attribute because their storage is obtained from the heap.
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• Use the ANYWHERE suboption of the STACK runtime option. If you relink your OS PL/I application with
Language Environment and your application does not use any edited stream I/O, or you recompile your
application with PL/I for MVS & VM, you can use STACK(,,ANYWHERE) if your application is AMODE(31).
In this case, the variables in automatic storage are placed above the 16M line.

• Place parameters in static storage and make sure the load module attribute used is RMODE(ANY).

Coordinated condition handling under IMS
Language Environment and IMS condition handling is coordinated, meaning that if a program interrupt
or abend occurs when your application is running in an IMS environment, the Language Environment
condition manager is informed whether the problem occurred in your application or in IMS.

If the problem occurs in IMS, Language Environment, as well as any invoked HLL-specific condition
handler, percolates the condition back to IMS.

With Language Environment runtime option TRAP(ON), Language Environment continues to support
coordinated condition handling for the PLITDLI and ASMTDLI interface invoked from a PL/I routine.

With IMS/ESA Version 3 with PTF UN4928 or IMS/ESA Version 4, Language Environment also supports
the coordinated condition handling for CEETDLI, CTDLI from a C routine, CBLTDLI from a COBOL program,
AIBTDLI from a PL/I program, and ASMTDLI from a non-PL/I program.

Note that if a program interrupt or abend occurs in your application outside of IMS, or if a software
condition of severity 2 or greater is raised outside of IMS, the Language Environment condition manager
takes normal condition handling actions described in the z/OS Language Environment Programming Guide.
In this case, in order to give IMS a chance to do database rollback, you must do one of the following:

• Resolve the error completely so that your application can continue.
• Issue a rollback call to IMS, and then terminate the application.
• Make sure that the application terminates abnormally by using the ABTERMENC(ABEND) runtime option

to transform all abnormal terminations into system abends in order to cause IMS rollbacks.
• Make sure that the application terminates abnormally by providing a modified assembler user exit

(CEEBXITA) that transforms all abnormal terminations into system abends in order to cause IMS
rollbacks.

The assembler user exit you provide should check the return code and reason code or the
CEEAUE_ABTERM bit, and requests an abend by setting the CEEAUE_ABND flag to ON, if appropriate.
See the z/OS Language Environment Programming Guide for details.

Performance enhancement with Library Retention (LRR)
If you use LRR, you can get an improvement in performance.

See “Improving CPU utilization” on page 119 for details.

Db2 considerations
There are no special considerations for using Db2 other than the considerations described in “IMS
considerations” on page 53.
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Part 4. Moving to the new compiler
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Chapter 10. Understanding the limitations of the new
compiler

In addition to not supporting VM, the new compiler has various other limitations that you should
understand. This chapter lists and explains these differences.

Language Environment requirements
Enterprise PL/I 6.1 is supported only on Language Environment for z/OS 2.4 (5650-ZOS) or later.

Language not supported
The compiler will flag any language that is not supported.
Multitasking

The multitasking language supported by the old compilers is not supported by the new compiler.

However, the new compiler does support multithreading. But, in order to use the multithreading
facilities, your code must run with the POSIX(ON) option.

For more information about the multithreading statements, see the PL/I Language Reference.

CHECK
PL/I for MVS & VM dropped support for the CHECK statement, the CHECK prefix, and the CHECK
condition, and the new compiler also does not support these constructs.

CHARSET(48) and CHARSET(BCD)
Support for these options were dropped by OS PL/I Version 2. However, there is an IBM-supplied tool
that will convert your source.

EGCS
OS PL/I Version 1 supported EGCS, which was a precursor to the GRAPHIC support in OS PL/I Version
2, which dropped the support for EGCS. The new compiler also does not support EGCS.

Fortran
The new compiler does not support the remapping of Fortran parameters. In particular, a two-
dimensional array passed from Fortran to PL/I will be seen by PL/I as if it were transposed.

Invalid code
The new compiler does not support invalid code even if it was sometimes accepted by the old
compiler. For example, the old compiler would allow the CHAR built-in function to be applied to a FILE
VARIABLE (even though the old compiler documented that the arguments to the CHAR built-in must
have computational type). The new compiler will flag such invalid code with a severe message.

Language restricted
Except where indicated, the compiler will flag the use of any language that is restricted.

RECORD I/O
RECORD I/O is supported but with restrictions.

• REGIONAL(1) files larger than 2.1 Gigabytes are not supported.
• The EVENT clause on READ/WRITE statements is not supported.
• The UNLOCK statement is not supported.
• The following file attributes are not supported:

– BACKWARDS
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– EXCLUSIVE
– TRANSIENT

• The following options of the ENVIRONMENT attribute are not supported, but their use is flagged only
under LANGLVL(NOEXT):

– ADDBUFF
– ASCII
– BUFFERS
– BUFOFF
– INDEXAREA
– NCP
– NOWRITE
– REGIONAL(2)
– REGIONAL(3)
– SIS
– SKIP
– TOTAL
– TP
– TRKOFL

Note that because the TOTAL option of the ENVIRONMENT attribute is not supported, I/O to files using
the TOTAL option will generally not perform as well as under the old compilers.

However, the old implementation of the TOTAL option relied on the compiler generated code knowing
both about the layout of the library's I/O control blocks and the layout of the DFSMS control blocks. This
meant that if either of these changed, that code would be broken. Consequently, the library code could
not be changed and had to continue to use (or fake the use of) a fixed level of the DFSMS control blocks.
One consequence of this was that the old library could not use I/O buffers that were above the line -
because the compiler generated code in the user's load modules knew they were below the line. (And if
Enterprise PL/I were to start implementing the TOTAL option, then it, in turn, would never be able to use
buffers that were above the line or above the bar). This rigid interdependence is poor design that hurts
even those that do not use the TOTAL option.

Furthermore, the TOTAL option had inherent dangers because the code bypassed all of the library code
and hence error handling was problematic at best.

STREAM I/O
STREAM I/O is supported but with restrictions that apply to PUT/GET DATA statements.

• DEFINED is not supported if both of the following conditions are true:

– The DEFINED variable is BIT or GRAPHIC.
– The DEFINED variable has the POSITION attribute.

• DEFINED is not supported if its base variable is an array slice or an array with a different number of
dimensions from the defined variable.

Structure expressions
Structure expressions as arguments are not supported unless there is a parameter description that
specifies all constant extents.

However, structure expressions are not supported in any GENERIC reference. Mismatched parameter and
argument structures are also not supported in any GENERIC reference.
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Array expressions
An array expression is not allowed as an argument to a user function unless it is an array of scalars of
known size. Consequently, any array of scalars of arithmetic type can be passed to a user function, but
there might be problems with arrays of varying-length strings.

However, array expressions are not supported in any GENERIC reference. Mismatched parameter and
argument arrays are also not supported in any GENERIC reference.

The following example shows a numeric array expression supported in a call:

     dcl x entry, (y(10),z(10)) fixed bin(31);

     call x(y + z);

The following unprototyped call would be flagged because it requires a string expression of unknown size:

     dcl a1 entry;
     dcl (b(10),c(10)) char(20) var;

     call a1(b || c);

However, the following prototyped call would not be flagged:

     dcl a2 entry(char(30) var);
     dcl (b(10),c(10)) char(20) var;

     call a2(b || c);

DEFAULT statement
Factored default specifications are not supported.

For example, the following statement is not supported:

   default ( range(a:h), range(p:z) ) fixed bin;

But you could change this statement to the following equivalent and supported statement:

   default range(a:h) fixed bin, range(p:z) fixed bin;

The use of a "(" after the DEFAULT keyword is reserved for the same purpose as under the ANSI standard:
after the DEFAULT keyword, the standard allows a parenthesized logical predicate in attributes.

Extents of automatic variables
An extent of an automatic variable cannot be set by a function nested in the procedure where the
automatic variable is declared, or by an entry variable unless the entry variable is declared before the
automatic variable.

Built-in functions
Some built-in functions are supported with exceptions and restrictions.

• The PLITEST built-in function is not supported.
• Pseudovariables permitted in DO loops are restricted to the following:

– IMAG
– REAL
– SUBSTR
– UNSPEC

• The POLY built-in function has the following restrictions:
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– The first argument must be REAL FLOAT.
– The second argument must be scalar.

• The COMPLEX pseudovariable is not supported.
• Under the RULES(NOLAXDCL) option, the compiler will flag any declare of a name, such as DISPLAY,

as a built-in function if there is no such PL/I built-in function. Even under the more forgiving
RULES(LAXDCL) option, the compiler will flag any declare of a name, such as DISPLAY, as a built-in
function if there is no such PL/I built-in function if the code attempts to use the name as a built-in
function (rather than merely declare it).

DEFINED BIT aggregates
If a DEFINED variable is a structure or union containing any elements that are UNALIGNED NONVARYING
BIT, all array bounds and string lengths in the DEFINED variable must be specified as constants.

The compiler will issue the S-level message IBM1900I when this restriction is violated.

OPTIONS(REENTRANT)
This option is a part of the OPTIONS for a PROCEDURE or BEGIN statement, but it is ignored.

On the z/OS platform, all programs compiled with the RENT compiler option are reentrant, and other
programs are reentrant if they do not alter any static variables (which might require use of the
NOWRITABLE compiler option).

iSUB defining
Support for iSUB defining is limited to arrays of scalars.

LABEL arrays
The Enterprise PL/I compiler does not require that arrays of statement labels be declared.

If such an array is declared, it should either be declared without a storage class (and without an active
DEFAULT statement that would imply a storage class), or declared as STATIC. The old PL/I compiler would
require either the former or that the array be declared as AUTOMATIC. Hence if you want your code to
be accepted by both compilers, you must declare such an array, but you should declare it neither as
AUTOMATIC nor as STATIC.

DBCS
DBCS can be used only in G and M constants, identifiers, and comments.

G literals can start and end with a DBCS quotation mark followed by either a DBCS G or an SBCS G.

GRAPHIC and POSITION
In OS PL/I, if a variable is declared with attributes GRAPHIC and POSITION, the POSITION value
is interpreted as a count of bytes into the base variable. In Enterprise PL/I, the POSITION value is
interpreted as a count of GRAPHIC characters into the base variable.

GRAPHIC and POSITION is similar to BIT and POSITION, where the POSITION value is interpreted as a
count of bits into the base variable.
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Macro preprocessor
Suffixes that follow string constants are not replaced by the macro preprocessor—whether or not these
are legal PL/I suffixes—unless you insert a delimiter between the ending quotation mark of the string and
the first letter of the suffix.

Note that the OS PL/I V2R1 compiler introduced this change, and so this is not a difference between the
Enterprise PL/I compiler and either the PL/I for MVS & VM compiler or the OS PL/I V2Rx compilers. This
restriction is consequently not flagged.

As an example, consider the following code:

    %DCL (GX, XX) CHAR;
    %GX='||FX';
    %XX='||ZZ';
    DATA = 'STRING'GX;
    DATA = 'STRING'XX;
    DATA = 'STRING' GX;
    DATA = 'STRING' XX;

Under OS PL/I V1, this produces the source:

    DATA = 'STRING'||FX;
    DATA = 'STRING'||ZZ;
    DATA = 'STRING' ||FX;
    DATA = 'STRING' ||ZZ;

Under Enterprise PL/I, it produces the following source:

    DATA = 'STRING'GX;
    DATA = 'STRING'XX;
    DATA = 'STRING' ||FX;
    DATA = 'STRING' ||ZZ;

Options restricted
Some options or suboptions are ignored.

The following compiler options are restricted:

• INCLUDE

The NOINCLUDE option is not supported, and the old INCLUDE option is essentially always enabled.
• LANGLVL

The NOSPROG and SPROG suboptions are not supported - SPROG is always in effect.

The SAA and SAA2 suboptions are not supported, because the SAA compilers are no longer in service.
• LIST

The LIST option is supported, but no suboptions of the LIST option are supported - under the new
compiler, the psuedo-assembly listing always appears in one column.

• STMT

The STMT option is supported, but it currently has no effect on the output produced by the LIST, MAP, or
OFFSET options.

• SYSTEM

The CMS and CMSTPL options are not supported (because VM is not supported).

Options not supported
This topic lists compiler options that are no longer supported by the compiler.

• CEESTART
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• CONTROL
• COUNT

The COUNT option is not supported, and it is also not supported by the PL/I for MVS & VM compiler.
• DECK
• ESD

The ESD option is not supported, but an External Symbol Dictionary is produced if either the LIST or
MAP option is in effect.

• FLOW

The FLOW option is not supported, and it is also not supported by the PL/I for MVS & VM compiler.
• GOSTMT 
• HGPR
• IMPRECISE 
• LMESSAGE 
• SEQUENCE
• SIZE
• SMESSAGE

Restrictions on other interfaces to the compiler

Batch compilation
Compilation is not performed in PROCESS-delimited chunks.

This difference has the following consequences:

• Options on later sets of PROCESS statements are ignored.
• One TEXT deck or .o is produced.
• One listing file with one set of messages is produced.
• External variables with the same name must match.

The following example demonstrates a batch compilation. In this case, the mismatches in b and x would
be flagged by the new compiler only.

 *process opt(0);

  a: proc;
    dcl b ext entry(1,2 char(2), 2 char(2));
    dcl
      1 x ext,
        2 x1a char(2),
        2 x1b char(2);

    call b(x);
  end;

 *process opt(2);

  b: proc(p);
    dcl p pointer;
    dcl
      1 x ext,
        2 x1a bit(16),
        2 x1b bit(16);

  end;

You can imitate how batch compilations worked by using a program like the one in Appendix C, “Batch
processing sample,” on page 181.
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Invoking the compiler from assembler
The new compiler cannot be invoked from the assembler by calling IEL0AA.

The new DD option can be used to specify a list of alternate ddnames for the compiler to use. This
provides the key functionality offered by invoking the old compiler from the assembler and should
alleviate the need to invoke the compiler from the assembler.

Note also that the compiler can be invoked from an Enterprise PL/I program by using the SYSTEM built-in
function.

However, if you must invoke the compiler from the assembler, you can do so as long as your assembler
code satisfies these requirements:

• The assembler code must be LE-enabled.
• It must load IBMZPLI using CEEFETCH.
• When it calls IBMZPLI, register 1 must point to the address of a varying string containing the options to

be passed in the compilation.

Compiling under TSO
There is no support for compilations under TSO.

This means that the ISPF 4.5 option is useless with Enterprise PL/I. You should probably disable this
option or use it for another purpose.

However, you can invoke the compiler under z/OS UNIX by using the pli command. For more information
about using the compiler under z/OS UNIX, see the Enterprise PL/I for z/OS Programming Guide.

For Enterprise PL/I 6.1, you must use the pli command file that was shipped with the 6.1 compiler. For
releases before Enterprise 6.1, you must use the pli command with that earlier release.

Specifying INCLUDE data set names
The DD statement corresponding to a %INCLUDE statement should specify the name of the PDS (or
PDSE) containing the file to be included, but it must not specify the name of the member file.

For example, to include the file DEBUG from the data set INCLUDE.PLI by using the TEST DD statement,
you can use the following the %INCLUDE statement and corresponding DD statement:

%INCLUDE statement DD statement

  %INCLUDE TEST(DEBUG); TEST   DD DISP=SHR,DSN=INCLUDE.PLI

The following DD statement would not be accepted by the new compiler.

TEST   DD DISP=SHR,DSN=INCLUDE.PLI(DEBUG)

Defining the SYSLIN data set
Output in the form of one or more object modules from the compiler is stored in the SYSLIN data set if you
specify the OBJECT compile-time option. This data set is defined by the DD statement.

The SYSLIN DD must specify a sequential data set, not a PDS or PDSE.
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Compiler time and space requirements
The LRECL for the compiler SYSPRINT data set is 137. The new compiler can require much more time and
use much more storage when generating your code.

This is especially true under OPT(2) or OPT(3), in which case some compiles might need a region greater
than 100M and might possibly require several minutes to compile. Using the options OPT(2) or OPT(3)
without the option DFT(REORDER) can easily lead to this problem and should be avoided.

When the region size is too small for a compile, the compilation will often end with this message:
IBM1936I S Invocation of compiler backend ended abnormally.

In these situations, you will also find in SYSOUT the following message from the compiler backend:
SEVERE ERROR IBM5002: Virtual storage exceeded.

If you see this combination of messages, you should either split your program into several smaller
programs, or recompile using a larger region size.

The new compiler always runs with ALL31(ON) and with HEAP and STACK obtained from above the 16MB
line.

AMODE(24) restrictions
AMODE(31) and RMODE(ANY) are the default settings for Enterprise PL/I applications. To run an
application in AMODE(24), you must complete some tasks.

1. Compile all the PL/I source with the compiler options NORENT and NOGOFF.
2. Link with the SIBMAM24 dataset concatenated in front of the SCEELKED data set.
3. Run with the Language Environment runtime option ALL31(OFF) and STACK=(,,BELOW,,,).

Notes:

1. There is no support for AMODE(24) in ILC applications, including those involving both Enterprise PL/I
and older PL/I. The single exception to this restriction is ILC between Enterprise PL/I and supported
High-Level Assembler releases.

2. When you include the SIBMAM24 library in the SYSLIB concatenation for the binder, you are making
available library modules that have mode switching capability. However, including the SIBMAM24
library will not by itself cause the resulting load module to be AMODE(24).

3. If you try to run an Enterprise PL/I program in AMODE(24) without linking the SIBMAM24 library
before the SCEELKED data set in the SYSLIB concatenation for the binder, your application is invalid
and can lead to obscure abends. For example, the first out-of-block GOTO will most likely cause an
abend in the library SETJMP routine.

EXTERNAL names restricted
You must not declare as EXTERNAL a variable whose name, unless it is the name of an IBM-provided
function such as PLIXOPT or PLITDLI, begins with any of the following:

• @@
• CEE
• IBM
• PLI

The code generator for the new compiler uses C functions to perform some tasks, particularly under
OPT(0). As a result, unless you are intending to invoke the C function directly, you must not declare as
EXTERNAL a variable with any of the following names:

• LONGJMP
• MEMCCPY
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• MEMCHR
• MEMCMP
• MEMCPY
• MEMMOVE
• MEMSET
• SETJMP
• STRLEN
• SYSTEM

The PLIXHD variable is no longer used as the heading in storage reports. Consequently, the identifier
PLIXHD is no longer reserved, and you can declare it and use it as you would declare and use any other
variable (as long as you do not declare it EXTERNAL).

Listing differences
The new compiler produces a listing that is significantly different from the listing produced by the old
compiler.

These are some of the differences:

• The LRECL for the listing is 137.
• The first line of the source will not be reflected in the first line of the first page, but the first 43 (or the
first 25 if the DBCS option is in effect) characters from that line will be incorporated into the header line
of the following pages (except for some parts of the pseudoassembler listing).

Control block differences
The new compiler uses some different internal control blocks in its generated code from those used by
the old compiler.

If you had code that knew the layout and meaning of such control blocks, that code is highly likely not to
work now and will probably have to be changed. Some examples where these differences would require
code changes:

• Assembler code that "knows" the layout of a PL/I label variable and uses that to try to branch back from
assembler into PL/I code

• Assembler code that "knows" the layout of a PL/I file variable and associated file control block and uses
that to try to get the DCB for a file

ISAM support differences
The Enterprise PL/I compiler provides no support for ISAM datasets.
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Chapter 11. Understanding the new compiler's
options

This section describes some important compiler options, and after a description of some important
defaults, it describes choices you can make to improve compatibility, performance, quality, and test.

If you want to ignore all the discussion in this section and blindly try to maximize compatibility at all costs,
follow these suggestions:

1. Use the following default options:

• BACKREG(5)
• BIFPREC(15)
• CMPAT(V2)
• EXTRN(FULL)
• LIMITS(EXTNAME(7))
• NORENT

2. Specify the following additional, nondefault options:

• COMMON
• DFT(NOBIN1ARG)
• DFT(LINKAGE(SYSTEM))
• DFT(OVERLAP)
• NOREDUCE
• NORESEXP
• RULES(LAXCTL)
• RULES(NOLAXINOUT NOLAXSEMI)
• STATIC(FULL)
• NOWRITABLE(PRV)

The rest of this section describes these and other options in detail so that you can understand the
consequences of your choices.

Note that you can also change the IBM defaults for the compiler option by running the job IBMZWIOP
when you install the compiler, or by applying a usermod to the module IBMZIOP after you have installed
the compiler.

Understanding the effect of default options on compatibility
This section describes some of the default settings for the compiler options and why you might want to
use them.

BACKREG(5)
The BACKREG option controls the backchain register, which is the register used to pass the address of a
parent routine's automatic storage when a nested routine is invoked.

For best compatibility with PL/I for MVS & VM, OS PL/I V2R3 and earlier compilers, you should use
BACKREG(5).

All routines that share an ENTRY VARIABLE must be compiled with the same BACKREG option, and it is
strongly recommended that all code in application be compiled with the same BACKREG option.
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Note that code compiled with VisualAge PL/I effectively used the BACKREG(11) option. Code compiled
with Enterprise PL/I V3R1 or V3R2 also used the BACKREG(11) option by default.

BIFPREC(15)
The BIFPREC option controls the precision of the FIXED BIN result returned by various built-in functions.

BIFPREC affects the following built-in functions:

• COUNT
• INDEX
• LENGTH
• LINENO
• ONCOUNT
• PAGENO
• SEARCH
• SEARCHR
• SIGN
• VERIFY
• VERIFYR

The effect of the BIFPREC compiler option is most visible when the result of one of the above built-in
functions is passed to an external function that has been declared without a parameter list. For example,
consider the following code fragment:

  dcl parm char(40) var;
  dcl funky ext entry( pointer, fixed bin(15) );
  dcl beans ext entry;
  call beans( addr(parm), verify(parm),' ') );

Suppose that the function beans actually declares its parameters as POINTER and FIXED BIN(15). If the
code above is compiled with the option BIFPREC(31) and if it is run on a big-endian system such as z/OS,
the compiler will pass a four-byte integer as the second argument and the second parameter will appear
to be zero.

Note that the function funky would work on all systems with either option.

The BIFPREC option does not affect the built-in functions DIM, HBOUND, and LBOUND. The CMPAT option
determines the precision of the FIXED BIN result returned by these three functions: under CMPAT(V1),
these array-handling functions return a FIXED BIN(15) result, while under CMPAT(V2) and CMPAT(LE),
they return a FIXED BIN(31) result.

Related information
“CMPAT(V2)” on page 68
In Enterprise PL/I V3R2 or later, CMPAT(V2) is the default. This default will ease your migration.

CMPAT(V2)
In Enterprise PL/I V3R2 or later, CMPAT(V2) is the default. This default will ease your migration.

CMPAT(V2) has the following effects:

• All descriptors will be the same as those generated by the OS PL/I V2R3 and PL/I for MVS & VM
compilers.

• Functions returning a string will also use a string locator descriptor (as did the old compilers) for the
return value.

CMPAT(V2) does not prevent the use of any new feature of Enterprise PL/I. However, if you have
assembler code that examines or builds PL/I descriptors (even if only for strings), the CMPAT(V2) option
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must be used. For example, Db2 contains such assembler code where it invokes PL/I stored procedures,
and therefore, your stored procedures that are written in PL/I must be compiled with CMPAT(V2).

EXTRN(FULL)
By default, the Enterprise PL/I compiler will not discard unused EXTERNAL ENTRYs.

This would cause problems if the EXTRN for a discarded entry was used to force the linker to resolve
other references. For example, this would cause problems if your program called the secondary entry
point B inside a procedure called A, but contained a declare but no references for A itself.

Note, however, this option will cause EXTRNs to be emitted for all declared external ENTRYs. If you
include a file with all the declares potentially used by your code, this can populate your text decks with a
large number of EXTRNs.

LIMITS(EXTNAME(7))
With Enterprise PL/I V3R2, LIMITS(EXTNAME(7)) became the default (previously,
LIMITS(EXTNAME(100)) was the default).

This default will ease your migration because this will make the default under the new compiler match
what the old compilers always did - they had a limit of 7 characters in an external name and no option that
allowed for a higher limit.

Also note that any n > 8 in LIMITS(EXTNAME(n)) requires the prelinker to be used or your modules to be
stored in PDSEs.

Additionally, under LIMITS(EXTNAME(7)) (and under all the old compilers), if an 8-character name is
declared as EXTERNAL, the compiler will take the first 4 and last 3 characters to make a 7-character
name which it will pass to the linker. However, under LIMITS(EXTNAME(8)), the full 8-character name
would be passed to the linker, thereby creating an incompatibility with the code generated by the old
compilers.

For example, if the name DEZEMBER is declared as EXTERNAL, under LIMITS(EXTNAME(7)), the linker
will see the name DEZEBER, while under LIMITS(EXTNAME(8)), it would see DEZEMBER.

Consequently, for compatibility, do not use LIMITS(EXTNAME(8)) - use the default LIMITS(EXTNAME(7)).

Finally note that LIMITS(EXTNAME(7)) applies only to PL/I names; assembler and COBOL routines can
have 8 characters (exactly as they could with the old compilers).

NORENT and WRITABLE
In Enterprise PL/I V3R2 or later, NORENT is the default; in earlier releases, RENT was the default. The
WRITABLE option is also the default because it gives you the best performance in combination with
NORENT.

This default will ease your migration because now, by default, the new compiler, just like the old
compilers, will not generate any extra code to make your static variables writeable and still REENTRANT
(which is what the RENT option does).

Also note that using the RENT option requires the prelinker to be used or your modules to be stored in
PDSEs.

But if you are using the NORENT option, you must also use the NOWRITABLE option if both of the
following conditions are true:

1. Your code must be REENTRANT.
2. Your code uses CONTROLLED variables or FILEs.

In Enterprise PL/I V3R4 or later, the NOWRITABLE option has two suboptions, which can also make your
code more (or less) compatible:
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FWS
The NOWRITABLE(FWS) option will make your code compatible with the code generated by earlier
releases of Enterprise PL/I under the NOWRITABLE option, but it does not allow CONTROLLED
variables to be shared between code generated by Enterprise PL/I and code generated by the PL/I for
MVS & VM and earlier compilers.

PRV
The NOWRITABLE(PRV) option will allow code compiled by Enterprise PL/I to share CONTROLLED
variables with code compiled by the old PL/I compilers. However, it will also impose the same limits
as imposed by those compilers on using CONTROLLED with FETCH.

SYSTEM
The SYSTEM option generally effects only the way parameters are passed to MAIN. The default is
SYSTEM(MVS).

Use this option for all programs except noted as follows:

SYSTEM(CICS)
The SYSTEM(CICS) option should be used for all CICS MAIN programs.

SYSTEM(IMS)
The SYSTEM(IMS) option should be used only for those IMS MAIN programs to which IMS will pass
parameters by value (BYVALUE).

SYSTEM(OS)
The SYSTEM(OS) option should be used only for those z/OS UNIX MAIN programs that want to receive
the parameter list built by z/OS UNIX. For more discussion of this option, see the Enterprise PL/I for
z/OS Programming Guide.

Choosing nondefault options for even more compatibility
This section describes some of the options that you can choose to increase the compatibility between the
old and new compilers.

COMMON
The COMMON option specifies that the compiler should generate CM linkage records for uninitialized
EXTERNAL STATIC.

This option can it make it easier to migrate your code if you declare an EXTERNAL STATIC variable in more
than one routine but initialize it in only one.

However, note that this option is valid only if both the NORENT and LIMITS(EXTNAME(7)) options are in
effect.

DFT(NOBIN1ARG)
The DFT(NOBIN1ARG) compiler option will generally increase the compatibility of your code, but at the
expense of limiting the use of some new function.

For more information about this option, see “One-byte FIXED BIN” on page 107.

DEFAULT(LINKAGE(SYSTEM))
DFT(LINKAGE(SYSTEM)) causes the parameter list to be built in the same way that it was built by the old
compilers (including turning on the high-order bit of the address of the last parameter).

This is not the default linkage used by C or JAVA; their default linkage is what you get with the new
compiler's default of DFT(LINKAGE(OPTLINK)). Under the OPTLINK linkage, the last parameter might not
even be an address (for instance, if it is a BYVALUE FIXED BIN(31)) and its high-order bit will not turned
on even when it is an address. Furthermore, under the OPTLINK linkage, the return value, if any, might be
returned in Register 15.
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The SYSTEM linkage is assumed for any OPTIONS(COBOL) or OPTIONS(ASM) routine.

When one PL/I routine calls another, it does not matter what linkage they use as long as they match.
However, some non-PL/I routines are not declared as OPTIONS(ASM) but do use the SYSTEM linkage. So,
for easiest compatibility and migration, you should probably use the DFT(LINKAGE(SYSTEM)) option.

However, if you make the SYSTEM linkage your default, you will need to add
OPTIONS( LINKAGE(OPTLINK) ) to the declares of any functions (such as the C library function fread)
that use that linkage. For example, you would declare fread as follows:

  dcl fread ext entry(...) options( linkage(optlink) );

DFT(OVERLAP)
The DFT(OVERLAP) compiler option will generally increase the compatibility of your code, but at some
expense to performance.

For more information about this option, see “Source-target overlap” on page 99.

NOREDUCE
The NOREDUCE compiler option will slightly increase the compatibility of your code, but at a significant
expense to performance.

For more information about this option, see “REDUCE” on page 74.

NORESEXP
The NORESEXP compiler option will increase the compatibility of your code if your code intentionally
forces a ZERODIVIDE condition.

The RESEXP compiler option allows the compiler to evaluate all restricted expressions at compiler time.
For example, programs with the following code would fail at compile-time with an S-level message:

if somevariable = goodvalue then;
    else
        put skip list( 1 / 0 );

Under the NORESEXP compiler option, the compiler will not flag this statement and the ZERODIVIDE
condition would be raised at run time, as originally intended.

RULES(LAXCTL)
The RULES(LAXCTL) compiler option will slightly increase the compatibility of your code, but at a
significant expense to performance.

For more information about this option, see “RULES(NOLAXCTL)” on page 75.

RULES(NOLAXINOUT NOLAXSEMI)
These suboptions of the RULES option have no effect on object compatibility because they do not change
the code that is generated.

But if you specify them, the new compiler will act more like the old because it will then issue two
messages that the old compiler would issue; in particular, the compiler will issue a W-level message
under the following conditions:

RULES(NOLAXINOUT)
If it finds a possibly uninitialized scalar passed as an ASSIGNABLE BYADDR parameter

RULES(NOLAXSEMI)
If it finds a semicolon inside a comment
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NOWRITABLE
You should choose the NORENT option for the greatest compatibility with your old modules.

The NORENT WRITABLE options allow the compiler to use a static pointer as follows:

• As the base for the stack that tracks a CONTROLLED variable
• As the handle for the storage that represents a FILE

Under the NOWRITABLE option, the compiler will not use a static pointer for either of these purposes, but
it has to generate more lines of code to provide the same function.

But you must use the NOWRITABLE option if both of the following conditions are true:

1. Your code must be REENTRANT.
2. Your code uses CONTROLLED variables or FILEs.

However, the NOWRITABLE(FWS) option can have a potentially very strong negative impact on
performance, so do not use it if either of the above items does not apply to you.

Choosing options for improved performance
This section describes some of the options that you can choose to improve the performance of the
compiler generated code.

If you want to ignore all the discussion in this section and blindly try to improve performance at all costs,
you should follow these suggestions:

1. Use the following default options:

• REDUCE
• NORENT
• RULES(NOLAXCTL)

2. Specify the following additional, nondefault options:

• ARCH(n), n is the highest ARCH level supported by your machines
• BIFPREC(31)
• DFT(NONASGN)
• DFT(CONNECTED)
• DFT(REORDER)
• DFT(NOOVERLAP)
• OPT(3)

However, while there are considerations (discussed in this section) that might make you choose not to use
all of the above options, unless you use both DFT(REORDER) and at least OPT(2), you will not get good
performance from the generated code.

