
Enterprise PL/I for z/OS
6.1

Language Reference

IBM

SC31-5716-00

Contents

Tables...xxiii

Figures.. xxvii

Enterprise PL/I for z/OS Language Reference...xxix
First Edition (May 2022).. xxix

About this book...xxxi
Notation conventions used in this book..xxxi
Semantics...xxxiii
Industry standards used..xxxiii
Summary of changes... xxxiv

Enhancements in this release.. xxxiv
Enhancements from 5.3...xxxvi
Enhancements from 5.2...xxxix
Enhancements from 5.1... xli
Enhancements from 4.5.. xlii
Enhancements from 4.4..xliii
Enhancements from 4.3..xliv
Enhancements from 4.2..xliv
Enhancements from 4.1...xlv
Enhancements from 3.9...xlv
Enhancements from 3.8...xlv
Enhancements from 3.7..xlvi
Enhancements from 3.6...xlvii
Enhancements from 3.5...xlvii
Enhancements from 3.4...xlvii
Enhancements from 3.3...xlvii
Enhancements from 3.2..xlviii
Enhancements from 3.1..xlviii

How to send your comments.. l
Accessibility...l

Chapter 1. Program elements...1
Single-byte character set...1

Decimal digits... 2
Binary digits.. 3
Hexadecimal digits... 3
Special characters.. 3
Composite symbols.. 4
Case sensitivity... 5
Statement elements for SBCS..5

Statements... 8
Simple statements..9
Compound statements...10

Groups..10
Double-byte character set...11

DBCS identifiers..11
Statement elements for DBCS... 12

 iii

DBCS continuation rules.. 13

Chapter 2. Data elements.. 15
Data items.. 15

Variables... 15
Constants..16
Using quotation marks... 16
Punctuating constants... 16

Data types and attributes.. 16
Data attributes..17
Nondata attributes... 18

Computational data types and attributes... 22
Coded arithmetic data and attributes..22
String data and attributes.. 29
Date attribute... 41

Program-control data types and attributes.. 44
Label data and LABEL attribute... 44
Format data and FORMAT attribute... 45
VARIABLE attribute.. 46

Value attributes..46
VALUE attribute.. 46
Named constants... 46
VALUELIST attribute...48
VALUELISTFROM attribute...48
VALUERANGE attribute.. 49

Chapter 3. Expressions and references...51
Order of evaluation.. 53
Targets..53

Variables... 53
Pseudovariables... 54
Intermediate results.. 54

Operational expressions..54
Handle operations.. 55
Pointer operations.. 55
Arithmetic operations...56
Bit operations... 64
Comparison operations.. 65
Concatenation operations..67
Combinations of operations...68
Priority of operators... 69

Array expressions.. 70
Prefix operators and arrays..71
Infix operators and arrays..71

Structure expressions..72
Restricted expressions.. 72

Chapter 4. Data conversion.. 75
Built-in functions for computational data conversion.. 76
Converting string lengths...76
Converting arithmetic precision.. 77
Converting mode..77
Converting other data attributes... 77
Source-to-target rules... 79
Examples..87

Example: DECIMAL FIXED converted to BINARY FIXED with fractions... 87
Example: Arithmetic converted to bit string..87

iv

Example: Arithmetic converted to character...88
Example: A conversion error..88

Chapter 5. Program organization..89
Programs.. 89

Program structure.. 89
Program activation... 90
Program termination.. 90

Blocks...90
Block activation.. 91
Block termination... 91

Packages.. 91
Procedures... 94

PROCEDURE statement..95
ENTRY statement... 96
Parameter attribute..97
Procedure activation.. 99
Procedure termination... 100
Recursive procedures.. 101
Dynamic loading of an external procedure..102

Subroutines..105
Example 1...105
Example 2...105

Built-in subroutines... 106
Functions... 106

Examples.. 107
Built-in functions..108

Passing arguments to procedures...108
Using BYVALUE and BYADDR...109
Using INONLY, INOUT and OUTONLY.. 109
Dummy arguments...110
Passing arguments to the MAIN procedure.. 111

Begin-blocks.. 112
BEGIN statement... 112
Begin-block activation... 112
Begin-block termination.. 112

Entry data...113
Entry constants.. 113
Entry variables..114
ENTRY attribute..114
OPTIONAL attribute... 117
LIST attribute... 118
LIMITED attribute.. 120
Generic entries... 121
GENERIC attribute... 121

Entry invocation or entry value..123
CALL statement..123
RETURN statement..124

Return from a subroutine...124
Return from a function... 124

OPTIONS option and attribute.. 125
RETURNS option and attribute..134

Chapter 6. Type definitions.. 137
User-defined types (aliases)... 137

DEFINE ALIAS statement.. 137
Defining ordinals..138

 v

DEFINE ORDINAL statement...138
Defining typed structures and unions... 140

HANDLE attribute... 141
Declaring typed variables.. 142

TYPE attribute.. 142
ORDINAL attribute... 143

Typed structure qualification.. 144
Using the period operator (.)..144
Combinations of arrays and typed structures or unions...144
Using handles... 145

Using ordinals.. 145
Type functions... 148

Chapter 7. Data declarations..149
Explicit declaration.. 149

DECLARE statement...150
Factoring attributes..151

Implicit declaration... 152
Scope of declarations.. 152

INTERNAL and EXTERNAL attributes.. 154
RESERVED attribute...158
FORCE attribute... 158
SUPPRESS attribute...159
Data alignment...160

ALIGNED and UNALIGNED attributes... 160
Defaults for attributes... 167

Language-specified defaults..167
DEFAULT statement... 168
Restoring language-specified defaults..172

Arrays... 172
DIMENSION attribute.. 173
DIMACROSS attribute.. 174
Examples of arrays...174
Subscripts...175
Cross sections of arrays... 176

Structures and unions... 176
Structures...176
Unions...177
Structure and union qualification.. 178
Assignments to UNIONs.. 180
LIKE attribute... 180
INDFOR attribute... 182
NOINIT attribute.. 183
NULLINIT attribute...183
XML-related attributes... 183
JSON-related attributes...185

Aggregate combinations and mapping... 185
Combinations of arrays, structures, and unions... 185
Cross sections of arrays of structures or unions... 186
Structure and union operations... 186
Structure and union mapping.. 187

Chapter 8. Statements and directives...195
ALLOCATE statement...195
ASSERT statement...195
Assignment and compound assignment statements... 199

Assignment statements... 199

vi

Assignment statements that use the BY DIMACROSS option.. 200
Compound assignment statements...200
Target variables.. 201
How assignments are performed.. 203
Multiple assignments... 205
Examples.. 205

ATTACH statement.. 207
BEGIN statement...207
CALL statement..207
CANCEL THREAD statement... 207
CLOSE statement... 207
DECLARE statement.. 207
DEFAULT statement...208
DEFINE ALIAS statement.. 208
DEFINE ORDINAL statement.. 208
DEFINE STRUCTURE statement..208
DELAY statement... 208
DELETE statement... 209
DETACH statement.. 209
DISPLAY statement... 209
DO statement...210

Type 1... 210
Types 2 and 3... 210
Type 4... 216
Examples of basic repetitions..217
Example of DO with WHILE, UNTIL... 218
Example of DO with UPTHRU and DOWNTHRU.. 219
Example of REPEAT..220

END statement...221
ENTRY statement...221
EXIT statement..221
FETCH statement...221
FLUSH statement...221
FORMAT statement..221
FREE statement... 222
GET statement... 222
GO TO statement... 222
IF statement.. 222

Examples.. 223
Short-circuit evaluation..224

%INCLUDE directive..225
ITERATE statement... 225
LEAVE statement... 226
%LINE directive... 226
LOCATE statement...227
%NOPRINT directive... 227
%NOTE directive..227
null statement..228
ON statement...228
OPEN statement.. 228
OTHERWISE statement... 228
PACKAGE statement..228
%PAGE directive.. 228
%POP directive.. 228
%PRINT directive.. 229
PROCEDURE statement...229
%PROCESS directive... 229
*PROCESS directive... 229

 vii

%PROCINC directive... 229
*PROCINC directive... 230
%PUSH directive..230
PUT statement... 230
QUALIFY statement...230
READ statement...231
REINIT statement..231
RELEASE statement...231
RESIGNAL statement.. 231
RETURN statement..232
REVERT statement...232
REWRITE statement.. 232
SELECT statement... 232
SIGNAL statement...233
%SKIP directive... 234
STOP statement...234
WAIT statement...234
WHEN statement... 234
WRITE statement...234
%XINCLUDE statement... 234
XDECLARE statement.. 234
XDEFINE ALIAS statement..235
XDEFINE ORDINAL statement.. 235
XDEFINE STRUCTURE statement... 235
XPROCEDURE statement...235

Chapter 9. Storage control... 237
Storage classes, allocation, and deallocation...237
Static storage and attribute...238
Automatic storage and attribute... 239
Controlled storage and attribute... 239

ALLOCATE statement for controlled variables.. 240
FREE statement for controlled variables...242
Multiple generations of controlled variables...242
Asterisk notation.. 243
Adjustable extents... 243
Built-in functions for controlled variables...243

Based storage and attribute..243
Extent specifications in BASED declarations.. 244
BASED VARYING string.. 245
Storage allocation for BASED variable...245
Locator variables.. 246
DEFINED and UNION attributes.. 246
INITIAL attribute..246
Locator data..246
POINTER variable and attribute.. 249
Built-in functions for based variables..249
ALLOCATE statement for based variables... 250
FREE statement for based variables... 251
REFER option (self-defining data)... 251

Area data and attribute..253
Offset data and attribute..254
LOCATES attribute..255
Built-in functions for area variables.. 257
Area assignment...257
Input/output of areas...258

List processing... 258

viii

ASSIGNABLE and NONASSIGNABLE attributes... 259
NORMAL and ABNORMAL attributes...260
BIGENDIAN and LITTLEENDIAN attributes... 260
HEXADEC and IEEE attributes...261
CONNECTED and NONCONNECTED attributes...262
DEFINED and POSITION attributes.. 263

Unconnected storage... 264
Simple defining...264
iSUB Defining..265
String Overlay Defining...266
POSITION attribute..267

INITIAL attribute... 267
Initializing array variables..271
Initializing unions... 272
Initializing static variables... 272
Initializing automatic variables..273
Initializing based and controlled variables..273
Examples.. 273

Chapter 10. Input and output...275
Data sets.. 276

Consecutive..276
Indexed.. 276
Relative...276
Regional..276

Files..277
FILE attribute... 277
RECORD and STREAM attributes... 280
INPUT, OUTPUT, and UPDATE attributes...281
SEQUENTIAL and DIRECT attributes...281
BUFFERED and UNBUFFERED attributes..282
ENVIRONMENT attribute... 282
KEYED attribute..282
PRINT attribute.. 282

Opening and closing files...282
OPEN statement...283
Implicit opening... 284
CLOSE statement... 286
FLUSH statement... 286

SYSPRINT and SYSIN.. 287

Chapter 11. Record-oriented data transmission..289
Data transmitted..289

Unaligned bit strings.. 289
Varying length strings...289
Area variables...290

Data transmission statements.. 290
READ statement... 290
WRITE statement... 290
REWRITE statement...291
LOCATE statement... 291
DELETE statement... 291

Options of data transmission statements...292
FILE option... 292
FROM option...292
IGNORE option... 292
INTO option.. 293

 ix

KEY option.. 293
KEYFROM option.. 293
KEYTO option... 294
SET option.. 294

Processing modes..294
Move mode... 295
Locate mode...295

Chapter 12. Stream-oriented data transmission... 297
Data transmission statements.. 297

GET statement..297
PUT statement..298

Options of data transmission statements...299
COPY option... 299
Data specification options... 299
FILE option... 301
LINE option...301
PAGE option..301
SKIP option...301
STRING option..302

Transmission of data-list items...303
Data-directed data specification...304

Restrictions on data-directed data..304
Syntax of data-directed data... 305
GET data-directed..305
PUT data-directed..307

Edit-directed data specification.. 308
GET edit-directed... 309
PUT edit-directed... 310
FORMAT statement.. 311

List-directed data specification...312
Syntax of list-directed data..312
GET list-directed.. 312
PUT list-directed.. 313

PRINT attribute..314
DBCS data in stream I/O..315

Chapter 13. Edit-directed format items.. 317
A-format item...317
B-format item.. 317
C-format item...318
COLUMN format item...318
E-format item...319
F-format item...321
G-format item.. 322
L-format item... 323
LINE format item... 323
P-format item...323
PAGE format item.. 324
R-format item...324
SKIP format item... 325
V-format item...325
X-format item...325

Chapter 14. Picture specification characters.. 327
Picture repetition factor.. 327
Picture characters for character data... 327

x

Picture characters for numeric character data... 328
Digits and decimal points...329
Zero suppression..331
Insertion characters...332
Defining currency symbols...333
Using signs and currency symbols...335
Credit, debit, overpunched, and zero replacement characters.. 337
Exponent characters.. 338
Scaling factor..339

Chapter 15. Condition handling.. 341
Condition prefixes..341

Scope of the condition prefix... 343
Raising conditions with OPTIMIZATION... 343

On-units... 343
ON statement... 343
Null ON-unit..344
Scope of the ON-unit..344
Dynamically descendent ON-units.. 345
ON-units for file variables.. 345

REVERT statement...346
SIGNAL statement...347
RESIGNAL statement.. 347
Multiple conditions.. 347
CONDITION attribute.. 347

Chapter 16. Conditions.. 349
ANYCONDITION condition.. 349
AREA condition.. 350
ASSERTION condition..351
ATTENTION condition... 351
CONDITION condition... 352
CONFORMANCE condition...353
CONVERSION condition.. 353
ENDFILE condition...355
ENDPAGE condition... 355
ERROR condition..356
FINISH condition... 357
FIXEDOVERFLOW condition.. 357
INVALIDOP condition.. 358
KEY condition...358
NAME condition... 359
OVERFLOW condition.. 360
RECORD condition... 360
SIZE condition... 361
STORAGE condition... 362
STRINGRANGE condition.. 362
STRINGSIZE condition.. 363
SUBSCRIPTRANGE condition..364
TRANSMIT condition... 364
UNDEFINEDFILE condition... 365
UNDERFLOW condition..366
ZERODIVIDE condition..366

Chapter 17. Multithreading facility... 369
Creating a thread... 369
ATTACH statement.. 370

 xi

Terminating a thread... 371
Canceling a thread... 371
Waiting for a thread to complete...371
Detaching a thread.. 372
Condition handling...372
Task data and attribute..372
THREADID built-in function...373
Sharing data between threads.. 373
Sharing files between threads...373

Chapter 18. Built-in functions, pseudovariables, and subroutines....................... 375
Declaring and invoking built-in functions, pseudovariables, and built-in subroutines......................... 375

BUILTIN attribute...375
Invoking built-in functions and pseudovariables..376
Invoking built-in subroutines...376

Specifying arguments for built-in functions, pseudovariables, and built-in subroutines......................376
Aggregate arguments...376
Null and optional arguments..377

Accuracy of mathematical functions...377
Categories of built-in functions... 377

Arithmetic built-in functions..377
Array-handling built-in functions...378
Buffer-management built-in functions..379
Condition-handling built-in functions..381
Date/time built-in functions...382
Encoding and hashing built-in functions... 385
Floating-point inquiry built-in functions..387
Floating-point manipulation built-in functions... 388
Input/output built-in functions..388
Integer manipulation built-in functions.. 389
JSON built-in functions.. 389
Mathematical built-in functions...390
Miscellaneous built-in functions..391
Ordinal-handling built-in functions..393
Precision-handling built-in functions.. 393
Pseudovariables... 394
Storage control built-in functions.. 395
String-handling built-in functions..397
Subroutines.. 399

Descriptions of individual built-in functions, pseudovariables, and subroutines..................................401
ABS... 401
ACOS...402
ADD...402
ADDR.. 402
ADDRDATA..403
ALL.. 403
ALLCOMPARE... 403
ALLOC31...404
ALLOCATE... 404
ALLOCATION.. 405
ALLOCNEXT.. 405
ALLOCSIZE... 405
ANY... 406
ASIN..406
ATAN... 406
ATAND...407
ATANH...407

xii

AUTOMATIC..407
AVAILABLEAREA.. 407
BASE64DECODE...408
BASE64DECODE8.. 408
BASE64DECODE16.. 409
BASE64ENCODE.. 409
BASE64ENCODE8.. 410
BASE64ENCODE16.. 411
BETWEEN... 412
BETWEENEXCLUSIVE.. 412
BETWEENLEFTEXCLUSIVE.. 413
BETWEENRIGHTEXCLUSIVE... 413
BINARY...413
BINARYVALUE.. 414
BINSEARCH..414
BINSEARCHX..415
BIT.. 416
BITLOCATION...416
BOOL...416
BYTE... 417
BYTELENGTH..417
CDS... 418
CEIL.. 418
CENTERLEFT.. 418
CENTERRIGHT... 419
CENTRELEFT.. 420
CENTRERIGHT... 420
CHARACTER... 420
CHARGRAPHIC...421
CHARVAL.. 422
CHECKSTG..422
CHECKSUM...422
CODEPAGE..422
COLLATE... 423
COLLAPSE...423
COMPARE... 423
COMPLEX..424
CONJG.. 425
COPY...425
COS... 425
COSD...425
COSH...426
COUNT.. 426
CS..426
CURRENTSIZE.. 427
CURRENTSTORAGE..428
DATAFIELD... 428
DATE... 428
DATETIME...429
DAYS... 429
DAYSTODATE..430
DAYSTOMICROSECS.. 430
DAYSTOSECS.. 431
DECIMAL...431
DIMENSION..431
DIVIDE..432
EDIT.. 432
EMPTY.. 433

 xiii

ENDFILE... 433
ENTRYADDR... 433
ENTRYADDR pseudovariable... 433
EPSILON... 434
ERF..434
ERFC... 434
EXP... 434
EXPONENT... 435
FILEDDINT... 435
FILEDDTEST... 435
FILEDDWORD... 436
FILEID...437
FILENEW...437
FILEOPEN... 437
FILEREAD... 438
FILESEEK..438
FILETELL...438
FILEWRITE... 439
FIXED..439
FIXEDBIN... 439
FIXEDDEC...440
FLOAT..441
FLOATBIN... 441
FLOATDEC...442
FLOOR...442
FOLDEDFULLMATCH.. 443
FOLDEDSIMPLEMATCH..443
GAMMA...443
GETENV.. 444
GETJCLSYMBOL... 444
GETSYSINT...444
GETSYSWORD.. 444
GRAPHIC.. 446
GTCA... 447
HANDLE.. 447
HBOUND... 447
HBOUNDACROSS... 448
HEX... 448
HEX8...449
HEXDECODE... 450
HEXDECODE8...451
HEXENCODE...451
HEXENCODE8...452
HEXIMAGE..452
HEXIMAGE8... 453
HIGH...453
HUGE.. 453
IAND... 454
ICLZ.. 454
IEOR..454
IFTHENELSE...455
IMAG...455
IMAG pseudovariable...455
INARRAY...456
INDEX... 456
INDEXR...457
INDICATORS...457
INLIST...457

xiv

INOT... 458
IOR..458
IRLL...458
IRRL.. 459
ISFINITE...459
ISIGNED... 459
ISINF.. 460
ISJCLSYMBOL.. 460
ISLL...460
ISMAIN... 461
ISNAN... 461
ISNORMAL..461
ISRL.. 461
ISZERO... 462
IUNSIGNED.. 462
JSONGETARRAYEND..462
JSONGETARRAYSTART.. 463
JSONGETCOLON.. 463
JSONGETCOMMA... 463
JSONGETMEMBER... 464
JSONGETOBJECTEND..466
JSONGETOBJECTSTART.. 466
JSONGETVALUE... 466
JSONPUTARRAYEND..468
JSONPUTARRAYSTART.. 469
JSONPUTCOLON.. 469
JSONPUTCOMMA... 469
JSONPUTMEMBER... 469
JSONPUTOBJECTEND..471
JSONPUTOBJECTSTART.. 471
JSONPUTVALUE... 471
JSONVALID...472
JULIANTOSMF..473
LBOUND..473
LBOUNDACROSS.. 473
LEFT.. 473
LENGTH.. 474
LINENO...474
LOCATION...474
LOCNEWSPACE...475
LOCNEWVALUE...476
LOCSTG...476
LOCVAL... 477
LOG... 477
LOGGAMMA.. 478
LOG2... 478
LOG10...478
LOW...478
LOWERASCII.. 478
LOWERCASE... 479
LOWERLATIN1..479
LOWER2..479
MAINNAME...480
MAX...480
MAXDATE..481
MAXEXP..481
MAXLENGTH...482
MAXVAL.. 482

 xv

MEMCOLLAPSE...483
MEMCONVERT..484
MEMCU12...484
MEMCU14...485
MEMCU21...485
MEMCU24...485
MEMCU41...486
MEMCU42...486
MEMINDEX... 487
MEMREPLACE...488
MEMSEARCH.. 489
MEMSEARCHR..489
MEMSQUEEZE.. 490
MEMVERIFY..491
MEMVERIFYR... 492
MICROSECS..492
MICROSECSTODATE.. 493
MICROSECSTODAYS.. 493
MIN... 493
MINDATE.. 494
MINEXP.. 494
MINVAL...495
MOD.. 495
MPSTR.. 496
MULTIPLY..497
NULL... 497
NULLENTRY.. 498
OFFSET... 498
OFFSETADD.. 498
OFFSETDIFF... 498
OFFSETSUBTRACT...499
OFFSETVALUE.. 499
OMITTED.. 499
ONACTUAL..499
ONAREA..499
ONCHAR... 500
ONCHAR pseudovariable... 500
ONCODE... 500
ONCONDCOND... 501
ONCONDID... 501
ONCOUNT...501
ONEXPECTED... 502
ONFILE... 502
ONGSOURCE.. 502
ONGSOURCE pseudovariable.. 502
ONHBOUND..503
ONJSONNAME..503
ONKEY.. 503
ONLBOUND...504
ONLINE...504
ONLOC.. 504
ONOFFSET..505
ONOPERATOR.. 505
ONPACKAGE... 505
ONPROCEDURE..505
ONSOURCE... 506
ONSOURCE pseudovariable...506
ONSUBCODE.. 506

xvi

ONSUBCODE2.. 507
ONSUBSCRIPT... 507
ONTEXT.. 507
ONUCHAR...507
ONUCHAR pseudovariable...508
ONUSOURCE.. 508
ONUSOURCE pseudovariable.. 508
ONWCHAR.. 508
ONWCHAR pseudovariable..509
ONWSOURCE..509
ONWSOURCE pseudovariable... 509
ORDINALNAME.. 509
ORDINALPRED... 510
ORDINALSUCC... 510
PACKAGENAME.. 510
PAGENO..510
PICSPEC... 511
PLACES... 511
PLIASCII...512
PLIATTN..512
PLICANC... 512
PLICKPT..513
PLIDELETE..513
PLIDUMP.. 513
PLIEBCDIC..513
PLIFILL... 513
PLIFREE..514
PLIMOVE...514
PLIOVER... 515
PLIPARSE..515
PLIREST..517
PLIRETC..517
PLIRETV..517
PLISAXA... 517
PLISAXB... 518
PLISAXC..518
PLISAXD... 519
PLISRTA.. 519
PLISRTB..519
PLISRTC..520
PLISRTD..520
PLISTCK..520
PLISTCKE..520
PLISTCKELOCAL...520
PLISTCKEUTC...521
PLISTCKF..521
PLISTCKLOCAL... 521
PLISTCKP..521
PLISTCKPLOCAL...522
PLISTCKPUTC...522
PLISTCKUTC... 522
PLITRAN11...522
PLITRAN12...523
PLITRAN21...524
PLITRAN22...524
POINTER...524
POINTERADD... 525
POINTERDIFF...525

 xvii

POINTERSUBTRACT.. 526
POINTERVALUE..526
POLY..526
POPCNT.. 527
PRECISION...527
PRECVAL...527
PRED...528
PRESENT.. 528
PROCEDURENAME... 528
PROD...528
PUTENV.. 529
QUICKSORT..529
QUICKSORTX..529
RADIX... 530
RAISE2... 530
RANDOM...531
RANK.. 531
REAL... 532
REAL pseudovariable... 532
REGEX...532
REM...534
REPATTERN.. 534
REPEAT... 535
REPLACE...535
REPLACEBY2.. 536
REVERSE...537
RIGHT... 537
ROUND..537
ROUNDAWAYFROMZERO...539
ROUNDTOEVEN.. 540
SAMEKEY..540
SCALE... 540
SCALEVAL... 541
SCRUBOUT... 541
SEARCH.. 542
SEARCHR..543
SECS... 543
SECSTODATE.. 544
SECSTODAYS.. 545
SHA1DIGEST.. 545
SHA1FINAL.. 545
SHA1INIT... 546
SHA1UPDATE... 546
SHA2DIGEST224, SHA2DIGEST256, SHA2DIGEST384, and SHA2DIGEST512............................ 546
SHA2FINAL224, SHA2FINAL256, SHA2FINAL384, and SHA2FINAL512.......................................547
SHA2INIT224, SHA2INIT256, SHA2INIT384, and SHA2INIT512... 547
SHA2UPDATE224, SHA2UPDATE256, SHA2UPDATE384, and SHA2UPDATE512..........................548
SHA3DIGEST224, SHA3DIGEST256, SHA3DIGEST384, and SHA3DIGEST512............................ 548
SHA3FINAL224, SHA3FINAL256, SHA3FINAL384, and SHA3FINAL512.......................................548
SHA3INIT224, SHA3INIT256, SHA3INIT384, and SHA3INIT512... 549
SHA3UPDATE224, SHA3UPDATE256, SHA3UPDATE384, and SHA3UPDATE512..........................549
SIGN... 550
SIGNED...550
SIN..550
SIND... 550
SINH... 551
SIZE.. 551
SMFTOJULIAN..552

xviii

SOURCEFILE...552
SOURCELINE.. 552
SQRT... 552
SQRTF... 553
SQUEEZE.. 553
STACKADDR..553
STCKETODATE..554
STCKTODATE.. 554
STORAGE.. 554
STRING... 554
STRING pseudovariable...555
SUBSTR...556
SUBSTR pseudovariable.. 556
SUBTO.. 557
SUBTO pseudovariable.. 557
SUBTRACT.. 558
SUCC... 558
SUM...558
SYSNULL... 558
SYSTEM...559
TALLY.. 559
TAN... 559
TAND...559
TANH...560
THREADID.. 560
TIME... 560
TIMESTAMP..560
TINY..560
TRANSLATE.. 561
TRIM... 561
TRUNC.. 562
TYPE... 562
TYPE pseudovariable... 563
UHIGH.. 563
ULENGTH..563
ULENGTH8..563
ULENGTH16..564
ULOW.. 564
UNALLOCATED... 564
UNHEX.. 565
UNSIGNED..565
UNSPEC.. 565
UNSPEC pseudovariable.. 567
UPOS...568
UPPERASCII... 568
UPPERCASE..568
UPPERLATIN1.. 569
USUBSTR.. 569
USUPPLEMENTARY.. 570
UTCDATETIME..570
UTCMICROSECS... 571
UTCSECS...571
UTF8... 571
UTF8STG...572
UTF8TOCHAR... 572
UTF8TOWCHAR..572
UUID... 572
UUID4... 573

 xix

UVALID... 573
UWIDTH..574
VALID..575
VALIDDATE... 575
VALIDVALUE... 576
VARGLIST... 576
VARGSIZE...576
VERIFY..577
VERIFYR... 578
WCHARVAL... 578
WEEKDAY... 579
WHIGH..579
WHEREDIFF..579
WIDECHAR... 580
WLOW... 580
WSCOLLAPSE... 580
WSCOLLAPSE16...581
WSREPLACE... 581
WSREPLACE16...582
XMLCHAR..582
XMLSCRUB... 583
XMLSCRUB16... 584
XMLUCHAR... 585
Y4DATE... 585
Y4JULIAN... 586
Y4YEAR...587

Chapter 19. Type functions.. 589
Invoking type functions... 589
Specifying arguments for type functions.. 589
Brief descriptions of type functions.. 589
BIND...590
CAST...590
FIRST..590
LAST... 591
NEW..591
RESPEC.. 591
SIZE..592
VALUE...592

Chapter 20. Preprocessor facilities...593
Preprocessor options...594
Preprocessor scan... 595

Execution of preprocessor statements... 595
Execution of listing control statements...596
Execution of input text... 596

Preprocessor variables and data elements.. 597
Preprocessor references and expressions..597
Scope of preprocessor names...598
Preprocessor procedures.. 598

Arguments and parameters for preprocessor procedures... 599
%PROCEDURE statement..600
Preprocessor RETURN statement..600
Preprocessor ANSWER statement...601
Preprocessor CALL statement... 603

Preprocessor built-in functions...603
COLLATE... 604

xx

COMMENT.. 604
COMPILEDATE..604
COMPILETIME..605
COPY...606
COUNTER..606
DIMENSION..606
HBOUND... 606
INDEX... 607
LBOUND..607
LENGTH.. 608
LOWERCASE... 608
MACCOL..608
MACLMAR... 608
MACNAME.. 609
MACRMAR...609
MAX...609
MIN... 609
PARMSET.. 609
QUOTE.. 610
REPEAT... 610
SUBSTR...610
SYSDIMSIZE... 611
SYSOFFSETSIZE...611
SYSPARM.. 611
SYSPOINTERSIZE.. 611
SYSTEM...612
SYSVERSION.. 612
TRANSLATE.. 612
TRIM... 613
UPPERCASE..613
VERIFY..613

Preprocessor statements.. 614
%ACTIVATE statement.. 614
%assignment statement..615
%DEACTIVATE statement..615
%DECLARE statement... 615
%DO statement..617
%END statement..618
%GO TO statement.. 618
%IF statement... 618
%INCLUDE statement..619
%INSCAN statement... 620
%ITERATE statement...620
%LEAVE Statement.. 620
%NOTE statement..621
%null statement...621
%REPLACE statement..622
%SELECT statement.. 622
%XINCLUDE statement... 622
%XINSCAN statement... 623

Preprocessor examples... 623

Appendix A. Limits.. 627

Notices..637
Trademarks.. 637

Bibliography.. 639

 xxi

PL/I publications... 639
Related publications..639

Glossary.. 641

Index.. 663

xxii

Tables

1. Alphabetic equivalents..1

2. Decimal digit equivalents.. 3

3. Special character equivalents... 3

4. Composite symbol description..4

5. Delimiters...6

6. Operators... 7

7. Classification of attributes by constant types.. 19

8. Classification of attributes by variable types..21

9. Abbreviations for coded arithmetic data attributes... 23

10. FIXED BINARY SIGNED data storage requirements..25

11. FIXED BINARY UNSIGNED data storage requirements...25

12. Examples of binary floating-point constants... 28

13. Examples of decimal floating-point constants...28

14. Abbreviations for string data attributes... 30

15. Examples of character constants... 33

16. Examples of X constants...35

17. Examples of bit constants...35

18. Examples of B4 constants.. 36

19. Examples of B3 constants.. 36

20. Examples of GX (hex) graphic constants..37

21. Examples of mixed character constants.. 38

22. Examples of UX (hex) UCHAR constants.. 39

23. Examples of WX (hex) widechar constants.. 39

 xxiii

24. Arithmetic operator...56

25. Results of arithmetic operations for one or more FLOAT operands.. 59

26. Results of arithmetic operations between two unscaled FIXED operands under RULES(ANS).............60

27. Results of arithmetic operations between two scaled FIXED operands under RULES(ANS)................. 60

28. Results of arithmetic operations between two FIXED operands under RULES(IBM).............................61

29. Comparison of FIXED division and constant expressions... 63

30. Special cases for exponentiation..63

31. Logical operators for bit operations..64

32. Bit operations.. 64

33. Bit operation examples...65

34. Priority of operations and guide to conversions...69

35. CEIL (n*3.32) and CEIL (n/3.32) values... 78

36. Ordinal-handling built-in functions.. 146

37. Type functions...148

38. Alignment on integral boundaries of halfwords, words, and doublewords.. 160

39. Alignment requirements...161

40. Default arithmetic precisions... 168

41. Attributes in attribute-expression in DEFAULT.. 171

42. Compound assignment operators.. 201

43. Alternative file attributes..277

44. Attributes by data transmission type... 277

45. Attributes of PL/I file declarations... 278

46. Attributes implied by implicit open.. 284

47. Merged and implied attributes... 285

48. Options and format items for PRINT files.. 314

xxiv

49. Character picture specification examples..328

50. Examples of digit and decimal point characters..330

51. Examples of zero suppression characters... 331

52. Examples of insertion characters...333

53. Examples of signs and currency characters...336

54. Interpretation of the T, I, and R picture characters... 337

55. Examples of credit, debit, overpunched, and zero replacement characters.. 338

56. Examples of exponent characters..339

57. Examples of scaling factor characters... 340

58. Classes and status of conditions.. 342

59. Built-in functions and pseudovariables that accept structure or union arguments............................. 377

60. Arithmetic built-in functions...378

61. Array-handling built-in functions... 378

62. Buffer-management built-in functions...379

63. Condition-handling built-in functions.. 381

64. Date/time built-in functions... 382

65. Date/time patterns..384

66. Time-only patterns... 385

67. Encoding and hashing built-in functions.. 386

68. Floating-point inquiry built-in functions.. 387

69. Floating-point manipulation built-in functions.. 388

70. Input/output built-in functions...388

71. Integer manipulation built-in functions... 389

72. JSON built-in functions...389

73. Mathematical built-in functions... 390

 xxv

74. Miscellaneous built-in functions.. 391

75. Ordinal-handling built-in functions.. 393

76. Precision-handling built-in functions... 393

77. Built-in pseudovariables...394

78. Storage control built-in functions...395

79. String-handling built-in functions...397

80. Built-in subroutines.. 399

81. Example of encoding a source buffer into base 64 as EBCDIC... 410

82. Example of encoding a source buffer into base 64 as UTF-8..411

83. Example of encoding a source buffer into base 64 as UTF-16..412

84. Length of bit string returned by UNSPEC... 566

85. Type functions...589

86. Language element limits...627

87. Macro facility limits...630

88. Supported code page values for LOWERCASE built-in function and UPPERCASE built-in function.... 631

xxvi

Figures

1. A PL/I application structure..89

2. Scopes of data declarations..153

3. Scopes of entry and label declarations.. 154

4. Mapping of example structure..190

5. Mapping of minor structure G... 190

6. Mapping of minor structure E... 191

7. Mapping of minor structure N...191

8. Mapping of minor structure S... 191

9. Mapping of minor structure C... 192

10. Mapping of minor structure M.. 192

11. Mapping of major structure A... 193

12. Offsets in final mapping of structure A...194

13. Example of one-directional chain...259

 xxvii

xxviii

Enterprise PL/I for z/OS Language Reference

Version 6 Release 1

SC31-5716-00

Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 637.

First Edition (May 2022)
This edition applies to Enterprise PL/I for z/OS Version 6 Release 1 (5655-PL6), and IBM Developer for
z/OS PL/I for Windows (former Rational Developer for System z PL/I for Windows), Version 9.1, and to
any subsequent releases of any of these products until otherwise indicated in new editions or technical
newsletters. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM® representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation, Department H150/090
555 Bailey Ave.
San Jose, CA, 95141-1099
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

Because IBM Enterprise PL/I for z/OS supports the continuous delivery (CD) model and publications are
updated to document the features delivered under the CD model, it is a good idea to check for updates
once every three months.

Copyright International Business Machines Corporation 1999, 2022. All rights reserved.

US Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

© Copyright IBM Corp. 1999, 2022 xxix

xxx Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

About this book

This book is a reference for the programmer using the IBM PL/I compiler in these IBM products:

• Enterprise PL/I for z/OS, Version 6 Release 1
• IBM Developer for z/OS PL/I for Windows (former Rational Developer for System z PL/I for Windows),

Version 9.1

It is not a tutorial, but is designed for the reader who already has a knowledge of the PL/I language
and who requires reference information needed to write a program for an IBM PL/I compiler. It contains
guidance information and general-use programming interfaces.

Because this book is a reference manual, it is not intended to be read from front to back, and terms can
be used before they are defined. Terms are highlighted where they are defined in the book, and definitions
are found in the glossary.

Text set apart by the workstation opening and closing icons designates features which are supported only
on PL/I workstation products (AIX and Windows).

Notation conventions used in this book
The following sections describe how information is presented in this book. Examples and user-supplied
information are presented in mixed-case characters. The following rules apply to the syntax diagrams
used in this book:

Arrow symbols
Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
►►───

Indicates the beginning of a statement.
───►

Indicates that the statement syntax is continued on the next line.
►───

Indicates that a statement is continued from the previous line.
───►◄

Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the ►─── symbol and end
with the ───► symbol.

Conventions

• Keywords, their allowable synonyms, and reserved parameters, appear in uppercase for the MVS
platform, and lowercase for UNIX platform. These items must be entered exactly as shown.

• Variables appear in lowercase italics (for example, column-name). They represent user-defined
parameters or suboptions.

• When entering commands, separate parameters and keywords by at least one blank if there is no
intervening punctuation.

• Enter punctuation marks (slashes, commas, periods, parentheses, quotation marks, equal signs)
and numbers exactly as given.

• Footnotes are shown by a number in parentheses, for example, (1).
• A ␣ symbol indicates one blank position.

Required items
Required items appear on the horizontal line (the main path).

© Copyright IBM Corp. 1999, 2022 xxxi

REQUIRED_ITEM

Optional Items
Optional items appear below the main path.

REQUIRED_ITEM

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the
statement and is used only for readability.

REQUIRED_ITEM

optional_item

Multiple required or optional items
If you can choose from two or more items, they appear vertically in a stack. If you must choose one of
the items, one item of the stack appears on the main path.

REQUIRED_ITEM required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.
REQUIRED_ITEM

optional_choice1

optional_choice2

Repeatable items
An arrow returning to the left above the main line indicates that an item can be repeated.

REQUIRED_ITEM repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

REQUIRED_ITEM

,

repeatable_item

A repeat arrow above a stack indicates that you can specify more than one of the choices in the stack.

Default keywords
IBM-supplied default keywords appear above the main path, and the remaining choices are shown
below the main path. In the parameter list following the syntax diagram, the default choices are
underlined.

REQUIRED_ITEM

default_choice

optional_choice

optional_choice

Fragments
Sometimes a diagram must be split into fragments. The fragments are represented by a letter or
fragment name, set off like this: | A |. The fragment follows the end of the main diagram. The following
example shows the use of a fragment.

STATEMENT item 1 item 2 A

xxxii Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

A
item 3

item 4

KEYWORD

item 5

item 6

Substitution-block
Sometimes a set of several parameters is represented by a substitution-block such as <A>. For
example, in the imaginary ⁄VERB command you could enter ⁄VERB LINE 1, ⁄VERB EITHER LINE
1, or ⁄VERB OR LINE 1.

⁄VERB

<A>

LINE line#

where <A> is:
EITHER

OR

Parameter endings
Parameters with number values end with the symbol '#', parameters that are names end with 'name',
and parameters that can be generic end with '*'.

⁄MSVERIFY MSNAME msname

SYSID sysid#

The MSNAME keyword in the example supports a name value and the SYSID keyword supports a
number value.

Semantics
To describe the PL/I language, the following conventions are used:

• The descriptions are informal. For example, we usually write "x must be a variable" instead of the
more precise "x must be the name of a variable". Similarly, we can sometimes write "x is transmitted"
instead of "the value of x is transmitted". When the syntax indicates "reference", we can later write "the
variable" instead of "the referenced variable".

• When we say that two different source constructs are equivalent, we mean that they produce the same
result, and not necessarily that the implementation is the same.

• Unless specifically stated in the text following the syntax specification, the unqualified term
"expression" or "reference" refers to a scalar expression. For an expression other than a scalar
expression, the type of expression is noted. For example, the term "array expression" indicates that
neither a scalar expression nor a structure expression is valid.

• When a result or behavior is undefined, it is something you "must not" do. Use of an undefined feature
is likely to produce different results on different implementations or releases of a PL/I product. The
application program is considered to be in error.

• Default is used to describe an alternative value, attribute, or option that is assumed by the system when
no explicit choice is specified.

• Implicit is used to describe the action taken in the absence of an explicit specification by the program.
• The lowercase letter b, when not in a word, indicates a blank character.

Industry standards used
The PL/I compiler is designed according to the specifications of the following industry standards as
understood and interpreted by IBM as of December 1987:

About this book xxxiii

• American National Standard Code for Information Interchange (ASCII), X3.4 - 1977
• American National Standard Representation of Pocket Select Characters in Information Interchange,

level 1, X3.77 - 1980 (proposed to ISO, March 1, 1979)
• The draft proposed American National Standard Representation of Vertical Carriage Positioning

Characters in Information Interchange, level 1, dpANS X3.78 (also proposed to ISO, March 1, 1979)
• Selected features of the American National Standard PL/I General Purpose Subset (ANSI X3.74-1987).

Summary of changes
This section lists the major changes that have been made to this document of Enterprise PL/I for
z/OS for Version 6 Release 1. The changes that are described in this information have an associated
cross-reference for your convenience. The latest technical changes are highlighted in the HTML version, or
marked by vertical bars (|) in the left margin in the PDF version.

Enhancements in this release
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

Enhancements in usability
• The ALIGNED attribute is updated to add parameter n. ALIGNED(n) specifies an alignment that

overrides the default alignment for the data type. See “ALIGNED and UNALIGNED attributes” on page
160.

• The INITIAL attribute adds INITACROSS as a choice, which helps initialize one-dimensional arrays of
structures where all the structure members are scalars in a way that makes it easy to add or delete
elements to those arrays. See “INITIAL attribute” on page 267.

• The use of named constants is supported in the JSONNAME attribute. See “JSONNAME attribute” on
page 185.

• The ENTRY declaration and PROCEDURE statement add CMPAT(V1|V2|V3), AMODE31, and AMODE64
as choices. See “OPTIONS option and attribute” on page 125.

• By specifying RENT in the OPTIONS for a FETCHABLE ENTRY, you can fetch RENT code from NORENT
code. See “OPTIONS option and attribute” on page 125.

• The SUPPRESS attribute introduces NOLAXENTRY as a choice. When SUPPRESS(NOLAXENTRY) is
specified as an attribute in the declaration of a variable, the compiler refrains from flagging any
violations by that variable of RULES(NOLAXENTRY). See “SUPPRESS attribute” on page 159.

• VAR4 can be used as an abbreviation for the VARYING4 attribute. See “VARYING, VARYING4,
VARYINGZ, and NONVARYING attributes” on page 31.

New or changed built-in functions, pseudovariables, and subroutines
• The YYYYMMDDHHMISS999999 date/time pattern is supported. See “Date/time built-in functions” on

page 382.
• The GETSYSWORD built-in function has new arguments SYSNAME, SYSNODE, and SYSPLEX. See

“GETSYSWORD” on page 444.
• The GTCA built-in function (previously known as REG12) returns a pointer to the LE control block. See

“GTCA” on page 447.
• The HEXENCODE built-in function encodes the source buffer into base 16 that is encoded as

CHARACTER. See “HEXENCODE” on page 451.
• The HEXENCODE8 built-in function encodes the source buffer into base 16 that is encoded as UTF-8.

See “HEXENCODE8” on page 452.
• The IRLL built-in function returns the result of logically rotating x to the left by n places. See “IRLL” on

page 458.

xxxiv Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• The IRRL built-in function returns the result of logically rotating x to the right by n places. See “IRRL” on
page 459.

• Use of typed structures is allowed for these JSON functions JSONGETMEMBER, JSONGETVALUE,
JSONPUTMEMBER, JSONPUTVALUE. See “JSONGETMEMBER” on page 464, “JSONGETVALUE” on page
466, “JSONPUTVALUE” on page 471, and “JSONPUTMEMBER” on page 469.

• The ONHBOUND built-in function returns the value of the upper bound when an array index has caused
SUBSCRIPTRANGE to be raised. See “ONHBOUND” on page 503.

• The ONJSONNAME built-in function returns a string containing the name for which no match was found
in a JSONGETMEMBER or JSONGETVALUE call. See “ONJSONNAME” on page 503.

• The ONLBOUND built-in function returns the value of the lower bound when an array index has caused
SUBSCRIPTRANGE to be raised. See “ONLBOUND” on page 504.

• The ONSUBSCRIPT built-in function returns the value of the invalid array index that has caused
SUBSCRIPTRANGE to be raised. See “ONSUBSCRIPT” on page 507.

• The PLISTCKP built-in function generates the corresponding Perform Timing Facility Function hardware
instruction (z/OS only). See “PLISTCKP” on page 521.

• The PLISTCKPLOCAL built-in function generates the corresponding Perform Timing Facility Function
hardware instruction and adjusts the PTFF value to give the local time (z/OS only). See
“PLISTCKPLOCAL” on page 522.

• The PLISTCKPUTC built-in function generates the corresponding Perform Timing Facility Function
hardware instruction and adjusts the PTFF value to give the UTC time (z/OS only). See “PLISTCKPUTC”
on page 522.

• The PLIPARSE built-in function parses a character string into substrings. See “PLIPARSE” on page 515.
• Inlining of REPATTERN when patterns use MMM and Mmm. See “REPATTERN” on page 534
• The QUICKSORT built-in function has optional arguments m and n. See “QUICKSORT” on page 529.
• The QUICKSORTX built-in function has optional arguments m and n. See “QUICKSORTX” on page 529.
• The SHA1DIGEST built-in function performs a SHA-1 hash of the text specified by an address and length

and return a CHAR(20) string with that hash value. See “SHA1DIGEST” on page 545.
• The SHA1FINAL built-in function uses a token initialized by the corresponding SHA1INIT function to

complete a SHA-1 hash of a series of texts and returns a CHAR(20) string with that hash value. See
“SHA1FINAL” on page 545.

• The SHA1INIT built-in function returns a token (of type POINTER) that can be used with the
corresponding SHA1UPDATE and SHA1FINAL functions to hash a series of texts. See “SHA1INIT” on
page 546.

• The SHA1UPDATE built-in function uses a token initialized by the corresponding SHA1INIT function to
perform an intermediate hash of an element in a series of texts. See “SHA1UPDATE” on page 546.

• The SHA2DIGEST224, SHA2DIGEST256, SHA2DIGEST384, and SHA2DIGEST512 built-in functions
perform a SHA-2 hash of the text specified by an address and length and return a CHAR string with
that hash value. See “SHA2DIGEST224, SHA2DIGEST256, SHA2DIGEST384, and SHA2DIGEST512” on
page 546.

• The SHA2FINAL224, SHA2FINAL256, SHA2FINAL384, and SHA2FINAL512 built-in functions use a
token initialized by the corresponding SHA2INIT function to complete a SHA-2 hash of a series of texts
and return a CHAR string with that hash value. See “SHA2FINAL224, SHA2FINAL256, SHA2FINAL384,
and SHA2FINAL512” on page 547.

• The SHA2INIT224, SHA2INIT256, SHA2INIT384, and SHA2INIT512 built-in functions return a token
(of type POINTER) that can be used with the corresponding SHA2UPDATE and SHA2FINAL functions to
hash a series of texts. See “SHA2INIT224, SHA2INIT256, SHA2INIT384, and SHA2INIT512” on page
547.

• The SHA2UPDATE224, SHA2UPDATE256, SHA2UPDATE384, and SHA2UPDATE512 built-in functions
use a token initialized by the corresponding SHA2INIT function to perform an intermediate hash
of an element in a series of texts. See “SHA2UPDATE224, SHA2UPDATE256, SHA2UPDATE384, and
SHA2UPDATE512” on page 548.

About this book xxxv

• The SHA3DIGEST224, SHA3DIGEST256, SHA3DIGEST384, and SHA3DIGEST512 built-in functions
perform a SHA-3 hash of the text specified by an address and length and return a CHAR string with
that hash value. See “SHA3DIGEST224, SHA3DIGEST256, SHA3DIGEST384, and SHA3DIGEST512” on
page 548.

• The SHA3FINAL224, SHA3FINAL256, SHA3FINAL384, and SHA3FINAL512 built-in functions use a
token initialized by the corresponding SHA3INIT function to complete a SHA-3 hash of a series of texts
and return a CHAR string with that hash value. See “SHA3FINAL224, SHA3FINAL256, SHA3FINAL384,
and SHA3FINAL512” on page 548.

• The SHA3INIT224, SHA3INIT256, SHA3INIT384, and SHA3INIT512 built-in functions return a token
(of type POINTER) that can be used with the corresponding SHA3UPDATE and SHA3FINAL functions to
hash a series of texts. See “SHA3INIT224, SHA3INIT256, SHA3INIT384, and SHA3INIT512” on page
549.

• The SHA3UPDATE224, SHA3UPDATE256, SHA3UPDATE384, and SHA3UPDATE512 built-in functions
use a token initialized by the corresponding SHA3INIT function to perform an intermediate hash
of an element in a series of texts. See “SHA3UPDATE224, SHA3UPDATE256, SHA3UPDATE384, and
SHA3UPDATE512” on page 549.

• The UUID and UUID4 built-in functions may return a lowercase result. See “UUID” on page 572 and
“UUID4” on page 573.

• Tests of ORDINAL data are supported via the VALID built-in function. See “VALID” on page 575.
• The WHEREDIFF built-in function compares two buffers and returns the index of the first byte that

differs. See “WHEREDIFF” on page 579.

New or changed statements, directives, and conditions:
• The XDECLARE statement specifies some or all of the attributes of a name. See “XDECLARE statement”

on page 234.
• The %PROCINC directive is used to override compiler options. See “%PROCINC directive” on page 229.
• The *PROCINC directive is a synonym for the %PROCINC directive. See “*PROCINC directive” on page

230.
• The SIZE condition has more possible behaviors. See “SIZE condition” on page 361.
• An explicit CONFORMANCE condition is supported. See “Condition prefixes” on page 341.

Enhancements from 5.3
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

Enhancements in usability
• The JSONTRIMR attribute indicates that the JSON functions will trim away any trailing blanks for the
specified field. See “JSONTRIMR attribute” on page 185.

• The UCHAR attribute specifies that a string holds UTF-8 data and that functions such as INDEX,
SUBSTR, and VERIFY will handle it in a UTF-8 sensitive manner. See “UCHAR data” on page 38 and
“UX (hex) UCHAR constant” on page 39.

• The character // specifies that the rest of a line is a comment. See “Delimiters and operators” on page
6.

• The “VALUELIST attribute” on page 48 limits the set of values that a variable, an argument, or a
returned value can have.

• The “VALUELISTFROM attribute” on page 48 specifies an unsubscripted reference whose VALUELIST
attribute should also be applied to the current declaration.

• The “XMLNAME attribute” on page 184 provides the ability to specify the name that is used for a
variable in the XMLCHAR built-in function.

xxxvi Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• The LIKE attribute can be used in ENTRY descriptions and parameter declarations. See “LIKE attribute”
on page 180.

• The SUPPRESS(NOGLOBAL) attribute causes the compiler not to flag any use of the variable in nested
procedures. See “SUPPRESS attribute” on page 159.

• The compiler supports specifying different ROUTCDE and DESC values in different DISPLAY statements.
See “DISPLAY statement” on page 209.

• The compiler supports the date/time patterns YYYY/MM/DD, YY/MM/DD, YYYY-MM-
DDTHH:MI:SS.999999, DD/MM/YYYY, and DD/MM/YY. See “Date/time built-in functions” on page 382.

• The compiler deduces an array's extent from its INITIAL attribute. See “DIMENSION attribute” on page
173.

• The compiler supports the use of STATIC NONASGN array elements as constants. See “Restricted
expressions” on page 72.

• The compiler supports the use of named constants in PUT DATA statements. See “Data specification
options” on page 299.

• The compiler accepts type name references consisting of a series of identifiers separated by dots (such
as paint.color).

• The compiler supports the use of assigning the null string (specified as either '' or ''b) to HANDLE,
OFFSET, ENTRY, and AREA variables. See “Non-computational targets” on page 201.

New or changed built-in functions, pseudovariables, and subroutines
• The built-in function “XMLUCHAR” on page 585 writes XML corresponding to a structure to a buffer as

UTF-8.
• The built-in function “SUBTO” on page 557 returns a substring, specified by its ending position, of a

string.
• The “SUBTO pseudovariable” on page 557 assigns a substring, specified by its ending position, of a

string.
• The built-in function “ALLOCNEXT” on page 405 provides fast allocation with AREAs.
• The built-in function “BYTELENGTH” on page 417 returns a FIXED BINARY(31) value that is the number

of bytes used by a UCHAR type string.
• The built-in function “FILEDDWORD” on page 436 lets you use the DSORG option to get the data set

organization of the file reference.
• The built-in function “FOLDEDFULLMATCH” on page 443 returns a FIXED BINARY(31) value that

indicates whether two strings are identical when folded to lowercase according to the Unicode full
case folding rules.

• The built-in function “FOLDEDSIMPLEMATCH” on page 443 returns a FIXED BINARY(31) value that
indicates whether two strings are identical when folded to lowercase according to the Unicode simple
case folding rules.

• The built-in function “GETSYSINT” on page 444 returns a size_t value that is the value of the requested
system information.

• The built-in function “GETSYSWORD” on page 444 accepts ASID, ACTINFO, MSGCLASS, JESNODE,
JOBCLASS, JOBNUMBER, and SMFID as keywords.

• The built-in function “IFTHENELSE” on page 455 provides an equivalent for the C conditional
expression (x?y:z).

• The built-in function “INARRAY” on page 456 returns a BIT(1) value that indicates whether an
expression is equal to any of the elements of an array.

• The built-in function “ISJCLSYMBOL” on page 460 returns a BIT(1) value that indicates whether the
input argument name is a valid exported JCL symbol.

• The built-in functions “JSONPUTMEMBER” on page 469 and “JSONPUTVALUE” on page 471 accept an
optional parameter that specifies whether the name should be written in lowercase, uppercase, or asis.

About this book xxxvii

• The built-in function “LOWERASCII” on page 478 returns a UCHAR string with all of its ASCII characters
converted to their corresponding lowercase characters.

• The built-in function “LOWERLATIN1” on page 479 returns a UCHAR string with all of its ASCII and
Latin-1 supplement characters converted to their corresponding lowercase characters.

• The built-in function “MAXDATE” on page 481 returns a character string containing the latest date/time
value corresponding to a specified date/time pattern.

• The built-in function “MEMCONVERT” on page 484 has a parameter t that specifies the technique to be
used in the conversion.

• The built-in function “MEMREPLACE” on page 488 fills a target buffer with the contents of a source
buffer with one or more occurrences of a specified third buffer replaced by a fourth buffer, and returns a
size_t value that indicates the number of bytes that are written to the target buffer.

• The built-in function “ONOPERATOR” on page 505 returns a CHARACTER(2) string whose value is the
operator in an ASSERT COMPARE statement that raised an ASSERTION condition.

• The built-in function “ONUCHAR” on page 507 returns a UCHAR(1) string containing the UTF-8 data that
caused a CONVERSION condition.

• The “ONUCHAR pseudovariable” on page 508 sets the current value of the ONUCHAR built-in function.
• The built-in function “ONUSOURCE” on page 508 returns a UCHAR string whose value is the contents of

the field that was being processed when a CONVERSION condition was raised.
• The “ONUSOURCE pseudovariable” on page 508 sets the current value of the ONUSOURCE built-in

function.
• The built-in function “PLISTCKLOCAL” on page 521 generates the corresponding store clock hardware

instruction and adjusts the STCK value to give the local time.
• The built-in function “PLISTCKUTC” on page 522 generates the corresponding store clock hardware

instruction and adjusts the STCK value to give the UTC time.
• The built-in function “PLISTCKELOCAL” on page 520 generates the corresponding store clock hardware

instruction and adjusts the STCKE value to give the local time.
• The built-in function “PLISTCKEUTC” on page 521 generates the corresponding store clock hardware

instruction and adjusts the STCKE value to give the UTC time.
• The built-in function “PRECVAL” on page 527 returns the precision for a numeric expression.
• The built-in function “QUICKSORT” on page 529 performs a quick-sort of an array by using a simple

compare.
• The built-in function “QUICKSORTX” on page 529 performs a quick-sort of an array by using a specified

compare function.
• The built-in function “REGEX” on page 532 returns a FIXED BINARY(31) that indicates the success of

matching a specified regular expression or pattern against a string.
• The built-in function “REPLACE” on page 535 replaces one or more occurrences of a substring by

another substring within a target string and returns the target string with replaced substring.
• The built-in function “STCKETODATE” on page 554 converts STCKE values to date/time strings.
• The built-in function “STCKTODATE” on page 554 converts STCK values to date/time strings.
• The built-in function “SCALEVAL” on page 541 returns the scale factor for a numeric expression.
• The built-in function “SCRUBOUT” on page 541 returns a string with all the characters from a second

string removed.
• The built-in function “UHIGH” on page 563 returns a UCHAR string of length x with each UTF-8 data

item having the highest UCHAR value ('F48FBFBF'ux).
• The built-in function “ULOW” on page 564 returns a UCHAR string of length x with each UTF-8 data item

having the lowest UCHAR value ('00'ux).
• The built-in function “UNHEX” on page 565 performs the reverse of the HEX built-in function.
• The built-in function “UPPERASCII” on page 568 returns a UCHAR string with all of its ASCII characters

converted to their corresponding uppercase characters.

xxxviii Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• The built-in function “UPPERLATIN1” on page 569 returns a UCHAR string with all of its ASCII and
Latin-1 supplement characters converted to their corresponding uppercase characters.

• The built-in function “UUID4” on page 573 returns a CHARACTER(36) string that is a version 4
universally unique identifier.

• The JSON built-in functions are supported under CMPAT(V1).
• The built-in function “VALIDVALUE” on page 576 returns a value that indicates whether the value of an

expression matches one of the elements in a variable's value set.
• The “XDEFINE ALIAS statement” on page 235 is the same as the DEFINE ALIAS statement except

if the specified name has already appeared in a previous (X)DEFINE ALIAS statement, this XDEFINE
statement will be ignored.

• The “XDEFINE ORDINAL statement” on page 235 is the same as the DEFINE ORDINAL statement
except if the specified name has already appeared in a previous (X)DEFINE ORDINAL statement, this
XDEFINE statement will be ignored.

• The “XDEFINE STRUCTURE statement” on page 235 is the same as the DEFINE STRUCTURE statement
except if the specified name has already appeared in a previous (X)DEFINE STRUCTURE statement, this
XDEFINE statement will be ignored.

New or changed statements and conditions:
• The “QUALIFY statement” on page 230 and a corresponding END statement delimit a qualify block, and

thus create a namespace for ORDINALs, other types, and named constants.

Enhancements from 5.2
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

Enhancements in usability
• The compiler flags unreachable ASSERT UNREACHABLE statements with a different message than it

flags other unreachable statements.
• The compiler expands in the AGGREGATE listing typed structures that are members of other structures.
• The attributes listing shows the contents of the VALUE attribute for CHARACTER and BIT constants of

length 256 or less and also for numeric PICTURE constants.
• The compiler supports five time-only patterns: HHMISS, HH:MI:SS, HHMI, HH:MI, HH. See “Date/time

built-in functions” on page 382.
• The compiler flags code where the program logic can lead to the END statement, although the

containing PROC was a function that should return a value.
• The compiler flags SELECT statements where an expression in a WHEN clause matches a previous

expression in one of the WHEN clauses in its containing SELECT statement.
• The compiler flags more code where INIT can be replaced by VALUE.
• The compiler flags a function that returns the address of an AUTOMATIC variable, because that address

will be unreliable when used by the invoker of the function.
• The compiler issues a message when a function is not inlined.
• The compiler flags any declaration of a variable named PLIXOPT that does not have the correct

attributes for it to define runtime options.
• The compiler flags logical AND and logical OR operations whose operands are identical.
• The compiler flags code where the VALUE type function is applied to a structure type that is only

partially initialized.
• The compiler flags code where the string lengths in an AUTOMATIC variable depend on the SIZE of a

variable declared after it.

About this book xxxix

New or changed built-in functions, pseudovariables, and subroutines
• The new “BASE64ENCODE” on page 409 built-in function encodes a source buffer into a buffer holding

its base 64 value in the character set specified by the ASCII/EBCDIC suboption of the DEFAULT
compiler option, and the new “BASE64DECODE” on page 408 built-in function decodes a source buffer
from base 64 that is encoded in the character set specified by the ASCII/EBCDIC suboption of the
DEFAULT compiler option.

• The new “BINSEARCH” on page 414 and “BINSEARCHX” on page 415 built-in functions generate code
to perform binary searches for a specified value within an array either by doing a simple comparison or
by invoking a user-specified function to perform the desired comparison.

• The new “CODEPAGE” on page 422 built-in function helps you write code conditional on the value of the
compiler’s CODEPAGE option and to query the value of that compiler option.

• The new “COLLAPSE” on page 423 and “SQUEEZE” on page 553 built-in functions return a string that
reduces all multiple occurrences of a character to one, starting from an optional specified position or
with an optionally specified starting position.

• The new “FILENEW” on page 437 built-in function returns a FILE variable that points to a new file
constant in automatic storage.

• The new “GETJCLSYMBOL” on page 444 and “GETSYSWORD” on page 444 built-in functions return
a CHARACTER string value that represents the requested exported JCL symbol or the value of the
requested system information.

• The new “HEX8” on page 449 and “HEXIMAGE8” on page 453 built-in functions return the hex value of
an expression as a UTF-8 string.

• The “LOWERCASE” on page 479 and “UPPERCASE” on page 568 built-in functions now accept a second
optional argument, so that you can specify a code page that all characters will be converted to their
lowercase equivalent or uppercase equivalent. All A-Z/a-z values and Ä-umlaut/ä-umlaut values will be
converted to its equivalent.

• The new “MEMCOLLAPSE” on page 483 built-in function fills a target buffer with the contents of a
source buffer with all multiple occurrences of a specified character replaced by one, while the leading
and trailing instances of that character are also trimmed. It returns a size_t value that indicates the
number of bytes written to the target buffer.

• The new “MEMSQUEEZE” on page 490 built-in function fills a target buffer with the contents of a source
buffer with all multiple occurrences of a specified character replaced by one. It returns a size_t value
that indicates the number of bytes written to the target buffer.

• The new built-in functions “MICROSECS” on page 492, “MICROSECSTODATE” on page 493,
“MICROSECSTODAYS” on page 493, “DAYSTOMICROSECS” on page 430 and “UTCMICROSECS” on
page 571 provide the ability to use an 8-byte integer microseconds value to hold a time value and to
convert between it and a date/time string without the rounding problem inherent in the floating-point
seconds value.

• The new “MINVAL” on page 495 and “MAXVAL” on page 482 built-in functions return the minimum
value or the maximum value that its numeric operand could assume.

• The new “ONACTUAL” on page 499 and “ONEXPECTED” on page 502 built-in functions return a
character string that is the value of the “actual” expression or "expected' expression in an ASSERT
COMPARE statement when the ASSERTION condition is raised.

• The new “ONTEXT” on page 507 built-in function returns a character string that is the value of the TEXT
string in an ASSERT statement when the ASSERTION condition is raised.

• The new “ONPACKAGE” on page 505 built-in function returns a character string that is the name of the
PACKAGE when the ASSERTION condition is raised.

• The new “ONPROCEDURE” on page 505 built-in function returns the name of a procedure in which
a condition is raised. ONPROCEDURE and ONPROC now are supported as the preferred name of the
ONLOC built-in function.

• The “REPATTERN” on page 534 and “TIMESTAMP” on page 560 built-in functions now can be used to
obtain the current date and time in the z system format of YYYY-MM-DD HH:MI:SS.999999.

xl Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• The new “ROUNDTOEVEN” on page 540 built-in function returns the value of x rounded at a digit
specified by n following the rounding rule of round half to even.

• The new “WSCOLLAPSE” on page 580 collapses all the whitespace in a source buffer encoded as
CHARACTER. It returns a size_t value that indicates the number of bytes that are written into the target
buffer.

• The new “WSREPLACE” on page 581 replaces each character from \t, \f, \v, \n, and \r in a source
buffer encoded as CHARACTER by a blank. It returns a size_t value that indicates the number of bytes
that are written into the target buffer.

• The new “XMLSCRUB” on page 583 built-in function cleans a CHARACTER source buffer. It returns a
size_t value that indicates the number of bytes that are written into the target buffer.

• The ROUNDDEC built-in function has been renamed as “ROUNDAWAYFROMZERO” on page 539.
• The WHITESPACECOLLAPSE built-in function has been renamed as “WSCOLLAPSE16” on page 581.
• The WHITESPACEREPLACE built-in function has been renamed as “WSREPLACE16” on page 582.
• The XMLCLEAN built-in function has been renamed as “XMLSCRUB16” on page 584.

New or changed statements and conditions:
• The “ASSERT statement” on page 195 supports a new ASSERT COMPARE statement that provides a

more information-rich way to test an assertion that the actual value of an expression compares correctly
with an expected value.

• The new “ASSERTION condition” on page 351 will be raised when an ASSERT statement fails and the
ASSERT(CONDITION) compiler option is in effect.

• The “PROCEDURE statement” on page 95 and “ENTRY statement” on page 96 support the
EXTERNAL attribute as an optional argument.

Performance improvements
• When not inlined, REPATTERN will convert the source date to a microseconds value and then convert

that microseconds value to the target date format and thereby incur none of the loss of accuracy when a
floating-point seconds value was used as the intermediary.

CICS enhancements
• The CICS® preprocessor output includes a listing of all the CICS options in effect when the preprocessor

run.

Enhancements from 5.1
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

Enhancements in usability
• The compiler supports 64-bit applications under the LP(64) option. This means that under this option,

POINTER and HANLDE can be eight bytes in size, structures and arrays can be larger than 2G in size,
and many built-in functions (such as PLIMOVE) can take 8-byte integer arguments and return 8-byte
integer results.

• The INITIAL attribute is allowed on macro declare statements.
• The JSONNAME attribute provides the ability to specify the name that is used or expected for a variable

in jsonPut or jsonGet functions. In particular, with this attribute you can specify a name that does not
conform to PL/I name rules.

• The JSONOMIT attribute indicates that fields of certain data items must be omitted from output that
is generated by JSON functions. In particular, if a variable has the JSONOMIT attribute, the jsonPut
functions will omit this variable from the generated text if the variable is equal to a null string ‘’.

About this book xli

• The SUPPRESS attribute accepts NOPADDING as a subattribute, which can be applied on a variable.
If specified on a level-1 structure name, SUPPRESS(NOPADDING) causes the RULES(NOPADDING)
compiler option to be ignored for that structure.

• The compiler issues a W-level message rather than an I-level message if attributes other than FIXED
BIN(p,0) are used with REFER objects.

• Some assignments to UNIONs and, more generally, to structures that contain UNIONs are supported.
• The XMLCONTENT attribute specifies that when a variable is included in the text that is generated by the

XMLCHAR built-in function, it is presented as tagless text.

New or changed built-in functions, pseudovariables, and subroutines
• The new ALLOC31 built-in function allocates storage of the specified size in below-the-bar heap.
• The new BETWEENEXCLUSIVE, BETWEENLEFTEXCLUSIVE, and BETWEENRIGHTEXCLUSIVE built-in

functions make it easier to write code that tests whether a variable is in between two specified values.
These built-in functions also make it easier for the compiler to generate better code for such tests.

• The new CHECKSUM built-in function can be used to get the checksum value for a buffer of data.
• The new HEXDECODE and HEXDECODE8 built-in functions make it easy to translate character data that

contains a hexadecimal representation of data into data with the corresponding value.
• The new ICLZ built-in function provides a quick way to count the number of leading zeros in an integer

value.
• The new MAINNAME built-in function returns the name of the MAIN function on the current calling

chain.
• The new ONSUBCODE2 built-in function gives your program more information about VSAM failures.
• The new PLIATTN built-in subroutine gives you explicit control over where the compiler sets attention

breakpoints.
• The TIMESTAMP built-in function can be used to obtain the current date and time in the z system format

of YYYY-MM-DD-HH.MI.SS.999999 .
• The new UTCDATETIME and UTCSECS built-in functions can be used to obtain the UTC date and time as

a string and as a number of Lilian seconds.
• The new UTF8STG built-in function makes it easier to write code that parses UTF-8 text.
• The new UUID built-in function can be used to obtain a universally unique identifier.

Performance improvements
• Some fixed decimal divides with large precision are now done using the Decimal Floating-Point (DFP)

facility. This might cause some ZERODIVIDE exceptions to be reported as INVALIDOP.

SQL enhancements
• The INDFOR attribute makes it easy to declare a structure of indicator variables to match another PL/I

structure.

Enhancements from 4.5
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

• The new REINIT statement allows variables to be reset with their INITIAL values.
• The new BETWEEN built-in function makes it easier to write code that tests whether a variable is in

between two specified values. The function also makes it easier for the compiler to generate better
code for such tests.

xlii Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• The new INLIST built-in function makes it easier to write code that tests whether a variable has a value
in a specified list of values. The function also makes it easier for the compiler to generate better code for
such tests.

• The new NULLENTRY built-in function makes it easier to assign a null value to an entry variable and to
test whether the value of an entry variable is null. Under the options such as INITAUTO and INITBASED,
entry variables will be initialized.

• The new PLISTCK, PLISTCKE, and PLISTCKF built-in subroutines generate the corresponding store clock
hardware instruction. You can time sections of code more easily and get clock values more precise than
that provided by the date-time built-in functions.

• A series of new built-in functions provide support for parsing, generating, and validating JSON.
• The new SMFTOJULIAN and JULIANTOSMF built-in functions provide the ability to convert between the

SMF and Julian date formats.
• The new NULLINIT attribute specifies that any element of a variable that does not have an INITIAL

attribute will be given a default initial value.
• The LOCATES attribute is extended to allow the located type to be any computational type, such as an

ORDINAL type, or a STRUCT type.
• The new VARYING4 attribute can be used in declarations of BIT, CHARACTER and WIDECHAR variables

to specify that the variable has a 4-byte length prefix.
• The new FORCE(NOLAXQUAL) attribute and the new FORCE suboption of the RULES(NOLAXQUAL)

option enable users to enforce the NOLAXQUAL rules in a structure-by-structure manner.
• Apostrophes are now accepted as insertion characters in picture strings in the same way that the

comma, point, and slash have been.
• The new macro preprocessor built-in functions SYSDIMSIZE, SYSOFFSETSIZE, and SYSPOINTERSIZE

enable users to write code that will be correct under various compiler options that change the number
of bytes used for various data items.

• The new macro XPROCEDURE statement is identical to the macro PROCEDURE statement except that
the preprocessor ignores, rather than flags, any subsequent occurrence of an XPROCEDURE statement
if the leftmost name on the statement is the name of an already defined preprocessor procedure.

Enhancements from 4.4
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

• The new LOCATES attribute enables significant storage reduction when the compiler is creating and
passing sparse arrays of strings.

• The new WIDEPIC attribute specifies the properties of a WIDECHAR data item by associating a picture
character with each position of the data item.

• The ALLOCATE built-in function has the AREA reference as a new optional argument.
• The new BASE64ENCODE8, BASE64ENCODE16, BASE64DECODE8, and BASE64DECODE16 built-in

functions support the encoding and decoding of base 64.
• The new INDEXR built-in function has the same functionality as the INDEX built-in function, but the

search is done from right to left.
• The new LOCSTG built-in function returns the number of bytes needed to hold all the allocated storage

that is needed to hold all the values that can be held indirectly by using LOCATES.
• The new LOCVAL built-in function returns the value at the offset that is specified in an area with the type
specified in the LOCATES description.

• The new XMLCLEAN, WHITESPACEREPLACE, and WHITESPACECOLLAPSE built-in functions ease the
processing of XML.

• The LOCNEWSPACE built-in subroutine allocates space for the variable type that is described by the
LOCATES attribute.

About this book xliii

• The LOCNEWVALUE built-in subroutine allocates spaces for a specified value with its type described by
the LOCATES attribute and assigns that specified value into the associated address of the space.

• The new CANCEL THREAD statement cancels the specified thread.
• The DEFAULT statement supports a logical expression with RANGE and attribute keywords.
• The new preprocessor CALL statement supports the calling of a MACRO procedure from MACRO

procedures.

Enhancements from 4.3
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

• The new ASSERT statement improves the verification of the correctness of a program. It asserts
whether a condition is true or false or a statement should not be executed.

• The support of the following handle operations is enhanced to allow the following:

– Comparing handles with the same associated structure type.
– Adding to and subtracting from handles with sensitivity to the associated structure type.
– Computing the difference of two handles with sensitivity to the associated structure type.

• The maximum length of WIDECHAR strings is increased to 32767.
• Some use of LIKE with LIKE is now supported.
• You can use the SUPPRESS attribute on PROCEDURE statements.
• The support of OPTIONAL parameters allows users to pass an omitted OPTIONAL parameter as an

argument to an entry if the corresponding parameter in the declaration for that entry is also OPTIONAL.
• INOUT and OUTONLY now imply BYADDR.
• The new ALLCOMPARE built-in function supports the comparison of two structures.
• The USUPPLEMENTARY built-in function now replaces USURROGATE.
• The new built-in functions UTF8, UTF8TOCHAR, and UTF8TOWCHAR can convert between CHAR and

UTF-8 with sensitivity to the CODEPAGE option. They also simplify conversions between UTF-8 and
UTF-16. The UTF8 function also allows the user to create UTF-8 literals and to initialize static variables
with UTF-8 data.

Enhancements from 4.2
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

• XML generation, by using the XMLCHAR built-in function, now supports XML attributes and the omission
of null values.

• The compiler now explicitly supports some use of adjustable BASED without REFER.
• The compiler now supports comparisons of POINTER to null strings ('' and ''b).
• The compiler has raised the maximum number of distinct include files that are allowed in a single

compilation from 2047 to 4095.
• The new BY DIMACROSS form of assignments makes it easier to write code to handle the results of SQL

multi-row fetch.
• The compiler and the preprocessors (rather than just the SQL preprocessor when parsing EXEC SQL

code) now all support <> as a not-equals symbol.
• The new INDICATORS built-in function makes it easy to declare an array to be used as an SQL indicator

variable with a structure.
• The new POPCNT built-in function returns a FIXED BIN value holding in each byte the number of bits

equal to 1 in the corresponding byte of x.

xliv Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Enhancements from 4.1
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

• The new PLISAXD built-in subroutine provides the ability to parse XML documents with validation
against a schema.

• The new ONAREA built-in function allows you to have easy access to another piece of information
formerly available only in the runtime error message or memory dump, namely the name of the AREA
reference for which an AREA condition is raised.

• The new VALUE type function supports the initialization of or assignment to a variable that has the
corresponding structure type.

• The INITIAL attribute is allowed on the elementary names of the DEFINE STRUCTURE statement.

Enhancements from 3.9
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

• The new MEMCU12, MEMCU21, MEMCU14, MEMCU24, MEMCU41, and MEMCU42 built-in functions
provide the ability to convert between UTF-8, UTF-16, and UTF-32, and on z/OS, they do this with inline
code that exploits the corresponding hardware instruction.

• The new PLITRAN11, PLITRAN12, PLITRAN21, and PLITRAN22 built-in functions provide the ability to
translate one-byte and/or two-byte buffers, and on z/OS, they do this with inline code that exploits the
corresponding hardware instruction.

• The new USURROGATE built-in function provides the ability to test if a CHAR or WCHAR string contains
any UTF surrogate pairs.

• The new ROUNDDEC built-in function provides the ability to specify that a DFP number should be
rounded at the nth decimal digit (rather than at the nth digit as provided by the ROUND built-in
function).

Note: From PL/I for z/OS V5.1, this built-in function has been renamed as ROUNDAWAYFROMZERO.
• The new INONLY, INOUT, and OUTONLY attributes will make it easier to make code more self-

documenting and to allow the compiler to produce more accurate diagnostics (for example, the
compiler now cannot flag dummy arguments if they are declared as INONLY and not flag uninitialized
arguments if they are declared as OUTONLY).

• The new %DO SKIP; statement makes it easy to exclude blocks of code from the compilation and to
"comment out" comments.

• Six more datetime patterns support zero suppression on input and output.

Enhancements from 3.8
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

• The new PLISAXC built-in function will allow the user to exploit the z/OS XML System Services parser as
if it were a SAX parser. Thanks to the underlying support in this parser, PLISAXC will provide support for
name spaces as well as documents that are larger than 2G.

• The new ULENGTH, ULENGTH8, ULENGTH16, UPOS, USUBSTR, UVALID, and UWIDTH built-in functions
will allow the user to query and process strings containing UTF-8 and UTF-16 data.

• The new FIXEDBIN, FIXEDDEC, FLOATBIN, and FLOATDEC built-in functions will allow the user to
specify all the result attributes (other than the mode) in a numeric conversion and thus allow the user to
write not only more easily understood code but code that will also perform better (particularly for some
DFP conversions).

About this book xlv

• The new ONLINE built-in function will allow the user to have easy access to another piece of information
formerly available only in the runtime error message or dump, namely the line number in the user code
at which a condition was raised.

• The new REG12 built-in function will return the address of the CAA and will make it easier for users to
write code that uses some Language Environment services.

• The REPATTERN built-in function will support 3 additional Db2 date-time formats.
• The new DIMACROSS attribute will make it easier to exploit Db2 multi-row fetch.
• The new SUPPRESS attribute will make it easier to selectively suppress the compiler warning messages

for uninitialized and unreferenced variables.
• Trailing OPTIONAL arguments may now be omitted also on calls to internal procedures.
• The new HEX suboption of the USAGE compiler option will allow the user to specify how much data is

displayed when applying the HEX built-in function to VARYING and VARYINGZ strings.

Enhancements from 3.7
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

• IEEE Decimal Floating-Point (DFP) is supported.

This includes support for the following new built-in functions:

– ISFINITE
– ISINF
– ISNAN
– ISNORMAL
– ISZERO

Also, as part of the DFP support, the following old built-in functions have been updated:

– EPSILON
– EXPONENT
– HUGE
– MAXEXP
– MINEXP
– PLACES
– PRED
– RADIX
– ROUND
– SCALE
– SUCC
– TINY

• The new MEMCONVERT built-in function will allow the user to convert arbitrary lengths of data between
arbitrary code pages.

• The new ONOFFSET built-in function will allow the user to have easy access to another piece of
information formerly available only in the runtime error message or dump, namely the offset in the user
procedure at which a condition was raised.

• The new STACKADDR built-in function will return the address of the current dynamic save area (register
13 on z/OS) and will make it easier for users to write their own diagnostic code.

• The new QUOTE option will allow the user to specify alternate code points for the quote (") symbol since
this symbol is not code-page invariant.

xlvi Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• The new XML compiler option can be used to specify that the tags in the output of the XMLCHAR built-in
function be either in all upper case or in the case in which they were declared.

Enhancements from 3.6
This release provides the following new language features. Additional platform-specific enhancements
are described in the appropriate Programming Guide.

• The PICSPEC built-in function is now supported so that CHARACTER data may be quickly cast to
PICTURE.

• The THREADID built-in function may now be used under z/OS. It has also been changed so that it
returns a pointer to the thread identifier and so that it always requires a parameter.

Enhancements from 3.5
This release provides the following new language features. Additional platform-specific enhancements
are described in the appropriate Programming Guide.

• The LOCATION built-in function can now specify the first element using REFER in a structure without the
structure having been allocated.

• The Db2 date patterns 'YYYY-MM-DD', 'MM/DD/YYYY' and 'DD.MM.YYYY' can now be used in the
datetime-handling built-in functions.

Enhancements from 3.4
This release provides the following new language features. Additional platform-specific enhancements
are described in the appropriate Programming Guide.

• The semantics for the DEFAULT statement now match those of the old host compiler.
• Support for RETURN statements inside BEGIN blocks within PROCEDURES containing ENTRY

statements
• The REPLACEBY2 built-in function
• The NOINIT attribute
• The following built-in functions in the MACRO preprocessor

– LOWERCASE
– MACNAME
– TRIM
– UPPERCASE

Enhancements from 3.3
This release also provides all of the functional enhancements offered in Enterprise PL/I V3R3, including
the following language features.

• The following built-in functions

– MEMINDEX
– MEMSEARCH
– MEMSEARCHR
– MEMVERIFY
– MEMVERIFYR
– XMLCHAR

• The V format item in GET EDIT

About this book xlvii

Enhancements from 3.2
This release also provides all of the functional enhancements that are offered in Enterprise PL/I V3R2,
including the following language features.

• Support for the NOMAP, NOMAPIN, and NOMAP attributes for PROCs and ENTRYs with
OPTIONS(COBOL).

• Support, in the same manner as provided by the old host compiler, for PROCs with ENTRY statements
that have differing RETURNS attributes.

• OPTIONS(RETCODE) is assumed for PROCs and ENTRYs with OPTIONS(COBOL).
• The SIZE condition is no longer promoted to ERROR if unhandled.
• The new USAGE compiler option gives you full control over the IBM or ANS behavior of the ROUND and

UNSPEC built-in function without the other effects of the RULES(IBM|ANS) option.
• POINTERs are now allowed in PUT LIST and PUT EDIT statements: the 8-byte hex value will be output.
• If specified on a STATIC variable, the ABNORMAL attribute will cause that variable to be retained even if

unused.

Enhancements from 3.1
This release provides the following functional enhancements that are described in this and the other IBM
PL/I books.

This release also provides all of the functional enhancements that are offered in Enterprise PL/I V3R1,
including the following:

• Support for Multithreading on z/OS
• Support for IEEE floating-point on z/OS
• Support for the ANSWER statement in the macro prepreprocessor
• SAX-style XML parsing via the PLISAXA and PLISAXB built-in subroutines
• Additional built-in functions:

– CS
– CDS
– ISMAIN
– LOWERCASE
– UPPERCASE

This release also provides all of the functional enhancements that are offered in VisualAge PL/I V2R2,
including the following:

• Initial UTF-16 support via the WIDECHAR attribute

There is currently no support yet for

– WIDECHAR characters in source files
– W string constants
– use of WIDECHAR expressions in stream I/O
– implicit conversion to/from WIDECHAR in record I/O
– implicit endianness flags in record I/O

If you create a WIDECHAR file, you should write the endianness flag ('fe_ff'wx) as the first two bytes
of the file.

• DESCRIPTORS and VALUE options that are supported in DEFAULT statements
• PUT DATA enhancements

– POINTER, OFFSET, and other non-computational variables supported

xlviii Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

– Type-3 DO specifications allowed
– Subscripts allowed

• DEFINE statement enhancements

– Unspecified structure definitions
– CAST and RESPEC type functions

• Additional built-in functions:

– CHARVAL
– ISIGNED
– IUNSIGNED
– ONWCHAR
– ONWSOURCE
– WCHAR
– WCHARVAL
– WHIGH
– WIDECHAR
– WLOW

• Preprocessor enhancements

– Support for arrays in preprocessor procedures
– WHILE, UNTIL and LOOP keywords supported in %DO statements
– %ITERATE statement supported
– %LEAVE statement supported
– %REPLACE statement supported
– %SELECT statement supported
– Additional built-in functions:

- COLLATE
- COMMENT
- COMPILEDATE
- COMPILETIME
- COPY
- COUNTER
- DIMENSION
- HBOUND
- INDEX
- LBOUND
- LENGTH
- MACCOL
- MACLMAR
- MACRMAR
- MAX
- MIN
- PARMSET
- QUOTE
- REPEAT

About this book xlix

- SUBSTR
- SYSPARM
- SYSTEM
- SYSVERSION
- TRANSLATE
- VERIFY

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this document or any other PL/I documentation, contact us in one of these ways:

• Send an email to compinfo@cn.ibm.com

Be sure to include the name of the document, the publication number of the document, the version
of PL/I, and, if applicable, the specific location (for example, page number) of the text that you are
commenting on.

• Fill out the Readers' Comment Form at the back of this document, and return it by mail or give it to an
IBM representative. If the form has been removed, address your comments to:

International Business Machines Corporation
Reader Comments
H150/090
555 Bailey Avenue
San Jose, CA 95141-1003
USA

• Fax your comments to this U.S. number: (800)426-7773.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

Accessibility
Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully. The accessibility features in z/OS® provide accessibility
for Enterprise PL/I.

Accessibility features
z/OS includes the following major accessibility features:

• Interfaces that are commonly used by screen readers and screen-magnifier software
• Keyboard-only navigation
• Ability to customize display attributes such as color, contrast, and font size

z/OS uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-aria/), to ensure
compliance to US Section 508 (https://www.access-board.gov/ict/) and Web Content Accessibility
Guidelines (WCAG) 2.0 (http://www.w3.org/TR/WCAG20/). To take advantage of accessibility features,
use the latest release of your screen reader in combination with the latest web browser that is supported
by this product.

Keyboard navigation
Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/OS services by using IBM Developer for z/OS.

For information about accessing these interfaces, see the following publications:

How to send your comments

l Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

mailto:compinfo@cn.ibm.com
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
https://www.access-board.gov/ict/
https://www.access-board.gov/ict/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Volume I
• IBM Developer for z/OS Documentation

These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

Interface information
The Enterprise PL/I online product documentation is available in IBM Knowledge Center, which is
viewable from a standard web browser.

PDF files have limited accessibility support. With PDF documentation, you can use optional font
enlargement, high-contrast display settings, and can navigate by keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code examples, and text that
contains the period or comma PICTURE symbols, you must set the screen reader to speak all punctuation.

Assistive technology products work with the user interfaces that are found in z/OS. For specific guidance
information, see the documentation for the assistive technology product that you use to access z/OS
interfaces.

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

Accessibility

About this book li

https://www.ibm.com/docs/en/zos/2.4.0?topic=tsoe-zos-primer
https://www.ibm.com/docs/en/zos/2.4.0?topic=tsoe-zos-users-guide
https://www.ibm.com/docs/en/zos/2.4.0?topic=ispf-zos-users-guide-vol-i
https://www.ibm.com/docs/en/developer-for-zos
http://www.ibm.com/able
http://www.ibm.com/able

Accessibility

lii Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 1. Program elements
This chapter describes the basic elements that are used to write a PL/I program. The elements include
character sets, programmer-defined identifiers, keywords, delimiters, and statements.

PL/I supports a single-byte character set (SBCS) and a double-byte character set (DBCS).

The implementation limits for PL/I language elements are listed in Appendix A, “Limits,” on page 627.

Single-byte character set
A character set is an ordered set of unique representations called characters. For example, the set of
symbols in Morse code, or the letters of the Cyrillic alphabet are character sets.

The CODEPAGE compiler option determines how the compiler converts data from CHARACTER to
UTF-8 and UTF-16 and vice-versa. In addition, the CODEPAGE compiler option also determines the
value returned by the UTF8TOCHAR built-in function. For example, the UTF-8 character for the Euro
symbol in hex is E282AC. Under CODEPAGE(1140), the value returned for E282AC is '9F'x, but under
CODEPAGE(1142), the value returned for E282AC is '5A'x.

PL/I supports character sets that are permitted in the CODEPAGE compiler option. Many characters in
these code pages are invariant: they have the same hex values across all EBCDIC code pages and all
ASCII code pages. The set of invariant characters includes the English alphabet, the ten decimal digits,
and other special characters used by PL/I. For these special characters that are not invariant, you can use
the BRACKETS, CURRENCY, NAMES, NOT, OR, and QUOTE compiler options to let the compiler know what
values are acceptable in the source for these symbols.

Constants and comments can contain any SBCS character value.

PL/I elements, such as statements, keywords and delimiters, are limited to the characters described in
the following sections.

Alphabetic and extralingual characters
The default alphabet for PL/I is the English alphabet plus the extralingual characters.

Alphabetic characters

There are 26 base alphabetic characters that comprise the English alphabet. They are shown in Table 1 on
page 1 with the equivalent ASCII and EBCDIC values in hexadecimal notation.

Table 1. Alphabetic equivalents

Character EBCDIC
Uppercase Hex
Value

EBCDIC
Lowercase Hex
Value

ASCII Uppercase
Hex Value

ASCII Lowercase
Hex Value

A C1 81 41 61

B C2 82 42 62

C C3 83 43 63

D C4 84 44 64

E C5 85 45 65

F C6 86 46 66

G C7 87 47 67

Alphabetic and extralingual characters

© Copyright IBM Corp. 1999, 2022 1

Table 1. Alphabetic equivalents (continued)

Character EBCDIC
Uppercase Hex
Value

EBCDIC
Lowercase Hex
Value

ASCII Uppercase
Hex Value

ASCII Lowercase
Hex Value

H C8 88 48 68

I C9 89 49 69

J D1 91 4A 6A

K D2 92 4B 6B

L D3 93 4C 6C

M D4 94 4D 6D

N D5 95 4E 6E

O D6 96 4F 6F

P D7 97 50 70

Q D8 98 51 71

R D9 99 52 72

S E2 A2 53 73

T E3 A3 54 74

U E4 A4 55 75

V E5 A5 56 76

W E6 A6 57 77

X E7 A7 58 78

Y E8 A8 59 79

Z E9 A9 5A 7A

Extralingual characters

The default extralingual characters are the number sign (#), the at sign (@), and the currency sign ($). The
hexadecimal values for these characters vary across code pages. You can use the NAMES compiler option
to define your own extralingual characters. For more information about defining extralingual characters,
refer to the Programming Guide.

Alphanumeric characters

An alphanumeric character is either an alphabetic or extralingual character, or a digit.

Decimal digits
PL/I recognizes the ten decimal digits, 0 through 9. They are also known simply as digits and are used to
write decimal constants and other representations and values.

The following table shows the digits and their hexadecimal values.

Decimal digits

2 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 2. Decimal digit equivalents

Character EBCDIC Hex Value ASCII Hex Value

0 F0 30

1 F1 31

2 F2 32

3 F3 33

4 F4 34

5 F5 35

6 F6 36

7 F7 37

8 F8 38

9 F9 39

Binary digits
PL/I recognizes the two binary digits, 0 and 1. They are also known as bits and are used to write binary
and bit constants.

Hexadecimal digits
PL/I recognizes the 16 hexadecimal digits, 0 through 9 and A through F. A through F represent the
decimal values 10 through 15, respectively. They are also known as hex digits or just hex and are used to
write constants in hexadecimal notation.

Special characters
This topic shows the special characters, their PL/I meanings, and their ASCII and EBCDIC values in
hexadecimal notation.

Table 3. Special character equivalents

Character Meaning Default EBCDIC
Hex value

Default ASCII Hex
value

b Blank 40 20

= Equal sign or assignment symbol 7E 3D

+ Plus sign 4E 2B

- Minus sign 60 2D

* Asterisk or multiply symbol 5C 2A

⁄ Slash or divide symbol 61 2F

(Left parenthesis 4D 28

) Right parenthesis 5D 29

, Comma 6B 2C

. Point or period 4B 2E

' Single quotation mark 7D 27

Binary digits

Chapter 1. Program elements 3

Table 3. Special character equivalents (continued)

Character Meaning Default EBCDIC
Hex value

Default ASCII Hex
value

" Double quotation mark1 7F 22

% Percent 6C 25

; Semicolon 5E 3B

: Colon 7A 3A

¬ Not symbol, exclusive-or symbol1 5F 5E

& And symbol 50 26

| Or symbol1 4F 7C

> Greater than symbol 6E 3E

< Less than symbol 4C 3C

_ Break character (underscore) 6D 5F

Note:

1. The or (|), not (¬), and quote (") symbols have variant code points. You can use the compiler options
OR, NOT, and QUOTE to define alternate symbols to represent these operators. For more information
about these options, refer to the Programming Guide.

Composite symbols
You can combine special characters to create composite symbols.

The following table describes these symbols and their meanings. Composite symbols cannot contain
blanks.

Table 4. Composite symbol description

Composite symbol Meaning

∥ Concatenation

** Exponentiation

¬< Not less than

¬> Not greater than

¬= or <>1 Not equal to; Evaluate, exclusive-or and assign

<= Less than or equal to

>= Greater than or equal to

⁄* Start of a comment

*⁄ End of a comment

// End-of-line comment indicator

–> Locator (pointers and offsets)

=> Locator (handles)

+= Evaluate expression, add and assign

-= Evaluate expression, subtract and assign

Composite symbols

4 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 4. Composite symbol description (continued)

Composite symbol Meaning

*= Evaluate expression, multiply and assign

/= Evaluate expression, divide and assign

|= Evaluate expression, or and assign

&= Evaluate expression, and, and assign

∥= Evaluate expression, concatenate and assign

**= Evaluate expression, exponentiate and assign

(: Start of type function parameter list

:) End of type function parameter list

Note:

1. You can use <> as an alternative to ¬=.

Case sensitivity
You can use a combination of lowercase and uppercase characters in a PL/I program.

When used in keywords or identifiers, the lowercase characters are treated as the corresponding
uppercase characters. This is true even if you entered a lowercase character as a DBCS character.

When used in a comment or in a character, mixed, or a graphic string constant, lowercase characters
remain lowercase.

Statement elements for SBCS
This section describes the elements that make up a PL/I program that uses the single-byte character set
(SBCS).

A PL/I statement consists of identifiers, delimiters, operators, and constants. Constants are described in
Chapter 2, “Data elements,” on page 15.

Identifiers
An identifier is a series of characters that are not contained in a comment or a constant.

Except for P, PIC, and PICTURE, identifiers must be preceded and followed by a delimiter. (P, PIC, and
PICTURE identifiers can be followed by a character string.) The first character of an identifier must be
an alphabetic or extralingual character. If the identifier names an INTERNAL symbol, it can also use the
break (_) character as its first character. Other characters, if any, can be alphabetic, extralingual, digit, or
the break (_) character. External user names must not start with IBM, PLI, CEE, _IBM, _PLI, and _CEE.

Identifiers can be PL/I keywords or programmer-defined names. Because PL/I can determine from the
context if an identifier is a keyword, you can use any identifier as a programmer-defined name. There are
no reserved words in PL/I. However, using some keywords, for example, IF or THEN, as variable names
might make a program needlessly hard to understand.

PL/I keywords
A keyword is an identifier that has a specific meaning in PL/I.

Keywords can specify such things as the action to be taken or the attributes of data. For example,
READ, DECIMAL, and ENDFILE are keywords. Some keywords can be abbreviated. The keywords and their
abbreviations are shown in uppercase letters.

Case sensitivity

Chapter 1. Program elements 5

Programmer-defined names
In a PL/I program, names are given to variables and program-control data. There are also built-in names,
condition names, and generic names.

Any identifier can be used as a name. A name can have only one meaning in a program block; the same
name cannot be used for both a file and a floating-point variable in the same block.

To improve readability, the break character (_) can be used in a name, such as Gross_Pay.

These are some examples of names:

 A Rate_of_pay

 Record Loop_3

For additional requirements for programmer-defined external names, see “INTERNAL and EXTERNAL
attributes” on page 154.

An asterisk (*) can be used as an identifier name in situations where a name is required but you do not
otherwise refer to that identifier. For more information, see the example in ENTRY attribute.

Delimiters and operators
Delimiters and operators are used to separate identifiers and constants.

Table 5 on page 6 shows delimiters.

Table 5. Delimiters

Name Delimiter Use

Comma , Separates elements of a list; precedes the BY NAME option

Period . Connects elements of a qualified name; decimal or binary point

Semicolon ; Terminates a statement

Equal sign = Indicates assignment or, in a conditional expression, equality

Colon : Connects prefixes to statements; connects lower-bound to upper-
bound in a dimension attribute; used in RANGE specification of
DEFAULT statement

Blank b Separates elements

Parentheses () Enclose lists, expressions, iteration factors, and repetition factors;
enclose information associated with various keywords

Locator –> Denotes locator qualification (pointers and offsets)

=> Denotes locator qualification (handles)

Percent % Indicates %statements and %directives

Note: Omitting certain symbols can cause errors that are difficult to trace. Common errors are
unbalanced quotation marks, unmatched parentheses, unmatched comment delimiters, and missing
semicolons.

Table 6 on page 7 shows operators.

Delimiters and operators

6 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 6. Operators

Operator type Character(s) Description

Arithmetic + Addition or prefix plus

- Subtraction or prefix minus

* Multiplication

⁄ Division

** Exponentiation

Comparison = Equal to

¬= or <> Not equal to

< Less than

¬< Not less than

> Greater than

¬> Not greater than

<= Less than or equal to

>= Greater than or equal to

Logical ¬ Not, Exclusive-or

& And

| Or

String ∥ Concatenation

The characters used for delimiters can be used in other contexts. For example, the period is a delimiter
when used in name qualification (for example, Weather.Temperature), but is a decimal point in an
arithmetic constant (for example, 3.14).

Blanks

You can surround each operator or delimiter with blanks (b).

One or more blanks must separate identifiers and constants that are not separated by some other
delimiter. The only exception to this rule is that the identifiers P, PIC and PICTURE can be followed by a
character string without any intervening blanks. Any number of blanks can appear wherever one blank is
allowed.

Blanks cannot occur within identifiers, composite symbols, or constants (except in character, mixed,
widechar and graphic string constants). See the following examples.

ab+bc is equivalent to Ab + Bc

Table(10) is equivalent to TABLEb(b10bbb)

First,Second is equivalent to first,bsecond

AtoB is not equivalent to AbtobB

Other cases that require or allow blanks are noted where those language features are discussed.

Comments

Delimiters and operators

Chapter 1. Program elements 7

Comments are allowed wherever blanks are allowed as delimiters. A comment is treated as a blank and
used as a delimiter. Comments are ignored and do not affect the logic of a program.

There are two kinds of comments:

• The /* (slash, asterisk) characters, followed by any sequence of characters (including new lines),
followed by the */ characters. In this case, the commented text ends with the */ characters, and the
commented text may span multiple lines.

• The // (two slashes) characters followed by any sequence of characters. In this case, the commented
text ends with the end of the line containing the // characters.

The first kind of comment can be entered on one or more lines, as in the following example:

A = /* This comment is on one line */ 21;

 /* This comment spans
 two lines */

The second kind of comment ends on the line where it starts, as in the following example:

A = 21 ; // This comment ends with the end of this line

In the following example, what appears to be a comment is actually a character string constant because it
is enclosed in quotation marks.

A = '/* This is a constant, not a comment */' ;

Comments cannot be nested. However, the %DO SKIP: statement can be used as a way of "commenting
out" code that contains comments.

Statements
You use identifiers, delimiters, operators, and constants to construct PL/I statements.

Although your source program consists of a series of records or lines, PL/I views the program as
a continuous stream of characters. There are few restrictions in the format of PL/I statements, and
programs can be written without considering special coding rules or checking to see that each statement
begins in a specific column. A statement can begin in the next position after the previous statement, or it
can be separated by any number of blanks.

Some statements begin with a % symbol. These statements are either %directives that direct
preprocessor and compiler operations (controlling listings, including program source text from a library,
and so on) or are PL/I macro facility %statements. A %directive must be on a line by itself.

To improve program readability and maintainability and to avoid unexpected results caused by loss of
trailing blanks in source lines, follow these guidelines:

• Do not split a language element across lines. If a string constant must be written on multiple lines, use
the concatenation operator (∥).

• Do not write more than one statement on a line.
• Do not split %directives across lines.

The PL/I statements, macro facility %statements, and the %directives are alphabetically listed in Chapter
8, “Statements and directives,” on page 195.

Syntax for a PL/I statement

condition-prefix label-prefix statement

Delimiters and operators

8 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Syntax for a %directive

%

statement

Syntax for a %statement:

%

label-prefix statement

Syntax for a macro statement

label-prefix statement

Every statement must be contained within some enclosing group or block. Macro statements must be
contained within some enclosing macro group or procedure.

condition-prefix
A condition prefix specifies the enabling or disabling of a PL/I condition (see Chapter 15, “Condition
handling,” on page 341).

label-prefix
A label prefix is one or more statement labels. It identifies a statement so that it can be referred to
at some other point in the program. Statement labels are either label constants (see “Label data and
LABEL attribute” on page 44), entry constants (see “Entry data” on page 113), or format constants
(see “Format data and FORMAT attribute” on page 45).

Any statement, except DECLARE, DEFAULT, WHEN, OTHERWISE, and ON statements, can have a label
prefix. Use the following syntax for a label prefix.

identifier :

The syntax for individual statements throughout this book generally does not show the condition
prefix or the label prefix.

statement
A simple or a compound statement.

Simple statements
The types of simple statements are keyword, assignment, and null.
Keyword statement

A keyword statement is a statement that begins with a keyword. This keyword indicates the function of
the statement.

In the following example, READ and DECLARE are keywords.

Simple statements

Chapter 1. Program elements 9

 read file(In) into(Input); /* keyword statement */
 %declare Text char; /* keyword %statement */

Assignment statement
An assignment statement contains one or more identifiers on the left side of the assignment symbol
(=) and an expression on the right. It does not begin with a keyword. See the following examples:

 A = B + C; /* assignment statement */
 %Size = 15; /* % assignment statement */

Null statement
A null statement consists of only a semicolon and is a nonoperational statement. See the following
examples:

 ; /* null statement */
 Label:; /* labeled null statement */
 % ; /* % null statement */

Compound statements
Compound statements are all keyword statements. Each begins with a keyword that indicates the
purpose of the statement. A compound statement contains one or more simple or compound statements.

There are four compound statements: IF, ON, WHEN, and OTHERWISE. A compound statement is
terminated by the semicolon that also terminates the final statement of the compound statement.

Examples of compound statement

 on conversion
 onchar() = '0';

 if Text = 'stmt' then
 do;
 select(Type);
 when('if') call If_stmt;
 when('do') call Do_stmt;
 when('') /* do nothing */ ;
 otherwise
 call Other_stmt;
 end;
 call Print;
 end;
 end;

 %if Type = 'AREA' %then
 %Size = Size + 16;
 %else;

Groups
Statements can be contained within larger program units called groups.

A group is either a do-group or a select-group. A do-group is a sequence of statements delimited by a DO
statement and a corresponding END statement. A select-group is a sequence of WHEN statements and an
optional OTHERWISE statement delimited by a SELECT statement and a corresponding END statement.
The delimiting statements are considered to be part of the group.

When a group is used in a compound statement, control either flows into the group or bypasses it,
effectively treating the group as if it were a single statement.

The flow of control within a group is discussed for do-groups under “DO statement” on page 210 and for
select-groups under “SELECT statement” on page 232.

Every group must be contained within some enclosing group or block. Groups can contain none, one, or
more statements, groups, or blocks.

Compound statements

10 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Double-byte character set
Each character in the double-byte character set (DBCS) is stored in 2 bytes. When the GRAPHIC compiler
option is in effect, some source language elements can be written by using DBCS and SBCS characters.

In particular, you can use DBCS characters in the source program in following places:

• inside comments
• as part of statement labels and identifiers
• in G or M literals

However, INCLUDE file names and the TITLE option of FETCH statements must be in SBCS.

On the z/OS platform, each string of DBCS characters must be immediately enclosed in shift codes, but
shift codes are neither required nor accepted on the other platforms that are supported by the compiler.
In the examples that follow, these shift codes will be included, but they must be omitted on all platforms
other than z/OS.

DBCS identifiers
DBCS identifiers can be composed of single-byte characters in DBCS form, double-byte characters, or a
combination of both.

Single-byte identifiers in DBCS form
DBCS identifiers that contain only single-byte characters must conform to the normal PL/I naming
conventions, including the first-character rule.

A DBCS identifier containing single-byte characters expressed as DBCS equivalents is a synonym of the
same identifier in SBCS.

Notes:

1. This book uses the symbol . (bold period) to represent the first byte of a double-byte character that
can also be represented as SBCS.

2. This book uses kk to represent a double-byte character.
3. This book uses < to represent a shift-out character ('0E'X).
4. This book uses > to represent a shift-in character ('0F'X).

Example

 <.I.B.M> = 3; /* is the same as IBM=3; */

DBCS identifiers containing double-byte characters
The number of bytes used in a DBCS name cannot exceed the maximum length of a name, which is
specified in the compiler LIMITS option.

SBCS characters expressed in DBCS form within a DBCS identifier are considered to be SBCS. See the
following example:

 A<kk>B
 A<kk.B>
 <.Akk>B /* are all A<kk>B (SBCS-DBCS-SBCS) */

DBCS identifiers

Chapter 1. Program elements 11

Using double-byte character identifiers
A DBCS identifier can be used wherever an SBCS identifier is allowed.

When DBCS identifiers are used for EXTERNAL names and %INCLUDE file names, you must ensure that
the identifiers are acceptable to the operating system, or are made acceptable by using the EXTERNAL
attribute with an environment-name or by using the TITLE option of the OPEN statement.

Related information
EXTERNAL attribute
The INTERNAL and EXTERNAL attributes define the scope of a name.
“OPEN statement” on page 283
The OPEN statement associates a file with a data set. It merges attributes specified on the OPEN
statement with those specified on the DECLARE statement. It also completes the specification of
attributes for the file, if a complete set of attributes has not been declared for the file being opened.

Statement elements for DBCS
This section provides supplemental information about writing PL/I language elements using DBCS.

Definitions of the language elements in this section and general usage rules appear in corresponding
sections in “Statement elements for SBCS” on page 5.

The following list shows the language elements that can be coded in DBCS. It includes an explanation of
the rules and examples of usage.

Identifiers
Use SBCS, DBCS, or both.

 dcl Eof /* in SBCS, is the same as */
 dcl <.E.o.f> /* this in DBCS. */

 dcl <kkkk>X /* these are all the same, where */
 dcl <kkkk.X> /* kk is a valid */
 dcl <kkkk>x /* DBCS character */
 dcl <kkkk.x> /* */

Comments
Use SBCS, DBCS, or both.

 /* comment */ /* all SBCS */
 /* <.T.y.p.ekk> */ /* DBCS text */

Comment delimiters must be specified in SBCS.

Mixed Character String Constants
Use SBCS, DBCS, or both and are enclosed in SBCS or DBCS quotes.

If the string is enclosed in SBCS quotes, it is not necessary to end the string with an M suffix.

Any DBCS data inside the quotes is not converted to SBCS; it and any shift codes are stored as is in the
internal representation of the string.

 '<.a.b.c>'M
 '<.I.B.M.'.S>'M
 '<.I.B.M>''<.S>'M
 'IBM<kk>'M

Graphic Constants
Use DBCS only and are enclosed in SBCS or DBCS quotes.

 '<.a.b.c>'G /* 6 byte graphic constant */
 '<.I.B.M.'.S>'G /* 10 byte graphic constant .I.B.M.'.S */

DBCS statement elements

12 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

G literals can start and end with DBCS quotes, and in that case, the G itself can also be specified in
DBCS. So, the following are all equivalent.

 '<.a.b.c>'G
 <.'.a.b.c.'>G
 <.'.a.b.c.'.G>

DBCS continuation rules
If a string literal or an identifier has a DBCS character that is separated from the right margin by a single
SBCS blank, the blank is ignored and the statement element is continued at the left margin of the next
record.

DBCS continuation rules

Chapter 1. Program elements 13

DBCS continuation rules

14 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 2. Data elements
This chapter introduces the kinds of data that you can use in PL/I programs and the attributes that you
use to describe data.

The chapter covers the following information:

• A review of data items
• A review of variables and constants
• The types of data that are available and the attributes that define them

Related information
“Data declarations” on page 149
When a PL/I program is executed, it can manipulate many different data items of particular data types.
Each data item, except an unnamed arithmetic or string constant, is referred to in the program by a name.
Each data name is given attributes and a meaning by a declaration (explicit or implicit). This chapter
discusses explicit and implicit declarations, scalar, array, structure, and union declarations, scope of
names, data alignment, and default attributes.

Data items
A data item is either the value of a variable or a constant. (These terms are not exactly the same as in
general mathematical usage. They are discussed further in the next section.)

Data items can be single items, called scalars, or they can be a collection of items, called data aggregates.

Data aggregates are groups of data items that can be referred to either collectively or individually. The
kinds of data aggregates are arrays, structures, and unions. You can use any type of computational or
program-control data to form a data aggregate.

Related information
“Arrays” on page 172
An array is an n-dimensional collection of elements that have identical attributes.
“Structures” on page 176
A structure is a collection of member elements that can be structures, unions, elementary variables, and
arrays.
“Unions” on page 177
A union is a collection of member elements that overlay each other, occupying the same storage. The
members can be structures, unions, elementary variables, and arrays. They need not have identical
attributes.
“Combinations of arrays, structures, and unions” on page 185
Specifying the dimension attribute on a structure or union results in an array of structures or an array
of unions, respectively. The elements of such an array are structures or unions having identical names,
levels, and members.

Variables
A variable has a value or values that might change during execution of a program.

A variable is introduced by a declaration, which declares the name and certain attributes of the variable.
However, a variable that has the NONASSIGNABLE attribute is assumed not to change during execution.

A variable reference is one of the following:

• A declared variable name
• A reference derived from a declared name through one or more of the following:

– Pointer qualification

Variables

© Copyright IBM Corp. 1999, 2022 15

– Structure qualification
– Subscripting

Related information
“Expressions and references” on page 51
This chapter discusses the various types of expressions and references.
“ASSIGNABLE and NONASSIGNABLE attributes” on page 259
The ASSIGNABLE and NONASSIGNABLE attributes specify whether the associated variable can be the
target of an assignment.

Constants
A constant has a value that cannot change. Constants for computational data are referred to by stating the
value of the constant or by naming the constant in a DECLARE statement.

For more information about declaring named constants, see “Named constants” on page 46.

Constants for program-control data are referred to by name.

Using quotation marks
String constants, hexadecimal constants, and the picture-specification are enclosed in either single or
double quotation marks.

The following rules apply to quotation marks within a string:

• If the included quotation marks are the same type as those used to enclose the string, you must enter
two quotation marks (that is, '' or "") for each occurrence to be included.

• If the included quotation marks are the type not used to enclose the string, enter only one quotation
mark for each instance to be included. The single occurrence is treated as data.

Examples

 'Shakespeare''s "Hamlet"' is identical to
 "Shakespeare's ""Hamlet"""

 PICTURE "99V9" is identical to
 PICTURE '99V9'

Note: The syntax diagrams in this book show single quotation marks. Double quotation marks can be
substituted unless otherwise noted.

Punctuating constants
To improve readability, arithmetic, bit, and hexadecimal constants can use the break character (_).

'1100_1010'B is the same as '11001010'B

1100_1010B is the same as 11001010B

'C_A'B4 is the same as 'ca'b4

'C_A'XN is the same as 'ca'XN

16_777_216 is the same as 16777216

Data types and attributes
Data used in a PL/I program can be classified as either computational data or program-control data.
Computational data

Represents values that are used in computations to produce a desired result. Arithmetic and string
data constitute computational data.

Constants

16 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Arithmetic data is either coded arithmetic data or numeric picture data.

Coded arithmetic data items are rational numbers. They have the data attributes of base (BINARY
or DECIMAL), scale (FLOAT or FIXED), precision (significant digits and decimal-point placement), and
mode (REAL or COMPLEX).

“Numeric character data” on page 40 is numeric data that is held in character form.

A string is a sequence of contiguous characters, bits, graphics, uchars, or widechars that are treated
as a single data item.

Program-control data
Represents values that are used to control execution of your program. It consists of the following data
types: area, entry, label, file, format, pointer, and offset.

Example

 Area = (Radius**2) * 3.1416;

Area and Radius are coded arithmetic variables of computational data. The numbers 2 and 3.1416 are
coded arithmetic constants of computational data.

If the number 3.1416 is used in more than one place in the program, or if it requires specific data or
precision attributes, you can declare it as a named constant. Using named constants is also good from
a documentation and consistency of usage perspective. Thus, the above statement can be coded as
follows:

 dcl Pi FIXED DECIMAL (5,4) VALUE(3.1416);
 area = (radius**2) * Pi;

Constants for program-control data have a value that is determined by the compiler. In the following
example, the name loop represents a label constant of program-control data. The value of loop is the
address of the statement A=2*B;.

 loop: A=2*B;
 C=B+6;

Attributes
To work with a data item, PL/I needs to know the type of data and how to process it. Attributes provide
this information. The kinds of attributes are data attributes and nondata attributes.

Data attributes
Data attributes describe computational data, program-control data, and program characteristics.

AREA
BINARY
BIT
CHARACTER
COMPLEX
DECIMAL
DIMENSION
ENTRY
FILE

FIXED
FLOAT
FORMAT
GRAPHIC
HANDLE
LABEL
LOCATES
NONVARYING
OFFSET

ORDINAL
PICTURE
POINTER
PRECISION
REAL
RETURNS
SIGNED
STRUCTURE
TASK

TYPE
UCHAR
UNSIGNED
UNION
VARYING
VARYING4
VARYINGZ
WIDECHAR
WIDEPIC

Data attributes

Chapter 2. Data elements 17

Nondata attributes
Nondata attributes describe nondata elements (for example, built-in functions) or provide additional
description for elements that have other data attributes.

ABNORMAL
ALIGNED
ASSIGNABLE
AUTOMATIC
BASED
BIGENDIAN
BUFFERED
BUILTIN
BYADDR
BYVALUE
CONDITION
CONNECTED
CONTROLLED

DEFINED
DIMACROSS
DIRECT
ENVIRONMENT
EXCLUSIVE
EXTERNAL
GENERIC
HEXADEC
IEEE
INDFOR
INITIAL
INONLY
INOUT
INPUT

INTERNAL
KEYED
LIKE
LIST
LITTLEENDIAN
NONASSIGNABLE
NONCONNECTED
NORMAL
OPTIONAL
OPTIONS
OUTONLY
OUTPUT
PARAMETER
POSITION
PRINT

RECORD
SEQUENTIAL
STATIC
STREAM
UNALIGNED
UNBUFFERED
UPDATE
VALUE
VALUELIST
VALUERANGE
VARIABLE
XMLATTR
XMLOMIT

For example, the keyword CHARACTER is a data attribute for the string type of computational data. The
keyword FILE is a data attribute for the file type of program-control data. The INTERNAL scope attribute
specifies that the data item is known only within its declaring block.

For the details on using keywords and expressions to specify the attributes, see Chapter 7, “Data
declarations,” on page 149. Briefly, you specify attributes in one of the following ways:

• Explicitly, using a DECLARE statement
• Contextually, letting PL/I determine them
• By using programmer-defined or language-specified defaults

Table 7 on page 19 and Table 8 on page 21 help you correlate PL/I's variety of attributes with its variety
of computational and program-control data types. The tables show that the constants and the named
constants can only have the indicated data and scope attributes (Table 7 on page 19). Variables can
specify additional attributes (Table 8 on page 21).

Consider the following example:

 Area = (Radius**2)*3.1416;

The constant 3.1416 is given the following attributes:

• DECIMAL

It is given, because the constant is not explicitly a binary constant.
• FIXED

It is given, because the constant is a fixed-point number.
• PRECISION(5,4) (5 significant digits with 4 to the right of the decimal point)
• REAL

It is given, because the constant does not have an imaginary part.
• INTERNAL and ALIGNED

(See the "Coded arithmetic" row, and "Data Attributes" and "Scope Attributes" columns of Table 7 on page
19.)

Nondata attributes

18 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The constant 1.0 (a decimal fixed-point constant) is different from the constants 1 (another decimal
fixed-point constant), '1'B (a bit constant), '1' (a character constant), 1B (binary fixed-point constant), or
1E0 (a decimal floating-point constant).

In the following example, the variable Pi has the programmer-defined data attributes of FIXED and
DECIMAL with a PRECISION of five digits, four to the right of the decimal point:

 declare Pi fixed decimal(5,4) initial(3.1416);

Because this DECLARE statement contains no other attributes for Pi, PL/I applies the defaults for the
remaining attributes:

• REAL from the Data Attributes column
• ALIGNED from the Alignment Attributes column
• INTERNAL from the Scope Attributes column
• AUTOMATIC from the Storage Attributes column
• SIGNED from the Data Attributes column

(See the coded arithmetic row of Table 8 on page 21.)

Table 7. Classification of attributes by constant types

Constant type Data attributesNotes 1 and 2 Scope attributesNotes 1 and 2

Coded arithmetic REAL | imaginary

FLOAT | FIXED

BINARY | DECIMAL

PRECISION

SIGNED

internal

Named coded arithmetic REAL | COMPLEX

FLOAT | FIXED

BINARY | DECIMAL

PRECISION

VALUE

SIGNED | UNSIGNED

internal

String BIT | CHARACTER | GRAPHIC |

UCHAR | WIDECHAR

(length)

internal

Named string BIT | CHARACTER |

GRAPHIC |

UCHAR | WIDECHAR

[(length)]

NONVARYING

VALUE

internal

Nondata attributes

Chapter 2. Data elements 19

Table 7. Classification of attributes by constant types (continued)

Constant type Data attributesNotes 1 and 2 Scope attributesNotes 1 and 2

Named locator POINTER | OFFSET | HANDLE

VALUE

LOCATES

internal

Named picture PICTURE | WIDEPIC

REAL | COMPLEX

VALUE

internal

FileNote 3 FILE ENVIRONMENT

STREAM | RECORD

INPUT | OUTPUT | UPDATE

SEQUENTIAL | DIRECT

BUFFERED | UNBUFFEREDNote 4

KEYED

PRINT

INTERNAL | EXTERNAL

EntryNote 5 ENTRY [RETURNS] INTERNAL | EXTERNAL

FormatNote 5 FORMAT internal

LabelNote 5 LABEL internal

Notes:

1. Attributes in this table that appear in uppercase can be explicitly declared. Attributes that are in lowercase
are implicitly given to the data type.

2. Defaults for data attributes are underlined. Because the data attributes for literals are contextual, defaults
are not applicable. Named constants and file constants have selectable attributes, so defaults are shown.

3. File Attributes are described in Chapter 10, “Input and output,” on page 275.
4. BUFFERED is the default for SEQUENTIAL files. UNBUFFERED is the default for DIRECT files.
5. Format and label constants, and INTERNAL entry constants cannot be declared in a DECLARE statement.

Nondata attributes

20 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 8. Classification of attributes by variable types

Variable type Data attributes Alignment
attributes

Scope attributes Storage attributes

Area AREA(size) ALIGNED |
UNALIGNED

INTERNAL |
EXTERNAL

(INTERNAL is
mandatory for
 AUTOMATIC
 BASED
 DEFINED
 PARAMETER)

AUTOMATIC |
STATIC |
BASED |
CONTROLLED

(AUTOMATIC
is the
default for
INTERNAL;
STATIC is
the default
for
EXTERNAL)

Defined
variable:
 DEFINED
 [POSITION]

Parameter:
PARAMETER
[CONNECTED |
NONCONNECTED]
[CONTROLLED]

[INITIAL
 [CALL]]

[VARIABLE]

[NORMAL |
 ABNORMAL]

ASSIGNABLE |
NONASSIGNABLE

Coded
arithmetic
Note 1

REAL | COMPLEX
FLOAT | FIXED
BINARY | DECIMAL
PRECISION
[SIGNED |
 UNSIGNED]

ALIGNED |
UNALIGNED

Entry ENTRY [RETURNS]
[LIMITED]

File FILE

Format FORMAT

Label LABEL

Locator POINTER | HANDLE |
{OFFSET
[(area-variable)]
LOCATES}

Ordinal ORDINAL

Picture PICTURE | WIDEPIC
REAL | COMPLEX

ALIGNED |
UNALIGNED

String BIT | CHARACTER |
GRAPHIC | UCHAR |
WIDECHAR
[(length)]
[VARYING |
VARYING4 |
VARYINGZ |
NONVARYING]

Task TASK ALIGNED |
UNALIGNED

Arrays: DIMENSION can be added to the declaration of any variable. See “Arrays” on page 172 for more
information.

Nondata attributes

Chapter 2. Data elements 21

Table 8. Classification of attributes by variable types (continued)

Variable type Data attributes Alignment
attributes

Scope attributes Storage attributes

Structures and unions:

• For a major structure or union: scope, storage (except INITIAL), alignment, STRUCTURE or UNION, and the
LIKE attributes can be specified.

• For a member that is a structure or a union: alignment, STRUCTURE or UNION, and the LIKE attributes can be
specified.

• Members always have the INTERNAL scope attribute.

See “Structures” on page 176 and “Unions” on page 177 for more information.

Notes:

1. Undeclared names, or names declared without a data type, default to coded arithmetic variables. Default
attributes are described in “Defaults for attributes” on page 167. Defaults shown are IBM defaults. ANS
defaults are FIXED and BINARY rather than FLOAT and DECIMAL.

2. POSITION can be used only with string overlay defining.

Computational data types and attributes
This section describes the data types classified as computational data and the attributes associated with
them.

Coded arithmetic data and attributes
This topic provides the syntax for coded arithmetic data and lists coded arithmetic data attributes and
their abbreviations.

See “Data types and attributes” on page 16 for general information about coded arithmetic data.

Syntax for coded arithmetic data

float sequence

fixed sequence

REAL precision specification

COMPLEX precision specification

float sequence

FLOAT precision specification

DECIMAL precision specification

BINARY precision specification

fixed sequence
FIXED precision specification

DECIMAL precision specification

BINARY precision specification
SIGNED

UNSIGNED

precision specification

Nondata attributes

22 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

PRECISION

float precision

fixed precision

float precision
( number-of-digits)

fixed precision
( number-of-digits

, scaling-factor

)

Table 9. Abbreviations for coded arithmetic data attributes

Attribute Abbreviation

BINARY BIN

COMPLEX CPLX

DECIMAL DEC

PRECISION PREC

BINARY and DECIMAL attributes
The base of a coded arithmetic data item is either decimal or binary. DECIMAL is the default.

FIXED and FLOAT attributes
The scale of a coded arithmetic data item is either fixed-point or floating-point.

A fixed-point data item is a rational number in which the position of the decimal or binary point is
specified, either by its appearance in a constant or by a scaling factor declared for a variable.

Floating-point data items are rational numbers in the form of a fractional part and an exponent part.

PRECISION attribute
The precision of a coded arithmetic data item includes the number of digits and the scaling factor. (The
scaling factor is used only for fixed-point items).
number of digits

An integer that specifies how many digits the value can have. For fixed-point items, the integer is the
number of significant digits. For floating-point items, the integer is the number of significant digits to
be maintained excluding the decimal point (independent of its position).

scaling factor
An optionally-signed integer that specifies the assumed position of the decimal or binary point,
relative to the rightmost digit of the number. If no scaling factor is specified, the default is 0. For a
FIXED BINARY declaration, q must be between 0 and p.

The precision attribute specification is often represented as (p,q), where p represents the number of digits
and q represents the scaling factor.

A negative scaling factor (-q) specifies an integer, with the point assumed to be located q places to the
right of the rightmost actual digit. A positive scaling factor (q) that is larger than the number of digits
specifies a fraction, with the point assumed to be located q places to the left of the rightmost actual digit.
In either case, intervening zeros are assumed, but they are not stored; only the specified number of digits
is actually stored.

If PRECISION is omitted, the precision attribute must follow, with no intervening attribute specifications,
the scale (FIXED or FLOAT), base (DECIMAL or BINARY), or mode (REAL or COMPLEX) attributes at the
same factoring level.

BINARY and DECIMAL

Chapter 2. Data elements 23

If included, PRECISION can appear anywhere in the declaration.

Integer value means a fixed-point value with a scaling factor of zero.

REAL and COMPLEX attributes
The mode of an arithmetic data item (coded arithmetic or numeric character) is either real or complex.

A real data item is a number that expresses a real value.

A complex data item consists of two parts—a real part and an imaginary part. For a variable representing
complex data items, the base, scale, and precision of the two parts are identical.

The default for arithmetic variables is REAL.

An imaginary constant is written as a real constant of any type immediately followed by the letter I. Here
are some examples:

 27I
 3.968E10I
 11011.01BI

Each of these has a real part of zero. A complex value with a nonzero real part is represented by an
expression with the following syntax:

 +
 -

 real_constant +
 -

 imaginary_constant

For example, 38+27I.

Given two complex numbers, y and z:

 y = complex(A,B);
 z = complex(C,D);

x=y/z is calculated as follows:

 real(x) = (A*C + B*D)/(C**2 + D**2);
 imag(x) = (B*C - A*D)/(C**2 + D**2);

x=y*z is calculated as follows:

 real(x) = A*C - B*D;
 imag(x) = B*C + A*D;

Computational conditions can be raised during these calculations.

SIGNED and UNSIGNED attributes
The SIGNED and UNSIGNED attributes can be used only with FIXED BINARY variables and ORDINAL
variables.

SIGNED indicates that the variable can assume negative values. UNSIGNED indicates that the variable
can assume only nonnegative values.

UNSIGNED has the following effects on the semantics of fixed-point operations:

• The result of an ADD, DIVIDE, or MULTIPLY operation is UNSIGNED if both operands are UNSIGNED.
• The result of IAND, IEOR, INOT and IOR is UNSIGNED if all the operands are UNSIGNED.
• The result of ISLL and ISRL is UNSIGNED if the first operand is UNSIGNED.
• The result of MAX or MIN is UNSIGNED if all operands are UNSIGNED.

REAL and COMPLEX

24 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• The result of REAL or IMAG is UNSIGNED if its operand is UNSIGNED.
• The result of REM or MOD is UNSIGNED if all operands are UNSIGNED.

The SIGNED and UNSIGNED attributes affect storage requirements, as shown in Table 10 on page 25
and Table 11 on page 25.

Table 10. FIXED BINARY SIGNED data storage requirements

This precision: Occupies this amount of storage (bytes):

precision <= 7 1

7 < precision <= 15 2

15 < precision <= 31 4

31 < precision <= 63 8

Table 11. FIXED BINARY UNSIGNED data storage requirements

This precision: Occupies this amount of storage (bytes):

precision <= 8 1

8 < precision <= 16 2

16 < precision <= 32 4

32 < precision <= 64 8

Binary fixed-point data
The data attributes for declaring binary fixed-point variables are BINARY and FIXED.

In the following example, Factor is declared as a variable that can represent binary fixed-point data of
20 data bits, two of which are to the right of the binary point.

 declare Factor binary fixed (20,2);

See “SIGNED and UNSIGNED attributes” on page 24 for information about how much storage signed and
unsigned fixed-binary data occupy.

The declared number of data bits is in the low-order positions, but the extra high-order bits participate
in any operation performed upon the data item. Any arithmetic overflow into such extra high-order bit
positions can be detected only if the SIZE condition is enabled.

Binary fixed-point constant
A binary fixed-point constant consists of one or more bits, followed immediately by the letter B.

Binary fixed-point constants have a precision (p,0), where p is the total number of data bits in the
constant.

Example

Constant Precision

1011_0B (5,0)

1111_1B (5,0)

101B (3,0)

1011.111B (7,3)

Binary fixed-point data

Chapter 2. Data elements 25

XN (hex) binary fixed-point constant
The XN constant describes a SIGNED REAL FIXED BINARY constant in hexadecimal notation.

If the constant has 8 or fewer digits, it has a precision of 31; otherwise, it has a precision of 63.

' hex-digit 'XN

Consider the following examples:

 '100'XN /* same as '00000100'XN with value 256 */
 '8000'XN /* same as '00008000'XN with value 32,768 */
 'FFFF'XN /* same as '0000FFFF'XN with value 65,535 */
 "ffff_ffff"XN /* is the value -1 */

The hexadecimal value for the XN constant is the value specified padded on the left with hex zeros if
necessary.

XU (hex) binary fixed-point constant
The XU constant describes an UNSIGNED REAL FIXED BINARY constant in hexadecimal notation.

If the constant has 8 or fewer digits, it has a precision of 32; otherwise, it has a precision of 64.

' hex-digit 'XU

Consider the following examples:

 '100'XU /* same as '00000100'XU with value 256 */
 '8000'XU /* same as '00008000'XU with value 32,768 */
 'FFFF'XU /* same as '0000FFFF'XU with value 65,535 */
 "ffff_ffff"XU /* is the value 2**32-1 */

The hexadecimal value for the XU constant is the value specified padded on the left with hex zeros if
necessary.

Decimal fixed-point data
The data attributes for declaring decimal fixed-point variables are DECIMAL and FIXED.

For example, the following DECLARE statement specifies that A represents decimal fixed-point data of 5
digits, 4 of which are to the right of the decimal point.

 declare A fixed decimal (5,4);

These two examples both specify that B represents integers of 7 digits:

 declare B fixed (7,0) decimal;
 declare B fixed decimal(7);

The following example specifies that C has a scaling factor of -2. This means that C holds 7 digits in the
range -9999999*100 - 9999999*100, in increments of 100.

 declare C fixed (7,-2) decimal;

XN (hex) binary constant

26 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The following example specifies that D represents fixed-point data of 3 digits, 2 of which are fractional.

 declare D decimal fixed real(3,2);

Decimal fixed-point data is stored two digits per byte, with a sign indication in the rightmost 4 bits of the
rightmost byte. Consequently, a decimal fixed-point data item is always stored as an odd number of digits,
even though the declaration of the variable can specify the number of digits, p, as an even number.

When the declaration specifies an even number of digits, the extra digit place is in the high-order position,
and it participates in any operation performed upon the data item, such as in a comparison operation. If
the extra high-order digit place is nonzero, the use of the data in arithmetic operation or assignment may
produce an exception. Any arithmetic overflow or assignment into an extra high-order digit place can be
detected only if the SIZE condition is enabled.

Decimal fixed-point constant
A decimal fixed-point constant consists of one or more decimal digits with an optional decimal point.

Decimal fixed-point constants have a precision (p,q), where p is the total number of digits in the constant
and q is the number of digits specified to the right of the decimal point.

Examples

Constant Precision

3.1416 (5,4)

455.3 (4,1)

732 (3,0)

1_200_300 (7,0)

003 (3,0)

5280 (4,0)

.0012 (4,4)

Binary floating-point data
The data attributes for declaring binary floating-point variables are BINARY and FLOAT.

For example, in the following DECLARE statement, S represents binary floating-point data with a precision
of 16 binary digits.

 declare S binary float (16);

The exponent cannot exceed five decimal digits. If the declared precision is less than or equal to (21),
short floating-point form is used. If the declared precision is greater than (21) and less than or equal
to (53), long floating-point form is used. If the declared precision is greater than (53), extended floating-
point form is used.

Binary floating-point constant
A binary floating-point constant is a mantissa followed by an exponent and the letter B.

The mantissa is a binary fixed-point constant. The exponent is the letter E, S, D, or Q followed by an
optionally-signed decimal integer (meaning 2 to the power of this integer). Constants using E have a
precision (p) where p is the number of binary digits of the mantissa. Constants using S, D, and Q always
have maximum single, double, and extended precisions, respectively.

Decimal fixed-point constant

Chapter 2. Data elements 27

Table 12. Examples of binary floating-point constants

Constant Precision

101101E5B (6)

101.101E2B (6)

11101E-28B (5)

11.01E+42B (4)

1S0b (21)

1D0b (53)

1Q0b (64) (Windows)

1Q0b (106) (AIX)

1Q0b (109) (z/OS)

Decimal floating-point data
The data attributes for declaring decimal floating-point variables are DECIMAL and FLOAT.

Consider this example:

 declare Light_years decimal float(5);

The value for Light_years represents decimal floating-point data of 5 decimal digits.

For IEEE decimal floating-point data, the follow applies:

• If the declared precision is less than or equal to 7, short floating-point form is used.
• If the declared precision is greater than 7 and less than or equal to 16, long floating-point form is used.
• If the declared precision is greater than 16, extended floating-point form is used.

For all other decimal floating-point data, the following applies:

• If the declared precision is less than or equal to 6, short floating-point form is used.
• If the declared precision is greater than 6 and less than or equal to 16, long floating-point form is used.
• If the declared precision is greater than 16, extended floating-point form is used.

Decimal floating-point constant
A decimal floating-point constant is a mantissa followed by an exponent.

The mantissa is a decimal fixed-point constant. The exponent is the letter E, S, D, or Q followed by
an optionally-signed decimal integer of four or less digits (meaning 10 to the power of this integer).
Constants using E have a precision (p) where p is the number of digits of the mantissa. Constants using S,
D, and Q always represent single, double, and extended precision respectively.

Table 13. Examples of decimal floating-point constants

Constant Precision

15E-23 (2)

15E23 (2)

4E-3 (1)

1.96E+07 (3)

438E0 (3)

3_141_593E-6 (7)

Decimal floating-point data

28 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 13. Examples of decimal floating-point constants (continued)

Constant Precision

.003_141_593E3 (9)

1s0 (6)

1d0 (16)

1q0 (18) (Windows)

1q0 (32) (AIX)

1q0 (33) (z/OS)

The last five examples represent the same value (although with different precisions).

For IEEE Decimal Floating Point (DFP), decimal floating-point literals, when converted to "right-units-
view", that is, when the exponent has been adjusted, if needed, so that no nonzero digits follow the
decimal point (for example, as would be done when viewing 3.1415E0 as 31415E-4), must have an
exponent within the range of the normal numbers for the precision given by the literal. These bounds are
given by the value of MINEXP-1 and MAXEXP-PLACES. In particular, the following must hold:

• For short float, -95 <= exponent <= 90
• For long float, -383 <= exponent <= 369
• For extended float, -6143 <= exponent <= 6111

So, for IEEE Decimal Floating Point (DFP), the largest positive short decimal floating-point literal is
9999999E90 (or .9999999E97), and the smallest positive nonzero short decimal floating-point literal is
1E-95.

Rather than trying to specify the largest positive floating point value as a literal, you should use the HUGE
built-in function for this purpose. Similarly, to specify the smallest nonzero positive value, you should use
the TINY built-in function.

String data and attributes
This section describes string data types and attributes.

See “Data types and attributes” on page 16 for general information about strings.

BIT, CHARACTER, GRAPHIC, UCHAR, and WIDECHAR attributes
This topic describes BIT, CHARACTER, GRAPHIC, UCHAR, and WIDECHAR attributes, shows the syntax for
the attributes, and lists their abbreviations.

The BIT attribute specifies a bit variable.

The CHARACTER attribute specifies a character variable. Character strings can also be declared using the
PICTURE attribute.

The GRAPHIC attribute specifies a GRAPHIC variable.

The UCHAR attribute specifies a UCHAR variable which will hold UTF-8 data.

The WIDECHAR attribute specifies a WIDECHAR variable which will hold UTF-16 data.

BIT, CHARACTER, GRAPHIC, UCHAR and WIDECHAR

Chapter 2. Data elements 29

Syntax for the BIT, CHARACTER, GRAPHIC, UCHAR, and WIDECHAR attributes
BIT

CHARACTER

GRAPHIC

UCHAR

WIDECHAR

( length

REFER( variable)

)

(*)

NONVARYING

VARYING

VARYING4

VARYINGZ

Table 14. Abbreviations for string data attributes

Attribute Abbreviation

CHARACTER CHAR

GRAPHIC G

UCHAR

WIDECHAR WCHAR

NONVARYING NONVAR

VARYING VAR

VARYINGZ VARZ

length
Specifies the length of a NONVARYING string or the maximum length of a VARYING, VARYING4, or
VARYINGZ string. The length is in bits, characters, uchars, widechars, or graphics (DBCS characters),
as appropriate.

You can specify the length as an expression or as an asterisk. If the length is not specified, the default
is 1. For named constants, length is determined from the length of the value expression.

For a parameter, an expression is valid only if it is CONTROLLED. An asterisk specification for a
parameter indicates that the length is taken from the argument that is passed.

If the length specification is an expression, it is evaluated and converted to a FIXED BINARY(31,0)
value, which must be nonnegative, when storage is allocated for the variable.

For STATIC data, length must be a restricted expression.

For UCHAR data, the number of bytes allocated to the string is 4 times its length.

For information about specifying the length of the BASED data, see “Extent specifications in BASED
declarations” on page 244.

REFER
See “REFER option (self-defining data)” on page 251 for the description of the REFER option.

BIT, CHARACTER, GRAPHIC, UCHAR and WIDECHAR

30 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Examples

The following statement declares User as a variable that can represent character data with a length of
15:

 declare User character (15);

The following example shows the declaration of a bit variable:

 declare Symptoms bit (64);

VARYING, VARYING4, VARYINGZ, and NONVARYING attributes
The VARYING, VARYING4, and VARYINGZ attributes specify that a variable can have a length varying from
0 to the declared maximum length. NONVARYING specifies that a variable always has a length equal
to the declared length. VAR, VAR4, VARZ, and NONVAR can be used as abbreviations for the VARYING,
VARYING4, VARYINGZ, and NONVARYING attributes respectively.

The storage allocated for VARYING strings includes an additional 2 bytes that holds the current length
of the string. As the current value is in the units of the string type, so the current length value for a BIT
VARYING string is the current number of bits in the string, and the value for a UCHAR VARYING string is
the current number of UTF-8 characters in the string.

The storage allocated for VARYING4 strings includes an additional 4 bytes that holds the current length
of the string. As the current value is in the units of the string type, so the current length value for a BIT
VARYING string is the current number of bits in the string, and the value for a UCHAR VARYING string is
the current number of UTF-8 characters in the string.

The storage allocated for a VARYINGZ CHARACTER string is 1 byte longer than the declared length. The
current length of the string is equal to the number of bytes before the first '00'x in the storage allocated
to it.

The storage allocated for a VARYINGZ GRAPHIC string is 2 bytes more than 2 times its declared length.
The current length of the string is equal to half the number of bytes before the first '0000'gx in the
storage allocated to it.

The storage allocated for a VARYINGZ UCHAR string is 1 byte more than 4 times its declared length. The
current length of the string is equal to the number of UTF-8 characters before the first '00'ux in the
storage allocated to the string.

The storage allocated for a VARYINGZ WIDECHAR string is 2 bytes more than 2 times its declared length.
The current length of the string is equal to half the number of bytes before the first '0000'wx in the
storage allocated to it.

The VARYINGZ attribute is not allowed with BIT strings.

VARYING4 variables are not supported:

• in the PASSWORD suboption of the ENVIRONMENT attribute for a FILE
• in the KEYTO option of a record I/O statement
• as the subject of a LOCATE statement
• as the subject of the FROM or INTO clause of a record I/O statement

In the following DECLARE statements, both User and Zuser represent varying-length character data with
a maximum length of 15. However, unlike User, Zuser is null-terminated. The storage allocated is 17
bytes for User and 16 bytes for Zuser.

 declare User character (15) varying;
 declare Zuser character (15) varyingz;

The length for User and Zuser at any time is the length of the data item assigned to it at that time.
You can determine the declared and the current length by using the MAXLENGTH and LENGTH built-in
functions, respectively.

VARYING, VARYINGZ, NONVARYING attributes

Chapter 2. Data elements 31

The null terminator held in a VARYINGZ string is not used in comparisons or assignments, other than to
determine the length of the string. Consequently, although the strings in the following declarations have
the same internal hex representation, they do not compare as being equal:

 declare A char(4) nonvarying init(('abc' ∥ '00'x));
 declare B char(3) varyingz init('abc');

To the contrary, Z and C in this example do compare as equal:

 dcl Z char(3) nonvarying init('abc');
 dcl C char(3) varyingz init('abc');

The VARYING, VARYING4, and VARYINGZ strings can be passed and received as parameters with *
length. They can be passed without a descriptor if they have the NONASSIGNABLE attribute.

PICTURE and WIDEPIC attributes
The PICTURE attribute specifies the properties of a character data item by associating a picture character
with each position of the data item. The WIDEPIC attribute specifies the properties of a WIDECHAR data
item by associating a picture character with each position of the data item.

A picture character specifies a category of characters that can occupy that position.

Syntax

PICTURE

WIDEPIC

' picture-specification '

Abbreviation PIC

picture-specification
Describes either a character data item or a numeric character data item. The picture specification
must be followed by a picture specification. See “Picture characters for character data” on page 327
or “Picture characters for numeric character data” on page 328 for the valid characters.

The following rules apply to picture-specification in PICTURE:

• A numeric picture specification specifies arithmetic attributes of numeric character data in much the
same way that they are specified by the appearance of a constant.

• Numeric character data has an arithmetic value but is stored in character form. Numeric character data
is converted to coded arithmetic before arithmetic operations are performed.

• The base of a numeric character data item is decimal. Its scale is either fixed-point or floating-point
(the K or E picture character denotes a floating-point scale). The precision of a numeric character data
item is the number of significant digits (excluding the exponent in the case of floating-point). Significant
digits are specified by the picture characters for digit positions and conditional digit positions. The
scaling factor of a numeric character data item is derived from the V or the F picture character or the
combination of V and F.

• Only decimal data can be represented by picture characters. Complex data can be declared by
specifying the COMPLEX attribute along with a single picture specification that describes either a
fixed-point or a floating-point data item.

You can use WIDEPIC in the same way as you use PICTURE except that the following additional rules
apply to WIDEPIC:

• The picture specification must specify an arithmetic picture, so the specification must not contain the A
or X symbol.

• The picture specification must not contain any currency symbols or overpunch symbols.

PICTURE and WIDEPIC attributes

32 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

WIDEPIC'9V.99' holds the value 3.14 as WIDECHAR, not as CHAR.

Related information
“Numeric character data” on page 40
A numeric character data item is the value of a variable that has been declared with the PICTURE
attribute with a numeric picture specification. The data item is the character representation of a decimal
fixed-point or floating-point value.

Character data
Data with the CHARACTER attribute can contain any of the 256 characters supported by the character set.
Data with the PICTURE attribute must have characters that match the picture-specification characters.

Each character occupies 1 byte of storage.

Character constant
A character constant is a contiguous sequence of characters enclosed in single or double quotation
marks.

Quotation marks included in the constant follow the rules listed in “Using quotation marks” on page 16.
The length of a character constant is the number of characters between the enclosing quotation marks
counting any doubled quotation marks as a single character.

A null character constant is written as two quotation marks with no intervening blank.

Syntax

'

character

'

Table 15. Examples of character constants

Constant Length

'Shakespeare''s "Hamlet"' 22

"Shakespeare's ""Hamlet""" 22

"Page 5" 6

'/* This is a comment */' 27

'' 0

(2)'Walla ' 12

In the last example, the number in parentheses is a string repetition factor, which indicates repetition
of the characters that follow. This example is equivalent to the constant "Walla Walla ". The string
repetition factor must be a constant and enclosed in parentheses.

Character data

Chapter 2. Data elements 33

A (ASCII) character constant
An A (ASCII) character constant is a character constant that ends with an A. The data in an A character
constant is converted to ASCII.

Syntax

'

character

'A

character
All characters in an A character constant must be code page invariant and occupy only one byte if
converted to UTF-8.

Example

'123'A represents the hex value '313233'X .

This representation is independent of the setting of the DEFAULT(ASCII | EBCDIC) option.

E (EBCDIC) character constant
An E (EBCDIC) character constant is a character constant that ends with an E. The data in an E character
constant is converted to EBCDIC.

Syntax

'

character

'E

character
All characters in an E character constant must be code page invariant and occupy only one byte if
converted to UTF-8.

Example

'123'E represents the hex value 'F1F2F3'X

This representation is independent of the setting of the DEFAULT(ASCII | EBCDIC) option.

X (hex) character constant
The X character constant is a contiguous sequence of an even number of hex digits enclosed in single or
double quotation marks and followed immediately by the letter X. Each pair of hex digits represents one
character.

The length of an X constant is half the number of hex digits specified.

A null X constant is written as two quotation marks followed by the X suffix.

A character constant

34 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Syntax

'

hex-digit hex-digit

'X

Table 16. Examples of X constants

Constant Length

"0d0A"x 2

''X 0

Note: The use of X constants can limit the portability of a program.

Bit data
Data with the BIT attribute allows manipulation of storage in terms of bits. Each byte of storage is
composed of 8 bits.

Bit constant
A bit constant is a contiguous sequence of binary digits enclosed in single or double quotation marks and
followed immediately by the letter B.

Syntax

'

binary-digit

'B

A null bit constant is written as two quotation marks, followed by B.

Table 17. Examples of bit constants

Constant Length

'1'B 1

"1100_1010_11"B 10

(64)'0'B 64

''B 0

'0'B 1

The number in parentheses in the third example is a string repetition factor which specifies that the
following series of bits is repeated the specified number of times. The example shown would result in a
string of 64 zero bits.

(See “Source-to-target rules” on page 79 for a discussion on the conversion of bit-to-character data and
character-to-bit data.)

Bit data

Chapter 2. Data elements 35

B4 (hex) bit constant
The B4 bit constant is a contiguous sequence of hex digits enclosed in single or double quotation marks
and followed immediately by B4. Each hex digit represents four bits. BX is a synonym for B4.

Syntax

'

hex-digit

' B4

BX

Table 18. Examples of B4 constants

'CA'B4 is the same as "1100_1010"B

'80'B4 is the same as '1000_0000'B

'1'B4 is the same as '0001'B

(2)'F'B4 is the same as '1111_1111'B

(2)'F'B4 is the same as 'FF'BX

''B4 is the same as ""B

B3 (octal) bit constant
The B3 bit constant is a contiguous sequence of octal digits enclosed in single or double quotation marks
and followed immediately by B3. Each octal digit represents three bits.

Table 19. Examples of B3 constants

'22'B3 is the same as "010_010"B

'40'B3 is the same as '100_000'B

'1'B3 is the same as '001'B

(2)'7'B3 is the same as '111_111'B

''B3 is the same as ""B

Graphic data
GRAPHIC data can contain any DBCS character. Each DBCS character occupies 2 bytes of storage.

Graphic constant
A graphic constant is a contiguous sequence of DBCS characters enclosed in single or double quotation
marks. Graphic constants take up 2 bytes of storage for each DBCS character in the constant.

G literals can start and end with DBCS quotes; in this case, the G itself can also be specified in DBCS.

Syntax

B4 (hex)

36 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

'<

kk

>'G

The GRAPHIC compiler option must be in effect for graphic constants to be accepted. If the GRAPHIC
ENVIRONMENT option is not specified for STREAM I/O files that include graphic constants, the
CONVERSION condition is raised.

GX (hex) graphic constant
The GX graphic constant is a contiguous sequence of hex digits, in multiples of 4, enclosed in single or
double quotation marks and followed immediately by GX. Each group of 4 hex digits represents one DBCS
character.

Syntax

'

hex-digit hex-digit hex-digit hex-digit

'GX

Table 20. Examples of GX (hex) graphic constants

'81a1'GX represents one DBCS character

""gX is the same as ''g

Note: The use of GX can limit the portability of a program.

Mixed character data
Mixed character data can contain SBCS and DBCS characters. Mixed data is represented by the
CHARACTER data type, and follows the processing rules for CHARACTER data.

The CHARGRAPHIC option of the OPTIONS attribute and the MPSTR built-in function can be used to
assist in mixed data handling. For more information about CHARGRAPHIC, see “OPTIONS option and
attribute” on page 125; for information about MPSTR, see “MPSTR” on page 496.

M (Mixed) character constant
An M constant is a contiguous sequence of DBCS and/or SBCS characters enclosed in quotation marks
(single or double), followed immediately by the letter M.

Quotations marks included in the constant follow the rules listed in “Using quotation marks” on page 16.
The length of an M constant is the number of SBCS characters between the enclosing quotation marks
counting any doubled quotation marks as a single character, plus twice the number of DBCS characters in
the string.

A null M constant is written as two quotation marks followed by M.

GX (hex) graphic

Chapter 2. Data elements 37

Syntax

'

character

<kk>

'M

Table 21. Examples of mixed character constants

Constant Length

'IBM<kk>'M 7 bytes on z/OS, 5 bytes on other platforms

'<.I.B.M>'M 8 bytes on z/OS, 6 bytes on other platforms

''M 0

The GRAPHIC compiler option must be in effect for mixed constants to be accepted. If the GRAPHIC
ENVIRONMENT option is not specified for STREAM I/O files having mixed constants, the CONVERSION
condition is raised.

On z/OS, these additional rules apply to mixed constants:

• Shift-out/shift-in pairs must match; you may not nest pairs.
• The DBCS portion must not contain '0E'x or '0F'x in either byte
• The character portion must not contain the values '0E'x or '0F'x, unless specifically intended as shift

codes.

Note: Because shift-codes are used only on z/OS, the use of mixed data and M constants can limit
program portability.

UCHAR data
UCHAR data can contain any UTF-8 string. Each UCHAR occupies 1 to 4 bytes of storage.

The following restrictions apply to UCHAR:

• DEFINED is not supported with UCHAR.
• In assignments involving UCHAR, the source and target must not overlap.
• TRANSLATE(x, y) is not allowed if x is UCHAR. A third argument must be specified in this case.
• UCHAR is not supported in these built-in functions:

– “CENTERLEFT” on page 418 and “CENTERRIGHT” on page 419
– “COLLAPSE” on page 423 and “SQUEEZE” on page 553
– “LEFT” on page 473 and “RIGHT” on page 537
– “REPLACEBY2” on page 536
– “REGEX” on page 532
– “SCRUBOUT” on page 541

UCHAR data

38 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

UX (hex) UCHAR constant
The UX UCHAR constant is a contiguous sequence of hex digits, enclosed in single or double quotation
marks and followed immediately by UX. The string must contain an even number of hex digits, and those
hex digits must represent a valid UTF-8 string.

Syntax

'

hex-digit hex-digit

'UX

Table 22. Examples of UX (hex) UCHAR constants

'00'UX represents one UCHAR

""uX is the same as ''u

Notes:

• The highest UCHAR value is 'F48FBFBF'ux.
• The lowest UCHAR value is '00'ux.

Widechar data
WIDECHAR can contain any UTF-16 character that fits into 2 bytes.

There is currently no support yet for the following:

• WIDECHAR characters in source files
• W string constants
• Use of WIDECHAR expressions in stream I/O
• Implicit conversion to/from WIDECHAR in record I/O
• Implicit endianness flags in record I/O

If you create a WIDECHAR file, you should write the endianness flag ('fe_ff'wx) as the first two bytes of
the file.

WX (hex) widechar constant
The WX widechar constant is a contiguous sequence of hex digits, in multiples of 4, enclosed in single
or double quotation marks and followed immediately by WX. Each group of 4 hex digits represents one
UTF-16 character.

Syntax

'

hex-digit hex-digit hex-digit hex-digit

'WX

Table 23. Examples of WX (hex) widechar constants

'0031'wx represents one UTF-16 character

UX (hex) UCHAR

Chapter 2. Data elements 39

Table 23. Examples of WX (hex) widechar constants (continued)

""wX is the same as ''w

Notes:

• WX constants should be specified in bigendian format (even if the program will run in littleendian
format). So, for example, the widechar value for the character '1' should always be specified as
'0031'wx (and not as '3100'wx).

• The use of WX can limit the portability of a program.

Numeric character data
A numeric character data item is the value of a variable that has been declared with the PICTURE
attribute with a numeric picture specification. The data item is the character representation of a decimal
fixed-point or floating-point value.

Numeric picture specification describes a character string that can be assigned only data that can be
converted to an arithmetic value.

Consider the following example:

 declare Price picture '999V99';

This declare specifies that any value assigned to Price is maintained as a character string of five decimal
digits, with an assumed decimal point preceding the rightmost two digits. Data assigned to Price is
aligned on the assumed point in the same way that point alignment is maintained for fixed-point decimal
data.

Numeric character data has arithmetic attributes, but it is not stored in coded arithmetic form. Numeric
character data is stored as a character string. Before it can be used in arithmetic computations, it must
be converted either to decimal fixed-point or to decimal floating-point format. Such conversions are done
automatically, but they require extra processing time.

Although numeric character data is in character form, like character strings, and although it is aligned
on the decimal point like coded arithmetic data, it is processed differently from the way either coded
arithmetic items or character strings are processed. Editing characters can be specified for insertion into a
numeric character data item, and such characters are actually stored within the data item. Consequently,
when the item is printed or treated as a character string, the editing characters are included in the
assignment operation. However, if a numeric character item is assigned to another numeric character or
arithmetic variable, the editing characters are not included in the assignment operation—only the actual
digits, signs, and the location of the assumed decimal point are assigned. Consider the following example:

 declare Price picture '$99V.99',
 Cost character (6),
 Amount fixed decimal (6,2);
 Price = 12.28;
 Cost = '$12.28';

In the picture specification for PRICE, the currency symbol ($) and the decimal point (.) are editing
characters. They are stored as characters in the data item. However, they are not a part of its arithmetic
value. After both assignment statements are executed, the actual internal character representation of
Price and Cost can be considered identical. If they were printed, they would print exactly the same; but
they do not always function in the same way. Consider the following example:

 Amount = Price;
 Cost = Price;
 Amount = Cost;
 Price = Cost;

After the first two assignment statements are executed, the value of Amount is 0012.28 and the value
of Cost is '$12.28'. In the assignment of Price to Amount, the currency symbol and the decimal point
are editing characters, and they are not part of the assignment. The numeric value of Price is converted

Numeric character data

40 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

to internal coded arithmetic form. In the assignment of Price to Cost, however, the assignment is to a
character string, and the editing characters of a numeric picture specification always participate in such
an assignment. No conversion is necessary because Price is stored in character form.

The third and fourth assignment statements would raise the CONVERSION condition. The value of Cost
cannot be assigned to Amount because the currency symbol in the string makes it invalid as an arithmetic
constant. The value of Cost cannot be assigned to Price for the same reason. Only values that are of
arithmetic type, or that can be converted to arithmetic type, can be assigned to a variable declared with a
numeric picture specification.

Although the decimal point can be an editing character or an actual character in a character string, it does
not raise the CONVERSION condition in converting to arithmetic form, because its appearance is valid in
an arithmetic constant. The same is true for a valid plus or minus sign, because converting to arithmetic
form provides for a sign preceding an arithmetic constant.

Other editing characters, including zero suppression characters, drifting characters, and insertion
characters, can be used in numeric picture specifications.

Related information
“Picture specification characters” on page 327
A picture specification consists of a sequence of picture characters enclosed in single or double quotation
marks. This character describes the contents of each position of the character or numeric character data
item, and the contents of the output.

Date attribute
Implicit date comparisons and conversions are made by the compiler if the two operands have the DATE
attribute. The DATE attribute specifies that a variable (or argument or returned value) holds a date with a
specified pattern.

Syntax

DATE

( 'pattern')

pattern
One of the supported date patterns. If you do not specify a pattern, YYMMDD is the default.

The DATE attribute is valid only with variables having one of the following sets of attributes:

• CHAR(n) NONVARYING
• PIC'(n)9' REAL
• FIXED DEC(n,0) REAL

The length or precision of n must match the length of pattern.

When you specify the RESPECT compile-time option (see the Programming Guide for details), the
following occurs:

• The compiler knows to honor the DATE attribute.
• The DATE built-in function returns a value that has the attribute DATE('YYMMDD').

This allows DATE() to be assigned to a variable with the attribute DATE('YYMMDD') without an error
message being generated. If DATE() is assigned to a variable not having the DATE attribute, however, an
error message is generated.

Implicit DATE comparisons
The DATE attribute causes implicit commoning when two variables declared with the DATE attribute
are compared. Comparisons where only one variable has the DATE attribute are flagged, and the other

Date attribute

Chapter 2. Data elements 41

comparand is generally treated as if it had the same DATE attribute, although some exceptions apply
which are discussed later.

Implicit commoning means that the compiler generates code to convert the dates to a common,
comparable representation. This process converts 2-digit years using the window you specify in the
WINDOW compile-time option.

In the following code fragment, if the DATE attribute is honored, the comparison in the second display
statement is 'windowed'. This means that if the window started at 1900, the comparison would return
false. However, if the window started at 1950, the comparison would return true.

 dcl a pic'(6)9' date;
 dcl b pic'(6)9' def(a);
 dcl c pic'(6)9' date;
 dcl d pic'(6)9' def(c);

 b = '670101';
 d = '010101';

 display(b || ' < ' || d || ' ?');
 display(a < c);

Date comparisons can occur in the following places:

• IF and SELECT statements
• WHILE or UNTIL clauses
• Implicit comparisons caused by a TO clause

Comparing dates with like patterns
Under some conditions, the compiler does not generate any special code to compare dates with identical
patterns.

These conditions are listed below:

• The comparison operator of =, ¬= or <> is used.
• The pattern is equal to YYYY, YYYYMM, YYYYDDD, or YYYYMMDD.

Comparing dates with differing patterns
For comparisons involving dates with unlike patterns, the compiler generates code to convert the dates to
a common comparable representation.

When the conversion has taken place, the compiler compares the two values.

Comparisons involving the DATE attribute and a literal
If you are making comparisons in which one comparand has the DATE attribute and the other is a literal,
the compiler issues a W-level message.

Further compiler action depends on the value of the literal as follows:

• If the literal appears to be a valid date, it is treated as if it had the same date pattern and window as the
comparand with the DATE attribute.

• If the literal does not appear to be a valid date, the DATE attribute is ignored on the other comparand.

 dcl start_date char(6) date;
 if start_date >= '' then /* no windowing */
 …
 if start_date >= '851003' then /* windowed */
 …

Date attribute

42 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Comparisons involving the DATE attribute and a non-literal
In comparisons where one comparand has the DATE attribute and the other is not a date and not a literal,
the compiler issues an E-level message. The non-date value is treated as if it had the same date pattern
as the other comparand and as if it had the same window.

 dcl start_date char(6) date;
 dcl non_date char (6);

 if start_date >= non_date then /* windowed */
 …

Implicit DATE assignments
The DATE attribute can also cause implicit conversions to occur in assignments of two variables declared
with date patterns.

• If the source and target have the same DATE and data attributes, then the assignment proceeds as if
neither had the DATE attribute.

• If the source and target have differing DATE attributes, then the compiler generates code to convert the
source date before making the assignment.

• In assignments where the source has the DATE attribute but the target does not, the compiler issues an
E-level message and ignores the DATE attribute.

• In assignments where the target has the DATE attribute but the source does not (and the source IS NOT
a literal), the compiler issues an E-level message and ignores the DATE attribute.

• In assignments where the target has the DATE attribute but the source does not (and the source IS a
literal), the compiler issues a W-level message and ignores the DATE attribute.

 dcl start_date char(6) date;
 start_date = '';
 …

• If the source holds a four-digit year and the target holds a two-digit year, the source can hold a year that
is not in the target window. In this case, the ERROR condition is raised.

 dcl x char(6) date;
 dcl y char(8) date('YYYYMMDD');

 y = '20600101';

 x = y; /* raises error if window is <= 1960 */

• The DATE attribute is ignored in:

– The debugger
– Assignments performed in record I/O statements
– Assignments and conversions performed in stream I/O statements (such as GET DATA).

Even if you do not choose a windowing solution, you might have some code that needs to manipulate both
two- and four-digit years. You can use multiple date patterns to help you in these situations:

 dcl old_date char(6) date('YYMMDD');
 dcl new_date char(8) date('YYYYMMDD');

 new_date = old_date;

Date diagnostics
In PL/I, effective assignments occur when an expression is passed as an argument to an entry that has
described that argument, or when an expression is used in a RETURN statement.

The following uses of date variables are flagged:

• Assignments (explicit or effective) including these:

Date attribute

Chapter 2. Data elements 43

– A date to a non-date
– A non-date to a date

• Any arithmetic operation applied to a date
• Use of a date in a BY clause (because this implies an arithmetic operation)
• Use of a date in any mathematical built-in function
• Use of a date in any arithmetic built-in function except BINARY, DECIMAL, FIXED, FLOAT, or PRECISION.
• Use of a date in the built-in functions SUM, PROD, or POLY.

In all of the cases listed previously, code is produced but no windowing occurs. In effect, the DATE
attribute is ignored.

Program-control data types and attributes
This section describes program-control data and associated attributes. Use program-control data to
indicate values that control the execution of your program.

Label data and LABEL attribute
A label is a label constant or the value of a label variable.

Syntax
LABEL

(

,

label-constant)

If a list of label constants is given, the variable must always have as its value a member of that list,
and the label constants in the list must be known in the block containing the label declaration. The
parenthesized list of label constants can be used in a LABEL attribute specification for a label array.

A label constant is a name written as the label prefix of a statement (other than PROCEDURE, ENTRY,
PACKAGE, or FORMAT) so that during execution, program-control can be transferred to that statement
through a reference to it. (“Statements” on page 8 discusses the syntax of the label prefix.)

For example, in the following line of code, Abcde is a label constant.

 Abcde: Miles = Speed*Hours;

The labelled statement can be executed either by normal sequential execution of instructions or by using
the GO TO statement to transfer control to it from some other point in the program.

A label variable can have another label variable or a label constant assigned to it. When such an
assignment is made, the environment of the source label is assigned to the target. If you declare a static
array of labels to have initial values, the array is treated as nonassignable.

A label variable used in a GO TO statement must have as its value a label constant that is used in a block
that is active at the time the GO TO is executed. Consider the following example:

declare Lbl_x label;
Lbl_a: statement;
 .
 .
 .
Lbl_b: statement;
 .
 .
 .
 Lbl_x = Lbl_a;
 .
 .

Label data and attribute

44 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 .
 go to Lbl_x;

Lbl_a and Lbl_b are label constants, and Lbl_x is a label variable. By assigning Lbl_a to Lbl_x, the
statement GO TO Lbl_x transfers control to the Lbl_a statement. Elsewhere, the program can contain a
statement assigning Lbl_b to Lbl_x. Then, any reference to Lbl_x would be the same as a reference to
Lbl_b. This value of Lbl_x is retained until another value is assigned to it.

If a label variable has an invalid value, detection of such an error is not guaranteed. In the following
example, transfer is made to a particular element of the array Z based on the value of I.

 go to Z(I);
 .
 .
 .
 Z(1): if X = Y then return;
 .
 .
 .
 Z(2): A = A + B + C * D;
 .
 .
 .
 Z(3): A = A + 10;

If Z(2) is omitted, GO TO Z(I) when I=2 raises the ERROR condition. GO TO Z(I) when
I < LBOUND(Z) or I > HBOUND(Z) causes unpredictable results if the SUBSCRIPTRANGE condition is
disabled.

Format data and FORMAT attribute
A format data item is a format constant or a format variable. A format constant is a name written as the
label prefix of a FORMAT statement. The FORMAT attribute specifies that the name being declared is a
format variable.

FORMAT

A name declared with the FORMAT attribute can have another format variable or a format constant
assigned to it. When such an assignment is made, the environment of the source label is assigned to the
target.

To maintain compatibility between other PL/I compilers, format variables can be declared as label
variables.

Consider the following example:

 Prntexe: format
 (column(20),A(15), column(40),A(15), column(60),A(15));
 Prntstf: format
 (column(20),A(10), column(35),A(10), column(50),A(10));

Prntexe and Prntstf are the format constants.

A second example indicates that 4 and 5 have the same effect as 2 , and 6 and 7 have the same
effect as 3 .

 1 dcl Print format;
 2 put edit (X,Y,Z) (R(Prntexe));
 3 put edit (X,Y,Z) (R(Prntstf));
 4 Print = Prntexe;
 5 put edit (X,Y,Z) (R(Print));
 6 Print = Prntstf;
 7 put edit (X,Y,Z) (R(Print));

Format data and FORMAT attribute

Chapter 2. Data elements 45

VARIABLE attribute
The VARIABLE attribute establishes the name as a variable and should be specified only along with one of
the attributes: ENTRY, FILE or LABEL. It will be ignored in all other declares.

VARIABLE

The VARIABLE attribute is implied if the name is a member of a structure or union, or if any of the
following attributes are specified:

Storage class attribute
DIMENSION
PARAMETER
Alignment attribute
INITIAL

In the following declaration, Account1 and Account2 are file variables and File1 and File2 are file
constants.

 declare Account1 file variable,
 Account2 file automatic,
 File1 file,
 File2 file;

File1 and File2 can subsequently be assigned to Account1 or to Account2.

Value attributes
This section describes value attributes and named constants.

VALUE attribute
This topic describes the VALUE attribute and shows its syntax.

VALUE( restricted expression)

restricted expression
The expression must evaluate to a scalar value.

Related information
“Restricted expressions” on page 72
Where PL/I requires a (possibly signed) constant, a restricted expression can be used.

Named constants
Named constants can be declared for scalars or structures.

As a scalar identifier, a named constant is declared with the VALUE attribute along with other data
attributes. All references to the name are logically treated as a reference to the appropriate constant but
with the complete set of attributes, whether explicitly declared or defaulted.

A structure can define a namespace of named constants, when the VALUE attribute is specified on the leaf
elements, and the references to the members of all structure elements are unambiguous. You can specify
the elements of a structure with the VALUE attribute, provided that the structure meets all of the following
conditions:

• All leaf elements of the structure have the VALUE attribute.
• The structure contains no arrays or unions.
• The structure has no storage attributes such as AUTOMATIC.

VARIABLE

46 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Note: The effect of the use of a named constant might not be exactly the same as the use of an unnamed
constant. The attributes for a named constant are taken from the declaration which includes explicit and
default attributes. The attributes for an unnamed constant are deduced from the shape, form, and size of
the constant. For string data, if the length is not specified, or is specified with an asterisk, the length is
determined from the length of the restricted expression.

Named constants can be more precise to use in an application program, and they can offer more
predictable results. For example, if the named constant Unit is defined as FIXED BINARY VALUE(1),
it has the attributes FIXED BINARY(15) VALUE(1). If you simply use the digit 1, its attributes are FIXED
DECIMAL(1,0). See “#unique_290/unique_290_Connect_42_nmconst” on page 47 for other differences
that can occur.

In addition, named constants allow you to parameterize your application, which makes it easier to debug
and maintain.

Named constants can be declared for arithmetic data, string data, and for pointers and offsets. A named
constant must be declared before it is used.

Related information
“String data and attributes” on page 29
This section describes string data types and attributes.
“Coded arithmetic data and attributes” on page 22
This topic provides the syntax for coded arithmetic data and lists coded arithmetic data attributes and
their abbreviations.

Examples of named constants
Named constants can be used wherever a constant is required. They can also be used in restricted
expressions that appear later in the program allowing evaluation of a dependent constant.

Named constants shows named constants and the differences in attributes and precisions that can occur
between named and unnamed constants.

Named constants

 Dcl A4 value(148) fixed bin,
 C4 value(261) fixed bin,
 Whole value(800) fixed bin;
 Dcl Notes (4) static,
 init(a4, (Whole/4), /* 148, 200 */
 c4, (Whole*2)); /* 261, 1600 */

 /* note that "Head" gets length equal to length of VALUE */

 Dcl Head char VALUE('Feel the Power of PL/I'); /* char(22) */
 Dcl Headsize fixed bin value(length(Head)); /* 22 */
 Dcl 1 Head1 static,
 2 * char(Headsize) initial(Head), /* char(22) */
 2 * char(20) init(''),
 2 * char(5) init('Page '),
 2 Page_number pic 'zz9',
 2 * char(0);
 Dcl TwoHeads char(2*Headsize); /* char(44) */
 Dcl Page0 picture 'zz9' value(0);
 Dcl MyNullPtr ptr value(ptrvalue('ffff_ffff'xn));

 /* Differences in attributes/results of
 named and unnamed constants */

 Dcl Pi float bin value (3.1416); /* is FLOAT BINARY(21) but ... */
 3.1416 /* is FIXED DECIMAL(5,4) */

 Dcl Unit fixed bin value(1); /* is FIXED BINARY(15) but ... */
 1 /* is FIXED DECIMAL(1,0) */
 1.0 /* is FIXED DECIMAL(2,1) */
 1B /* is FIXED BINARY(1) */

Named constants

Chapter 2. Data elements 47

 0000_0000_0000_001B /* is FIXED BINARY(15) */

 Dcl Title char(20) value('SCIDS'); /* is CHAR(20) but ... */
 Dcl Title2 char value('SCIDS');/* is CHAR(5) */
 'SCIDS' /* is CHAR(5) */

VALUELIST attribute
The VALUELIST attribute specifies a list of values to limit the set of values that a variable, an argument, or
a returned value can have.

VALUELIST ( expression

, expression

)

The VALUELIST attribute is valid only with computational and ordinal types.

Each expression must:

1. have a computational type if it is specified with a computational type, or have the same ordinal type if
it is specified with an ordinal type.

2. have a constant value.
3. only appear once in the list (but can be in any order).

See “Example” on page 49.

Related information
“VALIDVALUE” on page 576
VALIDVALUE returns a value that indicates whether the value of an expression matches one of the
elements in a variable's value set.
“VALUELISTFROM attribute” on page 48
The VALUELISTFROM attribute specifies an unsubscripted structure reference whose elements all have
the VALUE attribute and which should be used to define a VALUELIST for the current declaration.
“VALUERANGE attribute” on page 49
The VALUERANGE attribute specifies an inclusive range of values to limit the set of values that a variable,
an argument, or a returned value can have.

VALUELISTFROM attribute
The VALUELISTFROM attribute specifies an unsubscripted structure reference whose elements all have
the VALUE attribute and which should be used to define a VALUELIST for the current declaration.

Given

 dcl 1 a, 2 b fixed bin value(31), 2 c fixed bin value(28), 2 d fixed bin value(31);
 dcl x fixed bin valuelistfrom a;

x would then have the attribute VALUELIST(31, 28, 31).

Related information
“LIKE attribute” on page 180
The LIKE attribute specifies that the name that is declared has an organization that is logically the same
as the referenced structure or union, the object of the LIKE attribute.
“VALUELIST attribute” on page 48

VALUELIST attribute

48 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The VALUELIST attribute specifies a list of values to limit the set of values that a variable, an argument, or
a returned value can have.

VALUERANGE attribute
The VALUERANGE attribute specifies an inclusive range of values to limit the set of values that a variable,
an argument, or a returned value can have.

VALUERANGE ( expression 1 , expression 2)

The VALUERANGE attribute is valid only with computational and ordinal types. If the computational type
is numeric, it must be REAL.

Each expression must:

1. have a computational type if it is specified with a computational type, or have the same ordinal type if
it is specified with an ordinal type.

2. have a constant value.
3. be greater than the former expression.

Example
Given the statements:

define alias numeric_month fixed bin(7) valuerange(1,12);

dcl imonth type numeric_month;

dcl cmonth char(3)
 valuelist('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec');

The variable imonth must hold only a value between 1 and 12 inclusive, and the variable cmonth must
hold only one of the 12 specified values.

The “VALIDVALUE” on page 576 built-in function can be used to test if a variable has one of the values
specified in these attributes. For example, given the statements above, these expressions are equivalent.

VALIDVALUE(imonth)

BETWEEN(imonth, 1, 12)

(1 <= imonth) & (imonth <= 12)

The compiler can also use these attributes to optimize code and to check that only one of the restricted
set of values is assigned to such a variable. For example, given the statements above, both of these
statements are invalid:

 dcl month_due type numeric_month init(0);

 cmonth = '';

Related information
“VALIDVALUE” on page 576
VALIDVALUE returns a value that indicates whether the value of an expression matches one of the
elements in a variable's value set.
“VALUELIST attribute” on page 48
The VALUELIST attribute specifies a list of values to limit the set of values that a variable, an argument, or
a returned value can have.

VALUERANGE attribute

Chapter 2. Data elements 49

VALUERANGE attribute

50 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 3. Expressions and references
This chapter discusses the various types of expressions and references.

An expression is a representation of a value. An expression can be one of the following:

• A single constant, variable, or function reference
• Any combination of constants, variables, or function references, including operators and parentheses

used in the combination

An expression that contains operators is an operational expression.

The constants and variables of an operational expression are called operands. See “Operational
expressions” on page 54 for more information.

The following diagram shows the syntax for expressions and references.

unary-expression

 infix-operator
1
 unary-expression

unary-expression

prefix-operator
1

elementary-expression

elementary-expression
( expression)

reference

constant

reference

locator-qualifier
2

basic-reference

(subscript-list
3

)

(argument-list
4

)

locator-qualifier
2

reference ->

 =>
 .

basic-reference

qualified-reference
5

identifier
6

subscript-list

© Copyright IBM Corp. 1999, 2022 51

3

,

expression

*

argument-list

4

,

expression

*

qualified-reference
5

basic-reference

(subscript-list)

.

Notes:
1 Operators are shown in Table 6 on page 7.
2 Locator-qualifier is described under “Locator qualification” on page 247 and “Typed structure
qualification” on page 144.
3 Subscripts are described under “Arrays” on page 172.
4 Arguments are described in “Passing arguments to procedures” on page 108.
5 Qualified-reference is described under “Structure and union qualification” on page 178.
6 Identifiers are described under “Identifiers” on page 5.

Any expression can be classified as an element expression (also called a scalar expression), an array
expression, or a structure expression. Element variables and array variables can appear in the same
expression.

An element expression
Represents a single value. This definition includes an elementary name within a structure or a union or
a subscripted name that specifies a single element of an array.

An array expression
Represents an array of values. This definition includes a member of a structure or union that has the
dimension attribute.

A structure expression
Represents a structured set of values.

Consider the following example:

 dcl A(10,10) bin fixed(31),
 B(10,10) bin fixed(31),
 1 Rate,
 2 Primary dec fixed(4,2),
 2 Secondary dec fixed(4,2),
 1 Cost(2),
 2 Primary dec fixed(4,2),
 2 Secondary dec fixed(4,2),
 C bin fixed(15),
 D bin fixed(15);
 dcl Pi bin float value(3.1416);

These are element expressions:

 Pi
 27
 C
 C * D
 A(3,2) + B(4,8)
 Rate.Primary - Cost.Primary(1)
 A(4,4) * C
 Rate.Secondary / 4
 A(4,6) * Cost.Secondary(2)

52 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 sum(A)
 addr(Rate)

These are array expressions:

 A
 A + B
 A * C - D
 B / 10B

The syntax of many PL/I statements allows expressions, provided the result of the expression conforms
with the syntax rules. Unless specifically stated in the text following the syntax specification, the
unqualified term expression or reference refers to a scalar expression. For expressions other than a scalar
expression, the type of expression is noted. For example, the term array expression indicates that a scalar
expression is not valid.

Here is an example of a structure expression:

 Rate = Rate*2

Order of evaluation
PL/I statements often contain more than one expression or reference. Except as described for specific
instances (for example, the assignment statement), evaluation can be in any order, or (conceptually) at
the same time.

Consider the following example:

 dcl (X,Y,Z) entry returns(float), (F,G,H) float;
 F = X(Y(G,H), Z(G,H));

The functions Y and Z can change the value of the arguments passed to them. Hence, the value returned
by X might be different depending on which function is invoked first. You should not presume that the first
parameter is evaluated first. In some situations, it is more optimal to evaluate the last first.

Assuming that the INC function increments the value of the argument passed to it and returns the
updated value, the example that follows could put out B(1,2) or B(2,1) depending on which subscript
is evaluated first. You should not presume which subscript is evaluated first.

 dcl B(2,2);
 I = 0;
 put list (B(INC(I), INC(I)));

Targets
The results of an expression evaluation or of a conversion are assigned to a target. Targets can be
variables, pseudovariables, or intermediate results.

Variables
Variables can be the target of expression evaluations or conversions.

In the case of an assignment, such as the statement A = B;, the target is the variable on the left of the
assignment symbol (in this case A). Assignment to variables can also occur in stream I/O, DO, DISPLAY,
and record I/O statements.

Order of evaluation

Chapter 3. Expressions and references 53

Pseudovariables
A pseudovariable represents a target field.

Consider the following example:

 declare A character(10),
 B character(30);
 substr(A,6,5) = substr(B,20,5);

In this assignment statement, the SUBSTR built-in function extracts a substring of length 5 from the string
B, beginning with the twentieth character. The SUBSTR pseudovariable indicates the location, within
string A, that is the target. Thus, the last 5 characters of A are replaced by characters 20 through 24 of B.
The first 5 characters of A remain unchanged.

For information about pseudovariables, see Chapter 18, “Built-in functions, pseudovariables, and
subroutines,” on page 375.

Intermediate results
When an expression is evaluated, the target attributes usually are partly derived from the source,
partly from the operation being performed, and partly from the attributes of a second operand. Some
defaults can be used, and some implementation restrictions (for example, maximum precision) and
conventions exist. An intermediate result can undergo conversion if a further operation is performed.
After an expression is evaluated, the result can be further converted for assignment to a variable or
pseudovariable. These conversions follow the same rules as the conversion of programmer-defined data.

Consider the following example:

 declare A character(8),
 B fixed decimal(3,2),
 C fixed binary(10);
 A = B + C;

During the evaluation of the expression B + C and during the assignment of that result, there are four
different results:

1. The intermediate result to which the converted binary equivalent of B is assigned
2. The intermediate result to which the binary result of the addition is assigned
3. The intermediate result to which the converted decimal fixed-point equivalent of the binary result is

assigned
4. A, the final destination of the result, to which the converted character equivalent of the decimal

fixed-point representation of the value is assigned

The attributes of the first result are determined from the attributes of the source B, from the operator, and
from the attributes of the other operand. If one operand of an arithmetic infix operator is binary, the other
is converted to binary before evaluation.

The attributes of the second result are determined from the attributes of the source (C and the converted
representation of B).

The attributes of the third result are determined in part from the source (the second result) and in part
from the attributes of the eventual target A. The only attribute determined from the eventual target is
DECIMAL (a binary arithmetic representation must be converted to decimal representation before it can
be converted to a character value).

The attributes of A are known from the DECLARE statement.

Operational expressions
An operational expression consists of one or more single operations. A single operation is either a
prefix operation (an operator preceding a single operand) or an infix operation (an operator between two

Pseudovariables

54 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

operands). The two operands of any infix operation normally should be the same data type when the
operation is performed.

The operands of an operation in a PL/I expression are converted, if necessary, to the same data type
before the operation is performed. For detailed rules for conversion, see Chapter 4, “Data conversion,” on
page 75.

There are few restrictions on the use of different data types in an expression. However, these mixtures
imply conversions. If conversions take place at run time, the program takes longer to run. Also, conversion
can result in loss of precision. When using expressions that mix data types, you must understand the
relevant conversion rules.

The classes of operations include handle, pointer, arithmetic, bit, comparison, and concatenation.

Handle operations
These handle operations can be used in PL/I programs.

• Compare two handles that have the same associated structure type.
• Add an expression to or subtract an expression from a handle with sensitivity to the associated

structure type.

For example, if x is a handle for structure type t and n is an integer value, x+n and x−n are handles for t.

– x+n increments the associated pointer value of x by n times the size of the structure t.
– x−n decrements the associated pointer value of x by n times the size of the structure t.

You can also use the += and −= compound assignments to increment and decrement handles.
• Compute the difference of two handles with sensitivity to the associated structure type.

For example, if x and y are handles for structure type t, the result of x-y is the number of instances of t
between x and y. The value x-y equals the result of (PTRVALUE(x)-PTRVALUE(y)) / SIZE(:t:).

Computing the difference of two handles to different structure types is not permitted.

Pointer operations
These pointer operations can be used in PL/I programs.

• Add an expression to or subtract an expression from a pointer expression.

The expression type must be computational. If necessary, the nonpointer operand is converted to
size_t1. See the following example:

 Ptr1 = Ptr1 - 16;
 Ptr2 = Ptr1 + (I*J);

You can also use the built-in function POINTERADD to perform these operations. You must use
POINTERADD if the result is used as a locator reference. For example, (Ptr1 + 16) -> Based_ptr
is invalid; pointeradd(Ptr1,16) -> Based_ptr is valid.

• Subtract two pointers to obtain the logical difference. The result is a size_t1 value.

 Diff = Ptr2 - Ptr1;

• Compare pointer expressions using infix operators.

 if Ptr2 > Ptr1 then
 Diff = Ptr2 - Ptr1;

• Compare pointer expressions to null strings (' ' or ' 'b).

1 If the LP(32) compiler option is in effect, size_t is FIXED BIN(31); if the LP(64) compiler option is in effect,
size_t is FIXED BIN(63).

Intermediate results

Chapter 3. Expressions and references 55

The NULLSTRPTR suboption of the DEFAULT compiler option determines how the compiler handles
assignments of null strings to pointers and comparisons of null strings to pointers. In both cases, the
option determines if the null string is treated as if it were a reference to the NULL built-in function or to
the SYSNULL built-in function.

For example, if the NULLSTRPTR(SYSNULL) suboption is in effect, the assignment in the following
code assigns SYSNULL() to header, and the comparison produces a true value if header equals to
SYSNULL().

 dcl header pointer;

 header = '';

 ...

 if header = '' then...

• Use pointer expressions in arithmetic contexts using the BINARYVALUE built-in function.

 Diff = Bin31 + binaryvalue(Ptr1);

• Use computational expressions in pointer contexts using the POINTERVALUE built-in function.

 dcl 1 Cvtprt pointer based(pointervalue(16));
 dcl 1 Cvt based(Cvtptr),
 2 Cvt ...;

If necessary, the expressions are converted to size_t1.

A PL/I block can use pointer arithmetic to access any element within a structure or an array variable.
However, the block must be passed the containing structure or array variable, or have the referenced
aggregate within its name scope.

Arithmetic operations
An arithmetic operation is specified by combining operands with one arithmetic operator. Arithmetic
operations can also be specified by the ADD, SUBTRACT, DIVIDE, and MULTIPLY built-in functions.

You can use the following operators in arithmetic operations:

Table 24. Arithmetic operator

Operator Operator name

+ Addition

- Subtraction

* Multiplication

⁄ Division

** Exponentiation

The plus sign and the minus sign can appear as prefix operators or as infix operators. All other arithmetic
operators can appear only as infix operators.

Prefix operators can precede and be associated with any of the operands of an infix operation. For
example, in the expression A*-B, the minus sign indicates that the value of A is multiplied by -1 times the
value of B.

More than one prefix operator can precede and be associated with a single variable. More than one
positive prefix operator has no cumulative effect, but two negative prefix operators have the same effect
as a single positive prefix operator.

Intermediate results

56 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Data conversion in arithmetic operations
The two operands of an arithmetic operation can differ in type, base, mode, precision, and scale. When
they differ, conversion takes place.

For coded arithmetic operands, you can also determine conversions by using Table 25 on page 59. Each
operand is converted to the type, base, and mode of the result. It is not necessarily converted to the
result's precision and scale.

Note: Scaled FIXED BINARY operands are converted to scaled FIXED DECIMAL before any operations on
them are performed.

Type
Character operands are converted to FIXED DECIMAL(N,0). Bit operands are converted to FIXED
BINARY(M,0). Numeric character operands are converted to DECIMAL with scale and precision
determined by the picture-specification.

See Appendix A, “Limits,” on page 627 for the maximums.

Graphic, widechar, and uchar variables and strings are allowed in all computational contexts. If
conversion is necessary, the rules followed are the same as for character.

The result of an arithmetic operation is always in coded arithmetic form. Type conversion is the only
conversion that can take place in an arithmetic prefix operation.

Base
If the bases of the two operands differ, the decimal operand is converted to its binary equivalent.

Mode
If the modes of the two operands differ, the real operand is converted to complex mode by acquiring an
imaginary part of zero with the same base, scale, and precision as the real part. But there is an exception.

In the case of exponentiation when the second operand (the exponent of the operation) is fixed-point real
with a scaling factor of zero, conversion is not necessary.

Precision
If only precisions and/or scaling factors vary, type conversion is not necessary.

Scale
If the scales of the two operands differ, the fixed-point operand is converted to floating-point scale. But
there is an exception.

In the case of exponentiation when the first operand is of floating-point scale and the second operand
(the exponent of the operation) is fixed-point with a scaling factor of zero, that is, an integer or a variable
that has been declared with precision (p,0), conversion is not necessary, but the result is floating-point.

If both operands of an exponentiation operation are fixed-point, conversions can occur in one of the
following ways:

• Both operands are converted to floating-point if the exponent has a precision other than (p,0).
• The first operand is converted to floating-point unless the exponent is an unsigned integer.
• The first operand is converted to floating-point if precisions indicate that the result of the fixed-point

exponentiation would exceed the maximum number of digits allowed.

Results of arithmetic operations
After any necessary conversion of the operands in an expression has been carried out, the arithmetic
operation is performed and a result is obtained. This result can be the value of the expression, or it can be
an intermediate result upon which further operations are to be performed, or a condition can be raised.

Table 25 on page 59 and Table 26 on page 60 show the attributes and precisions that result from
various arithmetic operations.

Data conversion in arithmetic operations

Chapter 3. Expressions and references 57

Table 30 on page 63 shows the attributes of the result for the special cases of exponentiation noted in
the right-hand columns of Table 25 on page 59 and Table 26 on page 60.

In an add or subtract of FIXED(p1,q1) and FIXED(p2,q2), ABS(q1-q2) must be less than or equal to N for
DECIMAL and M for BINARY.

In a multiply or divide of FIXED(p1,q1) and FIXED(p2,q2), the resulting scale factor must be between
-128 and 127.

If the result of any operation has the attributes FIXED BIN(p,q), then q must be between 0 and p
(inclusive).

If both operands in an addition, multiplication or division are UNSIGNED FIXED BIN, then the result also
has the UNSIGNED attribute.

On the z/OS platform, the choice of which set of instructions is used for a float calculation is determined
by two compiler options:

• Under FLOAT(DFP)

– All computations that would yield a FLOAT DEC result are done using the IEEE decimal floating-point
instructions.

– All computations that would yield a FLOAT BIN result are done using the floating-point instructions
for the format specified by the HEXADEC and IEEE suboptions of the DEFAULT compiler option.

• Under FLOAT(NODFP)

– All computations that would yield a FLOAT result are done using the floating-point instructions for the
format specified by the HEXADEC and IEEE suboptions of the DEFAULT compiler option.

So, under the FLOAT(NODFP) and DEFAULT(HEXADEC) options, all computations are done using the
hexadecimal floating-point instructions, and variables declared IEEE will be converted to HEXADEC. But,
under the FLOAT(NODFP) and DEFAULT(IEEE) options, all computations are done using the IEEE binary
floating-point instructions, and variables declared HEXADEC will be converted to IEEE as necessary.

On all other platforms, float calculations are done using the IEEE binary floating-point instructions native
to that platform.

Under the compiler option RULES(ANS), if one operand is scaled FIXED DECIMAL and the other is
FIXED BINARY, the FIXED BINARY value is converted to FIXED DECIMAL. Table 27 on page 60 shows
the attributes and precisions that result for this case under compiler option RULES(ANS). For more
information about the RULES compiler option, see the Programming Guide.

Results of arithmetic operations

58 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 25. Results of arithmetic operations for one or more FLOAT operands

1st Operand
(p1,q1)

2nd Operand
(p2,q2)

Attributes of
the Result

for Addition,
Subtraction,

Multiplication,
or Division

Addition
or

Subtraction
Precision

Multiplication
Precision

Division
Precision

Attributes
of the

Result for
Exponentiation

FLOAT
DECIMAL
(p1)

FLOAT
DECIMAL
(p2)

FLOAT
DECIMAL
(p)

p = MAX(p1,p2)

FLOAT
DECIMAL (p)
(unless special case
C applies)
p = MAX(p1,p2)

FLOAT
DECIMAL
(p1)

FIXED
DECIMAL
(p2,q2)

FIXED
DECIMAL
(p1,q1)

FLOAT
DECIMAL
(p2)

FLOAT
BINARY
(p1)

FLOAT
BINARY
(p2)

FLOAT
BINARY
(p)

FLOAT
BINARY (p)
(unless special case
C applies)
p = MAX(p1,p2)

FLOAT
BINARY
(p1)

FIXED
BINARY
(p2,q2)

FIXED
BINARY
(p1,q1)

FLOAT
BINARY
(p2)

FIXED
DECIMAL
(p1,q1)

FLOAT
BINARY
(p2)

FLOAT
BINARY
(p)

p = MAX(
 CEIL(p1*3.32),p2)

FLOAT
BINARY (p)
(unless special case
A or C applies)
p = MAX(
CEIL(p1*3.32),p2)

FLOAT
DECIMAL
(p1)

FIXED
BIN
(p2,q2)

FLOAT
DECIMAL
(p1)

FLOAT
BINARY
(p2)

FIXED
BINARY
(p1,q1)

FLOAT
DECIMAL
(p2)

FLOAT
BINARY
(p)

p = MAX(p1,CEIL(p2*3.32))

FLOAT
BINARY (p)
(unless special case
B or C applies)
p = MAX(
 p1,CEIL(p2*3.32))

FLOAT
BINARY
(p1)

FIXED
DECIMAL
(p2,q2)

FLOAT
BINARY
(p1)

FLOAT
DECIMAL
(p2)

Table 25. Results of arithmetic operations for one or more FLOAT operands

Notes:

1. Special cases of exponentiation are described in Table 30 on page 63.
2. For a table of CEIL(N*3.32) values, see Table 35 on page 78.

Results of arithmetic operations

Chapter 3. Expressions and references 59

Table 26. Results of arithmetic operations between two unscaled FIXED operands under RULES(ANS)

1st Operand
(p1,q1)

2nd Operand
(p2,q2)

Attributes of
the Result for

Addition,
Subtraction,

Multiplication,
or Division

Addition
or

Subtraction
Precision

Multiplicatio
n

Precision

Division
Precision

Attributes
of the

Result for
Exponentiation

FIXED
DECIMAL
(p1,0)

FIXED
DECIMAL
(p2,0)

FIXED
DECIMAL
(p,q)

p = 1
+MAX(p1,p2)
q = 0

p = 1
 +p1+p2
q = 0

p = N
q = N-p1

FLOAT DECIMAL (p)
(unless special case
A applies)
p = MAX(p1,p2)

FIXED
BINARY
(p1,0)

FIXED
BINARY
(p2,0)

FIXED
BINARY
(p,0)

p = 1
+MAX(p1-q1,
p2-q2) +q
q = 0

p = 1+p1
 +p2
q = 0

p = M
q = 0

FLOAT BINARY (p)
(unless special case
B applies)
p = MAX(p1,p2)

FIXED
DECIMAL
(p1,0)

FIXED
BINARY
(p2,0)

FIXED
BINARY
(p,0)

p = 1
 +MAX(r,p2)
q = 0

p = 1
 +r+p2
q = 0

p = M
q = 0

FLOAT BINARY (p)
(unless special case
A applies)
p = MAX(CEIL
 (p1*3.32),p2)

FIXED
BINARY
(p1,0)

FIXED
DECIMAL
(p2,0)

FIXED
BINARY
(p,0)

p = 1
 +MAX(p1,t)
q = 0

p = 1
 +p1+t
q = 0

p = M
q = 0

FLOAT BINARY (p)
(unless special case
B applies)
p = MAX(CEIL
 (p1*3.32),p2)

M is the maximum precision for FIXED BINARY.
N is the maximum precision for FIXED DECIMAL.
r = 1 + CEIL(p1*3.32)
s = CEIL(ABS(q1*3.32)) * SIGN(q1)

t = 1 + CEIL(p2*3.32)
u = CEIL(ABS(q2*3.32)) * SIGN(q2)
v = CEIL(p2/3.32)
w = CEIL(p1/3.32)

Table 26. Results of arithmetic operations between two unscaled FIXED operands under RULES(ANS)

Notes:

The scaling factor must be in the range -128 through +127.

1. Special cases of exponentiation are described in Table 30 on page 63.
2. For a table of CEIL(N*3.32) values, see Table 35 on page 78.
3. Under RULES(ANS) a divide with unscaled FIXED operands can produce a scaled result only if both operands are FIXED DECIMAL.

Table 27. Results of arithmetic operations between two scaled FIXED operands under RULES(ANS)

1st Operand
(p1,q1)

2nd Operand
(p2,q2)

Attributes of
the Result for

Addition,
Subtraction,

Multiplication,
or Division

Addition
or

Subtraction
Precision

Multiplicatio
n

Precision

Division
Precision

Attributes
of the

Result for
Exponentiation

FIXED
DECIMAL
(p1,q1)

FIXED
DECIMAL
(p2,q2)

FIXED
DECIMAL
(p,q)

p = 1 +
 MAX(p1-q1,
 p2-q2) +q
q =
 MAX(q1,q2)

p = 1
 +p1+p2
q =
 q1+q2

p = N
q =
 N-p1+q1-q2

FLOAT DECIMAL (p)
(unless special case
A applies)
p = MAX(p1,p2)

FIXED
DECIMAL
(p1,q1)

FIXED
BINARY
(p2,0)

FIXED
DECIMAL
(p,q)

p = 1
 +MAX(p1-
 q1,v) +q
q = q1

p = 1
 +p2+v
q = q1

p = N
q = N-p1+q1

FLOAT BINARY (p)
(unless special case
A applies)
p = MAX(CEIL
 (p1*3.32),p2)

Results of arithmetic operations

60 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 27. Results of arithmetic operations between two scaled FIXED operands under RULES(ANS) (continued)

1st Operand
(p1,q1)

2nd Operand
(p2,q2)

Attributes of
the Result for

Addition,
Subtraction,

Multiplication,
or Division

Addition
or

Subtraction
Precision

Multiplicatio
n

Precision

Division
Precision

Attributes
of the

Result for
Exponentiation

FIXED
BINARY
(p1,0)

FIXED
DECIMAL
(p2,q2)

FIXED
DECIMAL
(p,q)

p = 1
 +MAX(p2-
 q2,w) +q
q = q2

p = 1
 +p2+w
q = q1

p = N
q = N-w-q2

FLOAT BINARY (p)
(unless special case
B applies)
p = MAX(CEIL
 (p1*3.32),p2)

M is the maximum precision for FIXED BINARY.
N is the maximum precision for FIXED DECIMAL.
r = 1 + CEIL(p1*3.32)
s = CEIL(ABS(q1*3.32)) * SIGN(q1)

t = 1 + CEIL(p2*3.32)
u = CEIL(ABS(q2*3.32)) * SIGN(q2)
v = CEIL(p2/3.32)
w = CEIL(p1/3.32)

Table 27. Results of arithmetic operations between two scaled FIXED operands under RULES(ANS)

Notes:

The scaling factor must be in the range -128 through +127. In addition and subtraction operations, the absolute value of the difference in
the scale factors must not be greater than M for FIXED BIN operations and N for FIXED DEC operations.

1. Special cases of exponentiation are described in Table 30 on page 63.
2. For a table of CEIL(N*3.32) values, see Table 35 on page 78.
3. Under RULES(ANS), scaled FIXED BINARY is not allowed.

Table 28. Results of arithmetic operations between two FIXED operands under RULES(IBM)

1st Operand
(p1,q1)

2nd Operand
(p2,q2)

Attributes of
the Result for

Addition,
Subtraction,

Multiplication,
or Division

Addition
or

Subtraction
Precision

Multiplicatio
n

Precision

Division
Precision

Attributes
of the

Result for
Exponentiation

FIXED
DECIMAL
(p1,q1)

FIXED
DECIMAL
(p2,q2)

FIXED
DECIMAL
(p,q)

p = 1
+MAX(p1-q1,
p2-q2) +q
q =
 MAX(q1,q2)

p = 1
 +p1+p2
q =
 q1+q2

p = N
q =
 N-p1+q1-q2

FLOAT DECIMAL (p)
(unless special case
A applies)
p = MAX(p1,p2)

FIXED
BINARY
(p1,q1)

FIXED
BINARY
(p2,q2)

FIXED
BINARY
(p,q)

p = 1
 +MAX(p1-q1,
 p2-q2) +q
q =
 MAX(q1,q2)

p = 1
 +p1+p2
q = q1+q2

p = M
q = M-p1
 +q1-q2

FLOAT BINARY (p)
(unless special case
B applies)
p = MAX(p1,p2)

FIXED
DECIMAL
(p1,q1)

FIXED
BINARY
(p2,q2)

FIXED
BINARY
(p,q)

p = 1
 +MAX(r-s,
p2-q2)+q
q =
 MAX(s,q2)

p = 1+r
 +p2
q = s+q2

p = M
q = M-r
 +s-q2

FLOAT BINARY (p)
(unless special case
A applies)
p =MAX(
CEIL((p1*3.32),p2)

FIXED
BINARY
(p1,q1)

FIXED
DECIMAL
(p2,q2)

FIXED
BINARY
(p,q)

p = 1
 +MAX(p1-
 q1,t-u) +q
q =
 MAX(s,q1,u)

p = 1
 +p1+t
q = q1+u

p = M
q = M-p1
 +q1-u

FLOAT BINARY (p)
(unless special case
B applies)
p = MAX(p1,
 CEIL(p2*3.32))

Results of arithmetic operations

Chapter 3. Expressions and references 61

Table 28. Results of arithmetic operations between two FIXED operands under RULES(IBM) (continued)

1st Operand
(p1,q1)

2nd Operand
(p2,q2)

Attributes of
the Result for

Addition,
Subtraction,

Multiplication,
or Division

Addition
or

Subtraction
Precision

Multiplicatio
n

Precision

Division
Precision

Attributes
of the

Result for
Exponentiation

M is the maximum precision for FIXED BINARY.
N is the maximum precision for FIXED DECIMAL.
r = 1 + CEIL(p1*3.32)
s = CEIL(ABS(q1*3.32)) * SIGN(q1)

t = 1 + CEIL(p2*3.32)
u = CEIL(ABS(q2*3.32)) * SIGN(q2)
v = CEIL(p2/3.32)
w = CEIL(p1/3.32)

Table 28. Results of arithmetic operations between two FIXED operands under RULES(IBM)

Notes:

The scaling factor must be in the range -128 through +127. In addition and subtraction operations, the absolute value of the difference in
the scale factors must not be greater than M for FIXED BIN operations and N for FIXED DEC operations.

1. Special cases of exponentiation are described in Table 30 on page 63.
2. For a table of CEIL(N*3.32) values, see Table 35 on page 78.
3. The bounds of the precision p for FIXED BINARY are determined by the FIXEDBIN suboption and for FIXED DECIMAL by the FIXEDDEC

suboption of the LIMITS compiler option. The LIMITS option has no effect on the bounds of the scaling factor q.

Consider the following expression:

 A * B + C

The operation A * B is performed first, to give an intermediate result. Then the value of the expression is
obtained by performing the operation (intermediate result) + C.

PL/I gives the intermediate result attributes the same way it gives attributes to any variable. The
attributes of the result are derived from the attributes of the two operands (or the single operand in
the case of a prefix operation) and the operator involved. The way the attributes of the result are derived
is further explained under “Targets” on page 53.

The ADD, SUBTRACT, MULTIPLY, and DIVIDE built-in functions allow you to override the implementation
precision rules for addition, subtraction, multiplication, and division operations.

FIXED division
FIXED division can result in overflows or truncation.

Consider the following expression:

 25+1/3

The result of evaluating this expression is undefined and the FIXEDOVERFLOW condition is raised
because FIXED division results in a value of maximum implementation defined precision.

Now consider the following expression:

 25+01/3

The result is 25.3333333333333 (when the maximum precision is 15) because constants have the
precision with which they are written.

The results of the two evaluations are reached as shown in Table 29 on page 63.

Results of arithmetic operations

62 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 29. Comparison of FIXED division and constant expressions

Item Precision Result

1
3

1/3
25

25+1/3

(1,0)
(1,0)

(15,14)
(2,0)

(15,14)

1
3

0.33333333333333
25

undefined
(truncation on left;

FIXEDOVERFLOW is raised
when the maximum

precision is 15)

01
3

01/3
25

25+01/3

(2,0)
(1,0)

(15,13)
(2,0)

(15,13)

01
3

00.3333333333333
25

25.3333333333333

The PRECISION built-in function can also be used. See the following example:

 25+prec(1/3,15,13)

Note: Named constants are recommended for situations that require exact precisions.

Using exponentiation
This topic describes how exponentiation is handled in PL/I.

Table 30. Special cases for exponentiation

Case First operand Second operand Attributes of result

A FIXED DECIMAL
(p1,q1)

Integer with value n FIXED DECIMAL (p,q)

(provided p <= N)

where

p = (p1 + 1)*n-1

q = q1*n

B FIXED BINARY (p1,q1) Integer with value n FIXED BINARY (p,q)

(provided p <= M)

where

p = (p1 + 1)*n-1

q = q1*n

C FLOAT (p1) FIXED (p2,0) FLOAT (p1) with base of first operand

Results of arithmetic operations

Chapter 3. Expressions and references 63

Table 30. Special cases for exponentiation (continued)

Case First operand Second operand Attributes of result

Special cases of x**y in real/complex modes:
Real mode:

Complex mode:
If x=0 and y>0,

result is 0. If x=0, and real part of y>0 and imaginary part of y=0, result is 0.
If x=0 and y<=0,

ERROR condition is raised. If x=0 and real part of y<=0 or imaginary part of y ¬=0, ERROR condition
is raised.

If x<0 and y not FIXED (p,0),
ERROR condition is raised. If x¬=0 and real and imaginary parts of y=0, result is 1.

Considerations in using exponentiation in simple calculations
If you use exponentiation, simple calculations might become incorrect; for example, 10**-3 results in
0.0009 erroneously, instead of 0.0010. In such cases, round off the result; or, do not use exponentiation
but use division or multiplication.

Bit operations
A bit operation is specified by combining operands with a logical operator.

The following table lists logical operators that can be used for bit operations and shows whether each
operator can be used as a prefix or infix operator.

Table 31. Logical operators for bit operations

Operator
symbol Operator name As prefix operator As a infix operator

¬ not⁄exclusive-or Yes Yes

& and No Yes

| or No Yes

The operators have the same function as in the Boolean algebra.

Operands of a bit operation are converted, if necessary, to bit strings before the operation is performed.
If the operands of an infix operation do not have the same length, the shorter is padded on the right with
'0'B.

The result of a bit operation is a bit string equal in length to the length of the operands.

Bit operations are performed on a bit-by-bit basis. Table 32 on page 64 illustrates the result for each bit
position for each of the operators.

Table 32. Bit operations

A B ¬A ¬B A&B A|B A¬B

1 1 0 0 1 1 0

1 0 0 1 0 1 1

0 1 1 0 0 1 1

0 0 1 1 0 0 0

Bit operations

64 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 33 on page 65 shows some examples of bit operations.

Table 33. Bit operation examples

For these operands and values This operation Yields this result

A = '010111'B
B = '111111'B
C = '110'B
D = 5

¬ A '101000'B

¬ C '001'B

C & B '110000'B

A | B '111111'B

A ¬ B ''101000''B

A ¬ C '100111'B

C | B '111111'B

A | (¬C) '011111'B

¬((¬C)|(¬B)) '110111'B

SUBSTR(A,1,1)|(D=5) '1'B

BOOL built-in function
In addition to the not, exclusive-or, and, and or operations that you specify by using the operators ¬, &,
and |, you can also use the BOOL built-in function to perform Boolean operations.

Related information
BOOL built-in function
BOOL returns a bit string that is the result of the Boolean operation z, on x and y. The length of the result
is equal to that of the longer operand, x or y.

Comparison operations
A comparison operation is specified by combining operands with one infix operator.

You can use the following infix operators in comparison operations:

• <
• ¬<
• <=
• =
• ¬= or <>
• >=
• >
• ¬>

Comparison operations

Chapter 3. Expressions and references 65

The result of a comparison operation is always a bit string of length 1. The value is '1'B if the relationship
is true, or '0'B if the relationship is false.

Comparisons are defined as follows:

Algebraic
Is the comparison of signed arithmetic values in coded arithmetic form. If operands differ in
base, scale, precision, or mode, they are converted in a manner analogous to arithmetic operation
conversions. Numeric character data is converted to coded arithmetic before comparison. Only the
operators =, ¬=, and <> are valid for comparison of operands that are complex numbers.

Character
Is a left-to-right, character-by-character comparison of characters according to the binary value of the
bytes.

Bit
Is a left-to-right, bit-by-bit comparison of binary digits.

Graphic
Is a left-to-right, symbol-by-symbol comparison of DBCS characters. The comparison is based on the
binary values of the DBCS characters.

Uchar
Is a left-to-right, uchar-by-uchar comparison of characters according to the binary value of the UTF-8
characters.

Widechar
Is a left-to-right, widechar-by-widechar comparison of characters according to the binary value of the
byte-pairs.

Ordinal data
Is a comparison of ordinals of the same type using relational operators.

Pointer and offset data
Is a comparison of pointer and offset values containing any relational operators. However, the only
conversion that can take place is offset to pointer.

Program-control data
Is a comparison of the internal coded forms of the operands. Only the comparison operators =, ¬=,
and <> are allowed; area variables cannot be compared. No type conversion can take place; all type
differences between operands for program-control data comparisons are in error.

Comparisons are equal for the following operands:

Entry
In a comparison operation, it is not an error to specify an entry variable whose value is an entry
point of an inactive block. Entry names on the same PROCEDURE or ENTRY statement do not
compare equal.

Format
Format labels on the same FORMAT statement compare equal.

File
If the operands represent file values, all of whose parts are equal.

Label
Labels on the same statement compare equal. In a comparison operation, it is not an error to
specify a label variable whose value is a label constant used in a block that is no longer active.

The label on a compound statement does not compare equal with that on any label contained in
the body of the compound statement.

If the operands of a computational data comparison have data types that are appropriate to different
types of comparison, the operand of the lower precedence is converted to conform to the comparison
type of the other. The precedence of comparison types is (1) algebraic (highest), (2) uchar, (3) widechar,
(4) graphic, (5) character, (6) bit. For example, if a bit string is compared with a fixed decimal value, the bit
string is converted to fixed binary for algebraic comparison with the decimal value. The decimal value is
also converted to fixed binary.

Comparison operations

66 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

In the comparison of strings of unequal lengths, the shorter string is padded on the right. This padding
consists of the following:

• Blanks in a character comparison
• '0'B in a bit comparison
• A graphic (DBCS) blank in a graphic comparison
• A uchar blank ('20'ux) in a uchar comparison
• A widechar blank ('0020'wx) in a widechar comparison

The following example shows a comparison operation in an IF statement:

 if A = B
 then action-if-true;
 else action-if-false;

The evaluation of the expression A = B yields either '1'B for true, or '0'B for false.

Consider the following assignment statement:

 X = A <= B;

The value '1'B is assigned to X if A is less than B; otherwise, the value '0'B is assigned.

Consider the following assignment statement:

 X = A = B;

The first equal symbol is the assignment symbol; the second equal symbol is the comparison operator.
The value '1'B is assigned to X if A is equal to B; otherwise, the value '0'B is assigned.

Here is an example of comparisons in an arithmetic expression:

 (X<0)*A + (0<=X & X<=100)*B + (100<X)*C

The value of the expression is A, B, or C and is determined by the value of X.

Concatenation operations
Concatenation signifies that the operands are to be joined in such a way that the last character, bit,
graphic, uchar, or widechar of the operand to the left immediately precedes the first character, bit,
graphic, uchar, or widechar of the operand to the right, with nothing intervening.

A concatenation operation is specified by combining operands with the concatenation infix operator:

∥

The concatenation operator can cause conversion to a string type because concatenation can be
performed only upon strings—either character, bit, graphic, uchar, or widechar. The results differ
according to the setting of the RULES compiler option.

Results under RULES(IBM)
When you specify RULES(IBM), the concatenation operator behaves as follows:

• If either operand is uchar, the result is uchar.
• If either operand is widechar, the result is widechar.
• If either operand is graphic, the result is graphic.
• If either operand is bit or binary, the result is bit.
• Otherwise, the result is character.

Concatenation operations

Chapter 3. Expressions and references 67

See the following example:

 dcl B bin(4) initial(4),
 C bit(1) initial('1'b);
 put skip list (B ∥ C);

 /* Produces '01001' not 'bbb41' */

Results under RULES(ANS)
When you specify RULES(ANS), the concatenation operator behaves as follows:

• If either operand is uchar, the result is uchar.
• If either operand is widechar, the result is widechar.
• If either operand is graphic, the result is graphic.
• If both operands are bit, the result is bit.
• Otherwise the result is character.

Consider this example:

 dcl B bin(4) initial(4),
 C bit(1) initial('1'b);
 put skip list (B ∥ C);

 /* Produces 'bbb41', not '01001' */

The result of a concatenation operation is a string whose length is equal to the sum of the lengths of the
two operands, and whose type (that is, character, bit, graphic, uchar, or widechar) is the same as that of
the two operands.

If an operand requires conversion for concatenation, the result depends upon the length of the string to
which the operand is converted.

For these operands and values This operation Yields this result

A = '010111'B
B = '101'B
C = 'xy,Z'
D = 'aa/BB'

A ∥ B '010111_101'B

A ∥ A ∥ B '010111_010111_101'
B

C ∥ D 'xy,Zaa/BB'

D ∥ C 'aa/BBxy,Z'

B ∥ D '101aa/BB'

In the last example, the bit string '101'B is converted to the character string '101' before the
concatenation is performed. The result is a character string.

Combinations of operations
Different types of operations can be combined within the same operational expression. Any combination
can be used.

Consider the following example:

 declare Result bit(3),
 A fixed decimal(1),
 B fixed binary (3),

Combinations of operations

68 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 C character(2), D bit(4);
 Result = A + B < C & D;

Each operation within the expression is evaluated according to the rules for that kind of operation, with
necessary data conversions taking place before the operation is performed, as follows:

• The decimal value of A is converted to binary base.
• The binary addition is performed, adding A and B.
• The binary result is compared with the converted binary value of C.
• The bit result of the comparison is extended to the length of the bit variable D, and the & operation is

performed.
• The result of the & operation, a bit string of length 4, is assigned to Result without conversion, but with

truncation on the right.

The expression in this example is evaluated operation-by-operation, from left to right. The order of
evaluation, however, depends upon the priority of the operators appearing in the expression.

Related information
“Priority of operators” on page 69
In the evaluation of expressions, operators have different priorities.

Priority of operators
In the evaluation of expressions, operators have different priorities.

Table 34 on page 69 shows the priority of the operators in the evaluation of expressions.

Table 34. Priority of operations and guide to conversions

Priority Operator Type of operation Remarks

1 ** Arithmetic The result is in coded arithmetic form.

prefix +, - Arithmetic No conversion is required if the operand is in
coded arithmetic form.

The operand is converted to FIXED DECIMAL
if it is a CHARACTER string or numeric
character (PICTURE) representation of a fixed-
point decimal number.

The operand is converted to FLOAT DECIMAL if it
is a numeric character (PICTURE) representation
of a floating-point decimal number.

The operand is converted to FIXED BINARY if it
is a BIT string.

prefix ¬ Bit string All non-BIT data is converted to BIT.

2 *, ⁄ Arithmetic The result is in coded arithmetic form.

3 infix +, - Arithmetic The result is in coded arithmetic form.

4 ∥ Concatenation See “Results under RULES(ANS)” on page 68
and “Results under RULES(IBM)” on page 67.

5 <, ¬<, <=, =, ¬= or
<>, >=, >, ¬>

Comparison The result is always either '1'B or '0'B.

6 & Bit string All non-BIT data is converted to BIT.

7 │ Bit string All non-BIT data is converted to BIT.

infix ¬ Bit string All non-BIT data is converted to BIT.

Priority of operators

Chapter 3. Expressions and references 69

Table 34. Priority of operations and guide to conversions

Note:

1. The operators are listed in order of priority, group 1 having the highest priority and group 7 the lowest. All
operators in the same priority group have the same priority. For example, the exponentiation operator ** has
the same priority as the prefix + and prefix - operators and the not operator ¬.

2. For priority group 1, if two or more operators appear in an expression, the order of priority is right to left
within the expression; that is, the rightmost exponentiation or prefix operator has the highest priority, the
next rightmost the next highest, and so on. For all other priority groups, if two or more operators in the same
priority group appear in an expression, their order or priority is their order left to right within the expression.

The order of evaluation of the expression A + B < C & D is the same as if the elements of the
expression were parenthesized as (((A + B) < C) & D).

The order of evaluation (and, consequently, the result) of an expression can be changed through the use
of parentheses. Expressions enclosed in parentheses are evaluated first, to a single value, before they are
considered in relation to surrounding operators.

The above expression, for example, might be changed as follows:

 (A + B) < (C & D)

The value of A converts to fixed-point binary, and the addition is performed, yielding a fixed-point binary
result (result_1). The value of C converts to a bit string (if valid for such conversion) and the and operation
is performed. At this point, the expression is reduced to Result_1 < Result_2.

Result_2 is converted to binary, and the algebraic comparison is performed, yielding a bit string of
length 1 for the entire expression.

The priority of operators is defined only within operands (or sub-operands). Consider the following
example:

 A + (B < C) & (D ∥ E ** F)

In this case, PL/I specifies only that the exponentiation occurs before the concatenation. It does not
specify the order of the evaluation of (D∥E ** F) in relation to the evaluation of the other operand
(A + (B < C)).

Any operational expression (except a prefix expression) must eventually be reduced to a single infix
operation. The operands and operator of that operation determine the attributes of the result of the entire
expression. In the following example, the & operator is the operator of the final infix operation.

 A + B < C & D

The result of the evaluation is a bit string of length 4.

In the next example, because of the use of parentheses, the operator of the final infix operation is the
comparison operator:

 (A + B) < (C & D)

The evaluation yields a bit string of length 1.

Array expressions
Array expressions can include operators (both prefix and infix), element variables, and constants. The
rules for combining operations and for data conversion of operands are the same as for element
operations.

Array expressions are allowed as the following:

Priority of operators

70 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• The source in an assignment or in multiple assignments
• The argument to the ALL, ANY, POLY, PROD or SUM built-in functions
• An argument to a user procedure and function, as long as the associated parameter is not a string of

unknown length
• An item in the data-lists of PUT LIST and PUT EDIT statements

Evaluation of an array expression yields an array result. All operations performed on arrays are performed
element-by-element, in row-major order. Therefore, all arrays referred to in an array expression must
have the same number of dimensions, and each dimension must be of identical bounds.

Prefix operators and arrays
The operation of a prefix operator on an array produces an array of identical bounds. Each element of this
array is the result of the operation performed on each element of the original array.

Example

 If A is the array 5 3 -9
 1 2 7
 6 3 -4

 then -A is the array -5 -3 9
 -1 -2 -7
 -6 -3 4

Infix operators and arrays
Infix operations that include an array variable as one operand can have an element or another array as the
other operand.

Array-and-element operations
The result of an expression with an element, an array, and an infix operator is an array with bounds
identical to the original array.

Each element of the resulting array is the result of the operation between each corresponding element of
the original array and the single element. See the following example:

 If A is the array 5 10 8
 12 11 3

 then A*3 is the array 15 30 24
 36 33 9

 and 9 > A is the array of 1 0 1
 bit strings of length 1 0 0 1

The element of an array-element operation can be an element of the same array. Consider the following
assignment statement:

 A = A * A(1,2);

Again, using the above values for A, the newly assigned value of A will be as follows:

 50 100 800
 1200 1100 300

That is, the value of A(1,2) is fetched again.

Prefix operators and arrays

Chapter 3. Expressions and references 71

Array-and-array operations
If the two operands of an infix operator are arrays, the arrays must have the same number of dimensions,
and corresponding dimensions must have identical lower bounds and identical upper bounds.

The result is an array with bounds identical to those of the original arrays; the operation is performed
upon the corresponding elements of the two original arrays.

Example

 If A is the array 2 4 3
 6 1 7
 4 8 2

 and if B is the array 1 5 7
 8 3 4
 6 3 1

 then A+B is the array 3 9 10
 14 4 11
 10 11 3

 and A*B is the array 2 20 21
 48 3 28
 24 24 2

 and A>B is the array of 1 0 0
 bit strings of length 1 0 0 1
 0 1 1

Structure expressions
Structure expressions, unlike structure references, are allowed only in assignments and as arguments
to procedures or functions, as long as the associated parameter has constant extents, namely, constant
string lengths, area sizes, and array bounds.

All structure variables appearing in a structure expression must have identical structuring:

• The structures must have the same minor structuring and the same number of contained elements and
arrays.

• The positioning of the elements and arrays within the structure (and within the minor structures, if any)
must be the same.

• Arrays in corresponding positions must have identical bounds.

Restricted expressions
Where PL/I requires a (possibly signed) constant, a restricted expression can be used.

A restricted expression is an expression whose value is calculated at compile time and used as a
constant. For example, you can use expressions to define constants required for the following:

• Extents in static, parameter, and based declarations
• Extents in entry descriptions
• Values and iteration factors to be used in static initialization

A restricted expression is identical to a normal expression but requires that each operand be one of the
following:

• A constant or a named constant

A named constant must be declared before it is used

Structure expressions

72 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• A built-in function that is applied to a restricted expression or restricted expressions, where the built-in
function is from the following categories:

– String-handling
– Arithmetic (except RANDOM and all arguments must be REAL)
– Mathematical (if all arguments are REAL)
– Floating-point inquiry
– Floating-point manipulation
– Integer manipulation
– Precision-handling
– Array-handling functions: DIMACROSS, DIMENSION, HBOUND, HBOUNDACROSS, LBOUND, and

LBOUNDACROSS
– Storage-control functions: BINARYVALUE, LENGTH, NULL, OFFSETVALUE, POINTERVALUE, SIZE,

STORAGE, and SYSNULL
– Miscellaneous functions: BYTE, CHARVAL, COLLATE, INDICATORS, PACKAGENAME, POPCNT,

PROCEDURENAME, RANK, SOURCEFILE, SOURCELINE, and WCHARVAL
• Type functions: BIND, CAST, FIRST, LAST, RESPEC, SIZE, and VALUE

Examples

 dcl Max_names fixed bin value (1000),
 Name_size fixed bin value (30),
 Addr_size fixed bin value (20),
 Addr_lines fixed bin value (4);
 dcl 1 Name_addr(Max_names),
 2 Name char(Name_size),
 2 * union,
 3 Address char(Addr_lines*Addr_size), /* address */
 3 addr(Addr_lines) char(Addr_size),
 2 * char(0);
 dcl One_Name_addr char(size(Name_addr(1))); /* 1 name/addr*/
 dcl Two_Name_addr char(length(One_Name_addr)
 2); / 2 name/addrs */
 dcl Name_or_addr char(max(Name_size,Addr_size)) based;

 dcl Ar(10) pointer;
 dcl Ex entry(dim(lbound(Ar):hbound(Ar)) pointer);
 dcl Identical_to_Ar(lbound(Ar):hbound(Ar)) pointer;

If you change the value of any of the named constants in the example, all of the dependent declarations
are automatically reevaluated.

Restricted expressions

Chapter 3. Expressions and references 73

Restricted expressions

74 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 4. Data conversion
This chapter discusses data conversions for computational data. PL/I converts data when a data item with
a set of attributes is assigned to another data item with a different set of attributes.

Conversion of the value of a computational data item can change its internal representation, precision
or mode (for arithmetic values), or length (for string values). The following tables summarize the
circumstances that can cause conversion to other attributes.

Case Target attributes

Assignment Attributes of variable on left of assignment symbol

Operand in an expression Determined by rules for evaluation of expressions

Stream input (GET statement) Attributes of receiving field

Stream output (PUT statement) As determined by format list if stream is edit-
directed, otherwise character-string

Argument to PROCEDURE or ENTRY Attributes of corresponding parameter

Argument to built-in function or pseudovariable Depends on the function or pseudovariable

INITIAL attribute Other attributes of variable being initialized

RETURN statement expression Attributes specified in PROCEDURE statement

DO statement, BY, TO, or REPEAT option Attributes of control variable

The following statements can cause conversion to a CHARACTER value.

Statement Option

DISPLAY

Record I/O KEYFROMKEY

OPEN TITLE

The following statements can cause conversion to a BINARY value.

Statement Option/Attribute/Reference

DECLARE, ALLOCATE, DEFAULT length, size, dimension, bound, repetition factor

DELAY milliseconds

FORMAT (and format items in GET and PUT) iteration factor w, d, s, p

OPEN LINESIZE, PAGESIZE

I/O SKIP, LINE, IGNORE

Most statements subscript

All attributes for source and target data items (except string length) must be specified at compile time.
Conversion can raise one of the following conditions: CONVERSION, OVERFLOW, SIZE, or STRINGSIZE.
(See Chapter 16, “Conditions,” on page 349.)

Constants can be converted at compile time as well as at run time. In all cases, the conversions are as
described in this topic collection.

In the discussions of conversions, note the meaning of M and N:

© Copyright IBM Corp. 1999, 2022 75

• M is the maximum precision for FIXED BINARY. This is the value M2 from the compiler option
LIMITS(FIXEDBIN(M1,M2)).

• N is the maximum precision for FIXED DECIMAL. This is the value N2 from the compiler option
LIMITS(FIXEDDEC(N1,N2)).

More than one conversion might be required for a particular operation. The implementation does not
necessarily go through more than one. To understand the conversion rules, it is convenient to consider
them separately. Consider the following example:

 dcl A fixed dec(3,2) init(1.23);
 dcl B fixed bin(15,5);
 B = A;

In this example, the decimal representation of 1.23 is first converted to a binary (11,7) value, as
1.0011101B. Then precision conversion is performed, resulting in a binary (15,5) value of 1.00111B.

Related information
“Locator conversion” on page 247
Except in a few cases, locator data cannot be converted to other data types.

Built-in functions for computational data conversion
Conversions can take place during expression evaluation, I/O GET and PUT operations, and assignment
operations, and between arguments and parameters.

Conversions can also be initiated with the following built-in functions:

BINARY
BIT
CHAR
COMPLEX
DECIMAL

FIXED
FLOAT
GRAPHIC
IMAG
PRECISION

REAL
SIGNED
UNSIGNED
WIDECHAR

Each function returns a value with the attribute specified by the function name, performing any required
conversions.

With the exception of the conversions performed by the COMPLEX, GRAPHIC, and IMAG built-in functions,
assignment to a PL/I variable having the required attributes can achieve the conversions performed by
these built-in functions. However, you might find it easier and clearer to use a built-in function than to
create a variable solely to carry out a conversion.

Related information
“Built-in functions, pseudovariables, and subroutines” on page 375
A large number of common tasks are available in the form of built-in functions, subroutines, and
pseudovariables. When you use them, you can write less code more quickly with greater reliability. This
chapter describes the built-in functions, subroutines, and pseudovariables that you can use in your PL/I
program.

Converting string lengths
The source string is assigned to the target string from left to right. If the source string is longer than
the target, excess characters, bits, graphics, uchars, or widechars on the right are ignored, and the
STRINGSIZE condition is raised. For fixed-length targets, if the target is longer than the source, the target
is padded on the right. If STRINGSIZE is disabled, and the length of the source and/or the target is
determined at run time, and the target is too short to contain the source, unpredictable results can occur.

Note: If you use SUBTO/SUBSTR with variables as the parameters, and the variables specify a string not
contained in the target, unpredictable results can occur if the STRINGRANGE condition is not enabled.

Built-in functions for computational data conversion

76 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Character strings are padded with blanks, bit strings with '0'B, graphic strings with DBCS blanks, uchar
strings with uchar blanks, and widechar strings with widechar blanks.

 declare Subject char(10);
 Subject = 'Transformations';

'Transformations' has 15 characters, therefore, when PL/I assigns the string to Subject, it truncates five
characters from the right end of the string. This is equivalent to executing the following statement:

 Subject = 'Transforma';

The first two of the following statements assign equivalent values to Subject and the last two assign
equivalent values to Code:

 Subject = 'Physics';
 Subject = 'Physics ';
 declare Code bit(10);
 Code = '110011'B;
 Code = '1100110000'B;

The following statements do not assign equivalent values to Subject:

 Subject = '110011'B;
 Subject = '1100110000'B;

When the first statement is executed, the bit constant on the right is first converted to a character string
and is then extended on the right with blank characters rather than zero characters. This statement is
equivalent to the following statement:

 Subject = '110011bbbb';

The second statement requires only a conversion from bit to character type and is equivalent to the
following statement:

 Subject = '1100110000';

A string value is not extended with blank characters or zero bits when it is assigned to a string variable
that has the VARYING or VARYING4 attribute. Instead, the length of the target string variable is set to the
length of the assigned string. However, truncation will occur if the length of the assigned string exceeds
the maximum length declared for the varying-length string variable.

Converting arithmetic precision
When an arithmetic value has the same data attributes (except for precision) as the target, precision
conversion is required.

For fixed-point data items, decimal or binary point alignment is maintained during precision conversion.
Therefore, padding or truncation can occur on the left or right. If nonzero bits or digits on the left are lost,
the SIZE condition is raised.

For floating-point data items, truncation on the right, or padding on the right with zeros, can occur.

Converting mode
If a complex value is converted to a real value, the imaginary part is ignored. If a real value is converted to
a complex value, the imaginary part is zero.

Converting other data attributes
Changes in value can occur in converting between decimal representations and binary representations.

Source-to-target rules are given, following this section, for converting data items with the following data
attributes:

Converting arithmetic precision

Chapter 4. Data conversion 77

• Coded arithmetic:

FIXED BINARY
FIXED DECIMAL
FLOAT BINARY
FLOAT DECIMAL

• Arithmetic character PICTURE
• CHARACTER
• BIT
• GRAPHIC
• UCHAR
• WIDECHAR

In converting between binary and decimal, the factor 3.32 is used as follows:

• n decimal digits convert to CEIL (n*3.32) binary digits.
• n binary digits convert to CEIL (n/3.32) decimal digits.

Table 35 on page 78 lists CEIL values to calculate these conversions.

Table 35. CEIL (n*3.32) and CEIL (n/3.32) values

n CEIL
(n*3.32)

n CEIL
(n/3.32)

1 4 1-3 1

2 7 4-6 2

3 10 7-9 3

4 14 10-13 4

5 17 14-16 5

6 20 17-19 6

7 24 20-23 7

8 27 24-26 8

9 30 27-29 9

10 34 30-33 10

11 37 34-36 11

12 40 37-39 12

13 44 40-43 13

14 47 44-46 14

15 50 47-49 15

16 531 50-53 16

17 57 54-56 17

18 60 57-59 18

19 64 60-63 19

20 67 64-66 20

21 70 67-69 21

Converting other data attributes

78 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 35. CEIL (n*3.32) and CEIL (n/3.32) values (continued)

n CEIL
(n*3.32)

n CEIL
(n/3.32)

22 74 70-73 22

23 77 74-76 23

24 80 77-79 24

25 83 80-83 25

26 87 84-86 26

27 90 87-89 27

28 93 90-92 28

29 97 93-96 29

30 100 97-99 30

31 103 100-102 31

32 107 103-106 32

33 110 107-109 33

 110-112 34

 113-116 35

Note 1: While ceil(16*3.32) = 54, the value 53 is used. If it were not, a float decimal(16), when
converted to binary, would have to be converted from long floating-point to extended floating-point
(because float binary(54) is represented as extended floating-point).

For fixed-point integer values, conversion does not change the value. For fixed-point fractional values, the
factor 3.32 provides only enough digits or bits so that the converted value differs from the original value
by less than 1 digit or bit in the rightmost place.

For example, the decimal constant .1, with attributes FIXED DECIMAL (1,1), converts to the binary
value .0001B, converting 1/10 to 1/16. The decimal constant .10, with attributes FIXED DECIMAL (2,2),
converts to the binary value .0001100B, converting 10/100 to 12/128.

Source-to-target rules
These source-to-target rules are given for converting data items with the following data attributes.

• Coded arithmetic

– FIXED BINARY
– FIXED DECIMAL
– FLOAT BINARY
– FLOAT DECIMAL

• Arithmetic character PICTURE
• CHARACTER
• BIT
• GRAPHIC
• UCHAR
• WIDECHAR

Source-to-target rules

Chapter 4. Data conversion 79

Target: Coded arithmetic

Source:
FIXED BINARY, FIXED DECIMAL,
FLOAT BINARY, and FLOAT DECIMAL

These are all coded arithmetic data. Rules for conversion between them are given under each data
type taken as a target.

Arithmetic character PICTURE
Data first converts to decimal with scale and precision determined by the corresponding PICTURE
specification. The decimal value then converts to the base, scale, mode, and precision of the
target. See the specific target types of coded arithmetic data using FIXED DECIMAL or FLOAT
DECIMAL as the source.

CHARACTER
The source string must represent a valid arithmetic constant or complex expression; otherwise,
the CONVERSION condition is raised. The constant can be preceded by a sign and can be
surrounded by blanks. The constant cannot contain blanks between the sign and the constant,
or between the end of the real part and the sign preceding the imaginary part of a complex
expression.

The constant has base, scale, mode, and precision attributes. It converts to the attributes of the
target when they are independent of the source attributes, as in the case of assignment. See the
specific target types of coded arithmetic data using the attributes of the constant as the source.

If an intermediate result is necessary, as in evaluation of an operational expression, the attributes
of the intermediate result are the same as if a decimal fixed-point value of precision (N,0) had
appeared in place of the string. (This allows the compiler to generate code to handle all cases,
regardless of the attributes of the contained constant.) Consequently, any fractional portion of
the constant might be lost. See the specific target types of coded arithmetic data using FIXED
DECIMAL as the source.

It is possible that during the initial conversion of the character data item to an intermediate fixed
decimal number, the value might exceed the default size of the intermediate result. If this occurs,
the SIZE condition is raised if it is enabled.

If a character string representing a complex number is assigned to a real target, the complex part
of the string is not checked for valid arithmetic characters and CONVERSION cannot be raised,
since only the real part of the string is assigned to the target.

If the source is a null string or a string of one or more blanks, the target will be assigned the value
zero. The CONVERSION condition will not be raised.

BIT
If the conversion occurs during evaluation of an operational expression, the source bit string is
converted to an unsigned value that is FIXED BINARY(M,0). See the specific target types of coded
arithmetic data using FIXED BINARY as the source.

If the source string is longer than the allowable precision, bits on the left are ignored. If nonzero
bits are lost, the SIZE condition is raised.

A null string gives the value zero.

GRAPHIC
Graphic variables and strings are converted to CHARACTER, and then follow the rules for
character source described

UCHAR
Uchar variables and strings are converted to CHARACTER, and then follow the rules for character
source described in CHARACTER.

WIDECHAR
Widechar variables and strings are converted to CHARACTER, and then follow the rules for
character source described in CHARACTER.

Source-to-target rules

80 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Target: FIXED BINARY (p2,q2)

Source:
FIXED DECIMAL (p1,q1)

The precision of the result is p2 = min(M,1+CEIL(p1*3.32)) and
q2=CEIL(ABS(q1*3.32))*SIGN(q1).

FLOAT BINARY (p1)
The precision conversion is as described under “Converting arithmetic precision” on page 77 with
p1 as declared or indicated and q1 as indicated by the binary point position and modified by the
value of the exponent.

FLOAT DECIMAL (p1)
The precision conversion is the same as for FIXED DECIMAL to FIXED BINARY with p1 as declared
or indicated and q1 as indicated by the decimal point position and modified by the value of the
exponent.

Arithmetic character PICTURE
See Target: Coded Arithmetic.

CHARACTER
See Target: Coded Arithmetic.

BIT
See Target: Coded Arithmetic.

GRAPHIC
See Target: Coded Arithmetic.

UCHAR
See Target: Coded Arithmetic.

WIDECHAR
See Target: Coded Arithmetic.

Target: FIXED DECIMAL (p2,q2)

Source:
FIXED BINARY (p1,q1)

The precision of the result is p2=1+CEIL(p1/3.32) and q2=CEIL(ABS(q1/3.32))*SIGN(q1).
FLOAT BINARY (p1)

The precision conversion is the same as for FIXED BINARY to FIXED DECIMAL with p1 as declared
or indicated and q1 as indicated by the binary point position and modified by the value of the
exponent.

FLOAT DECIMAL (p1)
The precision conversion is as described under “Converting arithmetic precision” on page 77 with
p1 as declared or indicated and q1 as indicated by the decimal point position and modified by the
value of the exponent.

Arithmetic character PICTURE
See Target: Coded Arithmetic.

CHARACTER
See Target: Coded Arithmetic.

BIT
See Target: Coded Arithmetic.

GRAPHIC
See Target: Coded Arithmetic.

UCHAR
See Target: Coded Arithmetic.

Source-to-target rules

Chapter 4. Data conversion 81

WIDECHAR
See Target: Coded Arithmetic.

Target: FLOAT BINARY (p2)

Source:
FIXED BINARY (p1,q1)

The precision of the result is p2=p1. The exponent indicates any fractional part of the value.
FIXED DECIMAL (p1,q1)

The precision of the result is p2=CEIL(p1*3.32). The exponent indicates any fractional part of the
value.

FLOAT DECIMAL (p1)
The precision of the result is p2=CEIL(p1*3.32).

Arithmetic character PICTURE
See Target: Coded Arithmetic.

CHARACTER
See Target: Coded Arithmetic.

BIT
See Target: Coded Arithmetic.

GRAPHIC
See Target: Coded Arithmetic.

UCHAR
See Target: Coded Arithmetic.

WIDECHAR
See Target: Coded Arithmetic.

Target: FLOAT DECIMAL (p2)

Source:
FIXED BINARY (p1,q1)

The precision of the result is p2=CEIL(p1/3.32). The exponent indicates any fractional part of the
value.

FIXED DECIMAL (p1,q1)
The precision of the result is p2=p1. The exponent indicates any fractional part of the value.

FLOAT BINARY (p1)
The precision of the result is p2=CEIL(p1/3.32).

Arithmetic character PICTURE
See Target: Coded Arithmetic.

CHARACTER
See Target: Coded Arithmetic.

BIT
See Target: Coded Arithmetic.

GRAPHIC
See Target: Coded Arithmetic.

UCHAR
See Target: Coded Arithmetic.

WIDECHAR
See Target: Coded Arithmetic.

Source-to-target rules

82 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Target: Arithmetic character PICTURE

The arithmetic character PICTURE data item is the character representation of a decimal fixed-point or
floating-point value. The following descriptions for source to arithmetic character PICTURE target show
those target attributes that allow assignment without loss of leftmost or rightmost digits.

Source:
FIXED BINARY (p1,q1)

The target must imply:

 fixed decimal (1+x+q-y,q) or
 float decimal (x)

where x>=CEIL(p1/3.32), y=CEIL(q1/3.32), and q>=y.

FIXED DECIMAL (p1,q1)
The target must imply:

 fixed decimal (x+q-q1,q) or
 float decimal (x)

where x>=p1 and q>=q1.

FLOAT BINARY (p1)
The target must imply:

 fixed decimal (p,q) or
 float decimal (p)

where p>=CEIL(p1/3.32) and the values of p and q take account of the range of values that can be
held by the exponent of the source.

FLOAT DECIMAL (p1)
The target must imply:

 fixed decimal (p,q) or
 float decimal (p)

where p>= p1 and the values of p and q take account of the range of values that can be held by the
exponent of the source.

Arithmetic character PICTURE
The implied attributes of the source will be either FIXED DECIMAL or FLOAT DECIMAL. See the
respective entries for this target.

CHARACTER
See Target: Coded Arithmetic.

BIT(n)
The target must imply:

 fixed decimal (1+x+q,q) or
 float decimal (x)

where x>=ceil(n/3.32) and q>=0.

GRAPHIC
See Target: Coded Arithmetic.

UCHAR
See Target: Coded Arithmetic.

WIDECHAR
See Target: Coded Arithmetic.

Source-to-target rules

Chapter 4. Data conversion 83

Target: CHARACTER

Source:
FIXED BINARY, FIXED DECIMAL,
FLOAT BINARY, and FLOAT DECIMAL

The coded arithmetic value is converted to a decimal constant (preceded by a minus sign if it
is negative) as described below. The constant is inserted into an intermediate character string
whose length is derived from the attributes of the source. The intermediate string is assigned to
the target according to the rules for string assignment.

The rules for coded-arithmetic-to-character-string conversion are also used for list-directed and
data-directed output, and for evaluating keys (even for REGIONAL files).

FIXED BINARY (p1,q1)
The binary precision (p1,q1) is first converted to the equivalent decimal precision (p,q), where
p=1+CEIL(p1/3.32) and q=CEIL(ABS(q1/3.32))*SIGN(q1). Thereafter, the rules are the same as
for FIXED DECIMAL to CHARACTER.

FIXED DECIMAL (p1,q1)
If p1>=q1>=0 then:

• The constant is right adjusted in a field of width p1+3. (The 3 is necessary to allow for the
possibility of a minus sign, a decimal or binary point, and a leading zero before the point.)

• Leading zeros are replaced by blanks, except for a single zero that immediately precedes the
decimal point of a fractional number. A single zero also remains when the value of the source is
zero.

• A minus sign precedes the first digit of a negative number. A positive value is unsigned.
• If q1=0, no decimal point appears; if q1>0, a decimal point appears and the constant has q

fractional digits.

If p1<q1 or q1<0, a scaling factor appends to the right of the constant; the constant is an
optionally-signed integer. The scaling factor appears even if the value of the item is zero and has
the following syntax:

 F{+|-}nn

where {+|-}nn has the value of -q1.

The length of the intermediate string is p1+k+3, where k is the number of digits necessary to hold
the value of q1 (not including the sign or the letter F).

If the arithmetic value is complex, the intermediate string consists of the imaginary part
concatenated to the real part. The left-hand, or real, part is generated as a real source. The right-
hand, or imaginary, part is always signed, and it has the letter I appended. The generated string is
a complex expression with no blanks between its elements. The length of the intermediate string
is:

 2*p1+7 for p1>=q1>=0
 2*(p1+k)+7 for p1<q1 or q1<0

The following examples show the intermediate strings that are generated from several real and
complex fixed-point decimal values:

Precision Value String

(5,0) 2947 'bbbb2947'
(4,1) -121.7 'b-121.7'
(4,-3) -3279000 '-3279F+3'
(2,1) 1.2+0.3I 'bbb1.2+0.3I'

Source-to-target rules

84 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

FLOAT BINARY (p1)
The floating-point binary precision (p1) first converts to the equivalent floating-point decimal
precision (p), where p=CEIL(p1/3.32). Thereafter, the rules are the same as for FLOAT DECIMAL to
CHARACTER.

FLOAT DECIMAL (p1)
A decimal floating-point source converts as if it were transmitted by an E-format item of the form
E(w,d,s) where:

 w, the length of the intermediate string, is p1+8.

 d, the number of fractional digits, is p1-1.

 s, the number of significant digits, is p1.

If the arithmetic value is complex, the intermediate string consists of the imaginary part
concatenated to the real part. The left-hand, or real, part is generated as a real source. The right-
hand, or imaginary, part is always signed, and it has the letter I appended. The generated string is
a complex expression with no blanks between its elements. The length of the intermediate string
is 2*p+17.

The following examples show the intermediate strings that are generated from several real and
complex floating-point decimal values:

Precision Value String

(5) 1735*10**5 'b1.7350E+0008'
(5) -.001663 '-1.6630E-0003'
(3) 1 'b1.00E+0000'
(5) 17.3+1.5I 'b1.7300E+0001+1.5000E+0000I'

Arithmetic character PICTURE
A real arithmetic character field is interpreted as a character string and assigned to the target
string according to the rules for converting string lengths. If the arithmetic character field is
complex, the real and imaginary parts are concatenated before assignment to the target string.
Insertion characters are included in the target string.

BIT
Bit 0 becomes the character 0 and bit 1 becomes the character 1. A null bit string becomes a null
character string. The generated character string is assigned to the target string according to the
rules for converting string lengths.

GRAPHIC
DBCS to SBCS conversion is possible only if there is a corresponding SBCS character. Otherwise,
the CONVERSION condition is raised.

UCHAR
Conversion from uchar is performed only if all the uchars have a representation in the target code
page (as specified by the compiler CODEPAGE option). Otherwise, the CONVERSION is raised.

WIDECHAR
Conversion from widechar is performed only if all the widechars have a representation in the
target code page (as specified by the compiler CODEPAGE option). Otherwise, the CONVERSION is
raised.

Target: BIT

Source:
FIXED BINARY, FIXED DECIMAL,
FLOAT BINARY, and FLOAT DECIMAL

If necessary, the arithmetic value converts to binary and both the sign and any fractional part
are ignored. (If the arithmetic value is complex, the imaginary part is also ignored.) The resulting

Source-to-target rules

Chapter 4. Data conversion 85

binary value is treated as a bit string. It is assigned to the target according to the rules for string
assignments.

FIXED BINARY (p1,q1)
The length of the intermediate bit string is given by:

 min(M,(p1-q1))

If (p1-q1) is negative or zero, the result is a null bit string.

The following examples show the intermediate strings that are generated from several fixed-point
binary values:

Precision Value String

(1) 1 '1'B
(3) -3 '011'B
(4,2) 1.25 '01'B

FIXED DECIMAL (p1,q1)
The length of the intermediate bit string is given by:

 min(M,CEIL((p1-q1)*3.32))

If (p1-q1) is negative or zero, the result is a null bit string.

The following examples show the intermediate strings that are generated from several fixed-point
decimal values:

Precision Value String

(1) 1 '0001'B
(2,1) 1.1 '0001'B

FLOAT BINARY (p1)
The length of the intermediate bit string is given by:

 min(M,p1)

FLOAT DECIMAL (p1)
The length of the intermediate bit string is given by:

 min(M,ceil(p1*3.32))

Arithmetic character PICTURE
Data is first interpreted as decimal with scale and precision determined by the corresponding
PICTURE specification. The item then converts according to the rules given for FIXED DECIMAL or
FLOAT DECIMAL to BIT.

CHARACTER
Character 0 becomes bit 0 and character 1 becomes bit 1. Any character other than 0 or 1 raises
the CONVERSION condition. A null string becomes a null bit string. The generated bit string, which
has the same length as the source character string, is assigned to the target according to the rules
for string assignment.

GRAPHIC
Graphic 0 becomes bit 0 and graphic 1 becomes bit 1. Any graphic other than 0 or 1 raises the
CONVERSION condition. A null string becomes a null bit string. The generated bit string, which has
the same length as the source graphic string, is then assigned to the target according to the rules
for string assignment.

UCHAR
Uchar 0 ('30'ux) becomes bit 0 and uchar 1 ('31'ux) becomes bit 1. Any uchar other than 0 or 1
raises the CONVERSION condition. A null string becomes a null bit string. The generated bit string,
which has the same length as the source uchar string, is then assigned to the target according to
the rules for string assignment.

Source-to-target rules

86 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

WIDECHAR
Widechar 0 ('0030'wx) becomes bit 0 and widechar 1 ('0031'wx) becomes bit 1. Any widechar
other than 0 or 1 raises the CONVERSION condition. A null string becomes a null bit string. The
generated bit string, which has the same length as the source widechar string, is then assigned to
the target according to the rules for string assignment.

Target: GRAPHIC

Nongraphic source is first converted to character according to the rules in Target: Character. The resultant
character string is then converted to a DBCS string.

Target: UCHAR

Source other than uchar and widechar is first converted to character according to the rules in Target:
Character. The resultant character string is then converted to a uchar string. Widechar source is converted
from UTF-16 to UTF-8 and assigned to the target

The result of converting character data to uchar depends on the setting of the compiler CODEPAGE
option. For example, under the CODEPAGE(1140) option, the characters '59'x and 'A1'x represent the
symbols ß and ~, and are converted to the uchars 'DF'ux and '7E'ux respectively. However, under the
CODEPAGE(1141) option, these characters represent ~ and ß, and are converted to the uchars '7E'ux
and 'DF'ux respectively.

Target: WIDECHAR

Source other than widechar and uchar is first converted to character according to the rules in Target:
Character. The resultant character string is then converted to a widechar string. Uchar source is converted
from UTF-8 to UTF-16 and assigned to the target.

The result of converting character data to widechar depends on the setting of the compiler CODEPAGE
option. For example, under the CODEPAGE(1140) option, the characters '59'x and 'A1'x represent the
symbols ß and ~, and are converted to the widechars '00DF'wx and '007E'wx respectively. However,
under the CODEPAGE(1141) option, these characters represent ~ and ß, and are converted to the
widechars '007E'wx and '00DF'wx respectively.

Examples
This section provides additional data conversion examples.

Example: DECIMAL FIXED converted to BINARY FIXED with fractions

 dcl I fixed bin(31,5) init(1);
 I = I+.1;

The value of I is now 1.0625. This is because .1 is converted to FIXED BINARY (5,4), so that the nearest
binary approximation is 0.0001B (no rounding occurs). The decimal equivalent of this is .0625. The result
achieved by specifying .1000 in place of .1 would be different.

Example: Arithmetic converted to bit string

 dcl A bit(1),
 D bit(5);
 A=1; /* A has value '0'B */
 D=1; /* D has value '00010'B */
 D='1'B; /* D has value '10000'B */

Examples

Chapter 4. Data conversion 87

 if A=1 then go to Y;
 else go to X;

The branch is to X, because the assignment to A resulted in the following sequence of actions:

1. The decimal constant, 1, has the attributes FIXED DECIMAL (1,0) and is assigned to temporary storage
with the attributes FIXED BINARY(4,0) and the value 0001B.

2. This value now converts to a bit string of length (4), so that it becomes '0001'B.
3. The bit string is assigned to A. Since A has a declared length of 1, and the value to be assigned has

acquired a length of 4, truncation occurs at the right, and A has a final value of '0'B.

For the comparison operation in the IF statement, '0'B and 1 convert to FIXED BINARY and compare
arithmetically. They are unequal, giving a result of false for the relationship A=1.

In the first assignment to D, a sequence of actions similar to that described for A takes place, except that
the value is extended at the right with a zero, because D has a declared length that is 1 greater than that
of the assigned value.

Example: Arithmetic converted to character
In the following example, the three blanks are necessary to allow for the possibility of a minus sign, a
decimal or binary point, and provision for a single leading zero before the point:

 dcl A char(4),
 B char(7);
 A='0'; /*A has value '0bbb'*/
 A=0; /*A has value 'bbb0'*/
 B=1234567; /*B has value 'bbb1234'*/

Example: A conversion error

dcl Ctlno char(8) init('0');
do I=1 to 100;
Ctlno=Ctlno+1;
⋮
end;

For this example, FIXED DECIMAL precision 15 was used for the implementation maximum. The example
raises the CONVERSION condition because of the following sequence of actions:

1. The initial value of CTLNO, that is, '0bbbbbbb' converts to FIXED DECIMAL(15,0).
2. The decimal constant, 1, with attributes FIXED DECIMAL(1,0), is added; in accordance with the rules

for addition, the precision of the result is (16,0).
3. This value now converts to a character string of length 18 in preparation for the assignment back to

CTLNO.
4. Because CTLNO has a length of 8, the assignment causes truncation at the right; thus, CTLNO has a

final value that consists entirely of blanks. This value cannot be successfully converted to arithmetic
type for the second iteration of the loop.

Examples

88 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 5. Program organization
This chapter discusses how statements can be organized into different kinds of blocks to form a PL/I
program, how control flows among blocks, and how different blocks can make use of the same data.

Proper division of a program into blocks simplifies the writing and testing of the program, particularly
when many programmers are writing it. Proper division can also result in more efficient use of storage,
because automatic storage is allocated on entry to the block in which it is declared and released when the
block is terminated.

Programs
PL/I is a block-structured language, consisting of packages, procedures, begin-blocks, statements,
expressions, and built-in functions. A PL/I application consists of one or more separately loadable
entities, known as a load module. Each load module can consist of one or more separately compiled
entities, known as a compilation unit (CU). Unless otherwise stated, a program refers to a PL/I application
or a compilation unit.

Program structure
Programs refer to PL/I applications or compilation units, which are separately compiled entities that
compose load modules. A PL/I application consists of one or more load modules.

A compilation unit is a PL/I PACKAGE or an external PROCEDURE. Each package can contain zero or more
procedures, some or all of which can be exported. A PL/I external or internal procedure contains zero
or more blocks. A PL/I block is either a PROCEDURE or a BEGIN block, which contains zero or more
statements and/or zero or more blocks.

A PL/I block allows you to produce highly-modular applications, because blocks can contain declarations
that define variable names and storage class. Thus, you can restrict the scope of a variable to a single
block or a group of blocks, or can make it known throughout the compilation unit or a load module.

By giving you freedom to determine the degree to which a block is self-contained, PL/I makes it possible
to produce blocks that many compilation units and applications can share, leading to code reuse.

Figure 1 on page 89 shows an application structure.

Figure 1. A PL/I application structure

Related information
“Packages” on page 91

Program structure

© Copyright IBM Corp. 1999, 2022 89

A package is a block that can contain only declarations, default statements, and procedure blocks. The
package forms a name scope that is shared by all declarations and procedures contained in the package,
unless the names are declared again.
“Procedures” on page 94
A procedure is a sequence of statements delimited by a PROCEDURE statement and a corresponding END
statement. A procedure can be a main procedure, a subroutine, or a function.
“Begin-blocks” on page 112
A begin-block is a sequence of statements delimited by a BEGIN statement and a corresponding END
statement.

Program activation
A PL/I program becomes active when a calling program invokes the main procedure.

This calling program usually is the operating system, although it could be another program. The main
procedure is the external procedure for which the statement has the OPTIONS(MAIN) specification.

Example: Main procedure invoking external procedures

In this example, Contrl is the main procedure and it invokes other external procedures in the program.
The main procedure remains active for the duration of the program.

 Contrl: procedure options(main);
 call A;
 call B;
 call C;
 end Contrl;

Program termination
A program is terminated when the main procedure is terminated. Whether termination is normal or
abnormal, control returns to the calling program.

In “Example: Main procedure invoking external procedures” on page 90, when control transfers from the
C procedure back to the Contrl procedure, Contrl terminates.

Related information
“Procedure termination” on page 100
A procedure is terminated when, by some means other than a procedure reference, control passes back
to the invoking program, block, or to some other active block.

Blocks
A block is a delimited sequence of statements, processed as a unit, that specifies the scope of names
and the allocation of storage for names declared within it. A block can be a package, a procedure, or a
begin-block.

• A block establishes the scope of names declared within it.
• A block limits the allocation of automatic variables.
• A block determines the scope of DEFAULT statements (as described in “Defaults for attributes” on page

167).

The kinds of blocks are package, procedure, and begin.

These blocks can contain declarations that are treated as local definitions of names. This is done to
establish the scope of the names and to limit the allocation of automatic variables. These declarations are
not known outside their own block, and the names cannot be referred to in the containing block. For more
information, see “Scope of declarations” on page 152.

Storage is allocated to automatic variables upon entry to the block where the storage is declared, and is
freed upon exit from the block. For more information, see “Scope of declarations” on page 152.

Program activitation

90 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Block activation
Each block plays the same role in the allocation and freeing of storage and in delimiting the scope of
names. Packages are neither activated nor terminated.

For information about how activation occurs, see “Procedures” on page 94 and “Begin-blocks” on page
112.

During block activation, the following operations are performed:

• Expressions that appear in declare statements are evaluated for extents and initial values (including
iteration factors).

• Storage is allocated for automatic variables. Their initial values are set if specified.
• Storage is allocated for dummy arguments and compiler-created temporaries that might be created in

this block.

Initial values and extents for automatic variables must not depend on the values or extents of other
automatic variables declared in the same block. For example, the following initialization can produce
incorrect results for J and K:

 dcl I init(10),J init(K),K init(I);

Similarly, the following code causes b to have an undefined value (and most likely, not the value 10) after
this structure is initialized:

dcl
 1 a,
 2 b fixed bin init(c),
 2 c fixed bin init(10);

Declarations of data items must not be mutually interdependent. For example, the following declarations
are invalid:

 dcl A(B(1)), B(A(1));

 dcl D(E(1)), E(F(1)), F(D(1));

Errors can occur during block activation, and the ERROR condition (or other conditions) can be raised.
If so, the environment of the block might be incomplete. In particular, some automatic variables might
not have been allocated. Statements referencing automatic variables executed after the ERROR condition
has been raised might reference unallocated storage. The results of referring to unallocated storage are
undefined.

Block termination
There are a number of ways a block can be terminated. Packages are neither activated nor terminated.

For information about how termination occurs, see “Procedures” on page 94 and “Begin-blocks” on
page 112.

During block termination, the following operations are performed:

• The ON-unit environment is reestablished as it existed before the block was activated.
• Storage for all automatic variables allocated in the block is released.

Packages
A package is a block that can contain only declarations, default statements, and procedure blocks. The
package forms a name scope that is shared by all declarations and procedures contained in the package,
unless the names are declared again.

Some or all of the level-1 procedures can be exported and made known outside of the package as
external procedures. A package can be used for implementing multiple entry point applications.

Block activation

Chapter 5. Program organization 91

A package that contains a MAIN procedure must not contain any FETCHABLE procedures. A package that
contains a MAIN procedure must not be linked into a DLL. It should form part of a base executable that
can, if desired, invoke routines in a DLL. Such a package can, of course, also define external routines that
can be called from other routines statically linked with it, and the package can also define EXTERNAL
STATIC data that can be referenced from other routines statically linked with it.

If a package that does not contain a MAIN routine is linked into a DLL, the only EXTERNAL STATIC
variables that will be exported from that package out of the DLL are those variables that have the
RESERVED attribute.

If the source contains a PACKAGE statement, there must be at most only one set of *PROCESS statements
and those must be the first statements in the source. If the source contains no PACKAGE statement, the
compiler effectively inserts one after the first set of *PROCESS statements and the source might contain
multiple external procedures separated by groups of *PROCESS statements.

If two packages are linked together, then they must export disjoint sets of names.

condition-prefix : package-name : PACKAGE

EXPORTS (

,

procedure

*

)

RESERVES (variable-name

EXTERNAL( enviornment-name)

)

OPTIONS( options)

; declare-statement

default-statement

procedure-statement

END

package-name

;

procedure
procedure-name

EXTERNAL( environment-name)

condition-prefix
Condition prefixes specified on a PACKAGE statement apply to all procedures contained in the
package unless overridden on the PROCEDURE statement. For more information, see “Condition
prefixes” on page 341.

package-name
The name of the package. All PACKAGE names must be unique within a linked module.

EXPORTS
Specifies that all (EXPORTS(*)) or the named procedures are to be exported and thus made externally
known outside of the package. If no EXPORTS option is specified, EXPORTS(*) is assumed.

procedure name
Is the name of a level-1 procedure within the package.

Packages

92 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

EXTERNAL (environment name)
Is a scope attribute discussed in “Scope of declarations” on page 152.

RESERVES
Specifies that this package reserves the storage for all (RESERVES(*)), or only for the named variables
that have the RESERVED attribute. See “RESERVED attribute” on page 158.

variable name
Is the name of a level-1 external static variable.

OPTIONS option
For OPTIONS options applicable to a package statement. See “OPTIONS option and attribute” on
page 125.

declare statement
All variables declared within a package but outside any contained level-1 procedure must have the
storage class of static, based, or controlled. Automatic variables are not allowed. Default storage class
is STATIC. See Chapter 7, “Data declarations,” on page 149.

default statement
See “Defaults for attributes” on page 167.

procedure statement
See “PROCEDURE statement” on page 95.

Example of package statement

Package statement

*Process S A(F) LIMITS(EXTNAME(31)) NUMBER;
 Package_Demo: Package exports (Factorial);

 /***/
 /* Common Data */
 /***/

 dcl N fixed bin(15);
 dcl Message char(*) value('The factorial of ');

 /***/
 /* Main Program */
 /***/

 Factorial: proc options (main);
 dcl Result fixed bin(31);
 put skip list('Please enter a number whose factorial ' ||
 'must be computed ');
 get list(N);
 Result = Compute_factorial(n);
 put list(Message || trim(N) || ' is ' || trim(Result));
 end Factorial;

 /***/
 /* Subroutine */
 /***/

 Compute_factorial: proc (Input) recursive returns (fixed bin(31));
 dcl Input fixed bin(15);
 if Input <= 1 then
 return(1);
 else
 return(Input*Compute_factorial(Input-1));
 end Compute_factorial;

 end Package_Demo;

Packages

Chapter 5. Program organization 93

Procedures
A procedure is a sequence of statements delimited by a PROCEDURE statement and a corresponding END
statement. A procedure can be a main procedure, a subroutine, or a function.

An application must have exactly one external procedure that has OPTIONS(MAIN). In the following
example, the name of the procedure is Name and represents the entry point of the procedure.

 Name:
 procedure;
 end Name;

The ENTRY statement can define a secondary entry point to a procedure. Consider the following example:

 Name: procedure;
 B: entry;
 end Name;

B defines a secondary entry point to the Name procedure. The ENTRY statement is described in “ENTRY
attribute” on page 114.

A procedure must have a name. A procedure block nested within another procedure or begin-block is
called an internal procedure. A procedure block not nested within another procedure or begin-block
is called an external procedure. Level-1 exported procedures from a package also become external
procedures. External procedures can be invoked by other procedures in other compilation units.
Procedures can invoke other procedures.

A procedure can be recursive, which means that it can be reactivated from within itself or from within
another active procedure while it is already active. You can pass arguments when invoking a procedure.

Related information
“Scope of declarations” on page 152
The part of the program to which a name applies is called the scope of the declaration of that name. In
most cases, the scope of the declaration of a name is determined entirely by the position where the name
is declared within the program.
“Subroutines” on page 105
A subroutine is an internal or external procedure that is invoked by a CALL statement.
“Functions” on page 106
A function is a procedure that has zero or more arguments and is invoked by a function reference in an
expression.
“Passing arguments to procedures” on page 108

Packages

94 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

When a function or a subroutine is invoked, parameters are associated, from left to right, with the passed
arguments.

PROCEDURE statement
A PROCEDURE statement identifies the procedure as a main procedure, a subroutine, or a function.
Parameters expected by the procedure and other characteristics are also specified on the PROCEDURE
statement.

entry-label : PROCEDURE

(

,

parameter

)

returns-option OPTIONS( options) RECURSIVE

ORDER

REORDER

EXTERNAL ( environment-name) scope-attribute

;

statement

group

internal-procedure

begin-block

END

entry-label

;

Abbreviations: PROC for PROCEDURE

entry-label
The entry point to the procedure. External entries are explicitly declared in the invoking procedure.
If multiple entry labels are specified, the leftmost name is the primary entry point and is the name
returned by the PROCNAME and ONLOC built-in functions. For more information, see “Entry data” on
page 113.

parameter
See “Parameter attribute” on page 97 and “Passing arguments to procedures” on page 108.

returns-option
Applies only to function procedures. See “Functions” on page 106 and “RETURNS option and
attribute” on page 134.

OPTIONS option
See “OPTIONS option and attribute” on page 125.

RECURSIVE
See “Recursive procedures” on page 101.

ORDER or REORDER
ORDER and REORDER are optimization options that are specified for a procedure or begin-block. For
more information about using the ORDER and REORDER, see "ORDER or REORDER" in “OPTIONS
option and attribute” on page 125.

EXTERNAL (environment name)
Is a scope attribute discussed in “Scope of declarations” on page 152.

PROCEDURE and ENTRY

Chapter 5. Program organization 95

scope-attribute
See “Scope of declarations” on page 152.

A procedure (subroutine or function) can have one or more entry points. The primary entry point to
a procedure is established by the leftmost label of the procedure statement. Secondary entry points
to a procedure are established by additional labels on the PROCEDURE statement and by the ENTRY
statement. Each entry point has an entry name. See “INTERNAL and EXTERNAL attributes” on page 154
for a discussion of the rules for the creation of an external name.

ENTRY statement
The ENTRY statement specifies a secondary entry point of a procedure. The ENTRY statement must be
internal to the procedure for which it defines a secondary entry point. It cannot be within a do-group that
specifies repetitive execution, or internal to a ON-unit.

entry-label : ENTRY

(

,

parameter)

EXTERNAL ( environment-name)

RETURNS(attribute)

OPTIONS( options)

;

entry-label
The secondary entry point to the procedure.

parameter
See “Parameter attribute” on page 97 and “Passing arguments to procedures” on page 108.

EXTERNAL (environment name)
Is a scope attribute discussed in “Scope of declarations” on page 152.

RETURNS option
See “RETURNS option and attribute” on page 134.

OPTIONS option
See “OPTIONS option and attribute” on page 125.

All parameters on an ENTRY statement must be BYADDR, and for a procedure containing ENTRY
statements, all non-pointer parameters to that procedure must be BYADDR.

If a procedure that contains ENTRY statements has the RETURNS option, or if any of its contained ENTRY
statements have the RETURNS option, the following conditions apply:

• The BYADDR attribute must be specified (or implied by the compile-time option
DEFAULT(RETURNS(BYADDR)) in all of the RETURNS options for that procedure and its ENTRY
statements.

• All routines that call one of these entry points must also either declare the entry with
RETURNS(BYADDR) or be compiled with the DEFAULT(RETURNS(BYADDR)) compiler option.

When a procedure contains ENTRY statements and some, but not all of its entry points have the RETURNS
attribute, the ERROR condition is detected under the following circumstances:

• If the code executes a RETURN statement with an expression when the procedure was entered at an
entry point which did not have the RETURNS attribute.

ENTRY

96 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• If the code executes a RETURN statement without an expression when the procedure was entered at an
entry point that has the RETURNS attribute.

Parameter attribute
A parameter is contextually declared with the parameter attribute by its specification in a PROCEDURE or
ENTRY statement.

The parameter should be explicitly declared with appropriate attributes. The PARAMETER attribute can
also be specified in the declaration. If attributes are not supplied in a DECLARE statement, default
attributes are applied. The parameter name must not be subscripted or qualified.

PARAMETER

Table 8 on page 21, and the following discussion, describe the attributes that can be declared for a
parameter.

A parameter always has the INTERNAL attribute.

If the parameter is a structure or union, it must specify the level-1 name.

A parameter cannot have any storage class attributes except CONTROLLED. A controlled parameter must
have a controlled argument, and can also have the INITIAL attribute.

Parameters used in record-oriented input/output, or as the base variable for DEFINED items, must be in
connected storage. The CONNECTED attribute must be specified both in the declaration in the procedure
and in the descriptor list of the procedure entry declaration.

Simple Parameter Bounds, Lengths, and Sizes
Bounds, lengths, and sizes of simple parameters must be specified either by asterisks or by restricted
expressions.

When the actual length, bounds, or size can be different for different invocations, each can be specified in
a DECLARE statement by an asterisk. When an asterisk is used, the length, bounds, or size are taken from
the current generation of the associated argument.

An asterisk is not allowed as the length specification of a string that is an element of an aggregate, if the
associated argument creates a dummy. The string length must be specified as an integer.

Controlled Parameter Bounds, Lengths, and Sizes
The bounds, length, or size of a controlled parameter can be specified in a DECLARE statement either by
asterisks or by element expressions.

Asterisk notation
When asterisks are used, length, bounds, or size of the controlled parameter are taken from the current
generation of the associated argument. Any subsequent allocation of the controlled parameter uses
these same bounds, length, or size, unless they are overridden by a different length, bounds, or size
specification in the ALLOCATE statement.

If no current generation of the argument exists, the asterisks determine only the dimensionality of the
parameter, and an ALLOCATE statement in the invoked procedure must specify bounds, length, or size for
the controlled parameter before other references to the parameter can be made.

Simple parameter bounds, lengths, and sizes

Chapter 5. Program organization 97

Expression notation
Each time the parameter is allocated, the expressions are evaluated to give current bounds, lengths, or
sizes for the new allocation. However, such expressions in a DECLARE statement can be overridden by a
bounds, length, or size specification in the ALLOCATE statement itself.

Example of array argument with parameters
In this example, an array is declared with parameters.

In Array argument with parameters, when Sub1 is invoked, A and B, which have been allocated, are
passed.

Array argument with parameters

%process or('|') num margins(1,72);
Package:package exports(*);

Main: procedure options(main);
declare (A(NA), B(NB), C(NC), D(ND)) controlled;
declare (NA init(20), NB init(30), NC init(100),
ND init(100)) fixed bin(31);
declare Sub1 entry((*) controlled, (*) controlled);
declare Sub2 entry ((*) ctl, (*) ctl, fixed bin);

allocate A,B; /* A(20), B(30) */
display ('Gen1: DIM(A)=' ∥ dim(A) ∥ ', ' ∥ "DIM(B)=" ∥ dim(B));
call Sub1(A,B);

display ('Gen2: Allocn(A)=' ∥ allocn(a) ∥ ', ' ∥
'Allocn(B)=' ∥ allocn(B));
display ('Gen2: DIM(A)=' ∥ dim(A) ∥ ', ' ∥ "DIM(B)=" ∥ dim(B));
free A,B;
display ('Gen1: Allocn(A)=' ∥ allocn(A) ∥ ', ' ∥
'Allocn(B)=' ∥ allocn(B));
display ('Gen1: DIM(A)=' ∥ dim(A) ∥ ', ' ∥ "DIM(B)=" ∥ dim(B));
free A,B;
display ('Gen0: Allocn(A)=' ∥ allocn(A) ∥ ', ' ∥
'Allocn(B)=' ∥ allocn(B));
call Sub2 (C,D,10);

display ('Gen1: Allocn(C)=' ∥ allocn(C) ∥ ', ' ∥
'Allocn(D)=' ∥ allocn(D));
display ('Gen1: DIM(C)=' ∥ dim(C) ∥ ', ' ∥ "DIM(D)=" ∥ dim(D));
free C,D;
display ('Gen0: Allocn(C)=' ∥ allocn(c) ∥ ', ' ∥
'Allocn(D)=' ∥ allocn(D));
end Main;

Sub1: procedure (U,V);
dcl (U(UB), V(*)) controlled,
UB fixed bin(31);
display ('Gen1: Allocn(U)=' ∥ allocn(U) ∥ ', ' ∥
'Allocn(V)=' ∥ allocn(V));
display ('Gen1: DIM(U)=' ∥ dim(U) ∥ ', ' ∥ "DIM(V)=" ∥ dim(V));
UB=200;
allocate U,V; /* U(200), V(30) */
display ('Gen2: Allocn(U)=' ∥ allocn(U) ∥ ', ' ∥
'Allocn(V)=' ∥ allocn(V));
display ('Gen2: DIM(U)=' ∥ dim(U) ∥ ', ' ∥ "DIM(V)=" ∥ dim(V));
end Sub1;

Sub2: procedure (X,Y,N);
dcl (X(N),Y(N)) controlled,
N fixed bin;
display ('Gen0: Allocn(X)=' ∥ allocn(X) ∥ ', ' ∥
'Allocn(Y)=' ∥ allocn(Y));
allocate X,Y; /* X(10), Y(10) */
display ('Gen1: Allocn(X)=' ∥ allocn(X) ∥ ', ' ∥
'Allocn(Y)=' ∥ allocn(Y));
display ('Gen1: DIM(X)=' ∥ dim(X) ∥ ', ' ∥ "DIM(Y)=" ∥ dim(Y));
end Sub2;

Controlled parameter bounds, lengths, and sizes

98 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

end Package;

The ALLOCATE statement in Sub1 allocates a second generation of A and B. B has the same bounds for
both generations while A has different bounds for the second generation.

On returning to Main, the first FREE statement frees the second generation of A and B (allocated in Sub1).
The second FREE statement frees the first generation of A and B (allocated in Main).

In Sub2, X and Y are declared with bounds that depend on the value of N. When X and Y are allocated,
their values determine the bounds of the allocated arrays.

On returning to Main from Sub2, the FREE statement frees the only generation of C and D (allocated in
Sub2).

Procedure activation
Sequential program flow passes around a procedure, from the statement before the PROCEDURE
statement to the statement after the END statement for that procedure. The only way that a procedure
can be activated is by a procedure reference.

For information about how to activate the main procedure, see “Program activation” on page 90.

The execution of the invoking procedure is suspended until the invoked procedure returns control to it.

A procedure reference is the appearance of an entry expression in one of the following contexts:

• Using a CALL statement to invoke a subroutine, as described in “CALL statement” on page 123
• Invoking a function, as described in “Functions” on page 106

The information in this section is relevant to each of these contexts. However, the examples in this
chapter use CALL statements.

When a procedure reference occurs, the procedure containing the specified entry point is said to be
invoked. The point at which the procedure reference appears is called the point of invocation and the
block in which the reference is made is called the invoking block. An invoking block remains active even
though control is transferred from it to the procedure it invokes.

When a procedure is invoked at its primary entry point, arguments and parameters are associated and
execution begins with the first statement in the invoked procedure. When a procedure is invoked at a
secondary entry point with the ENTRY statement, execution begins with the first statement following the
ENTRY statement. The environment established on entry to a block at the primary entry point is identical
to the environment established when the same block is invoked at a secondary entry point.

Communication between two procedures is by means of arguments passed from an invoking procedure
to the invoked procedure, by a value returned from an invoked procedure, and by names known within
both procedures. Therefore, a procedure can operate upon different data when it is invoked from different
points. Consider the following example:

Readin: procedure;
statement-1
statement-2
Errt: entry;
statement-3
statement-4
end Readin;

The procedure can be activated by any of these entry references:

 call Readin;
 call Errt;

The statement call Readin invokes Readin at its primary entry point and execution begins with
statement-1; the statement call Errt invokes the Readin procedure at the secondary entry point

Procedure activation

Chapter 5. Program organization 99

Errt and execution begins with statement-3. The entry constant (Readin) can also be assigned to an
entry variable that is used in a procedure reference, as in the following example:

 declare Readin entry,
 Ent1 entry variable;
 Ent1 = Readin;
 call Ent1;
 call Readin;

The two CALL statements have the same effect.

Procedure termination
A procedure is terminated when, by some means other than a procedure reference, control passes back
to the invoking program, block, or to some other active block.

Procedures terminate normally under the following circumstances:

• Control reaches a RETURN statement within the procedure. The execution of a RETURN statement
returns control to the point of invocation in the invoking procedure. If the point of invocation is a CALL
statement, execution in the invoking procedure resumes with the statement following the CALL. If
the point of invocation is a function reference, execution of the statement containing the reference is
resumed.

• Control reaches the END statement of the procedure. Effectively, this is equivalent to the execution of a
RETURN statement.

Procedures terminate abnormally under the following circumstances:

• Control reaches a GO TO statement that transfers control out of the procedure. The GO TO statement
can specify a label in a containing block, or it can specify a parameter that has been associated with
a label argument passed to the procedure. A STOP statement is executed in the current thread of a
single-threaded program or in any thread of a multithreaded program.

• An EXIT statement is executed.
• The ERROR condition is raised and there is no established ON-unit for ERROR or FINISH. Also, if one or

both of the conditions has an established ON-unit, ON-unit exit is by normal return rather than by a GO
TO statement.

• The procedure calls or invokes another procedure that terminates abnormally.

Transferring control out of a procedure using a GO TO statement can sometimes result in the termination
of several procedures and/or begin-blocks. Specifically, if the transfer point specified by the GO TO
statement is contained in a block that did not directly activate the block being terminated, all intervening
blocks in the activation sequence are terminated. Consider following example:

 A: procedure options(main);
 statement-1
 statement-2
 B: begin;
 statement-b1
 statement-b2
 call C;
 statement-b3
 end B;
 statement-3
 statement-4
 C: procedure;
 statement-c1
 statement-c2
 statement-c3
 D: begin;
 statement-d1
 statement-d2
 go to Lab;
 statement-d3
 end D;
 statement-c4
 end C;
 statement-5
 Lab: statement-6

Procedure termination

100 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 statement-7
 end A;

A activates B, which activates C, which activates D. In D, the statement go to Lab transfers control to
statement-6 in A. Since this statement is not contained in D, C, or B, all three blocks are terminated; A
remains active. Thus, the transfer of control out of D results in the termination of intervening blocks B and
C as well as the termination of block D.

Recursive procedures
An active procedure that is invoked from within itself or from within another active procedure is a
recursive procedure. Such an invocation is called recursion.

A procedure that is invoked recursively must have the RECURSIVE attribute specified in the PROCEDURE
statement.

RECURSIVE

The environment (that is, values of automatic variables and the like) of every invocation of a recursive
procedure is preserved in a manner analogous to the stacking of allocations of a controlled variable (see
“Controlled storage and attribute” on page 239). Think of an environment as being pushed down at a
recursive invocation, and popped up at the termination of that invocation. A label constant in the current
block is always a reference to the current invocation of the block that contains the label.

If a label constant is assigned to a label variable in a particular invocation, and the label variable is not
declared within the recursive procedure, a GO TO statement naming that variable in another invocation
restores the environment that existed when the assignment was performed, terminating the current and
any intervening procedures and begin-blocks.

The environment of a procedure that was invoked from within a recursive procedure by means of an entry
variable is the one that was current when the entry constant was assigned to the variable. Consider the
following example:

 I=1;
 call A; /* First invocation of A */

 A: proc recursive;
 declare Ev entry variable static;
 if I=1 then
 do;
 I=2;
 Ev=B;
 call A; /* 2nd invocation of A */
 end;
 else call Ev; /* Invokes B with environment */
 /* of first invocation of A */
 B: proc;
 go to Out;
 end B;
 Out: end A;

The GO TO statement in the procedure B transfers control to the END A statement in the first invocation
of A, and terminates B and both invocations of A.

Effect of recursion on automatic variables

The values of variables allocated in one activation of a recursive procedure must be protected from
change by other activations. This is arranged by stacking the variables. A stack operates on a last-in, first-
out basis. The most recent generation of an automatic variable is the only one that can be referenced.
Static variables are not affected by recursion. Thus, they are useful for communication across recursive
invocations. This also applies to automatic variables that are declared in a procedure that contains a
recursive procedure and to controlled and based variables.

Recursive procedures

Chapter 5. Program organization 101

Consider the following example:

 A: proc;
 dcl X;
 .
 .
 .
 B: proc recursive;
 dcl Z,Y static;
 call B;
 .
 .
 .
 end B;
 end A;

A single generation of the variable X exists throughout invocations of procedure B. The variable Z has
a different generation for each invocation of procedure B. The variable Y can be referred to only in
procedure B and is not reallocated at each invocation. (The concept of stacking variables is also of
importance in the discussion of controlled variables in “Controlled storage and attribute” on page 239.)

Dynamic loading of an external procedure
A module can be dynamically fetched (loaded) or released (deleted) by a PL/I program using FETCH and
RELEASE statements.

A procedure invoked by a procedure reference usually is resident in main storage throughout the
execution of the program. However, a procedure can be loaded into main storage for only as long as
it is required. The invoked procedure can be dynamically loaded into, and dynamically deleted from, main
storage during execution of the calling procedure.

Dynamic loading and deletion of procedures is particularly useful when a called procedure is not
necessarily invoked every time the calling procedure is executed, and when conservation of main storage
is more important than a short execution time.

The appearance of an entry constant in a FETCH statement indicates that the referenced procedure needs
to be loaded into main storage before it can be executed, unless a copy already exists in main storage.
Provided that the name is referenced in a FETCH statement, a procedure can also be loaded from the disk
as follows:

• By execution of a CALL statement or the CALL option of an INITIAL attribute
• By execution of a function reference

It is not necessary that control pass through a FETCH or RELEASE statement, either before or after
execution of the CALL or function reference.

Whichever statement loaded the procedure, execution of the CALL statement or option or the function
reference invokes the procedure in the normal way.

It is not an error if the procedure has already been loaded into main storage. The fetched procedure can
remain in main storage until execution of the whole program is completed. Alternatively, the storage it
occupies can be freed for other purposes at any time by means of the RELEASE statement.

Rules and features
FETCH and RELEASE have these rules and features.

• Only external procedures can be fetched.
• EXTERNAL files and CONDITION conditions are shared across the entire application (main and fetched

modules). Other external variables are shared only within a single module.
• Storage for STATIC variables in the fetched procedure is allocated when the load module containing the

procedure is loaded into memory. Each time a load module is loaded into memory, the STATIC variables
are given the initial values indicated by their declarations.

Rules

102 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• The FETCH and RELEASE statements must specify entry constants. An entry constant for a fetched
procedure can be assigned to an entry variable provided the procedure has been fetched.

FETCH statement
The FETCH statement checks main storage for the named procedures.

Procedures not already in main storage are loaded from the disk.

FETCH

,

 entry-constant

SET (ptr-ref) TITLE (char-expr)

;

entry-constant
Specifies the name by which the procedure to be fetched is known to the operating system. Details of
the linking considerations for fetchable procedures are given in the Programming Guide.

The entry-constant must be the same as the one used in the corresponding CALL statement, CALL
option, or function reference.

SET
Specifies a pointer reference (ptr-ref) that will be set to the address of the entry point of the
loaded module if the AMODEs of the fetching module and the fetched module are both AMODE(31),
otherwise to the address of a glue code used to transfer control to the fetched module in the
appropriate AMODE. This option can be used to load tables (non-executable load modules). It can
also be used for entries that are fetched and whose addresses need to be passed to non-PL/I
procedures.

If the load module is later released by the RELEASE statement, and the load module is accessed
(through the pointer), unpredictable results can occur.

TITLE
For TITLE, char-expr is any character expression or an expression that can be converted to a character
expression. If TITLE is specified, the load module name specified is searched for and loaded. If it
is not specified, the load module name used is the environment name specified in the EXTERNAL
attribute for the variable (if present) or the entry constant name itself.

See the following example:

 dcl A entry;
 dcl B entry ext('C');
 dcl T char(20) varying;
 T = 'Y';

 fetch A title('X'); /* X is loaded */
 fetch A; /* A is loaded */
 fetch B title('Y'); /* Y is loaded */
 fetch B; /* C is loaded */
 fetch B title(T); /* Y is loaded */

For more detailed information about title strings, refer to the Programming Guide.

FETCH

Chapter 5. Program organization 103

RELEASE statement
The RELEASE statement frees the main storage occupied by procedures identified by its specified entry
constants.

RELEASE

,

entry-constant

*

;

entry constant
Must be the same as the one used in the corresponding CALL statement, CALL option, function
reference, and FETCH statements. RELEASE * releases all previously fetched PL/I modules. It must
not be executed from within a fetched module.

If the module has never been fetched in the same external procedure before or has already been
released, the entry constant is the null pointer. No release is performed, no message is issued and
execution continues with the statement that follows the RELEASE statement.

Consider the following example, in which ProgA and ProgB are entry names of procedures resident on
disk:

 Prog: procedure;

 1 fetch ProgA;
 2 call ProgA;
 3 release ProgA;

 4 call ProgB;
 go to Fin;

 fetch ProgB;
 Fin: end Prog;

 1
ProgA is loaded into main storage by the first FETCH statement.

 2
ProgA executes when the first CALL statement is reached.

 3
Storage for ProgA is released when the RELEASE statement is executed.

 4
ProgB is loaded and executed when the second CALL statement is reached, even though the FETCH
statement referring to this procedure is never executed.

The same results would be achieved if the statement FETCH ProgA were omitted. The appearance of
ProgA in a RELEASE statement causes the statement CALL ProgA to load the procedure, as well as
invoke it.

The fetched procedure is compiled and linked separately from the calling procedure. You must ensure
that the entry constant specified in FETCH, RELEASE, and CALL statements; CALL options; and in function
references is the name known on the disk. This is discussed in the Programming Guide.

Note: Before a module is released, the module must release all system resources it has acquired. This
includes but is not limited to the following actions:

• Release any modules it has fetched.
• Close any files it has opened.
• Free any controlled storage it has allocated.

RELEASE

104 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Subroutines
A subroutine is an internal or external procedure that is invoked by a CALL statement.

For the syntax of a subroutine, see “Procedures” on page 94.

The arguments of the CALL statement are associated with the parameters of the invoked procedure. The
subroutine is activated, and execution begins. The arguments (zero or more) can be input only, output
only, or both.

A subroutine is normally terminated by the RETURN or the END statement. Control is then returned to the
invoking block. A subroutine can be abnormally terminated as described in “Procedure termination” on
page 100.

A subroutine procedure must meet the following conditions:

• Not have the RETURNS option on the procedure statement
• Not be declared as an entry with the RETURNS attribute if it is an external procedure
• Be invoked using the CALL statement, not a function reference
• Not return a result value using the RETURN statement

The following examples illustrate the invocation of subroutines that are external to and internal to the
invoking block.

Example 1
This example illustrates the invocation of subroutines that are external to the invoking block.

 Prmain: procedure;
 declare Name character (20),
 Item bit(5),
 4 Outsub entry;
 1 call Outsub (Name, Item);
 end Prmain;

 2 Outsub: procedure (A,B);
 declare A character (20),
 B bit(5);
 3 put list (A,B);
 end Outsub;

 1
The CALL statement in Prmain invokes the procedure Outsub in 2 with the arguments Name and
Item.

 2
Outsub associates Name and Item passed from Prmain with its parameters, A and B. When Outsub
is executed, each reference to A is treated as a reference to Name. Each reference to B is treated as a
reference to Item.

 3
The put list (A,B) statement transmits the values of Name and Item to the default output file,
SYSPRINT.

 4
In the declaration of Outsub as an entry constant, no parameter descriptor has to be given with the
ENTRY attribute, because the attributes of the arguments and parameters match. Also see “ENTRY
attribute” on page 114.

Example 2
This example illustrates the invocation of subroutines that are internal to the invoking block.

 A: procedure;
 declare Rate float (10),
 Time float(5),
 Distance float(15),

Subroutines

Chapter 5. Program organization 105

 Sample file;
 1 call Readcm (Rate, Time, Distance, Sample);

 3 Readcm:
 2 procedure (W,X,Y,Z);
 declare W float (10),
 X float(5),
 Y float(15), Z file;
 get File (Z) list (W,X,Y);
 Y = W * X;
 if Y > 0 then
 return;
 else
 put list('ERROR READCM');
 end Readcm;

 end A;

 1
The arguments Rate, Time, Distance, and Sample are passed to the procedure Readcm in 3 and
associated with the parameters W, X, Y, and Z.

 2
A reference to W is the same as a reference to Rate, X the same as Time, Y the same as Distance,
and Z the same as Sample.

 3
Note that Readcm is not explicitly declared in A. It is implicitly declared with the ENTRY attribute by its
specification on the PROCEDURE statement.

Built-in subroutines
You can use built-in subroutines, which provide ready-made programming tasks. Their built-in names can
be explicitly declared with the BUILTIN attribute.

For more information about the BUILTIN attribute or for the description of any built-in function, see
Chapter 18, “Built-in functions, pseudovariables, and subroutines,” on page 375.

Functions
A function is a procedure that has zero or more arguments and is invoked by a function reference in an
expression.

The function reference transfers control to a function procedure; the function procedure returns control
and a value, which replaces the function reference in the evaluation of the expression. Aggregates cannot
be returned; ENTRY variables cannot be returned unless they have the LIMITED attribute. The evaluation
of the expression then continues.

A function procedure must meet the following conditions:

• Have the RETURNS option on the procedure statement.
• Be declared as an entry with the RETURNS attribute, if it is an external procedure.
• Be invoked using a function reference. The CALL statement can be used to invoke it only if the returned

value has the OPTIONAL attribute. In this case, the returned value is discarded upon return. Using END
instead of RETURN can cause unpredictable results.

• Have matching attributes in the RETURNS option and in the RETURNS attribute.
• Use the RETURN statement to return control and the result value.

Whenever a function is invoked, the arguments in the invoking expression are associated with the
parameters of the entry point. Control is then passed to that entry point. The function is activated and
execution begins.

The RETURN statement terminates a function and returns the value specified in its expression to the
invoking expression.

Built-in subroutines

106 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

A function can be abnormally terminated as described in “Procedure termination” on page 100. If this
method is used, evaluation of the expression that invoked the function is not completed, and control goes
to the designated statement.

In some instances, a function can be defined so that it does not require an argument list. In such cases,
the appearance of an external function name within an expression is recognized as a function reference
only if the function name has been explicitly declared as an entry name. See “Entry invocation or entry
value” on page 123 for additional information.

Related information
“RETURN statement” on page 124
The RETURN statement terminates execution of the subroutine or function procedure that contains
the RETURN statement and returns control to the invoking procedure. Control is returned to the point
immediately following the invocation reference.

Examples
These examples illustrate the invocation of functions that are internal to and external to the invoking
block.

Example 1

In the following example, the assignment statement contains a reference to the Sprod function:

 Mainp: procedure;
 get list (A, B, C, Y);
 1 X = Y**3+Sprod(A,B,C);

 2 Sprod: procedure (U,V,W)
 returns (bin float(21));
 dcl (U,V,W) bin float(53);
 if U > V + W then
 3 return (0);
 else
 3 return (U*V*W);
 end Sprod;

 1
When Sprod is invoked, the arguments A, B, and C are associated with the parameters U, V, and W in
2 , respectively.

 2
Sprod is a function because RETURNS appears in the procedure statement. It is internal, and
therefore needs no explicit entry declaration. If Sprod were external, Mainp would contain an entry
declaration with RETURNS specified.

 3
Sprod returns either zero or the value represented by U*V*W, along with control to the expression
in Mainp. The returned value is taken as the value of the function reference, and evaluation of the
expression continues.

Example 2

 Mainp: procedure;
 dcl Tprod entry (bin float(53),
 bin float(53),
 bin float(53),
 label) external
 returns (bin float(21));
 get list (A,B,C,Y);
 1 X = Y**3+Tprod(A,B,C,Lab1);
 Lab1: call Errt;
 end Mainp;

 1 Tprod: procedure (U,V,W,Z)
 returns (bin float(21));
 dcl (U,V,W) bin float(53);

Built-in subroutines

Chapter 5. Program organization 107

 declare Z label;

 2 if U > V + W then
 go to Z;
 3 else
 return (U*V*W);
 end Tprod;

 1
When Tprod is invoked, Lab1 is associated with parameter Z.

 2
If U is greater than V + W, control returns to Mainp at the statement labeled Lab1. Evaluation of the
assignment in 1 is discontinued.

 3
If U is not greater than V + W, U*V*W is calculated and returned to Mainp in the normal fashion.
Evaluation of the assignment in 1 continues.

Notice that Tprod is an external procedure. It has an explicit entry declaration in Mainp, which contains
RETURNS.

Built-in functions
Besides allowing programmer-written function procedures, PL/I provides a set of built-in functions.

Built-in functions include commonly used arithmetic functions, as well as functions for manipulating
strings and arrays, using storage, and others. You invoke built-in functions the same way that you invoke
programmer-defined functions. However, many built-in functions can return an array of values, whereas a
programmer-defined function can return only an element value. The built-in names for built-in functions
can be explicitly declared with the BUILTIN attribute.

Related information
“Built-in functions, pseudovariables, and subroutines” on page 375
A large number of common tasks are available in the form of built-in functions, subroutines, and
pseudovariables. When you use them, you can write less code more quickly with greater reliability. This
chapter describes the built-in functions, subroutines, and pseudovariables that you can use in your PL/I
program.

Passing arguments to procedures
When a function or a subroutine is invoked, parameters are associated, from left to right, with the passed
arguments.

In general, the following rules apply:

• Computational data arguments can be passed to parameters of any computational data type.
• Program-control data arguments must be passed to parameters of the same type, with these

exceptions.

– Pointer and offset can be passed to each other.
– LIMITED ENTRY can be passed to ENTRY, but ENTRY cannot be passed to LIMITED ENTRY.
– An array of label constants cannot be used as an argument.

Arguments that require aggregate temporaries derived from structures are not allowed, unless the
structure argument is declared with constant extents.

Expressions in the argument list are evaluated in the invoking block before the subroutine or function
is invoked. A parameter has no storage associated with it. It is merely a means of allowing the invoked
procedure to access storage allocated in the invoking procedure.

Built-in functions

108 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Using BYVALUE and BYADDR
Unless an argument is passed by value (BYVALUE), a reference to an argument, not its value, is generally
passed to a subroutine or function. This is known as passing arguments by reference, or BYADDR.

A reference to a parameter in a procedure is a reference to the corresponding argument. Any change to
the value of a parameter is actually a change to the value of the corresponding argument. However, this is
not always possible or desirable. Constants, for example, should not be altered by an invoked procedure.
For arguments that should not change, a dummy argument containing the value of the original argument is
passed. Any reference to the parameter then is a reference to the dummy argument and not to the original
argument.

When you specify BYADDR, the compiler puts the address of the corresponding argument in the
parameter list. When you specify BYVALUE, puts the value of the argument in the parameter list.

When you specify BYVALUE, a dummy argument is not created; however, as is also true for dummy
arguments, any change to the corresponding parameter in the called routine will not be visible in the
calling routine.

BYVALUE is invalid with AREA, PICTURE, WIDEPIC, VARYING, and VARYINGZ. BYVALUE is also invalid
with ENTRY unless the ENTRY has the LIMITED attribute.

A BYVALUE argument should be one that could reasonably be passed in a register. Hence its type should
be one in the following list:

• REAL FIXED BIN
• REAL FLOAT
• POINTER
• OFFSET
• HANDLE
• LIMITED ENTRY
• FILE
• ORDINAL
• CHAR(1)
• WCHAR(1)
• ALIGNED BIT(n) with n less than or equal to 8

Using INONLY, INOUT and OUTONLY
Unless an argument is declared with the attribute INONLY or OUTONLY, the argument is INOUT and is
presumed to have a value before it is passed and to be changed (possibly) by the called code.

When you declare an argument as INONLY, then the argument is presumed to have a value before it is
passed but not to be changed by the called code. Hence a dummy argument would never need to be
created for such an argument.

When you declare an argument as OUTONLY, then the argument is presumed not to have a value before it
is passed but to be set by the called code.

The BYVALUE attribute implies the INONLY attribute. Hence the attributes OUTONLY and BYVALUE
conflict and may not both be specified for the same argument. However, the ASSIGNABLE attribute is
allowed with the BYVALUE attribute.

A parameter with the INONLY attribute but without an explicit ASSIGNABLE attribute will be given the
NONASSIGNABLE attribute. Use of the ASSIGNABLE attribute with BYADDR INONLY attribute is very
dangerous.

The explicit use of these attributes makes your code more self-documenting. Furthermore, it allows the
compiler to produce better code and to be more accurate in reporting possibly uninitialized variables.

BYVALUE and BYADDR

Chapter 5. Program organization 109

Passing a variable that has the INONLY attribute as an argument to an entry when the corresponding
parameter has the INOUT or OUTONLY attribute allows the variable to be modified which would make the
code invalid. For example, the following code could lead to a protection exception:

 call test(17);

 test: proc(x);
 dcl x fixed bin(31) INONLY;
 dcl e ext entry(INOUT fixed bin(31));
 call e(x);
 end;

Dummy arguments
A dummy argument is a piece of temporary storage that is created automatically to hold the value of an
argument.

A dummy argument is created when the argument is any of the following:

• A constant (unless the parameter has the INONLY attribute).
• An expression with operators, parentheses, or function references.
• A variable whose data attributes, alignment attributes, or connected attribute are different from the

attributes declared for the parameter.

This does not apply to noncontrolled parameters when only bounds, lengths, or size differ and these are
declared with asterisks, nor when an expression other than a constant is used to define the extents of a
controlled parameter. In the latter case, argument and parameter extents are assumed to match.

In the case of an argument and parameter with the PICTURE attribute, a dummy argument is created
unless the picture specifications match exactly, after any repetition factors are applied. The only
exception is that an argument or parameter with a + sign in a scaling factor matches a parameter
or argument without the + sign.

• A string or area with an adjustable length or size that is associated with a noncontrolled parameter
whose length or size is a constant. Note that under the RULES(LAXCTL) compiler option, the extents of a
CONTROLLED string or AREA are always changeable, but under the RULES(NOLAXCTL) compiler option,
the extents of a CONTROLLED string or AREA are changeable unless declared as constants.

Deriving dummy argument attributes

PL/I derives the attributes of dummy arguments as follows:

• From the attributes declared for the associated parameter in an internal procedure
• From the attributes specified in the parameter descriptor for the associated parameter in the

declaration of the external entry

If there was not a descriptor for this parameter, the attributes of the constant or expression are used.
• From the extents (when specified by an asterisk in a declaration) of the argument for the bounds of an

array, the length of a string, or the size of an area

Rules for dummy arguments

The following rules apply to dummy arguments:

• If a parameter is an element (that is, a variable that is neither a structure nor an array), the argument
must be an element expression.

• When a VARYING, VARYING4, or VARYINGZ string element is passed to a NONVARYING parameter,
whose length is undefined (that is, specified by an asterisk), a dummy argument with the current length
of the original is created.

Dummy arguments

110 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• Entry variables passed as arguments are assumed to be aligned; therefore, no dummy argument is
created when only the alignments of argument and parameter differ. See “Generic entries” on page 121
for a description of generic name arguments for entry parameters.

• If the parameter is of the program-control data type (except locator), the argument must be a reference
of the same data type.

• If a parameter is a locator (pointer or offset), the argument must be a locator. If the types differ, a
dummy argument is created. The parameter descriptor of an offset parameter must not specify an
associated area.

• A noncontrolled parameter can be associated with an argument of any storage class. However, if more
than one generation of the argument exists, the parameter is associated only with that generation
existing at the time of invocation.

• If the parameter is controlled, you must explicitly state this in the parameter descriptor for the ENTRY
declaration. In addition, a controlled parameter must always have a corresponding controlled argument
that is not subscripted, that is not an element of a structure, and that does not cause a dummy to be
created.

If more than one generation of the argument exists at the time of invocation, the parameter corresponds
to the entire stack of generations in existence. Consequently, at the time of invocation, a controlled
parameter represents the current generation of the corresponding argument. A controlled parameter
can be allocated and freed in the invoked procedure, allowing the manipulation of the allocation stack of
the associated argument.

If the extents of the controlled parameter are specified as asterisks or nonrestricted expressions, the
original declaration must have extents declared as nonrestricted expressions.

Passing arguments to the MAIN procedure
The PROCEDURE statement for the main procedure can have a parameter list. Such parameters require
no special considerations in PL/I. However, you must be aware of any requirements of the invoking
program (for example, when not to use such a parameter as the target of an assignment).

When the invoking program is the operating system and the invoked program was compiled with the
SYSTEM(MVS) compiler option, the following rules apply:

• A single argument is passed to the MAIN procedure, and that parameter must be declared as
CHARACTER VARYING.

• The current length of this parameter is set equal to the argument length at run time. So, in the following
example, storage is allocated only for the current length of the argument:

 Tom: proc (Param) options (main);
 dcl Param char(*) varying;

• The contents of this parameter depend on a second option that may be specified along with
OPTIONS(MAIN):

– If you specify OPTIONS(MAIN NOEXECOPS), the string passed by the operating system to PL/I is
passed as is to your program. NOEXECOPS is recommended.

– If you specify only OPTIONS(MAIN), the string passed by the operating system to PL/I is stripped
of all characters up to and including the first '/'. This means that if the string contains no '/', your
program receives a null string.

Passing arguments to the MAIN procedure

Chapter 5. Program organization 111

Begin-blocks
A begin-block is a sequence of statements delimited by a BEGIN statement and a corresponding END
statement.

Example

B: begin;
statement-1
statement-2
⋮
statement-n
end B;

BEGIN statement
The BEGIN statement and a corresponding END statement delimit a begin-block.

BEGIN

OPTIONS (options) RECURSIVE ORDER

REORDER

;

OPTIONS option
For begin-block options, see “OPTIONS option and attribute” on page 125.

RECURSIVE
See “Recursive procedures” on page 101.

ORDER or REORDER
ORDER and REORDER are optimization options that are specified for a procedure or begin-block. For
more information about using the ORDER and REORDER, see "ORDER or REORDER" in “OPTIONS
option and attribute” on page 125.

Begin-block activation
Begin-blocks are activated through sequential flow or as a unit in an IF, ON, WHEN, or OTHERWISE
statement.

You can transfer control to a labeled BEGIN statement by using the GO TO statement.

Begin-block termination
A begin-block is terminated when control passes to another active block by some means other than a
procedure reference.

These means are described in the following list:

• The END statement for the begin-block is executed. Control continues with the statement physically
following the END, except when the block is an ON-unit.

• A GO TO statement within the begin-block (or within any block internal to it) is executed, transferring
control to the point outside the block.

• A STOP or an EXIT statement is executed.
• Control reaches a RETURN statement that transfers control out of the begin-block and out of its

containing procedure.

A GO TO statement can also terminate other blocks if the transfer point is contained in a block that did not
directly activate the block being terminated. In this case, all intervening blocks in the activation sequence
are terminated. For an example of this, see the example in “Procedure termination” on page 100.

BEGIN

112 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Entry data
The entry data can be an entry constant or the value of an entry variable.

An entry constant is a name prefixed to a PROCEDURE or ENTRY statement, or a name declared with the
ENTRY attribute and not the VARIABLE attribute. It can be assigned to an entry variable. In the following
example, P, E1, and E2 are entry constants; Ev is an entry variable.

 P: procedure;
 declare Ev entry variable,
 (E1,E2) entry;

 Ev = E1;
 call Ev;
 Ev = E2;
 call Ev;

The first CALL statement invokes the entry point E1. The second CALL invokes the entry point E2.

The following example declares F(5), a subscripted entry variable.

The five entries A, B, C, D, and E are each invoked with the parameters X, Y, and Z.

 declare (A,B,C,D,E) entry,
 declare F(5) entry variable initial (A,B,C,D,E);
 do I = 1 to 5;
 call F(I) (X,Y,Z);
 end;

When an entry constant that is an entry point of an internal procedure is assigned to an entry variable,
the assigned value remains valid only as long as the block that the entry constant was internal to remains
active (and, for recursive procedures, remains current).

Entry constants
The appearance of a label prefix to a PROCEDURE or ENTRY statement explicitly declares an entry
constant.

A parameter-descriptor list is obtained from the parameter declarations, if any, and by defaults.

External entry constants must be explicitly declared:

• This declaration defines an entry point to an external procedure.
• This declaration optionally specifies a parameter-descriptor list (the number of parameters and their

attributes), if any, for the entry point.
• This declaration specifies the attributes of the value that is returned by the procedure if the entry is a

function.

ENTRY

( parameter-descriptor-list) RETURNS attribute

OPTIONS( characteristic-list) EXTERNAL

( environment-name)

The attributes can appear in any order.

ENTRY attribute
For complete ENTRY attribute syntax, see “ENTRY attribute” on page 114.

OPTIONS attribute
For complete OPTIONS attribute syntax, see “OPTIONS option and attribute” on page 125.

Entry constants

Chapter 5. Program organization 113

RETURNS attribute
For complete RETURNS attribute syntax, see “RETURNS option and attribute” on page 134.

EXTERNAL attribute
If you do not specify an environment-name, the name is the same as the declaration. For a complete
description of the EXTERNAL attribute, see “INTERNAL and EXTERNAL attributes” on page 154.

Entry variables
An entry variable can contain both internal and external entry values. It can be part of an aggregate.

For information about structuring and array dimension attributes, see “Arrays” on page 172 and
“Structures” on page 176.

ENTRY

( parameter-descriptor-list) OPTIONS( characteristic-list)

VARIABLE LIMITED RETURNS attribute

EXTERNAL

( environment-name)

The options can appear in any order.

ENTRY attribute
See “ENTRY attribute” on page 114.

OPTIONS attribute
See “OPTIONS option and attribute” on page 125.

VARIABLE attribute
The VARIABLE attribute establishes the name as an entry variable. This variable can contain entry
constants and variables. See “VARIABLE attribute” on page 46 for syntax information.

LIMITED attribute
See “LIMITED attribute” on page 120.

RETURNS attribute
See “RETURNS option and attribute” on page 134.

EXTERNAL attribute
See “Scope of declarations” on page 152.

Under 64-bit, all ENTRY variables, whether they have the LIMITED attribute or not, are 8 bytes in size and
are by default doubleword-aligned.

ENTRY attribute
The ENTRY attribute specifies that the name being declared is either an external entry constant or an
entry variable. It also describes the attributes of the parameters of the entry point.

ENTRY

(

,

parameter-descr

structure-union-descr

)

parameter-descr

Entry variables

114 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

attribute

*

ALIGNED

UNALIGNED

ASSIGNABLE

NONASSIGNABLE

INOUT

INONLY

OUTONLY

CONNECTED

NONCONNECTED

BYADDR

BYVALUE

OPTIONAL

structure-union-descr

1

attribute OPTIONAL

,  level

attribute

ENTRY
The ENTRY attribute, without a parameter descriptor list, is implied by the RETURNS attribute.

parameter-descr (parameter-descriptor)
A parameter descriptor list can be given to describe the attributes of the parameters of the associated
external entry constant or entry variable. It is used for argument and parameter attribute matching
and the creation of dummy arguments.

If no parameter descriptor list is given, the default is for the argument attributes to match the
parameter attributes. Thus, the parameter descriptor list must be supplied if argument attributes do
not match the parameter attributes.

Each parameter descriptor corresponds to one parameter of the entry point invoked and, if given,
specifies the attributes of that parameter.

The parameter descriptors must appear in the same order as the parameters they describe. If a
descriptor is absent, the default is for the argument to match the parameter.

If a descriptor for a parameter is not required, the absence of the descriptor must be indicated by an
asterisk. See the following example:

entry(character(10),*,*,fixed dec) Indicates four arguments.

entry(*) Indicates one argument.

entry() Specifies that the entry name must never have
any arguments.

ENTRY

Chapter 5. Program organization 115

entry Specifies that it can have any number of
arguments.

entry(float binary,*) Indicates two arguments.

attribute
The allowed attributes are any of the data attributes listed under “Data attributes” on page 17. The
attributes can appear in any order in a parameter descriptor. For an array parameter-descriptor, the
dimension attribute must be the first one specified.

*
An asterisk specifies that, for that parameter, any data type is allowed. Only the following attributes
are valid attributes following the asterisk:

• ALIGNED or UNALIGNED
• ASSIGNABLE or NONASSIGNABLE
• BYADDR or BYVALUE
• CONNECTED or NONCONNECTED
• INONLY, INOUT, or OUTONLY
• OPTIONAL

No conversions are done.

OPTIONAL
See “OPTIONAL attribute” on page 117.

structure-union-descr (structure-union-descriptor)
For a structure-union descriptor, the descriptor level-numbers need not be the same as those of the
parameter, but the structuring must be identical. The attributes for a particular level can appear in any
order.

Defaults are not applied if an asterisk is specified. For example, in the following declaration, defaults are
applied only for the second parameter.

 dcl X entry(* optional, aligned); /* defaults applied for 2nd parm */

Extents (lengths, sizes, and bounds) in parameter descriptors must be specified as constants or as
asterisks. Controlled parameters must have asterisks.

RETURNS attribute implies the ENTRY attribute. See the following example:

Example parameter descriptors Declarations for example descriptors

 Test: procedure (A,B,C,D,E,F);

 declare A fixed decimal (5),
 B float binary (21),
 C pointer,
 1 D,
 2 P,
 2 Q,
 3 R fixed decimal,
 1 E,
 2 X,
 2 Y,
 3 Z,
 F(4) character (10);
 end Test;

 declare Test entry
 (decimal fixed (5),
 binary float (21),
 *,
 1,
 2,
 2,
 3 decimal fixed,
 *,
 (4) char(10));

In the preceding example, the parameter C and the structure parameter E do not have descriptors.

ENTRY

116 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

OPTIONAL attribute
You can specify OPTIONAL as part of the parameter-descriptor list or as an attribute in the parameter
declaration.

OPTIONAL

OPTIONAL arguments can be omitted in calls and function references by specifying an asterisk for the
argument. An omitted item can be anywhere in the argument list, including at the end. However, the
omitted item is counted as an argument. With its inclusion in an entry, the number of arguments must not
exceed the maximum number allowed for the entry.

Using OPTIONAL and BYVALUE for the same item is not valid, unless the item is a LIMITED ENTRY.

The receiving procedure can use the OMITTED or PRESENT built-in function to determine whether an
OPTIONAL parameter/argument was omitted in the invocation of the entry.

You can pass an omitted OPTIONAL parameter as an argument to an entry if the corresponding parameter
in the declaration for that entry is also OPTIONAL.

If the final parameters in an ENTRY declaration are declared as OPTIONAL, the ENTRY can be invoked
with those parameters completely omitted: it is not even necessary to specify the appropriate number of
asterisks. For example, if an ENTRY is declared as having five parameters, of which the last two have the
OPTIONAL attribute, it can be invoked with three, four, or five arguments.

You can omit such trailing OPTIONAL parameters both when the ENTRY invoked is explicitly declared
and when the ENTRY invoked is a nested subprocedure. Note also that unless the ENTRY has the
OPTIONS(ASSEMBLER) attribute, the generated code will supply null pointers for the omitted parameters.

Valid and invalid call statements shows both valid and invalid CALL statements for the procedure Vrtn.

Valid and invalid call statements

 Caller: proc;
 dcl Vrtn entry (
 fixed bin,
 ptr optional,
 float,
 * optional);

/* The following calls are valid: */

 call Vrtn(10, *, 15.5, 'abcd');
 call Vrtn(10, *, 15.5, *);
 call Vrtn(10, addr(x), 15.5, *);
 call Vrtn(10, *, 15.5);
 call Vrtn(10, addr(x), 15.5);

/* The following calls are invalid: */

 call Vrtn(*, addr(x));
 call Vrtn(10,addr(x));
 call Vrtn(10);
 call Vrtn;
 end Caller;

 Vrtn: proc (Fb, P, Fl, C1);
 dcl Fb fixed bin,
 P ptr optional,
 Fl float,
 C1 char(8) optional;

 if ¬omitted(C1) then display (C1);
 if ¬omitted(P) then P=P+10;
end;

Vrtn determines whether OPTIONAL parameters are omitted and takes the appropriate action.

Related information
“OMITTED” on page 499

OPTIONAL

Chapter 5. Program organization 117

OMITTED returns a BIT(1) value that is '1'B if the parameter named x was omitted in the invocation to its
containing procedure.

LIST attribute
You can specify LIST on the last parameter in a parameter-descriptor list or as an attribute on the last
parameter to a procedure.

LIST

When the LIST attribute is specified in an entry declaration, it indicates that zero or more additional
arguments can be passed to that entry. For example, the following declare specifies that vararg must be
invoked with one character varyingz parameter and can be invoked with any number of other parameters.

 dcl vararg external
 entry(list byaddr char(*) varz nonasgn)
 options(nodescriptor byvalue);

When the LIST attribute is specified in the declaration of the last parameter in a procedure, it indicates
that zero or more additional arguments might have been passed to that procedure.

When the LIST attribute is specified, no descriptors are allowed, and OPTIONS(NODESCRIPTOR) must be
specified on its PROCEDURE statement and on its corresponding ENTRY declaration.

The address of the first of these additional parameters can be obtained by the VARGLIST built-in function.
This address can be used to obtain the addresses of any additional parameters as follows:

• If the additional parameters to this procedure were passed by value (BYVALUE), successively
incrementing this initial address by the value returned by the VARGSIZE built-in function will return
the addresses of any additional parameters.

• If the additional parameters to this procedure were passed by reference (BYADDR), successively
incrementing this initial address by the size of a pointer will return the addresses of any additional
parameters.

Example

The following sample program, which implements a simple version of printf, illustrates how to use
the LIST attribute. The routine varg1 illustrates how to walk a variable argument list with BYVALUE
parameters, and varg2 illustrates how to walk such a list with BYADDR parameters.

LIST

118 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Sample program illustrating LIST attribute

*process rules(ans) dft(ans) gn;
 vararg: proc options(main);

 dcl i1 fixed bin(31) init(1729);
 dcl i2 fixed bin(31) init(6);
 dcl d1 float bin(53) init(17.29);

 dcl varg1 ext entry(char(*) varz byaddr list)
 options(byvalue nodescriptor);
 dcl varg2 ext entry(char(*) varz byaddr list)
 options(byaddr nodescriptor);

 call varg1('test byvalue');
 call varg1('test1 parm1=%i', i1);
 call varg1('test2 parm1=%i parm2=%i', i1, i2);
 call varg1('test3 parm1=%d', d1);

 call varg2('test byaddr');
 call varg2('test1 parm1=%i', i1);
 call varg2('test2 parm1=%i parm2=%i', i1, i2);
 call varg2('test3 parm1=%d', d1);
 end;

*process ;
 varg1:
 proc(text)
 options(nodescriptor byvalue);

 dcl text list byaddr nonasgn varz char(*);

 dcl jx fixed bin;
 dcl iz fixed bin;
 dcl ltext fixed bin;
 dcl ptext pointer;
 dcl p pointer;
 dcl i fixed bin(31) based;
 dcl d float bin(53) based;
 dcl q float bin(64) based;
 dcl chars char(32767) based;
 dcl ch char(1) based;

 ptext = addr(text);
 ltext = length(text);
 iz = index(substr(ptext->chars,1,ltext), '%');
 p = varglist();
 do while(iz > 0);
 if iz = 1 then;
 else
 put edit(substr(ptext->chars,1,iz-1))(a);
 ptext += iz;
 ltext -= iz;
 select(ptext->ch);
 when('i')
 do;
 put edit(trim(p->i))(a);
 p += vargsize(p->i);
 end;
 when('d')
 do;
 put edit(trim(p->d))(a);
 p += vargsize(p->d);
 end;
 end;
 ptext += 1;
 ltext -= 1;
 if ltext <= 0 then leave;
 iz = index(substr(ptext->chars,1,ltext), '%');
 end;
 if ltext = 0 then;
 else
 put edit(substr(ptext->chars,1,ltext))(a);
 put skip;
 end;

Sample program illustrating LIST attribute

LIST

Chapter 5. Program organization 119

*process ;
 varg2:
 proc(text)
 options(nodescriptor byaddr);

 dcl text list byaddr nonasgn varz char(*);

 dcl jx fixed bin;
 dcl iz fixed bin;
 dcl ltext fixed bin;
 dcl ptext pointer;
 dcl p pointer;
 dcl p2 pointer based;
 dcl i fixed bin(31) based;
 dcl d float bin(53) based;
 dcl q float bin(64) based;
 dcl chars char(32767) based;
 dcl ch char(1) based;

 ptext = addr(text);
 ltext = length(text);
 iz = index(substr(ptext->chars,1,ltext), '%');
 p = varglist();
 do while(iz > 0);
 if iz = 1 then;
 else
 put edit(substr(ptext->chars,1,iz-1))(a);
 ptext += iz;
 ltext -= iz;
 select(ptext->ch);
 when('i')
 do;
 put edit(trim(p->p2->i))(a);
 p += size(p);
 end;
 when('d')
 do;
 put edit(trim(p->p2->d))(a);
 p += size(p);
 end;
 end;
 ptext += 1;
 ltext -= 1;
 if ltext <= 0 then leave;
 iz = index(substr(ptext->chars,1,ltext), '%');
 end;
 if ltext = 0 then;
 else
 put edit(substr(ptext->chars,1,ltext))(a);
 put skip;
 end;

Sample program illustrating LIST attribute

LIMITED attribute
The LIMITED attribute indicates that the entry variable has only non-nested entry constants as values. A
entry variable that is not LIMITED can have any entry constants as values.

LIMITED

Example

A LIMITED static entry variable can be initialized with the value of a non-nested entry constant, thus
allowing generation of more efficient code. It also uses less storage than a non-LIMITED entry variable.

Example: proc options(reorder reentrant);
dcl (Read, Write) entry;
dcl FuncRtn(2) entry limited
static init (Read, Write);

LIMITED

120 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

dcl (Prt1) entry;
dcl PrtRtn(2) entry variable limited
static init (Prt1, /* legal */
 Prt2); /* illegal */
Prt2: proc;
⋮
end Prt2;
end Example;

Generic entries
A generic entry declaration specifies a generic name for a set of entry references and their descriptors.

During compilation, invocation of the generic name is replaced by one of the entries in the set.

GENERIC attribute
The generic name must be explicitly declared with the GENERIC attribute.

generic-name GENERIC (references

references
,

entry-ref WHEN (

,

generic-descriptor

*

)

, entry-ref OTHERWISE

) ;

generic-descriptor
data-attributes

ALIGNED

UNALIGNED

ASSIGNABLE

NONASSIGNABLE
1

INOUT

INONLY

OUTONLY

CONNECTED

NONCONNECTED
1

HEXADEC

IEEE

BIGENDIAN

LITTLEENDIAN

OPTIONAL

Notes:
1 If specified, this keyword is ignored.

Abbreviation: OTHER for OTHERWISE

For the general declaration syntax, see “DECLARE statement” on page 150.

entry-ref
Must not be subscripted or defined. The same entry reference can appear more than once within a
single GENERIC declaration with different lists of descriptors.

Generic entries

Chapter 5. Program organization 121

generic-descriptor
Corresponds to a single argument. It specifies an attribute that the corresponding argument must
have so that the associated entry reference can be selected for replacement.

Structures or unions cannot be specified.

Where a descriptor is not required, its absence must be indicated by an asterisk.

The descriptor that represents the absence of all arguments in the invoking statement is expressed by
omitting the generic descriptor in the WHEN clause of the entry. It has the form:

 generic (... entry1 when() ...)

data-attributes
Listed in “Data types and attributes” on page 16.

ALIGNED and UNALIGNED
See “ALIGNED and UNALIGNED attributes” on page 160.

ASSIGNABLE and NONASSIGNABLE
See “ASSIGNABLE and NONASSIGNABLE attributes” on page 259.

CONNECTED and NONCONNECTED
See “CONNECTED and NONCONNECTED attributes” on page 262.

HEXADEC and IEEE
See “HEXADEC and IEEE attributes” on page 261.

BIGENDIAN and LITTLEENDIAN
See “BIGENDIAN and LITTLEENDIAN attributes” on page 260.

OPTIONAL
See “OPTIONAL attribute” on page 117.

When an invocation of a generic name is encountered, the number of arguments specified in the
invocation and their attributes are compared with descriptor list of each entry in the set. The first entry
reference for which the descriptor list matches the arguments both in number and attributes replaces the
generic name.

In the following example, an entry reference that has exactly two descriptors with the attributes DECIMAL
or FLOAT, and BINARY or FIXED is searched for.

 declare Calc generic (
 Fxdcal when (fixed,fixed),
 Flocal when (float,float),
 Mixed when (float,fixed),
 Error otherwise);
 Dcl X decimal float (6),
 Y binary fixed (15,0);

 Z = X+Calc(X,Y);

If an entry with the exact number of descriptors with the exact attributes is not found, the entry with the
OTHERWISE clause is selected if present. In the previous example, Mixed is selected as the replacement.

In a similar manner, an entry can be selected based on the dimensionality of the arguments.

 dcl D generic (D1 when ((*))),
 D2 when((*,*))),
 A(2),
 B(3,5);
 call D(A); /* D1 selected because A has one dimension */
 call D(B); /* D2 selected because B has two dimensions */

If all of the descriptors are omitted or consist of an asterisk, the first entry reference with the correct
number of descriptors is selected.

An entry expression used as an argument in a reference to a generic value matches only a descriptor of
type ENTRY. If there is no such description, the program is in error.

GENERIC attribute

122 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Entry invocation or entry value
There are times when it might not be apparent whether an entry value itself will be used or the value
returned by the entry invocation will be used. This topic helps you understand which happens when.

The following table explains the conditions under which an entry reference is invoked or not invoked.

If the entry reference . . . It is . . .

Is a built-in function Invoked

Has an argument list, even if null Invoked

Is referenced in a CALL statement Invoked

Has no argument list and is not referenced in a
CALL statement

Not Invoked

Example 1

In this example, A is invoked, B(C) passes C as an entry value, and D(C()) invokes C.

 dcl (A, B, C returns (fixed bin), D) entry;

 call A; /* A is invoked */
 call B(C); /* C is passed as an entry value */
 call D(C()); /* C is invoked */

Example 2

In this example, the first assignment is not valid because it represents an attempt to assign an entry
constant to an integer. The second assignment is valid.

 dcl A fixed bin,
 B entry returns (fixed bin);

 A = B;
 A = B();

CALL statement
The CALL statement invokes a subroutine.

CALL entry-reference

generic-name

built-in-name

(
,

argument

*

) ;

entry-reference
Specifies that the name of the subroutine to be invoked is declared with the ENTRY attribute. See
“Entry data” on page 113.

generic-name
Specifies that the name of the subroutine to be invoked is declared with the GENERIC attribute. See
“Generic entries” on page 121.

built-in name
Specifies the name of the subroutine to be invoked is declared with the BUILTIN attribute. See
“BUILTIN attribute” on page 375.

Entry invocation or entry value

Chapter 5. Program organization 123

argument
Is an element, an element expression, or an aggregate to be passed to the invoked subroutine. See
“Passing arguments to procedures” on page 108.

References and expressions in the CALL statement are evaluated in the block in which the call is
executed. This includes execution of any ON-units entered as the result of the evaluations.

RETURN statement
The RETURN statement terminates execution of the subroutine or function procedure that contains
the RETURN statement and returns control to the invoking procedure. Control is returned to the point
immediately following the invocation reference.

The RETURN statement with an expression should not be used within a procedure with OPTIONS(MAIN).

A RETURN statement without an expression is not valid in a procedure with the RETURNS option.
Conversely, a RETURN statement with an expression is not valid in a procedure without the RETURNS
option.

A procedure with the RETURNS option must contains at least one RETURN statement (with an expression,
of course).

Return from a subroutine
To return from a subroutine, the RETURN statement syntax is as follows:

RETURN ;

If the RETURN statement terminates the main procedure, the FINISH condition is raised before program
termination.

Return from a function
To return from a function, the RETURN statement syntax is as follows:

RETURN ( expression) ;

The value returned to the function reference is the value of the expression specified, converted to
conform to the attributes specified in the RETURNS option of the ENTRY or PROCEDURE statement at
which the function was entered. Consider the following example:

 F: procedure returns(fixed bin(15));
 .
 .
 .
 G: entry returns(fixed dec(7,2));
 .
 .
 .
 dcl D fixed bin(31);
 .
 .
 .
 return (D);

If this function was entered at F, D is converted to the attributes specified in the RETURNS option for
the procedure F (FIXED BIN(15)). But, if this function was entered at G, D is converted to the attributes
specified in the RETURNS option for the entry G (FIXED DEC(7,2)).

You cannot specify an expression for the RETURN statement in a begin-block.

Return from a subroutine

124 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

OPTIONS option and attribute
You can specify the OPTIONS option on PACKAGE, PROCEDURE, ENTRY, and BEGIN statements. You can
specify the OPTIONS attribute on ENTRY declarations. OPTIONS specifies processing characteristics that
apply to the block and the invocation of a procedure.

BEGIN statement

OPTIONS (
NOCHARGRAPHIC

CHARGRAPHIC

NOINLINE

INLINE

NORETURN

ORDER

REORDER

)

OPTIONS option and attribute

Chapter 5. Program organization 125

ENTRY declaration

OPTIONS (

ASSEMBLER

RETCODE

COBOL

FORTRAN

FETCHABLE

RENT

BYADDR

BYVALUE

DESCRIPTOR

NODESCRIPTOR

CMPAT(V1

V2

V3

)

AMODE31

AMODE64

LINKAGE (linkage)

IRREDUCIBLE

REDUCIBLE

NOMAP

parameter-list

NOMAPIN

parameter-list

NOMAPOUT

parameter-list

NORETURN

)

OPTIONS option and attribute

126 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

ENTRY statement

OPTIONS (

ASSEMBLER

RETCODE

COBOL

FORTRAN

BYADDR

BYVALUE

DESCRIPTOR

NODESCRIPTOR

DLLINTERNAL

LINKAGE( linkage)

NOMAP

parameter-list

NOMAPIN

parameter-list

NOMAPOUT

parameter-list

IRREDUCIBLE

REDUCIBLE

NORETURN

REENTRANT)

PACKAGE statement

OPTIONS (
NOCHARGRAPHIC

CHARGRAPHIC

ORDER

REORDER

REENTRANT

)

OPTIONS option and attribute

Chapter 5. Program organization 127

PROCEDURE statement

OPTIONS (

ASSEMBLER

COBOL

FORTRAN

FETCHABLE

MAIN

NOEXECOPS

BYADDR

BYVALUE

NOCHARGRAPHIC

CHARGRAPHIC

DESCRIPTOR

NODESCRIPTOR

CMPAT(V1

V2

V3

)

AMODE31

AMODE64

DLLINTERNAL

FROMALIEN

LINKAGE (linkage)

NOMAP

parameter-list

NOMAPIN

parameter-list

NOMAPOUT

parameter-list

NOINLINE

INLINE

ORDER

REORDER

IRREDUCIBLE

REDUCIBLE

NORETURN

REENTRANT

RETCODE

WINMAIN

)

The options are separated by blanks or commas. They can appear in any order.

OPTIONS option and attribute

128 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

AMODE31 or AMODE64

In a PROCEDURE statement, AMODE31 is valid only if the compiler option LP(32) is in effect, and
AMODE64 is valid only if the compiler option LP(64) is in effect.

In an ENTRY declaration, AMODE31 or AMODE64 specifies the addressing mode (the "amode") of the
routine.

Specifying AMODE31 or AMODE64 requires the FETCHABLE, NODESCRIPTOR, and LINKAGE options
to be specified.

If an ENTRY or PROCEDURE with OPTIONS(AMODE31) or OPTIONS(AMODE64) has a BYVALUE
parameter, then the type of that parameter must be one of the types POINTER, HANDLE, ORDINAL, or
REAL FIXED BIN.

If an ENTRY or PROCEDURE with OPTIONS(AMODE31) or OPTIONS(AMODE64) has the
RETURNS(BYVALUE ...) attribute, then the RETURNS attribute must specify either an ORDINAL type or
an unscaled REAL FIXED BIN of 4 bytes or less.

An entry constant with OPTIONS(AMODE31) or OPTIONS(AMODE64) must specify a (possibly empty)
parenthesized list of no more than 64 parameters. If it has no arguments, it should be declared as
ENTRY().

An entry constant with OPTIONS(AMODE31) or OPTIONS(AMODE64) cannot be assigned either
implicitly or explicitly to another ENTRY.

An argument passed to an ENTRY with OPTIONS(AMODE31) must not be a structure expression or an
array expression.

ASSEMBLER
Abbreviation: ASM

The ASSEMBLER option has the same effect as NODESCRIPTOR.

If a procedure has the ASSEMBLER option, then upon exit from that procedure, the PLIRETV() value
will be used as the return value for the procedure.

A PROCEDURE or ENTRY statement that specifies OPTIONS(ASSEMBLER) will have
LINKAGE(SYSTEM) unless a different linkage is explicitly specified.

For more information, refer to the Programming Guide.

BYADDR or BYVALUE
These specify how arguments and parameters are passed and received. BYADDR is the default.

BYVALUE is invalid with AREA, PICTURE, WIDEPIC, VARYING, and VARYINGZ.

The BYVALUE and BYADDR attributes can also be specified in the description list of an entry
declaration and in the attribute list of a parameter declaration. Specifying BYVALUE or BYADDR in
an entry or a parameter declaration overrides the option specified in an OPTIONS statement.

The following examples show BYVALUE and BYADDR in both entry declarations and in the OPTIONS
statement. The examples assume that the compiler option DEFAULT(BYADDR) is in effect.

Example 1:

 MAINPR: proc options(main);

 dcl D entry (fixed bin byaddr,
 ptr,
 char(4) byvalue) /* byvalue not needed */
 options(byvalue);
 dcl E2 entry; /* default(byaddr) in effect */
 dcl Length fixed bin,
 P pointer,
 Name char(4);

 call D(Length, P, Name); /* Length is passed byaddr */

OPTIONS option and attribute

Chapter 5. Program organization 129

 /* P is passed by value */
 /* Name is passed by value */

 call E2(P); /* P is passed by address */

 D: proc(I, Q, C)
 options(byvalue);
 dcl I fixed bin byaddr,
 Q ptr,
 C char(4) byvalue;

 E2: proc(Q);
 dcl Q ptr;

Example 2:

 dcl F entry (fixed bin byaddr, /* byaddr not needed */
 ptr,
 char(4) byvalue)
 options(byaddr);
 dcl E3 entry;
 dcl E4 entry (fixed bin byvalue);

 call F(Length, P, Name); /* Length is passed byaddr */
 /* P is passed byaddr */
 /* Name is passed by value */

 call E3(Name); /* Name is passed byaddr */
 call E4(Length); /* Length is passed by value */

 F: proc(I,P,C) options(byaddr);
 dcl I fixed bin byaddr; /* byaddr not needed */
 dcl P ptr byaddr; /* byaddr not needed */
 dcl C char(4) byvalue; /* byvalue needed */

 E3: proc(L);
 dcl L char(4);

 E4: proc(N);
 dcl N fixed bin byvalue;

CHARGRAPHIC or NOCHARGRAPHIC
Abbreviations: CHARG, NOCHARG

The default for an external procedure is NOCHARG. Internal procedures and begin-blocks inherit their
defaults from the containing procedure.

When CHARG is in effect, the following semantic changes occur:

• All character string assignments are considered to be mixed character assignments.
• STRINGSIZE condition causes the MPSTR built-in function to be used. STRINGSIZE must be

enabled for character assignment that can cause truncation and intelligent DBCS truncation is
required. See the following example:

 Name: procedure options(chargraphic);
 dcl A char(5);
 dcl B char(8);

 /* the following statement... */

 (stringsize): A=B;

 /*...is logically transformed into... */

 A=mpstr(B,'vs',length(A));

OPTIONS option and attribute

130 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The CHARGRAPHIC and NOCHARGRAPHIC options can also be specified outside of the OPTIONS
option, but this usage is deprecated and does not conform to any language standard.

When NOCHARG is in effect, no semantic changes occur.

CMPAT

The CMPAT option specifies the CMPAT compiler option setting with which the routine is compiled.

In a PROCEDURE statement, the CMPAT value in the OPTIONS attribute must match that in the
compiler CMPAT option.

In an ENTRY declaration, the CMPAT option is ignored unless AMODE31 is also specified. If CMPAT
and AMODE31 are both specified, then the CMPAT value must match the CMPAT compiler option
setting with which the routine is compiled.

COBOL
This option has the same effects as NODESCRIPTOR, but additionally OPTIONS(COBOL) has the
following effects:

• Implies LINKAGE(SYSTEM) unless a different linkage is specified on the entry declaration or
procedure statement.

• Permits the use of the NOMAP, NOMAPIN, and NOMAPOUT options.
• Implies, if specified on a procedure statement, that upon exit from that procedure, the PLIRETV()

value will be used as the return value for the procedure.

COBOL and MAIN must not be specified together.

DESCRIPTOR or NODESCRIPTOR
These indicate whether the procedure specified in the entry declaration or procedure statement will
be passed a descriptor list when it is invoked.

If DESCRIPTOR appears, the compiler passes descriptors, if necessary.

If NODESCRIPTOR appears, the compiler does not pass descriptors.

If neither appears, DESCRIPTOR is assumed only when one of the invoked procedure's parameters is
a string, array, area, structure, or union.

It is an error for NODESCRIPTOR to appear on a procedure statement or an entry declaration in which
any of the parameters or elements uses the asterisk (*) to indicate the extents, length, or size, or any
parameter is NONCONNECTED.

However, NODESCRIPTOR is allowed if the parameters with unspecified extents are INONLY
VARYING, VARYING4, or VARYINGZ strings.

DLLEXTERNAL or DLLINTERNAL

This option indicates that the procedure or entry is intended to be external or internal to a DLL and,
consequently, that its name should or should not be included in any definition side file generated by
the compiler.

The DLLEXTERNAL and DLLINTERNAL attributes are valid only on EXTERNAL procedures or ENTRYs.
The DLLINTERNAL attribute conflicts with the FETCHABLE attribute.

FETCHABLE
This option indicates the procedure is dynamically fetched if necessary before invoking it.

The FETCHABLE attribute is not valid on INTERNAL procedures.

FETCHABLE procedures should not be linked into a load module that contains a MAIN procedure.

FORTRAN
This option causes no descriptors to be passed except for character variables.

FORTRAN and MAIN must not be specified together.

OPTIONS option and attribute

Chapter 5. Program organization 131

FROMALIEN
This option indicates that this procedure can be called from a non-PL/I routine. FROMALIEN can be
specified on any procedure; however, this would incur unnecessary overhead.

INLINE or NOINLINE
INLINE and NOINLINE are optimization options that can be specified for begin-blocks and non-nested
level-one procedures in a package.

INLINE indicates that whenever the begin-block or procedure is invoked in the package that defines it,
the code for the begin-block or procedure should be executed inline at the point of its invocation. Even
if INLINE is specified, the compiler can choose not to inline the begin-block or procedure.

NOINLINE indicates that the begin-block or procedure is never to be executed inline.

OPTIONS(INLINE) makes it easier to write well-structured, readable code. For instance, a program
could be written as a series of calls to a set of procedures, and OPTIONS(INLINE) could be used to
eliminate the overhead of actually calling these procedures one by one.

If a procedure or begin-block is executed inline, the values returned by built-in functions like ONLOC
return the name of the procedure into which it is inlined. Similarly, traceback information does not
include the called procedure.

Some procedures and begin-blocks are never inlined. These include, but are not limited to those in the
following list:

• Procedures and begin-blocks in packages in which condition enablement varies
• Procedures and begin-blocks containing ON or REVERT statements
• Procedures and begin-blocks containing data-directed input/output statements
• Procedures and begin-blocks containing assignments or comparisons of ENTRY, FORMAT, or LABEL

constants

If a non-nested procedure with the INLINE option is not external and not referenced, no code will be
generated for it. If neither INLINE nor NOINLINE is specified for a procedure, the option is set by the
DEFAULT compiler option.

For more information about using INLINE and NOINLINE, refer to the Programming Guide.

LINKAGE
This option specifies the calling convention used. The option can be specified on PROCEDURE
statements and ENTRY declarations.
CDECL (INTEL only)

This option specifies the CDECL linkage convention used by 32-bit C compilers.
OPTLINK

This option is the default, and is the fastest linkage convention. It is not standard linkage for most
compilers.

STDCALL (Windows Only)
This option specifies the STDCALL linkage, which is the standard linkage convention used by all
Windows APIs.

SYSTEM
This option is the calling convention that should be used for calls to the operating system.
Although this option is slower than OPTLINK, it is standard for all MVS and AIX applications.

For more information about calling conventions, refer to the Programming Guide.

MAIN
This option indicates that this external procedure is the initial procedure of a PL/I program. MAIN
is valid, and required, only on one external procedure per program. The operating system control
program invokes it as the first step in the execution of that program.

A PL/I program that contains more than one procedure with OPTIONS(MAIN) can produce
unpredictable results.

OPTIONS option and attribute

132 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

COBOL is not valid when MAIN is specified.

NOEXECOPS
The NOEXECOPS option is valid only with the MAIN option. It specifies that the runtime options will
not be specified on the command or statement that invokes the program. Only parameters for the
main procedure will be specified.

NOMAP, NOMAPIN, NOMAPOUT
These options prevent the automatic manipulation of data aggregates at the interface between
COBOL and PL/I.

Each option argument-list can specify the parameters to which the option applies. Parameters can
appear in any order and are separated by commas or blanks. If there is no argument-list for an option,
the default list is all the parameters of the entry name.

NOMAP, NOMAPIN, and NOMAPOUT can all appear in the same OPTIONS specification. This
specification should not include the same parameter in more than one specified or default argument
list.

These options are accepted but ignored unless the COBOL option applies.

NORETURN

This attribute indicates that if the routine on which this attribute is specified has been called, then
the routine will not return and the code after that call will not be executed (This would be true, for
example, if a routine ends with a STOP or SIGNAL ERROR statement).

Specifying NORETURN helps the compiler to generate optimized code and to work more accurately to
detect dead code and code that could be missing a RETURN statement.

ORDER or REORDER
ORDER and REORDER are optimization options that are specified for a procedure or begin-block.

ORDER indicates that only the most recently assigned values of variables modified in the block are
available for ON-units that are entered because of computational conditions raised during statement
execution and expressions in the block.

The REORDER option allows the compiler to generate optimized code to produce the result specified
by the source program when error-free execution takes place.

The ORDER and REORDER options can also be specified outside of the OPTIONS option, but this
usage is deprecated and does not conform to any language standard.

For more information about using the ORDER and REORDER options, refer to the Programming Guide.

If neither option is specified for the external procedure, the default is set by the DEFAULT compiler
option. Internal blocks inherit ORDER or REORDER from the containing block.

REDUCIBLE or IRREDUCIBLE
Abbreviations: RED, IRRED

REDUCIBLE indicates that a procedure or entry need not be invoked multiple times if the argument(s)
stays unchanged, and that the invocation of the procedure has no side effects.

For example, a user-written function that computes a result based on unchanging data should be
declared REDUCIBLE. A function that computes a result based on changing data, such as a random
number or time of day, should be declared IRREDUCIBLE.

The REDUCIBLE and IRREDUCIBLE options can also be specified outside of the OPTIONS option, but
this usage is deprecated and does not conform to any language standard.

REENTRANT
This option is ignored. On the Intel and AIX platforms, all PL/I programs are reentrant. On the z/OS
platform, all programs compiled with the RENT compiler option are reentrant, and other programs
are reentrant if they do not alter any static variables (which might require use of the NOWRITABLE
compiler option).

OPTIONS option and attribute

Chapter 5. Program organization 133

RENT
This option indicates the ENTRY to be fetched contains code compiled with the RENT compiler option.

The RENT attribute is ignored unless FETCHABLE is also specified.

RETCODE
This option specifies that if the ENTRY point also has the ASM or COBOL option, the ENTRY will return
a value that will be saved, after the ENTRY is invoked, as the PL/I return code. Essentially, after such
an ENTRY is invoked, its return value will be passed to the PLIRETC subroutine.

WINMAIN (Windows only)

This option automatically implies LINKAGE(STDCALL) and EXT('WinMain'). The associated routine
should contain four parameters:

1. An instance handle
2. A previous handle
3. A pointer to the command line
4. An integer to be passed to ShowWindow

These are the same four parameters expected by the C WinMain and the calls made from this routine
are the same as those expected from a C routine.

RETURNS option and attribute
If a procedure is a function procedure, you must specify the RETURNS option on the procedure statement.
Further, in the invoking procedure or package, you must declare such a procedure as an entry with the
RETURNS attribute.

The RETURNS option and the RETURNS attribute are used to specify the attributes of the value that
is being returned. The attributes in the RETURNS option must match the attributes in the RETURNS
attribute.

Procedures that are subroutines (and are therefore invoked by the CALL statement) must not have the
RETURNS option on the procedure statement and their entry declaration must not have the RETURNS
attribute.

RETURNS (attribute)

If more than one attribute is specified, they must be separated by blanks (except attributes such as
precision that are enclosed in parentheses).

The attributes are specified in the same way as they are in a declare statement. Defaults are applied in
the normal way.

The attributes that can be specified are

• all data attributes
• the alignment attributes ALIGNED and UNALIGNED
• the non-data attributes BYVALUE/BYADDR, DATE, VALUELIST, and VALUERANGE

ENTRY variables must have the LIMITED attribute. In addition, you can specify the TYPE attribute to name
user-defined types, ordinals, and typed structures and unions.

RETURNS

134 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

String lengths and area sizes must be specified by constants. The returned value has the specified length
or size.

RETURNS(BYVALUE) is invalid with any of the following attributes: AREA, PICTURE, VARYING, VARYINGZ.

The BYADDR attribute must be in effect if a procedure contains any ENTRY statements and the procedure
or any of its secondary entry points returns no value or an aggregate value.

On z/OS, BYADDR is the default for RETURNS. If a C function is called, BYVALUE must be specified in the
list of attributes for RETURNS.

Related information
“Using BYVALUE and BYADDR” on page 109
Unless an argument is passed by value (BYVALUE), a reference to an argument, not its value, is generally
passed to a subroutine or function. This is known as passing arguments by reference, or BYADDR.

RETURNS

Chapter 5. Program organization 135

RETURNS

136 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 6. Type definitions
In a programming language, a type is a description of a set of values and a set of allowed operations
on those values. PL/I has many built-in data types. Each type can specify a number of elementary
attributes. PL/I allows you to define your own types by using the built-in data types. This chapter
discusses user-defined types (aliases, ordinals, structures, and unions), declarations of variables with
these types, handles, and type functions.

For information about these built-in data types, see Chapter 2, “Data elements,” on page 15.

All types that are created by DEFINE statements follow the same scoping rules that apply to names in
DECLARE statements. For example, an ORDINAL defined in a procedure is known in all child procedures
of that procedure, but not in any of its sister or parent procedures. Therefore, if a procedure returns a
type, that type must be defined in a parent procedure or at the package level.

A DEFINE statement for a type must precede any use of that type.

A type name in a DEFINE statement must not start with __ (2 underscores).

The type reference can consist of possibly a series of identifiers separated by dots, for example,
paint.color.

For each variant of the DEFINE statement, there is a corresponding XDEFINE statement which has the
same syntax (except for the initial keyword). If the name specified in the XDEFINE statement has already
appeared in a previous (X)DEFINE statement for the same type, then the XDEFINE statement will be
ignored. An XDEFINE statement must not specify a name that has already been defined as a different
type (for example, an XDEFINE ALIAS statement must not specify a name that has already appeared in an
XDEFINE ORDINAL statement).

User-defined types (aliases)
An alias is a type name that can be used wherever an explicit data type is allowed. Using the DEFINE
ALIAS statement, you can define an alias for a collection of data attributes.

In this way, you can assign meaningful names to data types and improve the understandability of a
program. By defining an alias, you can also provide a shorter notation for a set of data attributes, which
can decrease typographical errors.

DEFINE ALIAS statement
The DEFINE ALIAS statement specifies a name that can be used as a synonym for the set of data type
attributes you give to the alias.

DEFINE ALIAS alias-name

,

attribute ;

alias-name
Specifies the name that can be used wherever the explicit data type defined by the specified
attributes is allowed.

attributes
The attributes that can be specified are only the data attributes valid in the RETURNS option and
attributes listed in the Table 8 on page 21, plus the attributes DATE, VALUELIST, and VALUERANGE. As
in the RETURNS option and attribute, any string lengths or area sizes must be restricted expressions.

Non-data attributes, such as (UN)ALIGNED, (NON)NATIVE, and BYVALUE/BYADDR, are valid in the
RETURNS option, but they are not valid in a DEFINE ALIAS statement.

DEFINE ALIAS

© Copyright IBM Corp. 1999, 2022 137

Specifying an alias for an array or a structured attribute list is not allowed. However, it is allowed to
specify an alias for a type that is defined in a DEFINE ORDINAL statement, or a DEFINE STRUCTURE
statement, or another DEFINE ALIAS statement.

Missing data attributes are supplied with PL/I defaults.

The compiler will add these 2 statements to the PACKAGE level of every compilation:

 Define alias __SIGNED_INT signed fixed bin(p1,0);

 Define alias __UNSIGNED_INT unsigned fixed bin(p2,0);

where under LP(32), p1 = 31 and p2 = 32, and under LP(64), p1 = 63 and p2 = 64.

This will make it much easier to write code that will be correct for 32-bit and later for 64-bit. All variables
used to index an array should be declared with the attribute TYPE __SIGNED_INT rather than as FIXED
BIN(31).

Example

In this example, whenever Name is used in a DECLARE statement, it has the attributes char(31)
varying.

 define alias Name char(31) varying;
 define alias Salary fixed dec(7); /* real by default */
 define alias Zip char(5) /* nonvarying by default */

Related information
“DEFINE ORDINAL statement” on page 138
The DEFINE ORDINAL statement specifies a named type representing a set of named ordered values.
“Defining typed structures and unions” on page 140
The DEFINE STRUCTURE statement specifies a named structure or union type.

Defining ordinals
An ordinal is a named set of ordered values. Using the DEFINE ORDINAL statement, you can define an
ordinal and assign meaningful names to be used to refer to that set.

For example, you can define an ordinal called color. The color ordinal could include the members
red, yellow, blue, and so on. The members of the color set can then be referred to by these names
instead of by their associated fixed binary value, making code much more self-documenting. Furthermore,
a variable declared with the ordinal type can be assigned and compared only with an ordinal of the
same type, or with a member of that ordinal type. This automatic checking provides for better program
reliability.

DEFINE ORDINAL statement
The DEFINE ORDINAL statement specifies a named type representing a set of named ordered values.

DEFINE ORDINAL

.

 ordinal-type-name (ordinal-value-list)

PRECISION ( integer) SIGNED

UNSIGNED

;

ordinal-value-list

DEFINE ORDINAL

138 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

,

member

VALUE( integer)

ordinal-type-name
Specifies the name of the set of ordinal values. This name can be used only in DECLARE statements
with the ORDINAL attribute. Use of this name elsewhere results in it being treated as any other
nonordinal name.

member
Specifies the name of a member within the set.

VALUE
Specifies the value of a particular member within the set. If the VALUE attribute is omitted for the
first member, a value of zero is used. If the VALUE attribute is omitted for any other member, the next
greater integer value is used.

The value in the given (or assumed) VALUE attribute must be an integer, can be signed, and must be
strictly increasing. The value in the given (or assumed) VALUE attributed can also be specified as an
XN constant.

PRECISION
Abbreviation: PREC

Specifies the precision of a particular ordinal value. If omitted, the precision is determined by the
range of ordinal values.

The maximum precision is the same as that for data items declared FIXED BINARY.

SIGNED or UNSIGNED
Indicates whether ordinal values can assume negative values. If omitted, they are determined by the
range of ordinal values. For example, if any value is negative, the SIGNED attribute is applied.

Example

In the following example, Red has the value 0, Orange has the value 1, and so on. But Low has the value
2 and Medium has the value 3.

 define ordinal Color (Red, /* is 0, since VALUE is omitted */
 Orange,
 Yellow,
 Green,
 Blue,
 Indigo,
 Violet);

 define ordinal Intensity (Low value(2),
 Medium,
 High value(5));

Related information
“SIGNED and UNSIGNED attributes” on page 24

DEFINE ORDINAL

Chapter 6. Type definitions 139

The SIGNED and UNSIGNED attributes can be used only with FIXED BINARY variables and ORDINAL
variables.

Defining typed structures and unions
The DEFINE STRUCTURE statement specifies a named structure or union type.

DEFINE STRUCTURE 1

.

 structure-type-name
UNION

,

,

level minor-structure-name

attribute

;

Abbreviation: STRUCT

structure-type-name
Specifies the name given to this structure type. This name cannot have dimensions, although
substructures can.

UNION
See “UNION attribute” on page 178.

minor-structure-name
Specifies the name given to a deeper level.

attributes
Specifies attributes for the minor-structure name. Only the following attributes are allowed:

• The data attributes
• The INITIAL nondata attribute

Any string lengths, area sizes, or array dimensions specified in a DEFINE STRUCT statement must be
restricted expressions.

INITIAL expressions in DEFINE STRUCT statements must be restricted expressions that do not depend
on any address value. Therefore, ENTRY, FILE, and LABEL constants must not be used in these INITIAL
expressions.

Missing data attributes are supplied with PL/I defaults. If a variable is declared as a typed structure, none
of the following attributes are propagated to the members of the typed structure. These attributes are
propagated if the variable is declared as an untyped structure.

• ALIGNED|UNALIGNED
• ASSIGNABLE|NONASSIGNABLE
• DIMACROSS
• NATIVE|NONNATIVE
• NORMAL|ABNORMAL
• SUPPRESS

Restrictions:

• Defined structures must occupy a number of bytes that is a multiple of the structure’s alignment.
• In a defined structure, the number of bytes before the element with the most stringent alignment must

be a multiple of that element's alignment.

DEFINE ORDINAL

140 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

For example, if a structure contains an aligned fixed bin(31) field as its most stringently aligned item, the
following applies:

• The structure must occupy a multiple of 4 bytes.
• There must be a multiple of 4 bytes before the first aligned fixed bin(31) field.

The DEFINE STRUCTURE statement defines a “strong” type. In other words, variables declared with that
type can only be assigned to variables (or parameters) having the same type. Typed structures can not be
used in data-directed input/output statements.

A DEFINE STRUCTURE statement that merely names the structure to be defined without specifying any of
its members defines an "unspecified structure".

• An unspecified structure cannot be dereferenced, but it can be used to declare a HANDLE which, of
course, cannot be dereferenced either.

• An unspecified structure can also be the subject of a later DEFINE STRUCTURE statement that does
specify its members.

Unspecified structure definitions are useful when a structure definition contains a handle to a second
structure that also contains a handle to the first structure. For instance, in the following example, the
parent structure contains a handle to the child structure, but the child structure also contains a handle to
the parent structure.

 define structure 1 child;

 define structure
 1 parent,
 2 first_child handle child,
 2 parent_data fixed bin(31);

 define structure
 1 child,
 2 parent handle parent,
 2 next_child handle child,
 2 child_data fixed bin(31);

Related information
“Structures” on page 176
A structure is a collection of member elements that can be structures, unions, elementary variables, and
arrays.
“INITIAL attribute” on page 267
The INITIAL attribute specifies an initial value or values assigned to a variable at the time storage is
allocated for it.

HANDLE attribute
You can use the HANDLE attribute to declare a variable as a pointer to a structure type. Such a variable is
called a handle.

HANDLE

(32

64

)

structure_type_name

( structure-type-name)

32
A HANDLE(32) is four bytes in size and by default fullword-aligned.

64
A HANDLE(64) is eight bytes in size and by default doubleword-aligned.

structure-type-name
Specifies the typed structure this handle points to.

If the LP(32) compiler option is in effect, the default is HANDLE(32); if the LP(64) compiler option is in
effect, the default is HANDLE(64). HANDLE(64) is valid only under LP(64).

HANDLE attribute

Chapter 6. Type definitions 141

Assigning a HANDLE(32) to a HANDLE(64) is always valid; the reverse is valid only if the first four bytes of
the HANDLE(64) are zero.

Like defined structures, handles are strongly typed: they can only be assigned to or compared with
handles for the same structure type. No arithmetic operations are permitted on handles.

You cannot use the ADDR built-in function to assign the address of a typed structure to a handle because
the ADDR built-in function returns a pointer, and pointers cannot be assigned to handles. However, the
HANDLE built-in function takes a typed structure as its argument and returns a handle to that type.
Consider the following example:

The following example is based on the tm structure type defined in “Example 2” on page 143. In the
following code, a handle that locates the tm type is declared, and the address of Daterec is assigned to
that handle.

dcl P_Daterec handle tm;
dcl Daterec type tm;

P_Daterec = handle(Daterec);

You can convert a handle to a pointer by using the POINTERVALUE built-in function.

Related information
POINTERVALUE built-in function
POINTERVALUE returns a pointer value that is the converted value of x.
HANDLE built-in function
HANDLE returns a handle to the typed structure x.