ARCH
The default in Enterprise PL/I 6.1 is ARCH(10).

If you specify an ARCH level that is higher than the lowest level of any machine on which your code runs,
your code might cause a program abend with a specification exception on those machines.

If you specify an ARCH value less than 10, the compiler resets it to 10.
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BIFPREC(31)
Specifying the BIFPREC(31) will make your code perform better if you use of the built-in functions to
which it applies.

However, the BIFPREC(15) option will give you better compatibility if you use unprototyped ENTRY
declarations.

Related information
“BIFPREC(15)” on page 68
The BIFPREC option controls the precision of the FIXED BIN result returned by various built-in functions.

DEFAULT(NONASGN)
The option DFT(NONASGN) will add the NONASSIGNABLE attribute to all STATIC variables not explicitly
declared as ASSIGNABLE.

If your STATIC variables are, in fact, not altered, using this option will allow the compiler to put them in
read-only storage and that will give you better performance (particularly if you use the RENT option).

DEFAULT(CONNECTED)
The DEFAULT(CONNECTED) option sets the default for whether parameters are connected or
nonconnected.

Nonconnected arrays are arrays whose elements do not occupy adjacent pieces of storage. Nonconnected
arrays are passed by both of these calls:

   dcl a(3,4) fixed bin;

   dcl 1 x(5), 2 y fixed bin, 2 z fixed bin;

   call f( a(*,1) );

   call f( x.y );

The new and old compilers fully support nonconnected arrays, and in fact, the compilers assume that any
array parameter is not connected - that there might be other bytes between successive array elements.

This assumption slows down the compiler and requires more code to be generated, which slows down
your application.

If you use the new DFT(CONNECTED) compiler option, the compiler will assume that all arrays received
are connected and will generate much better code. Hence, if you never pass a discontiguous slice of an
array (such as a column), use this option for better performance.

DEFAULT(REORDER)
To optimize the performance from the compiler generated code, use OPTIMIZE(2) together with
DFT(REORDER).

If you use OPTIMIZE(2) with DFT(ORDER) rather than DFT(REORDER), the runtime performance is less
optimal and the compile time might be much longer.

DEFAULT(NOOVERLAP)
While you might want to use the DFT(OVERLAP) option for compatibility, using the DFT(NOOVERLAP)
option will give you much better performance.

For more information about this option, see “Source-target overlap” on page 99.
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OPTIMIZE(2)
To optimize the performance from the compiler generated code, use OPTIMIZE(2) together with
DFT(REORDER).

If you use OPTIMIZE(2) with DFT(ORDER) rather than DFT(REORDER), the runtime performance is less
optimal and the compile time might be much longer.

The compiler maps OPTIMIZE(TIME) and OPTIMIZE(3) to OPTIMIZE(2).

REDUCE
The REDUCE option specifies that the compiler is permitted to reduce an assignment of a null string to a
structure into fewer, simpler operations - even if that means padding bytes might be overwritten.

The REDUCE option will cause fewer lines of code to be generated for an assignment of a null string to a
structure, and that will usually mean your compilation will be quicker and your code will run much faster.
However, padding bytes might be zeroed out.

For instance, in the following structure, there is one byte of padding between field11 and field12:

dcl
1 sample ext,
  5 field10 bin fixed(31),
  5 field11 dec fixed(13),
  5 field12 bin fixed(31),
  5 field13 bin fixed(31),
  5 field14 bit(32),
  5 field15 bin fixed(31),
  5 field16 bit(32),
  5 field17 bin fixed(31);

Now consider the assignment sample = ''; .

Under the NOREDUCE option, it will cause eight assignments to be generated, but the padding byte will be
unchanged.

However, under REDUCE, the assignment will be reduced to three operations.

With NOREDUCE, you get code that looks like the following:

 00004C  5810  3056        00015 |      L     r1,=A(@CONSTANT_AREA)(,r3,86)
 000050  58E0  305A        00015 |      L     r14,=A(SAMPLE)(,r3,90)
 000054  4100  0000        00015 |      LA    r0,0
 000058  D206  E004  1000  00015 |      MVC   FIELD11(7,r14,4),+CONSTANT_AREA(r1,0)
 00005E  5000  E000        00015 |      ST    r0,<s9:d0:l4>(,r14,0)
 000062  5000  E00C        00015 |      ST    r0,<s9:d12:l4>(,r14,12)
 000066  5000  E010        00015 |      ST    r0,<s9:d16:l4>(,r14,16)
 00006A  5000  E014        00015 |      ST    r0,<s9:d20:l4>(,r14,20)
 000072  5000  E018        00015 |      ST    r0,<s9:d24:l4>(,r14,24)
 000076  5000  E01C        00015 |      ST    r0,<s9:d28:l4>(,r14,28)
 00007A  5000  E020        00015 |      ST    r0,<s9:d32:l4>(,r14,32)

But with REDUCE, you get code like the following:

 00004C  5810  3042        00015 |      L     r1,=A(SAMPLE)(,r3,66)
 000050  58E0  3046        00000 |      L     r14,=A(@CONSTANT_AREA)(,r3,70)
 000054  D703  1000  1000  00015 |      XC    _shadow1(4,r1,0),_shadow1(r1,0)
 00005A  D206  1004  E000  00015 |      MVC   _shadow1(7,r1,4),+CONSTANT_AREA(r14,0)
 000060  D717  100C  100C  00015 |      XC    _shadow1(24,r1,12),_shadow1(r1,12)

Consequently, for best performance, use the REDUCE compiler option.
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NORENT
While the NORENT option is now one of the compiler defaults because its use increases the compatibility
of the object code generated, it might also significantly improve the performance of your code - as long as
you do not also use the NOWRITABLE option.

The reasons for this performance improvement are that, under the RENT option, the initialization of every
load module takes more time and the code length is longer both for calls and for references to static
variables.

However, note that if your code must be REENTRANT and if your code uses CONTROLLED variables or
FILEs, you must use either the RENT option or both the NORENT and NOWRITABLE options.

If you use NOWRITABLE with NORENT and your application consists of many programs using
CONTROLLED variables, you will get better performance if you use NOWRITABLE(PRV) than if you use
NOWRITABLE(FWS). However, using NOWRITABLE(PRV) will also impose all the old limits on using
CONTROLLED variables with FETCH.

RULES(NOLAXCTL)
Using RULES(LAXCTL) can significantly slow the compiler and cause it to generate more copious and more
time-consuming code.

For one large customer program, this reduced the compile time by 40% and run time by 50%.

To understand this option, consider the following declaration:

 DCL
  01 VTAB(*) CTL,               /*                 VALOREN-TABLE  */
   02  WA0102  CHAR(26),        /* MUTATIONSDATUM DB2-TIMESTAMP   */
   02  WA0104I BIN FIXED(31),   /* PKEY AKTIONSNR-ID:             */
   02  WA0104K CHAR(1),         /* PKEY VALOREN-KNZ:              */
   02  WA0104V DEC FIXED(15,0), /* PKEY VALORENNR                 */
   02  WA0104L BIN FIXED(15),   /* PKEY VV_SEG_LFNR               */
   02  WA0104A CHAR(4);         /* PKEY TERM_ID                   */

The bounds of VTAB are clearly not known at compile time. But is the length of WA0104K really 1 ? The
structure would normally be allocated with a statement like one of the following two statements:

   ALLOC VTAB( 100 );

   ALLOC VTAB( N + M );

After either of these allocations, WA0104K would have length 1.

But the structure could be allocated as follows:

   ALLOC
     1 VTAB(17),
         2 WA0102,
         2 WA0140I,
         2 WA0104K CHAR(29);

But then WA0104K has length 29 !

The compiler option RULES(LAXCTL) permits allocations such as the one immediately above despite the
fact that the original declared length for the string was a constant. However, using this option will also
force the compiler to generate much longer code sequences.

In contrast, the compiler option RULES(NOLAXCTL) assumes that all lengths and bounds that are
declared as constant are, in fact, constants, and any ALLOCATE statement that violated this assumption
will be flagged with an S-level message IBM2063.

Consequently, using this option will not leave you with any runtime surprises, and it will give you much
better performance, both at compile time and at run time.
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Choosing options for better quality
This section describes some of the options that you can choose to improve or ensure the quality of your
code.

RULES(NOLAXDCL)
RULES(LAXDCL) causes the compiler to emit only an I-level message for each undeclared variable. But,
under RULES(NOLAXDCL), you get an E-level message.

If your code is to have any reasonable quality, you should always compile with RULES(NOLAXDCL).

However, when we made this the default on Windows, too many users objected, and it is now not the
default.

Under RULES(NOLAXDCL), compiling the following code causes the compiler to issue an E-level message
saying that starring_role is undeclared. The message would alert you that this name is almost certainly a
typo, and this is an example of why you want to use this compiler option.

   x: proc( starting_role ) returns( fixed bin(31) );
     dcl starting_role fixed bin(31);
     return( starring_role + 1 );
  end;

The option RULES(NOLAXDCL) might also flag "working" code:

     read_in = fileread( file_in, addr(buffer), stg(buffer) );

     if read_in = 0 then
       leave;

If read_in is undeclared, the code will work; however, read_in will have FLOAT as an attribute and that is
probably not what you want.

RULES(NOLAXIF)
Under the compiler option RULES(NOLAXIF), the compiler flags with an E-level message any conditional
expression that does not have the attributes BIT(1) NONVARYING.

The expressions in IF, WHILE, UNTIL, and undominated WHEN clauses should have the attributes BIT(1)
NONVARYING; however, all the new and old compilers would allow any computational expression in these
clauses. For example, you could write the following statement:

     dcl x fixed bin(31);

     if x then ...

You might have intended this IF statement to mean the same as the following statement:

     if x ¬= 0 then

But the old and new compilers interpret the statement as:

     if abs(x) ¬= 0 then

It would be much better to code this statement and similar statements so that the conditional expression
was a Boolean.

So you can use RULES(NOLAXIF) to enforce this good coding practice.

Under RULES(NOLAXIF), the compiler flags an IF clause consisting of just a reference to a BIT(8) variable,
say Y. In this case, the generated code treats the expression as true if any of the 8 bits is on, but it might
be better to change this IF clause to Y ^= ’’b.
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Under RULES(NOLAXIF), the compiler also flags the assignments of the form:

    x = y = z

Note that the RULES(NOLAXIF) option has effect on the code generated for any statement that it flags.

RULES(NOLAXLINK)
Specifying the option RULES(LAXLINK) causes the compiler to ignore the LINKAGE and other options
specified in the declarations of two ENTRY variables or constants when you assign or compare them.

For example, if you use the RULES(LAXLINK) option, the following incorrect program, which would almost
certainly cause an abend if executed, would not be flagged:

  dcl funtion ext entry returns( char(20) );
  dcl subrtn  entry variable;

  subrtn = function;

  call subrtn;

You should use the RULES(NOLAXLINK) option to catch these errors and to enforce basic coding
standards.

However, it is probably not a good idea to use the RULES(NOLAXLINK) option in programs containing
EXEC CICS statements because the CICS preprocessor generates these declares:

  DCL DFHEI0   ENTRY VARIABLE INIT(DFHEI01) AUTO;
  DCL DFHEI01  ENTRY OPTIONS(INTER ASSEMBLER);

Because the variable DFHEI0 is then used in the code that the CICS preprocessor generates for EXEC
CICS statements, the compiler will flag, under RULES(NOLAXLINK), the entry DFHEI01, which is declared
with OPTIONS(INTER ASSEMBLER), but assigned to DFHEI0, which is declared without any OPTIONS
attribute.

RULES(NOLAXMARGINS)
Under the option RULES(NOLAXMARGINS), any line with non-blanks after the right margin will be flagged.
This can help detect problems when code, especially an end-of-comment marker, has been accidentally
shifted too far right.

However, because many source files have serial numbers or other data after the right margin,
RULES(LAXMARGINS) is the default.

RULES(LAXSTRZ)
The new compiler will flag any string assignment where the source has a known length, the target has a
known maximum length, and the source length is greater than the maximum target length. Unfortunately,
this will cause the compiler to flag even those assignments where the trailing bits or characters are
"uninteresting". The compiler option RULES(LAXSTRZ) can help reduce this "noise".

Under RULES(LAXSTRZ), no message will be issued in an initial clause or an assignment if any of the
following conditions are true:

• A bit variable has a source that is too long but whose excess bits are all 0's.
• A character variable has a source that is too long but whose excess characters are all blanks.

Consequently, under RULES(LAXSTRZ), only the second of the following statements will be flagged:

    dcl a char(4) init('ok   ');
    dcl b char(4) init('error');

The default option is RULES(NOLAXSTRZ), but using RULES(LAXSTRZ) might give you better quality by
letting you focus on truly problematic assignments.
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RULES(NOMULTICLOSE)
The new and old compilers all allow you to close more than one DO, SELECT, BEGIN, or PROCEDURE
group with one END statement, although the new compiler will issue an I-level message. However, closing
multiple groups with one END statement is not a good programming practice, and the compiler option
RULES(NOMULTICLOSE) allows you to force the compiler to flag such code with an E-level message.

For example, under this option, the compiler will object to the following code:

  a: do i = 1 to 17;
     b: do j = 1 to 29;
        t = x(i,j);         /* transpose i and j
        x(i,j) = x(j,i);
        x(j,i) = t;
     end b;              /* end of loop */
  end a;

Note that because the first comment is unclosed, the end a; closes both DO loops.

Choosing options for test
This section describes some of the options that you can choose during development when you want to
test your code.

CHECK(STORAGE)
Specifying the STORAGE suboption of the CHECK option will cause the compiler to call slightly different
library routines for ALLOCATE and FREE statements that can help debug storage-related issues.

The Programming Guide describes this in more detail, and it can be a very useful tool in development to
test your code.

GONUMBER
When you specify the compiler option GONUMBER, the compiler generates a "statement number table".
This table allows the error handler, when it needs to produce a message for a condition that has been
raised, to identify where the condition occurred not only by its offset within the containing procedure, but
also by its location within your source program.

This extra information can be very useful in helping you analyze errors in your program. If you choose not
to use this option, you should probably use the OFFSET option so that the compiler will produce a table
that you can use to determine the source statement from the entry offset.

PREFIX
The PREFIX compiler option allows you to enable PL/I conditions without editing your source.

The following conditions are particularly useful to enable during test:

• CONFORMANCE
• SIZE
• STRINGRANGE
• STRINGSIZE
• SUBSCRIPTRANGE

Enabling the CONFORMANCE condition will cause the compiler to generate extra code in the prologue of
some procedures to check that the parameters passed match what those procedures expect. This can be
a very useful tool in development to test your code.

All these conditions will cause the compiler to generate more code and will sometimes Cause the
performance of the generated code to be significantly worse. As an example, enabling the SIZE condition
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for an entire compilation can be especially expensive, and it is not recommended that you use this option
with production programs.

TEST
If you are using Debug Tool, you should use the TEST option so that the compiler will generate symbol
tables and other information needed for the debugger.

However, do not use this option with production programs.
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Chapter 12. Understanding the new compiler's
messages

The new compiler issues many messages that are very similar to those issued by the old compilers.
However, it also issues many new messages, some of which can be very important as you migrate to
the new compiler. Paying attention to these messages can alert you to possible migration problems. This
section explains some of the more important of these messages.

Many of the messages discussed here are I-level and W-level messages, but that does not mean you
should ignore them. In fact, these messages are highlighting probable errors in your "working" code.

IBM1044: one-byte FIXED BIN
This I-level message alerts you to a difference between Enterprise PL/I and the old PL/I compilers. The
message produced by the new compiler looks like the following:
IBM1044I I FIXED BINARY with precision 7 or less is mapped to 1 byte.

This is a feature of Enterprise PL/I: it supports one-byte integers. This is a very useful feature, especially
when data are being exchanged with C or JAVA.

However, this is also a difference between the old and the new compilers: under the old compilers, a
variable declared as, for example, FIXED BIN(7), would have been allocated 2 bytes, which meant that
unless SIZE was enabled, it could have assumed values in the range of -32768 through 32767 rather than
the much smaller range of -128 through 127 allowed by a one-byte integer.

Unless you are intentionally exploiting this new feature, you should probably use the EXIT option to
increase the severity of this message, and then change all code that produces the message.

IBM1053: scaled FIXED BIN evaluation
When compiling some of your code, you might see the following message:
IBM1053I I Scaled FIXED operation evaluated as FIXED DECIMAL.

For an example of the code that will produce this message, and for an explanation of what to do, see
“Arithmetic built-in functions with scale factors and FIXED BIN” on page 110.

IBM1065: imprecise float constants
This I-level message alerts you to a potential source of problems with Enterprise PL/I:
IBM1065I I Float constant ... would be more precise if specified as a long float.

Floating point constants can represent binary fractions (such as .1E0b and .001E0b) very well, but in
general, they cannot represent decimal fractions (such as .1E0 and 3.1415E0) precisely. This message
alerts you to the fact that if such fractions were specified as long-floating point (for instance, by specifying
more than 6 decimal digits), the fraction would be more precisely represented.

IBM1091: FIXED BIN precision warning
This W-level message alerts you to what is at best poor programming and at worst a source of problems.
The message produced by the new compiler looks like the following:
IBM1091I W FIXED BIN precision less than storage allows.

The Enterprise PL/I compiler will produce this message whenever a SIGNED FIXED BIN variable is
declared with a precision other than 7, 15, 31, or 63, or whenever an UNSIGNED FIXED BIN variable is
declared with a precision other than 8, 16, 32, or 64. The compiler will also issue this message if a built-in
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function such as BIN, ADD, DIVIDE, and so on has a FIXED BIN result but specifies one of the above
precisions.

For example, if you declare a variable as FIXED BIN(5), the compiler will flag the declare, and you should
probably change the declare to the intended FIXED BIN(15).

IBM1099: mixed FIXED
When compiling some of your code, you might see messages such as this:
IBM1099I W  FIXED DEC(7,2) operand will be converted to FIXED
                                                    BIN(25,7). Significant digits may be lost.

The attributes in your messages might vary, but here is a sample piece of code that would produce exactly
this message:

  DCL
     1 REC_OUT,
        03  AVAIL        FIXED BIN(31),
        03  TOTAL_SPARE  FIXED DECIMAL(7,2),
        03  WORK_TOTAL   FIXED DECIMAL(7,2);

   AVAIL = 17;
   WORK_TOTAL = 12.2;

   TOTAL_SPARE = AVAIL + WORK_TOTAL;

The new and old compilers implement the final assignment in exactly the same way and both would leave
TOTAL_SPARE with the value of 29.19 (not 29.20 as you might expect). However, only the new compiler
issues a message to tell you that you might want to examine this statement more closely.

To understand what this message is telling you and why the result of the statement above is correct
when it seems to be wrong, you need to recall these PL/I rules for arithmetic operations other than
exponentiation:

1. If either operand is FLOAT, any FIXED is converted to FLOAT.
2. If either operand is BINARY, any DECIMAL is converted to BINARY.
3. DECIMAL(p,q) is converted to BINARY( 1+log(10)*p, log(10)*q ).

So, adding the FIXED BIN(31,0) variable AVAIL to the FIXED DEC(7,2) variable WORK_TOTAL will force, by
the above rules, the DEC(7,2) operand to be converted to BIN(25,7).

But 12.20 cannot be exactly represented as a BIN(25,7), and is actually converted as follows:

   ( bin(12.20,31,0) * 2**7 ) /  10**2

This yields a value that is approximately 12.195.

Then adding 17 and converting back results in 29.19.

The compiler behavior in all of the above is correct, but perhaps not what you want. If it is, in fact, not
what you want, you could force the operation to be evaluated in DECIMAL by either applying the DECIMAL
built-in function to the BINARY operand or by specifying the new compiler option RULES(ANS).

Under RULES(ANS), scaled FIXED BIN is not permitted and the conversion rules are more what a naive
user might expect:

  if both operands are FIXED, then

    if either has a non-zero scale, any BIN becomes DEC

So when adding BIN(31,0) to DEC(7,2), the BIN(31,0) is converted to DEC(10,0), and nothing is lost.

The same considerations as detailed above also apply to the following code fragment:

  dcl a dec fixed(15,3) init(2500000);
  dcl zero bin fixed(31) init(0);
  if (a ¬= zero) then
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     put skip edit('dec fixed ¬= Zero')(a);
  else
     put skip edit('dec fixed  = Zero')(a);

The DEC(15,3) operand gets converted to BIN(31,10).

But BIN(31,10) can hold up to 2**21 or 2_097_152.

Consequently, this conversion cannot be made successfully, and the SIZE condition would be raised if it
were enabled. When the SIZE condition is not enabled, this code is in error and the CVB instruction that is
generated to perform the conversion raises the ZERODIVIDE condition.

Again, the new compiler issues an appropriate message:
IBM1099I W    FIXED DEC(15,3) operand will be converted
                                                        to FIXED BIN(31,10). Significant digits 
may be lost.

Finally, using RULES(ANS) compiler option or applying the DEC built-in function to the BINARY operand
would again fix this code.

IBM1181: miscoded DO loops
Some programs that have always compiled cleanly might now produce this message:
IBM1181I W   A WHILE or UNTIL option at the end of a series DO specifications
                                                    applies only to the last specification.

This message is produced for statements such as the following:

DO I = 1, 2 WHILE( X = ’Z’ );

This message says that this DO-loop will be executed once with I equal to 1 (whether or not X = ’Z’ is
true), and then, if X = ’Z’ is true, with I equal to 2. This DO statement is not the same as this statement
(although this is probably what the author intended):

DO I = 1 WHILE( X = ’Z’ ), 2 WHILE( X = ’Z’ )

If this was what you intended, it would probably be best to code the statement as follows:

DO I = 1 TO 2 WHILE( X = ’Z’);

And, if you did want to test if X = ’Z’ only before the second iteration of the DO-group, it would be best to
code the statement as follows:

DO I = 1 TO 2 UNTIL( X ^= ’Z’ );

IBM1206: misuse of BIT operators
This W-level message alerts you to likely coding errors. The message produced by the new compiler looks
like the following:

  IBM1206I W BIT operators should be applied only to BIT operands.

The code generated by the new compiler for statements where it produces this message is the same as
the code generated by the old compiler, although the latter issued no warning message.

As examples of where this message could arise and the likely coding errors that led to them, consider this
code:

   dcl (x,y) fixed bin;

   if x = ¬y then
     ...
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   if x ¬ y then
     ...

In the first IF statement, the bit prefix negation operator will be applied to the FIXED BIN variable y, and
most likely that is not what was meant. Similarly, in the second IF statement, the bit infix exclusive-or
operator will be applied to the FIXED BIN variables x and y, and most likely that is again not what was
meant. In fact, both statements most likely contain typographical errors and were meant to test if the
variables x and y were unequal.

Note also that if the bitwise operations were really intended here, it would probably be best to use the BIT
built-in function (or possibly the INOT and IEOR built-in functions) to make that clear.

IBM1208: incompletely initialized arrays
When compiling some of your code, you might also see the following message:
IBM1208I W   INITIAL list for the array WPPXS_TAB
                               contains only one item.

For instance, this message would be produced if the variable in the following declaration is used in your
program:

  DCL WPPXS_TAB(15) CHAR(3500) INIT((15)' ');

The INIT( (15)' ' ) attribute does not specify 15 instances of a string consisting of one blank. The 15 is a
string repetition factor, and so this INIT clause specifies only one string (of 15 blanks).

To initialize the whole array to blanks, you should code as follows:

  DCL WPPXS_TAB(15) CHAR(3500) INIT( (*) ('') );

The new compiler will also produce this message for many other similar declares, such as these:

  DCL LISTE(4,60:73)   CHAR(50)  INIT('');
  DCL SPRACH_TAB(4)    CHAR(15)  INIT('');

Finally, if this array is part of a structure, the compiler will flag any subsequent occurrences of this
problem in that structure with message IBM2603. Hence, you can use the EXIT option to reduce the
number of times this problem is flagged to once per structure.

IBM1215: incomplete declares
When compiling some of your old code, you might additionally see a message such as the following:
  IBM1215I W  The variable I is declared without any data attributes.

The new compiler would issue this message, for example, for this declaration:

  DCL  I, J FIXED BIN;

While the older compilers would produce no message for this declare, the new compiler issues the
message above because this declare is not equivalent to DCL (I,J) FIXED BIN;: it is actually
equivalent to DCL I; DCL J FIXED BIN;.

IBM1216: incorrect structure declares
Similarly, consider the following declare:

   DCL
     1 S,
       2 A    CHAR(10),
       2 B,
         2 C  CHAR(3),
         2 D  CHAR(3);
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The older compilers would produce no message for this declare. However, the new compiler will produce
the message:
IBM1216I W  The structure member B is declared without any data
                    attributes. A level number may be incorrect.

This message is pointing at some probable errors in the declare, namely that C and D should be declared
at level 3 rather than level 2. But given the declare above, because they are at the same structure level
as B, B is not their parent and gets the default attributes of FLOAT! This is almost certainly not what you
intended, and this new message is directing your attention to this likely problem.

The compiler also issues this message for the following code:

          DCL PARDIASE CHAR (20);
          DCL 1 INDIASE1 BASED (PTPDIASE),
               2 C1CODIA CHAR      (1),
               2 C1FECDI DEC FIXED (9),
               2 C1DIADI CHAR (9),
               2 C1ABRDI CHAR (3),
               2 C1RESDI;
          DCL PTPDIASE POINTER;
          PTPDIASE = ADDR (PARDIASE);
          . . .
          INDIASE1 = '';

The message flags the fact that the variable C1RESDI is declared with out any data attributes. Hence it
gets the default attributes of FLOAT DEC(6), and that means that the structure INDIASE1 then occupies
22 bytes. But because the structure is based on a pointer that has been assigned the address of a
CHAR(20) field, the assignment INDIASE1 = ’’; will blank out 2 bytes of storage used by some other
variable. In the code, this led to an abend in a library routine. Note that if C1RESDI had been declared as
CHAR(2) or even as CHAR(0) (and CHAR(0) is legitimate PL/I), there would have been no problem.

So, even though this message, like many of the other messages discussed in this section, is not an E-level
message, it would be very good to change your code so that your compilation is free of this message.

IBM1220: pointless comparisons
When compiling some of your code, you might also see the following message:
IBM1220I W  Result of comparison is always constant

For example, the following code will cause the new compiler to produce this message:

    DCL ZWSTRING     CHAR(80);
    DCL ZWSTRING2    CHAR(8);

    ZWSTRING = 'E R R O R';
    .....
    IF ZWSTRING2 = 'E R R O R' THEN

This message is produced because 'E R R O R' is CHAR(9) with its last character a nonblank, and hence it
could never equal a CHAR(8) field.

Any code that produces this message is problematic and should be closely examined. In fact, ignoring this
message when it points at a DO-loop statement means that your code could go into an infinite loop. For
example, the compiler would produce this message for all three of these executable statements, and in
the last case, the loop would run endlessly unless exited with a LEAVE statement:

    DCL ZZ9 PIC'ZZ9';
    DCL N  FIXED BIN(15);

    IF ZZ9 < 0 THEN  ...
    IF ZZ9 <= 999 THEN ...
    DO N = 1 TO 32768;  ...; END;

Note that if you have a loop that you want to run "endlessly" until exited by a LEAVE (or GOTO) statement,
it would be best to code that loop statement using DO FOREVER.
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IBM1927: SIZE condition
When compiling some of your "working" code, you might also see a message such as the following:
  IBM1927I S  SIZE condition raised by attempt to convert
              32777 to SIGNED FIXED BIN(15)

For example, the following code will produce this message:

  DCL I   BIN FIXED(15);

  DCL
    1 S,
      2 A    CHAR(10),
      2 B    CHAR(32767);

   I = STG(S);

Note the following in the assignment above:

• The source STG(S) is equal to 32777.
• The target I has the attributes FIXED BIN(15).

The old compilers would have issued no message.

The new compiler is telling you that 32777 is too large to be converted to FIXED BIN(15) (because a
FIXED BIN(15) variable cannot hold values larger than 32767).

This message points to a problem you should not ignore, and because it is an S-level message, you will be
forced to change your code.

IBM1948: restricted expression evaluation
When compiling some of your code, you might see the following message:
IBM1948I S ZERODIVIDE condition with ONCODE=320 raised while
           evaluating restricted expression.

For an example of the code that will produce this message, and for an explanation of what to do, see
“NORESEXP” on page 71.

IBM2063: invalid ALLOCATE
When compiling some of your code, you might see the following message:
IBM2063I S Specification of extent for variable-name in
           ALLOCATE statement is invalid since it was declared
           with a constant extent.

For an example of the code that would produce this message, and for an explanation of what to do, see
“RULES(NOLAXCTL)” on page 75.

IBM2402: storage overlay
This message alerts you to a potentially important coding error:
  IBM2402I E  <variable x> is declared as BASED on the ADDR of <variable y>,
              but <variable x> requires more storage than <variable y>.

The importance of this message depends on how the variables are used in your program. For instance,
if X is a 100-byte structure and Y is declared as CHAR(200) BASED(ADDR(X)), the compiler issues this
message; note that, in this example, the message is issued only when X is not subscripted. If your
program also contains the statement Y = ’’, you have a severe problem (because that the assignment
wipes out 100 bytes of storage that the compiler is likely to be using for other purposes). You must correct
this kind of problem.

However, your program might use Y only in the statements such as these:

• SUBSTR(Y,1,STG(X)) = ’’;
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• SUBSTR(Y,1,STG(X)) = LOW(STG(X));

In this case, your code does not need to be changed.

However, in this case, you could change the declare of Y to eliminate these messages: if you declare Y
after X, you could then declare Y as CHAR(STG(X)) BASED(ADDR(X)). This would eliminate this occurrence
of the message without you having to make any changes to your code. But, if you wanted, you could also
then simplify the above assignment statements as follows:

• Y = ’’;
• Y = LOW(STG(X));

IBM2409: RETURN; in a function
This message alerts you to what is probably a coding error:

  IBM2409I E  RETURN statement without an expression is invalid inside a
              subprocedure that specified the RETURNS attribute.

The compiler issues this message when it finds a RETURN; statement inside a function (for example,
inside a PROCEDURE that has the RETURNS options). If this statement were executed, the caller of
the function would, if it used the result of the function, use an uninitialized value, and that could have
unpredictable and arbitrarily bad consequences.

Code that produces this message should be corrected.

IBM2410: No RETURN in a function
This message alerts you to another coding error:
  IBM2410I E  Function F contains no valid RETURN statement.

The compiler issues this message when it finds no RETURN statement inside a function (for example,
inside a PROCEDURE that has the RETURNS options). If this function were called, the caller of the
function would, if it used the result of the function, use an uninitialized value, and that could have
unpredictable and arbitrarily bad consequences.

Code that produces this message should be corrected.

IBM2412: missing RETURNS option
This message alerts you to a related coding error:
  IBM2412I E  Procedure has no RETURNS attribute, but contains a RETURN statement.
              A RETURNS attribute will be assumed.

This is the inverse problem to the problem that message IBM2409 flags: here there is a RETURN
statement with an expression, but it is inside a PROCEDURE that is a subroutine rather than a function
(for example, inside a PROCEDURE that does not have the RETURNS options). The compiler will assume
a RETURNS attribute for the PROCEDURE, but these assumed attributes might not be what you intended.
More importantly, if the invoker of this routine invoked it through a CALL statement, and if this RETURN
statement were executed, it would assign the return value to storage allocated for other purposes, and
that could have unpredictable and arbitrarily bad consequences.