Declaring typed variables
Using the TYPE attribute, you can declare a variable with the type specified in a DEFINE ALIAS, DEFINE
STRUCTURE, or DEFINE ORDINAL statement.

TYPE attribute
This topic shows the syntax for the TYPE attribute.

TYPE defined-type-name
.

 y

defined-type-name
Specifies the name of a previously defined alias, defined structure, or ordinal type.

y
Specifies the name of a QUALIFY block.

Example 1

Consider the following code:

define alias Name char(31) varying;
 /* Name has attributes char(31) varying */
dcl Employee_Name type Name;
 /* Employee_Name type char(31) varying */
define alias Rate fixed dec(3,2);
 /* Rate has attributes fixed dec real */

define structure
1 Payroll,
2 Name,

HANDLE attribute

142 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

3 Last type Name,
3 First type Name,
2 Hours,
3 Regular fixed dec(5,2),
3 Overtime fixed dec(5,2),
2 Rate,
3 Regular type Rate,
3 Overtime type Rate;

dcl Non_Exempt type Payroll; /* Has Payroll structure type */
dcl Exempt type Payroll; /* Has Payroll structure type */

The TYPE attribute can be used in a DEFINE ALIAS statement to specify an alias for a type defined in a
previous DEFINE ALIAS statement. See the following example:

 define alias Word fixed bin(31);
 define alias Short type word;

Example 2

The following example defines several named types, a structure type (tm), and declares the C function
that gets a handle to this typed structure:

 define alias int fixed bin(31);
 define alias time_t fixed bin(31);
 define structure
 1 tm
 ,2 tm_sec type int /* seconds after the minute (0-61) */
 ,2 tm_min type int /* minutes after the hour (0-59) */
 ,2 tm_hour type int /* hours since midnight (0-23) */
 ,2 tm_mday type int /* day of the month (1-31) */
 ,2 tm_mon type int /* months since January (0-11) */
 ,2 tm_year type int /* years since 1900 */
 ,2 tm_wday type int /* days since Sunday (0-6) */
 ,2 tm_yday type int /* days since January 1 (0-365) */
 ,2 tm_isdst type int /* Daylight Saving Time flag */
 ;

 dcl localtime ext('localtime')
 entry(nonasgn byaddr type time_t)
 returns(byvalue handle tm);

 dcl time ext('time')
 entry(byvalue pointer)
 returns(byvalue type time_t);

ORDINAL attribute
You can use the TYPE or ORDINAL attribute to declare variables with an ordinal type.

See “TYPE attribute” on page 142 for the syntax for the TYPE attribute.

ORDINAL
.

 y

ordinal-type-name

ordinal-type-name
Specifies the name of a previously defined set of ordinal values.

y
Specifies the name of a QUALIFY block.

The ORDINAL attribute conflicts with other data attributes such as FIXED or SIGNED, but it is allowed
with attributes such as BASED or DIMENSION.

ORDINAL attribute

Chapter 6. Type definitions 143

Example

 dcl Wall_color ordinal Color;

Typed structure qualification
You reference a member of a typed structure using the . operator or a handle with the => operator. Unlike
names in a typical untyped structure, the names in a typed structure form their own “name space” and
cannot be referenced by themselves.

For example, given the following declares and definitions, B is a valid reference, but Y is not.

dcl 1 A,
2 B fixed bin,
2 C fixed bin;

define structure
1 X,
2 Y fixed bin,
2 Z fixed bin;
dcl S type X;

Type names are also in a separate name space from declared names. Therefore, you can use the name of
a type as a variable name as well.

 define alias Hps pointer;
 declare Hps type Hps;

Using the period operator (.)
This topic shows the syntax for referring to a typed structure member by using the period operator (.).

.

 typed-structure-name . typed-structure-member

typed-structure-reference
Name of the declared typed structure

typed-structure-member
Name of the referenced major or minor structure member of the structure type

For example, given the structure type tm and function localtime defined in the examples in “TYPE
attribute” on page 142, the following code obtains the system date and displays the time:

 dcl Daterec type tm;

 dcl ltime type time_t;
 dcl ptime handle tm;

 ltime = time(sysnull());
 ptime = localtime(ltime);

 Daterec = ptime => tm;

display (edit(Daterec.Hours,'99') ∥ ':' ∥
edit(Daterec.Minutes,'99') ∥ ':' ∥
edit(Daterec.Seconds,'99'));

Combinations of arrays and typed structures or unions
You can specify the dimension attribute on typed structures or unions. The resulting arrays contain
structures or unions that have identical names, levels, and members.

For details, see “Combinations of arrays, structures, and unions” on page 185.

Typed structure qualification

144 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Example 1

Consider the following example:

 dcl 1 a(3),
 2 b(4) fixed bin,
 2 c(5) fixed bin;

Given this untyped structure, a(1).b(2), a.b(1,2), and a(1,2).b have the same meaning.

Example 2

However, given the following typed structure, only x(1).b(2) is valid.

 define structure
 1 t,
 2 b(4) fixed bin,
 2 c(5) fixed bin;

 dcl x(3) type t;

In addition, the assignment statement x.b = 0 is invalid, but x(1).b = 0; is valid.

Example 3

This example is based on the structure type t defined in “Example 2” on page 145.

Assume that function f is declared as follows:

 dcl f entry returns(type t);

display(f().b(2)) is valid.

Using handles
Handles access members of a typed structure with the => operator.

In the following example, given the tm type defined in “Example 2” on page 143, the time is displayed by
using a handle to that type:

dcl P_Daterec handle tm;
P_Daterec = handle(Daterec);

display (edit(P_Daterec=>tm_hours,'99') ∥ ':' ∥
edit(P_Daterec=>tm_min,'99') ∥ ':' ∥
edit(P_Daterec=>tm_sec,'99'));

Handles can locate any member in a typed structure, including the level-1 name (the type name itself). A
reference by a handle to its type name constitutes a reference to the typed structure which is pointed to
by that handle. This allows reference to this aggregate data by its handle. For example, given that H1 and
H2 point to two allocated structures, you can swap two structures as follows:

 define structure 1 T, 2 U, 2 V, 2 W;
 dcl (H1, H2) handle T;
 dcl Temp type T;

 Temp = H1=>T;
 H1=>T = H2=>T;
 H2=>T = Temp;

Using ordinals
When using ordinals, keep in mind these usage rules.

• Ordinals are strongly-typed; that is, an ordinal can only be compared with or assigned to another ordinal
of the same type. The ordinal must have been explicitly declared in a DECLARE statement.

Using Ordinals

Chapter 6. Type definitions 145

• The ordinal-type-name in a DEFINE ORDINAL statement cannot be used in comparisons or
assignments.

• Ordinals can be passed/received as arguments/parameters like any other data type.
• Ordinals are invalid as arguments for all built-in functions requiring arguments with computational

types. However, in support of ordinals, built-in functions have been defined and BINARYVALUE has
been extended. These built-in functions are listed in Table 36 on page 146. For descriptions of these
functions, see Chapter 18, “Built-in functions, pseudovariables, and subroutines,” on page 375. Each
of the built-in functions listed takes exactly one argument, which must be a reference having type
ORDINAL.

Table 36. Ordinal-handling built-in functions

Function Description

BINARYVALUE Converts an ordinal to a binary value

ORDINALPRED Returns the next lower value for an ordinal

ORDINALSUCC Returns the next higher value for an ordinal

ORDINALNAME Returns a character string giving an ordinal’s name

Example 1: DO loops listing values from an ordinal definition

In the following sample code, the first DO loop lists, in ascending order, the members of the Color
set; the second DO loop lists them in descending order. The example uses the ordinal definition from
“Example” on page 139.

 dcl Next_color ordinal Color;

 do Next_color = first (:Color:)
 repeat ordinalsucc(Next_color)
 until (Next_color = last (:Color:));

 display(ordinalname(Next_color));
 end;

 do Next_color = last (:Color:)
 repeat ordinalpred(Next_color)
 until (Next_color = first(:Color:);

 display(ordinalname(Next_color));
 end;

The sample output for the first loop is as follows:

 RED
 ORANGE
 YELLOW
 GREEN
 BLUE
 INDIGO
 VIOLET

Example 2: Using ordinals with arrays

An ordinal cannot be used as an index into an array and cannot define an extent for a variable,
including the lower or upper bound of an array. However, an ordinal can be converted to binary by the
BINARYVALUE built-in function. The value that is returned by this function can then be used to index into
an array or define an extent.

Using Ordinals

146 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

For example, the following package defines an array usage_count to hold the number of times each
color is used, a procedure Record_usage to update this array, and a procedure Show_usage to display
the values in this array.

 Usage: package exports(*);

 define ordinal Color (Red,
 Orange,
 Yellow,
 Green,
 Blue,
 Indigo,
 Violet);

 dcl Usage_count(binvalue(first(:Color:))
 : binvalue(last(:Color:)))
 static fixed bin(31) init((*) 0);
 /* first(:Color:) = Red */
 /* last(:Color:) = Violet */

 Record_usage: proc (Wall_color);
 dcl Wall_color type Color parm byvalue;

 Usage_count(binvalue(Wall_color))
 = 1 + Usage_count(binvalue(Wall_color));
 end Record_usage;

 Show_usage: proc;
 dcl Next_color type Color;

 do Next_color = Red upthru Violet;
 put skip list(ordinalname(Next_color));
 put list(Usage_count(binvalue(Next_color)));
 end;
 end Show_usage;

 end Usage;

Example 3: Using ordinals to create functions

Ordinals can be used to create functions that are easy to maintain and enhance and are as efficient as
table look-ups.

In the following example, the function Is_mellow returns a bit indicating whether a color is or is
not “mellow”. If more colors are defined, the “mellow” ones can be added to the list of colors in the
select-group. In a select-group, unlike a hand-built table, the colors do not have to be in the same order
as in the DEFINE statement, or in any particular order at all.

However, because all of the statements inside the select-group consist of RETURN statements that return
constant values, the compiler will convert the entire select-group into a simple table look-up.

 Is_mellow: proc(Test_color) returns(bit(1) aligned);

 dcl Test_color type Color parm byvalue;

 select (Test_color);
 when(Yellow, Indigo)
 return('1'b);
 otherwise
 return('0'b);
 end;

 end;

This feature can also be used to define your own version of the ORDINALNAME built-in function. Your own
version can return the name you want to be displayed for each ordinal value. For example, the following
function Color_name returns the color name associated with each name with the first letter capitalized:

 Color_name: proc(Test_color) returns(char(8) varying);

 dcl Test_color type Color parm byvalue;

 select (Test_color);

Using Ordinals

Chapter 6. Type definitions 147

 when (Blue) return('Blue');
 when (Green) return('Green');
 when (Orange) return('Orange');
 when (Red) return('Red');
 when (Yellow) return('Yellow');
 otherwise return (");
 end;

 end;

Type functions
Because type names are in a separate name space from declared names, they cannot be used where
variable references are required, in particular as arguments to built-in functions. However, type names
can be used as arguments to type functions. (In ANSI terminology, these type functions are known as
enquiry functions.)

These type functions are listed in Table 37 on page 148.

Table 37. Type functions

Function Description

BIND Converts a pointer to a handle for a type.

CAST Converts an expression to a specified type using C conversion rules.

FIRST Returns the first value in an ordinal set.

LAST Returns the last value in an ordinal set.

NEW Acquires storage for a structure type and returns a handle to the acquired storage.

RESPEC Changes the attributes of an expression to a specified type without changing the bit
pattern of the expression.

SIZE Returns the amount of storage needed to represent a type.

VALUE Initializes or assigns to a variable that has the corresponding structure type.

Related information
“Type functions” on page 589
Using type functions, you can manipulate defined types. This chapter describes the type functions.

Type functions

148 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 7. Data declarations
When a PL/I program is executed, it can manipulate many different data items of particular data types.
Each data item, except an unnamed arithmetic or string constant, is referred to in the program by a name.
Each data name is given attributes and a meaning by a declaration (explicit or implicit). This chapter
discusses explicit and implicit declarations, scalar, array, structure, and union declarations, scope of
names, data alignment, and default attributes.

Most attributes of data items are known at the time the program is compiled. For nonstatic items,
attribute values (the bounds of the dimensions of arrays, the lengths of strings, area sizes, initial values)
and some file attributes can be determined during execution of the program. See “Block activation” on
page 91 for more information.

Data items, types, and attributes are introduced in Chapter 2, “Data elements,” on page 15.

Explicit declaration
An explicit declaration is the appearance of an identifier (a name) in a DECLARE statement, as a label
prefix, or in a parameter list.

A name is explicitly declared if it appears as follows:

• In a DECLARE statement

The DECLARE statement explicitly declares attributes of names.
• As an entry constant

Labels of PROCEDURE and ENTRY statements constitute declarations of the entry constants within the
containing procedure.

• As a label constant

A label constant explicitly declares a label.
• As a format constant

A label on a FORMAT statement constitutes an explicit declaration of the label.

Notes:

1. Naming an internal entry constant, a label constant, or a format constant in a DECLARE statement is
invalid.

2. The bounds, if any, for a label or format constant are determined by the smallest and largest values
that are specified in any use of it as a label in the source code.

The scope of an explicit declaration of a name is the block containing the declaration. This includes all
contained blocks, except those blocks (and any blocks contained within them) to which another explicit
declaration of the same name is internal. In the following diagram, the lines indicate the scope of the
declaration of the names.

© Copyright IBM Corp. 1999, 2022 149

B and B' indicate the two distinct uses of the name B; C and C' indicate the two uses of the name C.

Related information
“Scope of declarations” on page 152
The part of the program to which a name applies is called the scope of the declaration of that name. In
most cases, the scope of the declaration of a name is determined entirely by the position where the name
is declared within the program.

DECLARE statement
The DECLARE statement specifies some or all of the attributes of a name. If the attributes are not
explicitly declared and cannot be determined by context, default attributes are applied.

DECLARE statements can be an important part of the documentation of a program. Consequently, you
can make liberal use of declarations, even when default attributes suffice or when an implicit declaration
is possible. Because there are no restrictions on the number of DECLARE statements, you can use
different DECLARE statements for different groups of names. Any number of names can be declared in
one DECLARE statement.

DECLARE

,

level

name

* attributes

;

attributes

data-attributes

alignment-attributes

scope-attributes

storage-attributes

complementary-attributes

Abbreviation: DCL

For more information about declaring arrays, structures, and unions, see “Arrays” on page 172,
“Structures” on page 176, and “Unions” on page 177.

DECLARE

150 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

*
Cannot be used as the name of an INTERNAL or an EXTERNAL scalar or as the name of a level-1
EXTERNAL structure or union unless the EXTERNAL attribute specifies an environment name (see
“INTERNAL and EXTERNAL attributes” on page 154).

attributes
The attributes can appear in any order.

All attributes given explicitly for the name must be declared together in a DECLARE statement, except
that:

Names having the FILE attribute can also be given attributes in an OPEN statement (or have
attributes implied by an implicit opening).
The parameter attribute is contextually applied by the appearance of the name in a parameter list.
A DECLARE statement internal to the block can specify additional attributes.

Attributes of external names, in separate blocks and compilations, must be consistent.

For more information about attributes and the members of the given groups, see “Data types and
attributes” on page 16.

level
A nonzero integer. If a level-number is not specified, level 1 is the default for element and array
variables. Level 1 must be specified for major structure and union names.

name
Each level-1 name must be unique within a block. For more information about level-1 names, refer to
“Structures” on page 176.

Condition prefixes and labels cannot be specified on a DECLARE statement.

Related information
“OPEN statement” on page 283
The OPEN statement associates a file with a data set. It merges attributes specified on the OPEN
statement with those specified on the DECLARE statement. It also completes the specification of
attributes for the file, if a complete set of attributes has not been declared for the file being opened.

Factoring attributes
Attributes common to several names can be factored to eliminate repeated specification of the same
attributes. To achieve factoring, enclose the names in parentheses followed by the set of attributes that
apply to all of the names.

Factoring can be nested. The dimension attribute can be factored. Factoring can also be used
on elementary names within structures and unions. A factored level-number must precede the
parenthesized list.

Names within the parenthesized list are separated by commas. No factored attribute can be overridden
for any of the names, but any name within the list can be given other attributes as long as there is no
conflict with the factored attributes.

Examples

The following examples show factoring. The last declaration shows nested factoring.

 declare (A,B,C,D) binary fixed (31);

 declare (E decimal(6,5), F character(10)) static;

 declare 1 A, 2(B,C,D) (3,2) binary fixed (15);

 declare ((A,B) fixed(10),C float(5)) external;

Factoring attributes

Chapter 7. Data declarations 151

Implicit declaration
If a name appears in a program and is not explicitly declared, it is implicitly declared. The scope of an
implicit declaration is determined as if the name were declared in a DECLARE statement immediately
following the PROCEDURE statement of the external procedure in which the name is used.

With the exception of files, entries, and built-in functions, implicit declaration has the same effect as if the
name were declared in the outermost procedure. For files and built-in functions, implicit declaration has
the same effect as if the names were declared in the logical package outside any procedures.

Note: Using implicit declarations for anything other than built-in functions and the files SYSIN and
SYSPRINT is in violation of the 1987 ANSI standard and should be avoided.

Some attributes for a name declared implicitly can be determined from the context in which the name
appears. These cases, called contextual declarations, are listed as follows:

• A name of a built-in function.
• A name that appears in a CALL statement or the CALL option of INITIAL, or that is followed by an

argument list, is given the ENTRY and EXTERNAL attributes.
• A name that appears in the parameter list of a PROCEDURE or ENTRY statement is given the

PARAMETER attribute.
• A name that appears in a FILE or COPY option, or a name that appears in an ON, SIGNAL, or REVERT

statement for a condition that requires a file name, is given the FILE attribute.
• A name that appears in an ON CONDITION, SIGNAL CONDITION, or REVERT CONDITION statement is

given the CONDITION attribute.
• A name that appears in the BASED attribute, in a SET option, or on the left-hand side of a locator
qualification symbol is given the POINTER attribute.

• A name that appears in an IN option, or in the OFFSET attribute, is given the AREA attribute.

Implicit declarations that are not contextual declarations acquire all attributes by default, as described in
“Defaults for attributes” on page 167. Because a contextual declaration cannot exist within the scope of
an explicit declaration, it is impossible for the context of a name to add to the attributes established for
that name in an explicit declaration.

Examples of contextual declaration

In the following statements, PREQ is given the FILE attribute, and S is given the AREA attribute.

 read file (PREQ) into (Q);

 allocate X in (S);

Scope of declarations
The part of the program to which a name applies is called the scope of the declaration of that name. In
most cases, the scope of the declaration of a name is determined entirely by the position where the name
is declared within the program.

Implicit declarations are treated as if the name were declared in a DECLARE statement immediately
following the PROCEDURE statement of the external procedure.

It is not necessary for a name to have the same meaning throughout a program. A name explicitly
declared within a block has a meaning only within that block. Outside the block, the name is unknown
unless the same name has also been declared in the outer block. Each declaration of the name
establishes a scope and in this case, the name in the outer block refers to a different data item. This
enables you to specify local definitions and, hence, to write procedures or begin-blocks without knowing
all the names used in other parts of the program.

Implicit declaration

152 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

In the following example, the output for A is actually C.A, which is 2. The output for B is 1, as declared in
procedure X.

 X: proc options(main);
 dcl (A,B) char(1) init('1');
 call Y;
 return;

 Y: proc;
 dcl 1 C,
 3 A char(1) init('2');
 put data(A,B);
 return;
 end Y;
 end X;

Thus, for nested procedures, PL/I uses the variable declared within the current block before using any
variables that are declared in containing blocks.

In order to understand the scope of the declaration of a name, you must understand the terms contained
in and internal to.

All of the text of a block, from the PACKAGE, PROCEDURE, or BEGIN statement through the corresponding
END statement (including condition prefixes of BEGIN, PACKAGE, and PROCEDURE statements), is said
to be contained in that block. However, the labels of the BEGIN or PROCEDURE statement heading the
block, as well as the labels of any ENTRY statements that apply to the block, are not contained in that
block. Nested blocks are contained in the block in which they appear.

Text that is contained in a block, but not contained in any other block nested within it, is said to be internal
to that block. Entry names of a procedure (and labels of a BEGIN statement) are not contained in that
block. Consequently, they are internal to the containing block. Entry names of an external procedure are
treated as if they were external to the external procedure.

Figure 2 on page 153 illustrates the scopes of data declarations.

Figure 2. Scopes of data declarations

The brackets to the left indicate the block structure; the brackets to the right show the scope of each
declaration of a name. The scopes of the two declarations of Q and R are shown as Q and Q' and R and R'.

Note that X and Y are visible to all of the procedures contained in the package.
 1

P is declared in the block A and known throughout A because it is not redeclared.
 2

Q is declared in block A, and redeclared in block B. The scope of the first declaration of Q is all of A
except B; the scope of the second declaration of Q is block B only.

 3
R is declared in block C, but a reference to R is also made in block B. The reference to R in block B
results in an implicit declaration of R in A, the external procedure. Therefore, two separate names (R

Implicit declaration

Chapter 7. Data declarations 153

and R' in Figure 2 on page 153) with different scopes exist. The scope of the explicitly declared R is
block C; the scope of the implicitly declared R in block B is all of A except block C.

 4
I is referred to in block C. This results in an implicit declaration in the external procedure A. As a
result, this declaration applies to all of A, including the contained procedures B, C, and D.

 5
S is explicitly declared in procedure D and is known only within D.

Figure 3 on page 154 illustrates the scopes of entry constant and statement label declarations.

Figure 3. Scopes of entry and label declarations

Figure 3 on page 154 shows two external procedures, A and E.
 1

The scope of the declaration of the name A is only all of the block A, and not E.
 2

E is explicitly declared in A as an external entry constant. The explicit declaration of E applies
throughout block A. It is not linked to the explicit declaration of E that applies throughout block E. The
scope of the declaration of the name E is all of block A and all of block E.

 3
The label L1 appears with statements internal to A and to C. Two separate declarations are therefore
established; the first applies to all of block A except block C, the second applies to block C only.
Therefore, when the GO TO statement in block B executes, control transfers to L1 in block A, and
block B terminates.

 4
D and B are explicitly declared in block A and can be referred to anywhere within A; but because they
are INTERNAL, they cannot be referred to in block E.

 5
C is explicitly declared in B and can be referred to from within B, but not from outside B.

 6
L2 is declared in B and can be referred to in block B, including C, which is contained in B, but not from
outside B.

INTERNAL and EXTERNAL attributes
The INTERNAL and EXTERNAL attributes define the scope of a name.

INTERNAL

EXTERNAL

(environment-name)

INTERNAL and EXTERNAL

154 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Abbreviations: INT for INTERNAL, EXT for EXTERNAL

environment-name
Specifies the name by which the procedure or variable is known outside of the compilation unit.

When so specified, the name being declared effectively becomes internal and is not known outside of
the compilation unit. The environment name is known instead.

The environment name must be a character string constant, and is used as is without any translation
to uppercase.

See the following example:

 dcl X entry external ('koala');

Environment names should not start with a break character (_). Names starting with this character are
reserved for the library.

On platforms where the linker decorates environment names, if an environment name is specified
with the external attribute, it will still be decorated if it differs only in case from the variable name.
Consider the following declaration:

 dcl abc ext('kLm'), xyz ext('xYz');

The name for xyz is decorated. For more information about the decoration of environment names, see
the "Understanding linkage considerations" topic in the "Calling conventions" chapter in the PL/I for
Windows Programming Guide.

INTERNAL is the default for entry names of internal procedures and for all other variables except for entry
constants, file constants and programmer defined conditions. INTERNAL specifies that the name can be
known only in the declaring block. Any other explicit declaration of that name refers to a new object with a
different scope that does not overlap.

Note: INTERNAL can be specified on level-1 procedures in a package. If the package is declared with
EXPORTS(*), an INTERNAL procedure is not visible outside the package.

EXTERNAL is the default for file constants, entry constants (other than internal procedures) and
programmer-defined conditions. A name with the EXTERNAL attribute can be declared more than once,
either in different external procedures or within blocks contained in external procedures. All declarations
of the same name with the EXTERNAL attribute refer to the same data. The scope of each declaration of
the name (with the EXTERNAL attribute) includes the scopes of all the declarations of that name (with
EXTERNAL) within the application.

When a major structure or union name is declared EXTERNAL in more than one block, the attributes of
the members must be the same in each case, although the corresponding member names need not be
identical.

Consider the following example:

 ProcA: procedure;
 declare 1 A external,
 2 B,
 2 C;
 .
 .
 .
 end ProcA;

 %process;
 ProcB: procedure;
 declare 1 A external,
 2 B,
 2 D;
 .
 .
 .
 end ProcB;

INTERNAL and EXTERNAL

Chapter 7. Data declarations 155

If A.B is changed in ProcA, it is also changed for ProcB, and vice versa; if A.C is changed in ProcA, A.D
is changed for ProcB, and vice versa.

Members of structures and unions always have the INTERNAL attribute.

Because external declarations for the same name all refer to the same data, they must all result in
the same set of attributes. When EXTERNAL names are declared in different external procedures, the
user has the responsibility to ensure that the attributes are matching. Example of scopes of various
declarations illustrates a variety of declarations and their scopes.

Example of scopes of various declarations

 Scope_Example: package exports(*);
 1 A: procedure;
 2 declare S character (20);
 7 dcl Set entry(fixed decimal(1)),
 7 Out entry(label);
 call Set (3);
 9 E: get list (S,M,N);
 8 B: begin;
 4,5 declare X(M,N), Y(M);
 get list (X,Y);
 call C(X,Y);

 9,5 C: procedure (P,Q);
 declare
 P(*,*),
 Q(*),
 12,2 S binary fixed external;
 S = 0;
 6 do I = 1 to M;
 if sum (P(I,*)) = Q(I) then
 8 go to B;
 S = S+1;
 if S = 3 then
 9 call Out (E);
 Call D(I);
 8 B: end;
 end C;

 9 D: procedure (N);
 put list ('Error in row ',
 2,3 N, 'Table Name ', S);
 end D;
 end B;
 go to E;
 end A;
 9 Out: procedure (R);
 Declare
 R Label,
 11 (K static internal,
 11,7 L static external) init (0),
 12 S binary fixed external,
 Z fixed decimal(1);
 K = K+1; S=0;
 if K<L then
 stop;
 10 else go to R;
 end;
 Set: procedure (Z);
 declare Z fixed dec(1);
 7 L=Z;
 declare L external init(0);
 return;
 end;
 end Scope_Example;

 1
A is an external procedure name. Its scope is all of block A, plus any other blocks where A is declared
as external.

 2
S is explicitly declared in block A and block C. The character variable declaration applies to all of block
A except block C. The fixed binary declaration applies only within block C. Notice that although D is

INTERNAL and EXTERNAL

156 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

called from within block C, the reference to S in the PUT statement in D is to the character variable S,
and not to the S declared in block C.

 3
N appears as a parameter in block D, but is also used outside the block. Its appearance as a
parameter establishes an explicit declaration of N within D. The references outside D cause an implicit
declaration of N in block A. These two declarations of the name N refer to different objects, although in
this case, the objects have the same data attributes, which are, by default, FIXED BINARY(15,0) and
INTERNAL. Under DEFAULT(ANS), the precision is (31,0).

 4
X and Y are known throughout B and can be referred to in block C or D within B, but not in that part of A
outside B.

 5
P and Q are parameters, and therefore if there were no other declaration of these names within
the block, their appearance in the parameter list would be sufficient to constitute a contextual
declaration. However, a separate, explicit declaration statement is required in order to specify that
P and Q are arrays. Although the arguments X and Y are declared as arrays and are known in block C,
it is still necessary to declare P and Q in a DECLARE statement to establish that they, too, are arrays.
(The asterisk notation indicates that the bounds of the parameters are the same as the bounds of the
arguments.)

 6
I and M are not explicitly declared in the external procedure A. Therefore, they are implicitly declared
and are known throughout A, even though I appears only within block C.

 7
The Out and Set external procedures in the example have an external declaration of L that is
common to both. They also must be declared explicitly with the ENTRY attribute in procedure A.
Because ENTRY implies EXTERNAL, the two entry constants Set and Out are known throughout the
two external procedures.

 8
The label B appears twice in the program—first in A, as the label of a begin-block, which is an explicit
declaration, and then redeclared as a label within block C by its appearance as a prefix to an END
statement. The go to B statement within block C, therefore, refers to the label of the END statement
within block C. Outside block C, any reference to B is to the label of the begin-block.

 9
Blocks C and D can be called from any point within B but not from that part of A outside B, nor from
another external procedure. Similarly, because label E is known throughout the external procedure
A, a transfer to E can be made from any point within A. The label B within block C, however, can be
referred to only from within C. Transfers out of a block by a GO TO statement can be made; but such
transfers into a nested block generally cannot. An exception is shown in the external procedure Out,
where the label E from block C is passed as an argument to the label parameter R.

Note that, with no files specified in the GET and PUT statements, SYSIN and SYSPRINT are implicitly
declared.

 10
The statement else go to R; transfers control to the label E, even though E is declared within A,
and not known within Out.

 11
The variables K (INTERNAL) and L (EXTERNAL) are declared as STATIC within the Out procedure
block; their values are preserved between calls to Out.

 12
In order to identify the S in the procedure Out as the same S in the procedure C, both are declared
with the attribute EXTERNAL.

INTERNAL and EXTERNAL

Chapter 7. Data declarations 157

RESERVED attribute
The RESERVED attribute implies STATIC EXTERNAL.

Moreover, if a variable has the RESERVED attribute, the application must comply with the following
conditions:

• All declarations of the variable must specify RESERVED.
• The variable name must appear in the RESERVES option of exactly one package.

If a variable has the RESERVED attribute, any INITIAL values are ignored except in the package reserving
it.

RESERVED

(IMPORTED)

If a compilation unit has a variable with the RESERVED attribute and is not the reserving package for that
variable, that compilation unit must either be part of the load module that contains the reserving package
or import the variable from another load module that contains the reserving package. In the latter case,
the following conditions apply:

• The declaration for the variable must specify the RESERVED(IMPORTED) attribute.
• The variable must be exported from a DLL.
• The sidefile that is associated with the DLL must be included during the linking of the importing module.

Example

In the following example, the package owns_x reserves and initializes the storage for the variable x. It
must be linked into the same load module as the package owns_y. This load module must import the
variable z from the load module into which package owns_z is linked.

owns_x:
 package
 exports(*)
 reserves(x);

 dcl x char(256) reserved init(...);
 dcl y char(256) reserved init(...);
 dcl z char(256) reserved(imported) init(...);

end;

owns_y:
 package
 exports(*)
 reserves(y);

 dcl x char(256) reserved init(...);
 dcl y char(256) reserved init(...);
 dcl z char(256) reserved(imported) init(...);

end;

owns_z:
 package
 exports(*)
 reserves(z);

 dcl z char(256) reserved(imported) init(...);

end;

FORCE attribute
You can use the FORCE attribute to instruct the compiler to issue various messages.

The following syntax diagram applies to the FORCE attribute:

RESERVED

158 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

FORCE (

NOLAXQUAL

)

NOLAXQUAL
Specifying FORCE(NOLAXQUAL) on a variable causes the compiler to flag any reference to the variable
that is not properly qualified.

If the FORCE attribute is specified on a structure or union, it also applies to all the elements of that
structure (or union).

SUPPRESS attribute
You can use the SUPPRESS attribute to instruct the compiler not to issue various messages.

The following syntax diagram applies to the SUPPRESS attribute on a variable:

SUPPRESS (

,

UNINIT

UNREF

NOGLOBAL

NOPADDING

NOLAXENTRY

)

The following syntax diagram applies to the SUPPRESS attribute on procedure statements:

SUPPRESS (

,

UNREF

LAXNESTED

)

UNINIT
Specifying SUPPRESS(UNINIT) as an attribute in the declaration of a variable causes the compiler not
to flag any use of the variable where it might be uninitialized.

UNREF
Specifying SUPPRESS(UNREF) as an attribute in the declaration of a variable causes the compiler not
to flag the variable as unused when the compilation unit contains no references to that variable.

Specifying SUPPRESS(UNREF) on the PROCEDURE statement causes the compiler not to flag the
procedure as unused when the compilation unit contains no references to that procedure.

NOGLOBAL
Specifying SUPPRESS(NOGLOBAL) as an attribute in the declaration of a variable causes the compiler
not to flag any use of the variable in nested procedures.

If the SUPPRESS(NOGLOBAL) attribute has been specified on a structure or a substructure, it will be
propagated to all its children.

NOPADDING
Specifying SUPPRESS(NOPADDING) on a level-1 structure name causes the RULES(NOPADDING)
compiler option to be ignored for that structure.

SUPPRESS(NOPADDING) has no effect if it is specified on a member within a structure.

SUPPRESS attribute

Chapter 7. Data declarations 159

NOLAXENTRY
Specifying SUPPRESS(NOLEXENTRY) as an attribute in the declaration of a variable causes the
compiler not to flag any violations by that variable of RULES(NOLAXENTRY).

LAXNESTED
Specifying SUPPRESS(LAXNESTED) on a procedure causes the compiler not to flag the procedure if
executable statements follow it.

If the SUPPRESS attribute is specified on a structure or union, it also applies to all the elements of that
structure (or union).

Data alignment
The computer holds information in multiples of units of 8 bits. Each 8-bit unit of information is called
a byte. The computer accesses bytes singly or as halfwords, words, or doublewords. Byte locations in
storage are consecutively numbered starting with 0; each number is the address of the corresponding
byte.

A halfword is 2 consecutive bytes. A fullword is 4 consecutive bytes. A doubleword is 8 consecutive bytes.
Halfwords, words, and doublewords are addressed by the address of their leftmost byte.

Your programs can execute faster if halfwords, words, and doublewords are located in main storage on an
integral boundary for that unit of information. That is, the unit of information's address is a multiple of the
number of bytes in the unit, as can be seen in Table 38 on page 160.

Table 38. Alignment on integral boundaries of halfwords, words, and doublewords

ADDRESSES IN A SECTION OF STORAGE

5000 5001 5002 5003 5004 5005 5006 5007

byte byte byte byte byte byte byte byte

halfword halfword halfword halfword

fullword fullword

doubleword

PL/I allows data alignment on integral boundaries. However, unused bytes between successive data
elements can increase storage use. For example, when the data items are members of aggregates used
to create a data set, the unused bytes increase the amount of auxiliary storage required. The ALIGNED
and UNALIGNED attributes allow you to choose whether or not to align data on the appropriate integral
boundary.

ALIGNED and UNALIGNED attributes
ALIGNED specifies that the data element is aligned on the storage boundary corresponding to its data
type requirement. UNALIGNED specifies that each data element is mapped on the next byte boundary,
except for fixed-length bit strings, which are mapped on the next bit.

ALIGNED

(n)

UNALIGNED

Defaults are applied at element level. UNALIGNED is the default for bit data, character data, graphic data,
uchar data, widechar data, and numeric character data. ALIGNED is the default for all other types of data.

ALIGNED(n) specifies an alignment that overrides the default alignment for the data type. The only valid
values for n in ALIGNED(n) are 1, 2, 4, and 8.

Table 39 on page 161 lists the requirements for the ALIGNED attribute.

ALIGNED and UNALIGNED attributes

160 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Notes:

• Alignment and storage requirements for program control data can vary across supported systems.
• Complex data requires twice as much storage as its real counterpart, but the alignment requirements

are the same.

Table 39. Alignment requirements

Variable type Stored internally
as:

Storage requirements
(Bytes)

Alignment requirements

ALIGNED data UNALIGNED data

BIT (n)

ALIGNED: One byte
for each group of 8
bits (or part thereof)

UNALIGNED: As
many bits as are
required, regardless
of byte boundaries

ALIGNED: CEIL(n/8)

UNALIGNED: n bits

Byte (Data can
begin on any byte,
0 through 7)

Bit (Data can begin
on any bit in any
byte, 0 through 7)

ALIGNED and UNALIGNED attributes

Chapter 7. Data declarations 161

Table 39. Alignment requirements (continued)

Variable type Stored internally
as:

Storage requirements
(Bytes)

Alignment requirements

ALIGNED data UNALIGNED data

CHARACTER (n) One byte per
character n

Byte (Data can
begin on any byte,
0 through 7)

Byte (Data can
begin on any byte,
0 through 7)

CHARACTER
(n)VARYINGZ

One byte per
character plus one
byte for the
nullterminator

n+1

GRAPHIC (n) Two bytes per
graphic 2n

GRAPHIC (n)
VARYINGZ

Two bytes per
graphic plus two
bytes for the
nullterminator

2n+2

UCHAR (n) Four bytes per uchar 4n

UCHAR (n)
VARYINGZ

Four bytes per uchar
plus one byte for the
nullterminator

4n+1

WIDECHAR (n) Two bytes per
widechar 2n

WIDECHAR (n)
VARYINGZ

Two bytes per
widechar plus two
bytes for the
nullterminator

2n+2

PICTURE

One byte for each
PICTURE character
(except V, K, and
the F scaling factor
specification)

Number of PICTURE
characters other than

V, K, and F
specification

DECIMAL FIXED
(p,q)

Packed decimal
format (1/2 byte per
digit, plus 1/2 byte
for sign)

CEIL((p+1)/2

BINARY FIXED (p,q)

SIGNED
1 <= p <= 7
UNSIGNED
1 <= p <= 8

One byte 1
ORDINAL

SIGNED
1 <= p <= 7
UNSIGNED
1 <= p <= 8

ALIGNED and UNALIGNED attributes

162 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 39. Alignment requirements (continued)

Variable type Stored internally
as:

Storage requirements
(Bytes)

Alignment requirements

ALIGNED data UNALIGNED data

BIT (n) VARYING

Two-byte prefix plus
1 byte for each
group of 8 bits (or
part thereof) of the
declared maximum
length

ALIGNED: 2+CEIL(n/8)

UNALIGNED: 2
bytes+n bits

Halfword (Data can
begin on byte 0, 2,
4, or 6)

Byte (Data can
begin on any byte,
0 through 7)

CHARACTER (n)
VARYING

Two-byte prefix plus
1 byte per character
of the declared
maximum length

n+2

GRAPHIC(n)
VARYING

Two-byte prefix plus
2 bytes per graphic
of the declared
maximum length

2n+2

UCHAR (n) VARYING

Two-byte prefix plus
4 bytes per uchar
of the declared
maximum length

4n+2

WIDECHAR (n)
VARYING

Two-byte prefix plus
2 bytes per widechar
of the declared
maximum length

2n+2

BINARY FIXED (p,q)

SIGNED
8 <= p <= 15
UNSIGNED
9 <= p <= 16

Halfword 2
ORDINAL

SIGNED
8 <= p <= 15
UNSIGNED
9 <= p <= 16

ALIGNED and UNALIGNED attributes

Chapter 7. Data declarations 163

Table 39. Alignment requirements (continued)

Variable type Stored internally
as:

Storage requirements
(Bytes)

Alignment requirements

ALIGNED data UNALIGNED data

BINARY FIXED (p,q)

SIGNED
16 <= p <= 31
UNSIGNED
17 <= p <= 32

Fullword

4
Fullword (Data can
begin on byte 0 or
4)

Byte (Data can
begin on any byte,
0 through 7)

ORDINAL

SIGNED
16 <= p <= 31
UNSIGNED
17 <= p <= 32

BINARY FLOAT (p)
1<=p<=21

Short floating-pointDECIMAL FLOAT (p)
1<=p<=6 if not DFP

DECIMAL FLOAT (p)
1<=p<=7 if DFP

ALIGNED and UNALIGNED attributes

164 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 39. Alignment requirements (continued)

Variable type Stored internally
as:

Storage requirements
(Bytes)

Alignment requirements

ALIGNED data UNALIGNED data

BIT (n) VARYING4

Four-byte prefix plus
1 byte for each
group of 8 bits (or
part thereof) of the
declared maximum
length

ALIGNED: 4+CEIL(n/8)
UNALIGNED: 4
bytes+n bits

Fullword (Data can
begin on byte 0 or
4)

Byte (Data can
begin on any byte,
0 through 7)

CHARACTER (n)
VARYING4

Four-byte prefix plus
1 byte per character
of the declared
maximum length

n+4

GRAPHIC (n)
VARYING4

Four-byte prefix plus
2 bytes per graphic
of the declared
maximum length

2n+4

UCHAR (n)
VARYING4

Four-byte prefix plus
4 bytes per uchar
of the declared
maximum length

4n+4

WIDECHAR (n)
VARYING4

Four-byte prefix plus
2 bytes per widechar
of the declared
maximum length

2n+4

POINTER(32) –

4

HANDLE(32) –

OFFSET under
OFFSETSIZE(4) –

FILE under LP(32) –

ENTRY LIMITED
under LP(32) –

ENTRY –
8

LABEL or FORMAT –

TASK – 16

ALIGNED and UNALIGNED attributes

Chapter 7. Data declarations 165

Table 39. Alignment requirements (continued)

Variable type Stored internally
as:

Storage requirements
(Bytes)

Alignment requirements

ALIGNED data UNALIGNED data

AREA under
OFFSETSIZE(4) – 16+size

Doubleword (Data
can begin on byte
0)

AREA data cannot
be unalignedAREA under

OFFSETSIZE(8) – 32+size

ENTRY LIMITED
under LP(64) –

8

Byte (Data can
begin on any byte,
0 through 7)

POINTER(64) –

HANDLE(64) –

OFFSET under
OFFSETSIZE(8) –

FILE under LP(64) –

BINARY FIXED(p,q)

SIGNED
32 <= p <= 63
UNSIGNED
33 <= p <= 64

–

BINARY FLOAT (p)
22 <= p <= 53

Long floating-pointDECIMAL FLOAT (p)
7<=p<=16 if not DFP

DECIMAL FLOAT (p)
8<=p<=16 if DFP

BINARY FLOAT (p)
54 <= p Extended floating-

point 16
DECIMAL FLOAT (p)
17<=p

ALIGNED or UNALIGNED can be specified for element, array, structure, or union variables. The application
of either attribute to a structure or union is equivalent to applying the attribute to all contained elements
that are not explicitly declared ALIGNED or UNALIGNED.

The following example illustrates the effect of ALIGNED and UNALIGNED declarations for a structure and
its elements:

 declare 1 S,
 2 X bit(2), /* unaligned by default */
 2 A aligned, /* aligned explicitly */
 3 B, /* aligned from A */
 3 C unaligned, /* unaligned explicitly */
 4 D, /* unaligned from C */
 4 E aligned, /* aligned explicitly */
 4 F, /* unaligned from C */
 3 G, /* aligned from A */
 2 H; /* aligned by default */

ALIGNED and UNALIGNED attributes

166 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Related information
“Structures” on page 176
A structure is a collection of member elements that can be structures, unions, elementary variables, and
arrays.
“Unions” on page 177
A union is a collection of member elements that overlay each other, occupying the same storage. The
members can be structures, unions, elementary variables, and arrays. They need not have identical
attributes.

Defaults for attributes
Every name in a PL/I program requires a complete set of attributes. Arguments that are passed to
a procedure must have attributes matching the procedure's parameters. Values that are returned by
functions must have the expected attributes. However, the attributes that you specify need rarely include
the complete set of attributes. You can use defaults for attributes.

You can use language-specified defaults or the defaults that you define using the DEFAULT statement for
the following attributes:

• Attributes of explicitly declared names
• Attributes of implicitly (including contextually) declared names
• Attributes to be included in parameter descriptors
• Attributes of values returned from function procedures

You can use the DEFAULT statement to specify attribute defaults either to modify the language-specified
defaults or to develop a completely new set of defaults.

Attributes applied by default cannot override attributes applied to a name by explicit or contextual
declarations.

Language-specified defaults
When a variable has not been declared with any data attributes, it is given arithmetic attributes by default.

If mode, scale, and base are not specified by a DECLARE or DEFAULT statement, the DEFAULT compiler
option determines the variable attributes as follows:

• If DEFAULT(IBM) is in effect, variables with names beginning with the letters I through N are given
the attributes REAL FIXED BINARY(15,0); all other variables are given the attributes REAL FLOAT
DECIMAL(6).

• If DEFAULT(ANS) is in effect, all variables are given the attributes REAL FIXED BINARY(31,0).

If a scaling factor is specified in the precision attribute, the attribute FIXED is applied before any other
attributes. Therefore, a declaration with the attributes BINARY(p,q) is always equivalent to a declaration
with the attributes FIXED BINARY(p,q).

If a precision is not specified in an arithmetic declaration, the DEFAULT compiler option determines the
precision as indicated in Table 40 on page 168. The language-specified defaults for scope, storage and
alignment attributes are shown in Table 8 on page 21 and Table 7 on page 19.

If no description list is given in an ENTRY declaration, the attributes for the argument must match those
specified for the corresponding parameter in the invoked procedure. For example, consider the following
declaration:

 dcl X entry;
 call X(1);

Language-specified defaults

Chapter 7. Data declarations 167

The argument has the attributes REAL FIXED DECIMAL(1,0). This would be an error if the procedure x
declared its parameter with other attributes, as shown in the following example:

 X: proc(Y);
 dcl Y fixed bin(15);

This potential problem can be easily avoided if the entry declaration specifies the attributes for all of its
parameters.

Table 40. Default arithmetic precisions

Attributes DEFAULT(IBM) DEFAULT(ANS)

DECIMAL FIXED (5,0) (10,0)

BINARY FIXED (15,0) (31,0)

DECIMAL FLOAT (6) (6)

BINARY FLOAT (21) (21)

DEFAULT statement
The DEFAULT statement specifies data-attribute defaults (when attribute sets are not complete). Any
attributes not applied by the DEFAULT statement for any partially-complete explicit or contextual
declarations, and for implicit declarations, are supplied by language-specified defaults.

You can use a logical expression with the RANGE attribute and other attribute keywords in the DEFAULT
statement. These attributes are listed in Table 41 on page 171.

The DEFAULT statement overrides all other attribute specifications, except that a name declared with the
ENTRY or FILE attribute, but none of the attributes that would imply the VARIABLE attribute, will be given
the implicit CONSTANT attribute by PL/I before any DEFAULT statements are applied. Consequently, in the
following example, PL/I gives Xtrn the CONSTANT attribute and not the STATIC attribute.

 Sample: proc;

 default range(*) static;
 dcl Xtrn entry;

 end;

Structure and union elements are given default attributes according to the name of the element, not the
qualified element name. The DEFAULT statement cannot be used to create a structure or a union.

DEFAULT

,

expression attribute-specification

expression
RANGE (identifiers)

(attribute-expression) ;

identifiers
,

identifier

:identifier

*

DEFAULT

168 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Abbreviation: DFT

RANGE(identifier)
Specifies that the defaults apply to names that begin with the same letters as in the identifier
specified. For example, RANGE (ABC) applies to these names:

ABC
ABCD
ABCDE

But it does not apply to these names:

ABD
ACB
AB
A

Hence a one-letter identifier in the range-specification applies to all names that start with that letter.
The RANGE identifier can be specified in DBCS.

RANGE(identifier : identifier)
Specifies that the defaults apply to names with initial letters that either match the two identifiers
specified or fall between the two in alphabetic sequence. The letters can be in DBCS, but in
determining if a RANGE specification applies to a name, all comparisons are based solely on the
hexadecimal values of the letters involved. The letters given in the specification must be in increasing
alphabetic order. See the following example:

RANGE(A:G,I:M,T:Z)

RANGE(*)
Specifies all names in the scope of the DEFAULT statement. Consider the following example:

DFT RANGE (*) PIC '99999';

This statement specifies default attributes REAL PICTURE '99999' for all names.

DESCRIPTORS
Specifies that the attributes are included in any parameter descriptors in a parameter descriptor list of
an explicit entry declaration, if the following conditions are true:

• The inclusion of any such attributes is not prohibited by the presence of alternative attributes of the
same class.

• At least one attribute is already present. (The DESCRIPTORS default attributes are not applied to
null descriptors).

Consider the following example:

DEFAULT DESCRIPTORS BINARY;
DCL X ENTRY (FIXED, FLOAT);

The attribute BINARY is added to each parameter descriptor in the list, producing the equivalent list:

(FIXED BINARY, FLOAT BINARY)

attribute-list
Specifies a list of attributes from which selected attributes are applied to names in the specified
range. Attributes in the list can appear in any order and must be separated by blanks.

Only those attributes that are necessary to complete the declaration of a data item are taken from the
list of attributes.

If FILE is used, it implies the attributes VARIABLE and INTERNAL.

DEFAULT

Chapter 7. Data declarations 169

The dimension attribute is allowed, but only as the first item in an attribute specification. The bounds
can be specified as an arithmetic constant or an expression and can include the REFER option. See the
following example:

DFT RANGE(J) (5);
DFT RANGE(J) (5,5) FIXED;

Although the DEFAULT statement can specify the dimension attribute for names that have not been
declared explicitly, a subscripted name is contextually declared with the attribute BUILTIN. Therefore,
the dimension attribute can be applied by default only to explicitly declared names.

The INITIAL attribute can be specified.

Attributes that conflict, when applied to a data item, do not necessarily conflict when they appear in
an attribute specification. Consider the following example:

DEFAULT RANGE(S) BINARY VARYING;

This means that any name that begins with the letter S and is declared explicitly with the BIT,
CHARACTER, or GRAPHIC attribute receives the VARYING attribute; all others (that are not declared
explicitly or contextually as other than arithmetic data) receive the BINARY attribute.

VALUE
Can appear anywhere within an attribute-specification except before a dimension attribute.

VALUE establishes any default rules for an area size, string length, and numeric precision.

In a DEFAULT statement, the VALUE option is the only place where an area size, string length or
numeric precision may be specified.

These size, length and precision specifications in a VALUE clause are applied after the system default
attributes, but before the system defaults for size, length and precision. So, for example, given DCL
I; and DEFAULT RANGE(*) VALUE(FIXED BIN(31));, the variable I will receive the system default
attributes of FIXED BINART, but the precision 31 from the VALUE option (rather than the system
default of 15).

The size of AREA data, or length of BIT, CHARACTER, or GRAPHIC data can be an expression or an
integer, and can include the REFER option or can be specified as an asterisk.

Consider the following example:

DEFAULT RANGE(A:C)
 VALUE (FIXED DEC(10),
 FLOAT DEC(14),
 AREA(2000));
DECLARE B FIXED DECIMAL,
 C FLOAT DECIMAL,
 A AREA;

These statements are equivalent to the following declaration:

DECLARE B FIXED DECIMAL(10),
 C FLOAT DECIMAL(14),
 A AREA(2000);

The base and scale attributes in value-specification must be present to identify a precision
specification with a particular attribute. The base and scale attributes can be factored (see “Factoring
attributes” on page 151).

The only attributes that the VALUE option can influence are area size, string length, and precision.
Other attributes in the option, such as CHARACTER and FIXED BINARY in the above examples, merely
indicate which attributes the value is to be associated with. Consider the following example:

DEFAULT RANGE(I) VALUE(FIXED DECIMAL(8,3));
I = 1;

DEFAULT

170 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

If it is not declared explicitly, I is given the language-specified default attributes FIXED BINARY(15,0).
It is not influenced by the default statement, because this statement specifies only that the default
precision for FIXED DECIMAL names is to be (8,3).

For example, the following statement specifies precision for identifiers already known to be FIXED
BINARY:

DFT RANGE(*) VALUE(FIXED BINARY(31));

However, the following statement specifies both the FIXED BINARY attribute as a default and the
precision:

DFT RANGE(*) FIXED BINARY VALUE(FIXED BINARY(31));

attribute-expression
Is an expression that uses the and, or, and not operators with operands that are attributes. If the
expression is true, the specified attributes are applied. For example, if a precision is not specified,
DEFAULT(FIXED & BIN) PREC(31) sets the precision of all FIXED BINARY variables as 31.

All the attributes are individual keywords, except the RANGE attribute. The RANGE attribute must be
specified with *, identifier, or identifier : identifier, as in a simple DEFAULT statement.

You can use the attributes that are listed in the following table in attribute-expression in DEFAULT.

Table 41. Attributes in attribute-expression in DEFAULT

ABNORMAL ENTRY LIST RESERVED

ALIGNED ENVIRONMENT MEMBER1 RETURNS

AREA EVENT NATIVE SEQUENTIAL

ASSIGNABLE EXCLUSIVE NONASSIGNABLE SIGNED

AUTOMATIC EXTERNAL NONCONNECTED STATIC

BACKWARDS FILE NONNATIVE STREAM

BASED FIXED NONVARYING STRUCTURE

BINARY FLOAT NORMAL TASK

BIT FORMAT OFFSET TRANSIENT

BUFFERED GENERIC OPTIONAL UCHAR

BUILTIN GRAPHIC OPTIONS UNALIGNED

BYADDR HEX OUTONLY UNBUFFERED

BYVALUE HEXADEC OUTPUT UNION

CHARACTER IEEE PARAMETER UNSIGNED

COMPLEX INITIAL PICTURE UPDATE

CONDITION INONLY POINTER VARIABLE

CONNECTED INOUT POSITION VARYING

CONSTANT INPUT PRECISION VARYING4

CONTROLLED INTERNAL PRINT VARYINGZ

DECIMAL IRREDUCIBLE RANGE WIDECHAR

DEFINED KEYED REAL WIDEPIC

DIMENSION LABEL RECORD

DEFAULT

Chapter 7. Data declarations 171

Table 41. Attributes in attribute-expression in DEFAULT (continued)

DIRECT LIMITED REDUCIBLE
1Note: You can use MEMBER as an attribute here, but it cannot be used as an attribute in PL/I
DECLARE statements.

There can be more than one DEFAULT statement within a block. The scope of a DEFAULT statement is
the block in which it occurs, and all blocks within that block which neither include another DEFAULT
statement with the same range, nor are contained in a block having a DEFAULT statement with the same
range.

A DEFAULT statement in an internal block affects only explicitly declared names. This is because the
scope of an implicit declaration is determined as if the names were declared in a DECLARE statement
immediately following the PROCEDURE statement of the external procedure in which the name appears.

It is possible for a containing block to have a DEFAULT statement with a range that is partly covered by the
range of a DEFAULT statement in a contained block. In such a case, the range of the DEFAULT statement
in the containing block is reduced by the range of the DEFAULT statement in the contained block. Consider
the following example:

 P: PROCEDURE;
L1: DEFAULT RANGE (XY) FIXED;
 Q: BEGIN;
L2: DEFAULT RANGE (XYZ) FLOAT;
 END P;

The scope of DEFAULT statement L1 is procedure P and the contained block Q. The range of DEFAULT
statement L1 is all names in procedure P beginning with the characters XY, together with all names in
begin-block Q beginning with the characters XY, except for those beginning with the characters XYZ.

Labels can be prefixed to DEFAULT statements. A branch to such a label is treated as a branch to a null
statement. Condition prefixes cannot be attached to a DEFAULT statement.

Restoring language-specified defaults
The statement dft range(*) system; overrides, for all names, any programmer-defined default rules
established in a containing block. You can use this statement to restore language-specified defaults for
contained blocks.

Arrays
An array is an n-dimensional collection of elements that have identical attributes.

Only the array itself is given a name. An individual item of an array is referred to by giving its position
within the array. You indicate that a name is an array variable by providing the dimension attribute.

Unless specified with REFER, every dimension of every array must have at least one element. When
the bounds of an array are specified with REFER, the array can be defined to have zero elements if the
following conditions are true:

• The array is never accessed or assigned.
• The array has only one dimension (excluding any inherited dimensions).
• The lower bound of that dimension must be 1.
• All of the elements in the containing structure must be either UNALIGNED or NONVARYING BIT.

So, for example, given the following code, it is valid to allocate the array a when n1 is zero if ab3, abc1,
and abc2 are neither accessed nor assigned.

 dcl n1 fixed bin(31);
 dcl p pointer;
 dcl
 1 a based(p),
 2 ab1 fixed bin(31),

Restoring defaults

172 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 2 ab2 fixed bin(31),
 2 ab3(n1 refer(ab2)),
 3 abc1 char(40) var,
 3 abc2 char(40) var,
 2 ab4 char(40) var;

DIMENSION attribute
The DIMENSION attribute specifies the number of dimensions of an array and upper and lower bounds of
each.

Bounds that are nonrestricted expressions are evaluated and converted to FIXED BINARY (with a
precision corresponding to the CMPAT compiler option) when storage is allocated for the array.

The extent of a dimension is the number of integers between, and including, the lower and upper bounds
for a dimension.

DIMENSION

(

,

bound)

bound

lower-bound :

*:

upper-bound

*

lower-bound
1

expression

REFER( variable)

upper-bound
expression

REFER( variable)

Abbreviation: DIM

If the DIMENSION keyword is omitted, the dimension must immediately follow the name (or the
parenthesized list of names) in the declaration.

The number of bounds specifications indicates the number of dimensions in the array, unless the declared
variable is in an array of structures or unions. In this case it inherits dimensions from the containing
structure or union.

The bounds specification indicates the bounds as follows:

• If only the upper bound is given, the lower bound defaults to 1.
• The lower bound must be less than or equal to the upper bound.
• An asterisk (*) specifies that the lower and/or the upper bound is taken for a parameter from its

descriptor, for a CONTROLLED variable from its current allocation (or upon allocation from its previous
generation), and for other variables from its INITIAL attribute.

For variables that are not CONTROLLED or PARAMETER, an asterisk (*) may be used to specify the bounds
only if:

• it has only one dimension (and that dimension is not inherited from a parent).
• it defines its bounds with only a single asterisk.

DIMENSION attribute

Chapter 7. Data declarations 173

• it has an INITIAL attribute that specifies a constant set of INITIAL values.

So, the upper bound for these declares would be

3 for dcl a(*) fixed bin init(2,3,5);
7 for dcl b(*) fixed bin init(2,3,(5)7);
17 for dcl c(*) fixed bin init(2,3,(2)(5,(3) (7,11)), 13);

but the following declares would all be invalid

dcl x(*,*) fixed bin init(1,2,3,4,5,6);
dcl y(0 : *) fixed bin init(1,2,3);
dcl z(*) fixed bin init(2, 3, (n) 7);

DIMACROSS attribute
The DIMACROSS attribute specifies a DIMENSION attribute on a structure, but one which will be removed
from the structure and propagated to its members.

The DIMACROSS attribute has the same syntax as the DIMENSION attribute except that the DIMACROSS
keyword is, of course, not optional.

The DIMACROSS attribute is valid only on structures, and it is invalid if any of the immediate children
already have the dimension attribute.

Unlike a variable declared with the DIMENSION attribute, a variable declared with the DIMACROSS
attribute is not an array. The children of the variable are arrays. However, the variable might be used as
an array in a BY DIMACROSS assignment or as an argument to the LBOUNDACROSS or HBOUNDACROSS
built-in functions.

As an example, the following declarations are equivalent:

Declaration 1 Declaration 2

 Dcl
 1 a(10) dimacross,
 2 b,
 2 c,
 3 d,
 3 e;

 Dcl
 1 a,
 2 b(10),
 2 c(10),
 3 d,
 3 e;

Examples of arrays
These examples help you understand declarations of arrays and array dimensions.

Consider the following declaration:

 declare List fixed decimal(3) dimension(8);

List is declared as a one-dimensional array of eight elements, each one a fixed-point decimal element of
three digits. The one dimension of List has bounds of 1 and 8, and its extent is 8.

Consider the following example:

 declare Table (4,2) fixed dec (3);

Table is declared as a two-dimensional array of eight fixed-point decimal elements. The two dimensions
of Table have bounds of 1 and 4 and 1 and 2, and the extents are 4 and 2.

Consider these examples:

 declare List_A dimension(4:11);
 declare List_B (-4:3);

DIMACROSS attribute

174 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

In the first example, the bounds are 4 and 11; in the second they are -4 and 3. The extents are the same
for each, 8 integers from the lower bound through the upper bound.

In the manipulation of array data (discussed in “Array expressions” on page 70) involving more than one
array, the bounds—not merely the extents—must be identical. Although List, List_A, and List_B all
have the same extent, the bounds are not identical.

Subscripts
A subscript is an element expression that specifies a position within a dimension of an array. If the
subscript is an asterisk, it specifies all of the elements of the dimension.

The bounds of an array determine the way elements of the array can be referred to. For example, when
the following data items:

 20 5 10 30 630 150 310 70

are assigned to the array List, as declared above, the different elements are referred to as follows:

Reference Element

LIST (1) 20

LIST (2) 5

LIST (3) 10

LIST (4) 30

LIST (5) 630

LIST (6) 150

LIST (7) 310

LIST (8) 70

Each of the parenthesized numbers following LIST is a subscript. A parenthesized subscript following an
array name reference identifies a particular data item within the array. A reference to a subscripted name,
such as LIST(4), refers to a single element and is an element variable. The entire array can be referred to
by the unsubscripted name of the array—for example, LIST.

The same data can be assigned to List_A and List_B declared previously. In this case it is referenced
as follows:

Reference Element Reference

LIST_A (4) 20 LIST_B (-4)

LIST_A (5) 5 LIST_B (-3)

LIST_A (6) 10 LIST_B (-2)

LIST_A (7) 30 LIST_B (-1)

LIST_A (8) 630 LIST_B (0)

LIST_A (9) 150 LIST_B (1)

LIST_A (10) 310 LIST_B (2)

LIST_A (11) 70 LIST_B (3)

Assume that the same data is assigned to TABLE, which is declared as a two-dimensional array. TABLE
can be illustrated as a matrix of four rows and two columns:

TABLE(m,n) (m,1) (m,2)

(1,n) 20 5

Subscripts

Chapter 7. Data declarations 175

TABLE(m,n) (m,1) (m,2)

(2,n) 10 30

(3,n) 630 150

(4,n) 310 70

An element of TABLE is referred to by a subscripted name with two parenthesized subscripts, separated
by a comma. For example, TABLE (2,1) would specify the first item in the second row, the data item 10.

The use of a matrix to illustrate TABLE is purely conceptual. It has no relationship to the way the items
are actually organized in storage. Data items are assigned to an array in row major order. This means that
the subscript that represents columns varies most rapidly. For example, assignment to TABLE would be to
TABLE(1,1), TABLE(1,2), TABLE(2,1), TABLE(2,2), and so forth.

A subscripted reference to an array must contain as many subscripts as there are dimensions in the array.

Any expression that yields a valid arithmetic value can be used for a subscript. If necessary, the value
is converted to FIXED BINARY (with a precision corresponding to the CMPAT compiler option). Thus,
TABLE(I,J*K) can be used to refer to the different elements of TABLE by varying the values of I, J, and K.

Cross sections of arrays
Cross sections of arrays can be referred to by using an asterisk for a subscript.

The asterisk specifies that the entire extent is used. For example, TABLE(*,1) refers to all of the
elements in the first column of TABLE. It specifies the cross section consisting of TABLE(1,1), TABLE(2,1),
TABLE(3,1), and TABLE(4,1). The subscripted name TABLE(2,*) refers to all of the data items in the second
row of TABLE. TABLE(*,*) refers to the entire array, as does TABLE.

A subscripted name containing asterisk subscripts represents not a single data element, but an array with
as many dimensions as there are asterisks. Consequently, such a name is not an element expression, but
an array expression.

A reference to a cross section of an array can refer to two or more elements that are not adjacent in
storage. The storage represented by such a cross section is known as nonconnected storage. The rule is as
follows: if a nonasterisk bound appears to the right of the leftmost asterisk bound, the array cross section
is in nonconnected storage. Thus, A(4,*,*) is in connected storage; A(*,2,*) is not.

Related information
“CONNECTED and NONCONNECTED attributes” on page 262
The CONNECTED attribute specifies that a parameter is a reference to connected storage only. The
NONCONNECTED attribute allows a parameter to occupy noncontiguous as well as contiguous storage.

Structures and unions
This section discusses structures and unions.

Structures
A structure is a collection of member elements that can be structures, unions, elementary variables, and
arrays.

The structure variable is a name that can be used to refer to the entire aggregate of data. Unlike an array,
however, each member of a structure also has a name, and the attributes of each member can differ. An
asterisk can be used as the name of a structure or a member when it will not be referred to. For example,
reserved or filler items can be named with an asterisk.

A structure has different levels. The name at level-1 is called a major structure. Names at deeper levels
can be minor structures or unions. Names at the deepest level are called elementary names, which can
represent an elementary variable or an array variable.

Cross sections of arrays

176 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

A structure is described in a DECLARE statement through the use of level-numbers preceding the
associated names. Level-numbers must be integers.

A major structure name is declared with the level-number 1. Minor structures, unions, and elementary
names are declared with level-numbers greater than 1. A delimiter must separate the level-number and
its associated name. For example, the items of a payroll record could be declared as follows:

 declare 1 Payroll, /* major structure name */
 2 Name, /* minor structure name */
 3 Last char(20), /* elementary name */
 3 First char(15),
 2 Hours,
 3 Regular fixed dec(5,2),
 3 Overtime fixed dec(5,2),
 2 Rate,
 3 Regular fixed dec(3,2),
 3 Overtime fixed dec(3,2);

In the example, Payroll is the major structure and all other names are members of this structure. Name,
Hours, and Rate are minor structures, and all other members are elementary variables. You can refer to
the entire structure by the name Payroll, or to portions of the structure by the minor structure names.
You can refer to a member by referring to the member name.

Indentation is only for readability. The statement could be written in a continuous string as follows:

 Declare 1 Payroll, 2 Name, 3 Last char(20), . . .

The level-numbers you choose for successively deeper levels need not be consecutive. A minor structure
at level n contains all the names with level-numbers greater than n that lie between that minor structure
name and the next name with a level-number less than or equal to n.

For example, the following declaration results in exactly the same structure as the declaration in the
previous example.

 Declare 1 Payroll,
 4 Name,
 5 Last char(20),
 5 First char(15),
 3 Hours,
 6 Regular fixed dec(5,2),
 5 Overtime fixed dec(5,2),
 2 Rate,
 9 Regular fixed dec(3,2),
 9 Overtime fixed dec(3,2);

The description of a major structure is usually terminated by a semicolon terminating the DECLARE
statement. It can also be terminated by comma, followed by the declaration of another item.

Related information
“Unions” on page 177
A union is a collection of member elements that overlay each other, occupying the same storage. The
members can be structures, unions, elementary variables, and arrays. They need not have identical
attributes.
“Assignments to UNIONs” on page 180
Assignments to UNIONs or to structures that contain UNIONS are possible.

Unions
A union is a collection of member elements that overlay each other, occupying the same storage. The
members can be structures, unions, elementary variables, and arrays. They need not have identical
attributes.

The entire union is given a name that can be used to refer to the entire aggregate of data. Like a structure,
each element of a union also has a name. An asterisk can be used as the name of a union or a member,
when it will not be referred to. For example, reserved or filler items can be named asterisk.

Unions

Chapter 7. Data declarations 177

Like a structure, a union can be at any level including level 1. All elements of a union at the next deeper
level are members of the union and occupy the same storage. The storage occupied by the union is equal
to the storage required by the largest member. Normally, only one member is used at any time and the
programmer determines which member is used.

A union, like a structure, is declared through the use of level-numbers preceding the associated names.

Unions can be used to declare variant records that would typically contain a common part, a selector part,
and variant parts. For example, records in a client file can be declared as follows:

 Declare 1 Client,
 2 Number pic '999999',
 2 Type bit(1),
 2 * bit(7),
 2 Name union,
 3 Individual,
 5 Last_Name char(20),
 5 First_Name union,
 7 First char(15),
 7 Initial char(1),
 3 Company char(35),
 2 * char(0);

In this example, Client is a major structure. The structure Individual, and the element Company
are members of the union Name. One of these members is active depending on Type. The structure
Individual contains the union First_name and the element Last_name. First_name union has
First and Initial as its members, both of which are active. The example also shows the use of
asterisk as a name. The description of a union is terminated by the semicolon that terminates a DECLARE
statement or by a comma, followed by the declaration of another item.

UNION attribute

The UNION attribute allows you to specify that a variable is a union and that its members are those that
follow it and are at the next logically higher level. CELL is accepted as a synonym for UNION.

UNION

Related information
“Assignments to UNIONs” on page 180
Assignments to UNIONs or to structures that contain UNIONS are possible.

Structure and union qualification
A member of a structure or a union can be referred to by its name alone if it is unique. If another member
has the same name, whether at the same or different level, ambiguity occurs. Where ambiguity occurs, a
qualified reference is required to uniquely identify the correct member.

A qualified reference is a member name that is qualified with one or more names of parent members
connected by periods. (See the qualified reference syntax in Chapter 3, “Expressions and references,” on
page 51.) Blanks can appear surrounding the period.

A reference to an element of structure is viewed as unambiguous if any of the following conditions
applies:

• The reference is fully qualified, that is, the reference to the element includes the names of all of its
parents.

• The reference is not a partially or fully qualified reference to any other variable in the block where the
element is declared.

The qualification must follow the order of levels. That is, the name at the highest level must appear first,
with the name at the deepest level appearing last.

Structure and union qualification

178 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

While the level-1 structure or union name must be unique within the block scope, member names need
not be unique as long as they do not appear at same logical level within their most immediate parent. A
qualified name must be used only so far as necessary to make a reference of the same structure unique
within the block in which it appears. In the following example, the value of x.y (19) is displayed, not the
value (17).

 dcl Y fixed init(17);

 begin;
 dcl
 1 X,
 2 Y fixed init(19);
 display(Y);
 end;

A reference is always taken to apply to the declared name in the innermost block containing the
reference.

The following examples illustrate both ambiguous and unambiguous references. In the following example,
A.C refers to C in the inner block; D.E refers to E in the outer block.

 declare 1 A, 2 C, 2 D, 3 E;
 begin;
 declare 1 A, 2 B, 3 C, 3 E;
 A.C = D.E;

In the following example, D has been declared twice. A reference to A.D refers to the second D, because
A.D is a complete qualification of only the second D. The first D is referred to as A.C.D.

 declare 1 A,
 2 B,
 2 C,
 3 D,
 2 D;

In the following example, a reference to A.C is ambiguous because neither C can be completely qualified
by this reference.

 declare 1 A,
 2 B,
 3 C,
 2 D,
 3 C;

In the following example, a reference to A refers to the first A, A.A to the second A, and A.A.A to the third
A.

 declare 1 A,
 2 A,
 3 A;

In the following example, a reference to X refers to the first DECLARE statement. A reference to Y.Z is
ambiguous. Y.Y.Z refers to the second Z, and Y.X.Z refers to the first Z.

 declare X;
 declare 1 Y,
 2 X,
 3 Z,
 3 A,
 2 Y,
 3 Z,
 3 A;

For more information about name qualification, see “Scope of declarations” on page 152.

Structure and union qualification

Chapter 7. Data declarations 179

Assignments to UNIONs
Assignments to UNIONs or to structures that contain UNIONS are possible.

A structure that contains UNIONs can be assigned to another structure that contains UNIONs if the
following conditions are met:

• The source and target structures have extents known at compile time.
• The source and target structures are not DEFINED on other variables.
• The structures would be assignable if the UNION attribute were removed from them (for example, they

must have the same structuring and contained dimensions).
• For each UNION in the target, the corresponding element in the source must be a UNION with the same

attributes.
• All the immediate children of each UNION in the source and target must occupy a whole number

of bytes, unless the child is itself a UNION in which case this must be recursively true of all of the
subelements of that child.

Structures that contain UNIONs are not supported in the following assignments:

• Multiple assignments
• Compound assignments
• BY NAME assignments
• BY DIMACROSS assignments

In the generated code for the assignments of the UNIONs, the assignment is performed by a simple byte
copy of the whole UNION.

LIKE attribute
The LIKE attribute specifies that the name that is declared has an organization that is logically the same
as the referenced structure or union, the object of the LIKE attribute.

The object variable's member names and their attributes, including the dimension attribute, are
effectively copied and become members of the name being declared. If necessary, the level-numbers
of the copied members are automatically adjusted. The object variable name and its attributes, including
the dimension attribute, are ignored.

LIKE object-variable

object-variable
Can be a major structure, a minor structure, or a union. It must be known in the block containing
the LIKE attribute specification. It can be qualified but must not be subscripted. The object or its
members can also have the LIKE attribute if they were declared previously.

The objects in all LIKE attributes are associated with declared names before any LIKE attributes are
expanded.

New members cannot be added to the created structure or union. Any level-number that immediately
follows the object variable in the LIKE attribute must be equal to or less than the level-number of the
name with the LIKE attribute.

The LIKE attribute is supported in ENTRY descriptions and in parameter declarations. If used in an ENTRY
description, the member names are not copied. For example, the following declares are valid:

dcl
 1 name,
 2 first char(20) var,
 2 middle char(10) var,
 2 last char(30) var;

dcl func entry(like name);

Assignments to UNIONs

180 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The declare for the entry "func"would be the same as this longer declare:

dcl func entry(1, 2 char(20) var, 2 char(10) var, 2 char(30) var);

The following declarations yield the same structure for X.

 dcl
 1 A(10) aligned static,
 2 B bit(4),
 2 C bit(4),
 1 X like A;

 dcl
 1 X,
 2 B bit(4),
 2 C bit(4);

Notice that the dimension (DIM(10)), ALIGNED, and STATIC attributes are not copied as part of the LIKE
expansion.

The LIKE attribute is expanded before the defaults are applied and before the ALIGNED and UNALIGNED
attributes are applied to the contained elements of the LIKE object variable. However, the LIKE attribute
is expanded only after all LIKE attributes have been resolved.

Examples
Consider the following declarations:

 declare 1 A,
 2 C,
 3 E(3) union,
 5 E1,
 5 E2,
 3 F;
 declare 1 B(10) union,
 2 C, 3 G, 3 H,
 2 D;
 begin;
 declare 1 C like B;
 declare 1 D(2),
 5 BB like A.C;
 end;

Declarations C and D have the results shown in the following example:

 dcl
 1 C, /* DIM and UNION not copied. */
 2 C, 3 G, 3 H,
 2 D;

 dcl 1 D(2),
 5 BB,
 6 E(3) union, /* DIM(3) and UNION copied. */
 7 E1, /* Note adjusted level-numbers. */
 7 E2,
 6 F;

The following declarations are valid, but only because B is declared before C and E is declared before F:

 dcl 1 a, 2 a1 fixed bin;
 dcl 1 b, 2 b1 like a;
 dcl 1 c, 2 c1 like b;

 dcl 1 d, 2 d1 fixed bin;
 dcl 1 e like d;

Assignments to UNIONs

Chapter 7. Data declarations 181

The following example is valid, but only because the LIKE references are expanded after they are all
resolved, otherwise the reference aa3_array would be ambiguous:

 dcl 1 aa(30)
 ,5 aa1 char(5)
 ,5 aa2 fixed bin(31)
 ,5 aa3_array(30)
 ,7 aa3_1 fixed dec(15,2)
 ,7 aa3_2 fixed dec(15,2)
 ,7 aa3_3 fixed dec(11,4)
 ,7 aa3_4 fixed dec(7,3)
 ;

 dcl bb like aa;
 dcl cc like
aa3_array;

The following example is invalid because C.E has the LIKE attribute and because B is declared after A. If
the order of the declarations for A and B is reversed, the code is valid.

 declare 1 A like C,
 1 B,
 2 C,
 3 D,
 3 E like X,
 2 F,
 1 X,
 2 Y,
 2 Z;

The following example is invalid because G.C cannot be resolved. G.C is not resolved because the
expansion of the LIKE for G occurs after the attempt to resolve the LIKE attribute for A:

 declare 1 B,
 2 C,
 3 D,
 3 E,
 2 F,
 1 G like B;
 1 A like G.C,

INDFOR attribute
The INDFOR attribute specifies that the name that is declared has an organization that is logically the
same as the referenced structure or union, the object of the INDFOR attribute. The INDFOR attribute is
similar to the LIKE attribute.

The member names and their attributes, excluding the dimension attribute, of the object variable are
effectively converted to FIXED BIN(15) and become members of the name that is declared. This differs
from the LIKE attribute, which copies the attributes.

INDFOR object-variable

object-variable
Can be a major structure, a minor structure, or a union. It must be known in the block that has the
INDFOR attribute. It can be qualified but must not be subscripted. The object or its members can also
have the INDFOR attribute if they were declared previously.

The objects in all INDFOR attributes are associated with declared names before any INDFOR
attributes are expanded.

The INDFOR attribute is expanded before the defaults are applied and before the ALIGNED and
UNALIGNED attributes are applied to the contained elements of the INDFOR object variable. However,
the INDFOR attribute is expanded only after all INDFOR attributes have been resolved.

Assignments to UNIONs

182 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Example

This example illustrates the difference between the INDFOR attribute and the LIKE attribute.

This example is based on the following declaration:

 dcl 1 a, 2 b char(8), 2 c fixed dec(5,0);

Note how the following declarations are expanded.

Given declaration statement Expanded to

dcl 1 alike like a; dcl 1 alike, 2 b char(8), 2 c fixed
dec(5,0);

dcl 1 aindfor indfor a; dcl 1 a, 2 b fixed bin(15), 2 c fixed
bin(15);

Related information
“LIKE attribute” on page 180
The LIKE attribute specifies that the name that is declared has an organization that is logically the same
as the referenced structure or union, the object of the LIKE attribute.

NOINIT attribute
The NOINIT attribute specifies that any INITIAL attributes are to be ignored.

While the NOINIT attribute might be most useful on level-1 structures, it can be specified on any
substructure as well.

The NOINIT attribute is particularly useful with the LIKE attribute because when a new variable is
declared LIKE an old variable but with the NOINIT attribute, the new variable will inherit all the
substructuring from the old variable, but none of its INITIAL values.

NULLINIT attribute
The NULLINIT attribute specifies that any variable that does not have an INITIAL attribute is given an
INITIAL attribute according to its data attributes.

• INIT((*) 0) if it is FIXED or FLOAT
• INIT((*) '') if it is PICTURE, CHAR, BIT, GRAPHIC, UCHAR or WIDECHAR
• INIT((*) SYSNULL()) if it is POINTER unless the DFT(NULLSTRPTR(NULL)) option is in effect in which

case the INITIAL attribute will be INIT((*) NULL())
• INIT((*) SYSNULL()) if it is OFFSET
• INIT((*) NULLENTRY()) if it is ENTRY

Variables with attributes other than those in the previous list are unchanged by the NULLINIT attribute.

The NULLINIT attribute can be specified only on level-1 names, and it conflicts with the NOINIT and
INITIAL attributes. The level-1 name can specify a DEFINE STRUCTURE type.

XML-related attributes
XML-related attributes specify the use of XML attributes and control output that is generated by the
XMLCHAR or XMLUCHAR built-in function.

Note: The compiler ignores these attributes unless a structure that contains fields using them is passed to
XMLCHAR or XMLUCHAR.

Assignments to UNIONs

Chapter 7. Data declarations 183

XMLATTR attribute
The XMLATTR attribute indicates that the field is presented as an attribute of its containing structure in
the XML output that is generated by XMLCHAR or XMLUCHAR.

XMLATTR is invalid with any of the following elements:

• Arrays. However, XMLATTR is allowed on a member of a structure if the structure is an array.
• Structures or unions
• Unnamed structure elements
• A structure element that is used previously with the same parent but without the XMLATTR attribute

XMLCONTENT attribute
The XMLCONTENT attribute specifies that when a variable is included in the text that is generated by the
XMLCHAR or XMLUCHAR built-in function, it is presented as tagless text.

XMLIGNORE attribute
The XMLIGNORE attribute indicates that an element should be ignored by XMLCHAR or XMLUCHAR. If the
attribute is specified on a substructure, all of the elements of the structure will be ignored.

XMLNAME attribute
The XMLNAME attribute provides the ability to specify the name that is used for a variable in the
XMLCHAR or XMLUCHAR function. In particular, with this attribute you can specify a name that does
not conform to PL/I name rules.

It provides the same ability for the XMLCHAR and XMLUCHAR built-in functions that JSONNAME provides
the JSONPUT built-in functions.

XMLOMIT attribute
The XMLOMIT attribute indicates that fields of certain data items must be omitted from the XML output
that is generated by XMLCHAR or XMLUCHAR if the field is a string equal to the null string (' ') or a number
equal to 0.

The XMLOMIT attribute is allowed on structures in which case the structure and all its members will be
omitted if all of the fields in the structure are null.

XMLOMIT is invalid with any of the following elements:

• Unions
• Unnamed structure elements
• Elements that use nonnative float (hex or dfp on Windows)

Example of using XMLATTR and XMLOMIT
This example shows a declaration of a structure with the XMLATTR and XMLOMIT attributes and also the
output you get by using XMLCHAR or XMLUCHAR with that structure.

 dcl
 1 order
 2 orderNr char(20) init('1729'),
 2 customer,
 3 id xmlattr fixed bin(31) init('2917'),
 3 name xmlattr char(32) init('jakob'),
 3 firstname xmlattr char(24) init('michael'),
 3 partno fixed bin(31) init(1367),
 3 special xmlomit char(35) init('');

Assignments to UNIONs

184 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Output:

 <order>
 <orderNr>1729</orderNr>
 <customer id='2917' name='jakob' firstname='michael'>
 <partno>1367</partno>
 </customer>
 </order>

JSON-related attributes
JSON-related attributes specify the use of variable attributes in JSON functions and control output that is
generated by JSON functions.

JSONNAME attribute
The JSONNAME attribute specifies the name that is used or expected for a variable in jsonPut or jsonGet
functions. In particular, using the JSONNAME attribute, you can specify a name that does not conform to
PL/I name rules.

The JSONNAME attribute must specify a scalar restricted expression having CHARACTER type.

For example, if you want to specify a name with a hyphen, you can use the following attribute for the
variable:

JSONNAME(‘comment-text’)

JSONOMIT attribute
The JSONOMIT attribute indicates that fields of certain data items must be omitted from output that is
generated by JSON functions if the field is a string equal to the null string (' ') or a number equal to 0.

JSONOMIT is invalid with any of the following elements:

• Structures or unions
• Unnamed structure elements
• Elements that use nonnative float (hex or dfp on Windows)

JSONTRIMR attribute
The JSONTRIMR attribute indicates that the JSON functions will trim away any trailing blanks for the
specified field (or if the field is a structure, for any members of the structure).

Aggregate combinations and mapping
An aggregate is a data item that is a collection of other data items. This section discusses arrays of
structures, arrays of unions, references to structures or unions, and structure-union mapping.

Combinations of arrays, structures, and unions
Specifying the dimension attribute on a structure or union results in an array of structures or an array
of unions, respectively. The elements of such an array are structures or unions having identical names,
levels, and members.

For example, if a structure is used to hold meteorological data for each month of the year for the
twentieth and the twenty-first centuries, it might be declared as follows:

 Declare 1 Year(1901:2100),
 3 Month(12),
 5 Temperature,
 7 High decimal fixed(4,1),
 7 Low decimal fixed(4,1),
 5 Wind_velocity,
 7 High decimal fixed(3),

Combinations of arrays, structures, and unions

Chapter 7. Data declarations 185

 7 Low decimal fixed(3),
 5 Precipitation,
 7 Total decimal fixed(3,1),
 7 Average decimal fixed(3,1),
 3 * char(0);

You can refer to the weather data for July 1991 by specifying Year(1991,7). You can
refer to portions of this data by Temperature(1991,7) and Wind_Velocity(1991,7).
Precipitation.Total(1991,7) and Total(1991,7) both refer to the total precipitation during July
1991.

Temperature.High(1991,3), which refers to the high temperature in March 1991, is a subscripted
qualified reference.

The need for subscripted qualified references becomes apparent when an array of structures or unions
contains members that are arrays. In the following example, both A and B are structures:

 declare
 1 A (2,2),
 2 B (2),
 3 C fixed bin,
 3 D fixed bin,
 2 E fixed bin;

To refer to a data item, it might be necessary to use as many as three names and three subscripts. See the
following example:

A(1,1).B refers to B, an array of structures.
A(1,1) refers to a structure.
A(1,1).B(1) refers to a structure.
A(1,1).B(2).C refers to an element.

As long as the order of subscripts remains unchanged, subscripts in such references can be moved to
names at a lower or higher level. In the preceding example, A.B.C(1,1,2) and A(1,1,2).B.C have
the same meaning as A(1,1).B(2).C for the above array of structures. Unless all of the subscripts are
moved to the lowest level, the reference is said to have interleaved subscripts, so A.B(1,1,2).C has
interleaved subscripts.

Any item declared within an array of structures or unions inherits dimensions declared in the parent.
In the preceding declaration for the array of structures A, the array B is a three-dimensional structure,
because it inherits the two dimensions declared for A. If B is unique and requires no qualification, any
reference to a particular B requires three subscripts, two to identify the specific A and one to identify the
specific B within that A.

Cross sections of arrays of structures or unions
A reference to a cross section of an array of structures or unions is not allowed. That is, the asterisk
notation cannot be used in a reference unless all of the subscripts are asterisks.

Structure and union operations
Structures can be referenced in most contexts where any elementary variable can be referenced.
However, there are limits on references to unions or structures that contain unions.

For example, you can have structure references in assignments, I/O statements, and so on.

But references to unions or structures that contain unions are limited to the following contexts:

• Parameters and arguments
• Storage control and those built-in functions and subroutines that allow structures.

Cross sections of arrays of structures or unions

186 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Structure and union mapping
Individual members of a union are mapped the same way as members of the structure.

Each of the members, if not a union, is mapped as if it were a member of a structure. This means
that the first storage locations for each of the members of a union do not overlay each other if each of
the members requires different alignment and therefore different padding before the beginning of the
member.

Consider the following union:

 dcl
 1 A union,
 2 B,
 3 C char(1),
 3 D fixed bin(31),
 2 E,
 3 F char(2),
 3 G fixed bin(31),
 2 H char(8);

Three bytes of padding are added between A and B. Two bytes are added between A and E. No padding
bytes are between A and H. It means that C starts with the fourth byte of H and that F starts with the third
byte of H.

You must not use the ADDR, BITLOCATION, or LOCATION built-in functions against any UNION like the
one in the previous example. You should use these functions only when the first storage locations of the
members of a union are the same.

To ensure that the first storage location of each of the members of a union is the same, make sure that the
first member of each has the same alignment requirement and it is the same as the highest alignment of
any of its members (or members of its member).

The remainder of the discussion applies to members of a structure or union, which can be minor
structures or elementary variables.

For any major or minor structure, the length, alignment requirement, and position relative to an 8-byte
boundary depend on the lengths, alignment requirements, and relative positions of its members. The
process of determining these requirements for each level and for the complete structure is known as
structure mapping.

You can use structure mapping for determining the record length required for a structure when record-
oriented input/output is used, and determining the amount of padding or rearrangement required for
correct alignment of a structure for locate-mode input/output.

The structure mapping process minimizes the amount of unused storage (padding) between members of
the structure. It completes the entire process before the structure is allocated, according (in effect) to the
rules discussed in the following paragraphs.

Structure mapping is not a physical process. Terms such as shifted and offset are used purely for ease
of discussion, and do not imply actual movement in storage. When the structure is allocated, the relative
locations are already known as a result of the mapping process.

The mapping for a complete structure reduces to successively combining pairs of items (elements,
or minor structures whose individual mappings have already been determined). Once a pair has been
combined, it becomes a unit to be paired with another unit, and so on until the complete structure is
mapped. The rules for the process are categorized as follows:

• Rules for determining the order of pairing
• Rules for mapping one pair.

These rules are described below, and an example shows an application of the rules in detail. It is
necessary to understand the difference between the logical level and the level-number of structure
elements. The logical levels are immediately apparent if the structure declaration is written with
consistent level-numbers or suitable indentation (as in the detailed example given after the rules). In

Structure and union operations

Chapter 7. Data declarations 187

any case, you can determine the logical level of each item in the structure by applying the following rule to
each item in turn, starting at the beginning of the structure declaration:

Note: The logical level of a given item is always one unit deeper than that of its immediate containing
structure.

In the following example, the lower line shows the logical level for each item in the declaration.

 dcl 1 A, 4 B, 5 C, 5 D, 3 E, 8 F, 7 G;

 1 2 3 3 2 3 3

Rules for order of pairing
The steps in determining the order of pairing are as follows:

1. Find the minor structure at the deepest logical level (which we will call logical level n).
2. If more than one minor structure has the logical level n, take the first one that appears in the

declaration.
3. Pair the first two elements appearing in this minor structure, thus forming a unit. Use the rules for

mapping one pair. (See “Rules for mapping one pair” on page 188.)
4. Pair this unit with the next element (if any) declared in the minor structure, thus forming a larger unit.
5. Repeat step 4 until all the elements in the minor structure have been combined into one unit. This

completes the mapping for this minor structure. its alignment requirement and length, including any
padding, are now determined and will not change (unless you change the structure declaration). Its
offset from a doubleword boundary is also now determined. This offset is significant during mapping of
any containing structure, and it can change as a result of such mapping.

6. Repeat steps 3 through 5 for the next minor structure (if any) appearing at logical level n in the
declaration.

7. Repeat step 6 until all minor structures at logical level n have been mapped. Each of these minor
structures can now be thought of as an element for structure mapping purposes.

8. Repeat the pairing process for minor structures at the next higher logical level; that is, make n equal to
(n-1) and repeat steps 2 through 7.

9. Repeat step 8 until n = 1; then repeat steps 3 through 5 for the major structure.

Rules for mapping one pair
For purposes of this explanation, think of storage as contiguous doublewords, each having 8 bytes,
numbered 0 through 7, which indicate the offset from a doubleword boundary. Think of the bytes as
numbered continuously from 0 onward, starting at any byte, so that lengths and offsets from the start of
the structure can be calculated.

1. Begin the first element of the pair on a doubleword boundary; or, if the element is a minor structure
that has already been mapped, offset it from the doubleword boundary by the amount indicated.

2. Begin the second element of the pair at the first valid position following the end of the first element.
This position depends on the alignment requirement of the second element. (If the second element is
a minor structure, its alignment requirement will have already been determined.)

3. Shift the first element towards the second element as far as the alignment requirement of the first
allows. The amount of shift determines the offset of this pair from a doubleword boundary.

After this process has been completed, any padding between the two elements has been minimized and
does not change throughout the rest of the operation. The pair is now a unit of fixed length and alignment
requirement; its length is the sum of the two lengths plus padding, and its alignment requirement is the
higher of the two alignment requirements (if they differ).

Rules for order of pairing

188 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Effect of UNALIGNED attribute
The example in “Example of structure mapping” on page 189 shows the rules applied to a structure
declared ALIGNED. Mapping of aligned structures is more complex because of the number of alignment
requirements. The effect of the UNALIGNED attribute is to reduce to one byte the alignment requirements
for halfwords, fullwords, and doublewords, and to reduce to one bit the alignment requirement for bit
strings. The same structure mapping rules apply, but the reduced alignment requirements are used. The
only unused storage will be bit padding within a byte when the structure contains bit strings.

AREA data cannot be unaligned.

If a structure has the UNALIGNED attribute and it contains an element that cannot be unaligned,
UNALIGNED is ignored for that element. The element is aligned and an error message is produced.
For example, in a program with the following declaration, C is given the attribute ALIGNED because the
inherited attribute UNALIGNED conflicts with AREA.

 declare 1 A unaligned,
 2 B,
 2 C area(100);

Example of structure mapping
The following example shows the application of the structure mapping rules for a structure with the
specified declaration.

 declare 1 A aligned,
 2 B fixed bin(31),
 2 C,
 3 D float decimal(14),
 3 E,
 4 F entry,
 4 G,
 5 H character(2),
 5 I float decimal(13),
 4 J fixed binary(31,0),
 3 K character(2),
 3 L fixed binary(20,0),
 2 M,
 3 N,
 4 P fixed binary(15),
 4 Q character(5),
 4 R float decimal(2),
 3 S,
 4 T float decimal(15),
 4 U bit(3),
 4 V char(1),
 3 W fixed bin(31),
 2 X picture '$9V99';

The minor structure at the deepest logical level is G, so this is mapped first. Then E is mapped, followed
by N, S, C, and M, in that order.

For each minor structure, a table in Figure 4 on page 190 shows the steps in the process, and a diagram
in Figure 5 on page 190 shows a visual interpretation of the process. Finally, the major structure A is
mapped as shown in Figure 11 on page 193. At the end of the example, the structure map for A is set out
in the form of a table (Figure 12 on page 194) showing the offset of each member from the start of A.

Effect of UNALIGNED attribute

Chapter 7. Data declarations 189

Figure 4. Mapping of example structure

Figure 5. Mapping of minor structure G

Structure mapping example

190 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Figure 6. Mapping of minor structure E

Figure 7. Mapping of minor structure N

Figure 8. Mapping of minor structure S

Structure mapping example

Chapter 7. Data declarations 191

Figure 9. Mapping of minor structure C

Figure 10. Mapping of minor structure M

Structure mapping example

192 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Figure 11. Mapping of major structure A

Structure mapping example

Chapter 7. Data declarations 193

Figure 12. Offsets in final mapping of structure A

Structure mapping example

194 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 8. Statements and directives
This chapter lists all of the PL/I statements and %directives.

%Statements and macro statements are described in Chapter 20, “Preprocessor facilities,” on page 593.

ALLOCATE statement
The ALLOCATE statement allocates storage for variables.

For details about the ALLOCATE statement, see “ALLOCATE statement for controlled variables” on page
240 and “ALLOCATE statement for based variables” on page 250 in Chapter 9, “Storage control,” on page
237.

ASSERT statement
The ASSERT statement asserts whether a condition is true or false, compares two values and determines
if they are equal, or asserts whether a statement should be executed or not.

ASSERT

TRUE (test-expression)

FALSE (test-expression)

COMPARE (actual_exp ,expected_exp

,operator

)

UNREACHABLE

TEXT (display-expression)

TRUE(test-expression)
Asserts that test-expression is true when one or more bits in test-expression have the value '1'B.

FALSE(test-expression)
Asserts that test-expression is false when all the bits in test-expression have the value '0'B.

COMPARE(actual_exp,expected_exp,z)
Asserts that the value of actual_exp is equal to the value of expected_exp. z is an optional argument
which names an operator.

TEXT(display-expression)
Passes the display-expression to the assertion routine if the assert fails.

UNREACHABLE
Asserts that the statement cannot be reached, because it is bypassed by a proceeding statement,
such as a GOTO, RETURN, or SIGNAL statement.

display-expression
A scalar CHARACTER expression.

test-expression
A computational scalar expression that is to be, if necessary, converted to BIT.

actual_exp
A computational expression that is evaluated and possibly converted. It must be a scalar expression
and must have the same type as expected_exp.

expected_exp
A computational expression that is evaluated and possibly converted. It must be a scalar expression
and must have the same type as actual_exp.

operator
A CHAR(2) constant. When uppercased, the constant must have one of these values: EQ, LE, LT, GT,
GE, or NE. If you do not specify operator, EQ is the default value.

© Copyright IBM Corp. 1999, 2022 195

EQ
Equal to

LE
Less than or equal to

LT
Less than

GT
Greater than

GE
Greater than or equal to

NE
Not equal to

If the assertion fails, compiled code calls routine IBMPASU for the ASSERT UNREACHABLE statement,
IBMPAST for the ASSERT TRUE and FALSE statements, and IBMPASC for the ASSERT COMPARE
statement. These routines must use the OPTLINK linkage.

Note:

• Under the ASSERT(CONDITION) compiler option, the ASSERTION condition will be raised.
• The compiled code calls the routines IBMPASU/IBMPAST/IBMPASC, if ASSERT(ENTRY) compiler option

is used.

Compiled code calls the IBMPASU and IBMPAST routines with the following BYVALUE parameters:

• A POINTER holding the address of a buffer that contains the PACKAGENAME value as a varying
character string.

• A POINTER holding the address of a buffer that contains the PROCNAME value as a varying character
string.

• A FIXED BINARY(31) holding the SOURCELINE value.
• A POINTER holding the ADDRDATA of the TEXT value. If the TEXT clause is omitted, the value passed is

SYSNULL.
• A FIXED BINARY(31) holding the LENGTH of the TEXT value. If the TEXT clause is omitted, the value

passed is 0.

Compiled code calls the IBMPASC routine for the ASSERT COMPARE statement with the following
BYVALUE parameters:

• A POINTER holding the address of a buffer that contains the PACKAGENAME value as a varying
character string.

• A POINTER holding the address of a buffer that contains the PROCNAME value as a varying character
string.

• A FIXED BINARY(31) holding the SOURCELINE value.
• A POINTER holding the ADDRDATA of the actual_exp value. The clause must not be omitted.
• A FIXED BINARY(31) holding the LENGTH of the actual_exp value.
• A POINTER holding the ADDRDATA of the expected_exp value. The clause must not be omitted.
• A FIXED BINARY(31) holding the LENGTH of the expected_exp value.
• A POINTER holding the ADDRDATA of the TEXT value. If the TEXT clause is omitted, the value passed is

SYSNULL.
• A FIXED BINARY(31) holding the LENGTH of the TEXT value. If the TEXT clause is omitted, the value

passed is 0.

The strings representing the actual and expected expressions depend on the type of those expressions. If
the expressions have:

196 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• Computational types other than GRAPHIC or WIDECHAR, then the strings will be the value of the
expressions converted to CHARACTER.

• POINTERs or HANDLEs, then the strings will be their HEX values.
• ORDINALs, then the strings will be their ORDINALNAME values.
• Any other type, then the strings will be null strings.

Example: The usage of the ASSERT TRUE, ASSERT FALSE and ASSERT UNREACHABLE statements

The following example shows the usage of the ASSERT TRUE, ASSERT FALSE and ASSERT UNREACHABLE
statements. You must code the routines that are used in this example.

asserts: package;

 main: proc options(main);

 dcl n fixed bin;

 n = 1;
 assert true(n> 0);
 assert true(n= 2) text('n not equal to 2');
 assert unreachable;

 end;

 ibmpasu:
 proc(packagename_ptr, procname_ptr, assert_sourceline,
 text_addr, text_length)
 ext('_IBMPASU')
 options(byvalue linkage(optlink));

 dcl packagename_ptr pointer;
 dcl procname_ptr pointer;
 dcl assert_sourceline fixed BINARY(31);
 dcl text_addr pointer;
 dcl text_length fixed BINARY(31);

 dcl assert_packagename char(100) var based(packagename_ptr);
 dcl assert_procname char(100) var based(procname_ptr);
 dcl assert_text char(text_length) based(text_addr);

 put skip edit('unreachable code hit on line ',
 trim(assert_sourceline),
 ' in ',
 assert_packagename,
 ':', assert_procname)
 (a);
 if text_length = 0 then;
 else
 put skip list(assert_text);
 end;

 ibmpast:
 proc(packagename_ptr, procname_ptr, assert_sourceline,
 text_addr, text_length)
 ext('_IBMPAST')
 options(byvalue linkage(optlink));

 dcl packagename_ptr pointer;
 dcl procname_ptr pointer;
 dcl assert_sourceline fixed BINARY(31);
 dcl text_addr pointer;
 dcl text_length fixed BINARY(31);

 dcl assert_packagename char(100) var based(packagename_ptr);
 dcl assert_procname char(100) var based(procname_ptr);
 dcl assert_text char(text_length) based(text_addr);

 put skip edit('conditional assertion failed on line ',
 trim(assert_sourceline),
 ' in ',
 assert_packagename,
 ':', assert_procname)
 (a);
 if text_length = 0 then;
 else

Chapter 8. Statements and directives 197

 put skip list(assert_text);
 end;

The following example shows the usage of the ASSERT COMPARE statement. You must code the routines
that are used in this example.

Example: The usage of the ASSERT COMPARE statement

asserts: package;

 main: proc options(main);

 dcl n fixed bin;

 n = 1;
 assert compare(n,1);
 assert compare(n,2) text("n not equal to 2");
 assert unreachable;
 end;

 ibmpasc:
 proc(packagename_ptr, procname_ptr, assert_sourceline,
 actual_addr, actual_length,
 expected_addr, expected_length,
 text_addr, text_length)
 ext('_IBMPASC')
 options(byvalue linkage(optlink));

 dcl packagename_ptr pointer;
 dcl procname_ptr pointer;
 dcl assert_sourceline fixed BINARY(31);
 dcl actual_addr pointer;
 dcl actual_length fixed BINARY(31);
 dcl expected_addr pointer;
 dcl expected_length fixed BINARY(31);
 dcl text_addr pointer;
 dcl text_length fixed BINARY(31);

 dcl assert_packagename char(100) var based(packagename_ptr);
 dcl assert_procname char(100) var based(procname_ptr);
 dcl assert_text char(text_length) based(text_addr);
 dcl actual_text char(actual_length) based(actual_addr);
 dcl expected_text char(expected_length)
 based(expected_addr);

 put skip edit('compare code hit on line ',
 trim(assert_sourceline),
 ' in ',
 assert_packagename,
 ':', assert_procname)
 (a);

 if text_length = 0 then;
 else
 put skip list(assert_text);

 if actual_length = 0 then;
 else
 put skip list(actual_text);

 if expected_length = 0 then;
 else
 put skip list(expected_text);

 end;

If the assertion fails and the ASSERT(CONDITION) compiler option is in effect, the “ASSERTION
condition” on page 351 will be raised with an appropriate message and appropriate values for the new
“ONTEXT” on page 507, “ONPACKAGE” on page 505, “ONACTUAL” on page 499 and “ONEXPECTED” on
page 502 built-in functions.

• The ONPACKAGE built-in function will provide the name of the PACKAGE in which an ASSERTION
condition is raised.

• The ONTEXT built-in function will provide the value of the TEXT string when an ASSERT statement fails
(and if the statement has no TEXT option, it will return a null string).

198 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• The ONACTUAL and ONEXPECTED built-in functions will provide strings specifying the actual and
expected values respectively when an ASSERT COMPARE statement fails.

Note:

• The ASSERTION condition is always enabled.
• The implicit action for the ASSERTION condition is that a message is printed and the ERROR condition is

raised.
• The normal return for the ASSERTION condition is that execution continues with the next statement.
• The ONCODEs associated with the ASSERTION condition are:

Condition code Meaning

430 SIGNAL ASSERTION

431 An ASSERT TRUE/FALSE statement without a TEXT clause failed

432 An ASSERT TRUE/FALSE statement with a TEXT clause failed

433 An ASSERT UNREACHABLE statement without a TEXT clause failed

434 An ASSERT UNREACHABLE statement with a TEXT clause failed

435 An ASSERT COMPARE statement without a TEXT clause failed

436 An ASSERT COMPARE statement with a TEXT clause failed

Assignment and compound assignment statements
The assignment statement evaluates an expression and assigns its value to one or more target variables.
These statements are used for internal data movement, as well as for specifying computations.

The GET and PUT statements with the STRING option can also be used for internal data movement.
Additionally, the PUT statement can specify computations to be done. See Chapter 12, “Stream-oriented
data transmission,” on page 297.

Because the attributes of the target variable or pseudovariable can differ from the attributes of the
source (a variable, a constant, or the result of an expression), the assignment statement might require
conversions.

Related information
“Data conversion” on page 75
This chapter discusses data conversions for computational data. PL/I converts data when a data item with
a set of attributes is assigned to another data item with a different set of attributes.

Assignment statements
This topic describes the syntax and parameters for assignment statements.

Syntax

,

reference = expression

,BY NAME

;

Parameters
reference

Specifies the target to be given the assignment.

Chapter 8. Statements and directives 199

expression
Specifies an expression that is evaluated and possibly converted.

BY NAME
For structure assignments, the BY NAME option specifies that the assignment follows the steps
outlined under “Structure assignments using the BY NAME option” on page 204.

Assignment statements that use the BY DIMACROSS option
This topic describes the syntax and parameters for assignment statements that use the BY DIMACROSS
option.

Syntax

reference = exp1 ,BY DIMACROSS ( exp2) ;

Parameters
reference

Specifies the target to be given the assignment.
exp1

Specifies an expression that is evaluated and possibly converted.
BY DIMACROSS

For structure assignments, the BY DIMACROSS option specifies that the assignment follows the steps
outlined under “Structure assignments using the BY DIMACROSS option” on page 205.

exp2
Specifies an expression that is used as the index appended to the associated DIMACROSS structure
elements.

Compound assignment statements
This topic describes the syntax and parameters for compound assignment statements.

Syntax

,

reference compound assignment operator expression ;

Parameters
reference

Specifies the target to be given the assignment
compound assignment operator

Specifies the operator that is applied to the reference and the evaluated expression before the
assignment is made. Table 42 on page 201 lists the compound assignment operators allowed in
compound assignments.

expression
Specifies an expression that is evaluated and possibly converted.

For information about area assignment, see “Area data and attribute” on page 253.

200 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 42. Compound assignment operators

Compound assignment
operator

Meaning

+= Evaluate expression, add and assign

-= Evaluate expression, subtract and assign

*= Evaluate expression, multiply and assign

/= Evaluate expression, divide and assign

|= Evaluate expression, or and assign

&= Evaluate expression, and and assign

∥= Evaluate expression, concatenate and assign

**= Evaluate expression, exponentiate and assign

¬= or <> Evaluate expression, exclusive-or and assign

The operator is applied to the target and source first, and then what results is assigned to the target.

See the following example:

X += 1 is the same as X = X+(1)

X *= Y+Z is the same as X = X*(Y+Z)

But the following statements are not equivalent:

X *= Y+Z is not equivalent to X = X*Y+Z

In a compound assignment, any subscripts or locator expressions specified in the target variable are
evaluated only once.

If f is a function and X is an array, the following statements are not equivalent:

X(f()) += 1 is not equivalent to X(f()) = X(f())+1

The function f is called only once.

Related information
“Example of moving internal data” on page 205
This assignment statement example can be used for internal data movement. The value of the expression
on the right of the assignment symbol is assigned to the variable on the left.

Target variables
The target variables can be element, array, structure variables; or pseudovariables.

Non-computational targets
Non-computational targets include AREA, ENTRY, FILE, FORMAT, HANDLE, LABEL, OFFSET, ORDINAL,
POINTER, and typed STRUCTURE.

When a target is non-computational, the attributes of the source are limited:

Target variables

Chapter 8. Statements and directives 201

Targets Source Considerations

AREA Must be one of:

1. an area
2. empty()
3. a null bit or char string.

Assigning a null string to an area is
equivalent to assigning empty() to the
area.

ENTRY Must be one of:

1. an entry (and if the target is LIMITED,
then the source must be also)

2. nullentry()
3. a null bit or char string.

Assigning a null string to an entry is
equivalent to assigning nullentry() to the
entry.

FILE Must be a file variable or file constant.

FORMAT Must be a format variable or format
constant.

HANDLE Must be one of:

1. a handle to the same structure type
2. null()
3. sysnull()
4. a null bit or char string

The DFT(NULSTRPTR) compiler option
specifies whether assigning a null string
to a handle is equivalent to assigning
null() to the target or equivalent to
assigning sysnull() to the target.

LABEL Must be a label variable or label constant.

OFFSET Must be one of:

1. an offset
2. a pointer if the target has a qualifying

AREA
3. null()
4. sysnull()
5. a null bit or char string

The DFT(NULSTRPTR) compiler option
specifies whether assigning a null string
to an offset is equivalent to assigning
null() to the target or equivalent to
assigning sysnull() to the target.

ORDINAL Must be an ordinal of the same type.

POINTER Must be one of:

1. a pointer
2. an offset with a qualifying AREA
3. null()
4. sysnull()
5. a null bit or char string

The DFT(NULSTRPTR) compiler option
specifies whether assigning a null string
to a pointer is equivalent to assigning
null() to the target or equivalent to
assigning sysnull() to the target.

typed STRUCTURE Must be a structure of the same type.

Array targets
For array assignments, each target variable must be an array of scalars or structures.

The source must be a scalar or an expression with the same number of dimensions and the same bounds
for all dimensions as for the target.

Union targets
Union assignments are not allowed.

Structure targets
In BY NAME structure assignments, each target variable must be a structure, and the right-hand side
must be a structure reference. In structure assignments not using BY NAME or BY DIMACROSS, each

Target variables

202 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

target variable must be a structure, and the right-hand side must be a scalar or a structure expression
with the same structuring as the target structure.

• The structures must have the same minor structuring and the same number of contained elements and
arrays.

• The positioning of the elements and arrays within the structure (and within the minor structures, if any)
must be the same.

• Arrays in corresponding positions must have identical bounds.

In BY DIMACROSS structure assignments, the target variable must be a structure. The DIMACROSS index
expression is applied to all structures that are declared with the DIMACROSS attribute and used in
the assignment either as the target or as part of the source. The following restrictions apply to these
assignments:

• Only one target reference is valid.
• The structuring and bounds of all structures in the source must match those in the target.

In structure assignments not using the BY NAME and BY DIMACROSS options, the source might be the
null bit string (''b) even if the target structure contains non-computational data. In this case, the
assignment is performed as if all of the following conditions are true:

1. All of the target was filled with '00'x.
2. All the numeric target fields were set to 0.
3. All the NONVARYING CHARACTER, UCHAR, WIDECHAR, and GRAPHIC fields were filled with blanks.

How assignments are performed
This section describes how element and aggregate assignments are performed.

Element assignments

Element assignments are performed as follows:

1. These are evaluated first:

• Subscripts
• POSITION attribute expressions
• Locator qualifications of the target variables
• The second and third arguments of SUBSTR pseudovariable references

2. Then, the expression on the right-hand side is evaluated.
3. For each target variable (in left to right order), the expression is converted to the characteristics of the

target variable according to the rules for data conversion. The converted value is then assigned to the
target variable.

Aggregate assignments

Aggregate assignments (array and structure assignments) are expanded into a series of element
assignments as follows:

1. The label prefix of the original statement is applied to a null statement preceding the other generated
statements.

2. Array and structure assignments, when there are more than one, are done iteratively.
3. Any assignment statement can be generated by a previous array or structure assignment. The first

target variable in an aggregate assignment is known as the control variable. (It can also be the first
argument of a pseudovariable). If the control variable is an array, an array expansion is performed;
otherwise, a structure expansion is performed.

How assignments are performed

Chapter 8. Statements and directives 203

4. If an aggregate assignment meets either of the following conditions, it can be done as a whole instead
of being expanded into a series of element assignments.

• The arrays are not interleaved.
• The structures are contiguous and have the same format.

Array assignments
In array assignments, all array operands must have the same number of dimensions and identical bounds.
The array assignment is expanded into a loop as follows:

 do J1 = lbound(Control-variable,1) to
 hbound(Control-variable,1);
 do J2 = lbound(Control-variable,2) to
 hbound(Control-variable,2);
 .
 .
 .
 do Jn = lbound(Control-variable,N) to
 hbound(Control-variable,N);

 generated assignment statement

 end;

In this expansion, n is the number of dimensions of the control variable that are to participate in the
assignment. In the generated assignment statement, all array operands are fully subscripted, using (from
left to right) the dummy variables j1 to jn. If an array operand appears with no subscripts, it has only
the subscripts j1 to jn. If a cross-section notation is used, the asterisks are replaced by j1 to jn. If the
original assignment statement has a condition prefix, the generated assignment statement is given this
condition prefix.

If the generated assignment statement is a structure assignment, it is expanded as described in
“Structure assignments without the BY NAME option” on page 204.

Structure assignments without the BY NAME option
In structure assignments where the BY NAME option is not specified, the following conditions apply:

• None of the operands can be arrays, although they can be structures that contain arrays.
• All of the structure operands must have the same number, k, of immediately contained items.

These structure assignments are performed as follows:

• The assignment statement is replaced by k generated assignment statements.
• The ith generated assignment statement is derived from the original assignment statement by

replacing each structure operand by its ith contained item; such generated assignment statements
can require further expansion.

• All generated assignment statements are given the condition prefix of the original statement.

Structure assignments using the BY NAME option
In structure assignments where the BY NAME option is given, the structure assignment is expanded
according to the steps below, which can generate further array and structure assignments. None of the
operands can be arrays.

1. The first item immediately contained in the control variable is considered.
2. If each structure operand and target variable has an immediately contained item with the same name,

an assignment statement is generated as follows:

a. The statement is derived by replacing each structure operand and target variable with its
immediately contained item that has this name. If any structure contains no such name, no
statement is generated.

How assignments are performed

204 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

b. If the generated assignment is a structure or array-of-structures assignment, BY NAME is
appended.

c. All generated assignment statements are given the condition prefix of the original assignment
statement.

d. A target structure must not contain unions.
3. Step 2 is repeated for each of the items immediately contained in the control variable. The

assignments are generated in the order of the items contained in the control variable.

Structure assignments using the BY DIMACROSS option
In structure assignments where the BY DIMACROSS option is given, the structure assignment is expanded
using the DIMACROSS expression as the index into the associated array elements. None of the operands
can be arrays.

Multiple assignments
Assignments can be made to multiple variables in a single assignment statement

Consider the following example:

 A,X = B + C;

The value of B + C is assigned to both A and X. In general, it has the same effect as the following
statements:

 Temporary = B + C;
 A = Temporary;
 X = Temporary;

The source in the assignment statement must be a scalar or an array of scalars, and if the source is an
array, all the targets must also be arrays. If the source is a constant, it is assigned to each of the targets
from left to right. If the source is not a constant, it is assigned to a temporary variable, which is then
assigned to each of the targets from left to right.

The target can be any reference allowed in a simple assignment.

BY DIMACROSS is not allowed in multiple assignments.

Although not recommended, the compound assignment operator can be used in multiple assignments.
However, the results might not always be what might be naively expected; for example, the following
statements will generally not produce the same results:

 c, c += c;
 c, c = c + c;

Examples
This section provides examples of assignment statements that are used for internal data movement,
assignments of expression values, and assignments of structures.

Example of moving internal data
This assignment statement example can be used for internal data movement. The value of the expression
on the right of the assignment symbol is assigned to the variable on the left.

 NTOT=TOT;

Multiple assignments

Chapter 8. Statements and directives 205

Example of assigning expression values
This example is an expression whose value is to be assigned to the variable on the left of the assignment
symbol.

 Av=(Av*Num+Tav*Tnum)/(Num+Tnum);

Example of assigning a structure using BY NAME
This example illustrates a structure assignment using the BY NAME option.

 declare declare declare
 1 One, 1 Two, 1 Three,
 2 Part1, 2 Part1, 2 Part1,
 3 Red, 3 Blue, 3 Red,
 3 Orange, 3 Green, 3 Blue,
 2 Part2, 3 Red, 3 Brown,
 3 Yellow, 2 Part2, 2 Part2,
 3 Blue, 3 Brown, 3 Yellow,
 3 Green; 3 Yellow; 3 Green;

 1
 2

 One = Two, by name;
 One.Part1 = Three.Part1, by name;

 1
The first assignment statement is the same as the following statements:

 One.Part1.Red = Two.Part1.Red;
 One.Part2.Yellow = Two.Part2.Yellow;

 2
The second assignment statement is the same as the following statement:

 One.Part1.Red = Three.Part1.Red;

Example of assigning a structure using BY DIMACROSS
These examples illustrate the structure assignment using the BY DIMACROSS option.

Example 1

This code sums up all the row elements:

 dcl
 1 x,
 2 a fixed bin(31),
 2 b fixed bin(31),
 2 c fixed bin(31),
 2 d fixed bin(31);

 dcl 1 xa(17) dimacross like x;

 dcl jx fixed bin;

 x = 0;

 do jx = lboundacross(xa) to hboundacross(xa);

 x = x + xa, by dimacross(jx);

 end;

The assignment inside the loop is equivalent to the following statements:

 x.a = x.a + xa.a(jx);
 x.b = x.b + xa.b(jx);

Multiple assignments

206 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 x.c = x.c + xa.c(jx);
 x.d = x.d + xa.d(jx);

Example 2

This code exchanges the entries in the first and seventeenth columns of xa:

 dcl
 1 x,
 2 a fixed bin(31),
 2 b fixed bin(31),
 2 c fixed bin(31),
 2 d fixed bin(31);

 dcl 1 xa(17) dimacross like x;

 dcl y like x;

 x = xa, by dimacross(1);
 y = xa, by dimacross(17);
 xa = y, by dimacross(1);
 xa = x, by dimacross(17);

ATTACH statement
The ATTACH statement attaches or creates a thread.

For details about the ATTACH statement, see “ATTACH statement” on page 370 in the section Chapter 17,
“Multithreading facility,” on page 369.

BEGIN statement
The BEGIN statement and a corresponding END statement delimit a begin-block.

For details about the BEGIN statement, see “BEGIN statement” on page 112 in Chapter 5, “Program
organization,” on page 89.

CALL statement
The CALL statement invokes a subroutine.

For details about the CALL statement, see “CALL statement” on page 123.

CANCEL THREAD statement
You can cancel a thread by using the CANCEL THREAD statement.

For details about the CANCEL THREAD statement, see “Canceling a thread” on page 371.

CLOSE statement
The CLOSE statement dissociates an opened file from its data set.

For details about the CLOSE statement, see “CLOSE statement” on page 286 in Chapter 10, “Input and
output,” on page 275.

DECLARE statement
The DECLARE statement specifies some or all of the attributes of a name.

For details about the DECLARE statement, see “DECLARE statement” on page 150.

Multiple assignments

Chapter 8. Statements and directives 207

DEFAULT statement
The DEFAULT statement specifies data-attribute defaults (when attribute sets are not complete).

For details about the DEFAULT statement, see “DEFAULT statement” on page 168.

DEFINE ALIAS statement
The DEFINE ALIAS statement specifies a name that can be used as a synonym for the set of data type
attributes you give to the alias.

For details about the DEFINE ALIAS statement, see “DEFINE ALIAS statement” on page 137 in Chapter 6,
“Type definitions,” on page 137.

DEFINE ORDINAL statement
The DEFINE ORDINAL statement specifies a named type representing a set of named ordered values.

For details about the DEFINE ORDINAL statement, see “DEFINE ORDINAL statement” on page 138 in
Chapter 6, “Type definitions,” on page 137.

DEFINE STRUCTURE statement
The DEFINE STRUCTURE statement specifies a named structure or union type.

For details about the DEFINE STRUCTURE statement, see “Defining typed structures and unions” on page
140 in Chapter 6, “Type definitions,” on page 137.

DELAY statement
The DELAY statement suspends the execution of the next statement in the application program for the
specified period of time.

DELAY ( expression) ;

expression
Specifies an expression that is evaluated and converted to FIXED BINARY(31,0). Execution is
suspended for the number of milliseconds specified.

The maximum wait time is 23 hours and 59 minutes.

See the following examples:

• delay (20); suspends execution for 20 milliseconds.
• delay (10**3); suspends execution for one second.
• delay (10*10**3); suspends execution for ten seconds.

When a program is running under CICS, the DELAY statement is implemented by using the EXEC CICS
DELAY command. Currently the time interval for the EXEC CICS DELAY command has a minimum of one
second. The milliseconds number specified in the PL/I DELAY statement is rounded down to the nearest
second except when the value is less than 1 second, in which case it is set to 1.

See the following examples:

• delay(30); suspends execution for 1 second under CICS.
• delay(2100); suspends execution for 2 seconds under CICS.

DELAY

208 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

DELETE statement
The DELETE statement deletes a record from an UPDATE file.

For details about the DELETE statement, see “DELETE statement” on page 291 in Chapter 11, “Record-
oriented data transmission,” on page 289.

DETACH statement
The DETACH statement frees the system resources associated with a thread that was attached with the
THREAD option.

For details about the DETACH statement, see “Detaching a thread” on page 372 in Chapter 17,
“Multithreading facility,” on page 369.

DISPLAY statement
The DISPLAY statement displays a message on the user's screen and optionally requests the user to enter
a response to the message.

DISPLAY ( expression)

REPLY ( char-ref)

ROUTCDE (

,

x)

DESC (

,

y)

;

expression
Is converted, where necessary, to a character string. This character string is displayed. It can contain
mixed character data. If the expression has the GRAPHIC attribute, it is not converted.

REPLY (char-ref)
Specifies a character reference that receives the user-entered response. The response can contain
CHARACTER, GRAPHIC, or mixed data.

The REPLY option suspends program execution until the user enters a response.

If GRAPHIC data is entered in the REPLY, it is received as character data that contains mixed data.
Such character data can be converted to GRAPHIC data by using the GRAPHIC BUILTIN.

ROUTCDE
Specifies one or more values to be used as the ROUTCDE in the WTO. The values must be unsigned
integer constants between 1 and 16. The WTO suboption of the DISPLAY compiler option specifies the
default value.

DESC
Specifies one or more values to be used as the DESC in the WTO. The values must be unsigned integer
constants between 1 and 16. The WTO suboption of the DISPLAY compiler option specifies the default
value.

ROUTCDE and DESC are ignored except when the DISPLAY(WTO) option is in effect.

Example

The statement display ('Communication link established.'); displays this message:

Communication link established.

DISPLAY

Chapter 8. Statements and directives 209

DO statement
The DO statement and its corresponding END statement, delimit a group of statements collectively called
a do-group.

Note: Condition prefixes are invalid on DO statements.

Type 1
The type 1 do-group specifies that the statements in the group are executed. It does not provide for the
repetitive execution of the statements within the group.

Type 1
DO ;

expn
An abbreviation for expression n.

Types 2 and 3
Types 2 and 3 provide for the repetitive execution of the statements within the do-group.

Type 2
DO WHILE (exp4)

UNTIL (exp5)

UNTIL (exp5)

WHILE (exp4)

;

Type 3

DO reference =

,

specification

exp1

TO exp2

BY exp3

BY exp3

TO exp2

UPTHRU exp2

DOWNTHRU exp2

REPEAT exp6

WHILE (exp4)

UNTIL (exp5)

UNTIL (exp5)

WHILE (exp4)

expn
An abbreviation for expression n.

DO

210 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

WHILE (exp4)
Specifies that before each repetition of the do-group, exp4 is evaluated and, if necessary, converted
to a bit string. If any bit in the resulting string is 1, the do-group is executed. If all bits are 0, or
if the string is null, execution of the Type 2 do-group is terminated. For Type 3, only the execution
associated with the specification containing the WHILE option is terminated. Execution for the next
specification, if one exists, then begins.

UNTIL (exp5)
Specifies that after each repetition of do-group, exp5 is evaluated, and, if necessary, converted to a
bit string. If all the bits in the resulting string are 0, or if the string is null, the next iteration of the
do-group is executed. If any bit is 1, execution of the Type 2 do-group is terminated. For Type 3, only
the execution associated with the specification containing the UNTIL option is terminated. Execution
for the next specification, if one exists, then begins.

reference
The only pseudovariables that can be used as references are SUBSTR, REAL, IMAG and UNSPEC. All
data types are allowed.

The generation g of a reference is established once at the beginning of the do-group, immediately
before the initial value expression exp1 is evaluated. If the reference generation is changed to h in
the do-group, the do-group continues to execute with the reference derived from the generation g.
However, any reference to the reference inside the do-group is a reference to generation h. It is an
error to free generation g in the do-group.

If a reference is made to a reference after the last iteration is completed, the value of the variable
is the value that was out of range of the limit set in the specification. The preceding is true if the
following conditions apply to the limit set in the application:

• The BY value is positive and the reference is greater than the TO value.
• The BY value is negative and the reference is less than the TO value.

If reference is a program-control data variable but is not a locator, the BY and TO options cannot be
used in specification.

If reference is a program-control variable but is not a locator or an ordinal, the UPTHRU and
DOWNTHRU options cannot be used in specification.

exp1
Specifies the initial value of the reference.

If TO, BY, and REPEAT are all omitted from a specification, there is a single execution of the do-group,
with the reference having the value of exp1. If WHILE(exp4) is included, the single execution does
not take place unless exp4 is true.

TO exp2
exp2 is evaluated at entry to the specification and saved. This saved value specifies the terminating
value of the reference. Execution of the statements in a do-group terminates for a specification as
soon as the value of the reference, when tested at the beginning of the do-group, is out of range.
Execution of the next specification, if one exists, then begins.

If TO exp2 is omitted from a specification, and if BY exp3 is specified, repetitive execution continues
until it is terminated by the WHILE or UNTIL option, or until another statement transfers control out of
the do-group.

BY exp3
exp3 is evaluated at entry to the specification and saved. This saved value specifies the increment to
be added to the reference after each execution of the do-group.

If BY exp3 is omitted from a specification, and if TO exp2 is specified, exp3 defaults to 1.

If BY 0 is specified, the execution of the do-group continues indefinitely unless it is halted by a
WHILE or UNTIL option, or until control is transferred to a point outside the do-group.

DO

Chapter 8. Statements and directives 211

UPTHRU exp2
exp2 is evaluated at entry to the specification and saved. This saved value specifies the terminating
value of the reference. Execution of the statements in a do-group terminates for a specification as
soon as the value of the reference, when tested at the end of the do-group, is out of range. Execution
of the next specification, if one exists, then begins.

If UPTHRU is specified, the reference is compared to exp2 after the statements in the loop are
executed, but before the reference is updated with the next value it can assume. The loop is executed
at least once.

UPTHRU is used primarily during the processing of ordinals using loops; however, it can also be used
for a reference that is an arithmetic or locator control variable. If the reference is not an ordinal, the
reference is assumed to increment by +1 after each execution of the do-group.

DOWNTHRU exp2
exp2 is evaluated at entry to the specification and saved. This saved value specifies the terminating
value of the reference. Execution of the statements in a do-group terminates for a specification as
soon as the value of the reference, when tested at the end of the do-group, is out of range. Execution
of the next specification, if one exists, then begins.

If DOWNTHRU is specified, the reference is compared to exp2 after the statements in the loop
are executed, but before the reference is updated with the next value it could assume. The loop is
executed at least once.

DOWNTHRU is used primarily during the processing of ordinals using loops; however, it can also be
used for a reference which is an arithmetic or locator control variable. If the reference is not an
ordinal, the reference is assumed to increment by −1 after each execution of the do-group.

REPEAT exp6
exp6 is evaluated and assigned to the reference after each execution of the do-group. Repetitive
execution continues until it is terminated by the WHILE or UNTIL option, or until another statement
transfers control out of the do-group.

In Type 3 do-groups, you should not rely on the order in which exp1, exp2, and exp3 are evaluated.
Consequently, it is best if none of these expressions invoke functions that set values used in the other
expressions.

Control can transfer into a do-group from outside the do-group only if the do-group is delimited by the DO
statement in Type 1. Consequently, Type 2 and 3 do-groups cannot contain ENTRY statements. Control
can also return to a do-group from a procedure or ON-unit invoked from within that do-group.

The following sections give more information about using Type 2 and Type 3 DO groups. Examples of DO
groups begin in “Examples of basic repetitions” on page 217.

Using type 2 WHILE and UNTIL
If a Type 2 DO specification includes both the WHILE and UNTIL option, the DO statement provides for
repetitive execution as defined by the following:

 Label: do while (Exp4)
 until (Exp5)
 statement-1
 .
 .
 .
 statement-n
 end;
 Next: statement /* Statement following the do-group */

The above is equivalent to the following expansion:

 Label: if (Exp4) then;
 else
 go to Next;
 statement-1
 .
 .

DO

212 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 .
 statement-n
 Label2: if (Exp5) then;
 else
 go to Label;
 Next: statement /* Statement following the do-group */

If the WHILE option is omitted, the IF statement at label Label is replaced by a null statement. Note that
if the WHILE option is omitted, statements 1 through n are executed at least once.

If the UNTIL option is omitted, the IF statement at label Label2 in the expansion is replaced by the
statement GO TO Label.

Using type 3 with one specification
The following sequence of events summarizes the effect of executing a do-group with one specification:

1. If the reference is specified and BY, TO, UPTHRU, or DOWNTHRU options are also specified, exp1,
exp2, and exp3 will be evaluated prior to the assignment of exp1 to the reference. Then the initial
value is assigned to reference, for example:

 do Reference = Exp1 to Exp2 by Exp3;

For a variable that is not a pseudovariable, the action of the do-group definition in the preceding
example is equivalent to the following expansion:

 E1=Exp1;
 E2=Exp2;
 E3=Exp3;
 V=E1;

The variable V is a compiler-created based variable with the same attributes as the reference. E1, E2,
and E3 are compiler-created variables.

2. If the TO option is present, test the value of the control variable against the previously-evaluated
expression (E2) in the TO option.

3. If the WHILE option is specified, evaluate the expression in the WHILE option. If it is false, leave the
do-group.

4. Execute the statements in the do-group.
5. If the UNTIL option is specified, evaluate the expression in the UNTIL option. If it is true, leave the

do-group.
6. If the UPTHRU option is specified, test the value of the control variable against the previously

evaluated expression in the UPTHRU expression.
7. If the DOWNTHRU option is specified, test the value of the control variable against the previously

evaluated expression in the DOWNTHRU expression.
8. If there is a reference:

a. If the TO or BY option is specified, add the previously-evaluated exp3 (E3) to the reference.
b. If the REPEAT option is specified, evaluate the exp6 and assign it to the reference.
c. If the TO, BY, and REPEAT options are all absent, leave the do-group.
d. If the UPTHRU option is specified and the reference is an ordinal, assign the reference the

successor of its current value. Otherwise, add 1 to the reference.
e. If the DOWNTHRU option is specified and the reference is an ordinal, assign it the predecessor of

its current value. Otherwise, subtract 1 from the reference.
f. If the TO, BY, UPTHRU, DOWNTHRU, and REPEAT options are all absent, leave the do-group.

9. Go to “2” on page 213.

DO

Chapter 8. Statements and directives 213

Using type 3 with two or more specifications
If the DO statement contains more than one specification, the second expansion is analogous to the
first expansion in every respect. However, the statements in the do-group are not actually duplicated
in the program. A succeeding specification is executed only after the preceding specification has been
terminated.

When execution of the last specification terminates, control passes to the statement following the do-
group.

Using type 3 with TO, BY, REPEAT
The TO and BY options let you vary the reference in fixed positive or negative increments. In contrast,
the REPEAT option, which is an alternative to the TO and BY options, lets you vary the control variable
nonlinearly. The REPEAT option can also be used for nonarithmetic control variables (such as pointer).

If the Type 3 DO specification includes the TO and BY options, the action of the do-group is defined by the
following:

 Label: do Variable=
 Exp1
 to Exp2
 by Exp3
 while (Exp4)
 until(Exp5);
 statement-1
 .
 .
 .
 statement-m
 Label1: end;
 Next: statement

The action of the previous do-group definition is equivalent to the following expansion. In this expansion,
V is a compiler-created variable with the same attributes as Variable; and E1, E2, and E3 are compiler-
created variables:

 Label: E1=Exp1;
 E2=Exp2;
 E3=Exp3;
 V=E1;
 Label2: if (E3>=0)&(V>E2)|(E3<0)&(V<E2) then
 go to Next;
 if (Exp4) then;
 else
 go to Next;
 statement-1
 .
 .
 .
 statement-m
 Label1: if (Exp5) then
 go to Next;
 Label3: V=V+E3;
 go to Label2;
 Next: statement

If the specification includes the REPEAT option, the action of the do-group is defined by the following:

 Label: do Variable=
 Exp1
 repeat Exp6
 while (Exp4)
 until(Exp5);
 statement-1
 .
 .
 .
 statement-m
 Label1: end;
 Next: statement

DO

214 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The action of the previous do-group definition is equivalent to the following expansion:

 Label: E1=Exp1;
 V=E1;
 Label2: ;
 if (Exp4) then;
 else
 go to Next;
 statement-1
 .
 .
 .
 statement-m
 Label1: if (Exp5) then
 go to Next;
 Label3: V=Exp6;
 go to Label2;
 Next: statement

Additional rules for the sample expansions are as follows:

1. The previous expansion shows only the result of one specification. If the DO statement contains more
than one specification, the statement labeled NEXT is the first statement in the expansion for the next
specification. The second expansion is analogous to the first expansion in every respect. Statements 1
through m, however, are not actually duplicated in the program.

2. If the WHILE clause is omitted, the IF statement immediately preceding statement-1 in each of the
expansions is also omitted.

3. If the UNTIL clause is omitted, the IF statement immediately following statement-m in each of the
expansions is also omitted.

Using type 3 with UPTHRU
If the Type 3 DO specification includes the UPTHRU option, the action of the do-group is defined by the
following:

 Label: do Variable = Exp1 upthru Exp2 while (Exp4) until (Exp5);
 statement1
 .
 .
 .
 statementn
 Label1: end;
 Next: statement

The action of the previous do-group is equivalent to the following expansion. In this expansion, V is a
compiler-generated variable with the same attributes as Variable; and E1 and E2 are compiler-generated
variables:

 Label: E1 = Exp1;
 E2 = Exp2;
 V = E1;
 Label2: if (Exp4) then;
 else
 go to next;
 statement1
 .
 .
 .
 statementn

 Label1: if (Exp5) then
 go to Next;
 if V ≥ E2 then
 go to Next;
 V = V + 1;
 go to Label2;
 Next: statement

If the reference is an ordinal, the statement V = V + 1 is replaced by V = ordinalsucc(V).

DO

Chapter 8. Statements and directives 215

Using type 3 with DOWNTHRU
If the Type 3 DO specification includes the DOWNTHRU option, the action of the do-group is defined by
the following:

 Label: do Variable = Exp1 downthru Exp2 while (Exp4) until (Exp5);
 statement1
 .
 .
 .
 statementn
 Label1: end;
 Next: statement

The action of the previous do-group is equivalent to the following expansion. In this expansion, V is a
compiler-generated variable with the same attributes as Variable; and E1 and E2 are compiler-generated
variables:

 Label: E1 = Exp1;
 E2 = Exp2;
 V = E1;
 Label2: if (Exp4) then;
 else
 go to Next;
 statement1
 .
 .
 .
 statementn

 Label1: if (Exp5) then
 go to Next;
 if V ≤ E2 then
 go to Next;
 V = V - 1;
 go to Label2;
 Next: statement

If the reference is an ordinal, the statement V = V - 1 is replaced by V = ordinalpred(V).

Type 4
Type 4 specifies loops. A loop specifies a sequence of instructions that is executed iteratively.
LOOP

Specifies infinite iteration. FOREVER is a synonym of LOOP.

Example

 dcl Payroll file;
 dcl 1 Payrec,
 2 Type char,
 2 Subtype char,
 2 * char(100);

 Readfile:
 do loop;

 read file(Payroll) into(Payrec);

 If Payrec.type = 'E'
 then leave; /* like goto After_ReadFile */

 If Payrec.type = '1' then
 do;
 /* process first part of record */

 If Payrec.subtype = 'S'
 then iterate Readfile; /* like goto End_ReadFile */

 /* process remainder of record */
 end;

DO

216 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 End_ReadFile:
 end;
 After_ReadFile:;

The only way to exit this loop is by a LEAVE or GO TO statement, or by the termination of a procedure or
the program.

Examples of basic repetitions
These examples show use of do-groups to achieve repetitive executions.

In the following example, the do-group is executed ten times, while the value of the reference I
progresses from 1 through 10.

 do I = 1 to 10;
 .
 .
 .
 end;

The effect of this DO and END statement is equivalent to the following:

 I = 1;
 A: if I > 10 then go to B;
 .
 .
 .
 I = I +1;
 go to A;
 B: next statement

The following DO statement executes the do-group three times—once for each assignment of 'Tom',
'Dick', and 'Harry' to Name.

 do Name = 'Tom', 'Dick', 'Harry';

The following statement specifies that the do-group executes thirteen times—ten times with the value of
I equal to 1 through 10, and three times with the value of I equal to 13 through 15:

 do I = 1 to 10, 13 to 15;

Repetition using the reference as a subscript
The reference of a DO statement can be used as a subscript in statements within the do-group, so that
each execution deals with successive elements of a table or array.

In the following example, the first ten elements of A are set to 1 through 10 in sequence:

 do I = 1 to 10;
 A(I) = I;
 end;

Repetition with TO and BY
These examples show use of the TO and BY options in do-groups.

Example 1

The following example specifies that the do-group is executed five times, with the value of I equal to 2, 4,
6, 8, and 10:

 do I = 2 to 10 by 2;

DO

Chapter 8. Statements and directives 217

Example 2

If negative increments of the reference are required, the BY option must be used. For example, the
following statement is executed with I equal to 10, 8, 6, 4, 2, 0, and -2:

 do I = 10 to -2 by -2;

Example 3

In the following example, the do-group is executed with I equal to 1, 3, 5:

 I=2;
 do I=1 to I+3 by I;
 .
 .
 .
 end;

It is equivalent to the following statement:

 do I=1 to 5 by 2;
 .
 .
 .
 end;

Example of DO with WHILE, UNTIL
The WHILE and UNTIL options make successive executions of the do-group dependent upon a specified
condition.

Consider the following example:

 do while (A=B);
 .
 .
 .
 end;

This example is equivalent to the following statement:

 S: if A=B then;
 else goto R;
 .
 .
 .
 goto S;
 R: next statement

Consider the following example:

 do until (A=B);
 .
 .
 .
 end;

This example is equivalent to the following statement:

 S:
 .
 .
 .
 if (A=B) then goto R;
 goto S;
 R: next statement

DO

218 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

In the absence of other options, a do-group headed by a DO UNTIL statement is executed at least once,
but a do-group headed by a DO WHILE statement might not be executed at all. That is, the statements DO
WHILE (A=B) and DO UNTIL (A¬=B) are not equivalent.

In the following example, if A¬=B, when the DO statement is first encountered, the do-group is not
executed at all.

 do while(A=B) until(X=10);

However, if A=B, the do-group is executed. If X=10 after an execution of the do-group, no further
executions are performed. Otherwise, a further execution is performed provided that A is still equal to
B.

In the following example, the do-group is executed at least once, with I equal to 1:

 do I=1 to 10 until(Y=1);

If Y=1 after an execution of the do-group, no further executions are performed. Otherwise, the default
increment (BY 1) is added to I, and the new value of I is compared with 10. If I is greater than 10, no
further executions are performed. Otherwise, a new execution commences.

The following statement specifies that the do-group executes ten times while C(I) is less than zero, and
then (provided that A is equal to B) once more:

 do I = 1 to 10 while (C(I)<0),
 11 while (A = B);

Example of DO with UPTHRU and DOWNTHRU
The UPTHRU and DOWNTHRU options make successive executions of the do-group dependent upon the
terminating value.

In the following example, the do-group executes 5 times and at the end of the loop i has the value 5:

 do i = 1 upthru 5;
 .
 .
 .
 end;

When the UPTHRU option is used, the reference is compared to the terminating value before being
updated; this can be very useful when there is no value after the terminating value. For instance, the
FIXEDOVERFLOW condition would not be raised by the following loop:

 do i = 2147483641 upthru 2147483647;
 .
 .
 .
 end;

Similarly, the following loop avoids the problem of decrementing an unsigned value equal to zero:

 dcl U unsigned fixed bin;
 do U = 17 downthru 0;
 .
 .
 .
 end;

UPTHRU and DOWNTHRU are particularly useful with ordinals. Consider the following example:

 define ordinal Color (Red value (1),
 Orange,
 Yellow,
 Green,
 Blue,
 Indigo,
 Violet);

DO

Chapter 8. Statements and directives 219

 dcl C ordinal Color;

 do C = Red upthru Violet;
 .
 .
 .
 end;

 do C = Violet downthru Red;
 .
 .
 .
 end;

In the first loop, c assumes each successive color in ascending order from red to violet. In the second
loop, c assumes each successive color in descending order from violet to red.

Example of REPEAT
This example shows the use of the REPEAT option in do-groups.

In the following example, the do-group is executed with I equal to 1, 2, 4, 8, 16, and so on:

 do I = 1 repeat 2*I;
 .
 .
 .
 end;

The preceding example is equivalent to the following statement:

 I=1;
 A:
 .
 .
 .
 I=2*I;
 goto A;

In the following example, the first execution of the do-group is performed with I=1.

 do I=1 repeat 2*I until(I=256);

After this and each subsequent execution of the do-group, the UNTIL expression is tested. If I=256, no
further executions are performed. Otherwise, the REPEAT expression is evaluated and assigned to I, and
a new execution starts.

The following example shows a DO statement used to locate a specific item in a chained list:

 do P=Phead repeat P -> Fwd
 while(P¬=sysnull())
 until(P->Id=Id_to_be_found);
 end;

The value Phead is assigned to P for the first execution of the do-group. Before each subsequent
execution, the value P -> Fwd is assigned to P. The value of P is tested before the first and each
subsequent execution of the do-group. If it is null, no further executions are performed.

The following statement specifies that the do-group is to be executed nine times, with the value of I
equal to 1 through 9; then successively with the value of I equal to 10, 20, 40, and so on. Execution
ceases when the do-group has been executed with a value of I greater than 10000.

 do I = 1 to 9, 10 repeat 2*I
 until (I>10000);
 .
 .
 .
 end;

DO

220 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

END statement
The END statement ends one or more blocks or groups. Every block or group must have an END
statement.

statement-label

END ;

statement-label
Cannot be subscripted. If a statement-label follows END, the END statement closes the unclosed
group or block headed by the nearest preceding DO, SELECT, PACKAGE, BEGIN, or PROCEDURE
statement having that statement-label. Every block with a DO, SELECT, PACKAGE, BEGIN or
PROCEDURE statement must have a corresponding END statement.

If a statement-label does not follow END, the END statement closes the one group or block headed by
the nearest preceding DO, SELECT, PACKAGE, BEGIN, or PROCEDURE statement for which there is no
other corresponding END statement.

Execution of a block terminates when control reaches the END statement for the block. However, it is not
the only way to terminate a block's execution, even though each block must have an END statement. (See
“Procedures” on page 94 and “Begin-blocks” on page 112 for more details.)

If control reaches an END statement for a procedure, it is treated as a RETURN statement.

Normal termination of a program occurs when control reaches the END statement of the main procedure.

ENTRY statement
The ENTRY statement specifies a secondary entry point of a procedure.

For details about the ENTRY statement, see “ENTRY statement” on page 96.

EXIT statement
The EXIT statement stops the current thread.

EXIT ;

FETCH statement
The FETCH statement checks main storage for the named procedures.

For details about the FETCH statement, see “FETCH statement” on page 103.

FLUSH statement
The FLUSH statement flushes the buffers associated with an open output file or with all open output files.

For details about the FLUSH statement, see “FLUSH statement” on page 286 in Chapter 10, “Input and
output,” on page 275.

FORMAT statement
The FORMAT statement specifies a format list that can be used by edit-directed data transmission
statements to control the format of the data being transmitted.

For details about the FORMAT statement, see “FORMAT statement” on page 311 in Chapter 12, “Stream-
oriented data transmission,” on page 297.

END

Chapter 8. Statements and directives 221

FREE statement
The FREE statement frees the storage allocated for based and controlled variables.

For details about the FREE statement, see “FREE statement for controlled variables” on page 242 and
“FREE statement for based variables” on page 251 in Chapter 9, “Storage control,” on page 237.

GET statement
The GET statement is a STREAM input data transmission statement that can assign data values from
either a data set or a string to one or more variables.

For details about the GET statement, see “GET statement” on page 297 in Chapter 12, “Stream-oriented
data transmission,” on page 297.

GO TO statement
The GO TO statement transfers control to the statement identified by the specified label reference. The
GO TO statement is an unconditional branch.

GO TO label ;

Abbreviation: GOTO

label
Specifies a label constant, a label variable, or a function reference that returns a label value. Because
a label variable can have different values at each execution of the GO TO statement, control might not
always transfer to the same statement.

If a GO TO statement transfers control from within a block to a point not contained within that block, the
block is terminated. If the transfer point is contained in a block that did not directly activate the block
being terminated, all intervening blocks in the activation sequence are also terminated (see “Procedure
termination” on page 100).

When a GO TO statement specifies a label constant contained in a block that has more than one
activation, control is transferred to the activation current when the GO TO is executed (see “Recursive
procedures” on page 101).

A GO TO statement cannot transfer control in the following ways:

• To an inactive block. Detection of such an error is not guaranteed.
• From outside a do-group to a statement inside a Type 2 or Type 3 do-group, unless the GO TO

terminates a procedure or ON-unit invoked from within the do-group.
• To a FORMAT statement.

If the destination of the GO TO is specified by a label variable, it can then be used as a switch by assigning
label constants to the label variable. If the label variable is subscripted, the switch can be controlled
by varying the subscript. By using label variables or function references, quite complex switching can
be effected. It is usually true, however, that simple control statements are the most efficient. GOTO
operations from one block to another block hinder many optimizations in the target block, unless the
target label is the last statement in its block.

IF statement
The IF statement evaluates an expression and controls the flow of execution according to the result of
that evaluation. The IF statement thus provides a conditional branch.

Note: Condition prefixes are invalid on ELSE statements.

GO TO

222 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

IF expression THEN unit1

ELSE unit2

expression
The expression must have the attributes BIT(1) NONVARYING unless RULES(LAXIF) is used.

When expressions involve the use of the & or | operators, they are evaluated as described in
“Combinations of operations” on page 68.

unit
Either a valid single statement, a group, or a begin-block. All single statements are considered valid
and executable except DECLARE, DEFAULT, END, ENTRY FORMAT, PROCEDURE, or a %statement. If a
nonexecutable statement is used, the result can be unpredictable. Each unit can contain statements
that specify a transfer of control (for example, GO TO). Hence, the normal sequence of the IF
statement can be overridden.

Each unit can be labeled and can have condition prefixes.

IF is a compound statement. The semicolon terminating the last unit also terminates the IF statement.

If any bit in the string expression has the value '1'B, unit1 is executed and unit2, if present, is ignored. If
all bits are '0'B, or the string is null, unit1 is ignored and unit2, if present, is executed.

IF statements can be nested. That is, either unit can itself be an IF statement, or both can be. Because
each ELSE is always associated with the innermost unmatched IF in the same block or do-group, an ELSE
with a null statement might be required to specify a desired sequence of control. Consider the following
example:

 if A = B then
 .
 .
 .
 else
 if A = C then
 .
 .
 .
 else
 .
 .
 .

If B and C are constants, this example is equivalent to the following statement and would be better coded
as follows:

 select(A);
 when (B)
 .
 .
 .
 when (C)
 .
 .
 .
 end;

Examples
In the following example, if the comparison is true (if A is equal to B), the value of D is assigned to C, and
the ELSE unit is not executed.

 if A = B then
 C = D;
 else
 C = E;

IF

Chapter 8. Statements and directives 223

If the comparison is false (A is not equal to B), the THEN unit is not executed, and the value of E is
assigned to C.

Either the THEN unit or the ELSE unit can contain a statement that transfers control, either conditionally
or unconditionally. If the THEN unit ends with a GO TO statement, there is no need to specify an ELSE unit.
Consider the following example:

 if all(Array1 = Array2) then
 go to LABEL_1;
 next-statement

If the expression is true, the GO TO statement of the THEN unit transfers control to LABEL_1. If the
expression is not true, the THEN unit is not executed and control passes to the next statement.

Short-circuit evaluation
The test of the IF expression is short-circuited under the following circumstances:

• If the IF expression consists of a logical OR of 2 expressions and the first of these expressions is true,
the second expression will not be evaluated and the code will execute the THEN clause.

• If the IF expression consists of a logical AND of 2 expressions and the first of these expressions is false,
the second expression will not be evaluated and the code will execute the ELSE clause.

However, the code short-circuits only the following expressions:

• A comparison expression
• A BIT(1) literal
• A NONVARYING BIT(1) variable
• An ENTRY reference that returns NONVARYING BIT(1)
• A SUBSTR built-in function reference with 3 arguments the last of which is a REAL FIXED literal equal to

1
• An ALL or ANY built-in function reference with an an argument that is either a comparison operator

applied to 2 arrays or simply a variable that is an array of NONVARYING BIT(1)
• A reference to one of the following other built-in functions:

– CHECKSTG
– ENDFILE
– FILEOPEN
– ISFINITE
– ISINF
– ISMAIN
– ISNAN
– ISNORMAL
– ISZERO
– OMITTED
– PRESENT
– UNALLOCATED
– VALID
– VALIDDATE

Naturally, an expression formed (possibly recursively) from the above and the NOT prefix operator and the
AND or OR infix operators will also be short-circuited.

IF

224 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Example

This example is based on the following declarations.

 dcl A bit(1);
 dcl B bit(1);
 dcl C bit(2);
 dcl D bit(2);
 dcl P pointer;
 dcl BX based fixed bin(31);

Given these declarations, the following IF statements would all be short-circuited:

 if A | B then
 if P = sysnull() | P->BX = 0 then
 if C = ''b & D = ''b then
 if A | (substr(C,1,1) & substr(D,2,1)) then

But the following IF statements would not be short-circuited:

 if C | D then
 if C & D then

%INCLUDE directive
The %INCLUDE directive is used to incorporate external text into the source program.

%INCLUDE

,

member

ddname (member)

;

The included member can specify an absolute file name. Enclose the absolute file name in single or
double quotes. For example, the following statement is valid:

INTEL

%include "\ibmpli\include\sqlcodes.inc"

AIX and z/OS UNIX

%include "/ibmpli/include/sqlcodes.inc"

ITERATE statement
The ITERATE statement transfers control to the END statement that delimits its containing iterative
do-group. The current iteration completes and the next iteration, if needed, is started.

The ITERATE statement can be specified inside a non-iterative do-group as long as that do-group is
contained by an iterative do-group.

ITERATE

label-constant

;

label-constant
Must be the label of a containing do-group. If label-constant is omitted, control transfers to the END
statement of the most recent iterative do-group containing the ITERATE statement.

For an example, see “Type 4” on page 216.

%INCLUDE

Chapter 8. Statements and directives 225

LEAVE statement
When contained in or specifying a simple do-group, the LEAVE statement terminates the group. When
contained in or specifying an iterative do-group, the LEAVE statement terminates all iterations of the
group, including the current iteration.

The flow of control goes to the same point it would normally go to if the do-group had terminated by
reaching its END statement. This point is not necessarily the statement following the END statement of
the do-group (see “Example” on page 226).

LEAVE

label-constant

;

label-constant
Must be a label of a containing do-group. The do-group that is left is the do-group that has the
specified label. If label-constant is omitted, the do-group that is left is the group that contains the
LEAVE statement.

The LEAVE statement and the referenced or implied DO statement must not be in different blocks.

Example

In the following example, the statement leave A; transfers control to C.

 If Time_to_process_X then

 A: do I = lbound(X,1) to hbound(X,1);
 do J = lbound(X,2) to hbound(X,2);
 If X(I,J)=0 then
 leave A; /* control goes to C, not B */
 else
 do;
 .
 .
 .
 end;
 end;
 end;

 Else

 B: do;
 .
 .
 .
 end;

 C: statement after group A;

For more examples, see “Type 4” on page 216.

%LINE directive
The %LINE directive specifies that the next line should be treated in messages and in information
generated for debugging as if it came from the specified line and file.

%LINE (line-number , file-specification) ;

The characters '%LINE' must be in columns 1 through 5 of the input line for the directive to be recognized
(and conversely, any line starting with these five characters is treated as a %LINE directive). The line-

LEAVE

226 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

number must be an integral value of seven digits or less and the file-specification must not be enclosed in
quotation marks. Any characters specified after the semicolon are ignored.

The %LINE directive is invalid unless the LINEDIR compiler option is in effect.

LOCATE statement
The LOCATE statement allocates storage within an output buffer for a based variable and sets a pointer
to the location of the next record. The LOCATE statement can be used only with an OUTPUT SEQUENTIAL
BUFFERED file for locate mode processing.

For details about the LOCATE statement, see “LOCATE statement” on page 291 in Chapter 11, “Record-
oriented data transmission,” on page 289.

%NOPRINT directive
The %NOPRINT directive causes printing of the source listings to be suspended until a %PRINT directive
is encountered or until a %POP directive that restores the previous %PRINT directive is encountered.

%NOPRINT ;

For an example of the %NOPRINT directive, see “%PUSH directive” on page 230.

%NOTE directive
The %NOTE directive generates a diagnostic message of specified text and severity.

%NOTE (message

,code

) ;

message
A character expression whose value is the required diagnostic message.

code
A fixed expression whose value indicates the severity of the message, as follows:

Code Severity

 0 I

 4 W

 8 E

12 S

16 U

If code is omitted, the default is 0.

If code has a value other than those in the preceding list, a diagnostic message is produced; the
resulting system action is undefined.

Generated messages are filed together with other messages. Whether or not a particular message is
subsequently printed depends upon its severity level and the setting of the compiler FLAG option (as
described in the Programming Guide).

Generated messages of severity U cause immediate termination of preprocessing and compilation.
Generated messages of severity S, E, or W might cause termination of compilation, depending upon
the setting of various compiler options.

%NOPRINT

Chapter 8. Statements and directives 227

null statement
The null statement causes no operation to be performed and does not modify sequential statement
execution. It is often used to denote null action for THEN and ELSE clauses and for WHEN and
OTHERWISE statements.

;

ON statement
The ON statement establishes the action to be executed for any subsequent raising of an enabled
condition in the scope of the established condition.

For details about the ON statement, see “ON statement” on page 343 in Chapter 15, “Condition
handling,” on page 341.

OPEN statement
The OPEN statement associates a file with a data set.

For details about the OPEN statement, see “OPEN statement” on page 283 in Chapter 10, “Input and
output,” on page 275.

OTHERWISE statement
In a select-group, the OTHERWISE statement specifies the unit to be executed when every test of the
preceding WHEN statements fails.

For details about the OTHERWISE statement, see “SELECT statement” on page 232.

PACKAGE statement
The PACKAGE statement defines a package. A package forms a name scope that is shared by all
declarations and procedures contained in the package, unless the names are declared again.

For details about the PACKAGE statement, see “Packages” on page 91 in Chapter 5, “Program
organization,” on page 89.

%PAGE directive
The %PAGE directive allows you to start a new page in the compiler source listings.

%PAGE ;

%POP directive
The %POP directive allows you to restore the status of the %PRINT and %NOPRINT directives saved by
the most recent %PUSH directive.

The most common use of the %PUSH and %POP directives is in included files and macros.

%POP ;

For an example, see “%PUSH directive” on page 230.

null

228 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

%PRINT directive
The %PRINT directive causes printing of the source listings to be resumed.

%PRINT ;

%PRINT is in effect, provided that the relevant compiler options are specified. For an example of the
%PRINT directive, see “%PUSH directive” on page 230.

PROCEDURE statement
A PROCEDURE statement identifies the procedure as a main procedure, a subroutine, or a function.
Parameters expected by the procedure and other characteristics are also specified on the PROCEDURE
statement.

For details about the PROCEDURE statement, see “PROCEDURE statement” on page 95 in Chapter 5,
“Program organization,” on page 89.

%PROCESS directive
The %PROCESS directive is used to override compiler options.

%PROCESS

compiler-option

;

The % or * must be the first data byte of a source record. Any number of %PROCESS, *PROCESS,
%PROCINC, and *PROCINC directives can be specified, but they must all appear before the first language
element appears.

Refer to the Programming Guide for more information.

*PROCESS directive
The *PROCESS directive is a synonym for the %PROCESS directive.
Related information
“%PROCESS directive” on page 229
The %PROCESS directive is used to override compiler options.

%PROCINC directive
The %PROCINC directive is used to override compiler options.

%PROCINC  dataset-name ;

The % or * must be the first data byte of a source record. Any number of %PROCESS, *PROCESS,
%PROCINC, and *PROCINC directives can be specified, but they must all appear before the first language
element appears.

Unlike the %PROCESS directive, the %PROCINC directive does not specify compiler options. Instead it
specifies a file that contains %PROCESS, *PROCESS, %PROCINC, and *PROCINC directives.

Refer to the Programming Guide for more information.

%PRINT

Chapter 8. Statements and directives 229

*PROCINC directive
The *PROCINC directive is a synonym for the %PROCINC directive.
Related information
“%PROCINC directive” on page 229
The %PROCINC directive is used to override compiler options.

%PUSH directive
The %PUSH directive allows you to save the current status of the %PRINT and %NOPRINT directives in
a “push down” stack on a last-in, first-out basis. You can restore this saved status later, also on a last-in,
first-out basis, by using the %POP directive.

A common use of %PUSH and %POP directives is in included files and macros.

%PUSH ;

In the following example, statements 1, 2, 3, S3, S4, and 4 are printed in the listings. All others are not
printed.

Source Program

First

Second

statement 1;
statement 2;
%include First; /* statement 3 */

statement F6;
%pop;

statement 4;

%push; /* F1 */
%noprint; /* F2 */
dcl A entry (ptr, fixed bin); /* F3 */
statement F4;
%include Second; /* stmt F5 */

%push; /* S1 */
%print; /* S2 */
dcl B entry (ptr,fixed bin)

options(byvalue); /* S3 */
statement S4;
%pop;

The original setting is restored following the %POP directive in Second.

PUT statement
The PUT statement is a STREAM output data transmission statement that can transmit values to a stream
output file or assign values to a character variable.

For details about the PUT statement, see “PUT statement” on page 298 in Chapter 12, “Stream-oriented
data transmission,” on page 297.

QUALIFY statement
The QUALIFY statement and a corresponding END statement delimit a qualify block.

statement-label QUALIFY ;

statement-label
Specifies a name that can be used to qualify those declarations of types and values. The QUALIFY
statement must have one (and only one) label.

PUT

230 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

A qualify block can contain only DECLARE, DEFINE, and QUALIFY statements, and the only valid
DECLARE statements in it must specify scalars with the VALUE attribute.

For example, the statements:

 paint: qualify;
 define ordinal color (red, orange, yellow, green, blue, indigo, violet);
 end paint;

define PAINT as a qualifier to the ORDINAL type COLOR and as a qualifier to the values RED, ORANGE,
etc.

The names inside a qualify block must be unique to that block, but not to their containing blocks. This
means you can declare a variable as having type PAINT.COLOR and that you can refer to the constants
PAINT.RED, PAINT.ORANGE, and so on. The name of the qualify block must be unique to its block.

Qualify blocks can also be nested. For example, you can nest a qualify block inside the block above:

 paint: qualify;
 define ordinal color (red, orange, yellow);
 depth: qualify;
 define ordinal intensity (high, medium, low);
 end depth;
 end paint;

READ statement
The READ statement either transmits a record from the data set to the program variable or sets a pointer
to the record in storage.

For details about the READ statement, see “READ statement” on page 290 in Chapter 11, “Record-
oriented data transmission,” on page 289.

REINIT statement
The REINIT statement allows variables to be reset with their INITIAL values.

REINIT reference ;

reference
The reference must be unsubscripted (although if BASED, it can be locator-qualified), and the
reference must be AUTOMATIC, CONTROLLED, BASED, or STATIC. The reference can be to a scalar,
to an array, or to a structure or a DEFINE STRUCTURE type (or an array of either of these).

RELEASE statement
The RELEASE statement frees the main storage occupied by procedures identified by its specified entry
constants.

For details about the RELEASE statement, see “RELEASE statement” on page 104 in “Dynamic loading of
an external procedure” on page 102.

RESIGNAL statement
The RESIGNAL statement terminates the current ON-unit and allows another ON-unit for the same
condition to get control.

For details about the RESIGNAL statement, see “RESIGNAL statement” on page 347 in Chapter 15,
“Condition handling,” on page 341.

REINIT

Chapter 8. Statements and directives 231

RETURN statement
The RETURN statement terminates execution of the subroutine or function procedure that contains the
RETURN statement and returns control to the invoking procedure.

For details, see “RETURN statement” on page 124.

REVERT statement
The REVERT statement cancels the ON-unit for the condition that was executed in a given block.

For details about the REVERT statement, see “REVERT statement” on page 346 in Chapter 15, “Condition
handling,” on page 341.

REWRITE statement
The REWRITE statement replaces a record in an UPDATE file.

For details about the REWRITE statement, see “REWRITE statement” on page 291 in Chapter 11,
“Record-oriented data transmission,” on page 289.

SELECT statement
A select-group provides a multiple path conditional branch. A select-group contains a SELECT statement,
optionally one or more WHEN statements, optionally an OTHERWISE statement, and an END statement.

Note: Condition prefixes are invalid on OTHERWISE statements.

SELECT

( exp1)

;

WHEN(

,

exp2) unit ;

OTHERWISE unit ;

Abbreviation: OTHER for OTHERWISE

SELECT (exp1)
The SELECT statement and its corresponding END statement, delimit a group of statements
collectively called a select-group. The expression in the SELECT statement is evaluated and its value
is saved.

WHEN (exp2, exp2, …) unit
Specifies one or more expressions that are evaluated and compared with the saved value from the
SELECT statement.

If an expression is found that is equal to the saved value, the evaluation of expressions in WHEN
statements is terminated, and the unit of the associated WHEN statement is executed. If no such
expression is found, the unit of the OTHERWISE statement is executed.

The WHEN statement must not have a label.

OTHERWISE unit
Specifies the unit to be executed when every test of the preceding WHEN statements fails.

If the OTHERWISE statement is omitted and if the execution of the select-group does not result in the
selection of a unit, the ERROR condition is raised.

SELECT

232 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The OTHERWISE statement must not have a label or condition prefix.

unit
Each unit is either a valid single statement, a group, or a begin-block. DECLARE, DEFAULT, END,
ENTRY FORMAT, PROCEDURE, and %statement statements are not valid. Each unit can contain
statements that specify a transfer of control (for example, GO TO). Hence, the normal sequence of
the SELECT statement can be overridden.

If exp1 is omitted, each exp2 is evaluated and converted, if necessary, to a bit string. If any bit in the
resulting string is '1'B, the unit of the associated WHEN statement is executed. If all bits are 0 or the string
is null, the unit of the OTHERWISE statement is executed.

After execution of a unit of a WHEN or OTHERWISE statement, control passes to the statement following
the select-group, unless the normal flow of control is altered within the unit.

If exp1 is specified, each exp2 must be such that the following comparison expression has a scalar bit
value:

 (exp1) = (exp2)

Both exp1 and exp2 must be scalar expressions. Hence, while arrays, structures, and unions can be used
in either exp1 or exp2, the evaluated expression must be a scalar value.

Examples

In the following example, E, E1, and so on, are expressions. When control reaches the SELECT
statement, the expression E is evaluated and its value is saved. The expressions in the WHEN statements
are then evaluated in turn (in the order in which they appear), and each value is compared with the value
of E.

If a value is found that is equal to the value of E, the action following the corresponding THEN statement
is performed; no further WHEN statement expressions are evaluated.

If none of the expressions in the WHEN statements is equal to the expression in the SELECT statement,
the action specified after the OTHERWISE statement is executed.

 select (E);
 when (E1,E2,E3) action-1;
 when (E4,E5) action-2;
 otherwise action-n;
 end;
 Nl: next statement;

In the following example, exp1 is omitted:

 select;
 when (A>B) call Bigger;
 when (A=B) call Same;
 otherwise call Smaller;
 end;

If a select-group contains no WHEN statements, the action in the OTHERWISE statement is executed
unconditionally. If the OTHERWISE statement is omitted, and if the execution of the select-group does not
result in the selection of a WHEN statement, the ERROR condition is raised.

SIGNAL statement
The SIGNAL statement is used in program testing to verify the action of an ON-unit and to determine
whether the correct action is associated with the condition.

For details about the SIGNAL statement, see “SIGNAL statement” on page 347 in Chapter 15, “Condition
handling,” on page 341.

SELECT

Chapter 8. Statements and directives 233

%SKIP directive
The %SKIP directive causes the specified number of lines to be left blank in the compiler source listings.

%SKIP

( n)

;

n
Specifies the number of lines to be skipped. It must be an integer in the range 1 - 999. If n is omitted,
the default is 1. If n is greater than the number of lines remaining on the page, the equivalent of a
%PAGE directive is executed in place of the %SKIP directive.

STOP statement
The STOP statement stops the current application.

STOP ;

WAIT statement
The WAIT statement specifies that a process is suspended until the specified thread terminates.

For details about the WAIT statement, see “Waiting for a thread to complete” on page 371 in Chapter 17,
“Multithreading facility,” on page 369.

WHEN statement
The WHEN statement specifies one or more expressions that are evaluated and compared with the saved
value from the SELECT statement.

For details about the WHEN statement, see “SELECT statement” on page 232.

WRITE statement
The WRITE statement transmits a record from the program and adds it to the data set.

For details about the WRITE statement, see “WRITE statement” on page 290 in Chapter 11, “Record-
oriented data transmission,” on page 289.

%XINCLUDE statement
The %XINCLUDE directive is used to incorporate external text into the source program if it has not
previously been included.

%XINCLUDE

,

member

ddname(member)

;

XDECLARE statement
The XDECLARE statement is the same as the DECLARE statement except:

1. An XDECLARE must not use * to specify a level-1 name

%SKIP

234 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

2. If the level-1 name specified in an XDECLARE statement was already specified in a previous
(X)DECLARE statement, the attributes in the two specifications must match.

XDECLARE can be abbreviated as XDCL.

For details about the DECLARE statement, see “DECLARE statement” on page 150.

XDEFINE ALIAS statement
The XDEFINE ALIAS statement specifies a name that can be used as a synonym for the set of data type
attributes you give to the alias.

The XDEFINE ALIAS statement is the same as the DEFINE ALIAS statement except if the specified name
has already appeared in a previous (X)DEFINE ALIAS statement, this XDEFINE statement will be ignored.

For details about the DEFINE ALIAS statement, see “DEFINE ALIAS statement” on page 137 and Chapter
6, “Type definitions,” on page 137.

XDEFINE ORDINAL statement
The XDEFINE ORDINAL statement specifies a named type representing a set of named ordered values.

The XDEFINE ORDINAL statement is the same as the DEFINE ORDINAL statement except if the specified
name has already appeared in a previous (X)DEFINE ORDINAL statement, this XDEFINE statement will be
ignored.

For details about the DEFINE ORDINAL statement, see “DEFINE ORDINAL statement” on page 138 and
Chapter 6, “Type definitions,” on page 137.

XDEFINE STRUCTURE statement
The XDEFINE STRUCTURE statement specifies a named structure or union type.

The XDEFINE STRUCTURE statement is the same as the DEFINE STRUCTURE statement except if the
specified name has already appeared in a previous (X)DEFINE STRUCTURE statement, this XDEFINE
statement will be ignored.

For details about the DEFINE STRUCTURE statement, see “Defining typed structures and unions” on page
140 and Chapter 6, “Type definitions,” on page 137.

XPROCEDURE statement
The macro XPROCEDURE statement is identical to the macro PROCEDURE statement except that the
preprocessor will ignore rather than flag any subsequent occurrence of an XPROCEDURE statement if the
leftmost name on the statement is the name of an already defined preprocessor procedure.

Abbreviation: XPROC

For information about the PROCEDURE statement, see “PROCEDURE statement” on page 95 in Chapter 5,
“Program organization,” on page 89.

XPROCEDURE

Chapter 8. Statements and directives 235

XPROCEDURE

236 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 9. Storage control
All variables require storage. The attributes specified for a variable describe the amount of storage
required and how it is interpreted.

In the following example, a reference to X is a reference to a piece of storage that contains a value to be
interpreted as fixed-point binary.

 dcl X fixed binary(31,0) automatic;

Because X is automatic, the storage for it is allocated when its declaring block is activated, and the
storage remains allocated until the block is deactivated.

Storage classes, allocation, and deallocation
Storage allocation is the process of associating an area of storage with a variable so that the data item(s)
represented by the variable can be recorded internally. When storage is associated with a variable, the
variable is allocated. The storage class determines the degree of storage control and the manner in which
storage is allocated and freed.

Allocation for a given variable can take place statically (before the execution of the program) or
dynamically (during execution). A variable that is allocated statically remains allocated for the duration of
the application program. A variable that is allocated dynamically relinquishes its storage either upon the
termination of the block containing that variable, or at an explicit request from the application.

The storage class assigned to a variable determines the degree of storage control applied to the variable's
storage and the manner in which the variable's storage is allocated and freed. You assign the storage
class by using its corresponding attribute in an explicit, implicit, or contextual declaration. There are four
storage classes:

AUTOMATIC
Specifies that storage is allocated upon each entry to the block that contains the storage declaration.
The storage is released when the block is exited.

If the block is a procedure that is invoked recursively, the previously allocated storage is pushed
down upon entry; the latest allocation of storage is popped up in a recursive procedure when
each generation terminates. For information about push-down and pop-up stacking, see “Recursive
procedures” on page 101.

STATIC
Specifies that storage is allocated when the program is loaded. The storage is not freed until program
execution is completed. The storage for a fetched procedure is not freed until the procedure is
released.

CONTROLLED
Specifies that you use the ALLOCATE and FREE statements to control the allocation and freeing of
storage. Multiple allocations of the same controlled variable in the same program, without intervening
freeing, stacks generations of the variable. You can access earlier generations only by freeing the later
ones.

BASED
Like CONTROLLED, specifies that you control storage allocation and freeing. One difference is that
multiple allocations are not stacked but are available at any time. Each allocation can be identified by
the value of a pointer variable. Another difference is that based variables can be associated with an
area of storage and identified by the value of an offset variable.

Based variables outside of areas can be allocated by the ALLOCATE built-in function and freed by the
PLIFREE built-in subroutine. They can also be allocated by the AUTOMATIC built-in function; such
allocated variables are freed automatically when the block in which they are allocated terminates.

Storage classes, allocation, and deallocation

© Copyright IBM Corp. 1999, 2022 237

Storage class attributes can be declared explicitly for element, array, and major structure and union
variables. For array and major structure and union variables, the storage class declared for the variable
applies to all of the elements in the array or structure or union.

Storage class attributes cannot be specified for the following:

• CONDITION conditions
• Defined data items
• Entry constants
• File constants
• Format constants
• Identifiers defined in the DEFINE statement
• Label constants
• Members of structures and unions
• Named constants

Allocation of storage for variables is managed by PL/I. You do not specify where in storage the allocation
is to be made. You can, however, specify that a variable be allocated in an existing AREA.

Related information
“Area data and attribute” on page 253
Area variables describe areas of storage that are reserved for the allocation of based variables. This
reserved storage can be allocated to, and freed from, based variables by the ALLOCATE and FREE
statements.

Static storage and attribute
Variables that are declared with the STATIC attribute are allocated before a program starts running. They
remain allocated until the program terminates. The program has no control over the allocation of static
variables during execution.

STATIC

STATIC is the default for external variables, but internal variables can also be static. It is also the default
for variables declared in a package, outside of any procedure. Static variables follow the normal scope
rules for the validity of references to them. In the following example, the variable X is allocated for the life
of the program, but it can be referenced only within procedure B or any block contained in B. The variable
Y gets the STATIC attribute and is also allocated for the life of the program.

 Package: Package exports (*);
 dcl Y char(10);

 A: proc options(main);
 B: proc;
 declare X static internal;
 end B;
 end A;

 C: proc;
 Y = 'hello';
 end C;

 end Package;

If static variables are initialized by the INITIAL attribute, the initial values must be restricted expressions.
Extent specifications must also be restricted expressions.

If a variable has more than 100 INITIAL items, the compiler and the user code usually perform better
when the variable is declared with the STATIC attribute.

Static storage and attribute

238 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Automatic storage and attribute
Automatic variables are allocated on entry to the block in which they are declared. They can be
reallocated many times during the execution of a program. You control their allocation by your design
of the block structure.

AUTOMATIC

Abbreviation: AUTO

AUTOMATIC is the default. Automatic variables are always internal.

In the following example, each time procedure B is invoked, the variables X and Y are allocated storage.
When B terminates, the storage is released, and the values that X and Y contain are lost.

 A: proc;
 .
 .
 .
 call B;
 B: proc;
 declare X,Y auto;
 .
 .
 .
 end B;
 .
 .
 .
 call B;

The storage that is freed is available for allocation to other variables. Thus, whenever a block (procedure
or begin) is active, storage is allocated for all variables declared automatic within that block. Whenever a
block is inactive, no storage is allocated for the automatic variables in that block. Only one allocation of a
particular automatic variable can exist, except for those procedures that are called recursively or by more
than one program.

Extents for automatic variables can be specified as expressions. This means that you can allocate a
specific amount of storage when you need it. In the following example, the character string STR has a
length defined by the value of the variable N when procedure B is invoked.

 A: proc;
 declare N fixed bin;
 .
 .
 .
 B: proc;
 declare STR char(N);

If the declare statements are located in the same block, PL/I requires that the variable N be initialized
either to a restricted expression or to an initialized static variable. In the following example, the length
allocated is correct for Str1, but not for Str2. PL/I does not resolve this type of declaration dependency.

dcl N fixed bin (15) init(10),
 M fixed bin (15) init(N),
 Str1 char(N),
 Str2 char(M);

Controlled storage and attribute
Variables declared as CONTROLLED are allocated only when you specify them in an ALLOCATE statement.
A controlled variable remains allocated until a FREE statement that names the variable is encountered or
until the end of the program.

Controlled variables are partially independent of the program block structure, but not completely. The
scope of a controlled variable can be internal or external. When it is declared as internal, the scope of

Automatic storage and attribute

Chapter 9. Storage control 239

the variable is the block in which the variable is declared and any contained blocks. Any reference to a
controlled variable that is not allocated is in error.