Code that produces this message should be corrected.

IBM2421: CLOSE in ENDFILE
This message alerts you to a subtle coding error:
  IBM2421I E  A file should not be closed in its ENDFILE block.

While it might be tempting to close a file in your ENDFILE block for that file, you should not do this
because internal library errors might occur. Instead, it is best to write your ENDFILE block so that it does
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nothing more than set a flag that will be tested after the READ or GET statement for the file. You should
then close the file in the mainline code when it sees that this flag has been turned on.

Code that produces this message should be corrected.

IBM2610: precision interpretation
This message alerts you to a possible misunderstanding of PL/I rules and, consequently, a possible
source of problems:
  IBM2610I W  One argument to BUILTIN X is FIXED DEC while the other is FIXED BIN
              or FLOAT. Compiler will not interpret precision as FIXED DEC.

This message applies to the MULTIPLY, DIVIDE, ADD, and SUBSTRACT built-in functions. You are most
likely to see it under the following circumstances:

1. The built-in function has either 3 arguments or 4 arguments, the last of which is zero.
2. One argument is FIXED DEC(p1,0).
3. One argument is FIXED BIN(p2,0).

If, for instance, X is FIXED BIN(31), the compiler would flag the expression MULTIPLY( X, 1000, 15 ) with
this message (even if this expression is assigned to a FIXED DEC(15) variable) because the result of this
built-in has the attributes FIXED BIN(15). If you had intended that this built-in function produce a FIXED
DEC(15) result (because, for example, you knew the result of the multiplication might be greater than 2G),
this code would not perform the way you had intended and might result in the loss of significant data.

Note that if you want to force the result of this MULTIPLY to be FIXED DEC, you could apply the DECIMAL
built-in to the FIXED BIN argument (as in MULTIPLY( DEC(X), 1000, 15 ). You can use the PRECTYPE
compiler option to change how the compiler interprets the precision, but that would, of course, potentially
change the interpretation of other statements.

IBM2611, IBM2612: duplicate whens
When compiling some of your "working" code, you might also see a message such as one of the following:
  IBM2611I W   The binary value ... appears in more than one WHEN clause.
  IBM2612I W   The character string ... appears in more than one WHEN clause.

This message is easier to understand than some of the others discussed in this section and would be
produced by code such as the following:

   SELECT( OPT );
     WHEN( 'f','F' )
       BUFROM = ETOS(OPTARG);
     WHEN( 'T','T' )
       BUTO = ETOS(OPTARG);
     WHEN( 'n','N' )
       MAXRECIN = ETOL(OPTARG);
     WHEN( 'k','K' )
       KFLG = ^KFLG;
     WHEN( 'm','M' )
       MAXERR = ETOL(OPTARG);
     OTHERWISE;
       /* ungueltige Option */
   END;

The message is indicating that the second WHEN clause above is probably meant to be coded as
WHEN( 't', 'T' ).

The old compilers would have issued no message, and perhaps the code as written is not incorrect;
however, it would probably be worthwhile to examine closely any code producing this message.

IBM2617: passing labels out of PL/I
This message alerts you to a bad coding practice that might require you to edit some of your source code.
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In general, the use of GOTO statements is a very poor programming practice, but if you pass
a LABEL constant or variable to an ENTRY declared with OPTIONS(ASM), OPTIONS(COBOL) or
OPTIONS(FORTRAN), you must not attempt to do a GOTO from that non-PL/I code back into your PL/I
code by using the passed label. If you have code that is doing this, you must change it.

IBM2621: missing ON ERROR SYSTEM
When compiling some of your "working" code, you might also now see this message:
  IBM2621I W   ON ERROR block does not start with ON ERROR SYSTEM.
               An error inside the block may lead to an infinite loop.

The new compiler will produce this message for any ON ERROR block that does not start with the
statement ON ERROR SYSTEM. If an ON ERROR block does not start with this statement, and if there is an
error in the ON ERROR block, the block will most likely be reentered and an "infinite" loop would result.

Code that produces this message should be corrected.

IBM2622: warning on poorly coded DO loops
When compiling some of your "working" code, you might also now see this more obscure message:
  IBM2622I W   ENTRY used to set the initial value in a DO loop will
               be invoked after any TO or BY values are set.

The new compiler will produce this message for code such as the following:

   dcl jx    fixed bin;
   dcl last  fixed bin init(10);

   do jx = f() to last;
     put skip list( jx );
   end;

   f: proc returns( fixed bin );
     last = 4;
     return( 2 );
   end;

Note that in this code the function f that sets the initial value in the loop also changes the value of the
variable last that sets the final value in the loop. The message is alerting you to the fact that this change
to the variable last will be made after the compiler has already used that variable to set the final value for
the loop. In the concrete terms of this example, the loop will run from 2 to 10, not 2 to 4.

This is different from what the old compiler would have done for such code: under the compiler, this loop
would have run from 2 to 4.

So to make this code behave the same as it did under the old compiler, it would be necessary for you to
change your source code. This would be a good idea in any case because it is not a good programming
practice to have functions that have side effects such as changing other variables in their calling routine.
The code as written above is also not very transparent, and unclear code with obscure effects is never
good.

IBM2626: SUBSTR with a zero length
If you have some especially poor code, you might also now see this message:
  IBM2626I W   Use of SUBSTR with a third argument equal to 0 is
               somewhat pointless since the result will always be a
               null string.

If the compiler flags any of your code with this message, it has almost certainly found an error in your
code that you should promptly fix.
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IBM2628: large BYVLAUE parameters
Because the old compiler had only very limited support for the BYVALUE attribute, you are not likely to
see this message when compiling old code:
  IBM2628I W   BYVALUE parameters should ideally be no larger than 32 bytes.

However as you start to use the BYVALUE attribute more, you might see this message, and in that case
you should heed it. You should reserve the use of the BYVALUE attribute for small scalars and ideally for
variables that could be passed in a register. Typically, these would be declared as:

• REAL FIXED BIN
• REAL FLOAT
• POINTER
• OFFSET
• HANDLE
• ORDINAL
• CHAR(1)
• ALIGNED BIT(1)
• ALIGNED BIT(8)

You should never use the BYVALUE attribute with strings or aggregates that are larger than 4096 bytes in
size.

IBM2801: introduction of scaled FIXED BIN
This message alerts you to a possible misunderstanding of PL/I rules and, consequently, a possible
source of problems:
  IBM2801I I  FIXED DEC(p1,q1) operand will be converted to FIXED BIN(p2,q2).
              This introduces a non-zero scale factor into an integer operation
              and will produce a result with the attributes FIXED BIN(r,s).

This message applies to arithmetic operations where one operand is scaled FIXED DEC and one is
unscaled FIXED BIN. By PL/I rules, under the RULES(IBM) compiler option, if one operand in an
arithmetic operation is DECIMAL and one is BINARY, the result is BINARY. This applies even if the
DECIMAL operand is FIXED DEC with a nonzero scale factor and the BINARY operand is FIXED BIN with a
scale factor of zero.

For example, if X is FIXED DEC(5,1) and Y is FIXED BIN(15), then in evaluating the expression X+Y, X will
be converted to FIXED BIN(18,4), and the result will have the attributes FIXED BIN(20,4). The compiler
will also issue the W-level message IBM1099I because a FIXED DEC(5,1) value whose fractional is not .0
or .5 cannot be exactly represented in FIXED BIN.

If you want to eliminate this message and avoid the problems it hints at, you might apply the DECIMAL
built-in function to the FIXED BIN operand. For example, X+DEC(Y) would produce a result with the
attributes FIXED DEC(8,1).

IBM2804: suboptimal compares
This I-level message alerts you to a poor programming practice and possible error:
  IBM2804I I Boolean is compared with something other than ’1’b or ’0’b.

A Boolean is a result of a comparison of two expressions or the result of anding, oring , or negating
Booleans. As such, a Boolean can have only the values ’1’b or ’0’b. If your code compares a Boolean with
something other than one of these values, it might reflect a problem (for instance, maybe the expression
(a > b) = c was meant to be (a + b) = c ).
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Note that the compiler will produce this message even if you compare a boolean to a value declared
as BIT(1) STATIC INIT(’1’b). In this situation, there is no programming error, but the compiler cannot
generate code as good as the code it would generate if the value were declared as BIT(1) VALUE(’1’b).

IBM2810: conversion of scaled FIXED BIN
When compiling some of your code, you might see the following message:
IBM2810I I Conversion of FIXED BIN(31,16) to FIXED DEC(15,12) may
                produce a more accurate result than under the old
                compiler.

For an example of the code that will produce this message, and for an explanation of what to do, see
“Conversions from scaled FIXED BINARY” on page 109.

IBM2811: use of PICTURE as DO control variables
This message alerts you to a poor coding practice that might require you to edit some of your source code:
even under OPT(0), the new compiler will flag any DO loop where the control variable has the PICTURE
attribute. The compiler will issue this informational message:
IBM2811I I Use of PICTURE as DO control variable is not recommended.

In general, the use of PICTURE variables as DO loop control variables is a very poor programming practice
(especially because it can lead to poor performance), and it would be best to change such code to use
FIXED BIN variables as the loop control variables.

IBM2812: poor TRANSLATE and VERIFY
This message alerts you to a coding practice that was ok under the old compiler, but for which there is a
much better alternative with the new compiler: rather than declaring named constants with the attributes
STATIC INIT, you can now with the attribute VALUE.

This change will particularly help code such as:

   test: proc( c );

     dcl c char(20);

     dcl upper char(26) static init('ABCDEFGHIJKLMNOPQRSTUVWXYZ');
     dcl lower char(26) static init('abcdefghijklmnopqrstuvwxyz');

     c = translate( c, upper, lower );
   end;

Because the named constants upper and lower are declared as STATIC INIT, both the old and new
compilers will build the translate table at run time. This is expensive. However, the new compiler will also
issue these informational messages:
IBM2812I I Argument number 2 to TRANSLATE built-in would lead to
                much better code if declared with the VALUE attribute.
     IBM2812I I Argument number 3 to TRANSLATE built-in would lead to
                much better code if declared with the VALUE attribute.

If you change the STATIC INIT in both declares to VALUE, these messages will be eliminated and the
compiler will generate much better code.

PLIXOPT messages
The PLIXOPT variable is a varying-length character string that contains runtime options that you can
specify at compile time. The messages that the compiler produces to diagnose errors in these options are
different from the messages produced by the old compilers. In most cases, the PL/I messages now list an
associated Language Environment message that you should read for more information.
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A module containing a PLIXOPT declare will also now contain a compiler-generated CEEUOPT CSECT that
contains the Language Environment encoding of the runtime options specified in the PLIXOPT string. For
small modules, this CSECT can cause a substantial increase in the object size of the modules.

Using the compiler user exit
If you want any messages to have a higher severity, you can use the EXIT compiler option. This option
makes it very easy for you to raise the severity of any informational, warning, or error message.

For more information about how to use this option, see the Enterprise PL/I for z/OS Programming Guide.
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Chapter 13. Understanding when working code must
be changed

This chapter documents situations where the new compiler generates different code than the old
compilers. The problems discussed in this chapter have been important to customers who have already
migrated to Enterprise PL/I, and you should read this chapter closely to see if they might affect you.

Some of the problematic code discussed in the sections that follow is flagged by the compiler, and you
should examine (and change as appropriate) the code associated with the messages issued. In particular,
you should examine any compilations producing the following messages:

• IBM1063
• IBM1089

Note also that using the options DECIMAL(NOFOFLONASGN) DFT(OVERLAP) and STATIC(FULL) might
eliminate some of these problems.

Incorrect code
Your code must be correct code that conforms to the rules of PL/I. The Enterprise PL/I compiler
might produce different results (including abends) from what the old compiler produces for code that
is incorrect. You might get "lucky" in that some incorrect code does what you intended, but you must not
rely on this. You must change your incorrect code.

These rules might seem obvious: for example, no user would expect to write to an element of an array
using an index that is outside of the bounds of that array. However, in some cases, the fact that code
is incorrect and needs to be changed might be less obvious. This section will attempt to describe some
instances of incorrect code that must be changed; however, it is not a list of all incorrect code because the
opportunities for writing bad code are endless.

Relying on the order of declarations
If you declare one variable after another, you must not presume that they are contiguous in storage or
even that the second variable is in storage after the first.

For example, in the following code, the storage allocated to the variable a might not immediately follow
the storage allocated to the variable b, and hence the assignment could overlay 100 bytes of storage
allocated to some other variable.

   dcl a char(100);
        dcl b char(100);
        dcl c char(200) based;
        addr(a)->c = '';

In fact, if the variable b is unused, the compiler will most likely allocate no storage to it.

Using invalid FIXED DECIMAL data
All FIXED DECIMAL variables that you use must be used only when they contain valid data.

If a FIXED DECIMAL variable contains invalid data (such as bad numeric digits or a bad sign nibble), any
use of that variable might lead to a data exception. Even the assignment of such a variable to another
variable with a similar precision and scale might lead to a data exception - even though the assignment
could be done through a byte move.

Conversely, you should not presume that a data exception will be raised on the first use of such a
variable: for example, the assignment described above might be done with a byte move under some
circumstances, and in that case, a data exception would not occur until it was used in an arithmetic
operation or a compare and so on.
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Using invalid SUBSTR references
Any SUBSTR reference that you use must be such that its use will not raise the STRINGRANGE condition if
that condition is enabled.

If the STRINGRANGE condition is not enabled (and by default, it is not), a SUBSTR reference that is invalid
can cause the compiled code to overwrite storage allocated for other purposes, and that, in turn, can lead
to data corruptions or abends.

For example, in the following code, if the value in the variable n is larger than 100, the SUBSTR reference
is invalid, and the generated code might overwrite storage allocated to other variables.

   dcl f ext entry;
        dcl a char(100);
        call f( 'test' || substr(a,1,n) );

You can easily detect such bad code during test by compiling your programs with the
PREFIX(STRINGRANGE) compiler option.

The SUBSTR suboption introduced in V3R8 to the USAGE compiler option can allow some of this incorrect
code to be accepted. However, it would be best not to use this option; instead, you should correct your
code. For the above example, you correct the code by changing the declare of a to have a length at least
as large as the largest value that n could assume; if the maximum value for n is unknown, you can change
the declare of a to have a length of 32767.

In some situations, the old compiler also generated code for SUBSTR references of the form
SUBSTR(X,1,N), where X was CHAR and N was greater than 32767. However, such references are
invalid and would have raised STRINGSIZE if it were enabled. The new compiler enforces the restriction
that the length of a SUBSTR reference must be less than 32768 for CHAR and BIT references and less
than 16384 for GRAPHIC and WIDECHAR references, and you must correct any code that does not
conform to these rules.

Using dissimilar EXTERNAL declares
If you declare an EXTERNAL variable in more than one compilation unit, those declares must match. In
particular, all the attributes in the two declares must match.

For example, if you declare an EXTERNAL FILE in one compilation unit with the attributes KEYED
ENV( VSAM ), you must declare it with the same attributes in any other program linked with the first.

Using an incorrect PLITABS declare
If your code contains a declare for PLITABS, the pagesize, linesize, and other values must be valid; in
addition, the first field in the PLITABS structure must also be valid.

This field is supposed to hold the offset to the field specifying the number of tabs set by the structure, and
the Enterprise PL/I library code will not work correctly if this is not true.

Initializing variables
You must not use a variable before it has been initialized. Any program that uses an uninitialized variable
is invalid and must be corrected.

The best way to correct such code is to add the INITIAL attribute to those variables that need it. However,
there are also some other ways to initialize your variables, and this section discusses these alternative
ways.

Initializing AUTOMATIC
This topic describes how the compiler initializes AUTOMATIC when various options are in effect.

The compiler option INITAUTO will add an appropriate INITIAL attribute to any AUTOMATIC variable that
does not have an INITIAL attribute if the variable has one of the following attributes:
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• FIXED or FLOAT
• PICTURE, CHAR, BIT, GRAPHIC or WIDECHAR
• POINTER or OFFSET

See the Programming Guide for more details.

The compiler option DFT(INITFILL) will fill all AUTOMATIC storage with a specified byte value (or to '00'x
if no byte value is specified). This can be used to initialize variables with these attributes:

• FIXED BIN
• FLOAT
• VARYING or VARYINGZ
• POINTER or OFFSET

The compiler option INITFILL will also fill all other AUTOMATIC variables with the specified (or default)
byte value, but these variables would not really be properly initialized. For example, use of a FIXED DEC
variable initialized through DFT(INITFILL) will lead immediately to a data exception.

Setting the third suboption of the runtime option to 00 (as in STORAGE(,,00)) will fill all AUTOMATIC
storage in all the routines (including library routines) with the hex value 00. This has the same effects and
validity as the DFT(INITFILL) compiler option except that it applies to all routines in the application and
has a dreadfully bad impact on performance. Furthermore, because the compiler does not know if this
option is being used, it might not have the desired effect for code compiled with OPT(2) or OPT(3): the
fact that a variable is uninitialized makes the code invalid and might lead the optimizer to make choices
about how to optimize the code that cannot be repaired by using this runtime option.

Setting the third suboption of the runtime option to CLEAR (as in STORAGE(,,CLEAR)) will fill all
AUTOMATIC storage with the hex value 00 before MAIN is invoked. This has the same effects and validity
as the DFT(INITFILL) compiler option except that it applies only to the MAIN routine. Furthermore,
because the compiler does not know if this option is being used, it might not have the desired effect for
code compiled with OPT(2) or OPT(3): the fact that a variable is uninitialized makes the code invalid and
might lead the optimizer to make choices about how to optimize the code that cannot be repaired by using
this runtime option.

Initializing BASED
The compiler option INITBASED does for BASED what INITAUTO does for AUTOMATIC.

Initializing CONTROLLED
The compiler option INITCTL does for CONTROLLED what INITAUTO does for AUTOMATIC.

Initializing STATIC
The compiler option INITSTATIC does for STATIC what INITAUTO does for AUTOMATIC.

Without this option, all uninitialized STATIC storage will be filled with binary zeros. Of course, as was true
with the compiler DFT(INITFILL) and runtime STORAGE options discussed above, this means that many
variables such as FIXED DEC variables would have invalid values.
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Retaining unused declarations
This section describes how the new compiler handles storage allocation for unused declarations.

Retaining unused INTERNAL STATIC
If an INTERNAL static variable is unused, the compiler will not allocate any storage for it.

For example, if the following declaration is the only reference to the variable build_data, no storage would
be allocated for this variable and its initial value would not be in the generated text.

   dcl build_data char(30) var static
                  init('Compiled in build 17');

If the ABNORMAL attribute is specified on a level-1 static variable, the compiler will allocate storage for
the variable. For example, to keep the variable above, you could change the declaration above as follows:

   dcl build_data char(30) var static abnormal
                  init('Compiled in build 17');

Do not apply the ABNORMAL attribute indiscriminately to all variables or all static variables - this will both
slow down your compilation and worsen the performance of the generated code.

If you specify the compiler option STATIC(FULL), the compiler will apply the abnormal attribute to all
static. This is a coarse solution and is not recommended.

Incorrect code that will now raise exceptions

FIXEDOVERFLOW when SIZE is disabled
Under both the old and new compilers, if you try to assign a source to a numeric target and the source is
too big, the SIZE condition will be raised if it is enabled. However, if the SIZE condition is NOT enabled,
your program is in error and what happens is unpredictable. You should correct such a program.

Under the old compiler, sometimes no condition will be raised. For example, consider the following
program:

    dcl A fixed dec(3);
    dcl B pic'9';

    A = 123;
    B = A;

The value in the source A is too large to fit into B, and if SIZE is enabled, it will be raised. However, when
SIZE is disabled, the old compiler raises no condition. That does not mean your program is correct - in
fact, it is incorrect and should be changed. For instance, if you wished to set B to just the ones digit of A,
you could change the above code as follows:

    dcl A fixed dec(3);
    dcl B pic'9';

    A = 123;
    B = mod(A,10);

Moreover, under the old compiler, sometimes a condition will be raised for very similar code. For example,
consider the following program:

    dcl X fixed dec(5);
    dcl Y fixed dec(4);
    dcl Z fixed dec(5);

    X = 99999;
    Y = X + 1;
    Z = X + 1;
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The value of the expression X + 1 is too large to fit into either Y or Z, and if SIZE is enabled, it will be
raised for both statements. However, when SIZE is disabled, the old compiler raises no condition for the
assignment to Y and raises FIXEDOVERFLOW for the assignment to Z. Again your program is incorrect and
should be changed.

The new compiler handles these statements consistently, but the results depend on the target attributes
and the compiler options in effect:

• When the SIZE condition is disabled, if the target has the PICTURE attribute, the generated code will not
raise the FIXEDOVERFLOW condition.

More precisely, the generated code will not raise the FIXEDOVERFLOW condition when SIZE is disabled
when assigning a source expression with any of the following data types to a non-floating point
PICTURE target:

– FIXED BIN
– FIXED DEC
– Non-floating point PICTURE

• When the SIZE condition is disabled, if the target has the FIXED DEC attribute, then the following
applies:

– If the default compiler option DECIMAL(FOFLONASGN) is in effect, the generated code will raise the
FIXEDOVERFLOW condition.

– If the compiler option DECIMAL(NOFOFLONASGN) is in effect, the generated code will not raise the
FIXEDOVERFLOW condition.

Note that the above discussion applies to assignments only: if an operation such as addition
or multiplication produces a result requiring more than 15 digits (or more than 31 if the
LIMITS(FIXEDDEC(15,31)) option is in effect), an exception will be raised. The exception raised will
usually be FIXEDOVERFLOW, but depending on the machine instructions generated, other exceptions,
such as a specification exception, might be raised.

Similarly, when a BIT variable is assigned to a FIXED BIN variable, if the BIT variable was too large to be
validly converted and if SIZE was not enabled (and hence the program was invalid), the following might
happen:

• The old compiler would sometimes raise no condition and simply assign 0 to the target.
• The new compiler will raise the SIZE condition if the conversion is done via a library call.

For example, consider the following program:

    dcl A bit(32) aligned;
    dcl B fixed bin(31);

    A = '80000000'bx;
    B = A;

The value in the source A is too large to fit into B, and if SIZE is enabled, it will be raised. The new
compiler will raise the SIZE condition for this code even when it is disabled. However, when SIZE is
disabled, the old compiler raises no condition. That does not mean your program was correct - in fact, it
was always incorrect and should be changed.

Invalid allocations
Under the old compilers, the following piece of code "worked":

    dcl vdptr  pointer;
    dcl vdcom  char(2000) based(vdptr);

    dcl
      1 vdcommarea based(addr(vdcom)),
        2 vda  char(1000),
        2 vdb  char(1000),
        2 vdz  char(1);
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    alloc vdcom;

    vdcommarea = '';

This code is not valid PL/I code because you must not use a 2001 byte area to overlay a 2000 byte
allocated piece of storage. By luck, this "worked" under the OS PL/I V2R3 run time, but under the
Language Environment run time, this code fails miserably.

Incorrect code that will now loop endlessly
This section describes incorrect code that will cause endless loops. The new compiler alerts you to such
situations with messages. You should closely examine and probably change any code that causes the
compiler to issue these messages.

Even precision PICTURE loop control variables
Consider the following program that initializes an array:

   winter: proc;
      dcl n pic'99';
      dcl a(0:99) fixed bin ext;
      do n = 0 to 99;
         a(n) = n;
      end;
   end;

This code is not valid PL/I code. If the SIZE condition is enabled, it will be raised after n becomes equal to
99 (because the next value, 100, it would assume is too large for a PIC'99' variable).

For best performance, using a PICTURE variable for a loop control variable is usually not a good idea.
However, for the code above it is a very bad idea because the new compiler will generate code that will
make this loop run endlessly.

By the definition of the DO statement, this loop is equivalent to the following code, which will loop
infinitely under both the old and new compiler.

      n = 0;
      if n > 99 then go to loop_exit;
      loop_body:;
         a(n) = n;
      n = n + 1;
      if n <= 99 then go to loop_body;
      loop_exit:;

However, for the original code using the DO-loop, the old compiler cheats and generates code that is,
strictly speaking, incorrect.

The new compiler will try to alert you to this situation by issuing the following messages:
  IBM1089I W    Control variable in DO loop cannot
                exceed TO value, and loop may be infinite.
  IBM1220I W    Result of comparison is always constant.
  IBM1220I W    Result of comparison is always constant.

You should closely examine (and probably change) any code that causes the compiler to issue message
IBM1089. You could also use the EXIT option to raise the severity of this message.

To correct your code, you could change the attributes for the DO-loop control variable from PICTURE to
FIXED BIN(31).

Finally, note that this problem will occur in any loop where the DO-loop control variable is PICTURE'(n)9'
when n is an even number and the loop limit is equal to 10**n-1.
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This problem could also occur in forms that will not be flagged by the compiler. For example, consider the
following program that initializes an array:

   sommer: proc;
      dcl n pic'999';
      dcl a(0:999) fixed bin ext;
      do n = 0 to 998 by 2;
         a(n) = n;
      end;
   end;

In this case, because the TO value of 998 is less than the maximum value that n could assume, the
compiler will not issue message IBM1089. However, after n assumes the value 998, the next time through
the loop n will be assigned the value 0 and the loop will repeat.

This problem could also occur when the BY value was negative:

   eiki: proc;
      dcl n pic'999';
      dcl a(0:99) fixed bin ext;
      do n = 79 to 1 by -2;
         a(n) = n;
      end;
   end;

However, after n assumes the value 1, the next time through the loop n will be decremented by 2 and
assigned the value 1 and the loop will repeat.

Assignments that will produce different results
This section describes assignments for which you might see different results from the old and new
compilers. You might need to change your code or use specific compiler options to make your code
compatible.

Source-target overlap
Consider the assignment P->Z = Q->Z; where Z is CHAR(6) BASED.

Under OPT(0), the old compiler would assign the source first to a 6-byte temporary and then assign the
temporary to the target.

However, under OPT(2), the old compiler would perform the assignment with one MVC.

These different implementations lead to different results if the source and target overlap.

The new compiler controls this behavior through the OVERLAP suboption of the DEFAULT compiler option:

• Under DFT(NOOVERLAP), the compiler will assume the source and target never overlap.
• Under DFT(OVERLAP), the compiler will generate more conservative code whenever necessary.

For example, for the assignment SUBSTR(A,4,6) = SUBSTR(A,3,6);, if A = 'abcdefghijklm', the
compiler sets the value of A as follows:

• The old compiler sets A = 'abccdefghjklm'.
• The new compiler, under DFT(OVERLAP), sets A = 'abccdefghjklm'.
• The new compiler, under DFT(NOOVERLAP), sets A = 'abcccccccjklm'.

Consequently, for the most compatibility with the least work, you might want to specify the compiler
option DFT(OVERLAP).

But specifying this option will also force the compiler to generate slower code in situations where you
know the source and target do not overlap, and it will also cause the compiler to forego some other
optimizations. You would be much better off if you changed your code to avoid source and target overlap
and then use DFT(NOOVERLAP).
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For instance, consider the following assignment:

   SUBSTR(A,4,6) = SUBSTR(A,3,6);

This assignment can be replaced by the following assignments:

   temp_Char6 = SUBSTR(A,3,6);
   SUBSTR(A,4,6) = temp_Char6;

Float-to-float assignments
The new compiler converts a FLOAT DECIMAL literal, such as 3.1415926E0 or 1E-02, to its internal
floating-point representation solely by examining the literal's attributes and not by examining the context
in which it used.

For example, 3.1415296E0 has the attributes FLOAT DEC(8), and hence the new compiler will convert
it to long floating point. But, 1E-02 has the attributes FLOAT DEC(1), and hence the new compiler will
convert it to short floating point.

If the literal is used in an assignment or an initial clause, the compiler will then convert, if necessary, its
floating-point value to the attributes of the target of the assignment or initialization.

However, the old compilers would examine the context in which such a literal is used and convert the
literal directly to the attributes of its target. The behavior of the old compilers does not strictly follow the
rules for PL/I expression evaluation and can lead to different results than those produced by the new
compiler. Consider this code fragment:

  dcl z float dec(06) init(0);
  dcl s float dec(06);
  dcl q float dec(17);

  s = 1e-2;
  q = s;
  put skip data( q );
  q = 1e-2;
  put skip data( q );
  q = 1e-2 + z;
  put skip data( q );

In all three assignments to q above, the attributes of the source are those of a short floating-point
number, and the value of the source should be the same. However, the results of the three PUT
statements under the old compilers are as follows:

   Q= 9.999997913837432861E-03;
   Q= 9.999999999999999999E-03;
   Q= 9.999999999999999999E-03;

The results of the three PUT statements under the new compiler are as follows:

   Q= 9.999997913837432860E-03;
   Q= 9.999997913837432860E-03;
   Q= 9.999997913837432860E-03;

This kind of difference occurs only for float literals that cannot be exactly represented (such as fractions
like 1E-2 that cannot be equated to a binary fraction).

To alert you to situations such as the above, the compiler will issue message IBM1065I when it detects
short-floating point literals that cannot be exactly represented.

To get the same results as under the old compilers, you would have to change your source in one of the
following ways:

1. Specify the constant by using the FLOAT built-in function applied to a FIXED DECIMAL literal and with
the precision you want.
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For example, you would specify 1E-2 as FLOAT(.01,7) to make it a long floating-point value and as
FLOAT(.01,17) to make it an extended floating-point value.

2. Add enough zeroes to the literal to give it the precision you want.

For example, you would specify 1E-2 as 1.000000E-2 to make it a long floating-point value and as
1.0000000000000000E-2 to make it an extended floating-point value.

3. Use the new D or Q format to indicate the desired precision.

For example, you would specify 1E-2 as 1D-2 to make it a long floating-point value and as 1Q-2 to
make it an extended floating-point value.

Note that the first two changes in the above list would be accepted by the old and new compilers (and
would produce the same results under each), but the third change would work only under the new
compiler.

Other statements that will produce different results
This section provides information about some other statements for which you might see different results
from the old and new compilers.

STREAM I/O with unprintable characters
If a character with the value '00'x, '0C'x through '0F'x, or '15'x is part of the output of a PUT FILE
statement, a period ('4B'x) will be output instead under some scenarios.

The scenarios are listed below:

• The code is running under batch and is compiled with the STDSYS option, the file is SYSPRINT, and
SYSPRINT is directed to SYSOUT.

• The code is running under z/OS UNIX, and the file is a STREAM OUTPUT file being written to the
command window.

• The code is running under TSO, and the file is a STREAM OUTPUT file being written to the TSO terminal.
• The code is compiled with the LP(64) option. Compiling with LP(64) implies the STDSYS option is in

effect.

Uninitialized EXTERNAL STATIC
The old and new compilers are different with respect to storage allocation for uninitialized EXTERNAL
STATIC variables.

Under the old compiler, a variable declared as EXTERNAL STATIC but with no INITIAL value(s) specified
for it was not allocated any storage (and a linkage editor ESD of type CM was issued). The storage for it
must have been defined in some other program object that will be linked with it. In fact, the storage that
was actually allocated might be bigger than what its declare specified (or implied). For example, consider
the following code declares:

dcl testpcl ext static, pcl char(16) based(addr(testpcl));

The variable testpcl has the (implied) attributes of FLOAT DEC(6) and hence would seem to be allocated
only 4 bytes of storage. If all the programs linked with this one also declare testpcl with the same PL/I
declare, then exactly 4 bytes will be allocated to it. However, if it is linked with, say, an assembler that
defined testpcl as a 16-byte CSECT, the linker will allocate 16 bytes to it.

The new compiler will currently allocate 4 bytes to such a variable (and issue a linkage editor ESD of type
SD and length 4). An attempt to use it as the base for, say, a 16-byte area will lead to errors.
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If you want to declare a variable but have its storage allocation be determined by its declaration in
another module, you should declare it with the RESERVED option. For example, the declare above should
be changed as follows:

dcl testpcl ext static reserved, pcl char(16) based(addr(testpcl));

If, however, you compile with the option COMMON, the Enterprise PL/I compiler will also issue a linkage
editor ESD of type CM, and the code would work as it did with the old compiler.

Incompletely declared FILEs
You must be aware of the difference in how the old and new compilers handle incompletely declared
FILEs.

Under the old compiler, if you declared an EXTERNAL FILE in one routine with some attributes, such as
RECORD, but in another routine linked with the first routine, you did not declare the file or declared it with
no attributes (other than FILE), the second routine would use the attributes declared in the first routine
even if the second routine opened the file first.

Enterprise PL/I would handle this differently: the second routine would not "see" the attributes from the
first routine and would instead apply the default attributes, such as STREAM, to the file. This can lead to
problems.

You should correct this code by declaring the FILE identically in all routines; in fact, all EXTERNAL
variables should be declared identically in all routines.

Dummy arguments and alignment
According to the PL/I Language Reference, a dummy argument will be created if an argument differs from
its parameter description in its alignment. However, the old compiler followed this rule for CHARACTER
NONVARYING, but not for CHARACTER VARYING. The new compiler applies the rule consistently.

For example, consider the following code:

dcl x entry( unaligned char(8) );
dcl y entry( unaligned char(8) varying );
dcl a aligned char(8);
dcl b aligned char(8) varying;
call x( a );
call y( b );

Dummy arguments should be created for both CALL statements, but only the Enterprise PL/I compiler will
create a dummy argument for the second CALL.

Note that you can use the DEFAULT(DUMMY(UNALIGNED)) compiler option to make the compiler ignore
alignment mismatches when deciding when to create dummy arguments. If this option were in effect, the
compiler would not create a dummy argument for either of the CALLs in the above example.

Dummy arguments and CONTROLLED
According to the PL/I Language Reference, a dummy argument will be created if an argument is a
CONTROLLED string or area (because an ALLOCATE statement could have changed the length or extent,
hence causing the string length or area size to be different from what is required by the called routine).
The new compiler applies this rule consistently, but the old compiler does not.

Under Enterprise PL/I, this rule applies unless the RULES(NOLAXCTL) option is in effect and the
string length or area size is a constant. However, the old compiler was not always consistent about
following this rule (which should always have applied because the old compiler had no equivalent to the
RULES(NOLAXCTL) option).

For example, consider the following code:

dcl x entry( char(8) );
dcl a controlled char(8);

102  Enterprise PL/I for z/OS: Enterprise PL/I for z/OS 6.1 Compiler and Runtime Migration Guide



dcl 1 b(2) controlled, 2 c char(8);
call x( a );
call y( b(1).c );

Dummy arguments should be created for both CALL statements, but only the Enterprise PL/I compiler will
create a dummy argument for the second CALL.

Pointer arithmetic
In expressions involving pointer arithmetic, it is presumed that the pointers are addresses. Consequently,
when adding a value to a pointer, the result pointer might not have the high order bit on, even though the
source pointer did have the high order bit on.

Code that will not perform as well
This section describes code that you might consider changing for better performance.

FIXED DEC as a loop control
A DO-loop that has a FIXED DECIMAL or PICTURE control variable will perform much worse than a loop
that has a FIXED BINARY control variable.

You can get significantly better code if you change the declarations for your loop control variables from
FIXED DEC to FIXED BIN(31).

FIXED BIN(15) as a loop control
A DO-loop that has a FIXED BIN(15) control variable will perform worse than a loop that has a FIXED
BIN(31) control variable.

Under OPT(2) or OPT(3), the compiler will issue I-level message IBM1063 to flag code that uses FIXED
BIN(15) control variables. You can get better code if you change the declarations for your loop control
variables from FIXED BIN(15) to FIXED BIN(31).

I/O using TOTAL
Because the TOTAL option of the ENVIRONMENT attribute is not supported, I/O to files using it will
generally not perform as well.
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Chapter 14. Understanding when working code may
need to be changed

This chapter documents more situations where the new compiler generates different code than the old
compilers. But unlike the previous chapter, these differences are somewhat obscure; they are included in
this document for completeness and because they could potentially affect you.

Code that will now raise an exception
This section provides information about code that will raise an exception under the new compiler.

ZERODIVIDE and OVERFLOW promoted to ERROR
The new compiler improves the way it handles ZERODIVIDE or OVERFLOW.

Under the old compiler if ZERODIVIDE or OVERFLOW were raised and there was an ON-unit for the
condition, and if the END statement for the ON-unit was reached, your program would continue with the
next machine instruction after the one that raised the condition.

If the condition was raised by a hardware exception, this meant that your program continued on with
some unknown value as the result of the operation, and this often led to more errors.

Under the new compiler, if either ZERODIVIDE or OVERFLOW is left unhandled by an ON-unit, the
condition will be promoted to ERROR.

Conditions raised when disabled
Under the old compiler, if a condition such as CONVERSION or SUBSCRIPTRANGE was disabled, the
condition would almost never be raised. Under the new compiler, disabling a condition asserts that the
condition will not occur. However, the condition might still be raised.

For some code sequences, this allows the compiler to generate faster code. For example, for an
assignment of a CHAR(1) to a FIXED BIN, if CONVERSION is enabled, the conversion will be done by
a library call. But if CONVERSION is disabled, the conversion will be done by very simple inline code
that "ands out" the left nibble in the CHAR(1) value. This code is possible only because NOCONVERSION
asserts that a conversion condition could not occur in this statement. If this assertion is not true, your
program is invalid.

However, for an assignment of a CHAR(2) to a FIXED BIN, the conversion will always be done by a library
call (because there are too many possibilities for what might be held in those two characters), and even
if NOCONVERSION is in effect, the CONVERSION condition will be raised if the source does not contain a
valid numeric value. (Note also that if you know that the CHAR(2) source contains only numeric digits, you
could avoid this library call by using an appropriate picture string in either the EDIT built-in function or in a
variable declared as based on or unioned with the source.)

Similarly, if SUBSCRIPTRANGE is disabled, you are asserting that all subscripts are valid. For most
statements, this means the compiler will not generate any code to check the validity of the subscripts,
and if any subscripts are invalid, your program is in error. However, if a subscripted reference is used in
a PUT DATA statement, a library routine will evaluate that reference, and if any subscript is invalid, the
SUBSCRIPTRANGE condition will be raised - even if disabled.
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Invalid RETURNs
If a piece of code attempts to return a value when no value should be returned, no condition will be raised
under the old compiler, but the new compiler alerts you to this error by raising an ERROR condition.

Consider the following somewhat senseless, but illustrative, code fragment:

    call y;

    x: proc returns( pointer );
      y: entry;
      return( sysnull() );
    end;

This program fragment is in error because when the procedure is entered at Y, no value should be
returned, but the code attempts to return a value nonetheless.

Under the old compiler, no condition would be intentionally raised when the invalid return was attempted,
and the program might fail in any number of ways (and it might even complete "successfully").

Under the new compiler, the ERROR condition would be intentionally raised by the generated code with
ONCODE=9004.

GOTO holes
If GOTO holes are detected in your code, the old compiler raises a protection exception, while the new
compiler raises an ERROR condition.

Consider the following code fragment:

   dcl x(4) label;

   goto x(n);
   x(4):;
   put skip list( n );
   x(3):;
   put skip list( n );
   x(2):;
   put skip list( n );
   x(1):;
   put skip list( n );

Note that if n < 1 or if n > 4, and if the SUBSCRIPTRANGE condition is not enabled, your program was in
error.

Under the old compiler, a protection exception usually resulted.

Under the new compiler, the ERROR condition will be raised with ONCODE=9003 with the following
message:
IBM0751S  ONCODE=9003  A GOTO was attempted to an element of a label constant
         array, but the subscripts for the element were not those of any
         label in that array.

The scope of NOFOFL
Under Enterprise PL/I, the FIXEDOVERFLOW/NOFIXEDOVERFLOW (or FOFL/NOFOFL) prefix applies only
to FIXED DECIMAL operations. However, note that the (NO)FOFL prefix, when applied to a PROCEDURE
or BEGIN statement, applies only to that block and to the blocks statically contained within it. The prefix
does not apply to any other code dynamically called from within these blocks.

Similarly, if the (NO)FOFL prefix is applied to a CALL statement or a statement containing a function
invocation, the setting in the prefix does not apply to the code in the invoked routine: it applies only to any
FIXED DECIMAL calculations before or after the routine is invoked.
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Code that will no longer raise exceptions
This section provides information about code that will no longer raise exceptions under the new compiler.

FIXEDOVERFLOW for FIXED BIN
Under the old compiler, the FIXEDOVERFLOW (or FOFL) condition would be raised if any FIXED BIN
operation produced a result that required more than 31 binary digits. Under the new compiler, the FOFL
condition will not be raised for any FIXED BIN computation (but it will still be raised for FIXED DEC
computations when needed).

For example, under the old compiler, if you multiplied a FIXED BIN variable equal to 100_000 by itself,
the FOFL condition would be raised.

This change in the new compiler makes the PL/I language match the C and JAVA languages, and it also
enables the compiler to generate inline code to perform adds and subtracts on 8-byte integers.

In fact, during runtime initialization, the bit in the PSW that enables integer FOFL will not be set if all your
code has been compiled by the C or by the new PL/I compilers. It will be set on if there is any old PL/I
code in the main module, and that can have some negative performance consequences for some of your
new code.

CONVERSION when assigning blanks to numeric variables
The old and new compilers react differently to the assignment of blanks to numeric variables.

Under the old compiler, the CONVERSION (or CONV) condition would be raised if a character string
consisting of one or more blanks (and nothing else) was assigned to a numeric variable. However if a
varying character string of length zero was assigned to a numeric variable, CONVERSION would not have
been raised (even though a zero-length character string compares equal to character string consisting
only of blanks).

Under the new compiler, the CONVERSION condition will not be raised by the assignment to a numeric
variable of any character string that would compare equal to a blank string.

ERROR when mapping excessively large aggregates
If your code declares an aggregate with adjustable extents, its size will be determined at runtime. If its
size would be greater than 2G and the compiler generates a call to a library routine to map the variable,
the ERROR condition will be raised.

However, for a simple aggregate with adjustable extents, the compiler will generate inline code to
determine the variable's size - unless the SIZE condition is enabled. If such a variable had a size greater
than 2G and SIZE was not enabled, no condition would be raised and your program would be invalid.
Of course, if your aggregates are reasonable in size, you will get far better performance if SIZE is not
enabled.

Storage mapped differently
This section describes situations where the old and new compilers differ with respect to storage. These
differences affect how your program runs.

One-byte FIXED BIN
If you have any variables declared as FIXED BIN with a precision of 7 or less, they occupy one byte of
storage under Enterprise PL/I instead of two as under PL/I for MVS & VM and earlier. If the variable is part
of a structure, this usually changes how the structure is mapped, and that could affect how your program
runs.

For example, if the structure were read in from a file, fewer bytes would be read in under Enterprise PL/I
than under PL/I for MVS & VM or earlier PL/I releases.
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To avoid this difference, you could change the precision of the variable to a value between 8 and 15
(inclusive).

To help you locate where you might have problems because of this difference, the compiler will flag any
FIXED BIN with precision <= 7 with message IBM1044.

The (NO)BIN1ARG suboption of the DEFAULT compiler option controls how the compiler handles one-
byte REAL FIXED BIN arguments passed to an unprototyped function:

• Under BIN1ARG, the compiler will pass a FIXED BIN argument as is to an unprototyped function.
• But under NOBIN1ARG, the compiler will assign any one-byte REAL FIXED BIN argument passed to an

unprototyped function to a two-byte FIXED BIN temporary and pass that temporary instead.

Consider the following example:

dcl f1 ext entry;
dcl f2 ext entry( fixed bin(15) );

call f1( 1b );
call f2( 1b );

If you specified DEFAULT(BIN1ARG), the compiler would pass the address of a one-byte FIXED BIN(1)
argument to the routine f1 and the address of a two-byte FIXED BIN(15) argument to the routine f2.
However, if you specified DEFAULT(NOBIN1ARG), the compiler would pass the address of a two-byte
FIXED BIN(15) argument to both routines.

Note that if the routine f1 was a COBOL routine, passing a one-byte integer argument to it
would cause problems because COBOL has no support for one-byte integers. In this case, using
DEFAULT(NOBIN1ARG) might be helpful; but it would be better to specify the argument attributes in
the entry declare.

So, while BIN1ARG is the default suboption, you might find it useful to specify the NOBIN1ARG suboption
for increased compatibility.

Declarations handled differently
This section provides information about declarations that the old and new compilers handles differently.

AREA with INITIAL
The new compiler ignores the INITIAL attribute for AREAs, and you should convert any INITIAL clauses
for AREAs into assignment statements.

For example, in the following code fragment, the elements of the array are not initialized to a1, a2, a3, and
a4:

       dcl (a1,a2,a3,a4) area;
       dcl a(4) area init( a1, a2, a3, a4 );

However, you can rewrite the code as follows so that the array is initialized:

       dcl (a1,a2,a3,a4) area;
       dcl a(4) area;

       a(1) = a1;
       a(2) = a2;
       a(3) = a3;
       a(4) = a4;

The compiler will flag any declare of AREA with INITIAL with message IBM1196.
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Conversions handled differently
This section provides information about conversions where the old and new compilers might produce
different results.

Conversions from float to character
In some conversions from FLOAT (BIN or DEC) to CHARACTER, there might be a difference of one in the
last digit between the result produced under the old and new compilers.

This difference does not reflect a difference in the underlying floating-point value or in the calculations
that led up to it. It is generally safe to ignore this difference.

Conversions from scaled FIXED BINARY
It is generally best to avoid scaled FIXED BINARY because its use generally causes the compiler
to produce less efficient code. Additionally, in some conversions of scaled FIXED BINARY to FIXED
DECIMAL, the new compiler might produce a different (but more accurate) result than the old compiler.

For example, consider the following code:

  dcl i fixed bin(15) init(290);
  dcl s fixed bin(31,16);
  dcl d fixed dec(15,12);

  d = i / 365;
  put skip data( d );
  s = i / 365;
  d = s;
  put skip data( d );

The results of the two PUT statements under the old compilers are as follows:

   D= 0.794509887700;
   D= 0.794509887700;

The results of the two PUT statements under the new compiler are as follows:

   D= 0.794509887695;
   D= 0.794509887695;

Note that while the second assignment above clearly involves a conversion of scaled FIXED BIN to FIXED
DEC, the first assignment also involves such a conversion because the attributes of the expression i / 365
are, by the PL/I rules for expression evaluation, FIXED BIN(31,16).

To understand what is happening here, it will help to look at the contents of the variable s after it is
assigned the result of the divide. s will then hold the hex value 0000CB65. If viewed as a FIXED BIN(31,0)
number, this would be the value 52069, but because it has scale factor 16, it represents the value
52069/2**16. That value is mathematically equivalent to 52069*5**16/10**16. So, to convert it from
base 2 to base 10, the compiler multiplies the value by 5**16 (or 152587890625). That would produce a
FIXED DEC value with scale factor 16; hence, to produce the target result with scale factor 12, the last 4
digits are dropped.

As can be verified on a calculator, 52069 times 5**16 is 7945098876953125, and dropping the last digits
yields the result produced by the new compiler.

The reason why the old compiler produced a different result is that its generated code multiplied s not by
152587890625, but by 152587890626. This leads to a less accurate result.

You can avoid this problem entirely by ensuring that all divisions that could yield a fractional result are
performed in decimal. Using the DECIMAL built-in function is one easy way to do this. For example, if,
in the first assignment above, the expression i / 365 were changed to dec(i) / 365 , the result of the
assignment would be 0.794520547945.

Chapter 14. Understanding when working code may need to be changed  109



To alert you to situations such as the above, the compiler will issue message IBM2810I when it detects
conversions of scaled FIXED BIN to FIXED DEC.

Built-in functions handled differently
This section provides information about built-in functions for which there is difference in the support by
the old and new compilers.

Arithmetic built-in functions with scale factors and FIXED BIN
Under the RULES(IBM) compile-time option, which is the default, variables can be declared as FIXED BIN
with a nonzero scale factor. Infix, prefix, and comparison operations are performed on scaled FIXED BIN
using the same semantics as the old compilers. However, the ADD, DIVIDE, or MULTIPLY built-in functions
will not produce FIXED BIN results with nonzero scale factors.

The new compiler evaluates these built-in functions as FIXED DEC rather than as FIXED BIN as the old
compilers did if either of the following is true:

• Their arguments are FIXED BIN with nonzero scale factors.
• Their arguments are FIXED BIN with zero scale factors but a nonzero value is specified as their fourth

argument.

For example, the new compiler would evaluate the DIVIDE built-in function in the assignment statement
below as a FIXED DEC expression:

       dcl (i,j) fixed bin(15);
       dcl x     fixed bin(15,2);

       ...

       x = divide(i,j,15,2);

Note that in this example, the result is FIXED DEC(6,1) instead of FIXED DEC(15,2). In the general case,
for (p,q), the result is (t,s) where t = 1 + ceil(p/3.32) and s = ceil(q/3.32). To get a result that has the
attributes FIXED DEC(p,q), apply the DECIMAL built-in function to all of the FIXED BIN arguments; so
in this example, the expression would become DIVIDE( DEC(X), DEC(Y) 15, 2 ). You can also use the
PRECTYPE compiler option to change the way the compiler interprets the precision, but that potentially
changes the interpretation of other statements.

The compiler will flag this difference with message IBM1053.

String-handling built-in function for conversion of DBCS character strings
The Enterprise PL/I compiler still supports the CHAR built-in function although it now views CHAR as an
abbreviation for CHARACTER. The results of the CHAR built-in function are the same as in the old PL/I for
MVS & VM compiler except when the first argument has the GRAPHIC type.

• Under the PL/I for MVS & VM compiler, the result was the byte value of that argument enclosed in shift
codes.

• Under the Enterprise PL/I compiler, the result is the string produced by converting the GRAPHIC string
to CHARACTER. If the conversion is not possible, the CONVERSION condition will be raised.

For example, if X is GRAPHIC(3) and holds the byte .A.B.C, the results are as follows:

• Under the PL/I for MVS & VM compiler, GRAPHIC(X) yields <.A.B.C>.
• Under the Enterprise PL/I compiler, GRAPHIC(X) yields ABC.

Examples

The following examples show how to change your code to obtain the results produced by the old compiler.
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Example 1

add
       dcl so char(1) value ('0e'x), si char(1) value('0f'x);
then replace
    A = CHAR(X);
by
       UNSPEC(A) = UNSPEC(SO) || UNSPEC(X) || UNSPEC(SI);

Example 2

replace 
    CHAR(X) 
by 
    OLDCHAR(X) 
where OLDCHAR is defined by
    oldchar: proc(x) returns( char(32767) var );  
      dcl x graphic(*);                           
      dcl a char(32767) var;                      
      dcl d char(2*length(x));                    
      a = '0e'x;                                  
      unspec(d) = unspec(x);                      
      a = a || d;                                 
      a = a || '0f'x;                             
      return( a );                                
    end;            

For more information about the CHARACTER and CHARGRAPHIC built-in functions, refer to the Enterprise
PL/I for z/OS Programming Guide.

MACRO preprocessor differences
This topic describes situations where you might need to change your code because of differences
between the old and new MACRO preprocessors.

MACRO preprocessor and strings
Under the old compiler, the MACRO preprocessor would uppercase all text except for text enclosed in
strings and comments. But the old compiler recognized only text delimited by '...' as strings: text delimited
by "..." was not recognized as a string and was uppercased.

The new compiler will, under the default preprocessor option of CASE(UPPER) also uppercase all text
except for text enclosed in strings and comments. However, the new compiler recognizes both text
delimited by '...' and text delimited by "..." as strings and will not uppercase either.

This difference could cause a problem if you were running the MACRO preprocessor before the SQL
preprocessor and if you also had code in your SQL statements such as the following:

   WHERE "system" = 'Wilmer'

Under the old compiler, this would have become WHERE "SYSTEM" = 'Wilmer'.

But under the new compiler, this becomes WHERE "system" = 'Wilmer'.

The latter would probably not produce the results you want from Db2. If this is the case, you must change
your source so that the text delimited by "..." is in uppercase (before any preprocessing).

SQL preprocessor differences
You might need to change your code because of differences between the old and new SQL preprocessors.

Starting with Enterprise PL/I for z/OS V4R2, the SQL preprocessor no longer supports the LOB option.
If your program relies on how the preprocessor translates LOB declarations, you must change it. See
“Migrating from Enterprise PL/I V4R1” on page 138 for detailed information about that and other SQL
preprocessor changes.

Chapter 14. Understanding when working code may need to be changed  111



112  Enterprise PL/I for z/OS: Enterprise PL/I for z/OS 6.1 Compiler and Runtime Migration Guide



Chapter 15. Linking your new objects
This chapter describes factors you must consider when you link-edit an object module produced by the
new Enterprise PL/I compiler.

For more information about linking your code, see the Enterprise PL/I for z/OS Programming Guide.

Prelinker and PDSE considerations
As long as you use the Enterprise PL/I default compiler options NORENT, LIMITS(EXTNAME(7)), and
NOGOFF, you do not need to use either the prelinker or PDSEs.

AMODE(24) considerations
For AMODE(24) support, you must link your application program with SIBMAM24 concatenated in front of
SCEELKED.

For more information about building AMODE(24) applications, see “AMODE(24) restrictions” on page 64.

Using PLICALLA or PLICALLB entry
If you use PLICALLA or PLICALLB as a main entry point in an Enterprise PL/I program, you must
concatenate SIBMCAL2 in front of SCEELKED.

CHANGE cards
Enterprise PL/I does not support the use of CHANGE cards during link-edit if the RENT option is specified,
or if the LIMITS(EXTNAME(n)) option is specified with n greater than 8.
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Chapter 16. Using Language Environment with the
new compiler

When you use the Language Environment run time with Enterprise PL/I, be aware of the differences
between Language Environment and the old OS PL/I run time.

Many of the same considerations that were discussed in Chapter 6, “Considerations before migrating,” on
page 33 apply to the new compiler as well. See that chapter for runtime considerations when you use the
new compiler.

Chapter 13, “Understanding when working code must be changed,” on page 93 also contains useful
information about differences between Enterprise PL/I runtime results and previous versions of PL/I.

Using the right runtime options
Under Language Environment, some of the options available under the OS PL/I run time are no longer
available, and some have been renamed, redefined, or merged with other options. In addition, some
important new options are now available.

Dropped options
• COUNT
• FLOW

Renamed and merged options
• HEAP redefines HEAP
• NATLANG replaces LANGUAGE
• RPTSTG replaces REPORT
• STACK merges ISASIZE and ISAINC
• TRAP merges SPIE and STAE

Important new options
• ABTERMENC
• ALL31
• DEPTHCONDLMT
• ERRCOUNT
• MSGFILE
• STORAGE
• XUFLOW

For more and complete information about runtime options, see the z/OS Language Environment
Programming Reference, but note the following key points:

• For compatibility with OS PL/I, use the following options:

– ABTERMENC(RETCODE)
– DEPTHCONDLMT(0)
– ERRCOUNT(0)
– TRAP(ON)
– XUFLOW(ON)
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• You must specify the following options in your AMODE(24) applications:

– ALL31(OFF)
– STACK(,,BELOW)

• Never use RPTSTG(ON) in any performance-critical application.
• Never use STORAGE(,,00) in any performance-critical application.
• You must specify POSIX(ON) in any multithreaded application.

Calling PL/I from assembler main programs
There are three ways by which Language Environment-conforming assembler routines can pass control to
a Enterprise PL/I subroutine.

1. Branch to a statically-linked Enterprise PL/I subroutine.
2. Use the Language Environment macro CEEFETCH to branch to a separately-linked Enterprise PL/I

subroutine.
3. Use assembler instructions such as LOAD and BALR to branch to a separately-linked Enterprise PL/I

subroutine.

In this case, your must explicitly link in the Language Environment-Enterprise PL/I signature CSECT,
CEESG011, to ensure that the Language Environment-PL/I-specific runtime environment is initialized.

For information about other assembler issues, see “Differences in assembler support” on page 43.

Understanding when your results might vary
Under Language Environment, some return codes, runtime messages, dumps, and storage reports are
different from what you get under the old OS PL/I run time. In addition, Enterprise PL/I now invokes
Language Environment-provided math built-in routines, which are more precise than those of OS PL/I.

Return codes
The PLIRETC built-in subroutine will now accept a FIXED BIN(31) argument and does not require the
value to be <= 999.

Correspondingly, the PLIRETV built-in function will now return a FIXED BIN(31) value.

The Language Environment run time adds 3000 to the user return code for severity 3 conditions, and
Language Environment classifies all PL/I conditions as severity 3 except the following:

• ATTENTION (when raised by a SIGNAL statement)
• CONDITION
• ENDPAGE
• FINISH
• NAME
• PENDING
• STRINGRANGE
• STRINGSIZE
• UNDERFLOW

When the run time issues messages
Under Language Environment, there is a small difference in the timing of when some runtime messages
are issued for conditions with ON-units.

• Without Language Environment, if a condition such as ZERODIVIDE or ERROR occurred, the run time
will issue a message before invoking the ON-unit for the condition.
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• With Language Environment, if a condition such as ZERODIVIDE or ERROR occurs, the run time will
issue a message only if the END statement in the ON-unit is executed.

This change gives you the chance to handle a condition (and issue your own message if you wish) and to
continue your application through a GOTO without the run time also issuing its own message.

There is no change to the runtime behavior when there is no ON-unit.

Also, the SNAP traceback message produced by ON ERROR SNAP continues to be issued before the
ERROR ON-unit receives control.

When running Enterprise PL/I programs under Language Environment, some file I/O errors are now
detected differently.

• Some errors are discovered during the OPEN process, which results in a different but more meaningful
error message and error code. An UNDEFINEDFILE condition will be raised instead of a TRANSMIT or
other condition that was received with older PL/I.

• You cannot use file ENV parameters to override information already established for an existing data set.
Parameters that attempt to change information already in effect are ignored. This can lead to an OPEN
succeeding but a subsequent read or write raising the RECORD condition.

What the runtime messages say
PL/I for MVS & VM and Enterprise PL/I share the same set of runtime messages, and this can lead to
messages that should be read with understanding and flexibility.

For example, when the run time issues a message for UNDEFINEDFILE in an Enterprise PL/I program,
the message will mention both MVS and VM constructs even though Enterprise PL/I does not currently
support VM. The meaning should be clear nonetheless.

Also, if you compile with the compiler GONUMBER option, the runtime messages will refer to a
"statement" where your exception has occurred. This "statement" is, for Enterprise PL/I, the line number
in the source program of the statement that raised the exception.

Finally, the format and content of runtime messages are different under the Language Environment run
time from that under the OS PL/I run time. You can find complete descriptions of the runtime messages in
z/OS Language Environment Run-Time Messages.

Where the runtime messages go
Under Language Environment, runtime messages go to the destination specified in the runtime option
MSGFILE.

The default MSGFILE destination is SYSOUT, not SYSPRINT, as it was under the old run time.
MSGFILE(SYSPRINT) is supported under Enterprise PL/I only after you apply the PTFs for the runtime
APAR PQ78307.

Math built-ins
The new compiler invokes the Language Environment-provided routines to evaluate the mathematical
built-in functions (such as SIN or COS) and for float exponentiation. These routines are more precise than
the routines provided with the OS PL/I V2R3 library and can sometimes produce results with a different
last digit.

As an example of this difference, consider the following program, which produces the kind of table seen at
the back of trigonometric textbooks:

    trigtab: proc options(main);

      dcl degrees   fixed dec(5,1);
      dcl minutes   fixed dec(3,1);

      do degrees = 0 to 359;
        put skip edit( degrees ) ( f(5) );
        do minutes = 0 to .9 by .1;
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          put edit( sind(degrees+minutes) ) ( f(9,4) );
        end;
      end;

    end;

The output of this program is as follows:

       0   0.0000   0.0017   0.0035   0.0052   0.0070   ...
       1   0.0175   0.0192   0.0209   0.0227   0.0244   ...

The table produced depends on which math library is used, and even then there are only 5 different
values. For instance, with the old compilers using the pre-LE math library, the result for 140.1 is 0.6414,
while with the old compilers using the Language Environment math library, the result is 0.6415. Because
the new compiler uses only the Language Environment math library, the result with it is also 0.6415.

Dumps
Calling PLIDUMP still produces a dump, but the format, contents, and destination of dumps are now
controlled by Language Environment.

For more information about the many resultant, but mostly small, differences, see “Differences in
PLIDUMP” on page 41.

Storage reports
The format, contents, and destination of the runtime storage report have changed.

For more and complete information about the runtime storage report, see the description of the RPTSTG
option in the z/OS Language Environment Programming Reference.

Note that Language Environment does not use the PLIXHD declaration to provide the heading for the
runtime storage report. You can, however, specify the heading by using the Language Environment's
callable service CEE3RPH.

118  Enterprise PL/I for z/OS: Enterprise PL/I for z/OS 6.1 Compiler and Runtime Migration Guide



Chapter 17. Tuning for better CPU and storage
utilization

After you migrate to Language Environment, you should retune your applications to maximize the
performance. It is not always possible to maximize CPU and storage at the same time. Often, to obtain
better CPU, you need to use more storage, or vice versa. This section provides general tips to help you to
retune your applications under Language Environment.

For information about choosing compiler options for improved performance see “Choosing options for
improved performance” on page 72.

For more information about tools you can use to improve performance for your applications, see the z/OS
Language Environment Programming Guide, z/OS Language Environment Installation and Customization
under OS/390, or z/OS Language Environment Customization, and Enterprise PL/I for z/OS Programming
Guide.

Improving CPU utilization
This topic provides tips that help you obtain better CPU utilization.

• Reduce the number of GETMAINs and FREEMAINs issued by Language Environment.

Use the Language Environment RPTSTG(ON) option to produce the storage report. Specify the reported
storage amount in the corresponding Language Environment storage runtime options.

• Reduce the number of LOADs and DELETEs issued by Language Environment.

Put the commonly used Language Environment library routines in (E)LPA. The following list shows the
recommended candidates for PL/I:

– CEEBINIT (LPA)
– CEEPLPKA (ELPA)
– CEEEV010 (ELPA) if you still have OS PL/I applications
– CEEEV011 (ELPA) for Enterprise PL/I applications
– CEEBLIIA (LPA) for OS PL/I applications not relinked
– IBMRLIB1 (LPA)

See z/OS Language Environment Installation and Customization under OS/390 or z/OS Language
Environment Customization for a complete list of library routines that can be put in (E)LPA.

• Avoid AMODE switching between library routines.

Use AMODE(31) for your application, if possible, so you can specify Language Environment ALL31(ON)
option. If ALL31(ON) is in effect, there will be no AMODE switching among library routines.

• Avoid overuse of PL/I conditions.

All PL/I condition handling is expensive and should only be used where appropriate. Overuse of PL/I
condition handling will degrade the performance of your application.

• Use DFSMS-provided system-determined BLKSIZE.

On MVS, use BLKSIZE(0) for an output file that can be blocked. DFSMS determines the optimal block
size for you, which can improve the file performance.

• Use Language Environment Library Routine Retention facility (LRR).