You cannot pass variables that are not declared as CONTROLLED to a procedure that declares them as
CONTROLLED. However, you can pass a variable that is declared as CONTROLLED to a procedure that
does not declare it as CONTROLLED.

CONTROLLED

Abbreviation: CTL

In the following example, the variable X can be validly referred to within procedure B and that part of
procedure A that follows execution of the CALL statement.

 A: proc;
 dcl X controlled;
 call B;
 .
 .
 .
 B: proc;
 allocate X;
 .
 .
 end B;
 end A;

Generally, controlled variables are useful when a program requires large data aggregates with adjustable
extents. Statements in the following example allocate the exact storage required depending on the input
data and free the storage when it is no longer required.

 dcl A(M,N) ctl;
 get list(M,N);
 allocate A;
 get list(A);
 .
 .
 .
 free A;

This method is more efficient than the alternative of setting up a begin-block, because block activation
and termination are not required.

ALLOCATE statement for controlled variables
The ALLOCATE statement allocates storage for controlled variables, independent of procedure block
boundaries. Controlled parameters can also be allocated.

The bounds of controlled arrays, the lengths of controlled strings, and the size of controlled areas, as well
as their initial values, can be specified in the ALLOCATE statement.

ALLOCATE

,

level

controlled-variable attribute ;

attribute

ALLOCATE for controlled variables

240 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

dimension

CHARACTER( length)

BIT( length)

GRAPHIC( length)

UCHAR( length)

WIDECHAR( length)

AREA( size)

INITIAL(

,

 item)

INITIAL CALL entry-reference

(

,

argument)

Abbreviation: ALLOC

level
Indicates a level number. If no level number is specified, the controlled-variable named must be a
level-1 variable.

controlled-variable
Specifies a controlled variable or an element of a controlled major structure. A structure element,
other than the major structure, can appear only if the relative structuring of the entire major structure
containing the element appears as it is in the DECLARE statement for that structure. In this case,
dimension attributes must be specified for all names that are declared with the dimension attribute.

Both controlled and based variables can be allocated in the same statement. For the syntax of the
ALLOCATE statement for based variables, see “ALLOCATE statement for based variables” on page 250.

Bounds for arrays, lengths of strings, and sizes of areas (extents) are evaluated at the execution of an
ALLOCATE statement:

• Either the ALLOCATE statement or a DECLARE or DEFAULT statement must specify any necessary
dimension, size, or length attributes (extents) for a variable. Any expression taken from a DECLARE
statement is evaluated at the point of allocation by using the conditions enabled at the ALLOCATE
statement. However, names in the expression refer to those variables whose scope includes the
DECLARE or DEFAULT statement.

• If a bound, length, or size is explicitly specified in an ALLOCATE statement, it overrides that given in the
DECLARE statement for that variable.

• If a bound, length, or size is specified by an asterisk in an ALLOCATE statement, that extent is taken
from the current generation. If no generation of the variable exists, the extent is undefined and the
program is in error.

• If, in either an ALLOCATE or a DECLARE statement, bounds, lengths, or sizes are specified by
expressions that contain references to the variable being allocated, the expressions are evaluated by
using the value of the most recent generation of the variable. Consider the following example:

 declare X(N) fixed bin ctl;
 N = 20;
 allocate X;
 allocate X(X(1));

In the first allocation of X, the upper bound is specified by the declare statement and N = 20;. In the
second allocation, the upper bound is specified by the value of the first element of the first generation of
X.

ALLOCATE for controlled variables

Chapter 9. Storage control 241

The dimension attribute must specify the same number of dimensions as declared. The dimension
attribute can appear with any of the other attributes and must be the first attribute specified. See the
following example:

 declare X(M) char(N) controlled;
 M = 20;
 N = 5;
 allocate X(25) char(6);

The BIT, CHARACTER, GRAPHIC, UCHAR, WIDECHAR, and AREA attributes can appear only for variables
having the same attributes, respectively.

Initial values are assigned to a variable upon allocation, if the variable has an INITIAL attribute in
either the DECLARE or ALLOCATE statement. Expressions or the CALL option in the INITIAL attribute
are evaluated at the point of allocation, by using the conditions enabled at the ALLOCATE statement.
However, the names are interpreted in the environment of the declaration. If an INITIAL attribute appears
in both DECLARE and ALLOCATE statements, the INITIAL attribute in the ALLOCATE statement is used. If
initialization involves reference to the variable being allocated, the reference is to the new generation of
the variable. For more information about initialization, see “INITIAL attribute” on page 267.

Any evaluations performed at the time the ALLOCATE statement is executed (for example, evaluation of
expressions in an INITIAL attribute) must not be interdependent.

If storage for the controlled variable is not available, the STORAGE condition is raised.

FREE statement for controlled variables
The FREE statement frees the storage allocated for controlled variables. The freed storage is then
available for other allocations. The previously allocated controlled variable is made available, and
subsequent references refer to that allocation.

FREE

,

controlled-variable ;

controlled-variable
A level-1, unsubscripted variable

Both based and controlled variables can be freed in the same statement. For the syntax of the FREE
statement for based variables, see “FREE statement for based variables” on page 251.

Implicit freeing

A controlled variable need not be explicitly freed by a FREE statement. However, it is a good practice to
explicitly FREE controlled variables.

All controlled storage is freed at the termination of the program.

Multiple generations of controlled variables
An ALLOCATE statement for a variable for which storage was previously allocated and not freed pushes
down or stacks storage for the variable. This stacking creates a new generation of data for the variable.
The new generation becomes the current generation.

The previous generation cannot be directly accessed until the current generation has been freed. When
storage for this variable is freed by the FREE statement or at termination of the program in which the
storage was allocated, storage is popped up or removed from the stack.

FREE for controlled variables

242 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Asterisk notation
In an ALLOCATE statement, values are inherited from the most recent previous generation when
dimensions, lengths, or sizes are indicated by asterisks. For arrays, the asterisk must be used for every
dimension of the array, not just one of them.

Consider the following example:

 dcl X(M,N) char(A) ctl;
 M=10;
 N=20;
 A=5;

 allocate X;
 allocate X(10,10);
 allocate X(*,*);

The first generation of X has bounds (10,20); the second and third generations have bounds (10,10). The
elements of each generation of X are all character strings of length 5.

The asterisk notation can also be used in a DECLARE statement, but has a different meaning there.
Consider the following example:

dcl Y char(*) ctl,
N fixed bin;

N=20;
allocate Y char(N);
allocate Y;

The length of the character string Y is taken from the previous generation unless it is specified in
an ALLOCATE statement. In that case, Y is given the specified length. This allows you to defer the
specification of the string length until the actual allocation of storage.

Adjustable extents
Controlled scalars, arrays, and members of structures and unions can have adjustable array extents,
string lengths, and area sizes.

In the following example, when the structure is allocated, A.B has the extent 1 to 10 and A.C is a varying
character string with maximum length 5.

 dcl 1 A ctl,
 2 B(N:M),
 2 C char(*) varying;
 N = -10;
 M = 10;
 alloc 1 A,
 2 B(1:10),
 2 C char(5);
 free A;

Built-in functions for controlled variables
The ALLOCATION built-in function can be used to determine the number of generations that have been
allocated for a given controlled variable.

If the variable is not allocated, the function returns the value zero.

Based storage and attribute
A declaration of a based variable is a description of the generation: the amount of storage required and its
attributes.

A based variable does not identify the location of a generation in main storage. A locator value identifies
the location of the generation. Any reference to a based variable that is not allocated is in error.

Asterisk notation

Chapter 9. Storage control 243

BASED

( locator-reference)

locator-reference
Identifies the location of the data.

When reference is made to a based variable, the data and alignment attributes used are those of the
based variable, while the qualifying locator variable identifies the location of data.

A based variable cannot have the EXTERNAL attribute, but a locator reference for a based variable can
have any storage class, including based.

Extent specifications in BASED declarations
The extents for one BASED variable can depend on the attributes of a second variable but only if the
second variable is declared first.

For example, A can be declared as BASED CHAR(LENGTH(B)) if B is declared before A.

A based structure or union can be declared to contain non-constant extents by using the REFER option.
See “REFER option (self-defining data)” on page 251.

If you do not specify the REFER option, the extent specifications in the BASED declarations must be
restricted expressions with the following exceptions:

• A non-constant array extent in a BASED variable is invalid unless the array meets all of the following
conditions:

– It is one dimensional.
– The lower bound of the array is a constant.
– When it is a part of a structure, the extents of all other fields in the structure are constant, and no

fields follow the array and the parent structures, if any, of the array.
• A non-constant CHAR extent in a BASED variable is invalid unless the string is a scalar or it meets all of

the following conditions:

– It is the last element in a structure.
– It has no parents that are arrays.
– It has one of these attributes: UNALIGNED, NONVARYING, or VARZ.

• Any of the following non-constant extents in a BASED variable are valid only if the variable is a scalar:

– The non-constant AREA extent
– The non-constant BIT extent
– The non-constant GRAPHIC extent
– The non-constant UCHAR extent
– The non-constant WIDECHAR extent

Examples

All of the following declarations are valid.

Example 1

 dcl
 1 a1(n) based,
 2 b,
 3 b1 fixed bin(31),
 3 b2 fixed bin(31);

Built-ins for controlled variables

244 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Example 2

 dcl
 1 a2 based,
 2 b(n),
 3 b1 fixed bin(31),
 3 b2 fixed bin(31);

Example 3

 dcl
 1 a3 based,
 2 b,
 3 b1 fixed bin(31),
 3 b2(n) fixed bin(31);

Example 4

 dcl
 1 a4 based,
 2 b,
 3 b1 fixed bin(31),
 3 b2 char(n);

Example 5

 dcl
 1 a5 based,
 2 b,
 3 b1 fixed bin(31),
 3 b2(n) char(m);

BASED VARYING string
The maximum length of a based VARYING, VARYING4, or VARYINGZ string must be equal to the
maximum length of any string upon which the based VARYING, VARYING4, or VARYINGZ string is
overlaid.

See the following example:

 declare A char(50) varying based(Q),
 B char(50) varying;
 Q=addr(B);

A based VARYING string can only be overlaid on a VARYING string; a based VARYING4 string can only be
overlaid on a VARYING4 string; a based VARYINGZ string can only be overlaid on a VARYINGZ string.

Storage allocation for BASED variable
Storage for a based variable can be allocated by using the ALLOCATE statement, the ALLOCATE built-in
function, the AUTOMATIC built-in function, or the LOCATE statement.

A based variable can also be used to access existing data by using the READ statement (with SET option),
or the FETCH statement (with SET option), or the ADDR built-in function.

Based AREA variables can be allocated by using the ALLOCATE statement; PL/I automatically initializes
the area to EMPTY upon allocation. However, if you obtain storage for the area variable by the ALLOCATE
or the AUTOMATIC built-in function, you must assign EMPTY to the variable after obtaining the storage.

Built-ins for controlled variables

Chapter 9. Storage control 245

Locator variables
Because a locator variable identifies the location of any generation, you can refer at any point in a
program to any generation of a based variable by using an appropriate locator value.

The following example declares that references to X, except when the reference is explicitly qualified, use
the locator variable P to locate the storage for X.

 dcl X fixed bin based(P);

The association of a locator reference in this way is not permanent. The locator reference can be
used to identify locations of other based variables and other locator references can be used to identify
other generations of the variable X. When a based variable is declared without a locator reference, any
reference to the based variable must always be explicitly locator-qualified.

In the following example, the arrays A and C refer to the same storage. The elements B and C(2,1) also
refer to the same storage.

 dcl A(3,2) character(5) based(P),
 B char(5) based(Q),
 C(3,2) character(5);
 P = addr(C);
 Q = addr(A(2,1));

Note: When a based variable is overlaid in this way, no new storage is allocated. The based variable uses
the same storage as the variable on which it is overlaid (C(3,2) in the example).

DEFINED and UNION attributes
You can also use the DEFINED and UNION attributes to overlay variable storage, but DEFINED and
UNION overlay the storage permanently. When based variables are overlaid with a locator reference, the
association can be changed at any time in the program by assigning a new value to the locator variable.
Related information
“DEFINED and POSITION attributes” on page 263
The DEFINED attribute specifies that the declared variable is associated with some or all of the storage
associated with the designated base variable.
“Unions” on page 177
A union is a collection of member elements that overlay each other, occupying the same storage. The
members can be structures, unions, elementary variables, and arrays. They need not have identical
attributes.

INITIAL attribute
The INITIAL attribute can be specified for a based variable. The initial values are assigned only upon
explicit allocation of the based variable with an ALLOCATE or LOCATE statement.

Locator data
There are two types of locator data: pointer and offset.

The value of a pointer variable is an address of a location in storage. It can be used to qualify a reference
to a variable with allocated storage in several different locations.

The value of an offset variable specifies a location within an area variable and remains valid when the area
is assigned to a different part of storage.

A locator value can be assigned only to a locator variable. When an offset value is assigned to an offset
variable, the area variables named in the OFFSET attributes are ignored.

Locator Data

246 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Locator conversion
Except in a few cases, locator data cannot be converted to other data types.

Locator data can be converted to other data types as follows:

• To and from REAL FIXED BINARY (p,0) by using the BINARYVALUE, POINTERVALUE, and OFFSETVALUE
built-in functions

• Between the pointer and the offset implicitly or explicitly by using the POINTER and OFFSET built-in
functions.

When an offset variable is used in a reference, it is implicitly converted to a pointer value by using
the address of the area variable designated in the OFFSET attribute and the offset variable. Explicit
conversion of an offset to a pointer value can be accomplished by the POINTER built-in function. For
example, the following statement assigns a pointer value to P, giving the location of a based variable,
identified by offset O in area B.

 dcl P pointer, O offset(A),B area;
 P = pointer(O,B);

Because the area variable is different from that associated with the offset variable, you must ensure that
the offset value is valid for the different area. It is valid, for example, if area A is assigned to area B before
the invocation of the function.

The OFFSET built-in function, in contrast to the POINTER built-in function, returns an offset value derived
from a given pointer and area. The given pointer value must identify the location of a based variable in the
given area.

A pointer value is converted to an offset by using the pointer value and the address of the area. This
conversion is limited to pointer values that relate to addresses within the area named in the OFFSET
attribute.

Except when assigning the NULL or the SYSNULL built-in function value, it is an error to attempt to convert
from or to an offset variable that is not associated with an area.

There is no implicit locator conversion in multiple assignments.

Locator reference
A locator reference is either a locator variable that can be qualified or subscripted, or a function reference
that returns a locator value.

A locator reference can be used in the following ways:

• As a locator qualifier, in association with a declaration of a based variable
• In a comparison operation, as in an IF statement
• As an argument in a procedure reference.

Because PL/I implicitly converts an offset to a pointer value, offset references can be used
interchangeably with pointer references.

Locator qualification
Locator qualification is the association of one or more locator references with a based reference to
identify a particular generation of a based variable. This is called a locator-qualified reference.

The composite symbol -> represents "qualified by" or "points to". The following syntax diagram is for an
explicit qualified reference.

Locator Data

Chapter 9. Storage control 247

locator-reference ->

based-locator-reference ->

based-variable

locator-reference
based-locator-reference

Identify the location of the data.

In the following example, X is a based variable, P is a locator variable, and Q is a based locator variable.

 P -> Q -> X

The reference means that it is that generation of X that is identified by the based locator Q that is also
identified by the value of the locator P. X and Q are explicitly locator-qualified.

When more than one locator qualifier is used, they are evaluated from left to right.

Reference to a based variable can also be implicitly qualified. The locator reference used to determine the
generation of a based variable that is implicitly qualified is the one declared with the based variable. In
the following example, the ALLOCATE statement sets the pointer variable P so that the reference X applies
to allocated storage.

 dcl X fixed bin based(P) init(0);
 allocate X;
 X = X + 1;

The references to X in the assignment statement are implicitly locator-qualified by P. References to X can
also be explicitly locator-qualified as shown in the following example.

 P->X = P->X + 1;

The following assignment statements have the same effect as the previous example:

 Q = P;
 Q->X = Q->X + 1;

Because the locator declared with a based variable can also be based, a chain of locator qualifiers can be
implied. For example, the following pointer and based variables can be used:

 declare (P(10),Q) pointer,
 R pointer based (Q),
 V based (P(3)),
 W based (R),
 Y based;
 allocate R,V,W;

Given the previous declaration and allocation, the following references are valid:

 P(3) -> V
 V
 Q -> R -> W
 R -> W
 W

The first two references are equivalent, and the last three are equivalent. Any reference to Y must include
a qualifying locator variable.

Locator Data

248 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Levels of locator qualification
A pointer that qualifies a based variable represents one level of locator qualification. An offset represents
two levels because it is implicitly qualified within an area. The number of levels is not affected by a locator
being subscripted or by an element of a structure or union.

In the following example, the references X, P -> X, and Q -> P -> X represent three levels of locator
qualification.

 declare X based (P),
 P pointer based (Q),
 Q offset (A);

POINTER variable and attribute
A pointer variable is declared contextually if it appears in the declaration of a based variable, as a locator
qualifier, in a BASED attribute, or in the SET option of an ALLOCATE, LOCATE, READ, or FETCH statement.
It can also be declared explicitly.

POINTER

(32

64

)

Abbreviation: PTR

32
A POINTER(32) is four bytes in size and by default fullword-aligned.

64
A POINTER(64) is eight bytes in size and by default doubleword-aligned.

If the LP(32) compiler option is in effect, the default is POINTER(32); if the LP(64) compiler option is in
effect, the default is POINTER(64). POINTER(64) is valid only under LP(64).

Assigning a POINTER(32) to a POINTER(64) is always valid; the reverse is valid only if the first four bytes
of the POINTER(64) are zero.

The value of a pointer variable that no longer identifies a generation of a based variable is undefined
(for example, when a based variable has been freed). Before a reference is made to a pointer-qualified
variable, the pointer must have a value.

Built-in functions for based variables
Built-in functions for based variables include ALLOCATE, PLIFREE, AUTOMATIC, ADDR, ENTRYADDR, and
so on.

The ALLOCATE built-in function can be used to obtain storage for a based variable, and the PLIFREE
built-in subroutine can be used to free such storage. The AUTOMATIC built-in function can also be used to
obtain storage for a based variable, but such storage must not be explicitly freed. Storage allocated with
the AUTOMATIC built-in function is automatically freed when the block in which it is allocated terminates.

The ADDR built-in function returns a pointer value that identifies the first byte of a variable. The
ENTRYADDR built-in function returns a pointer value that is the address of the first executed instruction
if the entry were to be invoked. The NULL and SYSNULL built-in functions return the PL/I null pointer and
the system null pointer respectively.

Note: The NULL and SYSNULL built-in functions can, but do not necessarily, compare equally. Your
application program must not depend on the functions' equality.

POINTER

Chapter 9. Storage control 249

ALLOCATE statement for based variables
The ALLOCATE statement allocates storage for based variables and sets a locator variable that can be
used to identify the location, independent of procedure block boundaries.

ALLOCATE

,

based-variable location-reference ;

location-reference

IN( area-variable) SET( locator-variable)

Abbreviation: ALLOC

based variable
Is a level-1 unsubscripted variable.

IN
Specifies the area variable in which the storage is allocated. For more information about areas, see
“Area data and attribute” on page 253.

SET
Specifies a locator variable that is set to the location of the storage allocated. If the SET option is not
specified, the locator used is the one specified in the declaration of the based variable. For syntax
information about declaring based variables, see “Based storage and attribute” on page 243 and
“Locator data” on page 246.

Both based and controlled variables can be allocated in the same statement. For the syntax of the
ALLOCATE statement for controlled variables, see “ALLOCATE statement for controlled variables” on page
240.

Storage is allocated in an area when the IN option is specified or when the SET option specifies an offset
variable. These options can appear in any order.

For allocations in areas, if the area does not have sufficient storage for the based variable, the AREA
condition is raised. If you use an offset variable without the IN option, you must specify an area reference
in the declaration of the offset variable.

When an area is not used, the locator variable must be a pointer variable. If storage for the based variable
is not available, the STORAGE condition is raised.

Note that if a based variable uses REFER, its size will be calculated at run time. If this calculation yields a
value that is too large to fit in a size_t2 variable, your program is in error and should be corrected. In this
situation, the STORAGE condition will not be raised; instead, the ERROR condition with ONCODE=3809
will be raised if either of the following conditions applies:

• The SIZE condition is enabled.
• The BASED structure is mapped through a library call.

If neither of these conditions apply, unpredictable results will occur.

The amount of storage allocated for a based variable depends on its attributes, and on its dimensions,
length, or size specifications if these are applicable at the time of allocation. These attributes are
determined from the declaration of the based variable.

A based structure or union can contain adjustable array bounds or string lengths or area sizes (see
“REFER option (self-defining data)” on page 251). The asterisk notation for extents is not allowed for
based variables.

2 If the LP(32) compiler option is in effect, size_t is FIXED BIN(31); if the LP(64) compiler option is in effect,
size_t is FIXED BIN(63).

ALLOCATE for based variables

250 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

FREE statement for based variables
The FREE statement frees the storage allocated for based and controlled variables.

FREE

,

option ;

option

locator-reference ->

based-variable

IN( area-variable)

locator-reference ->
Frees a particular generation of a based variable. The composite symbol -> means "qualified by" or
"points to". If the based variable is not explicitly locator-qualified, the locator variable declared in the
BASED attribute is used to identify the generation of data to be freed. If no locator has been declared,
the statement is in error.

based variable
Must be a level-1, unsubscripted based variable.

IN
Must be specified or the based variable must be qualified by an offset declared with an associated
area, if the storage to be freed was allocated in an area. The IN option cannot appear if the based
variable was not allocated in an area. Area assignment allocates based storage in the target area.
These allocations can be freed by the IN option naming the target area.

Both based and controlled variables can be freed in the same statement. For the syntax of the FREE
statement for controlled variables, see “FREE statement for controlled variables” on page 242.

A based variable can be used to free storage only if that storage has been allocated for a based variable
having identical data attributes.

The amount of storage freed depends upon the attributes of the based variable, including bounds or
lengths at the time the storage is freed. The user is responsible for determining that this amount coincides
with the amount allocated. If the variable has not been allocated, the results are unpredictable.

Implicit freeing

A based variable need not be explicitly freed by a FREE statement, but it is a good practice to do so.

All based storage is freed at the termination of the program.

REFER option (self-defining data)
A self-defining structure or union contains information about its own fields, such as the length of a string.
A based structure or union can be declared to manipulate this data. String lengths, array bounds, and area
sizes can all be defined by variables, known as the refer object, declared within the structure or union.
In the declaration of a based structure or union, the REFER option specifies that on allocation of the
structure or union, the value of an expression is assigned to the refer object and represents the length,
bound, or size of another variable in the structure or union.

When the structure or union is allocated (by either an ALLOCATE statement or a LOCATE statement), the
value of an expression is assigned to the refer object variable. For any other reference to the structure or
union, the value of the refer object is used.

The syntax for a length, bound, or size with a REFER option is shown in the following diagram.

FREE for based variables

Chapter 9. Storage control 251

expression REFER ( member-variable)

expression
The value of this expression defines the length, bound, or size of the member when the structure or
union is allocated (by ALLOCATE or LOCATE). The expression is evaluated and converted to size_t3. Any
variables that are used as operands in the expression must not belong to the structure or union that
contains the REFER option.

Subsequent references to the structure or union obtain the REFER option member's length, bound, or
size from the current value of member-variable (the refer object).

member-variable
The refer object must conform to the following rules:

• It must be a member of the same level-1 structure or union, and it must appear before any member
that names it in a REFER option.

• It must be computational. It must be FIXED BIN with a scale factor of zero. If it has a type other
than FIXED BIN(p,0), the compiler issues a W-level message.

• It cannot be locator-qualified (see “Locator qualification” on page 247) or subscripted.
• It cannot be part of an array.

In the following example, the declaration specifies that the based structure STR consists of an array Y and
an element X.

 declare 1 STR based(P),
 2 X fixed binary(31,0),
 2 Y (L refer (X)),
 L fixed binary(31,0) init(1000);

When STR is allocated, the upper bound is set to the current value of L, which is assigned to X. For any
other reference to Y, such as a READ statement that sets P, the bound value is taken from X.

If the INITIAL attribute is specified for the member with the REFER option, initialization of the member
occurs after the refer object has been assigned its value.

Any number of REFER options can be used in the declaration of a structure or union.

The value of the refer object should not be changed during program execution. It is an error to free such
an aggregate if the value of the refer object has changed.

Note also that any variables used in the expression defining the REFER extent should be declared in the
block (or one of its parent blocks) containing the DECLARE using that REFER. If one of the variables is not
declared, it will be implicitly declared following the usual rules for implicit declaration, that is, a DECLARE
for it will be added to the outermost block containing the DECLARE.

This means that in the following code, the declaration of and assignment to the variable m in the
subroutine inner_proc will have no effect on the ALLOCATE statement: the ALLOCATE statement will
use the implicitly declared and uninitialized m from the main block.

 refertst: proc options(main);

 dcl
 1 a based,
 2 n fixed bin(31),
 2 c char(m refer(n));

 call inner_proc;

 inner_proc: proc;

 dcl m fixed bin(31);

3 If the LP(32) compiler option is in effect, size_t is FIXED BIN(31); if the LP(64) compiler option is in effect,
size_t is FIXED BIN(63).

REFER

252 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 dcl p pointer;

 m = 15;
 allocate a set(p);
 end;
 end;

Area data and attribute
Area variables describe areas of storage that are reserved for the allocation of based variables. This
reserved storage can be allocated to, and freed from, based variables by the ALLOCATE and FREE
statements.

Area variables can have any storage class and can be aligned or unaligned. When you declare the AREA
variables as UNALIGNED, they are aligned by byte rather than by doubleword.

When a based variable is allocated, if an area is not specified, the storage is obtained from wherever it
is available. Consequently, allocated based variables can be scattered widely throughout main storage.
This is not significant for internal operations because items are readily accessed through the pointers.
However, if these allocations are transmitted to a data set, the items have to be collected together. Items
allocated within an area variable are already collected and can be transmitted or assigned as a unit while
still retaining their separate identities.

You might want to identify the locations of based variables within an area variable relative to the start of
the area variable. Offset variables are provided for this purpose.

An area can be assigned or transmitted complete with its contained allocations; thus, a set of based
allocations can be treated as one unit for assignment and input/output while each allocation retains its
individual identity.

The size of an area is adjustable in the same way as a string length or an array bound and therefore it can
be specified by an expression or an asterisk (for a controlled area parameter) or by a REFER option (for a
based area).

A variable is given the AREA attribute contextually by its appearance in the OFFSET attribute or an IN
option, or by explicit declaration.

AREA

(*)

( expression

REFER( variable)

)

expression
Specifies the size of the area. If expression or an asterisk is not specified, the default is 1000.

*
An asterisk can be used to specify the size if the area variable is declared is a parameter.

REFER
For a description of the REFER option, see “REFER option (self-defining data)” on page 251.

The area size for areas that have the storage classes AUTOMATIC or CONTROLLED is given by an
expression whose value specifies the number of reserved bytes.

If an area has the BASED attribute, the area size must be a constant unless the area is a member of a
based structure or union and the REFER option is used.

The size for areas of static storage class must be specified as a restricted expression.

These are examples of AREA declarations:

 declare area1 area(2000),
 area2 area;

REFER

Chapter 9. Storage control 253

In addition to the declared size, an extra 16 bytes of control information precedes the reserved size of an
area. The 16 bytes contain such details as the amount of storage in use.

The amount of reserved storage that is actually in use is known as the extent of the area. When an area
variable is allocated, it is empty, that is, the area extent is zero. The maximum extent is represented by
the area size. Based variables can be allocated and freed within an area at any time during execution, thus
varying the extent of an area.

When a based variable is freed, the storage it occupied is available for other allocations. A chain of
available storage within an area is maintained; the head of the chain is held within the control information.
Inevitably, as based variables with different storage requirements are allocated and freed, gaps occur in
the area when allocations do not fit available spaces. These gaps are included in the extent of the area.

No operators, including comparison, can be applied to area variables.

Offset data and attribute
Offset data is used exclusively with area variables. The value of an offset variable indicates the location of
a based variable within an area variable relative to the start of the area.

Because the based variables are located relatively, if the area variable is assigned to a different part of
main storage, the offset values remain valid.

Offset variables do not preclude the use of pointer variables within an area.

OFFSET

( area-variable)

The association of an area variable with an offset variable is not permanent. An offset variable can be
associated with any area variable by means of the POINTER built-in function (see “Locator conversion” on
page 247). The advantage of making such an association in a declaration is that a reference to the offset
variable implies reference to the associated area variable. If no area variable is specified, the offset can
be used as a locator qualifier only through use of the POINTER built-in function.

Setting offset variables

The value of an offset variable can be set in any one of the following ways:

• By an ALLOCATE statement
• By assignment of the value of another locator variable, or a locator value returned by a user-defined

function
• The NULL, SYSNULL, ADDR, ENTRYADDR, OFFSETADD, OFFSETSUBTRACT, OFFSETVALUE, or OFFSET

built-in function

If no area variable is specified, the offset can be used only as a locator qualifier through use of the
POINTER built-in function.

Examples of offset variables

Consider the following example:

 dcl X based(O),
 Y based(P),
 A area,
 O offset(A);

 allocate X;
 allocate Y in(A);

Offset data and attribute

254 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The storage class of area A and offset O is AUTOMATIC by default. The first ALLOCATE statement is
equivalent to the following statement:

 allocate x in(A) set(O);

The second ALLOCATE statement is equivalent to the following statement:

 allocate Y in(A) set(P);

The following example shows how a list can be built in an area variable using offset variables:

 dcl A area,
 (T,H) offset(A),
 1 STR based(H),
 2 P offset(A),
 2 data;

 allocate STR in(A);
 T=H;

 do loop;
 allocate STR set(T->P);
 T=T->P;
 .
 .
 .
 end;

LOCATES attribute
Specifying the LOCATES attribute reduces storage when the compiler creates and passes sparse arrays of
strings. The LOCATES attribute is valid only with the OFFSET attribute. And the LOCATES attribute allows
the located type to be any computational type, an ORDINAL type, or a STRUCT type.

LOCATES (description)

description
Must specify a set of attributes, which are separated by blanks or parentheses. You can specify the
attributes in the same way as you declare them in the DECLARE statement. The compiler applies
defaults in the normal way.

The attributes in description can be any of the data and alignment attributes for scalar BIT, CHARACTER,
UCHAR, and WIDECHAR strings. The string lengths must be specified by constants. The compiler ignores
any alignment attributes that are specified when it allocates the associated storage. The following
example, Example 1, shows how to specify the LOCATES attribute:

Example 1

 declare
 1 data based(data_ptr) unaligned,
 2 actual_count fixed bin(31),
 2 orderinfo(order_count refer(actual_count)),
 3 name offset(pool) locates(char(30) varying),
 3 address offset(pool) locates(char(62) varying),
 2 pool area(10_000);

The LOCATES attributes turn the associated offset into a typed offset. Then you can use the LOCVAL
built-in function and pseudovariable to dereference the typed offset. The process of dereferencing is the
same as the process of the * operator dereferencing a typed pointer in the C language.

You can use the following built-in subroutines and built-in functions to allocate the offsets that have the
LOCATES attribute, assign values into the associated area, and retrieve the values that are associated with
these offsets:

• LOCNEWSPACE

LOCATES attribute

Chapter 9. Storage control 255

You can use the “LOCNEWSPACE” on page 475 built-in subroutine to allocate an OFFSET variable with
enough space for the maximum length that is required by the LOCATES attribute.

• LOCNEWVALUE

You can use the “LOCNEWVALUE” on page 476 built-in subroutine to allocate an OFFSET variable with
enough space to hold a specified value with its LOCATES attribute. It also assigns that specified value
into the associated address.

• LOCVAL

You can use the “LOCVAL” on page 477 built-in function and pseudovariable to dereference an OFFSET
variable that has the LOCATES attribute.

• LOCSTG

You can use the “LOCSTG” on page 476 built-in function to determine the maximum size that is needed
for an AREA variable to hold all the values that can be held indirectly in a variable that has the LOCATES
attribute or contains elements that have the LOCATES attribute.

For example, given the declaration in Example 1, both of the following statements allocate space in the
pool area to hold the string, assign that offset to name(1), and then assign the value Sherlock Holmes
as a character varying string to that location in the area. The call locnewvalue statement allocates 17
bytes to hold the specified value. The call locnewvalue statement allocates the full size, 32 bytes that
are required for the string attributes (CHAR(30) VARYING) in the LOCATES attribute.

Consider the following statements:

Statement 1

 call locnewspace(name(1));
 locval(name(1)) = ‘Sherlock Holmes’;

Statement 2

 call locnewvalue (‘Sherlock Holmes’, name(1));

In an assignment to an OFFSET variable with the LOCATES attribute and with an AREA specification, if the
source is computational, the assignment is converted into a call to the LOCNEWVALUE built-in subroutine.
Therefore, statements 1 and 2 can be replaced by the following assignment:

 name(1) = ‘Sherlock Holmes’;

If LOCNEWVALUE is explicitly or implicitly used, later code must not try to assign a longer string into that
offset in the area. For example, in the following statements, only 2 bytes are allocated for the storage that
is at the offset for address(1), and it is invalid to use the LOCVAL function to assign a longer string into
that location in the area.

 name(1) = ‘Shrelock Holmes’;
 address(1) = ‘’;

However, a new offset area can be allocated by using the following statement:

address(1) = ‘221B Baker Street’;

It is a good practice to assign sysnull() to offset variables with LOCATES attribute that have not been set:

• Assigning sysnull() to offset variables is more efficient for processor consumption and storage usage
than assigning a null string to them.

• You can determine whether a LOCVAL reference is valid by first testing that the offset is not equal to
sysnull().

In LOCNEWVALUE(v, x), if the LOCATES attribute for x has ORDINAL type or STRUCTURE type, v must have
the same type.

LOCATES attribute

256 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

If the type in the LOCATES attribute is a STRUCT type, after the space for it is allocated, the LOCATES
attribute might be referenced as if it had the type directly. Consider the following example:

This example is based on the following declarations:

 define struct
 1 ted,
 2 t1 fixed bin(31),
 2 t2 char(12);

 dcl
 1 xmit based(p) unal,
 2 asize fixed bin(31),
 2 bcount fixed bin(31),
 2 b(bx refer(bcount))
 offset(a) locates(type ted),
 2 a area(ax refer(asize));

Given the preceding declarations, the following statements are valid:

 call locnewspace(b(1));

 b(1).t1 = 17;
 b(1).t2 = '314159265358';

However, the values for b(1) can also be assigned by using the LOCVAL pseudovariable.

Built-in functions for area variables
The EMPTY built-in function initializes the area variable to empty, freeing all allocations it might have. This
is the initial state of an area variable in which no allocations have yet been made. The AVAILABLEAREA
built-in function returns the size of the largest allocation that can be made in the area.

Area assignment
The value of an area reference can be assigned to one or more area variables by an assignment
statement. Area-to-area assignment has the effect of freeing all allocations in the target area and then
assigning the extent of the source area to the target area so that all offsets for the source area are valid for
the target area.

Consider the following example:

 declare X based (O(1)),
 O(2) offset (A),
 (A,B) area;

 alloc X in (A);
 X = 1;
 alloc X in (A) set (O(2));
 O(2) -> X = 2;
 B = A;

Using the POINTER built-in function, the references POINTER (O(2),B)->X and O(2)->X represent the
same value allocated in areas B and A, respectively.

If an area containing no allocations is assigned to a target area, the effect is to free all allocations in the
target area.

Area assignment can be used to expand a list of based variables beyond the bounds of the original
area. Attempting to allocate a based variable within an area that contains insufficient free storage to
accommodate it or attempting to assign an area to another area that is not large enough raises the AREA
condition. The ON-unit for this condition can be used to change the value of a pointer qualifying the
reference to the inadequate area, so that it points to a different area; on return from the ON-unit, the
allocation is attempted again, within the new area. Alternatively, you can use the AVAILABLEAREA built-in
function to determine whether the allocation you are about to make can be done in the area without
raising the AREA condition. Also, the ON-unit can write out the area and reset it to EMPTY.

Area assignment

Chapter 9. Storage control 257

Input/output of areas
Areas allow input and output of complete lists of based variables as one unit, to and from RECORD files.

On output, the area extent, together with the 16 bytes of control information, is transmitted, except when
the area is in a structure or union and is not the last item in it. Then, the declared size is transmitted. Thus
the unused part of an area does not take up space on the data set.

Because the extents of areas can vary, varying length records should be used. The maximum record
length required is governed by the area length (area size + 16).

List processing
List processing is the name for a number of techniques to help manipulate collections of data. Although
arrays, structures, and unions are also used for manipulating collections of data, list processing
techniques are more flexible because they allow collections of data to be indefinitely reordered and
extended during program execution.

The purpose here is not to illustrate these techniques but is to show how based variables and locator
variables serve as a basis for this type of processing.

In list processing, a number of based variables with many generations can be included in a list. Members
of the list are linked together by one or more pointers in one member identifying the location of other
members or lists. The allocation of a based variable cannot specify where in main storage the variable is
to be allocated (except that you can specify the area in which you want it allocated). In practice, a chain of
items can be scattered throughout main storage, but by accessing each pointer the next member is found.
A member of a list is usually a structure or union that includes a pointer variable. The following example
creates a list of structures:

 dcl 1 STR based(H),
 2 P pointer,
 2 data,
 T pointer;

 allocate STR;
 T=H;

 do loop;
 allocate STR set(T->P);
 T=T->P;
 T->P=null;
 .
 .
 .
 end;

The structures are generations of STR and are linked by the pointer variable P in each generation. The
pointer variable T identifies the previous generation during the creation of the list. The first ALLOCATE
statement sets the pointer H to identify it. The pointer H identifies the start, or head, of the list. The
second ALLOCATE statement sets the pointer P in the previous generation to identify the location of this
new generation. The assignment statement T=T->P; updates pointer T to identify the location of the new
generation. The assignment statement T->P=NULL; sets the pointer in the last generation to NULL, giving
a positive indication of the end of the list.

Figure 13 on page 259 shows a diagrammatic representation of a one-directional chain.

Input/output of areas

258 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Figure 13. Example of one-directional chain

Unless the value of P in each generation is assigned to a separate pointer variable for each generation,
the generations of STR can be accessed only in the order in which the list was created. For the above
example, the following statements can be used to access each generation in turn:

 do T=H
 repeat(T->P)
 while (T¬=null);
 .
 .
 .
 T->data;
 .
 .
 .
end;

The foregoing examples show a simple list processing technique, the creation of a unidirectional list. More
complex lists can be formed by adding other pointer variables into the structure or union. If a second
pointer is added, it can be made to point to the previous generation. The list is then bidirectional; from
any item in the list, the previous and next items can be accessed by using the appropriate pointer value.
Instead of setting the last pointer value to the value of NULL, it can be set to point to the first item in the
list, creating a ring or circular list.

A list need not consist only of generations of a single based variable. Generations of different based
structure or unions can be included in a list by setting the appropriate pointer values. Items can be added
and deleted from a list by manipulating the values of pointers. A list can be restructured by manipulating
the pointers so that the processing of data in the list can be simplified.

ASSIGNABLE and NONASSIGNABLE attributes
The ASSIGNABLE and NONASSIGNABLE attributes specify whether the associated variable can be the
target of an assignment.

ASSIGNABLE

NONASSIGNABLE

Abbreviations: ASGN, NONASGN

Default: ASSIGNABLE

If a variable has the NONASSIGNABLE attribute, the variable cannot be assigned.

If an entry descriptor has the NONASSIGNABLE attribute, the argument is assumed not to change when
the associated ENTRY is invoked. If the argument is a constant, no dummy argument is created.

The ASSIGNABLE and NONASSIGNABLE attributes are propagated to members of structures or unions.

Passing a variable that has the NONASSIGNABLE attribute as an argument to an entry when the
corresponding parameter has the ASSIGNABLE attribute allows the variable to be modified which would
make the code invalid. For example, the following code could lead to a protection exception:

 call test(17);

ASSIGNABLE and NONASSIGNABLE

Chapter 9. Storage control 259

 test: proc(x);
 dcl x fixed bin(31) NONASSIGNABLE;
 dcl e ext entry(ASSIGNABLE fixed bin(31));
 call e(x);
 end;

NORMAL and ABNORMAL attributes
The NORMAL and ABNORMAL attributes specify whether the associated variable is subject to change at
any time.

The ABNORMAL attribute specifies that the value of the variable can change between statements or
within a statement. An abnormal variable is fetched from or stored in storage each time it is needed or
each time it is changed. All optimization is inhibited for an abnormal variable.

NORMAL

ABNORMAL

Default: NORMAL

The NORMAL and ABNORMAL attributes are propagated to members of structures or unions.

If the ABNORMAL attribute applies to an INTERNAL STATIC variable with an INITIAL value, the variable
(with its initial value) will appear in the generated object code even if the variable is otherwise unused.

BIGENDIAN and LITTLEENDIAN attributes
The BIGENDIAN and LITTLEENDIAN attributes specify whether the associated variable is stored with the
most or least significant digits first. The BIGENDIAN and LITTLEENDIAN attributes are ignored except
for FIXED BINARY, ORDINAL, OFFSET, POINTER, and AREA variables, VARYING and VARYING4 string
variables.

BIGENDIAN

LITTLEENDIAN

Default: BIGENDIAN except on Intel where the default is LITTLEENDIAN

BIGENDIAN
Indicates that the variable (for varying strings, the length prefix part of the variable) is stored with its
most significant bytes first. This format is the native style for z/OS and RS/6000.

LITTLEENDIAN
Indicates that the variable is stored in the opposite format: with its least significant bytes first. This
format is the native style for Windows.

When the LITTLEENDIAN or BIGENDIAN attribute is applied to an AREA, it affects only the format in
which the control values managed by the compiler and library are held. It has no effect on user variables
stored in the AREA or on user offset variables used to point to the user variables in the AREA.

The following example illustrates how BIGENDIAN and LITTLEENDIAN variables are stored.

Assume that X and Y are declared as follows:

 dcl X fixed bin(15) bigendian;
 dcl Y fixed bin(15) littleendian;

 X = 258;
 Y = 258;

NORMAL and ABNORMAL

260 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The HEXIMAGE built-in function shows how X and Y are actually stored.

 display(heximage(addr(X), stg(X))); /* displays 0102 */
 display(heximage(addr(Y), stg(Y))); /* displays 0201 */

In contrast, the HEX built-in function shows the storage representation for X and Y.

 display (hex(X)); /* displays 0102 */
 display (hex(Y)); /* displays 0102 */

BIGENDIAN and LITTLEENDIAN have no effect on the semantics of any operations, or on the storage
requirements for any variables.

The BIGENDIAN and LITTLEENDIAN attributes are propagated to members of structures or unions.

For more information about using BIGENDIAN and LITTLEENDIAN, refer to the Programming Guide.

The NATIVE and NONNATIVE attributes are synonyms for BIGENDIAN and LITTLEENDIAN, but their
meanings can vary across different systems:

• On z/OS and RS/600, NATIVE means BIGENDIAN.
• On Windows, NATIVE means LITTLEENDIAN.

HEXADEC and IEEE attributes
The HEXADEC and IEEE attributes specify whether the associated variable is stored using the IBM
hexadecimal floating point format or using the IEEE format. The HEXADEC and IEEE attributes are ignored
except for floating-point variables.

IEEE

HEXADEC

Default: IEEE except on z/OS where the default is HEXADEC

HEXADEC
Indicates that the variable is stored in hexadecimal (z/OS) format.

IEEE
Indicates that the variable is stored using the IEEE format.

The HEXADEC and IEEE suboptions of the DEFAULT compiler option can be used to change the default for
this attribute.

On the Windows and AIX platforms, all computations are done using IEEE floating-point; variables
declared HEXADEC will be converted to IEEE as necessary.

On the z/OS platform, floating-point computations can be done using one of 3 sets of floating-point
instructions:

• IBM hexadecimal floating-point
• IEEE binary floating-point
• IEEE decimal floating-point

On the z/OS platform, the choice of which set of instructions is used for a float calculation is determined
by two compiler options:

• Under FLOAT(DFP)

– All computations that would yield a FLOAT DEC result are done using the IEEE decimal floating-point
instructions.

– All computations that would yield a FLOAT BIN result are done using the floating-point instructions
for the format specified by the HEXADEC and IEEE suboptions of the DEFAULT compiler option.

HEXADEC and IEEE

Chapter 9. Storage control 261

• Under FLOAT(NODFP)

– All computations that would yield a FLOAT result are done using the floating-point instructions for the
format specified by the HEXADEC and IEEE suboptions of the DEFAULT compiler option.

So, under the FLOAT(NODFP) and DEFAULT(HEXADEC) options, all computations are done using the
hexadecimal floating-point instructions, and variables declared IEEE will be converted to HEXADEC. But,
under the FLOAT(NODFP) and DEFAULT(IEEE) options, all computations are done using the IEEE binary
floating-point instructions, and variables declared HEXADEC will be converted to IEEE as necessary.

Under the FLOAT(DFP) compiler option, the IEEE and HEXADEC attributes are valid only for FLOAT BIN,
and the DEFAULT(IEEE/HEXADEC) option will be applied only to FLOAT BIN.

CONNECTED and NONCONNECTED attributes
The CONNECTED attribute specifies that a parameter is a reference to connected storage only. The
NONCONNECTED attribute allows a parameter to occupy noncontiguous as well as contiguous storage.

Elements, arrays, and major structure or unions are always allocated in connected storage. References
to unconnected storage arise only when you refer to an aggregate that is made up of noncontiguous
items from a larger aggregate. (See “Cross sections of arrays” on page 176.) For example, in the following
structure, the interleaved arrays A.B and A.C are both in unconnected storage.

 1 A(10),
 2 B,
 2 C;

NONCONNECTED

CONNECTED

Abbreviations: CONN, NONCONN

Default: NONCONNECTED

The CONNECTED attribute is applicable only to noncontrolled aggregate parameters and can be specified
only on level-1 names. It specifies that the parameter is a reference to connected storage only, and
therefore, allows the parameter to be used as a target or source in record-oriented I/O, or as a base in
string overlay defining. When the parameter is connected and the CONNECTED attribute is used, more
efficient object code is produced for references to the connected parameter.

NONCONNECTED should be specified if a parameter occupies noncontiguous storage. In the following
example, the NONCONNECTED attribute specifies that the sum_Slice routine handles 1-dimensional
arrays in which the elements may not be contiguous. In the first invocation, sum_Slice is passed the
first row, which is in connected storage. In the second invocation, however, sum_Slice is passed the first
column, which is in nonconnected storage.

 dcl A(10,10) fixed bin(31);

 display(sum_Slice(A(1,*))); /* first row */
 display(sum_Slice(A(*,1))); /* first column */

 sum_Slice:proc(X) returns(fixed bin(31));

 dcl X (*) fixed bin(31) nonconnected; /* default */
 return(sum(X));
 end;

CONNECTED and NONCONNECTED

262 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

DEFINED and POSITION attributes
The DEFINED attribute specifies that the declared variable is associated with some or all of the storage
associated with the designated base variable.

The UNION attribute allows you to achieve the same end in a much cleaner manner and also allows
variables with different attributes and precisions to be overlaid. Also, while the DEFINED attribute
guarantees that access through defined or base variables is reflected in all defined variables, in a union
only one member of the union is valid at any given time. For syntax information for the UNION attribute,
see “UNION attribute” on page 178.

DEFINED reference

( reference) POSITION( expression)

Abbreviations: DEF for DEFINED, POS for POSITION

reference
To the variable (the base variable) whose storage is associated with the declared variable; the latter
is the defined variable. The base variable can be EXTERNAL or INTERNAL. It can be a parameter
(in string overlay defining, the parameter must refer to connected storage). It cannot be BASED or
DEFINED. A change to the base variable's value is a corresponding change to the value of the defined
variable, and vice versa.

If the base variable is a data aggregate, a defined variable can comprise all the data or only a specified
part of it.

The defined variable does not inherit any attributes from the base variable. The defined variable must be
INTERNAL and a level-1 identifier. It can have the dimension attribute. It cannot be INITIAL, AUTOMATIC,
BASED, CONTROLLED, STATIC, or a parameter.

There are three types of defining: simple, iSUB, and string overlay.

The type of defining in effect is determined as follows:

1. If the POSITION attribute is specified, string overlay defining is in effect.
2. If the subscripts specified in the base variable contain references to iSUB variables, iSUB defining is in

effect.
3. If neither an iSUB variable nor the POSITION attribute is present and if the base variable and defined

variable match according to the criteria given below, simple defining is in effect.
4. Otherwise, string overlay defining is in effect.

If the POSITION attribute is specified, the base variable must not contain iSUB references.

A base variable and a defined variable match if the base variable when passed as an argument matches
a parameter that has the attributes of the defined variable (except for the DEFINED attribute). For this
purpose, the parameter is assumed to have all array bounds, string lengths, and area sizes specified by
asterisks.

For simple defining and iSUB defining, a PICTURE attribute can only be matched by a PICTURE attribute
that is identical except for repetition factors. For a reference to specify a valid base variable in string
overlay defining, the reference must be in connected storage. You can override the matching rule
completely, but this can cause unwanted side effects within your program.

The values specified or derived for any array bounds, string lengths, or area sizes in a defined variable do
not always have to match those of the base variable. However, the defined variable must be able to fit into
the corresponding base array, string, or area.

In references to defined data, the STRINGRANGE, SUBSCRIPTRANGE, and STRINGSIZE conditions are
raised for the array bounds and string lengths of the defined variable, not the base variable.

The determination of values and the interpretation of names occurs in the following sequence:

DEFINED and POSITION

Chapter 9. Storage control 263

1. The array bounds, string lengths, and area sizes of a defined variable are evaluated on entry to the
block that declares the variable.

2. A reference to a defined variable is a reference to the current generation of the base variable. When a
defined variable is passed as an argument without creation of a dummy, the corresponding parameter
refers to the generation of the base variable that is current when the argument is passed. This remains
true even if the base variable is reallocated within the invoked procedure.

3. When a reference is made to the defined variable, the order of evaluation of the subscripts of the base
and defined variable is undefined.

If the defined variable is a structure or union containing any elements that are unaligned nonvarying BIT,
all array bounds and string lengths in the defined variable must be specified as constants.

If the defined variable has the BIT attribute, unpredictable results can occur under the following
conditions:

• The base variable is not on a byte boundary.
• The defined variable is not defined on the first position of the base variable, and the defined variable is

used as follows:

– A parameter in a subroutine call (that is, referenced as internally stored data)
– An argument in a PUT statement
– An argument in a built-in function (library call)
– If the base variable is controlled, and the defined variable is dimensioned and is declared with

variable array bounds.
• If the defined variable consists entirely of unaligned nonvarying bit strings, the array bounds, string

lengths, and area sizes of the defined variable must be known at compile time.

Unconnected storage
The DEFINED attribute can overlay arrays. This allows array expressions to refer to array elements in
unconnected storage (array elements that are not adjacent in storage).

It is possible for an array expression involving consecutive elements to refer to unconnected storage in
the following case:

• Where a string array is defined on a string array that has elements of greater length. Consecutive
elements in the defined array are separated by the difference between the lengths of the elements of
the base and defined arrays, and are held in unconnected storage.

An array overlay-defined on another array is always assumed to be in unconnected storage.

Simple defining
Simple defining allows you to refer to an element, array, or structure variable by another name.

Simple defining is supported only for scalars, for structures with constant extents matching those in the
base variable, and for arrays of such scalars and structures if they are not based on controlled variables.

The defined and base variables can comprise any data type, but they must match. The ALIGNED and
UNALIGNED attributes must match for each element in the defined variable and the corresponding
element in the base variable.

The defined variable can have the dimension attribute.

In simple defining of an array, the following conditions apply:

• The base variable can be a cross-section of an array.
• The number of dimensions specified for the defined variable must be equal to the number of

dimensions specified for the base variable.
• The range specified by a bound pair of the defined array must be equal to or contained within the range
specified by the corresponding bound pair of the base array.

DEFINED and POSITION

264 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

In simple defining of a string, the length of the defined string must be less than or equal to the length of
the base string.

In simple defining of an area, the size of the defined area must be equal to the size of the base area.

A base variable can be, or can contain, a varying string, provided that the corresponding part of the
defined variable is a varying string of the same maximum length.

Examples

DCL A(10,10,10),
 X1(2,2,2) DEF A,
 X2(10,10) DEF A(*,*,5),
 X3 DEF A(L,M,N);

X1 is a three-dimensional array that consists of the first two elements of each row, column and plane of
A. X2 is a two-dimensional array that consists of the fifth plane of A. X3 is an element that consists of the
element identified by the subscript expressions L, M, and N.

DCL B CHAR(10),
 Y CHAR(5) DEF B;

Y is a character string that consists of the first 5 characters of B.

DCL C AREA(500),
 Z AREA(500) DEF C;

Z is an area defined on C.

DCL 1 D UNALIGNED,
 2 E,
 2 F,
 3 G CHAR(10) VAR,
 3 H,
 1 S UNALIGNED DEF D,
 2 T,
 2 U,
 3 V CHAR(10) VAR,
 3 W;

S is a structure defined on D. For simple defining, the organization of the two structures must be identical.
A reference to T is a reference to E, V to G, and so on.

iSUB Defining
With iSUB defining, you can create a defined array that consists of designated elements from a base array.

The defined and base arrays must be arrays of scalars, can comprise any data types, and must have
identical attributes (apart from the dimension attribute).

The defined variable must have the dimension attribute. In the declaration of the defined array, the base
array must be subscripted, and the subscript positions cannot be specified as asterisks.

An iSUB variable is a reference, in the subscript list for the base array, to the dimension of the defined
array. At least one subscript in the base array's subscript-list must be an iSUB expression that, on
evaluation, gives the required subscript in the base array. The value of i ranges from 1 to n, where n is the
number of dimensions in the defined array. The number of subscripts for the base array must be equal to
the number of dimensions for the base array.

If a reference to a defined array does not specify a subscript expression, subscript evaluation occurs
during the evaluation of the expression or assignment in which the reference occurs.

The value of i is specified as an integer. Within an iSUB expression, an iSUB variable is treated as REAL
FIXED BINARY(31,0) variable.

A subscript in a reference to a defined variable is evaluated even if there is no corresponding iSUB in the
base variable's subscript list.

DEFINED and POSITION

Chapter 9. Storage control 265

An iSUB-defined variable must not appear in the data-list of a GET DATA or PUT DATA statement.

Examples

DCL A(10,10) FIXED BIN
 X(10) FIXED BIN DEF(A(1SUB,1SUB));

X is a one-dimensional array that consists of the diagonal of A: X(i) refers to the same storage as A(i,i).

DCL B(5,10) FIXED BIN
 Y(10,5) FIXED BIN DEF(A(2SUB,1SUB));

Y is a two-dimensional array that consists of the elements of B with the bounds transposed: Y(i,j) refers to
the same storage as X(j,i).

String Overlay Defining
String overlay defining allows you to associate a defined variable with the storage for a base variable. Both
the defined and the base variable must be string or picture data.

Neither the defined nor the base variable can have the ALIGNED, VARYING, or VARYING4 attributes.

Both the defined and the base variables must belong to any of the following class:

• The bit class, which consists of the following variables:

Fixed-length bit variables
Aggregates of fixed-length bit variables

• The character class, which consists of the following variables:

Fixed-length character variables
Character pictured and numeric pictured variables
Aggregates of the two above

• The graphic class, which consists of the following variables:

Fixed-length graphic variables
Aggregates of fixed-length graphic variables

• The uchar class, which consists of the following variables:

Fixed-length uchar variables
Aggregates of fixed-length uchar variables

• The widechar class, which consists of the following variables:

Fixed-length widechar variables
Aggregates of fixed-length widechar variables

Examples

DCL A CHAR(100),
 V(10,10) CHAR(1) DEF A;

V is a two-dimensional array that consists of all the elements in the character string A.

DCL B(10) CHAR(1),
 W CHAR(10) DEF B;

W is a character string that consists of all the elements in the array B.

DEFINED and POSITION

266 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

POSITION attribute
The POSITION attribute can be used only with string-overlay defining and specifies the character, bit,
graphic, uchar, or widechar within the base variable at which the defined variable is to begin.

The expression in the POSITION attribute specifies the position relative to the start of the base variable.
The value specified in the expression can range from 1 to n, where n is defined as follows:

n = N(b) - N(d) + 1

where N(b) is the number of characters, bits, graphics, uchars, or widechars in the base variable, and N(d)
is the number of characters, bits, graphics, uchars, or widechars in the defined variable.

The expression is evaluated and converted to an integer value at each reference to the defined item.

If the POSITION attribute is omitted, POSITION(1) is the default.

When the defined variable is a bit class aggregate, the POSITION attribute can contain only an integer,
and the base variable must not be subscripted.

The base variable must refer to data in connected storage.

Examples

DCL C(10,10) BIT(1),
 X BIT(40) DEF C POS(20);

X is a bit string that consists of 40 elements of C, starting at the 20th element.

DCL E PIC'99V.999',
 Z1(6) CHAR(1) DEF (E),
 Z2 CHAR(3) DEF (E) POS(4),
 Z3(4) CHAR(1) DEF (E) POS(2);

Z1 is a character string array that consists of all the elements of the decimal numeric picture E. Z2 is a
character string that consists of the elements '999' of the picture E. Z3 is a character-string array that
consists of the elements '9.99' of the picture E.

DCL A(20) CHAR(10),
 B(10) CHAR(5) DEF (A) POSITION(1);

The first 50 characters of B consist of the first 50 characters of A. POSITION(1) must be explicitly
specified. Otherwise, simple defining is used and gives different results.

INITIAL attribute
The INITIAL attribute specifies an initial value or values assigned to a variable at the time storage is
allocated for it.

Only one initial value can be specified for an element variable. More than one can be specified for an
array variable. A union variable can be initialized only by separate initialization of its elementary names,
whether they are element or array variables. A variable that has a defined structure type can be initialized
by using the VALUE type function together with the INITIAL attribute. The INITIAL attribute cannot be
given to constants, defined data, noncontrolled parameters, and non-LIMITED static entry variables.

The INITIAL attribute has the following forms:

1. The first form, INITIAL, specifies an initial constant, expression, or function reference, for which the
value is assigned to a variable when storage is allocated to it.

2. The second form, INITIAL CALL, specifies (with the CALL option) that a procedure is invoked to
perform initialization. The variable is initialized by assignment during the execution of the called
routine. (The routine is not invoked as a function that returns a value to the point of invocation.)

DEFINED and POSITION

Chapter 9. Storage control 267

3. The third form, INITIAL TO, specifies that the pointer (or array of pointers) is initialized with the
address of the string specified in the INITIAL LIST. The string also has the attributes indicated by the
TO keyword.

The INITIAL form is allowed on the elementary names of a DEFINE STRUCTURE statement, but the
INITIAL CALL and INITIAL TO forms are not allowed. For more information about initializing the typed
structure, see “VALUE” on page 592.

INITIAL (

,

item)

item
*

initial-constant

reference

( expression)

iteration-specification

iteration-specification
(iteration-factor

*

) iteration-item

iteration-item
*

initial-constant

reference

(

,

item)

initial-constant

 +
 -

arithmetic-constant

bit-constant

character-constant

graphic-constant

entry-constant

file-constant

label-constant

uchar-constant

wchar-constant

 +
 -

 real-constant +
 -

 imaginary-constant

DEFINED and POSITION

268 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

INITIAL CALL entry-reference

generic-name

built-in-name (

,

argument)

INITIAL TO (CHAR

UCHAR

WCHAR

varying

varying4

varyingz

nonvarying

varying

varying4

varyingz

nonvarying

CHAR

UCHAR

WCHAR

) (

,

item)

item
(see description under INITIAL)

INITACROSS (

,

(

,

expression))

Abbreviations: INIT, INIT CALL, INIT TO

*
Specifies that the element is to be left uninitialized, except when the element is used as an iteration
factor.

iteration factor
Specifies the number of times the iteration item is to be repeated in the initialization of elements of an
array.

The iteration factor can be an expression or an asterisk.

• An expression is converted to FIXED BINARY(31). For static variables, it must be a constant.
• An asterisk indicates that the remaining elements should be initialized to the specified value.

The use of an asterisk for both the iteration factor and the initial value is not allowed.

A negative or zero iteration factor specifies no initialization.

constant
reference
expression

These specify an initial value to be assigned to the initialized variable.

DEFINED and POSITION

Chapter 9. Storage control 269

INITIAL CALL
For INITIAL CALL, the entry reference and argument list passed must satisfy the condition stated for
block activation as discussed under “Block activation” on page 91.

INITIAL CALL cannot be used to initialize static data.

The following example initializes all of the elements of A to '00'X without the need for the INITIAL
attribute on each element:

 dcl 1 A automatic,
 2 …,
 2 …,
 2 * char(0) initial call plifill(addr(A), '00'X, stg(A));

An AUTOMATIC variable that has an INITIAL CALL attribute will be retained even if otherwise unused (in
case the logic of your program requires that the call to be executed).

If the procedure invoked by the INITIAL CALL statement has been specified in a FETCH or RELEASE
statement and it is not present in main storage, the INITIAL CALL statement initiates dynamic loading
of the procedure. (For more information about dynamic loading, see “Dynamic loading of an external
procedure” on page 102.)

INITIAL TO
Use only with static native pointers. Specifies that the pointer (or array of pointers) is initialized with
the address of the string specified in the INITIAL LIST. Also specifies that the string has the attributes
indicated by the TO keyword.

In the following example, pdays is initialized with the addresses of character varyingz strings
containing the names of the weekdays.

 dcl pdays(7) static ptr init to(varyingz)
 ('Sunday',
 'Monday',
 'Tuesday',
 'Wednesday',
 'Thursday',
 'Friday',
 'Saturday');

You should not change a value identified by a pointer initialized with INITIAL TO. The value can be placed
in read-only storage and an attempt to change it could result in a protection exception. Given the array
pdays in the preceding example, the following assignment is illegal:

 dcl x char(30) varz based;

 pdays(1)->x = 'Sonntag';

INITACROSS

The INITACROSS attribute helps initialize one-dimensional arrays of structures where all the structure
members are scalars in a way that makes it easy to add or delete elements to those arrays. The
attribute specifies a series of comma lists of expressions where each comma list in turn specifies the
set of initial values for a structure element in the array.

For example, consider the declaration:

 dcl
 1 a(3)
 ,2 b char(2)
 init('DE', 'FR', 'SP')
 ,2 c char(40) var
 init('Germany', 'France', 'Spain')
 ;

Using INITACROSS, you can simplify this declare by writing it as:

 dcl
 1 a(3)

DEFINED and POSITION

270 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 initacross(('DE', 'Germany')
 ,('FE', 'France')
 ,('SP', 'Spain')
)
 ,2 b char(2)
 ,2 c char(40) var
 ;

Combined with DIMACROSS, it can become even easier to add elements to this declaration:

 dcl
 1 a(*) dimacross
 initacross(('DE', 'Germany')
 ,('FE', 'France')
 ,('SP', 'Spain')
)
 ,2 b char(2)
 ,2 c char(40) var
 ;

Restrictions:

• The INITACROSS and INITIAL attributes must not be specified for the same name.
• The INITACROSS attribute must be applied only to one-dimensional arrays of structures with no

inherited dimensions.
• The INITACROSS structure members must all be scalars without the INITIAL attribute (since the

INITACROSS attribute will give them an INITIAL attribute).
• The number of expressions in each comma list of expressions must match. The following is invalid.

 initacross(('DE', 'Germany', 'Berlin')
 ,('FR', 'France', 'Paris')
 ,('SP', 'Spain')
)

• The explicit member count for an INITACROSSS structure must match the implicit member count
defined by the number of elements in each of the INITACROSS comma lists. For example, in this
(invalid) declare, the explicit member count for the structure is 2 (since A has the members B and
C), but the implicit member count is 3 (since each expression comma list consists of 3 elements
such as 'DE','Germany', and 'Berlin').

 dcl
 1 a(3)
 initacross(('DE', 'Germany', 'Berlin')
 ,('FR', 'France', 'Paris')
 ,('SP', 'Spain', 'Madrid')
)
 ,2 b char(2)
 ,2 c char(40) var
 ;

Initializing array variables
Initial values specified for an array are assigned to successive elements of the array in row-major order
(final subscript varying most rapidly). If too many initial values are specified, the excess values are
ignored; if not enough are specified, the remainder of the array is not initialized.

The initialization of an array of strings can include both string repetition and iteration factors. Where only
one of these is given, it is taken to be a string repetition factor unless the string constant is placed in
parentheses.

The iteration factor can be specified as *, which means that all of the remaining elements will be initialized
with the given value.

The following examples illustrate the use of (and the difference between) string repetition and iteration
factors:

((2)'A') is equivalent to ('AA')
((2)('A')) is equivalent to ('A','A')

Initializing arrays

Chapter 9. Storage control 271

((2)(1)'A') is equivalent to ('A','A')
((*)(1)'A') is equivalent to ('A','A'…'A')

An area variable is initialized with the value of the EMPTY built-in function, on allocation. Any INITIAL
clause for an area variable will be ignored.

If the attributes of an item in the INITIAL attribute differ from those of the data item itself, conversion is
performed, provided that the attributes are compatible.

INITIAL is not allowed on objects of REFER clauses.

Initializing unions
The members of a union can have initial values. However, if the union is static, only one member of
the union can have the initial attribute. For nonstatic unions, initial attributes are applied in order of
appearance. Subsequent initial values overwrite previous ones.

In the following example, the declaration for NT1 would be invalid if it had the static storage attribute.

 dcl
 1 NT1 union automatic,
 2 Numeric_translate_table1 char(256)
 init((256)'00'X),
 2 *,
 3 * char(240),
 3 * char(10) init('0123456789'),
 2 * char(0);

 dcl
 1 NT2 union static,
 2 Numeric_translate_table2 char(256),
 2 *,
 3 * char(rank('0'))
 init((1)(low(rank('0')))),
 3 * char(10) init('0123456789'),
 3 * char((256-(rank('0'))-10))
 init((1)(low((256-(rank('0'))-10)))),

The declaration for NT2 is valid even though it has static storage class. Furthermore, the NT2 declaration
is portable between EBCDIC and ASCII modes of execution.

Initializing static variables
For a variable that is allocated when the program is loaded, that is, a static variable, which remains
allocated throughout execution of the program, any value specified in an INITIAL attribute is assigned
only once. (Static storage for fetched procedures is allocated and initialized each time the procedure is
loaded.)

If static variables are initialized by using the INITIAL attribute, the initial values must be specified as
restricted expressions. Extent specifications must be restricted expressions.

The restrictions on initializing static variables are as follows:

• STATIC ENTRY variables must have the LIMITED attribute.
• INITIAL is not allowed for static format variables.
• INITIAL is allowed for label variables that are not part of structures or unions with the following

restrictions. When INITIAL is used, the label variable gets the CONSTANT attribute.

– All initial values must be unsubscripted user statement labels.
– All initial values must be in the same block as the label declaration.
– If the label is an array, it must be completely initialized.

• INITIAL is not valid for AREA variables.
• Only one member of a static union can specify INITIAL.
• If a STATIC EXTERNAL item without the RESERVED attribute is given the INITIAL attribute in more than

one declaration, the value specified must be the same in every case.

Initializing unions

272 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Initializing automatic variables
For automatic variables, which are allocated at each activation of the declaring block, any specified initial
value is assigned with each allocation.

Initializing based and controlled variables
For based and controlled variables that are allocated at the execution of ALLOCATE statements (also
LOCATE statements for based variables), any specified initial value is assigned with each allocation.

When storage for based variables is allocated through the ALLOCATE or the AUTOMATIC built-in functions,
the initial values are not assigned; for area variables, the area is not implicitly initialized to EMPTY.

Examples
These examples illustrate how variables are initialized upon allocation.

In the following example, when storage is allocated for Name, the character constant 'John Doe'
(padded on the right to 10 characters) is assigned to it.

 dcl Name char(10) init('John Doe');

In the following example, when Pi is allocated, it is initialized to the value 3.1416.

 dcl Pi fixed dec(5,4) init(3.1416);

The following example specifies that A is to be initialized with the value of the expression B*C:

 declare A init((B*C));

The following example results in each of the first 920 elements of A being set to 0. The next 80 elements
consist of 20 repetitions of the sequence 5,5,5,9.

 declare A (100,10) initial
 ((920)0, (20) ((3)5,9));

In the following example, only the first, third, and fourth elements of A are initialized; the rest of the array
is not initialized. The array B is fully initialized, with the first 25 elements initialized to 0, the next 25 to
1, and the remaining elements to 0. In the structure C, where the dimension (8) has been inherited by D
and E, only the first element of D is initialized. All the elements of E are initialized.

 declare A(15) character(13) initial
 ('John Doe',
 *,
 'Richard Row',
 'Mary Smith'),

 B (10,10) decimal fixed(5)
 init((25)0,(25)1,(*)0),

 1 C(8),
 2 D initial (0),
 2 E initial((*)0);

When an array of structures or unions is declared with the LIKE attribute to obtain the same structuring as
a structure or union whose elements have been initialized, only the first structure or union is initialized.

In the following example only J(1).H and J(1).I are initialized in the array of structures.

 declare 1 G,
 2 H initial(0),
 2 I initial(0),
 1 J(8) like G;

Initializing Automatic Variables

Chapter 9. Storage control 273

Examples

274 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 10. Input and output
PL/I input and output statements (such as READ, WRITE, GET, PUT) let you transmit data between the
main and auxiliary storage of a computer.

A collection of data external to a program is called a data set. Transmission of data from a data set to a
program is called input. Transmission of data from a program to a data set is called output. (If you are
using a terminal, "data set" can also mean your terminal.)

PL/I input and output statements are concerned with the logical organization of a data set and not with
its physical characteristics. A program can be designed without specific knowledge of the input/output
devices that is used when the program is executed. To allow a source program to deal primarily with
the logical aspects of data rather than with its physical organization in a data set, PL/I employs models
of data sets, called files. A file can be associated with different data sets at different times during the
execution of a program.

PL/I uses two types of data transmission: stream and record.

Stream-oriented data transmission
The organization of the data in the data set is ignored within the program, and the data is treated as
though it were a continuous stream of individual data values in character form. Data is converted from
character form to internal form on input, and from internal form to character form on output.

Stream-oriented data transmission can be used for processing input data prepared in character form
and for producing readable output, where editing is required. Stream-oriented data transmission
allows synchronized communication with the program at run time from a terminal, if the program is
interactive.

Stream-oriented data transmission is more versatile than record-oriented data transmission in its
data-formatting abilities, but is less efficient in terms of run time.

Record-oriented data transmission
The data set is a collection of discrete records. The record on the external medium is generally
an exact copy of the record as it exists in internal storage. No data conversion takes place during
record-oriented data transmission. On input the data is transmitted exactly as it is recorded in the
data set, and on output it is transmitted exactly as it is recorded internally.

Record-oriented data transmission can be used for processing files that contain data in any
representation, such as binary, decimal, or character.

Record-oriented data transmission is more versatile than stream-oriented data transmission, in both
the manner in which data can be processed and the types of data sets that it can process. Because
data is recorded in a data set exactly as it appears in main storage, any data type is acceptable. No
conversions occur, but you must have a greater awareness of the data structure.

It is possible for the same data set to be processed at different times by either stream or record data
transmission. However, all items in the data set must be in character form.

The following topics discuss the kinds of data sets, the attributes for describing files, and how you open
and close files in order to transmit data. For more information about the types of data set organizations
that PL/I recognizes, refer to the Programming Guide.

Related information
“Stream-oriented data transmission” on page 297
This chapter describes the input and output statements used in stream-oriented data transmission.
“Record-oriented data transmission” on page 289

© Copyright IBM Corp. 1999, 2022 275

This chapter describes features of the input and output statements used in record-oriented data
transmission.

Data sets
In addition to being used as input from and output to your terminal, data sets are stored on a variety
of auxiliary storage media, including magnetic tape and direct-access storage devices (DASDs). Despite
their variety, these media have characteristics that allow common methods of collecting, storing, and
transmitting data. The organization of a data set determines how data is recorded in a data set and how
the data is subsequently retrieved so that it can be transmitted to the program.

Records are stored in and retrieved from a data set either sequentially on the basis of successive physical
or logical positions, or directly by the use of keys specified in data transmission statements.

PL/I supports the following types of data set organizations:

Consecutive
Indexed
Relative
Regional

The data set organizations differ in the way they store data and in the means they use to access data.

Consecutive
In the consecutive data set organization, records are organized solely on the basis of their successive
physical positions.

When the data set is created, records are written consecutively in the order in which they are presented.
The records can be retrieved only in the order in which they were written.

Indexed
In the indexed data set organization, records are placed in a logical sequence based on the key of each
record.

An indexed data set must reside on a direct-access device. A character string key identifies the record
and allows direct retrieval, replacement, addition, and deletion of records. Sequential processing is also
allowed.

Relative
In the relative data set organization, numbered records are placed in a position relative to each other.

The records are numbered in succession, beginning with one. A relative data set must reside on a direct-
access device. A key that specifies the record number identifies the record and allows direct retrieval,
replacement, addition, and deletion of records. Sequential processing is also allowed.

Regional
The regional data set organization is divided into numbered regions, each of which can contain one record.

The regions are numbered in succession, beginning with zero. A region can be accessed by specifying
its region number, and perhaps a key, in a data transmission statement. The key specifies the region
number and identifies the region to allow optimized direct retrieval, replacement, addition, and deletion of
records.

Data sets

276 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Files
To allow a source program to deal primarily with the logical aspects of data rather than with its physical
organization in a data set, PL/I employs models of data sets, called files.

These models determine how input and output statements access and process the associated data set.
Unlike a data set, a file data item has significance only within the source program and does not exist as a
physical entity external to the program.

A name that represents a file has the FILE attribute.

FILE attribute
The FILE attribute specifies that the associated name is a file constant or file variable.

FILE

The FILE attribute can be implied for a file constant by any of the file description attributes. A name
can be contextually declared as a file constant through its appearance in the FILE option of any input or
output statement, or in an ON statement for any input/output condition.

File constant
Each data set processed by a PL/I program must be associated with a file constant.

The individual characteristics of each file constant are described with file description attributes. These
attributes fall into two categories: alternative attributes and additive attributes.

An alternative attribute is one that is chosen from a group of attributes. If no explicit or implied attribute is
given for one of the alternatives in a group and if one of the alternatives is required, a default attribute is
used.

Table 43 on page 277 lists the PL/I alternative file attributes.

Table 43. Alternative file attributes

Group type Alternative attributes Default attribute

Usage STREAM or RECORD STREAM

Function INPUT or OUTPUT or UPDATE INPUT

Access SEQUENTIAL or DIRECT SEQUENTIAL

Buffering BUFFERED or UNBUFFERED BUFFERED (for SEQUENTIAL files)

UNBUFFERED (for DIRECT files)

Scope EXTERNAL or INTERNAL EXTERNAL

An additive attribute is one that must be stated explicitly or is implied by another explicitly stated
attribute. The additive attributes are ENVIRONMENT, KEYED, and PRINT. The additive attribute KEYED
is implied by the DIRECT attribute. The additive attribute PRINT can be implied by the output file name
SYSPRINT.

Table 44 on page 277 shows the attributes that apply to each type of data transmission.

Table 44. Attributes by data transmission type

Type of transmission Attribute

Stream-oriented ENVIRONMENT

 INPUT and OUTPUT

File constant

Chapter 10. Input and output 277

Table 44. Attributes by data transmission type (continued)

Type of transmission Attribute

 PRINT

 STREAM

Record-oriented BUFFERED and UNBUFFERED

 DIRECT and SEQUENTIAL

 ENVIRONMENT

 INPUT, OUTPUT, and UPDATE

 KEYED

 RECORD

Table 45 on page 278 shows the valid combinations of file attributes.

Table 45. Attributes of PL/I file declarations

File
Type

S
T
R
E
A
M

RECORD

Legend:
I

Must be specified or implied
D

Default
O

Optional
S

Must be specified
-

Invalid

SEQUENTIAL
DIRECT

Data
Set

Organization

C
o
n
s
e
c
u
t
i
v
e

C
o
n
s
e
c
u
t
i
v
e

R
e
l
a
t
i
v
e

I
n
d
e
x
e
d

R
e
l
a
t
i
v
e

I
n
d
e
x
e
d

File Attributes Attributes Implied

FILE I I I I I I

INPUT1 D D D D D D FILE

OUTPUT O O O O O O FILE

ENVIRONMENT O O O O O O FILE

STREAM D - - - - - FILE

PRINT1 O - - - - - FILE STREAM OUTPUT

File constant

278 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 45. Attributes of PL/I file declarations (continued)

File
Type

S
T
R
E
A
M

RECORD

Legend:
I

Must be specified or implied
D

Default
O

Optional
S

Must be specified
-

Invalid

SEQUENTIAL
DIRECT

Data
Set

Organization

C
o
n
s
e
c
u
t
i
v
e

C
o
n
s
e
c
u
t
i
v
e

R
e
l
a
t
i
v
e

I
n
d
e
x
e
d

R
e
l
a
t
i
v
e

I
n
d
e
x
e
d

RECORD - I I I I I FILE

UPDATE2 - O O O O O FILE RECORD

SEQUENTIAL - D D D - - FILE RECORD

KEYED3 - - O O I I FILE RECORD

DIRECT - - - - S S FILE RECORD KEYED

Notes:
1 A file with the INPUT attribute cannot have the PRINT attribute
2 UPDATE is invalid for tape files.
3 KEYED is required for indexed and relative output

Scope is discussed in “Scope of declarations” on page 152.

The FILE attribute can be implied for a file constant by any of the file description attributes discussed in
this chapter. A name can be contextually declared as a file constant through its appearance in the FILE
option of any input or output statement, or in an ON statement for any input/output condition.

In the following example, the name Sample is declared as a file constant:

 declare Sample file;

File variable
A file variable has the attributes FILE and VARIABLE. It cannot have any of the file constant description
attributes. File constants can be assigned to file variables. After assignment, a reference to the file
variable has the same significance as a reference to the assigned file constant.

The value of a file variable can be transmitted by record-oriented transmission statements. The value of
the file variable on the data set might not be valid after transmission.

File variable

Chapter 10. Input and output 279

The VARIABLE attribute is implied under the circumstances described in “VARIABLE attribute” on page
46.

In the following declaration, Account is declared as a file variable, and Acct1 and Acct2 are declared as
file constants. The file constants can subsequently be assigned to the file variable.

 declare Account file variable,
 Acct1 file,
 Acc2 file;

For syntax information, see “VARIABLE attribute” on page 46.

Specifying a file reference
A file reference can be a file constant, a file variable, or a function reference that returns a value with the
FILE attribute.

A file reference can be used in the following ways:

• In a FILE or COPY option
• As an argument to be passed to a function or subroutine
• To qualify an input/output condition for ON, SIGNAL, and REVERT statements
• As the expression in a RETURN statement.

On-units can be established for a file constant through a file variable that represents its value (see
“ON-units for file variables” on page 345). In the following example, the statements labelled L1 and L2
both specify null ON-units for the same file.

 dcl F file,
 G file variable;
 G=F;
 L1: on endfile(G);
 L2: on endfile(F);

RECORD and STREAM attributes
The RECORD and STREAM usage attributes specify the kind of data transmission used for the file.

STREAM

RECORD

Default: STREAM

RECORD
Indicates that the file consists of a collection of physically separate records, each of which consists of
one or more data items in any form. Each record is transmitted as an entity to or from a variable.

A file with the RECORD attribute can be specified only in the FILE option of the OPEN, CLOSE, READ,
WRITE, REWRITE, LOCATE, and DELETE input/output statements.

STREAM
Indicates that the data of the file is a continuous stream of data items, in character form, assigned
from the stream to variables, or from expressions into the stream.

A file with the STREAM attribute can be specified only in the FILE option of the OPEN, CLOSE, GET, and
PUT input/output statements.

RECORD and STREAM

280 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

INPUT, OUTPUT, and UPDATE attributes
The INPUT, OUTPUT, and UPDATE function attributes specify the direction of data transmission allowed
for a file.

INPUT

OUTPUT

UPDATE

Default: INPUT

INPUT
Specifies that data is transmitted from a data set to the program.

OUTPUT
Specifies that data is transmitted from the program to a data set, either to create a new data set or to
extend an existing one.

UPDATE
Specifies that the data can be transmitted in either direction. The UPDATE attribute applies to
RECORD files only. A declaration of UPDATE for a SEQUENTIAL file indicates the update-in-place
mode.

SEQUENTIAL and DIRECT attributes
The SEQUENTIAL and DIRECT access attributes apply only to RECORD files, and specify how the records
in the file are accessed.

SEQUENTIAL

DIRECT

Abbreviation: SEQL for SEQUENTIAL

Default: SEQUENTIAL

DIRECT
Specifies that records in a data set are directly accessed. The location of the record in the data set
is determined by a character-string key. Therefore, the DIRECT attribute implies the KEYED attribute.
The associated data set must be on a direct-access storage device.

SEQUENTIAL
Specifies that records in a consecutive or relative data set are accessed in physical sequence, and that
records in an indexed data set are accessed in key sequence order. For certain data set organizations,
a file with the SEQUENTIAL attribute can also be used for direct access or for a mixture of random and
sequential access. In this case, the file must have the additive attribute KEYED. Existing records of a
data set in a SEQUENTIAL UPDATE file can be modified, ignored, or, if the data set is indexed, deleted.

INPUT, OUTPUT, and UPDATE

Chapter 10. Input and output 281

BUFFERED and UNBUFFERED attributes
The buffering attributes apply only to RECORD files and specify whether during transmission each record
must pass through intermediate storage buffers or can be transmitted directly.

BUFFERED

UNBUFFERED

Abbreviations: BUF for BUFFERED, and UNBUF for UNBUFFERED

Defaults: BUFFERED is the default for SEQUENTIAL files. UNBUFFERED is the default for DIRECT files.

BUFFERED
Specifies that during transmission to and from a data set, each record of a RECORD file must pass
through intermediate storage buffers. This allows both move and locate mode processing.

UNBUFFERED
Indicates that a record in a data set need not pass through a buffer but can be transmitted directly to
and from the main storage associated with a variable. This allows only move mode processing.

ENVIRONMENT attribute
The characteristic list of the ENVIRONMENT attribute specifies various data set characteristics that are
not part of PL/I.

For a full list and description of the characteristics and their uses, refer to the Programming Guide.

Note: Because the characteristics are not part of the PL/I language, using them in a file declaration can
limit the portability of your application program.

KEYED attribute
The KEYED attribute applies only to RECORD files, and must be associated with indexed and relative data
sets. It specifies that records in the file can be accessed using one of the key options (KEY, KEYTO, or
KEYFROM) of record I/O statements.

KEYED

The KEYED attribute need not be specified unless one of the key options is used.

PRINT attribute
The PRINT attribute applies to files with the STREAM and OUTPUT attributes. It indicates that the file is
intended to be printed; that is, the data associated with the file is to appear on printed pages, although it
can first be written on some other medium.

For details, see “PRINT attribute” on page 314.

Opening and closing files
Before a file can be used for data transmission, by input or output statements, it must be associated with
a data set. Opening a file associates the file with a data set and involves checking for the availability
of external media, positioning the media, and allocating required operating system support. When
processing is completed, the file must be closed. Closing a file dissociates the file from the data set.

PL/I provides two statements, OPEN and CLOSE, to perform these functions. However, use of these
statements is optional. If an OPEN statement is not executed for a file, the file is opened implicitly

BUFFERED and UNBUFFERED

282 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

during the execution of first data transmission statement for that file. In this case, the file opening
uses information about the file as specified in a DECLARE statement (and defaults derived from the
transmission statement). Similarly, if a file has not been closed before PL/I termination, PL/I will close it
during the termination process.

When a file for stream input, sequential input, or sequential update is opened, the associated data set is
positioned at the first record.

OPEN statement
The OPEN statement associates a file with a data set. It merges attributes specified on the OPEN
statement with those specified on the DECLARE statement. It also completes the specification of
attributes for the file, if a complete set of attributes has not been declared for the file being opened.

OPEN

,

options-group ;

options-group

FILE( file-reference)
STREAM

RECORD

INPUT

OUTPUT

UPDATE

SEQUENTIAL
BUFFERED

UNBUFFERED

DIRECT
UNBUFFERED

BUFFERED

KEYED PRINT

TITLE( expression) LINESIZE( expression) PAGESIZE( expression)

The options of the OPEN statement can appear in any order.

FILE
Specifies the name of the file that is associated with a data set.

STREAM, RECORD,
INPUT, OUTPUT, UPDATE,
DIRECT, SEQUENTIAL,
BUFFERED, UNBUFFERED,
KEYED, and PRINT

These options specify attributes that augment the attributes specified in the file declaration. The
same attributes need not be listed in both OPEN and DECLARE statements for the same file. For a list
of attributes for record and stream input and output, see Table 44 on page 277.

When a STREAM file is opened, the first GET or PUT statement can specify, with a statement option
or format item, the first record to be accessed. The statement option or format item indicates that n
lines are skipped before a record is accessed. The file is then positioned at the start of the nth record.
If no statement option or format item is encountered, the initial file position is the start of the first line

OPEN

Chapter 10. Input and output 283

or record. If the file has the PRINT attribute, it is physically positioned at column 1 of the first line or
record.

Opening a file that is already open does not affect the file.

TITLE
The content of expression determines what is being designated. For more information about the TITLE
attribute, refer to the Programming Guide.

LINESIZE
Converted to an integer value, specifies the length in bytes of a line during subsequent operations on
the file. New lines can be started by use of the printing and control format items or by options in a GET
or PUT statement. If an attempt is made to position a file past the end of a line before explicit action
to start a new line is taken, a new line is started, and the file is positioned to the start of this new line.
The default line size for PRINT file is 120.

The LINESIZE option can be specified only for a STREAM OUTPUT file. The value of the expression
must be smaller than 2G.

PAGESIZE
Is evaluated and converted to an integer value, and specifies the number of lines per page. The first
attempt to exceed this limit raises the ENDPAGE condition. During subsequent transmission to the
PRINT file, a new page can be started by use of the PAGE format item or by the PAGE option in the
PUT statement. The default page size is 60.

The PAGESIZE option can be specified only for a file having the PRINT attribute. The value of the
expression must be smaller than 2G.

Implicit opening
An implicit opening of a file occurs when a GET, PUT, READ, WRITE, LOCATE, REWRITE, or DELETE
statement is executed for a file for which an OPEN statement has not already been executed.

If a GET statement contains a COPY option, execution of the GET statement can cause implicit opening of
either the file specified in the COPY option, or, if no file was specified, the output file SYSPRINT. Implicit
opening of the file specified in the COPY option implies the STREAM and OUTPUT attributes.

Table 46 on page 284 shows the attributes that are implied when a given statement causes the file to be
implicitly opened.

Table 46. Attributes implied by implicit open

Statement Implied attributes

GET STREAM, INPUT

PUT STREAM, OUTPUT

READ RECORD, INPUTNote

WRITE RECORD, OUTPUTNote

LOCATE RECORD, OUTPUT, SEQUENTIAL

REWRITE RECORD, UPDATE

DELETE RECORD, UPDATE

Note: INPUT and OUTPUT are default attributes for READ and WRITE statements only if UPDATE has not
been explicitly declared.

When one of the statements listed in Table 46 on page 284 opens a file implicitly, it is functionally
equivalent to using an explicit OPEN statement for the file with the same attributes specified.

Implicit opening

284 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

There must be no conflict between the attributes specified in a file declaration and the attributes implied
as the result of opening the file. For example, the attributes INPUT and UPDATE are in conflict, as are the
attributes UPDATE and STREAM.

The implied attributes are applied before the default attributes that are listed in Table 43 on page 277 are
applied. Implied attributes can also cause a conflict. If a conflict in attributes exists after the application
of default attributes, the UNDEFINEDFILE condition is raised.

Table 47. Merged and implied attributes

Merged attributes Implied attributes

UPDATE RECORD

SEQUENTIAL RECORD

DIRECT RECORD, KEYED

PRINT OUTPUT, STREAM

KEYED RECORD

Example of file constant
This example illustrates attribute merging for an explicit opening of a file that is specified by a file
constant.

 declare Listing file stream;
 open file(Listing) print;

Attributes after merge caused by execution of the OPEN statement are STREAM and PRINT. Attributes
after implication are STREAM, PRINT, and OUTPUT. Attributes after default application are STREAM,
PRINT, OUTPUT, and EXTERNAL.

Example of file variable
This example illustrates attribute merging for an explicit opening of a file by using a file variable.

 declare Account file variable,
 (Acct1,Acct2) file
 output;

 Account = Acct1;
 open file(Account) print;

 Account = Acct2;
 open file(Account) record unbuf;

The file Acct1 is opened with attributes (explicit and implied) STREAM, EXTERNAL, PRINT, and OUTPUT.
The file Acct2 is opened with attributes RECORD, EXTERNAL, and OUTPUT.

Example of implicit opening
This example illustrates attribute merging for an explicit opening of a file, which is caused by execution of
the READ statement.

 declare Sample file keyed internal;

 read file (Sample)
 into (Sample_Record)
 keyto(Sample_Key);

Attributes after merge (from the implicit opening caused by execution of the READ statement) are
KEYED, INTERNAL, RECORD, and INPUT. (No additional attributes are implied.) Attributes after default
application are KEYED, INTERNAL, RECORD, INPUT, and SEQUENTIAL.

Implicit opening

Chapter 10. Input and output 285

Examples of declarations of file constants
 declare File3 input direct environment(regional(1))

This declaration specifies three file attributes: INPUT, DIRECT, and ENVIRONMENT. Other implied
attributes are FILE (implied by each of the attributes) and RECORD and KEYED (implied by DIRECT).
Scope is EXTERNAL, by default. The ENVIRONMENT attribute specifies that the data set is of the
REGIONAL(1) organization.

For the previous declaration, all necessary attributes are either stated or implied in the DECLARE
statement. None of the stated attributes can be changed (or overridden) in an OPEN statement.

If the declaration is written as shown in the following example, invntry can be opened for different
purposes.

 declare invntry file;

In the following example, the file attributes are the same as those specified (or implied) in the DECLARE
statement in the previous example.

 open file (Invntry)
 update sequential;

The file might be opened in this way, then closed, and then later opened with a different set of attributes.
For example, the following OPEN statement allows records to be read with either the KEYTO or the KEY
option.

 open file (Invntry)
 input sequential keyed;

Because the file is SEQUENTIAL, the data set can be accessed in a purely sequential manner. It can also
be accessed directly by means of a READ statement with a KEY option. A READ statement with a KEY
option for a file of this description obtains a specified record. Subsequent READ statements without a KEY
option access records sequentially, beginning with the next record in KEY sequence.

CLOSE statement
The CLOSE statement dissociates an opened file from its data set.
FILE

Specifies the name of the file that is dissociated from the data set. CLOSE FILE(*) closes all open files.

The CLOSE statement also dissociates from the file all attributes established for it by the implicit or
explicit opening process. If desired, new attributes can be specified for the file in a subsequent OPEN
statement. However, all attributes explicitly given to the file constant in a DECLARE statement remain in
effect.

Closing a file that was previously closed has no effect. A closed file can be reopened. If a file is not closed
by a CLOSE statement, it is closed at the termination of the program.

FLUSH statement
The FLUSH statement can be used to flush one or all files.

FLUSH FILE( file-reference)

FILE( *)

;

FILE
Specifies the name of the output file.

CLOSE

286 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The FLUSH statement forces the immediate writing of buffer contents associated with an open stream
output file (or with all open stream output files if * is specified). This normally happens when the file is
closed or when the program ends, but the FLUSH statement ensures that the buffers are written before
any other processing occurs.

The FLUSH statement has no effect on record output files.

SYSPRINT and SYSIN
Any PL/I program can use the input file SYSIN and the output file SYSPRINT. These files need not be
declared or opened explicitly.

For SYSIN, the default attributes are STREAM INPUT, and for SYSPRINT they are STREAM OUTPUT PRINT.
Both file names, SYSIN and SYSPRINT, have the default attribute EXTERNAL, even though SYSPRINT
contains more than 7 characters.

The compiler does not reserve the names SYSIN and SYSPRINT for the specific purposes described
above. They can be used for other purposes besides identifying SYSIN and SYSPRINT files. Other
attributes can be applied to them, but the PRINT attribute is applied by default to SYSPRINT when it
is declared or opened as a STREAM OUTPUT file unless the INTERNAL attribute is declared for it.

SYSPRINT and SYSIN

Chapter 10. Input and output 287

SYSPRINT and SYSIN

288 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 11. Record-oriented data transmission
This chapter describes features of the input and output statements used in record-oriented data
transmission.

Those features of PL/I that apply generally to record-oriented or stream-oriented data transmission,
including declaring files, file attributes, and opening and closing files, are described in Chapter 10,
“Input and output,” on page 275. For syntax information about the ENVIRONMENT attribute, see
“ENVIRONMENT attribute” on page 282. For details about environment characteristics and record I/O
data transmission statements for each data set organization, refer to the Programming Guide.

In record-oriented data transmission, data in a data set is a collection of records recorded in any
format acceptable to the operating system. No data conversion is performed during record-oriented data
transmission. On input, the READ statement either transmits a single record to a program variable exactly
as it is recorded in the data set, or sets a pointer to the record. On output, the WRITE, REWRITE, or
LOCATE statement transmits a single record from a program variable exactly as it is recorded internally. If
the information transmitted to the file has a length N which is less than the established record length M,
the resulting value of the last M-N bytes of the record is undefined.

Data transmitted
Most variables, including parameters and DEFINED variables, can be transmitted by record-oriented data
transmission statements. In general, the information given in this chapter can be applied equally to all
variables.

Note: A data aggregate must be in connected storage. If a graphic string is specified for input or output,
the SCALARVARYING option must be specified for the file. Other data considerations are described in the
following sections.

Unaligned bit strings
In some instances, unaligned bit strings cannot be transmitted.

The following cannot be transmitted:

• BASED, DEFINED, parameter, subscripted, or structure-base-element variables that are unaligned
nonvarying bit strings

• Minor structures whose first or last base elements are unaligned nonvarying bit strings (except where
they are also the first or last elements of the containing major structure)

• Major structures that have the DEFINED attribute or are parameters, and that have unaligned
nonvarying bit strings as their first or last elements

Varying length strings
Reading and writing using varying length strings allows you to access records that can have undefined or
unknown lengths.

A locate mode output statement (see “LOCATE statement” on page 291) specifying a varying length string
transmits a field having a length equal to the maximum length of the string. For VARYINGZ strings, the
null terminator is also transmitted. For VARYING strings, a 2-byte prefix denoting the current length of the
string is also transmitted; for this, the SCALARVARYING option of the ENVIRONMENT attribute must be
specified for the file.

A move mode output statement (see “WRITE statement” on page 290 and “REWRITE statement” on
page 291) specifying a varying length string variable transmits only the current length of the string. For
VARYINGZ strings, the null terminator is also transmitted. For VARYING strings, a 2-byte prefix is included
only if the SCALARVARYING option of the ENVIRONMENT attribute is specified for the file.

Unaligned bit strings

© Copyright IBM Corp. 1999, 2022 289

Area variables
A locate mode output statement specifying an area variable transmits a field whose length is the declared
size of the area, plus a 16-byte prefix containing control information.

A move mode statement specifying an element area variable or a structure whose last element is an area
variable transmits only the current extent of the area plus a 16-byte prefix.

Data transmission statements
The data transmission statements that transmit records to or from a data set are READ, WRITE, LOCATE,
and REWRITE.

The DELETE statement deletes records from an UPDATE file. The attributes of the file determine
which data transmission statements can be used. Statement options are described in “Options of data
transmission statements” on page 292. For information about variables in data transmission statements,
see the Programming Guide.

READ statement
The READ statement can be used with any INPUT or UPDATE file. It either transmits a record from the
data set to the program variable or sets a pointer to the record in storage.

READ FILE ( file-reference)

IGNORE ( expression)

INTO( ref)

KEY( expression)

KEYTO( reference)

SET( pointer-ref)

KEY( expression)

KEYTO( reference)

;

The keywords can appear in any order. A READ statement without an INTO, SET, or IGNORE option is
equivalent to a READ with an IGNORE(1).

WRITE statement
The WRITE statement can be used with SEQUENTIAL UPDATE files (if VSAM), with DIRECT UPDATE files,
and with any OUTPUT file. It transmits a record from the program and adds it to the data set.

WRITE FILE ( file-reference) FROM ( reference)

KEYFROM( expression)

KEYTO( reference)

;

The keywords can appear in any order.

A WRITE statement cannot be used to update a consecutive data set accessed as a SEQUENTIAL UPDATE
file. In order to update a consecutive data set by a SEQUENTIAL UPDATE file, you must retrieve a record
with a READ statement before you can update it by a REWRITE statement.

Also, if you want to add records to the end of an existing sequential file, the file must be opened as
OUTPUT, and you must specify either DISP=MOD in its DD statement (if your program is running under
z/OS batch) or APPEND(Y) in its environment variable (if your program is running under Windows, AIX, or
z/OS UNIX).

Area variables

290 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

REWRITE statement
The REWRITE statement replaces a record in an UPDATE file.

For SEQUENTIAL UPDATE files, the REWRITE statement specifies that the last record read from the file is
rewritten; consequently a record must be read before it can be rewritten. For DIRECT UPDATE files, any
record can be rewritten whether or not it has first been read.

REWRITE FILE ( file-reference)

FROM ( reference) KEY ( expression)

;

The keywords can appear in any order. The FROM option must be specified for UPDATE files with the
DIRECT attribute, or with both the SEQUENTIAL and UNBUFFERED attributes.

A REWRITE statement that does not specify the FROM option has the following effect:

• If the last record was read by a READ statement with the INTO option, REWRITE without FROM has no
effect on the record in the data set.

• If the last record was read by a READ statement with the SET option, the record is updated by whatever
assignments were made in the variable identified by the pointer variable in the SET option.

LOCATE statement
The LOCATE statement can be used only with an OUTPUT SEQUENTIAL BUFFERED file for locate mode
processing. It allocates storage within an output buffer for a based variable and sets a pointer to the
location of the next record.

For further description of locate mode processing, see “Locate mode” on page 295.

LOCATE based-variable FILE ( file-reference)

SET ( pointer-reference)

KEYFROM ( expression)

;

The keywords can appear in any order.

based-variable
Must be an unsubscripted, level-1 based variable.

DELETE statement
The DELETE statement deletes a record from an UPDATE file.

DELETE FILE ( file-reference)

KEY ( expression)

;

The keywords can appear in any order. If the KEY option is omitted, the record to be deleted is the last
record that is read. No subsequent DELETE or REWRITE statement without a KEY is allowed until another
READ statement is processed. If the KEY option is included, that record addressed by the key is deleted if
found.

REWRITE

Chapter 11. Record-oriented data transmission 291

Options of data transmission statements
Options that are allowed for record-oriented data transmission statements differ according to the
attributes of the file and the characteristics of the associated data set.

FILE option
The FILE option must appear in every record-oriented data transmission statement. It specifies the file
upon which the operation takes place.

An example of the FILE option is shown in each of the statements in this section. If the file specified is not
open in the current process, it is opened implicitly.

FROM option
The FROM option specifies the element or aggregate variable from which the record is written. The FROM
option must be used in the WRITE statement for any OUTPUT or DIRECT UPDATE file. It can also be used
in the REWRITE statement for any UPDATE file.

If the variable is an aggregate, it must be in connected storage. Certain uses of unaligned nonvarying bit
strings are disallowed (for details, see “Data transmitted” on page 289).

The FROM variable can be an element string variable of varying length. When a WRITE statement is
specified with the FROM option, only the current length of a varying length string is transmitted to a data
set. For a VARYINGZ string, the null terminator is attached and also transmitted. For a VARYING string, a
2-byte prefix specifying the length is attached only if the SCALARVARYING option of the ENVIRONMENT
attribute is specified for the file.

Records are transmitted as an integral number of bytes. If a bit string (or a structure that starts or ends
with a bit string) that is not aligned on a byte boundary is transmitted, the record is padded with bits at
the start or the end of the string, and the result might be incorrect.

The FROM option can be omitted from a REWRITE statement for SEQUENTIAL UPDATE files. If the last
record was read by a READ statement with the INTO option, REWRITE without FROM has no effect on the
record in the data set. If the last record was read by a READ statement with the SET option, the record
(updated by whatever assignments were made) is copied back onto the data set.

In the following examples, the statements specify that the value of the variable Sample_Rec is written
into the output file Sample.

 write file (Sample) from (Sample_Rec);

The REWRITE statement specifies that Sample_Rec replaces the last record read from an UPDATE file.

 rewrite file (Sample) from (Sample_Rec);

IGNORE option
The IGNORE option can be used in a READ statement for any SEQUENTIAL INPUT or SEQUENTIAL
UPDATE file.

The expression in the IGNORE option is evaluated and converted to an integer value n. If n is greater than
zero, n records are ignored. A subsequent READ statement for the file will access the (n+1)th record. If n
is less than 1, the READ statement has no effect.

The following example specifies that the next three records in the file are to be ignored:

 read file (In) ignore (3);

FILE

292 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

INTO option
The INTO option specifies an element or aggregate variable into which the logical record is read.

The INTO option can be used in the READ statement for any INPUT or UPDATE file.

If the variable is an aggregate, it must be in connected storage. Certain uses of unaligned nonvarying bit
strings are disallowed (for details, see “Data transmitted” on page 289).

If the variable is GRAPHIC, UCHAR or WIDECHAR, then it must be NONVARYING.

The INTO variable can be an element string variable of varying length. For VARYINGZ strings, each record
contains a null terminator. For VARYING strings, if the SCALARVARYING option of the ENVIRONMENT
attribute was specified for the file, each record contains a 2-byte prefix that specifies the length of the
string data.

If SCALARVARYING was not declared on input, the string length is calculated from the record length and
attached as a 2-byte prefix (for VARYING strings). For VARYING bit strings, this calculation rounds up the
length to a multiple of 8 and therefore the calculated length might be greater than the maximum declared
length.

The following example specifies that the next sequential record is read into the variable RECORD_1:

 read file (Detail) into (Record_1);

KEY option
The KEY option specifies a character, graphic, or widechar key that identifies a record. It can be used in a
READ statement for an INPUT or UPDATE file, or in a REWRITE statement for a DIRECT UPDATE file.

The KEY option applies only to KEYED files. The KEY option is required if the file has the DIRECT attribute,
and is optional if the file has the SEQUENTIAL and KEYED attributes.

The expression in the KEY option is evaluated, and if it is not character, graphic, or widechar, the
expression is converted to a character value that represents a key. The value of the expression must
be smaller than 2G. It is this character, graphic, or widechar value that determines which record is read.

The following example specifies that the record identified by the character value of the variable Stkey is
read into the variable Item:

 read file (Stpck) into (Item) key (Stkey);

KEYFROM option
The KEYFROM option specifies a character, graphic, or widechar key that identifies the record on the data
set to which the record is transmitted. It can be used in a WRITE statement for any KEYED OUTPUT or
DIRECT UPDATE file, or in a LOCATE statement.

The KEYFROM option applies only to KEYED files. The expression is evaluated, and if it is not character,
graphic, or widechar, the expression is converted to a character string and is used as the key of the record
when it is written. The value of the expression must be smaller than 2G.

Relative data sets can be created by using the KEYFROM option. The record number is specified as the
key.

REGIONAL(1) data sets can be created by using the KEYFROM option. The region number is specified as
the key.

For indexed data sets, KEYFROM specifies a recorded key whose length must be equal to the key length
specified for the data set.

The following example specifies that the value of Loanrec is written as a record in the file Loans, and
that the character string value of Loanno is used as the key with which it can be retrieved:

 write file (Loans) from (Loanrec) keyfrom (Loanno);

INTO

Chapter 11. Record-oriented data transmission 293

KEYTO option
The KEYTO option specifies the character, graphic, or widechar variable to which the key of a record is
assigned.

The KEYTO option can specify any string pseudovariable other than STRING. It cannot specify a variable
declared with a numeric picture specification. The KEYTO option can be used in a READ statement for a
SEQUENTIAL INPUT or SEQUENTIAL UPDATE file.

The KEYTO option applies only to KEYED files. The value of the expression must be smaller than 2G.

Assignment to the KEYTO variable always follows assignment to the INTO variable. If an incorrect key
specification is detected, the KEY condition is raised. The value assigned is as follows:

• For indexed data sets, the record key is padded or truncated on the right to the declared length of the
character variable.

• For relative data sets, a record number is converted to a character string with leading zeros suppressed,
truncated, or padded on the left to the declared length of the character variable.

• For REGIONAL(1) data sets, the 8-character region-number, padded or truncated on the left to the
declared length of the character variable. If the character variable is of varying length, any leading zeros
in the region number are truncated and the string length is set to the number of significant digits. An
all-zero region number is truncated to a single zero.

The KEY condition is not raised for this type of padding or truncation.

The following example specifies that the next record in the file Detail is read into the variable Invntry,
and that the key of the record is assigned to the variable Keyfld:

 read file (Detail) into (Invntry) keyto (Keyfld);

SET option
The SET option can be used with a READ statement or a LOCATE statement. For the READ statement, it
specifies a pointer variable that is set to point to the record read. For the LOCATE statement, it specifies a
pointer variable that is set to point to the next record for output.

If the SET option is omitted for the LOCATE statement, the pointer declared with the record variable is set.
If a VARYING string is transmitted, the SCALARVARYING option must be specified for the file.

The following example specifies that the value of the pointer variable P is set to the location in the buffer
of the next sequential record:

 read file (X) set (P);

Processing modes
Record-oriented data transmission has two modes of handling data.
Move mode

Processes data by moving it into or out of the variable.
Locate mode

Processes data while it remains in a buffer. The execution of a data transmission statement assigns
a pointer variable for the location of the storage allocated to a record in the buffer. Locate mode is
applicable only to BUFFERED files.

The data transmission statements and options that you specify determine the processing mode used.

KEYTO

294 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Move mode
In move mode, a READ statement transfers a record from the data set to the variable named in the INTO
option.

A WRITE or REWRITE statement transfers a record from the variable named in the FROM option to the
data set. The variables named in the INTO and FROM options can be of any storage class.

The following is an example of move mode input:

Eof_In = '0'b;
on endfile(In) Eof_In = '1'B;
read file(In) into(Data);
do while (¬Eof_In);
 .
 .
 .
 /* process record */
 read file(In) into(Data);
end;

Locate mode
Locate mode assigns to a pointer variable the location of the buffer.

A based variable described the record. The same data can be interpreted in different ways by using
different based variables. Locate mode can also be used to read self-defining records, in which
information in one part of the record is used to indicate the structure of the rest of the record. For
example, this information could be an array bound or a code identifying which based structure should be
used for the attributes of the data.

A READ statement with a SET option sets the pointer variable in the SET option to a buffer containing
the record. The data in the record can then be referenced by a based variable qualified with the pointer
variable.

The pointer value is valid only until the execution of the next READ or CLOSE statement that refers to the
same file.

The pointer variable specified in the SET option or, if SET was omitted, the pointer variable specified in
the declaration of the based variable, is used. The pointer value is valid only until the execution of the
next LOCATE, WRITE, or CLOSE statement that refers to the same file. It also initializes components of the
based variable that have been specified in REFER options.

The LOCATE statement sets a pointer variable to a large enough area where the next record can be built.

After execution of the LOCATE statement, values can be assigned directly into the based variables
qualified by the pointer variable set by the LOCATE statement.

Example 1

The following example shows locate mode input:

 dcl 1 Data based(P),
 2
 .
 .
 .
 ;

 on endfile(In);
 read file(In) set(P);
 do while (¬endfile(In));
 .
 .
 .
 /* process record */
 read file(In) set(P);
 end;

Move mode

Chapter 11. Record-oriented data transmission 295

Example 2

The following example shows locate mode output:

 dcl 1 Data based(P);
 2
 .
 .
 .
 ;

 do while (More_records_to_write);
 locate Data file(Out);
 .
 .
 . /* build record */
 end;

Locate mode

296 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 12. Stream-oriented data transmission
This chapter describes the input and output statements used in stream-oriented data transmission.

Features that apply to stream-oriented and record-oriented data transmission, including files, file
attributes, and opening and closing files, are described in Chapter 10, “Input and output,” on page 275.

Stream-oriented data transmission treats a data set as a continuous stream of data values in character,
graphic, or mixed character data form. Within a program, record boundaries are generally ignored.
However, a data set consists of a series of lines of data, and each data set created or accessed by
stream-oriented data transmission has a line size associated with it. In general, a line is equivalent to a
record in the data set, but the line size does not necessarily equal the record size.

The stream-oriented data transmission statements can also be used for internal data movement, by
specifying the STRING option instead of specifying the FILE option. Although the STRING option is not an
input/output operation, its use is described in this chapter.

Stream-oriented data transmission can be list-directed, data-directed, or edit-directed.

List-directed data transmission
Transmits the values of data-list items without you having to specify the format of the values in the
stream. The values are recorded externally as a list of constants, separated by blanks or commas.

Data-directed data transmission
Transmits the names of the data-list items, as well as their values, without your having to specify
the format of the values in the stream. The GRAPHIC option of the ENVIRONMENT attribute must be
specified if any variable name contains a DBCS character, even if no DBCS data is present.

Edit-directed data transmission
Transmits the values of data-list items and requires that you specify the format of the values in
the stream. The values are recorded externally as a string of characters or graphics to be treated
character by character (or graphic by graphic) according to a format list.

The following sections provide details about the data transmission statements and their options, and
give instructions on how to specify the list-, data-, and edit-directed data. For information about how to
accommodate double-byte characters, see “DBCS data in stream I/O” on page 315.

Data transmission statements
Stream-oriented data transmission uses GET and PUT statements. Only consecutive files can be
processed with the GET and PUT statements.

The variables or pseudovariables to which data values are assigned, and the expressions from which
they are transmitted, are generally specified in a data-specification with each GET or PUT statement. The
statements can also include options that specify the origin or destination of the data values or indicate
where they appear in the stream relative to the preceding data values. Options for the stream-data
transmission statements are described in “Options of data transmission statements” on page 299.

GET statement
The GET statement is a STREAM input data transmission statement that can assign data values either
from a data set to one or more variables or from a string to one or more variables.

For a stream input file, use the following syntax for the GET statement.

GET

© Copyright IBM Corp. 1999, 2022 297

GET

FILE ( expression) data-specification

COPY

( file-reference)

SKIP

( expression)

;

The keywords can appear in any order. The data specification must appear unless the SKIP option is
specified.

For transmission from a string, use this syntax for the GET statement.

GET STRING ( expression) data-specification ;

If FILE or STRING option is not specified, FILE(SYSIN) is assumed and SYSIN is implicitly declared as FILE
STREAM INPUT EXTERNAL.

PUT statement
The PUT statement is a STREAM output data transmission statement that can transmit values to a stream
output file or assign values to a character variable.

Use the following syntax of the PUT statement when dealing with stream output files.

PUT

FILE ( file-reference) data-specification

PAGE

LINE ( expression)

SKIP

( expression)

LINE ( expression)

;

The keywords can appear in any order. The data specification can be omitted only if one of the control
options (PAGE, SKIP, or LINE) appears.

For transmission to a character string, however, use this syntax of the PUT statement.

PUT STRING ( expression) data-specification ;

PUT

298 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Options of data transmission statements
This section describes the options that you can use in data transmission statements.

COPY option
The COPY option specifies that the source data stream is written on the specified STREAM OUTPUT file
without alteration.

If no file reference is given, the default is the output file SYSPRINT. Each new record in the input stream
starts a new record on the COPY file. Consider the following example:

 get file(sysin) data(A,B,C) copy(DPL);

The statement not only transmits the values assigned to A, B, and C in the input stream to the variables
with these names, but also writes them exactly as they appear in the input stream on the file DPL. Data
values that are skipped on input, and not transmitted to internal variables, copy intact into the output
stream.

If a condition is raised during the execution of a GET statement with a COPY option and an ON-unit is
entered in which another GET statement is executed for the same file, and if control is returned from the
ON-unit to the first GET statement, that statement executes as if no COPY option was specified. If, in the
ON-unit, a PUT statement is executed for the file associated with the COPY option, the position of the data
transmitted might not immediately follow the most recently-transmitted COPY data item.

If the COPY option file is not open in the current program, the file is implicitly opened in the program for
stream output transmission.

Data specification options
Data specifications in GET and PUT statements specify the data to be transmitted.

LIST

(data-list)

DATA

(

,

data-list-item)

EDIT (data-list) (format-list)

data-list
,

data-list item

(data-list type-3-DO)

format-list
,

format-item

n format-item

n ( format-list)

COPY

Chapter 12. Stream-oriented data transmission 299

If a GET or PUT statement includes a data list that is not preceded by one of the keywords LIST, DATA, or
EDIT, LIST is the default.

Important: In a statement without LIST, DATA, or EDIT preceding the data list, the data list must
immediately follow the GET or PUT keyword. Any options required must be specified after the data list.

DATA
See “Data-directed data specification” on page 304.

EDIT
See “Edit-directed data specification” on page 308.

LIST
See “List-directed data specification” on page 312.

data-list item
On input, a data-list item for edit-directed and list-directed transmission can be an element, an array,
or a structure variable. For a data-directed data specification, a data-list item can be an element, an
array, or a structure variable. None of the names in a data-directed data list can be subscripted or
locator-qualified. However, qualified (that is, structure-member) or string-overlay-defined names are
allowed.

On output, a data list item for edit-directed and list-directed data specifications can be an element
expression, an array expression, or a structure expression. For a data-directed data specification, a
data-list item can be an element, an array, or a structure variable. It must not be locator-qualified. It
can be qualified (that is, a member of a structure) or string-overlay-defined.

The data types of a data-list item can be any computational data (except for GET statements it must
not have the VALUE attribute), and in PUT statements, the data type might also be POINTER. If the
data type is non-computational, the contents of the item will be transmitted as if the item had been
specified by applying the HEX built-in function applied to the item (and for PUT DATA, the hex value
will be enclosed in quotation marks followed by a suffix of BX).

An array or structure variable in a data-list is equivalent to n items in the data list, where n is the
number of element items in the array or structure. For edit-directed transmission, each element item
is associated with a separate use of a data-format item.

data-list type-3-DO
The syntax for the Type 3 DO specification is described under “DO statement” on page 210. Data list
items with Type 3 DO specifications are not allowed in data-directed data lists for GET statements.

When the last repetitive specification is completed, processing continues with the next data-list item.

Each repetitive specification must be enclosed in parentheses, as shown in the syntax diagram. If a
data specification contains only a repetitive specification, two sets of outer parentheses are required,
because the data list is enclosed in parentheses and the repetitive specification must have a separate
set.

When repetitive specifications are nested, the rightmost DO is at the outer level of nesting. Consider
the following example:

 get list (((A(I,J)
 do I = 1 to 2)
 do J = 3 to 4));

There are three sets of parentheses, in addition to the set used to delimit the subscripts. The
outermost set is the set required by the data specification. The next set is that required by the outer
repetitive specification. The third set of parentheses is required by the inner repetitive specification.

This statement is equivalent in function to the following nested do-groups:

 do J = 3 to 4;
 do I = 1 to 2;
 get list (A (I,J));
 end;
 end;

Data specification

300 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

It assigns values to the elements of the array A in the following order:

 A(1,3), A(2,3), A(1,4), A(2,4)

format list
For a description of the format list, see “Edit-directed data specification” on page 308.

FILE option
The FILE option specifies the file upon which the operation takes place. It must be a STREAM file.

For information about how to declare a file type data item, see “Files” on page 277.

If neither the FILE option nor the STRING option appears in a GET statement, the input file SYSIN is the
default; if neither option appears in a PUT statement, the output file SYSPRINT is the default.

LINE option
The LINE option can be specified only for PRINT files. The LINE option defines a new current line for the
data set.

The expression is evaluated and converted to an integer value, n. The value of the expression must be
smaller than 2G. The new current line is the nth line of the current page. If at least n lines have already
been written on the current page or if n exceeds the limits set by the PAGESIZE option of the OPEN
statement, the ENDPAGE condition is raised. If n is less than or equal to zero, a value of 1 is used. If n
specifies the current line, ENDPAGE is raised except when the file is positioned on column 1, in which
case the effect is the same as if a SKIP(0) option were specified.

The LINE option takes effect before the transmission of any values defined by the data specification (if
any). If both the PAGE option and the LINE option appear in the same statement, the PAGE option is
applied first. Consider the following example:

 put file(List) data(P,Q,R) line(34) page;

This statement prints the values of the variables P, Q, and R in data-directed format on a new page,
commencing at line 34.

For the effect of the LINE option when specified in the first GET statement following the opening of the
file, see “OPEN statement” on page 283.

For output to a terminal in interactive mode, the LINE option skips three lines.

PAGE option
The PAGE option can be specified only for PRINT files. It defines a new current page within the data set.

If PAGE and LINE appear in the same PUT statement, the PAGE option is applied first. The PAGE option
takes effect before the transmission of any values defined by the data specification (if any).

The page remains current until the execution of a PUT statement with the PAGE option, until a PAGE
format item is encountered, or until the ENDPAGE condition is raised, resulting in the definition of a new
page. A new current page implies line one.

For output to a terminal in interactive mode, the PAGE option skips three lines.

SKIP option
The SKIP option specifies a new current line (or record) within the data set.

The expression is evaluated and converted to an integer value, n. The data set is positioned to the start
of the nth line (record) relative to the current line (record). If expression is not specified, the default is
SKIP(1).

The SKIP option takes effect before the transmission of values defined by the data specification (if any).
Consider the following example:

FILE

Chapter 12. Stream-oriented data transmission 301

 put list(X,Y,Z) skip(3);

This statement prints the values of the variables X, Y, and Z on the output file SYSPRINT commencing on
the third line after the current line.

For non-PRINT files and input files, if the expression in the SKIP option is less than or equal to zero, a
value of 1 is used. For PRINT files, if n is less than or equal to zero, the positioning is to the start of the
current line.

For the effect of the SKIP option when specified in the first GET statement following the opening of the
file, see “OPEN statement” on page 283.

If fewer than n lines remain on the current page when a SKIP(n) is issued, ENDPAGE is raised.

When printing at a terminal in conversational mode, SKIP(n) with n greater than 3 is equivalent to SKIP(3).
No more than three lines can be skipped.

STRING option
The STRING option in GET and PUT statements transmits data between main storage locations rather
than between the main and a data set. DBCS data items cannot be used with the STRING option.

The GET statement with the STRING option specifies that data values assigned to the data list items are
obtained from the expression, after conversion to character string. Each GET operation using this option
always begins at the leftmost character position of the string. If the number of characters in this string
is less than the total number of characters specified by the data specification, the ERROR condition is
raised.

The PUT statement with the STRING option specifies that values of the data-list items are to be assigned
to the specified character variable or pseudovariable. The PUT operation begins assigning values at
the leftmost character position of the string, after appropriate conversions are performed. Blanks and
delimiters are inserted as in normal I/O operations. If the string is not long enough to accommodate the
data, the ERROR condition is raised.

The NAME condition is not raised for a GET DATA statement with the STRING option. Instead, the ERROR
condition is raised for situations that raise the NAME condition for a GET DATA statement with the FILE
option.

The following restrictions apply to the STRING option:

• The COLUMN control format option cannot be used with the STRING option.
• No pseudovariables are allowed in the STRING option of a PUT statement.

The STRING option is most useful with edit-directed transmission. It allows data gathering or scattering
operations performed with a single statement, and it allows stream-oriented processing of character
strings that are transmitted by record-oriented statements.

Consider the following example:

 read file (Inputr) into (Temp);
 get string(Temp) edit (Code) (F(1));
 If Code = 1 then
 get string (Temp) Edit (X,Y,Z)
 (X(1), 3 F(10,4));

The READ statement reads a record from the input file Inputr. The first GET statement uses the STRING
option to extract the code from the first byte of the record and assigns it to Code. If the code is 1,
the second GET statement uses the STRING option to assign the values in the record to X, Y, and Z.
The second GET statement specifies that the first character in the string Temp is ignored (the X(1)
format item in the format list). This ignored character is the same one assigned to Code by the first GET
statement.

STRING

302 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

An example of the STRING option in a PUT statement follows:

 put string (Record) edit
 (Name) (X(1), A(12))
 (Pay#) (X(10), A(7))
 (Hours*Rate) (X(10), P'$999V.99');

 write file (Outprt) from (Record);

The PUT statement specifies, by the X(1) spacing format item, that the first character assigned to the
character variable is a single blank, which is the ANS vertical carriage positioning character that specifies
a single space before printing. Following that, the values of the variables Name and Pay# and of the
expression Hours*Rate are assigned. The WRITE statement specifies that record transmission is used to
write the record into the file Outprt.

The variable referenced in the STRING option should not be referenced by name or by alias in the data
list. Consider the following example:

 declare S char(8) init('YYMMDD');
 put string (S) edit
 (substr (S, 3, 2), '/',
 substr (S, 5, 2), '/',
 substr (S, 1, 2))
 (A);

The value of S after the PUT statement is 'MM/bb/MM' and not 'MM/DD/YY' because S is blanked after
the first data item is transmitted. The same effect is obtained if the data list contains a variable based or
defined on the variable specified in the STRING option.

Transmission of data-list items
Transmission of data-list items is processed in different ways depending on the data-list item type.

If a data-list item is of complex mode, the real part is transmitted before the imaginary part.

If a data-list item is an array expression, the elements of the array are transmitted in row-major order;
that is, with the rightmost subscript of the array varying most frequently.

If a data-list item is a structure expression, the elements of the structure are transmitted in the order
specified in the structure declaration.

Example 1

This example is based on the following statements:

 declare 1 A (10),
 2 B,
 2 C;
 put file(X) list(A);

These statements result in the output being ordered as follows:

 A.B(1) A.C(1) A.B(2) A.C(2) A.B(3)
 A.C(3)…

However, suppose that the declaration is specified as follows:

 declare 1 A,
 2 B(10),
 2 C(10);

The same PUT statement results in the output ordered as follows:

 A.B(1) A.B(2) A.B(3) … A.B(10)
 A.C(1) A.C(2) A.C(3) … A.C(10)

Transmission of data-list items

Chapter 12. Stream-oriented data transmission 303

Example 2

If an input statement for list- or edit-directed transmission assigns a value to a variable in a data list, the
assigned value is used if the variable appears in a later reference in the data list. Consider the following
example:

 get list (N,(X(I) do I=1 to N),J,K,);
 substr (Name, J,K));

When this statement is executed, values are transmitted and assigned in the following order:

1. A new value is assigned to N.
2. Elements are assigned to the array X as specified in the repetitive specification in the order
X(1),X(2),…X(N), with the new value of N specifying the number of assigned items.

3. A new value is assigned to J.
4. A new value is assigned to K.

Data-directed data specification
Names of structure elements in the data-list item need only have enough qualification to resolve any
ambiguity. Full qualification is not required. Omission of the data list results in a default data list that
contains all computational variables that could be named in a data-directed statement.

On output, all items in the data list are transmitted.

For a description of the syntax of the DATA data specification, see “Data specification options” on page
299.

Restrictions on data-directed data
When you use data-directed data transmission in your program, these restrictions apply.

Subscripted variables are not allowed in data-directed input.

References to based variables in a data-list for data-directed input/output cannot be explicitly locator
qualified. Consider the following example:

 dcl Y based(Q), Z based;
 put data(Y);

The variable Z cannot be transmitted since it must be explicitly qualified by a locator.

A based variable in the data-list has the following restrictions:

• The variable must not be based on an OFFSET variable.
• The pointer on which the variable is based must not be in DEFINED storage.
• If the pointer on which the variable is based is itself BASED, the chain of basing pointers must end with

a pointer that is neither BASED nor DEFINED.

A defined variable in the data-list must meet the following requirements:

• Be a picture or character variable
• Not be defined on a controlled variable
• Not be defined on an element or cross section of an array
• Not be defined with a nonconstant POSITION attribute

Typed structures cannot be used in GET DATA statements, but can be used in PUT DATA statements.

Transmission of data-list items

304 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Syntax of data-directed data
The stream associated with data-directed data transmission is in the form of a list of element
assignments. The element assignments that have optionally signed constants, like variable names and
equal signs, are in character or graphic form.

,

b

element-variable = data-value ;

On input, the element assignments can be separated by either a blank or a comma. Blanks can surround
periods in qualified names, subscripts, subscript parentheses, and the assignment symbols. On output,
the assignments are separated by a blank. For PRINT files, items are separated according to program tab
settings.

Each data-value in the stream has one of the syntaxes described for list-directed transmission. For a
description of list-directed transmission syntax, see “Syntax of list-directed data” on page 312.

The length of the data value in the stream is a function of the attributes declared for the variable and,
because the name is also included, the length of the fully qualified subscripted name. The length for
output items converted from coded arithmetic data, numeric character data, and bit-string data is the
same as that for list-directed output data, and is governed by the rules for data conversion to character
type as described in Chapter 4, “Data conversion,” on page 75.

Qualified names in the input stream must be fully qualified.

Interleaved subscripts cannot appear in qualified names in the stream. For example, assume that Y is
declared as follows:

 declare 1 Y(5,5),
 2 A(10),
 3 B,
 3 C,
 3 D;

An element name has to appear in the stream as follows:

 Y.A.B(2,3,8)= 8.72

GET data-directed
This topic provides information about using the GET statement for data-directed data transmission.

If a data list is used, each data-list item must be an element, array, or structure variable. Names cannot
be subscripted, but qualified names are allowed in the data list. All names in the stream should appear in
the data list; however, the order of the names need not be the same, and the data list can include names
that do not appear in the stream.

If the data list contains a name that is not included in the stream, the value of the named variable remains
unchanged.

If the stream contains an unrecognizable element-variable or a name that does not have a counterpart in
the data list, the NAME condition is raised.

Transmission ends when a semicolon that is not enclosed in quotation marks or when an end-of-file is
reached. The recognition of the semicolon or end-of-file determines the number of element assignments
that are actually transmitted by a particular statement, whether or not a data list is specified.

For example, consider the following data list, where A, B, C, and D are names of element variables:

 Data (B, A, C, D)

Syntax of data-directed data

Chapter 12. Stream-oriented data transmission 305

This data list can be associated with the following input data stream:

 A= 2.5, B= .0047, D= 125, Z= 'ABC';

Because C appears in the data list but not in the stream, its value remains unaltered. Z, which is not in the
data list, raises the NAME condition.

If the data list includes the name of an array, subscripted references to that array can appear in the
stream although subscripted names cannot appear in the data list. The entire array need not appear in the
stream; only those elements that actually appear in the stream are assigned. If a subscript is out of range,
or is missing, the NAME condition is raised.

Consider the following example:

Assume that X is declared as follows:

 declare X (2,3);

Consider the following data list and input data stream:

Data specification Input data stream

data (X) X(1,1)= 7.95,

X(1,2)= 8085,

X(1,3)= 73;

Although the data list has only the name of the array, the input stream can contain values for individual
elements of the array. In this case, only three elements are assigned; the remainder of the array is
unchanged.

If the data list includes the names of structures, minor structures, or structure elements, fully qualified
names must appear in the stream, although full qualification is not required in the data list. Consider the
following example:

 dcl 1 In,
 2 Partno,
 2 Descrp,
 2 Price,
 3 Retail,
 3 Whsl;

If it is desired to read a value for In.Price.Retail, the input data stream must have the following form:

 In.Price.Retail=1.23;

The data specification can be any in the following list:

 data(In)
 data(Price)
 data(In.Price)
 data(Retail)
 data(Price.Retail)
 data(In.Retail)
 data(In.Price.Retail)

Related information
“GET statement” on page 297

GET data-directed

306 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The GET statement is a STREAM input data transmission statement that can assign data values either
from a data set to one or more variables or from a string to one or more variables.

PUT data-directed
This topic provides information about using the PUT statement for data-directed data transmission.

A data-list item can be an element, array, or structure variable, or a repetitive specification. The names
appearing in the data list, together with their values, are transmitted in the form of a list of element
assignments separated by blanks and terminated by a semicolon. For PRINT files, items are separated
according to program tab settings; see “PRINT attribute” on page 314.

A semicolon is written into the stream after the last data item transmitted by each PUT statement.

Names are transmitted as a mixed string, which can contain SBCS characters, DBCS characters, or both.
Any SBCS characters expressed in DBCS form are first translated to SBCS. For example, put data
(<.A>B<.Ckk>); will be transmitted as follows:

 ABC<kk>=value-of-variable

Note: In this example, <.A>B<.Ckk> is a scalar variable.

Data-directed output is not valid for subsequent data-directed input when the character-string value of a
numeric character variable does not represent a valid optionally signed arithmetic constant or a complex
expression.

For character data, the contents of the character string are written out enclosed in quotation marks. Each
quotation mark contained within the character string is represented by two successive quotation marks.

Example 1

The following example shows data-directed transmission (both input and output).

 declare (A(6), B(7)) fixed;
 get file (X) data (B);
 do I = 1 to 6;
 A (I) = B (I+1) + B (I);
 end;
 put file (Y) data (A);

Input stream:

 B(1)=1, B(2)=2, B(3)=3,
 B(4)=1, B(5)=2, B(6)=3, B(7)=4;

Output stream:

 A(1)= 3 A(2)= 5 A(3)= 4 A(4)= 3
 A(5)= 5 A(6)= 7;

Example 2

 dcl 1 A,
 2 B FIXED,
 2 C,
 3 D FIXED;
 A.B = 2;
 A.D = 17;
 put data (A);

The data fields in the output stream are as follows:

 A.B= 2 A.C.D= 17;

Related information
“PUT statement” on page 298

PUT data-directed

Chapter 12. Stream-oriented data transmission 307

The PUT statement is a STREAM output data transmission statement that can transmit values to a stream
output file or assign values to a character variable.

Edit-directed data specification
Edit-directed data specification makes it easy to format stream output.

For information about the syntax of the EDIT data specification, see “Data specification options” on page
299.

,

format-item

n format-item

n ( format-list)

n
Specifies an iteration factor, which is either an expression enclosed in parentheses or an integer. If it is
the latter, a blank must separate the integer and the following format item.

The iteration factor specifies that the associated format item or format list is used n successive times.
A zero or negative iteration factor specifies that the associated format item or format list is skipped
and not used (the data-list item is associated with the next data-format item).

If an expression is used to represent the iteration factor, it is evaluated and converted to an integer,
once for each set of iterations.

The associated format item or format list is that item or list of items immediately to the right of the
iteration factor.

format item
Specifies either a data-format item, a control-format item, or the remote format item. For details
about the syntax and the format items, see Chapter 13, “Edit-directed format items,” on page 317.

Data-format items
Describes the character or graphic representation of a single data item.
A

character
B

bit
C

complex
E

floating point
F

fixed point
G

graphic
L

line
P

picture
V

view a line

PUT data-directed

308 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Control-format items
Specifies the layout of the data set associated with a file.

COLUMN
LINE
PAGE
SKIP
X

Remote-format item
Specifies a label reference whose value is the label constant of a FORMAT statement located
elsewhere. The FORMAT statement contains the remotely situated format items. The label reference
item is as follows:
R(label-reference)

Where label is the label constant name of the FORMAT statement. For information about
specifying the R-format item, see “R-format item” on page 324.

The first data-format item is associated with the first data-list item, the second data-format item with the
second data-list item, and so on. If a format list contains fewer data-format items than there are items in
the associated data list, the format list is reused. If there are excessive format items, they are ignored.

Suppose a format list contains five data-format items and its associated data list specifies ten items to
be transmitted. The sixth item in the data list is associated with the first data-format item, and so forth.
Suppose a format list contains ten data-format items and its associated data list specifies only five items.
The sixth through the tenth format items are ignored.

If a control-format item is encountered, the control action is executed.

The PAGE and LINE control-format items can be used only with PRINT files and, consequently, can appear
only in PUT statements. The SKIP, COLUMN, and X-format items apply to both input and output.

The PAGE, SKIP, and LINE format items have the same effect as the corresponding options of the PUT
statement (and of the GET statement, in the case of SKIP), except that the format items take effect when
they are encountered in the format list, while the options take effect before any data is transmitted.

The COLUMN format item cannot be used in a GET STRING or PUT STRING statement.

For the effects of control-format items when they are specified in the first GET or PUT statement following
the opening of a file, see “OPEN statement” on page 283.

A value read into a variable can be used in a format item that is associated with another variable later in
the data list.

 get edit (M,String_A,I,String_B)(F(2),A(M),X(M),F(2),A(I));

In this example, the first two characters are assigned to M. The value of M specifies the number of
characters assigned to String_A and the number of characters being ignored before two characters are
assigned to I, whose value is used to specify the number of characters assigned to String_B.

The value assigned to a variable during an input operation can be used in an expression in a format item
that is associated with a later data item. An expression in a format item is evaluated and converted to an
integer each time the format item is used.

The transmission is complete when the last data-list item has been processed. Subsequent format items,
including control-format items, are ignored.

GET edit-directed
This topic provides information about using the GET statement for edit-directed data transmission.

Data in the stream is a continuous string of characters and graphics with no delimiters between
successive values. The number of characters for each data value is specified by a format item in the
format list. The characters are interpreted according to the associated format item. When the data list

GET edit-directed

Chapter 12. Stream-oriented data transmission 309

has been processed, execution of the GET statement stops and any remaining format items are not
processed.

Each data-format item specifies the number of characters or graphics to be associated with the data-list
item and how to interpret the data value. The data value is assigned to the associated data-list item, with
any necessary conversion.

Fixed-point binary and floating-point binary data values must always be represented in the input stream
with their values expressed in decimal digits. The F-, P-, and E-format items can then be used to access
them, and the values are converted to binary representation upon assignment.

All blanks and quotation marks are treated as characters in the stream. Strings should not be enclosed
in quotation marks. Quotation marks should not be doubled. The letter B should not be used to identify
bit strings or G to identify graphic strings. If characters in the stream cannot be interpreted in the manner
specified, the CONVERSION condition is raised.

Example

 get edit (Name, Data, Salary)(A(N), X(2), A(6), F(6,2));

• The first N characters in the stream are treated as a character string and assigned to Name.
• The next two characters are skipped.
• The next six characters are assigned to Data in character format.
• The next six characters are considered an optionally signed decimal fixed-point constant and are

assigned to Salary.

Related information
“GET statement” on page 297
The GET statement is a STREAM input data transmission statement that can assign data values either
from a data set to one or more variables or from a string to one or more variables.

PUT edit-directed
In edit-directed data transmission, the value of each data-list item is converted to the character or
graphic representation specified by the associated data-format item and placed in the stream in a field
whose width also is specified by the format item. When the data list has been processed, execution of the
PUT statement stops and any remaining format items are not processed.

On output, binary items are converted to decimal values and the associated F- or E-format items must
state the field width and point placement in terms of the converted decimal number. For the P-format
these are specified by the picture specification.

On output, blanks are not inserted to separate data values in the output stream. String data is left-
adjusted in the field to the width specified. Arithmetic data is right-adjusted. Because of the rules for
conversion of arithmetic data to character type, which can cause up to 3 leading blanks to be inserted
(in addition to any blanks that replace leading zeros), generally there is at least 1 blank preceding an
arithmetic item in the converted field. Leading blanks do not appear in the stream, however, unless the
specified field width allows for them. Truncation, due to inadequate field-width specification, is on the left
for arithmetic items, and on the right for string items. SIZE or STRINGSIZE is raised if truncation occurs.

Example 1

 put edit('Inventory='∥Inum,Invcode)(A,F(5));

This example specifies that the character string 'Inventory=' is concatenated with the value of Inum
and placed in the stream in a field whose width is the length of the resultant string. Then, the value
of Invcode is converted to character, as described by the F-format item, and placed in the stream
right-adjusted in a field with a width of five characters (leading characters can be blanks).

PUT edit-directed

310 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Example 2

The following example shows the use of the COLUMN, LINE, PAGE, and SKIP format items in combination
with one another:

 put edit ('Quarterly Statement')
 (page, line(2), A(19))(Acct#, Bought, Sold, Payment, Balance)
 (skip(3), A(6), column(14), F(7,2), column(30), F(7,2),
 column(45), F(7,2), column(60), F(7,2));

1. The heading Quarterly Statement is written on line two of a new page in the output file SYSPRINT.
2. Two lines are skipped. The next line in the output is the third line following the heading, or the fifth line

of the report.
3. The following values are written:

Acct#, beginning at character position 1
Bought, beginning at character position 14
Sold, beginning at character position 30
Payment, beginning at character position 45
Balance at character position 60.

Example 3

In the following example, the value of Name is inserted in the stream as a character string left-adjusted in
a field of N characters.

 put edit (Name,Number,City) (A(N),A(N-4),A(10));

Number is left-adjusted in a field of N-4 characters; and City is left-adjusted in a field of 10 characters.

Related information
“PUT statement” on page 298
The PUT statement is a STREAM output data transmission statement that can transmit values to a stream
output file or assign values to a character variable.

FORMAT statement
The FORMAT statement specifies a format list that can be used by edit-directed data transmission
statements to control the format of the data being transmitted.

label: FORMAT ( format-list) ;

label
Same as the label-reference of the remote-format item R. See “R-format item” on page 324.

format list
Specified as described in “Edit-directed data specification” on page 308.

A GET or PUT EDIT statement can include an R-format item in its format-list option. That portion of the
format list represented by the R-format item is supplied by the identified FORMAT statement.

A condition prefix associated with a FORMAT statement is not allowed.

FORMAT

Chapter 12. Stream-oriented data transmission 311

List-directed data specification
List-directed data transmission transmits the values of data-list items without you having to specify the
format of the values in the stream.

For information about the syntax of the LIST data specification, see “Data specification options” on page
299.

These are some examples of list-directed data specifications:

 list (Card_Rate, Dynamic_Flow)

 list ((Thickness(Distance)
 do Distance = 1 to 1000))

 list (P, Z, M, R)

 list (A*B/C, (X+Y)**2)

The specification in the last example can be used only for output, because it contains expressions. These
expressions are evaluated when the statement is executed, and the result is placed in the stream.

Syntax of list-directed data
Data values in the stream, either input or output, are character or graphic representations.

 +
 -

arithmetic-constant

 +
 -

real-constant +
 -

imaginary-constant

character-constant

bit-constant

graphic-constant

String repetition factors are not allowed. A blank must not follow a sign preceding a real constant, and
must not precede or follow the central positive (+) or negative (-) symbol in complex expressions.

The length of the data value in the stream is a function of the attributes of the data value, including
precision and length. Detailed discussions of the conversion rules and their effect upon precision are
listed in the descriptions of conversion to character type in Chapter 4, “Data conversion,” on page 75.

GET list-directed
This topic provides information about using the GET statement for list-directed data transmission.

On input, data values in the stream must be separated either by a blank or by a comma. This separator
can be surrounded by one or more blanks. A null field in the stream is indicated either by the first
nonblank character in the data stream being a comma, or by two commas separated by an arbitrary
number of blanks. A null field specifies that the value of the associated data-list item remains unchanged.

Transmission of the list of constants or complex expressions on input is terminated by expiration of the
list or at the end-of-file. For transmission of constants, the file is positioned in the stream ready for the
next GET statement.

If the items are separated by a comma, the first character scanned when the next GET statement is
executed is the one immediately following the comma:

 Xbb,bbbXX
 —

Syntax of list-directed data

312 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

If the items are separated by blanks only, the first item scanned is the next nonblank character:

 XbbbbXXX
 —

If the end-of-record is encountered, the file is positioned at the end of the record:

 Xbb–bbXXX
 —

However, if the end-of-record immediately follows a nonblank character (other than a comma) and the
following record begins with blanks, the file is positioned at the first nonblank character in the following
record:

 X–bbbXXX
 —

If the record does terminate with a comma, the next record is not read until the next GET statement
requires it.

If the data is a character constant, the surrounding quotation marks are removed, and the enclosed
characters are interpreted as a character string. A double quotation mark is treated as a single quotation
mark.

If the data is a bit constant, the enclosing quotation marks and the trailing character B are removed, and
the enclosed characters are interpreted as a bit string.

If the data is a hexadecimal constant (X, BX, B4, GX), the enclosing quotation marks and the suffix are
removed, and the enclosed characters are interpreted as a hexadecimal representation of a character, bit,
or graphic string.

If the data is a mixed constant, the enclosing quotation marks and the suffix M are removed, and the
enclosed constant is interpreted as a character string.

If the data is a graphic constant, the enclosing quotation marks and the trailing character G are removed,
and the enclosed graphics are interpreted as a graphic string.

If the data is an arithmetic constant or complex expression, it is interpreted as coded arithmetic data with
the base, scale, mode, and precision implied by the constant or by the rules for expression evaluation.

Related information
“GET statement” on page 297
The GET statement is a STREAM input data transmission statement that can assign data values either
from a data set to one or more variables or from a string to one or more variables.

PUT list-directed
In list-directed data transmission, how data values are converted and written out depends on the value
type and file attributes.

The values of the data-list items are converted to character representations (except for graphics) and
transmitted to the data stream. A blank separates successive data values transmitted. For PRINT files,
items are separated according to program tab settings (see “PRINT attribute” on page 314).

Arithmetic values are converted to character.

Binary data values are converted to decimal notation before being placed in the stream.

For numeric character values, the character value is transmitted.

Bit strings are converted to character strings. The character string is enclosed in quotation marks and
followed by the letter B.

Character strings are written out as follows:

PUT list-directed

Chapter 12. Stream-oriented data transmission 313

• If the file does not have the attribute PRINT, enclosing quotation marks are supplied, and contained
single quotation marks or apostrophes are replaced by two quotation marks. The field width is the
current length of the string plus the number of added quotation marks.

• If the file has the attribute PRINT, enclosing quotation marks are not supplied, and contained single
quotation marks or apostrophes are unmodified. The field width is the current length of the string.

Mixed strings are written out as follows:

• If the file does not have the attribute PRINT, SBCS quotation marks and the letter M are supplied.
Contained SBCS quotes are replaced by two quotes.

• If the file has the attribute PRINT, the enclosing quotation marks and letter M are not supplied, and
contained single quotation marks are unmodified.

Graphic strings are written out as follows:

• If the file does not have the attribute PRINT, SBCS quotation marks, and the letter G are supplied.
Because the enclosing quotation marks are SBCS, contained graphic quotation marks are represented
by a single graphic quotation mark (unmodified).

• If the file has the attribute PRINT, the enclosing quotation marks and letter G are not supplied, and
graphic quotation marks are represented by a single graphic quotation mark (unmodified).

Related information
“PUT statement” on page 298
The PUT statement is a STREAM output data transmission statement that can transmit values to a stream
output file or assign values to a character variable.

PRINT attribute
The PRINT attribute applies to files with the STREAM and OUTPUT attributes. It indicates that the file is
intended to be printed; that is, the data associated with the file is to appear on printed pages, although it
can first be written on some other medium.

PRINT

When PRINT is specified, the first data byte of each record of a PRINT file is reserved for an American
National Standard (ANS) printer control character. The control characters are inserted by PL/I.

Data values transmitted by list- and data-directed data transmission are automatically aligned on the left
margin and on implementation-defined preset tab positions.

The layout of a PRINT file can be controlled by the use of the options and format items listed in Table 48
on page 314.

Table 48. Options and format items for PRINT files

Statement Statement option Edit directed
format item

Effect

OPEN LINESIZE(n) – Establishes line width

OPEN PAGESIZE(n) – Establishes page length

PUT PAGE PAGE Skip to new page

PUT LINE(n) LINE(n) Skip to specified line

PUT SKIP[(n)] SKIP[(n)] Skip specified number of lines

PUT – COLUMN(n) Skip to specified character position in
line

PRINT

314 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 48. Options and format items for PRINT files (continued)

Statement Statement option Edit directed
format item

Effect

PUT – X(n) Places blank characters in line to
establish position

LINESIZE and PAGESIZE establish the dimensions of the printed area of the page, excluding footings.
The LINESIZE option specifies the maximum number of characters included in each printed line. If it
is not specified for a PRINT file, a default value of 120 characters is used. There is no default for a
non-PRINT file. The PAGESIZE option specifies the maximum number of lines in each printed page; if it is
not specified, a default value of 60 lines is used. Consider the following example:

 open file(Report) output stream print PAGESIZE(55) LINESIZE(110);
 on endpage(Report) begin;
 put file(Report) skip list (Footing);
 Pageno = Pageno + 1;
 put file(Report) page list ('Page '||Pageno);
 put file(Report) skip (3);
 end;

The OPEN statement opens the file Report as a PRINT file. The specification PAGESIZE(55) indicates that
each page contains a maximum of 55 lines. An attempt to write on a page after 55 lines have already been
written (or skipped) raises the ENDPAGE condition. The implicit action for the ENDPAGE condition is to
skip to a new page, but you can establish your own action through use of the ON statement, as shown in
the example.

LINESIZE(110) indicates that each line on the page can contain a maximum of 110 characters. An
attempt to write a line greater than 110 characters places the excess characters on the next line.

When an attempt is made to write on line 56 (or to skip beyond line 55), the ENDPAGE condition is
raised, and the begin-block shown here is executed. The ENDPAGE condition is raised only once per page.
Consequently, printing can be continued beyond the specified PAGESIZE after the ENDPAGE condition has
been raised. This can be useful, for example, if you want to write a footing at the bottom of each page.

The first PUT statement specifies that a line is skipped, and the value of Footing, presumably a character
string, is printed on line 57 (when ENDPAGE is raised, the current line is always PAGESIZE+1). The page
number, Pageno, is incremented, the file Report is set to the next page, and the character constant
'Page' is concatenated with the new page number and printed. The final PUT statement skips three
lines, so that the next printing is on line 4. Control returns from the begin-block to the PUT statement
that raised the ENDPAGE condition. However, any SKIP or LINE option specified in that statement has no
further effect.

DBCS data in stream I/O
If DBCS data is used in list-directed or data-directed transmission, the GRAPHIC option of the
ENVIRONMENT attribute must be specified for that file. It also must be specified if data-directed
transmission uses DBCS names even though no DBCS data is present.

DBCS continuation rules are applied and are the same rules as those described in “DBCS continuation
rules” on page 13. For information about how graphics are handled for edit-directed transmission, see
“Edit-directed data specification” on page 308.

DBCS data in stream I/O

Chapter 12. Stream-oriented data transmission 315

DBCS data in stream I/O

316 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 13. Edit-directed format items
This chapter describes each of the edit-directed format items that can appear in the format list of a GET,
PUT, or FORMAT statement. The format items are described in alphabetic order.
Related information
“Edit-directed data specification” on page 308
Edit-directed data specification makes it easy to format stream output.

A-format item
The character (or A) format item describes the representation of a character value.

A

( field-width)

field-width
Specifies the number of character positions in the data stream that contain (or will contain) the string.
It is an expression that is evaluated and converted to an integer value, which must be nonnegative,
each time the format item is used.

If an A-format item is specified without a length in a GET EDIT statement, the compiler issues a warning
message and treats it as an L-format item (rather than issuing an error message and assigning it a length
of 1).

On input, the specified number of characters is obtained from the data stream and assigned, with any
necessary conversion, truncation, or padding, to the data-list item. The field width is always required on
input, and if it is zero, a null string is obtained. If quotation marks appear in the stream, they are treated
as characters in the string.

Consider the following example:

 get file (Infile) edit (Item) (A(20));

The GET statement assigns the next 20 characters in Infile to Item. The value is converted from
its character representation specified by the format item A(20) to the representation specified by the
attributes declared for Item.

On output, the data-list item is converted, if necessary, to a character string and is truncated or extended
with blanks on the right to the specified field-width before being placed into the data stream. If the
field-width is zero, no characters are placed into the data stream. Enclosing quotation marks are never
inserted, nor are contained quotation marks doubled. If the field width is not specified, the default is
equal to the character-string length of the data-list item (after conversion, if necessary, according to the
rules given in Chapter 4, “Data conversion,” on page 75).

B-format item
The bit (or B) format item describes the character representation of a bit value. Each bit is represented by
the character zero or one.

B

( field-width)

A-format

© Copyright IBM Corp. 1999, 2022 317

field-width
Specifies the number of data-stream character positions that contain (or will contain) the bit string. It
is an expression that is evaluated and converted to an integer value, which must be nonnegative, each
time the format item is used.

On input, the character representation of the bit string can occur anywhere within the specified field.
Blanks, which can appear before and after the bit string in the field, are ignored. Any necessary conversion
occurs when the bit string is assigned to the data-list item. The field width is always required on input,
and if it is zero, a null string is obtained. Any character other than 0 or 1 in the string, including embedded
blanks, quotation marks, or the letter B, raises the CONVERSION condition.

On output, the character representation of the bit string is left-adjusted in the specified field, and
necessary truncation or extension with blanks occurs on the right. Any necessary conversion to bit-string
is performed. No quotation marks are inserted, nor is the identifying letter B. If the field width is zero,
no characters are placed into the data stream. If the field width is not specified, the default is equal to
the bit-string length of the data-list item (after conversion, if necessary, according to the rules given in
Chapter 4, “Data conversion,” on page 75).

Consider the following example:

 declare Mask bit(25);
 put file(Maskfle) edit (Mask) (B);

The PUT statement writes the value of Mask in Maskfle as a string of 25 characters consisting of zeros
and ones.

C-format item
The complex (or C) format item describes the character representation of a complex data value. You use
one real-format-item to describe both the real and imaginary parts of the complex data value in the data
stream.

C ( real-format-item)

real-format-item
Specified by one of the F-, E-, or P-format items. The P-format item must describe numeric character
data.

On input, the letter I in the input raises the CONVERSION condition.

On output, the letter I is never appended to the imaginary part. If the second real format item (or the first,
if only one appears) is an F or E item, the sign is transmitted only if the value of the imaginary part is less
than zero. If the real format item is a P item, the sign is transmitted only if the S or - or + picture character
is specified.

If you require an I to be appended, it must be specified as a separate data item in the data
list, immediately following the variable that specifies the complex item. The I, then, must have a
corresponding format item (either A or P). If a second real format item is specified, it is ignored.

COLUMN format item
The COLUMN format item positions the file to a specified character position within the current or following
line.

COLUMN ( character-position)

character-position
Specifies an expression that is evaluated and converted to an integer value, which must be
nonnegative, each time the format item is used.

C-format

318 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The file is positioned to the specified character position in the current line, provided that it has not already
passed this position. If the file is already positioned after the specified character position, the current line
is completed and a new line is started; the format item is then applied to the following line.

Then, if the specified character position lies beyond the rightmost character position of the current line, or
if the value of the expression for the character position is less than one, the default character position is
one.

The rightmost character position is determined as follows:

• For output files, it is determined by the line size.
• For input files, the length of the current logical record is used to determine the line size and, hence,

determines the rightmost character position.

COLUMN must not be used in a GET STRING or PUT STRING statement.

COLUMN cannot be used with input or output lines that contain graphics or widechars.

On input, intervening character positions are ignored.

On output, intervening character positions are filled with blanks.

E-format item
The floating-point (or E) format item describes the character representation of a real floating-point
decimal arithmetic data value.

E (field-width , fractional-digits

, significant-digits

)

field-width
Specifies the total number of characters in the field. It is evaluated and converted to an integer value
w each time the format item is used. w must be nonnegative.

fractional-digits
Specifies the number of digits in the mantissa that follow the decimal point. It is evaluated and
converted to an integer value d each time the format item is used. d must be nonnegative.

significant-digits
Specifies the number of digits that must appear in the mantissa. It is evaluated and converted to an
integer value s each time the format item is used. s must be nonnegative.

In PUT statements, if w is positive, p is the maximum float decimal precision, and e is the number of digits
to be used to represent the exponent, the following items must be true:

• s > 0
• d <= p
• s <= (p + 1)
• s >= d
• if d = 0, w >= s+e+2
• if d > 0 and s > d, w >= s+e+3
• if d > 0 and s = d, w >= s+e+4

The values for w, d, and s are field-width, fractional-digits, and significant-digits, respectively. The value
for e is determined by the E suboption of the DEFAULT compiler option.

On input, either the data value in the data stream is an optionally signed real decimal floating-point or
fixed-point constant located anywhere within the specified field or the CONVERSION condition is raised.
(For convenience, the E preceding a signed exponent can be omitted.)

E-format

Chapter 13. Edit-directed format items 319

The field width includes leading and trailing blanks, the exponent position, the positions for the optional
plus or minus signs, the position for the optional letter E, and the position for the optional decimal point in
the mantissa.

The data value can appear anywhere within the specified field; blanks can appear before and after
the data value in the field and are ignored. If the entire field is blank, the CONVERSION condition is
raised. When no decimal point appears, fractional-digits specifies the number of character positions in
the mantissa to the right of the assumed decimal point. If a decimal point does appear in the number, it
overrides the specification of fractional-digits.

If field-width is 0, there is no assignment to the data-list item.

The following statement obtains the next 10 characters from A and interprets them as a floating-point
decimal number. A decimal point is assumed before the rightmost 6 digits of the mantissa. The value of
the number is converted to the attributes of COST and assigned to this variable.

 get file(A) edit (Cost) (E(10,6));

On output, the data-list item is converted to floating-point and rounded if necessary. The rounding of data
is as follows: if truncation causes a digit to be lost from the right, and if this digit is greater than or equal
to 5, 1 is added to the digit to the left of the truncated digit. This addition might cause adjustment of the
exponent.

The character string written in the stream for output has one of the following syntaxes:

Note:

1. Blanks are not allowed between the elements of the character strings.
2. The length of the exponent is either 2 or 4 digits depending on the float datatype and the setting of the

E suboption of the DEFAULT compiler option. In the discussion below, this length is represented by e.

• For d=0

 -
s-digits E +

 -
 exponent

w must be >=s+e+2 for positive values, or >=s+e+3 for negative values.

When the value is nonzero, the exponent is adjusted so that the leading digit of the mantissa is nonzero.
When the value is zero, zero suppression is applied to all digit positions (except the rightmost) of the
mantissa.

• For 0<d<s

 -
s-d-digits . d-digits E +

 -
exponent

w must be >=s+e+3 for positive values, or >=s+e+5 for negative values.

When the value is nonzero, the exponent is adjusted so that the leading digit of the mantissa is nonzero.
When the value is zero, zero suppression is applied to all digit positions (except the first) to the left of
the decimal point. All other digit positions contain zero.

• For d=s

E-format

320 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 -
0. d-digits E +

 -
 exponent

w must be >=d+e+5 for positive values, or >=d+e+6 for negative values.

When the value is nonzero, the exponent is adjusted so that the first fractional digit is nonzero. When
the value is zero, each digit position contains zero.

If the field width is such that significant digits or the sign are lost, the SIZE condition is raised. If the
character string does not fill the specified field on output, the character string is right-adjusted and
extended on the left with blanks.

F-format item
The fixed-point (or F) format item describes the character representation of a real fixed-point decimal
arithmetic value.

F (field-width

, fractional-digits

, scaling-factor

)

field-width
Specifies the total number of characters in the field. It is evaluated and converted to an integer value
w each time the format item is used. The converted value must be nonnegative.

fractional-digits
Specifies the number of digits in the mantissa that follow the decimal point. It is evaluated and
converted to an integer value d each time the format item is used. The converted value must be
nonnegative. If fractional-digits is not specified, the default value is 0.

scaling-factor
Specifies the number of digits that must appear in the mantissa. It is evaluated and converted to an
integer value p each time the format item is used.

On input, either the data value in the data stream is an optionally signed real decimal fixed-point constant
located anywhere within the specified field or the CONVERSION condition is raised. Blanks can appear
before and after the data value in the field and are ignored. If the entire field is blank, it is interpreted as
zero.

If no scaling-factor is specified and no decimal point appears in the field, the expression for fractional-
digits specifies the number of digits in the data value to the right of the assumed decimal point. If a
decimal point does appear in the data value, it overrides the expression for fractional-digits.

If a scaling-factor is specified, it effectively multiplies the data value in the data stream by 10 raised
to the integer value (p) of the scaling-factor. Thus, if p is positive, the data value is treated as though
the decimal point appeared p places to the right of its given position. If p is negative, the data value is
treated as though the decimal point appeared p places to the left of its given position. The given position
of the decimal point is that indicated either by an actual point, if it appears, or by the expression for
fractional-digits, in the absence of an actual point.

If the field-width is 0, there is no assignment to the data-list item.

On output, the data-list item is converted, if necessary, to fixed-point. Floating point data converts to
FIXED DECIMAL (N,q) where q is the fractional-digits specified. The data value in the stream is the
character representation of a real decimal fixed-point number, rounded if necessary, and right-adjusted in
the specified field.

F-format

Chapter 13. Edit-directed format items 321

The conversion from decimal fixed-point type to character type is performed according to the normal
rules for conversion. Extra characters can appear as blanks preceding the number in the converted string.
And because leading zeros are converted to blanks (except for a 0 immediately to the left of the point),
additional blanks can precede the number. If a decimal point or a minus sign appears, either will cause
one leading blank to be replaced.

If only the field-width is specified, only the integer portion of the number is written; no decimal point
appears.

If both the field-width and fractional-digits are specified, both the integer and fractional portions of the
number are written. If the value (d) of fractional-digits is greater than 0, a decimal point is inserted before
the rightmost d digits. Trailing zeros are supplied when fractional-digits is less than d (the value d must
be less than field-width). If the absolute value of the item is less than 1, a 0 precedes the decimal point.
Suppression of leading zeros is applied to all digit positions (except the first) to the left of the decimal
point.

The rounding of the data value is as follows: if truncation causes a digit to be lost from the right, and this
digit is greater than or equal to 5, 1 is added to the digit to the left of the truncated digit.

On output, if the data-list item is less than 0, a minus sign is prefixed to the character representation; if it
is greater than or equal to 0, no sign appears. Therefore, for negative values, the field-width might need to
include provision for the sign, a decimal point, and a 0 before the point.

If the field-width is such that any character is lost, the SIZE condition is raised.

Consider the following example:

 declare Total fixed(4,2);
 put edit (Total) (F(6,2));

The PUT statement specifies that the value of Total is converted to the character representation of a
fixed-point number and written into the output file SYSPRINT. A decimal point is inserted before the last
two numeric characters, and the number is right-adjusted in a field of six characters. Leading zeros are
changed to blanks (except for a zero immediately to the left of the point), and, if necessary, a minus sign is
placed to the left of the first numeric character.

G-format item
For the compiler, the graphic (or G) format item describes the representation of a graphic string.

G

( field-width)

field-width
Specifies the number of 2-byte positions in the data stream that contain (or will contain) the graphic
string. It is an expression that is evaluated and converted to an integer value, which must be
nonnegative, each time the format item is used. End-of-line must not occur between the 2 bytes
of a graphic.

On input, the specified number of graphics is obtained from the data stream and is assigned, with any
necessary truncation or padding, to the data-list item. The field-width is always required on input, and if it
is zero, a null string is obtained.

On output, the data-list item is truncated or extended (with the padding graphic) on the right to the
specified field-width before being placed into the data stream. No enclosing quotation marks are inserted;
nor is the identifying suffix, G, inserted. If the field-width is zero, no graphics are placed into the data
stream. If the field-width is not specified, a default value is used, which is equal to the graphic-string
length of the data-list item.

In the following example, if file OUT has the GRAPHIC option, six bytes are transmitted.

G-format

322 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 declare A graphic(3);
 put file(Out) edit (A) (G(3));

L-format item
On input, L indicates that all data up to the end of the line is assigned to the data item.

L

On output, L indicates that the data item, padded on the right with blanks, if necessary, is to fill the
remainder of the output line.

LINE format item
The LINE format item specifies the line on the current page of a PRINT file upon which the next data-list
item will be printed, or it raises the ENDPAGE condition.

LINE ( line-number)

line-number
Can be represented by an expression, which is evaluated and converted to an integer value, which
must be nonnegative, each time the format item is used.

Blank lines are inserted, if necessary.

If the specified line-number is less than or equal to the current line number, or if the specified line is
beyond the limits set by the PAGESIZE option of the OPEN statement (or by default), the ENDPAGE
condition is raised. An exception is that if the specified line-number is equal to the current line number,
and the column 1 character has not yet been transmitted, the effect is as for a SKIP(0) item, that is, a
carriage return with no line spacing.

If line-number is zero, it defaults to one (1).

P-format item
The picture (or P) format item describes the character representation of real numeric character values
and of character values.

The picture specification of the P-format item, on input, describes the form of the data item expected
in the data stream and, in the case of a numeric character specification, how the item's arithmetic value
is interpreted. If the indicated character does not appear in the stream, the CONVERSION condition is
raised.

On output, the value of the associated element in the data list is converted to the form specified by the
picture specification before it is written into the data stream.

P ' picture-specification '

picture-specification
See Chapter 14, “Picture specification characters,” on page 327.

Consider the following example:

 get edit (Name, Total) (P'AAAAA',P'9999');

L-format

Chapter 13. Edit-directed format items 323

When this statement is executed, the input file SYSIN is the default. The next five characters input from
SYSIN must be alphabetic or blank and they are assigned to Name. The next four characters must be digits
and they are assigned to Total.

PAGE format item
The PAGE format item specifies that a new page is established. It can be used only with PRINT files.

PAGE

Starting a new page positions the file to the first line of the next page.

R-format item
The remote (or R) format item specifies that the format list in a FORMAT statement is to be used.

R ( label-reference)

label-reference
The label constant of a FORMAT statement

The R-format item and the specified FORMAT statement must be internal to the same block, and they
must be in the same invocation of that block.

A remote FORMAT statement cannot contain an R-format item that references itself as a label reference;
nor can it reference another remote FORMAT statement that leads to the referencing of the original
FORMAT statement.

Conditions enabled for the GET or PUT statement must also be enabled for the remote FORMAT
statement(s) that are referred to.

If the GET or PUT statement is the single statement of an ON-unit, that statement is a block, and it cannot
contain a remote format item.

Example

 declare Switch label;
 get file(In) list(Code);
 if Code = 1 then
 Switch = L1;
 else
 Switch = L2;
 get file(In) edit (W,X,Y,Z)
 (R(Switch));
 L1: format (4 F(8,3));
 L2: format (4 E(12,6));

Switch has been declared a label variable. The second GET statement can be made to operate with
either of the two FORMAT statements.

Related information
“FORMAT statement” on page 311

PAGE format

324 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The FORMAT statement specifies a format list that can be used by edit-directed data transmission
statements to control the format of the data being transmitted.

SKIP format item
The SKIP format item specifies that a new line is to be defined as the current line.

SKIP

( relative-line)

relative-line
Specifies an expression, which is evaluated and converted to an integer value, n, each time the format
item is used. The converted value must be nonnegative and less than 32768. It must be greater than
zero for non-PRINT files. If it is zero, or if it is omitted, the default is 1.

The new line is the nth line after the present line.

If n is greater than one, one or more lines are ignored on input; on output, one or more blank lines are
inserted.

The value n can be zero for PRINT files only, in which case the positioning is at the start of the current line.
Characters previously written can be overprinted.

For PRINT files, if the specified relative-line is beyond the limit set by the PAGESIZE option of the OPEN
statement (or the default), the ENDPAGE condition is raised.

If the SKIP format item is the first item to be executed after a file has been opened, output commences on
the nth line of the first page. If n is zero or 1, it commences on the first line of the first page.

Example

 get file(In) edit(Man,Overtime)
 (skip(1), A(6), COL(60), F(4,2));

This statement positions the data set associated with file to a new line. The first 6 characters on the line
are assigned to Man, and the 4 characters beginning at character position 60 are assigned to Overtime.

V-format item
On input, V indicates that all data up to the end of the line is assigned to the data item. However, the
characters read with a V-format item are not flushed; they are only viewed. They will be flushed only when
read by some other format item.

V

The V-format item is invalid in output.

X-format item
The spacing (or X) format item specifies the relative spacing of data values that is smaller than 2G in the
data stream.

X ( field-width)

SKIP format

Chapter 13. Edit-directed format items 325

field-width
Specifies an expression that is evaluated and converted to an integer value, which must be
nonnegative, each time the format item is used. The integer value specifies the number of characters
before the next field of the data stream, relative to the current position in the stream.

On input, the specified number of characters are spaced over in the data stream and not transmitted to
the program.

Consider the following example:

 get edit (Number, Rebate)
 (A(5), X(5), A(5));

The next 15 characters from the input file, SYSIN, are treated as follows: the first five characters are
assigned to Number, the next five characters are ignored, and the remaining five characters are assigned
to Rebate.

On output, the specified number of blank characters are inserted into the stream.

Consider the following example:

 put file(Out) edit (Part, Count) (A(4), X(2), F(5));

Four characters that represent the value of Part, then two blank characters, and finally five characters
that represent the fixed-point value of Count, are placed in the file named Out.

X-format

326 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 14. Picture specification characters
A picture specification consists of a sequence of picture characters enclosed in single or double quotation
marks. This character describes the contents of each position of the character or numeric character data
item, and the contents of the output.

The specification can be made in two ways:

• As part of the PICTURE attribute in a declaration
• As part of the “P-format item” on page 323 for edit-directed input and output

A picture specification describes either a character data item or a numeric character data item. The
presence of an A or X picture character defines a picture specification as a character picture specification;
otherwise, it is a numeric character picture specification.

A character pictured item can consist of alphabetic characters, decimal digits, blanks, currency and
punctuation characters.

A numeric character pictured item can consist only of decimal digits, an optional decimal point, an optional
letter E, and, optionally, one or two plus or minus signs. Other characters generally associated with
arithmetic data, such as currency symbols, can also be specified, but they are not part of the arithmetic
value of the numeric character variable, although the characters are stored with the digits and are part of
the character value of the variable.

Figures in this section illustrate how different picture specifications affect the representation of values
when assigned to a pictured variable or when printed using the P-format item. Each figure shows the
original value of the data, the attributes of the variable from which it is assigned (or written), the picture
specification, and the character value of the numeric character or pictured character variable.

Picture repetition factor
A picture repetition factor specifies the number of repetitions of the next picture character in the
specification.

( n)

n
An integer. No blanks are allowed within the parentheses. If n is 0, the picture character is ignored.

For example, the following picture specifications result in the same description:

 '999V99'
 '(3)9V(2)9'

Picture characters for character data
A character picture specification describes a nonvarying character data item. You can specify that any
position in the data item can contain only characters from certain subsets of the complete set of available
characters. The data can consist of alphabetic characters, decimal digits, and blanks.

The only valid characters in a character picture specification are X, A, and 9. Each of these specifies the
presence of one character position in the character value.
X

Any character of the 256 possible bit combinations represented by the 8-bit byte.
A

Any alphabetic or extralingual (#, @, $) character, or blank.

Picture repetition factor

© Copyright IBM Corp. 1999, 2022 327

9
Any digit, or blank. (Note that the 9 picture specification character allows blanks only for character
data.)

When a character value is assigned or transferred to a picture character data item, the particular
character in each position is validated according to the corresponding picture specification character.
If the character data does not match the specification for that position, the CONVERSION condition is
raised for the invalid character. (However, if you change the value by record-oriented transmission or by
using an alias, there is no checking.) Consider the following example:

 declare Part# picture 'AAA99X';
 put edit (Part#) (P'AAA99X');

The following values are valid for Part#:

 'ABC12M'
 'bbb09/'
 'XYZb13'

The following values are not valid for Part# (the invalid characters are underscored):

 'AB123M'
 'ABC1/2'
 'Mb#A5;'

Table 49 on page 328 shows examples of character picture specifications.

Table 49. Character picture specification examples

Source attributes Source data (in
constant form)

Picture specification Character value

CHARACTER(5)
CHARACTER(5)
CHARACTER(5)

'9B/2L'
'9B/2L'
'9B/2L'

XXXXX
XXX
XXXXXXX

9B/2L
9B/
9B/2Lbb

CHARACTER(5)
CHARACTER(5)
CHARACTER(5)

'ABCDE'
'ABCDE'
'ABCDE'

AAAAA
AAAAAA
AAA

ABCDE
ABCDEb
ABC

CHARACTER(5)
CHARACTER(5)

'12/34'
'L26.7'

99X99
A99X9

12/34
L26.7

Picture characters for numeric character data
Numeric character data represents numeric values. The picture specification cannot contain the character
data picture characters X or A. The picture characters for numeric character data can also specify editing
of the data.

A numeric character variable can have two values, depending upon how the variable is used. The types of
values are as follows:
Arithmetic

The arithmetic value is the value expressed by the decimal digits of the data item, the assumed
location of a decimal point, possibly a sign, and an optionally-signed exponent or scaling factor. The
arithmetic value of a numeric character variable is used in the following situations:

• Whenever the variable appears in an expression that results in a coded arithmetic value or bit
value (this includes expressions with the ¬, &, |, and comparison operators; even comparison with a
character string uses the arithmetic value of a numeric character variable)

• Whenever the variable is assigned to a coded arithmetic, numeric character, or bit variable

Picture characters for character data

328 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• When used with the C, E, F, B, and P (numeric) format items in edit-directed I/O.

The arithmetic value of the numeric character variable is converted to internal coded arithmetic
representation.

Character value
The character value is the value expressed by the decimal digits of the data item, as well as all of the
editing and insertion characters appearing in the picture specification. The character value does not,
however, include the assumed location of a decimal point, as specified by the picture characters V, K,
or F. The character value of a numeric character variable is used:

• Whenever the variable appears in a character expression
• In an assignment to a character variable
• Whenever the data is printed using list-directed or data-directed output
• Whenever a reference is made to a character variable that is defined or based on the numeric

character variable
• Whenever the variable is printed using edit-directed output with the A or P (character) format items.

No data conversion is necessary.

Numeric character data can contain only decimal digits, an optional decimal point, an optional letter E,
and one or two plus or minus signs. Other characters generally associated with arithmetic data, such as
currency symbols, can also be specified, but they are not a part of the arithmetic value of the numeric
character variable, although the characters are stored with the digits and are part of the character value of
the variable.

A numeric character specification consists of one or more fields, each field describing a fixed-point
number. A floating-point specification has two fields—one for the mantissa and one for the exponent. The
first field can be divided into subfields by inserting a V picture specification character. The data preceding
the V (if any) and that following it (if any) are subfields of the specification.

A requirement of the picture specification for numeric character data is that each field must contain at
least one picture character that specifies a digit position. This picture character, however, need not be the
digit character 9. Other picture characters, such as the zero suppression characters (Z or *), also specify
digit positions.

Note: All characters except K, V, and F specify the occurrence of a character in the character
representation.

Related information
“Insertion and decimal point characters” on page 332
The point, comma, slash, or apostrophe can be used with the V to cause insertion of the point, comma,
slash, or apostrophe in the position that delimits the end of the integer portion and the beginning of the
fractional portion of a fixed-point (or floating-point) number, as might be wanted in printing. The V itself
does not cause the printing of period or any other delimiters.
“Picture repetition factor” on page 327
A picture repetition factor specifies the number of repetitions of the next picture character in the
specification.

Digits and decimal points
The picture characters 9 and V are used in numeric character specifications that represent fixed-point
decimal values.
9

Specifies that the associated position in the data item contains a decimal digit. (Note that the
9 picture specification character for numeric character data is different from the specification for
character data because the corresponding character cannot be a blank for character data.)

A string of n 9 picture characters specifies that the item is a nonvarying character-string of length n,
each of which is a digit (0 through 9). See the following example:

Digits and decimal points

Chapter 14. Picture specification characters 329

 dcl digit picture'9',
 Count picture'999',
 XYZ picture '(10)9';

An example of use is shown below:

 dcl 1 Record,
 2 Data char(72),
 2 Identification char(3),
 2 Sequence pic'99999';
 dcl Count fixed dec(5);
⋮
 Count=Count+1;
 Sequence=Count;
 write file(Output) from(Record);

V
Specifies that a decimal point is assumed at this position in the associated data item. However, it
does not specify that an actual decimal point or decimal comma is inserted. The integer value and
fractional value of the assigned value, after modification by the optional scaling factor F(±x), are
aligned on the V character. Therefore, an assigned value can be truncated or extended with zero digits
at either end. (If significant digits are truncated on the left, the result is undefined and the SIZE
condition is raised if enabled.)

If no V character appears in the picture specification of a fixed-point decimal value (or in the first field
of a picture specification of a floating-point decimal value), a V is assumed at the right end of the field
specification. This can cause the assigned value to be truncated, if necessary, to an integer.

The V character cannot appear more than once in a picture specification.

Consider the following example:

 dcl Value picture 'Z9V999';
 Value = 12.345;
 dcl Cvalue char(5);
 Cvalue = Value;

Cvalue, after assignment of Value, contains '12345'.

Table 50 on page 330 shows examples of digit and decimal point characters.

Table 50. Examples of digit and decimal point characters

Source attributes Source data (in
constant form)

Picture specification Character value

FIXED(5)
FIXED(5)
FIXED(5)

12345
12345
12345

99999
99999V
999V99

12345
12345
undefined

FIXED(5)
FIXED(7)
FIXED(3)

12345
1234567
123

V99999
99999
99999

undefined
undefined
00123

FIXED(5,2)
FIXED(7,2)
FIXED(5,2)

123.45
12345.67
123.45

999V99
9V9
99999

12345
undefined
00123

Note: When the character value is undefined, the SIZE condition is raised.

Digits and decimal points

330 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Zero suppression
The picture characters Z and asterisk (*) specify conditional digit positions in the character value and can
cause leading zeros to be replaced by asterisks or blanks.

Leading zeros are those that occur in the leftmost digit positions of fixed-point numbers or in the leftmost
digit positions of the two parts of floating-point numbers, that are to the left of the assumed position of a
decimal point, and that are not preceded by any of the digits 1 through 9. The leftmost nonzero digit in a
number and all digits, zeros or not, to the right of it represent significant digits.

Z
Specifies a conditional digit position and causes a leading zero in the associated data position to be
replaced by a blank. Otherwise, the digit in the position is unchanged. The picture character Z cannot
appear in the same field as the picture character * or a drifting character; nor can it appear to the right
of any of the picture characters in a field.

*
Specifies a conditional digit position. It is used in the way the picture character Z is used, except that
leading zeros are replaced by asterisks. The picture character asterisk cannot appear in the same field
as the picture character Z or a drifting character, nor can it appear to the right of any of the picture
characters in a field.

Table 51 on page 331 shows examples of zero suppression characters.

Table 51. Examples of zero suppression characters

Source attributes Source data (in
constant form)

Picture specification Character value

FIXED(5)
FIXED(5)
FIXED(5)

12345
00100
00100

ZZZ99
ZZZ99
ZZZZZ

12345
bb100
bb100

FIXED(5)
FIXED(5,2)
FIXED(5,2)

00000
123.45
001.23

ZZZZZ
ZZZ99
ZZZV99

bbbbb
bb123
bb123

FIXED(5)
FIXED(5,2)
FIXED(5,2)

12345
000.08
000.00

ZZZV99
ZZZVZZ
ZZZVZZ

undefined
bbb08
bbbbb

FIXED(5)
FIXED(5)
FIXED(5,2)

00100
00000
000.01

***V**

**100

***01

FIXED(5,2)
FIXED(5,2)

95
12350

$**9.99
$**9.99

$**0.95
$123.50

Note: When the character value is undefined, the SIZE condition is raised.

If one of the picture characters Z or asterisk appears to the right of the picture character V, all fractional
digit positions in the specification, as well as all integer digit positions, must use the Z or asterisk
picture character, respectively. When all digit positions to the right of the picture character V contain zero
suppression picture characters, fractional zeros of the value are suppressed only if all positions in the
fractional part contain zeros and all integer positions have been suppressed. The character value of the
data item will then consist of blanks or asterisks. No digits in the fractional part are replaced by blanks or
asterisks if the fractional part contains any significant digit.

Zero suppression

Chapter 14. Picture specification characters 331

Insertion characters
The picture characters comma (,), point (.), slash (⁄), apostrophe ('), and blank (B) cause the specified
character to be inserted into the associated position of the numeric character data. They do not indicate
digit or character positions, but are inserted between digits or characters. Each does, however, actually
represent a character position in the character value, whether or not the character is suppressed.

The comma, point, slash, and apostrophe are conditional insertion characters and can be suppressed
within a sequence of zero suppression characters. The blank is an unconditional insertion character, and
always specifies that a blank appears in the associated position.

Insertion characters are applicable only to the character value. They specify nothing about the arithmetic
value of the data item. They never cause decimal point or decimal comma alignment in the picture
specifications of a fixed-point decimal number and are not a part of the arithmetic value of the data item.
Decimal alignment is controlled by the picture characters V and F.

Comma (,), point (.), slash (⁄), or apostrophe (')
Inserts a character into the associated position of the numeric character data when no zero
suppression occurs. If zero suppression does occur, the character is inserted only under the following
conditions:

• When an unsuppressed digit appears to the left of the character's position
• When a V appears immediately to the left of the character and the fractional part of the data item

contains any significant digits
• When the character is at the start of the picture specification
• When the character is preceded only by characters that do not specify digit positions.

In all other cases where zero suppression occurs, a comma, point, slash, or apostrophe insertion
character is treated as a zero suppression character identical to the preceding character.

B
Specifies that a blank character be inserted into the associated position of the character value of the
numeric character data.

Insertion and decimal point characters
The point, comma, slash, or apostrophe can be used with the V to cause insertion of the point, comma,
slash, or apostrophe in the position that delimits the end of the integer portion and the beginning of the
fractional portion of a fixed-point (or floating-point) number, as might be wanted in printing. The V itself
does not cause the printing of period or any other delimiters.

The point must immediately precede or immediately follow the V. If the point precedes the V, it is inserted
only if an unsuppressed digit appears to the left of the V, even if all fractional digits are significant. If the
point immediately follows the V, it is suppressed if all digits to the right of the V are suppressed, but it
appears if there are any unsuppressed fractional digits (along with any intervening zeros).

The following example shows decimal conventions that are used in different countries.

 declare A picture 'Z,ZZZ,ZZZV.99',
 B picture 'Z.ZZZ.ZZZV,99',
 C picture 'ZBZZZBZZZV,99',
 D picture 'Z'ZZZ'ZZZV.99';
 A,B,C,D = 1234;
 A,B,C,D = 1234.00;

A, B, C, and D represent nine-digit numbers with a decimal point or decimal comma that is assumed
between the seventh and eighth digits. The actual point that is specified by the decimal point insertion
character is not a part of the arithmetic value. It is, however, part of its character value. The two
assignment statements assign the same character value to A, B, C, and D as follows:

 1,234.00 /* value of A */
 1.234,00 /* value of B */
 1 234,00 /* value of C */
 1'234.00 /* value of D */

Insertion characters and decimal points

332 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

In the following example, decimal point alignment during assignment occurs on the character V. If Rate is
printed, it appears as '762.00', but its arithmetic value is 7.6200.

 declare Rate picture '9V99.99';
 Rate = 7.62;

Table 52 on page 333 shows examples of insertion characters.

Table 52. Examples of insertion characters

Source attributes Source data (in
constant form)

Picture specification Character value

FIXED(4)
FIXED(6,2)
FIXED(4,2)

1234
1234.56
12.34

9,999
9'999V.99
ZZ.VZZ

1,234
1'234.56
12.34

FIXED(4,2)
FIXED(4,2)
FIXED(4,2)

00.03
00.03
12.34

ZZ.VZZ
ZZV.ZZ
ZZV.ZZ

bbb03
bb.03
12.34

FIXED(4,2)
FIXED(9,2)
FIXED(7,2)

00.00
1234567.89
12345.67

ZZV.ZZ
9'999'999.V89
**,999V.99

bbbbb
1'234'567.89
12,345.67

FIXED(7,2)
FIXED(9,2)
FIXED(6)

00123.45
1234567.89
123456

**,999V.99
9.999.999V,99
99/99/99

***123.45
1.234.567,89
12/34/56

FIXED(6)
FIXED(6)
FIXED(6)

123456
001234
000012

99.9/99.9
ZZ/ZZ/ZZ
ZZ/ZZ/ZZ

12.3/45.6
bbb12/34
bbbbbb12

FIXED(6)
FIXED(6)
FIXED(6)

000000
000000
000000

ZZ/ZZ/ZZ
//**
BB**

bbbbbbbb

bb**

FIXED(6)
FIXED(3)
FIXED(2)

123456
123
12

99B99B99
9BB9BB9
9BB/9BB

12b34b56
1bb2bb3
1bb/2bb

Defining currency symbols
A currency symbol can be used as a picture character denoting a character value of numeric character
data. This symbol can be the dollar sign ($) or any symbol you choose. The symbol can be any sequence of
characters enclosed in < and > characters. This topic helps you define your own character(s) as a currency
symbol.

 < char >

<
Indicates the start of the currency symbol. It acts as an escape character. If you want to use the
character <, you must specify <<.

Currency symbols

Chapter 14. Picture specification characters 333

char
Is any character that will be part of your currency symbol(s).

>
Indicates the end of the currency symbol. If you want to use the character >, you must specify <>.

More than one > indicates a drifting string (see “Drifting use” on page 335).

See the following examples of general insertion strings:
<DM>

represents the Deutschemark
<Fr>

represents the French Franc
<K$>

represents the Khalistan Dollar
<Sur.f>

represents the Surinam Guilder
<$>

represents the dollar sign

If the character < or > must be included in the sequence, it must be preceded by another <. Therefore, <
acts as an escape character also.

The entire sequence enclosed in < > represents one "symbol" and, therefore, represents the character
value for one numeric character. If the symbol needs to be represented as a drifting picture character, you
specify > following the "< >" to represent each occurrence.

See the following examples:
Pic '<DM>>>.>>9,V99'

represents a 10 character numeric picture, yielding 11 characters after assignment.
Pic '<Sur.f>999,V99'

represents a 7 character numeric picture, yielding 11 characters after assignment.
Pic '<K$>>>,>>9.V99'

represents a 10 character numeric picture, yielding 11 characters after assignment.
Pic '<$>>>,>>9.V99'

represents a 10 character numeric picture, yielding 10 characters after assignment.
Pic '$$$,$$9.V99'

has the same value as the previous picture specification.

More examples of currency symbol definition are listed as follows:

 dcl P pic'<DM>9.999,V99';
 P = 1234.40; /* Yields 'DM1.234,40' */

 dcl P pic'<DM>9.999,V99';
 P = 34.40; /* Yields 'DM 34,40' */

 dcl P pic'<DM>>.>>9,V99';
 P = 1234.40; /* Yields 'DM1.234,40' */

 dcl P pic'<DM>>.>>9,V99';
 P = 34.40; /* Yields ' DM34,40' */

 dcl P pic'9.999,V99<K$>';
 P = 1234.40; /* Yields '1.234,40K$' */

In this section, the term currency symbol and the $ symbol refer to the dollar sign or any user-defined
currency symbol.

Currency symbols

334 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Using signs and currency symbols
The picture characters S, +, and – specify signs in numeric character data. The picture character $ (or the
currency symbol) specifies a currency symbol in the character value of numeric character data. Only one
type of sign character can appear in each field.
currency symbol

Specifies the currency symbol.

Consider the following example:

 dcl Price picture '$99V.99';
 Price = 12.45;

The character value of Price is '$12.45'. Its arithmetic value is 12.45.

For information about specifying a character as a currency symbol, refer to “Defining currency
symbols” on page 333.

S
Specifies the plus sign character (+) if the data value is >=0; otherwise, it specifies the minus sign
character (-). The rules are identical to those for the currency symbol.

Consider the following example:

 dcl Root picture 'S999';

The value 50 is held as '+050', the value 0 as '+000', and the value -243 as '-243'.

+
Specifies the plus sign character (+) if the data value is >=0; otherwise, it specifies a blank. The rules
are identical to those for the currency symbol.

-
Specifies the minus sign character (-) if the data value is <0; otherwise, it specifies a blank. The rules
are identical to those for the currency symbol.

Signs and currency symbols can be used in either a static or a drifting manner.

Static use
Static use specifies that a sign, a currency symbol, or a blank appears in the associated position.

An S, +, or - used as a static character can appear to the right or left of all digits in the mantissa and
exponent fields of a floating-point specification, and to the right or left of all digit positions of a fixed-point
specification.

Drifting use
Drifting use specifies that leading zeros are to be suppressed. In this case, the rightmost suppressed
position associated with the picture character will contain a sign, a blank, or a currency symbol (except
that where all digit positions are occupied by drifting characters and the value of the data item is zero, the
drifting character is not inserted).

A drifting character is specified by multiple use of that character in a picture field. The drifting character
must be specified in each digit position through which it can drift. Drifting characters must appear in a
sequence of the same drifting character, optionally containing a V and one of the insertion characters
comma, point, slash, or B. Any of the insertion characters slash, comma, or point within or immediately
following the string is part of the drifting string. The character B always causes insertion of a blank,
wherever it appears. A V terminates the drifting string, except when the arithmetic value of the data item
is zero; in that case, the V is ignored. A field of a picture specification can contain only one drifting string.
A drifting string cannot be preceded by a digit position nor can it occur in the same field as the picture
characters * and Z.

Signs and currency symbols

Chapter 14. Picture specification characters 335

The position in the data associated with the characters slash, comma, and point appearing in a string of
drifting characters contains one of the following:

• Slash, comma, or point if a significant digit appears to the left
• The drifting symbol, if the next position to the right contains the leftmost significant digit of the field
• Blank, if the leftmost significant digit of the field is more than one position to the right.

If a drifting string contains the drifting character n times, the string is associated with n-1 conditional
digit positions. The position associated with the leftmost drifting character can contain only the drifting
character or blank, never a digit. Two different picture characters cannot be used in a drifting manner in
the same field.

If a drifting string contains a V within it, the V delimits the preceding portion as a subfield, and all digit
positions of the subfield following the V must also be part of the drifting string that commences the
second subfield.

In the case in which all digit positions after the V contain drifting characters, suppression in the subfield
occurs only if all of the integer and fractional digits are zero. The resulting edited data item is then all
blanks (except for any insertion characters at the start of the field). If there are any nonzero fractional
digits, the entire fractional portion appears unsuppressed.

If, during or before assignment to a picture, the fractional digits of a decimal number are truncated so that
the resulting value is zero, the sign inserted in the picture corresponds to the value of the decimal number
prior to its truncation. Thus, the sign in the picture depends on how the decimal value was calculated.

Table 53 on page 336 shows examples of signs and currency symbol characters.

Table 53. Examples of signs and currency characters

Source attributes Source data (in
constant form)

Picture specification Character value

FIXED(5,2)
FIXED(5,2)
FIXED(5,2)

123.45
012.00
001.23

$999V.99
99$
$ZZZV.99

$123.45
12$
$bb1.23

FIXED(5,2)
FIXED(1)
FIXED(5,2)

000.00
0
123.45

$ZZZV.ZZ
$$$.$$
$$$9V.99

bbbbbbb
bbbbbb
$123.45

FIXED(5,2)
FIXED(2)
FIXED(4)

001.23
12
1234

$$$9V.99
$$$,999
$$$,999

bb$1.23
bbb$012
b$1,234

FIXED(5,2)
FIXED(5)
FIXED(5)

2.45
214
-4

SZZZV.99
SS,SS9
SS,SS9

+bb2.45
bb+214
bbbb-4

FIXED(5,2)
FIXED(5,2)
FIXED(5,2)

-123.45
-123.45
123.45

+999V.99
-999V.99
999V.99S

b123.45
-123.45
123.45+

FIXED(5,2)
FIXED(5,2)
FIXED(5,2)

001.23
001.23
-001.23

++B+9V.99
- - -9V.99
SSS9V.99

bbb+1.23
bbb1.23
bb-1.23

Signs and currency symbols

336 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Credit, debit, overpunched, and zero replacement characters
This section describes the picture characters CR, DB, T, I, R, and Y, which are used for credit, debit,
overpunched, and zero replacement functions. The picture characters CR, DB, T, I, and R cannot be used
with any other sign characters in the same field.

Credit and debit
The character pairs CR (credit) and DB (debit) specify the signs of real numeric character data items.
CR

Specifies that the associated positions contain the letters CR if the value of the data is <0. Otherwise,
the positions will contain two blanks. The characters CR can appear only to the right of all digit
positions of a field.

DB
Specifies that the associated positions contain the letters DB if the value of the data is <0. Otherwise,
the positions will contain two blanks. The characters DB can appear only to the right of all digit
positions of a field.

Overpunch
Any of the picture characters T, I, or R (known as overpunch characters) specifies that a character
represents the corresponding digit and the sign of the data item. A floating-point specification can contain
two—one in the mantissa field and one in the exponent field. The overpunch character can be specified for
any digit position within a field.

The T, I, and R picture characters specify how the input characters are interpreted, as shown in Table 54
on page 337.

Table 54. Interpretation of the T, I, and R picture characters

T or I T or R

DigitDigit with + Digit with -

Character Character

{
A
B
C
D
E
F
G
H
I

}
J
K
L
M
N
O
P
Q
R

0
1
2
3
4
5
6
7
8
9

T, I, and R specify the following values:

T
On input, T specifies that the characters { through I and the digits 0 through 9 represent positive
values, and that the characters } through R represent negative values.

On output, T specifies that the associated position contains one of the characters { through I if
the input data represents positive values, and one of the characters } through R if the input data

Credit, debit, overpunched and zero replacement

Chapter 14. Picture specification characters 337

represents negative values. The T can appear anywhere a '9' picture specification character occurs.
Consider the following example:

 dcl Credit picture 'ZZV9T';

The character representation is 4 characters; +21.05 is held as '210E', -0.07 is held as 'bb0P'.

I
On input, I specifies that the characters { through I and the digits 0 through 9 represent positive
values.

On output, I specifies that the associated position contains one of the characters { through I if the
input data represents positive values; otherwise, it contains one of the digits, 0 through 9.

R
On input, R specifies that the characters } through R represent negative values and the digits 0
through 9 represent positive values.

On output, R specifies that the associated position contains one of the characters } through R if the
input data represents negative values; otherwise, it contains one of the digits 0 through 9. Consider
the following example:

 dcl X fixed decimal(3);
 get edit (x) (P'R99');

This example sets X to 132 on finding '132' in the next three positions of the input stream, but sets X
to -132 on finding 'J32'.

Zero replacement
The picture character Y specifies that a zero in the specified digit position is replaced unconditionally by
the blank character.

Table 55 on page 338 shows examples of credit, debit, overpunched, and zero replacement characters.

Table 55. Examples of credit, debit, overpunched, and zero replacement characters

Source attributes Source data (in
constant form)

Picture specification Character value

FIXED(3)
FIXED(4,2)
FIXED(4,2)

-123
12.34
-12.34

$Z.99CR
$ZZV.99CR
$ZZV.99DB

$1.23CR
$12.34bb
$12.34DB

FIXED(4,2)
FIXED(4)
FIXED(4)

12.34
1021
-1021

$ZZV.99DB
999I
Z99R

$12.34bb
102A
102J

FIXED(4)
FIXED(5)
FIXED(5)

1021
00100
10203

99T9
YYYYY
9Y9Y9

10B1
bb1bb
1b2b3

FIXED(5,2) 000.04 YYYVY9 bbbb4

Exponent characters
The picture characters K and E delimit the exponent field of a numeric character specification that
describes floating-point decimal numbers. The exponent field is the last field of a numeric character

Exponents

338 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

floating-point picture specification. The picture characters K and E cannot appear in the same
specification.
K

Specifies that the exponent field appears to the right of the associated position. It does not specify a
character in the numeric character data item.

E
Specifies that the associated position contains the letter E, which indicates the start of the exponent
field.

The value of the exponent is adjusted in the character value so that the first significant digit of the first
field (the mantissa) appears in the position associated with the first digit specifier of the specification
(even if it is a zero suppression character).

Table 56 on page 339 shows examples of exponent characters.

Table 56. Examples of exponent characters

Source attributes Source data (in
constant form)

Picture specification Character value

 FLOAT(5)
 FLOAT(5)
 FLOAT(5)

 .12345E06
 .12345E-06
 .12345E+06

 V.99999E99
 V.99999ES99
 V.99999KS99

 .12345E06
 .12345E-06
 .12345+06

 FLOAT(5)
 FLOAT(5)
 FLOAT(5)

 -123.45E+12
 001.23E-01
 001.23E+04

 S999V.99ES99
 SSS9.V99ESS9
 ZZZV.99KS99

 -123.45E+12
 +123.00Eb-3
 123.00+02

 FLOAT(5)
 FLOAT(5)

 001.23E+04
 001.23E+04

 SZ99V.99ES99
 SSSSV.99E-99

 +123.00E+02
 +123.00Eb02

Scaling factor
The picture character F specifies a picture scaling factor for fixed-point decimal numbers. It can appear
only once at the right end of the picture specification.

F (
 +
 -

 integer)

F
Specifies the picture scaling factor. The picture scaling factor specifies that the decimal point in the
arithmetic value of the variable is that number of places to the right (if the picture scaling factor is
positive) or to the left (if negative) of its assumed position in the character value.

The number of digits following the V picture character minus the integer specified with F must be in
the range -128 to 127.

Table 57 on page 340 shows examples of the picture scaling factor character.

Scaling factor

Chapter 14. Picture specification characters 339

Table 57. Examples of scaling factor characters

Source attributes Source data (in
constant form)

Picture specification Character value

 FIXED(4,0)
 FIXED(7,0)
 FIXED(5,5)

 1200
 -1234500
 .00012

 99F(2)
 S999V99F(4)
 99F(-5)

 12
 -12345
 12

 FIXED(6,6) .012345 999V99F(-4) 12345

Scaling factor

340 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 15. Condition handling
While a PL/I program is running, certain events can occur for which you can do some testing, issue a
response, or take recovery action. These events are called conditions, and are raised when detected.

Conditions can be unexpected errors (for example, overflow, input/output transmission error) or expected
errors (for example, end of an input file). Conditions can be raised directly in a program through the
SIGNAL statement (this can be very useful during testing).

Application control over conditions is accomplished through the enablement of conditions and the
establishment of actions to be performed when an enabled condition is raised. When a condition is
disabled, the compiler assumes that the condition cannot occur and generates code accordingly. If the
condition does occur, your program is in error. The established action can be an ON-unit or the implicit
action defined for the condition.

When an ON-unit is invoked, it is treated as a procedure without parameters. To help you use ON-units,
built-in functions and pseudovariables are provided for you to inquire about the cause of a condition.
Pseudovariables are often used for error correction and recovery.

The implicit action for many conditions is to raise the ERROR condition. This provides a common condition
that can be used to check for a number of different conditions, rather than checking each condition
separately. The ONCODE built-in function is particularly useful here, as it can be used to identify the
specific circumstances that raised the conditions. Codes corresponding to the conditions and errors
detected are listed in Messages and Codes.

Related information
“Built-in functions, pseudovariables, and subroutines” on page 375
A large number of common tasks are available in the form of built-in functions, subroutines, and
pseudovariables. When you use them, you can write less code more quickly with greater reliability. This
chapter describes the built-in functions, subroutines, and pseudovariables that you can use in your PL/I
program.

Condition prefixes
You can use a condition prefix to specify whether some conditions are enabled or disabled. If a condition
is enabled, the compiler generates any extra code needed in order to detect the condition. If a condition is
disabled, the compiler generates no extra code to detect it.

Disabling a condition is equivalent to asserting that the condition cannot occur; if it does, your program
is in error. For instance, if the SUBSCRIPTRANGE condition is enabled, the compiler generates extra code
to ensure that any array index is within the bounds of its array. If the SUBSCRIPTRANGE condition is
disabled, the extra code is not generated and using an invalid array index leads to unpredictable results.

If a condition is detected by hardware, disabling the condition has no effect.

You can specify a condition prefix only for eligible conditions.

(

,

condition) : statement

;

condition
Some conditions are always enabled, and cannot be disabled. Some are enabled unless you disable
them, and some are disabled unless you enable them. The conditions are listed in Chapter 16,
“Conditions,” on page 349.

© Copyright IBM Corp. 1999, 2022 341

statement
Condition prefixes are not valid for DECLARE, DEFAULT, FORMAT, OTHERWISE, END, ELSE, ENTRY,
and %statements. For information about the scope of condition prefixes, see “Scope of the condition
prefix” on page 343.

In the following example, (size): is the condition prefix. The conditional prefix indicates that the
corresponding condition is enabled within the scope of the prefix.

 (size): L1: X=(I**N) / (M+L);

To enable conditions, specify the condition prefix with the condition name. To disable conditions, specify
the condition prefix with the condition name, preceded by NO without intervening blanks.

Types and status of conditions are shown in Table 58 on page 342.

Table 58. Classes and status of conditions

Class and conditions Status

Computational (for data handling, expression
evaluation, and computation)

ASSERTION Always enabled

CONVERSION Enabled by default

FIXEDOVERFLOW Enabled by default

INVALIDOP Enabled by default

OVERFLOW Enabled by default

UNDERFLOW Always enabled

ZERODIVIDE Enabled by default

Input/Output

ENDFILE Always enabled

ENDPAGE Always enabled

KEY Always enabled

NAME Always enabled

RECORD Always enabled

TRANSMIT Always enabled

UNDEFINEDFILE Always enabled

Program checkout (useful for developing/
debugging a program)

CONFORMANCE Disabled by default

SIZE Disabled by default

STRINGRANGE Disabled by default

STRINGSIZE Disabled by default

SUBSCRIPTRANGE Disabled by default

Miscellaneous

ANYCONDITION Always enabled

AREA Always enabled

ATTENTION Always enabled

342 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 58. Classes and status of conditions (continued)

Class and conditions Status

CONDITION Always enabled

ERROR Always enabled

FINISH Always enabled

STORAGE Always enabled

For information about the performance effects of enabling and disabling conditions, refer to the
Programming Guide.

Scope of the condition prefix
The scope of a condition prefix (the part of the program to which it applies) is the statement or block to
which the prefix is attached. The prefix does not necessarily apply to any procedures or ON-units that can
be invoked in the execution of the statement.

A condition prefix attached to a PACKAGE, PROCEDURE, or BEGIN statement applies to all the statements
up to and including the corresponding END statement. This includes other PROCEDURE or BEGIN
statements nested within that block.

Condition status can be redefined within a block by attaching a prefix to statements within the block,
including PROCEDURE and BEGIN statements (thus redefining the enabling or disabling of the condition
within nested blocks). The redefinition applies only to the execution of the statement to which the prefix
is attached. In the case of a nested PROCEDURE or BEGIN statement, it applies only to the block the
statement defines, as well as any blocks contained within that block.

Raising conditions with OPTIMIZATION
When OPTIMIZATION is in effect, conditions for the same expression that appear multiple times can be
raised only once.

In the following example, SUBSCRIPTRANGE for IX can be raised only once:

 call P (55);
 (subscriptrange): P: proc (IX);
 dcl (Ar, Br, Cr) (10);
 Ar(IX) = Ar(IX) + Br(IX);
 T = Cr(IX);
 End P;

On-units
An implicit action exists for every condition. When an enabled condition is raised, the implicit action is
executed unless an ON-unit for the enabled condition is established. If the implicit action is to raise
ERROR and no ON-unit has been established for the condition, a message will be written before the
ERROR condition is raised.

ON statement
The ON statement establishes the action to be executed for any subsequent raising of an enabled
condition in the scope of the established condition.

ON

,

condition

SNAP

SYSTEM;

ON-unit

Scope of condition prefix

Chapter 15. Condition handling 343

condition
Is any one of those described in Chapter 16, “Conditions,” on page 349 or defined with the
CONDITION attribute.

SNAP
Specifies that when the enabled condition is raised, diagnostic information relating to the condition is
printed. The action of the SNAP option precedes the action of the ON-unit.

If SNAP and SYSTEM are specified, the implicit action is followed immediately by SNAP information.

SYSTEM
Specifies that the implicit action is taken. The implicit action is not the same for every condition,
although for most conditions a message is printed and the ERROR condition is raised. The implicit
action for each condition is given in Chapter 16, “Conditions,” on page 349.

ON-unit
Specifies the action to be executed when the condition is raised and is enabled. The action is defined
by the statement or statements in the ON-unit itself. When the ON statement is executed, the ON-unit
is said to be established for the specified condition. The ON-unit is not executed at the time the ON
statement is executed; it is executed only when the specified enabled condition is raised.

The ON-unit can be either a single unlabeled simple statement or an unlabeled begin-block. If it is
a simple statement, it can be any statement except BEGIN, DECLARE, DEFAULT, DO, END, ENTRY,
FORMAT, ITERATE, LEAVE, OTHERWISE, PROCEDURE, RETURN, SELECT, WHEN, or %statements. If
the ON-unit is a begin-block, a RETURN statement can appear only within a procedure nested within
the begin-block; a LEAVE statement can appear only within a do-group nested within the begin-block.

Except for ON-units consisting only of either a semicolon (;) or the RESIGNAL statement, an ON-unit
is treated as a procedure (without parameters) that is internal to the block in which it appears. Any
names referenced in an ON-unit are those known in the environment in which the ON statement for
that ON-unit was executed, rather than the environment in which the condition was raised.

When execution of the ON-unit is complete, control generally returns to the block from which the
ON-unit was entered. Just as with a procedure, control can be transferred out of an ON-unit by a GO
TO statement. In this case, control is transferred to the point specified in the GO TO, and a normal
return does not occur.

The specific point to which control returns from an ON-unit varies for different conditions. Normal
return for each condition is described in Chapter 16, “Conditions,” on page 349.

Null ON-unit
The effect of a null statement ON-unit is to execute normal return from the condition.

Use of the null ON-unit is different from disabling a condition for two reasons:

• A null ON-unit can be specified for any condition, but not all conditions can be disabled.
• Disabling a condition, if possible, can save time by avoiding any checking for this condition. (If a null

ON-unit is specified, the PL/I must still check for the raising of the condition.)

Scope of the ON-unit
The execution of an ON statement establishes an action specification for a condition. Once this action
is established, it remains established throughout that block and throughout all dynamically descendent
blocks until it is overridden by the execution of another ON statement or a REVERT statement or until
termination of the block in which the ON statement is executed.

When another ON statement specifies the same conditions, the following applies:

• If a later ON statement specifies the same condition as a prior ON statement and this later ON
statement is executed in a block which is a dynamic descendant of the block containing the prior
ON statement, the action specification of the prior ON statement is temporarily suspended, or stacked.
It can be restored either by the execution of a REVERT statement, or by the termination of the block
containing the later ON statement.

Null ON-unit

344 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

When control returns from a block, all established actions that existed at the time of its activation are
reestablished. This makes it impossible for a subroutine to alter the action established for the block that
invoked the subroutine.

• If the later ON statement and the prior ON statement are internal to the same invocation of the same
block, the effect of the prior ON statement is logically nullified. No reestablishment is possible, except
through execution of another ON statement (or re-execution of an overridden ON statement).

Related information
“Dynamically descendent ON-units” on page 345
It is possible to raise a condition during execution of an ON-unit that specifies another ON-unit. An
ON-unit entered because a condition is either raised or signalled in another ON-unit is a dynamically
descendent ON-unit. A normal return from a dynamically descendent ON-unit reestablishes the
environment of the ON-unit in which the condition was raised.

Dynamically descendent ON-units
It is possible to raise a condition during execution of an ON-unit that specifies another ON-unit. An
ON-unit entered because a condition is either raised or signalled in another ON-unit is a dynamically
descendent ON-unit. A normal return from a dynamically descendent ON-unit reestablishes the
environment of the ON-unit in which the condition was raised.

A loop can occur if an ERROR condition raised in an ERROR ON-unit executes the same ERROR ON-unit,
raising the ERROR condition again. In any situation where a loop can cause the maximum nesting level
to be exceeded, a message is printed and the application is terminated. To avoid a loop caused by this
situation, use the following technique:

 on error begin;
 on error system;
 .
 .
 .
 end;

ON-units for file variables
An ON statement that specifies a file variable refers to the file constant that is the current value of the
variable when the ON-unit is established.

Example 1

dcl F file,
 G file variable;
 G = F;
L1: on endfile(G);
L2: on endfile(F);

The statements labeled L1 and L2 are equivalent.

Example 2

declare FV file variable,
 FC1 file,
 FC2 file;
FV = FC1;
on endfile(FV) go to Fin;
.
.
.
FV = FC2;
read file(FC1) into (X1);
read file(FV) into (X2);

Dynamically descendent ON-units

Chapter 15. Condition handling 345

An ENDFILE condition raised during the first READ statement causes the ON-unit to be entered, because
the ON-unit refers to file FC1. If the condition is raised in the second READ statement, however, the
ON-unit is not entered, because this READ refers to file FC2.

Example 3

 E: procedure;
 declare F1 file;
 on endfile (F1) goto L1;
 call E1 (F1);
 .
 .
 .
 E1: procedure (F2);
 declare F2 file;
 on endfile (F2) go to L2;
 read file (F1);
 read file (F2);
 end E1;

An end-of-file encountered for F1 in E1 causes the ON-unit for F2 in E1 to be entered. If the ON-unit in
E1 was not specified, an ENDFILE condition encountered for either F1 or F2 would cause entry to the
ON-unit for F1 in E.

Example 4

 declare FV file variable,
 FC1 file,
 FC2 file;

 do FV=FC1,FC2;
 on endfile(FV) go to Fin;
 end;

If an ON statement specifying a file variable is executed more than once, and the variable has a different
value each time, a different ON-unit is established at each execution.

REVERT statement
Execution of the REVERT statement in a given block cancels the ON-unit for the condition that executed in
that block. The ON-unit that was established at the time the block was activated is then reestablished.

REVERT affects only ON statements that are internal to the block in which the REVERT statement occurs
and that have been executed in the same invocation of that block.

REVERT

,

condition ;

condition
Is any one of those described in Chapter 16, “Conditions,” on page 349 or defined with the
CONDITION attribute.

The REVERT statement cancels an ON-unit only if both of the following conditions are true:

1. An ON statement that is eligible for reversion and that specifies a condition listed in the REVERT
statement was executed after the block was activated.

2. A REVERT statement with the specified condition was not previously executed in the same block.

If either of these two conditions is not met, the REVERT statement is treated as a null statement.

REVERT statement

346 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

SIGNAL statement
You can raise a condition by means of the SIGNAL statement. This statement can be used in program
testing to verify the action of an ON-unit and to determine whether the correct action is associated with
the condition. The established action is taken unless the condition is disabled.

If the specified condition is disabled, the SIGNAL statement becomes equivalent to a null statement.

SIGNAL condition ;

condition
Is any condition described in Chapter 16, “Conditions,” on page 349 or defined with the CONDITION
attribute.

RESIGNAL statement
The RESIGNAL statement terminates the current ON-unit and allows another ON-unit for the same
condition to get control.

The processing continues as if the ON-unit executing the RESIGNAL did not exist and was never given
control. It allows multiple ON-units to get control for the same condition.

RESIGNAL ;

RESIGNAL is valid only within an ON-unit or its dynamic descendants.

Multiple conditions
A multiple condition is the simultaneous raising of two or more conditions.

The conditions for which a multiple condition can occur are the “RECORD condition” on page 360 and
the “TRANSMIT condition” on page 364. The TRANSMIT condition is always processed first. The RECORD
condition is ignored unless there is a normal return from the TRANSMIT ON-unit.

Multiple conditions are processed successively. When one of the following events occurs, no subsequent
conditions are processed:

• Condition processing terminates the program, through implicit action for the condition, normal return
from an ON-unit, or abnormal termination in the ON-unit.

• A GO TO statement transfers control from an ON-unit, so that a normal return is prevented.

CONDITION attribute
The CONDITION attribute specifies that the declared name identifies a programmer-defined condition.

CONDITION

A name that appears with the CONDITION condition in an ON, SIGNAL, or REVERT statement is
contextually declared to be a condition name.

The default scope is EXTERNAL. For an example of the CONDITION condition, see “CONDITION
condition” on page 352.

SIGNAL statement

Chapter 15. Condition handling 347

CONDITION

348 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 16. Conditions
This chapter describes conditions in alphabetic order.

In general, the following information is given for each condition:

Status
An indication of the enabled or disabled status of the condition at the start of the program, and how
the condition can be disabled (if possible) or enabled.

Table 58 on page 342 classifies the conditions into types, shows their status, and lists the conditions
for disabling an enabled one.

Result
The result of the operation that raised the condition. This applies when the condition is disabled as
well as when it is enabled. In some cases, the result is undefined.

Cause and syntax
A discussion of the condition, including the circumstances under which the condition can be raised.
For information about raising conditions with the SIGNAL statement, see “SIGNAL statement” on
page 347.

Implicit action
The action taken when an enabled condition is raised and no ON-unit is currently established for the
condition.

Normal return
The point to which control is returned as a result of the normal termination of the ON-unit. A GO TO
statement that transfers control out of an ON-unit is an abnormal ON-unit termination. If a condition
(except the ERROR condition) has been raised by the SIGNAL statement, the normal return is always
to the statement immediately following SIGNAL.

Condition codes
The codes corresponding to the conditions and errors for which the program is checked. An
explanation for each code is given in the "Condition codes" chapter of the Messages and Codes.

ANYCONDITION condition
Status

ANYCONDITION is always enabled.
Result

The result is the same as for the underlying condition.
Cause and syntax

SIGNAL ANYCONDITION is not allowed. ANYCONDITION can be used only in ON (and REVERT)
statements to establish (and cancel) an ON-unit that will trap any condition, including the CONDITION
condition, that occurs in a block, and that is not trapped by some other eligible ON-unit in that block.

In the following example, all ERROR conditions would be handled in the begin-block, the FINISH
condition would be handled by the system, and all other conditions would be handled by the call to
the routine named handle_All_Others.

 on error
 begin;
 .
 .
 .
 end;

 on finish system;
 on anycondition call Handle_all_others;

ANYCONDITION

© Copyright IBM Corp. 1999, 2022 349

Note: To avoid infinite loops, the use of ON FINISH (as in the preceding example) might be necessary
when ON ANYCONDITION is used.

Note that when a condition is raised, the call stack will be walked (backwards) to search for a block
that has an ON-unit for that condition. The search will stop when the first block with such an ON-unit
or with an ON ANYCONDITION ON-unit is found. If no such ON-units are found and the implicit action
for the condition is to promote it to ERROR, the stack will then (and only then) be walked again to
search for an ON ERROR ON-unit.

You can use the ONCONDID built-in function in an ANYCONDITION ON-unit to determine what
condition is being handled, and the ONCONDCOND built-in function to determine the name of the
CONDITION condition. Other ON built-in functions, such as ONFILE, can be used to determine the
exact cause and other related information. These built-in functions are listed in Chapter 18, “Built-in
functions, pseudovariables, and subroutines,” on page 375.

ANYCONDITION

Abbreviation
ANYCOND

Implicit action
The implicit action is that of the underlying condition.

Normal return
Normal return is the same as for the underlying condition.

Condition codes
There are no condition codes unique to the ANYCONDITION.

AREA condition
Status

AREA is always enabled.
Result

An attempted allocation or assignment that raises the AREA condition has no effect.
Cause and syntax

The AREA condition is raised in either of the following circumstances:

• When an attempt is made to allocate a based variable within an area that contains insufficient free
storage for the allocation to be made.

• When an attempt is made to perform an area assignment and the target area contains insufficient
storage to accommodate the allocations in the source area

You can retrieve the name of the AREA reference that raised an AREA condition by using the ONAREA
built-in function in the ON-unit. For more information about the ONAREA built-in function, see
“ONAREA” on page 499 in Chapter 18, “Built-in functions, pseudovariables, and subroutines,” on
page 375.

AREA

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
On normal return from the ON-unit, the action is as follows:

• If the condition was raised by an allocation and the ON-unit is a null ON-unit, the allocation is not
attempted again.

AREA

350 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• If the condition was raised by an allocation, the allocation is attempted again. Before the attempt
is made, the area reference is reevaluated. Thus, if the ON-unit has changed the value of a pointer
qualifying the reference to the inadequate area so that it points to another area, the allocation is
attempted again within the new area.

• If the condition was raised by an area assignment or by a SIGNAL statement, execution continues
from the point at which the condition was raised.

Condition codes
360, 361, 362

ASSERTION condition
Status

ASSERTION is always enabled.
Result

Raising the condition causes an ASSERTION ON-unit to be entered. If there is no ASSERTION ON-unit,
the application is terminated, a message is printed, and the ERROR condition is raised.

Cause and syntax
The ASSERTION condition is raised when an ASSERT statement fails and the ASSERT(CONDITION)
compiler option is in effect.

The condition can also be raised by a SIGNAL ASSERTION statement.

If the ASSERTION condition is raised by an ASSERT statement, the ONTEXT built-in function will
return the value of its text clause.

If the ASSERTION condition is raised by an ASSERT COMPARE statement, the ONACTUAL,
ONEXPECTED, and ONOPERATOR built-in functions will return the values of the three elements of
its COMPARE clause.

ASSERTION

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
On return from an ASSERTION ON-unit, processing is resumed at the next statement immediately
following the statement that raised the condition.

Condition codes
430,431,432,433,434,435,436

ATTENTION condition
Status

ATTENTION is always enabled.
Result

Raising the condition causes an ATTENTION ON-unit to be entered. If there is no ATTENTION ON-unit,
the application is terminated.

Cause and syntax
The ATTENTION condition is raised when the user hits a specific key combination to interrupt an
application. The specific key is determined by the operating system as follows:

• On Windows, CTRL-BRK and CTRL-C. No ATTENTION ON-units will be driven on Windows as a result
of the user entering CTRL-BRK or CTRL-C key combinations. The implicit action will be taken.

• On the host, the ATTN key, if available.

The condition can also be raised by a SIGNAL ATTENTION statement.

ASSERTION

Chapter 16. Conditions 351

ATTENTION

Abbreviation
ATTN

Implicit action
The application is terminated.

Normal return
On return from an ATTENTION ON-unit, processing is resumed at a point in the program immediately
following the point at which the condition was raised.

Condition code
400

CONDITION condition
Status

CONDITION is always enabled.
Result

The CONDITION condition allows you to establish an ON-unit that will be executed whenever a
SIGNAL statement for the appropriate CONDITION condition is executed.

As a debugging aid, the CONDITION condition can be used to establish an ON-unit that prints
information about the current status of the program.

Cause and syntax
The CONDITION condition is raised by a SIGNAL statement. The name specified in the SIGNAL
statement determines which CONDITION condition is raised. The ON-unit can be executed from any
point in the program through placement of a SIGNAL statement. Normal rules of name scope apply. A
condition name is external by default, but can be declared INTERNAL.

The following example shows the use of the CONDITION condition.

dcl Test condition;

on condition (Test)
begin;
⋮
end;

The begin-block is executed whenever the following statement is executed:

 signal condition (Test);

CONDITION ( name)

Abbreviation
COND

Implicit action
A message is printed and execution continues with the statement following SIGNAL.

Normal return
Execution continues with the statement following the SIGNAL statement.

Condition code
500

CONDITION

352 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

CONFORMANCE condition
Status

CONFORMANCE is disabled throughout the program, except within the scope of the CONFORMANCE
condition prefix.

Result
When CONFORMANCE has been raised, the program is in error.

Cause and syntax
The CONFORMANCE condition is raised whenever

1. An argument in ORDINALNAME, ORDINALPRED, and ORDINALSUCC is invalid.
2. An argument passed to a PROCEDURE has different attributes than expected in one of the

following circumstances:

• If a parameter is a string (or an array of strings) declared with a constant length, and the
argument passed does not have matching length.

• If a parameter is a string (or an array of strings), and the argument does not have the same length
type (VARYING, NONVARYING or VARYINGZ).

• If a parameter is an array (of scalars or structures), and all the extents are constant but the size
and spacing of the array elements in the argument do not match those in the parameter.

• If a parameter is a structure or union with constant extents, and the offset of the last element
does not match that of the passed argument.

• If the procedure has the RETURNS BYADDR attribute for a string type, and the string passed for
the RETURNS value does not have matching string type or matching length.

Argument-parameter mismatches will not raise the CONFORMANCE condition if any of the
following conditions are true:

– The NODESCRIPTOR option applies to the PROCEDURE.
– The PROCEDURE contains ENTRY statements.
– The CMPAT(LE) option is in effect.

CONFORMANCE

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
Normal return from a CONFORMANCE ON-unit raises the ERROR condition.

Condition code
550-559

CONVERSION condition
Status

CONVERSION is enabled throughout the program, except within the scope of the NOCONVERSION
condition prefix. You can use the ONSOURCE, ONCHAR, ONUCHAR, ONUSOURCE, ONGSOURCE, and
ONWSOURCE pseudovariables in CONVERSION ON-units to correct conversion errors.

Result
When CONVERSION is raised, the contents of the entire result field are undefined.

Cause and syntax
The CONVERSION computational condition is raised whenever an invalid conversion is attempted on
character, uchar, widechar, or graphic data. This attempt can be made internally or during an input/
output operation. For example, the condition is raised when any of the following conversions happens:

CONDITION

Chapter 16. Conditions 353

• A character other than 0 or 1 exists in character data being converted to bit data.
• A character value that is being converted to a numeric character field or to a coded arithmetic value

contains characters that are not the representation of an optionally signed arithmetic constant or an
expression to represent a complex constant.

• A graphic (DBCS) string being converted to character contains a graphic that cannot be converted to
SBCS.

• A value being converted to a character pictured item contains characters not allowed by the picture
specification.

All conversions of character data are carried out character-by-character in a left-to-right sequence.
The condition is raised for each invalid character. The condition is also raised if all the characters are
blank, with the following exceptions:

• For input with the F-format item, a value of zero is assumed.
• For input with the E-format item, be aware that sometimes the ON-unit will be repeatedly entered.

Note that if a null string or a string of one or more blanks is assigned to a numeric variable, the
CONVERSION condition will not be raised.

When the CONVERSION condition is raised, the ONSUBCODE built-in function will return the index of
the offending character or graphic.

When an invalid character is encountered, the current action specification for the condition is
executed (provided that CONVERSION is not disabled). If the action specification is an ON-unit, the
invalid character can be replaced within the unit.

• For character source data, use the ONSOURCE or ONCHAR pseudovariables.
• For uchar source data, use the ONUSOURCE or ONUCHAR pseudovariables.
• For widechar source data, use the ONWSOURCE or ONWCHAR pseudovariables.
• For graphic source data, use the ONGSOURCE pseudovariable.

If the CONVERSION condition is raised and it is disabled, the program is in error.

If the CONVERSION condition is raised during conversion from graphic data to nongraphic data,
the ONCHAR and ONSOURCE built-in functions do not contain valid source data. The ONGSOURCE
built-in function contains the original graphic source data. The graphic conversion is retried if the
ONGSOURCE pseudovariable is used in the CONVERSION ON-unit to attempt to fix the graphic
data that raised the CONVERSION condition. If the ONGSOURCE pseudovariable is not used in the
CONVERSION ON-unit, the ERROR condition is raised.

CONVERSION

Abbreviation
CONV

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
If CONVERSION was raised on a character string source (not graphic source) and either ONSOURCE or
ONCHAR pseudovariables are used in the ON-unit, the program retries the conversion on return from
the ON-unit.

If CONVERSION was raised on a graphic source and the ONGSOURCE pseudovariable is used in the
ON-unit, the program retries the conversion on return from the ON-unit.

If CONVERSION was raised on a uchar source and the ONUSOURCE pseudovariable is used in the
ON-unit, the program retries the conversion on return from the ON-unit.

If CONVERSION was raised on a widechar source and the ONWSOURCE pseudovariable is used in the
ON-unit, the program retries the conversion on return from the ON-unit.

CONVERSION

354 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

If the conversion error is not corrected by using these pseudovariables, the program loops.

Condition codes
600-672

ENDFILE condition
Status

The ENDFILE condition is always enabled.
Result

If the specified file is not closed after the condition is raised, subsequent GET or READ statements to
the file are unsuccessful and cause additional ENDFILE conditions to be raised.

But the file must not be closed in its ENDFILE ON-unit: it should be closed only after that ON-unit has
been exited.

Cause and syntax
The ENDFILE input/output condition can be raised during an operation by an attempt to read past
the end of the file specified in the GET or READ statement. It applies only to SEQUENTIAL INPUT,
SEQUENTIAL UPDATE, and STREAM INPUT files.

In record-oriented data transmission, ENDFILE is raised whenever an end of file is encountered during
the execution of a READ statement.

In stream-oriented data transmission, ENDFILE is raised during the execution of a GET statement
if an end of file is encountered either before any items in the GET statement data list have been
transmitted or between transmission of two of the data items. If an end of file is encountered while
a data item is being processed, or if it is encountered while an X-format item is being processed, the
ERROR condition is raised.

ENDFILE

( file-reference)

file-reference
The file reference must be a scalar reference. If a file reference is omitted, SYSIN is assumed.

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
Execution continues with the statement immediately following the GET or READ statement that raised
the ENDFILE.

If a file is closed in an ON-unit for this condition, the results of normal return are undefined. Exit from
the ON-unit with the closed file must be achieved with a GO TO statement.

Condition code
70

ENDPAGE condition
Status

ENDPAGE is always enabled.
Result

When ENDPAGE is raised, the current line number is one greater than that specified by the PAGESIZE
option (default is 60) so that it is possible to continue writing on the same page. The ON-unit can start
a new page by execution of a PAGE option or a PAGE format item, which sets the current line to one.

If the ON-unit does not start a new page, the current line number can increase indefinitely. If a
subsequent LINE option or LINE format item specifies a line number that is less than or equal to the

ENDFILE

Chapter 16. Conditions 355

current line number, ENDPAGE is not raised, but a new page is started with the current line set to one.
An exception is that if the current line number is equal to the specified line number, and the file is
positioned on column one of the line, ENDPAGE is not raised.

If ENDPAGE is raised during data transmission, on return from the ON-unit, the data is written on the
current line, which might have been changed by the ON-unit. If ENDPAGE results from a LINE or SKIP
option, on return from the ON-unit, the action specified by LINE or SKIP is ignored.

Cause and syntax
The ENDPAGE input/output condition is raised when a PUT statement results in an attempt to start a
new line beyond the limit specified for the current page. This limit can be specified by the PAGESIZE
option in an OPEN statement; if PAGESIZE has not been specified, a default limit of 60 is applied. The
attempt to exceed the limit can be made during data transmission (including associated format items,
if the PUT statement is edit-directed), by the LINE option, or by the SKIP option. ENDPAGE can also
be raised by a LINE option or LINE format item that specified a line number less than the current line
number. ENDPAGE is raised only once per page, except when it is raised by the SIGNAL statement.

ENDPAGE

( file-reference)

file-reference
The file reference must be a scalar reference. If a file reference is omitted, SYSPRINT is assumed.

Implicit action
A new page is started. If the condition is signalled, execution is unaffected and continues with the
statement following the SIGNAL statement.

Normal return
Execution of the PUT statement continues in the manner described above.

Condition code
90

ERROR condition
Status

ERROR is always enabled.
Result

An error message is issued if no ON-unit is active when the ERROR condition arises, or if the ON-unit
does not use a GOTO (to exit the block) to recover from the condition.

Cause and syntax
The ERROR condition is the implicit action for many conditions. This provides a common condition
that can be used to check for a number of different conditions, rather than checking each condition
separately.

The ERROR condition is raised under the following circumstances:

• As a result of the implicit action for a condition, which is to raise the ERROR condition
• As a result of the normal return action for some conditions, such as SUBSCRIPTRANGE

CONVERSION or when no retry is attempted
• As a result of an error (for which there is no other PL/I-defined condition) during program execution
• As a result of a SIGNAL ERROR statement

In order to prevent a loop of ERROR conditions, the first statement in any ON ERROR block should be
ON ERROR SYSTEM.

ERROR

ERROR

356 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Implicit action
The message is printed and the FINISH condition is raised.

Normal return
The implicit action is taken.

Condition codes
All codes 1000 and above are ERROR conditions.

FINISH condition
Status

FINISH is always enabled.
Result

Control passes to the FINISH ON-unit and processing continues.
Cause and syntax

The FINISH condition is raised during execution of a statement that would terminate the procedures.
The following actions take place:

• If the termination is normal—the FINISH ON-unit, if established, is given control only if the main
procedure is PL/I.

• If the termination is abnormal—the FINISH ON-unit, if established in an active block, is given
control.

FINISH

Implicit action

• If the condition is raised in the major task, no action is taken and processing continues from the
point where the condition was raised.

• If the condition is raised as part of the implicit action for another condition, the program is
terminated.

Normal return
Processing resumes at the point where the condition was raised. This point is the statement following
the SIGNAL statement if the conditions was signalled.

Condition code
4

FIXEDOVERFLOW condition
Status

FIXEDOVERFLOW is enabled throughout the program, except within the scope of the
NOFIXEDOVERFLOW condition prefix.

Result
The result of the invalid FIXED DECIMAL operation is undefined.

Cause and syntax
The FIXEDOVERFLOW computational condition is raised when the length of the result of a FIXED
DECIMAL arithmetic operation exceeds the maximum length allowed by the implementation.

The FIXEDOVERFLOW condition is not raised for FIXED BINARY operations.

The FIXEDOVERFLOW condition differs from the SIZE condition in that SIZE is raised when a result
exceeds the declared size of a variable, while FIXEDOVERFLOW is raised when a result exceeds the
maximum allowed by the computer.

If the FIXEDOVERFLOW condition is raised and it is disabled, the program is in error.

FINISH

Chapter 16. Conditions 357

FIXEDOVERFLOW

Abbreviation
FOFL

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
Control returns to the point immediately following the point at which the condition was raised.

Condition code
310

Note: If the SIZE condition is disabled, an attempt to assign an oversize number to a fixed decimal
variable can raise the FIXEDOVERFLOW condition.

INVALIDOP condition
Status

INVALIDOP is enabled throughout the program, except within the scope of the NOINVALIDOP
condition prefix.

Result
The result of the invalid operation is undefined.

Cause and syntax
The INVALIDOP computational condition is raised when any of the following are detected during the
evaluation of IEEE floating-point expressions.

• Subtraction of two infinities
• Multiplication of infinity by 0
• Division of two infinities
• Division of zero by zero
• Invalid floating-point data

Some fixed decimal divides with large precision are done using the Decimal Floating-Point (DFP)
facility. This might cause some ZERODIVIDE exceptions to be reported as INVALIDOP.

INVALIDOP

Implicit action
The ERROR condition is raised.

Normal return
A message is printed and the ERROR condition is raised.

Condition code
290

Related information
“ZERODIVIDE condition” on page 366

KEY condition
Status

KEY is always enabled.
Result

The keyed record is undefined, and the statement in which it appears is ignored.

INVALIDOP

358 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Cause and syntax
The KEY input/output condition is raised when a record with a specified key cannot be found. The
condition can be raised only during operations on keyed records. It is raised for the condition codes
listed below.

When a LOCATE statement is used for the data set, the KEY condition for this LOCATE statement is not
raised until the next WRITE or LOCATE statement for the file, or when the file is closed.

KEY ( file-reference)

The file-reference must be a scalar reference.

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
Control passes to the statement immediately following the statement that raised KEY.

If a file is closed in an ON-unit for this condition, the results of normal return are undefined. Exit from
the ON-unit with the closed file must be achieved with a GO TO statement.

Condition codes
50-58

NAME condition
Status

NAME is always enabled.
Result

The named data is undefined.
Cause and syntax

The NAME input/output condition can be raised only during execution of a data-directed GET
statement with the FILE option. It is raised in any of the following situations:

• The syntax is not correct, as described under “Syntax of data-directed data” on page 305.
• The name is missing or invalid. These are some examples:

– No counterpart is found in the data list.
– If there is no data list, the name is not known in the block.
– A qualified name is not fully qualified.
– DBCS contains a byte outside the valid range '41'X to 'FE'X.

• A subscript list is missing or invalid. These are some examples:

– A subscript is missing.
– The number of subscripts is incorrect.
– More than 10 digits are in a subscript (leading zeros ignored).
– A subscript is outside the allowed range of the current allocation of the variable.

You can retrieve the incorrect data field by using the built-in function DATAFIELD in the ON-unit.

NAME ( file-reference)

The file-reference must be a scalar reference.

NAME

Chapter 16. Conditions 359

Implicit action
The incorrect data field is ignored, a message is printed, and execution of the GET statement
continues.

Normal return
The execution of the GET statement continues with the next name in the stream.

Condition code
10

OVERFLOW condition
Status

OVERFLOW is enabled throughout the program, except within the scope of the NOOVERFLOW
condition prefix.

Result
The value of such an invalid floating-point number is undefined.

Cause and syntax
The OVERFLOW computational condition is raised when the magnitude of a floating-point number
exceeds the maximum allowed.

The OVERFLOW condition differs from the SIZE condition in that SIZE is raised when a result exceeds
the declared size of a variable, while OVERFLOW is raised when a result exceeds the maximum
allowed by the computer.

If the OVERFLOW condition is raised and it is disabled, the program is in error.

OVERFLOW

Abbreviation
OFL

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
The ERROR condition is raised.

Condition code
300

RECORD condition
Status

RECORD is always enabled.
Result

The length prefix for the specified file can be inaccurately transmitted.
Cause and syntax

The RECORD input/output condition is raised if the specified record is truncated. The condition can be
raised only during a READ, WRITE, LOCATE, or REWRITE operation.

If the SCALARVARYING option is applied to the file (it must be applied to a file using locate mode to
transmit varying-length strings), a 2-byte length prefix is transmitted with an element varying-length
string. The length prefix is not reset if the RECORD condition is raised. If the SCALARVARYING option
is not applied to the file, the length prefix is not transmitted. On input, the current length of a
varying-length string is set to the shorter of the record length and the maximum length of the string.

RECORD ( file-reference)

OVERFLOW

360 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The file-reference must be a scalar reference.

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
Execution continues with the statement immediately following the one for which RECORD was raised.

If a file is closed in an ON-unit for this condition, the results of normal return are undefined. Exit from
the ON-unit with the closed file must be achieved with a GO TO statement.

Condition codes
20-24

SIZE condition
Status

SIZE is disabled throughout the program, except within the scope of the SIZE condition prefix.
Result

The result of the assignment is undefined.
Cause and syntax

The SIZE computational condition is raised only when high-order (that is, leftmost) significant binary
or decimal digits are lost in an attempted assignment to a variable or an intermediate result or in an
input/output operation. This loss can result from a conversion involving different data types, different
bases, different scales, or different precisions. Even if the SIZE condition is disabled, any conversion
that is not done inline might cause the condition to be raised.

SIZE is raised when the size of the value being assigned to a data item exceeds the declared (or
default) size of the data item, even if this is not the actual size of the storage that the item occupies.
For example, a fixed binary item of precision (20) occupies a fullword in storage, but SIZE is raised if a
value whose size exceeds FIXED BINARY(20) is assigned to it.

In optimized code, it is possible to see the following behaviors:

• FOFL might be raised instead of SIZE.
• ZDIV might be raised instead of SIZE if fixed decimal to fixed binary conversions are involved and

the source is too big.

Because checking sizes requires substantial overhead in both storage space and run time, the SIZE
condition is primarily used for program testing. It can be removed from production programs. For
more information about test and production application programs, see the Programming Guide.

The SIZE condition differs from the FIXEDOVERFLOW condition in that FIXEDOVERFLOW is raised
when the size of a calculated fixed-point value exceeds the maximum allowed by the implementation.
SIZE can be raised on assignment of a value regardless of whether or not FIXEDOVERFLOW was
raised in the calculation of that value.

If the SIZE condition is raised and it is disabled, the program is in error.

SIZE

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
Control returns to the point immediately following the point at which the condition was raised.

Condition codes
340, 341, 342, 343

SIZE

Chapter 16. Conditions 361

STORAGE condition
Status

STORAGE is always enabled.
Result

The result depends on the type of variable for which attempted storage allocation raised the
condition.

• After an ALLOCATE statement for a controlled variable, that variable's generation is not allocated.
A reference to that controlled variable results in accessing the generation (if any) before the
ALLOCATE statement.

• After an ALLOCATE statement for a based variable, the variable is not allocated and its associated
pointer is undefined.

• After an ALLOCATE built-in function for a based variable, the variable is not allocated and the use of
the associated pointer is undefined.

Cause and syntax
The STORAGE condition allows the program to gain control for the failure of an ALLOCATE built-in
function or ALLOCATE statement that attempted to allocate BASED or CONTROLLED storage outside
of an AREA. Failure of an ALLOCATE statement in an AREA raises the AREA condition.

Failure of the AUTOMATIC built-in function does not raise the STORAGE condition.

The ON-unit for the STORAGE condition can attempt to free allocated storage. If the ON-unit is unable
to free sufficient storage, it can provide the necessary steps to terminate the program without losing
diagnostic information.

STORAGE

Implicit action
The ERROR condition is raised.

Normal return
The ERROR condition is raised.

Condition codes
450, 451

STRINGRANGE condition
Status

STRINGRANGE is disabled throughout the program, except within the scope of the STRINGRANGE
condition prefix.

Result
The value of the specified SUBSTR/SUBTO is altered.

Cause and syntax
The STRINGRANGE program-checkout condition is raised whenever the values of the arguments to
a SUBSTR/SUBTO reference fail to comply with the rules described for the SUBSTR/SUBTO built-in
function. It is raised for each reference to an invalid argument.

STRINGRANGE

Abbreviation
STRG

Implicit action
A message is printed and processing continues as described for normal return.

STORAGE

362 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Normal return
Execution continues with a revised SUBSTR/SUBTO reference for which the value is defined as
follows:

Assume that the length of the source string (after execution of the ON-unit, if specified) is k, the
starting point is i, and the length of the substring is j:

• If i is greater than k, the value is the null string.
• If i is less than or equal to k, the value is that substring beginning at the mth character, bit,

graphic, uchar, or widechar of the source string and extending n characters, bits, graphics, uchars, or
widechars, where m and n are defined as follows:

 M = max(I,1)

 N = max(0,min(J + min(I,1) - 1,K - M + 1))

if J is specified.

 N = K - M + 1

if J is not specified.

This means that the new arguments are forced within the limits.

The values of i and j are established before entry to the ON-unit. They are not reevaluated on return
from the ON-unit.

The value of k might change in the ON-unit if the first argument of SUBSTR/SUBTO is a varying-length
string. The value n is computed on return from the ON-unit using any new value of k.

Condition code
350

STRINGSIZE condition
Status

STRINGSIZE is disabled throughout the program, except within the scope of the STRINGSIZE
condition prefix.

Result
After the condition action, the truncated string is assigned to its target string. The right-hand
characters, bits, uchars, widechars, or graphics of the source string are truncated so that the target
string can accommodate the source string.

Cause and syntax
The STRINGSIZE program-checkout condition is raised when you attempt to assign a string to a target
with a shorter maximum length.

STRINGSIZE

Abbreviation
STRZ

Implicit action
A message is printed and processing continues.

Normal return
Execution continues from the point at which the condition was raised.

Condition codes
150, 151

STRINGSIZE

Chapter 16. Conditions 363

SUBSCRIPTRANGE condition
Status

SUBSCRIPTRANGE is disabled throughout the program, except within the scope of the
SUBSCRIPTRANGE condition prefix.

Result
When SUBSCRIPTRANGE has been raised, the value of the invalid subscript is undefined, and, hence,
the reference is also undefined.

Cause and syntax
The SUBSCRIPTRANGE program-checkout condition is raised whenever a subscript is evaluated and
found to lie outside its specified bounds. The order of raising SUBSCRIPTRANGE relative to evaluation
of other subscripts is undefined.

When the SUBSCRIPTRANGE condition is raised, the ONSUBSCRIPT, ONLBOUND, and ONHBOUND
built-in functions will return the value of the invalid array index, the lower bound of the array
dimension it indexed, and the upper bound of the array dimension it indexed.

SUBSCRIPTRANGE

Abbreviation
SUBRG

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
Normal return from a SUBSCRIPTRANGE ON-unit raises the ERROR condition.

Condition codes
520, 521

TRANSMIT condition
Status

TRANSMIT is always enabled.
Result

Raising the TRANSMIT condition indicates that any data transmitted is potentially incorrect.
Cause and syntax

The TRANSMIT input/output condition can be raised during any input/output operation. It is raised
by an uncorrectable transmission error of a record (or of a block, if records are blocked), which is
an input/output error that could not be corrected during execution. It can be caused by a damaged
recording medium, or by incorrect specification or setup.

During input, TRANSMIT is raised after transmission of the potentially incorrect record. If records are
blocked, TRANSMIT is raised for each subsequent record in the block.

During output, TRANSMIT is raised after transmission. If records are blocked, transmission occurs
when the block is complete rather than after each output statement.

When a spanned record is being updated, the TRANSMIT condition is raised on the last segment of
a record only. It is not raised for any subsequent records in the same block, although the integrity of
these records cannot be assumed.

TRANSMIT ( file-reference)

The file-reference must be a scalar reference.

SUBSCRIPTRANGE

364 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
Processing continues as though no error had occurred, allowing another condition (for example,
RECORD) to be raised by the statement or data item that raised the TRANSMIT condition.

If a file is closed in an ON-unit for this condition, the results of normal return are undefined. Exit from
the ON-unit with the closed file must be achieved with a GO TO statement.

Condition codes
40-46

UNDEFINEDFILE condition
Status

UNDEFINEDFILE is always enabled.
Result

Specified files are undefined to the application program.
Cause and syntax

The UNDEFINEDFILE input/output condition is raised whenever an unsuccessful attempt to open a
file is made. If the attempt is made by means of an OPEN statement that specifies more than one file,
the condition is raised after attempts to open all specified files.

If UNDEFINEDFILE is raised for more than one file in the same OPEN statement, ON-units are
executed according to the order of appearance (taken from left to right) of the file names in that OPEN
statement.

If UNDEFINEDFILE is raised by an implicit file opening in a data transmission statement, upon normal
return from the ON-unit, processing continues with the remainder of the data transmission statement.
If the file was not opened in the ON-unit, the statement cannot continue and the ERROR condition is
raised.

The UNDEFINEDFILE condition is raised not only by conflicting attributes (such as DIRECT with
PRINT), but also by the following:

• Block size smaller than record size (except when records are spanned)
• LINESIZE exceeding the maximum allowed
• KEYLENGTH zero or not specified for creation of INDEXED data sets
• Specifying a KEYLOC option, for an INDEXED data set, with a value resulting in KEYLENGTH +

KEYLOC exceeding the record length
• Specifying a V-format logical record length of less than 18 bytes for STREAM data sets
• Specifying a block size that is not an integral multiple of the record size for FB-format records
• Specifying a logical record length that is not at least 4 bytes smaller than the specified block size for

VB-format records.

UNDEFINEDFILE ( file-reference)

The file-reference must be a scalar reference.

Abbreviation
UNDF

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
Upon the normal completion of the final ON-unit, control is given to the statement immediately
following the statement that raised the condition.

UNDEFINEDFILE

Chapter 16. Conditions 365

Condition codes
80-89, 91-95

UNDERFLOW condition
Status

UNDERFLOW is enabled throughout the program, except within the scope of the NOUNDERFLOW
condition prefix.

Result
The invalid floating-point value is set to 0 except for IEEE floating-point on z/OS when the result is
undefined.

Cause and syntax
The UNDERFLOW computational condition is raised when the magnitude of a floating-point number
is smaller than the minimum allowed. UNDERFLOW is not raised when equal numbers are subtracted
(often called the significance error).

The expression X(-Y) (where Y>0) can be evaluated by taking the reciprocal of XY; hence, the
OVERFLOW condition might be raised instead of the UNDERFLOW condition.

UNDERFLOW

Abbreviation
UFL

Implicit action
Unless the exception is raised during the evaluation of an IEEE floating-point expression (in either
binary or decimal) on z/OS, a message is printed, and execution continues from the point at which
the condition was raised; if the exception is raised during the evaluation of an IEEE floating-point
exception on z/OS, a message is printed and the ERROR condition is raised.

Normal return
Unless the exception is raised during the evaluation of an IEEE floating-point expression (in either
binary or decimal) on z/OS, control returns to the point immediately following the point at which
the condition was raised; if the exception is raised during the evaluation of an IEEE floating-point
exception on z/OS, the ERROR condition is raised.

Condition code
330

ZERODIVIDE condition
Status

ZERODIVIDE is enabled throughout the program, except within the scope of the NOZERODIVIDE
condition prefix.

Result
The result of a division by zero is undefined.

Cause and syntax
The ZERODIVIDE computational condition is raised when an attempt is made to divide by zero. This
condition is raised for fixed-point and floating-point division. If the numerator of a floating-point
divide is also zero, INVALIDOP is raised.

If the ZERODIVIDE condition is raised and it is disabled, the program is in error.

Some fixed decimal divides with large precision are done using the Decimal Floating-Point (DFP)
facility. This might cause some ZERODIVIDE exceptions to be reported as INVALIDOP.

Some fixed decimal to fixed binary conversions might cause ZERODIVIDE to be raised when the
source is too large.

UNDERFLOW

366 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

This is because historically, these types of conversions are done with a CVB or CVBG instruction, and
the CVB or CVBG instruction would raise ZDIV when the source is too large.

ZERODIVIDE

Abbreviation
ZDIV

Implicit action
A message is printed and the ERROR condition is raised.

Normal return
The ERROR condition is raised.

Condition code
320

Related information
“INVALIDOP condition” on page 358

ZERODIVIDE

Chapter 16. Conditions 367

ZERODIVIDE

368 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 17. Multithreading facility
The PL/I multithreading facility allows the execution of parts of a PL/I program asynchronously in multiple
threads.

A PL/I program is a set of one or more procedures. The program normally executes as a single execution
unit, or as part of a single execution unit. When a procedure invokes another procedure, control is
passed to the invoked procedure, and execution of the invoking procedure is suspended until the invoked
procedure passes control back. This execution with a single flow of control is synchronous flow.

When using the PL/I multithreading facility, the invoking procedure does not relinquish control to the
invoked procedure. Instead, an additional flow of control is established so that both procedures are
executed concurrently. The execution of such concurrent procedures is called asynchronous flow.

With the PL/I multithreading facility, parts of a PL/I program can be executed asynchronously in multiple
threads. A thread is a unit of work that competes for the resources of the computing system. A thread
is not the equivalent of a task in OS PL/I. Except for the main thread in a program, a thread is always
independent of and unrelated to other threads in the program. When a procedure invokes another
procedure as a thread, this action is known as attaching or creating the thread.

Execution of one or more threads occurs in a process, which can be thought of as a PL/I program. PL/I
does not provide the capabilities to create and manage multiple processes or tasks, but it does allow
creation and management of multiple threads in a single program (process).

There is normally one application thread per process. Multiple threads can be attached (created) for these
purposes:

• Perform a piece of work in a shorter elapsed time. Such applications can be batch applications that are
not interacting with the user. For example, one procedure could attach a thread which would compile a
PL/I program.

• Perform high response parts of a program in one thread and I/O parts in another thread, and typical
response parts in a third.

• Use computing system resources that might be idle. These resources can include I/O devices as well as
the CPUs.

• Implement realtime multiuser applications where the response time is critical.
• Isolate independent pieces of work for reliability. That is, the failure of a part of a job can be isolated

while other independent parts are processed.

Note: Operating system services must not be directly used when PL/I provides the appropriate function.

Creating a thread
A thread is a unit of work that competes for the resources of the computing system. When a procedure
invokes another procedure as a thread, this action is known as attaching, or creating the thread.

• A thread is an independent unit of work.
• A thread executes concurrently and independently of other threads in the process and system.
• A thread can attach other threads.
• A thread can wait for a thread to complete.
• A thread can stop itself or another thread.

Any procedures or functions synchronously invoked by the thread become part of the thread’s execution.

Creating a thread

© Copyright IBM Corp. 1999, 2022 369

ATTACH statement
A thread is attached (or created) by the execution of the ATTACH statement. You can specify explicit
characteristics for the thread if the defaults are not what you want.

ATTACH entry-reference

THREAD ( task-reference)

ENVIRONMENT (

TSTACK( expression)

)

;

entry
Specifies the name of a limited entry variable or the name of an external entry or level-1 procedure. It
cannot be the name of an internal procedure or a fetchable procedure. The ATTACHed entry must be
declared as having no parameters or as having exactly one BYVALUE POINTER parameter. However,
you can fetch a procedure, assign it to a limited entry variable, and then attach the entry variable as a
thread.

Arguments can be passed to the new thread just as you would pass arguments to a synchronous entry
in a CALL statement.

THREAD (task reference)
Specifies the name of a task variable that becomes associated with the thread. The task variable can
then be used to refer to the thread.

Unless explicitly declared, the named variable is given a contextual declaration.

If the THREAD option is not specified, the attached thread cannot be stopped or waited upon by
another thread.

If a thread is attached with the THREAD option, you must use the DETACH statement to detach the
thread to free all the system resources associated with the thread.

Operating system services must not be used directly to create a thread.

ENVIRONMENT (abbrev: ENV)
Specifies environmental characteristics and is usually operating system dependent.

TSTACK (expression)
On Intel, specifies the size of the stack to be used for the attached thread. The expression should be
FIXED BINARY(31,0). If the stack size is not specified, the runtime default will be used.

On z/OS, TSTACK is ignored, and the size of the stack is determined by LE.

An attached procedure may have any supported linkage.

Examples

 attach input (File1);

 attach input (File2)
 thread (T2);

Related information
“Detaching a thread” on page 372

ATTACH statement

370 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The DETACH statement should be used to free the system resources associated with a thread that was
attached with the THREAD option.

Terminating a thread
Execution of the END, EXIT, and STOP statements might terminate a thread. The ERROR condition, when
raised, might also terminate a thread.

A thread is terminated when any of the following circumstances occurs:

• The END statement corresponding to the first procedure (the initial procedure in the thread) is reached.
• The ERROR condition is raised and either there is no ERROR ON-unit or the ERROR ON-unit terminates

normally (reaches the END statement for the ON-unit or executes a RESIGNAL statement).
• The EXIT statement is executed in any procedure within the thread.
• The initial thread in the program terminates.
• The STOP statement is executed in any thread within the program. This stops the entire program,

causing all threads, including the main thread, to be terminated.

The FINISH condition is raised only in the thread initiating program termination. Any ON-units established
within the thread are given control before the thread actually terminates.

Except as noted above, when a thread terminates, no other threads are terminated, unless the thread
being terminated is the main thread. In that case, all other threads are stopped and terminated before the
main thread is terminated.

When a thread terminates, only its stack space is released. All other resources such as allocated storage,
open files, and so on remain intact. The user must ensure that any resources that a thread has acquired
are released and open files are closed, unless they are needed by other threads that are still active.

When the main thread terminates, all resources are released and files are closed.

Canceling a thread
You can cancel a thread by using the CANCEL THREAD statement.

CANCEL THREAD ( task-reference)

THREAD task-reference
The THREAD option specifies the task-reference task variable of the thread, upon which the process is
canceling. The task variable is generated during the ATTACH of the thread.

The TI1 thread is canceled in the following example:

 CANCEL THREAD (TI1);

Waiting for a thread to complete
To wait for a thread, use the WAIT statement.

WAIT THREAD ( task-reference) ;

Terminating a thread

Chapter 17. Multithreading facility 371

THREAD (task-reference)
The THREAD option specifies the thread upon which the process is waiting. The current thread is
suspended until the specified thread terminates. As soon as the specified thread has terminated, the
current thread resumes.

 WAIT THREAD (TI1);

Detaching a thread
The DETACH statement should be used to free the system resources associated with a thread that was
attached with the THREAD option.

DETACH THREAD ( task-reference) ;

THREAD (task-reference)
The THREAD option specifies the thread to be detached.

Normally, this statement would be executed immediately after the WAIT statement for the terminating
thread.

Condition handling
When a new thread is created, no ON-units are assumed to be established. The ON-units that are in effect
at the time a thread is created are not inherited by the new attached thread. Conditions that occur within
a thread are handled within the thread and are not handled across thread boundaries.

For example, assume that thread A opens file F; then A creates thread T; T then causes the ENDFILE
condition to be raised. If an ON ENDFILE condition is not established in thread T itself, the ERROR
condition is raised in T, and the usual condition handling takes place all within thread T. Whether or not A
has established ON-units for ENDFILE or ERROR does not affect the execution of thread T.

A thread must establish ON-units for appropriate conditions if it wishes to handle them. There is no
mechanism to signal conditions across threads.

If CTRL-BREAK is used to raise the ATTENTION condition, the ATTENTION condition is raised only in the
main thread, not in any threads created by ATTACH statements.

Task data and attribute
Task variables hold thread related information, such as thread identification, service category, and
dispatching priority. A variable is given the TASK attribute by explicit declaration, or implicitly by
appearing in a THREAD option.

TASK

A task variable is associated with a thread by the task reference in the THREAD option of the ATTACH
statement creating the thread. A task variable is active if it is associated with a thread that is active. A task
variable must be allocated before it is associated with a thread and must not be freed while it is active. An
active task variable cannot be associated with another thread.

Detaching a thread

372 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

THREADID built-in function
THREADID (short for thread identifier) returns a POINTER value that is the address of the operating
system thread identifier for an attached thread.

THREADID (x)

The value used by this built-in function can be used as a parameter to system functions such as
DosSetPriority, but it should not be used as a parameter to DosKillThread.

x
Task reference. The value of x should have been set previously in the THREAD option of the ATTACH
statement.

Sharing data between threads
All static and controlled data is shared between threads. All other data can also be shared through
arguments/parameters and through based references, as long as the data is allocated and is not freed
until all of the threads have finished using the data.

For example, if automatic variables in the attaching thread are shared with the attached thread, the
attaching block must not terminate until the attached thread has finished using the shared variables.

Serialization of data is the responsibility of the user. If new generations of controlled data are allocated or
if existing generations are freed, it is possible to have certain threads still accessing an older generation or
a generation that no longer exists. This can lead to unpredictable results.

All allocated storage, unless freed explicitly, is not freed until program termination.

PL/I does not serialize either ALLOCATEs or FREEs in AREA variables.

Sharing files between threads
All files are shared between threads.

If a thread (other than MAIN) opens a file, it must be closed before that thread terminates.

A file opened in a MAIN thread is not closed until it is explicitly closed or the program ends. Except for
the Language Environment message file on z/OS, if you do not serialize your file usage, you might get
unpredictable results, possibly including abends.

Serialization is the responsibility of the user. See “Sharing data between threads” on page 373.

The message file and the display statement are automatically serialized by PL/I.

Sharing data between threads

Chapter 17. Multithreading facility 373

Sharing files between threads

374 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 18. Built-in functions, pseudovariables, and
subroutines

A large number of common tasks are available in the form of built-in functions, subroutines, and
pseudovariables. When you use them, you can write less code more quickly with greater reliability. This
chapter describes the built-in functions, subroutines, and pseudovariables that you can use in your PL/I
program.

With PL/I, you can develop both 31-bit and 64-bit applications. When you develop 64-bit applications,
you must be aware that the argument and return types of some built-in functions are different from those
under 31-bit. These arguments and return values are of type size_t. Such size_t arguments represent the
size of a piece of storage.

If the LP(32) compiler option is in effect, size_t is FIXED BIN(31); if the LP(64) compiler option is in effect,
size_t is FIXED BIN(63).

Declaring and invoking built-in functions, pseudovariables, and
built-in subroutines

Built-in functions, pseudovariables, and subroutines can be contextually or explicitly declared.

BUILTIN attribute
The BUILTIN attribute specifies that the name is a built-in function, pseudovariable, or a subroutine.

BUILTIN

Built-in names can be used as programmer-defined names. BUILTIN can be declared for a built-in name
in any block that has inherited, from a containing block, a programmer-defined declaration or use of the
same name.

Example

This example shows built-in names with the BUILTIN attribute.

 1 A: procedure;
 declare Sqrt float binary;
 2 X = Sqrt;

 3 B: Begin;
 Declare Sqrt builtin;
 Z = Sqrt(P);
 end B;

 end A;

 1
Sqrt is a programmer-defined name.

 2
The assignment to the variable X is a reference to the programmer-defined name Sqrt.

 3
Sqrt is declared with the BUILTIN attribute so that any reference to Sqrt within B is recognized as a
reference to the built-in function and not to the programmer-defined name Sqrt declared in 1.

BUILTIN

© Copyright IBM Corp. 1999, 2022 375

Invoking built-in functions and pseudovariables
You can use this syntax to invoke built-in functions and pseudovariables.

name

(

,

argument

)

Invoking built-in subroutines
You can use this syntax to invoke built-in subroutines.

CALL name

(
,

argument

)

;

Specifying arguments for built-in functions, pseudovariables, and
built-in subroutines

Arguments, which can be expressions, are evaluated and converted to a data type suitable for the built-in
function according to the rules for data conversion.

Aggregate arguments
All built-in functions and pseudovariables that can have arguments can have array arguments (if more
than one is an array, the bounds must be identical).

• ADDR, ALLOCATION, CURRENTSIZE, SIZE, STRING, and the array-handling functions return an element
value.

• Under the compiler option USAGE(UNSPEC(ANS)), UNSPEC returns an element value; Under
USAGE(UNSPEC(IBM)), it returns an array of values.

• All other functions return an array of values.

Specifying an array argument is equivalent to placing the function reference or pseudovariable in a
do-group where one or more arguments is a subscripted array reference that is modified by the control
variable.

Consider the following example:

 dcl A(2) char(2) varying;
 dcl B(2) char(2)
 init('AB','CD');
 dcl C(2) fixed bin
 init(1,2);
 A=substr(B,1,C);

This example results in A(1) having the value A and A(2) having the value CD.

The built-in functions and pseudovariables that can accept structure or union arguments are listed in
Table 59 on page 377.

Invoking built-in functions and pseudovariables

376 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 59. Built-in functions and pseudovariables that accept structure or union arguments

Built-in functions and pseudovariables

ADDR JSONGETCOMMA JSONPUTOBJECTEND PRESENT

ADDRDATA JSONGETMEMBER JSONPUTOBJECTSTART SIZE

ALLOCATION JSONGETOBJECTEND JSONPUTVALUE STRING

ALLCOMPARE JSONGETOBJECTSTART JSONVALID UNSPEC1

BITLOCATION JSONGETVALUE LOCATION XMLCHAR

CURRENTSIZE JSONPUTARRAYEND OMITTED XMLUCHAR

INDICATORS JSONPUTARRAYSTART PLISAXA

JSONGETARRAYEND JSONPUTCOLON PLISAXB

JSONGETARRAYSTART JSONPUTCOMMA PLISAXC

JSONGETCOLON JSONPUTMEMBER PLISAXD

1. UNSPEC may be applied to a structure or union only if the compiler option USAGE(UNSPEC(ANS)) is in effect.

Null and optional arguments
Some built-ins do not require arguments. You must either explicitly declare these with the BUILTIN
attribute or contextually declare them by including a null argument list in the reference—for example,
ONCHAR(). Otherwise, the name is not recognized as a built-in.

Accuracy of mathematical functions
The accuracy of a result is influenced by two factors: the accuracy of the argument and the accuracy of
the algorithm.

Most arguments contain errors. An error in a given argument can accumulate over several steps before the
evaluation of a function. Even data fresh from input conversion can contain errors. The effect of argument
error on the accuracy of a result depends entirely on the nature of the mathematical function, and not on
the algorithm that computes the result. This book does not discuss argument errors of this type.

The mathematical built-in functions that are implemented using inline machine instructions produce
results of different accuracy.

Categories of built-in functions
This section lists built-in functions, subroutines, and pseudovariables by category.

Only full function names are listed in these tables. Existing abbreviations are provided in the sections that
describe each built-in function, subroutine, and pseudovariable.

In the discussions of conversions that follow, M and N specify the maximum precision:

• M is the maximum precision for FIXED BINARY. This is the value M2 from the compiler option
LIMITS(FIXEDBIN(M1,M2)).

• N is the maximum precision for FIXED DECIMAL. This is the value N2 from the compiler option
LIMITS(FIXEDDEC(N1,N2)).

Arithmetic built-in functions
The arithmetic built-in functions allow you to determine properties of arithmetic values (for example, the
SIGN function indicates the sign of an arithmetic variable) and to perform routine arithmetic operations.

Table 60 on page 378 lists the arithmetic built-in functions and a short description of each.

Null and optional arguments

Chapter 18. Built-in functions, pseudovariables, and subroutines 377

Some of the arithmetic functions derive the data type of their results from one or more arguments. When
the data types of the arguments differ, they are converted as described in Chapter 4, “Data conversion,”
on page 75.

Table 60. Arithmetic built-in functions

Function Description

ABS Calculates the absolute value of a value

CEIL Calculates the smallest integer value greater than or equal to a value

COMPLEX Returns the complex number with given real and imaginary parts

CONJG Returns the complex conjugate of a value

FLOOR Calculates the largest integer value less than or equal to a value

IMAG Returns the imaginary part of a complex number

MAX Calculates the maximum of 2 or more values

MAXVAL Returns the maximum value for a numeric operand

MIN Calculates the minimum of 2 or more values

MINVAL Returns the minimum value for a numeric operand

MOD Returns the modular equivalent of the remainder of one value
divided by another

RANDOM Returns a pseudo-random value

REAL Returns the real part of a complex number

REM Calculates the remainder of one value divided by another

ROUND Rounds a value at a specified digit

ROUNDAWAYFROMZERO Rounds a decimal value at a specified digit

ROUNDTOEVEN Returns a value rounded to its nearest even value

SIGN Returns a -1, 0 or 1 if a value is negative, zero, or positive,
respectively

TRUNC Calculates the nearest integer for value rounded towards zero

Array-handling built-in functions
The array-handling built-in functions operate on array arguments and return an element value.

Any conversion of arguments required for these functions is noted in the function description. Table 61 on
page 378 lists the array-handling built-in functions.

Table 61. Array-handling built-in functions

Function Description

ALL Calculates the bitwise "and" of all the elements of an array

ANY Calculates the bitwise "or" of all the elements of an array

DIMENSION Returns the number of elements in a dimension of an array

HBOUND Returns the upper bound for a dimension of an array

HBOUNDACROSS Returns the upper bound in a DIMACROSS array

Array-handling

378 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 61. Array-handling built-in functions (continued)

Function Description

INARRAY Returns a BIT(1) value that indicates whether an expression is equal to
any of the elements of an array

LBOUND Returns the lower bound for a dimension of an array

LBOUNDACROSS Returns the lower bound in a DIMACROSS array

POLY Returns floating-point approximate of two arrays

PROD Calculates the product of all the elements of an array

QUICKSORT Performs a quick-sort of an array by using a simple compare

QUICKSORTX Performs a quick-sort of an array by using a specified compare function

SUM Calculates the sum of all the elements of an array

Buffer-management built-in functions
The buffer-management built-in functions operate on a "buffer", which is an area of storage specified by
an address and a number of bytes.

The PLIFILL, PLIMOVE, and PLIOVER built-in subroutines are also useful in managing buffers. Table 62 on
page 379 lists the buffer-management built-in functions.

Table 62. Buffer-management built-in functions

Function Description

COMPARE Compares two buffers and returns a value indicating if the first is
less-than, equal-to or greater-than the second.

HEXENCODE Encodes the source buffer into base 16 that is encoded as
CHARACTER. Returns a size_t value that indicates the number of
bytes that are written into the target buffer.

HEXENCODE8 Encodes the source buffer into base 16 that is encoded as UTF-8.
Returns a size_t value that indicates the number of bytes that are
written into the target buffer.

HEXIMAGE Returns a character string that is the hexadecimal representation of
a buffer.

HEXIMAGE8 Returns a character string that is the UTF-8 hexadecimal
representation of a buffer.

MEMCONVERT Converts the data in a source buffer from the specified source
codepage to a specified target codepage. Stores the result in a
target buffer. Returns a size_t value that indicates the number of
bytes that are written to the target buffer.

MEMCOLLAPSE Fills a target buffer with the contents of a source buffer with
all multiple occurrences of a specified character replaced by one
while also trimming leading and trailing instances of that character.
Returns a size_t value that indicates the number of bytes that are
written to the target buffer.

MEMCU12 Converts the data in a source buffer from UTF-8 to UTF-16. Stores
the result in a target buffer. Returns a size_t value that indicates the
number of bytes that are written to the target buffer.

Array-handling

Chapter 18. Built-in functions, pseudovariables, and subroutines 379

Table 62. Buffer-management built-in functions (continued)

Function Description

MEMCU14 Converts the data in a source buffer from UTF-8 to UTF-32. Stores
the result in a target buffer. Returns a size_t value that indicates the
number of bytes that are written to the target buffer.

MEMCU21 Converts the data in a source buffer from UTF-16 to UTF-8. Stores
the result in a target buffer. Returns a size_t value that indicates the
number of bytes that are written to the target buffer.

MEMCU24 Converts the data in a source buffer from UTF-16 to UTF-32. Stores
the result in a target buffer. Returns a size_t value that indicates the
number of bytes that are written to the target buffer.

MEMCU41 Converts the data in a source buffer from UTF-32 to UTF-8. Stores
the result in a target buffer. Returns a size_t value that indicates the
number of bytes that are written to the target buffer.

MEMCU42 Converts the data in a source buffer from UTF-32 to UTF-16. Stores
the result in a target buffer. Returns a size_t value that indicates the
number of bytes that are written to the target buffer.

MEMINDEX Finds the location of one string or buffer within a buffer.

MEMREPLACE Fills a target buffer with the contents of a source buffer with one
or more occurrences of a specified third buffer replaced by a fourth
buffer. Returns a size_t value that indicates the number of bytes
that are written into the target buffer.

MEMSEARCH Searches for the first occurrence of any one of the elements of a
string within a buffer.

MEMSEARCHR Searches for the first occurrence of any one of the elements of a
string within a buffer, but the search starts from the right.

MEMSQUEEZE Fills a target buffer with the contents of a source buffer with all
multiple occurrences of a specified character replaced by one.
Returns a size_t value that indicates the number of bytes that are
written into the target buffer.

MEMVERIFY Searches for the first nonoccurrence of any one of the elements of
a string within a buffer.

MEMVERIFYR Searches for the first occurrence of any one of the elements of a
string within a buffer, but the search starts from the right.

WHEREDIFF Compares two buffers and returns the index of the first byte that
differs.

WSCOLLAPSE Collapses all the whitespace in a source buffer encoded as
CHARACTER. Returns a size_t value that indicates the number of
bytes that are written into the target buffer.

WSCOLLAPSE16 Collapses all the whitespace in a source buffer encoded as UTF-16.
Returns a size_t value that indicates the number of bytes that are
written into the target buffer.

WSREPLACE Replaces all characters from \t, \f, \v, \n, and \r in a source
buffer encoded as CHARACTER by a blank. Returns a size_t value
that indicates the number of bytes that are written into the target
buffer.

Array-handling

380 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 62. Buffer-management built-in functions (continued)

Function Description

WSREPLACE16 Replaces all characters from \t, \f, \v, \n, and \r in a source
buffer encoded as UTF-16 by a blank. Returns a size_t value that
indicates the number of bytes that are written into the target buffer.

XMLCHAR Writes XML corresponding to a structure to a buffer.

XMLSCRUB Scrubs a CHARACTER source buffer. Returns a size_t value that
indicates the number of bytes that are written into the target buffer.

XMLSCRUB16 Scrubs a UTF-16 XML source buffer. Returns a size_t value that
indicates the number of bytes that are written into the target buffer.

XMLUCHAR Writes XML corresponding to a structure to a buffer as UTF-8.

Condition-handling built-in functions
The condition-handling built-in functions enable you to determine the cause of a condition that has
occurred.

Use of these functions is valid only within the scope of an ON-unit or dynamic descendant for:

• the condition specific to the built-in function
• the ERROR or FINISH condition when raised as an implicit action

All other uses are out of context.

Table 63. Condition-handling built-in functions

Function Description

DATAFIELD Returns the value of a string that raised the NAME condition.

ONACTUAL Returns a string that represents the actual value of an ASSERT COMPARE
statement.

ONAREA Returns the name of the AREA reference for which an AREA condition is raised.

ONCHAR Returns the value of a character that caused a CONVERSION condition.

ONEXPECTED Returns a string that represents the expected value of an ASSERT COMPARE
statement.

ONCODE Returns the condition code value.

ONCONDCOND Returns the name of CONDITION condition being processed.

ONCONDID Returns a number which identifies a particular condition.

ONCOUNT Returns the number of outstanding conditions.

ONFILE Returns the name of a file for which a condition is raised.

ONGSOURCE Returns the value of a graphic string that caused a CONVERSION condition.

ONHBOUND Returns the value of the upper bound when an array index has caused
SUBSCRIPTRANGE to be raised.

ONJSONNAME Returns a string containing the name for which no match was found in a
JSONGETMEMBER or JSONGETVALUE call.

ONKEY Returns the key of a record that raised a condition.

Condition-handling

Chapter 18. Built-in functions, pseudovariables, and subroutines 381

Table 63. Condition-handling built-in functions (continued)

Function Description

ONLBOUND Returns the value of the lower bound when an array index has caused
SUBSCRIPTRANGE to be raised.

ONLINE Returns the line number from the source in which a condition occurred.

ONLOC Synonym for ONPROC.

ONOFFSET Returns the offset within a block in which a condition occurred.

ONOPERATOR Returns the value of the operator of an ASSERT COMPARE statement.

ONPACKAGE Returns the name of the PACKAGE in which an ASSERTION condition occurred.

ONPROCEDURE Returns the name of a procedure in which a condition is raised.

ONSOURCE Returns the value of a string that caused a CONVERSION condition.

ONSUBSCRIPT Returns the value of the invalid array index that has caused SUBSCRIPTRANGE to
be raised.

ONTEXT Returns the value of the TEXT clause of the ASSERT statement that raised the
ASSERTION condition.

ONUCHAR Returns a UCHAR(1) string that caused a CONVERSION condition.

ONUSOURCE Returns a UCHAR string that caused a CONVERSION condition.

ONWCHAR Returns a WIDECHAR(1) string that caused a CONVERSION condition.

ONWSOURCE Returns the value of a WIDECHAR string that caused a CONVERSION condition.

Date/time built-in functions
These built-in functions return or manipulate date and time information in terms of days, seconds, and
character date/time stamps.

Some of these built-in functions allow you to specify the date/time patterns to be used. Table 64 on page
382 lists the supported date/time built-in functions. Table 65 on page 384 lists the supported date/time
patterns and Table 66 on page 385 lists the supported time-only patterns.

The time zone and accuracy for these functions are system dependent.

Lilian format: The Lilian format, named in honor of Luigi Lilio, the creator of the Gregorian calendar,
represents a date as the number of days or seconds from the beginning of the Gregorian calendar. This
format is useful for performing calculations involving elapsed time.

The Lilian format counts days that have elapsed since October 14, 1582; day one is Friday, October 15,
1582. For example, 16 May 1988 is 148138 Lilian days. The valid range of Lilian days is 1 to 3,074,324
(15 October 1582 to 31 December 9999).

For the number of elapsed seconds, the Lilian format counts elapsed seconds starting at 00:00:00 14
October 1582. For example, 00:00:01 on 15 October 1582 is 86,401 (24*60*60+1) Lilian seconds, and
19:01:01 16 May 1988 is 12,799,191,661 Lilian seconds. The valid range of Lilian seconds is 86,400 to
265,621,679,999.999 (23:59:59:999 31 December 9999) seconds.

Table 64. Date/time built-in functions

Function Description

DATE Returns the current date in the pattern YYMMDD.

DATETIME Returns the current date and time in the user-specified pattern or in the
default pattern YYYYMMDDHHMISS999.

Date/time

382 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 64. Date/time built-in functions (continued)

Function Description

DAYS Returns the number of days corresponding to a date/time pattern
string, or the number of days for today's date.

DAYSTODATE Converts a number of days to a date/time pattern string.

DAYSTOMICROSECS Converts a number of days to a number of microseconds.

DAYSTOSECS Converts a number of days to a number of seconds.

JULIANTOSMF Converts a date from Julian format to SMF format.

MAXDATE Returns the latest date/time value for a specified date/time pattern.

MICROSECS Returns the number of microseconds corresponding to a date/time
pattern string, or the number of microseconds for today's date.

MICROSECSTODATE Converts a number of microseconds to a date/time pattern string.

MICROSECSTODAYS Converts a number of microseconds to a number of days.

MINDATE Returns the earliest date/time value for a specified date/time pattern.

REPATTERN Takes a value holding a date in one pattern and returns that value
converted to a date in a second pattern.

SECS Returns the number of seconds corresponding to a date/time pattern
string, or the number of seconds for today's date.

SECSTODATE Converts a number of seconds to a date/time pattern string.

SECSTODAYS Converts a number of seconds to a number of days.

SMFTOJULIAN Converts a date from SMF format to Julian format.

STCKETODATE Converts a STCKE value to a date/time pattern string.

STCKTODATE Converts a STCK value to a date/time pattern string.

TIME Returns the current time in the pattern HHMISS999.

TIMESTAMP Returns the current time in the pattern YYYY-MM-DD-
HH.MI.SS.999999.

UTCDATETIME Returns the current Coordinated Universal Time (UTC) in the pattern
YYYYMMDDHHMISS999.

UTCMICROSECS Returns the number of microseconds corresponding to the current UTC
time.

UTCSECS Returns the current Coordinated Universal Time (UTC) in the Lilian
format in seconds.

VALIDDATE Indicates if a string holds a valid date.

WEEKDAY Returns the day of the week corresponding to the current day or
specified DAYS value.

Y4DATE Takes a date value with the pattern 'YYMMDD' and returns the date
value with the two-digit year widened to a four-digit year.

Y4JULIAN Takes a date value with the pattern 'YYDDD' and returns the date value
with the two-digit year widened to a four-digit year.

Y4YEAR Takes a date value with the pattern 'YY' and returns the date value with
the two-digit year widened to a four-digit year.

Date/time

Chapter 18. Built-in functions, pseudovariables, and subroutines 383

Table 65 on page 384 and Table 66 on page 385 use the following formats:
YYYY

Four-digit year
YY

Two-digit year
ZY

Two-digit year with any leading zero suppressed
MM

Two-digit month
ZM

Two-digit month with any leading zero suppressed
MMM

Three-letter month (Ex: DEC)
Mmm

Three-letter month (Ex: Dec)
DD

Two-digit day within a given month
ZD

Two-digit day within a given month with any leading zero suppressed
DDD

Number of days within a given year
HH

Number of hours within a given day
MI

Number of minutes within a given hour
SS

Number of seconds within a given minute
999

Number of milliseconds within a given second
999999

Number of microseconds within a given second

Note: For the three-letter month patterns, the uppercase/lowercase characters must correspond exactly.

Table 65. Date/time patterns

Four-digit years Two-digit years

Year first YYYYMMDD
YYYY/MM/DD
YYYYMMMDD
YYYYMmmDD
YYYYDDD
YYYYMM
YYYYMMM
YYYYMmm
YYYY
YYYYMMDDHHMISS999
YYYY-MM-DD-HH.MI.SS.999999
YYYY-MM-DD HH:MI:SS.999999
YYYY-MM-DDTHH:MI:SS.999999
YYYYMMDDHHMISS999999

YYMMDD
YY/MM/DD
YYMMMDD
YYMmmDD
YYDDD
YYMM
YYMMM
YYMmm
YY

Date/time

384 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 65. Date/time patterns (continued)

Four-digit years Two-digit years

Month first MMDDYYYY
MMMDDYYYY
MmmDDYYYY
MMYYYY
MMMYYYY
MmmYYYY

MMDDYY
MMMDDYY
MmmDDYY
MMYY
MMMYY
MmmYY

Day first DDMMYYYY
DD/MM/YYYY
DDMMMYYYY
DDMmmYYYY
DDDYYYY

DDMMYY
DD/MM/YY
DDMMMYY
DDMmmYY
DDDYY

Db2 formats YYYY-MM-DD
MM/DD/YYYY
DD.MM.YYYY

YY-MM-DD
MM/DD/YY
DD.MM.YY

without zeros ZY-ZM-ZD
YY-ZM-ZD
ZM/ZD/ZY
ZM/ZD/YY
ZD.ZM.ZY
ZD.ZM.YY

Table 66. Time-only patterns

Basic format Extended format

HHMISS HH:MI:SS

HHMI HH:MI

HH

When the day is omitted from a pattern, it is assumed to have the value 1. If the month and day are both
omitted, they are also assumed to have the value 1.

When using MMM, the date must be written in three uppercase letters; when using Mmm, the date must
be written with the first letter in uppercase, and the letters following in lowercase.

On input, the date value for the patterns "without zeros" may be less than 8 characters, for example, the
date 20 Jan 2008 may be specified as 8-1-20 to match the pattern "ZY-ZM-ZD". On output, the string
produced for one of these patterns will always be 8 characters with any suppressed zeros compensated
by trailing blanks.

Encoding and hashing built-in functions
The encoding and hashing built-in functions allow you to encode, decode, and hash buffers of text.

Table 67 on page 386 lists the encoding and hashing built-in functions and a short description of each.

Encoding and hashing

Chapter 18. Built-in functions, pseudovariables, and subroutines 385

Table 67. Encoding and hashing built-in functions

Function Description

BASE64DECODE Decodes the source buffer from base 64 that is encoded as
CHARACTER. Returns a size_t value that indicates the number of
bytes that are written into the target buffer.

BASE64DECODE8 Decodes the source buffer from base 64 that is encoded as UTF-8.
Returns a size_t value that indicates the number of bytes that are
written into the target buffer.

BASE64DECODE16 Decodes the source buffer from base 64 that is encoded as UTF-16.
Returns a size_t value that indicates the number of bytes that are
written into the target buffer.

BASE64ENCODE Encodes the source buffer into base 64 that is encoded as
CHARACTER. Returns a size_t value that indicates the number of
bytes that are written into the target buffer.

BASE64ENCODE8 Encodes the source buffer into base 64 that is encoded as UTF-8.
Returns a size_t value that indicates the number of bytes that are
written into the target buffer.

BASE64ENCODE16 Encodes the source buffer into base 64 that is encoded as UTF-16.
Returns a size_t value that indicates the number of bytes that are
written into the target buffer.

CHECKSUM Returns the checksum value for a specified buffer.

HEXDECODE Decodes a source buffer from base 16 that is encoded in the
character set specified by the ASCII/EBCDIC suboption of the
DEFAULT compiler option. Returns a size_t value that indicates the
number of bytes that are written into the target buffer.

HEXDECODE8 Decodes a source buffer from base 16 that is encoded in UTF-8.
Returns a size_t value that indicates the number of bytes that are
written into the target buffer.

SHA1DIGEST Performs a SHA-1 hash of the text specified by an address and
length and returns a CHAR(20) string with that hash value.

SHA1FINAL Uses a token initialized by the corresponding SHA1INIT function to
complete a SHA-1 hash of a series of texts and returns a CHAR(20)
string with that hash value.

SHA1INIT Returns a token (of type POINTER) that can be used with the
corresponding SHA1UPDATE and SHA1FINAL functions to hash a
series of texts.

SHA1UPDATE Uses a token initialized by the corresponding SHA1INIT function to
perform an intermediate hash of an element in a series of texts.

SHA2DIGESTx Performs a SHA-2 hash of the text specified by an address and
length and returns a CHAR string with that hash value.

SHA2FINALx Uses a token initialized by the corresponding SHA2INIT function to
complete a SHA-2 hash of a series of texts and returns a CHAR
string with that hash value.

SHA2INITx Returns a token (of type POINTER) that can be used with the
corresponding SHA2UPDATE and SHA2FINAL functions to hash a
series of texts.

Encoding and hashing

386 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 67. Encoding and hashing built-in functions (continued)

Function Description

SHA2UPDATEx Uses a token initialized by the corresponding SHA2INIT function to
perform an intermediate hash of an element in a series of texts.

SHA3DIGESTx Performs a SHA-3 hash of the text specified by an address and
length and return a CHAR string with that hash value.

SHA3FINALx Uses a token initialized by the corresponding SHA3INIT function to
complete a SHA-3 hash of a series of texts and returns a CHAR
string with that hash value.

SHA3INITx Returns a token (of type POINTER) that can be used with the
corresponding SHA3UPDATE and SHA3FINAL functions to hash a
series of texts.

SHA3UPDATEx Uses a token initialized by the corresponding SHA3INIT function to
perform an intermediate hash of an element in a series of texts.

Notes:

1. The x in the names of the SHA-2 and SHA-3 functions must be one of the values 224, 256, 384, or
512.

2. The functions hex, hex8, heximage, heximage8, and unhex also support encoding into and decoding
from hex, but these 5 functions all return character strings (while all of the functions in this category
work on buffers of text and return integer values).

Floating-point inquiry built-in functions
The floating-point inquiry built-in functions return information about the floating-point variable arguments
that you specify.

Table 68. Floating-point inquiry built-in functions

Function Description

EPSILON Returns the spacing around 1

HUGE Returns the largest positive finite value that a floating-point variable can hold

ISFINITE Indicates if a floating point value is not a NAN and not positive or negative infinity

ISINF Indicates if a floating point value is an infinity

ISNAN Indicates if a floating point value is a NAN

ISNORMAL Indicates if a floating point value is not a zero, subnormal, infinity or NaN

ISZERO Indicates if a floating point value is a zero

MAXEXP Returns the maximum value for an exponent

MINEXP Returns the minimum value for an exponent

PLACES Returns the model precision for a floating point value

RADIX Returns the model base for a floating point value

TINY Returns the smallest positive value that a floating-point variable can hold

Floating-point inquiry

Chapter 18. Built-in functions, pseudovariables, and subroutines 387

Floating-point manipulation built-in functions
The floating-point manipulation built-in functions perform mathematical operations on floating-point
variables that you specify and return the result of the operation.

Table 69. Floating-point manipulation built-in functions

Function Description

EXPONENT Returns the exponent part of a floating point value.

PRED Returns the next representable value before a floating-point value.

SCALE Multiplies a floating-point number by an integral power of the radix.

SUCC Returns the next representable value after a floating-point value.

Input/output built-in functions
The input and output built-in functions allow you to determine the current state of a file.

Table 70. Input/output built-in functions

Function Description

COUNT Returns the number of data items transmitted during the last GET or PUT.

ENDFILE Indicates if a file is open and end-of-file has been reached for it.

FILEDDINT Returns a value for the designated file attribute.

FILEDDTEST Returns the value 1 if the designated attribute applies to the specified file.

FILEDDWORD Returns a character string for the designated file attribute.

FILEID Returns a system token value for a file.

FILENEW Returns a FILE variable that points to a new file constant in automatic storage.

FILEOPEN Indicates if a file is open.

FILEREAD Reads from a file.

FILESEEK Changes the current file position to a new location.

FILETELL Returns a value indicating the current position of a file.

FILEWRITE Writes to a file.

LINENO Returns the current line number associated with a print file.

ONSUBCODE Returns an integer value that gives additional information about certain I/O, JSON,
or conversion errors.

ONSUBCODE2 Returns an integer value that gives additional information about certain I/O errors.

PAGENO Returns the current page number associated with a print file.

SAMEKEY Indicates if a record is followed by another with the same key.

Floating-point manipulation

388 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Integer manipulation built-in functions
The integer manipulation built-in functions perform operations on integer variables and return the result
of the operation.

Table 71. Integer manipulation built-in functions

Function Description

IAND Calculates the bitwise "and" of 2 or more fixed binary values.

ICLZ Counts the number of leading zeros in a FIXED BIN value.

IEOR Calculates the bitwise "exclusive-or" of 2 fixed binary values.

INOT Calculates the bitwise "not" of a fixed binary value.

IOR Calculates the bitwise "or" of 2 or more fixed binary values.

ISIGNED Casts an integer to a signed integer without changing its bit pattern.

ISLL Shifts a fixed binary value "logically" to the left.

ISRL Shifts a fixed binary value "logically" to the right.

IUNSIGNED Casts an integer to an unsigned integer without changing its bit pattern.

LOWER2 Divides a fixed binary value by an integral power of 2.

RAISE2 Multiplies a fixed binary value by an integral power of 2.

JSON built-in functions
This topic lists the JSON built-in functions.

Table 72. JSON built-in functions

Function Description

JSONGETARRAYEND Checks if the next character, ignoring whitespace, in a piece of JSON text
is a closing bracket,].

JSONGETARRAYSTART Checks if the next character, ignoring whitespace, in a piece of JSON text
is an opening bracket, [.

JSONGETCOLON Checks if the next character, ignoring whitespace, in a piece of JSON text
is a colon.

JSONGETCOMMA Checks if the next character, ignoring whitespace, in a piece of JSON text
is a comma.

JSONGETMEMBER Reads a member (or name-value pair) from a piece of JSON text.

JSONGETOBJECTEND Checks if the next character, ignoring whitespace, in a piece of JSON text
is a closing brace, }.

JSONGETOBJECTSTART Checks if the next character, ignoring whitespace, in a piece of JSON text
is an opening brace, {.

JSONGETVALUE Reads a value from a piece of JSON text.

JSONPUTARRAYEND Appends a closing bracket,], to the JSON text.

JSONPUTARRAYSTART Appends an opening bracket, [, to the JSON text.

JSONPUTCOLON Appends a colon to the JSON text.

JSONPUTCOMMA Appends a comma to the JSON text.

Integer manipulation

Chapter 18. Built-in functions, pseudovariables, and subroutines 389

Table 72. JSON built-in functions (continued)

Function Description

JSONPUTMEMBER Appends a member (or name-value pair), as UTF-8, to the JSON text.

JSONPUTOBJECTEND Appends a closing brace, }, to the JSON text.

JSONPUTOBJECTSTART Appends an opening brace, {, to the JSON text.

JSONPUTVALUE Appends a value, as UTF-8, to the JSON text.

JSONVALID Determines if a buffer contains valid JSON text.

Mathematical built-in functions
All of these functions operate on floating-point values to produce a floating-point result. Any argument
that is not floating-point is converted.

The accuracy of these functions is discussed in “Accuracy of mathematical functions” on page 377.

Table 73 on page 390 lists the mathematical built-in functions.

Table 73. Mathematical built-in functions

Function Description

ACOS Calculates the arc cosine

ASIN Calculates the arc sine

ATAN Calculates the arc tangent

ATAND Calculates the arc tangent in degrees

ATANH Calculates the hyperbolic arc tangent

COS Calculates the cosine

COSD Calculates the cosine for a value in degrees

COSH Calculates the hyperbolic cosine

ERF Calculates the error function

ERFC Calculates the complement of the error function

EXP Calculates e to a power

GAMMA Calculates the gamma function

LOG Calculates the natural logarithm

LOG10 Calculates the base 10 logarithm

LOG2 Calculates the base 2 logarithm

LOGGAMMA Calculates the log of the gamma function

SIN Calculates the sine

SIND Calculates the sine for a value in degrees

SINH Calculates the hyperbolic sine

SQRT Calculates the square root

SQRTF Calculates SQRT inline if hardware architecture permits

TAN Calculates the tangent

Mathematical

390 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 73. Mathematical built-in functions (continued)

Function Description

TAND Calculates the tangent for a value in degrees

TANH Calculates the hyperbolic tangent

Miscellaneous built-in functions
This topic lists the built-in functions that do not fit into any of the other categories.

The following table lists miscellaneous built-in functions.

Table 74. Miscellaneous built-in functions

Function Description

ALLCOMPARE Returns a BIT(1) value that indicates the result of comparing
two structures.

BETWEEN Returns a BIT(1) value that indicates whether the first
argument is in the closed interval as defined by the second
and third arguments.

BETWEENEXCLUSIVE Returns a BIT(1) value that indicates whether the first
argument is in the open interval as defined by the second
and third arguments.

BETWEENLEFTEXCLUSIVE Returns a BIT(1) value that indicates whether the first
argument is in the left-open interval as defined by the
second and third arguments.

BETWEENRIGHTEXCLUSIVE Returns a BIT(1) value that indicates whether the first
argument is in the right-open interval as defined by the
second and third arguments.

BINSEARCH Performs a binary search by using a simple compare.

BINSEARCHX Performs a binary search by using a specified compare
function.

BYTE Synonym for CHARVAL.

BYTELENGTH Returns a FIXED BINARY(31) value that is the number of
bytes used by a UCHAR string.

CDS Returns a FIXED BINARY(31) value that indicates if the old
and current values in a compare double and swap were
equal.

CHARVAL Returns the character value corresponding to an integer.

CODEPAGE Returns a FIXED BINARY(31) value holding the value of the
CODEPAGE compiler option.

COLLATE Returns a character(256) string specifying the collating
order.

CS Returns a FIXED BINARY(31) value that indicates if the old
and current values in a compare and swap were equal.

FOLDEDFULLMATCH Returns a FIXED BINARY(31) value that indicates whether
two strings are identical when folded to lowercase according
to the Unicode full case folding rules.

Miscellaneous

Chapter 18. Built-in functions, pseudovariables, and subroutines 391

Table 74. Miscellaneous built-in functions (continued)

Function Description

FOLDEDSIMPLEMATCH Returns a FIXED BINARY(31) value that indicates whether
two strings are identical when folded to lowercase according
to the Unicode simple case folding rules.

GETENV Returns a value representing a specified environment
variable.

GETJCLSYMBOL Returns a character string that is the value of an exported
JCL symbol (z/OS only).

GETSYSINT Rturns a size_t value that is the value of the requested
system information.

GETSYSWORD Returns a character string that is the value of the requested
system information.

GTCA Returns a pointer to the LE control block.

HEX Returns a character string that is the hex representation of a
value.

HEX8 Returns a character string that is the UTF-8 hex
representation of a value.

IFTHENELSE Returns a value that is an equivalent for the C conditional
expression (x?y:z).

INDICATORS Returns a value that gives the number of elements at the
next logical level in a structure.

INLIST Returns a BIT(1) value that indicates whether the first
argument is equal to any of the remaining arguments.

ISJCLSYMBOL Returns a BIT(1) value that indicates whether the input
argument name is a valid exported JCL symbol.

ISMAIN Indicates if the current procedure is main.

MAINNAME Returns a CHARACTER string that is the name of the MAIN
function on the current call stack.

OMITTED Indicates if a parameter was not supplied on a call.

PACKAGENAME Returns the name of the containing package.

PLIRETV Returns the PL/I return code value.

POPCNT Returns a FIXED BINARY value holding in each byte the
number of bits equal to 1 in the corresponding byte.

PRESENT Indicates if a parameter was supplied on a call.

PROCEDURENAME Returns the name of the most closely nested procedure.

PUTENV Adds new environment variables or modifies the values of
existing environment variables.

RANK Returns the integer value corresponding to a CHARACTER or
WIDECHAR.

SOURCEFILE Returns the name of the containing file.

SOURCELINE Returns the number of the containing line.

Miscellaneous

392 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 74. Miscellaneous built-in functions (continued)

Function Description

STACKADDR Returns the address of the current dynamic save area.

STRING Returns a string that is the concatenation of all the elements
of a string aggregate.

SYSTEM Returns the value returned by a command.

THREADID Returns the thread identifier for a task.

UNHEX Returns a character string that is the decoded value of a hex
input string.

UNSPEC Returns a bit string that is the internal representation of a
value.

UUID Returns a CHARACTER(36) string that is a version 5 format
universally unique identifier.

UUID4 Returns a CHARACTER(36) string that is a version 4
universally unique identifier.

VALID Indicates if the contents of a variable are valid for its
declaration.

VALIDVALUE Indicates if the value of an expression matches one of the
elements in a variable's value set.

WCHARVAL Returns the WIDECHAR value corresponding to an integer.

Ordinal-handling built-in functions
The ordinal-handling built-in functions return information about a specified ordinal.

Table 75. Ordinal-handling built-in functions

Function Description

ORDINALNAME Returns a character string giving an ordinal’s name.

ORDINALPRED Returns the next lower value for an ordinal.

ORDINALSUCC Returns the next higher value for an ordinal.

Precision-handling built-in functions
The precision-handling built-in functions allow you to manipulate variables with specified precisions, and
they return the value resulting from the operation.

Table 76. Precision-handling built-in functions

Function Description

ADD Adds, with a specified precision, two values

BINARY Converts a value to binary

DECIMAL Converts a value to decimal

DIVIDE Divides, with a specified precision, two values

FIXED Converts a value to fixed

FIXEDBIN Converts a value to fixed binary

Ordinal-handling built-in functions

Chapter 18. Built-in functions, pseudovariables, and subroutines 393

Table 76. Precision-handling built-in functions (continued)

Function Description

FIXEDDEC Converts a value to fixed decimal

FLOAT Converts a value to float

FLOATBIN Converts a value to float binary

FLOATDEC Converts a value to float decimal

MULTIPLY Multiplies, with a specified precision, two values

PRECVAL Returns the precision for a numeric operand

PRECISION Converts a value to specified precision

SCALEVAL Returns the scale factor for a numeric operand

SIGNED Converts a value to signed fixed binary

SUBTRACT Subtracts, with a specified precision, two values

UNSIGNED Converts a value to unsigned fixed binary

Pseudovariables
Pseudovariables represent receiving fields. They cannot be nested. This topic lists the built-in
pseudovariables.

For example, the following is invalid:

 unspec(substr(A,1,2)) = '00'B;

A pseudovariable can appear only:

• on the left side of an assignment statement
• as the target in a DO-specification and then only if it is one of SUBSTR, REAL, IMAG, or UNSPEC
• in the data list of a GET statement or in the STRING option of a PUT statement
• as the string name in a KEYTO or REPLY option

Table 77. Built-in pseudovariables

Function Description

ENTRYADDR Sets an entry variable with the address of the entry to be invoked

IMAG Assigns the imaginary part of a complex number

ONCHAR Sets the value of a character that caused a conversion condition

ONGSOURCE Sets the value of a graphic string that caused a conversion condition

ONSOURCE Sets the value of a string that caused a conversion condition

REAL Assigns the real part of a complex number

STRING Assigns a string that is the concatenation of all the elements of a string aggregate

SUBSTR Assigns a substring, specified by its length, of a string

SUBTO Assigns a substring, specified by its ending position, of a string

ONUCHAR Sets the current value of the ONUCHAR built-in function.

ONUSOURCE Sets the current value of the ONUSOURCE built-in function.

Pseudovariables

394 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 77. Built-in pseudovariables (continued)

Function Description

ONWCHAR Sets the value of a widechar that caused a conversion condition

ONWSOURCE Sets the value of a widechar string that caused a conversion condition

TYPE Assigns a typed structure or union to storage located by a handle

UNSPEC Assigns a bit string that is the internal representation of a value

Storage control built-in functions
The storage control built-in functions allow you to determine the storage requirements and location of
variables, to assign special values to area and locator variables, to perform conversion between offset and
pointer values, to obtain the number of generations of a controlled variable, and to reference data and
methods of objects and classes.

Table 78 on page 395 lists the storage control built-in functions.

Table 78. Storage control built-in functions

Function Description

ADDR Returns the address of a variable

ADDRDATA Returns the address of the first data byte of a string when applied to a varying
string

ALLOC31 Allocates storage of the specified size in below-the-bar heap

ALLOCATE Allocates storage of the specified size in the heap

ALLOCATION Returns the current number of generations of a controlled variable

ALLOCNEXT Allocates storage of the specified size in an AREA if there is enough space in
the first available chunk

ALLOCSIZE Returns a FIXED BIN(N,0) value giving the amount of storage allocated with a
specific pointer

AUTOMATIC Allocates storage of the specified size in the stack

AVAILABLEAREA Returns the size of the largest single allocation that can be made in an area

BINARYVALUE Converts a pointer, offset, or ordinal to an integer

BITLOCATION Returns the bit offset of a variable within a byte

CHECKSTG Returns a bit(1) value determining whether allocated storage is uncorrupted

CURRENTSIZE Returns the current size of a variable

CURRENTSTORAGE Synonym for CURRENTSIZE

Storage control

Chapter 18. Built-in functions, pseudovariables, and subroutines 395

Table 78. Storage control built-in functions (continued)

Function Description

EMPTY Returns an "empty" area

ENTRYADDR Returns the address of the routine associated with an entry

HANDLE Returns a handle to a typed structure or union

LOCATION Returns the byte offset of a variable within a structure

LOCSTG Returns the number of bytes needed to hold all the allocated storage that is
needed to hold all the values that can be held indirectly by using LOCATES.

LOCVAL Returns the value at the offset that is specified in an area with the type
specified in the LOCATES description

NULL Returns a null pointer value

NULLENTRY Returns a limited entry value with a null value

OFFSET Converts a pointer to an offset

OFFSETADD Adds an integer to an offset

OFFSETDIFF Subtracts two offsets

OFFSETSUBTRACT Subtracts an integer from an offset

OFFSETVALUE Converts an integer to an offset

POINTER Converts an offset to a pointer

POINTERADD Adds an integer to a pointer

POINTERDIFF Subtracts two pointers

POINTERSUBTRACT Subtracts an integer from a pointer

POINTERVALUE Converts an integer or handle to a pointer

SIZE Returns the maximum size of a variable

STORAGE Synonym for SIZE

SYSNULL Returns a system null pointer value

TYPE Returns the typed structure or union located by a handle

Storage control

396 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 78. Storage control built-in functions (continued)

Function Description

UNALLOCATED Returns a bit(1) value indicating if a specified pointer value is the start of
allocated storage

VARGLIST Returns the address of the first optional parameter passed to a procedure

VARGSIZE Returns the number of bytes occupied by a byvalue parameter

String-handling built-in functions
The string-handling built-in functions simplify the processing of BIT, CHARACTER, GRAPHIC, UCHAR, and
WIDECHAR strings.

The string arguments can be represented by an arithmetic expression that will be converted to string
either according to data conversion rules or according to the rules given in the function description.

Note: Some of these functions such as LOWERCASE and UPPERCASE support only CHARACTER data.

Table 79. String-handling built-in functions

Function Description

BIT Converts a value to bit.

BOOL Performs Boolean operation on 2 bit strings.

CENTERLEFT Returns a string with a value centered (to the left) in it.

CENTERRIGHT Returns a string with a value centered (to the right) in it.

CENTRELEFT Synonym for CENTERLEFT.

CENTRERIGHT Synonym for CENTERRIGHT.

CHARACTER Converts a value to a character string.

CHARGRAPHIC Converts a GRAPHIC string to a mixed character string.

COLLAPSE Returns a string that reduces all multiple occurrences of a character to one
with the character's leading and trailing instances trimmed.

COPY Returns a string consisting of n copies of a string.

EDIT Returns a string consisting of a value converted to a given picture
specification.

GRAPHIC Converts a value to graphic.

HIGH Returns a character string consisting of n copies of the highest character in
the collating sequence.

INDEX Finds the location of one string within another.

INDEXR Finds the location of one string within another when the search starts from
the right.

LEFT Returns a string with a value left-justified in it.

LENGTH Returns the current length of a string.

LOW Returns a character string consisting of n copies of the lowest character in the
collating sequence.

String-handling

Chapter 18. Built-in functions, pseudovariables, and subroutines 397

Table 79. String-handling built-in functions (continued)

Function Description

LOWERASCII Returns a UCHAR string with all of its ASCII characters converted to their
corresponding lowercase characters.

LOWERCASE Returns a character string with all the characters from A to Z converted to
their corresponding lowercase characters.

LOWERLATIN1 Returns a UCHAR string with all of its ASCII and Latin-1 supplement
characters converted to their corresponding lowercase characters.

MAXLENGTH Returns the maximum length of a string.

MPSTR Truncates a string at a logical boundary and returns a mixed character string.

PICSPEC Returns a string consisting of a value assumed to have a given picture
specification.

REGEX Searches a string for a match with a regular expression.

REPEAT Returns a string consisting of n+1 copies of a string.

REPLACE Returns a string with one or more occurrences of a substring replaced by
another substring.

REPLACEBY2 Returns a string with some characters "translated" to a pair of characters.

REVERSE Returns a reversed image of a string.

RIGHT Returns a string with a value right-justified in it.

SCRUBOUT Returns a string with all the characters from a second string removed.

SEARCH Searches for the first occurrence of any one of the elements of a string within
another string.

SEARCHR Searches for the first occurrence of any one of the elements of a string within
another string but the search starts from the right.

SQUEEZE Returns a string that reduces all multiple occurrences of a character to one.

SUBSTR Returns a substring, specified by its length, of a string.

SUBTO Returns a substring, specified by its ending position, of a string.

TALLY Returns the number of times one string occurs in another.

TRANSLATE Translates a string based on two translation strings.

TRIM Trims specified characters from the left and right sides of a string.

UHIGH Returns a UCHAR string of length x with each UTF-8 data item having the
highest UCHAR value ('F48FBFBF'UX).

ULENGTH Returns the number of UTF characters in a CHAR or WIDECHAR string.

ULENGTH8 Returns the length of a CHAR string needed if the UTF characters in a CHAR or
WIDECHAR string were converted to UTF-8.

ULENGTH16 Returns the length of a WIDECHAR string needed if the UTF characters in a
CHAR or WIDECHAR string were converted to UTF-16.

ULOW Returns a UCHAR string of length x with each UTF-8 data item having the
lowest UCHAR value ('00'UX).

UPOS Returns the position of the nth UTF character in a CHAR or WIDECHAR string.

String-handling

398 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 79. String-handling built-in functions (continued)

Function Description

UPPERASCII Returns a UCHAR string with all of its ASCII characters converted to their
corresponding uppercase characters.

UPPERCASE Returns a character string with all the characters from a to z converted to their
corresponding uppercase character.

UPPERLATIN1 Returns a UCHAR string with all of its ASCII and Latin-1 supplement
characters converted to their corresponding uppercase characters.

USUBSTR Returns a substring of a UTF string.

USUPPLEMENTARY Returns the index of the first UTF surrogate pair in a CHAR or WIDECHAR
string.

UTF8 Returns a CHAR value that is the UTF-8 equivalent of x.

UTF8STG Returns the number of bytes that must be present if the input character is the
start of a valid UTF-8 character.

UTF8TOCHAR Returns a CHAR value holding x converted from UTF-8.

UTF8TOWCHAR Returns a WCHAR value holding x converted from UTF-8 to UTF-16.

UVALID Indicates if a CHAR, UCHAR or WIDECHAR string contains valid UTF data.

UWIDTH Returns the width of the nth UTF character in a CHAR or WIDECHAR string.

VERIFY Searches for first nonoccurrence of any one of the elements of a string within
another string.

VERIFYR Searches for first nonoccurrence of any one of the elements of a string within
another string but the search starts from the right.

WHIGH Returns a WIDECHAR string consisting of n copies of the highest WIDECHAR
('FFFF'WX).

WIDECHAR Converts a value to a WIDECHAR string.

WLOW Returns a WIDECHAR string consisting of n copies of the lowest WIDECHAR
('0000'WX).

Subroutines
Built-in subroutines perform miscellaneous operations that do not necessarily return a result as built-in
functions do.

Table 80. Built-in subroutines

Function Description

LOCNEWSPACE Allocates space for the variable type described by the LOCATES attribute.

LOCNEWVALUE Allocates space for the variable type described by the LOCATES attribute that is
associated with the offset and assigns value to that area.

PLIASCII Converts from EBCDIC to ASCII.

PLIATTN Gives you explicit control over where the compiler inserts attention breakpoints.
Each invocation of this subroutine causes the ATTENTION condition to be raised at
that point in the code.

PLICANC Cancels the automatic restart facility (z/OS only).

Subroutines

Chapter 18. Built-in functions, pseudovariables, and subroutines 399

Table 80. Built-in subroutines (continued)

Function Description

PLICKPT Takes a checkpoint for later restart (z/OS only).

PLIDELETE Frees the storage associated with a handle.

PLIDUMP Dumps information about currently open files, the calling path to the current
location, and so on.

PLIEBCDIC Converts from ASCII to EBCDIC.

PLIFILL Fills n bytes at an address with a specified byte value.

PLIFREE Frees the storage associated with a pointer to heap storage.

PLIMOVE Moves n bytes from one address to another.

PLIOVER Moves n bytes from one address to another, compensating for possible overlap of
the source and target.

PLIPARSE Parses a character string into substrings.

PLIREST Restarts program execution (z/OS only).

PLIRETC Sets the PL/I return code value.

PLISAXA Allows you to perform SAX-style parsing of an XML document residing in a buffer in
your program.

PLISAXB Allows you to perform SAX-style parsing of an XML document residing in a file.

PLISAXC Allows you to perform SAX-style parsing of an XML document residing in a buffer in
your program.

PLISAXD Allows you to perform SAX-style parsing with XML validation of an XML document
residing in a buffer in your program.

PLISRTA Allows the use of DFSORT to sort an input file to produce a sorted output file.

PLISRTB Allows the use of DFSORT to sort input records provided by an E15 PL/I exit
procedure to produce a sorted output file.

PLISRTC Allows the use of DFSORT to sort an input file to produce sorted records that are
processed by an E35 PL/I exit procedure.

PLISRTD Allows the use of DFSORT to sort input records provided by an E15 PL/I exit
procedure to produce sorted records that are processed by an E35 PL/I exit
procedure.

PLISTCK Generates the corresponding store clock hardware instruction and returns the
condition code set by the instruction (z/OS only).

PLISTCKE Generates the corresponding store clock hardware instruction and returns the
condition code set by the instruction (z/OS only).

PLISTCKF Generates the corresponding store clock hardware instruction and returns the
condition code set by the instruction (z/OS only).

PLISTCKLOCAL Generates the corresponding store clock hardware instruction and adjusts the
STCK value to give the local time (z/OS only).

PLISTCKELOCAL Generates the corresponding store clock hardware instruction and adjusts the
STCKE value to give the local time (z/OS only).

PLISTCKP Generates the corresponding Perform Timing Facility Function hardware instruction
(z/OS only).

Subroutines

400 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 80. Built-in subroutines (continued)

Function Description

PLISTCKPLOCAL Generates the corresponding Perform Timing Facility Function hardware instruction
and adjusts the PTFF value to give the local time (z/OS only).

PLISTCKPUTC Generates the corresponding Perform Timing Facility Function hardware instruction
and adjusts the PTFF value to give the UTC time (z/OS only).

PLISTCKUTC Generates the corresponding store clock hardware instruction and adjusts the
STCK value to give the UTC time (z/OS only).

PLISTCKEUTC Generates the corresponding store clock hardware instruction and adjusts the
STCKE value to give the UTC time (z/OS only).

PLITRANxy Translates an x-byte buffer to a y-byte buffer where x and y may be any
combination of 1 and 2.

Descriptions of individual built-in functions, pseudovariables, and
subroutines

This section lists the built-in functions, subroutines, and pseudovariables in alphabetic order and provides
detailed descriptions for each function, subroutine, and pseudovariable.

In general, each description has the following format:

• A heading showing the syntax of the reference
• A description of the value returned or, for a pseudovariable, the value set
• A description of any arguments
• Any other qualifications on using the function or pseudovariable

The abbreviations for built-in functions have separate declarations (explicit or contextual) and name
scopes.

The following example is not a multiple declaration:

 dcl (Dim, Dimension) builtin;

The following example is valid even though Bin is an abbreviation of the Binary built-in function.

 dcl Binary file;
 X = Bin (var, 6,3);

Note: Some arguments or return values are of type size_t. If the LP(32) compiler option is in effect, size_t
is FIXED BIN(31); if the LP(64) compiler option is in effect, size_t is FIXED BIN(63).

ABS
ABS returns the absolute value of x. It is the positive value of x.

ABS( x)

x
Expression.

The mode of the result is REAL. The result has the base, scale, and precision of x, except when x is
COMPLEX FIXED(p,q). In the latter case, the result is REAL FIXED(min(n,p+1),q) where n is N for DECIMAL
and M for BINARY.

ABS

Chapter 18. Built-in functions, pseudovariables, and subroutines 401

ACOS
ACOS returns a real floating-point value that is an approximation of the inverse (arc) cosine in radians of x.

ACOS( x)

x
Real expression, where ABS(x) <= 1.

The result is in the range:
 0 ≤ ACOS(x) ≤ π

and has the base and precision of x.

ADD
ADD returns the sum of x and y with a precision specified by p and q. If both operands are FIXED and at
least one is FIXED BIN, then the base, precision, and scale are determined by the PRECTYPE compiler
option. Otherwise, the base, precision, and scale are determined by the rules for expression evaluation.
The mode is REAL if both operands are REAL; otherwise, it is COMPLEX.

ADD( x , y , p
, q

)

x and y
Expressions.

p
Restricted expression. It specifies the number of digits to be maintained throughout the operation.

q
Restricted expression specifying the scaling factor of the result. For a fixed-point result, if q is omitted,
a scaling factor of zero is the default. For a floating-point result, q must be omitted.

ADD can be used for subtraction by prefixing a minus sign to the operand to be subtracted.

ADDR
ADDR returns the pointer value that identifies the generation of x.

ADDR( x)

x
Reference. It refers to a variable of any data type, data organization, alignment, and storage class
except:

• A subscripted reference to a variable that is an unaligned fixed-length bit string
• A reference to a DEFINED or BASED variable or simple parameter, which is an unaligned fixed-
length bit string

• A minor structure or union whose first base element is an unaligned fixed-length bit string (except
where it is also the first element of the containing major structure or union)

• A major structure or union that has the DEFINED attribute or is a parameter, and that has an
unaligned fixed-length bit string as its first element

• A reference that is not to connected storage

ACOS

402 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

If x is a reference to:

• An aggregate parameter, it must have the CONNECTED attribute
• An aggregate, the returned value identifies the first element
• A component or cross section of an aggregate, the returned value takes into account subscripting

and structure or union qualification
• A VARYING string, the returned value identifies the 2-byte prefix
• A VARYING4 string, the returned value identifies the 4-byte prefix
• An area, the returned value identifies the control information
• A controlled variable that is not allocated in the current program, the null pointer value is returned
• A based variable, the result is the value of the pointer explicitly qualifying x (if it appears), or

associated with x in its declaration (if it exists), or a null pointer
• A parameter, and a dummy argument has been created, the returned value identifies the dummy

argument

ADDRDATA
ADDRDATA returns the pointer value that identifies the generation of x.

ADDRDATA( x)

x
Reference.

ADDRDATA behaves the same as the ADDR built-in function except in the following instance:

• When applied to a varying string, ADDRDATA returns the address of the first data byte of the string
(rather than of the length field).

• When applied to an OFFSET reference with the LOCATES attribute and implicit AREA qualification:

– If the OFFSET reference is not null, ADDRDATA returns the address of the located data.
– If the OFFSET reference is null, ADDRDATA returns SYSNULL.

ALL
ALL returns a bit string in which each bit is 1 if the corresponding bit in each element of x exists and is 1.
The length of the result is equal to that of the longest element.

ALL( x)

x
Computational array expression. If x is not a bit string array, then x is converted to a bit string array.

ALLCOMPARE
ALLCOMPARE(x, y, z) returns a BIT(1) value that indicates the result of comparing all the elements of two
structures.

ALLCOMPARE ( x ,  y
, z

)

x
Structure reference.

ADDRDATA

Chapter 18. Built-in functions, pseudovariables, and subroutines 403

y
Structure reference.

z
A CHAR(2) constant. When uppercased, the constant must have one of these values: EQ, LE, LT, GT,
GE, or NE. If you do not specify z, EQ is the default value.
EQ

Equal to
LE

Less than or equal to
LT

Less than
GT

Greater than
GE

Greater than or equal to
NE

Not equal to

x and y must be similar structure references.

The corresponding elements of x and y must be comparable.

For example, ALLCOMPARE(x, y, 'lt') returns '1'B if every leaf element of x is less than the corresponding
leaf element of y.

ALLOC31
ALLOC31 allocates storage of size n in heap storage below the bar and returns the pointer to the allocated
storage.

ALLOC31 ( n)

n

Expression. Nonnegative value that represents the storage size to be allocated. If necessary, n is
converted to type size_t 1.

If the requested amount of storage is not available, the STORAGE condition is raised.

ALLOCATE
ALLOCATE allocates storage of size n in heap storage and returns the pointer to the allocated storage. You
can also use ALLOCATE to allocate the specified size in the specified area.

ALLOCATE ( n ,
x

)

Abbreviation: ALLOC

n
Expression. Nonnegative value that represents the storage size to be allocated. If necessary, n is
converted to type size_t 1.

If the requested amount of storage is not available, the STORAGE condition is raised.

x
AREA reference. When you specify ALLOCATE(n, x), the specified number of bytes n is allocated within
that area. The number is rounded up to a multiple of 8.

ALLOC31

404 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

If there is insufficient space within the specified area, the AREA condition is raised.

ALLOCATION
ALLOCATION returns a FIXED BINARY(31,0) specifying the number of generations that can be accessed in
the current program for x.

ALLOCATION( x)

Abbreviation: ALLOCN

x
Level-1 unsubscripted controlled variable.

If x is not allocated in the current program, the result is zero.

ALLOCNEXT
ALLOCNEXT allocates storage of the specified size in an AREA if there is enough space in the first available
chunk and returns a pointer to the allocated storage (or if there is not enough space, it returns sysnull).

ALLOCNEXT ( n, x)

n
Expression. A nonnegative value that represents the storage size to be allocated. It is rounded up to
the nearest multiple of 8. If necessary, n is converted to a size_t value.

x
AREA reference.

If the first available chunk in x is large enough, the storage is allocated from x and a pointer to the
allocated storage is returned.

If the first available chunk is not large enough, sysnull is returned. Unlike the ALLOCATE built-in
function, neither the STORAGE nor the AREA condition is raised.

ALLOCNEXT(n,x) generates much shorter and faster code than ALLOCATE(n,x), but the user must check
that a non-null pointer is returned. It is best suited when repeated allocations are made from an AREA
without any FREEs or when all the FREEs from an AREA are in reverse order from all the ALLOCATEs.

ALLOCSIZE
ALLOCSIZE returns a FIXED BIN(31,0) value giving the amount of storage allocated with a specified
pointer. To use this built-in function, you must also specify the CHECK(STORAGE) compile-time option.

ALLOCSIZE( p)

p
Pointer expression.

ALLOCSIZE returns 0 if the pointer does not point to the start of a piece of allocated storage.

Note that the pointer passed to ALLOCSIZE is "rounded down" to the nearest doubleword and that
rounded value is compared against all allocated addresses when similarly rounded down.

ALLOCATION

Chapter 18. Built-in functions, pseudovariables, and subroutines 405

ANY
ANY returns a bit string in which each bit is 1 if the corresponding bit in any element of x exists and is 1.
The length of the result is equal to that of the longest element.

ANY( x)

x
Computational array expression. If x is not a bit string array, then x is converted to a bit string array.

ASIN
ASIN returns a real floating-point value that is an approximation of the inverse (arc) sine in radians of x.

ASIN( x)

x
Real expression, where ABS(x) <= 1.

The result is in the range:
 -π/2 ≤ ASIN(x) ≤ π/2

The result has the base and precision of x.

ATAN
ATAN returns a floating-point value that is an approximation of the inverse (arc) tangent in radians of x or
of a ratio x/y.

ATAN( x
, y

)

x and y
Expressions.

If x alone is specified, the result has the base and precision of x, and is in the range:
 -π/2 < ATAN(x) < π/2

If x and y are specified, each must be real. An error exists if x and y are both zero. The result for all
other values of x and y has the precision of the longer argument, a base determined by the rules for
expressions, and a value given by:

 ATAN(x/y) for y>0

 π/2 for y=0 and x>0

 -π/2 for y=0 and x<0

 π + ATAN(x/y) for y<0 and x>=0

 -π + ATAN(x/y) for y<0 and x<0

ANY

406 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

ATAND
ATAND returns a real floating-point value that is an approximation of the inverse (arc) tangent in degrees
of x or of a ratio x/y.

ATAND( x
, y

)

x and y
Expressions.

If x alone is specified it must be real. The result has the base and precision of x, and is in the range:

 -90 < ATAND(x) < 90

If x and y are specified, each must be real. The value of the result is given by:
 (180/π) * ATAN(x,y)

For argument requirements and attributes of the result, see “ATAN” on page 406.

ATANH
ATANH returns a floating-point value that has the base, mode, and precision of x, and is an approximation
of the inverse (arc) hyperbolic tangent of x.

ATANH( x)

x
Expression. ABS(x)<1.

The result has a value given by:

 LOG((1 + x)/(1 - x))/2

AUTOMATIC
AUTOMATIC allocates storage of size n automatic storage and returns the pointer to the allocated storage.

AUTOMATIC( n)

Abbreviation: AUTO

n
Expression. n must be nonnegative. If necessary, n is converted to type size_t 1.

The storage acquired cannot be explicitly freed; the storage is automatically freed when the block
terminates.

AVAILABLEAREA
AVAILABLEAREA returns a size_t 1 value that indicates the size of the largest single allocation that can be
obtained from the area x.

AVAILABLEAREA( x)

ATAND

Chapter 18. Built-in functions, pseudovariables, and subroutines 407

x
A reference with the AREA attribute

Example

 dcl Uarea area(1000);
 dcl Pz ptr;
 dcl C99z char(99) varyingz based(Pz);
 dcl (SizeBefore, SizeAfter) fixed bin(31);
 SizeBefore = availablearea(Uarea); /* returns 1000 */
 Alloc C99z in(Uarea);
 SizeAfter = availablearea(Uarea); /* returns 896 */
 dcl C9 char(896) based(Pz);
 Alloc C9 in(Uarea);

BASE64DECODE
BASE64DECODE decodes a source buffer from base 64 that is encoded in the character set specified by
the ASCII or EBCDIC suboption of the DEFAULT compiler option. It returns a size_t value that indicates the
number of bytes that are written into the target buffer.

BASE64DECODE( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

Note: Some arguments or return values are of type size_t. If the LP(32) compiler option is in effect, size_t
is FIXED BIN(31); if the LP(64) compiler option is in effect, size_t is FIXED BIN(63).

The returned value depends on the address of the target buffer or the size of the target buffer:

• If the address of the target buffer p is zero, the number of bytes that would be written is returned.
• If the target buffer is not large enough, a value of -1 is returned.
• If the target buffer is large enough, the number of bytes that are written to the buffer is returned.

This built-in function is the reverse of the built-in function BASE64ENCODE and expects that the base
64 source was encoded by using the same convention that the BASE64ENCODE built-in function uses.
See “Convention for encoding a source buffer into base 64 as EBCDIC” on page 410 for details. If other
conventions were used, the results are unpredictable.

BASE64DECODE8
BASE64DECODE8 decodes the source buffer from base 64 that is encoded as UTF-8. It returns a size_t 1
value that indicates the number of bytes that are written into the target buffer.

BASE64DECODE8( p , m, q, n)

p
Specifies the address of the target buffer.

BASE64DECODE

408 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes that would be written is returned. If the
target buffer is not large enough, a value of -1 is returned. If the target buffer is large enough, the number
of bytes that is written to the buffer is returned.

This function is the reverse of the function BASE64ENCODE8 and expects that the base 64 source was
encoded by using the same convention that the BASE64ENCODE8 function uses. See “Convention for
encoding a source buffer into base 64 as UTF-8” on page 411 for details. If other conventions were used,
the results are unpredictable.

BASE64DECODE16
BASE64DECODE16 decodes the source buffer from base 64 that is encoded as UTF-16. It returns a size_t
1 value that indicates the number of bytes that are written into the target buffer.

BASE64DECODE16( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes that would be written is returned. If the
target buffer is not large enough, a value of -1 is returned. If the target buffer is large enough, the number
of bytes that is written to the buffer is returned.

This function is the reverse of the function BASE64ENCODE16 and expects that the base 64 source was
encoded by using the same convention that the BASE64ENCODE16 function uses. See “Convention for
encoding a source buffer into base 64 as UTF-16” on page 412 for details. If other conventions were
used, the results are unpredictable.

BASE64ENCODE
BASE64ENCODE encodes a source buffer into a buffer holding its base 64 value in the character set
specified by the ASCII or EBCDIC suboption of the DEFAULT compiler option. It returns a size_t value that
indicates the number of bytes that are written into the target buffer.

BASE64ENCODE( p , m, q, n)

p
Specifies the address of the target buffer.

BASE64DECODE16

Chapter 18. Built-in functions, pseudovariables, and subroutines 409

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

The returned value depends on the address of the target buffer or the size of the target buffer:

• If the address of the target buffer p is zero, the number of bytes that would be written is returned.
• If the target buffer is not large enough, a value of -1 is returned.
• If the target buffer is large enough, the number of bytes that are written to the buffer is returned.

Note: Some arguments or return values are of type size_t. If the LP(32) compiler option is in effect, size_t
is FIXED BIN(31); if the LP(64) compiler option is in effect, size_t is FIXED BIN(63).

Convention for encoding a source buffer into base 64 as EBCDIC
This encoding uses the following set of base 64 "digits":

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Each 6 bits of the source is converted to the corresponding EBCDIC "digit" in this base 64 string. If the
source length in bits is not a multiple of 6, the result concludes with one or two '='e symbols as needed.

Because the source buffer is treated as a bit string, the result in the target buffer varies with the code
page of the source.

The following table shows the example of the sources and the corresponding results when converting
source buffer into base 64 that is encoded as EBCDIC by using BASE64ENCODE:

Table 81. Example of encoding a source buffer into base 64 as EBCDIC

Source length Source value Result length Result value

6 'please'A 8 cGxlYXNl

5 'pleas'A 8 cGxlYXM=

4 'plea'A 8 cGxlYQ==

BASE64ENCODE8
BASE64ENCODE8 encodes the source buffer into base 64 that is encoded as UTF-8. It returns a size_t 1
value that indicates the number of bytes that are written into the target buffer.

BASE64ENCODE8( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

BASE64ENCODE8

410 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes that would be written is returned. If the
target buffer is not large enough, a value of -1 is returned. If the target buffer is large enough, the number
of bytes that is written to the buffer is returned.

Convention for encoding a source buffer into base 64 as UTF-8
This encoding uses the following set of base 64 "digits":

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Each 6 bits of the source is converted to the corresponding UTF-8 "digit" in this base 64 string. If the
source length in bits is not a multiple of 6, the result concludes with one or two = symbols as needed, and
the = symbol is UTF-8.

The source buffer is treated as a bit string, so the result in the target buffer varies with the code page of
the source. In particular, when the source is in EBCDIC, the result differs when the source is in ASCII.

The following table shows the example of the sources and the corresponding results when converting
source buffer into base 64 that is encoded as UTF-8 by using BASE64ENCODE8:

Table 82. Example of encoding a source buffer into base 64 as UTF-8

Source length Source value Result length Result value

6 'please'A 8 UTF8('cGxlYXNl')

5 'pleas'A 8 UTF8('cGxlYXM=')

4 'plea'A 8 UTF8('cGxlYQ==')

6 'please'E 8 UTF8('l5OFgaKF')

5 'pleas'E 8 UTF8('l5OFgaI=')

4 'plea'E 8 UTF8('l5OFgQ==)

BASE64ENCODE16
BASE64ENCODE16 encodes the source buffer into base 64 that is encoded as UTF-16. It returns a size_t 1
value that indicates the number of bytes that are written into the target buffer.

BASE64ENCODE16( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes that would be written is returned. If the
target buffer is not large enough, a value of -1 is returned. If the target buffer is large enough, the number
of bytes that is written to the buffer is returned.

BASE64ENCODE16

Chapter 18. Built-in functions, pseudovariables, and subroutines 411

Convention for encoding a source buffer into base 64 as UTF-16
This encoding uses the following set of base 64 "digits":

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Each 6 bits of the source is converted to the corresponding UTF-16 "digit" in the base 64 string. If the
source length in bits is not a multiple of 6, the result concludes with one or two = symbols as needed, and
the = symbol is UTF-16.

The source buffer is treated as a bit string, so the result in the target buffer varies with the code page of
the source. In particular, when the source is in EBCDIC, the result differs when the source is in ASCII.

The following table shows examples of the sources and the corresponding results when converting the
source buffer into base 64 that is encoded as UTF-16 by using BASE64ENCODE16.

Table 83. Example of encoding a source buffer into base 64 as UTF-16

Source
length Source value Result length Result value

6 'please'A 16 WCHAR('cGxlYXNl')

5 'pleas'A 16 WCHAR('cGxlYXM=')

4 'plea'A 16 WCHAR('cGxlYQ==')

6 'please'E 16 WCHAR('l5OFgaKF')

5 'pleas'E 16 WCHAR('l5OFgaI=')

4 'plea'E 16 WCHAR('l5OFgQ==')

BETWEEN
BETWEEN returns a bit(1) value that indicates whether x is in the closed interval as defined by a and b.

BETWEEN( x , a, b)

x, a, and b
Expressions. They must be either all ORDINAL with the same type or all computational.

BETWEEN(x,a,b) is equivalent to the test (a <= x) & (x <= b). Thus, if any of the arguments are numeric,
they must all be REAL.

In BETWEEN(x,a,b), a <= b must be true, and if not, the program is in error and its behavior is undefined.

BETWEENEXCLUSIVE
BETWEENEXCLUSIVE returns a bit(1) value that indicates whether the first argument x is in the open
interval as defined by the second argument a and the third argument b.

BETWEENEXCLUSIVE( x , a, b)

x, a, b
Expressions. They must be either all ORDINAL with the same type or all computational.

BETWEENEXCLUSIVE(x,a,b) is equivalent to the test (a < x) & (x < b). Therefore, if any of the arguments
are numeric, they must be REAL.

In BETWEENEXCLUSIVE(x,a,b) , a < b must be true, and if not, the program is in error and its behavior is
undefined.

BETWEEN

412 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

BETWEENLEFTEXCLUSIVE
BETWEENLEFTEXCLUSIVE returns a bit(1) value that indicates whether the first argument x is in the
left-open interval as defined by the second argument a and the third argument b.

BETWEENLEFTEXCLUSIVE( x , a, b)

x, a, b
Expressions. They must be either all ORDINAL with the same type or all computational.

BETWEENLEFTEXCLUSIVE(x,a,b) is equivalent to the test (a < x) & (x <= b). Therefore, if any of the
arguments are numeric, they must be REAL.

In BETWEENLEFTEXCLUSIVE(x,a,b) , a < b must be true, and if not, the program is in error and its
behavior is undefined.

BETWEENRIGHTEXCLUSIVE
The BETWEENRIGHTEXCLUSIVE built-in function returns a bit(1) value that indicates whether the first
argument x is in the right-open interval as defined by the second argument a and the third argument b.

BETWEENRIGHTEXCLUSIVE( x , a, b)

x, a, b
Expressions. They must be either all ORDINAL with the same type or all computational.

BETWEENRIGHTEXCLUSIVE(x,a,b) is equivalent to the test (a <= x) & (x < b). Therefore, if any of the
arguments are numeric, they must be REAL.

In BETWEENRIGHTEXCLUSIVE(x,a,b) , a < b must be true, and if not, the program is in error and its
behavior is undefined.

BINARY
BINARY returns the binary value of x, with a precision specified by p and q. The result has the mode and
scale of x.

BINARY( x
,  p

, q

)

Abbreviation: BIN

x
Expression.

p
Restricted expression. Specifies the number of digits to be maintained throughout the operation; it
must not exceed the implementation limit.

q
Restricted expression. It specifies the scaling factor of the result. For a fixed-point result, if p is given,
and q is omitted, a scaling factor of zero is the default. If q is specified and the result is FIXED BIN,
then q must be between 0 and p. For a floating-point result, q must be omitted.

If both p and q are omitted, the precision of the result is determined from the rules for base conversion.

BETWEENLEFTEXCLUSIVE

Chapter 18. Built-in functions, pseudovariables, and subroutines 413

BINARYVALUE
BINARYVALUE converts x, which can be a pointer, offset, or ordinal, to an integer. The function returns a
FIXED BIN value that is the converted value.

If x is a pointer, the return value has type size_t 1. If x is an ordinal, the return value has type FIXED
BIN(31). If x is an offset, the return value has type FIXED BIN(31) under OFFSETSIZE(4) and FIXED
BIN(63) under OFFSETSIZE(8).

BINARYVALUE( x)

Abbreviation: BINVALUE

x
Expression

BINSEARCH
BINSEARCH performs a binary search of an array for a specified key value by using a simple compare and
returns a size_t value.

BINSEARCH( x ,y
,  n

, m

)

x
An expression that specifies the target array that would be searched within. x must be a one-
dimensional array of scalars and the elements of x must be in ascending order. If x is an array of
NONVARYING BIT, it must be aligned.

y
An expression that specifies the key value to be searched for.

n
An expression that specifies the index of the first array element to be examined. It defaults to
LBOUND(x).

m
An expression that specifies the number of to-be-examined array elements. The counting starts with
the nth and defaults to HBOUND(x) – n + 1.

The elements of the array x and the key value must satisfy one of the following:

• Both must be computational and neither are COMPLEX
• Both must be POINTERs
• Both must be HANDLEs to the same structure type
• Both must be ORDINALs of the same type

The returned value is the relative index of the key value in this array. If the key value y is not found in the
array, the returned size_t value is zero.

The relative index is the index if the array has a lower bound of 1. Therefore, the true index would be
calculated as: the returned value + LBOUND(x) – 1. For example:

• If the array x has a lower bound of 0 and upper bound of 11, then the returned value will range from 0
to 12 inclusive. If the returned value is non-zero, then the true index of the found value is the returned
value minus 1.

BINARYVALUE

414 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• If the array x has a lower bound of -12 and an upper bound of 12, then the returned value will range
from 0 to 25 inclusive. If the returned value is non-zero, the true index of the found value is the returned
value minus 13.

BINSEARCHX
BINSEARCHX performs a binary search of an array for a specified key value by using a specified compare
function and returns a size_t value.

BINSEARCHX( x ,p,f
,  n

, m

)

x
An expression that specifies the target array that would be searched within. x must be a one-
dimensional array and the elements of x must be in ascending order. If x is an array of NONVARYING
BIT, it must be aligned.

p
An expression that specifies the address of the key value to be searched for.

f
An expression that specifies the function that will be invoked to perform all the required comparisons.

n
An expression that specifies the index of the first array element to be examined. It defaults to
LBOUND(x).

m
An expression that specifies the number of to-be-examined array elements. The counting starts with
the nth and defaults to HBOUND(x) – n + 1.

The function f must have the OPTLINK linkage and it is passed 2 POINTER BYVALUE arguments:

• The address of an array element.
• The address of the key value to be searched for (the value of p).

The function f must have the attributes RETURNS(BYVALUE FIXED BINARY(31)), and it must return one
of the values -1, 0 or +1:

• If the value of the array element is less than the value of the key element, then the returned value must
be -1.

• If the value of the array element is equal to the value of the key element, then the returned value must
be 0.

• If the value of the array element is greater than the value of the key element, then the returned value
must be +1.

The value returned by the BINSEARCHX built-in function itself is the relative index of the key value in this
array. If the key value y is not found in the array, the returned size_t value is zero.

The relative index is the index if the array has a lower bound of 1. Therefore, the true index would be
calculated as: the returned value + LBOUND(x) – 1. For example:

• If the array x has a lower bound of 0 and upper bound of 11, then the returned value will range from 0
to 12 inclusive. If the returned value is non-zero, then the true index of the found value is the returned
value minus 1.

• If the array x has a lower bound of -12 and an upper bound of 12, then the returned value will range
from 0 to 25 inclusive. If the returned value is non-zero, the true index of the found value is the returned
value minus 13.

BINSEARCHX

Chapter 18. Built-in functions, pseudovariables, and subroutines 415

BIT
BIT returns a result that is the bit value of x, and has a length specified by y.

BIT( x
, y

)

x
Expression.

y
Expression. If necessary, y is converted to a real fixed-point binary value. If y is omitted, the length
is determined by the rules for type conversion. If y = 0, the result is the null bit string. y must not be
negative.

BITLOCATION
BITLOCATION returns a FIXED BINARY(31,0) result that is the location of bit x within the byte that
contains x. The value returned is always between 0 and 7 (0 ≤ value ≤ 7).

BITLOCATION( x)

Abbreviation: BITLOC

x
Reference of type unaligned bit. If x does not have type unaligned bit, a value of 0 is returned.

x must not be subscripted.

BITLOCATION can be used in restricted expressions, with the following limitations. If BITLOC(x) is used to
set:

• The extent of a variable y that must have constant extents, or
• The value of a variable y that must have a constant value,

then x must be declared before y.

For examples, see “LOCATION” on page 474.

BOOL
BOOL returns a bit string that is the result of the Boolean operation z, on x and y. The length of the result
is equal to that of the longer operand, x or y.

BOOL( x , y , z)

x and y
Expressions. x and y are converted to bit strings, if necessary. If x and y are of different lengths, the
shorter is padded on the right with zeros to match the longer.

z
Expression. z is converted to a bit string of length 4, if necessary. When a bit from x is matched with a
bit from y, the corresponding bit of the result is specified by a selected bit of z, as follows:

x y Result

0 0 bit 1 of z

0 1 bit 2 of z

BIT

416 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

x y Result

1 0 bit 3 of z

1 1 bit 4 of z

BYTE
BYTE is a synonym for CHARVAL.
Related information
“CHARVAL” on page 422
CHARVAL returns the CHARACTER(1) value corresponding to an integer.

BYTELENGTH
BYTELENGTH returns a FIXED BINARY(31) value that is the number of bytes used by a UCHAR string.

BYTELENGTH( x)

x
Expression. x must have UCHAR type.

If x has UCHAR VARYING or UCHAR VARYING4 type, the value returned by BYTELENGTH(x) does not
count the number of prefix bytes. If x has UCHAR VARYINGZ type, the value returned by BYTELENGTH(x)
does not count the terminating null byte.

The value returned by BYTELENGTH(x) is always greater than the value returned by LENGTH(x), but no
greater than four times the value returned by LENGTH(x).

Example 1:

Given DCL X UCHAR(1), then LENGTH(X) = 1 and STG(X) = 4, but after:

 X = ‘A’;
 BYTELENGTH(X) = 1 (since X holds ‘41’ux)
 X = ‘Ä’;
 BYTELENGTH(X) = 2 (since X holds ‘C3_84’ux)
 X = ‘€’;
 BYTELENGTH(x) = 3 (since X holds ‘E2_82_AC’ux)

Example 2:

Given DCL X UCHAR(6), then LENGTH(X) = 6 and STG(X) = 24, but after:

 X = ‘Straße’ ;
 BYTELENGTH(X) = 7 (since X holds ’53_74_72_C39F_61_65’ux)

Example 3:

Given DCL X UCHAR(8) VARYING, then STG(X) = 34, but after:

 X = ‘Straße’ ;
 LENGTH(X) = 6
 BYTELENGTH(X) = 7 (since X holds ’53_74_72_C39F_61_65’ux)
 CSTG(X) = 9

BYTE

Chapter 18. Built-in functions, pseudovariables, and subroutines 417

CDS
CDS returns a FIXED BINARY(31) value that indicates if the old and current values in a compare double
and swap were equal.

CDS( p,q,x)

p
Address of the old FIXED BINARY(63) value.

q
Address of the current FIXED BINARY(63) value.

x
The new FIXED BINARY(63) value.

CDS compares the "current" and "old" values. If they are equal, the "new" value is copied over the
"current", and a value of 0 is returned. If they are unequal, the "current" value is copied over the "old", and
a value of 1 is returned.

On z/OS, the CDS built-in function implements the CDS instruction. For a detailed description of this
function, read the appendices in the Principles of Operations manual.

On Intel, the CDS built-in function uses the Intel cmpxchg8 instruction in the same manner that the CS
built-in function uses the cmpxchg4 instruction.

CEIL
CEIL determines the smallest integer value greater than or equal to x, and assigns this value to the result.

CEIL( x)

x
Real expression.

The result has the mode, base, scale, and precision of x, except when x is fixed-point with precision (p,q).
The precision of the result is then given by:

 (min(N,max(p-q+1,1)),0)

where N is the maximum number of digits allowed.

If the expression x has the form (y/z) where y is an unscaled FIXED BIN expression and z is an unscaled
FIXED expression, then CEIL(x) will be evaluated by computing the integral quotient and then rounding it
up by one if the following conditions are met:

• The quotient is non negative.
• The remainder of (y/z) is not zero.

If the expression x has the attributes FIXED BIN(p,q) but does not have the form above, then q must be
positive.

CENTERLEFT
CENTERLEFT returns a string that is the result of inserting string x in the center (or one position to the left
of center) of a string with length y and padded on the left and on the right with the character z as needed.

Specifying a value for z is optional.

CDS

418 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

CENTERLEFT

CENTRELEFT

( x , y
, z

)

Abbreviation: CENTER

x
Expression that is converted to character.

y
Expression that is converted to FIXED BINARY(31,0).

z
Optional expression. If specified, z must be CHARACTER(1) NONVARYING type.

Example

 dcl Source char value('Feel the Power');
 dcl Target20 char(20);
 dcl Target21 char(21);

 Target20 = center (Source, length(Target20), '*');
 /* '***Feel the Power***' - exactly centered */

 Target21 = center (Source, length(Target21), '*');
 /* '***Feel the Power****' - leaning left! */

If z is omitted, a blank is used as the padding character.

CENTERRIGHT
CENTERRIGHT returns a string that is the result of inserting string x in the center (or one position to the
right of center) of a string with length y and padded on the left and on the right with the character z as
needed.

Specifying a value for z is optional.

CENTERRIGHT

CENTRERIGHT

( x , y
, z

)

x
Expression that is converted to character.

y
Expression that is converted to FIXED BINARY(31,0).

z
Optional expression. If specified, z must be CHARACTER(1) NONVARYING type.

Example

 dcl Source char value('Feel the Power');
 dcl Target20 char(20);
 dcl Target21 char(21);

 Target20 = centerright (Source, length(Target20), '*');
 /* '***Feel the Power***' - exactly centered */

 Target21 = centerright (Source, length(Target21), '*');
 /* '****Feel the Power***' - leaning right! */

If z is omitted, a blank is used as the padding character.

CENTERRIGHT

Chapter 18. Built-in functions, pseudovariables, and subroutines 419

CENTRELEFT
CENTRELEFT is a synonym for CENTERLEFT.

Abbreviation: CENTRE

Related information
“CENTERLEFT” on page 418
CENTERLEFT returns a string that is the result of inserting string x in the center (or one position to the left
of center) of a string with length y and padded on the left and on the right with the character z as needed.

CENTRERIGHT
CENTRERIGHT is a synonym for CENTERRIGHT.
Related information
“CENTERRIGHT” on page 419
CENTERRIGHT returns a string that is the result of inserting string x in the center (or one position to the
right of center) of a string with length y and padded on the left and on the right with the character z as
needed.

CHARACTER
CHARACTER returns the character value of x, with a length specified by y. CHARACTER also supports
conversion from graphic to character type.

CHARACTER( x
, y

)

Abbreviation: CHAR

x
Expression.

x must have a computational type.

When x is nongraphic, CHARACTER returns x converted to character.

When x is GRAPHIC, CHARACTER returns x converted to SBCS characters. If a DBCS character cannot
be translated to an SBCS equivalent, the CONVERSION condition is raised.

The values of x are not checked.

y
Expression. If necessary, y is converted to a real fixed-point binary value.

If y is omitted, the length is determined by the rules for type conversion.

y cannot be negative.

If y = 0, the result is the null character string.

Example: Conversion from graphic to character

 dcl X graphic(6);
 dcl A char (6);
 A = char(X);

For X with value Intermediate result A is assigned

.A.B.C.D.E.F ABCDEF ABCDEF

CENTRELEFT

420 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

CHARGRAPHIC
CHARGRAPHIC converts a GRAPHIC (DBCS) string x to a mixed character string with a length specified by
y.

CHARGRAPHIC( x
, y

)

Abbreviation: CHARG

x
Expression.

x must be a GRAPHIC string.

y
Expression. If necessary, y is converted to a real fixed-point binary value.

If y is omitted, the length is determined by the rules for type conversion.

y cannot be negative.

CHARGRAPHIC returns a mixed character string that is converted from x.

The following rules apply:

• If y = 0, the result is the null character string.
• If y = 1, the result is a character string of 1 blank.
• If y is greater than the length needed to contain the character string, the result is padded with SBCS

blanks.
• If y is less than the length needed to contain the character string, the result is truncated. The integrity

is preserved by truncating after a graphic and appending an SBCS blank, if necessary, to complete the
length of the string.

Example 1

This example shows a conversion from graphic to character. y is long enough to contain the result.

 dcl X graphic(6);
 dcl A char (12);
 A = char(X,12);

For X with value Intermediate Result A is assigned

.A.B.C.D.E.F .A.B.C.D.E.F .A.B.C.D.E.F

Example 2

This example shows a conversion from graphic to character. However, y is too short to contain the result.

 dcl X graphic(6);
 dcl A char (12);
 A = char(X,11);

For X with value Intermediate Result A is assigned

.A.B.C.D.E.F .A.B.C.D.E.F .A.B.C.D.Eb

CHARGRAPHIC

Chapter 18. Built-in functions, pseudovariables, and subroutines 421

CHARVAL
CHARVAL returns the CHARACTER(1) value corresponding to an integer.

CHARVAL (n)

n
Expression converted to UNSIGNED FIXED BIN(8) if necessary.

CHARVAL(n) has the same bit value as n (that is, UNSPEC(CHARVAL(n)) is equal to UNSPEC(n)), but it has
the attributes CHARACTER(1).

CHARVAL is the inverse of RANK (when applied to character).

CHECKSTG
CHECKSTG returns a bit(1) value which indicates whether a specified pointer value is the start of
a piece of uncorrupted allocated storage. If no pointer value is supplied, CHECKSTG determines
whether all allocated storage is uncorrupted. To use this built-in function, you must also specify the
CHECK(STORAGE) compile-time option.

CHECKSTG(
p

)

p
Pointer expression.

When an allocation is made, it is followed by eight extra bytes which are set to 'ff'x. The allocation is
considered uncorrupted if those bytes have not been altered.

The pointer expression must point to storage allocated for a BASED variable.

CHECKSUM
CHECKSUM returns an UNSIGNED FIXED BIN(32) value that is the checksum value for a specified buffer.

CHECKSUM( q, n)

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.1

CODEPAGE
CODEPAGE returns a FIXED BINARY(31) value that holds the value of the CODEPAGE compiler option. It
has no arguments and is a restricted expression.

CODEPAGE

CHARVAL

422 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

COLLATE
COLLATE returns a CHARACTER(256) string comprising the 256 possible CHARACTER(1) values one time
each in the collating order.

COLLATE

()

COLLAPSE
COLLAPSE returns a string that reduces all multiple occurrences of a character to one, starting from an
optional specified position. The leading and trailing instances of that character are also trimmed.

COLLAPSE( x , y
, n

)

x
A string expression. x specifies the string from which all multiple occurrences of the character defined
by y are reduced to one. x must have the CHARACTER attribute.

y
An expression. y must have the type CHARACTER(1) NONVARYING. The leading and trailing instances
of y are also trimmed.

n
An expression. n specifies the location within x at which to begin to locate the first occurrences of y.

n must have a computational type and is converted to type size_t. The default value for n is 1.

• If n < 1, the default value 1 is used.
• If n > length(x), the full string of x is returned.

Example

dcl s1 char value(' abc : def gh ');
dcl s char(20);

s = collapse(s1, ' ', 1);
 /* 'abc : def gh ' */
s = collapse(s1, ' ', 2);
 /* ' abc : def gh ' */
s = collapse(s1, ' ', index(s1,':'));
 /* ' abc : def gh ' */

COMPARE
COMPARE compares the z bytes of two buffers at the addresses x and y.

COMPARE returns a FIXED BINARY(31,0) value. It can be any of the following values:

Zero
The z bytes at the addresses x and y are identical.

Negative
The z bytes at x are less than those at y.

Positive
The z bytes at x are greater than those at y.

COLLATE

Chapter 18. Built-in functions, pseudovariables, and subroutines 423

COMPARE( x , y , z)

x and y
Expressions. Both must have the POINTER or OFFSET type. If OFFSET, the expression must be
declared with the AREA qualification.

z
Expression. It is converted to size_t 1.

If the two buffers are different, the COMPARE built-in function does not indicate where that difference is.
If you want to know where they differ, use the WHEREDIFF built-in function instead.

Example

 dcl Result fixed bin;
 dcl 1 Str1,
 2 B fixed bin(31),
 2 C pointer,
 2 * union,
 3 D char(4),
 3 E fixed bin(31),
 3 *,
 4 * char(3),
 4 F fixed bin(8) unsigned,
 2 * char(0);
 dcl 1 Template nonasgn static,
 2 * fixed bin(31) init(16), /* ''X */
 2 * pointer init(sysnull()),
 2 * char(4) init(''),
 2 * char(0);

 call plimove(addr(Str1), addr(Template), stg(Str1));
 Result = compare(addr(Str1), addr(Template), stg(Str1)); /* 0 */
 D = 'DSA ';
 Result = compare(addr(Str1), addr(Template), stg(Str1)); /* 1 */
 B = 15; /* '00000F00'X */
 D = 'DSA ';
 Result = compare(addr(Str1), addr(Template), stg(Str1)); /* -1 */

COMPLEX
COMPLEX returns the complex value x + y.

COMPLEX( x , y)

Abbreviation: CPLX

x and y
Real expressions.

If x and y differ in base, the decimal argument is converted to binary. If they differ in scale, the
fixed-point argument is converted to floating-point. The result has the common base and scale.

If fixed-point, the precision of the result is given by the following:

 (min(N,max(p1-q1,p2-q2)+max(q1,q2)),max(q1,q2))

In this example, (p1,q1) and (p2,q2) are the precisions of x and y, respectively, and N is the maximum
number of digits allowed.

After any necessary conversions have been performed, if the arguments are floating-point, the result has
the precision of the longer argument.

COMPLEX

424 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

CONJG
CONJG returns the conjugate of x, that is, the value of the expression with the sign of the imaginary part
reversed.

CONJG( x)

x
Expression.

If x is real, it is converted to complex. The result has the base, scale, mode, and precision of x.

COPY
COPY returns a string consisting of y concatenated copies of the string x.

COPY( x , y)

x
Expression.

x must have a computational type and should have a string type. If not, it is converted to character.

y
An integer expression with a nonnegative value. It specifies the number of repetitions. It must have a
computational type and is converted to FIXED BINARY(31,0).

If y is zero, the result is a null string.

Example

Considering the following code:

 copy('Walla ',1) /* returns 'Walla ' */

 repeat('Walla ',1) /* returns 'Walla Walla ' */

In this example, repeat(x,n) is equivalent to copy(x,n+1).

COS
COS returns a floating-point value that has the base, precision, and mode of x, and is an approximation of
the cosine of x.

COS( x)

x
Expression with a value in radians.

COSD
COSD returns a real floating-point value that has the base and precision of x, and is an approximation of
the cosine of x.

COSD( x)

x
Real expression with a value in degrees.

CONJG

Chapter 18. Built-in functions, pseudovariables, and subroutines 425

COSH
COSH returns a floating-point value that has the base, precision, and mode of x, and is an approximation
of the hyperbolic cosine of x.

COSH( x)

x
Expression.

COUNT
COUNT returns an unscaled REAL FIXED BINARY value specifying the number of data items transmitted
during the last GET or PUT operation on x.

COUNT( x)

x
File-reference. The file must be open and have the STREAM attribute.

The count of transmitted items for a GET or PUT operation on x is initialized to zero before the first data
item is transmitted, and is incremented by one after the transmission of each data item in the list. If x is
not open in the current program, a value of zero is returned.

If an ON-unit or procedure is entered during a GET or PUT operation, and within that ON-unit or
procedure, a GET or PUT operation is executed for x, the value of COUNT is reset for the new operation. It
is restored when the original GET or PUT is continued.

The BIFPREC compiler option determines the precision of the result returned.

CS
CS returns a FIXED BINARY(31) value that indicates if the old and current values in a compare and swap
were equal.

CS( p,q,x)

p
Address of the old FIXED BINARY(31) value.

q
Address of the current FIXED BINARY(31) value.

x
The new FIXED BINARY(31) value.

CS compares the "current" and "old" values. If they are equal, the "new" value is copied over the
"current", and a value of 0 is returned. If they are unequal, the "current" value is copied over the "old", and
a value of 1 is returned.

So, CS could be implemented as the following PL/I function, but then it would not be atomic at all. :

 cs: proc(old_Addr, current_Addr, new)
 returns(fixed bin(31) byvalue)
 options(byvalue);

 dcl old_Addr pointer;
 dcl current_Addr pointer;
 dcl new fixed bin(31);

 dcl old fixed bin(31) based(old_addr);

COSH

426 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 dcl current fixed bin(31) based(current_addr);

 if current = old then
 do;
 current = new;
 return(0);
 end;
 else
 do;
 old = current;
 return(1);
 end;
 end;

On z/OS, the CS built-in function implements the CS instruction. For a detailed description of this function,
read the appendices in the Principles of Operations manual.

On Intel, the CDS built-in function uses the Intel cmpxchg4 instruction. The cmpxchg4 instruction takes
the address of a "current" value, a "new" value and an "old" value. It returns the original "current" value
and updates it with the "new" value only if it equaled the "old" value.

So, on Intel, the CS built-in function is implemented via the following inline function:

 cs: proc(old_Addr, current_Addr, new)
 returns(fixed bin(31) byvalue)
 options(byvalue);

 dcl old_Addr pointer;
 dcl current_Addr pointer;
 dcl new fixed bin(31);

 dcl old fixed bin(31) based(old_addr);
 dcl current fixed bin(31) based(current_addr);

 if cmpxchg4(current_Addr, new, old) = old then
 do;
 return(0);
 end;
 else
 do;
 old = current;
 return(1);
 end;
 end;

CURRENTSIZE
CURRENTSIZE returns a FIXED BIN value that gives the implementation-defined storage, in bytes,
required by x.