You can get a better CPU performance if you use LRR. When LRR is used, Language Environment keeps
certain Language Environment resources in storage when an application ends. Subsequent invocations
of programs that use LRR is much faster because the Language Environment resources left in storage
are reused.
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For example, you can use LRR for your IMS/DC environment to improve performance.

Note that because LRR leaves Language Environment resources in the storage for a long period of time,
you must assess your storage availability to accommodate the situation.

Improving storage utilization
This topic provides tips that help you obtain better storage utilization.

• Relink with Language Environment if you have not recompiled your OS PL/I programs.

The relinked OS PL/I load module has a smaller size because it contains the Language Environment
stubs only.

• Make your application AMODE(31) and RMODE(ANY).

Most likely the application will be loaded above the 16M line. You can specify the Language
Environment ALL31(ON) option, which allows Language Environment to allocate some of its control
blocks above the 16M line.

• Avoid use of the HEAPPOOLS(ON) option.

The HEAPPOOLS option applies to Enterprise PL/I (although not to PL/I for MVS & VM and earlier
PL/I code). Specifying the HEAPPOOLS(ON) option might lead to a very large amount of storage being
allocated to ANYHEAP.

• Use Language Environment option HEAP(,,ANY) option, if possible.

For PL/I, Language Environment will allocate the heap storage above the 16M line if the following is
true:

– The requestor is in AMODE(31).
– HEAP(,,ANY) is in effect.
– The main program is in AMODE(31).

• Use Language Environment STACK(,,ANY) option, if possible.

Your application must be in AMODE(31). For PL/I, Language Environment will allocate the stack storage
above the 16M line if your application is relinked with Language Environment and contains no edited
stream I/O.

• Analyze the IBM-supplied default values in Language Environment storage options and change them, if
possible and as necessary, to make them optimal for your applications.

Note that specifying a smaller value is not always better: if you use a smaller value, Language
Environment will allocate less storage initially, but this could result in more GETMAINs and FREEMAINs
being issued over the life of the application - and GETMAINs are very expensive.

• Put commonly used Language Environment library modules in the (E)LPA.

The library routines in (E)LPA do not occupy storage in your application region, so your application has
more storage to use. See the recommended library routines for (E)LPA in “Improving CPU utilization” on
page 119.

Improving performance under subsystems
This topic provides tips that help you obtain better performance under specific subsystems.

Under CICS
Use the PL/I FETCH/CALL statement instead of EXEC CICS LINK. The PL/I FETCH/CALL statement has a
much shorter path length than the path length of EXEC CICS LINK.
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Under IMS
Use Language Environment Library Routine Retention (LRR) facility to reduce the number of LOADs/
DELETEs and GETMAINs/FREEMAINs issued by Language Environment for each transaction.

Preload commonly used Language Environment library modules and frequently used top-level
applications.

In particular, it is especially beneficial for programs with any I/O to preload the module IBMPOIOA or to
put IBMPOIOA in the LPA.
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Chapter 18. Adding Enterprise PL/I programs to
existing PL/I applications

When you add an Enterprise PL/I program to an existing application, you are either recompiling an
existing program with Enterprise PL/I or including a newly written Enterprise PL/I program. When you
add Enterprise PL/I programs to your existing applications, you have the ability to upgrade your existing
programs incrementally, as your shop's needs dictate. This chapter provides information about object and
load module considerations and about condition handling in mixed applications.

Important:

• After you add an Enterprise PL/I program to an existing application, that application must run under
Language Environment.

• You cannot mix new and old object code if the old code does any multitasking.
• If you mix old and new code, you cannot do any FETCH from FETCH.

Object and load module considerations
It is strongly recommended that you recompile all your PL/I source. However, if you do not recompile
your source, and if you want to mix Enterprise PL/I code with older PL/I objects, you must be aware of
the options that are recommended for compiling new code and of the restrictions on mixing old and new
object code.

You must use the following options when compiling Enterprise PL/I code that will be mixed with older
PL/I objects:

• CMPAT(V2)
• LIMITS( EXTNAME(7) )
• NORENT
• BACKREG(5)
• BIFPREC(15)

In addition, as discussed in Chapter 11, “Understanding the new compiler's options,” on page 67, you
might also want to use some or all of these options:

• COMMON
• DEFAULT( LINKAGE( SYSTEM ) )
• DEFAULT( OVERLAP )
• EXTRN( FULL )
• NOWRITABLE(PRV)

Note that unless you use the NOWRITABLE(PRV) option, CONTROLLED variables cannot be shared
between old and new code.

Even if all the options listed above are used, there are some restrictions on mixing old and new object
code:

• FILE variables and constants cannot be shared between old and new code with one exception:
SYSPRINT can be shared by old and new code if the old code was linked under LE. However, a file
written out by old code can be read by new code - and vice-versa.

• Whenever old code is used, all fetch/release restrictions from the older product apply. In particular,
if a new MAIN does successfully FETCH and CALL an old module, the old module cannot perform a
subsequent FETCH of another module.

• If any old code is present in an application, DLL code cannot be invoked.
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• There is no support for mixing OS PL/I V1R4 object with Enterprise PL/I objects.
• For old code compiled with OS PL/I V2R3 or earlier (but later than V1R4), these restrictions apply:

– An old MAIN not linked with Language Environment cannot FETCH a new module.
– A new MAIN cannot CALL or FETCH an old module unless under either of the following conditions:

- The new MAIN has the signature CSECT CEESG010 linked in.
- The old module has been relinked with SCEELKED either after you have applied the PTF for APAR

PK23270, or with an explicit INCLUDE SYSLIB(CEESG010).

Previously, Enterprise PL/I had the restriction that if your old code did any I/O, MAIN must have been
compiled with an old compiler. This restriction no longer applies if you are using Language Environment
1.10 or later.

Sharing SYSPRINT
With the enhancement delivered with co-req APAR PK01919 (Enterprise PL/I) and PK016197 (PL/I for
MVS & VM), SYSPRINT can be shared between Enterprise PL/I and PL/I for MVS & VM at the enclave level
and also in a multi-enclave environment.

Below are the restrictions and the extent to which this shared SYSPRINT is supported:

• The compiler option STDSYS must not be used.
• SYSPRINT must have the default or declared attributes: EXTERNAL, STREAM, OUTPUT, or PRINT.
• The shared SYSPRINT could be directed to SYSOUT or to a permanent data set.
• Shared SYSPRINT is supported when MSGFILE(SYSPRINT) is specified provided that there are no

preinitialized programs and/or stored procedures in the mix.
• In a multi-enclave environment, the first SYSPRINT that is opened will determine the attributes of

SYSPRINT. The second and subsequent SYSPRINT will inherit all attributes from the first SYSPRINT.
• SYSPRINT will remain opened during the entire application. At enclave termination, all other files will

get closed except for SYSPRINT which will only be closed at process termination.
• An explicit close of the shared SYSPRINT by either Enterprise PL/I or PL/I for MVS & VM is honored. Any

attempt to write to SYSPRINT afterward requires SYSPRINT to be explicitly or implicitly opened again. If
SYSPRINT was routed to a data set that is reused for the second open, data previously written might be
lost.

• SYSPRINT can only be opened (explicitly or implicitly) by the initial thread (Enterprise PL/I
multithreading) or by the main task (PL/I for MVS & VM multitasking). Secondary thread and subtask
should not explicitly or implicitly open SYSPRINT and should not explicitly close SYSPRINT.

• SYSPRINT cannot be shared with older PL/I under TSO.

With support for shared SYSPRINT, the overriding of attributes has changed in the following ways:

• When SYSPRINT is routed to SYSOUT, the SYSPRINT attributes specified in the ENVIRONMENT option
or the OPEN statement are allowed to override those options specified on the DD statement.

• When SYSPRINT is routed to a data set (either TEMPORARY, NEW, or OLD), any mismatch between
the attributes specified by the program and those specified on the DD statment will cause the
UNDEFINEDFILE condition to be raised.

To aid in migration, APAR PK63659 introduces a new temporary environment variable,
PLI_SYSPRINT_ATTR_OVERRIDE. To get the same behavior as before the shared SYSPRINT changes,
specify PLI_SYSPRINT_ATTR_OVERRIDE=YES in the PARM parameter or in the PLIXOPT string. This will
allow attribute overrides when SYSPRINT is routed to a TEMPORARY or NEW data set. Note that attribute
overriding is never allowed when SYSPRINT is routed to an existing or OLD data set, and that it is always
allowed when SYSPRINT is routed to SYSOUT.

Also note that support for this new environment variable is only temporary. Starting with Language
Environment 1.10Z this environment variable will be ignored. Affected programs and JCL will need to be
changed or the UNDEFINEDFILE condition will be raised.
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Runtime option considerations
The HEAPPOOLS option cannot be used in mixed old and new PL/I code if the old PL/I code tries to free
storage allocated by new PL/I code.

Condition handling considerations
For the purposes of condition handling, you must consider old PL/I programs and Enterprise PL/I
programs as separate languages.

Both old PL/I and Enterprise PL/I have their own signature CSECTs (CEESG010 for OS PL/I and PL/I
for MVS & VM, and CEESG011 for VisualAge PL/I and Enterprise PL/I), and separate runtime libraries in
Language Environment.

This implies that when software conditions are raised in a PL/I source program on one side (either old
or new PL/I) and is expected to be handled by a PL/I source program on the other side (new PL/I if it
was raised in old PL/I, or old PL/I if it was raised in new PL/I), the program that is supposed to handle
the exception will not even know about it because it uses a completely separate runtime library than the
program that raised the condition.

Hardware conditions (such as ZERODIVIDE) have a better chance of being handled correctly across the
old PL/I/new PL/I boundary because Language Environment gets involved and bridges the gap between
the two separate PL/I runtime libraries.

Partitioning PL/I source programs into units of execution
You will need to partition your PL/I source programs into units of execution to accommodate the
restrictions on mixing and condition handling between old and new PL/I modules.

Pay careful attention when partitioning your PL/I source programs into units of execution. Your goal is
to contain any restrictions on mixing old and new PL/I modules within the boundaries of the units of
execution that you define. For example, if Program A defines a CONTROLLED EXTERNAL variable, Program
B references this variable, and Program B also creates a file variable that it shares with Program C, then
you must compile all three Programs A, B, and C with Enterprise PL/I so that they can work correctly.

Finally, note that when mixing old and new code, you must pay attention to the differences between
how the new and old compilers handle various language constructs, as described in Chapter 13,
“Understanding when working code must be changed,” on page 93.
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Chapter 19. Migrating from earlier releases of
Enterprise PL/I to Enterprise PL/I 6.1

This Migration Guide concentrates on the migration effort in migrating from OS PL/I or PL/I for MVS & VM
to Enterprise PL/I 6.1. If you have already moved to Enterprise PL/I 3, 4.1, 4.2, 4.3, 4.4, 4.5, 5.1, 5.2, or
5.3, migration to Enterprise PL/I 6.1 is relatively easy.

This chapter focuses on differences in the compiler options and in the compiler messages, but there are
some other differences in the compiler that will affect users of earlier release of Enterprise PL/I:

• The compiler itself is compiled with ARCH(10) and any use of the compiler on a machine with older
hardware could cause the compiler to abend.

• Linking and executing of the code generated by the compiler must be done with LE 2.4 or later.
• The compiler itself is now also a 64-bit application. This means the user exit defined by the IBMUEXIT

module must also be a 64-bit module. If you are not using the default IBMUEXIT supplied by IBM as
part of the compiler, then you must

1. declare all the POINTERs in the control blocks passed by the compiler to the exit as POINTER(32)
2. recompile your IBMUEXIT code with the LP(64) compiler option
3. bind it as a 64-bit module

The Programming Guide provides details on how to do this, but it is important to note that the bind step
for 64-bit code is significantly different than the traditional bind step for 31-bit code. It is particularly
important to note that if CEEV2Rx is the prefix for your LE 2.4 (or later) datasets, then

1. the binder parameters must include

AMODE=64,DYNAM=DLL,RENT

2. SYSLIB must specify

//SYSLIB   DD DSN=CEEV2Rx.SCEEBND2,DISP=SHR

3. SYSLIN must include

//         DD DSN=CEEV2Rx.SCEELIB(IBMPQV11),DISP=SHR
//         DD DSN=CEEV2Rx.SCEELIB(CELQS003),DISP=SHR

4. SYSIN must specify (instead of ENTRY IBMUEXIT)

ENTRY CELQSTRT

• The compiler no longer supports the NUMBER/NONUMBER option, but the STMT/NOSTMT option is still
supported, and NOSTMT is still the default.

If the STMT option is specified, then the listing will have the same format as under NOSTMT except that
in certain parts of the listing there will be an additional column immediately to the right of the NUMBER
column (which shows the source line and file numbers). This additional column will show the logical
PL/I statement number, if any.

Migrating from Enterprise PL/I V5R3
The 6.1 compiler, like all compilers since 3.9, must be installed in a PDSE. Also, the Language
Environment runtime option XPLINK must be ON whenever you start the compiler. If you start the
compiler under batch by using IBMZPLI or under z/OS UNIX System Services by using the pli command,
the compiler itself ensures that it runs with XPLINK(ON). However, if you are starting the compiler in some
other way, you must ensure that XPLINK(ON) is in effect.
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Enterprise PL/I 6.1 contains some new options, some options with new suboptions, and some options
with changed defaults.

New or changed options in Enterprise PL/I 6.1
New options

• HGPR
• MAXRUNONIF

Existing options with new suboptions

Option New suboption

ARCH 14

DECIMAL (NO)CHECKFLOAT

DECIMAL (NO)FOFLONADD

DECIMAL (NO)KEEPMINUS

PREFIX (NO)CONFORMANCE

USAGE UUID(LOWER | UPPER)

USAGE VALIDDATE(STRICT | LOOSE)

Existing options with changed defaults

Default in 6.1 Default in 5.3

BIFPREC(31) BIFPREC(15)

LINECOUNT(31415) LINECOUNT(60)

OPTIMIZE(3) OPTIMIZE(2)

Existing options with deleted suboptions

Option Deleted suboption

ARCH 9

DEFAULT(NONASSIGNABLE) INONLY, STATIC

Deleted options

• CEESTART
• NUMBER/NONUMBER

Code that may compile with new warning, error or severe message when compiled
with Enterprise PL/I 6.1
Code that may compile with new severe messages

• Code that passes or returns a PICTURE variable by BYVALUE
• Code that declares an ENTRY with RETURNS of VARYING BYVALUE
• Code that attempts to invoke ROUND(x, n) if x is FIXED and n is greater than the precision of the

result
• Code with add or subtract of FIXED(p1,q1) and FIXED(p2,q2) if ABS(q1-q2) > 31 (for DEC) or 63 (for

BIN)
• Code with multiply of FIXED(p1,q1) and FIXED(p2,q2) if q1+q2 > 127 or q1+q2 < -128
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• Code with divide of FIXED(p1,q1) and FIXED(p2,q2) if q1-q2 > 127 or q1-q2 < -128

Code that may compile with new error messages

• Code that violates the default MAXRUNONIF limit
• Code that assigns to BYADDR INONLY parameters (since BYADDR INONLY parameters will now also

have the NONASSIGNABLE attribute)

Code that may compile with new warning messages

• Code that uses DO control-variables that are BASED, CONTROLLED, or PARAMETER (these are poor
choices for performance).

• Code that uses DO control-variables that are not FIXED BIN(p,0) (anything else is less than optimal
for performance; previously I-level messages were issued).

• Code where a scalar variable that appears to define a constant extent (an array bound or string
length) is declared as STATIC INIT rather than VALUE.

• Code where a variable that appears to be a constant array is declared as AUTOMATIC rather than as
STATIC.

• Code where a DEFINEd structure that occupies a number of bytes that is not a multiple of the
structure’s alignment (previously this was an I-level message).

Code that may behave differently when compiled with Enterprise PL/I 6.1
Code using DECIMAL(NOFOFLONADD)

In previous releases of Enterprise PL/I, if the result of an ADD built-in function with FIXED DEC
arguments was too big to fit for the specified precision and scale, the FOFL condition would have
been raised by the generated code. With the introduction of the new (NO)FOFLONADD suboption
of the DECIMAL option, this is true only if DECIMAL(FOFLONADD) is specified. If the default of
DECIMAL(NOFOFLONADD) is in effect, the result of such an ADD would be a result truncated to fit.

The new default behavior matches that of the PL/I for MVS and older compilers. But if you have code
that expects the previous behavior under Enterprise PL/I, you must specify the DECIMAL(FOFLONDIV)
compiler option.

Code using DECIMAL(NOKEEPMINUS)

If the logic of your programs rely on negative zeros being preserved by some FIXED DECIMAL
assignments (as described in the Programming Guide under the (NO)KEEPMINUS suboption of the
DECIMAL compiler option), then that logic will fail under the default option settings for 6.1. To force
the compiler to generate code as it did previously for these assignments, you must specify the
DECIMAL(KEEPMINUS) option.

Deprecated features in Enterprise PL/I 6.1
In an effort to streamline and enhance the functionality of Enterprise PL/I 6.1, certain features have been
deprecated. These include:

• The use of the ROUND built-in function
• Support for non-zero scale factors in built-in functions that yield fixed bin (namely, BINARY, FIXED,

FIXEDBIN, SIGNED, PRECISION, and UNSIGNED)
• Support for CEIL, FLOOR, and FLOOR of FIXED BIN expressions, except for quotients of unscaled FIXED

BIN and unscaled FIXED

Migrating from Enterprise PL/I V5R2
The V5R3 compiler, like all compilers since V3R9, must be installed in a PDSE. Also, the Language
Environment runtime option XPLINK must be ON whenever you start the compiler. If you start the
compiler under batch by using IBMZPLI or under z/OS UNIX System Services by using the pli command,
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the compiler itself ensures that it runs with XPLINK(ON). However, if you are starting the compiler in some
other way, you must ensure that XPLINK(ON) is in effect.

Enterprise PL/I V5R3 contains some new options, some options with new suboptions, and some options
with changed defaults.

New or changed options in Enterprise PL/I V5R3
New options

• MAXINIT
• PP(MACRO('ID'))
• PP(MACRO('IGNORE')) | PP(MACRO('NOIGNORE'))
• PP(SQL('LINEFILE'))

Existing options with new suboptions

• The ARCH(13) suboption of ARCH
• The (NO)FOFLONDIV suboption of DECIMAL
• The (NO)PADDING suboption of DEFAULT
• The (NO)RESET suboption of USAGE(REGEX)
• The (NO)COMPLEX suboption of RULES
• The (NO)GLOBAL suboption of RULES
• The (NO)LAXEXPORTS suboption of RULES
• The (NO)LAXFIELDS suboption of RULES
• The (NO)LAXOPTIONAL suboption of RULES
• The (NO)LAXPACKAGE suboption of RULES
• The (NO)LAXPARMS suboption of RULES
• The (NO)LAXSCALE suboption of RULES
• The (NO)UNREFSTATIC suboption of RULES
• The (NO)PADDING suboption of RULES
• The LOWER suboption of JSON(CASE)
• The HEEDCASE and IGNORECASE suboptions of JSON(GET)
• The 64K suboption of LIMITS(STRING)

Existing options with changed defaults

Default in V5R3 Default in V5R2

PP(MACRO('CASE(ASIS)')) PP(MACRO('CASE(UPPER)'))

Code that may compile with new warning, error or severe message when compiled
with Enterprise PL/I V5R3
Code that may compile with new informational messages

• Code that contains a PACKAGE statement with exactly one level-1 procedure which in turn has its
own nested procedures

Code that may compile with new severe messages

• Code that specifies invalid operators in an ASSERT COMPARE statement
• Code that contains UNALIGNED NONVARYING BIT arguments or unsupported comparisons in

BINSEARCH(X) and QUICKSORT(X)
• Code that contains labels on the END statement for a PACKAGE

130  Enterprise PL/I for z/OS: Enterprise PL/I for z/OS 6.1 Compiler and Runtime Migration Guide



• Code that contains the use of a non-scalar expression as the first argument or the use of a non-array
expression as the second argument to INARRAY

• Code that contains invalid arguments which must be REAL FIXED BIN with scale factor zero, or must
have CHARACTER type, or must be an ASSIGNABLE reference

• Code that contains a same ENTRY constant variable name that appears in a PROCEDURE statement
and a DECLARE statement with two different attributes respectively

• Code that contains invalid values for ROUTCDE and DESC in a WTO
• Code that contains invalid arguments which must have a computational , ordinal, or pointer type
• Code that contains invalid arguments which must be NONVARYING with a known length
• Code that contains invalid VALIDLISTFROM reference
• Code that contains invalid arguments which must be a constant specifying the name of a casing rule
• Code that contains invalid arguments which must has numeric type
• Code that contains an invalid name type declared in a QUALIFY block
• Code that attempts to raise CONVERSION condition to convert the GRAPHIC character with hex

value to CHARACTER
• Code that contains ambiguous type names

Code that may compile with new error messages

• Code that contains a level-1 automatic variable that is used, but not set
• Code that contains named ENTRYs have been deprecated
• Code that contains invalid use of question marks
• Code that contains structure elements which are not qualified with the names of all their parents
• Code that contains a missing end-of-comment marker or a missing closing quote

Code that may compile with new warning messages

• Code that has a parameter to MAIN declared as CHAR VARYING, but with the length not specified as
CHAR(*).

Code that may behave differently when compiled with Enterprise PL/I V5R3
Code using DECIMAL(NOFOFLONDIV)

In previous releases of Enterprise PL/I, if the result of a DIVIDE built-in function with FIXED DEC
arguments was too big to fit for the specified precision and scale, the FOFL condition would have
been raised by the generated code. With the introduction of the new (NO)FOFLONDIV suboption
of the DECIMAL option, this is true only if DECIMAL(FOFLONDIV) is specified. If the default of
DECIMAL(NOFOFLONDIV) is in effect, the result of such a DIVIDE would be a result truncated to
fit.

The new default behavior matches that of the PL/I for MVS and older compilers. But if you have code
that expects the previous behavior under Enterprise PL/I, you must specify the DECIMAL(FOFLONDIV)
compiler option.

Migrating from Enterprise PL/I V5R1
The V5R2 compiler, like all compilers since V3R9, must be installed in a PDSE. Also, the Language
Environment runtime option XPLINK must be ON whenever you start the compiler. If you start the
compiler under batch by using IBMZPLI or under z/OS UNIX System Services by using the pli command,
the compiler itself ensures that it runs with XPLINK(ON). However, if you are starting the compiler in some
other way, you must ensure that XPLINK(ON) is in effect.

Enterprise PL/I V5R2 contains some new options, some options with new suboptions, and some options
with changed defaults.
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New or changed options in Enterprise PL/I V5R2
New options

• ASSERT
• CASE
• DBRMLIB
• MAXINIT

Existing options with new suboptions

• The PADDING suboption of DEFAULT
• The (NO)COMPLEX suboption of RULES
• The (NO)LAXCONV suboption of RULES
• The (NO)LAXFIELDS suboption of RULES
• The (NO)LAXINTERFACE suboption of RULES
• The (NO)LAXPACKAGE suboption of RULES
• The (NO)LAXPARMS suboption of RULES
• The (NO)LAXSCALE suboption of RULES
• The (NO)PADDING suboption of RULES
• The (NO)MULTIENTRY and (NO)MULTIEXIT suboptions of RULES
• The (NO)MULTISEMI suboption of RULES
• The LOOSEFORWARD suboption of RULES(NOGOTO)
• The NOUNREFCTL, NOUNREFDEINED, and NOUNREFSTATIC suboptions of RULES
• The NOUNREFENTRY ad NOUNREFFILE suboptions of RULES
• The (NO)YY suboption of RULES

Existing options with changed defaults

Default in V5R2 Default in V5R1

ARCH(9) ARCH(8)

Existing options with dropped suboptions

• The 8 suboption of ARCH

Dropped suboptions being restored

• The V1 and LE suboptions of CMPAT

Additionally, the MARGINS option now allows a right margin of 200 under batch (as it previously did
only under z/OS UNIX System Services).

All the compiler option default settings for a release is listed in the member with the name PXOPTvr,
where v is the version number and r is the release number in the SIBMZSAM data set. For example,
PXOPT51 is for V5R1 and PXOPT45 is for V4R5. The data set contains PXOPTvr members for all
supported PL/I releases. To see what has changed in the default settings and what new options are
added from one release to the next, you can compare the PXOPTvr files for the two releases. You
can also use the PXOPTvr files as templates for creating your own options files with your preferred
settings.

Change in behavior for the NAMES() compiler option

With the application of PTF UI67611, an unquoted @ in IBMZIOP will be seen as a deprecated form
of reference to an options file and generate the message "IBM1984I S File {text-after-@} could not
be opened." For options that have string values, like NAMES() and others, the string values must be
enclosed in single quotes to prevent this problem.
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64-bit Programming Considerations:

Under the V5R1 compiler with the option LP(64), the NULL() and SYSNULL() values were always equal
to each other (and to the value PTRVALUE(0) ). Under V5R2 with LP(64), the value returned by the
NULL built-in function value depends on whether DEFAULT(NULLSYS) or DEFAULT(NULL370) is in
effect. The behavior of the NULL built-in function with LP(64) is the same in V5R2 as in V5R1 only if
the DEFAULT(NULLSYS) option is in effect.

As DEFAULT(NULL370) is the default, if you built 64-bit applications with the V5R1 compiler and
used the NULL built-in function, you must specify the DEFAULT(NULLSYS) option to have compatibility
between your V5R1 code and V5R2 code.

Code that may compile with new warning, error or severe message when compiled
with Enterprise PL/I V5R2
Code that may compile with new informational messages

• Code that contains any occurrence of =+ and =-

Code that may compile with new severe messages

• Code that contains invalid DEFINE STRUCTURE statements
• Code that uses an option that is invalid under LP(64)
• Code that uses an unsupported CODEPAGE value
• Code that uses CMPAT(V1) and new functions not unsupported under CMPAT(V1)

Code that may compile with new error messages

• Code that specifies OPTIONS clauses invalid on ON-units

Code that may compile with new warning messages

• Code where both logical AND operands are identical
• Code where both logical OR operands are identical
• Code where the program logic could lead to the END statement though the containing PROC was a

function that should return a value
• Code that has SELECT statements where an expression in a WHEN clauses matches a previous

expression in one of the WHEN clauses in its containing SELECT statement
• Code where INIT could be replaced by VALUE
• Code where a function returns the address of an AUTOMATIC variable
• Code with a declare of a variable named PLIXOPT that does not have the correct attributes for it to
define runtime options

• Code where an INLIST reference contains duplicate CHAR or WIDECHAR values
• Code where the string lengths for one variable depend of the size of a variable declared later in the

same block

Code that may behave differently when compiled with Enterprise PL/I V5R2
Code using REPATTERN

When it is not inlined, code using the REPATTERN built-in function will now use microseconds as the
intermediate value in converting a date-time string from one pattern to another. This will produce
more accurate date-time conversions, but in some situations the results may differ from what was
produced by earlier releases.

Migrating from Enterprise PL/I V4R5
The V5R1 compiler, like the V3R9, V4R1, V4R2, V4R3, V4R4, V4R5 compilers, must be installed in a
PDSE. Also, the Language Environment runtime option XPLINK must be ON whenever you start the
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compiler. If you start the compiler under batch by using IBMZPLI or under z/OS UNIX System Services
by using the pli command, the compiler itself ensures that it runs with XPLINK(ON). However, if you are
starting the compiler in some other way, you must ensure that XPLINK(ON) is in effect.

The compiler now issues a warning message if the option strings in the IBMZIOP are the same as each
other and if a user specifies an option that conflicts with one of those non-overridable options.

To make it easier to change the severity of the DSNH030 SQL preprocessor message, it is now given its
own preprocessor message IBM3317.

Enterprise PL/I V5R1 contains some new options, some options with new suboptions, and some options
with changed defaults. In particular, the default for the RULES suboption LAXDCL has been changed to
NOLAXDCL, which will cause some compilations that previously ended with a return code of 0 to end with
a return code of 8.

New or changed options in Enterprise PL/I V5R1
New options

• ASSERT
• CASE
• BRACKETS
• DECOMP | NODECOMP
• LP (LP(32) is the default.)
• NULLDATE | NONULLDATE
• OFFSETSIZE (OFFSETSIZE(4) is the default.)

Existing options with new suboptions

• The (NO)TRUNCFLOAT suboption of DECIMAL
• The FIRST and ALL suboptions of INSOURCE
• The (NO)MULTISEMI suboptions of RULES
• The (NO)LAXCONV suboptions of RULES
• The (NO)LAXINTERFACE suboptions of RULES
• The (NO)LAXSTMT suboptions of RULES
• The (NO)MULTIENTRY suboptions of RULES
• The (NO)MULTIEXIT suboptions of RULES
• The (NO)UNREFBASED suboptions of RULES
• The (NO)UNREFCTL suboptions of RULES
• The (NO)UNREFDEFINED suboptions of RULES
• The (NO)UNREFENTRY suboptions of RULES
• The (NO)UNREFFILE suboptions of RULES
• The (NO)UNREFSTATIC suboptions of RULES
• The (NO)YY suboptions of RULES
• The NOPROCENDONLY(ALL|SOURCE) suboption of RULES
• The LOOSEFORWARD suboption of RULES(NOGOTO)
• The EXPLICIT and IMPLICIT suboptions of XREF

Existing options with changed defaults

Option Default in V5R1 Default in V4R5

ARCH 8 7

134  Enterprise PL/I for z/OS: Enterprise PL/I for z/OS 6.1 Compiler and Runtime Migration Guide



Option Default in V5R1 Default in V4R5

LIMITS FIXEDDEC(15,31) FIXEDDEC(15)

RULES NOLAXDCL

NOLAXIF

NOLAXSCALE

NOMULTICLOSE

LAXDCL

LAXIF

LAXSCALE

MULTICLOSE

Existing options with dropped suboptions

• The 7 suboption of ARCH
• The AFP and NOAFP suboptions of FLOAT
• The V1 and LE suboptions of CMPAT

Note: The V1 and LE suboptions of CMPAT have been restored later in the Enterprise PL/I for z/OS
V5.1 continuous delivery. You can use them with PTFs installed.

Existing options with changed equivalents

Option Equivalent in V5R1 Equivalent in V4R5

LIMITS(FIXEDBIN(31)) LIMITS(FIXEDBIN(31,63)) LIMITS(FIXEDBIN(31,31))

Note:
LIMITS(FIXEDBIN(31,31)) is no
longer supported in V5R1.

Dropped options

• HGPR | NOHGPR

All the compiler option default settings for a release is listed in the member with the name PXOPTvr,
where v is the version number and r is the release number (for example, PXOPT51 for V5R1 and PXOPT45
for V4R5), in the SIBMZSAM data set. The data set contains PXOPTvr members for all supported PL/I
releases. To see what has changed in the default settings and what new options are added from one
release to the next, you can compare the PXOPTvr files for the two releases. You can also use the
PXOPTvr files as templates for creating your own options files with your preferred settings.

Migrating from Enterprise PL/I V4R4
The V4R5 compiler, like the V3R9, V4R1, V4R2, V4R3, and V4R4 compilers, must be installed in a PDSE.
Also, the Language Environment runtime option XPLINK must be ON whenever you start the compiler. If
you start the compiler under batch by using IBMZPLI or under z/OS UNIX System Services by using the
pli command, the compiler itself ensures that it runs with XPLINK(ON). However, if you are starting the
compiler in some other way, you must ensure that XPLINK(ON) is in effect.

Enterprise PL/I V4R5 contains some new options and some old options with new suboptions. However,
the defaults for these options, with the exceptions of the CMPAT(V3) option and the FIXEDBIN suboption
of the LIMITS option, produce executable code that is compatible with the code that is produced by the
Enterprise PL/I V4R4 compiler or any of the releases since V3R3.