CURRENTSIZE( x)

x
A variable of any data type, data organization, and storage class except those in the following list:

• A BASED, DEFINED, parameter, subscripted, or structure or union base-element variable that is an
unaligned fixed-length bit string

• A minor structure or union whose first or last base element is an unaligned fixed-length bit string
(except where it is also the first or last element of the containing major structure or union)

• A major structure or union that has the BASED, DEFINED, or parameter attribute, and that has an
unaligned fixed-length bit string as its first or last element

• A variable not in connected storage

The value returned by CURRENTSIZE(x) is defined as the number of bytes that would be transmitted in
the following circumstances:

CURRENTSIZE

Chapter 18. Built-in functions, pseudovariables, and subroutines 427

 declare F file record output
 environment(scalarvarying);
 write file(F) from(S);

If x is a scalar varying-length string, the returned value includes the length-prefix of the string and the
number of currently-used bytes. It does not include any unused bytes in the string.

If x is a scalar area, the returned value includes the area control bytes and the current extent of the area.
It does not include any unused bytes at the end of the area.

If x is an aggregate containing areas or varying-length strings, the returned value includes the area control
bytes, the maximum sizes of the areas, the length prefixes of the strings, and the number of bytes in the
maximum lengths of the strings. There is an exception to this rule:

If x is a structure or union whose last element is a nondimensioned area, the returned value includes
that area's control bytes and the current extent of that area. It does not include any unused bytes at
the end of that area.

The CURRENTSIZE built-in function must not be used on a BASED variable with adjustable extents if that
variable has not been allocated.

Under the CMPAT(V3) compiler option, CURRENTSIZE returns a FIXED BIN(63) value. Under all other
CMPAT options, it returns a FIXED BIN(31) value.

For examples of the CURRENTSIZE built-in function, see “SIZE” on page 551.

CURRENTSTORAGE
CURRENTSTORAGE is a synonym for CURRENTSIZE.

Abbreviation: CSTG

Related information
“CURRENTSIZE” on page 427
CURRENTSIZE returns a FIXED BIN value that gives the implementation-defined storage, in bytes,
required by x.

DATAFIELD
DATAFIELD is in context in a NAME condition ON-unit (or any of its dynamic descendants). It returns a
character string whose value is the contents of the field that raised the condition. It is also in context in
an ON-unit (or any of its dynamic descendants) for an ERROR or FINISH condition raised as part of the
implicit action for the NAME condition.

DATAFIELD

()

If the string that raised the condition contains DBCS identifiers, GRAPHIC data, or mixed character data,
DATAFIELD returns a mixed character string.

If DATAFIELD is used out of context, a null string is returned.

DATE
DATE returns a nonvarying character(6) string containing the date in the format, YYMMDD.

DATE

()

CURRENTSTORAGE

428 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

DATETIME
DATETIME returns a character string timestamp of today's date in either the default format or a user-
specified format.

DATETIME

(
y

)

y
Expression

If present, it specifies the date/time pattern in which the date is returned. If y is missing, it is assumed
to be the default date/time pattern 'YYYYMMDDHHMISS999'.

See Table 65 on page 384 for the allowed patterns.

y must have computational type and should have character type. If not, it is converted to character.

See “DAYS” on page 429 for an example of using DATETIME.

DAYS
DAYS returns a FIXED BINARY(31,0) value that is the number of days (in Lilian format) corresponding to
the date d.

DAYS

(

d
, p

, w

)

d
String expression representing a date. If omitted, it is assumed to be the value returned by
DATETIME().

The value for d must have computational type and should have character type. If not, d is converted to
character.

p
One of the supported date/time patterns. If omitted, it is assumed to be the value
'YYYYMMDDHHMISS999'.

p must have computational type and should have character type. If not, it is converted to character.

w
An integer expression that defines a century window to be used to handle any two-digit year formats.

• If the value is positive, such as 1950, it is treated as a year.
• If negative or zero, the value specifies an offset to be subtracted from the current, system-supplied

year.
• If omitted, w defaults to the value specified in the WINDOW compile-time option.

Example

 dcl Date_format value ('MMDDYYYY') char;
 dcl Todays_date char(length(Date_format));
 dcl Sep2_1993 char(length(Date_format));
 dcl Days_of_July4_1993 fixed bin(31);
 dcl Msg char(100) varying;

DATETIME

Chapter 18. Built-in functions, pseudovariables, and subroutines 429

 dcl Date_due char(length(Date_format));

 Todays_date = datetime(date_format); /* e.g. 06161993 */

 Days_of_July4_1993 = days('07041993','MMDDYYYY');
 Sep2_1993 = daystodate(days_of_July4_1993 + 60, Date_format);
 /* 09021993 */

 Date_due = daystodate(days() + 60, Date_format);
 /* assuming today is July 4, 1993, this would be Sept. 2, 1993 */

 Msg = 'Please pay amount due on or before ' ∥
 substr(Date_due, 1, 2) ∥ '/' ∥
 substr(Date_due, 3,2) ∥ '/' ∥
 substr(Date_due, 5);

The allowed patterns are listed in Table 65 on page 384. For an explanation of the Lilian format, see
“Date/time built-in functions” on page 382.

DAYSTODATE
DAYSTODATE returns a nonvarying character string containing the date in the form p that corresponds to d
days (in Lilian format).

DAYSTODATE (d
, p

, w

)

d
The number of days (in Lilian format). d must have a computational type and is converted to FIXED
BINARY(31,0) if necessary.

p
One of the supported date/time patterns.

If omitted, p is assumed to be the default date/time pattern 'YYYYMMDDHHMISS999' (same as the
default format returned by DATETIME).

w
An integer expression that defines a century window to be used to handle any two-digit year formats.

• If the value is positive, such as 1950, it is treated as a year.
• If negative or zero, the value specifies an offset to be subtracted from the current, system-supplied

year.
• If omitted, w defaults to the value specified in the WINDOW compile-time option.

The allowed patterns are listed in Table 65 on page 384. For an explanation of the Lilian format, see
“Date/time built-in functions” on page 382.

See “DAYS” on page 429 for an example of using DAYSTODATE.

DAYSTOMICROSECS
DAYSTOMICROSECS returns a FIXED BINARY(63) value that is the number of microseconds that
corresponds to the number of days.

DAYSTOMICROSECS( x)

x
An expression that specifies the number of days.

x must have a computational type and will be converted to FIXED BINARY(31) if necessary.

DAYSTODATE

430 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

DAYSTOMICROSECS(x) is the same as x*(24*60*60*1_000_000).

DAYSTOSECS
DAYSTOSECS returns a FLOAT BINARY(53) value that is the number of seconds corresponding to the
number of days.

DAYSTOSECS( x)

x
An expression that specifies the number of days.

x must have a computational type and is converted to FIXED BINARY(31,0) if necessary.

DAYSTOSECS(x) is the same as x*(24*60*60).

DECIMAL
DECIMAL returns the decimal value of x, with a precision specified by p and q. The result has the mode
and scale of x.

DECIMAL( x
,  p

, q

)

Abbreviation: DEC

x
Reference.

p
Restricted expression specifying the number of digits to be maintained throughout the operation.

q
Restricted expression specifying the scaling factor of the result. For a fixed-point result, if p is given
and q is omitted, a scaling factor of zero is assumed. For a floating-point result, q must be omitted.

If both p and q are omitted, the precision of the result is determined from the rules for base conversion.

DIMENSION
DIMENSION returns a FIXED BINARY value that specifies the current extent of dimension y of x.

DIMENSION( x
, y

)

Abbreviation: DIM

x
Array reference. x must not have less than y dimensions.

y
Expression specifying a particular dimension of x. If necessary, y is converted to a FIXED
BINARY(31,0). y must be greater than or equal to 1. If y is not supplied, it defaults to 1.

y can be omitted only if the array is one-dimensional.

If y exceeds the number of dimensions of x, the DIMENSION function returns an undefined value.

DAYSTOSECS

Chapter 18. Built-in functions, pseudovariables, and subroutines 431

Under the CMPAT(V3) compiler option, DIMENSION returns a FIXED BIN(63) value. Under the CMPAT(V2)
and CMPAT(LE) compiler options, DIMENSION returns a FIXED BIN(31) value.

Using LBOUND and HBOUND instead of DIMENSION is recommended.

DIVIDE
DIVIDE returns the quotient of x/y with a precision specified by p and q. If both operands are FIXED and
at least one is FIXED BIN, then the base, precision, and scale are determined by the PRECTYPE compiler
option. Otherwise, the base, precision, and scale are determined by the rules for expression evaluation.
The mode is REAL if both operands are REAL; otherwise, it is COMPLEX.

DIVIDE( x , y , p
, q

)

x
Expression.

y
Expression. If y = 0, the ZERODIVIDE condition is raised.

p
Restricted expression specifying the number of digits to be maintained throughout the operation.

q
Restricted expression specifying the scaling factor of the result. For a fixed-point result, if q is omitted,
a scaling factor of zero is the default. For a floating-point result, q must be omitted.

EDIT
EDIT returns a character string of length LENGTH(y). Its value is equivalent to what would result if x were
assigned to a variable declared with the picture specification given by y.

For the valid picture characters, see Chapter 14, “Picture specification characters,” on page 327.

EDIT( x , y)

x
Expression

x must have computational type.

y
String expression.

y must have character type and must contain picture characters that are valid for a PICTURE data
item. If y does not contain a valid picture specification, the ERROR condition is raised.

Example

 dcl pic1 char(9) init ('ZZZZZZZZ9');
 dcl pic2 char(7) init ('ZZ9V.99');
 dcl num fixed dec (9) init (123456789);
 z = edit (num, pic1); /* '123456789' */
 z = edit (num, pic2); /* '789.00' */
 z = edit (num, substr(pic1,8)); /* '89' */
 z = edit (num, substr(pic2,1,5)); /* '789.' */
 z = edit (num, substr(pic1,7,3)); /* '789' */
 z = edit (num, substr(pic2,3,5)); /* '9.00' */
 z = edit ('1', substr(pic1,7,3)); /* ' 1' */
 z = edit ('PL/I', 'AAXA'); /* 'PL/I' */
 z = edit ('PL/I', 'AAAA'); /* raises conversion */

DIVIDE

432 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

If x cannot be edited into the picture specification given by y, the conditions raised are those that would
be raised if x were assigned to a PICTURE data item which has the same picture specification contained in
y.

EMPTY
EMPTY returns an area of zero extent. It can be used to free all allocations in an area.

EMPTY

()

The value of this function is assigned to an area variable when the variable is allocated. Consider this
example:

 declare A area,
 I based (P),
 J based (Q);

 allocate I in(A), J in (A);
 A = empty();

 /* Equivalent to: free I in (A), J in (A); */

ENDFILE
ENDFILE returns a '1'B when the end of the file is reached; '0'B if the end is not reached. If the file is not
open, the ERROR condition is raised.

ENDFILE( x)

x
File reference.

ENDFILE can be used to detect the end-of-file condition for bytestream files; for example, files that
require the use of the FILEREAD built-in function.

ENTRYADDR
ENTRYADDR returns a pointer value that is the address of the entry point of the entry reference x. This
may be a pointer to an AMODE changing glue code used to call x.

ENTRYADDR( x)

x
Entry reference.

If x is a fetchable entry constant, it must be fetched before ENTRYADDR is executed. However, if x has
been released, then ENTRYADDR will return SYSNULL.

ENTRYADDR pseudovariable
The ENTRYADDR pseudovariable initializes an entry variable, x, with the address of the entry to be
invoked.

ENTRYADDR( x)

EMPTY

Chapter 18. Built-in functions, pseudovariables, and subroutines 433

x
Entry reference.

Note: If the address supplied to the ENTRYADDR variable is the address of an internal procedure, the
results are unpredictable.

EPSILON
EPSILON returns a floating-point value that is the spacing between x and the next positive number when x
is 1. It has the base, mode, and precision of x.

EPSILON( x)

x
REAL FLOAT expression.

EPSILON(x) is a constant and can be used in restricted expressions.

ERF
ERF returns a real floating-point value that is an approximation of the error function of x.

ERF( x)

x
Real expression.

The result has the base and precision of x, and a value given by:
(2/ √(π)) ∫x0 EXP(-(t2))dt

ERFC
ERFC returns a real floating-point value that is an approximation of the complement of the error function
of x.

ERFC( x)

x
Real expression.

The result has the base and precision of x, and a value given by:

 1 - ERF(x)

EXP
EXP returns a floating-point value that is an approximation of the base, e, of the natural logarithm system
raised to the power x.

EXP( x)

x
Expression.

The result has the base, mode, and precision of x.

EPSILON

434 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

EXPONENT
EXPONENT returns a FIXED BINARY(31,0) value that is the exponent part of x.

EXPONENT( x)

x
Expression. x must be declared as REAL FLOAT.

EXPONENT(x) is not the "mathematical" exponent of x. If x = 0, EXPONENT(x) = 0. For other values of x,
EXPONENT(x) is the unique number e such that:
 (e-1) e
radix(x) <= abs(x) < radix(x)

Consequently, EXPONENT(1e0) equals 1 and not 0.

FILEDDINT
FILEDDINT returns a size_t value that is the value of attribute c for file x.

FILEDDINT( x,c)

x
File reference.

c
Character string that holds the attribute to be queried.

When using FILEDDINT, the following are valid values for c:

blksize
bufsize
delay
filesize

keylen
keyloc
recsize
retry

The ERROR condition with oncode 1010 is raised when the file is not open or the attribute is invalid for the
file being queried.

FILEDDINT(x,'BLKSIZE') is valid only on z/OS. FILEDDINT(x,'BLKSIZE') will return the blocksize for a
CONSECUTIVE file. It will return 0 for an zFS file and will return 0 for a VSAM file.

FILEDDINT(x,'FILESIZE') will, on z/OS, return a value of 0 except for zFS files.

FILEDDINT(x,'KEYLOC') and FILEDDINT(x,'KEYLEN') are valid only for VSAM KSDS files.

FILEDDTEST
FILEDDTEST returns a FIXED BIN(31) value that holds the value 1 if the attribute c applies to file x.
Otherwise, a value of 0 is returned.

FILEDDTEST( x,c)

x
File reference.

c
Character string that holds the attribute to be queried.

When using FILEDDTEST, the following are valid values for c:

EXPONENT

Chapter 18. Built-in functions, pseudovariables, and subroutines 435

append
bkwd
ctlasa
delimit
descendkey
genkey

graphic
lrmskip
print
prompt
scalarvarying
skip0

The ERROR condition with oncode 1010 is raised when the file is not open or the attribute is invalid for the
file being queried.

FILEDDWORD
FILEDDWORD returns a character string that is the value of the attribute c for the file x.

FILEDDWORD( x,c)

x
File reference.

c
Character string that holds the attribute to be queried.

When using FILEDDWORD, the following options are valid for c:

ACCESS
AMTHD
ACTION
CHARSET
DSORG
FILENAME

ORGANIZATION
PUTPAGE
RECFM
SHARE
TYPE
TYPEF

These options return the following values:

• ACCESS returns SEQUENTIAL or DIRECT.
• ACTION returns INPUT, OUTPUT, or UPDATE.
• AMTHD returns VSAM KSDS, VSAM ESDS or VSAM RRDS on the z/OS platform and FILESYS, DDM,

BTRIEVE or ISAM on the Windows or AIX platforms.
• CHARSET returns ASCII or EBCDIC.
• DSORG returns the data set organization of the file reference. This option is only valid on the z/OS

platform. Currently the following data set organizations are available:

PS (Physical sequential data set)
PSU (Physical sequential data set that contains location-dependent information)
DA (Direct access data set)
DAU (Direct access data set that contains location-dependent information)
PO (Partitioned data set (PDS or PDSE))
POU (Partitioned data set (PDS) that contains location-dependent information)
GS (Graphic data control block)
zFS (UNIX system file)
VSAM (Virtual Storage Access Method data set)

If the file organization is not supported, the FILEDDWORD for DSORG will return a blank value.
• On the z/OS platform, FILENAME returns the fully qualified path name for zFS files and the MVS

data set name for all other files except it returns the value 'NULLFILE' for files specified with either

FILEDDWORD

436 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

DSN=NULLFILE and DD DUMMY. For a MVS data set that is a member of a PDS or PDSE, the name
returned includes the member name. On the Windows and AIX platforms, it returns the fully qualified
path name of the file .

• ORGANIZATION returns CONSECUTIVE, RELATIVE, REGIONAL(1) or INDEXED.
• RECFM returns the appropriate record format setting for the file, and U for VSAM files. This option is only

valid on z/OS.
• SHARE returns NONE, READ or ALL.
• TYPE returns RECORD or STREAM.
• TYPEF returns the type of the native file.

The ERROR condition with oncode 1010 is raised when the file is not open or the attribute is invalid for the
file being queried.

FILEID
FILEID returns a size_t 1 value that is the system token for a PL/I file constant or variable.

FILEID( x)

x
File reference

This token should not be used for any purpose that could be accomplished by a PL/I statement.

On z/OS, the token holds the address of the DCB associated with a RECORD or STREAM file or of the ACB
associated with a VSAM RECORD file. The token is not valid for other files.

Note: The DCB or ACB address is provided so that applications can read the DCB or ACB. The DCB and
ACB must not be altered.

The ERROR condition with oncode 1010 is raised when the file is not open.

FILENEW
FILENEW returns a FILE variable that points to a new file constant in automatic storage.

FILENEW

( x)

x
Restricted expression. x must be a file constant or an initialized file variable.

The new file variable has default file attributes unless an argument is specified. If x has been specified,
the attributes in the declaration of that file are used. The new file remains valid and usable only until the
termination of the block in which the FILENEW function is invoked.

FILEOPEN
FILEOPEN returns '1'B if the file x is open and '0'B if the file is not open.

FILEOPEN( x)

x
File reference.

FILEID

Chapter 18. Built-in functions, pseudovariables, and subroutines 437

FILEREAD
FILEREAD attempts to read z storage units (bytes) from file x into location y. It returns the number of
storage units actually read.

FILEREAD( x , y , z)

x
File reference

y
Expression with type POINTER or OFFSET. If the type is OFFSET, the expression must be an OFFSET
variable declared with the AREA attribute.

z
Expression. It must have a computational type and is converted to type size_t.1

FILEREAD can read only zFS TYPE(U) files.

FILESEEK
FILESEEK changes the current file position associated with file x to a new location within the file. The next
operation on the file takes place at the new location. FILESEEK is equivalent to the fseek function in C.

FILESEEK returns a FIXED BIN(31) value. The value is 0 if the change in file position is successful; it is
nonzero otherwise.

FILESEEK( x , y , z)

x
File reference.

y
A size_t value that indicates the number of positions the file pointer is to be moved relative to z.

z
A FIXED BINARY(31) value that indicates the origin from which the file pointer is to be moved. The
following values are valid:
-1

Beginning of the file
0

Current position of the file pointer
1

End of the file

FILESEEK can be used only on zFS TYPE(U) files.

FILETELL
FILETELL returns a size_t 1 value that indicates the current position of the file x. The return value is an
offset relative to the beginning of the file. FILETELL is equivalent to the ftell function in C.

FILETELL( x)

x
File reference

FILETELL can be used only on zFS TYPE(U) files.

FILEREAD

438 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

FILEWRITE
FILEWRITE attempts to write z storage units (bytes) to file x from location y It returns the number of
storage units actually written.

FILEWRITE( x , y , z)

x
File reference.

y
Expression with type POINTER or OFFSET. If the type is OFFSET, the expression must be an OFFSET
variable declared with the AREA attribute.

z
Expression. It must have a computational type and is converted to type size_t.1

FILEWRITE can write only to zFS TYPE(U) files.

FIXED
FIXED returns the fixed-point value of x, with a precision specified by p and q. The result has the base and
mode of x.

FIXED( x
,  p

, q

)

x
Expression.

p
Restricted expression that specifies the total number of digits in the result. It must not exceed the
implementation limit.

q
Restricted expression that specifies the scaling factor of the result. If q is omitted, a scaling factor of
zero is assumed. If q is specified and the result is FIXED BIN, then q must be between 0 and p.

If both p and q are omitted, the default values, (15,0) for a binary result or (5,0) for a decimal result, are
used.

FIXEDBIN
FIXEDBIN returns a FIXED BIN value with precision and scale derived from the source unless explicitly
specified as parameters to the function.

FIXEDBIN( x
,  p

, q

)

x
Expression.

p
Restricted expression that specifies the total number of digits in the result. It must not exceed the
implementation limit.

FILEWRITE

Chapter 18. Built-in functions, pseudovariables, and subroutines 439

q
Restricted expression that specifies the scaling factor of the result. If q is omitted, a scaling factor of
zero is assumed. If q is specified, it must be between 0 and p.

If both p and q are omitted, the precision of the result is determined from the source according to this
table:

source result

FIXED BIN(p,q) FIXED BIN(p,q)

FIXED DEC(p,q) FIXED BIN(r,s)
where r = min(M,1+CEIL(p*3.32))
and s = CEIL(ABS(q*3.32))*SIGN(q)

FLOAT BIN(p) FIXED BIN(p,0)

FLOAT DEC(p) FIXED BIN(r,0)
where r = min(M,CEIL(p*3.32))

BIT FIXED BIN(M,0)

CHAR, GRAPHIC, UCHAR, or
WIDECHAR

FIXED BIN(r,0)
where r = min(M,1+CEIL(N*3.32))

FIXEDDEC
FIXEDDEC returns a FIXED DEC value with precision and scale derived from the source unless explicitly
specified as parameters to the function.

FIXEDDEC( x
,  p

, q

)

x
Expression.

p
Restricted expression that specifies the total number of digits in the result. It must not exceed the
implementation limit.

q
Restricted expression that specifies the scaling factor of the result. If q is omitted, a scaling factor of
zero is assumed.

If both p and q are omitted, the precision of the result is determined from the source according to this
table:

source result

FIXED BIN(p,q) FIXED DEC(r,s)
where r = min(N,1+CEIL(p/3.32))
and s=CEIL(ABS(q/3.32))*SIGN(q)

FIXED DEC(p,q) FIXED DEC(p,q)

FLOAT BIN(p) FIXED DEC(r,0)
where r = min(N,CEIL(p/3.32)

FIXEDDEC

440 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

source result

FLOAT DEC(p) FIXED DEC(p,0)

BIT FIXED DEC(r,0)
where where r = min(N,1+CEIL(M/3.32))

CHAR, GRAPHIC, UCHAR, or
WIDECHAR

FIXED DEC(N,0)

FLOAT
FLOAT returns the approximate floating-point value of x, with a precision specified by p. The result has the
base and mode of x.

FLOAT( x
, p

)

x
Expression.

p
Restricted expression that specifies the minimum number of digits in the result.

If p is omitted, the precision of the result is determined from the rules for base conversion.

If p is omitted, the default value, 15 for a binary result or 5 for a decimal result, is used.

FLOATBIN
FLOATBIN returns a FLOAT BIN value with precision derived from the source unless explicitly specified as
a parameter to the function.

FLOATBIN( x
, p

)

x
Expression.

p
Restricted expression that specifies the total number of digits in the result. It must not exceed the
implementation limit.

If p is omitted, the precision of the result is determined from the source according to this table:

source result

FIXED BIN(p,q) FLOAT BIN(p)

FIXED DEC(p,q) FLOAT BIN(r)
where r = CEIL(p*3.32)

FLOAT BIN(p) FLOAT BIN(p)

FLOAT DEC(p) FLOAT BIN(r)
where r = CEIL(p*3.32)

BIT FLOAT BIN(M)

FLOAT

Chapter 18. Built-in functions, pseudovariables, and subroutines 441

source result

CHAR, GRAPHIC, UCHAR, or
WIDECHAR

FLOAT BIN(r)
where r = CEIL(N*3.32)

FLOATDEC
FLOATDEC returns a FLOAT DEC value with precision derived from the source unless explicitly specified as
a parameter to the function.

FLOATDEC( x
, p

)

x
Expression.

p
Restricted expression that specifies the total number of digits in the result. It must not exceed the
implementation limit.

If p is omitted, the precision of the result is determined from the source according to this table:

source result

FIXED BIN(p,q) FLOAT DEC(r)
where r = CEIL(p/3.32)

FIXED DEC(p,q) FLOAT DEC(p)

FLOAT BIN(p) FLOAT DEC(r)
where r = CEIL(p/3.32)

FLOAT DEC(p) FLOAT DEC(p)

BIT FLOAT DEC(r)
where r = CEIL(M/3.32)

CHAR, GRAPHIC, UCHAR, or
WIDECHAR

FLOAT DEC(N)

FLOOR
FLOOR returns the largest integer value less than or equal to x.

FLOOR( x)

x
Real expression.

The mode, base, scale, and precision of the result match the argument. Except when x is fixed-point with
precision (p,q), the precision of the result is given by:

 (min(n,max(p-q+1,1)),0)

where n is the maximum number of digits allowed and is N for FIXED DECIMAL or M for FIXED BINARY.

FLOATDEC

442 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

If the expression x has the form (y/z) where y is an unscaled FIXED BIN expression and z is an unscaled
FIXED expression, then FLOOR(x) will be evaluated by computing the integral quotient and then rounding
it down by one if the following conditions are met:

• The quotient is not positive.
• The remainder of (y/z) is not zero.

If the expression x has the attributes FIXED BIN(p,q) but does not have the form above, then q must be
positive.

FOLDEDFULLMATCH
FOLDEDFULLMATCH returns a FIXED BINARY(31) value that indicates whether two strings are identical
when folded to lowercase according to the Unicode full case folding rules. If two strings are identical, the
return value is 0. Otherwise, the returned value is non-zero.

FOLDEDFULLMATCH( x , y)

x
Expression. x must have computational type and is converted to UCHAR type if necessary.

y
Expression. y must have computational type and is converted to UCHAR type if necessary.

When you use the FOLDEDFULLMATCH built-in function, all UTF-8 data items from all code blocks will be
folded as necessary.

In full case folding, the lengths of x and y do not need to be the same. For example, not only Haus and
HAUS would match, but Straße and STRASSE would also match.

FOLDEDSIMPLEMATCH
FOLDEDSIMPLEMATCH returns a FIXED BINARY(31) value that indicates whether two strings are identical
when folded to lowercase according to the Unicode simple case folding rules. If two strings are identical,
the return value is 0. Otherwise, the returned value is nonzero.

FOLDEDSIMPLEMATCH( x , y)

x
Expression. x must have computational type and is converted to UCHAR type if necessary.

y
Expression. y must have computational type and is converted to UCHAR type if necessary.

When you use the FOLDEDSIMPLEMATCH built-in function, all UTF-8 data items from all code blocks will
be folded as necessary.

In simple case folding, the lengths of x and y must be equal. For example, Haus and HAUS would match,
but Straße and STRASSE would not match.

GAMMA
GAMMA returns a floating-point value that has the base, mode, and precision of x.

GAMMA is an approximation of the gamma of x, as given by the following equation:
gamma(x) = ∫∞0 (ux-1)(e-x)du

GAMMA( x)

FOLDEDFULLMATCH

Chapter 18. Built-in functions, pseudovariables, and subroutines 443

x
Real expression. The value of x must be greater than zero.

GETENV
GETENV returns a character value representing a specified environment variable.

GETENV( x)

x
Expression naming an environment variable.

GETJCLSYMBOL
GETJCLSYMBOL returns a CHARACTER string value that represents the requested exported JCL symbol.

GETJCLSYMBOL( x)

x
Specifies the name of the exported JCL symbol.

If there is no JCL symbol with the same value as x, a null string is returned.

With the JCL statements shown below, specifying GETJCLSYMBOL('S1') will return STEWART.

//EX1 EXPORT SYMLIST=(S1,L1)
//SET1 SET S1=STEWART,L1=LAGUARDIA
//EX2 EXEC PGM=GETSYM /* PLI program call GETJCLSYMBOL */

.

GETSYSINT
GETSYSINT returns a size_t value that is the value of the requested system information.

GETSYSINT( x)

x
The requested system information. The following is the valid keyword for x:

MAXACTINFO

The MAXACTINFO keyword returns the number of job accounting fields in the JOB accounting information
as specified in the jobcard. In combination with the ACTINFO of the GETSYSWORD built-in function, you
can obtain the individual job accounting field information.

GETSYSWORD
GETSYSWORD returns a CHARACTER string that is the value of the requested system information.

GETENV

444 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

GETSYSWORD( x)

x
A character expression that specifies the requested system information. The following are valid
keywords for x:

ASID
ACTINFO
JESNODE
JOBCLASS
JOBNAME
JOBNUMBER
MSGCLASS
PROCSTEP
SMFID
STEPNAME
SYSNAME
SYSNODE
SYSPLEX

The ASID keyword returns the Address Space Identifier value in hexadecimal of the program that calls the
built-in function.

The ACTINFO keyword returns a comma-delimited string that is the JOB accounting information specified
in the jobcard. In combination with the MAXACTINFO keyword of the GETSYSINT built-in function,
you can obtain the individual job accounting field information. The returned account information has a
maximum length of 144 bytes. If the subparameter is enclosed in apostrophes, the apostrophes will not
be included in the accounting information string. For example, given the jobcard:

//JOB44 JOB (D548-8686,'12/8/85',PGMBIN)

GETSYSWORD(ACTINFO) will return the string:

D548-8686,12/8/85,PGMBIN

For more information about the JOB accounting information parameter, see the z/OS MVS JCL Reference.

The JESNODE keyword returns the JES node name of the system for the program that calls the built-in
function.

The JOBCLASS keyword returns the Job Class that is assigned to the batch job for the program that calls
the built-in function.

The JOBNAME keyword returns the JOB or TASK name that calls the built-in function.

The JOBNUMBER keyword returns the JES JOBID that is assigned to the batch job for the program that
calls the built-in function.

The MSGCLASS keyword returns the message class of the job for the program that calls the built-in
function.

The PROCSTEP keyword returns the job step name that calls the JCL procedure, which has the step that
executes the PL/I program. If it is not called from a JCL procedure, a null string is returned.

The SMFID keyword returns the SMFID (system identifier) of the system for the program that calls the
built-in function.

The STEPNAME keyword returns the step name that calls the PL/I program.

The SYSNAME keyword returns the LPAR name of the system installation of the TSO/USS/Batch job that
calls the built-in function.

GETSYSWORD

Chapter 18. Built-in functions, pseudovariables, and subroutines 445

The SYSNODE keyword returns the JES node name of the system for the program that calls the built-in
function. The result is the same as using keyword JESNODE.

The SYSPLEX keyword returns the SYSPLEX name of the system installation of the TSO/USS/batch job that
calls the built-in function.

If the GETSYSWORD built-in function is called from a CICS transaction, the JOB or TASK name that starts
the CICS control region is returned for the JOBNAME, and the step that initializes the CICS control region
is returned for the STEPNAME.

GRAPHIC
GRAPHIC explicitly converts character (or mixed character) data to GRAPHIC data. All other data first
converts to character, and then to the GRAPHIC data type.

GRAPHIC returns the graphic value of x, with a length in graphic symbols specified by y.

The content of x is checked for validity during conversion, using the same rules as for checking graphic
and mixed character constants.

GRAPHIC( x
, y

)

x
Expression. When x is GRAPHIC, it is subject to a length change, with applicable padding or
truncation. When x is nongraphic, it is converted to character, if necessary. SBCS characters are
converted to equivalent DBCS characters.

y
Expression. If necessary, y is converted to a real fixed-point binary value. If y is omitted, the length is
determined by the rules for type conversion.

y must not be negative.

If y = 0, the result is the null graphic string.

The following rules apply:

• If y is greater than the length needed to contain the graphic string, the result is padded with graphic
blanks.

• If y is less than the length needed to contain the graphic string, the result is truncated.

Example 1

This example shows a conversion from CHARACTER to GRAPHIC. The target is long enough to contain the
result.

 dcl X char (11) varying;
 dcl A graphic (11);
 A = graphic(X,8);

For X with values Intermediate result A is assigned

ABCDEFGHIJ
123
123A.B.C

 .A.B.C.D.E.F.G.H.I.J
.1.2.3
.1.2.3.A.B.C

.A.B.C.D.E.F.G.H.b.b.b

.1.2.3.b.b.b.b.b.b.b.b

.1.2.3.A.B.C.b.b.b.b.b

where .b is a DBCS blank.

GRAPHIC

446 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Example 2

This example shows a conversion from CHARACTER to GRAPHIC. However, the target is too short to
contain the result.

 dcl X char (10) varying;
 dcl A graphic (8);
 A = graphic(X);

For X with value Intermediate result A is assigned

ABCDEFGHIJ .A.B.C.D.E.F.G.H.I.J .A.B.C.D.E.F.G.H

GTCA
GTCA returns a pointer to the LE control block.

GTCA

()

If the GTCA built-in function is used to change storage, unpredictable results may occur.

The GTCA built-in function is supported only on z/OS.

HANDLE
HANDLE returns a handle to the typed structure x.

HANDLE( x)

x
Typed structure.

HBOUND
HBOUND returns a FIXED BINARY value that specifies the current upper bound of dimension y of x.

HBOUND( x
, y

)

x
Array reference. x must not have less than y dimensions.

y
Expression specifying a particular dimension of x. If necessary, y is converted to FIXED BINARY(31,0).
y must be greater than or equal to 1. If y is not supplied, it defaults to 1.

y can be omitted only if the array is one-dimensional.

Under the CMPAT(V3) compiler option, HBOUND returns a FIXED BIN(63) value. Under the CMPAT(V2)
and CMPAT(LE) compiler options, HBOUND returns a FIXED BIN(31) value.

GTCA

Chapter 18. Built-in functions, pseudovariables, and subroutines 447

HBOUNDACROSS
HBOUNDACROSS returns a FIXED BINARY value that specifies the current upper bound of a DIMACROSS
reference x.

HBOUNDACROSS( x)

x
DIMACROSS reference

Under the CMPAT(V3) compiler option, HBOUNDACROSS returns a FIXED BIN(63) value. Under the
CMPAT(V2) and CMPAT(LE) compiler options, HBOUNDACROSS returns a FIXED BIN(31) value.

Example

The following example shows the use of HBOUNDACROSS:

 dcl jx fixed bin(31);

 dcl
 1 a,
 2 b fixed bin,
 2 c fixed bin;
 dcl 1 xa(100) like a dimacross;

 ...

 do jx = 1 to hboundacross(xa);
 a = xa, by dimacross(jx);
 ...
 end;

HEX
HEX returns a character string that is the hexadecimal representation of the storage that contains x.

HEX( x
, z

)

HEX(x) returns a character string of length 2 * size(x).

HEX(x,z) returns a character string that contains x with the character z inserted between every set of eight
characters in the output string. Its length is 2 * size(x) + ((size(x) - 1)/4).

Under the compiler option USAGE(HEX(CSTG)), the length used in the above calculations is based, for
VARYING, VARYING4, and VARYINGZ strings, on cstg(x) rather than on stg(x).

x
Expression that represents any variable. The whole number of bytes that contain x is converted to
hexadecimal.

z
Expression. If specified, z must have the type CHARACTER(1) NONVARYING.

Integer, offset and pointer values will be presented in bigendian form.

If the number of bytes to be converted to hex is not known at compile time, then no more than 32767
bytes will be converted.

Note: This function does not return an exact image of x in storage. If an exact image is required, use the
HEXIMAGE built-in function.

HBOUNDACROSS

448 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Example 1

 dcl Sweet char(5) init('Sweet');
 dcl Sixteen fixed bin(31) init(16) littleendian;
 dcl XSweet char(size(Sweet)*2+(size(Sweet)-1)/4);
 dcl XSixteen char(size(Sixteen)*2+(size(Sixteen)-1)/4);

 XSweet = hex(Sweet,'-');
 /* '53776565-74' */

 XSweet = heximage(addr(Sweet),length(Sweet),'-');
 /* '53776565-74' */

 XSixteen = hex(Sixteen,'-');
 /* '00000010' - bytes reversed */

 XSixteen = heximage(addr(Sixteen),stg(Sixteen),'-');
 /* '10000000' - bytes NOT reversed */

Example 2

 dcl X fixed bin(15) littleendian;
 dcl Y fixed bin(15) bigendian;

 X = 258; /* stored as '0201'B4 */
 Y = 258; /* stored as '0102'B4 */

 display (hex(X)); /* displays 0102 */
 display (hex(Y)); /* displays 0102 */

 display (heximage(addr(X), stg(X))); /* displays 0201 */
 display (heximage(addr(Y), stg(Y))); /* displays 0102 */

Related information
“HEXIMAGE” on page 452
HEXIMAGE returns a character string that is the hexadecimal representation of the storage at a specified
location.

HEX8
HEX8 returns a character string that is the UTF-8 hexadecimal representation of the storage that contains
x.

HEX8( x
, z

)

HEX8(x) returns a character string of length 2 * size(x).

HEX8(x,z) returns a character string that contains x with the character z inserted between every set of
eight characters in the output string. Its length is 2 * size(x) + ((size(x) - 1)/4).

Under the compiler option USAGE(HEX(CSTG)), the length used in the above calculations is based, for
VARYING, VARYING4, and VARYINGZ strings, on cstg(x) rather than on stg(x).

x
An expression that represents any variable. The whole number of bytes that contain x is converted to
hexadecimal.

z
An expression. If specified, z must have the type CHARACTER(1) NONVARYING and must be a valid
1-byte UTF-8 character.

Integer, offset and pointer values will be presented in big endian form.

If the number of bytes to be converted to hex is not known at compile time, then no more than 32767
bytes will be converted.

HEX8

Chapter 18. Built-in functions, pseudovariables, and subroutines 449

Note: This function does not return an exact image of x in storage. If an exact image is required, use the
HEXIMAGE8 built-in function.

Example 1

 dcl Sweet char(5) init('Sweet');
 dcl Sixteen fixed bin(31) init(16) littleendian;
 dcl XSweet char(size(Sweet)*2+(size(Sweet)-1)/4);
 dcl XSixteen char(size(Sixteen)*2+(size(Sixteen)-1)/4);

 XSweet = hex8(Sweet,'-');
 /* '53776565-74'a */

 XSweet = heximage8(addr(Sweet),length(Sweet),'-');
 /* '53776565-74'a */

 XSixteen = hex8(Sixteen,'-');
 /* '00000010' - bytes reversed */

 XSixteen = heximage8(addr(Sixteen),stg(Sixteen),'-');
 /* '10000000' - bytes NOT reversed */

Example 2

 dcl X fixed bin(15) littleendian;
 dcl Y fixed bin(15) bigendian;

 X = 258; /* stored as '0201'B4 */
 Y = 258; /* stored as '0102'B4 */

 display (hex8(X)); /* displays 0102 */
 display (hex8(Y)); /* displays 0102 */

 display (heximage8(addr(X), stg(X))); /* displays 0201 */
 display (heximage8(addr(Y), stg(Y))); /* displays 0102 */

Related information
“HEXIMAGE8” on page 453
HEXIMAGE8 returns a character string that is the UTF-8 hexadecimal representation of the storage at a
specified location.

HEXDECODE
HEXDECODE decodes a source buffer from base 16 that is encoded in the character set specified by
the ASCII/EBCDIC suboption of the DEFAULT compiler option. This function returns a size_t 1 value that
indicates the number of bytes that are written into the target buffer.

HEXDECODE8( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes that would be written is returned. If the
target buffer is not large enough, a value of -1 is returned. If the target buffer is large enough, the number
of bytes that is written to the buffer is returned.

HEXDECODE

450 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

If the source contains characters other than hexadecimal digits, the CONVERSION condition is raised.

HEXDECODE8
HEXDECODE8 decodes a source buffer from base 16 that is encoded in UTF-8. This function returns a
size_t 1 value that indicates the number of bytes that are written into the target buffer.

HEXDECODE8( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes that would be written is returned. If the
target buffer is not large enough, a value of -1 is returned. If the target buffer is large enough, the number
of bytes that is written to the buffer is returned.

If the source contains characters other than hexadecimal digits, the CONVERSION condition is raised.

HEXENCODE
HEXENCODE encodes a source buffer into a buffer holding its base 16 value in the character set specified
by the ASCII or EBCDIC suboption of the DEFAULT compiler option. It returns a size_t value that indicates
the number of bytes that are written into the target buffer.

HEXENCODE( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

The returned value depends on the address of the target buffer or the size of the target buffer:

• If the address of the target buffer p is zero, the number of bytes that would be written is returned.
• If the target buffer is not large enough, a value of -1 is returned.
• If the target buffer is large enough, the number of bytes that are written to the buffer is returned.

Note: Some arguments or return values are of type size_t. If the LP(32) compiler option is in effect, size_t
is FIXED BIN(31); if the LP(64) compiler option is in effect, size_t is FIXED BIN(63).

HEXDECODE8

Chapter 18. Built-in functions, pseudovariables, and subroutines 451

HEXENCODE8
HEXENCODE8 encodes the source buffer into base 16 that is encoded as UTF-8. It returns a size_t 1 value
that indicates the number of bytes that are written into the target buffer.

HEXENCODE8( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes that would be written is returned. If the
target buffer is not large enough, a value of -1 is returned. If the target buffer is large enough, the number
of bytes that is written to the buffer is returned.

HEXIMAGE
HEXIMAGE returns a character string that is the hexadecimal representation of the storage at a specified
location.

HEXIMAGE( p , n
, z

)

HEXIMAGE(p,n) returns a character string that is the hexadecimal representation of n bytes of storage at
location p. Its length is 2 * n.

HEXIMAGE(p,n,z) returns a character string that is the hexadecimal representation of n bytes of storage at
location p with character z inserted between every set of eight characters in the output string. Its length is
(2 * n) + ((n - 1)/4).

p
Restricted expression that must have a locator type (POINTER or OFFSET). If p is OFFSET, it must
have the AREA attribute.

n
Expression. n must have a computational type and is converted to FIXED BINARY(31,0).

z
If specified, z must have the type CHARACTER(1) NONVARYING.

If the number of bytes to be converted to hex is not known at compile time, then no more than 32767
bytes will be converted.

For examples of the HEXIMAGE built-in function, see “HEX” on page 448.

HEXENCODE8

452 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

HEXIMAGE8
HEXIMAGE8 returns a character string that is the UTF-8 hexadecimal representation of the storage at a
specified location.

HEXIMAGE8( p , n
, z

)

HEXIMAGE8(p,n) returns a character string that is the hexadecimal representation of n bytes of storage at
location p. Its length is 2 * n.

HEXIMAGE8(p,n,z) returns a character string that is the hexadecimal representation of n bytes of storage
at location p with character z inserted between every set of eight characters in the output string. Its
length is (2 * n) + ((n - 1)/4).

p
A restricted expression that must have a locator type (POINTER or OFFSET). If p is OFFSET, it must
have the AREA attribute.

n
An expression. n must have a computational type and is converted to FIXED BINARY(31,0).

z
An expression. If specified, z must have the type CHARACTER(1) NONVARYING and must be a valid
1-byte UTF-8 character.

If the number of bytes to be converted to hex is not known at compile time, then no more than 32767
bytes will be converted.

For examples of the HEXIMAGE8 built-in function, see “HEX8” on page 449.

HIGH
HIGH returns a character string of length x, where each character is the highest character in the collating
sequence (hexadecimal FF).

HIGH( x)

x
Expression. If necessary, x is converted to a positive real fixed-point binary value. If x = 0, the result is
the null character string.

HUGE
HUGE returns a floating-point value that is the largest positive value x can assume. It has the base, mode,
and precision of x.

HUGE( x)

x
Expression. x must have the attributes REAL FLOAT.

HUGE(x) is a constant and can be used in restricted expressions.

HEXIMAGE8

Chapter 18. Built-in functions, pseudovariables, and subroutines 453

IAND
IAND returns the logical AND of its arguments

IAND(x ,

,

y)

x and y
Expressions that must have a computational type.

If any argument is not REAL FIXED BIN(p,0), then it is converted to SIGNED REAL FIXED BIN(p,0).

If any argument is SIGNED, then any UNSIGNED arguments are converted to SIGNED.

The result is REAL FIXED BIN(max(p1,p2,...), 0). It is UNSIGNED if all the arguments are UNSIGNED.

ICLZ
ICLZ returns a FIXED BIN(31) value that indicates the number of leading zeros in a FIXED BIN value.

ICLZ( x)

x
Specifies a REAL FIXED BIN value with a scale factor of zero.

The value returned is relative to the number of bits that x occupies.

So, if x is SIGNED with precision p, then

• when(p < 8), the value returned is between 0 and 8
• when(p < 16), the value returned is between 0 and 16
• when(p < 32), the value returned is between 0 and 32
• otherwise, the value returned is between 0 and 64

And if x is UNSIGNED with precision p, then

• when(p <= 8), the value returned is between 0 and 8
• when(p <= 16), the value returned is between 0 and 16
• when(p <= 32), the value returned is between 0 and 32
• otherwise, the value returned is between 0 and 64

IEOR
IEOR returns the logical exclusive-OR of x and y. The result is unsigned if all arguments are unsigned.

IEOR( x , y)

x and y
Expressions that must have a computational type.

If any argument is not REAL FIXED BIN(p,0), then it is converted to SIGNED REAL FIXED BIN(p,0).

If any argument is SIGNED, then any UNSIGNED arguments are converted to SIGNED.

The result is REAL FIXED BIN(max(p1,p2,...), 0). It is UNSIGNED if all the arguments are UNSIGNED.

IAND

454 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

IFTHENELSE
IFTHENELSE returns its second or third argument according to the true or false value, respectively, of its
first argument. It provides an equivalent for the C conditional expression (x?y:z).

IFTHENELSE( x , y , z)

x
An operand that can be converted to bit. x is true if any bit in the converted bit string has the value
‘1’b.

y and z
Operands that must both be:

• Computational (and if either is a string, it must be NONVARYING with a constant length)
• Pointers
• Ordinals with the same type
• Handles to the same structure type

Given IFTHENELSE(x, y, z), the following rules apply:

• The first operand is evaluated, and its value determines whether the second or third operand is
evaluated:

If the value is true, the second operand is evaluated.
If the value is false, the third operand is evaluated.

The result is the value of the second or third operand.
• If y and z are computational, the result type is the common type of y and z.
• If either y or z is arithmetic, the result is arithmetic with the same precision as MAX(y, z) and with the

common base, mode, and scale of y and z. Otherwise, the result is string with the same type as for a
concatenation of y and z and with length equal to the maximum of the length of y and z.

• If y and z are non-computational, the result type has the same type.

IMAG
IMAG returns the imaginary part of x. The mode of the result is real and has the base, scale, and precision
of x.

IMAG( x)

x
Expression. If x is real, it is converted to complex, and an appropriate zero value is returned.

IMAG pseudovariable
The IMAG pseudovariable assigns a real value or the real part of a complex value to the coefficient of the
imaginary part of x.

IMAG( x)

x
Complex reference.

IFTHENELSE

Chapter 18. Built-in functions, pseudovariables, and subroutines 455

INARRAY
INARRAY returns a BIT(1) value that indicates whether an expression is equal to any of the elements of an
array.

INARRAY( x , y)

x
Scalar expression. x must have a type that is comparable with the type of the elements of y.

y
Array expression.

When y is a reference to a one-dimensional STATIC NONASSIGNABLE array with a simple INITIAL
list, the compiler assumes the elements of y are constant and processes INARRAY(x, y) as if it were
INLIST(x, ...) where ... denotes the elements of y.

For example, given

dcl countryCode char(2);
dcl ccs(3) char(2) static nonasgn init('AT', 'DE', 'CH');

then

INARRAY(countryCode, ccs)

is the same as

INLIST(countryCode, 'AT', 'DE', 'CH')

INDEX
INDEX returns an unscaled REAL FIXED BINARY value that indicates the starting position within x of a
substring identical to y. You can also specify the location within x where processing begins.

INDEX( x , y
, n

)

x
String-expression to be searched.

y
Target string-expression of the search.

n
n specifies the location within x at which to begin processing. It must have a computational type and
is converted to FIXED BINARY(31,0).

If y does not occur in x, or if either x or y have zero length, the value zero is returned.

If n is less than 1 or if n is greater than 1 + length(x), the STRINGRANGE condition will be raised, and the
result will be 0.

The BIFPREC compiler option determines the precision of the result returned.

INDEX will perform best when the second and third arguments are either literals, named constants
declared with the VALUE attribute, or restricted expressions.

Example

 dcl tractatus char
 value('Wovon man nicht sprechen kann, ' ∥
 'darueber muss man schweigen.');

INARRAY

456 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 dcl pos fixed bin init(1);

 pos = index(tractatus, 'man', pos+1); /* pos = 07 */

 pos = index(tractatus, 'man', pos+1); /* pos = 46 */

 pos = index(tractatus, 'man', pos+1); /* pos = 00 */

INDEXR
INDEXR returns an unscaled REAL FIXED BINARY value indicating the starting position within x of a
substring identical to y when the search for y starts from the right end of x. You can also specify the
location within x where processing begins.

INDEXR( x , y
, n

)

The INDEXR function performs the same operation as the INDEX built-in function except for the following
differences:

• The search is done from right to left.
• The default value of n is LENGTH(x).
• Unless 0 ≤ n ≤ LENGTH(x), the STRINGRANGE condition, if enabled, is raised. Its implicit action and

normal return give a result of zero.

The BIFPREC compiler option determines the precision of the result returned.

INDEXR will perform best when the second and third arguments are either literals, named constants
declared with the VALUE attribute, or restricted expressions.

Related information
“INDEX” on page 456
INDEX returns an unscaled REAL FIXED BINARY value that indicates the starting position within x of a
substring identical to y. You can also specify the location within x where processing begins.

INDICATORS
INDICATORS returns a FIXED BIN value giving the number of the elements at the next logical level in a
structure x.

INDICATORS( x)

x
Expression.

x must be a structure reference.

INDICATORS(x) always forms a restricted expression.

The INDICATORS built-in function is useful in declaring an indicator array for use in SQL statements.

INLIST
INLIST returns a bit(1) value that indicates whether x is equal to any of the remaining arguments.

INLIST(x ,

,

y)

INDEXR

Chapter 18. Built-in functions, pseudovariables, and subroutines 457

x and y
Expressions. They must be either all ORDINAL with the same type or all computational.

INLIST(x,y1,y2,y3,...,yn) is equivalent to (x=y1) | (x=y2) | (x=y3) | ... | (x=yn), where n is in the range 2 to
511 inclusive.

After the evaluation of the first argument x, the evaluation of the remaining arguments must not change
the address or value of the first argument. This condition is true when all but the first argument are
constants. It is also true if the second and subsequent arguments do not rely on the invocation of any user
functions that change storage associated with the first argument.

INOT
INOT returns the logical NOT of x.

INOT( x)

x
Expression. x must have a computational type.

If x is REAL FIXED BIN(p,0), the result is REAL FIXED BIN(p,0) and it is UNSIGNED if x is UNSIGNED.
Otherwise, x is converted to SIGNED REAL FIXED BIN(p,0) and the result has the same attributes.

Although INOT(x) has the opposite sign of x, INOT(x) is not the same as -x.

Examples

 inot(0) /* produces -1 */
 inot(-1) /* produces 0 */
 inot(+1) /* produces -2 */

IOR
IOR returns the logical OR of its arguments.

IOR(x ,

,

y)

x and y
Expressions that must have a computational type.

If any argument is not REAL FIXED BIN(p,0), then it is converted to SIGNED REAL FIXED BIN(p,0).

If any argument is SIGNED, then any UNSIGNED arguments are converted to SIGNED.

The result is REAL FIXED BIN(max(p1,p2,...), 0). It is UNSIGNED if all the arguments are UNSIGNED.

IRLL
IRLL(x,n) returns the result of logically rotating x to the left by n places.

IRLL( x , n)

x
Expression. x must have a computational type.

n
Expression. n must have a computational type.

If x is REAL FIXED BIN(p,0) and SIGNED, the result is SIGNED REAL FIXED BIN(p,0).

If x is REAL FIXED BIN(p,0) and UNSIGNED, the result is UNSIGNED REAL FIXED BIN(p,0).

INOT

458 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Otherwise, x is converted to SIGNED REAL FIXED BIN(p,0) and the result has the same attributes.

The result is undefined if n is negative or if n is greater than the number of bits in x.

Examples

 IRLL('01020304'xn,8) /* produces '02030401'xn */

IRRL
IRRL(x,n) returns the result of logically rotating x to the right by n places.

IRRL( x , n)

x
Expression. x must have a computational type.

n
Expression. n must have a computational type.

If x is REAL FIXED BIN(p,0) and SIGNED, the result is SIGNED REAL FIXED BIN(p,0).

If x is REAL FIXED BIN(p,0) and UNSIGNED, the result is UNSIGNED REAL FIXED BIN(p,0).

Otherwise, x is converted to SIGNED REAL FIXED BIN(p,0) and the result has the same attributes.

The result is undefined if n is negative or if n is greater than the number of bits in x.

Examples

 IRRL('01020304'xn,8) /* produces '04010203'xn */

ISFINITE
ISFINITE returns a '1'B if if the argument with which it is invoked is not a NAN and not positive or negative
infinity. Otherwise it returns a '0'B.

ISFINITE( x)

x
REAL FLOAT DECIMAL expression.

The FLOAT(DFP) compiler option must be in effect.

No floating-point exceptions will be raised no matter what the format of the argument.

ISIGNED
ISIGNED(x) returns the result of casting x to a signed integer value without changing its bit pattern.

ISIGNED( x)

x
Expression. x must have a computational type.

If x is not an integer, that is, if x is not REAL FIXED BIN with zero scale factor, it is converted to REAL
FIXED BIN(p,0).

ISIGNED(x) returns, for integer x, a value with the same bit pattern as x but with the attributes SIGNED
FIXED BIN(p).

If x is UNSIGNED, p is given as follows:

IOR

Chapter 18. Built-in functions, pseudovariables, and subroutines 459

• If precision(x) = 8, 16, 32, or 64, p = precision(x) - 1; otherwise, p = precision(x).
• If x is SIGNED, p = precision(x).

Example

 ISIGNED('ff_ff_ff_ff'xu) equals the SIGNED FIXED BIN(31) value -1.

ISINF
ISINF returns a '1'B if if the argument with which it is invoked is an infinity. Otherwise it returns a '0'B.

ISINF( x)

x
REAL FLOAT DECIMAL expression.

The FLOAT(DFP) compiler option must be in effect.

No floating-point exceptions will be raised no matter what the format of the argument.

ISJCLSYMBOL
ISJCLSYMBOL returns '1'B if the argument is a valid exported JCL symbol. Otherwise it returns '0'B.

ISJCLSYMBOL( x)

x
Character expression. Specifies the symbol name to be tested.

When GETJCLSYMBOL returns a null string, you can use the ISJCLSYMBOL built-in function to determine
whether it is because the symbol is not an exported JCL symbol or because the symbol has been set to a
null string value.

ISLL
ISLL(x,n) returns the result of logically shifting x to the left by n places, and padding on the right with
zeroes.

ISLL( x , n)

x
Expression. x must have a computational type.

n
Expression. n must have a computational type.

If x is REAL FIXED BIN(p,0) and SIGNED, the result is SIGNED REAL FIXED BIN(r,0) where if p <= M1, r =
M1; if p > M1, r = M2.

If x is REAL FIXED BIN(p,0) and UNSIGNED, the result is UNSIGNED REAL FIXED BIN(r+1,0) where if p <=
(M1+1), r = (M1+1); if p > (M1+1), r = (M2+1).

Otherwise, x is converted to SIGNED REAL FIXED BIN(p,0) and the result has the same attributes as
above.

If n is negative or if n is greater than r, the result is undefined.

Note: Unlike RAISE2(x,n), ISLL(x,n) can have a different sign from that of x.

ISINF

460 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Examples

 isll(+6,1) /* produces 12 */
 isll(2147483645,1) /* produces -6 */

ISMAIN
ISMAIN() returns a '1'B if the procedure in which it is invoked has the OPTIONS(MAIN) attribute.
Otherwise it returns a '0'B.

ISMAIN ()

ISNAN
ISNAN returns a '1'B if if the argument with which it is invoked is a NAN. Otherwise it returns a '0'B.

ISNAN( x)

x
REAL FLOAT DECIMAL expression.

The FLOAT(DFP) compiler option must be in effect.

No floating-point exceptions will be raised no matter what the format of the argument.

ISNORMAL
ISNORMAL returns a '1'B if if the argument with which it is invoked is not a zero, subnormal, infinity or
NaN. Otherwise it returns a '0'B.

ISNORMAL( x)

x
REAL FLOAT DECIMAL expression.

The FLOAT(DFP) compiler option must be in effect.

No floating-point exceptions will be raised no matter what the format of the argument.

ISRL
ISRL(x,n) returns the result of logically shifting x to the right by n places, and padding on the left with
zeroes.

ISRL( x , n)

x
Expression. x must have a computational type.

n
Expression. n must have a computational type.

The attributes of the result are determined as follows:

• If x is REAL FIXED BIN(p,0) and SIGNED, the result is SIGNED REAL FIXED BIN(p,0).
• If x is REAL FIXED BIN(p,0) and UNSIGNED, the result is UNSIGNED REAL FIXED BIN(p,0).
• Otherwise, x is converted to SIGNED REAL FIXED BIN(p,0) and the result has the same attributes.

ISMAIN

Chapter 18. Built-in functions, pseudovariables, and subroutines 461

The result is undefined if n is negative or if n is greater than M.

If x is nonnegative, ISRL(x,n) is equivalent to LOWER2(x,n); if x is negative, ISRL(x,n) is positive, unless
n=0.

Examples

 isrl(+6,1) /* produces 3 */
 isrl(-6,1) /* produces 2147483645 */

ISZERO
ISZERO returns a '1'B if if the argument with which it is invoked is a zero. Otherwise it returns a '0'B.

ISZERO( x)

x
REAL FLOAT DECIMAL expression.

The FLOAT(DFP) compiler option must be in effect.

No floating-point exceptions will be raised no matter what the format of the argument.

IUNSIGNED
IUNSIGNED(x) returns the result of casting x to an unsigned integer value without changing its bit pattern.

IUNSIGNED( x)

x
Expression. x must have a computational type.

If x is not an integer, that is, if x is not REAL FIXED BIN with zero scale factor, it is converted to REAL
FIXED BIN(p,0).

IUNSIGNED(x) returns, for integer x, a value with the same bit pattern as x but with the attributes
UNSIGNED FIXED BIN(p).

If x is SIGNED, p is given as follows:

• If precision(x) = 7, 15, 31 or 63, p = precision(x) + 1; otherwise, p = precision(x).
• If x is UNSIGNED, p = precision(x).

Example

 IUNSIGNED('ff_ff_ff_ff'xn) equals the largest UNSIGNED FIXED BIN(32) value.

JSONGETARRAYEND
JSONGETARRAYEND(p,n) checks whether the next character, ignoring whitespace, in a piece of JSON text
is a closing bracket]. This function returns a size_t 1 value that is equal to the number of bytes read.

If the number of available bytes n is greater than zero, JSONGETARRAYEND(p,n) attempts to read a
closing bracket] from the buffer.

• When the first character after any whitespace is the desired character], the number of bytes read
includes 1 byte for the desired character plus any bytes of whitespace preceding it.

• When the first character after any whitespace is not the desired character], a value of zero is returned.

ISZERO

462 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

JSONGETARRAYEND( p , n)

p
A pointer that specifies the address of a buffer to be read.

n
A size_t value that specifies the number of available bytes in the buffer.

JSONGETARRAYSTART
JSONGETARRAYSTART(p,n) checks whether the next character, ignoring whitespace, in a piece of JSON
text is an opening bracket [. This function returns a size_t 1 value that is equal to the number of bytes read.

If the number of available bytes n is greater than zero, JSONGETARRAYSTART(p,n) attempts to read an
opening bracket [from the buffer.

• When the first character after any whitespace is the desired character [, the number of bytes read
includes 1 byte for the desired character plus any bytes of whitespace preceding it.

• When the first character after any whitespace is not the desired character [, a value of zero is returned.

JSONGETARRAYSTART( p , n)

p
A pointer that specifies the address of a buffer to be read.

n
A size_t value that specifies the number of available bytes in the buffer.

JSONGETCOLON
JSONGETCOLON(p,n) checks whether the next character, ignoring whitespace, in a piece of JSON text is a
colon. This function returns a size_t 1 value that is equal to the number of bytes read.

If the number of available bytes n is greater than zero, JSONGETCOLON(p,n) attempts to read a colon
from the buffer.

• When the first character after any whitespace is the desired character, a colon, the number of bytes read
includes 1 byte for the desired character plus any bytes of whitespace preceding it.

• When the first character after any whitespace is not the desired character, a value of zero is returned.

JSONGETCOLON( p , n)

p
A pointer that specifies the address of a buffer to be read.

n
A size_t value that specifies the number of available bytes in the buffer.

JSONGETCOMMA
JSONGETCOMMA(p,n) checks whether the next character, ignoring whitespace, in a piece of JSON text is
a comma. This function returns a size_t 1 value that is equal to the number of bytes read.

If the number of available bytes n is greater than zero, JSONGETCOMMA(p,n) attempts to read a comma
from the buffer.

• When the first character after any whitespace is the desired character, a comma, the number of bytes
read includes 1 byte for the desired character plus any bytes of whitespace preceding it.

JsonGetArrayStart

Chapter 18. Built-in functions, pseudovariables, and subroutines 463

• When the first character after any whitespace is not the desired character, a value of zero is returned.

JSONGETCOMMA( p , n)

p
A pointer that specifies the address of a buffer to be read.

n
A size_t value that specifies the number of available bytes in the buffer.

JSONGETMEMBER
JSONGETMEMBER reads a member (or name-value pair) from a piece of JSON text. This function returns
a size_t 1 value that specifies the number of bytes read from the buffer.

Whitespace is permitted anywhere in the JSON text, but is ignored except for contributing to the total
number of bytes read.

If the JSON text contains invalid JSON, the ERROR condition is raised and the ONSUBCODE built-in
function gives the index of the invalid character.

If the third argument of JSONGETMEMBER is omitted, the name-value pair is simply read over.

If any element in the target has the CHARACTER type, the conversion from the UTF-8 source in the JSON
text is based on the CODEPAGE compiler option.

Under the compiler option JSON(PARSE(V1)):

• If the JSON source specifies more values for an array than in the target declaration, then the ERROR
condition will be raised (reporting that a closing bracket] was not found when expected).

• If the third argument is a structure, then the names in the JSON text must match those in the structure.
If not, the ERROR condition is raised.

Note: It is not necessary to specify name-value pairs for all the elements in the structure, but any names
specified must be in the same order as they are in the structure.

Under the compiler option JSON(PARSE(V2)):

• If the JSON source specifies more values for an array than in the target declaration:

– If SUBSCRIPTRANGE is enabled, then the SUBSCRIPTRANGE condition will be raised
– Otherwise, the excess values will be ignored

• If the third argument is a structure and a name in the JSON text does not match any name in the
structure:

– If CONFORMANCE is enabled, then the CONFORMANCE condition will be raised and the
ONJSONNAME built-in function will return the unmatched name

– Otherwise, the name and its JSON-value will be ignored

Note: It is not necessary to specify name-value pairs for all the elements in the structure, and it is not
necessary that the names are specified in the same order as they are in the structure.

JSONGETMEMBER( p , n
, x

)

p
A pointer that specifies the address of a buffer to be read.

n
A size_t value that specifies the number of available bytes in the buffer.

JsonGetMember

464 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

x
A variable reference whose name-value pair is to be read from the buffer. The variable reference must
not contain any of these elements:

• UNIONs
• Noncomputational elements
• GRAPHIC elements
• COMPLEX elements
• FIXED(p,q) elements with q < 0 or q > p
• Unnamed elements

x may have STRUCTURE type.

The name-value pair must consist of the variable's name as a JSON string followed by a colon and the
variable's value.

Examples

Suppose a buffer contains the following JSON text, and the buffer address is in P and its length is in N.

 { "passes" : 3,
 "data" :
 [
 { "name" : "Mather", "elevation" : 12100 }
 , { "name" : "Pinchot", "elevation" : 12130 }
 , { "name" : "Glenn", "elevation" : 11940 }
]
 }

When compiled with the option JSON(CASE(ASIS)), the following code allocates an appropriately sized
structure and then fills it in. The JSON compiler option is needed so that the names are accepted in lower
case.

 dcl
 1 info based(q),
 2 count fixed bin(31),
 2 data(passes refer(count)),
 3 name char(20) varying,
 3 elevation fixed bin(31);

 read = 0;
 read += jsonGetObjectStart(p+read,n-read);
 read += jsonGetMember(p+read,n-read,passes);
 allocate info;
 read += jsonGetComma(p+read,n-read);
 read += jsonGetValue(p+read,n-read);
 read += jsonGetColon(p+read,n-read);
 read += jsonGetValue(p+read,n-read,data);

Note that this code works equally well if the buffer contains more data. See the following example:

 { "passes" : 5,
 "data" :
 [
 { "name" : "Muir", "elevation" : 11980 }
 , { "name" : "Mather", "elevation" : 12100 }
 , { "name" : "Pinchot", "elevation" : 12130 }
 , { "name" : "Glenn", "elevation" : 11940 }
 , { "name" : "Forester", "elevation" : 13100 }
]
 }

JsonGetMember

Chapter 18. Built-in functions, pseudovariables, and subroutines 465

JSONGETOBJECTEND
JSONGETOBJECTEND(p,n) checks whether the next character, ignoring whitespace, in a piece of JSON
text is a closing brace }. This function returns a size_t 1 value that is equal to the number of bytes read.

If the number of available bytes n is greater than zero, JSONGETOBJECTEND(p,n) attempts to read a
closing brace } from the buffer.

• When the first character after any whitespace is the desired character }, the number of bytes read
includes 1 byte for the desired character plus any bytes of whitespace preceding it.

• When the first character after any whitespace is not the desired character }, a value of zero is returned.

JSONGETOBJECTEND( p , n)

p
A pointer that specifies the address of a buffer to be read.

n
A size_t value that specifies the number of available bytes in the buffer.

JSONGETOBJECTSTART
JSONGETOBJECTSTART(p,n) checks whether the next character, ignoring whitespace, in a piece of JSON
text is an opening brace {. This function returns a size_t 1 value that is equal to the number of bytes read.

If the number of available bytes n is greater than zero, JSONGETOBJECTSTART(p,n) attempts to read an
opening brace { from the buffer.

• When the first character after any whitespace is the desired character {, the number of bytes read
includes 1 byte for the desired character plus any bytes of whitespace preceding it.

• When the first character after any whitespace is not the desired character {, a value of zero is returned.

JSONGETOBJECTSTART( p , n)

p
A pointer that specifies the address of a buffer to be read.

n
A size_t value that specifies the number of available bytes in the buffer.

JSONGETVALUE
JSONGETVALUE reads a value from a piece of JSON text. This function returns a size_t 1 value that
specifies the number of bytes read from the buffer.

Whitespace is permitted anywhere in the JSON text, but is ignored except for contributing to the total
number of bytes read.

If the JSON text contains invalid JSON, the ERROR condition is raised and the ONSUBCODE built-in
function gives the index of the invalid character.

If the third argument of JSONGETVALUE is omitted, the value is simply read over.

If the third argument is an array, array values can be omitted, in which case the corresponding elements
of the target array are unchanged.

If any element in the target has the CHARACTER type, the conversion from the UTF-8 source in the JSON
text is based on the CODEPAGE compiler option.

Under the compiler option JSON(PARSE(V1)):

JsonGetObjectEnd

466 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• If the JSON source specifies more values for an array than in the target declaration, then the ERROR
condition will be raised (reporting that a closing bracket] was not found when expected)

• If the third argument is a structure, then the names in the JSON text must match those in the structure.
If not, the ERROR condition is raised.

Note: It is not necessary to specify name-value pairs for all the elements in the structure, but any names
specified must be in the same order as they are in the structure.

Under the compiler option JSON(PARSE(V2)):

• If the JSON source specifies more values for an array than in the target declaration:

– If SUBSCRIPTRANGE is enabled, then the SUBSCRIPTRANGE condition will be raised
– Otherwise, the excess values will be ignored

• If the third argument is a structure and a name in the JSON text does not match any name in the
structure:

– If CONFORMANCE is enabled, then the CONFORMANCE condition will be raised and the
ONJSONNAME built-in function will return the unmatched name

– Otherwise, the name and its JSON-value will be ignored

Note: It is not necessary to specify name-value pairs for all the elements in the structure, and it is not
necessary that the names are specified in the same order as they are in the structure.

JSONGETVALUE( p , n
, x

)

p
A pointer that specifies the address of a buffer to be read

n
A size_t value that specifies the number of available bytes in the buffer

x
A variable reference whose value is to be read from the buffer

The variable reference must not contain any of these elements:

• UNIONs
• Noncomputational elements
• GRAPHIC elements
• COMPLEX elements
• FIXED(p,q) elements with q < 0 or q > p
• Unnamed elements

x may have STRUCTURE type.

Example 1
The following code assigns the values 2, 3, and 5 to the array B. The value returned would be 7 plus the
count of whitespace characters before the closing bracket,].

 dcl b(3) fixed bin;
 dcl buffer char(1000) var;
 dcl p pointer;
 dcl n fixed bin(31);

 buffer = utf8(' [2, 3, 5]');
 p = addrdata(buffer);
 n = length(buffer);
 read = jsonGetValue(p, n, b);

JsonGetValue

Chapter 18. Built-in functions, pseudovariables, and subroutines 467

Example 2
The following code assigns the values 2 to B(1), 3 to B(2), and leaves B(3) unchanged. The value returned
would be 5 plus the count of whitespace characters before the closing bracket,].

 dcl b(3) fixed bin;
 dcl buffer char(1000) var;
 dcl p pointer;
 dcl n fixed bin(31);

 buffer = utf8(' [2, 3]');
 p = addrdata(buffer);
 n = length(buffer);
 read = jsonGetValue(p, n, b);

Example 3
The following code assigns 2 to C.D and 3 to C.E. It returns a value greater than or equal to 13.

 dcl 1 c, 2 d fixed bin, 2 e fixed bin;
 dcl buffer char(1000) var;
 dcl p pointer;
 dcl n fixed bin(31);

 buffer = utf8(' { "D" : 2, "E" : 3 } ');
 p = addrdata(buffer);
 n = length(buffer);
 read = jsonGetValue(p, n, c);

Example 4
Suppose that a buffer contains the following JSON text, and that the buffer address is P and its length is in
N.

 { "PASSES" : 3,
 "DATA" :
 [
 { "NAME" : "Mather", "ELEVATION" : 12100 }
 , { "NAME" : "Pinchot", "ELEVATION" : 12130 }
 , { "NAME" : "Glenn", "ELEVATION" : 11940 }
]
 }

Then the single invocation of JSONGETVALUE in the following code will fill in the entire structure.

 dcl
 1 info,
 2 passes fixed bin(31),
 2 data(3),
 3 name char(20) varying,
 3 elevation fixed bin(31);

 read = jsonGetValue(p, n, info);

JSONPUTARRAYEND
JSONPUTARRAYEND(p,n) writes a closing bracket] to the buffer if the number of available bytes n is
greater than zero. The function returns a size_t 1 value equal to 1.

JSONPUTARRAYEND( p , n)

p
A pointer that specifies the address of a buffer to be written.

n
A size_t value that specifies the number of available bytes in the buffer.

JsonPutArrayEnd

468 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

JSONPUTARRAYSTART
JSONPUTARRAYSTART(p,n) writes an opening bracket [to the buffer if the number of available bytes n is
greater than zero. The function returns a size_t 1 value equal to 1.

JSONPUTARRAYSTART( p , n)

p
A pointer that specifies the address of a buffer to be written.

n
A size_t value that specifies the number of available bytes in the buffer.

JSONPUTCOLON
JSONPUTCOLON(p,n) writes a colon to the buffer if the number of available bytes n is greater than zero.
The function returns a size_t 1 value equal to 1.

JSONPUTCOLON( p , n)

p
A pointer that specifies the address of a buffer to be written.

n
A size_t value that specifies the number of available bytes in the buffer.

JSONPUTCOMMA
JSONPUTCOMMA(p,n) writes a comma to the buffer if the number of available bytes n is greater than zero.
The function returns a size_t 1 value equal to 1.

JSONPUTCOMMA( p , n)

p
A pointer that specifies the address of a buffer to be written.

n
A size_t that specifies the number of available bytes in the buffer.

JSONPUTMEMBER
JSONPUTMEMBER appends a member (or name-value pair), as UTF-8, to the JSON text. This function
returns a size_t 1 value that specifies the number of bytes that are written to the buffer; or if the specified
buffer size is zero, it returns a size_t value that specifies the number of bytes that would be needed for all
the JSON text to be written.

JSONPUTMEMBER( p , n, x
, y

)

p
A pointer that specifies the address of a buffer to be written.

n
A size_t that specifies the number of available bytes in the buffer.

x
A variable reference whose value is to be written to the buffer. The variable reference must not
contain any of these elements:

JsonPutArrayStart

Chapter 18. Built-in functions, pseudovariables, and subroutines 469

• UNIONs
• Noncomputational elements
• GRAPHIC elements
• COMPLEX elements
• FIXED(p,q) elements with q < 0 or q > p
• Unnamed elements

x may have STRUCTURE type.

y
An optional parameter that specifies whether names should be written in lowercase, uppercase, or
asis.

y must be a character constant with one of the values LOWER, UPPER, or ASIS. These values can
themselves be specified in any case. If not specified, it will default to the value in JSON(CASE) option.

Example 1
 dcl b(3) fixed bin init(2,3,5);
 dcl buffer char(1000);
 dcl p pointer;
 dcl n fixed bin(31);

 p = addr(buffer);
 n = length(buffer);
 written = jsonPutMember(p, n, b);

The above code writes the following UTF-8 string to the buffer, and assigns the value 11 to the variable
written.

"B":[2,3,5]

Example 2
 dcl 1 c, 2 d fixed bin init(2), 2 e fixed bin init(3);
 dcl buffer char(1000);
 dcl p pointer;
 dcl n fixed bin(31);

 p = addr(buffer);
 n = length(buffer);
 written = jsonPutMember(p, n, c);

The above code writes the following UTF-8 string to the buffer, and assigns the value 17 to the variable
written.

"C":{"D":2,"E":3}

Example 3
 dcl 1 c(2), 2 d fixed bin init(2,3), 2 d fixed bin init(5,7);
 dcl buffer char(1000);
 dcl p pointer;
 dcl n fixed bin(31);

 p = addr(buffer);
 n = length(buffer);
 written = jsonPutMember(p, n, c);

The above code writes the following UTF-8 string to the buffer, and assigns the value 33 to the variable
written.

"C":[{"D":2,"E":5},{"D":3,"E":7}]

JsonPutMember

470 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Example 4
 dcl x fixed bin(31) init(11);
 dcl y fixed bin(31) init(13);
 dcl buffer char(1000);
 dcl p pointer;
 dcl n fixed bin(31);

 p = addr(buffer);
 n = length(buffer);
 written = 0;
 written += jsonPutObjectStart(p+written, n-written);
 written += jsonPutMember(p+written, n-written, x);
 written += jsonPutComma(p+written, n-written);
 written += jsonPutMember(p+written, n-written, y);
 written += jsonPutObjectEnd(p+written, n-written);

The above code writes the following UTF-8 string to the buffer, and assigns the value 15 to the variable
written.

{"X":11,"Y":13}

Unlike the previous examples, this buffer contains complete, valid JSON text.

JSONPUTOBJECTEND
JSONPUTOBJECTEND(p,n) writes a closing brace } to the buffer if the number of available bytes n is
greater than zero. The function returns a size_t 1 value equal to 1.

JSONPUTOBJECTEND( p , n)

p
A pointer that specifies the address of a buffer to be written.

n
A size_t that specifies the number of available bytes in the buffer.

JSONPUTOBJECTSTART
JSONPUTOBJECTSTART(p,n) writes an opening brace to the buffer if the number of available bytes n is
greater than zero. The function returns a size_t 1 value equal to 1.

JSONPUTOBJECTSTART( p , n)

p
A pointer that specifies the address of a buffer to be written.

n
A size_t that specifies the number of available bytes in the buffer.

JSONPUTVALUE
JSONPUTVALUE appends a value, as UTF-8, to the JSON text. This function returns a size_t 1 value that
specifies the number of bytes that are written to the buffer; or if the specified buffer size is zero, it returns
a size_t value that specifies the number of bytes that would be needed for all the JSON text to be written.

JSONPUTVALUE( p , n, x
, y

)

p
A pointer that specifies the address of a buffer to be written.

JsonPutObjectEnd

Chapter 18. Built-in functions, pseudovariables, and subroutines 471

n
A size_t that specifies the number of available bytes in the buffer.

x
A variable reference whose value is to be written to the buffer. The variable reference must not
contain any of these elements:

• UNIONs
• Noncomputational elements
• GRAPHIC elements
• COMPLEX elements
• FIXED(p,q) elements with q < 0 or q > p
• Unnamed elements

x may have STRUCTURE type.

y
An optional parameter that specifies whether names should be written in lowercase, uppercase, or
asis.

y must be a character constant with one of the values LOWER, UPPER, or ASIS. These values can
themselves be specified in any case. If not specified, it will default to the value in JSON(CASE) option.

Example 1
 dcl b(3) fixed bin init(2,3,5);
 dcl buffer char(1000);
 dcl p pointer;
 dcl n fixed bin(31);

 p = addr(buffer);
 n = length(buffer);
 written = jsonPutValue(p, n, b);

The above code writes the following UTF-8 string to the buffer, and assigns the value 7 to the variable
written.

[2,3,5]

Example 2
 dcl 1 c, 2 d fixed bin init(2), 2 e fixed bin init(3);
 dcl buffer char(1000);
 dcl p pointer;
 dcl n fixed bin(31);

 p = addr(buffer);
 n = length(buffer);
 written = jsonPutValue(p, n, c);

The above code writes the following UTF-8 string to the buffer, and assigns the value 13 to the variable
written.

{"D":2,"E":3}

JSONVALID
JSONVALID determines whether a buffer contains valid JSON text. This function returns a size_t 1 value of
zero if the JSON text is valid; otherwise, it returns the index of the first invalid byte.

JSONVALID( p , n)

JsonValid

472 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

p
A pointer that specifies the address of a buffer to be written.

n
A size_t value that specifies the number of available bytes in the buffer.

JULIANTOSMF
JULIANTOSMF returns a CHAR(4) value that holds a date in the SMF format.

JULIANTOSMF( d)

d
A CHAR(7) variable that holds a date in the Julian format YYYYDDD

LBOUND
LBOUND returns a FIXED BINARY value that specifies the current lower bound of dimension y of x.

LBOUND( x
, y

)

x
Array reference. x must not have less than y dimensions.

y
Expression specifying a particular dimension of x. If necessary, y is converted to FIXED BINARY(31,0).
The value for y must be greater than or equal to 1. and if y is not supplied, it defaults to 1.

The value for y can be omitted only if the array is one-dimensional.

Under the CMPAT(V3) compiler option, LBOUND returns a FIXED BIN(63) value. Under the CMPAT(V2) and
CMPAT(LE) compiler options, LBOUND returns a FIXED BIN(31) value.

LBOUNDACROSS
LBOUNDACROSS returns a FIXED BINARY value that specifies the current lower bound of a DIMACROSS
reference x.

LBOUNDACROSS( x)

x
DIMACROSS reference

Under the CMPAT(V3) compiler option, LBOUNDACROSS returns a FIXED BIN(63) value. Under the
CMPAT(V2) and CMPAT(LE) compiler options, LBOUNDACROSS returns a FIXED BIN(31) value.

LEFT
LEFT returns a string that is the result of inserting string x at the left end of a string with length n and
padded on the right with the character z as needed.

LEFT( x , n
, z

)

x
Expression. x must have a computational type and should have a character type. If not, it is converted
to CHARACTER.

JULIANTOSMF

Chapter 18. Built-in functions, pseudovariables, and subroutines 473

n
Expression. n must have a computational type and should have a character type. If n does not have
the attributes FIXED BINARY(31,0), it is converted to them.

z
Expression. If specified, z must have the type CHARACTER(1) NONVARYING type.

Example

 dcl Source char value('One Hundred SCIDS Marks');
 dcl Target char(30);

 Target = left (Source, length(Target), '*');
 /* 'One Hundred SCIDS Marks*******' */

If z is omitted, a blank is used as the padding character.

LENGTH
LENGTH returns an unscaled REAL FIXED BINARY value specifying the current length of x.

LENGTH( x)

x
String-expression or an OFFSET reference with the LOCATES attribute and an explicit AREA reference.
If x is binary, it is converted to bit string; otherwise, any other conversion required is to character
string.

For an example of the LENGTH built-in function, refer to “MAXLENGTH” on page 482.

The BIFPREC compiler option determines the precision of the result returned.

When applied to an OFFSET reference with the LOCATES attribute and implicit AREA qualification:

• If the OFFSET reference is not null, LENGTH returns the address of the located data.
• If the OFFSET reference is null, LENGTH returns SYSNULL.

LINENO
LINENO returns an unscaled REAL FIXED BINARY specifying the current line number of x.

LINENO( x)

x
File-reference.

The file must be open and have the PRINT attribute. If the file is not open or does not have the PRINT
attribute, 0 is returned.

The BIFPREC compiler option determines the precision of the result returned.

LOCATION
LOCATION returns a FIXED BIN value that specifies the byte location of x within the level-1 structure or
union that has member x.

LOCATION( x)

Abbreviation: LOC

LENGTH

474 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

x
Structure or union member name. If x is not a member of a structure or union, a value of 0 is returned.
If x has the BIT attribute, the value returned by LOCATION is the location of the byte that contains x.

The value for x must not be subscripted.

LOCATION can be used in restricted expressions, with a limitation. The value for x must be declared
before y if LOC(x) is used to set either of the following:

• The extent of a variable y that must have constant extents.
• The value of a variable y that must have a constant value.

Under the CMPAT(V3) compiler option, LOCATION returns a FIXED BIN(63) value. Under all other CMPAT
options, it returns a FIXED BIN(31) value.

Example

 dcl 1 Table static,
 2 Tab2loc fixed bin(15) nonasgn init(loc(Tab2)),
 /* location is 0; gets initialized to 8 */
 2 Tab3loc fixed bin(15) nonasgn init(loc(Tab3)),
 /* location is 2; gets initialized to 808 */
 2 Length fixed bin nonasgn init(loc(End)),
 /* location is 4 */
 2 * fixed bin,
 2 Tab2(20,20) fixed bin,
 /* location is 8 */
 2 Tab3(20,20) fixed bin,
 /* location is 808 */

 2 F2_loc fixed bin nonasgn init(loc(F2)),
 /* location is 1608; gets initialized to 1612 */
 2 F2_bitloc fixed bin nonasgn init(bitloc(F2)),
 /* location is 1610; gets initialized to 1 */

 2 Flags, /* location is 1612 */
 3 F1 bit(1),
 3 F2 bit(1), /* bitlocation is 1 */
 3 F3 bit(1),
 2 Bits(16) bit, /* location is 1613 */
 2 End char(0);

LOCNEWSPACE
The LOCNEWSPACE(x, a) built-in subroutine allocates space in a for the variable type described by the
LOCATES attribute that is associated with x.

LOCNEWSPACE( x ,
a

)

x
Must be an OFFSET reference with the LOCATES attribute. x must be scalar.

a
Must be an AREA reference. a must be scalar.

If you do not specify a, the OFFSET attribute for x must have specified an AREA reference, and
LOCNEWSPACE allocates space in that area.

In the following code snippet, the two executable statements are equivalent: Both statements allocate 32
bytes from the pool area and assign that offset to name(1).

 declare
 1 data based(data_ptr) unaligned,
 2 actual_count fixed bin(31),
 2 orderinfo(order_count refer(actual_count)),
 3 name offset(pool) locates(char(30) varying),
 3 address offset(pool) locates(char(62) varying),

LOCNEWSPACE

Chapter 18. Built-in functions, pseudovariables, and subroutines 475

 2 pool area(10_000);

 call locnewspace(name(1));
 call locnewspace(name(1), pool);

LOCNEWVALUE
The LOCNEWVALUE(v, x, a) built-in subroutine allocates space in a for the variable type described by the
LOCATES attribute that is associated with x and assigns v to that area.

LOCNEWVALUE( v, x ,
a

)

v
Must be computational and scalar.

x
Must be an OFFSET reference with the LOCATES attribute. x must be scalar.

a
Must be an AREA reference. a must be scalar.

If you do not specify a, the OFFSET attribute for x must have specified an AREA reference, and
LOCNEWSPACE allocates space in that area.

The following three statements are equivalent:

• call locnewvalue(v, x, a);
• call locnewspace(x, a);
• locval(x) = v;

If the OFFSET attribute for x specifies an AREA attribute, the following statements are equivalent:

• call locnewvalue(v, x);
• call locnewspace(x);
• locval(x) = v;

In the following code snippet, the two executable statements are equivalent: Both statements allocate 17
bytes in the pool area, assign that offset to name(1), and assign the ‘Sherlock Holmes’ value as a
character varying string to that location in the area.

 declare
 1 data based(data_ptr) unaligned,
 2 actual_count fixed bin(31),
 2 orderinfo(order_count refer(actual_count)),
 3 name offset(pool) locates(char(30) varying),
 3 address offset(pool) locates(char(62) varying),
 2 pool area(10_000);

 call locnewvalue('Sherlock Holmes’, name(1));
 call locnewvalue(‘Sherlock Holmes’, name(1), pool);

LOCSTG
LOCSTG(x) returns a FIXED BIN value that specifies the number of bytes that are needed for the storage
to hold all the elements of x that have the LOCATES attributes.

The return value has type FIXED BIN(63) under CMPAT(V3); otherwise, it has type FIXED BIN(31).

LOCSTG( x)

LOCNEWVALUE

476 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

x
Must be a reference that has the LOCATES attribute or contains subelements that have the LOCATES
attribute.

Example

With the following declaration, the reference locstag(data) returns the value 96*actual_count:

 declare
 1 data based(data_ptr) unaligned,
 2 actual_count fixed bin(31),
 2 orderinfo(order_count refer(actual_count)),
 3 name offset(pool) locates(char(30) varying),
 3 address offset(pool) locates(char(62) varying),
 2 pool area(10_000);

LOCVAL
LOCVAL(x, a) returns the value at the offset that is specified by x in the a area. The type of the value is
specified in the LOCATES attribute of x.

LOCVAL ( x
, a

)

x
Must be an OFFSET with the LOCATES attribute. It must be a valid, non-null offset into the area a.

a
Must be an AREA reference. If you do not specify a, the OFFSET attribute for x must have specified an
AREA reference, and the offset is assumed to be from that area.

Do not use a LOCVAL reference as the argument to the ADDR built-in function. To obtain the address of
such a reference, apply the POINTER built-in function to the corresponding OFFSET.

Example
With the following declaration, these two references are equivalent: locval(name(1)); and
locval(name(1), pool);. Both references return the char(30) varying value at the location in pool
with the offset held in name(1).

 declare
 1 data based(data_ptr) unaligned,
 2 actual_count fixed bin(31),
 2 orderinfo(order_count refer(actual_count)),
 3 name offset(pool) locates(char(30) varying),
 3 address offset(pool) locates(char(62) varying),
 2 pool area(10_000);

LOG
LOG returns a floating-point value that is an approximation of the natural logarithm (the logarithm to the
base e) of x. It has the base, mode, and precision of x.

LOG( x)

x
Expression. x must be greater than zero.

LOCVAL

Chapter 18. Built-in functions, pseudovariables, and subroutines 477

LOGGAMMA
LOGGAMMA returns a floating-point value that is an approximation of the log of gamma of x.

The gamma of x is given by the following equation:
gamma(x) = ∫∞0 (ux-1)(e-x)du

LOGGAMMA has the base, mode, and precision of x.

LOGGAMMA( x)

x
Real expression. The value of x must be greater than 0.

LOG2
LOG2 returns a real floating-point value that is an approximation of the binary logarithm (the logarithm to
the base 2) of x. It has the base and precision of x.

LOG2( x)

x
Real expression. The value of x must be greater than zero.

LOG10
LOG10 returns a real floating-point value that is an approximation of the common logarithm (the
logarithm to the base 10) of x. It has the base and precision of x.

LOG10( x)

x
Real expression. It must be greater than zero.

LOW
LOW returns a character string of length x, where each character is the lowest character in the collating
sequence (hexadecimal 00).

LOW( x)

x
Expression. If necessary, x is converted to a positive real fixed-point binary value. If x = 0, the result is
the null character string.

LOWERASCII
LOWERASCII returns a UCHAR string with all of its ASCII characters converted to their corresponding
lowercase characters.

LOWERASCII( x)

x
Expression. x must have UCHAR type.

LOGGAMMA

478 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

LOWERASCII(x) is equivalent to TRANSLATE(x, 'a...z', 'A...Z’).

LOWERCASE
LOWERCASE returns a character string with all characters converted to their lowercase equivalent.

LOWERCASE( x
, c

)

x
An expression. If necessary, x is converted to character.

c
An expression that specifies the code page that will be lowercased.

LOWERCASE(x) is equivalent to TRANSLATE(x, 'a...z', 'A...Z') and LOWERCASE(x, c) is equivalent to
TRANSLATE(x, lowerc, upperc). The values of lowerc and upperc are determined by the value of the code
page c. Specifying LOWERCASE(x, c) will not only translate alphabetic characters 'A...Z' to 'a...z', but also
translate characters such as uppercase Ä-umlaut('4a'x) to lowercase ä-umlaut('c0'x).

For example, if the Lower_01141 was declared as:

dcl lower_01141 char
 value((
 '8182838485868788'8991929394959697'x
 || '9899A2A3A4A5A6A7A8A9424445464748'x
 || '4951525354555657'586A708C8D8E9CC0'x
 || 'CBCDCECFD0DBDDDE'x
));

and the Upper_01141 was declared as:

dcl upper_01141 char
 value((
 'C1C2C3C4C5C6C7C8C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7E8E9626465666768'x
 || '6971727374757677'78E080ACADAE9E4A'x
 || 'EBEDEEEF5AFBFDFE'x
));

then LOWERCASE(x, 1141) would be the same as TRANSLATE(x, Lower_01141, Upper_01141).

The appendix lists the values of lowerc and upperc for the supported values of c. For details, see Appendix
A, “Limits,” on page 627.

LOWERLATIN1
LOWERLATIN1 returns a UCHAR string with all of its ASCII and Latin-1 supplement characters converted
to their corresponding lowercase characters.

LOWERLATIN1( x)

x
Expression. x must have UCHAR type.

The letters Y with DIAERESIS(ÿ) and SHARP S (ß) are not changed.

LOWER2
LOWER2(x,n) returns the value:

LOWERCASE

Chapter 18. Built-in functions, pseudovariables, and subroutines 479

LOWER2( x , n)

Note: LOWER2(x,n) is equivalent to the assembler SRA(x,n).

x
Expression. x must have a computational type.

n
Expression. n must have a computational type.

If x is SIGNED REAL FIXED BIN(p,0), then the result has the same attributes. Otherwise, x is converted to
SIGNED REAL FIXED BIN(p,0) and the result has the same attributes.

The result is undefined if n is negative or if n is greater than M.

Examples

 lower2 (+6,1) /* Produces 3 */

 lower2 (-6,1) /* Produces -3 */

 lower2 (-7,1) /* Produces -4 */

MAINNAME
MAINNAME returns a CHARACTER string that is the name of the MAIN function on the current call stack.

MAINNAME

MAX
MAX returns the largest value from a set of two or more expressions.

MAX(x ,

,

y)

x and y
Expressions.

All the arguments must be real. The result is real, with the common base and scale of the arguments.

If the arguments are fixed-point with precisions:

 (p1,q1),(p2,q2),...,(pn,qn)

then the precision of the result is given by:

 (min(N,max(p1-q1,p2-q2,...,pn-qn) + max(q1,q2,...,qn)),max(q1,q2,...,qn))

where N is the maximum number of digits allowed.

If the arguments are floating-point with precisions:

MAINNAME

480 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 p1,p2,p3,...pn

then the precision of the result is given by:

 max(p1,p2,p3,...pn)

The maximum number of arguments allowed is 64.

If all the arguments are UNSIGNED FIXED BIN, then the result is UNSIGNED FIXED BIN.

MAXDATE
MAXDATE returns a character string containing the latest date/time value corresponding to a specified
date/time pattern.

MAXDATE('YYYY-MM-DD-HH.MI.SS.999999') returns the value '9999-12-31-23.59.59.999999'.

MAXDATE( p)

p
Specifies one of the supported date/time patterns.

The allowed date/time patterns are listed in Table 65 on page 384.

MAXEXP
MAXEXP returns a FIXED BINARY(31,0) value that is the maximum value that EXPONENT(x) can assume.

MAXEXP( x)

x
Expression. x must have the REAL and FLOAT attributes.

MAXEXP(x) is a constant and can be used in restricted expressions.

Example (Intel values)

 maxexp(x) = 128 for x float bin(p), p <= 21
 maxexp(x) = 1024 for x float bin(p), 21 < p <= 53
 maxexp(x) = 16384 for x float bin(p), 53 < p

 maxexp(x) = 128 for x float dec(p), p <= 6
 maxexp(x) = 1024 for x float dec(p), 6 < p <= 16
 maxexp(x) = 16384 for x float dec(p), 16 < p

Example (AIX values)

 maxexp(x) = 128 for x float bin(p), p <= 21
 maxexp(x) = 1024 for x float bin(p), 21 < p <= 53
 maxexp(x) = 1024 for x float bin(p), 53 < p

 maxexp(x) = 128 for x float dec(p), p <= 6
 maxexp(x) = 1024 for x float dec(p), 6 < p <= 16
 maxexp(x) = 1024 for x float dec(p), 16 < p

Example (z/OS hexadecimal values)

 maxexp(x) = 63 for x float bin(p), p <= 21
 maxexp(x) = 63 for x float bin(p), 21 < p <= 53
 maxexp(x) = 63 for x float bin(p), 53 < p

 maxexp(x) = 63 for x float dec(p), p <= 6

MAXDATE

Chapter 18. Built-in functions, pseudovariables, and subroutines 481

 maxexp(x) = 63 for x float dec(p), 6 < p <= 16
 maxexp(x) = 63 for x float dec(p), 16 < p

Example (z/OS IEEE Binary Floating Point values)

 maxexp(x) = 128 for x float bin(p), p <= 21
 maxexp(x) = 1024 for x float bin(p), 21 < p <= 53
 maxexp(x) = 16384 for x float bin(p), 53 < p

 maxexp(x) = 128 for x float dec(p), p <= 6
 maxexp(x) = 1024 for x float dec(p), 6 < p <= 16
 maxexp(x) = 16384 for x float dec(p), 16 < p

Example (z/OS IEEE Decimal Floating Point Values)

 maxexp(x) = 97 for x float dec(p), p <= 7
 maxexp(x) = 385 for x float dec(p), 7 < p <= 16
 maxexp(x) = 6145 for x float dec(p), 16 < p

MAXLENGTH
MAXLENGTH returns the maximum length of a string.

MAXLENGTH( x)

x
Expression. x must have a computational type and should have a string type. If not, it is converted to
character.

Example

 dcl x char(20);
 dcl y char(20) varying;

 x, y = '';

 x = copy('*', length(x)); /* fills x with '*' */
 y = copy('*', length(y)); /* leaves y unchanged */

 x = copy('-', maxlength(x)); /* fills x with '-' */
 y = copy('-', maxlength(y)); /* fills y with '-' */

Note that the first assignment to y leaves it unchanged because length(y) will return zero when it is used in
the code snippet above (since y is VARYING and was previously set to '').

However, the second assignment to y fills it with 20 - signs because maxlength(y) will return 20 (the
declared length of y).

MAXVAL
MAXVAL returns the maximum value that its numeric operand could assume.

MAXVAL( x)

x
An expression. x must have the REAL attribute.

MAXVAL(x) >= x and MINVAL(x) <= x are always true.

The following table shows the relations among MAXVAL(x), MINVAL(x) and HUGE(x), when x is FLOAT.

MAXLENGTH

482 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Built-in functions Same as

MAXVAL(x) HUGE(x)

MINVAL(x) -HUGE(x)

For more information, see “HUGE” on page 453 and “TINY” on page 560.

MAXVAL(x) is a constant and can be used in restricted expressions.

MEMCOLLAPSE
MEMCOLLAPSE fills a target buffer with the contents of a source buffer with all multiple occurrences of
a specified character replaced by one, while the leading and trailing instances of that character are also
trimmed. It returns a size_t value that indicates the number of bytes written to the target buffer.

MEMCOLLAPSE( p , m, q, n, z,

i

)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t. It must be non-negative.

z
An expression that must have the type CHARACTER(1) NONVARYING.

i
An optional expression that must be computational and will be converted to size_t as necessary. If not
specified, the default value for i is 1. If i < 1, default value of 1 is used.

The returned value depends on the address of the target buffer or the size of the target buffer:

• If the address of the target buffer is zero (null), the number of bytes that would be written is returned.
• If the target buffer is not large enough, a value of -1 is returned.
• If the target buffer is large enough, the number of bytes that are written to the buffer is returned.
• The target buffer will include all the characters in the source buffer before the ith character (without

any collapsing) and then all characters from the nth position onwards, squeezed and trimmed as
appropriate.

Example

dcl s char(20);
dcl t char(20);
dcl cx fixed bin(31);

s = '...abc....def...gh..';
cx = memcollapse(sysnull(), 0, addr(s), stg(s), '.');
 /* cx = 10 */
cx = memcollapse(addr(t), stg(t), addr(s), stg(s), '.');
 /* cx = 10 */
 /* t = 'abc.def.gh' */

MEMCOLLAPSE

Chapter 18. Built-in functions, pseudovariables, and subroutines 483

MEMCONVERT
MEMCONVERT converts the data in a source buffer from the specified source codepage to a specified
target codepage, stores the result in a target buffer, and returns a size_t 1 value that indicates the number
of bytes that are written to the target buffer. It will also take an optional parameter t that specifies the
technique to use in the conversion.

MEMCONVERT( p , n, c, q, m, d
, t

)

p
Address of the target buffer.

n
Length of the target buffer.

c
Target code page.

q
Address of the source buffer.

m
Length of the source buffer.

d
Source code page.

t
A character string or variable that names the technique to use in the conversion. t is of length 8 or
less.

The buffer lengths must be nonnegative and must have a computational type. The buffer lengths are
converted to type size_t.

If either buffer length is zero, the result is zero.

The code page must have a computational type and is converted to type FIXED BINARY (31,0). The code
page must specify a valid, supported code page.

MEMCU12
MEMCU12 converts the data in a source buffer from UTF-8 to UTF-16, stores the result in a target buffer,
and returns a size_t 1 value that indicates the number of bytes that are written to the target buffer.

MEMCU12 (p , n , q , m)

p
Address of the target buffer.

n
Length of the target buffer.

q
Address of the source buffer.

m
Length of the source buffer.

The buffer lengths must be nonnegative and must have a computational type. The buffer lengths are
converted to type size_t.

If the target buffer is too small or if the source UTF-8 is invalid, a value of -1 is returned.

MEMCONVERT

484 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

MEMCU14
MEMCU14 converts the data in a source buffer from UTF-8 to UTF-32, stores the result in a target buffer,
and returns a size_t 1 value that indicates the number of bytes that are written to the target buffer.

MEMCU14 (p , n , q , m)

p
Address of the target buffer.

n
Length of the target buffer.

q
Address of the source buffer.

m
Length of the source buffer.

The buffer lengths must be nonnegative and must have a computational type. The buffer lengths are
converted to type size_t.

If the target buffer is too small or if the source UTF-8 is invalid, a value of -1 is returned.

MEMCU21
MEMCU21 converts the data in a source buffer from UTF-16 to UTF-8, stores the result in a target buffer,
and returns a size_t 1 value that indicates the number of bytes that are written to the target buffer.

MEMCU21 (p , n , q , m)

p
Address of the target buffer.

n
Length of the target buffer.

q
Address of the source buffer.

m
Length of the source buffer.

The buffer lengths must be nonnegative and must have a computational type. The buffer lengths are
converted to type size_t.

If the target buffer is too small, a value of -1 is returned. The source must contain valid UTF-16, and the
behavior of this function when it does not is unspecified.

MEMCU24
MEMCU24 converts the data in a source buffer from UTF-16 to UTF-32, stores the result in a target buffer,
and returns a size_t 1 value that indicates the number of bytes that are written to the target buffer.

MEMCU24 (p , n , q , m)

p
Address of the target buffer.

n
Length of the target buffer.

MEMCU14

Chapter 18. Built-in functions, pseudovariables, and subroutines 485

q
Address of the source buffer.

m
Length of the source buffer.

The buffer lengths must be nonnegative and must have a computational type. The buffer lengths are
converted to type size_t.

If the target buffer is too small, a value of -1 is returned. The source must contain valid UTF-16, and the
behavior of this function when it does not is unspecified.

MEMCU41
MEMCU41 converts the data in a source buffer from UTF-32 to UTF-8, stores the result in a target buffer,
and returns a size_t 1 value that indicates the number of bytes that are written to the target buffer.

MEMCU41 (p , n , q , m)

p
Address of the target buffer.

n
Length of the target buffer.

q
Address of the source buffer.

m
Length of the source buffer.

The buffer lengths must be nonnegative and must have a computational type. The buffer lengths are
converted to type size_t.

If the target buffer is too small or if the source UTF-32 is invalid, a value of -1 is returned.

MEMCU42
MEMCU42 converts the data in a source buffer from UTF-32 to UTF-16, stores the result in a target buffer,
and returns a size_t 1 value that indicates the number of bytes that are written to the target buffer.

MEMCU42 (p , n , q , m)

p
Address of the target buffer.

n
Length of the target buffer.

q
Address of the source buffer.

m
Length of the source buffer.

The buffer lengths must be nonnegative and must have a computational type. The buffer lengths are
converted to type size_t.

If the target buffer is too small or if the source UTF-32 is invalid, a value of -1 is returned.

MEMCU41

486 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

MEMINDEX
MEMINDEX returns a size_t 1 value that indicates the starting position within a buffer of a specified
substring.

With three arguments, the function's syntax is as follows:

MEMINDEX (p , n , x)

p
Address of buffer to be searched.

n
Length of buffer to be searched.

x
String-expression to use as the target of the search.

With four arguments, the function's syntax is as follows:

MEMINDEX (p , n , q , m)

p
Address of first buffer to be searched.

n
Length of first buffer to be searched.

q
Address of second buffer to use as the target of the search.

m
Length of second buffer to use as the target of the search.

The buffer lengths must be nonnegative and must have a computational type. The buffer lengths are
converted to type size_t.

With three arguments, the target string-expression must have type CHARACTER (including PICTURE),
GRAPHIC, UCHAR, or WIDECHAR. The buffer length is interpreted as the number of units of that string
type.

With four arguments, the buffer lengths specify a number of bytes and the search performed is a
character search.

For a VARYING, VARYING4, or VARYINGZ string X and string Y, the function MEMINDEX(ADDRDATA(X),
LENGTH(X), Y) will return the same value as INDEX(X, Y).

Example

 dcl cb(128*1024) char(1);
 dcl wb(128*1024) widechar(1);
 dcl pos fixed bin(31);
 /* 128K bytes searched for the character string 'test' */
 pos = memindex(addr(cb), stg(cb), 'test');
 /* 256K bytes searched for the string 'test' as widechar */
 pos = memindex(addr(wb), stg(wb), wchar('test'));

MEMINDEX

Chapter 18. Built-in functions, pseudovariables, and subroutines 487

MEMREPLACE
MEMREPLACE fills a target buffer with the contents of a source buffer with one or more occurrences of a
specified third buffer replaced by a fourth buffer, and returns a size_t value that indicates the number of
bytes that are written to the target buffer.

MEMREPLACE (p , m , q , n , f , x , t , y
, s

, i

)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. The length must be non-negative. It must have a
computational type and is converted to the size_t type.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. The length must be non-negative. It must have a
computational type and is converted to the size_t type.

f
Specifies the address of the buffer containing the bytes that will be replaced.

x
Specifies the length in bytes of the buffer f. The length must be non-negative. It must have a
computational type and is converted to the size_t type.

t
Specifies the address of the buffer containing the bytes that will be used to replace the bytes of the
buffer f within the buffer p.

y
Specifies the length in bytes of the buffer t. The length must be non-negative. It must have a
computational type and is converted to the size_t type.

s
An optional expression that specifies the location within the source buffer from where to start
searching for the buffer defined by f and x. It must have a computational type and is converted to
the size_t type. The default value for s is 1. If s is less than 1 or if s is greater than 1 + n, zero bytes will
be written to the target buffer.

i
An optional expression that specifies the maximum number of times f should be replaced by t. It must
have a computational type and is converted to the size_t type. The default value of i is 1. i must be
non-negative. If the value of i is 0, all occurrences of f in source buffer will be replaced by t.

The returned value depends on the address of the target buffer or the size of the target buffer:

• If the address of the target buffer is zero (null), the number of bytes that would be written is returned.
• If the target buffer is not large enough, a value of -1 is returned.
• If the target buffer is large enough, the number of bytes that are written to the buffer is returned.

dcl ein char(50) var value('reserved from #date# till #date#.');
dcl aus char(80) var;
dcl cx fixed bin(31);

dcl f char(6);
dcl t char(10);

f = '#date#';
t = '2018/05/01';

MEMREPLACE

488 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

cx = memreplace(addrdata(aus), maxlength(aus),
 addrdata(ein), length(ein),
 addrdata(f), length(f),
 addrdata(t), length(t));
 /* cx = 37 */
 /* aus = 'reserved from 2018/05/01 till #date#.' */
cx = memreplace(addrdata(aus), maxlength(aus),
 addrdata(ein), length(ein),
 addrdata(f), length(f),
 addrdata(t), length(t),16,1);
 /* cx = 37 */
 /* aus = 'reserved from #date# till 2018/05/01.' */
cx = memreplace(addrdata(aus), maxlength(aus),
 addrdata(ein), length(ein),
 addrdata(f), length(f),
 addrdata(t), length(t),,0);
 /* cx = 41 */
 /* aus = 'reserved from 2018/05/01 till 2018/05/01.' */

MEMSEARCH
MEMSEARCH returns a size_t 1 value that specifies the first position (from the left) in a buffer at which any
character, graphic, uchar, or widechar in a given string appears.

MEMSEARCH (p , n , x)

p
Address of buffer to be searched

n
Length of buffer to be searched

x
String-expression

The buffer length must be nonnegative and must have a computational type. The buffer length is
converted to type size_t.

The string-expression x must have type CHARACTER (including PICTURE), GRAPHIC, UCHAR, or
WIDECHAR. The buffer length is interpreted as the number of units of that string type.

The address p and the length n specify the "string" in which to search for any character, graphic, uchar, or
widechar that appears in x.

If either the buffer length n is zero or x is the null string, the result is zero.

If x does not occur in the buffer, the result is zero.

Example

 dcl cb(128*1024) char(1);
 dcl wb(128*1024) widechar(1);
 dcl pos fixed bin(31);

 /* 128K bytes searched from the left for a numeric */
 pos = memsearch(addr(cb), stg(cb), '012345789');

 /* 256K bytes searched from the left for a widechar '0' or '1' */
 pos = memsearch(addr(wb), stg(wb), '0030_0031'wx);

MEMSEARCHR
MEMSEARCHR returns a size_t 1 value that specifies the first position (from the right) in a buffer at which
any character, graphic, uchar, or widechar in a given string appears.

MEMSEARCHR (p , n , x)

MEMSEARCH

Chapter 18. Built-in functions, pseudovariables, and subroutines 489

p
Address of buffer to be searched

n
Length of buffer to be searched

x
String-expression

The buffer length must be nonnegative and must have a computational type. The buffer length is
converted to type size_t.

The string-expression x must have type CHARACTER (including PICTURE), GRAPHIC, UCHAR, or
WIDECHAR. The buffer length is interpreted as the number of units of that string type.

The address p and the length n specify the "string" in which to search for any character, graphic, uchar, or
widechar that appears in x.

If either the buffer length n is zero or x is the null string, the result is zero.

If x does not occur in the buffer, the result is zero.

Example

 dcl cb(128*1024) char(1);
 dcl wb(128*1024) widechar(1);
 dcl pos fixed bin(31);

 /* 128K bytes searched from the right for a numeric */
 pos = memsearchr(addr(cb), stg(cb), '012345789');

 /* 256K bytes searched from the right for a widechar '0' or '1' */
 pos = memsearchr(addr(wb), stg(wb), '0030_0031'wx);

MEMSQUEEZE
MEMSQUEEZE fills a target buffer with the contents of a source buffer with all multiple occurrences of a
specified character replaced by one. It returns a size_t value that indicates the number of bytes written to
the target buffer.

MEMSQUEEZE( p , m, q, n, z,

i

)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t. It must be non-negative.

z
An expression that must have the type CHARACTER(1) NONVARYING.

i
An optional expression that must be computational and will be converted to size_t as necessary. If not
specified, the default value for i is 1. If i < 1, default value of 1 is used.

The returned value depends on the address of the target buffer or the size of the target buffer:

• If the address of the target buffer is zero (null), the number of bytes that would be written is returned.

MEMSQUEEZE

490 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• If the target buffer is not large enough, a value of -1 is returned.
• If the target buffer is large enough, the number of bytes that are written to the buffer is returned.
• The target buffer will include all the characters in the source buffer before the ith character (without

any collapsing) and then all characters from the nth position onwards, squeezed and trimmed as
appropriate.

Example

dcl s char(20);
dcl t char(20);
dcl cx fixed bin(31);

s = '...abc....def...gh..';
cx = memsqueeze(sysnull(), 0, addr(s), stg(s), '.');
 /* cx = 12 */
cx = memsqueeze(addr(t), stg(t), addr(s), stg(s), '.');
 /* cx = 12 */
 /* t = '.abc.def.gh.' */

MEMVERIFY
MEMVERIFY returns a size_t 1 value that specifies the position in a buffer of the first (from the left)
character, graphic, uchar, or widechar that is not in a specified string.

MEMVERIFY (p , n , x)

p
Address of buffer to be searched.

n
Length of buffer to be searched.

x
String-expression.

The buffer length must be nonnegative and must have a computational type. The buffer length is
converted to type size_t.

The string-expression x must have type CHARACTER (including PICTURE), GRAPHIC, UCHAR, or
WIDECHAR. The buffer length is interpreted as the number of units of that string type.

The address p and the length n specify the "string" in which to search for any character, graphic, uchar, or
widechar that does not appear in x.

If either the buffer length n is zero or x is the null string, the result is zero.

If all the characters, graphics, uchars, or widechars in the buffer do appear in x, the result is zero.

Example

 dcl cb(128*1024) char(1);
 dcl wb(128*1024) widechar(1);
 dcl pos fixed bin(31);

 /* 128K bytes searched from the left for a non-numeric */
 pos = memverify(addr(cb), stg(cb), '012345789');

 /* 256K bytes searched from the left for the a non-blank widechar */
 pos = memverify(addr(wb), stg(wb), '0020'wx);

MEMVERIFY

Chapter 18. Built-in functions, pseudovariables, and subroutines 491

MEMVERIFYR
MEMVERIFYR returns a size_t 1 value that specifies the position in a buffer of the first (from the right)
character, graphic, uchar, or widechar that is not in a specified string.

MEMVERIFYR (p , n , x)

p
Address of buffer to be searched.

n
Length of buffer to be searched.

x
String-expression.

The buffer length must be nonnegative and must have a computational type. The buffer length is
converted to type size_t.

The string-expression x must have type CHARACTER (including PICTURE), GRAPHIC, UCHAR, or
WIDECHAR. The buffer length is interpreted as the number of units of that string type.

The address p and the length n specify the "string" in which to search for any character, graphic, uchar, or
widechar that does not appear in x.

If either the buffer length n is zero or x is the null string, the result is zero.

If all the characters, graphics, uchars, or widechars in the buffer do appear in x, the result is zero.

Example

 dcl cb(128*1024) char(1);
 dcl wb(128*1024) widechar(1);
 dcl pos fixed bin(31);

 /* 128K bytes searched from the right for a non-numeric */
 pos = memverify(addr(cb), stg(cb), '012345789');

 /* 256K bytes searched from the right for the a non-blank widechar */
 pos = memverify(addr(wb), stg(wb), '0020'wx);

MICROSECS
MICROSECS returns a FIXED BINARY(63) value that is the number of microseconds corresponding to the
date d.

MICROSECS

(

d
, p

, w

)

d
Specifies a string expression representing a date. If present, d specifies the input date as a character
string representing the date/time specified in the pattern p. If d is omitted, it is assumed to be the
value returned by TIMESTAMP().

d must have a computational type and should have character type. If not, it is converted to character.

p
Specifies one of the supported date/time patterns. If p is omitted, it is assumed to be the TIMESTAMP
pattern, namely 'YYYY-MM-DD-HH.MI.SS.999999'.

MEMVERIFYR

492 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

p must have a computational type and should have character type. If not, it is converted to character.

w
Specifies an expression (such as 1950) that can be converted to an integer. If negative, it specifies an
offset to be subtracted from the value of the year when the code runs. If omitted, w defaults to the
value specified in the WINDOW compile-time option.

The allowed patterns are listed in Table 65 on page 384. For an explanation of Lilian format, see “Date/
time built-in functions” on page 382.

MICROSECSTODATE
MICROSECSTODATE returns a NONVARYING character string, which contains the date in a specified date/
time pattern. The specified date/time pattern corresponds to the number of microseconds.

MICROSECSTODATE (m
, p

, w

)

m
Specifies the number of microseconds (in Lilian format). m must have a computational type and is
converted to FIXED BIN(63) if necessary.

p
Specifies one of the supported date/time patterns. If p is omitted, it is assumed to be the TIMESTAMP
pattern, namely 'YYYY-MM-DD-HH.MI.SS.999999'.

w
Specifies an expression (such as 1950) that can be converted to an integer. If negative, it specifies an
offset to be subtracted from the value of the year when the code runs. If omitted, w defaults to the
value specified in the WINDOW compile-time option.

The allowed patterns are listed in Table 65 on page 384. For an explanation of Lilian format, see “Date/
time built-in functions” on page 382.

MICROSECSTODAYS
MICROSECSTODAYS returns a FIXED BINARY(31) value that represents the number of microseconds x
converted to days, ignoring incomplete days.

MICROSECSTODAYS( x)

x
An expression that specifies the number of microseconds. The value for x must have computational
type and will be converted to FIXED BINARY(63) if necessary.

MICROSECSTODAYS(x) is the same as x/(24*60*60*1_000_000).

For an example, see “SECS” on page 543.

MIN
MIN returns the smallest value from a set of one or more expressions.

MIN(x ,

,

y)

MICROSECSTODATE

Chapter 18. Built-in functions, pseudovariables, and subroutines 493

x and y
Expressions.

All the arguments must be real. The result is real with the common base and scale of the arguments.

The precision of the result is the same as that described in “MAX” on page 480.

The maximum number of arguments allowed is 64.

If all the arguments are UNSIGNED FIXED BIN, then the result is UNSIGNED FIXED BIN.

MINDATE
MINDATE returns a character string containing the earliest date/time value corresponding to a specified
date/time pattern.

MINDATE('YYYY-MM-DD-HH.MI.SS.999999') returns the value '1582-10-14-00.00.00.000000' under the
NONULLDATE compiler option and '0001-01-01-00.00.00.000000' under the NULLDATE compiler option.

MINDATE( p)

p
Specifies one of the supported date/time patterns.

The allowed date/time patterns are listed in Table 65 on page 384.

MINEXP
MINEXP returns a FIXED BINARY(31,0) value that is the minimum value that EXPONENT(x) can assume.

MINEXP( x)

x
Expression. x must have the REAL and FLOAT attributes.

MINEXP(x) is a constant and can be used in restricted expressions.

Example (Intel values)

 minexp(x) = -125 for x float bin(p), p <= 21
 minexp(x) = -1021 for x float bin(p), 21 < p <= 53
 minexp(x) = -16831 for x float bin(p), 53 < p

 minexp(x) = -125 for x float dec(p), p <= 6
 minexp(x) = -1021 for x float dec(p), 6 < p <= 16
 minexp(x) = -16831 for x float dec(p), 16 < p

Example (AIX values)

 minexp(x) = -125 for x float bin(p), p <= 21
 minexp(x) = -1021 for x float bin(p), 21 < p <= 53
 minexp(x) = -968 for x float bin(p), 53 < p

 minexp(x) = -125 for x float dec(p), p <= 6
 minexp(x) = -1021 for x float dec(p), 6 < p <= 16
 minexp(x) = -968 for x float dec(p), 16 < p

Example (z/OS Hexadecimal values)

 minexp(x) = -64 for x float bin(p), p <= 21
 minexp(x) = -64 for x float bin(p), 21 < p <= 53
 minexp(x) = -50 for x float bin(p), 53 < p

 minexp(x) = -64 for x float dec(p), p <= 6

MINDATE

494 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 minexp(x) = -64 for x float dec(p), 6 < p <= 16
 minexp(x) = -50 for x float dec(p), 16 < p

Example (z/OS IEEE Binary Floating Point values)

 minexp(x) = -125 for x float bin(p), p <= 21
 minexp(x) = -1021 for x float bin(p), 21 < p <= 53
 minexp(x) = -16381 for x float bin(p), 53 < p

 minexp(x) = -125 for x float dec(p), p <= 6
 minexp(x) = -1021 for x float dec(p), 6 < p <= 16
 minexp(x) = -16381 for x float dec(p), 16 < p

Example (z/OS IEEE Decimal Floating Point values)

 minexp(x) = -94 for x float dec(p), p <= 7
 minexp(x) = -382 for x float dec(p), 7 < p <= 16
 minexp(x) = -6142 for x float dec(p), 16 < p

MINVAL
MINVAL returns the minimum value that its numeric operand could assume.

MINVAL ( x)

x
An expression. x must have the REAL attribute.

MAXVAL(x) >= x and MINVAL(x) <= x are always true.

The following table shows the relations among MAXVAL(x), MINVAL(x) and HUGE(x), when x is FLOAT.

Built-in functions Same as

MAXVAL(x) HUGE(x)

MINVAL(x) -HUGE(x)

For more information, see “HUGE” on page 453 and “TINY” on page 560.

MINVAL(x) is a constant and can be used in restricted expressions.

MOD
MOD returns the modular equivalent of the remainder of one value divided by another.

MOD returns the smallest nonnegative value, R, such that (x - R)/y = n.

In this example, the value for n is an integer value. That is, R is the smallest nonnegative value that must
be subtracted from x to make it divisible by y.

MOD( x , y)

x
Real expression.

y
Real expression. If y = 0, the ZERODIVIDE condition is raised.

MINVAL

Chapter 18. Built-in functions, pseudovariables, and subroutines 495

The result, R, is real with the common base and scale of the arguments. If the result is floating-point,
the precision is the greater of those of x and y. If the result is fixed-point, the precision is given by the
following:

 (min(n,p2-q2+max(q1,q2)),max(q1,q2))

In this example, (p1,q1) and (p2,q2) are the precisions of x and y, respectively, and n is N for FIXED
DECIMAL or M for FIXED BINARY.

If x and y are fixed-point with different scaling factors, the argument with the smaller scaling factor
is converted to the larger scaling factor before R is calculated. If the conversion fails, the result is
unpredictable.

If the result has the attributes FIXED BIN and all of the operands have the attributes UNSIGNED FIXED
BIN, then the result has the UNSIGNED attribute. If only some of the operands are UNSIGNED, then each
UNSIGNED operand is converted to SIGNED. If the operand is too large, the conversion would:

• Raise the SIZE condition if SIZE is enabled.
• Produce a negative value if SIZE is not enabled.

Example

The following example contrasts the MOD and REM built-in functions.

 rem(+10, +8) = 2
 mod(+10, +8) = 2

 rem(+10, -8) = 2
 mod(+10, -8) = 2

 rem(-10, +8) = -2
 mod(-10, +8) = 6

 rem(-10, -8) = -2
 mod(-10, -8) = 6

Related information
“REM” on page 534
REM returns the remainder of x divided by y.

MPSTR
MPSTR truncates a string at a logical boundary and returns a mixed character string.

It does not truncate a double-byte character between bytes. The length of the returned string is equal to
the length of the expression x, or to the value specified by y. The processing of the string is determined by
the rules selected by the expression r, as described below.

MPSTR( x , r
, y

)

x
Expression that yields the character string result. The value of x is converted to character if necessary.

r
Expression that yields a character result. The expression cannot be GRAPHIC and is converted to
character if necessary.

The expression r specifies the rules to be used for processing the string. The characters that can be
used in r and the rules for them are as follows:

V or v
Validates the mixed string x and returns a mixed string.

MPSTR

496 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

S or s
Removes any null DBCS strings, creates a new string, and returns a mixed string.

If both V and S are specified, V takes precedence over S, regardless of the order in which they were
specified.

If S is specified without V, the string x is assumed to be a valid string. If the string is not valid,
undefined results occur.

Note: The parameter r is ignored on Intel and AIX.

y
Expression. If necessary, y is converted to a real fixed-point binary value. If y is omitted, the length is
determined by the rules for type conversion. The value of y cannot be negative. If y = 0, the result is
the null character string. If y is greater than the length needed to contain x, the result is padded with
blanks. If y is less than the length needed to contain x, the result is truncated by discarding excess
characters from the right (if they are SBCS characters), or by discarding as many DBCS characters
(2-byte pairs) as needed.

MULTIPLY
MULTIPLY returns the product of x and y, with a precision specified by p and q.

If both operands are FIXED and at least one is FIXED BIN, then the base, precision, and scale are
determined by the PRECTYPE compiler option. Otherwise, the base, precision, and scale are determined
by the rules for expression evaluation. The mode is REAL if both operands are REAL; otherwise, it is
COMPLEX.

MULTIPLY( x , y , p
, q

)

x and y
Expressions.

p
Restricted expression that specifies the number of digits to be maintained throughout the operation.

q
Restricted expression that specifies the scaling factor of the result. For a fixed-point result, if q is
omitted, a scaling factor of zero is assumed. For a floating-point result, q must be omitted.

Note that when applied to FIXED DECIMAL, then if the mathematical result is too big for the specified
precision p but less than the maximum implementation value,

• if SIZE is disabled, the FIXEDOVERFLOW condition will not be raised and the result will be truncated
• if SIZE is enabled, the SIZE condition will be raised

Note that the above text is false when the non-default compiler option DECIMAL(FOFLONMULT) is in
effect. In that case, FIXEDOVERFLOW will be raised if SIZE is disabled (and the result is too big).

NULL
NULL returns the null pointer value. The null pointer value does not identify any generation of a variable.
The null pointer value can be assigned to and compared with handles. The null pointer value can be
converted to OFFSET by assignment of the built-in function value to an offset variable.

NULL

()

MULTIPLY

Chapter 18. Built-in functions, pseudovariables, and subroutines 497

NULLENTRY
NULLENTRY returns a limited entry that has a null value.

NULLENTRY

()

NULLENTRY can be assigned to or compared with any other entry variable.

You can use NULLENTRY to initialize an entry variable in static storage.

You cannot use NULLENTRY as one of the arguments to the PLISRTA, PLISRTB, PLISRTC or PLISRTD
built-in functions.

ENTRYADDR(NULLENTRY) returns the same value as SYSNULL.

OFFSET
OFFSET returns an offset value derived from a pointer reference x and relative to an area y. If x is the null
pointer value, the null offset value is returned.

OFFSET (x , y)

x
Pointer reference. It must identify a generation of a based variable within the area y, or be the null
pointer value.

y
Area reference.

If x is an element reference, y must be an element variable.

OFFSETADD
OFFSETADD returns the sum of the arguments.

OFFSETADD( x , y)

x
Expression. x must be specified as OFFSET.

y
Expression. y must have a computational type and is converted to FIXED BINARY.

OFFSETDIFF
OFFSETDIFF returns a FIXED BIN value that is the arithmetic difference between the arguments.

The return value has type FIXED BIN(31) under OFFSETSIZE(4) or type FIXED BIN(63) under
OFFSETSIZE(8).

OFFSETDIFF( x , y)

x and y
Expressions. Both must be specified as OFFSET.

NULLENTRY

498 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

OFFSETSUBTRACT
OFFSETSUBTRACT is equivalent to OFFSETADD(x,-y).

OFFSETSUBTRACT( x , y)

x
Expressions. x must be specified as OFFSET.

y
Expression. y must have a computational type and is converted to FIXED BINARY.

OFFSETVALUE
OFFSETVALUE returns an offset value that is the converted value of x.

OFFSETVALUE( x)

x
Expression. x must have a computational type and is converted to FIXED BINARY.

OMITTED
OMITTED returns a BIT(1) value that is '1'B if the parameter named x was omitted in the invocation to its
containing procedure.

OMITTED( x)

x
Level-1 unsubscripted parameter with the BYADDR attribute.

Note: This argument must be declared as OPTIONAL in the corresponding ENTRY declaration in the
calling code.

ONACTUAL
ONACTUAL returns a nonvarying character string whose value is the "actual" value of an ASSERT
COMPARE statement that raised the ASSERTION condition. If the expression has GRAPHIC or WIDECHAR
type, a null string is returned.

ONACTUAL

()

It is in context in an ON-unit for the ASSERTION condition, or for the ERROR or FINISH condition raised as
the implicit action for an ASSERTION condition.

If it is used out of context, a null string is returned.

ONAREA
ONAREA returns a character string whose value is the name of the AREA reference for which an AREA
condition is raised. If the reference includes DBCS names, the string returned is a mixed character string.
It is in context in an ON-unit (or any of its dynamic descendants) for the AREA condition, or for the ERROR
or FINISH condition raised as the implicit action for an AREA condition.

OFFSETSUBTRACT

Chapter 18. Built-in functions, pseudovariables, and subroutines 499

ONAREA

()

If the ONAREA built-in function is used out of context, a null string is returned.

If the AREA reference is excessively long or complicated, a null string is returned.

ONCHAR
ONCHAR returns a character(1) string containing the character that caused the CONVERSION condition
to be raised. It is in context in an ON-unit (or any of its dynamic descendants) for the CONVERSION
condition or for the ERROR or FINISH condition raised as the implicit action for the CONVERSION
condition.

ONCHAR

()

If the ONCHAR built-in function is used out of context, a blank is returned.

ONCHAR pseudovariable
The ONCHAR pseudovariable sets the current value of the ONCHAR built-in function.

The element value assigned to the pseudovariable is converted to a character value of length 1. The
new character is used when the conversion is attempted again. (See conversions in Chapter 4, “Data
conversion,” on page 75.)

ONCHAR

()

The pseudovariable must not be used out of context.

ONCODE
The ONCODE built-in function provides a fixed-point binary value that depends on the cause of the last
condition.

ONCODE can be used to distinguish between the various circumstances that raise a particular condition—
for instance, the ERROR condition. For codes corresponding to the conditions and errors detected, refer to
the specific condition.

ONCODE returns a real fixed-point binary value that is the condition code. It is in context in any ON-unit or
its dynamic descendant. All condition codes are defined in Messages and Codes.

ONCODE

()

If ONCODE is used out of context, zero is returned.

ONCHAR

500 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

ONCONDCOND
ONCONDCOND returns a nonvarying character string whose value is the name of the condition for which a
CONDITION condition is raised.

If the name is a DBCS name, it will be returned as a mixed character string. It is in context in the following
circumstances:

• In a CONDITION ON-unit, or any of its dynamic descendants
• In an ANYCONDITION ON-unit that traps a CONDITION condition, or any dynamic descendants of such

an ON-unit.

ONCONDCOND

()

If ONCONDCOND is used out of context, a null string is returned.

ONCONDID
ONCONDID (short for ON-condition identifier) returns a FIXED BINARY(31,0) value that identifies the
condition being handled by an ON-unit. It is in context in any ON-unit or one of its dynamic descendants.

ONCONDID

()

The values returned by ONCONDID are given in the following DECLARE statement:

 declare (condid_area value(1),
 condid_attention value(2),
 condid_condition value(3),
 condid_conversion value(4),
 condid_endfile value(5),
 condid_endpage value(6),
 condid_error value(7),
 condid_finish value(8),
 condid_fixedoverflow value(9),
 condid_invalidop value(10),
 condid_key value(11),
 condid_name value(12),
 condid_overflow value(13),
 condid_record value(14),
 condid_size value(15),
 condid_storage value(16),
 condid_stringrange value(17),
 condid_stringsize value(18),
 condid_subscriptrange value(19),
 condid_transmit value(20),
 condid_undefinedfile value(21),
 condid_underflow value(22),
 condid_zerodivide value(23),
 condid_assertion value(24),
) fixed bin(31);

If ONCONDID is used out of context, a value of zero is returned.

ONCOUNT
ONCOUNT returns an unscaled REAL FIXED BINARY value specifying the number of conditions that
remain to be handled when an ON-unit is entered.

It is in context in any ON-unit, or any dynamic descendant of an ON-unit. (See “Multiple conditions” on
page 347.)

ONCONDCOND

Chapter 18. Built-in functions, pseudovariables, and subroutines 501

ONCOUNT

()

If ONCOUNT is used out of context, zero is returned.

The BIFPREC compiler option determines the precision of the result returned.

ONEXPECTED
ONEXPECTED returns a nonvarying character string whose value is the "expected" value of an ASSERT
COMPARE statement that raised the ASSERTION condition. If the expression has GRAPHIC or WIDECHAR
type, a null string is returned.

ONEXPECTED

()

It is in context in an ON-unit for the ASSERTION condition, or for the ERROR or FINISH condition raised as
the implicit action for an ASSERTION condition.

If it is used out of context, a null string is returned.

ONFILE
ONFILE returns a character string whose value is the name of the file for which an input or output
condition is raised.

If the name is a DBCS name, it is returned as a mixed character string. It is in context in an ON-unit (or any
of its dynamic descendants) for an input or output condition, or for the ERROR or FINISH condition raised
as the implicit action for an input or output condition.

ONFILE

()

If ONFILE is used out of context, a null string is returned.

ONGSOURCE
ONGSOURCE returns a graphic string containing the DBCS character that caused the CONVERSION
condition to be raised.

It is in context in an ON-unit (or any of its dynamic descendants) for the CONVERSION condition or for the
ERROR or FINISH condition raised as the implicit action for a CONVERSION condition.

ONGSOURCE

()

If the ONGSOURCE built-in function is used out of context, a null GRAPHIC string is returned.

ONGSOURCE pseudovariable
The ONGSOURCE pseudovariable sets the current value of the ONGSOURCE built-in function.

The element value assigned to the pseudovariable is converted graphic. The string is used when the
conversion is attempted again.

ONEXPECTED

502 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

ONGSOURCE

()

The pseudovariable must not be used out of context.

ONHBOUND
ONHBOUND returns a REAL FIXED BIN(63) value that specifies the upper bound of an array for which
SUBSCRIPTRANGE has been raised.

ONHBOUND

()

If ONHBOUND is used out of context, zero is returned.

If the following code is run, then ONHBOUND would return 4.

 dcl a(3,2:4) fixed bin(31) init((*) 0);
 dcl jx fixed bin(31);
 dcl value fixed bin(31);

 jx = 5;
 (subrg): value = a(1,jx);

ONJSONNAME
ONJSONNAME returns a nonvarying character string containing the name for which no match was found
in a JSONGETMEMBER or JSONGETVALUE call.

ONJSONNAME

()

It is in context in an ON-unit for the CONFORMANCE condition raised when a mismatched name is found
in a JSONGETMEMBER or JSONGETVALUE call, or for the ERROR or FINISH condition raised as the
implicit action for such a CONFORMANCE condition.

If it is used out of context, a null string is returned.

ONKEY
ONKEY returns a character string whose value is the key of the record that raised an input/output
condition.

For indexed files, if the key is GRAPHIC, the string is returned as a mixed character string. ONKEY is in
context for the following:

• An ON-unit, or any of its dynamic descendants
• Any input/output condition, except ENDFILE
• The ERROR or FINISH condition raised as implicit action for an input/output condition.

ONKEY is always set for operations on a KEYED file, even if the statement that raised the condition does
not specified the KEY, KEYTO, or KEYFROM options.

ONHBOUND

Chapter 18. Built-in functions, pseudovariables, and subroutines 503

ONKEY

()

The result of specifying ONKEY is:

• For any input/output condition (other than ENDFILE), or for the ERROR or FINISH condition raised as
implicit action for these conditions, the result is the value of the recorded key from the I/O statement
causing the error.

• For relative data sets, the result is a character string representation of the relative record number. If
the key was incorrectly specified, the result is the last 8 characters of the source key. If the source key
is less than 8 characters, it is padded on the right with blanks to make it 8 characters. If the key was
correctly specified, the character string consists of the relative record number in character form padded
on the left with blanks, if necessary.

• For a REWRITE statement that attempts to write an updated record on to an indexed data set when the
key of the updated record differs from that of the input record, the result is the value of the embedded
key of the input record.

If ONKEY is used out of context, a null string is returned.

ONLBOUND
ONLBOUND returns a REAL FIXED BIN(63) value that specifies the lower bound of an array for which
SUBSCRIPTRANGE has been raised.

ONLBOUND

()

If ONLBOUND is used out of context, zero is returned.

If the following code is run, then ONLBOUND would return 2.

 dcl a(3,2:4) fixed bin(31) init((*) 0);
 dcl jx fixed bin(31);
 dcl value fixed bin(31);

 jx = 5;
 (subrg): value = a(1,jx);

ONLINE
ONLINE returns a FIXED BIN(31) value which is the line number in the source in which a condition was
raised.

ONLINE

()

The source program must have been compiled with the GONUMBER option, and on Windows it must also
have been linked with the /debug option.

If ONLINE is used out of context, a value of zero is returned.

ONLOC
ONLOC is a synonym for ONPROC.

If ONLOC is used out of context, a null string is returned.

ONLBOUND

504 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Related information
“ONPROCEDURE” on page 505
ONPROCEDURE returns the name of a procedure in which a condition is raised.

ONOFFSET
ONOFFSET returns a FIXED BIN(31) value which is the offset from the start of the user procedure (or
BEGIN block) in which a condition was raised.

ONOFFSET

()

If ONOFFSET is used out of context, a value of zero is returned.

ONOPERATOR
ONOPERATOR returns a CHAR(2) string whose value is the operator in an ASSERT COMPARE statement
that raised an ASSERTION condition.

ONOPERATOR

()

The ONOPERATOR built-in function is in context in an ON-unit for the ASSERTION condition when raised
by an ASSERT COMPARE statement, or for the ERROR or FINISH condition raised as the implicit action for
an ASSERTION condition.

If an ASSERT COMPARE statement raises the ASSERTION condition, but does not explicitly specify an
operator in its COMPARE clause, then the ONOPERATOR built-in function will return the implicit operator
value 'EQ'.

If the ONOPERATOR built-in function is used out of context, a null string is returned.

ONPACKAGE
ONPACKAGE returns a nonvarying character string containing the name of the package where the ASSERT
statement that raised the ASSERTION condition is invoked.

ONPACKAGE

()

It is in context in an ON-unit for the ASSERTION condition, or for the ERROR or FINISH condition raised as
the implicit action for an ASSERTION condition.

If it is used out of context, a null string is returned.

ONPROCEDURE
ONPROCEDURE returns the name of a procedure in which a condition is raised.

ONPROCEDURE

()

Abbreviation: ONPROC

ONOFFSET

Chapter 18. Built-in functions, pseudovariables, and subroutines 505

ONPROCEDURE always returns the leftmost name of a multiple label specification, regardless of which
name appears in the CALL or GOTO statement. If the name is a DBCS name, it is returned as a mixed-
character string. It is in context in any ON-unit, or in any of its dynamic descendants.

If ONPROCEDURE is used out of context, a null string is returned.

ONSOURCE
ONSOURCE returns a character string whose value is the contents of the field that was being processed
when the CONVERSION condition was raised.

It is in context in an ON-unit (or any of its dynamic descendants) for the CONVERSION condition or for the
ERROR or FINISH condition raised as the implicit action for a CONVERSION condition.

ONSOURCE

()

If ONSOURCE is used out of context, a null string is returned.

If the source in a failed conversion is a COMPLEX value, then ONSOURCE() will show only the REAL or
IMAG half of that value.

ONSOURCE pseudovariable
The ONSOURCE pseudovariable sets the current value of the ONSOURCE built-in function.

The element value assigned to the pseudovariable is converted to a character string and, if necessary, is
padded on the right with blanks or truncated to match the length of the field that raised the CONVERSION
condition. The string is used when the conversion is attempted again.

ONSOURCE

()

When conversion is retried, the string assigned to the pseudovariable is processed as a single data item.
For this reason, the error correction process must not assign a string containing more than one data item
when the conversion occurs during the execution of a GET LIST or GET DATA statement. The presence of
blanks or commas in the string could raise CONVERSION again.

The pseudovariable must not be used out of context.

If ONSOURCE is not a binary constant, then the ONSOURCE pseudovariable must not set it to one. For
example, if ONSOURCE() is ’ERR’, you must must not set ONSOURCE() to ’0’B.

ONSUBCODE
ONSUBCODE returns a FIXED BINARY(31,0) value that gives more information about an I/O, JSON, or
conversion error that occurred.

ONSUBCODE()

For an I/O error, ONSUBCODE corresponds to the SUBCODE1 values documented for messages
IBM0236I and IBM0265I. The SUBCODE1 values are defined in Messages and Codes.

For JSON built-in functions, when the ERROR condition is raised, ONSUBCODE returns the index of the
invalid character.

If a JSON or Unicode CONVERSION condition is raised, ONSUBCODE returns the index of the invalid
character.

ONSOURCE

506 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

ONSUBCODE2
ONSUBCODE2 returns a FIXED BIN(31) value that gives more information about an I/O error that has
occurred.

ONSUBCODE2()

ONSUBCODE2 corresponds to the SUBCODE2 values documented for messages IBM0236I and
IBM0265I. These SUBCODE2 values are defined in Messages and Codes.

A SUBCODE2 value consists of eight hexadecimal digits xxxxyyyy, where xxxx is Register 15 and yyyy is
the reason code. The return and reason codes are documented in VSAM Macro Instructions.

ONSUBSCRIPT
ONSUBSCRIPT returns a REAL FIXED BIN(63) value that specifies the invalid array index which caused
SUBSCRIPTRANGE to be raised.

ONSUBSCRIPT

()

If ONSUBSCRIPT is used out of context, zero is returned.

If the following code is run, then ONSUBSCRIPT would return 5.

 dcl a(3,2:4) fixed bin(31) init((*) 0);
 dcl jx fixed bin(31);
 dcl value fixed bin(31);

 jx = 5;
 (subrg): value = a(1,jx);

ONTEXT
ONTEXT returns a nonvarying character string containing the value of the TEXT clause of the ASSERT
statement that raised the ASSERTION condition. If the ASSERT statement had no TEXT clause, a null
string is returned.

ONTEXT

()

It is in context in an ON-unit for the ASSERTION condition, or for the ERROR or FINISH condition raised as
the implicit action for an ASSERTION condition.

If it is used out of context, a null string is returned.

ONUCHAR
ONUCHAR returns a UCHAR(1) string containing the UTF-8 data that caused a CONVERSION condition. It
is in context in an ON-unit (or any of its dynamic descendants) for the CONVERSION condition or for the
ERROR or FINISH condition raised as the implicit action for the CONVERSION condition.

ONUCHAR

()

If the ONUCHAR built-in function is used out of context, a UTF-8 blank is returned.

ONSUBCODE2

Chapter 18. Built-in functions, pseudovariables, and subroutines 507

ONUCHAR pseudovariable
The ONUCHAR pseudovariable sets the current value of the ONUCHAR built-in function.

The element value assigned to the pseudovariable is converted to a UCHAR value of length 1. This UCHAR
is used when the conversion is attempted again. (See conversions in Chapter 4, “Data conversion,” on
page 75.)

ONUCHAR

()

The pseudovariable must not be used out of context.

ONUSOURCE
ONUSOURCE returns a UCHAR string whose value is the contents of the field that was being processed
when a CONVERSION condition was raised. It is in context in an ON-unit (or any of its dynamic
descendants) for the CONVERSION condition or for the ERROR or FINISH condition raised as the implicit
action for a CONVERSION condition.

ONUSOURCE

()

If the ONUSOURCE built-in function is used out of context, a null string is returned.

ONUSOURCE pseudovariable
The ONUSOURCE pseudovariable sets the current value of the ONUSOURCE built-in function.

The element value assigned to the pseudovariable is converted to a UCHAR string and, if necessary, is
padded on the right with UCHAR blanks or truncated to match the length of the field that raised the
CONVERSION condition. The string is used when the conversion is attempted again. (See conversions in
Chapter 4, “Data conversion,” on page 75.)

ONUSOURCE

()

The pseudovariable must not be used out of context.

ONWCHAR
ONWCHAR returns a widechar(1) string containing the widechar that caused the CONVERSION condition
to be raised.

It is in context in an ON-unit (or any of its dynamic descendants) for the CONVERSION condition or for the
ERROR or FINISH condition raised as the implicit action for the CONVERSION condition.

ONWCHAR

()

If the ONWCHAR built-in function is used out of context, a widechar blank is returned.

ONUCHAR pseudovariable

508 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

ONWCHAR pseudovariable
The ONWCHAR pseudovariable sets the current value of the ONWCHAR built-in function.

The element value assigned to the pseudovariable is converted to a widechar value of length 1. The
new widechar is used when the conversion is attempted again. (See conversions in Chapter 4, “Data
conversion,” on page 75.)

ONWCHAR

()

The pseudovariable must not be used out of context.

ONWSOURCE
ONWSOURCE returns a WIDECHAR string whose value is the contents of the field that was being
processed when the CONVERSION condition was raised.

It is in context in an ON-unit (or any of its dynamic descendants) for the CONVERSION condition or for the
ERROR or FINISH condition raised as the implicit action for a CONVERSION condition.

ONWSOURCE

()

If ONWSOURCE is used out of context, a null string is returned.

ONWSOURCE pseudovariable
The ONWSOURCE pseudovariable sets the current value of the ONWSOURCE built-in function.

The element value assigned to the pseudovariable is converted to a widechar string and, if necessary, is
padded on the right with widechar blanks or truncated to match the length of the field that raised the
CONVERSION condition. The string is used when the conversion is attempted again.

ONWSOURCE

()

When conversion is retried, the string assigned to the pseudovariable is processed as a single data item.
For this reason, the error correction process must not assign a string containing more than one data item
when the conversion occurs during the execution of a GET LIST or GET DATA statement. The presence of
blanks or commas in the string could raise CONVERSION again.

The pseudovariable must not be used out of context.

ORDINALNAME
ORDINALNAME returns a nonvarying character string that is the member of the set associated with the
ordinal x.

ORDINALNAME( x)

x
Reference. It must have ordinal type.

ONWCHAR pseudovariable

Chapter 18. Built-in functions, pseudovariables, and subroutines 509

ORDINALs cannot be used in computational expressions and cannot be converted to character, but
ORDINALNAME provides a way to obtain a displayable value for an ORDINAL and can be very useful in
debugging.

ORDINALPRED
ORDINALPRED returns an ordinal that is the next lower value that the ordinal x could assume.

ORDINALPRED( x)

x
Reference. It must have ordinal type.

The returned ordinal has the same type as ordinal x.

ORDINALSUCC
ORDINALSUCC returns an ordinal that is the next higher value the ordinal x could assume.

ORDINALSUCC( x)

x
Reference. It must have ordinal type.

The returned ordinal has the same type as ordinal x.

PACKAGENAME
PACKAGENAME returns a nonvarying character string containing the name of the package in which it is
invoked.

If there is no package in the current compilation unit, PACKAGENAME returns the name of the outermost
procedure.

PACKAGENAME

()

PAGENO
PAGENO returns an unscaled REAL FIXED BIN(31) value that is the current page number associated with
file x.

PAGENO( x)

x
File reference. The file must be open and have the PRINT attribute.

If the file is not a PRINT file, the ERROR condition is raised.

The BIFPREC compiler option determines the precision of the result returned.

ORDINALPRED

510 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

PICSPEC
PICSPEC casts data from CHARACTER to PICTURE type.

PICSPEC (x , y)

x
Expression.

y
Picture specification.

The expression x must be CHARACTER NONVARYING with a length known at compile time.

y must be a character literal that specifies a valid PICTURE with an external representation that has the
same length as the first argument.

The result has the PICTURE type specified by the second argument.

Unlike the EDIT built-in function, no conversion is done and no checks are made to see if the first
argument holds data valid for the picture.

Like the UNSPEC built-in function, only the "type" of the data is changed.

So, for example given PICSPEC(x,'(5)9'), x must be CHAR(5) (since while the picture specification '(5)9'
was 4 characters in length, its external representation requires 5 characters), but x will not be checked to
see if it actually contains 5 numeric digits.

A statement of the N = N + PICSPEC(X,'(5)9') will not cause x to be converted from CHAR to PIC'(5)9',
a conversion that would require a library call, but will cause the contents of x to be treated as if it were
declared as PIC'(5)9'.

PLACES
PLACES returns a FIXED BINARY(31,0) value that is the model-precision used to represent the floating-
point expression x.

PLACES( x)

x
Expression. x must be declared REAL FLOAT.

PLACES(x) is a constant and can be used in restricted expressions.

Example (Intel values)

 places(x) = 24 for x float bin(p), p <= 21
 places(x) = 53 for x float bin(p), 21 < p <= 53
 places(x) = 64 for x float bin(p), 53 < p

 places(x) = 24 for x float dec(p), p <= 6
 places(x) = 53 for x float dec(p), 6 < p <= 16
 places(x) = 64 for x float dec(p), 16 < p

Example (AIX values)

 places(x) = 024 for x float bin(p), p <= 21
 places(x) = 053 for x float bin(p), 21 < p <= 53
 places(x) = 106 for x float bin(p), 53 < p

 places(x) = 024 for x float dec(p), p <= 6
 places(x) = 053 for x float dec(p), 6 < p <= 16
 places(x) = 106 for x float dec(p), 16 < p

PICSPEC

Chapter 18. Built-in functions, pseudovariables, and subroutines 511

Example (z/OS Hexadecimal values)

 places(x) = 6 for x float bin(p), p <= 21
 places(x) = 14 for x float bin(p), 21 < p <= 53
 places(x) = 28 for x float bin(p), 53 < p

 places(x) = 6 for x float dec(p), p <= 6
 places(x) = 14 for x float dec(p), 6 < p <= 16
 places(x) = 28 for x float dec(p), 16 < p

Example (z/OS IEEE Binary Floating Point values)

 places(x) = 24 for x float bin(p), p <= 21
 places(x) = 53 for x float bin(p), 21 < p <= 53
 places(x) = 113 for x float bin(p), 53 < p

 places(x) = 24 for x float dec(p), p <= 6
 places(x) = 53 for x float dec(p), 6 < p <= 16
 places(x) = 113 for x float dec(p), 16 < p

Example (z/OS IEEE Decimal Floating Point values)

 places(x) = 7 for x float dec(p), p <= 7
 places(x) = 16 for x float dec(p), 7 < p <= 16
 places(x) = 34 for x float dec(p), 16 < p

PLIASCII
PLIASCII converts z bytes of an EBCDIC value at location y to an ASCII value at location x.

The storage at location x and y must not overlap unless they specify the same location.

PLIASCII( x , y , z)

x and y
Expressions with type POINTER or OFFSET. If the type is OFFSET, the expression must be an OFFSET
variable declared with the AREA attribute.

z
Expression. It must have a computational type and is converted to type size_t.1

PLIATTN
PLIATTN causes the ATTENTION condition to be raised at that point in the code. It gives you explicit
control over where the compiler inserts attention breakpoints.

PLIATTN

()

The INTERRUPT option has no effect on the code that is generated for a call to this subroutine.

PLICANC
PLICANC allows you to cancel the automatic restart facility.

PLICANC

()

For more information about using PLICANC, see the Programming Guide.

PLIASCII

512 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

PLICKPT
PLICKPT allows you to take a checkpoint for later restart.

PLICKPT( argument
, argument

)

For more information about using PLICKPT, see the Programming Guide.

PLIDELETE
PLIDELETE frees the storage associated with the handle x.

PLIDELETE( x)

x
Handle expression.

PLIDELETE(x) is the best way to free the storage associated with a handle; this storage is usually acquired
by the NEW type function.

CALL PLIDELETE(x) is equivalent to CALL PLIFREE(PTRVALUE(x)).

PLIDUMP
PLIDUMP allows you to obtain a formatted dump of selected parts of storage that is used by your
program.

PLIDUMP( argument
, argument

)

For more information about using PLIDUMP, refer to the Programming Guide.

PLIEBCDIC
PLIEBCDIC converts z bytes of an ASCII value at location y to an EBCDIC value at location x.

The storage at location x and y must not overlap unless they specify the same location.

PLIEBCDIC( x , y , z)

x and y
Expressions with type POINTER or OFFSET. If the type is OFFSET, the expression must be an OFFSET
variable declared with the AREA attribute.

z
Expression. It must have a computational type and is converted to type size_t.1

PLIFILL
PLIFILL moves z copies of the byte y to the location x without any conversions, padding, or truncation.

PLIFILL( x , y , z)

PLICKPT

Chapter 18. Built-in functions, pseudovariables, and subroutines 513

x
Expression. x must be declared POINTER or OFFSET. If it is OFFSET, x must be declared with the
AREA attribute.

y
Must be declared CHARACTER(1) NONVARYING.

z
Expression. It is converted to type size_t 1.

Example

 dcl 1 Str1,
 2 B fixed bin(31),
 2 C pointer,
 2 * union,
 3 D char(4),
 3 E fixed bin(31),
 3 *,
 4 * char(3),
 4 F fixed bin(8) unsigned,
 2 * char(0)
 initial call plifill(addr(Str1), '00'x, stg(Str1));

PLIFREE
PLIFREE frees the heap storage associated with the pointer p that was allocated using the ALLOCATE
built-in function.

PLIFREE( p)

p
Locator expression.

PLIFREE is the opposite of ALLOCATE (ALLOC).

PLIMOVE
PLIMOVE moves z storage units (bytes) from location y to location x, without any conversions, padding, or
truncation.

Unlike the PLIOVER built-in subroutine, storage at locations x and y is assumed to be unique. If storage
overlaps, unpredictable results can occur.

PLIMOVE( x , y , z)

x and y
Expressions declared as POINTER or OFFSET. If the type is OFFSET, x or y must be declared with the
AREA attribute.

z
Expression. It must have a computational type and is converted to type size_t.1

Example

 dcl 1 Str1,
 2 B fixed bin(31),
 2 C pointer,
 2 * union,
 3 D char(4),
 3 E fixed bin(31),
 3 *,
 4 * char(3),
 4 F fixed bin(8) unsigned,

PLIFREE

514 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 2 * char(0);
 dcl 1 Template nonasgn static,
 2 * fixed bin(31) init(200),
 2 * pointer init(sysnull()),
 2 * char(4) init(''),
 2 * char(0);

 call plimove(addr(Str1), addr(Template), stg(Str1));

Related information
“PLIOVER” on page 515
PLIOVER moves z storage units (bytes) from location y to location x, without any conversions, padding, or
truncation. Unlike the PLIMOVE built-in subroutine, the storage at locations x and y can overlap.

PLIOVER
PLIOVER moves z storage units (bytes) from location y to location x, without any conversions, padding, or
truncation. Unlike the PLIMOVE built-in subroutine, the storage at locations x and y can overlap.

PLIOVER( x , y , z)

x and y
Expressions declared as POINTER or OFFSET. If the type is OFFSET, x or y must be declared with the
AREA attribute.

z
Expression. It must have a computational type and is converted to type size_t.1

Related information
“PLIMOVE” on page 514
PLIMOVE moves z storage units (bytes) from location y to location x, without any conversions, padding, or
truncation.

PLIPARSE
PLIPARSE parses a character string into substrings.

PLIPARSE( input

,

xn sn

, xn+1

)

There must at least 3 arguments and no more than 64.

The first argument is the input string to be parsed (which can be any expression with CHARACTER type).

The arguments after that input string consist of an even number of pairs with each pair consisting of

• an even number of pairs with each pair consisting of a target reference (or an *) and a separator
• an optional, last target argument that must be a reference (or *)

The first target argument after the first separator that is not found is assigned the remaining input and any
remaining target arguments are assigned the quotation marks.

Any target argument that is not an * must have CHARACTER type and must be ASSIGNABLE.

The separators must all have CHARACTER type.

Example 1

Given

 dcl x1 char(16) varying;
 dcl x2 char(16) varying;

PLIOVER

Chapter 18. Built-in functions, pseudovariables, and subroutines 515

 dcl x3 char(16) varying;
 dcl x4 char(16) varying;

 dcl s1 char value('KEY:');
 dcl s2 char value('--');
 dcl s3 char value('-');

 input = '31415KEY:0123--45678-9';

 call pliparse(input, x1, s1, x2, s2, x3, s3, x4);

the target arguments will have the following values

 x1 = '31415';
 x2 = '0123';
 x3 = '45678';
 x4 = '9';

Example 2

In this example, "input" differs from the example above in that there is no "--"

Given

 dcl x1 char(16) varying;
 dcl x2 char(16) varying;
 dcl x3 char(16) varying;
 dcl x4 char(16) varying;

 dcl s1 char value('KEY:');
 dcl s2 char value('--');
 dcl s3 char value('-');

 input = '31415KEY:0123-45678-9';

 call pliparse(input, x1, s1, x2, s2, x3, s3, x4);

the target arguments will have the following values

 x1 = '31415';
 x2 = '0123-45678-9';
 x3 = '';
 x4 = '';

Example 3

Given

 dcl x1 char(16) varying;
 dcl x2 char(16) varying;
 dcl x3 char(16) varying;
 dcl x4 char(16) varying;

 input = ' Alex Bruno';

 call pliparse(input, x1, ' ', x2, ' ', x3, ' ', x4);

the target arguments will have the following values

 x1 = '';
 x2 = 'Alex';
 x3 = '';
 x4 = 'Bruno';

Example 4

Given

 dcl x1 char(16) varying;
 dcl x2 char(16) varying;
 dcl x3 char(16) varying;
 dcl x4 char(16) varying;
 input = collapse(' Alex Bruno', ' ');

PLIPARSE

516 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 call pliparse(input, x1, ' ', x2, ' ', x3, ' ', x4);

the target arguments will have the following values

 x1 = 'Alex';
 x2 = 'Bruno';
 x3 = '';
 x4 = '';

PLIREST
PLIREST allows you to restart program execution.

PLIREST

()

For more information about using PLIREST, see the Programming Guide.

PLIRETC
PLIRETC allows you to set a return code that can be examined by the program that invoked this PL/I
program or by another PL/I procedure via the PLIRETV built-in function.

PLIRETC( x)

x
An expression yielding a FIXED BINARY(31,0) return code.

PLIRETV
PLIRETV returns a FIXED BINARY(31,0) value that is the PL/I return code.

PLIRETV

()

The value of the PL/I return code is the most recent value specified by a CALL PLIRETC statement.

PLISAXA
PLISAXA performs SAX-style parsing of an XML document that is located in a buffer in your program.

PLISAXA( e, p , x , n
, c

)

e
An event structure.

p
A pointer value or "token" that will be passed back to the parsing events.

x
The address of the buffer containing the input XML.

PLIREST

Chapter 18. Built-in functions, pseudovariables, and subroutines 517

n
The number of bytes of data in that buffer. It must have a computational type and is converted to type
size_t.1

c
A numeric expression specifying the purported codepage of that XML.

Note that if the XML is contained in a CHARACTER VARYING or WIDECHAR VARYING string, the
ADDRDATA built-in function should be used to obtain the address of the first data byte.

Also note that if the XML is contained in a WIDECHAR string, the value for the number of bytes is twice the
value returned by the LENGTH built-in function.

For more information, see the Programming Guide.

PLISAXB
PLISAXB performs SAX-style parsing of an XML document that is located in a file.

PLISAXB( e, p , x
, c

)

e
An event structure

p
A pointer value or "token" that will be passed back to the parsing events

x
A character string expression specifying the input file

c
A numeric expression specifying the purported codepage of that XML

For more information, see the Programming Guide.

PLISAXC
PLISAXC performs SAX-style parsing of an XML document that is located in one or more buffers in your
program.

PLISAXC( e, p , x , n
, c

)

e
An event structure.

p
A pointer value or "token" that will be passed back to the parsing events.

x
The address of the buffer containing the XML document.

n
The number of bytes of data in that buffer. It must have a computational type and is converted to type
size_t.1

c
A numeric expression specifying the codepage of that XML document.

PLISAXC uses the z/OS XML System Services parser and is supported only on z/OS.

For more information, see the Enterprise PL/I for z/OS Programming Guide.

PLISAXB

518 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

PLISAXD
PLISAXD provides SAX-style parsing with XML validation of an XML document.

PLISAXD( e, p , x , n, o
, c

)

e
An event structure.

p
A pointer value or "token" that will be passed back to the parsing events.

x
The address of s buffer that contains the XML document.

n
The number of bytes of data in that buffer. It must have a computational type and is converted to type
size_t.1

o
The address of a buffer that contains an Optimized Schema Representation (OSR).

c
A numeric expression specifying the codepage of that XML document.

PLISAXD uses the z/OS XML System Services parser and is supported only on z/OS.

For more information, see the chapter Using the PLISAXD XML parser in the Enterprise PL/I for z/OS
Programming Guide.

Note: An OSR is a preprocessed version of a schema. For more information about OSR, see the XML
System Services User’s Guide and Reference.

PLISRTA
PLISRTA sorts an input file to produce a sorted output file.

PLISRTA(

,

argument)

For more information, see the Programming Guide.

PLISRTB
PLISRTB sorts input records provided by an E15 PL/I exit procedure to produce a sorted output file.

PLISRTB(

,

argument)

For more information, see the Programming Guide.

PLISAXD

Chapter 18. Built-in functions, pseudovariables, and subroutines 519

PLISRTC
PLISRTC sorts an input file to produce sorted records that are processed by an E35 PL/I exit procedure.

PLISRTC(

,

argument)

For more information, see the Enterprise PL/I for z/OS Programming Guide.

PLISRTD
PLISRTD sorts input records provided by an E15 PL/I exit procedure to produce sorted records that are
processed by an E35 PL/I exit procedure.

PLISRTD(

,

argument)

For more information, see the Programming Guide.

PLISTCK
PLISTCK generates the corresponding store clock hardware instruction and returns the condition code set
by the instruction.

PLISTCK( x)

x
REAL UNSIGNED FIXED BIN(64) reference. It is set by the STCK instruction. For more details about
the STCK instruction, see the Principles of Operations manual.

PLISTCKE
PLISTCKE generates the corresponding store clock hardware instruction and returns the condition code
set by the instruction.

PLISTCKE( x)

x
CHAR(16) NONVARYING reference. It is set by the STCKE instruction. For more details about the
STCKE instruction, see the Principles of Operations manual.

PLISTCKELOCAL
PLISTCKELOCAL generates the corresponding store clock hardware instruction and adjusts the STCKE
value by subtracting the number of leap seconds from the STCKE value and then adding the time zone
difference to give the local time.

PLISTCKELOCAL( x)

x
CHAR(16) NONVARYING reference.

PLISRTC

520 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

It is set by the STCKE instruction and then adjusted. For more details about the STCKE instruction, see
the Principles of Operations manual.

PLISTCKEUTC
PLISTCKEUTC generates the corresponding store clock hardware instruction and adjusts the STCKE value
by subtracting the number of leap seconds to give the UTC time.

PLISTCKEUTC( x)

x
CHAR(16) NONVARYING reference.

It is set by the STCKE instruction and then adjusted. For more details about the STCKE instruction, see
the Principles of Operations manual.

PLISTCKF
PLISTCKF generates the corresponding store clock hardware instruction and returns the condition code
set by the instruction.

PLISTCKF( x)

x
REAL UNSIGNED FIXED BIN(64) reference. It is set by the STCKF instruction. For more details about
the STCKF instruction, see the Principles of Operations manual.

PLISTCKLOCAL
PLISTCKLOCAL generates the corresponding store clock hardware instruction and adjusts the STCK value
by subtracting the number of leap seconds from the STCK value and then adding the time zone difference
to give the local time.

PLISTCKLOCAL( x)

x
REAL UNSIGNED FIXED BINARY(64) reference.

It is set by the STCK instruction and then adjusted. For more details about the STCK instruction, see
the Principles of Operations manual.

PLISTCKP
PLISTCKP generates the corresponding Perform Timing Facility Function (PTFF) hardware instruction and
returns the condition code set by the instruction.

PLISTCKP( x)

x
REAL UNSIGNED FIXED BIN(64) reference.

It is set by the PTFF instruction. For more details about the PTFF instruction, see the Principles of
Operations manual.

PLISTCKEUTC

Chapter 18. Built-in functions, pseudovariables, and subroutines 521

PLISTCKPLOCAL
PLISTCKPLOCAL generates the corresponding Perform Timing Facility Function (PTFF) hardware
instruction and then adjusts the PTFF value by subtracting the number of leap seconds from the PTFF
value and then adding the time zone difference to give the local time. It returns the condition code set by
the instruction.

PLISTCKPLOCAL( x)

x
REAL UNSIGNED FIXED BIN(64) reference.

It is set by the PTFF instruction and then adjusted. For more details about the PTFF instruction, see
the Principles of Operations manual.

PLISTCKPUTC
PLISTCKPUTC generates the corresponding Perform Timing Facility Function (PTFF) hardware instruction
and adjusts the PTFF value by subtracting the number of leap seconds to give the UTC time. It returns the
condition code set by the instruction.

PLISTCKPUTC( x)

x
REAL UNSIGNED FIXED BIN(64) reference.

It is set by the PTFF instruction and then adjusted. For more details about the PTFF instruction, see
the Principles of Operations manual.

PLISTCKUTC
PLISTCKUTC generates the corresponding store clock hardware instruction and adjusts the STCK value by
subtracting the number of leap seconds to give the UTC time.

PLISTCKUTC( x)

x
REAL UNSIGNED FIXED BINARY(64) reference.

It is set by the STCK instruction and then adjusted. For more details about the STCK instruction, see
the Principles of Operations manual.

PLITRAN11
PLITRAN11 translates one-byte data from a source buffer to one-byte data in a target buffer.

PLITRAN11 (p , q , n , t)

p
Address of the target buffer.

q
Address of the source buffer.

n
Length of the source buffer.

PLISTCKPLOCAL

522 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

t
Address of the 256-byte translate table.

The buffer length must be nonnegative and must have a computational type. The buffer length is
converted to type size_t.1

The target buffer must be at least as large as the source buffer.

The translate table must be aligned on a doubleword boundary. The easiest way to force this alignment is
to add the attribute ALIGNED(8) to the declare of the table.

On z/OS, PLITRAN11 is implemented via inline code using the CU11 instruction.

PLITRAN12
PLITRAN12 translates one-byte data from a source buffer to two-byte data in a target buffer.

PLITRAN12 (p , q , n , t)

p
Address of the target buffer.

q
Address of the source buffer.

n
Length of the source buffer. The buffer length must be nonnegative and must have a computational
type. The buffer length is converted to type size_t.1

t
Address of the 512-byte translate table.

The target buffer must be at least twice as large as the source buffer.

The translate table must be aligned on a doubleword boundary. The easiest way to force this alignment is
to add the attribute ALIGNED(8) to the declare of the table.

On z/OS, PLITRAN12 is implemented via inline code using the CU12 instruction.

Example:

This table can be used to quickly transform a buffer to lower-case hex:

 dcl
 1 lowerhex(16) static nonasgn aligned(8)
 char(32) init (
 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
 '000102030405060708090a0b0c0d0e0f',
 '101112131415161718191a1b1c1d1e1f',
 '202122232425262728292a2b2c2d2e2f',
 '303132333435363738393a3b3c3d3e3f',
 '404142434445464748494a4b4c4d4e4f',
 '505152535455565758595a5b5c5d5e5f',
 '606162636465666768696a6b6c6d6e6f',
 '707172737475767778797a7b7c7d7e7f',
 '808182838485868788898a8b8c8d8e8f',
 '909192939495969798999a9b9c9d9e9f',
 'a0a1a2a3a4a5a6a7a8a9aaabacadaeaf',
 'b0b1b2b3b4b5b6b7b8b9babbbcbdbebf',
 'c0c1c2c3c4c5c6c7c8c9cacbcccdcecf',
 'd0d1d2d3d4d5d6d7d8d9dadbdcdddedf',
 'e0e1e2e3e4e5e6e7e8e9eaebecedeeef',
 'f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff');

 call plitran12(p, q, n, addr(lowerhex));

PLITRAN12

Chapter 18. Built-in functions, pseudovariables, and subroutines 523

PLITRAN21
PLITRAN21 translates two-byte data from a source buffer to one-byte data in a target buffer.

PLITRAN21 (p , q , n , t)

p
Address of the target buffer.

q
Address of the source buffer.

n
Length of the source buffer. The buffer length must be nonnegative and must have a computational
type. The buffer length is converted to type size_t.1

t
Address of the 64K-byte translate table.

The target buffer must be at least half as large as the source buffer.

The translate table must be aligned on a doubleword boundary. The easiest way to force this alignment is
to add the attribute ALIGNED(8) to the declare of the table.

On z/OS, PLITRAN21 is implemented via inline code using the CU21 instruction.

PLITRAN22
PLITRAN22 translates two-byte data from a source buffer to two-byte data in a target buffer.

PLITRAN22 (p , q , n , t)

p
Address of the target buffer.

q
Address of the source buffer.

n
Length of the source buffer. The buffer length must be nonnegative and must have a computational
type. The buffer length is converted to type size_t.1

t
Address of the 128K-byte translate table.

The target buffer must be at least as large as the source buffer.

The translate table must be aligned on a doubleword boundary. The easiest way to force this alignment is
to add the attribute ALIGNED(8) to the declare of the table.

On z/OS, PLITRAN22 is implemented via inline code using the CU22 instruction.

POINTER
POINTER returns a pointer value that identifies the generation specified by an offset reference x, in an
area specified by y. If x is the null offset value, the null pointer value is returned.

POINTER( x , y)

Abbreviation: PTR

PLITRAN21

524 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

x
Offset reference. It can be the null offset value. If it is not, x must identify a generation of a based
variable, but not necessarily in y. If it is not in y, the generation must be equivalent to a generation in y.

y
Area reference.

Generations of based variables in different areas are equivalent if, up to the allocation of the latest
generation, the variables have been allocated and freed the same number of times as each other.

POINTERADD
POINTERADD returns a pointer value that is the sum of its arguments.

POINTERADD( x , y)

Abbreviation: PTRADD

x
Pointer expression.

y
Expression that must have a computational type and is converted to FIXED BINARY(31,0).

POINTERADD can be used as a locator for a based variable.

POINTERADD can be used for subtraction by prefixing the operand to be subtracted with a minus sign.

There is no need to use POINTERADD to increment a pointer - you can simply increment the pointer as
you would an integer. For example, there is no need to write:

 p = pointeradd(p,2);

Instead, you could write either of the following equivalent statements:

 p = p + 2;
 p += 2;

However, POINTERADD can be useful in dereferencing the storage at a location offset from a pointer, as in
the following example:

 dcl x fixed bin(31), b based fixed bin(31);
 x = pointeradd(p,2)->b;

Note, however, since a locator in PL/I must be a reference, you cannot write

 x = (p + 2)->b;

POINTERDIFF
POINTERDIFF returns a size_t 1 result that is the difference between the two pointers x and y.

POINTERDIFF( x , y)

Abbreviation: PTRDIFF

x and y
Expressions declared as POINTER.

POINTERADD

Chapter 18. Built-in functions, pseudovariables, and subroutines 525

POINTERSUBTRACT
POINTERSUBTRACT is equivalent to POINTERADD(x,-y).

POINTERSUBTRACT( x , y)

Abbreviation: PTRSUBTRACT

x
Must be a pointer expression.

y
Expression that must have a computational type and is converted to FIXED BINARY(31,0).

POINTERVALUE
POINTERVALUE returns a pointer value that is the converted value of x.

POINTERVALUE( x)

Abbreviation: PTRVALUE

x
Expression that must have either the HANDLE attribute, or have a computational type. If x has a
computational type, it is converted to FIXED BINARY(31,0).

POINTERVALUE(x) can be used to initialize static pointer variables if x is a constant.

POLY
POLY returns a floating-point value that is an approximation of a polynomial formed from an one-
dimensional array expressions x. The returned value has the same attributes as the first argument.

POLY (x , y)

x
An array expression.

y
An element expression.

x must be REAL FLOAT and y is converted to the attributes of x, if necessary.

If x has lower bound 0 and upper bound n, the result is a classic polynomial of degree n in y with
coefficients given by x, i.e. the result is

 x(0) + x(1)*y + x(2)*y**2 + ... + x(n)*y**n

In the general case, where x has lower bound m and upper bound n, the result is the polynomial

 x(m) + x(m+1)*y + x(m+2)*y**2 + ... + x(n)*y**(n-m)

POINTERSUBTRACT

526 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

POPCNT
POPCNT returns a FIXED BIN value holding in each byte the number of bits equal to 1 in the
corresponding byte of x.

POPCNT( x)

x
Expression.

x must have the attributes REAL FIXED BIN with a scale factor of zero.

The result has the same precision as x.

The result has the same (UN)SIGNED attribute as x.

See the following examples of using POPCNT:

• POPCNT(‘01020304’xn) returns ‘01010201’xn.
• POPCNT(‘05060708’xn) returns '02020301'xn.
• If x has the attributes FIXED BIN(31), ISRL(POPCNT(x)*’01010101’xn,24) returns the number of

bits equal to 1 in x.

On z/OS, the POPCNT(x) built-in function requires an ARCH level of 9 or higher.

PRECISION
PRECISION returns the value of x, with a precision specified by p and q. The base, mode, and scale of the
returned value are the same as that of x.

PRECISION( x , p
, q

)

Abbreviation: PREC

x
Expression.

p
Restricted expression. p specifies the number of digits that the value of the expression x is to have
after conversion.

q
Restricted expression. It specifies the scaling factor of the result. For a fixed-point result, if p is given,
and q is omitted, a scaling factor of zero is the default. If q is specified and the result is FIXED BIN,
then q must be between 0 and p. For a floating-point result, q must be omitted.

PRECVAL
PRECVAL returns a FIXED BINARY(31) value giving the precision for a numeric expression.

PRECVAL( x)

x
A numeric expression.

For example, if x is declared as FIXED DEC(9,3), PRECVAL(x) returns 9.

POPCNT

Chapter 18. Built-in functions, pseudovariables, and subroutines 527

PRED
PRED returns a floating-point value that is the biggest representable number smaller than x. It has the
base, mode, and precision of x. OVERFLOW will be raised if there is no such number.

PRED( x)

x
REAL FLOAT expression.

PRED(TINY(X)) will return zero and will not raise UNDERFLOW.

PRESENT
PRESENT(x) returns a BIT(1) value that is '1'B if the parameter x was present in the invocation of its
containing procedure.

PRESENT( x)

x
Level-1 unsubscripted BYADDR parameter.

Note: This argument must be declared as OPTIONAL in the corresponding ENTRY declaration in the
calling code.

PROCEDURENAME
PROCEDURENAME returns a nonvarying character string containing the name of the procedure in which
this built-in function is invoked.

PROCEDURENAME ()

Abbreviation: PROCNAME

PROCEDURENAME always returns the leftmost name of a multiple label specification, regardless of which
name appears in the CALL or GOTO statement.

PROD
PROD returns the product of all the elements in x.

PROD( x)

x
Array expression. If the elements of x are strings, they are converted to fixed-point integer values.

If the elements of x are not fixed-point integer values or strings, they are converted to floating-point
and the result is floating-point.

The result has the precision of x, except that the result for fixed-point integer values and strings is
fixed-point with precision (n,0), where n is the maximum number of digits allowed. The base and mode
match the converted argument x.

PRED

528 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

PUTENV
PUTENV adds new environment variables or modifies the values of existing environment variables.

PUTENV( string)

string
A character string of the form envvarname=value.

PUTENV returns true ('1'B) if successful and false ('0'B) otherwise.

QUICKSORT
QUICKSORT performs a quick-sort of an array by using a simple compare.

QUICKSORT( x
,  n

, m

)

x
An array expression. x must be a one-dimensional array of scalars. If x is an array of NONVARYING
BIT, it must be aligned.

The elements of the array x must satisfy one of the following:

• They must be computational and not COMPLEX
• They must be POINTERs
• They must be HANDLEs
• They must be ORDINALs

n
An expression that specifies the index of the first array element to be examined. It defaults to
LBOUND(x).

m
An expression that specifies the number of to-be-examined array elements. The counting starts with
the nth and defaults to HBOUND(x) – n + 1.

The sorted array elements are stored in increasing order, in accordance with the result of a simple
compare. If two elements are equal, their order in the sorted array is unspecified.

QUICKSORT overwrites the contents of x with the sorted elements. When the quick-sort is finished, for
elements j and k:

if j < k, then x(j) < = x(k)

QUICKSORTX
QUICKSORTX performs a quick-sort of an array by using a specified compare function.

QUICKSORTX( x , f
,  n

, m

)

x
An array expression. x must be a one-dimensional array. If x is an array of NONVARYING BIT, it must
be aligned.

PUTENV

Chapter 18. Built-in functions, pseudovariables, and subroutines 529

f
Expression. Specifies the function that will be invoked to perform all the required comparisons.

n
An expression that specifies the index of the first array element to be examined. It defaults to
LBOUND(x).

m
An expression that specifies the number of to-be-examined array elements. The counting starts with
the nth and defaults to HBOUND(x) – n + 1.

The function f must have the OPTLINK linkage and it is passed 2 POINTER BYVALUE arguments that hold
the addresses of two elements from the array x.

The function f must have the attributes RETURNS(BYVALUE FIXED BINARY(31)), and it must return one
of the values -1, 0 or +1:

• If the value of the first array element is less than the value of the second array element, then the
returned value must be -1.

• If the value of the first array element is equal to the value of the second array element, then the
returned value must be 0.

• If the value of the first array element is greater than the value of the second array element, then the
returned value must be +1.

The sorted array elements are stored in increasing order, in accordance with the result of the comparison
function.

You can sort in reverse order by reversing the greater than and less than logic in the comparison function.
If two elements are equal, their order in the sorted array is unspecified.

QUICKSORTX overwrites the contents of x with the sorted elements. When the quick-sort is finished, for
elements j and k:

if j < k, thenf(addr(x(j)), addr(x(k))) < = 0

RADIX
RADIX returns a FIXED BINARY(31,0) value that is the model-base used to represent the floating-point
expression x.

RADIX( x)

x
REAL FLOAT expression.

RADIX(x) depends on the floating-point format used to represent x. It is:

• 2 if x is held in IEEE binary floating point format
• 10 if x is held in IEEE decimal floating point format
• 16 if x is held in z/OS hexadecimal format

RADIX(x) can be used in restricted expressions.

RAISE2
RAISE2(x,n) returns the value x*(2**n).

RAISE2( x , n)

x
Expression. x must have a computational type.

RADIX

530 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

n
Expression. n must have a computational type.

If x is REAL FIXED BIN(p,0) and SIGNED, the result is SIGNED REAL FIXED BIN(r,0) where if p <= M1, r =
M1; if p > M1, r = M2.

If x is REAL FIXED BIN(p,0) and UNSIGNED, the result is UNSIGNED REAL FIXED BIN(r+1,0) where if p <=
(M1+1), r = (M1+1); if p > (M1+1), r = (M2+1).

Otherwise, x is converted to SIGNED REAL FIXED BIN(p,0) and the result has the same attributes as
above.

If n is negative or if n is greater than r, the result is undefined.

Note: RAISE2(x,n) is equivalent to the assembler SLA(x,n).

Example

 raise2(6,1) /* produces 12 */

RANDOM
RANDOM returns a FLOAT BINARY(53) random number generated using x as the given seed. If x is
omitted, the random number generated is based on the seed provided by the last RANDOM invocation
with a seed, or on a default initial seed of 1 if RANDOM has not previously been invoked with a seed.

RANDOM

( x)

x
Expression. x must have a computational type and should have an arithmetic type. If x is numeric, it
must be real. If x is not specified FIXED BINARY(31,0), it is converted.

Unless 0 < x < 2,147,483,646, the ERROR condition is raised.

The values generated by RANDOM are uniformly distributed between 0 and 1, with 0 < random(x) < 1.
They are generated as follows using the multiplicative congruential method:

 seed(x) = mod(950706376 * seed(x - 1), 2147483647)
 random(x) = seed(x) / 2147483647

The seed is maintained at the program level and not within each thread in a multithreading application.

RANK
RANK returns the integer value corresponding to a character or widechar.

RANK( x)

x
Must have the attributes CHAR (1) NONVARYING or WCHAR (1) NONVARYING.

If x is character, RANK(x) is defined as index(collate(),x)-1, and RANK is the inverse of CHARVAL.

If xx is widechar, RANK(x) is equal to UNSPEC(y) where y is x stored in bigendian format.

RANDOM

Chapter 18. Built-in functions, pseudovariables, and subroutines 531

REAL
REAL returns the real part of x. The result has the base, scale, and precision of x.

REAL( x)

x
Expression. If x is real, it is converted to complex.

REAL pseudovariable
The REAL pseudovariable assigns a real value or the real part of a complex value to the real part of x.

REAL( x)

x
Complex reference.

REGEX
REGEX returns a FIXED BIN(31) that indicates the success of matching a specified regular expression or
pattern against a string.

REGEX( i , j , p , x
,  n

, c

)

i
A reference. i must be ASSIGNABLE. If a match for the pattern is found, it will be assigned the index of
the substring in x of the first match for the regular expression p. i must be REAL FIXED BIN with scale
factor 0. i must be either a scalar or a one-dimensional array of scalars.

j
A reference. j must be ASSIGNABLE. If a match for the pattern is found, it will be assigned the length
of the substring in x of the first match for the regular expression p. j must be REAL FIXED BIN with
scale factor 0. j must be either a scalar or a one-dimensional array of scalars.

p
A string holding a regular expression. The pattern p must have CHARACTER type.

The pattern p must conform to the POSIX standard for Extended Regular Expressions (EREs) (and not
to the POSIX standard for Basic Regular Expressions). Wikipedia and other web sites contain good
descriptions of regular expressions.

x
A string. x is to be searched for a match with the regular expression p. The string x must have
CHARACTER type.

n
An expression. n specifies the location within x at which to begin searching. n must have a
computational type and is converted to FIXED BINARY(31,0). If omitted, it defaults to 1.

c
A restricted expression. c specifies the code page of p and x. If omitted, it defaults to the value in the
CODEPAGE compiler option. If not omitted, a value for n must be specified.

The code page must have a computational type and is converted to FIXED BINARY (31,0). The code
page must specify a valid, supported code page.

REAL

532 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

If either i or j is an array, then

• both must be arrays with matching bounds and NATIVE type size_t
• the first elements of each array will be assigned the index and length of the matching expression (if

any).
• the second and subsequent elements of each array will be assigned the index and length of the

corresponding matching subexpression (if any).

The characters [,], {, }, |, ^, and $ occur often in regular expressions and have varying code points in
different encoded character sets. The (implicit or explicit) code page value must correctly match the code
page of p and x. If not, the pattern might be deemed to be invalid or a match might not be found.

The processing of the REGEX built-in function proceeds in these steps:

1. If n is less than 1 or if n is greater than 1 + length(x), the STRINGRANGE condition will be raised if
enabled, and REGEX will return the value 1.

2. If there is no locale matching the code page c, then REGEX will return the value -1.
3. If the string p does not specify a valid regular expression, then REGEX will return a value greater than

1.
4. If there is no match in the string x for the regular expression p, then REGEX will return the value 1 and

set the index i and the length j to 0. Otherwise, REGEX will return the value 0 and set the index i and
the length j corresponding to the substring in x that is the first match for the regular expression p.

The search for a match to the regular expression is case sensitive.

Examples

Example 1

If p = "All(a|e)n" and x = "12Allan3Allen4Alan5Allan678", then

regex(i, j, p, x) will return 0 and set i to 3 and j to 5 (because it has found the match for the
first "Allan").
regex(i, j, p, x, 4) will return 0 and set i to 9 and j to 5 (because it has found the match for
"Allen").
regex(i, j, p, x, 10) will return 0 and set i to 20 and j to 5 (because it has found the match
for the second "Allan").
regex(i, j, p, x , 21) will return 1 (because there are no more matches).

The preceding set of matches could also have been found via the following loop, which uses the optional
fifth parameter to walk through the string x

n = 1;
do loop;
 rc = regex(i, j, p, x, n);
 if rc <> 0 then leave;
 put skip list(substr(x, i, j));
 n = i + j;
end;

Example 2

If p = "[hc]+at" and x = "the cat in the hat", then regex(i, j, p, x, n) will find the match for
"cat" or "hat" depending on the value of n. But, if p = "63"x || "hc" || "fc"x || "+at", then although under
codepage 1141, this pattern would display as "[hc]+at".

• Under the default code page 1140, regex(i, j, p, x, n) would find no match, because under
code page 1140 the hex values for [and] are "ba"x and "bb"x respectively.

• However, regex(i, j, p, x, n, 1141) would find the match for "cat" or "hat" depending on the
value of n.

Example 3

REGEX

Chapter 18. Built-in functions, pseudovariables, and subroutines 533

Given the following:

 pattern = '([a-zA-Z]+) * ([a-zA-Z]+) * ((([a-zA-Z1-9]+)\.){0,1}([a-zA-Z1-9]+))';
 string = ' CREATE DATABASE TESTDB;';
 rc = regex(a_index, a_length, pattern, string);

Then

 a_index(2) and a_length(2) will give the index and length for CREATE
 a_index(3) and a_length(3) will give the index and length for DATABASE
 a_index(4) and a_length(4) will give the index and length for TESTDB

REM
REM returns the remainder of x divided by y.

This can be calculated by:

 x - y * trunc(x/y)

REM( x , y)

x and y
Expressions. x and y must be computational and can be arithmetic.

For examples that contrast the REM and MOD built-in functions, refer to “MOD” on page 495.

REPATTERN
REPATTERN takes a value holding a date in one pattern and returns that value converted to a date in a
second pattern.

REPATTERN( d , p , q
, w

)

d
A string expression representing a date. The length of d must be at least as large as the length of the
source pattern q. If d is larger, any excess characters must be formed by leading blanks.

d must have a computational type and should have character type. If not, it is converted to character.

p
The target pattern; must be one of the supported date/time patterns.

q
The source pattern; must be one of the supported date/time patterns.

w
Specifies an expression (such as 1950) that can be converted to an integer. If negative, it specifies an
offset to be subtracted from the value of the year when the code runs. If omitted, w defaults to the
value specified in the WINDOW compile-time option.

The returned value has the attributes CHAR(m) NONVARYING where m is the length of the target pattern
p.

The allowed patterns are listed in Table 65 on page 384. For an explanation of Lilian format, see “Date/
time built-in functions” on page 382.

The REPATTERN built-in function will perform the specified conversion in-line when both of the following
are true:

REM

534 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• the source and target patterns do not use the DDD element.
• the source pattern has as much date information as the target, i.e. if the target has a year, month or day,

then the source must have the corresponding information and there must also be at least as many digits
in the source year as in the target.

So, for example,

• YYYYMMDD to DD.MM.YY will be inlined
• MM/DD/YYYY to YYMM will be inlined
• MMYY to YYYYMMDD will not be inlined

The following are some examples of how to use REPATTERN to convert between 2-digit-year and 4-digit-
year date patterns. But you can use this built-in function to convert a date from any supported pattern to
any other supported pattern even if the patterns use the same number of digits to hold the year value.

REPATTERN('990101','YYYYMMDD','YYMMDD', 1950) returns '19990101'
REPATTERN('000101','YYYYMMDD','YYMMDD', 1950) returns '20000101'
REPATTERN('19990101','YYMMDD','YYYYMMDD', 1950) returns '990101'
REPATTERN('20000101','YYMMDD','YYYYMMDD', 1950) returns '000101'
REPATTERN('19490101','YYMMDD','YYYYMMDD', 1950) raises ERROR

REPEAT
REPEAT returns a string consisting of x concatenated to itself the number of times specified by y.

That is, there are (y + 1) occurrences of x.

REPEAT( x , y)

x
Bit, character, graphic, uchar or widechar expression to be repeated. If x is arithmetic, the following
conversions occur:

• If it is binary, x is converted to bit string.
• If it is decimal, x is converted to character string.

y
Expression. If necessary, y is converted to a real fixed-point binary value.

If y is zero or negative, the string x is returned. For an example of the REPEAT built-in function, see
“COPY” on page 425.

REPLACE
REPLACE returns a string with one or more occurrences of a substring replaced by another substring.

REPLACE (x , f , t
, n

, i

)

x
A string expression that specifies the string within which the occurrences of the substring f will be
replaced by the substring t. x must have a CHARACTER type.

f
A string expression that specifies the substring that will be replaced within the string x. f must have a
CHARACTER type.

REPEAT

Chapter 18. Built-in functions, pseudovariables, and subroutines 535

t
A string expression that specifies the substring that will be used to replace the substring f within the
string x. t must have a CHARACTER type.

n
An optional expression that specifies a location within the string x, from where the compiler
begins searching for the substring f. n must have a computational type and is converted to FIXED
BINARY(31,0). The default value for n is 1. If n is less than 1 or greater than the length(x), the
STRINGRANGE condition will be raised if enabled, and the result will be a null character string.

i
An optional expression that specifies the maximum number of times that the substring f should
be replaced by the substring t. i must have a computational type and is converted to FIXED
BINARY(31,0). The default value for i is 1. i must be non-negative. If i is 0, all occurrences of the
substring f in the string x will be replaced by the substring t.

dcl ein char(50) var init('reserved from #date# till #date#.');
dcl aus char(80) var;

dcl f char(6);
dcl t char(10);

f = '#date#';
t = '2018/05/01';

aus = replace(ein, f, t);
 /* 'reserved from 2018/05/01 till #date#.' */
aus = replace(ein, f, t, 16);
 /* 'reserved from #date# till 2018/05/01.' */
aus = replace(ein, f, t, 1, 2);
 /* 'reserved from 2018/05/01 till 2018/05/01.' */
aus = replace(ein, f, t, 16, 1);
 /* 'reserved from #date# till 2018/05/01.' */
aus = replace(ein, f, t, 1, 0);
 /* 'reserved from 2018/05/01 till 2018/05/01.' */

REPLACEBY2
REPLACEBY2 returns a nonvarying string formed by replacing some of the characters in x by a pair of
characters.

REPLACEBY2 (x , y , z)

x
Character expression to be searched for possible replacement of its characters.

y
Character expression containing the replacement pair values..

z
Character expression containing the characters that are to be replaced.

REPLACEBY2 operates on each character of x as follows:

If a character in x is found in z, the character pair in y that corresponds to that in z is copied to the
result; otherwise, the character in x is copied directly to the result. If z contains duplicates, the leftmost
occurrence is used.

The string y must be twice as long as the string z.

As an example, REPLACEBY2(’Rätsel’, ’aeoeuess’, ’äöüß’) returns the string ’Raetsel’.

REPLACEBY2

536 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

REVERSE
REVERSE returns a nonvarying string that contains the elements of x in reverse order.

REVERSE( x)

x
Expression. x must have a computational type and should have a string type. If x does not have
a string type, it is converted to string (that is, from numeric to character, bit, graphic, uchar, or
widechar), according to the rules for concatenation.

Example

 dcl Source char value('HARPO');
 dcl Target char(length(Source));

 Target = reverse (Source); /* 'OPRAH' */

RIGHT
RIGHT returns a string that is the result of inserting string x at the right end of a string with length n and
padded on the left with the character z as needed.

If z is omitted, a blank is used as the padding character.

RIGHT( x , n
, z

)

x
Expression. x must have a computational type and can have a character type. If not, it is converted to
character.

n
Expression. n must have a computational type and is converted to FIXED BINARY(31,0).

z
Expression. If specified, z must have the type CHARACTER(1) NONVARYING type.

Example

 dcl Source char value('One Hundred SCIDS Marks');
 dcl Target char(30);

 Target = right (Source, length(Target), '*');
 /* '*******One Hundred SCIDS Marks' */

ROUND
ROUND returns the value of x rounded at a digit specified by n. The result has the mode, base, and scale
of x.

ROUND( x , n)

x
Real expression. If x is negative, the absolute value is rounded and the sign is restored.

n
Optionally-signed integer. It specifies the digit at which rounding is to occur.

REVERSE

Chapter 18. Built-in functions, pseudovariables, and subroutines 537

ROUND of FIXED
The precision of a FIXED result is:

 (max(1,min(p-q+1+n,N)),n)

Where (p,q) is the precision of x, and N is the maximum number of digits allowed. Hence, n specifies the
scaling factor of the result.

n must conform to the limits of scaling-factors for FIXED data. If n is greater than 0, rounding occurs at
the (n)th digit to the right of the point. If n is zero or negative, rounding occurs at the (1-n)th digit to the
left of the point.

In ROUND(x,n), n <= p must be true. If x is FIXED BIN, then n >= 0 must be true.

The value of the result is given by the following formula, where b = 10 if x is DECIMAL:

round(x,n) = sign(x)*(b-n)* floor(abs(x)* (bn) + 1/2)

So, in the following example, the value 6.67 is output:

 dcl X fixed dec(5,4) init(6.6666);

 put skip list(round(X,2));

ROUND of IEEE decimal floating point
The precision of an IEEE DECIMAL FLOAT result is the same as that of the source argument.

The value of the result is given by the following formula, where where b = 10 (=radix(x)) and e =
exponent(x):

round(x,n) = sign(x)*(b(e-n))* floor(abs(x)* (b(n-e)) + 1/2)

So, if the FLOAT(DFP) compiler option is in effect, these successive roundings of 3.1415926d0 would
produce the following values:

 dcl x float dec(16) init(3.1415926d0);

 display(round(x,1)); /* 3.000000000000000E+0000 */
 display(round(x,2)); /* 3.100000000000000E+0000 */
 display(round(x,3)); /* 3.140000000000000E+0000 */
 display(round(x,4)); /* 3.142000000000000E+0000 */
 display(round(x,5)); /* 3.141600000000000E+0000 */
 display(round(x,6)); /* 3.141590000000000E+0000 */

ROUND of IEEE binary floating point
The precision of an IEEE binary floating point result is the same as that of the source argument.

Under the compiler option USAGE(ROUND(IBM)), the value of the result is the same as the source except
on z/OS where if the source is not zero, then the result is obtained by turning on the rightmost bit in the
source.

Under the compiler option USAGE(ROUND(ANS)), the value of the result is given by the following formula,
where where b = 2 (=radix(x)) and e = exponent(x):

round(x,n) = sign(x)*(b(e-n))* floor(abs(x)* (b(n-e)) + 1/2)

Note that under USAGE(ROUND(ANS)), the rounding is a base 2 rounding, and the results may not be
what a naive user expects. For example, if compiled with USAGE(ROUND(ANS)) and IEEE binary floating
point instructions are used, these successive roundings of 3.1415926d0 would produce the following
values:

 dcl x float bin(53) init(3.1415926d0);

ROUND

538 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 display(round(x,1)); /* 4.000000000000000E+0000 */
 display(round(x,2)); /* 3.000000000000000E+0000 */
 display(round(x,3)); /* 3.000000000000000E+0000 */
 display(round(x,4)); /* 3.250000000000000E+0000 */
 display(round(x,5)); /* 3.125000000000000E+0000 */
 display(round(x,6)); /* 3.125000000000000E+0000 */
 display(round(x,7)); /* 3.156250000000000E+0000 */

ROUND of IBM hexadecimal floating point
The precision of an IBM hexadecimal floating point result is the same as that of the source argument.

Under the compiler option USAGE(ROUND(IBM)), the value of the result is the same as the source except
on z/OS where if the source is not zero, then the result is obtained by turning on the rightmost bit in the
source.

Under the compiler option USAGE(ROUND(ANS)), the value of the result is given by the following formula,
where where b = 16 (=radix(x)) and e = exponent(x):

round(x,n) = sign(x)*(b(e-n))* floor(abs(x)* (b(n-e)) + 1/2)

Note that under USAGE(ROUND(ANS)), the rounding is a base 16 rounding, and the results may not be
what a naive user expects. For example, if compiled with USAGE(ROUND(ANS)) and IBM hexadecimal
floating point instructions are used, these successive roundings of 3.1415926d0 would produce the
following values:

 dcl x float bin(53) init(3.1415926d0);

 display(round(x,1)); /* 3.000000000000000E+00 */
 display(round(x,2)); /* 3.125000000000000E+00 */
 display(round(x,3)); /* 3.140625000000000E+00 */
 display(round(x,4)); /* 3.141601562500000E+00 */
 display(round(x,5)); /* 3.141586303710938E+00 */
 display(round(x,6)); /* 3.141592979431152E+00 */

ROUNDAWAYFROMZERO
ROUNDAWAYFROMZERO returns the value of x rounded at a digit specified by n, following the rule of
round half away from zero. The result has the mode, base, and scale of x.

ROUNDAWAYFROMZERO( x , n)

Note: The ROUNDAWAYFROMZERO built-in function used to be named as ROUNDDEC.

x
A real expression that is FIXED DECIMAL or DFP FLOAT. If x is negative, the absolute value is rounded
and the sign is restored.

n
An optionally-signed integer that specifies the digit at which rounding is to occur.

If x is FIXED DECIMAL or PICTURE FIXED DECIMAL, ROUNDAWAYFROMZERO produces the same results
as ROUND.

If x is FLOAT DECIMAL or PICTURE FLOAT DECIMAL and the FLOAT(DFP) compiler option is in effect,
ROUNDAWAYFROMZERO rounds x at the nth decimal place rather than at the nth digit (as would the
ROUND built-in function in accordance with the ANSI definition). For example, these successive roundings
of 3141.592653589793d0 would produce the following values:

 dcl x float dec(16) init(3141.592653589793d0);

 display(fixed(roundawayfromzero(x,1),15,7)); /* 3141.6000000 */
 display(fixed(roundawayfromzero(x,2),15,7)); /* 3141.5900000 */
 display(fixed(roundawayfromzero(x,3),15,7)); /* 3141.5930000 */
 display(fixed(roundawayfromzero(x,4),15,7)); /* 3141.5927000 */

ROUNDAWAYFROMZERO

Chapter 18. Built-in functions, pseudovariables, and subroutines 539

 display(fixed(roundawayfromzero(x,5),15,7)); /* 3141.5926500 */
 display(fixed(roundawayfromzero(x,6),15,7)); /* 3141.5926540 */
 display(fixed(roundawayfromzero(x,7),15,7)); /* 3141.5926536 */

ROUNDAWAYFROMZERO complements the CEIL, FLOOR, and TRUNC built-in functions.

• ROUNDAWAYFROMZERO(x,0) rounds away from zero.
• CEIL(x) rounds toward positive infinity.
• FLOOR(x) rounds toward negative infinity.
• TRUNC(x) rounds toward zero.

ROUNDTOEVEN
ROUNDTOEVEN returns the value of x rounded at a digit specified by n following the rounding rule of
round half to even.

ROUNDTOEVEN( x , n)

x
A real expression that is FIXED DECIMAL or DFP FLOAT. If x is negative, the nearest even value is
rounded and the sign is restored.

n
An optionally-signed integer that specifies the digit at which rounding is to occur.

The ROUNDTOEVEN built-in function is basically same as the ROUNDAWAYFROMZERO built-in function
except that the ROUNDAWAYFROMZERO function rounds ties away from the zero. For example, under
the ROUNDAWAYFROMZERO function, 24.5 gets rounded to 25 and -24.5 gets rounded to -25. However,
under the ROUNDTOEVEN function, both 23.5 and 24.5 get rounded to 24 and both -23.5 and -24.5 get
rounded to -24.

SAMEKEY
SAMEKEY returns a bit string of length 1 indicating whether a record that has been accessed is followed
by another with the same key.

SAMEKEY( x)

x
File reference. The file must have the RECORD attribute.

Upon successful completion of an input/output operation on file x, or immediately before the RECORD
condition is raised, the value accessed by SAMEKEY is set to '1'B if the record processed is followed by
another record with the same key, and set to '0'B if it is not.

The value accessed by SAMEKEY is also set to '0'B if:

• An input/output operation that raises a condition other than RECORD also causes file positioning to be
changed or lost

• The file is not open
• No current cursor position exists in the file.

SCALE
SCALE multiplies a floating-point number by an integral power of the radix.

SCALE returns a floating-point value based on the following formula:

ROUNDTOEVEN

540 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 n
 x*(radix(x))

The result has the base, mode, and precision of x.

SCALE( x , n)

x
REAL FLOAT expression.

n
Expression. It must have a computational type and is converted to FIXED BINARY(31,0).

SCALEVAL
SCALEVAL returns a FIXED BINARY(31) value giving the scale factor for a numeric expression.

SCALEVAL( x)

x
A numeric expression.

If x is FLOAT, the value returned is 0.

For example, if x is declared as FIXED DEC(9,3), SCALEVAL(x) returns 3.

SCRUBOUT
SCRUBOUT returns a string with all the characters from a second string removed.

SCRUBOUT( x , f
, n

)

x
A string expression that specifies the string from which the characters in the string f will be removed. x
must have a CHARACTER type.

f
A string expression that specifies the characters to be removed from x. f must have a CHARACTER
type.

n
An optional expression that specifies a location within the string x, from where the compiler begins
searching for characters from the string f.

n must have a computational type and is converted to FIXED BINARY(31,0). The default value for n is
1.

If n is less than 1 or greater than length(x)+1, the STRINGRANGE condition will be raised if enabled,
and the result will be a null character string.

SCRUBOUT(x, '0123456789') will remove all the numeric characters from x.

SCRUBOUT(x, '0123456789', 4) will remove all the numeric characters from x after the first 3 characters.

SCALEVAL

Chapter 18. Built-in functions, pseudovariables, and subroutines 541

SEARCH
SEARCH returns an unscaled REAL FIXED BINARY value specifying the first position in one string at which
any character, bit, graphic, uchar, or widechar of another string appears. It also allows you to specify the
location at which to start searching.

SEARCH( x , y
, n

)

x and y
Expressions. x specifies the string in which to search for any character, bit, graphic, uchar, or widechar
that appears in string y.

If either x or y are the null string, the result is zero.

If y does not occur in x, the result is zero.

n
Expression. n specifies the location within x at which to begin searching. It must have a computational
type and is converted to FIXED BINARY(31,0).

Unless 1 ≤ n ≤ LENGTH(x)+1, STRINGRANGE condition, if enabled, is raised. Its implicit action and
normal return give a result of zero.

The BIFPREC compiler option determines the precision of the result returned.

SEARCH can be used to find delimiters in a string of numbers.

SEARCH will perform best when the second and third arguments are either literals, named constants
declared with the VALUE attribute, or restricted expressions.

Example 1

 dcl Source char value(' Our PL/I wields the Power ');
 dcl Pos fixed bin(31);

/* Find occurrences of any of the characters 'P','o',or 'w' in source * /

 Pos = search (Source, 'Pow'); /* returns 6 for the 'P' */
 Pos = search (Source, 'Pow', Pos+1); /* returns 11 for the 'w' */
 Pos = search (Source, 'Pow', Pos+1); /* returns 22 for the 'P' */
 Pos = search (Source, 'Pow', Pos+1); /* returns 23 for the 'o' */
 Pos = search (Source, 'Pow', Pos+1); /* returns 24 for the 'w' */

 Pos = index (source, 'Pow',1); /* returns 22 for the 'Pow' */

In the above example, SEARCH returns the position at which any of the three characters ('P', 'o', or 'w')
appear. INDEX returns the position at which the whole string 'Pow' appears.

Example 2

 dcl Source char value (' 368,475;121.,856,478')
 dcl Delims char(3) init (',;.'); /* string of delimiters */
 dcl Number(5) char(3);
 dcl Start fixed bin(31);
 dcl End fixed bin(31);

 /* Extract the three-digit numbers from the source string */
 /* by searching for the delimiters */
 Start = verify (Source, ' ');
 /* find start of first number */
 End = search (Source, ',;.', Start);
 /* find end of first number */
 if End = 0 then
 End = length (Source) + 1;
 Number(1) = substr (Source, Start, 3); /* 368 */
 Start = verify (Source, Delims, End);
 /* find start of second number */

SEARCH

542 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 End = search (Source, Delims, Start);
 Number(2) = substr (Source, Start, 3); /* 475 */

SEARCHR
SEARCHR searches for the first occurrence of any one of the elements of a string within another string but
the search starts from the right.

SEARCHR( x , y
, n

)

The SEARCHR function performs the same operation as the SEARCH built-in function except for the
following differences:

• The search is done from right to left.
• The default value for n is LENGTH(x).
• Unless 0 ≤ n ≤ LENGTH(x), the STRINGRANGE condition, if enabled, is raised. Its implicit action and

normal return give a result of zero.

The BIFPREC compiler option determines the precision of the result returned.

SEARCHR will perform best when the second and third arguments are either literals, named constants
declared with the VALUE attribute, or restricted expressions.

Example

 dcl Source char value (' 555 Bailey Ave, San Jose, CA 95141, USA');
 dcl Digits char value ('0123456789');
 dcl (Start, End) fixed bin(31);
 dcl Num char(20) var;

 /* Find last number (i.e., zip code) */

 End = searchr (Source, Digits); /* returns 35 for the '1' */
 Start = verifyr (Source, Digits, End); /* returns 30 for the ' ' */
 Num = substr (Source, Start + 1, End - Start); /* extract number */

Related information
“SEARCH” on page 542
SEARCH returns an unscaled REAL FIXED BINARY value specifying the first position in one string at which
any character, bit, graphic, uchar, or widechar of another string appears. It also allows you to specify the
location at which to start searching.

SECS
SECS returns a FLOAT BINARY(53) value that is the number of seconds (based on Lilian format)
corresponding to the date d.

SECS

(

d
, p

, w

)

d
A string expression representing a date. If present, d specifies the input date as a character string
representing the date/time specified in the pattern p. If d is missing, it is assumed to be DATETIME().

d must have a computational type and should have character type. If not, it is converted to character.

SEARCHR

Chapter 18. Built-in functions, pseudovariables, and subroutines 543

p
One of the supported date/time patterns. If p is omitted, it is assumed to be the default date/time
pattern 'YYYYMMDDHHMISS999'.

p must have a computational type and should have character type. If not, it is converted to character.

w
Specifies an expression (such as 1950) that can be converted to an integer. If negative, it specifies an
offset to be subtracted from the value of the year when the code runs. If omitted, w defaults to the
value specified in the WINDOW compile-time option.

The allowed patterns are listed in Table 65 on page 384. For an explanation of Lilian format, see “Date/
time built-in functions” on page 382.

Example

 dcl Dayname (7) char(9) var
static nonasgn init('Sunday',
 'Monday',
 'Tuesday',
 'Wednesday',
 'Thursday',
 'Friday',
 'Saturday');
 dcl Jul4_1776_Secs float bin(53);
 dcl Age_Tot_Secs pic 'Z,ZZZ,ZZZ,ZZZ,ZZ9';

 Jul4_1776_Secs = secs('17760704','YYYYMMDD'); /* seconds */
 Age_Tot_Secs = secs() - Jul4_1776_Secs; /* seconds since */
 display ('USA became independent on ' ∥
 dayname(weekday(secstodays(Jul4_1776_Secs))) ∥
 ', July 4, 1776 and at this very moment it has been ' ∥
 Age_Tot_Secs, ∥ ' seconds.');

SECSTODATE
SECSTODATE returns a nonvarying character string containing the date in the date/time pattern specified
by p that corresponds to d seconds (based on Lilian format).

SECSTODATE (d
, p

, w

)

d
The number of seconds (in Lilian format). d must have a computational type and is converted to FLOAT
BIN(53) if necessary.

p
One of the supported date/time patterns. If omitted, p is assumed to be the default date/time pattern
'YYYYMMDDHHMISS999' (the default format returned by DATETIME).

w
Specifies an expression (such as 1950) that can be converted to an integer. If negative, it specifies an
offset to be subtracted from the value of the year when the code runs. If omitted, w defaults to the
value specified in the WINDOW compile-time option.

The allowed patterns are listed in Table 65 on page 384. For an explanation of Lilian format, see “Date/
time built-in functions” on page 382.

SECSTODATE

544 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

SECSTODAYS
SECSTODAYS returns a FIXED BINARY(31,0) value that represents the number of seconds x converted to
days, ignoring incomplete days.

SECSTODAYS( x)

x
Expression. The value for x must have computational type and should be FLOAT BINARY(53). If not, it
is converted to FLOAT BINARY(53).

SECSTODAYS(x) is the same as x/(24*60*60).

For an example, see “SECS” on page 543.

SHA1DIGEST
Performs a SHA-1 hash of the text specified by an address and length and returns a CHAR(20) string with
that hash value.

SHA1DIGEST( p , n)

p
A pointer that specifies the address of a buffer to be hashed.

n
An expression that specifies the length (in bytes) of that buffer. It must have a computational type and
will be converted to type size_t.

SHA1DIGEST returns a CHAR(20) value.

This function generates code that executes the KLMD assembler instruction.

Examples

The following example performs a SHA-1 hash of the text in a CHARACTER variable c.

 dcl encoded char(20);

 encoded = sha1digest(addrdata(c), length(c));

SHA1FINAL
Uses a token initialized by the corresponding SHA1INIT function to complete a SHA-1 hash of a series of
texts and returns a CHAR(20) string with that hash value.

SHA1FINAL( t , p , n)

t
A token returned by a previous invocation of SHA1INIT or SHA1UPDATE.

p
A pointer that specifies the address of a buffer to be added to the hash.

n
An expression that specifies the length (in bytes) of that buffer. It must have a computational type and
will be converted to type size_t.

SHA1FINAL returns a CHAR(20) value.

This function generates code that executes the KIMD and KLMD assembler instructions.

SECSTODAYS

Chapter 18. Built-in functions, pseudovariables, and subroutines 545

Examples

The following example performs a SHA-1 hash of a file that is read one line at a time into a CHARACTER
variable c.

 dcl token pointer;
 dcl encoded char(20);
 token = sha1init();
 on endfile(input);
 do loop;
 read file(input) into(c);
 if endfile(input) then leave;
 token = sha1update(token, addrdata(c), length(c));
 end;
 encoded = sha1final(token, sysnull(), 0);

In the example, all the SHA function calls are in the same block of code. This is not necessary: the calls
can occur in a set of routines as long as they all use the same token created by the SHA1INIT call.

SHA1INIT
Returns a token (of type POINTER) that can be used with the corresponding SHA1UPDATE and
SHA1FINAL functions to hash a series of texts.

SHA1INIT()

See the description of the SHA1FINAL function for an example.

SHA1UPDATE
Uses a token initialized by the corresponding SHA1INIT function to perform an intermediate hash of an
element in a series of texts.

SHA1UPDATE( t , p , n)

t
A token returned by a previous invocation of SHA1INIT or SHA1UPDATE.

p
A pointer that specifies the address of a buffer to be added to the hash.

n
An expression that specifies the length (in bytes) of that buffer. It must have a computational type and
will be converted to type size_t.

This function returns a token (of type POINTER) that can be used with further SHA1UPDATE function and
the concluding SHA1FINAL function.

See the description of the SHA1FINAL function for an example.

SHA2DIGEST224, SHA2DIGEST256, SHA2DIGEST384, and SHA2DIGEST512
Perform a SHA-2 hash of the text specified by an address and length and return a CHAR string with that
hash value.

SHA2DIGESTx( p , n)

p
A pointer that specifies the address of a buffer to be hashed.

n
An expression that specifies the length (in bytes) of that buffer. It must have a computational type and
will be converted to type size_t.

The length returned is one eighth of the bit length in the function name, so, for example, SHA2DIGEST256
returns a CHAR(32) value.

SHA1INIT

546 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

These functions generate code that executes the KLMD assembler instruction.

Examples

The following example performs a 512-bit SHA-2 hash of the text in a CHARACTER variable c.

 dcl encoded char(64);

 encoded = sha2digest512(addrdata(c), length(c));

SHA2FINAL224, SHA2FINAL256, SHA2FINAL384, and SHA2FINAL512
Use a token initialized by the corresponding SHA2INIT function to complete a SHA-2 hash of a series of
texts and return a CHAR string with that hash value.

SHA2FINALx( t , p , n)

t
A token returned by a previous invocation of SHA2INITx or SHA2UPDATEx.

p
A pointer that specifies the address of a buffer to be added to the hash.

n
An expression that specifies the length (in bytes) of that buffer. It must have a computational type and
will be converted to type size_t.

The length returned is one eighth of the bit length in the function name, so, for example, SHA2FINAL256
returns a CHAR(32) value.

These functions generate code that executes the KIMD and KLMD assembler instructions.

Examples

The following example performs a 256-bit SHA-2 hash of a file that is read one line at a time into a
CHARACTER variable c.

 dcl token pointer;
 dcl encoded char(32);
 token = sha2init256();
 on endfile(input);
 do loop;
 read file(input) into(c);
 if endfile(input) then leave;
 token = sha2update256(token, addrdata(c), length(c));
 end;
 encoded = sha2final256(token, sysnull(), 0);

In the example, all the SHA function calls are in the same block of code. This is not necessary: the calls
can occur in a set of routines as long as they all use the same token created by the SHA2INIT call.

SHA2INIT224, SHA2INIT256, SHA2INIT384, and SHA2INIT512
Return a token (of type POINTER) that can be used with the corresponding SHA2UPDATE and SHA2FINAL
functions to hash a series of texts.

SHA3INITx()

See the description of the SHA2FINAL functions for an example.

SHA2FINAL224

Chapter 18. Built-in functions, pseudovariables, and subroutines 547

SHA2UPDATE224, SHA2UPDATE256, SHA2UPDATE384, and
SHA2UPDATE512

Use a token initialized by the corresponding SHA2INIT function to perform an intermediate hash of an
element in a series of texts.

SHA2UPDATEx( t , p , n)

t
A token returned by a previous invocation of SHA2INITx or SHA2UPDATEx.

p
A pointer that specifies the address of a buffer to be added to the hash.

n
An expression that specifies the length (in bytes) of that buffer. It must have a computational type and
will be converted to type size_t.

These functions return a token (of type POINTER) that can be used with further SHA2UPDATE functions
and the concluding SHA2FINAL function.

See the description of the SHA2FINAL functions for an example.

SHA3DIGEST224, SHA3DIGEST256, SHA3DIGEST384, and SHA3DIGEST512
Perform a SHA-3 hash of the text specified by an address and length and return a CHAR string with that
hash value.

SHA2DIGESTx( p , n)

p
A pointer that specifies the address of a buffer to be hashed.

n
An expression that specifies the length (in bytes) of that buffer. It must have a computational type and
will be converted to type size_t.

The length returned is one eighth of the bit length in the function name, so, for example, SHA3DIGEST256
returns a CHAR(32) value.

These functions generate code that executes the KLMD assembler instruction.

Examples

The following example performs a 256-bit SHA-3 hash of the text in a CHARACTER variable c.

 dcl encoded char(32);

 encoded = sha3digest256(addrdata(c), length(c));

SHA3FINAL224, SHA3FINAL256, SHA3FINAL384, and SHA3FINAL512
Use a token initialized by the corresponding SHA3INIT function to complete a SHA-3 hash of a series of
texts and return a CHAR string with that hash value.

SHA3FINALx( t , p , n)

t
A token returned by a previous invocation of SHA3INITx or SHA3UPDATEx.

p
A pointer that specifies the address of a buffer to be added to the hash.

SHA2UPDATE224

548 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

n
An expression that specifies the length (in bytes) of that buffer. It must have a computational type and
will be converted to type size_t.

The length returned is one eighth of the bit length in the function name, so, for example,
SHA3FINAL256 returns a CHAR(32) value.

These functions generate code that executes the KIMD and KLMD assembler instructions.

Examples

The following example performs a 512-bit SHA-3 hash of a file that is read one line at a time into a
CHARACTER variable c.

 dcl token pointer;
 dcl encoded char(64);
 token = sha3init512();
 on endfile(input);
 do loop;
 read file(input) into(c);
 if endfile(input) then leave;
 token = sha3update512(token, addrdata(c), length(c));
 end;
 encoded = sha3final512(token, sysnull(), 0);

In above example, all the SHA function calls are in the same block of code. This is not necessary: the calls
can occur in a set of routines as long as they all use the same token created by the SHA3INIT call.

SHA3INIT224, SHA3INIT256, SHA3INIT384, and SHA3INIT512
Return a token (of type POINTER) that can be used with the corresponding SHA3UPDATE and SHA3FINAL
functions to hash a series of texts.

SHA3INITx()

See the description of the SHA3FINAL functions for an example.

SHA3UPDATE224, SHA3UPDATE256, SHA3UPDATE384, and
SHA3UPDATE512

Use a token initialized by the corresponding SHA3INIT function to perform an intermediate hash of an
element in a series of texts.

SHA3UPDATEx( t , p , n)

t
A token returned by a previous invocation of SHA3INITx or SHA3UPDATEx.

p
A pointer that specifies the address of a buffer to be added to the hash.

n
An expression that specifies the length (in bytes) of that buffer. It must have a computational type and
will be converted to type size_t.

These functions return a token (of type POINTER) that can be used with further SHA3UPDATE functions
and the concluding SHA3FINAL function.

See the description of the SHA3FINAL functions for an example.

SHA3INIT224

Chapter 18. Built-in functions, pseudovariables, and subroutines 549

SIGN
SIGN returns an unscaled REAL FIXED BINARY value that indicates whether x is positive, zero, or
negative.

SIGN( x)

x
Real expression.

The returned value is given by:

Value of x Value Returned

x > 0 +1

x = 0 0

x < 0 -1

The BIFPREC compiler option determines the precision of the result returned.

SIGNED
SIGNED returns a signed FIXED BINARY value of x, with a precision specified by p and q.

SIGNED( x
,  p

, q

)

x
Expression.

p
Restricted expression that specifies the number of digits to be maintained throughout the operation.

q
Restricted expression that specifies the scaling factor of the result. If q is omitted, a scaling factor of
zero is assumed. If q is specified, it must be between 0 and p.

SIN
SIN returns a floating-point value that is an approximation of the sine of x. It has the base, mode, and
precision of x.

SIN( x)

x
Expression whose value is in radians.

SIND
SIND returns a real floating-point value that is an approximation of the sine of x. It has the base and
precision of x.

SIND( x)

SIGN

550 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

x
Real expression whose value is in degrees.

SINH
SINH returns a floating-point value that represents an approximation of the hyperbolic sine of x. It has the
base, mode, and precision of x.

SINH( x)

x
Expression whose value is in radians.

SIZE
SIZE returns a FIXED BIN value that gives the implementation-defined storage, in bytes, allocated to a
variable x.

SIZE( x)

x
A variable of any data type, data organization, alignment, and storage class, except those in the
following list:

• A BASED, DEFINED, parameter, subscripted, or structure or union base-element variable that is an
unaligned fixed-length bit string

• A minor structure or union whose first or last base element is an unaligned fixed-length bit string
(except where it is also the first or last element of the containing major structure or union)

• A major structure or union that has the BASED, DEFINED, or parameter attribute, and that has an
unaligned fixed-length bit string as its first or last element

• A variable not in connected storage

The value returned by SIZE(x) is the maximum number of bytes that could be transmitted in the following
circumstances:

 declare F file record input
 environment(scalarvarying);
 read file(F) into(x);

• If x is a varying-length string, the returned value includes the length-prefix of the string and the number
of bytes in the maximum length of the string

• If x is an area, the returned value includes the area control bytes and the maximum size of the area
• If x is an aggregate containing areas or varying-length strings, the returned value includes the area

control bytes, the maximum sizes of the areas, the length prefixes of the strings, and the number of
bytes in the maximum lengths of the strings.

The SIZE built-in function must not be used on a BASED variable with adjustable extents if that variable
has not been allocated.

Under the CMPAT(V3) compiler option, SIZE returns a FIXED BIN(63) value. Under all other CMPAT
options, it returns a FIXED BIN(31) value.

To get the number of bytes currently required by a variable, as opposed to the number of bytes allocated
to it, use the CURRENTSIZE built-in function.

When x is BASED and uses REFER, the compiler generates inline code for SIZE(x) if:

• Elements in x with the NONVARYING and BIT attributes have the ALIGNED attribute.
• All other elements in x have the UNALIGNED attribute.

SINH

Chapter 18. Built-in functions, pseudovariables, and subroutines 551

Example

 dcl Scids char(17) init('See you at SCIDS!') static;
 dcl Vscids char(20) varying init('See you at SCIDS!') static;
 dcl Stg fixed bin(31);

 Stg = storage (Scids); /* 17 bytes */
 Stg = currentsize (Scids); /* 17 bytes */
 Stg = size (Vscids); /* 22 bytes */
 Stg = currentsize (Vscids); /* 19 bytes */
 Stg = size (Stg); /* 4 bytes */
 Stg = currentsize (Stg); /* 4 bytes */

Related information
“CURRENTSIZE” on page 427
CURRENTSIZE returns a FIXED BIN value that gives the implementation-defined storage, in bytes,
required by x.

SMFTOJULIAN
SMFTOJULIAN returns a CHAR(7) value that holds the date in the Julian format YYYYDDD.

SMFTOJULIAN( d)

d
A CHAR(4) variable that holds a date in the SMF format.

SOURCEFILE
SOURCEFILE returns a nonvarying character string containing the name of the file that contains the
statement where this function is invoked.

SOURCEFILE

()

The SOURCEFILE built-in function can be used in restricted expressions.

The string returned is system dependent and should be used for tracing and debugging purposes only.

SOURCELINE
SOURCELINE returns a FIXED BINARY(31,0) value that is the line number of the statement where this
function is invoked, within the file that contains that statement. If the statement extends over several
source lines, the number returned is that of the line on which the statement starts.

SOURCELINE ()

The SOURCELINE built-in function can be used in restricted expressions.

SQRT
SQRT returns a floating-point value that is an approximation of the positive square root of x. It has the
base, mode, and precision of x.

SQRT( x)

SMFTOJULIAN

552 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

x
Expression. If x is real, it must not be less than zero.

SQRTF
SQRTF is the same as SQRT except for some differences.

Differences between SQRTF and SQRT:

• SQRTF calculates its result inline if hardware architecture permits.
• The argument must be real.
• Invalid arguments will generate hardware exceptions.
• The accuracy of the result is set by the hardware.

The SQRTF built-in function is not supported for DFP.

For the definition and syntax, see “SQRT” on page 552.

SQUEEZE
SQUEEZE returns a string that reduces all multiple occurrences of a character to one, with an optionally
specified starting position.

SQUEEZE( x , y
,

n

)

x
A string expression. x specifies the string from which all multiple occurrences of the character defined
by y are reduced to one. x must have the CHARACTER attribute.

y
An expression that must have the type CHARACTER(1) NONVARYING.

n
An expression that specifies the location within x at which to begin to locate the first occurrences of y.
n must have a computational type and is converted to type size_t. The default value for n is 1.

• If n < 1, the default value 1 is used.
• If n > length(x), the full string of x is returned.

Example

dcl s1 char value(' abc : def gh ');
dcl s char(20);

s = squeeze(s1, ' ', 1);
 /* ' abc : def gh ' */
s = squeeze(s1, ' ', index(s1,':'));
 /* ' abc : def gh ' */

STACKADDR
STACKADDR returns the address of the dynamic save area (DSA) for the procedure (or BEGIN block) in
which it is invoked.

STACKADDR

()

SQRTF

Chapter 18. Built-in functions, pseudovariables, and subroutines 553

If the STACKADDR built-in function is used to change storage, unpredictable results may occur.

STCKETODATE
STCKETODATE returns a character string that contains a date/time value corresponding to a STCKE value
(set by PLISTCKE).

STCKETODATE (x
, p

)

x
A CHAR(16) value holding a STCKE value.

p
Specifies one of the supported date/time patterns. If p is omitted, it is assumed to be the TIMESTAMP
pattern, namely 'YYYY-MM-DD-HH.MI.SS.999999'.

The allowed patterns are listed in Table 65 on page 384. For an explanation of Lilian format, see “Date/
time built-in functions” on page 382.

STCKTODATE
STCKTODATE returns a character string that contains a date/time value corresponding to a STCK value
(set by PLISTCK).

STCKTODATE (x
, p

)

x
An UNSIGNED FIXED BIN(64) value holding a STCK value.

p
Specifies one of the supported date/time patterns. If p is omitted, it is assumed to be the TIMESTAMP
pattern, namely 'YYYY-MM-DD-HH.MI.SS.999999'.

The allowed patterns are listed in Table 65 on page 384. For an explanation of Lilian format, see “Date/
time built-in functions” on page 382.

STORAGE
STORAGE is a synonym for SIZE.

Abbreviation: STG

Note: The USAGE(HEX(STG) is accepted as a synonym for USAGE(HEX(SIZE).

Related information
“SIZE” on page 551
SIZE returns a FIXED BIN value that gives the implementation-defined storage, in bytes, allocated to a
variable x.

STRING
STRING returns a string that is the concatenation of all the elements of x.

STRING( x)

STCKETODATE

554 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

x
Aggregate or element reference.

STRING is restricted as follows:

• It cannot be applied to unions or structures containing unions.
• If applied to a scalar, the scalar must be a bit string, a character string, a pictured character string, a

pictured numeric string, a graphic string, a uchar string, or a widechar string.
• If applied to a structure, the structure must contain no padding bytes and the elements of the structure

must be either:

– All unaligned bit strings
– All character strings, each of which is either a character string, a pictured string, or a pictured

numeric string
– All graphic strings
– All uchar strings
– All widechar strings

• If applied to an array, all elements in the array are subject to the restrictions as described previously.

The type of string returned has the same type as one of these base elements with these exceptions:

• If any of the base elements are PICTUREs, then the type returned has CHARACTER type.
• If any of the base elements have the GRAPHIC type, then the type returned is GRAPHIC unless the

STRINGOFGRAPHIC compiler options specifies that it should be CHARACTER.

The following are valid STRING targets:

 dcl
 1 A,
 2 B bit(8),
 2 C bit(2),
 2 D bit(8);

 dcl
 1 W,
 2 X char(2),
 2 Y pic'aa',
 2 Z char(6);

 dcl
 1 W,
 2 X char(2),
 2 Y pic'99',
 2 Z char(6);

The following are invalid STRING targets:

 dcl
 1 A,
 2 B bit(8) aligned,
 2 C bit(2),
 2 D bit(8) aligned;

STRING pseudovariable
The STRING pseudovariable assigns a string to x as if x were a string scalar. Any remaining strings in x are
filled with blanks or zero bits, or, if varying-length, are given zero length.

STRING( x)

x
Aggregate or element reference. Each base element of x must be either all bit-string or all character-
string.

STRING pseudovariable

Chapter 18. Built-in functions, pseudovariables, and subroutines 555

The STRING pseudovariable must not be used out of context.

The pseudovariable is also subject to the restrictions of the STRING built-in function. For more
information on the restrictions, see “STRING” on page 554.

SUBSTR
SUBSTR returns a substring, specified by y and z, of x.

SUBSTR( x , y
, z

)

x
String expression. It specifies the string from which the substring is extracted. If x is not a string, it is
converted to character.

y
Expression that is converted to FIXED BINARY(31,0). y specifies the starting position of the substring
in x.

z
Expression that is converted to FIXED BINARY(31,0). z specifies the length of the substring in x. If z is
zero, a null string is returned. If z is omitted, the substring returned is position y in x to the end of x.

The STRINGRANGE condition is raised if z is negative or if the values of y and z are such that the substring
does not lie entirely within the current length of x. It is not raised when y = LENGTH(x)+1 and z = 0. For an
example of the SUBSTR built-in function, see “SEARCH” on page 542.

SUBSTR pseudovariable
The SUBSTR pseudovariable assigns a string value to a substring, specified by y and z, of x. The remainder
of x is unchanged. Assignments to a varying string do not change the length of the string.

SUBSTR( x , y
, z

)

x
String-reference. x must not be a numeric character.

y
Expression. y expression that can be converted to a FIXED BINARY value which specifies the starting
position of the substring in x.

z
Expression. z specifies the length of the substring in x. It can be converted to a real fixed-point binary
value. If z is zero, a null string is returned. If z is omitted, the substring returned is position y in x to the
end of x.

y and z can be arrays only if x is an array.

When the STRINGRANGE condition is disabled, an assignment to SUBSTR(x,1,z) assigns a string of length
z to the address specified by ADDRDATA(x). If z > MAXLENGTH(x), the program is invalid and data past the
end of x will be overwritten. For example, if x is CHAR(10) and z has the value 15, then 10 blanks will be
written to x and 5 blanks will be written over the storage after x.

SUBSTR

556 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

SUBTO
SUBTO returns a substring, specified by y and z, of x.

SUBSTR( x , y
, z

)

x
String expression. It specifies the string from which the substring is extracted. If x is not a string, it is
converted to character.

y
Expression that is converted to FIXED BINARY(31,0). y specifies the starting position of the substring
in x.

z
Expression that is converted to FIXED BINARY(31,0). z specifies the ending position of the substring
in x. If z = y-1, a null string is returned. If z is omitted, the substring returned is position y in x to the
end of x.

SUBTO(x,y) is equivalent to SUBSTR(x,y), and SUBTO(x,y,z) is equivalent to SUBSTR(x,y,z-y+1).

The STRINGRANGE condition is raised for a SUBTO reference if and only if the STRINGRANGE condition
would be raised for the equivalent SUBSTR reference. In particular, this means that if k = length(x), then
STRINGRANGE would be raised for SUBTO(x,y,z) under any of these 5 conditions:

 y < 1
 y > k+1
 y = k+1 then unless z = k
 z-y+1 < 0
 z > k

SUBTO pseudovariable
The SUBTO pseudovariable assigns a string value to a substring, specified by y and z, of x. The remainder
of x is unchanged. Assignments to a varying string do not change the length of the string.

SUBSTR( x , y
, z

)

x
String-reference. x must not be a numeric character.

y
Expression that can be converted to a FIXED BINARY value which specifies the starting position of the
substring in x.

z

Expression that is converted to FIXED BINARY(31,0). z specifies the ending position of the substring
in x. If z = y-1, a null string is returned. If z is omitted, the substring assigned is position y in x to the
end of x.

SUBTO(x,y) is equivalent to SUBSTR(x,y), and SUBTO(x,y,z) is equivalent to SUBSTR(x,y,z-y+1).

When the STRINGRANGE condition is disabled, an assignment to SUBTO(x,y,z) assigns a string with
starting position y and ending position z. If z > MAXLENGTH(x), the program is invalid and data past the
end of x will be overwritten.

SUBTO

Chapter 18. Built-in functions, pseudovariables, and subroutines 557

SUBTRACT
SUBTRACT is equivalent to ADD(x,-y,p,q).

SUBTRACT( x , y , p
, q

)

For details about arguments, see “ADD” on page 402 for argument descriptions.

SUCC
SUCC returns a floating-point value that is the smallest representable number larger than x. It is the base,
mode, and precision of x. The OVERFLOW condition is raised if there is no such number.

SUCC( x)

x
REAL FLOAT expression.

SUCC satisfies the following relationships:

 pred(succ(x)) = x
 succ(pred(x)) = x
 succ(x) = -pred(-x)
 succ(0d0) = tiny(0d0)

SUM
SUM returns the sum of all the elements in x. The base, mode, and scale of the result match those of x.

SUM( x)

x
Array expression. If the elements of x are strings, they are converted to fixed-point integer values.

If the elements of x are fixed-point, the precision of the result is (N,q), where N is the maximum
number of digits allowed, and q is the scaling factor of x.

If the elements of x are floating-point, the precision of the result matches x.

SYSNULL
SYSNULL returns the system null pointer value.

You can assign SYSNULL to handles and compare it with handles. You can use SYSNULL to initialize static
pointer and offset variables.

SYSNULL

()

Note: NULL and SYSNULL may compare equal; however, you should not write code that depends on their
equality.

See also “NULL” on page 497.

SUBTRACT

558 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

SYSTEM
SYSTEM returns a FIXED BIN(31,0) value that is the return value from the command processor when it is
invoked with the command contained in x.

SYSTEM

( x)

x
Must have a computational type and should have character type. If not, x is converted to character.

TALLY
TALLY returns a FIXED BINARY(31,0) result that indicates the number of times that string y appears in
string x.

If y does not appear in x, a value of 0 is returned.

TALLY( x , y)

x and y
String expressions.

Both x and y must have computational type and should be character, bit, graphic, uchar, or widechar
type.

If either x or y are the null string, the result is zero.

Example

 TALLY ('We''ve got the Power!', 'power'); /* returns 0 */
 TALLY ('We''ve got the Power!', 'Power'); /* returns 1 */
 TALLY ('We''ve got the Power!', ' '); /* returns 3 */
 TALLY ('We''ve got the Power!', 'e'); /* returns 4 */
 TALLY ('1001'B, '1'B); /* returns 2 */

TAN
TAN returns a floating-point value that is an approximation of the tangent of x. It has the base, mode, and
precision of x.

TAN( x)

x
Expression whose value is in radians.

TAND
TAND returns a real floating-point value that is an approximation of the tangent of x. It has the base and
precision of x.

TAND( x)

x
Real expression whose value is in degrees.

SYSTEM

Chapter 18. Built-in functions, pseudovariables, and subroutines 559

TANH
TANH returns a floating-point value that is an approximation of the hyperbolic tangent of x. It has the
base, mode, and precision of x.

TANH( x)

x
Expression whose value is in radians.

THREADID
THREADID (short for thread identifier) returns a POINTER value that is the address of the operating
system thread identifier for an attached thread.

THREADID (x)

x
Task reference. The value of x should have been set previously in the THREAD option of the ATTACH
statement.

The value returned by this built-in function can be used to invoke system functions, such as
DosSetPriority, on Windows, or posix functions on z/OS.

To obtain the system thread identifier for the currently executing thread, you must invoke the function
appropriate for the platform on which that thread is running. So, on Windows, you should invoke
GetCurrentThreadId, and on z/OS, you should invoke pthread_self.

TIME
TIME returns a character string timestamp in the format HHMISS999.

TIME

()

TIMESTAMP
TIMESTAMP returns a CHAR(26) character string that gives the current date and time in the format
YYYY-MM-DD-HH.MI.SS.999999.

TIMESTAMP

()

TINY
TINY returns a floating-point value that is the smallest positive value x can assume. It has the base,
mode, and precision, of x.

TINY( x)

x
REAL FLOAT expression.

TINY(x) is a constant and can be used in restricted expressions.

TANH

560 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

TRANSLATE
TRANSLATE returns a character string of the same length as x.

TRANSLATE( x , y
, z

)

x
Character expression to be searched for possible translation of its characters.

y
Character expression containing the translation values of characters.

z
Character expression containing the characters that are to be translated. If z is omitted, it defaults to
collate().

TRANSLATE operates on each character of x as follows:

If a character in x is found in z, the character in y that corresponds to that in z is copied to the result;
otherwise, the character in x is copied directly to the result. If z contains duplicates, the leftmost
occurrence is used.

y is padded with blanks, or truncated, on the right to match the length of z.

Any arithmetic or bit arguments are converted to character.

TRANSLATE supports UCHAR data. But if x has UCHAR type, then z must not be omitted.

TRANSLATE does not support GRAPHIC or WIDECHAR data.

TRANSLATE will perform best when the second and third arguments are either literals, named constants
declared with the VALUE attribute, or restricted expressions.

Example

 dcl source char value("Ein Raetsel gibt es nicht.");
 dcl target char(length(source));
 dcl (to value ('ABCDEFGHIJKLMNOPQRSTUVWXYZ'),
 from value ('abcdefghijklmnopqrstuvwxyz')) char;

 target = translate(source, to, from);
 /* "EIN RAETSEL GIBT ES NICHT." */

Note that you could also use the UPPERCASE built-in for the same purpose as the TRANSLATE built-in
in the example above. However, while the UPPERCASE built-in function will translate only the standard
alphabetic characters, TRANSLATE can be used to translate other characters. For example, if "Raetsel"
were spelled with an ä-umlaut, TRANSLATE could translate the ä-umlaut to Ä-umlaut if those characters
were added to the from and to strings, respectively.

TRIM
TRIM returns a nonvarying character string with characters trimmed from one or both ends.

TRIM( x
,  y

, z

)

x, y, and z
Expressions.

TRANSLATE

Chapter 18. Built-in functions, pseudovariables, and subroutines 561

Each must have a computational type and should have CHARACTER type or UCHAR type. If not, they
are converted.

x is the string from which the characters defined by y are trimmed from the left, and the characters
defined by z are trimmed from the right.

If z is omitted, it defaults to a CHARACTER(1) NONVARYING string containing one blank.

If y and z are both omitted, they both default to a CHAR(1) NONVARYING string containing one blank.

Example

In the following example, the TRIM function removes

• all the blanks from the left side of the string.
• all the blanks and all the asterisks from the right side of the string.

 dcl Source char value(" *** PL/I's got the Power! *** ");
 dcl Target char(length(Source)) varying;

 Target = trim(Source, ' ', '* ');
 /* "*** PL/I's got the Power!" */

TRUNC
TRUNC returns an integer value that is the truncated value of x. If x is positive or 0, this is the largest
integer value less than or equal to x. If x is negative, this is the smallest integer value greater than or equal
to x.

TRUNC( x)

x
Real expression.

The base, mode, scale, and precision of the result match those of x. Except when x is fixed-point with
precision (p,q), the precision of the result is given by:

 (min(N,max(p-q+1,1)),0)

where N is the maximum number of digits allowed.

If the expression x has the attributes FIXED BIN(p,q) but does not have the form above, then q must be
positive.

TYPE
TYPE returns the typed structure or union located by the handle, x.

TYPE( x)

x
Handle.

TYPE(x) dereferences the typed structure (or union) x. For an example of the TYPE built-in functions, see
“TYPE pseudovariable” on page 563.

TRUNC

562 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

TYPE pseudovariable
The TYPE pseudovariable assigns a typed structure or union to the storage located by the handle x.

TYPE( x)

x
Handle.

Given a defined structure T, the following assignments are valid:

 dcl P1 handle T;
 dcl P2 handle T;
 dcl D1 type T;
 dcl D2 type T;

 D1 = type(P2); /* Assigns the storage located by P2 to D1 */
 type(P1) = type(P2);
 type(P1) = D2; /* Assigns D2 to the storage located by P1 */

UHIGH
UHIGH returns a UCHAR string of length x with each UTF-8 data item having the highest UCHAR value
('F48FBFBF'ux).

UHIGH( x)

x
Expression. x must have UCHAR type.

The value returned by BYTELENGTH(UHIGH(x)) is equal to 4*x.

ULENGTH
ULENGTH returns a FIXED BINARY(31) value that is the number of UTF characters held in a string.

ULENGTH( x)

x
Expression. x must have CHARACTER or WIDECHAR type.

If x has CHARACTER type, then the string must contain valid UTF-8 data. If not, the program is in error.

If x has WIDECHAR type, then the string must contain valid UTF-16 data. If not, the program is in error.

ULENGTH will return the number of UTF-8 or UTF-16 characters held in the CHAR or WIDECHAR
argument, respectively. It does not return the number of characters if the string were normalized. For
example, in UTF-8, a lowercase a umlaut may be represented in the normalized or canonical form via the
string 'c3_a4'x or in the unnormalized or combining form as '61_cc_88'x, but ULENGTH will return 1
for the string 'c3_a4'x and 2 for the string '61_cc_88'x.

ULENGTH8
ULENGTH8 returns a FIXED BIN(31) value, which is the length of a CHAR string needed if the UTF
characters held in a string were converted to UTF-8.

ULENGTH8( x)

TYPE pseudovariable

Chapter 18. Built-in functions, pseudovariables, and subroutines 563

x
Expression. x must have CHARACTER or WIDECHAR type.

If x has CHARACTER type, then ULENGTH8 is the same as LENGTH, and the string will not be checked for
valid UTF-8 data.

If x has WIDECHAR type, then the string must contain valid UTF-16 data, and ULENGTH8 will return the
length of the CHAR string that would result if x were converted from UTF-16 to UTF-8. If the string does
not contain valid UTF-16 data, the program is in error.

For example, if x equals the WIDECHAR string '004B_00E4_0073_0065'wx, then ULENGTH8(x) returns
5.

ULENGTH16
ULENGTH16 returns a FIXED BINARY(31) value that is the length of a WIDECHAR string needed when the
UTF characters held in a string were converted to UTF-16.

ULENGTH16( x)

x
Expression. x must have CHARACTER or WIDECHAR type.

If x has CHAR type, then the string must contain valid UTF-8 data, and ULENGTH16 will return the length
of the WIDECHAR string that would result if x were converted from UTF-8 to UTF-16. If the string does not
contain valid UTF-8 data, the program is in error.

If x has WIDECHAR type, then ULENGTH16 is the same as LENGTH, and the string will not be checked for
valid UTF-16 data.

For example, if x equals the CHARACTER string '4b_c3_a4_73_65'x, then ULENGTH16(x) returns 4.

ULOW
ULOW returns a UCHAR string of length x with each UTF-8 data item having the lowest UCHAR value
('00'ux).

ULOW( x)

x
Expression. x must have UCHAR type.

The value returned by BYTELENGTH(ULOW(x)) is equal to x.

UNALLOCATED
UNALLOCATED returns a BIT(1) value indicating whether or not a specified pointer value is the start of
a piece of allocated storage. To use this built-in function, you must also specify the CHECK(STORAGE)
compile-time option.

UNALLOCATED( P)

p
Pointer expression.

UNALLOCATED returns the BIT(1) value '1'b if the specified pointer value is not the start of a piece of
storage that is obtained with the ALLOCATE statement or the ALLOCATE built-in function.

ULENGTH16

564 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Note that the pointer passed to UNALLOCATED is "rounded down" to the nearest doubleword and that
rounded value is compared against all allocated addresses when similarly rounded down.

UNHEX
UNHEX returns a character string that is the decoded value of a hex input string.

UNHEX( x
, c

)

x
An expression that must have CHARACTER type.

c
An expression that must have CHARACTER(1) NONVARYING type. If specified, it is the character that
separates every 8 characters in x.

UNHEX(x) is the reverse of HEX(y), and UNHEX(x, c) is the reverse of HEX(y, c).

If x contains non-hex characters, the CONVERSION condition will be raised.

UNSIGNED
UNSIGNED returns an unsigned FIXED BINARY value of x, with a precision specified by p and q.

UNSIGNED( x
,  p

, q

)

x
Expression.

p
Integer. It specifies the number of digits to be maintained throughout the operation.

q
Optionally-signed integer. It specifies the scaling factor of the result. If q is omitted, a scaling factor of
zero is assumed. If q is specified, it must be between 0 and p.

UNSPEC
UNSPEC returns a bit string that is the internal coded form of x.

UNSPEC( x)

x
Scalar, array, structure, or union expression.

The UNSPEC built-in function is subject to the following rules:

• Under the compiler option USAGE(UNSPEC(IBM)),

– UNSPEC of structure references and expressions is not allowed.
– UNSPEC of an array yields an array of BIT.

• Under the compiler option USAGE(UNSPEC(ANS)),

– For aggregates, UNSPEC is allowed only for those that contain no padding bytes or bits.
– The result will always be BIT scalar. UNSPEC of an array does not yield an array of BIT.

UNHEX

Chapter 18. Built-in functions, pseudovariables, and subroutines 565

Note: Use of UNSPEC can affect the portability of your program.

The length of the returned bit string depends on the attributes of x, as shown in Table 84 on page 566.

Table 84. Length of bit string returned by UNSPEC

Bit string length Attribute of x

8 SIGNED FIXED BINARY(p,q), 1 <= p <= 7
UNSIGNED FIXED BINARY(p,q), 1 <= p <= 8
ORDINAL SIGNED PRECISION(p), 1 <= p <= 7
ORDINAL UNSIGNED PRECISION(p), 1 <= p <= 8

16 SIGNED FIXED BINARY(p,q), 8 <= p <= 15
UNSIGNED FIXED BINARY(p,q), 9 <= p <= 16
ORDINAL SIGNED PRECISION(p), 8 <= p <= 15
ORDINAL UNSIGNED PRECISION(p), 9 <= p <= 16

32 ENTRY LIMITED, under LP(32)
SIGNED FIXED BINARY(p,q), 16 <= p <= 31
UNSIGNED FIXED BINARY(p,q), 17 <= p <= 32
ORDINAL SIGNED PRECISION(p), 16 <= p <= 31
ORDINAL UNSIGNED PRECISION(p), 17 <= p<= 32
FLOAT BINARY(p), 1 <= p <= 21
FLOAT DECIMAL(p), 1 <= p <= 6 if not DFP
FLOAT DECIMAL(p), 1 <= p <= 7 if DFP
OFFSET, under OFFSETSIZE(4)
FILE constant or variable, under LP(32)
POINTER(32)
HANDLE(32)

64 ENTRY LIMITED, under LP(64)
SIGNED FIXED BINARY(p), 31 < p
UNSIGNED FIXED BINARY(p), 32 < p
FLOAT BINARY(p), 21 < p < 53
FLOAT DECIMAL(p), 7 <= p <= 16 if not DFP
FLOAT DECIMAL(p), 8 <= p <= 16 if DFP
OFFSET, under OFFSETSIZE(8)
FILE constant or variable, under LP(64)
LABEL constant or variable
ENTRY constant or variable
POINTER(64)
HANDLE (64)

128 FLOAT BINARY(p), 54 <= p
FLOAT DECIMAL(p), 17 <= p
TASK

n BIT(n)

8*n CHARACTER(n) PICTURE (with character-string-value length of n)

16*n GRAPHIC(n) WIDECHAR(n)

32*n UCHAR(n)

16+n BIT(n) VARYING where n is the maximum length of x

32+n BIT(n) VARYING4 where n is the maximum length of x

UNSPEC

566 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 84. Length of bit string returned by UNSPEC (continued)

Bit string length Attribute of x

16+(8*n) CHARACTER(n) VARYING where n is the maximum length of x

32+(8*n) CHARACTER(n) VARYING4 where n is the maximum length of x

8+(8*n) CHARACTER(n) VARYINGZ where n is the maximum length of x

16+(16*n) GRAPHIC(n) VARYING where n is the maximum length of x WIDECHAR(n) VARYING
where n is the maximum length of x

32+(16*n) GRAPHIC(n) VARYING4 where n is the maximum length of x WIDECHAR(n) VARYING4
where n is the maximum length of x

8+(16*n) GRAPHIC(n) VARYINGZ where n is the maximum length of x WIDECHAR(n) VARYINGZ
where n is the maximum length of x

16+(32*n) UCHAR(n) VARYING where n is the maximum length of x

32+(32*n) UCHAR(n) VARYING4 where n is the maximum length of x

8+(32*n) UCHAR(n) VARYINGZ where n is the maximum length of x

8*(n+16) AREA (n) under LP(32)

8*(n+32) AREA (n) under LP(64)

8*FLOOR(n) FIXED DECIMAL (p,q) where n = (p+2)/2

Alignment and storage requirements for program-control data can vary across supported systems.

If x is a VARYING or VARYING4 string, its length prefix is included in the returned bit string. If x is an area,
the returned value includes the control information.

UNSPEC pseudovariable
The UNSPEC pseudovariable assigns a bit value directly to x; that is, without conversion.

The bit value is padded, if necessary, on the right with '0'B to match the length of x, according to Table 84
on page 566.

UNSPEC( x)

x
Reference.

If x is a VARYING or VARYING4 string, its length prefix is included in the returned bit string. If x is an area,
its control information is included in the receiving field.

The pseudovariable is subject to the rules for the UNSPEC built-in function described in “UNSPEC” on
page 565.

Note: Use of UNSPEC can affect the portability of your program.

Example

 dcl 1 Str1 nonasgn static,
 2 * fixed bin(15) littleendian init(16), /* '1000'X */
 2 * char init('33'x),
 2 * bit init('1'b),
 2 Ba(4) bit init('1'b, '0'b, '1'b, '0'b),
 2 B3 bit(3) init('111'b),
 2 * char(0);
 dcl Bit_Str1 bit(size(Str1)*8);
 dcl Bit_Ba bit(dim(Ba)*length(Ba(1)));

UNSPEC pseudovariable

Chapter 18. Built-in functions, pseudovariables, and subroutines 567

 dcl Bit_B3 bit(length(B3));

 Bit_Ba = unspec(Ba); /* result is scalar '1010'B not an array */
 Bit_B3 = unspec(B3); /* '111'B */
 Bit_Str1 = unspec(Str1); /* '100033D7'B4 or
 '100033'B4 ∥ '11010111'B */

UPOS
UPOS returns a FIXED BIN(31) value which is the index of the nth UTF character in a string.

UPOS( x , n)

x
Expression which must have CHARACTER or WIDECHAR type.

n
Expression which must have computational type and which will be converted to FIXED BIN(31) if
necessary.

If x has CHARACTER type, then the string must contain valid UTF-8 data. If not, the program is in error.

If x has WIDECHAR type, then the string must contain valid UTF-16 data. If not, the program is in error.

If n is not positive or if n is larger than ULENGTH(x), then zero will be returned. Otherwise, if x has
CHARACTER type, then UPOS(x,n) will return the position of the byte where the nth UTF-8 character
starts, and if x has WIDECHAR type, then UPOS(x,n) will return the position of the widechar character
where the nth UTF-16 character starts.

For example, if x equals the CHARACTER string '4b_c3_a4_66_65_72'x, then

• UPOS(x,1) returns 1
• UPOS(x,2) returns 2
• UPOS(x,3) returns 4
• UPOS(x,4) returns 5
• UPOS(x,5) returns 6

UPPERASCII
UPPERASCII returns a UCHAR string with all of its ASCII characters converted to their corresponding
uppercase characters.

UPPERASCII( x)

x
Expression. x must have UCHAR type.

UPPERASCII(x) is equivalent to TRANSLATE(x, ‘A...Z', ‘a...z’).

UPPERCASE
UPPERCASE returns a character string with all characters converted to their uppercase equivalent.

UPPERCASE ( x
, c

)

x
An expression. If necessary, x is converted to character.

UPOS

568 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

c
An expression that specifies the code page that will be uppercased.

UPPERCASE(x) is equivalent to TRANSLATE(x, 'A...Z', 'a...z') and UPPERCASE(x, c) is equivalent to
TRANSLATE(x, upperc, lowerc). The values of upperc and lowerc are determined by the value of the code
page c. Specifying UPPERCASE(x, c) will not only translate alphabetic characters 'a...z' to 'A...Z', but also
translate characters such as lowercase ä-umlaut('c0'x) to uppercase Ä-umlaut('4a'x).

For example, if the Lower_01141 was declared as:

dcl lower_01141 char
 value((
 '8182838485868788'8991929394959697'x
 || '9899A2A3A4A5A6A7A8A9424445464748'x
 || '4951525354555657'586A708C8D8E9CC0'x
 || 'CBCDCECFD0DBDDDE'x
));

and the Upper_01141 was declared as:

dcl upper_01141 char
 value((
 'C1C2C3C4C5C6C7C8C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7E8E9626465666768'x
 || '6971727374757677'78E080ACADAE9E4A'x
 || 'EBEDEEEF5AFBFDFE'x
));

then UPPERCASE(x, 1141) would be the same as TRANSLATE(x, Upper_01141, Lower_01141).

The appendix lists the values of upperc and lowerc for the supported values of c. For details, see Appendix
A, “Limits,” on page 627.

UPPERLATIN1
UPPERLATIN1 returns a UCHAR string with all of its ASCII and Latin-1 supplement characters converted
to their corresponding uppercase characters.

UPPERLATIN1( x)

x
Expression. x must have UCHAR type.

The letters Y with DIAERESIS(ÿ) and SHARP S(ß) are not changed.

USUBSTR
USUBSTR returns a substring of a UTF string.

USUBSTR( x , i , j)

x
Expression which must have CHARACTER or WIDECHAR type.

i
Expression which must have computational type and which will be converted to FIXED BIN(31) if
necessary.

j
Expression which must have computational type and which will be converted to FIXED BIN(31) if
necessary.

If x has CHARACTER type, then the string must contain valid UTF-8 data. If not, the program is in error.

UPPERLATIN1

Chapter 18. Built-in functions, pseudovariables, and subroutines 569

If x has WIDECHAR type, then the string must contain valid UTF-16 data. If not, the program is in error.

The ERROR condition (and not the STRINGRANGE condition) will also be raised if

• i is less than 1, or
• j is less than zero, or
• i + j - 1 is larger than ULENGTH(x)

If x has CHARACTER type, then USUBSTR(x,i,j) will return a CHARACTER string containing the j UTF-8
characters in x starting with the ith UTF-8 character.

If x has WIDECHAR type, then USUBSTR(x,i,j) will return a WIDECHAR string containing the j UTF-16
characters in x starting with the ith UTF-16 character.

In general, USUBSTR(x,i,j) will not equal SUBSTR(x,i,j).

For example, if x equals the CHARACTER string '4b_c3_a4_66_65_72'x, then

• USUBSTR(x,1,2) returns '4b_c3_a4'x
• USUBSTR(x,2,1) returns 'c3_a4'x
• USUBSTR(x,2,2) returns 'c3_a4_66'x
• USUBSTR(x,3,2) returns '66_65'x

USUPPLEMENTARY
USUPPLEMENTARY returns a FIXED BIN(31) value that is either the index of the first of the UTF surrogate
pair in a string or zero if the string contains no UTF surrogate pairs.

USUPPLEMENTARY( x)

x
Expression which must have CHARACTER or WIDECHAR type.

If x has CHARACTER type, then the string must contain valid UTF-8 data. However, the validity of the data
will not be checked. If the data is invalid, the ERROR condition will not be raised, the program is in error,
and the result returned by this function will be unpredictable.

If x has WIDECHAR type, then the string must contain valid UTF-16 data. However, the validity of the data
will not be checked. If the data is invalid, the ERROR condition will not be raised, the program is in error,
and the result returned by this function will be unpredictable.

As an example, the musical G-clef is represented by the UTF-16 surrogate pair 'D834_DD1E'wx, and
hence in the following code, the value 3 will be listed:

 dcl w wchar(20) varying;
 dcl jx fixed bin;

 w = '0020_0020_D834_DD1E'wx

 jx = usupplementary(w);

 put skip list(jx);

UTCDATETIME
UTCDATETIME returns a character string that gives the current Coordinated Universal Time (UTC) in the
pattern YYYYMMDDHHMISS999.

UTCDATETIME

()

USUPPLEMENTARY

570 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

UTCMICROSECS
UTCMICROSECS returns a FIXED BINARY(63) value that gives the current UTC time in microseconds.

UTCMICROSECS

UTCSECS
UTCSECS returns a FLOAT BIN(53) value that gives the current Coordinated Universal Time (UTC) in
seconds in the Lilian format.

UTCSECS

()

If you define a variable to hold a number of quarter-hours as

dcl qh fixed dec(5,2);

then

qh = 15*round(fixeddec((secs()-utcsecs())/900,7,2),0);

will set it to the UTC offset as a number of quarter-hours, and the expression

edit((qh/60),'S99') || ':' || edit(rem(qh,60),'99')

will be a char(6) string holding the UTC offset in the usual format. For example, as -08:00 for California
and +05:45 for Nepal.

UTF8
UTF8(x) returns a CHAR value that is the UTF-8 equivalent of x.

UTF8( x
,c

)

x
An expression that must have one of these types: FIXED, FLOAT, PICTURE, BIT, CHAR, or WIDECHAR.

c
A restricted expression that specifies the code page of the source. It is ignored if x has WIDECHAR
type.

The code page must have a computational type and is converted to type FIXED BINARY (31,0). The
code page must specify a valid, supported code page.

If x has the type other than WIDECHAR, the CODEPAGE option specifies the value for the code page of x
when it is converted to UTF-8.

If x has the WIDECHAR type, it is converted to UTF-8 under the assumption that x holds UTF-16.

You can use UTF8(x) in restricted expressions. Therefore, you can use UTF8(x) to create UTF-8 literals.

Notes:

• If x has the CHAR type, the length of UTF8(x) might be two times as large as the length of x. If x has
the WCHAR type, the length of UTF8(x) might be three times as the length of x. If the length of UTF8
exceeds the maximum length of CHAR, the generated code raises the ERROR condition.

• If x has the WCHAR type and holds invalid UTF-16 data, the generated code raises the ERROR condition.

UTCMICROSECS

Chapter 18. Built-in functions, pseudovariables, and subroutines 571

• For example, UTF8('babb'x,1140) and UTF8('63fc'x,1141) will both return '5b5d'x. Because
on code page 1140, 'ba'x and 'bb'x correspond to UTF-8 characters '5b'x and '5d'x; but on code
page 1141, '63'x and 'fc'x map to UTF-8 characters '5b'x and '5d'x.

UTF8STG
UTF8STG returns a FIXED BIN value that specifies the number of bytes that must be present if the input
character is the start of a valid UTF-8 character.

UTF8STG( x)

x
Specifies the input character. x must be of the type CHAR(1).

The function returns zero if the character cannot be the start of a valid UTF-8 character. For example, if
the character has the value '80'x, UTF8STG returns zero.

UTF8TOCHAR
UTF8TOCHAR(x) returns a CHAR value holding x converted from UTF-8.

UTF8TOCHAR( x
,c

)

x
An expression that must have the CHAR type.

c
A restricted expression that specifies the code page of x.

If omitted, it defaults to the value in the CODEPAGE compiler option.

If specified, the code page must have a computational type and is converted to FIXED BINARY (31,0).
The code page must specify a valid, supported code page.

Note: If x holds invalid UTF-8 data, the generated code raises the ERROR condition.

UTF8TOWCHAR
UTF8TOWCHAR(x) returns a WCHAR value holding x converted from UTF-8 to UTF-16.

UTF8TOWCHAR( x)

x
An expression that must have the CHAR type. x is converted from UTF-8 to UTF-16.

You can use UTF8TOWCHAR(x) in restricted expressions.

Note: If x holds invalid UTF-8 data, the generated code raises the ERROR condition.

UUID
UUID returns a CHARACTER(36) string that is a universally unique identifier that is in version 5 format.

UUID

The UUID generated by PL/I is a version 5 format UUID per RFC 4122.

The name-space information used to construct the UUID consists of:

UTF8STG

572 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

1. System information:

• CPU count
• MVS name
• storage size
• model and serial

2. Runtime 64 bit TOD value.
3. Job name or, if possible, the PID.

The UUID is a SHA1 hash of the above.

If the USAGE(UUID(LOWER)) compiler option is in effect, all alphabetic characters in the returned string
will be in lowercase. If the USAGE(UUID(UPPER)) compiler option is in effect, all alphabetic characters in
the returned string will be in uppercase.

UUID4
UUID4 returns a CHARACTER(36) string that is a version 4 universally unique identifier.

UUID4

The UUID4 generated by PL/I is a version 4 UUID per RFC 4122. It is meant for generating UUIDs from
truly-random or pseudo-random numbers.

If the USAGE(UUID(LOWER)) compiler option is in effect, all alphabetic characters in the returned string
will be in lowercase. If the USAGE(UUID(UPPER)) compiler option is in effect, all alphabetic characters in
the returned string will be in uppercase.

UVALID
UVALID returns a FIXED BINARY(31) value which is zero if a string contains valid UTF data and which is
the index of the first invalid element if the string does not contain valid UTF data.

UVALID( x)

x
Expression which must have CHARACTER, UCHAR, WIDECHAR or WIDEPIC type.

If x has CHARACTER type, then UVALID(x) will return 0 if the string contains valid UTF-8 data. Otherwise,
it will return the index of the BYTE where the first invalid UTF-8 data starts.

If x has UCHAR type, then UVALID(x) will return 0 if the string contains valid UTF-8 data. Otherwise, it will
return the index of the UCHAR where the first invalid UTF-8 data starts.

If x has WIDECHAR or WIDEPIC type, then UVALID(x) will return 0 if the string contains valid UTF-16 data.
Otherwise, it will return the index of the WIDECHAR where the first invalid UTF-16 data starts.

Note that UVALID will indicate if the string contains valid UTF data (according to the rules below). It does
not indicate if these bytes have actually been allocated to represent any particular character.

For UTF-8 data, the validity of a byte varies as follows according to its range:

• '00'x - '7f'x, it is valid
• '80'x - 'c1'x, it is invalid
• 'c2'x - 'df'x, it is valid if followed by a second byte and if that byte is in the range '80'x to 'bf'x
• 'e0'x - 'ef'x, it is valid if followed by 2 more bytes and if

– when the first byte is 'e0'x, the second and third bytes must be in the ranges 'a0'x to 'bf'x and '80'x to
'bf'x, respectively.

UUID4

Chapter 18. Built-in functions, pseudovariables, and subroutines 573

– when the first byte is in the range 'e1'x to 'ec'x, the second and third bytes must be in the ranges '80'x
to 'bf'x

– when the first byte is 'ed'x, the second and third bytes must be in the ranges '80'x to '9f'x and '80'x to
'bf'x, respectively.

– when the first byte is in the range 'ee'x to 'ef'x, the second and third bytes must be in the ranges '80'x
to 'bf'x

• 'f0'x - 'f4'x, it is valid if followed by 3 more bytes and if

– when the first byte is 'f0'x, the second, third and fourth bytes must be in the ranges '90'x to 'bf', '80'x
to 'bf'x and '80'x to 'bf'x, respectively.

– when the first byte is in the range 'f1'x to 'f3'x, the second, third and fourth bytes must be in the range
'80'x to 'bf'x

– when the first byte is 'f4'x, the second, third and fourth bytes must be in the ranges '80'x to '8f'x,
'80'x to 'bf'x and '80'x to 'bf'x, respectively.

• 'f5'x - 'ff'x, it is invalid

For UTF-16 data, the validity of a widechar varies as follows according to its range:

• '0000'wx - '007f'wx, it is valid and would be 1 byte if UTF-8
• '0080'wx - '07ff'wx, it is valid and would be 2 bytes if UTF-8
• '0800'wx - 'd7ff'wx, it is valid and would be 3 bytes if UTF-8
• 'd800'wx - 'dbff'wx, it is valid if followed by a second widechar with a value greater than or equal to

'dc00'wx and less than or equal to 'dfff'wx. It is a unicode surrogate pair and would be 4 bytes if UTF-8
• 'dc00'wx - 'dfff'wx, it is valid only when it is the second half of a surrogate pair
• 'e000'wx - 'ffff'wx, it is valid and would be 3 bytes if UTF-8

UWIDTH
UWIDTH returns a FIXED BIN(31) value, which is the width of the nth UTF character in a string.

UWIDTH( x , n)

x
Expression which must have CHARACTER or WIDECHAR type.

n
Expression which must have computational type and which will be converted to FIXED BIN(31) if
necessary.

If x has CHARACTER type, then the string must contain valid UTF-8 data. If not, the program is in error.

If x has WIDECHAR type, then the string must contain valid UTF-16 data. If not, the program is in error.

If n is not positive or if n is larger than ULENGTH(x), then zero will be returned. Otherwise, if x has
CHARACTER type, then UWIDTH(x,n) will return the width of the nth UTF-8 character, and if x has
WIDECHAR type, then UWIDTH(x,n) will return the width of the nth UTF-16 character.

For example, if x equals the CHARACTER string '4b_c3_a4_66_65_72'x, then

• UWIDTH(x,1) returns 1
• UWIDTH(x,2) returns 2
• UWIDTH(x,3) returns 1
• UWIDTH(x,4) returns 1
• UWIDTH(x,5) returns 1

UWIDTH

574 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

VALID
VALID returns a BIT(1) value that indicates if the contents of a reference are valid for its data type.

VALID( x)

x
Reference with either PICTURE, FIXED DEC, or ORDINAL type.

VALID(x) returns '1'b if:

• x is PICTURE or WIDEPIC and its contents are valid for x's picture specification.
• x is FIXED DECIMAL and the data in x is valid packed decimal data.
• x is ORDINAL and the data in x is one of the defined values for that ordinal type.

Otherwise it returns '0'b.

VALIDDATE
VALIDDATE returns '1'B if the string d holds a date/time value that matches the pattern p.

VALIDDATE (d
, p

, w

)

d
A string expression representing a date.

d specifies the input date as a character string representing date/time according to the pattern p.

d must have computational type and should have character type. If not, d is converted to character.

p
One of the supported date/time patterns.

If present, it specifies the date/time pattern of d. If p is missing, it is assumed to be the default
date/time pattern of 'YYYYMMDDHHMISS999'.

p must have computational type and should have character type. If not, it is converted to character.

w
Specifies an expression (such as 1950) that can be converted to an integer. If negative, it specifies an
offset to be subtracted from the value of the year when the code runs. If omitted, w defaults to the
value specified in the WINDOW compile-time option.

Allowable patterns are listed in Table 65 on page 384. For an explanation of Lilian format, see “Date/time
built-in functions” on page 382.

If the pattern contains punctuation characters, VALIDDATE checks that the input string contains
matching characters. For example, for the pattern YYYY-MM-DD, VALIDDATE accepts 2019-03-14 but
not 2019.03.14.

Example

 dcl duedate char(8);
 dcl (b1,b2) bit(1);

 duedate = '20190228';
 b1 = validdate(duedate, 'YYYYMMDD'); /* b1 = '1'b */

 duedate = '02302019';
 b2 = validdate(duedate, 'DDMMYYYY'); /* b2 = '0'b */

VALID

Chapter 18. Built-in functions, pseudovariables, and subroutines 575

VALIDVALUE
VALIDVALUE returns a value that indicates whether the value of an expression matches one of the
elements in a variable's value set.

VALIDVALUE ( x
, y

)

x
A reference that must have the VALUELIST or VALUERANGE attribute.

y
An expression that is to be tested against the value set for x. If x has a computational type, then y
must also have a computational type and will be converted, if necessary, to the same type as x;

If x has an ordinal type, then y must have the same ordinal type.

If y is omitted, it defaults to x. VALIDVALUE(x) is equivalent to VALIDVALUE(x,x).

VALIDVALUE returns a BIT(1) value '1'B if:

• x has the VALUELIST attribute and its contents are one of the elements in that list.
• x has the VALUERANGE attribute and its contents are within that range.

Otherwise, it returns '0'B.

If x has the VALUERANGE attribute , the VALIDVALUE test includes the two endpoint values. For example
given the declare

dcl x fixed dec(5) valuerange(1900, 2100);

the test

if validvalue(x) then

is equivalent to

if (1900 <= x) & (x <= 2100) then

VARGLIST
VARGLIST returns the address of the first optional parameter passed to a procedure with a variable
number of arguments.

VARGLIST()

The VARGLIST built-in function may be used only inside a procedure whose last parameter has the LIST
attribute.

VARGSIZE
VARGSIZE returns the number of bytes that a variable would occupy on the stack if it were passed
BYVALUE.

VARGSIZE( x)

VALIDVALUE

576 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

x
A variable of any data type, data organization, alignment, and storage class, except as listed below.

x cannot be:

• A BASED, DEFINED, parameter, subscripted, or structure or union base-element variable that is an
unaligned fixed-length bit string

• A minor structure or union whose first or last base element is an unaligned fixed-length bit string
(except where it is also the first or last element of the containing major structure or union)

• A major structure or union that has the BASED, DEFINED, or parameter attribute, and which has an
unaligned fixed-length bit string as its first or last element

• A variable not in connected storage

VARGSIZE(x) returns the number of bytes that x would occupy on the stack if it were passed BYVALUE.
This value will be at least as large as SIZE(x); it will be larger if the value returned by SIZE(x) needs to be
rounded up to a 4-byte multiple.

VARGSIZE is meant to be used only inside a procedure whose last parameter has the LIST attribute.

VERIFY
VERIFY returns an unscaled REAL FIXED BINARY value that indicates the position in x of the leftmost
character, bit, graphic, uchar, or widechar that is not in y. It also allows you to specify the location within x
at which to begin processing.

If all the characters, bits, graphics, uchars, or widechars in x do appear in y, a value of zero is returned. If x
is the null string, a value of zero is returned. If x is not the null string and y is the null string, the value of n
is returned. The default value for n is one.

VERIFY( x , y
, n

)

x
String-expression.

y
String-expression.

n
Expression n specifies the location within x where processing begins. It must have a computational
type and is converted to FIXED BINARY(31,0).

Unless 1 ≤ n ≤ LENGTH(x) + 1, the STRINGRANGE condition, if enabled, is raised. Its implicit action and
normal return give a result of 0. If n = LENGTH(x) + 1, the result is zero.

The BIFPREC compiler option determines the precision of the result returned.

VERIFY will perform best when the second and third arguments are either literals, named constants
declared with the VALUE attribute, or restricted expressions.

Example

 X = ' a b'; /* Two blanks in each space */
 Y = ' '; /* One blank */
 N = 1;
 I = verify(X,Y,N); /* I = 3 */

 do while (I > 0);
 display ('Nonblank at position ' ∥ trim(I));
 N = I + 1;
 I = verify(X,Y,N);
 end;

VERIFY

Chapter 18. Built-in functions, pseudovariables, and subroutines 577

After the first pass through the do-loop, N=4 and VERIFY(X,Y,N) returns 6. After the second pass, N=7 and
(LENGTH(x)+1), VERIFY(X,Y,N) now returns 0, and the loop ends.

For more examples of the VERIFY built-in function, see “SEARCH” on page 542.

VERIFYR
VERIFYR performs the same operation as the VERIFY built-in function except that the verification is done
from right to left.

Another difference is that the default value for n is LENGTH(x).

VERIFYR( x , y
, n

)

Unless 0 ≤ n ≤ LENGTH(x), the STRINGRANGE condition, if enabled, is raised. If n = 0, the result is zero.

The BIFPREC compiler option determines the precision of the result returned.

VERIFYR will perform best when the second and third arguments are either literals, named constants
declared with the VALUE attribute, or restricted expressions.

For argument descriptions, see “VERIFY” on page 577.

Example

 X = 'a b '; /* Two blanks in each space */
 Y = ' '; /* One blank */
 N = length(X); /* N = 6 */
 I = verifyr(X,Y,N); /* I = 4 */

 do while (I > 0);
 display ('Nonblank at position ' ∥ trim(I));
 N = I - 1;
 I = verifyr(X,Y,N);
 end;

After the first pass through the do-loop, N=3 and VERIFYR(X,Y,N) returns 1. After the second pass, N=0,
VERIFYR(X,Y,N) returns 0, and the loop ends. For another example, see “SEARCHR” on page 543.

WCHARVAL
WCHARVAL returns the WIDECHAR(1) value corresponding to an integer.

WCHARVAL (n)

n
Expression converted to UNSIGNED FIXED BIN(16) if necessary.

If n is in bigendian format, WCHARVAL(n) has the same bit value as n (that is, UNSPEC(WCHARVAL(n)) is
equal to UNSPEC(n)), but it has the attributes WIDECHAR(1).

WCHARVAL is the inverse of RANK (when applied to widechar).

VERIFYR

578 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

WEEKDAY
WEEKDAY returns a FIXED BINARY(31,0) value that is the number of days x converted to the day of the
week, where 1=Sunday, 2=Monday, . . . 7=Saturday. If x is missing, it is assumed to be DAYS for today.

WEEKDAY

(
x

)

x
Expression. If present, x specifies the input date as days. If missing, x is assumed to be DAYS().

If x is missing and today's date is not available from the system, a result of zero is returned.

x must have computational type and will be converted to FIXED BINARY(31,0), if necessary.

For an example of WEEKDAY, see “SECS” on page 543.

WHIGH
WHIGH returns a widechar string of length x, where each widechar has the highest widechar value
(hexadecimal FFFF).

WHIGH( x)

x
Expression. If necessary, x is converted to a positive real fixed-point binary value. If x = 0, the result is
the null widechar string.

WHEREDIFF
WHEREDIFF returns a size_t value that specifies the index of the first byte that differs in two buffers or
zero if all the bytes are the same.

WHEREDIFF( x , y , z)

x
Expression. It must have the POINTER or OFFSET type. If OFFSET, the expression must be declared
with the AREA qualification.

y
Expression. It must have the POINTER or OFFSET type. If OFFSET, the expression must be declared
with the AREA qualification.

z
Expression. It is converted to size_t.

If the two buffers are different, the WHEREDIFF built-in function does not indicate if the first byte that
differs is greater or less than the corresponding byte in the second buffer. If you want to know how the
buffers differ, use the COMPARE built-in function instead.

WEEKDAY

Chapter 18. Built-in functions, pseudovariables, and subroutines 579

WIDECHAR
WIDECHAR returns the widechar value of x, with a length specified by y.

WIDECHAR( x
, y

)

Abbreviation: WCHAR

x
Expression.

x must have a computational type.

The values of x are not checked.

y
Expression. If necessary, y is converted to a real fixed-point binary value.

If y is omitted, the length is determined by the rules for type conversion.

y cannot be negative.

If y = 0, the result is the null widechar string.

WLOW
WLOW returns a widechar string of length x, where each widechar has the lowest widechar value
(hexadecimal 0000).

WLOW( x)

x
Expression. If necessary, x is converted to a positive real fixed-point binary value. If x = 0, the result is
the null widechar string.

WSCOLLAPSE
WSCOLLAPSE returns a size_t 1 value that indicates the number of bytes that are written into the target
buffer when it collapses all the whitespace in the CHARACTER source buffer.

WSCOLLAPSE collapses the whitespace by one of the following means:

• Replacing each character from \t\f\v\n\r with a blank.
• Trimming all leading and trailing blanks.
• Reducing multiple interior blanks to one blank.

WSCOLLAPSE( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

WIDECHAR

580 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes to be written is returned. If the target buffer
is not large enough, a value of -1 is returned. If the target buffer is large enough, the number of bytes that
is written to the buffer is returned.

WSCOLLAPSE16
WSCOLLAPSE16 collapses all the whitespace in a source buffer encoded as UTF-16. It returns a size_t 1
value that indicates the number of bytes that are written into the target buffer. WHITESPACECOLLAPSE is
a deprecated synonym for WSCOLLAPSE16.

WSCOLLAPSE16 collapses the whitespace by one of the following means:

• Replacing each character from \t\f\v\n\r with a UTF-16 blank.
• Trimming all leading and trailing blanks.
• Reducing multiple interior blanks to one blank.

WSCOLLAPSE16( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes to be written is returned. If the target buffer
is not large enough, a value of -1 is returned. If the target buffer is large enough, the number of bytes that
is written to the buffer is returned.

The source buffer must hold UTF-16 data.

WSREPLACE
WSREPLACE replaces each character from \t, \f, \v, \n in a source buffer encoded as CHARACTER by
a blank. This function returns a size_t 1 value that indicates the number of bytes that are written into the
target buffer.

WSREPLACE( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

WSCOLLAPSE16

Chapter 18. Built-in functions, pseudovariables, and subroutines 581

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes to be written is returned. If the target buffer
is not large enough, a value of -1 is returned. If the target buffer is large enough, the number of bytes that
is written to the buffer is returned.

WSREPLACE16
WSREPLACE16 replaces all characters from \t, \f, \v, \n in a source buffer encoded as UTF-16 by a
blank. This function returns a size_t 1 value that indicates the number of bytes that are written into the
target buffer. WHITESPACEREPLACE is a deprecated synonym for WSREPLACE16.

WSREPLACE16( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes to be written is returned. If the target buffer
is not large enough, a value of -1 is returned. If the target buffer is large enough, the number of bytes that
is written to the buffer is returned.

The source buffer must hold UTF-16 data.

XMLCHAR
XMLCHAR dumps data from a structure as XML into a buffer. It returns a size_t 1 value that indicates the
number of bytes written to the buffer. If the buffer is too small, the structure data is truncated and the
number of bytes needed for the buffer to contain the structure is returned.

XMLCHAR (x , p , n)

x
Reference to a structure or DEFINE STRUCTURE type.

The reference x must conform to the following rules:

• It must contain only computational data, that is, only string and numeric data. However, it must not
contain any GRAPHIC, UCHAR, WIDECHAR, or WIDEPIC elements.

• It may contain arrays, but if it is an array itself, it must be completely subscripted.
• It may contain substructures, but any contained substructure must not use an asterisk (*) in place

of a name. However, an asterisk may be used as the name of a base element, but in that case, the
unnamed element will not be written to the target buffer.

• If x is a reference to a structure, it must not contain any DEFINE STRUCTURE types.

p
Address of the target buffer.

WSREPLACE16

582 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

n
Length of the target buffer.

The buffer length must be nonnegative and must have a computational type. The buffer length is
converted to type size_t.

When the XML output is created, it follows these rules:

• When a variable has the XMLCONTENT attribute, the variable is presented as tagless text
• When no variable has the XMLATTR attribute, each name in the structure is written out, first enclosed in

"<" and ">" and later enclosed in "</" and ">".
• When a variable has the XMLATTR attribute, the field is presented as an attribute of its containing

structure.
• When a variable has the XMLOMIT attribute, the field is omitted if it has a null value.
• Numeric and bit data is converted to character.
• Leading and trailing blanks are trimmed wherever possible.

Note: By default the names of the variables in the generated XML output are all in upper case. The
CASE(ASIS) suboption of the XML compiler option can be used to specify that the names appear in the
case in which they were declared.

Example of using XMLCHAR

This example is based on the following code fragment:

 dcl buffer char(800);
 dcl written fixed bin(31);
 dcl next pointer;
 dcl left fixed bin(31);
 dcl
 1 a,
 2 a1,
 3 b1 char(8),
 3 b2 char(8),
 2 a2,
 3 c1 fixed bin,
 3 c2 fixed dec(5,1);

 b1 = ' t1';
 b2 = 't2';
 c1 = 17;
 c2 = -29;
 next = addr(buffer);
 left = stg(buffer);
 written = xmlchar(a, next, left);
 next += written;
 left -= written;

The following bytes would be written to the buffer, and written would be set equal to 72.

<A><A1><B1>t1</B1><B2>t2</B2></A1><A2><C1>17</C1><C2>-29.0</C2></A2>

Related information
“XML-related attributes” on page 183
XML-related attributes specify the use of XML attributes and control output that is generated by the
XMLCHAR or XMLUCHAR built-in function.

XMLSCRUB
XMLSCRUB scrubs the CHARACTER source buffer. It returns a size_t1 value that indicates the number of
bytes that are written into the target buffer.

XMLSCRUB cleans the CHARACTER source buffer by:

• Replacing each character less than a blank except for \t, \n, \r with a blank.
• Replacing carriage returns with .

XMLSCRUB

Chapter 18. Built-in functions, pseudovariables, and subroutines 583

• Replacing the following characters with corresponding strings as follows:

Characters Strings

" "

' '

& &

< <

> >

XMLSCRUB( p , m, q, n)

p
Specifies the address of the target buffer.

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes to be written is returned. If the target buffer
is not large enough, a value of -1 is returned. If the target buffer is large enough, the number of bytes that
is written to the buffer is returned.

XMLSCRUB16
XMLSCRUB16 scrubs the UTF-16 source buffer. It returns a size_t 1 value that indicates the number of
bytes that are written into the target buffer. XMLCLEAN is a deprecated synonym for XMLSCRUB16.

XMLSCRUB16 cleans the UTF-16 source buffer by:

• Replacing each invalid UTF-16 with a UTF-16 blank.
• Replacing carriage returns with .
• Replacing the following characters with corresponding strings as follows:

Characters Strings

" "

' '

& &

< <

> >

XMLSCRUB16( p , m, q, n)

p
Specifies the address of the target buffer.

XMLSCRUB16

584 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

m
Specifies the length in bytes of the target buffer. It must have a computational type and is converted
to type size_t.

q
Specifies the address of the source buffer.

n
Specifies the length in bytes of the source buffer. It must have a computational type and is converted
to type size_t.

If the address of the target buffer is zero, the number of bytes to be written is returned. If the target buffer
is not large enough, a value of -1 is returned. If the target buffer is large enough, the number of bytes that
is written to the buffer is returned.

The source buffer must hold UTF-16 data.

XMLUCHAR
XMLUCHAR dumps data from a structure as XML into a buffer as UTF-8. It returns a size_t 1 value that
indicates the number of bytes written to the buffer. If the buffer is too small, the structure data is
truncated and the number of bytes needed for the buffer to contain the structure is returned.

XMLUCHAR (x , p , n)

x
Reference to a structure or DEFINE STRUCTURE type.

The reference x must conform to the same rules as XMLCHAR except that it can contain UCHAR
elements.

p
Address of the target buffer.

n
Length of the target buffer.

The buffer length must be nonnegative and must have a computational type. The buffer length is
converted to type size_t.

When the XML output is created, XMLUCHAR follows the same rules as XMLCHAR.

Related information
“XMLCHAR” on page 582
XMLCHAR dumps data from a structure as XML into a buffer. It returns a size_t 1 value that indicates the
number of bytes written to the buffer. If the buffer is too small, the structure data is truncated and the
number of bytes needed for the buffer to contain the structure is returned.

Y4DATE
Y4DATE takes a date value with the pattern 'YYMMDD' and returns the date value with the two-digit year
widened to a four-digit year.

Y4DATE( d
, w

)

d
A string expression representing a date.

d must have computational type and should have character type. If not, d is converted to character.

XMLUCHAR

Chapter 18. Built-in functions, pseudovariables, and subroutines 585

w
Specifies an expression (such as 1950) that can be converted to an integer. If negative, it specifies an
offset to be subtracted from the value of the year when the code runs. If omitted, w defaults to the
value specified in the WINDOW compile-time option.

The returned value has the attributes CHAR(8) NONVARYING and is calculated as follows:

 dcl y2 pic'99';
 dcl y4 pic'9999';
 dcl cc pic'99';

 y2 = substr(d,1,2);
 cc = w/100;

 if y2 < mod(w,100) then
 y4 = 100*cc + 100 + y2;
 else
 y4 = 100*cc + y2;

 return(y4 || substr(d,3));

Y4DATE('990101',1950) returns '19990101'
Y4DATE('000101',1950) returns '20000101'

Y4JULIAN
Y4JULIAN takes a date value with the pattern 'YYDDD' and returns the date value with the two-digit year
widened to a four-digit year.

Y4JULIAN( d
, w

)

d
A string expression representing a date. The length of d must be at least 5. If it is larger than 5, excess
characters must be formed by leading blanks.

d must have computational type and should have character type. If not, it is converted to character.

w
Specifies an expression (such as 1950) that can be converted to an integer. If negative, it specifies an
offset to be subtracted from the value of the year when the code runs. If omitted, w defaults to the
value specified in the WINDOW compile-time option.

The returned value has the attributes CHAR(7) NONVARYING and is calculated as follows:

 dcl y2 pic'99';
 dcl y4 pic'9999';
 dcl c pic'99';

 y2 = substr(d,1,2);
 cc = w/100;

 if y2 < mod(w,100) then
 y4 = 100*cc + 100 + y2;
 else
 y4 = 100*cc + y2;

 return(y4 || substr(d,3));

Y4JULIAN('99001',1950) returns '1999001'
Y4JULIAN('00001',1950) returns '2000001'.

Y4JULIAN

586 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Y4YEAR
Y4YEAR takes a date value with the pattern 'YY' and returns the date value with the two-digit year
widened to a four-digit year.

Y4YEAR( d
, w

)

d
A string expression representing a date. The length of d must be at least 2. If it is larger than 2, excess
characters must be formed by leading blanks.

d must have computational type and should have character type. If not, it is converted to character.

w
Specifies an expression (such as 1950) that can be converted to an integer. If negative, it specifies an
offset to be subtracted from the value of the year when the code runs. If omitted, w defaults to the
value specified in the WINDOW compile-time option.

The returned value has the attributes CHAR(4) NONVARYING and is calculated as follows:

 dcl y2 pic'99';
 dcl y4 pic'9999';
 dcl c pic'99';

 y2 = d;
 cc = w/100;

 if y2 < mod(w,100) then
 y4 = 100*cc + 100 + y2;
 else
 y4 = 100*cc + y2;

 return(y4);

Y4YEAR('99',1950) returns '1999'
Y4YEAR('00',1950) returns '2000'

Y4YEAR

Chapter 18. Built-in functions, pseudovariables, and subroutines 587

Y4YEAR

588 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 19. Type functions
Using type functions, you can manipulate defined types. This chapter describes the type functions.

Type functions are distinguished from built-in functions in the following ways:

• At least one of the arguments is a defined type.
• They cannot be declared.
• Arguments are enclosed in the (: and :) composite symbols, rather than in (and) symbols.

In general, each description has the following format:

• A heading showing the syntax of the reference
• A description of the value returned
• A description of any arguments
• Any other qualifications on using the function.

Invoking type functions
To invoke a type function, specify the name of the type function and the arguments for the type function.

Use the following syntax to invoke type functions.

name

(:

,

argument

:)

The arguments for a type function are enclosed by the delimiters (: and :).

Specifying arguments for type functions
Arguments for type functions can be type names (aliases, named structures and unions, ordinals) and
other data types.

Brief descriptions of type functions
Type functions are listed in alphabetical order with brief descriptions.

Table 85. Type functions

Function Description

BIND Converts a pointer to a handle for a type

CAST Converts an expression to a specified type using C conversion rules

FIRST Returns the first value in an ordinal set

LAST Returns the last value in an ordinal set

NEW Acquires storage for a structure type and returns a handle to the acquired storage

RESPEC Changes the attributes of an expression to a specified type without changing the bit
pattern of the expression

Invoking type functions

© Copyright IBM Corp. 1999, 2022 589

Table 85. Type functions (continued)

Function Description

SIZE Returns the amount of storage needed to represent a type

VALUE Initializes or assigns to a variable that has the corresponding structure type

BIND
BIND converts the pointer p to a handle for the structure type t. The BIND function can be used as a
locator for a member of a typed structure.

BIND (: t , p :)

t
Name of a structure type

p
Pointer expression

CAST
CAST converts the expression x to the type t using C conversion rules.

CAST (: t , x :)

t
Name of a scalar "C type"

x
A scalar expression also having "C type"

These are supported "C types":

• REAL FIXED BIN(p,0)
• REAL FIXED DEC(p,q) where p >= q and q>= 0.
• NATIVE FLOAT
• ORDINAL
• POINTER or HANDLE
• LIMITED ENTRY

If x is FLOAT or FIXED DEC, t must be FLOAT, FIXED or ORDINAL, and if t is FLOAT or FIXED DEC, x must
be FLOAT, FIXED or ORDINAL.

Any conversions that are needed follow the ANSI C rules. This means, for instance, that SIZE will not
be raised by CAST and that if negative values are cast to UNSIGNED, the result will be a large positive
number.

IEEE DFP is not supported by CAST.

FIRST
FIRST returns the first value in the ordinal set t.

FIRST (: t :)

BIND

590 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

t
Name of an ordinal type

Example

 define ordinal Color (Red,
 Orange,
 Yellow,
 Green,
 Blue,
 Indigo,
 Violet);

 display (ordinalname(first(:Color:))); /* RED */

LAST
LAST returns the last value in the ordinal set t.

LAST (: t :)

t
Name of an ordinal type

Example

 define ordinal Color (Red,
 Orange,
 Yellow,
 Green,
 Blue,
 Indigo,
 Violet);

 display (ordinalname(last(:Color:))); /* VIOLET */

NEW
NEW acquires heap storage for structure type t and returns a handle to the acquired storage.

NEW (: t :)

t
Name of a structure type

NEW(:t:) is equivalent to BIND(: t, ALLOC(SIZE(:t:)) :).

RESPEC
RESPEC changes the attributes of the expression x to the type t without changing the bit value of the
expression.

RESPEC (: t , x :)

t
Name of a scalar type

p
A scalar expression

LAST

Chapter 19. Type functions 591

x must have the same size as t, and if either x or t is UNALIGNED BIT, both must be UNALIGNED BIT (in
which case the function is somewhat uninteresting because it would do nothing).

As an example, if t is a type with the attributes LIMITED ENTRY, RESPEC(t, sysnull()) would return a
"null" function pointer.

SIZE
SIZE returns the amount of storage needed for a variable declared with the type t.

SIZE (: t :)

t
Name of a structure or union type

VALUE
The VALUE type function initializes or assigns to a variable that has the corresponding structure type.

VALUE (: t :)

t
Name of a typed structure. The VALUE function returns an instance of the typed structure t with its
initial values.

If the VALUE function is used with a structure type that is partially initialized, uninitialized bytes and bits
are set to zero.

The VALUE function cannot be used with a structure type containing no elements with the INITIAL
attribute.

You can use the VALUE function with the INIT form of the INITIAL attribute on the elements of a DEFINE
STRUCTURE statement. However, you cannot use INIT CALL and INIT TO with the VALUE function on the
elements of a DEFINE STRUCTURE statement.

The following example shows how to use the VALUE function:

 define struct
 1 b,
 2 b1 fixed bin init(17),
 2 b2 fixed bin init(19);

 define struct
 1 c,
 2 c1 type b init(value(: b :)),
 2 c2 fixed bin init(23);

 dcl x type c static init(value(: c :));
 dcl y type c;

 y = value(: c :);

SIZE

592 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Chapter 20. Preprocessor facilities
The compiler provides a MACRO preprocessor for source program alteration. When you specify the
MACRO or PP(MACRO) compile-time option, the preprocessor is executed before compilation. The
MACRO preprocessor scans the preprocessor input and generates preprocessor output. The preprocessor
output can serve as input to the compiler.

This description of the preprocessor assumes that you know the PL/I language described throughout this
publication.

The preprocessor input is a string of characters consisting of intermixed preprocessor statements, listing
control statements, and input text:

Preprocessor statements
Preprocessor statements4 are executed as they are encountered by the preprocessor scan (with the
exception of preprocessor procedures, which must be invoked in order to be executed). Preprocessor
statements, except those in preprocessor procedures, begin with a percent symbol (%). Using a blank
to separate the percent symbol from the rest of the statement is optional.

The preprocessor executes preprocessor statements and alters the input text accordingly.
Preprocessor statements can cause alteration of the input text in any of the following ways:

• Any identifier (and an optional argument list) appearing in the input text can be changed to an
arbitrary string of text.

• You can indicate which portions of the input text to copy into the preprocessor output.
• A string of characters residing in a library can be included in the preprocessor input.

Listing control statements
Listing control statements control the layout of the printed listing of the program. These statements
affect both the insource listing (the preprocessor input) and the source listing (the preprocessor
output). For information about listing control statements, see Chapter 8, “Statements and directives,”
on page 195.

Input text
The input text is preprocessor input that is not a preprocessor statement or a listing control
statement. The input text can be a PL/I source program or any other text, provided that it is consistent
with the processing of the input text by the preprocessor scan.

Preprocessor output5 is a string of characters consisting of intermixed listing control statements and output
text:

Listing control statements
Listing control statements that are scanned in the preprocessor input are copied to the preprocessor
output.

Output text
Input text that is scanned and possibly altered is placed in the preprocessor output.

You can specify compile-time options that cause the preprocessor input, the preprocessor output, or both
to be printed or written to a data set.

4 For clarity in this discussion, preprocessor statements are shown with the % symbol (even though, when
used in a preprocessor procedure, such a statement would not have a % symbol).

5 Preprocessor replacement output is shown in a formatted style, while actual execution-generated
replacement output is unformatted.

© Copyright IBM Corp. 1999, 2022 593

Preprocessor options
The preprocessor is invoked when you specify the MACRO or PP(MACRO) compile-time option. You can
also specify compiler options that affect the preprocessor only. Some of the options can significantly
change the behavior of the preprocessor.

In particular, note these options:

CASE
Specifies whether input text is converted to uppercase. This option has two suboptions:
ASIS

Specifies that input text is left "as is".
UPPER

Specifies that input text is converted to uppercase.
DBCS

Specifies whether the preprocessor should normalize DBCS during text replacement. This option has
two suboptions:
EXACT

The input text is left "as is", and the preprocessor will treat <kk.B> and <kk>B as different names.
INEXACT

The input text is "normalized", and the preprocessor will treat <kk.B> and <kk>B as two versions
of the same name.

DEPRECATE
Specifies whether the preprocessor should flags the usage of macro procedures that you want to
deprecate with error messages. This option has one expression:
ENTRY

Flags any usage of a macro procedure with name entry-name.
DEPRECATENEXT

Specifies whether the preprocessor should flag the usage of macro procedures that you want to
deprecate with warning messages. This option has one expression:
ENTRY

Flags any usage of a macro procedure with name entry-name.
FIXED

Specifies how FIXED variables are treated. This option has two suboptions:
BINARY

Specifies that FIXED variables are treated as BINARY.
DECIMAL

Specifies that FIXED variables are treated as DECIMAL.
ID

Specifies the name of the include directive. Any line that starts with this directive as the first set of
nonblank characters is treated as an include directive.

IGNORE | NOIGNORE
IGNORE

Specifies that the preprocessor should ignore specific statements. IGNORE has one required
suboption: NOPRINT. This specifies that the MACRO preprocessor should ignore %NOPRINT
statements.

NOIGNORE
Specifies that the preprocessor should not ignore any %NOPRINT statement.

INCONLY | NOINCONLY
INCONLY

Specifies that the preprocessor should process only %INCLUDE and %XINCLUDE statements.

Preprocessor options

594 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

NOINCONLY
Specifies that the preprocessor should process all preprocessor statements, not only %INCLUDE
and %XINCLUDE statements.

NAMEPREFIX | NONAMEPREFIX
NAMEPREFIX

Specifies that the names of preprocessor procedures and variables must start with the specified
character.

NONAMEPREFIX
Specifies that the names of preprocessor procedures and variables are not required to start with
one particular character.

RESCAN
Specifies how the preprocessor should handle the case of identifiers when rescanning text. This
option has two suboptions:
ASIS

Rescans will be case sensitive.
UPPER

Rescans will not be case sensitive.

The defaults for these options are CASE(ASIS), DBCS(INEXACT), FIXED(DECIMAL), NOIGNORE,
NOINCONLY, NONAMEPREFIX, and RESCAN(ASIS).

For more information about how to specify these options, see the Programming Guide.

Preprocessor scan
The preprocessor starts its scan at the beginning of the preprocessor input and scans each character
sequentially.

By default, the CASE(UPPER) option is in effect, and the preprocessor converts lowercase characters
in the input (except for those in comments and string constants) to uppercase. But if the CASE(ASIS)
suboption is in effect, the text will be left as is.

Execution of preprocessor statements
Preprocessor statements are executed when encountered.

You can use preprocessor statements as follows:

• Define preprocessor names using the %DECLARE statement and appearance as a label prefix.

If a preprocessor variable is not explicitly declared, a diagnostic message is issued and the variable
is given the default attribute of CHARACTER. However, the variable is not activated for replacement
unless it appears in a subsequently executed %ACTIVATE statement. The variable can be referenced in
preprocessor statements.

• Activate an identifier using the %DECLARE or %ACTIVATE statement, thus initiating replacement
activity, as described below under “Execution of input text” on page 596.

• Deactivate an identifier using the %DEACTIVATE statement, thus terminating replacement activity.
• Generate a message in the compiler listing using the %NOTE statement.
• Include string of characters into the preprocessor input.
• Cause the preprocessor to continue the scan at a different point in the preprocessor input using the

%GOTO, %IF, %null, %DO, or %END statement.
• Change values of preprocessor variables using the %assignment or %DO statement.
• Define preprocessor procedures using the %PROCEDURE, %RETURN, and %END statements. A

preprocessor procedure can be invoked by a function reference in a preprocessor expression, or, if
the function procedure name is active, by encountering a function reference in the preprocessor scan of
input text.

Preprocessor scan

Chapter 20. Preprocessor facilities 595

Execution of listing control statements
Listing control statements that are not contained in a preprocessor procedure are copied into the
preprocessor output, each on a line of its own.

Execution of input text
The input text, after replacement of any active identifiers by new values, is copied into the preprocessor
output. Invalid characters (part of a character constant or comment) are replaced with blanks in the
preprocessor output.

To determine replacements, the input text is scanned for the following occurrences:

• Characters that are not part of this PL/I character set

These characters are treated as delimiters and are otherwise copied to this output unchanged.
• PL/I character constants or PL/I comments

These are passed through unchanged from input text to preprocessor output by the preprocessor
unless they appear in an argument list to an active preprocessor procedure. However, this can cause
mismatches between input and output lines for strings or comments extending over several lines, when
the input and output margins are different. This is especially true when V format input is used, because
the output is always F format, with margins in columns 2 and 72. The output line numbering in these
cases also shows this inevitable mismatch.

• Active identifiers

For an identifier to be replaced by a new value, the identifier must be first activated for replacement.
Initially, an identifier can be activated by its appearance in a %DECLARE statement. It can be
deactivated by executing a %DEACTIVATE statement, and it can be reactivated by executing a
%ACTIVATE or %DECLARE statement.

An identifier that matches the name of an active preprocessor variable is replaced in the preprocessor
output by the value of the variable.

When an identifier matches the name of an active preprocessor function (either programmer-written or
built-in), the procedure is invoked and the invocation is replaced by the returned value.

Identifiers can be activated with either the RESCAN or the NORESCAN options. If the NORESCAN option
applies, the value is immediately inserted into the preprocessor output. If the RESCAN option applies,
a rescan is made during which the value is tested to determine whether it, or any part of it, should
be replaced by another value. If it cannot be replaced, it is inserted into the preprocessor output; if
it can be replaced, replacement activity continues until no further replacements can be made. Thus,
insertion of a value into the preprocessor output takes place only after all possible replacements have
been made.

Replacement values must not contain % symbols, unmatched quotation marks, or unmatched comment
delimiters.

Preprocessor statements should be on separate lines from normal text. The one exception is the null
statement when it is specified in the form %;. Such a null statement can be used to concatenate
replacement text and regular text. For example, suppose that the input text is as follows:

 %dcl A char;
 %A = 'B';

 dcl A%C fixed bin(31);

The preprocessor would produce the output text:

 dcl BC fixed bin(31);

The scan terminates when an attempt is made to scan beyond the last character in the preprocessor
input. The preprocessor output is then complete and compilation can begin.

Preprocessor scan

596 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Preprocessor variables and data elements
A preprocessor variable is specified in a %DECLARE statement with the FIXED, CHARACTER, or INITIAL
attribute. No other attributes can be declared for a preprocessor variable, and attributes must not
be repeated. (Other attributes are supplied by the preprocessor, however.) All variables have storage
equivalent to the STATIC storage class.

Although not required, it is always the best practice that you specify the FIXED or CHARACTER attribute
for each variable in a %DECLARE.

Preprocessor data types are coded arithmetic and string data, and are declared with one of the following
attributes:

FIXED
A preprocessor variable declared with the FIXED attribute is, by default, given the attributes
DECIMAL(5,0).

If the FIXED(BINARY) macro preprocessor option is in effect, it is given the attributes BINARY(31,0).

In either case, it is given an initial value of 0.

Fractional values are not supported.

CHARACTER
A preprocessor variable declared with the CHARACTER attribute is given the VARYING attribute.

It is given an initial value of ''.

INITIAL
A preprocessor variable declared with the INITIAL attribute is assigned with the specified initial
values.

There are no preprocessor bit variables. However, bit constants are allowed, and bit values result from
comparison operators, the concatenation operator (when used with bit operands), the not operator, and
the PARMSET built-in function. The preprocessor-expression in the %IF statement converts to a bit value.

The only numeric constants supported by the preprocessor are optionally signed, unscaled integers (such
as 17 or -29).

The only string constants supported by the preprocessor are character and bit strings, either of which can
be specified by using the hexadecimal notation (i.e. as X or BX strings).

String repetition factors are not allowed. However, the COPY built-in function can be used to replicate a
constant.

Preprocessor references and expressions
Preprocessor references and expressions are written and evaluated in the same way as described in the
section "Expressions and references".

In addition, note the following comments:

• The operands of a preprocessor expression can consist only of preprocessor variables, references to
preprocessor procedures, fixed decimal constants, bit constants, character constants, and references to
preprocessor built-in functions.

• While an array can be declared outside of a preprocessor procedure (so that it can be shared across
multiple procedures), it must not be referenced outside a procedure (except as the first argument to one
of the array-enquiry built-in functions).

• The exponentiation symbol (**) cannot be used.
• Under the FIXED(DECIMAL) option:

– For arithmetic operations, only decimal arithmetic of precision (5,0) is performed; that is, each
operand is converted to a decimal fixed-point integer value of precision (5,0) before the operation

Variables and data elements

Chapter 20. Preprocessor facilities 597

is performed, and the decimal fixed-point result is converted to precision (5,0). For example, the
expression 3/5 evaluates to 0, rather than to 0.6.

Any character value being converted to an arithmetic value must be in the form of an optionally
signed integer. A null string converts to 0.

– The conversion of a fixed-point value to a bit value always results in a string of length CEIL(3.32*5),
that is, 17.

– The conversion of a fixed-point value to a character value always results in a string of length 8 and
has the same value that would result from converting a FIXED DEC(5,0) value to CHARACTER in a
PL/I program.

• Under the FIXED(BINARY) option

– For arithmetic operations, only binary arithmetic of precision (31,0) is performed; that is, each
operand is converted to a binary fixed-point integer value of precision (31,0) before the operation
is performed, and the binary fixed-point result is converted to precision (31,0). For example, the
expression 3/5 evaluates to 0, rather than to 0.6.

Any character value being converted to an arithmetic value must be in the form of an optionally
signed integer. A null string converts to 0.

– The conversion of a fixed-point value to a bit value always results in a string of 31.
– The conversion of a fixed-point value to a character value results in a string of varying length because

leading blanks are trimmed.

Related information
“Expressions and references” on page 51
This chapter discusses the various types of expressions and references.

Scope of preprocessor names
The scope of a preprocessor name is determined by where it is declared.

The scope of a name declared within a preprocessor procedure is that procedure. The scope of a name
declared within an included string is that string and all input text scanned after that string is included
(except any preprocessor procedure in which the name is also declared). The scope of any other name is
the entire preprocessor input (except any preprocessor procedure in which the name is also declared).

Preprocessor procedures
A preprocessor procedure is a collection of statements that specifies the actions to be performed by the
preprocessor. A preprocessor procedure is delimited by %PROCEDURE and %END statements.

If the procedure is not defined with a RETURNS attribute, it can contain ANSWER statements, but it must
not contain any RETURN statements. Conversely, if the procedure is a function, it must contain at least
one RETURN statement, and it must not contain any ANSWER statements.

The following statements and groups can be used within a preprocessor procedure:

• The preprocessor ANSWER statement
• The preprocessor assignment statement
• The preprocessor CALL statement
• The preprocessor DECLARE statement
• The preprocessor DO-group
• The preprocessor GO TO statement

A GO TO statement appearing in a preprocessor procedure cannot transfer control to a point outside of
that procedure.

• The preprocessor IF statement
• The preprocessor ITERATE statement

Scope of preprocessor names

598 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

• The preprocessor LEAVE statement
• The preprocessor null statement
• The preprocessor NOTE statement
• The preprocessor RETURN statement
• The preprocessor SELECT-group

Preprocessor statements in a preprocessor procedure do not begin with a percent symbol.

Preprocessor procedures cannot be nested. A preprocessor ENTRY declaration is not permitted in a
preprocessor procedure.

A preprocessor procedure entry name, together with the arguments to the procedure, is called a function
reference. A preprocessor procedure can be invoked by a function reference in a preprocessor expression,
or, if the function procedure name is active, by encountering a function reference in the preprocessor scan
of input text. Preprocessor procedure entry names need not be specified in %DECLARE statements.

Provided that its entry name is active, a preprocessor procedure need not be scanned before it is
invoked. However, it must be present in the preprocessor input, or a string is included before the point of
invocation.

The value returned by a preprocessor function (that is, the value of the preprocessor expression in the
RETURN statement) replaces the function reference and its associated argument list in the preprocessor
output.

Arguments and parameters for preprocessor procedures
The number of arguments in the procedure reference and the number of parameters in the %PROCEDURE
statement need not be the same. The arguments are evaluated before any match is made with the
parameter list.

If there are more positional arguments than parameters, the excess arguments on the right are ignored.
(For an argument that is a function reference, the function is invoked and executed, even if the argument
is ignored later.) Parameters that are not set by the function reference are given values of zero, for FIXED
parameters, or the null string, for CHARACTER parameters.

Parameters should not be set more than once by a function reference. However, if the value of a
parameter is specified more than once (for example, both by its position and by keyword), the error
is diagnosed and the leftmost setting is used for the invocation.

If the function reference appears in a preprocessor statement, the arguments are associated with the
parameters in the normal fashion. Dummy arguments can be created and the arguments converted to the
attributes of the corresponding parameters, in the same manner as described under “Passing arguments
to procedures” on page 108.

If the function reference appears in input text, dummy arguments are always created. The arguments are
interpreted as character strings and are delimited by a comma or right parenthesis. A comma or right
parenthesis does not act as a delimiter, however, if it appears between matching parentheses, single
quotation marks, or comment delimiters. For example, the positional argument list (A(B,C),D) has two
arguments, namely, the string A(B,C) and the string D. Blanks in arguments (including leading and trailing
blanks) are significant but, if such blanks extend to the end of a line and are not enclosed in quotation
marks or comment delimiters, they are replaced by one blank.

When a function reference is encountered in input text, each argument is scanned for possible
replacement activity. This replacement activity has no effect on the number of arguments passed to the
function. Any commas or parentheses introduced into arguments by replacement activity are not treated
as delimiters, but simply as characters in the argument. If keyword invocation is used, the keywords
themselves are not eligible for replacement activity. After all replacements are made, each resulting
argument is converted to the type indicated by the corresponding parameter attribute in the preprocessor
procedure statement for the function entry name.

Arguments and parameters

Chapter 20. Preprocessor facilities 599

%PROCEDURE statement
The %PROCEDURE statement is used in conjunction with a %END statement to delimit a preprocessor
procedure.

The syntax for the %PROCEDURE statement is as follows:

% entry-name : PROCEDURE

(

,

parameter)

STATEMENT RETURNS (CHARACTER

FIXED

)

;

Abbreviation: %PROC

parameter
Specifies a parameter of the function procedure.

STATEMENT
If the reference occurs in input text and the STATEMENT option is present, the following rules apply:

• The arguments can be specified either in the positional argument list or by keyword reference.
• The end of the reference must be indicated by a semicolon. The semicolon is not retained when the

replacement takes place.

For example, a preprocessor procedure headed by %FIND:PROC(A,B,C) STATEMENT...; must be
invoked from a preprocessor expression by a reference of the form:

FIND(arg1,arg2,arg3)

If the reference is in input text, the procedure can be invoked by any of the following references (or
similar ones), all of which have the same result:

FIND(X,Y,Z);

FIND B(Y) C(Z) A(X);

FIND(X) C(Z) B(Y);

FIND(,Y,Z) A(X);

RETURNS
Specifies the attribute of the value returned by the function procedure. You must specify one of the
following attributes:

• CHARACTER
• FIXED

Preprocessor RETURN statement
The preprocessor RETURN statement can be used only in a preprocessor procedure and only when the
procedure has the RETURNS attribute. This statement returns a value as well as control back to the point
from which the preprocessor procedure was invoked.

The preprocessor RETURN statement can have no leading %. At least one RETURN statement must
appear in each preprocessor procedure that has the RETURNS attribute.

%PROCEDURE

600 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

The value returned by a preprocessor function procedure to the point of invocation is specified by
the preprocessor-expression in a RETURN statement in the procedure. The syntax of the preprocessor
RETURN statement is as follows:

label:

RETURN (preprocessor-expression) ;

preprocessor-expression
The value is converted to the RETURNS attribute specified in the %PROCEDURE statement before it is
passed back to the point of invocation.

Preprocessor ANSWER statement
The preprocessor ANSWER statement can be used only in a preprocessor procedure that does not have
the RETURNS attribute.

The ANSWER statement produces text and/or invokes other preprocessor procedures. The answered text
replaces the invocation of the preprocessor procedure in the source text. You can use any number of
ANSWER statements in a preprocessor procedure.

ANSWER

(exp1) PAGE

SKIP

(exp2)

COLUMN (exp3)

MARGINS

(exp4

, exp5

) NOSCAN

SCAN

RESCAN

;

Abbreviations: ANS for ANSWER, COL for COLUMN, MAR for MARGINS

exp1
Represents a character expression that represents the ANSWER text. The ANSWER text can be either
a single character string constant or a preprocessor expression of any complexity.

If it is an expression, the expression evaluation occurs in the usual manner and the result is converted
to a single character string.

If SCAN or RESCAN is in effect, the character string is scanned for replacements and preprocessor
procedure invocations. This replacement is done within the scope of the preprocessor procedure and
not in the scope into which the answered text is returned. The answered text is then inserted into the
source at the point of the preprocessor invocation. After the text is returned into the source, it is not
scanned for any replacement activity.

Replacement activity in the string follows the same rules as those for source text scanning and
replacement. See “Example” on page 602.

ANSWER

Chapter 20. Preprocessor facilities 601

PAGE
Forces the answer text to be placed on a new page of the output source by generating a %PAGE
directive.

SKIP
Forces the answer text to be placed on a new line of the output source. The value of exp2 represents
the arithmetic expression specifying the number of lines to be skipped. If exp2 is not specified, the
default value is 1.

COLUMN
Specifies the starting column in the source program line in which the answer text is placed. The value
of exp3 represents the arithmetic expression for the column number of the source program line where
the answer text starts.

MARGINS
Specifies where the output text is placed within the output record. The value of exp4 represents
the arithmetic expression for the left margin for the output text. The value of exp5 represents the
arithmetic expression for the right margin for the output text.

The values specified for exp5 must be within the range returned by the MACLMAR (left margin) and
MACRMAR (right margin) built-in functions.

If you do not specify the MARGINS option for an ANSWER statement, the default value is
MARGINS(MACLMAR,MACRMAR); if you specify the MARGINS option with no operands, the default
value is MARGINS(MACCOL,MACRMAR).

RESCAN
Specifies that the answer text should be rescanned for possible replacement by any preprocessor
references it contains.

SCAN
Specifies that the answer text should be rescanned for possible replacement by any preprocessor
references it contains.

NOSCAN
Specifies that the answer text should be not rescanned.

You must not use both the RETURN statement with an expression and the ANSWER statement within the
same preprocessor procedure.

Note: If a macro is invoked in an expression and that macro does not return a value, the macro
preprocessor acts as if the macro returned a null string.

Example

 %dcl (Expression, Single_string) entry;
 %dcl (Deactivated_macro, Statement_function) entry;
 %dcl Deactivated_variable character;
 %deact Deactivated_variable, Deactivated_macro;
 %Deactivated_variable = '** value of deactivated variable **';

 %Deactivated_macro: procedure returns(character);
 return('** value of deactivated macro **');
 %end;

 %Statement_function: procedure(key1) stmt returns(fixed);
 dcl key1 fixed;
 return(key1 + key1);
 %end;

 %Expression: procedure;
 ANS(Counter) skip;
 ANS(Deactivated_macro) skip;
 ANS(Deactivated_variable) skip;
 /* The following is invalid: */
 /* ANS(Statement_function Key1(7);); */
 %end;

 %Single_string: procedure;
 ANS('Counter') skip;
 ANS('Deactivated_macro') skip;

ANSWER

602 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

 ANS('Deactivated_variable') skip;
 ANS('Statement_function Key1(7);') skip;
 %end;

 Expression /* Generates: */
 /* 00001 */
 /* ** value of deactivated macro ** */
 /* ** value of deactivated variable ** */

 Single_string /* Generates: */
 /* Counter */
 /* Deactivated_macro */
 /* Deactivated_variable */
 /* 14 */

Preprocessor CALL statement
By using the preprocessor CALL statement, a MACRO procedure can call another MACRO procedure.

CALL procedure-name (
,

argument

*

) ;

procedure-name
Specifies the name of the procedure to be called. The procedure must not have the RETURNS
attribute or the STATEMENT option.

argument
Specifies an element, an element expression, or an aggregate to be passed to the invoked subroutine.
See “Passing arguments to procedures” on page 108.

Preprocessor built-in functions
A function reference can invoke one of a set of predefined functions called preprocessor built-in functions.
These built-in functions are invoked in the same way that programmer-defined functions are invoked,
except that they must be invoked with the correct number of arguments.

These are the preprocessor built-in functions:

COLLATE
COMMENT
COMPILEDATE
COMPILETIME
COPY
COUNTER
DIMENSION
HBOUND

INDEX
LBOUND
LENGTH
LOWERCASE
MACCOL
MACLMAR
MACNAME
MACRMAR

MAX
MIN
PARMSET
QUOTE
REPEAT
SUBSTR
SYSDIMSIZE
SYSOFFSETSIZE

SYSPARM
SYSPOINTERSIZE
SYSTEM
SYSVERSION
TRANSLATE
TRIM
UPPERCASE
VERIFY

The preprocessor executes a reference to a preprocessor built-in function in input text only if the built-in
function name is active. The built-in functions can be activated by a %DECLARE or %ACTIVATE statement.

In preprocessor statements, the preprocessor built-in function names are always active as built-in
functions unless they are declared with some other meaning.

If a preprocessor built-in function name is used as the name of a user-defined preprocessor procedure,
references to the name are references to the procedure, not to the built-in function. In such cases, the
identifiers must be declared with the BUILTIN attribute when the built-in function is to be used within a
preprocessor procedure.

CALL

Chapter 20. Preprocessor facilities 603

The following preprocessor built-in functions do not require arguments and must not be given a null
argument:

COLLATE
COMPILEDATE
COMPILETIME
COUNTER

MACCOL
MACLMAR
MACNAME
MACRMAR

SYSDIMSIZE
SYSOFFSETSIZE
SYSPARM
SYSPOINTERSIZE

SYSTEM
SYSVERSION

COLLATE
COLLATE returns a CHARACTER string of length 256 comprising the 256 possible character values one
time each in the collating order.

COLLATE

COMMENT
COMMENT converts a CHARACTER expression into a comment.

COMMENT( x)

x
Expression that is to be converted to a comment.

x should have CHARACTER type, and if not, it is converted thereto.

x is enclosed with a ⁄* and an *⁄.

If x contains ⁄* or *⁄ composite symbols, they are replaced by ⁄> and <⁄, respectively.

COMPILEDATE
COMPILEDATE returns a CHARACTER string of length 17 containing the date and the time of the
compilation.

COMPILEDATE

The format of the string returned by COMPILEDATE is as follows:

yyyy
current year

mm
current month

dd
current day

hh
current hour

mm
current minute

ss
current second

ttt
current millisecond

The time zone and accuracy are system dependent.

COLLATE

604 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Example

The following example shows how to print the string returned by COMPILEDATE when your program is
run:

%DECLARE COMP_DATE CHAR;
%COMP_DATE=QUOTE(COMPILEDATE);
PUT EDIT (COMP_DATE) (A);

COMPILETIME
COMPILETIME returns a CHARACTER string of length 18 containing the date and the time of compilation.

COMPILETIME

The format of the string returned by COMPILETIME is as follows:

DD
Day of the month

.
Period

MMM
Month in the form JAN, FEB, MAR, and so on

.
Period

YY
Year

b
Blank

HH
Hour

.
Period

MM
Minute

.
Period

SS
Second

A leading zero in the day of the month field is replaced by a blank; no other leading zeros are suppressed.

If no timing facility is available, the last 8 characters of the returned string are set to 00.00.00.

Example

The following example shows how to print the string returned by COMPILETIME when your program is
executed:

%DECLARE COMP_TIME CHAR;
%COMP_TIME=QUOTE(COMPILETIME);
PUT EDIT (COMP_TIME) (A);

COMPILETIME

Chapter 20. Preprocessor facilities 605

COPY
COPY returns a CHARACTER string consisting of y concatenated copies of the string x.

COPY( x , y)

x
Expression.

x should have CHARACTER type, and if not, it is converted thereto.

y
Expression that specifies the number of repetitions. y should have FIXED type, and if not, it is
converted thereto.

y must be nonnegative.

If y is zero, the result is a null string.

COUNTER
COUNTER returns a CHARACTER string of length 5 containing a decimal number. The returned number is
00001 for the first invocation, and increments by one on each successive invocation.

COUNTER

If COUNTER is invoked 99999 times, the next time it is invoked, a diagnostic message is issued and
00000 is returned. The next invocation after that is treated as the first.

The COUNTER built-in function can be used to generate unique names, or for counting purposes.

DIMENSION
DIMENSION returns a FIXED value specifying current extent of dimension y of x.

DIMENSION( x
, y

)

Abbreviation: DIM

x
Array reference. x must not have less than y dimensions.

y
Expression specifying a particular dimension of x.

y should have FIXED type, and if not, it will be converted thereto.

y must be greater than or equal to 1. If y is not supplied, the default is 1.

y can be omitted only if the array is one-dimensional.

HBOUND
HBOUND returns a FIXED value specifying current upper bound of dimension y of x.

HBOUND( x
, y

)

COPY

606 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

x
Array reference. x must not have less than y dimensions.

y
Expression specifying a particular dimension of x.

y should have FIXED type, and if not, it will be converted thereto.

y must be greater than or equal to 1. If y is not supplied, the default is 1.

y can be omitted only if the array is one-dimensional.

INDEX
INDEX returns a FIXED value indicating the starting position within x of a substring identical to y. You can
also specify the location within x where processing begins.

INDEX( x , y
, n

)

x
Expression to be searched.

x should have CHARACTER type, and if not, it will be converted thereto.

y
Target expression of the search.

y should have CHARACTER type, and if not, it will be converted thereto.

n
n specifies the location within x at which to begin processing.

n should have FIXED type, and if not, it will be converted thereto.

If y does not occur in x, or if either x or y have zero length, the value zero is returned.

n must be greater than 0 and no greater than 1 + LENGTH(x).

If n = LENGTH(x) + 1, the result is zero.

LBOUND
LBOUND returns a FIXED value specifying current lower bound of dimension y of x.

LBOUND( x
, y

)

x
Array reference. x must not have less than y dimensions.

y
Expression specifying a particular dimension of x.

y should have FIXED type, and if not, it will be converted thereto.

y must be greater than or equal to 1. If y is not supplied, the default is 1.

y can be omitted only if the array is one-dimensional.

INDEX

Chapter 20. Preprocessor facilities 607

LENGTH
LENGTH returns a FIXED value specifying the current length of a given character expression.

LENGTH (x)

x
Expression.

x should have CHARACTER type, and if not, it is converted thereto.

LOWERCASE
LOWERCASE returns a character string with all characters converted to their lowercase equivalent.

LOWERCASE( x
, c

)

x
Expression.

x should have CHARACTER type, and if not, it is converted thereto.

c
Expression. Specifies the code page that will be lowercased.

LOWERCASE(x) is equivalent to TRANSLATE(x, 'a...z', 'A...Z') and LOWERCASE(x, c) is equivalent to
TRANSLATE(x, lowerc, upperc). The values of lowerc and upperc are determined by the value of the code
page c. Specifying LOWERCASE(x, c) will not only translate alphabetic characters 'A...Z' to 'a...z', but also
translate characters such as uppercase Ä-umlaut('4a'x) to lowercase ä-umlaut('c0'x).

For example, Lower_01141 could be declared as:

dcl lower_01141 char
 value((
 '8182838485868788'8991929394959697'x
 || '9899A2A3A4A5A6A7A8A9424445464748'x
 || '4951525354555657'586A708C8D8E9CC0'x
 || 'CBCDCECFD0DBDDDE'x
));

The appendix lists the values of lowerc and upperc for the supported values of c. For details, see
“TRANSLATE” on page 561 and Appendix A, “Limits,” on page 627.

MACCOL
MACCOL returns a FIXED value that represents the column where the outermost macro invocation starts
in the source text that contains the macro invocation.

MACCOL

The value returned is not affected by nested macro invocations.

MACLMAR
MACLMAR returns a FIXED value that represents the column number of the left source margin in
MARGINS compiler option.

MACLMAR

LENGTH

608 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

See the information about the MARGINS option in the Programming Guide.

MACNAME
MACNAME returns the name of the preprocessor procedure within which it is invoked.

MACNAME

It is invalid to invoke MACNAME outside of a preprocessor procedure.

MACRMAR
MACRMAR returns a FIXED value that represents the column number of the right source margin in
MARGINS compiler option.

MACRMAR

See the information about the MARGINS option in the Programming Guide.

MAX
MAX returns the largest value from a set of two or more expressions.

MAX(x ,

,

y)

x and y
Expressions.

All the arguments should be FIXED, and any that are not FIXED are converted thereto.

MIN
MIN returns the smallest value from a set of two or more expressions.

MIN(x ,

,

y)

x and y
Expressions.

All the arguments should be FIXED, and any that are not FIXED are converted thereto.

PARMSET
PARMSET returns a BIT value indicating if a specified parameter was set on invocation of the procedure.

PARMSET (x)

x
Must be a parameter of the preprocessor procedure.

The PARMSET built-in function can be used only within a preprocessor procedure.

MACNAME

Chapter 20. Preprocessor facilities 609

PARMSET returns a bit value of '1'B if the parameter x was explicitly set by the function reference that
invoked the procedure, and a bit value of '0'B if it was not—that is, if the corresponding argument was
omitted from the function reference in a preprocessor expression, or was the null string in a function
reference from input text.

PARMSET can return '0'B, even if a matching argument does appear in the reference, but the reference is
in another preprocessor procedure, as follows:

• If the argument is not itself a parameter of the invoking procedure, PARMSET returns the value '1'B.
• If the argument is a parameter of the invoking procedure, PARMSET returns the value for the specified

parameter when the invoking procedure was itself invoked.

QUOTE
QUOTE returns a CHARACTER string that represents x as a valid quoted string.

QUOTE( x)

x
Expression that is converted to a quoted string.

x should have CHARACTER type, and if not, it is converted thereto.

If x contains single quotation marks, each is replaced by two consecutive single quotation marks.

REPEAT
REPEAT returns a CHARACTER string consisting of (y + 1) concatenated copies of the string x.

REPEAT( x , y)

x
Expression.

x should have CHARACTER type, and if not, it is converted thereto.

y
Expression that specifies the number of repetitions. y should have FIXED type, and if not, it is
converted thereto.

y must be nonnegative.

If y is zero, the result is x (converted to character as necessary).

SUBSTR
SUBSTR returns a substring, specified by y and z, of x.

SUBSTR( x , y
, z

)

x
Expression specifies the string from which the substring is extracted.

x should have CHARACTER type, and if not, it is converted thereto.

y
Expression that specifies the starting position of the substring in x.

y should have FIXED type, and if not, it is converted thereto.

QUOTE

610 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

z
Expression that specifies the length of the substring in x.

z should have FIXED type, and if not, it is converted thereto.

If z is zero, a null string is returned. If z is omitted, the substring returned is position y in x to the end
of x.

z must be nonnegative, and the values of y and z must be such that the substring lies entirely within the
current length of x.

If y = LENGTH(x)+1 and z = 0, the null string is returned.

SYSDIMSIZE
SYSDIMSIZE returns a FIXED value that indicates the maximum number of bytes that is needed to hold an
index for an array permitted under the compiler CMPAT option.

SYSDIMSIZE

The possible return values are as follows:

• 4 under CMPAT(V2) and CMPAT(LE)
• 8 under CMPAT(V3)

SYSOFFSETSIZE
SYSOFFSETSIZE returns a FIXED value that indicates the number of bytes needed to hold an OFFSET.

SYSOFFSETSIZE

Currently, SYSOFFSETSIZE returns 4.

SYSPARM
SYSPARM returns the CHARACTER string value of the SYSPARM compiler option.

SYSPARM

The value returned is not translated to uppercase; the exact value as specified in the compiler option is
returned. See the information about the SYSPARM compiler option in the Programming Guide.

SYSPARM allows information external to the program to be accessed without modifying the source
program.

SYSPOINTERSIZE
SYSPOINTERSIZE returns a FIXED value that indicates the number of bytes needed to hold a POINTER.

SYSPOINTERSIZE

Currently, SYSPOINTERSIZE returns 4. But under the LP(64) option, the SYSPOINTERSIZE returns 8.

SYSDIMSIZE

Chapter 20. Preprocessor facilities 611

SYSTEM
SYSTEM returns a CHARACTER string that contains the value of the SYSTEM compiler option that is in
effect.

SYSTEM

Note: The value returned might contain leading and trailing blanks. You can apply the TRIM built-in
function to that value to make it easier to test.

See the information about the SYSTEM compiler option in the Programming Guide.

SYSVERSION
SYSVERSION returns a CHARACTER string containing the product name as well as the version, release,
and modification level.

SYSVERSION

The result that SYSVERSION returns is a string of length 22 in one of the following formats. Each string is
padded with blanks on the right to make it 22 in length.

Under z/OS
PL/I for z/OS Vx.Ry.Mz

Under AIX
PL/I for AIX x.y

Under Windows
PL/I for Win* x.y

TRANSLATE
TRANSLATE returns a CHARACTER string of the same length as x, but with selected characters translated.

TRANSLATE( x , y
, z

)

x
Expression to be searched for possible translation of its characters.

x should have CHARACTER type, and if not, it is converted thereto.

y
Expression containing the translation values of characters.

y should have CHARACTER type, and if not, it is converted thereto.

z
Expression containing the characters that are to be translated. If z is omitted, the default is COLLATE.

z should have CHARACTER type, and if not, it is converted thereto.

TRANSLATE operates on each character of x as follows:

If a character in x is found in z, the character in y that corresponds to that in z is copied to the result;
otherwise, the character in x is copied directly to the result. If z contains duplicates, the leftmost
occurrence is used.

y is padded with blanks, or truncated, on the right to match the length of z.

SYSTEM

612 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

TRIM
TRIM returns a CHAR string with characters trimmed from one or both ends of an input string.

TRIM (x
, y

, z

)

UPPERCASE
UPPERCASE returns a character string with all characters converted to their uppercase equivalent.

UPPERCASE ( x
, c

)

x
Expression. If necessary, x is converted to character.

c
Expression. Specifies the code page that will be uppercased.

UPPERCASE(x) is equivalent to TRANSLATE(x, 'A...Z', 'a...z') and UPPERCASE(x, c) is equivalent to
TRANSLATE(x, upperc, lowerc). The values of upperc and lowerc are determined by the value of the code
page c. Specifying UPPERCASE(x, c) will not only translate alphabetic characters 'a...z' to 'A...Z', but also
translate characters such as lowercase ä-umlaut('c0'x) to uppercase Ä-umlaut('4a'x)

For example, Upper_01141 could be declared as:

dcl upper_01141 char
 value((
 'C1C2C3C4C5C6C7C8C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7E8E9626465666768'x
 || '6971727374757677'78E080ACADAE9E4A'x
 || 'EBEDEEEF5AFBFDFE'x
));

The appendix lists the values of upperc and lowerc for the supported values of c. For details, see
“TRANSLATE” on page 561 and Appendix A, “Limits,” on page 627.

VERIFY
VERIFY returns a FIXED value indicating the position in x of the leftmost character that is not in y. It also
allows you to specify the location within x at which to begin processing.

VERIFY( x , y
, n

)

x
Expression.

x should have CHARACTER type, and if not, it is converted thereto.

y
Expression.

y should have CHARACTER type, and if not, it is converted thereto.

TRIM

Chapter 20. Preprocessor facilities 613

n
Expression n specifies the location within x where processing begins.

n should have FIXED type, and if not, it is converted thereto.

If all the characters in x do appear in y, a value of zero is returned. If x is a null string, a value of zero is
returned. If x is not a null string and y is a null string, the value of n is returned. The default value for n is
one.

n must be greater than 0 and no greater than 1 + LENGTH(x).

If n = LENGTH(x) + 1, the result is zero.

Preprocessor statements
This section lists the preprocessor statements in alphabetical order and describes each statement.

Comments can appear within preprocessor statements wherever blanks can appear. Such comments are
not inserted into preprocessor output text.

All preprocessor statements can be labeled.

The %CONTROL statement is unsupported. If used, it will be accepted and ignored.

%ACTIVATE statement
A %ACTIVATE statement makes an identifier active and eligible for replacement. Any subsequent
encounter of that identifier in the input text while the identifier is active initiates replacement activity.

% ACTIVATE

,

identifier
RESCAN

SCAN

NORESCAN

;

Abbreviation: %ACT

identifier
Specifies the name of a preprocessor variable, a preprocessor procedure, or a preprocessor built-in
function.

The identifier should not refer to an array variable.

RESCAN
Specifies that the identifier is replaced as many times as necessary to replace all active identifiers
before being placed into the output.

SCAN
Specifies that the identifier is replaced only once before being placed into the output.

NORESCAN
Synonym for SCAN.

Using the %ACTIVATE statement for an identifier that is already active has no effect, except possibly to
change the scanning status.

%ACTIVATE

614 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

%assignment statement
A %assignment statement evaluates a preprocessor expression and assigns the result to a preprocessor
variable.

%

label:

preprocessor-variable = preprocessor-expression ;

Compound and multiple assignments are not allowed.

The target in an assignment must not be an array, but it can be an array element.

%DEACTIVATE statement
A %DEACTIVATE statement makes an identifier inactive.

%

label:

DEACTIVATE

,

identifier ;

Abbreviation: %DEACT

identifier
Specifies the name of either a preprocessor variable, a preprocessor procedure, or a preprocessor
built-in function.

The deactivation of an identifier causes loss of its replacement capability but not its value. Hence, the
reactivation of such an identifier need not be accompanied by the assignment of a replacement value.

The deactivation of an identifier does not prevent it from receiving new values in subsequent
preprocessor statements.

Deactivation of a deactivated identifier has no effect.

%DECLARE statement
The %DECLARE statement establishes an identifier as a macro variable, macro procedure, or built-in
function. In addition, scanning status can be specified for macro variables.

% DECLARE

,

identifier

(

,

identifier)

BUILTIN

ENTRY

;

Or

% DECLARE

,

identifier description ;

%assignment

Chapter 20. Preprocessor facilities 615

identifier description
identifier

(dimension)

(

,

 identifier

(dimension)

)

attributes

dimension
,

lbound :

hbound

,

*

attributes
CHARACTER

FIXED EXTERNAL

INTERNAL

NOSCAN

SCAN

RESCAN

Abbreviations: %DCL for %DECLARE, CHAR for CHARACTER, INT for INTERNAL, EXT for EXTERNAL

identifier description
Specifies the names and attributes of macro facility identifiers.

BUILTIN
Specifies that the identifier is the preprocessor built-in function of the same name.

CHARACTER
Specifies that the identifier represents a varying-length character string that has no maximum length.

ENTRY
Specifies that the identifier is a preprocessor procedure.

The declaration activates the entry name.

The declaration of a preprocessor procedure entry name can be performed explicitly by its
appearance as the label of a %PROCEDURE statement. This explicit declaration, however, does not
activate the preprocessor procedure name.

FIXED
Specifies that the identifier represents an integer.

Under the (default) FIXED(DECIMAL) option, it is also given the attributes DECIMAL(5,0).

Under the FIXED(BINARY) option, it is also given the attributes BINARY(31,0).

RESCAN
Specifies that the identifier is active and is replaced as many times as necessary.

SCAN
Specifies that the identifier is active and is replaced only once in output.

NOSCAN
Specifies that the identifier is inactive and is not to be replaced in output.

%DECLARE

616 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

dimension
Dimension specification for array variables. No more than 15 dimensions can be specified.

Note: While an array can be declared outside of a preprocessor procedure (so that it can be shared
across multiple procedures), it must not be referenced outside a procedure (except as the first
argument to one of the array-enquiry built-in functions).

lbound
The desired lower bound for that dimension. The default is 1.

hbound
The desired upper bound for that dimension.

An array bound might be specified by an integer constant or by a more general expression. The
general expression must not depend on the value of other preprocessor variables, but it might depend
on other attributes such as the bounds of other variables. For example, the following declarations are
valid in this order:

 %dcl a(2) fixed;
 %dcl b(2+hbound(a)) fixed;

And the following declaration is also valid when sysparm is an integer constant:

%dcl c(sysparm()) fixed;

INTERNAL
This attribute is valid only inside a procedure. If it is specified outside a procedure, a diagnostic
message is issued and the variable is given the EXTERNAL attribute.

All variables declared outside a procedure are EXTERNAL, and all variables declared inside a
procedure are INTERNAL.

EXTERNAL
This attribute is valid only outside a procedure. If it is specified inside a procedure, a diagnostic
message is issued and the variable is given the INTERNAL attribute.

%DO statement
The %DO statement, and its corresponding %END statement, delimit a preprocessor DO-group, and can
also specify repetitive execution of the DO-group.

For the syntax for the %DO statement, see “DO statement” on page 210.

Note: All the formats of the DO statement are supported with the following exceptions:

• UPTHRU and DOWNTHRU are not accepted.
• The specification in Type 3 DO statements cannot be specified multiple times.

However, the %DO statement also supports an additional format not supported by the DO statement:
the %DO SKIP; statement. This statement causes all code through the matching %END statement to be
ignored (and thus can be useful as a way of "commenting out" code that contains comments).

Preprocessor DO-groups can be nested.

Control cannot transfer to a Type 3 preprocessor DO-group, except by return from a preprocessor
procedure invoked from within the DO-group.

Preprocessor statements, input text, and listing control statements can appear within a preprocessor DO-
group. The preprocessor statements are executed, and any input text is scanned for possible replacement
activity.

%DO

Chapter 20. Preprocessor facilities 617

%END statement
The %END statement is used in conjunction with %DO, %SELECT or %PROCEDURE statements to delimit
preprocessor DO-groups, SELECT-groups, or preprocessor procedures.

%

label:

END

label

;

The label following END must be a label of a %PROCEDURE, %DO, or %SELECT statement. Multiple
closure is allowed.

%GO TO statement
The %GO TO statement causes the preprocessor to continue its scan at the specified label.

%

label:

GO TO label ;

Abbreviation: %GOTO

The label following the GO TO specifies the point to which the scan is transferred. It must be a label of a
preprocessor statement, although it cannot be the label of a preprocessor procedure.

A preprocessor GO TO statement appearing within a preprocessor procedure cannot transfer control to a
point outside of that procedure. In other words, the label following GO TO must be contained within the
procedure.

A %GO TO statement in included text can transfer control only to a point within the same include file. The
target label in the %GOTO statement must not precede the %GOTO.

Related information
“%INCLUDE statement” on page 619
The external text specified by a %INCLUDE statement is included into the preprocessor input at the point
at which the %INCLUDE statement is executed. Such text, once included, is called included text and can
consist of preprocessor statements, listing control statements, and PL/I source.

%IF statement
The %IF statement controls the flow of the scan according to the bit value of a preprocessor expression.

%

label:

IF preprocessor-expression % THEN preprocessor-unit1

% ELSE preprocessor-unit2

preprocessor-expression
Is evaluated and converted to a bit string (if the conversion cannot be made, it is an error). The
evaluation of the preprocessor-expression in a %IF statement is not short-circuited.

%END

618 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

preprocessor-unit
Is any single preprocessor statement (other than %DECLARE, %PROCEDURE, %END, or %DO), a
preprocessor DO-group, or a preprocessor SELECT-group. Otherwise, the description is the same as
that given under “IF statement” on page 222.

If any bit in the string has the value '1'B, unit1 is executed and unit2, if present, is ignored; if all bits are
'0'B, unit1 is ignored and unit2, if present, is executed.

Scanning resumes immediately following the %IF statement, unless, of course, a %GO TO or
preprocessor RETURN statement in one of the units causes the scan to resume elsewhere.

%IF statements can be nested in the same manner used for nesting IF statements, as described under
“IF statement” on page 222.

%INCLUDE statement
The external text specified by a %INCLUDE statement is included into the preprocessor input at the point
at which the %INCLUDE statement is executed. Such text, once included, is called included text and can
consist of preprocessor statements, listing control statements, and PL/I source.

For the syntax for the %INCLUDE statement, see “%INCLUDE directive” on page 225.

Each data set and member name pair identifies the external text to be incorporated into the source
program.

The scan continues with the first character in the included text. The included text is scanned in the same
manner as the preprocessor input. Hence, included text can contribute to the preprocessor output being
formed.

%INCLUDE statements can be nested. In other words, included text can contain %INCLUDE statements.

A %GO TO statement in included text can transfer control only to a point within the same include file. The
target label in the %GOTO statement must not precede the %GOTO.

Preprocessor statements, DO-groups, SELECT-groups and procedures in included text must be complete.
For example, it is not allowable to have half of a %IF statement in an included text and half in another
portion of the preprocessor input.

If the preprocessor input and the included text contain no preprocessor statements other than
%INCLUDE, execution of the preprocessor can be omitted. (This necessitates the use of the INCLUDE
compile-time option.)

For example, assume that PAYRL is a member of the data set SYSLIB and contains the following text,
which is a structure declaration:

DECLARE 1 PAYROLL,
 2 NAME,
 3 LAST CHARACTER (30) VARYING,
 3 FIRST CHARACTER (15) VARYING,
 3 MIDDLE CHARACTER (3) VARYING,
 2 CURR,
 3 (REGLAR, OVERTIME) FIXED DECIMAL (8,2),
 2 YTD LIKE CURR;

The following preprocessor statements generate two structure declarations in the preprocessor output
text. The only difference between them is their names, CUM_PAY and PAYROLL.

%DECLARE PAYROLL CHARACTER;
%PAYROLL='CUM_PAY';
%INCLUDE PAYRL;
%DEACTIVATE PAYROLL;
%INCLUDE PAYRL;

Execution of the first %INCLUDE statement incorporates the text in PAYRL into the preprocessor input.
When the preprocessor scan encounters the identifier PAYROLL in this included text, it replaces it with
the current value of the active preprocessor variable PAYROLL, namely, CUM_PAY. Further scanning
of the included text results in no additional replacements. The preprocessor scan then encounters

%INCLUDE

Chapter 20. Preprocessor facilities 619

the %DEACTIVATE statement and deactivates the preprocessor variable PAYROLL. When the second
%INCLUDE statement is executed, the text in PAYRL once again is incorporated into the preprocessor
input. This time, however, scanning of the included text results in no replacements whatsoever.

%INSCAN statement
Like the %INCLUDE statement, the %INSCAN statement also includes a file except in the %INSCAN
statement, the file to be included is specified by a preprocessor variable.

%INSCAN filename ;

filename
Is a preprocessor expression that specifies the name of the file to be included.

Example

%dcl inname char;
%inname = ’oldform’;
%inscan inname; /* includes the file "oldform" */

%ITERATE statement
The %ITERATE statement transfers control to the %END statement that delimits its containing iterative
DO-group. The current iteration completes and the next iteration, if needed, is started.

The ITERATE statement can be specified inside a non-iterative DO-group as long as that DO-group is
contained in an iterative DO-group.

%

label:

ITERATE

label

;

label-constant
Must be the label of a containing DO-group. If label-constant is omitted, control transfers to the END
statement of the most recent iterative do-group containing the ITERATE statement.

%LEAVE Statement
When contained in or specifying a simple DO-group, the %LEAVE statement terminates the group. When
contained in or specifying an iterative DO-group, the %LEAVE statement terminates all iterations of the
group, including the current iteration.

The flow of control goes to the same point as it would normally go to if the do-group had terminated by
reaching its END statement.

%

label:

LEAVE

label

;

label-constant
Must be a label of a containing DO-group. The DO-group that is left is the DO-group that has the
specified label. If label-constant is omitted, the DO-group that is left is the group that contains the
LEAVE statement.

%INSCAN Statement

620 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

%NOTE statement
The %NOTE statement generates a preprocessor diagnostic message of specified text and severity.

%

label:

NOTE (message

, code

) ;

message
A character expression whose value is the required diagnostic message.

code
A fixed expression whose value indicates the severity of the message, as follows:

Code Severity

 0 I

 4 W

 8 E

12 S

16 U

If code is omitted, the default is 0.

If code has a value other than those listed above, a diagnostic message is produced and a default
value is taken. If the value is less than 0 or greater than 16, severity U is the default. Otherwise, the
next lower severity is the default.

Generated messages are filed together with other preprocessor messages. Whether or not a particular
message is subsequently printed depends upon its severity level and the setting of the compiler FLAG
option.

Generated messages of severity U cause immediate termination of preprocessing and compilation.
Generated messages of severity S, E, or W might cause termination of compilation, depending upon
the setting of the NOSYNTAX and NOCOMPILE compile-time options.

%null statement
The %null statement does nothing and does not modify sequential statement execution.

% ;

Related information
“%PROCEDURE statement” on page 600
The %PROCEDURE statement is used in conjunction with a %END statement to delimit a preprocessor
procedure.
“Preprocessor RETURN statement” on page 600

%NOTE

Chapter 20. Preprocessor facilities 621

The preprocessor RETURN statement can be used only in a preprocessor procedure and only when the
procedure has the RETURNS attribute. This statement returns a value as well as control back to the point
from which the preprocessor procedure was invoked.

%REPLACE statement
The %REPLACE statement allows for the immediate replacement of a name with a string constant or a
numeric constant. The name does not need to be a declared variable to have a value assigned to it.

%

label:

REPLACE identifier BY

WITH

string-constant

arithmetic-constant

;

identifier
Name to be replaced.

string-constant
The name, if undeclared, will be given the CHARACTER attribute.

arithmetic-constant
The name, if undeclared, will be given the FIXED attribute.

Under the FIXED(DEC) option, the value will be converted to FIXED DEC(5,0).

Under the FIXED(BIN) option, the value will be converted to FIXED BIN(31,0).

%SELECT statement
The %SELECT statement, and its corresponding %END statement, delimit a preprocessor SELECT-group.

%

label:

SELECT

(exp1)

;

%WHEN (

,

exp2) unit

%OTHERWISE unit

%END ;

%XINCLUDE statement
The %XINCLUDE statement is the same as the %INCLUDE statement except that the file is not included if
it already has been.

For the syntax of the %XINCLUDE statement, see “%XINCLUDE statement” on page 234.

%REPLACE

622 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

%XINSCAN statement
The %XINSCAN statement is the same as the %INSCAN statement except that the file is not included if it
already has been.

%XINSCAN filename ;

Preprocessor examples
This topic provides a few preprocessor examples.

Example 1

Assume that the preprocessor input contains the following statements:

%DECLARE A CHARACTER, B FIXED;
%A = 'B+C';
%B = 2;
X = A;

The following string is inserted into the preprocessor output:

X = 2+C;

The preprocessor statements activate A and B with the default RESCAN, assign the character string 'B+C'
to A, and assign the constant 2 to B.

The fourth line is input text. The current value of A, which is 'B+C', replaces A in the preprocessor output.
But this string contains the preprocessor variable B. Upon rescanning B, the preprocessor finds that it
has been activated. Hence, the value 2 replaces B in the preprocessor output. The preprocessor variable
B has a default precision of (5,0) and, therefore, actually contains 2 preceded by four zeros. When this
value replaces B in the string 'B+C' it is converted to a character string and becomes 2 preceded by seven
blanks.

Further rescanning shows that 2 cannot be replaced; scanning resumes with +C, which, again, cannot be
replaced.

If, in the preceding example, the preprocessor variable A was activated by the statement %ACTIVATE A
NORESCAN;, the preprocessor output would be as follows:

X = B+C;

Example 2

Assume that the preprocessor input contains the following statements:

%DECLARE I FIXED, T CHARACTER;
%DEACTIVATE I;
%I = 15;
%T = 'A(I)';
S = I*T*3;
%I = I+5;
%ACTIVATE I;
%DEACTIVATE T;
R = I*T*2

The preprocessor output would be as follows. Replacement blanks are not shown.

S = I*A(I)*3;
R = 20*T*2;

%XINSCAN

Chapter 20. Preprocessor facilities 623

Example 3

This example illustrates how preprocessor facilities can be used to speed up the execution of a DO-group.

Here is a DO-group example:

DO I=1 TO 10;
Z(I)=X(I)+Y(I);
END;

The following statements would accomplish the same thing, but without the requirements of
incrementing and testing during execution of the compiled program:

%DECLARE I FIXED;
%DO I = 1 TO 10;
Z(I)=X(I)+Y(I);
%END;
%DEACTIVATE I;

The third line is input text and is scanned for replacement activity. The first time that this line is scanned,
I has the value 1 and has been activated. Therefore, the following string is inserted into the preprocessor
output:

Z(1)=X(1)+Y(1);

Each 1 is preceded by seven blanks.

For each increment of I, up to and including 10, the input text is scanned and each occurrence of I is
replaced by its current value. As a result, the following string is inserted into the preprocessor output:

Z(1)=X(1)+Y(1);
Z(2)=X(2)+Y(2);
 .
 .
 .
Z(10)=X(10)+Y(10);

When the value of I reaches 11, control falls through to the %DEACTIVATE statement.

Example 4

In the following preprocessor input, VALUE is a preprocessor function procedure that returns a character
string of the form 'arg1(arg2)', where arg1 and arg2 represent the arguments that are passed to the
function:

DECLARE (Z(10), Q) FIXED;
%A='Z';
%ACTIVATE A, VALUE;
Q = 6 + VALUE(A,3);
%DECLARE A CHARACTER;
%VALUE: PROC(ARG1,ARG2) RETURNS(CHAR);
 DCL ARG1 CHAR, ARG2 FIXED;
 RETURN(ARG1∥'('∥ARG2∥')');
 %END VALUE;

When the scan encounters the fourth line, A is active and is thus eligible for replacement. Because VALUE
is also active, the reference to it in the fourth line invokes the preprocessor function procedure of that
name.

However, before the arguments A and 3 are passed to VALUE, A is replaced by its value Z (assigned to A
in a previous assignment statement), and 3 is converted to fixed-point to conform to the attribute of its
corresponding parameter. VALUE then performs a concatenation of these arguments and the parentheses
and returns the concatenated value, that is, the string Z (3), to the point of invocation. The returned

Preprocessor examples

624 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

value replaces the function reference and the result is inserted into the preprocessor output. Thus, the
preprocessor output generated is as follows:

DECLARE (Z(10),Q) FIXED;
Q = 6+Z(3);

Example 5

The preprocessor function procedure GEN defined as follows can generate a GENERIC declaration for up
to 99 entry names with up to 99 parameter descriptors in the parameter descriptor lists. Only four are
generated in this example.

 %DCL GEN ENTRY;
 DCL A GEN (A,2,5,FIXED);
 %GEN: PROC(NAME,LOW,HIGH,ATTR) RETURNS (CHAR);
 DCL (NAME, SUFFIX, ATTR, STRING) CHAR, (LOW, HIGH, I, J) FIXED;
 STRING='GENERIC(';
 DO I=LOW TO HIGH; /* ENTRY NAME LOOP*/
 IF I>9 THEN
 SUFFIX=SUBSTR(I, 7, 2);
 /* 2 DIGIT SUFFIX*/
 ELSE SUFFIX=SUBSTR(I, 8, 1);
 /* 1 DIGIT SUFFIX*/
 STRING=STRING∥NAME∥SUFFIX∥' WHEN (';
 DO J=1 TO I; /* DESCRIPTOR LIST*/
 STRING=STRING∥ATTR;
 IF J<I /* ATTRIBUTE SEPARATOR*/
 THEN STRING=STRING∥',';
 ELSE STRING=STRING∥')';
 /* LIST SEPARATOR */
 END;
 IF I<HIGH THEN /* ENTRY NAME SEPARATOR*/
 STRING=STRING∥',';
 ELSE STRING=STRING∥')';
 /* END OF LIST /*
 END;
 RETURN (STRING)
 % END;

The preprocessor output produced is as follows:

 DCL A GENERIC(A2 WHEN (FIXED,FIXED),
 A3 WHEN (FIXED, FIXED, FIXED),
 A4 WHEN (FIXED, FIXED, FIXED, FIXED),
 A5 WHEN (FIXED, FIXED, FIXED, FIXED, FIXED));

Example 6

This example shows a preprocessor procedure that implements a statement of the form:

 SEARCH TABLE(array) FOR(value)
 USING(variable) AND(variable);

This statement searches a specified two-dimensional array for a specified value, using specified or default
variables for the array subscripts. After execution of the statement, the array subscript variables identify
an element that contains the specified value. If no element contains the specified value, both subscript
variables are set to -22222.

The preprocessor procedure that implements this statement is as follows:

 %SEARCH:
 PROC(TABLE,FOR,USING,AND) STATEMENT RETURNS(CHARACTER);

 DECLARE(TABLE,FOR,USING,AND,LABL, DO1,DO2) CHARACTER,
 (PARMSET,COUNTER) BUILTIN;

 IF PARMSET(TABLE) & PARMSET(FOR) THEN;
 ELSE SERR:DO;
 NOTE ('MISSING OR INVALID ARGUMENT(S)'∥'FOR ''SEARCH''',4);
 RETURN ('/*INVALID SEARCH STATEMENT*/');
 END;

Preprocessor examples

Chapter 20. Preprocessor facilities 625

 IF ¬PARMSET(USING) THEN
 USING='I';
 IF ¬PARMSET(AND) THEN
 AND='J';
 IF USING = AND THEN
 GO TO SERR;

 LABL='SL'∥COUNTER;
 DO1=LABL∥': DO '∥USING∥'=LBOUND('∥TABLE∥',1)
 TO HBOUND('∥TABLE∥',1);';
 DO2='DO '∥AND∥'=LBOUND('∥TABLE∥',2)
 TO HBOUND ('∥TABLE∥',2);';

 RETURN(DO1∥DO2∥'SELECT('∥TABLE
 ∥'('∥USING∥','∥AND∥'));
 WHEN('∥FOR∥') LEAVE '∥LABL∥';
 OTHER;
 END '∥LABL∥';
 IF '∥AND∥' > H BOUND('∥TABLE∥',2) THEN
 '∥USING∥','∥AND∥.' = -22222;');
 %END SEARCH;

The PARMSET built-in function is used to determine which parameters are set when the procedure is
invoked. If USING is not set, the default array subscript variable I is used. If AND is not set, J is used. If
TABLE or FOR is not set, or if the invocation results in the same variable being used for both subscripts, a
preprocessor diagnostic message is issued and a comment is returned in the preprocessor output.