All code compiled with earlier releases and CMPAT(V3) must be recompiled.

In some conversions, the value of M2 in the LIMITS(FIXEDBIN(M1,M2)) option partly determines the
attributes of the results. Hence, the change in the default for this option could cause the compiler to
generate code that would produce different results. Here are some examples:

1. When converting from FIXED DEC(p,q) to FIXED BIN, the source is converted to FIXED BIN
with a precision equal to 1 + MIN( CEIL(p*3.32), M2 ). So, if a FIXED DEC(15) is converted to
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FIXED BIN, under LIMITS(FIXEDBIN(31,31)), it is converted to FIXED BIN(31). However, under
LIMITS(FIXEDBIN(31,63)), it is converted to FIXED BIN(51).

2. When converting from FIXED DEC(p,q) to BIT, the source is first converted to FIXED BIN with a
precision equal to MIN( CEIL((p-q)*3.32), M2 ). So, if a FIXED DEC(11) is converted to BIT, under
LIMITS(FIXEDBIN(31,31)), it is converted to BIT(31), but under LIMITS(FIXEDBIN(31,63)), it is
converted to BIT(37).

3. When converting from BIT to FIXED BIN, the source is converted to FIXED BIN(M2).

If you use with PL/I V4R5 the same settings for your compiler options as you used with the V4R4, V4R3,
V4R2, V4R1, and Version 3 releases, you can mix code compiled with V4R5 and earlier releases. You do
not need to recompile all your code unless you change the setting of a compiler option that changes the
program semantics. For example, you can change the ARCH or RULES option when mixing objects, but
you cannot mix objects if you change the BACKREG, BIFPREC, or CMPAT options.

Some programs that used to compile might now fail for these reasons:

• The compiler now flags any compilation unit that has a FETCH statement that tries to fetch itself.
• The compiler now objects if preprocessor suboptions are not enclosed in quotation marks. For

example, the compiler objects to specifying PP(MACRO(CASE(ASIS))), but it still accepts the correct
PP(MACRO('CASE(ASIS)')).

New or changed options in Enterprise PL/I V4R5
New options

• FILEREF | NOFILEREF
• MAXBRANCH

Existing options with new suboptions

• The FORCE suboption of the RULES(NOLAXQUAL) option.
• The ALL and SOURCE suboptions of the RULES(NOLAXNESTED) and RULES(NOPADDING) options.

Migrating from Enterprise PL/I V4R3
The V4R4 compiler, like the V3R9, V4R1, V4R2, and V4R3 compilers, must be installed in a PDSE. Also,
the Language Environment runtime option XPLINK must be ON whenever you start the compiler. If you
start the compiler under batch by using IBMZPLI or under z/OS UNIX System Services by using the pli
command, the compiler itself ensures that it runs with XPLINK(ON). However, if you are starting the
compiler in some other way, you must ensure that XPLINK(ON) is in effect.

Enterprise PL/I V4R4 contains some new options and some old options with new suboptions. However,
the defaults for these new options and suboptions produce executable code that is compatible with the
code that is produced by the Enterprise PL/I V4R3 compiler or any of the releases since V3R3.

If you use with PL/I V4R4 the same settings for your compiler options as you used with the V4R3, V4R2,
V4R1, and Version 3 releases, you can mix code compiled with V4R4 and earlier releases. You do not
need to recompile all your code unless you change the setting of a compiler option that changes the
program semantics. For example, you can change the ARCH or RULES option when mixing objects, but
you cannot mix objects if you change the BACKREG, BIFPREC, or CMPAT options.

New or changed options in Enterprise PL/I V4R4
New options

• INCLUDE | NOINCLUDE

Existing options with new suboptions

• The STRICT suboption of the NULLSTRPTR suboption of the DEFAULT option.
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Existing options with new functions

• When the STMT option is specified, the source and message listings will include both the logical
statement numbers and the source file numbers.

Changes to the return code
Starting from V4R4, the compiler flags the declarations for variables that do not have the STATIC attribute
but have more than 100 INITIAL items. The compilation of the program that includes these declarations
ended with a return code of 0, but now it ends with a return code of 4.

The CICS and SQL preprocessors have never supported the DFT(ASCII) compiler option, and they now
flag the use of the DFT(ASCII) compiler option with an S-level message. This new S-level message will
lead the compilation to end with a return code of 12.

Under the SQL preprocessor, WIDECHAR is always assigned a CCSID value of 1200.

Migrating from Enterprise PL/I V4R2
The V4R3 compiler, like the V3R9, V4R1, and V4R2 compilers, must be installed in a PDSE. Also, the
Language Environment runtime option XPLINK must be ON whenever you start the compiler. If you start
the compiler under batch by using IBMZPLI or under z/OS UNIX System Services by using the pli
command, the compiler itself ensures that it runs with XPLINK(ON). However, if you are starting the
compiler in some other way, you must ensure that XPLINK(ON) is in effect.

Enterprise PL/I V4R3 contains some new options and some old options with new suboptions. However,
the defaults for these new options and suboptions produce executable code that is compatible with the
code that is produced by the Enterprise PL/I V4R2 compiler (or any of the releases since V3R3).

If you use with PL/I V4R3 the same settings for your compiler options as you used with the V4R2, V4R1,
and Version 3 releases, you can mix code compiled with V4R3 and earlier releases. You do not need to
recompile all your code unless you change the setting of a compiler option that changes the program
semantics. For example, you can change the ARCH or RULES option when mixing objects, but you cannot
do so if you change the BACKREG, BIFPREC, or CMPAT options.

New or changed options in Enterprise PL/I V4R3
New options

• CASERULES
• DEPRECATENEXT
• MSGSUMMARY

New SQL options

• ONEPASS | TWOPASS. The ONEPASS SQL option is restored in V4R3. It was dropped in V4R2.
• DEPRECATE

Existing options with new suboptions

• The 10 suboption of the ARCH option
• The STMT suboption of the DEPRECATE option
• The ASSERT suboption of the IGNORE option
• The NULL370 suboption of the RTCHECK option
• The (NO)CONTROLLED, (NO)LAXNESTED, and (NO)RECURSIVE suboptions of the RULES option
• The SOURCE | ALL suboption of the RULES(NOUNREF) option

Existing options with dropped suboptions

• The 5 suboption of the ARCH option.
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• The (NO)STOP suboption of the RULES option. You can use DEPRECATE(STMT(STOP)) to achieve the
same functionality.

• The XMI suboption of the XINFO option.

Preprocessor message number changes
With PL/I V4R3, the numbers of the messages that report CICS and SQL backend errors are changed. The
new numbers are listed as follows. Make appropriate updates if you use the EXIT option to change the
severity of these messages or to track their occurrences.

• IBM3000I I for informational messages from the back end.
• IBM3250I W for warning messages from the back end.
• IBM3500I E for error messages from the back end.
• IBM3750I S for severe messages from the back end.

Migrating from Enterprise PL/I V4R1
The V4R2 compiler, like the V3R8, V3R9, and V4R1 compilers, must be installed in a PDSE. Also, the
Language Environment runtime option XPLINK must be ON whenever you start the compiler. If you start
the compiler under batch by using IBMZPLI or under z/OS UNIX System Services by using the pli
command, the compiler itself ensures that it runs with XPLINK(ON). However, if you are starting the
compiler in some other way, you must ensure that XPLINK(ON) is in effect.

Enterprise PL/I V4R2 contains some new options and some old options with new suboptions. However,
the defaults for these new options and suboptions produce executable code that is compatible with the
code that is produced by the Enterprise PL/I V4R1 compiler (or any of the releases since V3R3).

If you use with PL/I V4R2 the same settings for your compiler options as you used with the V4R1 and
Version 3 releases, you can mix code compiled with V4R2 and earlier releases. You do not need to
recompile all your code unless you change the setting of a compiler option that changes the program
semantics. For example, you can freely change the ARCH or RULES option when mixing objects, but you
cannot mix objects if you change the BACKREG, BIFPREC, or CMPAT options.

New or changed options in Enterprise PL/I V4R2
New options

• PPLIST
• UNROLL

Existing options with new suboptions

• CHECK supports (NO)STORAGE as a suboption.
• DEFAULT supports (NO)PSEUDODUMMY as a suboption.
• RULES supports NOLAXENTRY(LOOSE | STRICT), (NO)LAXRETURN, and (NO)SELFASSIGN as

suboptions.

SQL preprocessor differences from Enterprise PL/I V4R1 and Version 3
Note the following differences between the SQL preprocessors from the new and the old compiler:

Dropped SQL preprocessor options
The V4R2 compiler dropped support for the following SQL preprocessor options:

• LOB(DB2 | PLI)
• ONEPASS | TWOPASS

The preprocessor now always acts as if the TWOPASS option were on.
• SCOPE | NOSCOPE
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In effect, SCOPE is always on. However, the restrictions imposed previously when using SCOPE have
been removed. The SQL preprocessor now resolves names using the same rules as the compiler.

Handling of LOB declarations
The SQL preprocessor no longer supports the LOB option. If your program relies on how LOBs are
represented in the code that is generated by the SQL preprocessor, you must change the program.

You can now use SQL TYPE anywhere other PL/I data attributes can be used. Therefore, you can
eliminate any dependency on how the preprocessor translates LOB declarations in your code, and
thus write simpler and cleaner code.

For instance, the variable XML_DOC_STRUC in the following example depends on a particular
implementation of the CLOB type. Therefore, the compiler cannot compile the code if you use the
SQL preprocessor from V4R2.

   DCL                                                          
     1 DOCM_STRUC,                                              
       2 MODEL_EXECN_ID_STRUC  FIXED BIN(31),                   
       2 DOCM_TYPE_CD_STRUC    CHAR(1),                         
       2 XML_DOC_STRUC,                                         
         3 XML_DOC_ARRY_LENGTH FIXED BIN(31),                   
         3 XML_DOC_ARRY_DATA,                                   
           4 XML_DOC_DATA1(3)  CHAR(32767),                     
           4 XML_DOC_DATA2     CHAR(4099);                      
                                                                
   DCL MODEL_EXECN_ID_ARRY(5)  FIXED BIN(31);                   
   DCL DOCM_TYPE_CD_ARRY(5)    CHAR(1);                         
   DCL XML_DOC_ARRY(5)         SQL TYPE IS XML AS CLOB(100K);   
                                                                
   EXEC SQL FETCH NEXT ROWSET FROM DOCM_CSR FOR 5 ROWS          
             INTO  :MODEL_EXECN_ID_ARRY                         
                  ,:DOCM_TYPE_CD_ARRY                           
                  ,:XML_DOC_ARRY;                               
   XML_DOC_STRUC = XML_DOC_ARRY(I); 

You can change the code in the previous example to the following code by using SQL TYPE. The
compiler can compile it with the SQL preprocessor or the precompiler from V4R2, but you cannot
compile it with the preprocessor from V4R1 or earlier releases.

     DCL                                                           
     1 DOCM_STRUC,                                               
       2 MODEL_EXECN_ID_STRUC  FIXED BIN(31),                    
       2 DOCM_TYPE_CD_STRUC    CHAR(1),                          
       2 XML_DOC_STRUC         SQL TYPE IS XML AS CLOB(100K);    
                                                                 
   DCL MODEL_EXECN_ID_ARRY(5)  FIXED BIN(31);                    
   DCL DOCM_TYPE_CD_ARRY(5)    CHAR(1);                          
   DCL XML_DOC_ARRY(5)         SQL TYPE IS XML AS CLOB(100K);    
                                                                 
   EXEC SQL FETCH NEXT ROWSET FROM DOCM_CSR FOR 5 ROWS           
            INTO  :MODEL_EXECN_ID_ARRY                           
                 ,:DOCM_TYPE_CD_ARRY                             
                 ,:XML_DOC_ARRY;                                 
                                                                 
   XML_DOC_STRUC = XML_DOC_ARRY(I);                              
                                                 

Invalid host variable references
The new SQL preprocessor flags with warning messages the following two kinds of invalid host
variable references that the old preprocessor did not flag:

• Arrays of structures and structures that contain arrays are not valid as host references. Take the
following declarations as an example:

dcl 1 A(<bounds>), 2 B <data-type>;
dcl 1 A, 2 B (<bounds>) <data-type>;

If you use A as a host reference, the old SQL preprocessor would accept the reference as valid.
However, the new SQL preprocessor flags it with a warning message. The reference should be
changed to A.B.
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• Structures that contain structures are not valid as a host reference. Take this declaration as an
example:

dcl 1 X, 2 X, 3 Y <data-type>, 3 Z <data-type>, ... /* and no other level-2 items */

If you use X as a host reference, the old SQL preprocessor would accept it as valid. The new SQL
preprocessor flags it with a warning message. The reference should be changed to X.X.

Handling of SQL preprocessor messages
Before Enterprise PL/I for z/OS V4R2, the facility ID was SQL for messages that were produced by the
back end of the SQL preprocessor. You could use the IBM-supplied compiler user exit (IBMUEXIT) to
suppress these messages or to change the severity of them.

As of V4R2, the facility ID of all messages is IBM, and you cannot change the severity of these
messages by using the IBM-supplied IBMUEXIT.

However, you can change the severity of Db2 messages or suppress them entirely by modifying
IBMUEXIT. For details on how to do this, see "Chapter 22. Using user exits" in the Enterprise PL/I for
z/OS V4R2 Programming Guide.

Migrating from Enterprise PL/I Version 3 (all releases)
Enterprise PL/I V4R1 contains some new options and some old options with new suboptions. However,
the defaults for these new options and suboptions produce executable code that is compatible with the
code that is produced by the Enterprise PL/I V3R9 compiler (or any of the releases since V3R3).

If you use with PL/I Version 4 the same settings for your compiler options as you used with the Version
3 releases, you can mix code compiled with V4R1 and earlier releases. You do not need to recompile
all your code unless you change the setting of a compiler option that changes the program semantics.
For example, you can freely change the ARCH or RULES option when mixing objects, but you cannot mix
objects if you change the BACKREG, BIFPREC, or CMPAT options.

New or changed options in Enterprise PL/I V4R1
The new options and changed options are listed as follows. They are described fully in the Programming
Guide.

New options

• DEPRECATE
• XREF

Existing options with added suboptions

• ARCH supports 9 as a suboption.
• GONUMBER supports (NO)SEPARATE as a suboption.
• RULES supports (NO)GLOBALDO and (NO)PADDING as suboptions.

Existing options with dropped suboptions

• The STORAGE suboption of the CHECK option
• The SAA and SAA2 suboptions of the LANGLVL option

Dropped SQL options

• (NO)OPTIONS. The SQL preprocessor options are always listed.

Changes in Enterprise PL/I Version 3 releases
This information lists some changes that have been made into earlier Enterprise PL/I Version 3 releases:
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Enterprise PL/I V3R9

• Since Enterprise PL/I V3R9, REORDER rather than ORDER is the default suboption for the DEFAULT
option.

• The V3R9 compiler also dropped support for the COMPACT and TUNE options.

Enterprise PL/I V3R8
Since Enterprise PL/I V3R8, because of the new V3 suboption to CMPAT, some of the message inserts
generated by the compiler is 8-byte integers of type FIXED BIN(63). This change has no effect unless
you write your own routine to be invoked by the EXIT compiler option. In this case, if you have a
SELECT statement for the possible types of message inserts, you would probably have to add a new
WHEN clause to that SELECT statement.

Enterprise PL/I V3R7
Since Enterprise PL/I V3R7, the documentation for the following built-in functions is removed and
since V3R8 they are no longer supported:

• ACOSF
• ASINF
• ATANF
• COSF
• EXPF
• LOGF
• LOG10F
• SINF
• TANF

Enterprise PL/I V3R6
Note that only under V3R6, the default for CEESTART option is CEESTART(LAST). This makes the
compiler place the CEESTART CSECT at the end of its generated object deck. Though this is required
if you are using linker CHANGE cards, it is different from what was done under earlier releases of the
compiler.

Moreover, if you do not use an ENTRY CEESTART linker card when binding your objects, this causes
your code to behave incorrectly. You might prefer to use the CEESTART(FIRST) option.

Enterprise PL/I V3R5
Since Enterprise PL/I V3R5, when you specify the PP option more than once, the compiler behavior
is changed. Before V3R5, the last specification would replace any previous specification, but since
V3R5, the option is additive (as are the RULES and other options). So, if you specify PP(CICS) PP(SQL),
it is the same as if you specify PP(CICS SQL).

Messages that are introduced with V6R1
This topic includes new or changed messages that are introduced with 6.1, which includes both compiler
messages and preprocessor messages.

New messages
New messages introduced with 6.1 are listed as follows. Many of these messages are produced only when
certain compiler options are in effect. For a fuller and more comprehensive explanation, see Enterprise
PL/I for z/OS Messages and Codes.

• IBM1488: flags specifying a value for the SYSIN DD in a PROCESS statement
• IBM2122: flags some invalid user EXIT addresses
• IBM2350: flags RETURNS(BYVALUE) for PICTURE and VARYING
• IBM2351: flags ROUND with a negative scale factor
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• IBM2352: flags ROUND with a scale factor greater than the precision
• IBM2353: flags multiplications where the resultant scale factor would be invalid
• IBM2353: flags divisions where the resultant scale factor would be invalid
• IBM2372: flags XDECLARE without a name
• IBM2499: flags MAXRUNONIF violations that could be INLIST
• IBM2500: flags MAXRUNONIF violations that could be SELECT
• IBM2501: flags unsupported ALIGNED values
• IBM2502: flags CMPAT values in PROC OPTIONS that do match that in the compiler CMPAT option
• IBM2672: warns when STATIC INIT is used when VALUE would be a better choice
• IBM2676: warns when a DO loop control variable has a less than optimal data type; this used to be

flagged by message 1063
• IBM2677: warns when a declare should be changed from AUTOMATIC to STATIC
• IBM2678: warns when a loop that will not be executed even once
• IBM2679: warns when GN(SEP) is specified without TEST(SEP)
• IBM2680: warns when a DO loop control variable has a less than optimal storage type
• IBM2681: warns when REPATTERN is probably in error

Changed messages
The following messages all now start with the phrase "RULES(x) violation:" where x is the name of the
RULES suboption that the source code violates.

IBM1232    IBM1233    IBM1247    IBM1248    IBM1252   IBM1254   IBM1274    IBM1287    IBM1300    IBM1371 

IBM1373    IBM1482    IBM1483    IBM1484    IBM2401   IBM2435   IBM2436    IBM2439    IBM2440    IBM2441

IBM2442    IBM2443    IBM2449    IBM2451    IBM2452   IBM2453   IBM2456    IBM2464    IBM2473    IBM2474 

IBM2475    IBM2479    IBM2480    IBM2481    IBM2482   IBM2483   IBM2484    IBM2485    IBM2486    IBM2487  

IBM2488    IBM2489

Messages that are introduced with V5R3
This topic includes new or changed messages that are introduced with V5R3, which includes both
compiler messages and preprocessor messages.

New and changed compiler messages
New and changed messages introduced with V5R3 are listed as follows. Many of these messages
are produced only when certain compiler options are in effect. For a fuller and more comprehensive
explanation, see Enterprise PL/I for z/OS Messages and Codes.

• IBM2307: flags arguments to BINSEARCH(X) and QUICKSORT(X) that are not suitable one-dimensional
arrays

• IBM2308: flags UNALIGNED NONVARYING BIT arguments to BINSEARCH(X) and QUICKSORT(X)
• IBM2309: flags unsupported comparison types to BINSEARCH and its similar built-in functions
• IBM2310: flags unsupported compare functions in BINSEARCHX and QUICKSORTX
• IBM2312: flags the use of a non-scalar expression as the first argument to INARRAY
• IBM2313: flags the use of a non-array expression as the second argument to INARRAY
• IBM2314: flags the use of unsupported types in QUICKSORT
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• IBM2315: flags built-in function references with an argument that is not an integer when it must be
REAL FIXED BIN with scale factor zero

• IBM2316: flags built-in function references with an argument that is not CHARACTER when it must be
• IBM2317: flags built-in function references with an argument that is not ASSIGNABLE when it must be
• IBM2318: flags the use of the VALUELIST and VALUERANGE attributes with non-computational types
• IBM2319: flags the use of VALUERANGE with COMPLEX types
• IBM2320: flags the use of VALIDVALUE with an argument that has neither the VALUERANGE nor the

VALUELIST attribute
• IBM2321: flags VALUELIST and VALUERANGE attributes which contain duplicate values
• IBM2322: flags VALUERANGE attributes where the first value is larger than the second
• IBM2323: flags non-comparable arguments to various built-in functions that require arguments that

must be comparable
• IBM2324: flags PROC statements whose implicit declarations do not match their explicit declarations
• IBM2325: flags invalid values in the ROUTCDE and DESC clauses of a DISPLAY statement
• IBM2326: flags arguments to LOWERASCII, LOWERLATIN1, etc. that are not UCHAR
• IBM2327: flags the use of TRANSLATE with UCHAR without both a from and to table
• IBM2328: flags UX strings that do not specify valid UTF-8
• IBM2329: flags built-in function references with an argument that is not CHAR, UCHAR, or WCHAR

when it must be
• IBM2330: flags unsupported use of UCHAR in CENTER and other built-in functions
• IBM2331: flags the use of UCHAR in the XMLCHAR built-in function
• IBM2332: flags the use of DEFINED with UCHAR
• IBM2333: flags the use of IFTHENELSE with a result argument that is neither computational, ordinal nor

pointer type
• IBM2334: flags the use of IFTHENELSE with a result argument that is a string of indeterminate length
• IBM2335: flags a VALUELISTFROM reference that is not a structure consisting only of elements with the

VALUE attribute
• IBM2336: flags built-in function references with an argument that is not one of "ASIS", "LOWER", or

"UPPER" when it must be
• IBM2337: flags built-in function references with an argument that is not numeric when it must be
• IBM2338: flags the use of DEFAULT statements in a QUALIFY block
• IBM2339: flags the use of more than one name on a QUALIFY block
• IBM2340: flags non-scalar declares in a QUALIFY block
• IBM2341: flags declares in a QUALIFY block that do not include a VALUE attribute
• IBM2342: flags failed conversions from GRAPHIC to CHARACTER
• IBM2343: flags ambiguous type names
• IBM2344: flags the use of a non-structure type in a HANDLE declare
• IBM2345: flags the use of a non-ordinal type in an ORDINAL declare
• IBM2844: flags the use of =+ in case += was meant
• IBM2845: flags the use of =- in case -= was meant
• IBM2846: flags compilation units that contain a PACKAGE statement with exactly one level-1 procedure

which in turn has its own nested procedures
• IBM2665: flags declares of EXTERNAL PLIXOPT without the attributes CHARACTER VARYING INITIAL
• IBM2666: flags RETURN expressions that hold the address of a variable in AUTOMATIC storage
• IBM2667: flags pairs of declares when the first declare depends on the size of the second
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• IBM2668: flags violations of the MAXINIT option
• IBM2669: flags invalid attributes in DEFINE ALIAS statements
• IBM2670: flags parameters to MAIN that are not declared as CHAR(*) VARYING
• IBM2477: flags violations of RULES(NOUNSET)
• IBM2478: flags violations of RULES(NOCOMPLEX)
• IBM2479: flags violations of RULES(NOLAXPACKAGE)
• IBM2480: flags violations of RULES(NOLAXEXPORTS)
• IBM2481: flags violations of RULES(NOLAXSCALE(STRICT))
• IBM2482: flags violations of RULES(NOLAXPARMS)
• IBM2483: flags violations of RULES(NOPADDING(STRICT))
• IBM2484: flags violations of RULES(NOPADDING(STRICT))
• IBM2485: flags violations of RULES(NOPADDING(STRICT))
• IBM2486: flags violations of RULES(NOPADDING(STRICT))
• IBM2487: flags violations of RULES(NOPADDING(STRICT))
• IBM2490: flags assignments where the source does not fit in the VALUERANGE of the target
• IBM2491: flags assignments where the source does not occur in the VALUELIST of the target
• IBM2492: flags violations of RULES(NOGLOBAL)
• IBM2493: flags violations of RULES(NOLAXOPTIONAL)
• IBM2494: flags violations of RULES(NOLAXQUAL)
• IBM3660: flags deprecated ENTRY variables
• IBM3661: flags invalid use of question marks
• IBM3972: flags a missing end-of-comment marker
• IBM3973: flags a missing closing quote

Messages that are introduced with V5R2
This topic includes new or changed messages that are introduced with V5R2, which includes both
compiler messages and preprocessor messages.

New and changed compiler messages
New and changed messages introduced with V5R2 are listed as follows. Many of these messages
are produced only when certain compiler options are in effect. For a fuller and more comprehensive
explanation, see Enterprise PL/I for z/OS Messages and Codes.

• IBM2302: flags options unsupported under LP(64)
• IBM2311: flags labels on END statements for PACKAGEs
• IBM2476: flags invalid OPTIONS with ON-units
• IBM2657: flags identical AND operands
• IBM2658: flags identical OR operands
• IBM2659: flags INIT that should be VALUE
• IBM2660: flags code that is missing a RETURNS statement
• IBM2661: flags duplicate character strings in INLIST argument sets
• IBM2662: flags duplicate widechar strings in INLIST argument sets
• IBM2662: flags duplicate widechar strings in INLIST argument sets
• IBM2664: flags duplicate expressions in SELECT statements
• IBM2665: flags PLIXOPT declares that do not define run time options
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• IBM2666: flags the return of the address of an AUTOMATIC variable
• IBM2667: flags declares that should be reordered
• IBM2830: flags VALUE applied to partially initialized STRUCT
• IBM2832: explains why a PROC was not inlined
• IBM2833: explains why a PROC was not inlined
• IBM2834: explains why a PROC was not inlined
• IBM2835: explains why a PROC was not inlined
• IBM2836: explains why a PROC was not inlined
• IBM2837: explains why a PROC was not inlined
• IBM2838: explains why a PROC was not inlined
• IBM2839: explains why a PROC was not inlined
• IBM2840: flags TRANSLATE that should be REPATTERN
• IBM2841: flags MEMCONVERT that should be MEMCU12
• IBM2842: flags MEMCONVERT that should be MEMCU21
• IBM3861: flags failed open of the DBRMLIB data set
• IBM3862: flags failed dynamic allocation of the DBRMLIB data set
• IBM3863: flags missing DBRMLIB option

Messages that are introduced with V5R1
This topic includes new or changed messages that are introduced with V5R1, which includes both
compiler messages and preprocessor messages.

New and changed compiler messages
New and changed messages introduced with V5R1 are listed as follows. Many of these messages
are produced only when certain compiler options are in effect. For a fuller and more comprehensive
explanation, see Enterprise PL/I for z/OS Messages and Codes.

• IBM1329: flags RULES(NOMULTIENTRY) violations
• IBM1479: flags RULES(NOMULTIEXIT) violations
• IBM2297: flags use of ALLOC31 without LP(64)
• IBM2298: flags use of ALLOCSIZE without CHECK(STG)
• IBM2299: flags invalid ranges in BETWEEN
• IBM2300: flags disabling of SMF
• IBM2301: flags problems with registration of SMF
• IBM2302: flags options unsupported under LP(64)
• IBM2303: flags unsupported codepage values
• IBM2304: flags attributes not supported under CMPAT(V1)
• IBM2305: flags invalid compare operators in ASSERT COMPARE
• IBM2306: flags invalid compare operators in ASSERT COMPARE
• IBM2307: flags invalid BINSEARCH
• IBM2308: flags invalid BINSEARCH
• IBM2309: flags invalid BINSEARCH
• IBM2310: flags invalid BINSEARCHX
• IBM2467: flags RULES(NOYY) violations
• IBM2468: flags RULES(NOYY) violations
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• IBM2469: flags RULES(NOYY) violations
• IBM2470: flags RULES(NOYY) violations
• IBM2471: flags RULES(NOYY) violations
• IBM2472: flags RULES(NOYY) violations
• IBM2473: flags RULES(NOLAXINTERFACE) violations
• IBM2606: flags poor choice of attributes for REFER (used to be IBM1045)
• IBM2464: flags RULES(NOLAXSTMT) violations
• IBM2465: flags invalid assignments under NULLSTRPTR option
• IBM2466: flags invalid comparisons under NULLSTRPTR option
• IBM2654: flags INITIAL with BASED on ADDR
• IBM2655: flags if options conflict with overridable options
• IBM2656: flags occurrences of simple DEFINED
• IBM2825: flags BIT conversions by library calls
• IBM2826: flags BIT conversions by library calls
• IBM2831: flags unreachable ASSERT statements

New and changed preprocessor messages
New and changed messages introduced with V5R1 are listed as follows. For a fuller and more
comprehensive explanation, see Enterprise PL/I for z/OS Messages and Codes.

• IBM3317: flags the Db2 message DSNH03
• IBM3605: flags duplicate type definitions
• IBM3606: flags duplicate identifiers in a structure definition
• IBM3607: flags unsigned ordinals with negative
• IBM3608: flags ordinals with a precision too small for their values
• IBM3661: flags invalid use of question marks in preprocessors
• IBM3849: flags undefined type
• IBM3850: flags use of a type before its definition
• IBM3851: flags ordinals with values that are not increasing
• IBM3852: flags ordinals with values too large for a 4-byte integer
• IBM3857: flags run-on structure descriptions
• IBM3858: flags ordinals with no names not previously defined
• IBM3859: flags structure definitions with storage attributes
• IBM3860: flags structure definitions that specify arrays of structures
• IBM3950: flags invalid use of asterisk iteration factors
• IBM3951: flags invalid use of asterisk iteration factors
• IBM3952: flags use of INITIAL with macro parameters
• IBM3953: flags INITIAL attributes that contain too many initial values
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Messages that are introduced with V4R5
This topic includes new or changed messages that are introduced with V4R5, which includes both
compiler messages and preprocessor messages.

New and changed compiler messages
New and changed messages introduced with V4R5 are listed as follows. Many of these messages
are produced only when certain compiler options are in effect. For a fuller and more comprehensive
explanation, see Enterprise PL/I for z/OS Messages and Codes.

• IBM1700: flags AREAs if BYVALUE
• IBM1894: flags REINIT reference if it has subscripts
• IBM2120: flags AREAs in RETURNS
• IBM2121: flags AREA arguments with size unequal to the parameter size
• IBM2281: flags invalid arguments to BETWEEN and INLIST
• IBM2282: flags REINIT reference that is not level 1
• IBM2283: flags REINIT reference with invalid storage class
• IBM2284: flags type mismatches in LOCNEWVALUE
• IBM2285: flags invalid arguments to PLISTCK
• IBM2286: flags invalid arguments to PLISTCKE
• IBM2292: flags attempts to FETCH oneself
• IBM2293: flags use of JSON functions under CMPAT(V1)
• IBM2294: flags use of long strings under CMPAT(V1) or CMPAT(V2)
• IBM2295: flags use of long strings under BIFPREC(15)
• IBM2442: flags structures with padding
• IBM2642: flags use of OPTIONS(REENTRANT)
• IBM2649: flags duplicate binary arguments in INLIST
• IBM2650: flags duplicate ordinal arguments in INLIST
• IBM2651: flags violations of the MAXBRANCH option
• IBM2652: flags REINIT when there is no INIT
• IBM2653: flags preprocessor options that are not enclosed in quotation marks

New and changed preprocessor messages
New and changed messages introduced with V4R5 are listed as follows. For a fuller and more
comprehensive explanation, see Enterprise PL/I for z/OS Messages and Codes.

• IBM3309: flags compares of SYSPOINTERSIZE to values other than 4 or 8
• IBM3334: flags DEPRECATENEXT(ENTRY) in the MACRO preprocessor
• IBM3660: flags DEPRECATE(ENTRY) in the MACRO preprocessor
• IBM3896: flags VALUE reference not reducible to a character literal
• IBM3897: flags VALUE reference not reducible to a numeric literal
• IBM3898: flags VALUE reference with unsupported type
• IBM3899: flags ambiguous reference
• IBM3900: flags unknown dot-qualified reference
• IBM3901: flags use of unsupported built-in function
• IBM3902: flags built-in argument that is not a structure
• IBM3903: flags numeric VALUE reference that is not REAL FIXED
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• IBM3993: flags assertions that fail in a preprocessor

Messages that are introduced with V4R4
This topic includes new or changed messages that are introduced with V4R4, which includes both
compiler messages and preprocessor messages.

New and changed compiler messages
New and changed messages introduced with V4R4 are listed as follows. Many of these messages
are produced only when certain compiler options are in effect. For a fuller and more comprehensive
explanation, see Enterprise PL/I for z/OS Messages and Codes.

• IBM2261: flags the use of the overpunch and currency symbols in WIDEPIC
• IBM2262: flags the use of the A and X symbols in WIDEPIC
• IBM2263: flags the use of COMPLEX WIDEPIC as a REFER object
• IBM2264: flags invalid attributes in the LOCATES descriptor
• IBM2265: flags non-constant extents in the LOCATES descriptor
• IBM2266: flags built-in functions when the sole argument does not have the LOCATES attribute
• IBM2267: flags built-in functions when the first argument does not have the LOCATES attribute
• IBM2268: flags pseudovariables when the argument does not have the LOCATES attribute
• IBM2269: flags the LOCATES attribute when it is used on anything but OFFSET
• IBM2270: flags the LOCATES attribute that is used with more than one description
• IBM2271: flags built-in functions when the first argument is not a scalar
• IBM2272: flags built-in functions when the second argument is not a scalar
• IBM2273: flags built-in functions when the OFFSET argument is not qualified
• IBM2274: flags built-in functions when the second argument does not have the LOCATES attribute
• IBM2275: flags built-in function when the third argument is not an AREA
• IBM2276: flags built-in function when the argument must contain the LOCATES attribute
• IBM2277: flags the use of %INCLUDE under NOINCLUDE
• IBM2648: flags the non-STATIC declarations with too many INITIAL items

New and changed preprocessor messages
New and changed messages introduced with V4R4 are listed as follows. For a fuller and more
comprehensive explanation, see Enterprise PL/I for z/OS Messages and Codes.

• IBM3775: flags the use of DFT(ASCII) with PP(CICS) or PP(SQL)
• IBM3878: flags problems during SQL initialization
• IBM3967: flags the use of the CALL statement outside of a procedure
• IBM3968: flags the undefined CALL references
• IBM3969: flags a CALL reference that is not an entry
• IBM3970: flags a CALL reference that is a function
• IBM3971: flags a CALL reference that has the STATEMENT option
• IBM3985: flags semicolons that are used between left and right parentheses in a statement
• IBM3986: flags IF statements that have invalid syntax
• IBM3987: flags statements that have invalid start
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Messages that are introduced with V4R3
This topic includes new or changed messages that are introduced with V4R3, which includes both
compiler messages and preprocessor messages.

New and changed compiler messages
New and changed messages introduced with V4R3 are listed as follows. Many of these messages
are produced only when certain compiler options are in effect. For a fuller and more comprehensive
explanation, see Enterprise PL/I for z/OS Messages and Codes.

• IBM2643: flags violations of the DEPRECATENEXT(BUILTIN) option
• IBM2644: flags violations of the DEPRECATENEXT(INCLUDE) option
• IBM2645: flags violations of the DEPRECATENEXT(ENTRY) option
• IBM2646: flags violations of the DEPRECATENEXT(VARIABLE) option
• IBM2647: flags violations of the DEPRECATENEXT(STMT) option
• IBM2450: flags bad arguments to Y4DATE, Y4JULIAN, and Y4YEAR
• IBM2451: flags assignments of the form x = y = z under the RULES(NOLAXIF) option
• IBM2452: flags the use of the ROUND built-in function with a negative scale factor under the

RULES(NOLAXSCALE) option
• IBM2453: flags violations of the RULES(NOLAXNESTED) option
• IBM2454: flags violations of the DEPRECATE(STMT) option
• IBM2455: flags violations of the CASERULES(KEYWORD) option
• IBM2456: flags violations of the RULES(NORECURSIVE) option
• IBM2457: flags the conflict between the DFT(RECURSIVE) and RULES(NORECUSIVE) options
• IBM2458: flags the violation of the RULES(NOCONTROLLED) option
• IBM2000: flags failed assertion by using the ASSERT statements within the compiler
• IBM2237: flags the third argument to ALLCOMPARE if the argument is not a CHAR(2) constant
• IBM2238: flags the third argument to ALLCOMPARE if the argument has invalid values
• IBM2239: flags the invalid use of unspecified STRUCT types
• IBM2240: flags arithmetic operations on handles for unspecified structures
• IBM2241: flags the use of the SIZE and NEW type functions with unspecified structures
• IBM2242: flags the subtraction of handles to different types
• IBM2243-IBM2254: flag mismatches of the attributes derived from the PROCEDURE statement for the

ENTRY constant with those in its explicit declaration.
• IBM2255: flags invalid argument types to UTF8
• IBM2256: flags UTF8 results that are too long
• IBM2257: flags the UTF8 source that is invalid UTF-16
• IBM2258: flags the invalid argument type to the UTF8TOCHAR or UTFTOWCHAR built-in function
• IBM2259: flags the UTF8TOCHAR or UTFTOWCHAR source that is invalid UTF-8
• IBM2260: flags the unsupported use of INITIAL expressions in DEFINE STRUCT

New and changed preprocessor messages
New and changed messages introduced with V4R3 are listed as follows. For a fuller and more
comprehensive explanation, see Enterprise PL/I for z/OS Messages and Codes.

• IBM3000: now used to issue informational-level messages from the CICS or Db2 preprocessor back end
• IBM3024: now used to issue informational-level %NOTE messages
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• IBM3250: now used to issue warning-level messages from the CICS or Db2 preprocessor back end
• IBM3259: now used to issue warning-level %NOTE messages
• IBM3261: flags the incomplete syntax in the DEPRECATE option
• IBM3262: flags invalid keywords in the DEPRECATE option
• IBM3326: flags violations of the DEPRECATENEXT(INCLUDE) option
• IBM3500: now used to issue error-level messages from the CICS or Db2 preprocessor back end
• IBM3501: now used to issue error-level %NOTE messages
• IBM3659: flags violations of the STMT suboption of DEPRECATE
• IBM3750: now used to issue severe-level messages from the CICS or Db2 preprocessor back end
• IBM3771: now used to issue severe-level %NOTE messages

Messages that are introduced with V4R2
This topic includes new or changed messages that are introduced with V4R2, which includes both
compiler messages and preprocessor messages.

New and changed compiler messages
New and changed messages introduced with V4R2 are listed as follows. Many of these messages
are produced only when certain compiler options are in effect. For a fuller and more comprehensive
explanation, see Enterprise PL/I for z/OS Messages and Codes.

• IBM2211: flags the lack of a closing shift code on a line
• IBM2212: flags the INDICATORS built-in function when it is applied to an element that is not a structure
• IBM2213: flags procedures and BEGIN blocks with too many label arrays
• IBM2214: flags the use of XMLATTR on parent structures
• IBM2215: flags the use of XMLATTR on unnamed elements
• IBM2216: flags the use of XMLATTR on arrays
• IBM2217: flags the use of XMLATTR on an element when the previous element at that logical level does

not also have the XMLATTR attribute
• IBM2218: flags the use of XMLOMIT on non-native float elements
• IBM2219: flags the use of INONLY with ASSIGNABLE
• IBM2220: flags the use of OUTONLY with only NONASSIGNABLE
• IBM2221 - IBM2228: flag invalid non-constant extents in BASED
• IBM2230: flags invalid POPCNT arguments
• IBM2231: flags the use of XMLCHAR with a non-native character set
• IBM2232: flags multiple targets in BY DIMACROSS assignments
• IBM2233: flags non-structure targets in BY DIMACROSS assignments
• IBM2234: flags the use of arrays in BY DIMACROSS assignments
• IBM2235: flags invalid targets in BY DIMACROSS assignments
• IBM2419: flags the use of an option with an ARCH level that is too low
• IBM2449: flags violations of RULES(NOSELFASSIGN)
• IBM2820: flags options supported only on other platforms

New and changed preprocessor messages
New and changed messages introduced with V4R2 are listed as follows. For a fuller and more
comprehensive explanation, see Enterprise PL/I for z/OS Messages and Codes.
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• IBM3024: transmits Db2 I-level messages
• IBM3259: transmits Db2 W-level messages
• IBM3314: flags host variables that must be fully qualified
• IBM3315: flags host variables that are arrays of structures
• IBM3316: flags host variables that are structures of arrays
• IBM3501: transmits Db2 E-level messages
• IBM3502: flags K constants that have too many digits
• IBM3503: flags K constants whose values are too large
• IBM3504: flags M constants that have too many digits
• IBM3505: flags M constants whose values are too large
• IBM3506: flags G constants that have too many digits
• IBM3507: flags G constants whose values are too large
• IBM3508: flags variables with a precision of zero in the DECLARE statement
• IBM3509: flags a DECLARE statement with invalid syntax
• IBM3515: flags scale factors that are greater than 127
• IBM3516: flags scale factors that are less than -128
• IBM3520: flags structure level values equal to 0
• IBM3521: flags structure levels that are too large
• IBM3528: flags a DECLARE statement with more than one precision value
• IBM3529: flags scale factors in a float declaration
• IBM3571: flags the inconsistent use of SQL and PL/I float options
• IBM3572: flags structure declarations in DECLARE statements with an initial level value greater than 1
• IBM3573: flags structure declarations with missing level values
• IBM3574: flags declarations of nameless scalars
• IBM3575: flags duplicate specifications of attributes
• IBM3576: flags empty EXEC SQL statements
• IBM3577: flags INCONLY when it is preceded by other options
• IBM3640: flags declarations with invalid level values
• IBM3641: flags declarations with an invalid LIKE attribute
• IBM3751: flags a missing reference after a colon in an EXEC SQL statement
• IBM3752: flags too many dots in a reference in an EXEC SQL statement
• IBM3753: flags an overly large length value in SQL TYPE IS
• IBM3754: flags a missing left parenthesis in SQL TYPE IS
• IBM3755: flags a missing integer in SQL TYPE IS
• IBM3756: flags a missing right parenthesis in SQL TYPE IS
• IBM3757: flags a missing left parenthesis in SQL TYPE IS XML AS
• IBM3758: flags a missing integer in SQL TYPE IS XML AS
• IBM3759: flags a missing right parenthesis in SQL TYPE IS XML AS
• IBM3766: flags declarations of structures with too many levels
• IBM3767: flags a length value of 0 in SQL TYPE IS
• IBM3771: transmits Db2 S-level messages
• IBM3782: flags a missing AS after SQL TYPE IS XML
• IBM3783: flags a missing type after SQL TYPE IS XML AS
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• IBM3784: flags a missing LIKE after SQL TYPE IS TABLE
• IBM3785: flags a missing table-name after SQL TYPE IS TABLE LIKE
• IBM3786: flags a missing AS in SQL TYPE IS TABLE
• IBM3787: flags a missing LOCATOR in SQL TYPE IS TABLE
• IBM3788: flags an invalid type after SQL TYPE IS
• IBM3795: flags the lack of a closing shift code on a line
• IBM3799: flags host variables that are not declared in the SQL DECLARE SECTION
• IBM3805: flags a missing LARGE in SQL TYPE IS XML
• IBM3806: flags a missing OBJECT in SQL TYPE IS XML
• IBM3807: flags a missing LARGE in SQL TYPE IS CHARACTER
• IBM3808: flags a missing LARGE in SQL TYPE IS BINARY
• IBM3809: flags a missing OBJECT in SQL TYPE IS BINARY LARGE
• IBM3877: reports an internal error during an SQL back-end initialization
• IBM3880: flags undefined host variable references
• IBM3881: flags ambiguous host variable references
• IBM3882: flags an indicator array with more than one dimension
• IBM3883: flags an indicator array with nonconstant bounds
• IBM3884: flags an indicator reference that is not an array
• IBM3885: flags a host variable reference with more than one dimension
• IBM3886: flags a host variable array with nonconstant bounds
• IBM3887: flags a host variable array that is not CONNECTED
• IBM3888: flags a host variable reference with no corresponding Db2 type
• IBM3889: flags a host variable reference that is a union
• IBM3890: flags a host variable reference that is an array of structures
• IBM3891: flags a host variables reference that contains an array
• IBM3892: flags a host variable reference that contains structures
• IBM3893: flags a host variable reference that contains unnamed subelements
• IBM3894: flags an indicator reference that is not FIXED BIN(15)
• IBM3895: flags an indicator reference that is a scalar used with an array
• IBM3929: flags EXEC SQL statements not enclosed in a procedure
• IBM3934: flags invalid syntax in EXEC SQL INCLUDE
• IBM3935: flags failure to fetch the SQL back end
• IBM3936: flags an SQL back end that is not at the latest level
• IBM3937: flags EXEC SQL statements that are too long
• IBM3938: flags EXEC SQL statements with too many host variables

Compiler messages that are introduced with V4R1
This topic includes new and changed messages introduced with V4R1.

Many of these messages are produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see Messages and Codes.

New messages

• IBM2210: flags invalid use of the VALUE type function
• IBM2442: flags violations of the RULES(NOPADDING) option
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• IBM2443: flags violations of the RULES(NOGLOBALDO) option
• IBM2444: flags violations of the DEPRECATE(BUILTIN) option
• IBM2445: flags violations of the DEPRECATE(INCLUDE) option
• IBM2446: flags violations of the DEPRECATE(ENTRY) option
• IBM2447: flags violations of the DEPRECATE(VARIABLE) option
• IBM2640: flags assignments to the REFER object
• IBM2641: flags syntax errors in options
• IBM2642: flags the PROC(REENTRANT) statement when code might not be reentrant
• IBM3658: flags violations of the DEPRECATE(INCLUDE) option

Changed messages

• IBM1204: does not flag the use of the static label arrays, when they are declared as NONASGN
• IBM2016: flags only the use of the VALUE type function in the DEFINE STRUCTURE statement

Compiler messages that are introduced with V3R9
This topic includes new messages introduced with V3R9.

Many of these messages will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see Messages and Codes.

• IBM1985: includes C runtime message when a file open fails
• IBM1986: reports system (or user) abends occurring during compiles
• IBM2200: traps and flags DFP conversion errors when DFP hardware is absent
• IBM2201: flags invalid arguments to the ROUNDDEC/ROUNDAWAYFROMZERO built-in function
• IBM2202: flags use of MEMCU built-in functions without ARCH(7)
• IBM2203: flags invalid use of VALUE in structures
• IBM2204: flags invalid use of VALUE in structures
• IBM2205: flags invalid use of VALUE in structures
• IBM2206: flags invalid use of VALUE in structures
• IBM2207: flags invalid use of VALUE in structures
• IBM2208: flags invalid use of VALUE in structures
• IBM2209: flags BASED with variable extents
• IBM2435: flags FIXED(p,q) declares with q less than 0
• IBM2436: flags FIXED(p,q) declares with q greater than p
• IBM2437: flags duplicate invocation of PP(SQL)
• IBM2438: flags violations of RULES(NOSTOP)
• IBM2439: flags violations of RULES(NOPROCENDONLY)
• IBM2440: flags violations of RULES(NOLAXQUAL(STRICT))
• IBM2441: flags violations of RULES(NOGOTO(LOOSE))
• IBM2635: flags operations producing FIXED(p,q) with q greater than p
• IBM2636: flags duplicate ORDINALs in SELECT statements
• IBM2637: flags ENTRYs declared without RETURNS and used as functions
• IBM2638: flags lines where the MAXGEN limit is exceeded
• IBM2639: flags statements where the MAXGEN limit is exceeded
• IBM2815: flags inappropriate use of BYVALUE
• IBM2816: flags inappropriate use of BYVALUE
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• IBM2817: flags inappropriate use of BYVALUE
• IBM2818: flags FIXED DEC add operations that may raise FOFL
• IBM2819: flags FIXED DEC multiply operations that may raise FOFL
• IBM3518: flags violations of the NAMEPREFIX option
• IBM3810: flags too many labels on one statement during CICS preprocessing

Compiler messages that are introduced with V3R8
This topic includes new messages introduced with V3R8.

Many of these messages will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see Messages and Codes.

• IBM2189: flags arrays with bounds greater than 2G-1
• IBM2190: flags arrays with bounds less than -2G
• IBM2191: flags OR, NOT or QUOTE with no valid characters
• IBM2192: flags invalid PLISAXC event structures
• IBM2193: flags invalid PLISAXC event structures
• IBM2194: flags invalid PLISAXC event structures
• IBM2195: flags invalid PLISAXC event structures
• IBM2196: flags invalid PLISAXC event structures
• IBM2197: flags invalid arguments to some UTF functions
• IBM2198: flags invalid arguments to some UTF functions
• IBM2199: flags code generation without XPLINK(ON)
• IBM2429: flags CMPAT(V3) without LIMITS(FIXEDBIN(*,63))
• IBM2430: flags mismatches between LINESIZE and RECSIZE
• IBM2431: flags options invalid with GOFF
• IBM2432: flags INITIAL with PARAMETER
• IBM2433: flags INITIAL with DEFINED
• IBM2434: flags unprototyped ENTRYs under RULES(NOLAXENTRY)
• IBM2630: flags operations producing FIXED(p,q) with q larger than p
• IBM2631: flags built-in functions mixing FIXED DEC and FLOAT BIN
• IBM2632: flags built-in functions mixing FIXED DEC and FLOAT DEC
• IBM2633: flags POINTER or OFFSET variables based on FIXED BIN variables
• IBM2634: flags FIXED BIN variables based on POINTER or OFFSET variables
• IBM2814: flags allocations where an aggregate is mapped via a library call

Compiler messages that are introduced with V3R7
This topic includes new messages introduced with V3R7.

Many of these messages will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see Messages and Codes.

• IBM2184: flags source files with too many lines
• IBM2185: flags invalid arguments to ISFINITE etc
• IBM2186: flags DFP arguments to SQRTF etc
• IBM2187: flags DFP literals with too large exponents
• IBM2188: flags DFP literals with too small exponents
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• IBM2420: flags FLOAT(DFP) without ARCH(7)
• IBM2421: flags CLOSE of a file in its ENDFILE block
• IBM2422: flags use of HEX attribute with FLOAT DEC under FLOAT(DFP)
• IBM2423: flags use of IEEE attribute with FLOAT DEC under FLOAT(DFP)
• IBM2424: flags scale factors in FLOAT declarations
• IBM2425: flags ELSE-IF statements when RULES(NOELSEIF) applies
• IBM2426: flags excessive nesting of DO statements
• IBM2427: flags excessive nesting of IF statements
• IBM2428: flags excessive nesting of BEGIN/PROC statements
• IBM2621: flags ON ERROR blocks not starting with ON ERROR SYSTEM
• IBM2622: flags use of function to set the initial value in a DO loop
• IBM2623: flags mixing of FLOAT DEC and FIXED BIN under DFP
• IBM2624: flags mixing of FLOAT DEC and BIT under DFP
• IBM2625: flags mixing of FLOAT DEC and FLOAT BIN under DFP
• IBM2626: flags SUBSTR where third argument is 0
• IBM2627: flags REFER structures not supported by XINFO(XMI)
• IBM2628: flags BYVALUE parameters larger than 32 bytes
• IBM2629: flags variables for which no symbol table information is generated
• IBM2812: flags use of AUTO (and STATIC) variables as tables in TRANSLATE and VERIFY
• IBM3325: flags %DECLARE without any data attributes
• IBM3820: flags invalid use under INCONLY suboption of PP(MACR0) of INCLUDE or XINCLUDE as a

macro procedure name
• IBM3821: flags invalid use under INCONLY suboption of PP(MACR0) of INCLUDE or XINCLUDE as a

macro statement label
• IBM3822: flags invalid use under INCONLY suboption of PP(MACR0) of INCLUDE or XINCLUDE as a

macro variable name

Compiler messages that are introduced with V3R6
This topic includes new messages introduced with V3R6.

Many of these messages will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see Messages and Codes.

• IBM2180: flags use of KEYED DIRECT files without a KEY/KEYFROM clause
• IBM2181: flags invalid first argument to PICSPEC
• IBM2182: flags invalid second argument to PICSPEC
• IBM2183: flags mismatching arguments in PICSPEC
• IBM2619: flags unreferenced INCLUDE files
• IBM2620: flags structure assignments that would alter REFER objects
• IBM2811: flags use of PICTURE as a loop control variable

Compiler messages that are introduced with V3R5
This topic includes new messages introduced with V3R5.

Many of these messages will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see Messages and Codes.

• IBM2177: flags using a PDS member as the SYSADATA data set
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• IBM2178: flags %INCLUDE statements when the LINEDIR option is in effect
• IBM2179: flags %LINE directives that are too large for the margins
• IBM2416: flags using the LINEDIR option with the TEST(SEPARATE) option
• IBM2417: flags ALLOCATE and FREE of non-PARAMETER CONTROLLED in FETCHABLE using PRV
• IBM2418: flags unreferenced variables
• IBM2615: flags one-time DO loops
• IBM2616: flags use of SIZE against CHAR(*) NONVARYING parameter in an OPTIONS(NODESCRIPTOR)

procedure
• IBM2617: flags passing a label as a parameter to a non-PL/I routine
• IBM2618: flags invalid suboptions of compiler suboptions
• IBM2805: flags conversions done by library call when the target can be named
• IBM2806: flags passing a label as a parameter
• IBM2809: flags implicit FIXED DEC to 8-byte integer conversions
• IBM2810: flags difference in conversion of scaled FIXED BIN to FIXED DEC

Compiler messages that are introduced with V3R4
This topic includes new messages introduced with V3R4.

Many of these messages will be produced only when certain compiler options are in effect. For a fuller and
more comprehensive explanation, see Messages and Codes.

• IBM2165: flags use of NOWRITABLE(PRV) with LIMITS(EXTNAME(n)) if n is bigger than 7
• IBM2166: flags use of NOWRITABLE(PRV) with RENT
• IBM2167: flags use of NOWRITABLE(PRV) with CMPAT(LE)
• IBM2170: flags too many instances of INTERNAL CONTROLLED
• IBM2171: flags any FETCHABLE ENTRY declared at the PACKAGE level if the NOWRITABLE option is in

effect
• IBM2172: flags any FILE CONSTANT declared at the PACKAGE level if the NOWRITABLE option is in

effect
• IBM2173: flags any CONTROLLED VARIABLE declared at the PACKAGE level if the NOWRITABLE option

is in effect
• IBM2174: flags REPLACEBY2 built-in function references where the result would be longer than

CHAR(32767)
• IBM2175: flags REPLACEBY2 built-in function references where the second and third arguments are not

restricted expressions
• IBM2176: flags HEX and HEXIMAGE built-in function references where the result would require more

than 32767 characters
• IBM2402: flags the declaration of one variable as based on the address of a second variable when the

second variable is not large enough to contain the first variable
• IBM2403: flags the use of *PROCESS statements
• IBM2404: flags the declaration of one variable as based on the address of a second variable when the

structure containing the second variable is not large enough to contain the first variable
• IBM2405: flags declares and built-in functions that specify an even FIXED DEC precision
• IBM2406: flags arithmetic precision specified in a DEFAULT statement but outside of a VALUE clause
• IBM2407: flags string length specified in a DEFAULT statement but outside of a VALUE clause
• IBM2408: flags AREA size specified in a DEFAULT statement but outside of a VALUE clause
• IBM2409: flags RETURN; statements in functions
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• IBM2410: flags the lack of any RETURN statements inside a function
• IBM2411: flags STRING of GRAPHIC aggregates that contain VARYING strings or NONCONNTECT array

slices
• IBM2412: flags RETURN statements that specify an expression if the containing PROCEDURE statement

does not specify the RETURNS option
• IBM2413: flags use of CONNECTED apart from on parameters and in descriptor lists
• IBM2604: flags FIXED DEC assignments that could raise SIZE
• IBM2605: flags invalid carriage control characters
• IBM2607: flags PIC to FIXED DEC assignments that could raise SIZE
• IBM2608: flags PIC to PIC assignments that could raise SIZE
• IBM2609: flags semicolons in comments
• IBM2610: flags MULTIPLY, DIVIDE, ADD and SUBTRACT built-in function references where one operand

is FIXED DEC and the other is FIXED BIN or FLOAT
• IBM2611: flags duplicate binary or bit WHEN values and identifies the duplicate value
• IBM2612: flags duplicate character WHEN values and identifies the duplicate value
• IBM2613: flags possibly uninitialized scalars used as ASGN BYADDR arguments
• IBM2614: flags expressions where the results of two compares are compared
• IBM2801: flags any arithmetic operation where one operand is FIXED BIN with zero scale factor and the

other is FIXED DEC with non-zero scale factor, thus producing a FIXED BIN result with nonzero scale
factor

• IBM2802: flags aggregate mapping done by library call
• IBM2803: flags statements where GET/PUT STRING EDIT has been optimized
• IBM2804: flags suboptimal compares
• IBM3270: flags EXEC CICS statements when the CICS option is not in effect
• IBM3271: flags EXEC CSPM statements when the CSPM option is not in effect
• IBM3272: flags EXEC DLI statements when the DLI option is not in effect

Object compatibility
If you want to maintain object compatibility with code generated by VisualAge PL/I or earlier Enterprise
PL/I releases, it is imperative that you use, with this Enterprise PL/I release, the same value from each of
the following set of options that you used with the earlier compiler.

• BACKREG(5) or BACKREG(11)
• BIFPREC(15) or BIFPREC(31)
• CMPAT(V2) or CMPAT(V1) or CMPAT(LE)
• CSECT or NOCSECT
• LIMITS(EXTNAME(n))
• NORENT or RENT
• WRITABLE or NOWRITABLE

The PTF for APAR PQ66252 changed VisualAge PL/I 2.2.1 (and corresponding PTFs changed Enterprise
PL/I 3.1 and 3.2) so that the results of conversions of FLOAT to FIXED DEC and PICTURE would match
those produced by the old compilers.

This can cause a small difference in some conversions. For example, consider the following code:

   dcl f          float dec(16);
   dcl d2         dec(15,2);

   f = 1.4417e+04;
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   f = f / 100;
   d2 = f;

All the compilers will now assign the value 144.17 to d2, while before this PTF, the new compilers would
have assigned the value 144.16 to d2.

With APAR PK17575 (which applied to V3R3, V3R4, and V3R5), the compiler generated code will set a
flag in the CAA if MAIN contains an ON FINISH block. With a corresponding library APAR, the library will
check for this flag, and unless it is on, it will not raise FINISH. This pair of changes can yield significant
performance improvements. However, this also means that after you apply this library APAR, you must
recompile any old Enterprise PL/I objects that have an ON FINISH block; otherwise, the ON FINISH block
will not be entered.

Apart from these changes, there is complete object compatibility between code compiled by the
Enterprise PL/I V3R2 compiler and code compiled by either the VisualAge PL/I or the Enterprise PL/I
V3R1 compiler as long as you adhere to these limitations:

• You must not mix code compiled with different CMPAT options.
• You can mix RENT and NORENT code subject to the same restrictions as before:

– Code compiled with RENT cannot be mixed with code compiled with NORENT if they share any
EXTERNAL STATIC variables.

– Code compiled with RENT cannot call an ENTRY VARIABLE set in code compiled with NORENT.
– Code compiled with RENT cannot call an ENTRY CONSTANT that was FETCHed in code compiled with

NORENT.
– Code compiled with RENT can FETCH a module containing code compiled with NORENT if one of the

following conditions is true:

- All the code in the FETCHed module was compiled with NORENT.
- The code containing the entry point to the module was compiled with RENT.

– Code compiled with NORENT code cannot FETCH a module containing any code compiled with RENT. 
– Code compiled with NORENT WRITABLE cannot be mixed with code compiled with NORENT

NOWRITABLE if they share any external CONTROLLED variables or any external FILEs.

It is recommended that all code be compiled with the same settings for the RENT/NORENT and
WRITABLE/NOWRITABLE options.

Runtime changes
Some of the new features and built-in functions provided in the Enterprise PL/I 6.1 compiler require
corresponding library updates.

z/OS Language Environment 2.4 and later
To use all of the new features provided with Enterprise PL/I 6.1, apply the appropriate PTFs per the
APARs listed below:

• For 2.4 31-bit: PH43999, PH42584
• For 2.4 64-bit: PH44010, PH42584
• For 2.5 31-bit and 64-bit: PH44011, PH45664, PH42584
• For Japanese messages: PH44256

z/OS Language Environment 2.3
To use all of the new features provided with Enterprise PL/I 5.3, apply the appropriate PTFs per the
APARs listed below:

• For V2R3 31-bit, refer to PH11794.
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• For V2R3 64-bit, refer to PH15397.
• For V2R4 31-bit, refer to PH15422.
• For V2R4 64-bit, refer to PH15423.

z/OS Language Environment 2.2
UTF-8 and 64K string support are only available with z/OS Language Environment V2R3 and later.

31-bit support:

The following APARs provide the 31-bit runtime library support for the indicated functions:

• PH12180 - for support of STCKTODATE
• PI99780 - for support of GETSYSWORD
• PH05368 - for support of MEMCONVERT update
• PH01539 - for support of ONOPERATOR and SCRUBOUT
• PI97709 - for support of REPLACE
• PI97723 - for support of FILEDDWORD update
• PI98727 - for support of DATETIME update
• PI93336 - for support of REGEX
• PI90876 - for support of STCKETODATE
• PI86943 - for support of ISJCLSYMBOL
• PI86229 - for support of XMLSCRUB, WSCOLLAPSE, and WSREPLACE

64-bit support:

Apply the PTF from the latest 64-bit APAR.
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Part 5. Subsystem and other language considerations
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Chapter 20. Assembler considerations for PL/I
applications

This chapter contains information for applications that contain mixed PL/I programs and assembler
programs.

It includes the following information:

• Considerations for assembler programs mimicking PL/I main procedures
• Calling PL/I from the assembler and the Language Environment conforming assembler
• Condition handling and assembler programs
• Considerations for using assembler user exits

The new compiler uses some different internal control blocks in its generated code than did the old
compiler. If you had assembler code that knew the layout and meaning of such control blocks, that code
is highly likely not to work now and will probably have to be changed. Some examples where these
differences will require code changes:

• Assembler code that "knows" the layout of a PL/I label variable and uses that to try to branch back from
assembler into PL/I code

• Assembler code that "knows" the layout of a PL/I file variable and associated file control block and uses
that to try to get the DCB for a file

Considerations for assembler programs mimicking PL/I main
procedures

If you have an assembler program mimicking a PL/I MAIN procedure, you must convert that assembler
program to an Language Environment-conforming assembler program that is MAIN.

An assembler program that is not Language Environment-conforming cannot call a non-MAIN PL/I
procedure (unless it was called from a PL/I MAIN procedure).

For more information, see the z/OS Language Environment Programming Guide.

Calling PL/I from assembler and Language Environment
conforming assembler

With Language Environment, assembler programs that call a PL/I routine must follow the calling
conventions defined by Language Environment.

For example, Register 13 pointing to a save area, save areas properly back-chained, and the first word
of the save area being zero. For detailed information, see the z/OS Language Environment Programming
Guide.

If your PL/I main program is called by an assembler program and you want to convert your assembler
program to use the Language Environment-conforming assembler, you must do either of the following:

• Recompile your PL/I program with a newer PL/I compiler without OPTIONS(MAIN).
• Ensure that the entry point receiving control is the real entry point of the PL/I program.

In either case, the called PL/I program is treated as a subroutine. Either of these programs run under the
same Language Environment enclave where the assembler program is the main program and the called
PL/I program is a subroutine.

There are three ways by which the Language Environment-conforming assembler can pass control to an
Enterprise PL/I subroutine:
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1. Branch to a statically linked PL/I subroutine.
2. Use the Language Environment macro CEEFETCH to branch to a separately linked Enterprise PL/I

subroutine.
3. Use assembler instructions such as LOAD and BALR to a separately linked Enterprise PL/I subroutine.

If you recompile PL/I subroutines that use method 1 or 2 with Enterprise PL/I, you do not need to include
CEESG011 with your assembler program. If your assembler program uses instructions as described in
method 3, you must always include CEESG011 with your assembler program, even if you recompile your
PL/I subroutine with Enterprise PL/I.

Condition handling and assembler programs
The condition-handling behavior of the LINK from the assembler is now clearly defined.

For detailed information, see the z/OS Language Environment Programming Guide.

Considerations for using assembler user exits
The only Assembler user exit supported by Enterprise PL/I is the Language Environment user exit
CEEBXITA.

IBMBXITA and IBMFXITA are not supported.

Specific considerations:

• The PL1DUMP, PLIDUMP, or CEEDUMP file for the dump output is treated as a process resource and
must not be cleared during enclave termination.

• The OS PL/I abend exit IBMBEER is ignored under Language Environment. See “Differences in condition
handling” on page 35 for information about how to force an abend under Language Environment.

For a detailed parameter description for CEEBXITA and more information about assembler language user
exits, see the OS/390 Language Environment Programming Guide.
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Chapter 21. CICS considerations for PL/I applications
This chapter explains the source language considerations for programs that run under CICS.

It describes the actions that you need to take for applications that use either CICS source or Enterprise
PL/I source and involve the following functions:

• General CICS considerations
• Compiler options for programs that run under CICS
• Linking CICS applications and runtime considerations
• Migrating to the integrated CICS preprocessor

General CICS considerations
The CICS Storage Protect facility was introduced under CICS 3.3. This provides more data integrity and
security for the application program and especially for the entire CICS region. Because of the new feature,
you might discover that some of your successfully running PL/I applications start to fail with ASRA(0C4)
abend and the CICS message DFHSR0622.

If the above problem occurs in your PL/I applications, set the CICS system initialization parameter
RENTPGM=NOPROTECT. This sets the protection of the user program in user key. The default for
RENTPGM is PROTECT.

If PUT statements are used in your Enterprise PL/I CICS application, especially the PUT DATA statement,
it might trigger the above error.

Remember also that in CICS programs these PUT statements are intended for debugging purposes only.
They have a negative impact on performance, and it is recommended that you do not use them in
production programs.

If you mix old and new object code under CICS, you must adhere to all the rules and restrictions
described in “Object and load module considerations” on page 123.

Updating CICS System Definition (CSD) file
When you bring up a CICS region with Language Environment, you must ensure the module names listed
in Language Environment CEECCSD are defined in the CSD.

You can locate CEECCSD in SCEESAMP. If you use the CICS Version 4 autoinstall facility, you do not need
to define Language Environment modules manually in the CSD.

To run a Enterprise PL/I CICS application, you need to define the Enterprise PL/I member event handler
CEEEV011 in the CICS CSD definition table:

DEFINE PROGRAM(CEEEV011) GROUP(CEE) LANGUAGE(ASSEMBLER)
DEFINE PROGRAM(IBMPAM24) GROUP(CEE) LANGUAGE(ASSEMBLER)

To debug a PL/I transaction with Debug Tool, you need to define the Debug Tool APIs in the CICS CSD
definition table:

DEFINE PROGRAM(IBMPDAPI) GROUP(CEE) LANGUAGE(ASSEMBLER)
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Macro-level interface
The CICS macro-level interface is not supported.

Compiler options for programs that run under CICS
You must use the SYSTEM(CICS) or SYSTEM(MVS) option when you compile your CICS programs that are
PL/I MAINs.

If a CICS program is to be reentrant (and most should be) and if it uses CONTROLLED variables or FILEs,
you must also compile the program with the NOWRITABLE option.

Linking CICS applications and runtime considerations
You are generally no longer required to take special action when you link an Enterprise PL/I object module
under CICS with the exception that for a routine that is to be FETCHed, you must code the linkage editor
ENTRY statement so that it nominates the actual entry point.

PDSEs are supported by CICS Transaction Server 1.3 or later. See the CICS Transaction Server for OS/390
Release Guide, GC34-5701, where there are several references to PDSEs, and a list of prerequisite APAR
fixes.

Error-handling
Language Environment prohibits the use of some EXEC CICS commands in any PL/I ON-unit or in any
code called from a PL/I ON-unit.

The following EXEC CICS commands are not allowed:

• EXEC CICS ABEND
• EXEC CICS HANDLE AID
• EXEC CICS HANDLE ABEND
• EXEC CICS HANDLE CONDITION
• EXEC CICS IGNORE CONDITION
• EXEC CICS POP HANDLE
• EXEC CICS PUSH HANDLE

All other EXEC CICS commands are allowed within an ON-unit. However, they must be coded by using the
NOHANDLE option, the RESP option, or the RESP2 option.

FETCHing a PL/I MAIN procedure
CICS does not support PL/I FETCHing a PL/I MAIN procedure.

Runtime output
When a program is compiled with DISPLAY(STD), all runtime output is transmitted to a CICS transient
data queue CESE.

When a program is compiled with DISPLAY(WTO), the DISPLAY output is routed to the CICS JESLOG. All
other runtime output is transmitted to a CICS transient data queue CESE.

Language Environment ignores the MSGFILE option under CICS. Figure 2 on page 167 shows format of
the output data queue.
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Figure 2. CESE Output Data Queue

In addition, the PL/I transient queues CPLI and CPLD are no longer used. As a result, you do not need to
specify entries for the CPLI and CPLD in the CICS Destination Control Table (DCT).

Abend codes used by PL/I under CICS
The APLx abend codes that were issued under OS PL/I Version 2 are no longer issued. Instead, Language
Environment-defined abend codes are issued.

For more information about Language Environment abend codes, see z/OS Language Environment Run-
Time Messages.

Migrating to the integrated CICS preprocessor
This topic highlights some key points that you must take into consideration when you develop and
compile CICS programs and when you use the CICS preprocessor.

When you are developing programs for execution under CICS, all the EXEC CICS commands must be
translated in one of two ways:

• By the command language translator provided by CICS in a job step prior to the PL/I compilation
• By the PL/I CICS preprocessor as part of the PL/I compilation (this requires CICS TS 2.2 or later)

To use the CICS preprocessor, you must also specify the PP(CICS) compile-time option.

If your CICS program is a MAIN procedure, you must also compile it with the SYSTEM(CICS) option.
NOEXECOPS is implied with this option, and all parameters passed to the MAIN procedure must be
POINTERs.

If your CICS program includes any files or uses any macros that contain EXEC CICS statements, you
must also run the MACRO preprocessor before your code is translated (in either of the ways described
above). If you are using the CICS preprocessor, you can specify this with one PP option as illustrated in
the following example:

    pp (macro(…)  cics(…)  )

Finally, in order to use the CICS preprocessor, you must have the CICS SDFHLOAD data set as part of the
STEPLIB DD for the PL/I compiler.

For more information about the integrated PL/I CICS preprocessor, see the Enterprise PL/I for z/OS
Programming Guide.
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Chapter 22. IMS considerations for PL/I applications
This chapter explains the considerations for running Enterprise PL/I programs that use IMS under
Language Environment.

Interfaces to IMS
Language Environment supports the PLITDLI, ASMTDLI, and EXEC DLI interfaces from a PL/I routine. It
also supports CEETDLI interface from a Enterprise PL/I routine running under IMS/ESA Version 4.

Under Language Environment, CEETDLI is the recommended interface. CEETDLI supports calls that use
an Application Interface Block (AIB) or a Program Communication Block (PCB). For more information
about AIB and a complete description of the CEETDLI interface, see IMS/ESA Version 4 Application
Programming Guide.

SYSTEM(IMS) compile-time option
You should use the SYSTEM(IMS) option when compiling all PL/I MAIN programs invoked from IMS.

When you recompile your main procedure with Enterprise PL/I, the object module assumes that the
parameters are passed as BYVALUE. Language Environment converts the parameters to the BYVALUE
style for you, if necessary, so the parameters are always passed correctly.

If the BYADDR attribute is specified or implied for the parameters to an IMS MAIN routine, when you
compile your main procedure with Enterprise PL/I, you will receive an error message, and the compiler
will apply the BYVALUE attribute instead.

For more information about the SYSTEM(IMS) compile-time option, see the Enterprise PL/I for z/OS
Programming Guide.

PLICALLA support in IMS
The PL/I PLICALLA entry point is supported under Language Environment.

See “PLICALLA considerations” on page 36 for details.

PSB language options supported
Language Environment supports PL/I applications with the following PSBGEN LANG options in the
supported releases of IMS:

IMS/ESA Version 4
Table 12 on page 169 shows support for PSB LANG options in IMS/ESA Version 4 Release 1, and later
releases. 

Table 12. PSB LANG options for IMS/ESA Version 4 Release 1, and later

SYSTEM option Entry point LANG=

IMS CEESTART PLI or other values except
PASCAL

IMS PLICALLA PLI

MVS PLICALLA PLI

MVS CEESTART PLI

Other - - Illegal
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Storage usage considerations
With IMS/ESA Version 3 Release 1 or later, the parameters passed to the IMS interfaces are no longer
restricted to the area below the 16M line.

The parameters will be above the 16M line if you observe the following rules:

• If the parameters passed to IMS are in CONTROLLED or BASED storage, specify the ANYWHERE
suboption of the HEAP runtime option.

• If the parameters passed to IMS are in AUTOMATIC storage, specify the ANYWHERE suboption of the
STACK runtime option.

• If the parameters passed to IMS are in STATIC storage, link the load module with the AMODE(31)
attribute.

Coordinated condition handling under IMS
Language Environment and IMS condition handling are coordinated, which means that if a program
interrupt or abend occurs when your application is running in an IMS environment, the Language
Environment condition manager is informed whether the problem occurred in your application or in IMS.

If the problem occurs in IMS, Language Environment, as well as any invoked HLL-specific condition
handler, percolates the condition back to IMS.

With Language Environment runtime option TRAP(ON), Language Environment continues to support
coordinated condition handling for the PLITDLI and ASMTDLI interface invoked from a PL/I routine.

With IMS/ESA Version 3 with PTF UN4928 or with IMS/ESA Version 4, Language Environment also
supports the coordinated condition handling for CEETDLI, CTDLI from a C routine, CBLTDLI from a COBOL
program, AIBTDLI from a PL/I program, and ASMTDLI from a non-PL/I program.

Note that if a program interrupt or abend occurs in your application outside of IMS, or if a software
condition of severity 2 or greater is raised outside of IMS, the Language Environment condition manager
takes normal condition handling actions described in the z/OS Language Environment Programming Guide.
In this case, in order to give IMS a chance to do database rollback, you must do one of the following
actions:

• Resolve the error completely so that your application can continue.
• Issue a rollback call to IMS, and then terminate the application.
• Make sure that the application terminates abnormally by using the ABTERMENC(ABEND) runtime option

to transform all abnormal terminations into system abends in order to cause IMS rollbacks.
• Make sure that the application terminates abnormally by providing a modified assembler user exit

(CEEBXITA) that transforms all abnormal terminations into system abends in order to cause IMS
rollbacks.

The assembler user exit you provide should check the return code and reason code or the
CEEAUE_ABTERM bit, and request an abend by setting the CEEAUE_ABND flag to ON, if appropriate.
See the z/OS Language Environment Programming Guide for details.

Performance enhancement with Library Retention (LRR)
If you use LRR, you can get an improvement in performance.

See “Improving CPU utilization” on page 119 for details.
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Chapter 23. Db2 considerations for PL/I applications
This chapter explains the source language considerations for programs that run with Db2.

General Db2 considerations
If you write a user-defined function in PL/I, Db2 passes some string-locator descriptors to the PL/I
procedure.

In order for such a program to run correctly under Enterprise PL/I, you must compile the program with the
CMPAT(V1) or CMPAT(V2) option.

Note: When you use CMPAT(V1) , the size of a BLOB, CLOB, or DBCLOB must be less than 32 K.

Migrating to the integrated SQL preprocessor
The integrated PL/I SQL preprocessor approach eliminates the need for a separate precompilation step
with the Db2 precompiler in PL/I programs containing SQL statements.

Note: You must have Db2 for z/OS Version 11 or later to use the SQL preprocessor.

Programming and compilation considerations
When you use the PL/I SQL Preprocessor the PL/I compiler handles your source program containing
embedded SQL statements at compile time, without your having to use a separate precompile step.
Although the use of a separate precompile step continues to be supported, use of the PL/I SQL
Preprocessor is recommended. Interactive debugging with Debug Tool is enhanced when you use the
PL/I SQL Preprocessor because you see only the SQL statements while debugging (and not the generated
PL/I source).

In addition, using the PL/I SQL Preprocessor lifts some of the Db2 precompiler's restrictions on SQL
programs. When you process SQL statements with the PL/I SQL Preprocessor, you can now do the
following:

• Use fully-qualified names for structured host variables.
• Include SQL statements at any level of a nested PL/I program, instead of in only the top-level source
file.

• Use nested SQL INCLUDE statements.

The PL/I compiler listing includes the error diagnostics (such as syntax errors in the SQL statements) that
the PL/I SQL Preprocessor generates. The listing of the EXEC SQL statement is displayed in a readable
format that is similar to the original source.

To use the PL/I SQL Preprocessor, follow these steps:

1. Specify the following option when you compile your program:

    PP(SQL('options'))

This compiler option indicates that you want the compiler to invoke the PL/I SQL preprocessor.
Specify a list of SQL processing options in the parenthesis after the SQL keyword. The options can be
separated by a comma or by a space but must be enclosed in single or double quotation marks.

For example, PP(SQL('DATE(USA),TIME(USA)') tells the preprocessor to use the USA format for
both DATE and TIME data types.

In addition, for LOB support, you must specify the following option:

    LIMITS( FIXEDBIN(31,63)  FIXEDDEC(15,31) )
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2. Include DD statements for the following data sets in the JCL for your compile step:

• Db2 load library (prefix.SDSNLOAD)

The PL/I SQL preprocessor calls Db2 modules to do the SQL statement processing. Therefore, you
need to include the name of the Db2 load library data set in the STEPLIB concatenation for the
compile step.

• Library for SQL INCLUDE statements

If your program contains SQL INCLUDE member-name statements that specify secondary input to
the source program, you need to include the name of the data set that contains member-name in the
SYSLIB concatenation for the compile step.

• DBRM library

The compilation of the PL/I program generates a Db2 database request module (DBRM) and the
DBRMLIB DD statement is required to designate the data set to which the DBRM is written.

For example, you might have the following lines in your JCL:

//STEPLIB  DD  DSN=DSNA10.SDSNLOAD,DISP=SHR
//SYSLIB   DD  DSN=PAYROLL.MONTHLY.INCLUDE,DISP=SHR
//DBRMLIB  DD  DSN=PAYROLL.MONTHLY.DBRMLIB.DATA(MASTER),DISP=SHR

For more information about the integrated PL/I SQL preprocessor, see the Enterprise PL/I for z/OS
Programming Guide.

FOR BIT DATA assignment notes
The old Db2 Precompiler services did not know about or handle CCSID values for host variables. Because
of this lack of knowledge, you could update FOR BIT DATA columns with CHARACTER data. The new Db2
V11 or later Db2 Precompiler services does know about CCSID values and assigns them to host variables
by using the default CCSID value.

This causes problems if you have code that updates FOR BIT DATA columns with CHARACTER data.
The integrated PL/I SQL preprocessor has created a new option, CCSID0 / NOCCSID0 to handle these
cases. The CCSID0 option, the default, causes a CCSID of 0 to be assigned to host variables allowing the
assignment of CHARACTER variables to FOR BIT DATA database columns.
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Appendix A. Conversion and migration aids
This section describes the conversion and migration tools available for your assistance during the actual
conversion and migration activities.

These tools are available:

• OS PL/I Routine Replacement Tool
• OS PL/I V1R5.1 main load module ZAP
• OS PL/I Shared library replacement tool
• OS PL/I object module relinking tool - APARs PN69803
• EDGE Portfolio Analyzer
• Vendor products

OS PL/I Routine Replacement Tool
Language Environment does not support OS PL/I Version 1 Release 3.0 - 5.0 load modules. For these load
modules, you can do one of the following:

• Relink the object modules directly with Language Environment.
• Replace the library routines in the load module with the Language Environment stubs.

Language Environment provides two samples, located in SCEESAMP, that replace the library routines
in your OS PL/I Version 1 Release 3.0 - 5.1 and Version 2 load modules with corresponding Language
Environment stubs. These samples contain a list of linkage editor REPLACE control statements that
replace each library routine in your load module with the corresponding stub in Language Environment
and are described as follows:

• IBMWRLK is for MVS non-CICS and VM.

For MVS non-CICS, use it to replace OS PL/I V1R3.0 - V1R5.1 and V2 load modules, both multitasking
and nonmultitasking. It contains a CHANGE statement to rename the OS PL/I HLL user exit IBMBINT to
CEEBINT.

• IBMWRLKC is for CICS.

Use it to replace OS PL/I V1R3.0 - V1R5.1 and V2 load modules. It contains a CHANGE statement to
rename the OS PL/I HLL user exit IBMBINT to CEEBINT and PLIMAIN to CEEMAIN. It also contains
INCLUDE statements to ensure the load module works under CICS.

The CICS macro language is not supported.

The MVS JCL example below shows the replacement of runtime library routines from a user load module
while retaining the user object module. In the example, MYPDS.LOAD is the data set name of a load
module library that contains the load module with the name MYLMOD.

//RELINK    EXEC PGM=IEWL,PARM='LIST,MAP,XREF,SIZE(3072K,4K)',REGION=5M
//SYSPRINT  DD   SYSOUT=A
//SYSLIB    DD   DSN=CEE.V1R4M0.SCEELKED,DISP=SHR
//SAMPLIB   DD   DSN=CEE.V1R4M0.SCEESAMP,DISP=SHR
//SYSUT1    DD   UNIT=SYSDA,SPACE=(1024,(200,200))
//SYSLMOD   DD   DSN=MYPDS.LOAD,DISP=OLD
//SYSLIN    DD   *
  INCLUDE   SAMPLIB(IBMWRLK)
  INCLUDE   SYSLMOD(MYLMOD)
  NAME      MYLMOD(R)

If you replace a load module under CICS, the CICS SDFHLOAD data set must be specified in the SYSLIB.
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OS PL/I Version 1 Release 5.1 main load module ZAP
Language Environment supports OS PL/I Version 1 Release 5.1 main load module with the following
restriction:

• If the main load module is for MVS non-Shared Library, non-CICS and nonmultitasking, or VM, it
must first be ZAPped with one of the Language Environment-provided samples located in Language
Environment SCEESAMP. Detailed instructions for using the ZAP are provided in IBMRZAPM and
IBMRZAPV. The following describes each sample:

– IBMRZAPM for MVS non-Shared Library, non-CICS, nonmultitasking

The ZAPped main load module, including one that contains the OS PL/I fast initialization and
termination feature, continues to run under OS PL/I Version 1 Release 5.1 and Version 2. When the
ZAPped main load module contains the OS PL/I fast initialization and termination feature, it always
dynamically loads the OS PL/I runtime initialization routine IBMBPIIA once. IBMBPIIA is not deleted
until the task terminates. This one-time loading of IBMBPIIA might affect the performance of your
application. If you put IBMBPIIA in LPA, the performance effect can be minimized.

The ZAPped main load module is supported by Language Environment unless the load module
contains the OS PL/I fast initialization and termination feature. Language Environment always
dynamically loads the initialization and termination routines. If you put the Language Environment
library routines and CEEBLIIA in LPA(E) as recommended in z/OS Language Environment Installation
and Customization under OS/390 and z/OS Language Environment Customization, the performance
effect can be minimized.

– IBMRZAPV for VM

The ZAPped main load module is not supported under OS PL/I Version 1 Release 5.1 or Version 2. It
is supported only under Language Environment.

If you do not ZAP your main load module, read “OS PL/I Routine Replacement Tool” on page 173 to
understand what else you can do. You can also recompile your application with Enterprise PL/I or OS PL/I
Version 2. See Chapter 7, “Object module and load module considerations,” on page 45 to understand
how Language Environment supports OS PL/I object and load modules.

The sample ZAP is available in the IBM Support Center for customers who do not have Language
Environment but want to prepare to migrate to Language Environment.

OS PL/I Shared Library replacement tool
In order to support OS PL/I Version 1 Release 5.1 and Version 2 load modules that use the Shared Library,
the library module in that Shared Library must be replaced with Language Environment stubs.

Language Environment provides the following two sample JCL, located in SCEESAMP, to replace the
Shared Library:

• IBMRLSLA for OS PL/I Version 1 Release 5.1 MVS CICS or multitasking and OS PL/I Version 2 Shared
Library

• IBMRLSLB for OS PL/I Version 1 Release 5.1 MVS non-CICS nonmultitasking Shared Library

You must understand how Language Environment supports OS PL/I Shared Library before you use the
JCL.

OS PL/I Object Module Relinking Tool - APAR PN69803
OS PL/I Version 2 Release 3 provides APAR PN69803 to help you migrate your PL/I-COBOL ILC
applications and PLISRTx applications.
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ILC applications
Language Environment does not support the OS PL/I-COBOL ILC applications. You must relink any OS
PL/I object module in a PL/I-COBOL ILC application.

See “Differences in Interlanguage Communication support” on page 42 for ILC support under Language
Environment.

If you relink your OS PL/I object module in the PL/I-COBOL ILC application with PN69803, however,
the resultant load module is supported by Language Environment. PN69803 provides you the flexibility
to prepare the PL/I-COBOL ILC relinking while you are using OS PL/I Version 2 Release 3. When you
complete the relinking, you can switch to Language Environment whenever you are ready.

Before you relink your PL/I-COBOL ILC applications with PN69803, you must first apply the following
PL/I-COBOL ILC APARs to PL/I and COBOL:

OS PL/I V2R3 common library: PN36844
VS COBOL II V1R3.0 library: PN13459
VS COBOL II V1R3.1 library: PN04721
VS COBOL II V1R3.2 library: PN09732

Note: VS COBOL II V1R4.0 has the above COBOL APARs in its base code.

If you have not applied the above APARs, PN69803 will not work. The above APARs are not required if
your applications do not contain PL/I-COBOL ILC.

Even though your PL/I-COBOL ILC applications are relinked with PN69803, you might still be required
to link them with Language Environment if they contain a function described in this book or in COBOL
for OS/390 & VM Migration Guide that requires relinking. For example, you will still have to relink your
application if it contains any COBOL NORES or the load module contains an OS PL/I object module that
is not supported by Language Environment. In the latter case, you must recompile your OS PL/I object
module with Enterprise PL/I or OS PL/I Version 2.

PLISRTx applications
While OS PL/I applications that use PLISRTx are supported by Language Environment for OS/390 & VM
Release 1.4 and later, it is recommended that you relink your applications that use PLISRTx.

See “Differences in PLISRTx support” on page 39 for the reasons. You can relink either with Language
Environment or with PN69803 on OS PL/I Version 2 Release 3. Either method gives your load module the
benefits of exploiting the Language Environment DFSORT interface support.

EDGE Portfolio Analyzer
The Edge Portfolio Analyzer helps you to take an inventory of your existing OS PL/I and PL/I for MVS & VM
load modules. The Edge Portfolio Analyzer can perform these tasks:

• Determine which version and release of the OS PL/I compiler or the PL/I for MVS & VM compiler created
the load module.

• Determine which compiler options were specified when the load module was compiled.
• Determine which load modules call for the current system date.
• Determine which CSECTs need to be replaced.

Note: The Edge Portfolio Analyzer is no longer sold by IBM, but you can still purchase the product from
Edge directly. For more information, you can visit their Web site at www.edge-information.com

Vendor products
A number of non-IBM conversion tools are available to help you upgrade your source programs to
Enterprise PL/I programs and move to Language Environment. IBM has compiled a list of vendor products
enabled to work with Language Environment and Enterprise PL/I in the Language Environment Enabled
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Vendor Tools and Application Packages document. You can get this information on the web at http://
www.ibm.com/s390/le and then go to the Library link.
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Appendix B. Compiler limit comparison
This section lists the compiler implementation limits for OS PL/I, PL/I for MVS & VM, VisualAge PL/I, and
Enterprise PL/I.

Table 13. Language element limits

Language
element

Description OS PL/I PL/I for MVS
& VM

VisualAge PL/I Enterprise
PL/I

Arrays Maximum number of
dimensions for an array

15 15 15 15

Minimum lower bound -2147483648 -2147483648 -2147483648 -2147483648

Maximum upper bound +2147483647 +2147483647 +2147483647 +2147483647

Structures Maximum number of
levels in a structure

15 15 15 15

Maximum level-number
in a structure

255 255 255 255

Arithmetic
Precisions

Maximum precision for
FIXED DEC

15 15 31 31

Maximum precision for
FIXED BINARY

31 31 63 63

Maximum precision for
FLOAT DEC

33 33 33 33

Maximum precision for
FLOAT BINARY

109 109 109 109

Maximum scale factor
for FIXED data

127 127 127 127

Minimum scale factor
for FIXED data

-128 -128 -128 -128

String and AREA
Variables or
Constants

Maximum length of
CHARACTER

32767 32767 32767 32767

Maximum length of BIT 32767 32767 32767 32767

Maximum length of
GRAPHIC

16383 16383 16383 16383

Maximum length of
WIDECHAR

n/a n/a 16383 32767

Maximum size of AREA 2147483647 2147483647 2147483647 2147483647

Built-In
Functions

Maximum number of
arguments to the IAND,
IOR, MAX, and MIN
functions

64 64 64 64
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Table 13. Language element limits (continued)

Language
element

Description OS PL/I PL/I for MVS
& VM

VisualAge PL/I Enterprise
PL/I

Program Size Maximum length of an
identifier

31 31 100 100

Maximum number of
procedures in a
program

255 255 255 255

Maximum number of
DEFAULT statements in
a block

31 31 31 31

Maximum nesting of
%INCLUDE statements

8 8 2046 2046

Maximum number of
lines in any source file

65,535 65,535 1048575 1048575

Maximum number of
statements

32,767 32,767 16777215 16777215

Maximum number of
LIKE-attributes in a
block

63 63 63 63

Maximum number of
output expressions in a
data-list

60 60 60 60

Maximum number
of repetitive DO-
specifications in a data-
list

25 25 50 50
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Table 13. Language element limits (continued)

Language
element

Description OS PL/I PL/I for MVS
& VM

VisualAge PL/I Enterprise
PL/I

Program Size Maximum size of a data
aggregate containing
no unaligned bits

2147483648 2147483648 2147483647 2147483647

Maximum size of a data
aggregate containing
some unaligned bits

268435455 268435455 268435455 268435455

Maximum number of
arguments in a CALL or
function reference

64 64 255 255

Maximum number of
parameters for a
procedure

64 63 4095 4095

Maximum nesting of
factored attributes

15 15 15 15

Maximum nesting
of BEGIN
and PROCEDURE
statements

42 42 30 30

Maximum nesting of
DO-groups

38 38 49 49

Maximum nesting of IF
statements

80 80 49 49

Maximum nesting of
SELECT-statements

50 50 49 49

Maximum length of
%NOTE message

256 256 32767 32767
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Table 13. Language element limits (continued)

Language
element

Description OS PL/I PL/I for MVS
& VM

VisualAge PL/I Enterprise
PL/I

Miscellaneous Maximum number of
picture characters in a
character picture

511 511 511 511

Maximum number of
bytes in a numeric
picture

256 256 253 253

Maximum number
of numeric picture
characters in a numeric
picture

15 15 31 31

Maximum length for a
KEYTO character string

120 120 120 120

Maximum length for
a KEYTO graphic or
widechar string

60 60 60 60

Maximum KEY length 8 8 32763 32763

Maximum line size for
LINESIZE

32,000 32,000 32,000 32,759 for F-
format or U-
format, and
32,751 for V-
format

Minimum line size for
LINESIZE

10 10 1 1

Maximum page size for
PAGESIZE

32,000 32,000 32,767 32,767

Miscellaneous Minimum page size for
PAGESIZE

1 1 1 1

Maximum size of
DISPLAY character
string

126 126 126 126

Maximum DISPLAY
reply message.

72 72 72 72
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Appendix C. Batch processing sample
The code samples show how to implement a 'batch compiler' with Enterprise PL/I.

  batch: proc options(main);

     dcl eof     bit(1);
     dcl rc      fixed bin(15);
     dcl system  builtin;
     dcl source  char(80);
     dcl sysutz  file output record sequential
                 env( fb,recsize(80) );

     dcl compin  file input record sequential;

     dcl plixopt ext static char(40) var
                 init('errcount(0),heap(2m,1m,any,free)');

     open file(compin);

     rc = 0;
     eof = '0'b;
     data_read = '0'b;
     on endfile(compin) eof = '1'b;

     data_read = '0'b;
     open file(sysutz);
     read file(compin) into(source);
     do while( eof = '0'b );
       if substr(source,1,8) = '*PROCESS' then
         if data_read then
           do;
             close file(sysutz);

             rc = max( rc, system('ibmzpli @dd:options') );

             data_read = '0'b;
             open file(sysutz);
           end;
         else;
       else
         data_read = '1'b;
       write file(sysutz) from(source);
       read file(compin) into(source);
     end;

     close file(sysutz);

     rc = max( rc, system('ibmzpli @dd:options') );
     call pliretc(rc );
   end;

This program when compiled and linked could be used as a "batch compiler" if the following JCL were
used when the program is run.

  //SYSPRINT  DD SYSOUT=*
  //OPTIONS   DD  *
   dd(*,sysutz) name
   limits(extname(7)) norent cmpat(v2)
  //COMPIN    DD  *
  *PROCESS X(F);
    x: proc;
      dcl a ext char(80);
    end;
  *PROCESS NORENT;
    y: proc;
      dcl b ext char(40);
    end;
  //SYSLIN   DD DSN=...,DISP=(MOD)
  //SYSUT1    DD DSN=&&SYSUT1,UNIT=SYSDA,
  //             SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
  //SYSUTZ  DD DSN=&&SOURCE,DISP=(NEW),UNIT=SYSSQ,
  //             SPACE=(CYL,(3,1))
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The first line in the OPTIONS DD specifies the DD(*,SYSUTZ) and NAME and is necessary to make the
program work as a batch compiler. The second line is used merely as an example.
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Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
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infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.
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COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This book is intended to help the customer migrate from previous releases of PL/I to Enterprise PL/I and
z/OS Language Environment. This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of Enterprise PL/I.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Intel is a registered trademark of Intel Corporation in the United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States and
other countries.

Pentium is a registered trademark of Intel Corporation in the United States and other countries.

Unicode is a trademark of the Unicode Consortium.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product or service names may be the trademarks or service marks of others.

If you are viewing this information in softcopy, the photographs and color illustrations may not appear.
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