The COUNTER built-in function is used to generate unique labels for the preprocessor output returned by
the procedure.

The procedure can be invoked with keyword arguments, positional arguments, or a combination of both.
The following invocations of the procedure produce identical results:

SEARCH TABLE(LIST.NAME)
FOR('J.DOE') USING(I) AND(J);

SEARCH TABLE(LIST.NAME) FOR('J.DOE');

SEARCH(LIST.NAME) FOR('J.DOE');

SEARCH(LIST.NAME,'J.DOE');

SEARCH(,'J.DOE') TABLE(LIST.NAME);

The preprocessor output returned by any of these invocations is as follows:

SL00001:
DO I=LBOUND(LIST.NAME,1) TO HBOUND(LIST.NAME,1);
 DO J=LBOUND(LIST.NAME,2) TO HBOUND(LIST.NAME,2);
 SELECT(LIST.NAME(I,J));
 WHEN('J.DOE') LEAVE SL00001;
 OTHER;
END SL00001;
IF J > HBOUND(LIST.NAME,2) THEN
 I,J = -22222;

The label SL00001 is returned only for the first invocation. A new unique label is returned for each
subsequent invocation.

Preprocessor examples

626 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Appendix A. Limits
This topic summarizes the implementation limits for the PL/I language elements, the macro facility
language elements, and the supported code page values for UPPERCASE built-in function and
LOWERCASE built-in function.

Table 86 on page 627 summarizes the implementation limits for the PL/I language elements.

Table 86. Language element limits

Language element Description Limit

Arrays Maximum number of dimensions for an array 15

Minimum lower boundNote 1 Under CMPAT(V3),
-263; otherwise,
-2147483648

Maximum upper boundNote 1 Under CMPAT(V3),
+263 - 1; otherwise,
+2147483647

Note 1: These bounds must be used with caution. For instance, if A has the maximum upper bound
and JX has the attributes SIGNED FIXED BIN(31), the loop DO JX = LBOUND(A) TO HBOUND(A) will
"wrap" after it hits the last element in the array. It would not "wrap" if UPTHRU were used instead of TO.

Structures Maximum number of levels in a structure 15

Maximum level-number in a structure 255

Arithmetic precisions Maximum precision for FIXED DECIMAL 31Note 2

Maximum precision for FIXED BINARY 63Note 3

Maximum precision for FLOAT DECIMAL 33Note 4

Maximum precision for FLOAT BINARY 109Note 5

Maximum scale factor for FIXED data 127

Minimum scale factor for FIXED data -128

Note 2: This is true only if you specify the compile-time option LIMITS(FIXEDDEC(31)); the default is 15.

Note 3: This is true only if you specify the compile-time option LIMITS(FIXEDBIN(63)); the default is 31.

Note 4: On Intel, the maximum FLOAT DECIMAL precision is 18. Under FLOAT(DFP), the maximum
FLOAT DECIMAL precision is 34.

Note 5: On Intel, the maximum FLOAT BINARY precision is 64.

String and AREA
variables or constants

Maximum length of CHARACTER 32767

Maximum length of BIT 32767

Maximum length of GRAPHIC 16383

Maximum length of WIDECHAR 32767

Maximum size of AREA 2147483647

Note 6: These are the default limits. Under the STRING suboption of the LIMITS compiler option, the
maximum length of the string types can be up to 128M.

Limits

© Copyright IBM Corp. 1999, 2022 627

Table 86. Language element limits (continued)

Language element Description Limit

Built-in functions Maximum number of arguments to the IAND, IOR,
MAX, and MIN functions

64

Maximum values for the precision (p) in the
ADD, BINARY, DECIMAL, DIVIDE, FIXED, FLOAT,
MULTIPLY, PRECISION, and SUBTRACT functions

same as corresponding
limit for arithmetic
precision

Maximum values for the scale (q) in the ADD,
BINARY, DECIMAL, DIVIDE, FIXED, MULTIPLY,
PRECISION, and SUBTRACT functions

same as corresponding
limit for arithmetic
precisions

Maximum number of digits (N) in the CEIL, FLOOR,
MAX, MIN, MOD, ROUND, and TRUNC functions

same as corresponding
limit for arithmetic
precisions

Limits

628 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 86. Language element limits (continued)

Language element Description Limit

Program size Maximum length of an identifier 100

Maximum number of lexical units (keywords,
identifiers, delimiters, etc) before a statement type
can be resolved

511

Maximum number of DEFAULT-statements in a
block

31

Maximum number of %PUSH statements 63

Maximum number of %INCLUDE statements 4095

Maximum nesting of %INCLUDE statements 2046

Maximum number of lines in any source file 1048575

Maximum number of statements 16777215

Maximum number of LIKE-attributes in a block 63

Maximum number of output expressions in a data-
list

60

Maximum number of repetitive DO-specifications
in a data-list

50

Maximum size of a data aggregate containing no
unaligned bits

2147483647

Maximum size of a data aggregate containing some
unaligned bits

268435455

Maximum number of arguments in a CALL or
function reference

255

Maximum number of parameters for a procedure 4095

Maximum nesting of factored attributes 15

Maximum nesting of BEGIN and PROCEDURE
statements

30

Maximum nesting of DO-groups 49

Maximum nesting of IF statements 49

Maximum nesting of SELECT-statements 49

Maximum nesting of expressions 383

Maximum length of %NOTE message 32767

Limits

Appendix A. Limits 629

Table 86. Language element limits (continued)

Language element Description Limit

Miscellaneous Maximum number of picture characters in a
character picture

511

Maximum number of bytes in a numeric picture 253

Maximum number of numeric picture characters in
a numeric picture

31

Maximum number of bytes in the external
representation of CHARACTER, X, BIT, BX,
GRAPHIC, GX, WX and M string constants.

The external representation includes all quotes
and string suffixes. For example, the string
'01010110'B has 11 bytes in its external
specification, but only 1 byte in its internal
representation. Similarly, the string 'Ain''t
Misbehavin''' has 21 bytes in its external
specification, but only 17 in its internal
representation.

3072

Maximum length for a KEYTO character string 120

Maximum length for a KEYTO graphic or widechar
string

60

Maximum KEY length 32763

Maximum line size for LINESIZE 32,759 for F-format or
U-format, and 32,751
for V-format

Minimum line size for LINESIZE 1

Maximum page size for PAGESIZE 32,767

Minimum page size for PAGESIZE compiler option 1

Maximum size of DISPLAY character string 126

Maximum DISPLAY reply message 72 bytes

Range of IEEE normalized floating-point numbers +3.30E-4932 to
+1.21E+4932, 0,
-3.30E-4932 to
-1.21E+4932

Range of hex floating-point numbers +10E-78 to +10E75, 0,
-10E-78 to +10E+75

Table 87 on page 630 summarizes the implementation limits for the macro facility language elements.

Table 87. Macro facility limits

Language element Description Limit

Arrays Maximum number of dimensions 15

Minimum lower bound -32768

Maximum upper bound +32767

Limits

630 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 87. Macro facility limits (continued)

Language element Description Limit

Arithmetic range Min and max for a FIXED variable under
FIXED(DECIMAL) option

same as FIXED
DECIMAL(5) identifier

Min and max for a FIXED variable under
FIXED(BINARY) option

same as FIXED
BINARY(31) identifier

Macro procedures Maximum nesting level 1

Keys Maximum number of keyword parameters 4096

String result Maximum length 512K

Table 88 on page 631 lists the values of lowerc and upperc for the supported values of c. c denotes the
code page that will be uppercased or lowercased.

Table 88. Supported code page values for LOWERCASE built-in function and UPPERCASE built-in function

Lower limits Upper limits

dcl lower_00037 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4849515253545556'x
 || '5758708C8D8E9CCB'x
 || 'CCCDCECFDBDCDDDE'x
));

dcl upper_00037 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6869717273747576'x
 || '777880ACADAE9EEB'x
 || 'ECEDEEEFFBFCFDFE'x
));

dcl lower_00273 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424445464748'x
 || '4951525354555657'x
 || '586A708C8D8E9CC0'x
 || 'CBCDCECFD0DBDDDE'x
));

dcl upper_00273 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626465666768'x
 || '6971727374757677'x
 || '78E080ACADAE9E4A'x
 || 'EBEDEEEF5AFBFDFE'x
));

dcl lower_00277 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454648'x
 || '4951525354555657'x
 || '586A8C8D8EA1C0CB'x
 || 'CCCDCECFD0DBDDDE'x
));

dcl upper_00277 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656668'x
 || '6971727374757677'x
 || '787CACADAEFC7BEB'x
 || 'ECEDEEEF5BFBFDFE'x
));

dcl lower_00278 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424445464849'x
 || '525354555657586A'x
 || '70798C8D8E9CA1C0'x
 || 'CBCDCECFD0DBDDDE'x
));

dcl upper_00278 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626465666869'x
 || '727374757677787C'x
 || '80E0ACADAE9EFC7B'x
 || 'EBEDEEEF5BFBFDFE'x
));

Limits

Appendix A. Limits 631

Table 88. Supported code page values for LOWERCASE built-in function and UPPERCASE built-in function
(continued)

Lower limits Upper limits

dcl lower_00280 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424345464749'x
 || '52535556575A6A70'x
 || '798C8D8E9CA1C0CB'x
 || 'CCCECFD0DBDCDEE0'x
));

dcl upper_00280 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626365666769'x
 || '727375767771ED80'x
 || 'FDACADAE9E7864EB'x
 || 'ECEEEF74FBFCFE68'x
));

dcl lower_00284 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4851525354555657'x
 || '586A708C8D8E9CCB'x
 || 'CCCDCECFDBDCDDDE'x
));

dcl upper_00284 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6871727374757677'x
 || '787B80ACADAE9EEB'x
 || 'ECEDEEEFFBFCFDFE'x
));

dcl lower_00285 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4849515253545556'x
 || '5758708C8D8E9CCB'x
 || 'CCCDCECFDBDCDDDE'x
));

dcl upper_00285 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6869717273747576'x
 || '777880ACADAE9EEB'x
 || 'ECEDEEEFFBFCFDFE'x
));

dcl lower_00297 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424345464749'x
 || '5253555657586A70'x
 || '7C8C8D8E9CC0CBCC'x
 || 'CDCECFD0DBDCDEE0'x
));

dcl upper_00297 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626365666769'x
 || '727375767778FD80'x
 || '64ACADAE9E71EBEC'x
 || 'EDEEEF74FBFCFE68'x
));

dcl lower_00500 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4849515253545556'x
 || '5758708C8D8E9CCB'x
 || 'CCCDCECFDBDCDDDE'x
));

dcl upper_00500 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6869717273747576'x
 || '777880ACADAE9EEB'x
 || 'ECEDEEEFFBFCFDFE'x
));

Limits

632 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 88. Supported code page values for LOWERCASE built-in function and UPPERCASE built-in function
(continued)

Lower limits Upper limits

dcl lower_00813 char
 value((
 '6162636465666768'x
 || '696A6B6C6D6E6F70'x
 || '7172737475767778'x
 || '797ADCDDDEDFE1E2'x
 || 'E3E4E5E6E7E8E9EA'x
 || 'EBECEDEEEFF0F1F3'x
 || 'F4F5F6F7F8F9FAFB'x
 || 'FCFDFE'x
));

dcl upper_00813 char
 value((
 '4142434445464748'x
 || '494A4B4C4D4E4F50'x
 || '5152535455565758'x
 || '595AB6B8B9BAC1C2'x
 || 'C3C4C5C6C7C8C9CA'x
 || 'CBCCCDCECFD0D1D3'x
 || 'D4D5D6D7D8D9DADB'x
 || 'BCBEBF'x
));

dcl lower_00819 char
 value((
 '6162636465666768'x
 || '696A6B6C6D6E6F70'x
 || '7172737475767778'x
 || '797AE0E1E2E3E4E5'x
 || 'E6E7E8E9EAEBECED'x
 || 'EEEFF0F1F2F3F4F5'x
 || 'F6F8F9FAFBFCFDFE'x
));

dcl upper_00819 char
 value((
 '4142434445464748'x
 || '494A4B4C4D4E4F50'x
 || '5152535455565758'x
 || '595AC0C1C2C3C4C5'x
 || 'C6C7C8C9CACBCCCD'x
 || 'CECFD0D1D2D3D4D5'x
 || 'D6D8D9DADBDCDDDE'x
));

dcl lower_00850 char
 value((
 '6162636465666768'x
 || '696A6B6C6D6E6F70'x
 || '7172737475767778'x
 || '797A818283848586'x
 || '8788898A8B8C8D91'x
 || '93949596979BA0A1'x
 || 'A2A3A4C6D0E4E7EC'x
));

dcl upper_00850 char
 value((
 '4142434445464748'x
 || '494A4B4C4D4E4F50'x
 || '5152535455565758'x
 || '595A9A90B68EB78F'x
 || '80D2D3D4D8D7DE92'x
 || 'E299E3EAEB9DB5D6'x
 || 'E0E9A5C7D1E5E8ED'x
));

dcl lower_00858 char
 value((
 '6162636465666768'x
 || '696A6B6C6D6E6F70'x
 || '7172737475767778'x
 || '797A818283848586'x
 || '8788898A8B8C8D91'x
 || '93949596979BA0A1'x
 || 'A2A3A4C6D0E4E7EC'x
));

dcl upper_00858 char
 value((
 '4142434445464748'x
 || '494A4B4C4D4E4F50'x
 || '5152535455565758'x
 || '595A9A90B68EB78F'x
 || '80D2D3D4D8D7DE92'x
 || 'E299E3EAEB9DB5D6'x
 || 'E0E9A5C7D1E5E8ED'x
));

dcl lower_00871 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4849515253545556'x
 || '575870798DA1C0CB'x
 || 'CDCECFD0DBDCDDDE'x
));

dcl upper_00871 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6869717273747576'x
 || '7778807CAD5F4AEB'x
 || 'EDEEEF5AFBFCFDFE'x
));

Limits

Appendix A. Limits 633

Table 88. Supported code page values for LOWERCASE built-in function and UPPERCASE built-in function
(continued)

Lower limits Upper limits

dcl lower_00920 char
 value((
 '6162636465666768'x
 || '696A6B6C6D6E6F70'x
 || '7172737475767778'x
 || '797AE0E1E2E3E4E5'x
 || 'E6E7E8E9EAEBECED'x
 || 'EEEFF0F1F2F3F4F5'x
 || 'F6F8F9FAFBFCFE'x
));

dcl upper_00920 char
 value((
 '4142434445464748'x
 || '494A4B4C4D4E4F50'x
 || '5152535455565758'x
 || '595AC0C1C2C3C4C5'x
 || 'C6C7C8C9CACBCCCD'x
 || 'CECFD0D1D2D3D4D5'x
 || 'D6D8D9DADBDCDE'x
));

dcl lower_01026 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4951525354555657'x
 || '586A709CA1C0CBCD'x
 || 'CECFD0DBDDDEE0'x
));

dcl upper_01026 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6971727374757677'x
 || '787C809E7B4AEBED'x
 || 'EEEF5AFBFDFE7F'x
));

dcl lower_01047 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4849515253545556'x
 || '5758708C8D8E9CCB'x
 || 'CCCDCECFDBDCDDDE'x
));

dcl upper_01047 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6869717273747576'x
 || '777880ACBAAE9EEB'x
 || 'ECEDEEEFFBFCFDFE'x
));

dcl lower_01140 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4849515253545556'x
 || '5758708C8D8E9CCB'x
 || 'CCCDCECFDBDCDDDE'x
));

dcl upper_01140 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6869717273747576'x
 || '777880ACADAE9EEB'x
 || 'ECEDEEEFFBFCFDFE'x
));

dcl lower_01141 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424445464748'x
 || '4951525354555657'x
 || '586A708C8D8E9CC0'x
 || 'CBCDCECFD0DBDDDE'x
));

dcl upper_01141 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626465666768'x
 || '6971727374757677'x
 || '78E080ACADAE9E4A'x
 || 'EBEDEEEF5AFBFDFE'x
));

dcl lower_01142 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454648'x
 || '4951525354555657'x
 || '586A8C8D8EA1C0CB'x
 || 'CCCDCECFD0DBDDDE'x
));

dcl upper_01142 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656668'x
 || '6971727374757677'x
 || '787CACADAEFC7BEB'x
 || 'ECEDEEEF5BFBFDFE'x
));

Limits

634 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Table 88. Supported code page values for LOWERCASE built-in function and UPPERCASE built-in function
(continued)

Lower limits Upper limits

dcl lower_01143 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424445464849'x
 || '525354555657586A'x
 || '70798C8D8E9CA1C0'x
 || 'CBCDCECFD0DBDDDE'x
));

dcl upper_01143 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626465666869'x
 || '727374757677787C'x
 || '80E0ACADAE9EFC7B'x
 || 'EBEDEEEF5BFBFDFE'x
));

dcl lower_01144 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424345464749'x
 || '52535556575A6A70'x
 || '798C8D8E9CA1C0CB'x
 || 'CCCECFD0DBDCDEE0'x
));

dcl upper_01144 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626365666769'x
 || '727375767771ED80'x
 || 'FDACADAE9E7864EB'x
 || 'ECEEEF74FBFCFE68'x
));

dcl lower_01145 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4851525354555657'x
 || '586A708C8D8E9CCB'x
 || 'CCCDCECFDBDCDDDE'x
));

dcl upper_01145 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6871727374757677'x
 || '787B80ACADAE9EEB'x
 || 'ECEDEEEFFBFCFDFE'x
));

dcl lower_01146 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4849515253545556'x
 || '5758708C8D8E9CCB'x
 || 'CCCDCECFDBDCDDDE'x
));

dcl upper_01146 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6869717273747576'x
 || '777880ACADAE9EEB'x
 || 'ECEDEEEFFBFCFDFE'x
));

dcl lower_01147 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424345464749'x
 || '5253555657586A70'x
 || '7C8C8D8E9CC0CBCC'x
 || 'CDCECFD0DBDCDEE0'x
));

dcl upper_01147 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626365666769'x
 || '727375767778FD80'x
 || '64ACADAE9E71EBEC'x
 || 'EDEEEF74FBFCFE68'x
));

dcl lower_01148 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4849515253545556'x
 || '5758708C8D8E9CCB'x
 || 'CCCDCECFDBDCDDDE'x
));

dcl upper_01148 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6869717273747576'x
 || '777880ACADAE9EEB'x
 || 'ECEDEEEFFBFCFDFE'x
));

Limits

Appendix A. Limits 635

Table 88. Supported code page values for LOWERCASE built-in function and UPPERCASE built-in function
(continued)

Lower limits Upper limits

dcl lower_01149 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4849515253545556'x
 || '575870798DA1C0CB'x
 || 'CDCECFD0DBDCDDDE'x
));

dcl upper_01149 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6869717273747576'x
 || '7778807CAD5F4AEB'x
 || 'EDEEEF5AFBFCFDFE'x
));

dcl lower_01155 char
 value((
 '8182838485868788'x
 || '8991929394959697'x
 || '9899A2A3A4A5A6A7'x
 || 'A8A9424344454647'x
 || '4951525354555657'x
 || '586A709CA1C0CBCD'x
 || 'CECFD0DBDDDEE0'x
));

dcl upper_01155 char
 value((
 'C1C2C3C4C5C6C7C8'x
 || 'C9D1D2D3D4D5D6D7'x
 || 'D8D9E2E3E4E5E6E7'x
 || 'E8E9626364656667'x
 || '6971727374757677'x
 || '787C809E7B4AEBED'x
 || 'EEEF5AFBFDFE7F'x
));

Limits

636 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user└s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

 IBM Corporation
 J74/G4
 555 Bailey Avenue
 San Jose, CA 95141-1099
 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

 Intellectual Property Licensing
 Legal and Intellectual Property Law
 IBM Japan, Ltd.
 3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
 THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
 EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.

Intel is a registered trademark of Intel Corporation in the United States and other countries.

© Copyright IBM Corp. 1999, 2022 637

http://www.ibm.com/legal/copytrade
http://www.ibm.com/legal/copytrade

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States and
other countries.

Pentium is a registered trademark of Intel Corporation in the United States and other countries.

Unicode is a trademark of the Unicode Consortium.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product or service names may be the trademarks or service marks of others.

If you are viewing this information in softcopy, the photographs and color illustrations may not appear.

638 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Bibliography

PL/I publications

Enterprise PL/I for z/OS
Programming Guide, GI13-5620
Language Reference, SC31-5716
Messages and Codes, GC31-5717
Compiler and Run-Time Migration Guide, GC31-5715

PL/I for MVS™ & VM
Installation and Customization under MVS, SC26-3119
Language Reference, SC26-3114
Compile-Time Messages and Codes, SC26-3229
Diagnosis Guide, SC26-3149
Migration Guide, SC26-3118
Programming Guide, SC26-3113
Reference Summary, SX26-3821

PL/I for AIX
Programming Guide, SC14-7319
Language Reference, SC14-7320
Messages and Codes, GC14-7321
Installation Guide, GC14-7322

Related publications

Db2 for z/OS
Administration Guide, SC27-8844
Application Programming and SQL Guide, SC27-8845
Command Reference, SC27-8848
Messages, GC27-8855
Codes, GC27-8847
SQL Reference, SC27-8859
LOBs with Db2 for z/OS: Stronger and Faster, SG24-7270
See also the Db2 for z/OS Product Documentation

DFSORT™

Application Programming Guide, SC23-6878
Installation and Customization, SC23-6881

IMS/ESA®

Application Programming: Database Manager, SC26-8015
Application Programming: Database Manager Summary, SC26-8037

© Copyright IBM Corp. 1999, 2022 639

https://www-01.ibm.com/support/docview.wss?uid=swg27047206

Application Programming: Design Guide, SC26-8016
Application Programming: Transaction Manager, SC26-8017
Application Programming: Transaction Manager Summary, SC26-8038
Application Programming: EXEC DL/I Commands for CICS and IMS™, SC26-8018
Application Programming: EXEC DL/I Commands for CICS and IMS Summary, SC26-8036
IMS/ESA V6R1 Bookindex, GC27-1557

TXSeries for Multiplatforms
Encina Administration Guide Volume 2: Server Administration, SC09-4474
Encina SFS Programming Guide, SC09-4483
See the TXSeries for Multiplatforms Knowledge Center

z/Architecture
Principles of Operation, SA22-7832
See Principles of Operation online

z/OS Language Environment
Concepts Guide, SA38-0687
Debugging Guide, GA32-0908
RunTime Messages, SA38-0686
Customization, SA38-0685
Programming Guide, SA38-0682
Programming Guide for 64-bit Virtual Addressing Mode, SA38-0689
Programming Reference, SA38-0683
RunTime Application Migration Guide, GA32-0912
Vendor Interfaces, SA38-0688
Writing Interlanguage Communication Applications, SA38-0684
See also the z/OS Language Environment Knowledge Center

z/OS MVS
JCL Reference, SA23-1385
JCL User's Guide, SA23-1386
System Commands, SA38-0666
See z/OS MVS Knowledge Center

z/OS TSO/E
Command Reference, SA32-0975
User's Guide, SA32-0971

z/OS UNIX System Services
z/OS UNIX System Services Command Reference, SA23-2280
z/OS UNIX System Services Programming: Assembler Callable Services Reference, SA23-2281
z/OS UNIX System Services User's Guide, SA23-2279

Unicode and character representation
z/OS Support for Unicode: Using Conversion Services, SC33-7050
z/OS Unicode Services User's Guide and Reference, SA38-0680

640 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

https://www.ibm.com/support/knowledgecenter/SSAL2T_9.1.0/com.ibm.cics.tx.doc/ic-homepage.html
http://www-01.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.cee/cee.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.iea/iea.htm

Glossary

This glossary defines terms for all platforms and releases of PL/I. It might contain terms that this manual
does not use. If you do not find the terms for which you are looking, see the index in this manual or IBM
Dictionary of Computing, SC20-1699.

 A

access
To reference or retrieve data.

action specification
In an ON statement, the ON-unit or the single keyword SYSTEM, either of which specifies the action to
be taken whenever the appropriate condition is raised.

activate (a block)
To initiate the execution of a block. A procedure block is activated when it is invoked. A begin-block is
activated when it is encountered in the normal flow of control, including a branch. A package cannot
be activated.

activate (a preprocessor variable or preprocessor entry point)
To make a macro facility identifier eligible for replacement in subsequent source code. The
%ACTIVATE statement activates preprocessor variables or preprocessor entry points.

active
The state of a block after activation and before termination. The state in which a preprocessor variable
or preprocessor entry name is said to be when its value can replace the corresponding identifier in
source program text. The state in which an event variable is said to be during the time it is associated
with an asynchronous operation. The state in which a task variable is said to be when its associated
task is attached. The state in which a task is said to be before it has been terminated.

actual origin (AO)
The location of the first item in the array or structure.

additive attribute
A file description attribute for which there are no defaults, and which, if required, must be stated
explicitly or implied by another explicitly stated attribute. Contrast with alternative attribute.

adjustable extent
The bound (of an array), the length (of a string), or the size (of an area) that might be different
for different generations of the associated variable. Adjustable extents are specified as expressions
or asterisks (or by REFER options for based variables), which are evaluated separately for each
generation. They cannot be used for static variables.

aggregate
See data aggregate.

aggregate expression
An array, structure, or union expression.

aggregate type
For any item of data, the specification whether it is structure, union, or array.

allocated variable
A variable with which main storage is associated and not freed.

allocation
The reservation of main storage for a variable. A generation of an allocated variable. The association of
a PL/I file with a system data set, device, or file.

alignment
The storing of data items in relation to certain machine-dependent boundaries (for example, a
fullword or halfword boundary).

© Copyright IBM Corp. 1999, 2022 641

alphabetic character
Any of the characters A through Z of the English alphabet and the alphabetic extenders #, $, and @
(which can have a different graphic representation in different countries).

alphameric character
An alphabetic character or a digit.

alternative attribute
A file description attribute that is chosen from a group of attributes. If none is specified, a default is
assumed. Contrast with additive attribute.

ambiguous reference
A reference that is not sufficiently qualified to identify one and only one name known at the point of
reference.

area
A portion of storage within which based variables can be allocated.

argument
An expression in an argument list as part of an invocation of a subroutine or function.

argument list
A parenthesized list of zero or more arguments, separated by commas, following an entry name
constant, an entry name variable, a generic name, or a built-in function name. The list becomes the
parameter list of the entry point.

arithmetic comparison
A comparison of numeric values. See also bit comparison, character comparison.

arithmetic constant
A fixed-point constant or a floating-point constant. Although most arithmetic constants can be signed,
the sign is not part of the constant.

arithmetic conversion
The transformation of a value from one arithmetic representation to another.

arithmetic data
Data that has the characteristics of base, scale, mode, and precision. Coded arithmetic data and
pictured numeric character data are included.

arithmetic operators
Either of the prefix operators + and -, or any of the following infix operators: + - * ⁄ **

array
A named, ordered collection of one or more data elements with identical attributes, grouped into one
or more dimensions.

array expression
An expression whose evaluation yields an array of values.

array of structures
An ordered collection of identical structures specified by giving the dimension attribute to a structure
name.

array variable
A variable that represents an aggregate of data items that must have identical attributes. Contrast
with structure variable.

ASCII
American National Standard Code for Information Interchange.

assignment
The process of giving a value to a variable.

asynchronous operation
The overlap of an input⁄output operation with the execution of statements. The concurrent execution
of procedures using multiple flows of control for different tasks.

642 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

attachment of a task
The invocation of a procedure and the establishment of a separate flow of control to execute
the invoked procedure (and procedures it invokes) asynchronously, with execution of the invoking
procedure.

attention
An occurrence, external to a task, that could cause a task to be interrupted.

attribute
A descriptive property associated with a name to describe a characteristic represented. A descriptive
property used to describe a characteristic of the result of evaluation of an expression.

automatic storage allocation
The allocation of storage for automatic variables.

automatic variable
A variable whose storage is allocated automatically at the activation of a block and released
automatically at the termination of that block.

B

base
The number system in which an arithmetic value is represented.

base element
A member of a structure or a union that is itself not another structure or union.

base item
The automatic, controlled, or static variable or the parameter upon which a defined variable is
defined.

based reference
A reference that has the based storage class.

based storage allocation
The allocation of storage for based variables.

based variable
A variable whose storage address is provided by a locator. Multiple generations of the same variable
are accessible. It does not identify a fixed location in storage.

begin-block
A collection of statements delimited by BEGIN and END statements, forming a name scope. A begin-
block is activated either by the raising of a condition (if the begin-block is the action specification
for an ON-unit) or through the normal flow of control, including any branch resulting from a GOTO
statement.

binary
A number system whose only numerals are 0 and 1.

binary digit
See bit.

binary fixed-point value
An integer consisting of binary digits and having an optional binary point and optional sign. Contrast
with decimal fixed-point value.

binary floating-point value
An approximation of a real number in the form of a significand, which can be considered as a binary
fraction, and an exponent, which can be considered as an integer exponent to the base of 2. Contrast
with decimal floating-point value.

bit
A 0 or a 1. The smallest amount of space of computer storage.

bit comparison
A left-to-right, bit-by-bit comparison of binary digits. See also arithmetic comparison, character
comparison.

Glossary 643

bit string constant
A series of binary digits enclosed in and followed immediately by the suffix B. Contrast with character
constant. A series of hexadecimal digits enclosed in single quotes and followed by the suffix B4.

bit string
A string composed of zero or more bits.

bit string operators
The logical operators not and exclusive-or (¬), and (&), and or (|).

bit value
A value that represents a bit type.

block
A sequence of statements, processed as a unit, that specifies the scope of names and the allocation of
storage for names declared within it. A block can be a package, procedure, or a begin-block.

bounds
The upper and lower limits of an array dimension.

break character
The underscore symbol (_). It can be used to improve the readability of identifiers. For instance, a
variable could be called OLD_INVENTORY_TOTAL instead of OLDINVENTORYTOTAL.

built-in function
A predefined function supplied by the language, such as SQRT (square root).

built-in function reference
A built-in function name, which has an optional argument list.

built-in name
The entry name of a built-in subroutine.

built-in subroutine
Subroutine that has an entry name that is defined at compile-time and is invoked by a CALL
statement.

buffer
Intermediate storage, used in input/output operations, into which a record is read during input and
from which a record is written during output.

C

call
To invoke a subroutine by using the CALL statement or CALL option.

character comparison
A left-to-right, character-by-character comparison according to the collating sequence. See also
arithmetic comparison, bit comparison.

character string constant
A sequence of characters enclosed in single quotes; for example, 'Shakespeare''s 'Hamlet:''.

character set
A defined collection of characters. See also ASCII and EBCDIC.

character string picture data
Picture data that has only a character value. This type of picture data must have at least one A or X
picture specification character. Contrast with numeric picture data.

closing (of a file)
The dissociation of a file from a data set or device.

coded arithmetic data
Data items that represent numeric values and are characterized by their base (decimal or binary),
scale (fixed-point or floating-point), and precision (the number of digits each can have). This data is
stored in a form that is acceptable, without conversion, for arithmetic calculations.

combined nesting depth
The deepest level of nesting, determined by counting the levels of PROCEDURE/BEGIN/ON, DO,
SELECT, and IF...THEN...ELSE nestings in the program.

644 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

comment
A string of zero or more characters used for documentation that are delimited by ⁄* and *⁄.

commercial character

• CR (credit) picture specification character
• DB (debit) picture specification character

comparison operator
An operator that can be used in an arithmetic, string locator, or logical relation to indicate the
comparison to be done between the terms in the relation. The comparison operators are:

= (equal to)
> (greater than)
< (less than)
>= (greater than or equal to)
<= (less than or equal to)
¬= or <> (not equal to)
¬> (not greater than)
¬< (not less than)

compile time
In general, the time during which a source program is translated into an object module. In PL/I, it is
the time during which a source program can be altered, if desired, and then translated into an object
program.

compiler options
Keywords that are specified to control certain aspects of a compilation, such as: the nature of the
object module generated, the types of printed output produced, and so forth.

complex data
Arithmetic data, each item of which consists of a real part and an imaginary part.

composite operator
An operator that consists of more than one special character, such as <=, **, and ⁄*.

compound statement
A statement that contains other statements. In PL/I, IF, ON, OTHERWISE, and WHEN are the only
compound statements. See statement body.

concatenation
The operation that joins two strings in the order specified, forming one string whose length is equal to
the sum of the lengths of the two original strings. It is specified by the operator ||.

condition
An exceptional situation, either an error (such as an overflow), or an expected situation (such as the
end of an input file). When a condition is raised (detected), the action established for it is processed.
See also established action and implicit action.

condition name
Name of a PL/I-defined or programmer-defined condition.

condition prefix
A parenthesized list of one or more condition names prefixed to a statement. It specifies whether the
named conditions are to be enabled or disabled.

connected aggregate
An array or structure whose elements occupy contiguous storage without any intervening data items.
Contrast with nonconnected aggregate.

connected reference
A reference to connected storage. It must be apparent, prior to execution of the program, that the
storage is connected.

connected storage
Main storage of an uninterrupted linear sequence of items that can be referred to by a single name.

Glossary 645

constant
An arithmetic or string data item that does not have a name and whose value cannot change.
An identifier declared with the VALUE attribute. An identifier declared with the FILE or the ENTRY
attribute but without the VARIABLE attribute.

constant reference
A value reference which has a constant as its object

contained block, declaration, or source text
All blocks, procedures, statements, declarations, or source text inside a begin, procedure, or a
package block. The entire package, procedure, and the BEGIN statement and its corresponding END
statements are not contained in the block.

containing block
The package, procedure, or begin-block that contains the declaration, statement, procedure, or other
source text in question.

contextual declaration
The appearance of an identifier that has not been explicitly declared in a DECLARE statement, but
whose context of use allows the association of specific attributes with the identifier.

control character
A character in a character set whose occurrence in a particular context specifies a control function.
One example is the end-of-file (EOF) marker.

control format item
A specification used in edit-directed transmission to specify positioning of a data item within the
stream or printed page.

control variable
A variable that is used to control the iterative execution of a DO statement.

controlled parameter
A parameter for which the CONTROLLED attribute is specified in a DECLARE statement. It can be
associated only with arguments that have the CONTROLLED attribute.

controlled storage allocation
The allocation of storage for controlled variables.

controlled variable
A variable whose allocation and release are controlled by the ALLOCATE and FREE statements, with
access to the current generation only.

control sections
Grouped machine instructions in an object module.

conversion
The transformation of a value from one representation to another to conform to a given set of
attributes. For example, converting a character string to an arithmetic value such as FIXED BINARY
(15,0).

cross section of an array
The elements represented by the extent of at least one dimension of an array. An asterisk in the place
of a subscript in an array reference indicates the entire extent of that dimension.

current generation
The generation of an automatic or controlled variable that is currently available by referring to the
name of the variable.

D

data
Representation of information or of value in a form suitable for processing.

data aggregate
A data item that is a collection of other data items.

data attribute
A keyword that specifies the type of data that the data item represents, such as FIXED BINARY.

646 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

data-directed transmission
The type of stream-oriented transmission in which data is transmitted. It resembles an assignment
statement and is of the form name = constant.

data item
A single named unit of data.

data list
In stream-oriented transmission, a parenthesized list of the data items used in GET and PUT
statements. Contrast with format list.

data set
A collection of data external to the program that can be accessed by reference to a single file name. A
device that can be referenced.

data specification
The portion of a stream-oriented transmission statement that specifies the mode of transmission
(DATA, LIST, or EDIT) and includes the data list(s) and, for edit-directed mode, the format list(s).

data stream
Data being transferred from or to a data set by stream-oriented transmission, as a continuous stream
of data elements in character form.

data transmission
The transfer of data from a data set to the program or vice versa.

data type
A set of data attributes.

DBCS
In the character set, each character is represented by two consecutive bytes.

deactivated
The state in which an identifier is said to be when its value cannot replace a preprocessor identifier in
source program text. Contrast with active.

debugging
Process of removing bugs from a program.

decimal
The number system whose numerals are 0 through 9.

decimal digit picture character
The picture specification character 9.

decimal fixed-point constant
A constant consisting of one or more decimal digits with an optional decimal point.

decimal fixed-point value
A rational number consisting of a sequence of decimal digits with an assumed position of the decimal
point. Contrast with binary fixed-point value.

decimal floating-point constant
A value made up of a significand that consists of a decimal fixed-point constant, and an exponent that
consists of the letter E followed by an optionally signed integer constant not exceeding three digits.

decimal floating-point value
An approximation of a real number, in the form of a significand, which can be considered as a decimal
fraction, and an exponent, which can be considered as an integer exponent to the base 10. Contrast
with binary floating-point value.

decimal picture data
See numeric picture data.

declaration
The establishment of an identifier as a name and the specification of a set of attributes (partial or
complete) for it. A source of attributes of a particular name.

default
Describes a value, attribute, or option that is assumed when none has been specified.

Glossary 647

defined variable
A variable that is associated with some or all of the storage of the designated base variable.

delimit
To enclose one or more items or statements with preceding and following characters or keywords.

delimiter
All comments and the following characters: percent, parentheses, comma, period, semicolon, colon,
assignment symbol, blank, pointer, asterisk, and single quote. They define the limits of identifiers,
constants, picture specifications, iSUBs, and keywords.

descriptor
A control block that holds information about a variable, such as area size, array bounds, or string
length.

digit
One of the characters 0 through 9.

dimension attribute
An attribute that specifies the number of dimensions of an array and indicates the bounds of each
dimension.

disabled
The state of a condition in which no interrupt occurs and no established action will take place.

do-group
A sequence of statements delimited by a DO statement and ended by its corresponding END
statement, used for control purposes. Contrast with block.

do-loop
See iterative do-group.

dummy argument
Temporary storage that is created automatically to hold the value of an argument that cannot be
passed as is by reference.

dump
Printout of all or part of the storage used by a program as well as other program information, such as a
trace of an error's origin.

E

EBCDIC
(Extended Binary-Coded Decimal Interchange Code). A coded character set consisting of 8-bit coded
characters.

edit-directed transmission
The type of stream-oriented transmission in which data appears as a continuous stream of characters
and for which a format list is required to specify the editing desired for the associated data list.

element
A single item of data as opposed to a collection of data items such as an array; a scalar item.

element expression
An expression whose evaluation yields an element value.

element variable
A variable that represents an element; a scalar variable.

elementary name
See base element.

enabled
The state of a condition in which the condition can cause an interrupt and then invocation of the
appropriate established ON-unit.

end-of-step message
message that follows the listng of the job control statements and job scheduler messages and
contains return code indicating success or failure for each step.

648 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

entry constant
The label prefix of a PROCEDURE statement (an entry name). The declaration of a name with the
ENTRY attribute but without the VARIABLE attribute.

entry data
A data item that represents an entry point to a procedure.

entry expression
An expression whose evaluation yields an entry name.

entry name
An identifier that is explicitly or contextually declared to have the ENTRY attribute (unless the
VARIABLE attribute is given) or An identifier that has the value of an entry variable with the ENTRY
attribute implied.

entry point
A point in a procedure at which it can be invoked. primary entry point and secondary entry point.

entry reference
An entry constant, an entry variable reference, or a function reference that returns an entry value.

entry variable
A variable to which an entry value can be assigned. It must have both the ENTRY and VARIABLE
attributes.

entry value
The entry point represented by an entry constant or variable; the value includes the environment of
the activation that is associated with the entry constant.

environment (of an activation)
Information associated with and used in the invoked block regarding data declared in containing
blocks.

environment (of a label constant)
Identity of the particular activation of a block to which a reference to a statement-label constant
applies. This information is determined at the time a statement-label constant is passed as an
argument or is assigned to a statement-label variable, and it is passed or assigned along with the
constant.

established action
The action taken when a condition is raised. See also implicit action and ON-statement action.

epilogue
Those processes that occur automatically at the termination of a block or task.

evaluation
The reduction of an expression to a single value, an array of values, or a structured set of values.

event
An activity in a program whose status and completion can be determined from an associated event
variable.

event variable
A variable with the EVENT attribute that can be associated with an event. Its value indicates whether
the action has been completed and the status of the completion.

explicit declaration
The appearance of an identifier (a name) in a DECLARE statement, as a label prefix, or in a parameter
list. Contrast with implicit declaration.

exponent characters
The following picture specification characters:

1. K and E, which are used in floating-point picture specifications to indicate the beginning of the
exponent field.

2. F, the scaling factor character, specified with an integer constant that indicates the number of
decimal positions the decimal point is to be moved from its assumed position to the right (if the
constant is positive) or to the left (if the constant is negative).

Glossary 649

expression
A notation, within a program, that represents a value, an array of values, or a structured set of values.
A constant or a reference appearing alone, or a combination of constants and⁄or references with
operators.

extended alphabet
The uppercase and lowercase alphabetic characters A through Z, $, @ and #, or those specified in the
NAMES compiler option.

extent
The range indicated by the bounds of an array dimension, by the length of a string, or by the size of an
area. The size of the target area if this area were to be assigned to a target area.

external name
A name (with the EXTERNAL attribute) whose scope is not necessarily confined only to one block and
its contained blocks.

external procedure
A procedure that is not contained in any other procedure. A level-2 procedure contained in a package
that is also exported.

external symbol
Name that can be referred to in a control section other than the one in which it is defined.

External Symbol Dictionary (ESD)
Table containing all the external symbols that appear in the object module.

extralingual character
Characters (such as $, @, and #) that are not classified as alphanumeric or special. This group
includes characters that are determined with the NAMES compiler option.

F

factoring
The application of one or more attributes to a parenthesized list of names in a DECLARE statement,
eliminating the repetition of identical attributes for multiple names.

field (in the data stream)
That portion of the data stream whose width, in number of characters, is defined by a single data or
spacing format item.

field (of a picture specification)
Any character-string picture specification or that portion (or all) of a numeric character picture
specification that describes a fixed-point number.

file
A named representation, within a program, of a data set or data sets. A file is associated with the data
set(s) for each opening.

file constant
A name declared with the FILE attribute but not the VARIABLE attribute.

file description attributes
Keywords that describe the individual characteristics of each file constant. See also alternative
attribute and additive attribute.

file expression
An expression whose evaluation yields a value of the type file.

file name
A name declared for a file.

file variable
A variable to which file constants can be assigned. It has the attributes FILE and VARIABLE and
cannot have any of the file description attributes.

fixed-point constant
See arithmetic constant.

650 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

fix-up
A solution, performed by the compiler after detecting an error during compilation, that allows the
compiled program to run.

floating-point constant
See arithmetic constant.

flow of control
Sequence of execution.

format
A specification used in edit-directed data transmission to describe the representation of a data item
in the stream (data format item) or the specific positioning of a data item within the stream (control
format item).

format constant
The label prefix on a FORMAT statement.

format data
A variable with the FORMAT attribute.

format label
The label prefix on a FORMAT statement.

format list
In stream-oriented transmission, a list specifying the format of the data item on the external medium.
Contrast with data list.

fully qualified name
A name that includes all the names in the hierarchical sequence above the member to which the
name refers, as well as the name of the member itself.

function (procedure)
A procedure that has a RETURNS option in the PROCEDURE statement. A name declared with the
RETURNS attribute. It is invoked by the appearance of one of its entry names in a function reference
and it returns a scalar value to the point of reference. Contrast with subroutine.

function reference
An entry constant or an entry variable, either of which must represent a function, followed by a
possibly empty argument list. Contrast with subroutine call.

G

generation (of a variable)
The allocation of a static variable, a particular allocation of a controlled or automatic variable, or the
storage indicated by a particular locator qualification of a based variable or by a defined variable or
parameter.

generic descriptor
A descriptor used in a GENERIC attribute.

generic key
A character string that identifies a class of keys. All keys that begin with the string are members of
that class. For example, the recorded keys 'ABCD', 'ABCE', and 'ABDF', are all members of the classes
identified by the generic keys 'A' and 'AB', and the first two are also members of the class 'ABC';
and the three recorded keys can be considered to be unique members of the classes 'ABCD', 'ABCE',
'ABDF', respectively.

generic name
The name of a family of entry names. A reference to the generic name is replaced by the entry name
whose parameter descriptors match the attributes of the arguments in the argument list at the point
of invocation.

group
A collection of statements contained within larger program units. A group is either a do-group or a
select-group and it can be used wherever a single statement can appear, except as an on-unit.

H

Glossary 651

hex
See hexadecimal digit.

hexadecimal
Pertaining to a numbering system with a base of sixteen; valid numbers use the digits 0 through 9 and
the characters A through F, where A represents 10 and F represents 15.

hexadecimal digit
One of the digits 0 through 9 and A through F. A through F represent the decimal values 10 through
15, respectively.

I

identifier
A string of characters, not contained in a comment or constant, and preceded and followed by
a delimiter. The first character of the identifier must be one of the 26 alphabetic characters
and extralingual characters, if any. The other characters, if any, can additionally include extended
alphabetic, digit, or the break character.

IEEE
Institute of Electrical and Electronics Engineers.

implicit
The action taken in the absence of an explicit specification.

implicit action
The action taken when an enabled condition is raised and no ON-unit is currently established for the
condition. Contrast with ON-statement action.

implicit declaration
A name not explicitly declared in a DECLARE statement or contextually declared.

implicit opening
The opening of a file as the result of an input or output statement other than the OPEN statement.

infix operator
An operator that appears between two operands.

inherited dimensions
For a structure, union, or element, those dimensions that are derived from the containing structures.
If the name is an element that is not an array, the dimensions consist entirely of its inherited
dimensions. If the name is an element that is an array, its dimensions consist of its inherited
dimensions plus its explicitly declared dimensions. A structure with one or more inherited dimensions
is called a nonconnected aggregate. Contrast with connected aggregate.

input⁄output
The transfer of data between auxiliary medium and main storage.

insertion point character
A picture specification character that is, on assignment of the associated data to a character string,
inserted in the indicated position. When used in a P-format item for input, the insertion character is
used for checking purposes.

integer
An optionally signed sequence of digits or a sequence of bits without a decimal or binary point. An
optionally signed whole number, commonly described as FIXED BINARY (p,0) or FIXED DECIMAL
(p,0).

integral boundary
A byte multiple address of any 8-bit unit on which data can be aligned. It usually is a halfword,
fullword, or doubleword (2-, 4-, or 8-byte multiple respectively) boundary.

interleaved array
An array that refers to nonconnected storage.

interleaved subscripts
Subscripts that exist in levels other than the lowest level of a subscripted qualified reference.

652 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

internal block
A block that is contained in another block.

internal name
A name that is known only within the block in which it is declared, and possibly within any contained
blocks.

internal procedure
A procedure that is contained in another block. Contrast with external procedure.

interrupt
The redirection of the program's flow of control as the result of raising a condition or attention.

invocation
The activation of a procedure.

invoke
To activate a procedure.

invoked procedure
A procedure that has been activated.

invoking block
A block that activates a procedure.

iteration factor
In an INITIAL attribute specification, an expression that specifies the number of consecutive
elements of an array that are to be initialized with the given value. In a format list, an expression that
specifies the number of times a given format item or list of format items is to be used in succession.

iterative do-group
A do-group whose DO statement specifies a control variable and⁄or a WHILE or UNTIL option.

K

key
Data that identifies a record within a direct-access data set. See source key and recorded key.

keyword
An identifier that has a specific meaning in PL/I when used in a defined context.

keyword statement
A simple statement that begins with a keyword, indicating the function of the statement.

known (applied to a name)
Recognized with its declared meaning. A name is known throughout its scope.

L

label
A name prefixed to a statement. A name on a PROCEDURE statement is called an entry constant; a
name on a FORMAT statement is called a format constant; a name on other kinds of statements is
called a label constant. A data item that has the LABEL attribute.

label constant
A name written as the label prefix of a statement (other than PROCEDURE, ENTRY, FORMAT, or
PACKAGE) so that, during execution, program control can be transferred to that statement through a
reference to its label prefix.

label data
A label constant or the value of a label variable.

label prefix
A label prefixed to a statement.

label variable
A variable declared with the LABEL attribute. Its value is a label constant in the program.

leading zeroes
Zeros that have no significance in an arithmetic value. All zeros to the left of the first nonzero in a
number.

Glossary 653

level number
A number that precedes a name in a DECLARE statement and specifies its relative position in the
hierarchy of structure names.

level-one variable
A major structure or union name. Any unsubscripted variable not contained within a structure or
union.

lexically
Relating to the left-to-right order of units.

library
An MVS partitioned data set or a CMS MACLIB that can be used to store other data sets called
members.

list-directed
The type of stream-oriented transmission in which data in the stream appears as constants separated
by blanks or commas and for which formatting is provided automatically.

locator
A control block that holds the address of a variable or its descriptor.

locator/descriptor
A locator followed by a descriptor. The locator holds the address of the variable, not the address of the
descriptor.

locator qualification
In a reference to a based variable, either a locator variable or function reference connected by an
arrow to the left of a based variable to specify the generation of the based variable to which the
reference refers. It might be an implicit reference.

locator value
A value that identifies or can be used to identify the storage address.

locator variable
A variable whose value identifies the location in main storage of a variable or a buffer. It has the
POINTER or OFFSET attribute.

locked record
A record in an EXCLUSIVE DIRECT UPDATE file that has been made available to one task only and
cannot be accessed by other tasks until the task using it relinquishes it.

logical level (of a structure or union member)
The depth indicated by a level number when all level numbers are in direct sequence (when the
increment between successive level numbers is one).

logical operators
The bit-string operators not and exclusive-or (¬), and (&), and or (|).

loop
A sequence of instructions that is executed iteratively.

lower bound
The lower limit of an array dimension.

M

main procedure
An external procedure whose PROCEDURE statement has the OPTIONS (MAIN) attribute. This
procedure is invoked automatically as the first step in the execution of a program.

major structure
A structure whose name is declared with level number 1.

member
A structure, union, or element name in a structure or union. Data sets in a library.

minor structure
A structure that is contained within another structure or union. The name of a minor structure is
declared with a level number greater than one and greater than its parent structure or union.

654 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

mode (of arithmetic data)
An attribute of arithmetic data. It is either real or complex.

multiple declaration
Two or more declarations of the same identifier internal to the same block without different
qualifications. Two or more external declarations of the same identifier.

multiprocessing
The use of a computing system with two or more processing units to execute two or more programs
simultaneously.

multiprogramming
The use of a computing system to execute more than one program concurrently, using a single
processing unit.

N

name
Any identifier that the user gives to a variable or to a constant. An identifier appearing in a context
where it is not a keyword. Sometimes called a user-defined name.

nesting
The occurrence of:

• A block within another block
• A group within another group
• An IF statement in a THEN clause or in an ELSE clause
• A function reference as an argument of a function reference
• A remote format item in the format list of a FORMAT statement
• A parameter descriptor list in another parameter descriptor list
• An attribute specification within a parenthesized name list for which one or more attributes are

being factored

nonconnected storage
Storage occupied by nonconnected data items. For example, interleaved arrays and structures with
inherited dimensions are in nonconnected storage.

null locator value
A special locator value that cannot identify any location in internal storage. It gives a positive
indication that a locator variable does not currently identify any generation of data.

null statement
A statement that contains only the semicolon symbol (;). It indicates that no action is to be taken.

null string
A character, graphic, or bit string with a length of zero.

numeric-character data
See decimal picture data.

numeric picture data
Picture data that has an arithmetic value as well as a character value. This type of picture data cannot
contain the characters 'A' or 'X.'

O

object
A collection of data referred to by a single name.

offset variable
A locator variable with the OFFSET attribute, whose value identifies a location in storage relative to
the beginning of an area.

ON-condition
An occurrence, within a PL/I program, that could cause a program interrupt. It can be the detection of
an unexpected error or of an occurrence that is expected, but at an unpredictable time.

Glossary 655

ON-statement action
The action explicitly established for a condition that is executed when the condition is raised. When
the ON-statement is encountered in the flow of control for the program, it executes, establishing
the action for the condition. The action executes when the condition is raised if the ON-unit is still
established or a RESIGNAL statement reestablishes it. Contrast with implicit action.

ON-unit
The specified action to be executed when the appropriate condition is raised.

opening (of a file)
The association of a file with a data set.

operand
The value of an identifier, constant, or an expression to which an operator is applied, possibly in
conjunction with another operand.

operational expression
An expression that consists of one or more operators.

operator
A symbol specifying an operation to be performed.

option
A specification in a statement that can be used to influence the execution or interpretation of the
statement.

P

package constant
The label prefix on a PACKAGE statement.

packed decimal
The internal representation of a fixed-point decimal data item.

padding
One or more characters, graphics, or bits concatenated to the right of a string to extend the string
to a required length. One or more bytes or bits inserted in a structure or union so that the following
element within the structure or union is aligned on the appropriate integral boundary.

parameter
A name in the parameter list following the PROCEDURE statement, specifying an argument that will be
passed when the procedure is invoked.

parameter descriptor
The set of attributes specified for a parameter in an ENTRY attribute specification.

parameter descriptor list
The list of all parameter descriptors in an ENTRY attribute specification.

parameter list
A parenthesized list of one or more parameters, separated by commas and following either the
keyword PROCEDURE in a procedure statement or the keyword ENTRY in an ENTRY statement. The
list corresponds to a list of arguments passed at invocation.

partially qualified name
A qualified name that is incomplete. It includes one or more, but not all, of the names in the
hierarchical sequence above the structure or union member to which the name refers, as well as
the name of the member itself.

picture data
Numeric data, character data, or a mix of both types, represented in character form.

picture specification
A data item that is described using the picture characters in a declaration with the PICTURE attribute
or in a P-format item.

picture specification character
Any of the characters that can be used in a picture specification.

656 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

PL/I character set
A set of characters that has been defined to represent program elements in PL/I.

PL/I prompter
Command processor program for the PLI command that checks the operands and allocates the data
sets required by the compiler.

point of invocation
The point in the invoking block at which the reference to the invoked procedure appears.

pointer
A type of variable that identifies a location in storage.

pointer value
A value that identifies the pointer type.

pointer variable
A locator variable with the POINTER attribute that contains a pointer value.

precision
The number of digits or bits contained in a fixed-point data item, or the minimum number of
significant digits (excluding the exponent) maintained for a floating-point data item.

prefix
A label or a parenthesized list of one or more condition names included at the beginning of a
statement.

prefix operator
An operator that precedes an operand and applies only to that operand. The prefix operators are plus
(+), minus (-), and not (¬).

preprocessor
A program that examines the source program before the compilation takes place.

preprocessor statement
A special statement appearing in the source program that specifies the actions to be performed by the
preprocessor. It is executed as it is encountered by the preprocessor.

primary entry point
The entry point identified by any of the names in the label list of the PROCEDURE statement.

priority
A value associated with a task, that specifies the precedence of the task relative to other tasks.

problem data
Coded arithmetic, bit, character, graphic, and picture data.

problem-state program
A program that operates in the problem state of the operating system. It does not contain input/
output instructions or other privileged instructions.

procedure
A collection of statements, delimited by PROCEDURE and END statements. A procedure is a program
or a part of a program, delimits the scope of names, and is activated by a reference to the procedure
or one of its entry names. See also external procedure and internal procedure.

procedure reference
An entry constant or variable. It can be followed by an argument list. It can appear in a CALL
statement or the CALL option, or as a function reference.

program
A set of one or more external procedures or packages. One of the external procedures must have the
OPTIONS(MAIN) specification in its procedure statement.

program control data
Area, locator, label, format, entry, and file data that is used to control the processing of a PL/I
program.

prologue
The processes that occur automatically on block activation.

Glossary 657

pseudovariable
Any of the built-in function names that can be used to specify a target variable. It is usually on the
left-hand side of an assignment statement.

Q

qualified name
A hierarchical sequence of names of structure or union members, connected by periods, used to
identify a name within a structure. Any of the names can be subscripted.

R

range (of a default specification)
A set of identifiers and/or parameter descriptors to which the attributes in a DEFAULT statement
apply.

record
The logical unit of transmission in a record-oriented input or output operation. A collection of one or
more related data items. The items usually have different data attributes and usually are described by
a structure or union declaration.

recorded key
A character string identifying a record in a direct-access data set where the character string itself is
also recorded as part of the data.

record-oriented data transmission
The transmission of data in the form of separate records. Contrast with stream data transmission.

recursive procedure
A procedure that can be called from within itself or from within another active procedure.

reentrant procedure
A procedure that can be activated by multiple tasks, threads, or processes simultaneously without
causing any interference between these tasks, threads, and processes.

REFER expression
The expression preceding the keyword REFER, which is used as the bound, length, or size when the
based variable containing a REFER option is allocated, either by an ALLOCATE or LOCATE statement.

REFER object
The variable in a REFER option that holds or will hold the current bound, length, or size for the
member. The REFER object must be a member of the same structure or union. It must not be
locator-qualified or subscripted, and it must precede the member with the REFER option.

reference
The appearance of a name, except in a context that causes explicit declaration.

relative virtual origin (RVO)
The actual origin of an array minus the virtual origin of an array.

remote format item
The letter R followed by the label (enclosed in parentheses) of a FORMAT statement. The format
statement is used by edit-directed data transmission statements to control the format of data being
transmitted.

repetition factor
A parenthesized unsigned integer constant that specifies:

1. The number of times the string constant that follows is to be repeated.
2. The number of times the picture character that follows is to be repeated.

repetitive specification
An element of a data list that specifies controlled iteration to transmit one or more data items,
generally used in conjunction with arrays.

restricted expression
An expression that can be evaluated by the compiler during compilation, resulting in a constant.
Operands of such an expression are constants, named constants, and restricted expressions.

658 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

returned value
The value returned by a function procedure.

RETURNS descriptor
A descriptor used in a RETURNS attribute, and in the RETURNS option of the PROCEDURE and ENTRY
statements.

S

scalar variable
A variable that is not a structure, union, or array.

scale
A system of mathematical notation whose representation of an arithmetic value is either fixed-point or
floating-point.

scale factor
A specification of the number of fractional digits in a fixed-point number.

scaling factor
See scale factor.

scope (of a condition prefix)
The portion of a program throughout which a particular condition prefix applies.

scope (of a declaration or name)
The portion of a program throughout which a particular name is known.

secondary entry point
An entry point identified by any of the names in the label list of an entry statement.

select-group
A sequence of statements delimited by SELECT and END statements.

selection clause
A WHEN or OTHERWISE clause of a select-group.

self-defining data
An aggregate that contains data items whose bounds, lengths, and sizes are determined at program
execution time and are stored in a member of the aggregate.

separator
See delimiter.

shift
Change of data in storage to the left or to the right of original position.

shift-in
Symbol used to signal the compiler at the end of a double-byte string.

shift-out
Symbol used to signal the compiler at the beginning of a double-byte string.

sign and currency symbol characters
The picture specification characters. S, +, -, and $ (or other national currency symbols enclosed in <
and >).

simple parameter
A parameter for which no storage class attribute is specified. It can represent an argument of any
storage class, but only the current generation of a controlled argument.

simple statement
A statement other than IF, ON, WHEN, and OTHERWISE.

source
Data item to be converted for problem data.

source key
A key referred to in a record-oriented transmission statement that identifies a particular record within
a direct-access data set.

Glossary 659

source program
A program that serves as input to the source program processors and the compiler.

source variable
A variable whose value participates in some other operation, but is not modified by the operation.
Contrast with target variable.

spill file
Data set named SYSUT1 that is used as a temporary workfile.

standard default
The alternative attribute or option assumed when none has been specified and there is no applicable
DEFAULT statement.

standard file
A file assumed by PL/I in the absence of a FILE or STRING option in a GET or PUT statement. SYSIN is
the standard input file and SYSPRINT is the standard output file.

standard system action
Action specified by the language to be taken for an enabled condition in the absence of an ON-unit for
that condition.

statement
A PL/I statement, composed of keywords, delimiters, identifiers, operators, and constants, and
terminated by a semicolon (;). Optionally, it can have a condition prefix list and a list of labels. See also
keyword statement, assignment statement, and null statement.

statement body
A statement body can be either a simple or a compound statement.

statement label
See label constant.

static storage allocation
The allocation of storage for static variables.

static variable
A variable that is allocated before execution of the program begins and that remains allocated for the
duration of execution.

stream-oriented data transmission
The transmission of data in which the data is treated as though it were a continuous stream of
individual data values in character form. Contrast with record-oriented data transmission.

string
A contiguous sequence of characters, graphics, or bits that is treated as a single data item.

string variable
A variable declared with the BIT, CHARACTER, or GRAPHIC attribute, whose values can be either bit,
character, or graphic strings.

structure
A collection of data items that need not have identical attributes. Contrast with array.

structure expression
An expression whose evaluation yields a structure set of values.

structure of arrays
A structure that has the dimension attribute.

structure member
See member.

structuring
The hierarchy of a structure, in terms of the number of members, the order in which they appear, their
attributes, and their logical level.

subroutine
A procedure that has no RETURNS option in the PROCEDURE statement. Contrast with function.

660 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

subroutine call
An entry reference that must represent a subroutine, followed by an optional argument list that
appears in a CALL statement. Contrast with function reference.

subscript
An element expression that specifies a position within a dimension of an array. If the subscript is an
asterisk, it specifies all of the elements of the dimension.

subscript list
A parenthesized list of one or more subscripts, one for each dimension of the array, which together
uniquely identify either a single element or cross section of the array.

subtask
A task that is attached by the given task or any of the tasks in a direct line from the given task to the
last attached task.

synchronous
A single flow of control for serial execution of a program.

T

target
Attributes to which a data item (source) is converted.

target reference
A reference that designates a receiving variable (or a portion of a receiving variable).

target variable
A variable to which a value is assigned.

task
The execution of one or more procedures by a single flow of control.

task name
An identifier used to refer to a task variable.

task variable
A variable with the TASK attribute whose value gives the relative priority of a task.

termination (of a block)
Cessation of execution of a block, and the return of control to the activating block by means of a
RETURN or END statement, or the transfer of control to the activating block or to some other active
block by means of a GO TO statement.

termination (of a task)
Cessation of the flow of control for a task.

truncation
The removal of one or more digits, characters, graphics, or bits from one end of an item of data when a
string length or precision of a target variable has been exceeded.

type
The set of data attributes and storage attributes that apply to a generation, a value, or an item of data.

U

undefined
Indicates something that a user must not do. Use of a undefined feature is likely to produce different
results on different implementations of a PL/I product. In that case, the application program is in
error.

union
A collection of data elements that overlay each other, occupying the same storage. The members can
be structures, unions, elementary variables, or arrays. They need not have identical attributes.

union of arrays
A union that has the DIMENSION attribute.

upper bound
The upper limit of an array dimension.

Glossary 661

V

value reference
A reference used to obtain the value of an item of data.

variable
A named entity used to refer to data and to which values can be assigned. Its attributes remain
constant, but it can refer to different values at different times.

variable reference
A reference that designates all or part of a variable.

virtual origin (VO)
The location where the element of the array whose subscripts are all zero are held. If such an element
does not appear in the array, the virtual origin is where it would be held.

Z

zero-suppression characters
The picture specification characters Z and *, which are used to suppress zeros in the corresponding
digit positions and replace them with blanks or asterisks respectively.

662 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

Index

Special Characters
_ (underscore, break), ASCII and EBCDIC values 3
- (subtraction)

ASCII and EBCDIC values 3
using as an operator 7
using in arithmetic operations 56

-= (subtract and assign), creating composite symbols 4
–> (locator)

locator qualification 247
using as a delimiter 6

–> (locator), creating composite symbols 4
, (separator)

ASCII and EBCDIC values 3
using as a delimiter 6

; (statement terminator)
ASCII and EBCDIC values 3
using as a delimiter 6

: (prefix, dimension, and range delimiter)
ASCII and EBCDIC values 3
using 6

? (macro trigger character)
ASCII and EBCDIC values 3

. (name qualifier, decimal point)
ASCII and EBCDIC values 3
using as a delimiter 6

' quote
double 3

’ ’ (enclose constants)
ASCII and EBCDIC values 3

" double quote
ASCII and EBCDIC values 3

() (enclose symbols)
ASCII and EBCDIC values 3
using as delimiters 6

* (multiplication)
ASCII and EBCDIC values 3
using as an operator 7
using in arithmetic operations 56

* zero suppression picture character 331
** (exponentiation)

creating composite symbols 4
using as an operator 7
using in arithmetic operations 56

**= (exponentiate and assign), creating composite symbols 4
*/ (end of a comment), creating composite symbols 4
*= (multiply and assign), creating composite symbols 4
*PROCESS directive 229
*PROCINC directive 230
/ (division)

ASCII and EBCDIC values 3
using as an operator 7
using in arithmetic operations 56

/ (insertion character) 332
/* (start of a comment), creating composite symbols 4
/* */ (comment)

syntax 7

/* */ (comment) (continued)
using as a delimiter 6

/= (divide and assign), creating composite symbols 4
& (and symbol)

ASCII and EBCDIC values 3
using as an operator 7

& (bit operator: AND) 64
&= (and and assign), creating composite symbols 4
% (for %statements)

ASCII and EBCDIC values 3
using as a delimiter 6

%ACTIVATE statement 614
%assignment statement 615
%CALL statement 603
%DEACTIVATE statement 615
%DECLARE statement 615
%directives

%INCLUDE 225
%LINE 226
%NOPRINT 227
%NOTE 227
%PAGE 228
%POP 228
%PRINT 229
%PROCESS 229
%PROCINC 229
%PUSH 230
%SKIP 234

%DO statement 617
%END statement 618
%GO TO statement 618
%IF statement 618
%INCLUDE directive 225
%INCLUDE statement 619
%INSCAN statement 620
%ITERATE statement 620
%LEAVE statement 620
%LINE directive 226
%NOPRINT directive 227
%NOTE directive 227
%NOTE statement 621
%null statement 621
%PAGE directive 228
%POP directive 228
%PRINT directive 229
%PROCEDURE statement 600
%PROCESS directive 229
%PROCINC directive 229
%PUSH directive 230
%REPLACE statement 622
%SELECT statement 622
%SKIP directive 234
%XINCLUDE statement 622
%XINSCAN statement 623
+ (addition)

ASCII and EBCDIC values 3
using as an operator 7

Index 663

+ (addition) (continued)
using in arithmetic operations 56

+ (picture character) 335
+= (add and assign), creating composite symbols 4
< (less than symbol)

ASCII and EBCDIC values 3
using as an operator 7
using in comparison operations 65

<= (less than or equal to symbol)
using as an operator 7
using in comparison operations 65

= (equal to symbol)
ASCII and EBCDIC values 3
using as a delimiter 6
using as an operator 7
using in comparison operations 65

> (greater than symbol)
ASCII and EBCDIC values 3
using as an operator 7

>= (greater than or equal to symbol) 4
¬ (bit operator: NOT, XOR) 64
¬ (logical NOT EOR symbol)

ASCII and EBCDIC values 3
using as an operator 7

¬ (not symbol)
ASCII and EBCDIC values 3

¬< (not less than symbol)
description 4
using as an operator 7
using in comparison operations 65

¬= (not equal to symbol)
using as an operator 7

¬= or <> (not equal to symbol)
description 4
using in comparison operations 65

¬> (not greater than symbol)
description 4
using as an operator 7
using in comparison operations 65

| (bit operator:OR) 64
| (logical OR symbol)

ASCII and EBCDIC values 3
using as an operator 7

|= (or and assign), creating composite symbols 4
|| (concatenation)

creating composite symbols 4
using as an operator 7
using in concatenation operations 67

||= (concatenate and assign), creating composite symbols 4
$ (picture character) 335

Numerics
9 picture specification character

for character data 328
using 329

A
A (ASCII) character constant

character constant 34
A picture specification character 327
A-format item 317

ABNORMAL attribute 260
abnormal termination

procedure 100
program 90

ABS built-in function 401
accuracy of mathematical built-in functions 377
ACOS built-in function 402
activation

begin-block 112
block 91
procedure 99
program 90

ADD built-in function 402
additive attributes

definition 277
ENVIRONMENT 282
KEYED 282

ADDR built-in function 402
ADDRDATA built-in function 403
adjustable extents 243
aggregate arguments 376
aggregates, assignments 203
algebraic comparison operations 66
aliases

DEFINE ALIAS statement 137
defining 137

ALIGNED attribute
description 160
example 166
storage alignment requirements 161

alignment attributes for data 160
ALL built-in function 403
ALLCOMPARE built-in function 403
ALLOC (ALLOCATE) statement 240
ALLOC31

built-in function
syntax 404

ALLOCATE (ALLOC)
built-in function

based area variables 245
based variables 245, 249
syntax 404

statement 240
allocation 237
ALLOCATION (ALLOCN) built-in function 405
ALLOCNEXT built-in function 405
ALLOCSIZE built-in function 405
alphabetic characters 1
alphanumeric characters 2
alternative attributes

BUFFERED and UNBUFFERED 282
definition 277
INPUT, OUTPUT, and UPDATE 281
RECORD and STREAM 280
SEQUENTIAL and DIRECT 281

AMODE31 or AMODE64 option 129
ANSWER statement

using in a preprocessor procedure 601
answer text 601
ANY built-in function 406
ANYCONDITION condition 349
application 89
area

ALLOCATE statement with IN option 250

664 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

area (continued)
assignment 257
attributes 21
data 253
EMPTY built-in function 433
input/output of 258
transmission of variables 290

AREA
attribute 253
condition 350

arguments
dummy

deriving attributes 110
description 110
rules 110

passing
to procedures 108
to the main procedure 111

specifying 129, 376
arithmetic built-in functions

ABS 401
CEIL 418
COMPLEX 424
CONJG 425
FLOOR 442
IMAG 455
MAX 480
MAXVAL 482
MIN 493
MINVAL 495
MOD 495
RANDOM 531
REAL 532
REM 534
ROUND 537
ROUNDAWAYFROMZERO 539
ROUNDTOEVEN 540
SIGN 550
summary 377
TRUNC 562

arithmetic character data
conversion to PICTURE data 83
inserting editing characters 40
using 40

arithmetic data
coded 16
numeric picture 16

arithmetic operations
data conversion 57
description 56
results

discussion 57
FLOAT operands 58
special cases 63
under RULES(ANS) 60

arithmetic operators
description 56
using 7

arithmetic picture specification
description 32
using 40

array argument with parameters 98
array expression

definition 52

array expression (continued)
description 70
example 52

array variable 172
array-handling built-in functions

ALL 403
ANY 406
DIMENSION 431
HBOUND 447
HBOUNDACROSS 448
INARRAY 456
LBOUND 473
LBOUNDACROSS 473
POLY 526
PROD 528
QUICKSORT 529
QUICKSORTX 529
SUM 558
summary 378

arrays
array-and-array operations 72
array-and-element operations 71
assignment 202, 204
attributes 21
bounds 173
cross sections 176
definition 172
DIMENSION attribute 173, 174
example 174
expression

description 52, 70
example 53

extent 173
infix operators and 71
of structures and unions 185
prefix operators and 71
subscripts 175
targets 202
variable 172

ASIN built-in function 406
ASM (ASSEMBLER) option 129
ASSEMBLER (ASM) option 129
ASSERT statement 195
ASSERTION

condition 351
ASSERTION condition prefix 342, 343
ASSIGNABLE attribute 259
assignment statements

BY DIMACROSS option 200
BY NAME option 200
definition 10
description 199
requirements for target variables 201

assignments
aggregate 203
area 257
array

assigning aggregates 204
target variables for 202

compound 201
element 203
expression values 206
multiple 205
structure 202, 203

Index 665

assignments (continued)
using BY DIMACROSS for structure assignment 206
using BY NAME for structure assignment 206

association of arguments and parameters 108
asterisk

as an identifier 6
description 331
using as a subscript 176
using in arithmetic operations 56

ATAN built-in function 406
ATAND built-in function 407
ATANH built-in function 407
ATTACH statement 370
ATTENTION (ATTN) condition

description 351
multithreading 372

attributes
ABNORMAL 260
ALIGNED

description 160
example 166
storage alignment requirements 161

AREA 21
array data 21
ASSIGNABLE 259
AUTOMATIC 239
BASED 243
BIGENDIAN 260
BINARY 23
BIT 29
BUFFERED 282
BUILTIN

using 106, 375
BYADDR 129
BYVALUE 129
CHARACTER

description 29
classification according to data types 18
coded arithmetic 19, 21
COMPLEX 24
computational data 16
CONDITION 347
CONNECTED 262
CONTROLLED 239
data

description 16
list 17

DATE 41
DECIMAL 23
defaults for data 167
DEFINED 263
DIMACROSS 174
DIMENSION 173
DIRECT 281
discussion 16
ENTRY 114
ENVIRONMENT 282
EXTERNAL

description 154
using 103

FILE 277
file data 20, 21
for parameters 97
FORCE 158

attributes (continued)
FORMAT

classification by variable type 21
description 45

GENERIC 121
GRAPHIC 29
HANDLE 141
HEXADEC 261
IEEE 261
INDFOR 182
INITIAL 267
INPUT 281
INTERNAL 154
JSONNAME 185
JSONOMIT 185
JSONTRIMR 185
KEYED 282
LABEL 44
label data 20, 21
LIKE 180
LIMITED 120
LIST 118
LITTLEENDIAN 260
LOCATES 255
locator data 21
merging 285
named coded arithmetic 19
named string data 19
NOINIT 183
NONASSIGNABLE 259
NONCONNECTED 262
nondata 18
NONVARYING 31
NORMAL 260
NULLINIT 183
OFFSET 254
OPTIONAL 117
OPTIONS 125
ORDINAL 143
ordinal data 21
OUTPUT 281
PARAMETER 97
PICTURE 32
POINTER 249
POSITION 263
PRECISION 23
PRINT 314
program-control data 17
REAL 24
RECORD 280
RECURSIVE 101
RESERVED 158
RETURNS 134
SEQUENTIAL 281
SIGNED

data storage requirements 25
description 24

STATIC 238
STREAM 280
string data 19, 21
structure data 22
SUPPRESS 159
TASK 372
task data 21

666 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

attributes (continued)
TYPE 142
UNALIGNED

description 160
example 166
storage alignment requirements 161

UNBUFFERED 282
UNION 178
union data 22
UNSIGNED

data storage requirements 25
description 24

UPDATE 281
VALUE 46
VALUELIST 48
VALUELISTFROM 48
VALUERANGE 49
VARIABLE 46
VARYING 31
VARYING4 31
VARYINGZ 31
WIDECHAR

description 29
WIDEPIC 32
XMLATTR 184
XMLCONTENT 184
XMLNAME 184
XMLOMIT 184

AUTO (AUTOMATIC) attribute 239
AUTOMATIC (AUTO) built-in function 407
AUTOMATIC built-in function

for based area variables 245
for based variables 245, 249

automatic storage
description 237
syntax for AUTOMATIC attribute 239

automatic variables, effect of recursion 101
AUTOMATIC, (AUTO) attribute 239
AVAILABLEAREA built-in function

for area variables 257
syntax 407

B
B (insertion character) 332
B-format item 317
B3 (bit hex) bit string constant 36
B4 (bit hex) bit string constant 36
BASE64DECODE built-in function

syntax 408
BASE64DECODE16 built-in function

syntax 409
BASE64DECODE8 built-in function

syntax 408
BASE64ENCODE built-in function

syntax 409
BASE64ENCODE16 built-in function

syntax 411
BASE64ENCODE8 built-in function

syntax 410
BASED attribute 243
based storage

built-in functions 245
description 237

based storage (continued)
syntax for BASED attribute 243

based variables
ALLOCATE statement 250
built-in functions 245
description 243, 249
FREE statement 251
input/output of lists 258

BEGIN statement
description 112
valid OPTIONS options for 125

begin-blocks
activation 112
description 112
example 112
termination 112

BETWEEN built-in function 412
BETWEENEXCLUSIVE built-in function 412
BETWEENLEFTEXCLUSIVE built-in function 413
BETWEENRIGHTEXCLUSIVE built-in function 413
BIGENDIAN attribute 260
BINARY (BIN) attribute 23
BINARY (BIN) built-in function 413
binary digit 3
binary fixed-point constant 26
binary fixed-point data

conversion 81
description 25

binary floating-point constant 27
binary floating-point data

conversion 82
description 27

BINARYVALUE (BINVALUE) built-in function 414
BINARYVALUE built-in function

for ordinals 146
using with pointer expressions 56

BIND type function 590
BINSEARCH (BIN) built-in function 414
BINSEARCHX (BIN) built-in function 415
bit

constant 35
conversion

description 77
rules 85

data 35
operators

description 7
using in bit operations 64

BIT attribute 29
BIT built-in function 416
bit data

repetition factor 35
bit format item 317
bit operations

examples 64
using 64

bit strings, transmission of unaligned 289
BITLOCATION (BITLOC) built-in function 416
blanks

description 7
using as a delimiter 6

blocks
activation 91
begin 112

Index 667

blocks (continued)
description 90
packages 91
procedures 94
termination 91
types 90

BOOL built-in function 416
Boolean operators 64
bounds

controlled parameter 97
simple parameter 97

break (_) character 16
BUF (BUFFERED) attribute 282
buffer-management built-in functions

BASE64DECODE 408
BASE64DECODE16 409
BASE64DECODE8 408
BASE64ENCODE 409
BASE64ENCODE16 411
BASE64ENCODE8 410
CHECKSUM 422
COMPARE 423
EBCDIC 409, 451
HEXDECODE 450
HEXDECODE8 451
HEXENCODE 451
HEXENCODE8 452
HEXIMAGE 452
HEXIMAGE8 453
MEMCONVERT 484
MEMCU12 484
MEMCU14 485
MEMCU21 485
MEMCU24 485
MEMCU41 486
MEMCU42 486
MEMINDEX 487
MEMREPLACE 488
MEMSEARCH 489
MEMSEARCHR 489
MEMVERIFY 491
MEMVERIFYR 492
PICSPEC 511
PLITRAN11 522
PLITRAN12 523
PLITRAN21 524
PLITRAN22 524
WSCOLLAPSE 580
WSCOLLAPSE16 581
WSREPLACE 581
WSREPLACE16 582
XMLCHAR 582
XMLSCRUB16 584
XMLUCHAR 585

Buffer-management built-in functions
MEMCOLLAPSE 483
MEMSQUEEZE 490

BUFFERED (BUF) attribute 282
built-in functions

ABS 401
accuracy of mathematical functions in 377
ACOS 402
ADD 402
ADDR 402

built-in functions (continued)
ADDRDATA 403
aggregate arguments 376
ALL 403
ALLCOMPARE 403
ALLOC31 404
ALLOCATE (ALLOC) 404
ALLOCATION (ALLOCN) 405
ALLOCNEXT 405
ALLOCSIZE 405
ANY 406
area variables 257
arithmetic, summary 377
array-handling, summary 378
ASIN 406
ATAN 406
ATAND 407
ATANH 407
AUTOMATIC (AUTO) 407
AVAILABLEAREA 407
BASE64DECODE 408
BASE64DECODE16 409
BASE64DECODE8 408
BASE64ENCODE 409
BASE64ENCODE16 411
BASE64ENCODE8 410
based variables 249
BETWEEN 412
BETWEENEXCLUSIVE 412
BETWEENLEFTEXCLUSIVE 413
BETWEENRIGHTEXCLUSIVE 413
BINARY

converting data 76
BINARY (BIN) 413
BINARYVALUE

using with ordinals 146
using with pointer expressions 56

BINARYVALUE (BINVALUE) 414
BINSEARCH (BIN) 414
BINSEARCHX (BIN) 415
BIT

converting data 76
BITLOCATION (BITLOC) 416
BOOL 416
BYTE 417
BYTELENGTH 417
categories of 377
CDS 418
CEIL 418
CENTERLEFT (CENTER) 418
CENTERRIGHT 419
CHAR 76
CHARACTER (CHAR) 420
CHARGRAPHIC (CHARG) 421
CHARVAL 422
CHECKSTG 422
CHECKSUM 422
CODEPAGE 422
COLLAPSE 423
COLLATE 423
COMPARE 423
COMPLEX (CPLX) 424
condition-handling, summary 381
CONJG 425

668 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

built-in functions (continued)
controlled variables

converting data 76
COPY 425
COS 425
COSD 425
COSH 426
COUNT 426
CS 426
CURRENTSIZE (CSTG) 427
CURRENTSTORAGE 428
DATAFIELD 428
DATE 428
date/time, summary 382
DATETIME 429
DAYS 429
DAYSTODATE 430
DAYSTOMICROSECS 430
DAYSTOSECS 431
DECIMAL

converting data 76
DECIMAL (DEC) 431
declaring 375
definition 108
DIMENSION (DIM) 431
DIVIDE 432
EDIT 432
EMPTY 433
encoding and hashing, summary 385
ENDFILE 433
ENTRYADDR 433
EPSILON 434
ERF 434
ERFC 434
EXP 434
EXPONENT 435
FILEDDINT 435
FILEDDTEST 435
FILEDDWORD 436
FILEID 437
FILENEW 437
FILEOPEN 437
FILEREAD 438
FILESEEK 438
FILETELL 438
FILEWRITE 439
FIXED

converting data 76
FIXEDBIN 439
FIXEDDEC 440
FLOAT

converting data 76
FLOATBIN 441
FLOATDEC 442
floating-point inquiry, summary 387
floating-point manipulation, summary 388
FLOOR 442
FOLDEDFULLMATCH 443
FOLDEDSIMPLEMATCH 443
for preprocessor 603
GAMMA 443
GETENV 444
GETJCLSYMBOL 444
GETSYSINT 444

built-in functions (continued)
GETSYSWORD 444
GRAPHIC

converting data 76
GTCA 447
HANDLE 447
HBOUND 447
HBOUNDACROSS 448
HEX 448, 565
HEX8 449
HEXDECODE 450
HEXDECODE8 451
HEXENCODE 451
HEXENCODE8 452
HEXIMAGE 452
HEXIMAGE8 453
HIGH 453
HUGE 453
IAND 454
ICLZ 454
IEOR 454
IFTHENELSE 455
IMAG

converting data 76
INARRAY 456
INDEX 456
INDEXR 457
INDICATORS 457
initiating data conversion 76
INLIST 457
INOT 458
input/output, summary 388
integer manipulation, summary 389
invoking 376
IOR 458
IRLL 458, 459
ISFINITE 459
ISIGNED 459
ISINF 460
ISJCLSYMBOL 460
ISLL 460
ISMAIN 461
ISNAN 461
ISNORMAL 461
ISRL 461
ISZERO 462
IUNSIGNED 462
JSON, summary 389
JSONGETARRAYEND 462
JSONGETARRAYSTART 463
JSONGETCOLON 463
JSONGETCOMMA 463
JSONGETMEMBER 464
JSONGETOBJECTEND 466
JSONGETOBJECTSTART 466
JSONGETVALUE 466
JSONPUTARRAYEND 468
JSONPUTARRAYSTART 469
JSONPUTCOLON 469
JSONPUTCOMMA 469
JSONPUTMEMBER 469
JSONPUTOBJECTEND 471
JSONPUTOBJECTSTART 471
JSONPUTVALUE 471

Index 669

built-in functions (continued)
JSONVALID 472
JULIANTOSMF 473
LBOUND 473
LBOUNDACROSS 473
LEFT 473
LENGTH 474
LINENO 474
LOCATION (LOC) 474
LOCSTG 476
LOCVAL 477
LOG 477
LOG10 478
LOG2 478
LOGGAMMA 478
LOW 478
LOWER2 479
LOWERASCII 478
LOWERCASE 479
LOWERLATIN1 479
mathematical, summary 390
MAX 480
MAXDATE 481
MAXEXP 481
MAXLENGTH 482
MAXVAL 482
MEMCOLLAPSE 483
MEMCONVERT 484
MEMCU12 484
MEMCU14 485
MEMCU21 485
MEMCU24 485
MEMCU41 486
MEMCU42 486
MEMINDEX 487
MEMREPLACE 488
MEMSEARCH 489
MEMSEARCHR 489
MEMSQUEEZE 490
MEMVERIFY 491
MEMVERIFYR 492
MICROSECS 492
MICROSECSTODATE 493
MICROSECSTODAYS 493
MIN 493
MINDATE 494
MINEXP 494
MINVAL 495
MOD 495
MPSTR 496
MULTIPLY 497
NULL 497
null arguments and 377
NULLENTRY 498
NULLSTRPTR, DEFAULT

using with pointer expressions 56
OFFSET 498
OFFSETADD 498
OFFSETDIFF 498
OFFSETSUBTRACT 499
OFFSETVALUE 499
OMITTED 499
ONACTUAL 499
ONAREA 499

built-in functions (continued)
ONCHAR 500
ONCODE 500
ONCONDCOND 501
ONCONDID 501
ONCOUNT 501
ONEXPECTED 502
ONFILE 502
ONGSOURCE 502
ONHBOUND 503
ONJSONNAME 503
ONKEY 503
ONLBOUND 504
ONLINE 504
ONLOC 504
ONOFFSET 505
ONOPERATOR 505
ONPACKAGE 505
ONPROCEDURE 505
ONSOURCE 506
ONSUBCODE 506
ONSUBCODE2 507
ONSUBSCRIPT 507
ONTEXT 507
ONUCHAR 507
ONUSOURCE 508
ONWCHAR 508
ONWSOURCE 509
ordinal-handling, summary 393
ORDINALNAME 509
ORDINALPRED 510
ordinals 146
ORDINALSUCC 510
PACKAGENAME 510
PAGENO 510
PICSPEC 511
PLACES 511
PLIRETV 517
PLISTCK 520
PLISTCKE 520
PLISTCKELOCAL 520
PLISTCKEUTC 521
PLISTCKF 521
PLISTCKLOCAL 521
PLISTCKP 521
PLISTCKPLOCAL 522
PLISTCKPUTC 522
PLISTCKUTC 522
PLITRAN11 522
PLITRAN12 523
PLITRAN21 524
PLITRAN22 524
POINTER (PTR) 524
POINTERADD

using with pointer operations 55
POINTERADD (PTRADD) 525
POINTERDIFF (PTRDIFF) 525
POINTERSUBTRACT (PTRSUBTRACT) 526
POINTERVALUE

using 56
POINTERVALUE (PTRVALUE) 526
POLY 526
POPCNT 527
PRECISION

670 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

built-in functions (continued)
PRECISION (continued)

converting data 76
evaluating results 63

PRECISION (PREC) 527
precision-handling, summary 393, 394
PRECVAL 527
PRED 528
preprocessor 603
PRESENT 528
PROCEDURENAME (PROCNAME) 528
PROD 528
PUTENV 529
QUICKSORT 529
QUICKSORTX 529
RADIX 530
RAISE2 530
RANDOM 531
RANK 531
REAL

converting data 76
REGEX 532
REM 534
REPATTERN 534
REPEAT 535
REPLACE 535
REVERSE 537
RIGHT 537
ROUND 537
ROUNDDEC 539
ROUNDTOEVEN 540
SAMEKEY 540
SCALE 540
SCALEVAL 541
SCRUBOUT 541
SEARCH 542
SEARCHR 543
SECS 543
SECSTODATE 544
SECSTODAYS 545
SHA1DIGEST 545
SHA1FINAL 545
SHA1INIT 546
SHA1UPDATE 546
SHA2DIGEST224 546
SHA2DIGEST256 546
SHA2DIGEST384 546
SHA2DIGEST512 546
SHA2FINAL224 547
SHA2FINAL256 547
SHA2FINAL384 547
SHA2FINAL512 547
SHA2INIT224 547
SHA2INIT256 547
SHA2INIT384 547
SHA2INIT512 547
SHA2UPDATE224 548
SHA2UPDATE256 548
SHA2UPDATE384 548
SHA2UPDATE512 548
SHA3DIGEST224 548
SHA3DIGEST256 548
SHA3DIGEST384 548
SHA3DIGEST512 548

built-in functions (continued)
SHA3FINAL224 548
SHA3FINAL256 548
SHA3FINAL384 548
SHA3FINAL512 548
SHA3INIT224 549
SHA3INIT256 549
SHA3INIT384 549
SHA3INIT512 549
SHA3UPDATE224 549
SHA3UPDATE256 549
SHA3UPDATE384 549
SHA3UPDATE512 549
SIGN 550
SIGNED

converting data 76
SIN 550
SIND 550
SINH 551
SIZE 551
SMFTOJULIAN 552
SOURCEFILE 552
SOURCELINE 552
SQRT 552
SQRTF 553
SQUEEZE 553
STACKADDR 553
STCKETODATE 554
STCKTODATE 554
STORAGE 554
storage control, summary 395
STRING 554
string-handling, summary 397
SUBSTR 556
SUBTO 557
SUBTRACT 558
SUCC 558
SUM 558
SYSNULL 558
SYSTEM 559
TALLY 559
TAN 559
TAND 559
TANH 560
THREADID 560
TIME 560
TIMESTAMP 560
TINY 560
TRANSLATE 561
TRIM 561
TRUNC 562
TYPE 562
UHIGH 563
ULENGTH 563
ULENGTH16 564
ULENGTH8 563
ULOW 564
UNALLOCATED 564
UNSIGNED

converting data 76
UNSPEC 565
UPOS 568
UPPERASCII 568
UPPERCASE 568

Index 671

built-in functions (continued)
UPPERLATIN1 569
USUBSTR 569
USUPPLEMENTARY 570
UTCDATETIME 570
UTCMICROSECS 571
UTCSECS 571
UTF8 571
UTF8STG 572
UTF8TOCHAR 572
UTF8TOWCHAR 572
UUID 572
UUID4 573
UVALID 573
UWIDTH 574
VALID 575
VALIDDATE 575
VALIDVALUE 576
VARGLIST 576
VARGSIZE 576
VERIFY 577
VERIFYR 578
WCHARVAL 578
WEEKDAY 579
WHEREDIFF 579
WHIGH 579
WHITESPACECOLLAPSE 581
WHITESPACEREPLACE 582
WIDECHAR

converting data 76
WIDECHAR (WCHAR) 580
WLOW 580
WSCOLLAPSE 580
WSCOLLAPSE16 581
WSREPLACE 581
WSREPLACE16 582
XMLCHAR 582
XMLCLEAN 584
XMLSCRUB16 584
XMLUCHAR 585
Y4DATE 585
Y4JULIAN 586
Y4YEAR 587

built-in functions, miscellaneous
summary 391

built-in names
using with built-in functions 108
using with subroutines 106

built-in pseudovariables, summary 394
built-in subroutines

declaring 375
definition 106
invoking 376
LOCNEWSPACE 475
LOCNEWVALUE 476
PLIASCII 512
PLIATTN 512
PLICANC 512
PLICKPT 513
PLIDELETE 513
PLIDUMP 513
PLIEBCDIC 513
PLIFILL 513
PLIFREE 514

built-in subroutines (continued)
PLIMOVE 514
PLIOVER 515
PLIPARSE 515
PLIREST 517
PLIRETC 517
PLISAXA 517
PLISAXB 518
PLISAXC 518
PLISAXD 519
PLISRTA 519
PLISRTB 519
PLISRTC 520
PLISRTD 520
summary 399

BUILTIN attribute
declaring names for built-in functions 106

BX (bit hex) bit string constant 36
BY DIMACROSS option of assignment statement

description 200
when specified in structure assignment 205

BY NAME option of assignment statement
description 200
when not specified in structure assignment 204
when specified in structure assignment 204

BY option of DO statement 211
BYADDR attribute 129
BYADDR option 129
BYTE built-in function 417
byte, definition 160
BYTELENGTH built-in function 417
BYVALUE attribute 129
BYVALUE option 129

C
C-format item 318
CALL option on INITIAL attribute 270
CALL statement 123
calling conventions

OPTLINK 132
SYSTEM 132

canceling
thread 371

case sensitivity 5
CAST type function 590
CDS built-in function 418
CEIL built-in function 418
CELL, synonym for 178
CENTERLEFT (CENTER) built-in function 418
CENTERRIGHT built-in function 419
CHARACTER (CHAR) attribute

description 29
CHARACTER (CHAR) built-in function 420
character sets

discussion 1
double-byte

identifier 11
statement element 12

single-byte
delimiters and operators 6
identifier in DBCS form 11
identifiers 5
statement elements for 5

672 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

character string constant 34
characters

alphabetic 1
alphanumeric 2
character data

conversion 77, 84
description 33
picture specifiers 327

constant 33
extralingual 2
format items 317
insertion 332
picture specification 32
sets

double-byte 11
single-byte 1

special 3
using in comparison operations 66
zero suppression 331

CHARGRAPHIC (CHARG) built-in function 421
CHARGRAPHIC option 130
CHARVAL built-in function 422
CHECKSTG built-in function 422
CHECKSUM built-in function 422
CLOSE statement 286
CMPAT option 131
COBOL option 131
coded arithmetic data

attributes
abbreviations 23
types 19, 21

BINARY and DECIMAL attributes 23
binary fixed-point data 25
binary floating-point 27
conversion target 80
decimal fixed-point 26
decimal floating-point 28
FIXED and FLOAT attribute 23
PRECISION attribute 23
REAL and COMPLEX attributes 24
syntax 22

CODEPAGE built-in function 422
COLLAPSE built-in function 423
COLLATE built-in function 423
COLLATE macro facility built-in function 604
colon symbol 6
COLUMN format item 318
COLUMN keyword

on ANSWER preprocessor statement 602
combinations of operations 68
combining arrays, structures, and unions 185
comma 6
COMMENT macro facility built-in function 604
comments

description 7
COMPARE built-in function 423
comparison operations

algebraic 66
bit 66
characters 66
conversion of operands 66
description 65
example 67
graphic 66

comparison operations (continued)
ordinal data 66
pointer and offset data 66
program-control data 66
uchar 66
widechar 66

comparison operators 7
compilation unit 89
COMPILEDATE macro facility built-in function 604
COMPILETIME macro facility built-in function 605
complex

data item 24
format item 318

COMPLEX (CPLX) attribute 24
COMPLEX (CPLX) built-in function 424
composite symbol 4
compound assignment 201
compound statement 10
computational and ordinal types 48
computational conditions

CONVERSION 353
FIXEDOVERFLOW 357
INVALIDOP 358
OVERFLOW 360
UNDERFLOW 366
ZERODIVIDE 366

computational data
attributes 16
conversion 76
description 16
string data 17

computational data types
attributes 22
BINARY and DECIMAL attributes 23
REAL and COMPLEX attributes 24
repetition factor for strings 33
string data

BIT attribute 29
CHARACTER attribute 29
discussion of 29
graphic 36
GRAPHIC attribute 29
NONVARYING attribute 31
UCHAR attribute 29
VARYING attribute 31
VARYING4 attribute 31
VARYINGZ attribute 31
widechar 39
WIDECHAR attribute 29

concatenation
operations 67
operator 7

COND (CONDITION) condition 352
CONDITION (COND) condition 352
CONDITION attribute 347
condition codes

discussion 341
condition codes, using with ONCODE built-in function 500
condition handling

CONDITION attribute 347
description 341
disabling a condition 341
enabling a condition 341
established action 341

Index 673

condition handling (continued)
establishing an enabled condition 341
implicit action 341
multiple conditions 347
multithreading 372
ON statement

description 343
dynamically descendant ON-units 345
null ON-unit 344
ON-units for file variables 345
scope of established action 344
syntax 343

RESIGNAL statement 347
REVERT statement 346
scope of condition prefix 343
SIGNAL statement 347

condition prefix
description 9
example 342
syntax 341
using 341

condition-handling built-in functions
DATAFIELD 428
ONACTUAL 499
ONAREA 499
ONCHAR 500
ONCODE 500
ONCONDCOND 501
ONCONDID 501
ONCOUNT 501
ONEXPECTED 502
ONFILE 502
ONGSOURCE 502
ONHBOUND 503
ONJSONNAME 503
ONKEY 503
ONLBOUND 504
ONLINE 504
ONLOC 504
ONOFFSET 505
ONOPERATOR 505
ONPACKAGE 505
ONSOURCE 506
ONSUBSCRIPT 507
ONTEXT 507
ONUCHAR 507
ONUSOURCE 508
ONWCHAR 508
ONWSOURCE 509
summary 381
UTF-handling built-in functions

ONUSOURCE 508
condition-handling built-in functions ONPROC

ONPROCEDURE 505
conditions

ANYCONDITION 349
AREA 350
ASSERTION 351
ATTENTION

description 351
with multithreading 372

classes 342, 343
computational 342, 343
CONDITION 352

conditions (continued)
CONFORMANCE 353
CONVERSION 353
ENDFILE 355
ENDPAGE 355
ERROR 356
FINISH 357
FIXEDOVERFLOW 357
input/output 342, 343
INVALIDOP 358
KEY 358
miscellaneous 342, 343
NAME 359
output and input 342
OVERFLOW 360
program checkout 342, 343
raising under OPTIMIZATION 343
RECORD 360
SIZE 361
status 342, 343
STORAGE 362
STRINGRANGE 362
STRINGSIZE 363
SUBCRIPTRANGE 364
TRANSMIT 364
UNDEFINEDFILE 365
UNDERFLOW 366
ZERODIVIDE 366

CONFORMANCE condition 353
CONJG built-in function 425
CONNECTED (CONN) attribute 262
connected storage 262
consecutive data sets 276
constants

B3 (bit hex) string 36
B4 (bit hex) string 36
binary fixed-point 25
binary floating-point 27
bit 35
BX (bit hex) string 36
character 33
character string 34
decimal fixed-point 27
decimal floating-point 28
entry

description 113
using 113

file 277
graphic 36
GX (graphic) string 37
imaginary 24
label 44
M (mixed) string 37
named 46
UX (UCHAR) string 39
WX (widechar) string 39
XN (binary hex) 26
XU (binary hex) 26

contained in, definition 153
contextual declarations 152
continuation rules for DBCS 13
controlled

parameter 97
storage 237, 239

674 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

controlled (continued)
structure and union members 243
variables

description 239
multiple generations 242
using the ALLOCATE statement 240
using the FREE statement 242

CONTROLLED (CTL) attribute 239
controlling storage 237
CONV (CONVERSION) condition 353
conversion

data 75
errors 88
in arithmetic operations 57
in concatenation operations 67
mode 77
of arithmetic precision 77
of locator data 247
operands 60
source to target rules 79
string lengths 76
to other data attributes 77
using built-in functions 76

CONVERSION (CONV) condition 353
CONVERSION condition prefix 342, 343
conversion errors 88
conversion of graphic to character (CHARGRAPHIC) 421
converting data

arithmetic precision 77
arithmetic-to-bit-string, example 87
arithmetic-to-character string, example 88
computational data 76
conversion errors 88
description 75
initiating with built-in functions 76
mode 77
rules 76
source-to-target rules 79
string lengths 76

COPY built-in function 425
COPY macro facility built-in function 606
COPY option 299
COS built-in function 425
COSD built-in function 425
COSH built-in function 426
COUNT built-in function 426
COUNTER macro facility built-in function 606
credit (CR) picture character 337
cross sections of arrays of structures/unions 186
cross sections, of arrays 176
CS built-in function 426
CTL (CONTROLLED) attribute 239
currency symbol

defining 333
description 335

CURRENTSIZE built-in function 427
CURRENTSTORAGE built-in function 428

D
data

alignment 160
area 253
arithmetic character 40

data (continued)
attributes 16
binary fixed-point 25
binary floating-point 27
bit 35
bit constant 35
character 33
character constant

A (ASCII) character constant 34
E (EBCDIC) character constant 34

computational 16
conversion

description 75
errors 88
in arithmetic operations 57
source-to-target rules 79
using built-in functions 76

decimal fixed-point 26
decimal floating point 28
element 15
elements 597
entry 113
format 45
format items 317
graphic 36
item 15
label 44
LABEL attribute

valid OPTIONS options 44
labels, on language statements 44
locator 246
mixed 37
numeric character 328
offset 254
program-control

description 17
types and attributes 44

sharing between threads 373
specifications 299
transmission 275
types 16
UCHAR 38
widechar 39

data alignment
discussion 160
storage addresses 160
using ALIGNED and UNALIGNED attributes 160

data conversion
arithmetic precision 77
errors 88
in arithmetic operations 57
mode 77
source-to-target rules 79
string lengths 76

data declarations
array 172
description 149
explicit 149
implicit 152
language-specified defaults for attributes 167
structures 176
unions 177

data elements
attributes 15

Index 675

data elements (continued)
constants

named 16
punctuating 16
quotation marks 16

data item 15
discussion 15
preprocessor 597

data items
complex 24
definition 15
expression 52
mode 24

data sets
consecutive 276
indexed 276
regional 276
relative 276
storing 276
transmission of data from 275
types 276

data specification options for stream
i/o

data transmitted 289
data-directed 304
definition 297
discussion of 299

data transmission
area variables 290
data aggregates 289
data-directed 297
data-list-items 303
discussion of 289
edit-directed 297
graphic strings 289
input 275
output 275
record-oriented 289
record-oriented statements

DELETE 291
discussion 290
LOCATE 291
READ 290
REWRITE 291
WRITE 290

stream-oriented 297
stream-oriented statements

discussion 297
GET 297
PUT 298
type 3 do-group 300

TRANSMIT condition 364
unaligned bit strings 289
varying length strings 289

data transmission statements options
COPY 299
discussion 299
FILE 301
LINE 301
PAGE 301
SKIP 301
STRING 302

data types
computational 16

data types (continued)
discussion 16
string data

UCHAR 38
data-directed data specification

discussion 304
using the GET statement 305
using the PUT statement 307

data-directed data transmission 297
DATAFIELD built-in function 428
DATE attribute

description 41
DATE built-in function 428
date/time built-in functions

DATE 428
DATETIME 429
DAYS 429
DAYSTODATE 430
DAYSTOMICROSECS 430
DAYSTOSECS 431
JULIANTOSMF 473
Lilian format 382
MAXDATE 481
MICROSECS 492
MICROSECSTODATE 493
MICROSECSTODAYS 493
MINDATE 494
REPATTERN 534
SECS 543
SECSTODATE 544
SECSTODAYS 545
SMFTOJULIAN 552
STCKETODATE 554
STCKTODATE 554
summary 382
TIME 560
TIMESTAMP 560
UTCDATETIME 570
UTCMICROSECS 571
UTCSECS 571
VALIDDATE 575
VARGLIST 576
VARGSIZE 576
WEEKDAY 579
Y4DATE 585
Y4JULIAN 586
Y4YEAR 587

DATETIME built-in function 429
DAYS built-in function 429
DAYSTODATE built-in function 430
DAYSTOMICROSECS built-in function 430
DAYSTOSECS built-in function 431
DBCS (double-byte character set) 11
DCL (DECLARE) statement

description 150
debit (DB) picture character 337
DECIMAL (DEC) attribute 23
DECIMAL (DEC) built-in function 431
decimal digit 2
decimal fixed-point constant 27
decimal fixed-point data

conversion 81
description 26

decimal floating-point constant 28

676 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

decimal floating-point data
conversion 82
description 28

decimal-point and digit specifiers 329
declarations

array 172
contextual 152
DEFINE ORDINAL statement 138
explicit 149
implicit 152
scope

defining with INTERNAL and EXTERNAL attributes
154
discussion 152
example 153

declarations, DEFINE ALIAS, statement 137
DECLARE (DCL) statement

description 150
declaring built-in functions 375
declaring data

description 149
factoring of attributes 151

DEF (DEFINED) attribute 263
DEFAULT (DFT) statement 168
defaults for attributes

DEFAULT statement 168
discussion of 167
for data attributes 167
language-specified 167
restoring language-specified 172

DEFINE ALIAS statement 137
DEFINE ORDINAL statement

description 138
options 138

DEFINE STRUCTURE (STRUCT) statement 140
DEFINED (DEF) attribute 263
DELAY statement 208
DELETE statement 291
delimiter 6
descriptor list 115
DESCRIPTOR option 131
DESCRIPTORS option for the DEFAULT statement 169
DETACH statement 372
DFT (DEFAULT) statement 168
digits

and decimal-point specifiers 329
binary 3
decimal 2
hexadecimal 3

DIM (DIMENSION) attribute 173
DIMACROSS attribute 174
DIMENSION (DIM) attribute 173
DIMENSION (DIM) built-in function 431
DIMENSION macro facility built-in function 606
DIRECT attribute 281
direct entry declaration 113
directives

*PROCESS 229
*PROCINC 230
%INCLUDE 225
%LINE 226
%NOPRINT 227
%NOTE 227
%PAGE 228

directives (continued)
%POP 228
%PRINT 229
%PROCESS 229
%PROCINC 229
%PUSH 230
%SKIP 234

DISPLAY statement 209
DIVIDE built-in function 432
DLLEXTERNAL option 131
DLLINTERNAL option 131
DO statement

description 210
repetitive execution of 210

do-groups
examples 217
macro facility 210
type 3 do-group 210, 213

double-byte character set (DBCS)
continuation rules 13
data in stream I/O 315
discussion 11
identifiers 11
in graphic data 36
statement elements 12
using in source program 11

doubleword, in data alignment 160
DOWNTHRU option

description 212
example 219
using with a type 3 DO specification 216
using with ordinals 219

drifting character 335
dummy arguments

deriving attributes 110
description 110
rules 110

dynamic allocation 237
dynamic loading of an external procedure

FETCH statement 102
RELEASE statement 102

dynamically descendant ON-units 345

E
E (EBCDIC) character constant

character constant 34
E picture character 338
E-format item 319
EDIT built-in function 432
EDIT option 308
edit-directed

data transmission 297
format items 317

edit-directed data specification 308
effect of recursion on automatic variables 101
elementary names 176
elements

assignment 203
data 15
expression 52
for DBCS 12
for SBCS 5
parameter 110

Index 677

elements (continued)
program 1
scalar 15
variable 15

ELSE clause of %IF statement 618
ELSE clause of IF statement 222
EMPTY built-in function

for area variables 257
enabled condition 341
encoding and hashing built-in functions

summary 385
END statement

description 221
ENDFILE built-in function 433
ENDFILE condition 355
ENDPAGE condition 355
ENTRY attribute

description 114
valid OPTIONS options 125

entry constants 113
entry data

attributes
classification 20, 21
ENTRY 114
GENERIC 121
LIMITED 120
LIST 118
OPTIONAL 117

constants 113
description 113
direct entry declaration 113
generic 121
generic entry declaration 121
invocation of references 123
variables 114

entry points 94
entry reference invocation 123
ENTRY statement 96
ENTRY statement, valid OPTIONS options 126
entry-constant

using with a FETCH statement 103
ENTRYADDR built-in function 433
ENTRYADDR pseudovariable 433
ENV (ENVIRONMENT) attribute 282
ENVIRONMENT (ENV) attribute 282
ENVIRONMENT option 370
EPSILON built-in function 434
equal sign 6
ERF built-in function 434
ERFC built-in function 434
ERROR condition

abnormal termination of procedures 100
description 356

established action 343
established condition 341
evaluation order for expressions and references 69
evaluation order of expressions 53
exclusive-or operator 64
EXE (file extension) 89
EXIT statement 100
EXP built-in function 434
explicit declaration 149
explicitly locator-qualified reference 248
EXPONENT built-in function 435

exponent specifiers 338
exponentiation, special cases 63
EXPORTS option 92
expressions

array 70
assigning values 206
description 51
element 52
evaluation order 53
intermediate results of expressions 62
of targets 53
operational

classes 55
definition 51
discussion 54

preprocessor 597
restricted

applying built-in functions 73
description 72
example 73

scalar 52
structure 52
syntax 51
types 52

EXT (EXTERNAL) attribute 154
extent

BASED declarations 244
parameter descriptor 116

extent (of dimension) 173
EXTERNAL (EXT) attribute

description 154
using 103

external procedure
description 94
dynamic loading 102

extralingual character 2

F
F picture character 339
F-format item 321
factoring of attributes 151
FETCH statement

description 103
dynamically loading external procedures 102
restrictions 102

FETCHABLE option 131
fields 329
FILE attribute 277
file data 21
FILE option

description 301
for record-oriented data transmission 292
for stream-oriented data transmission 290

FILE specification in OPEN statement 283
FILEDDINT built-in function 435
FILEDDTEST built-in function 435
FILEDDWORD built-in function 436
FILEID built-in function 437
FILENEW built-in function 437
FILEOPEN built-in function 437
FILEREAD built-in function 438
files

additive attribute 277

678 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

files (continued)
alternative attributes 277
attributes 20
constant 277
declaration 277
definition of 277
description attributes 277
FILE attribute 277
implicit opening 284
opening and closing 282
PRINT 314
sharing between threads 373
specifying a reference 280
SYSIN 287
SYSPRINT 287
variable 279

FILESEEK built-in function 438
FILETELL built-in function 438
FILEWRITE built-in function 439
FINISH condition 357
FIRST type function 590
FIXED attribute

description 23
FIXED built-in function 439
fixed-point

binary data 25
decimal data 26
format item

description 321
specifying a picture scaling factor 339

FIXEDBIN built-in function 439
FIXEDDEC built-in function 440
FIXEDOVERFLOW (FOFL) condition 357
FIXEDOVERFLOW condition prefix 342, 343
FLOAT attribute 23
FLOAT built-in function 441
FLOATBIN built-in function 441
FLOATDEC built-in function 442
floating-point

binary data 27
data conversion 82
decimal data 28
format item 319

floating-point inquiry built-in functions
EPSILON 434
HUGE 453
ISFINITE 459
ISINF 460
ISNAN 461
ISNORMAL 461
ISZERO 462
MAXEXP 481
MINEXP 494
PLACES 511
RADIX 530
summary 387
TINY 560

floating-point manipulation built-in functions
EXPONENT 435
PRED 528
SCALE 540
SUCC 558
summary 388

FLOOR built-in function 442

FOFL (FIXEDOVERFLOW) condition 357
FOLDEDFULLMATCH built-in function 443
FOLDEDSIMPLEMATCH built-in function 443
FORCE attribute 158
FORMAT attribute

classification by variable type 21
description 45

format data 45
format items

A 317
B 317
C 318
COLUMN 318
description 308
E 319
F 321
G 322
L 323
LINE 323
P 323
PAGE 324
R 324
SKIP 325
V 325
X 325

format notation, rules for xxxi
FORMAT statement 311
FORTRAN option 131
FREE statement

based variables 251
controlled variables 242
IN option 251

FROM option of data transmission statements 292
FROMALIEN option 132
fullword 160
functions

built-in 108
definition 106
description 106
examples 107
programmer-written
108
restrictions on 106
returning from 124

G
G-format item 322
GAMMA built-in function 443
GENERIC attribute

description 121
using the OTHERWISE option 121

generic descriptor 122
generic entry declaration 121
generic name 121
generic selection 122
GET statement

data-directed 305
edit-directed 309
list-directed 312
strings 310

GET STRING statement 297
GETENV built-in function 444
GETJCLSYMBOL built-in function 444

Index 679

GETSYSINT built-in function 444
GETSYSWORD built-in function 444
GO TO (GOTO) statement

description 222
GRAPHIC attribute (G) 29
GRAPHIC built-in function 446
graphic constant

comparison operations 66
description 36
strings 289
syntax 36

graphic data
constant 36
conversion 87
format item 322
GX (graphic hex) string constant 37
transmission 289

graphic data, converting (GRAPHIC) 446
GRAPHIC ENVIRONMENT option 37
GRAPHIC option 37
graphic string constant 37
group, of statements 10
GTCA built-in function 447
GX (graphic hex) string constant 37

H
halfword 160
HANDLE attribute 141
HANDLE built-in function 447
handle operations 55
HBOUND built-in function 447
HBOUND macro facility built-in function 606
HBOUNDACROSS built-in function 448
hex (X) character string constant 34
HEX built-in function 448, 565
HEX8 built-in function 449
HEXADEC attribute 261
hexadecimal digit 3
HEXDECODE built-in function 450
HEXDECODE8 built-in function 451
HEXENCODE built-in function

syntax 451
HEXENCODE8 built-in function

syntax 452
HEXIMAGE built-in function 452
HEXIMAGE8 built-in function 453
HIGH built-in function 453
higher bound of a DIMACROSS array, obtaining
(HBOUNDACROSS) 448
higher bound of an array, obtaining (HBOUND) 447
HUGE built-in function 453

I
I (overpunch) picture character 337
IAND built-in function 454
ICLZ built-in function 454
identifier

asterisk 6
DBCS 11
DBCS with double-byte characters 11
definition 5

identifier (continued)
programmer-defined names 6
SBCS in DBCS form 11
scalar 46
structure 46
using keywords 5

IEEE attribute 261
IEOR built-in function 454
IF statement

description 222
syntax 222

IFTHENELSE built-in function 455
IGNORE option of data transmission statements 292
IMAG built-in function 455
IMAG pseudovariable 455
imaginary constants 24
implementation limits 627
implicit

declaration 152
freeing

of based variable 251
of controlled variable 242

opening of files 284
implicit action 341
Implicit date

assignments 41
comparisons 41

implicitly locator-qualified reference 248
IN option

ALLOCATE statement 250
FREE statement 251

IN option with FREE statement, for based variables 251
INARRAY built-in function 456
INCLUDE directive 225
INDEX built-in function 456
INDEX macro facility built-in function 607
indexed data sets 276
INDEXR built-in function 457
INDFOR attribute 182
INDICATORS built-in function 457
industry standards xxxiii
infix operation 54
infix operators and arrays 71
INITACROSS 270
INITIAL (INIT) attribute 267
INITIAL CALL 270
INITIAL TO 270
initial values

for unions 267
on STATIC variables 272

initializing
array variables 271
automatic variables 273
based and controlled variables 273
static variables 272
unions 272

INLINE option 132
INLIST built-in function 457
INOT built-in function 458
input

conditions
ENDFILE 355
ENDPAGE 355
KEY 358

680 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

input (continued)
conditions (continued)

NAME 359
RECORD 360
TRANSMIT 364
UNDEFINEDFILE 365

definition 275
discussion 275
of area 258

INPUT attribute 281
input/output built-in

functions
COUNT 426
ENDFILE 433
FILEDDINT 435
FILEDDTEST 435
FILEDDWORD 436
FILEID 437
FILENEW 437
FILEOPEN 437
FILEREAD 438
FILESEEK 438
FILETELL 438
FILEWRITE 439
LINENO 474
ONSUBCODE 506
ONSUBCODE2 507
PAGENO 510
SAMEKEY 540
summary 388

insertion characters 332
INT (INTERNAL) attribute 154
integer

value 23
integer manipulation built-in functions

IAND 454
ICLZ 454
IEOR 454
INOT 458
IOR 458
IRLL 458, 459
ISIGNED 459
ISLL 460
ISRL 461
IUNSIGNED 462
LOWER2 479
RAISE2 530
summary 389

integral boundary 160
interlanguage communication

LINKAGE option 132
linkages

OPTLINK 132
SYSTEM 132

interleaved subscripts 186
intermediate results of expressions

discussion 54
example 62

INTERNAL (INT) attribute 154
internal procedure 94
internal to, definition 153
INTO option of data transmission statements 293
INVALIDOP condition 358
INVALIDOP condition prefix 342, 343

invocation of entry references 123
invoked procedure 99
invoking block 99
invoking built-in functions and pseudovariables 376
invoking built-in subroutines 376
invoking main procedure 90
invoking type functions 589
IOR built-in function 458
IRLL built-in function 458, 459
IRREDUCIBLE (IRRED) option 133
ISFINITE built-in function 459
ISIGNED built-in function 459
ISINF built-in function 460
ISJCLSYMBOL built-in function 460
ISLL built-in function 460
ISMAIN built-in function 461
ISNAN built-in function 461
ISNORMAL built-in function 461
ISRL built-in function 461
iSUB

defining 263, 265
unconnected 264

ISZERO built-in function 462
ITERATE statement 225
iteration factor 269, 271, 308
IUNSIGNED built-in function 462

J
JSON built-in functions

JSONGETARRAYEND 462
JSONGETARRAYSTART 463
JSONGETCOLON 463
JSONGETCOMMA 463
JSONGETMEMBER 464
JSONGETOBJECTEND 466
JSONGETOBJECTSTART 466
JSONGETVALUE 466
JSONPUTARRAYEND 468
JSONPUTARRAYSTART 469
JSONPUTCOLON 469
JSONPUTCOMMA 469
JSONPUTMEMBER 469
JSONPUTOBJECTEND 471
JSONPUTOBJECTSTART 471
JSONPUTVALUE 471
JSONVALID 472
summary 389

JSONGETARRAYEND built-in function 462
JSONGETARRAYSTART built-in function 463
JSONGETCOLON built-in function 463
JSONGETCOMMA built-in function 463
JSONGETMEMBER built-in function 464
JSONGETOBJECTEND built-in function 466
JSONGETOBJECTSTART built-in function 466
JSONGETVALUE built-in function 466
JSONNAME attribute 185
JSONOMIT attribute 185
JSONPUTARRAYEND built-in function 468
JSONPUTARRAYSTART built-in function 469
JSONPUTCOLON built-in function 469
JSONPUTCOMMA built-in function 469
JSONPUTMEMBER built-in function 469
JSONPUTOBJECTEND built-in function 471

Index 681

JSONPUTOBJECTSTART built-in function 471
JSONPUTVALUE built-in function 471
JSONTRIMR attribute 185
JSONVALID built-in function 472
JULIANTOSMF built-in function 473

K
K picture character 338
KEY condition 358
KEY option of data transmission statements 293
KEYED attribute 282
KEYFROM option of data transmission statements 293
KEYTO option of data transmission statements 294
keyword statement 9
keywords

definition 5

L
L-format item 323
label 9
LABEL attribute

description 44
label constants 44
label data

attributes 20, 21
description 44

language-specified defaults
defining 167
discussion of 167
restoring 172

LAST type function 591
LBOUND built-in function 473
LBOUND macro facility built-in function 607
LBOUNDACROSS built-in function 473
LEAVE statement 226
LEFT built-in function 473
length

controlled parameter 97
simple parameter 97

LENGTH built-in function 474
LENGTH macro facility built-in function 608
level-number (of structure elements) 187
levels of structures

description 176
specifying unique names 177

levels of unions 177
LIKE attribute 180
Lilian format 382
LIMITED attribute

description 120
example 120

limits 627
LINE directive 226
LINE format item 323
LINE option 301
LINENO built-in function 474
LINESIZE specification in OPEN statement 284
LINKAGE option 132
list

bidirectional 259
chained 258

list (continued)
parameter descriptor 115
processing 258
unidirectional 259

LIST attribute
description 118

list-directed
data specification 312
data transmission 297
GET statement 312
input 312
output 313
PUT statement 313

listing control statements 593
LITTLEENDIAN attribute 260
load module

description 89
file extensions 89

locate mode 295
LOCATE statement 291
LOCATION (LOC) built-in function 474
locator

conversion 247
data

attributes 21
description 246
offset variable 246
pointer variable 246
qualification 247

levels of qualification 249
parameter 111
qualification 247
qualifier 6
reference 247

LOCNEWSPACE built-in subroutine 475
LOCNEWVALUE built-in subroutine 476
LOCSTG built-in function 476
LOCVAL built-in function 477
LOG built-in function 477
LOG10 built-in function 478
LOG2 built-in function 478
LOGGAMMA built-in function 478
logical level (of structure elements) 187
logical operator

discussion 64
using 7

LOW built-in function 478
lower bound of a DIMACROSS array, obtaining
(LBOUNDACROSS) 473
lower bound of an array, obtaining (LBOUND) 473
LOWER2 built-in function 479
LOWERASCII built-in function 478
LOWERCASE built-in function 479
LOWERLATIN1 built-in function 479

M
M

FIXED BINARY, maximum precision 75, 377
LIMITS(FIXEDBIN(M1,M2)) 75, 377

M (mixed) string constant 37
MACCOL macro facility built-in function 608
MACLMAR macro facility built-in function 608
MACRMAR macro facility built-in function 609

682 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

macro facility built-in functions
COLLATE 604
COMMENT 604
COMPILEDATE 604
COMPILETIME 605
COPY 606
COUNTER 606
DIMENSION 606
HBOUND 606
INDEX 607
LBOUND 607
LENGTH 608
MACCOL 608
MACLMAR 608
MACRMAR 609
MAX 609
MIN 609
PARMSET 609
QUOTE 610
REPEAT 610
SUBSTR 610
SYSDIMSIZE 611
SYSOFFSETSIZE 611
SYSPARM 611
SYSPOINTERSIZE 611
SYSTEM 612
SYSVERSION 612
TRANSLATE 612
VERIFY 613

MAIN option 132
main procedure

invoking 90
passing an argument 111

major structure names 176
MARGINS keyword

on ANSWER preprocessor statement 602
mathematical built-in functions

accuracy of 377
ACOS 402
ASIN 406
ATAN 406
ATAND 407
ATANH 407
COS 425
COSD 425
COSH 426
ERF 434
ERFC 434
EXP 434
GAMMA 443
LOG 477
LOG10 478
LOG2 478
LOGGAMMA 478
SIN 550
SIND 550
SINH 551
SQRT 552
SQRTF 553
summary 390
TAN 559
TAND 559
TANH 560

MAX built-in function 480

MAXDATE built-in function 481
MAXEXP built-in function 481
MAXLENGTH built-in function 482
MAXVAL built-in function 482
MEMCOLLAPSE built-in function 483
MEMCONVERT built-in function 484
MEMCU12 built-in function 484
MEMCU14 built-in function 485
MEMCU21 built-in function 485
MEMCU24 built-in function 485
MEMCU41 built-in function 486
MEMCU42 built-in function 486
MEMINDEX built-in function 487
MEMREPLACE built-in function 488
MEMSEARCH built-in function 489
MEMSEARCHR built-in function 489
MEMSQUEEZE built-in function 490
MEMVERIFY built-in function 491
MEMVERIFYR built-in function 492
MICROSECS built-in function 492
MICROSECSTODATE built-in function 493
MICROSECSTODAYS built-in function 493
MIN built-in function 493
MINDATE built-in function 494
MINEXP built-in function 494
minor structure names 176
MINVAL built-in function 495
miscellaneous built-in functions

ALLCOMPARE 403
BETWEEN 412
BETWEENEXCLUSIVE 412
BETWEENLEFTEXCLUSIVE 413
BETWEENRIGHTEXCLUSIVE 413
BYTE 417
BYTELENGTH 417
CHARVAL 422
COLLATE 423
FOLDEDFULLMATCH 443
FOLDEDSIMPLEMATCH 443
GETENV 444
GTCA 447
HEX 448, 565
HEX8 449
IFTHENELSE 455
INDICATORS 457
INLIST 457
OMITTED 499
PACKAGENAME 510
PLIRETV 517
POPCNT 527
PRESENT 528
PROCEDURENAME 528
RANK 531
SOURCEFILE 552
SOURCELINE 552
STACKADDR 553
STRING 554
summary 391
UNSPEC 565
VALID 575
WCHARVAL 578
WHEREDIFF 579

Miscellaneous built-in functions
BINSEARCH 414

Index 683

Miscellaneous built-in functions (continued)
BINSEARCHX 415
GETJCLSYMBOL 444
GETSYSINT 444
GETSYSWORD 444
ISJCLSYMBOL 460
UUID 572
UUID4 573
VALIDVALUE 576

miscellaneous conditions
ANYCONDITION 349
AREA 350
ASSERTION 351
ATTENTION 351
CONDITION 352
CONFORMANCE 353
ERROR 356
FINISH 357
STORAGE 362

mixed data 37
mixed-string constant 37
MOD built-in function 495
mode of a data item 24
modes of processing

description 294
locate 295
move 295

move mode 295
MPSTR built-in function 496
multiple assignment 205
multiple conditions 347
multiple generations of controlled variables 242
MULTIPLY built-in function 497
multithreading

ATTACH statement 370
condition handling 372
description 369
linkage requirements 370
options

ENVIRONMENT 370
THREAD 370
TSTACK 370

sharing data between threads 373
sharing files between threads 373
TASK attribute 372
task variable 372
thread

cancel 371
creation 369
detaching 372
termination 371
uses 369
waiting 371

THREADID built-in function 373
multithreading facility 369
multithreading, THREADID built-in function for 560

N
N

FIXED DECIMAL, maximum precision 75, 377
LIMITS(FIXEDDEC(N1,N2)) 75, 377

NAME condition 359
named coded arithmetic attributes 19

named constant 46
named constants, description 16
named string data attributes 19
names

preprocessor 598
names, typed 137
NEW type function 591
NOCHARGRAPHIC option 130
NODESCRIPTOR option 131
NOEXECOPS option 133
NOINIT attribute 183
NOINLINE option 132
NOMAP option 133
NONASSIGNABLE attribute 259
NONCONNECTED (NONCONN) attribute 262
nonconnected storage 176
nondata attributes 18, 48, 49
NONVARYING (NONVAR) attribute 31
NOPRINT directive 227
NORESCAN option 614
NORMAL attribute 260
normal termination of a program 90
not operator 64
NOTE directive 227
null arguments, using in built-in functions 377
NULL built-in function 497
null ON-unit 344
null statement

definition 10
description 228

NULLENTRY built-in function 498
NULLINIT attribute 183
NULLSTRPTR suboption of the DEFAULT built-in function

using with pointer expressions 56
numeric character data

conversion 83
definition 40
fields 329
picture specifiers 328
subfields 329

numeric character pictured item
description 327
discussion 329

O
OFFSET attribute 254
OFFSET built-in function 498
offset data 254
offset variable 246
OFFSETADD built-in function 498
OFFSETDIFF built-in function 498
OFFSETSUBTRACT built-in function 499
OFFSETVALUE built-in function 499
OFL (OVERFLOW) condition 360
OMITTED built-in function 499
ON statement 343
ON-units

dynamically descendant 345
for file variables 345
null 344
scope 344

ONACTUAL built-in function 499
ONAREA built-in function 499

684 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

ONCHAR built-in function 500
ONCHAR pseudovariable 500
ONCODE built-in function

using 341
ONCONDCOND built-in function 501
ONCONDID built-in function 501
ONCOUNT built-in function 501
ONEXPECTED built-in function 502
ONFILE built-in function 502
ONGSOURCE built-in function 502
ONGSOURCE pseudovariable 502
ONHBOUND built-in function 503
ONJSONNAME built-in function 503
ONKEY built-in function 503
ONLBOUND built-in function 504
ONLINE built-in function 504
ONLOC built-in function 504
ONOFFSET built-in function 505
ONOPERATOR built-in function 505
ONPACKAGE built-in function 505
ONPROCEDURE built-in function 505
ONSOURCE built-in function 506
ONSOURCE pseudovariable 506
ONSUBCODE built-in function 506
ONSUBCODE2 built-in function 507
ONSUBSCRIPT built-in function 507
ONTEXT built-in function 507
ONUCHAR built-in function 507
ONUCHAR pseudovariable 508
ONUSOURCE built-in function 508
ONUSOURCE pseudovariable 508
ONWCHAR built-in function 508
ONWCHAR pseudovariable 509
ONWSOURCE built-in function 509
ONWSOURCE pseudovariable 509
OPEN statement 283
opening and closing files 282
operands

conversion 60
definition 51

operational expressions
classes 55
conversion rules 55
definition 51
description 54
example 55
restrictions on data types 55

operations
arithmetic 56
bit 64
classes 55
combinations 68
comparison

description 65
example of 67

concatenation 67
handle 55
infix 54
logical 64
pointer 55
prefix

description 54
example 71

operators

operators (continued)
arithmetic

description 56
using 7

bit 7
comparison 7
infix

discussion 71
using with pointer expressions 55

logical 7
string 7
using 6

OPTIMIZATION, raising conditions under 343
OPTIONAL attribute 117
options

ASSEMBLER 129
DESCRIPTORS option 169
DLLEXTERNAL 131
DLLINTERNAL 131
EXPORTS 92
FETCHABLE 131
FORTRAN 131
GRAPHIC 37
GRAPHIC ENVIRONMENT 37
NORESCAN 614
of data transmission statements 292, 299
OPTIONS 125
RANGE 169
RECURSIVE 101
REPEAT 212
REPLY 209
RESCAN 614
RESERVES 93
RETURNS 134
SCAN 614
SET 103
SNAP 344
SYSTEM 344
TITLE 103
value specification 170

OPTIONS attribute 125
OPTIONS options

AMODE31 or AMODE64 129
ASSEMBLER 129
BEGIN statement 125
BYADDR 129
BYVALUE 129
characteristic list 125
CHARGRAPHIC 130
CMPAT 131
COBOL 131
description 125
DESCRIPTOR 131
ENTRY declaration 125
FROMALIEN 132
INLINE 132
IRREDUCIBLE 133
LINKAGE 132
MAIN 132
NOCHARGRAPHIC 130
NODESCRIPTOR 131
NOEXECOPS 133
NOINLINE 132
NOMAP 133

Index 685

OPTIONS options (continued)
NORETURN 133
ORDER 133
PROCEDURE statements 128
RECURSIVE 101
REDUCIBLE 133
REENTRANT 133
RENT 134
REORDER 133
RETCODE 134
RETURN statement 133
syntax 125
WINMAIN 134

OPTIONS options, ENTRY statement 126
ORDER

attribute 95, 112
order of evaluation

for expressions and references 69
ORDER option 133
ORDINAL attribute 143
ordinal data, attributes, classification 21
ordinal handling built-in functions

list 146
ordinal-handling built-in functions

ORDINALNAME 509
ORDINALPRED 510
ORDINALSUCC 510
summary 393

ORDINALNAME built-in function 509
ORDINALPRED built-in function 510
ordinals

allowable attributes 145
built-in functions 146
DEFINE ORDINAL statement 138
defining 138
description 138
example 139
example of do-loops 146
options 138
ORDINAL attribute 143
PRECISION attribute 139
SIGNED attribute 139
UNSIGNED attribute 139
using DOWNTHRU 219
using with arrays 146
VALUE attribute 139

ORDINALSUCC built-in function 510
OTHERWISE option of GENERIC attribute 121
OTHERWISE statement

in SELECT statement 232
output

definition 275
output and input

conditions 342
discussion 275
of area 258

OUTPUT attribute 281
output/input built-in functions 388
OVERFLOW (OFL) condition 360
OVERFLOW condition prefix 342, 343
overpunch picture characters, I 337
overpunch picture characters, R 337
overpunch picture characters, T 337

P
P-format item 323
PACKAGE statement

description 91
example 93
valid OPTIONS options 127

PACKAGENAME built-in function 510
packages 91
PAGE directive 228
PAGE format item 324
PAGE keyword on ANSWER statement 602
PAGE option 301
PAGENO built-in function 510
PAGESIZE specification in OPEN statement 284
PARAMETER attribute 97
parameter descriptor

extent 116
parameter descriptor list 115
parameters

and arguments 108
array arguments

example 98
attributes 97
element 110

parentheses 6
PARMSET macro facility built-in function 609
passing arguments

discussion 108
to the main procedure 111
using BYVALUE and BYADDR 109
using INONLY, INOUT and OUTONLY 109

period 6
PICSPEC built-in function 511
PICTURE (PIC) attribute 32
picture data

repetition factor 327
scaling factor 339
specification 32
specifiers for character data 327
specifiers for numeric character data 328
syntax for PICTURE attribute 32

picture format item 323
picture specification characters

- 335
* 331
/ 332
+ 335
$ 334
9

for character data 328
for numerics 329

A 327
B 332
CR 337
DB 337
definition of 327
E 338
F 339
I 337
K 338
R 337
S 335
T 337

686 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

picture specification characters (continued)
V

for numerics 329
insertion 332

X 327
Y 337
Z 331

PL/I application
description 89
illustration of structure 89

PLACES built-in function 511
PLIASCII built-in subroutine 512
PLIATTN built-in subroutine 512
PLICANC built-in subroutine 512
PLICKPT built-in subroutine 513
PLIDELETE built-in subroutine 513
PLIDUMP built-in subroutine 513
PLIEBCDIC built-in subroutine 513
PLIFILL built-in subroutine 513
PLIFREE built-in subroutine

for based variables 249
PLIMOVE built-in subroutine 514
PLIOVER built-in subroutine 515
PLIPARSE built-in subroutine 515
PLIREST built-in subroutine 517
PLIRETC built-in subroutine 517
PLIRETV built-in function 517
PLISAXA built-in subroutine 517
PLISAXB built-in subroutine 518
PLISAXC built-in subroutine 518
PLISAXD built-in subroutine 519
PLISRTA built-in subroutine 519
PLISRTB built-in subroutine 519
PLISRTC built-in subroutine 520
PLISRTD built-in subroutine 520
PLISTCK built-in function 520
PLISTCKE built-in function 520
PLISTCKELOCAL built-in function 520
PLISTCKEUTC built-in function 521
PLISTCKF built-in function 521
PLISTCKLOCAL built-in function 521
PLISTCKP built-in function 521
PLISTCKPLOCAL built-in function 522
PLISTCKPUTC built-in function 522
PLISTCKUTC built-in function 522
PLITRAN11 built-in function 522
PLITRAN12 built-in function 523
PLITRAN21 built-in function 524
PLITRAN22 built-in function 524
point of invocation, for procedures 99
POINTER (PTR) attribute 249
POINTER (PTR) built-in function 524
pointer operations 55
pointer symbol 6
pointer variable 246, 249
POINTERADD (PTRADD) built-in function

using with pointer operations 55
POINTERDIFF (PTRDIFF) built-in function 525
POINTERSUBTRACT (PTRSUBTRACT) built-in function 526
POINTERVALUE (PTRVALUE) built-in function

using 56
POLY built-in function 526
POP directive 228
POPCNT built-in function 527

POS (POSITION) attribute 263
POSITION (POS) attribute 263
POSITION attribute 267
PRECISION (PREC) built-in function 527
PRECISION attribute

description 23
ordinals 139

PRECISION built-in function
using 63

precision-handling built-in functions
ADD 402
BINARY 413
DECIMAL 431
DIVIDE 432
FIXED 439
FIXEDBIN 439
FIXEDDEC 440
FLOAT 441
FLOATBIN 441
FLOATDEC 442
MULTIPLY 497
PRECISION 527
PRECVAL 527
SCALEVAL 541
SIGNED 550
SUBTRACT 558
summary 393, 394
UNSIGNED 565

PRECVAL built-in function 527
PRED built-in function 528
prefix

condition
example 342
syntax 341
using 341

preprocessor
%ACTIVATE 614
%assignment 615
%CALL 603
%DEACTIVATE 615
%DECLARE 615
%DO 617
%END 618
%GO TO 618
%IF 618
%INCLUDE 619
%INSCAN 620
%ITERATE 620
%LEAVE 620
%NOTE 621
%null 621
%REPLACE 622
%SELECT 622
%XINCLUDE 622
%XINSCAN 623
built-in functions 603
examples of 623
facilities 593
input 593
input text 593, 596
listing control 593
listing control statements 593
names, scope of 598
output 593

Index 687

preprocessor (continued)
output text 593
preprocessor 593
procedures 598
references and expressions 597
scan

and input text 596
and listing control statements 596
and preprocessor statements 595
discussion of 595

statements
description of 593
list of 595

statements, list of 614
variables and data elements 597

PRESENT built-in function 528
PRINT attribute 314
PRINT directive 229
priority of operators 69
PROC (PROCEDURE) statement 95
PROCEDURE (PROC) statement

description 95
using 90
valid OPTIONS 127

PROCEDURE statement 128
PROCEDURENAME (PROCNAME) built-in function 528
procedures

activation 99
description 94
dynamically loading

discussion 102
rules 102
using the FETCH statement 103
using the RELEASE statement 104

external 94
internal 94
passing an argument to main 111
passing arguments

discussion 108
using BYVALUE and BYADDR 109
using dummy arguments 110
using INONLY, INOUT and OUTONLY 109

preprocessor 598
recursive 101
specifying attributes 97
termination 100
transferring control out 100

PROCESS directive 229
processing lists 258
processing modes

description 294
locate 295
move 295

PROCINC directive 229, 230
PROD built-in function 528
program

activation 90
blocks

activation 91
description 90

definition (for PL/I) 89
elements

entry invocation 123
entry value 123

program (continued)
elements of

begin-blocks 112
built-in functions 108
CALL statement 123
description 1
entry data 113
functions 106
OPTIONS options 125
RETURN statement 124
subroutines 105

organization of 89
packages 91
procedures 94
RETURN 124
structure 89
subroutines

definition 105
termination 90

program block definition 89
program checkout conditions 342
program element

description 1
double-byte character set (DBCS)

discussion 11
statement elements 12

group 10
single-byte character set (SBCS)

discussion 1
statement elements 5

statement
compound 10
discussion 8
simple 9

program organization 89
program-checkout conditions

STRINGRANGE 362
STRINGSIZE 363
SUBSCRIPTRANGE 364

program-control data
description 17
types and attributes 44
using 44

programmer-defined names 6
pseudovariables

declaring 375
description 54
ENTRYADDR 433
IMAG 455
invoking 376
ONCHAR 500
ONGSOURCE 502
ONSOURCE 506
ONUCHAR 508
ONUSOURCE 508
ONWCHAR 509
ONWSOURCE 509
REAL 532
STRING 555
SUBSTR 556
SUBTO 557
summary 394, 395
TYPE 563
UNSPEC 567

688 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

PTR (POINTER) attribute 249
PTRADD (POINTERADD) built-in function

using with pointer operations 55
PTRVALUE (POINTERVALUE) built-in function

using 56
punctuating constants 16
PUSH directive 230
PUT statement

data-directed 307
edit-directed 310
list-directed 313
STREAM output 298
strings 310

PUTENV built-in function 529

Q
qualification

description
using as a delimiter 6

structure 178
unions 178

qualified reference 178
QUALIFY statement

description 230
QUICKSORT built-in function 529
QUICKSORTX built-in function 529
quotation marks in strings 16
QUOTE macro facility built-in function 610
quotes (single or double), enclosing string data 16

R
R (overpunch) picture character 337
R-format item 324
RADIX built-in function 530
RAISE2 built-in function 530
RANDOM built-in function 531
RANGE option 169
RANK built-in function 531
READ statement 290
REAL attribute 24
REAL built-in function 532
REAL pseudovariable 532
recognition of names 149
RECORD attribute 280
RECORD condition 360
record-oriented data transmission

definition 275
discussion 289
statements 290

recursion
attribute 95, 112
effect on automatic variables 101

RECURSIVE attribute 101
RECURSIVE option 101
recursive procedures

description 101
effect on automatic variables 101
example 101
specifying attributes 101

REDUCIBLE (RED) option 133
REENTRANT option 133

REFER option
description 251
on AREA attribute 253

reference
locator 247

references
description 51
preprocessor 597
syntax 51

REGEX built-in function 532
regional data set 276
REINIT statement 231
relative data sets 276
relative line 325
RELEASE statement

description 104
dynamically loading external procedures 102
example 104
restrictions 102

REM built-in function 534
remote format item 324
RENT option 134
REORDER option 133
REPATTERN built-in function 534
REPEAT built-in function 535
REPEAT macro facility built-in function 610
REPEAT option 212
repetition factor

for bit data 35
for picture characters 327
for strings 33, 271

repetitive execution (DO statement) 210, 217
REPLACE built-in function 535
REPLY option 209
RESCAN option 614
RESERVED attribute 158
RESERVES option 93
RESIGNAL statement 347
RESPEC type function 591
restoring language-specified defaults 172
restricted expressions

applying built-in functions 73
description 72
example 73

restrictions on FETCH and RELEASE
description 102

results of arithmetic operations
discussion 57
FLOAT operands 58
special cases 63

results of arithmetic operations, under RULES(ANS) 60
RETCODE option 134
RETURN statement

description 124
returning from a function 124
using 100
using in a preprocessor procedure 600
using with subroutines 124

RETURNS attribute 134
RETURNS option

description 134
REVERSE built-in function 537
REVERT statement 346
REWRITE statement

Index 689

REWRITE statement (continued)
description 291

RIGHT built-in function 537
ROUND built-in function 537
ROUNDAWAYFROMZERO built-in function 539
ROUNDTOEVEN built-in function 540

S
S picture character 335
SAMEKEY built-in function 540
scalar identifiers 46
SCALARVARYING option 289
SCALE built-in function 540
scale in arithmetic operations 57
SCALEVAL built-in function 541
scaling factor

character 339
description 23

SCAN option 614
scan, preprocessor 595
scope

of condition prefix 343
of established action 344
of label declarations 152

scope of
preprocessor names 598

SCRUBOUT built-in function 541
SEARCH built-in function 542
SEARCHR built-in function 543
SECS built-in function 543
SECSTODATE built-in function 544
SECSTODAYS built-in function 545
SELECT statement

description 232
example of 233

select-groups 232
self-defining data (REFER option) 251
semicolon 6
SEQL (SEQUENTIAL) attribute 281
SEQUENTIAL (SEQL) attribute 281
SET option

description 250
specifying a pointer reference 103
using the ALLOCATE statement 250
using the LOCATE statement 291
using the READ statement 290

sets, data 275
SHA1DIGEST built-in function 545
SHA1FINAL built-in function 545
SHA1INIT built-in function 546
SHA1UPDATE built-in function 546
SHA2DIGEST224 built-in function 546
SHA2DIGEST256 built-in function 546
SHA2DIGEST384 built-in function 546
SHA2DIGEST512 built-in function 546
SHA2FINAL224 built-in function 547
SHA2FINAL256 built-in function 547
SHA2FINAL384 built-in function 547
SHA2FINAL512 built-in function 547
SHA2INIT224 built-in function 547
SHA2INIT256 built-in function 547
SHA2INIT384 built-in function 547
SHA2INIT512 built-in function 547

SHA2UPDATE224 built-in function 548
SHA2UPDATE256 built-in function 548
SHA2UPDATE384 built-in function 548
SHA2UPDATE512 built-in function 548
SHA3DIGEST224 built-in function 548
SHA3DIGEST256 built-in function 548
SHA3DIGEST384 built-in function 548
SHA3DIGEST512 built-in function 548
SHA3FINAL224 built-in function 548
SHA3FINAL256 built-in function 548
SHA3FINAL384 built-in function 548
SHA3FINAL512 built-in function 548
SHA3INIT224 built-in function 549
SHA3INIT256 built-in function 549
SHA3INIT384 built-in function 549
SHA3INIT512 built-in function 549
SHA3UPDATE224 built-in function 549
SHA3UPDATE256 built-in function 549
SHA3UPDATE384 built-in function 549
SHA3UPDATE512 built-in function 549
sharing data between threads 373
sharing filesbetween threads 373
SIGN built-in function 550
SIGNAL statement 347
signalling a condition 347
SIGNED attribute

data storage requirements 25
description 24
ordinals 139

SIGNED built-in function 550
signs

drifting use 335
specifying in numeric character data 335
static use 335
using CR and DB with other signs 337

simple
controlled 97
defining 263, 264
iSUB defining 265
overlay defining 263, 266
parameter

bounds, lengths, and sizes 97
simple 97
simple defining 264
string overlay defining 266

simple statement 9
SIN built-in function 550
SIND built-in function 550
single-byte character set (SBCS)

alphabetic 1
binary digit 3
decimal digit 2
discussion 1
extralingual 2
hexadecimal digit 3
statement elements 5

SINH built-in function 551
size

controlled parameter 97
simple parameter 97

SIZE built-in function 551
SIZE condition 361
SIZE condition prefix 342, 343
SIZE type function 592

690 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

size_t 375
SKIP directive 234
SKIP format item 325
SKIP keyword on ANSWER statement 602
SKIP option 301
SMFTOJULIAN built-in function 552
SNAP option of ON statement 344
source-to-target conversion rules

arithmetic character 83
arithmetic character PICTURE 83
bit 85
character 84
coded arithmetic 80
fixed binary 81
fixed decimal 81
float binary 82
float decimal 82
graphic 87
numeric character 83
uchar 87
widechar 87

SOURCEFILE built-in function 552
SOURCELINE built-in function 552
spacing format item 325
specification

edit-directed 308
list-directed 312
repetitive 300
transmission of data list items 303

specification characters 327
SQRT built-in function 552
SQRTF built-in function 553
SQUEEZE built-in function 553
STACKADDR built-in function 553
stacking 101
standards xxxiii
statement elements

for DBCS 12
for SBCS 5

STATEMENT option 600
statements

%PROCEDURE 600
ALLOCATE 250
ANSWER

using in a preprocessor procedure 601
ASSERT 195
assignment 10, 199
ATTACH 370
BEGIN 112
CALL 123
CLOSE 286
coding recommendations 8
compound 10
DECLARE 150
DEFAULT 168
DEFINE ALIAS 137
DEFINE ORDINAL 138
DEFINE STRUCTURE 140
DELAY 208
DELETE 291
DETACH 372
discussion 195
DISPLAY 209
DO 210

statements (continued)
END 221
ENTRY 96
EXIT 100
FETCH 102
FORMAT 311
FREE 242, 251
GET

data-directed 305
edit-directed 309
list-directed 312
STREAM input 297

GET STRING 297
GO TO 222
group 10
IF 222
ITERATE 225
keyword 9
LEAVE 226
LOCATE 291
null 228
ON 343
OPEN 283
PACKAGE 91
PROCEDURE

description 95
using to invoke main procedure 90

PUT
data-directed 307
edit-directed 310
list-directed 313
STREAM output 298

QUALIFY 230
READ 290
REINIT 231
RELEASE

description 104
dynamically loading external 102
example 104
restrictions 102

RESIGNAL 347
RETURN

description 124
returning from a function 124
syntax 124
using 100
using in a preprocessor procedure 600
using with subroutines 124

REVERT 346
REWRITE

description 291
SELECT

description 232
example 233

SIGNAL 347
simple 9
STOP

using 100
syntax 8
WAIT 371
WRITE

description 290
XDEFINE ALIAS 234, 235
XDEFINE ORDINAL 235

Index 691

static allocation 237
STATIC attribute

description 238
with INITIAL attribute 272

static storage 237, 238
STCKETODATE built-in function 554
STCKTODATE built-in function 554
STOP statement

using 100
storage

allocation 237
automatic 239
based 243
classification 237
connected 262
control 237
controlled 239
nonconnected 176
static 238

STORAGE built-in function 554
STORAGE condition 362
storage control built-in functions

ADDR 402
ADDRDATA 403
ALLOC31 404
ALLOCATE 404
ALLOCATION 405
ALLOCNEXT 405
ALLOCSIZE 405
AUTOMATIC 407
AVAILABLEAREA 407
BINARYVALUE 414
BITLOCATION 416
CHECKSTG 422
CURRENTSIZE 427
CURRENTSTORAGE 428
EMPTY 433
ENTRYADDR 433
HANDLE 447
LOCATION 474
LOCSTG 476
LOCVAL 477
NULL 497
NULLENTRY 498
OFFSET 498
OFFSETADD 498
OFFSETDIFF 498
OFFSETSUBTRACT 499
OFFSETVALUE 499
POINTER 524
POINTERADD 525
POINTERDIFF 525
POINTERSUBTRACT 526
POINTERVALUE 526
SIZE 551
STORAGE 554
summary 395
SYSNULL 558
SYSTEM 559
UNALLOCATED 564

STREAM attribute 280
stream-oriented data transmission

definition 275
list directed 297

STRG (STRINGRANGE) condition 362
STRING built-in function 554
string data

attributes
abbreviations 30
classification 19
specifying length 30

bit 35
BIT attribute 29
CHARACTER attribute 29
character data 33
definition 17
graphic 36
GRAPHIC attribute 29
mixed 37
NONVARYING attribute 31
PICTURE attribute 32
quotation marks 16
repetition factor 33, 271
transmission of varying length 289
VARYING attribute 31
VARYING4 attribute 31
VARYINGZ attribute 31
WIDEPIC attribute 32

string operator () 7
STRING option

description 302
using on the GET statement 297
using on the PUT statement 298

string overlay defining 266
STRING pseudovariable 555
string-handling built-in functions

BIT 416
BOOL 416
CENTERLEFT 418
CENTERRIGHT 419
CHARACTER 420
CHARGRAPHIC 421
COPY 425
EDIT 432
GRAPHIC 446
HIGH 453
INDEX 456
INDEXR 457
LEFT 473
LENGTH 474
LOW 478
LOWERASCII 478
LOWERCASE 479
LOWERLATIN1 479
MAXLENGTH 482
MPSTR 496
REPEAT 535
REPLACE 535
REVERSE 537
RIGHT 537
SEARCH 542
SEARCHR 543
SUBSTR 556
SUBTO 557
summary 397
TALLY 559
TRANSLATE 561
TRIM 561

692 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

string-handling built-in functions (continued)
UHIGH 563
ULENGTH 563
ULENGTH16 564
ULENGTH8 563
ULOW 564
UPOS 568
UPPERASCII 568
UPPERCASE 568
UPPERLATIN1 569
USUBSTR 569
USUPPLEMENTARY 570
UTF8 571
UTF8STG 572
UTF8TOCHAR 572
UTF8TOWCHAR 572
UVALID 573
UWIDTH 574
VERIFY 577
VERIFYR 578
WHIGH 579
WIDECHAR 580
WLOW 580

String-handling built-in functions
COLLAPSE 423
REGEX 532
SCRUBOUT 541
SQUEEZE 553

STRINGRANGE (STRG) condition 263, 362
STRINGRANGE condition prefix 342, 343
STRINGSIZE (STRZ) condition 263, 363
STRINGSIZE condition prefix 342, 343
STRUCT (DEFINE STRUCTURE) statement 140
structure expressions

extent 72
structure identifiers 46
structure mapping

description 187
effect of UNALIGNED attribute 189
example 189
rules for mapping one pair 188
rules for order of pairing 188

structure types, defining 140
structures

assignment 202, 203
attributes 22
controlled 243
cross sections of arrays 186
declaration 176
DEFINE STRUCTURE statement 140
defining 140
definition 176
expression 52
INDFOR attribute 182
levels

description 176
for unions 177
highest number for structures 177
highest number for unions 178
maximum number for structures 177
maximum number for unions 178

LIKE attribute 180
member elements 177
names

structures (continued)
names (continued)

description 176
elementary 176
for unions 177
major 176
minor 176

qualifying 144
qualifying names 178
specifying organization 176
typed

description 140
HANDLE built-in function 142
handles 141

variable 180
STRZ (STRINGSIZE) condition 363
subfields, for numeric character data 329
SUBRG (SUBSCRIPTRANGE) condition 263, 364
subroutines

built-in 106
example 105
identifying with the PROCEDURE statement 94
restrictions on 105
returning from 124

Subroutines 520, 521
subroutines, built-in

invoking 376
list 399–401
LOCNEWSPACE 475
LOCNEWVALUE 476
PLIASCII 512
PLIATTN 512
PLICANC 512
PLICKPT 513
PLIDELETE 513
PLIDUMP 513
PLIEBCDIC 513
PLIFILL 513
PLIFREE 514
PLIMOVE 514
PLIOVER 515
PLIPARSE 515
PLIREST 517
PLIRETC 517
PLISAXA 517
PLISAXB 518
PLISAXC 518
PLISAXD 519
PLISRTA 519
PLISRTB 519
PLISRTC 520
PLISRTD 520

subscripted qualified reference 186
SUBSCRIPTRANGE (SUBRG) condition 263, 364
SUBSCRIPTRANGE condition prefix 342, 343
subscripts

definition 175
interleaved 186
of arrays 175

SUBSTR built-in function 556
SUBSTR macro facility built-in function 610
SUBSTR pseudovariable 556
SUBTO built-in function 557
SUBTO pseudovariable 557

Index 693

SUBTRACT built-in function 558
SUCC built-in function 558
SUM built-in function 558
summary of changes xxxiv
SUPPRESS attribute 159
suppression characters 331
symbols, composite 4
syntax for VALUELIST attribute 48
syntax for VALUERANGE attribute 49
syntax, diagrams, how to read xxxi
SYSDIMSIZE macro facility built-in function 611
SYSIN 287
SYSNULL built-in function 558
SYSOFFSETSIZE macro facility built-in function 611
SYSPARM macro facility built-in function 611
SYSPOINTERSIZE macro facility built-in function 611
SYSPRINT 287
SYSTEM built-in function 559
SYSTEM macro facility built-in function 612
SYSTEM option of ON statement 344
SYSVERSION macro facility built-in function 612

T
T (overpunch) picture character 337
TALLY built-in function 559
TAN built-in function 559
TAND built-in function 559
TANH built-in function 560
targets

array 202
description 53
intermediate results 54
non-computational 201
pseudovariables

description 54
requirements for target variables 201
structure 202
variables 53

TASK attribute 372
task data, attributes, classification 21
task variable 372
termination

begin-block 112
block 91, 221, 230
procedure 100
program 90
thread 371

THEN clause of %IF statement 618
THEN clause of IF statement 222
thread

ATTACH statement 370
canceling 371
condition handling 372
creation of 369
detaching 372
ENVIRONMENT option 370
sharing data 373
sharing files 373
TASK attribute 372
task variable 372
termination 371
THREAD option 370
TSTACK option 370

thread (continued)
uses of 369
waiting 371

THREAD option 370
THREADID built-in function 560
TIME built-in function 560
time-only patterns 382
TIMESTAMP built-in function 560
TINY built-in function 560
TITLE option 103
TITLE specification on the OPEN statement 284
TO option 211
TO option on INITIAL attribute 270
Trademarks 637
TRANSLATE built-in function 561
TRANSLATE macro facility built-in function 612
transmission of data 275
TRANSMIT condition 364
TRIM built-in function 561
TRUNC built-in function 562
TSTACK option 370
TYPE attribute 142
TYPE built-in function 562
type definitions, description 137
type functions

arguments 589
BIND 590
CAST 590
discussion 589
FIRST 590
LAST 591
list 589
NEW 591
RESPEC 591
SIZE 592
VALUE 592

type functions, invoking 589
TYPE pseudovariable 563
typed names 137
typed structures in HANDLE built-in function 447
typed variables, declaring

handles 141
qualifying 144

types
DEFINE STRUCTURE statement 140
defining 137
description 142
HANDLE built-in function 142
handles 141
qualifying 144
type functions 148
variables 142

U
UCHAR 417, 443
UCHAR attribute

description 29
uchar constant

comparison operations 66
uchar data

conversion 87
UCHAR data

UX (UCHAR hex) string constant 39

694 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

UCHAR string constant 39
UCHAR VARYING 417
UFL (UNDERFLOW) condition 366
UHIGH built-in function 563
ULENGTH built-in function 563
ULENGTH16 built-in function 564
ULENGTH8 built-in function 563
ULOW built-in function 564
UNALIGNED attribute

description and syntax 160
effect on structure mapping 189
example 166
storage alignment requirements 161

UNALLOCATED built-in function 564
UNBUF (UNBUFFERED) attribute 282
UNBUFFERED (UNBUF) attribute 282
unconnected storage 176, 264
UNDEFINEDFILE (UNDF) condition 365
UNDERFLOW (UFL) condition 366
UNDERFLOW condition prefix 342, 343
UNDF (UNDEFINEDFILE) condition 365
UNION attribute 178
UNION, synonym for 178
unions

cross sections of arrays 186
declaration 177
description 177
example 178
levels 177
names 177
qualifying names 178
UNION attribute, classification 22

UNSIGNED attribute
data storage requirements 25
description 24
ordinals 139

UNSIGNED built-in function 565
UNSPEC built-in function 565
UNSPEC pseudovariable 567
UNTIL option

description 211
using with a type 2 DO specification 212

UPDATE attribute 281
UPOS built-in function 568
UPPERASCII built-in function 568
UPPERCASE built-in function 568
UPPERLATIN1 built-in function 569
UPTHRU option

description 212
example 219
using with a type 3 DO specification 215

UPTHRU, using with ordinals 219
USUBSTR built-in function 569
USUPPLEMENTARY built-in function 570
UTCDATETIME built-in function 570
UTCMICROSECS built-in function 571
UTCSECS built-in function 571
UTF-handling built-in functions

LOWERASCII 478
LOWERLATIN1 479
ONUCHAR 507
UHIGH 563
ULENGTH 563
ULENGTH16 564

UTF-handling built-in functions (continued)
ULENGTH8 563
ULOW 564
UPOS 568
UPPERASCII 568
UPPERLATIN1 569
USUBSTR 569
USUPPLEMENTARY 570
UTF8 571
UTF8TOCHAR 572
UTF8TOWCHAR 572
UVALID 573
UWIDTH 574

UTF8 built-in function 571
UTF8STG built-in function 572
UTF8TOCHAR built-in function 572
UTF8TOWCHAR built-in function 572
UUID built-in function 572
UUID4 built-in function 573
UVALID built-in function 573
UWIDTH built-in function 574
UX (UCHAR hex) string constant 39

V
V picture specification character 329
V-format item 325
VALID built-in function 575
VALIDDATE built-in function 575
VALIDVALUE built-in function 576
VALUE 46
VALUE attribute

description 46
ordinals 139

VALUE option 169, 170
VALUE type function 592
VALUELIST attribute 48
VALUELISTFROM attribute 48
VALUERANGE attribute 49
VARGLIST built-in function 576
VARGSIZE built-in function 576
VARIABLE attribute 46
variables

array 172
automatic 101
based

identifying 243
using 249

controlled 239
definition 15
discussion 240
entry 114
offset 246
pointer 246, 249
preprocessor 597
reference 15
representing complex data items 24
structure 176
targets 53

variables, as handles 141
variables, typed 142
VARYING (VAR) attribute 31
VARYING4 (VAR4)attribute 31
VARYINGZ (VARZ) attribute 31

Index 695

VERIFY built-in function 577
VERIFY macro facility built-in function 613
VERIFYR built-in function 578

W
WAIT statement 371
WCHARVAL built-in function 578
WEEKDAY built-in function 579
WHEN option of GENERIC declaration 121
WHEN statement

description 232
WHEREDIFF built-in function 579
WHIGH built-in function 579
WHILE option

description 211
using with a type 2 DO specification 212

WIDECHAR (WCHAR) attribute
description 29

WIDECHAR (WCHAR) built-in function 580
widechar constant

comparison operations 66
widechar data

conversion 87
WX (widechar hex) string constant 39

widechar string constant 39
WIDEPIC attribute 32
WINMAIN option 134
WLOW built-in function 580
WRITE statement

description 290
WSCOLLAPSE built-in function 580
WSCOLLAPSE16 built-in function 581
WSREPLACE built-in function 581
WSREPLACE16 built-in function 582
WX (widechar hex) string constant 39

X
X (hex) character string constant 34
X picture specification character 327
X-format item 325
XDEFINE ALIAS statement 234, 235
XDEFINE ORDINAL statement 235
XMLATTR attribute 184
XMLCHAR built-in function 582
XMLCONTENT attribute 184
XMLNAME attribute 184
XMLOMIT attribute 184
XMLSCRUB16 built-in function 584
XMLUCHAR built-in function 585
XN (binary hex) constant 26
XU (binary hex) constant 26

Y
Y zero replacement picture character 337
Y4DATE built-in function 585
Y4JULIAN built-in function 586
Y4YEAR built-in function 587

Z
Z zero suppression picture character 331
ZDIV (ZERODIVIDE) condition 366
zero replacement character 337
zero suppression characters 331
ZERODIVIDE (ZDIV) condition 366
ZERODIVIDE condition prefix 342, 343

696 Enterprise PL/I for z/OS: Enterprise PL/I for z/OS Language Reference

IBM®

Product Number: 5655-PL6

SC31-5716-00

	Contents
	Tables
	Figures
	Enterprise PL/I for z/OS Language Reference
	First Edition (May 2022)

	About this book
	Notation conventions used in this book
	Semantics
	Industry standards used
	Summary of changes
	Enhancements in this release
	Enhancements from 5.3
	Enhancements from 5.2
	Enhancements from 5.1
	Enhancements from 4.5
	Enhancements from 4.4
	Enhancements from 4.3
	Enhancements from 4.2
	Enhancements from 4.1
	Enhancements from 3.9
	Enhancements from 3.8
	Enhancements from 3.7
	Enhancements from 3.6
	Enhancements from 3.5
	Enhancements from 3.4
	Enhancements from 3.3
	Enhancements from 3.2
	Enhancements from 3.1

	How to send your comments
	Accessibility

	Chapter 1. Program elements
	Single-byte character set
	Decimal digits
	Binary digits
	Hexadecimal digits
	Special characters
	Composite symbols
	Case sensitivity
	Statement elements for SBCS
	Identifiers
	PL/I keywords
	Programmer-defined names

	Delimiters and operators

	Statements
	Simple statements
	Compound statements

	Groups
	Double-byte character set
	DBCS identifiers
	Single-byte identifiers in DBCS form
	DBCS identifiers containing double-byte characters
	Using double-byte character identifiers

	Statement elements for DBCS
	DBCS continuation rules

	Chapter 2. Data elements
	Data items
	Variables
	Constants
	Using quotation marks
	Punctuating constants

	Data types and attributes
	Data attributes
	Nondata attributes

	Computational data types and attributes
	Coded arithmetic data and attributes
	BINARY and DECIMAL attributes
	FIXED and FLOAT attributes
	PRECISION attribute
	REAL and COMPLEX attributes
	SIGNED and UNSIGNED attributes
	Binary fixed-point data
	Binary fixed-point constant
	XN (hex) binary fixed-point constant
	XU (hex) binary fixed-point constant
	Decimal fixed-point data
	Decimal fixed-point constant
	Binary floating-point data
	Binary floating-point constant
	Decimal floating-point data
	Decimal floating-point constant

	String data and attributes
	BIT, CHARACTER, GRAPHIC, UCHAR, and WIDECHAR attributes
	VARYING, VARYING4, VARYINGZ, and NONVARYING attributes
	PICTURE and WIDEPIC attributes
	Character data
	Character constant
	A (ASCII) character constant
	E (EBCDIC) character constant
	X (hex) character constant
	Bit data
	Bit constant
	B4 (hex) bit constant
	B3 (octal) bit constant
	Graphic data
	Graphic constant
	GX (hex) graphic constant
	Mixed character data
	M (Mixed) character constant
	UCHAR data
	UX (hex) UCHAR constant
	Widechar data
	WX (hex) widechar constant
	Numeric character data

	Date attribute
	Implicit DATE comparisons
	Comparing dates with like patterns
	Comparing dates with differing patterns
	Comparisons involving the DATE attribute and a literal
	Comparisons involving the DATE attribute and a non-literal
	Implicit DATE assignments
	Date diagnostics

	Program-control data types and attributes
	Label data and LABEL attribute
	Format data and FORMAT attribute
	VARIABLE attribute

	Value attributes
	VALUE attribute
	Named constants
	Examples of named constants

	VALUELIST attribute
	VALUELISTFROM attribute
	VALUERANGE attribute

	Chapter 3. Expressions and references
	Order of evaluation
	Targets
	Variables
	Pseudovariables
	Intermediate results

	Operational expressions
	Handle operations
	Pointer operations
	Arithmetic operations
	Data conversion in arithmetic operations
	Type
	Base
	Mode
	Precision
	Scale

	Results of arithmetic operations
	FIXED division

	Using exponentiation

	Bit operations
	Comparison operations
	Concatenation operations
	Combinations of operations
	Priority of operators

	Array expressions
	Prefix operators and arrays
	Infix operators and arrays
	Array-and-element operations
	Array-and-array operations

	Structure expressions
	Restricted expressions

	Chapter 4. Data conversion
	Built-in functions for computational data conversion
	Converting string lengths
	Converting arithmetic precision
	Converting mode
	Converting other data attributes
	Source-to-target rules
	Examples
	Example: DECIMAL FIXED converted to BINARY FIXED with fractions
	Example: Arithmetic converted to bit string
	Example: Arithmetic converted to character
	Example: A conversion error

	Chapter 5. Program organization
	Programs
	Program structure
	Program activation
	Program termination

	Blocks
	Block activation
	Block termination

	Packages
	Procedures
	PROCEDURE statement
	ENTRY statement
	Parameter attribute
	Simple Parameter Bounds, Lengths, and Sizes
	Controlled Parameter Bounds, Lengths, and Sizes
	Asterisk notation
	Expression notation
	Example of array argument with parameters

	Procedure activation
	Procedure termination
	Recursive procedures
	Dynamic loading of an external procedure
	Rules and features
	FETCH statement
	RELEASE statement

	Subroutines
	Example 1
	Example 2

	Built-in subroutines
	Functions
	Examples
	Built-in functions

	Passing arguments to procedures
	Using BYVALUE and BYADDR
	Using INONLY, INOUT and OUTONLY
	Dummy arguments
	Deriving dummy argument attributes
	Rules for dummy arguments

	Passing arguments to the MAIN procedure

	Begin-blocks
	BEGIN statement
	Begin-block activation
	Begin-block termination

	Entry data
	Entry constants
	Entry variables
	ENTRY attribute
	OPTIONAL attribute
	LIST attribute
	LIMITED attribute
	Generic entries
	GENERIC attribute

	Entry invocation or entry value
	CALL statement
	RETURN statement
	Return from a subroutine
	Return from a function

	OPTIONS option and attribute
	RETURNS option and attribute

	Chapter 6. Type definitions
	User-defined types (aliases)
	DEFINE ALIAS statement

	Defining ordinals
	DEFINE ORDINAL statement

	Defining typed structures and unions
	HANDLE attribute

	Declaring typed variables
	TYPE attribute
	ORDINAL attribute

	Typed structure qualification
	Using the period operator (.)
	Combinations of arrays and typed structures or unions
	Using handles

	Using ordinals
	Type functions

	Chapter 7. Data declarations
	Explicit declaration
	DECLARE statement
	Factoring attributes

	Implicit declaration
	Scope of declarations
	INTERNAL and EXTERNAL attributes

	RESERVED attribute
	FORCE attribute
	SUPPRESS attribute
	Data alignment
	ALIGNED and UNALIGNED attributes

	Defaults for attributes
	Language-specified defaults
	DEFAULT statement
	Restoring language-specified defaults

	Arrays
	DIMENSION attribute
	DIMACROSS attribute
	Examples of arrays
	Subscripts
	Cross sections of arrays

	Structures and unions
	Structures
	Unions
	Structure and union qualification
	Assignments to UNIONs
	LIKE attribute
	INDFOR attribute
	NOINIT attribute
	NULLINIT attribute
	XML-related attributes
	XMLATTR attribute
	XMLCONTENT attribute
	XMLIGNORE attribute
	XMLNAME attribute
	XMLOMIT attribute
	Example of using XMLATTR and XMLOMIT

	JSON-related attributes
	JSONNAME attribute
	JSONOMIT attribute
	JSONTRIMR attribute

	Aggregate combinations and mapping
	Combinations of arrays, structures, and unions
	Cross sections of arrays of structures or unions
	Structure and union operations
	Structure and union mapping
	Rules for order of pairing
	Rules for mapping one pair
	Effect of UNALIGNED attribute
	Example of structure mapping

	Chapter 8. Statements and directives
	ALLOCATE statement
	ASSERT statement
	Assignment and compound assignment statements
	Assignment statements
	Assignment statements that use the BY DIMACROSS option
	Compound assignment statements
	Target variables
	Non-computational targets
	Array targets
	Union targets
	Structure targets

	How assignments are performed
	Element assignments
	Aggregate assignments
	Array assignments
	Structure assignments without the BY NAME option
	Structure assignments using the BY NAME option
	Structure assignments using the BY DIMACROSS option

	Multiple assignments
	Examples
	Example of moving internal data
	Example of assigning expression values
	Example of assigning a structure using BY NAME
	Example of assigning a structure using BY DIMACROSS

	ATTACH statement
	BEGIN statement
	CALL statement
	CANCEL THREAD statement
	CLOSE statement
	DECLARE statement
	DEFAULT statement
	DEFINE ALIAS statement
	DEFINE ORDINAL statement
	DEFINE STRUCTURE statement
	DELAY statement
	DELETE statement
	DETACH statement
	DISPLAY statement
	DO statement
	Type 1
	Types 2 and 3
	Using type 2 WHILE and UNTIL
	Using type 3 with one specification
	Using type 3 with two or more specifications
	Using type 3 with TO, BY, REPEAT
	Using type 3 with UPTHRU
	Using type 3 with DOWNTHRU

	Type 4
	Examples of basic repetitions
	Repetition using the reference as a subscript
	Repetition with TO and BY

	Example of DO with WHILE, UNTIL
	Example of DO with UPTHRU and DOWNTHRU
	Example of REPEAT

	END statement
	ENTRY statement
	EXIT statement
	FETCH statement
	FLUSH statement
	FORMAT statement
	FREE statement
	GET statement
	GO TO statement
	IF statement
	Examples
	Short-circuit evaluation

	%INCLUDE directive
	ITERATE statement
	LEAVE statement
	%LINE directive
	LOCATE statement
	%NOPRINT directive
	%NOTE directive
	null statement
	ON statement
	OPEN statement
	OTHERWISE statement
	PACKAGE statement
	%PAGE directive
	%POP directive
	%PRINT directive
	PROCEDURE statement
	%PROCESS directive
	*PROCESS directive
	%PROCINC directive
	*PROCINC directive
	%PUSH directive
	PUT statement
	QUALIFY statement
	READ statement
	REINIT statement
	RELEASE statement
	RESIGNAL statement
	RETURN statement
	REVERT statement
	REWRITE statement
	SELECT statement
	SIGNAL statement
	%SKIP directive
	STOP statement
	WAIT statement
	WHEN statement
	WRITE statement
	%XINCLUDE statement
	XDECLARE statement
	XDEFINE ALIAS statement
	XDEFINE ORDINAL statement
	XDEFINE STRUCTURE statement
	XPROCEDURE statement

	Chapter 9. Storage control
	Storage classes, allocation, and deallocation
	Static storage and attribute
	Automatic storage and attribute
	Controlled storage and attribute
	ALLOCATE statement for controlled variables
	FREE statement for controlled variables
	Multiple generations of controlled variables
	Asterisk notation
	Adjustable extents
	Built-in functions for controlled variables

	Based storage and attribute
	Extent specifications in BASED declarations
	BASED VARYING string
	Storage allocation for BASED variable
	Locator variables
	DEFINED and UNION attributes
	INITIAL attribute
	Locator data
	Locator conversion
	Locator reference
	Locator qualification
	Levels of locator qualification

	POINTER variable and attribute
	Built-in functions for based variables
	ALLOCATE statement for based variables
	FREE statement for based variables
	REFER option (self-defining data)

	Area data and attribute
	Offset data and attribute
	Setting offset variables
	Examples of offset variables

	LOCATES attribute
	Built-in functions for area variables
	Area assignment
	Input/output of areas

	List processing
	ASSIGNABLE and NONASSIGNABLE attributes
	NORMAL and ABNORMAL attributes
	BIGENDIAN and LITTLEENDIAN attributes
	HEXADEC and IEEE attributes
	CONNECTED and NONCONNECTED attributes
	DEFINED and POSITION attributes
	Unconnected storage
	Simple defining
	iSUB Defining
	String Overlay Defining
	POSITION attribute

	INITIAL attribute
	Initializing array variables
	Initializing unions
	Initializing static variables
	Initializing automatic variables
	Initializing based and controlled variables
	Examples

	Chapter 10. Input and output
	Data sets
	Consecutive
	Indexed
	Relative
	Regional

	Files
	FILE attribute
	File constant
	File variable
	Specifying a file reference

	RECORD and STREAM attributes
	INPUT, OUTPUT, and UPDATE attributes
	SEQUENTIAL and DIRECT attributes
	BUFFERED and UNBUFFERED attributes
	ENVIRONMENT attribute
	KEYED attribute
	PRINT attribute

	Opening and closing files
	OPEN statement
	Implicit opening
	Example of file constant
	Example of file variable
	Example of implicit opening
	Examples of declarations of file constants

	CLOSE statement
	FLUSH statement

	SYSPRINT and SYSIN

	Chapter 11. Record-oriented data transmission
	Data transmitted
	Unaligned bit strings
	Varying length strings
	Area variables

	Data transmission statements
	READ statement
	WRITE statement
	REWRITE statement
	LOCATE statement
	DELETE statement

	Options of data transmission statements
	FILE option
	FROM option
	IGNORE option
	INTO option
	KEY option
	KEYFROM option
	KEYTO option
	SET option

	Processing modes
	Move mode
	Locate mode

	Chapter 12. Stream-oriented data transmission
	Data transmission statements
	GET statement
	PUT statement

	Options of data transmission statements
	COPY option
	Data specification options
	FILE option
	LINE option
	PAGE option
	SKIP option
	STRING option

	Transmission of data-list items
	Data-directed data specification
	Restrictions on data-directed data
	Syntax of data-directed data
	GET data-directed
	PUT data-directed

	Edit-directed data specification
	GET edit-directed
	PUT edit-directed
	FORMAT statement

	List-directed data specification
	Syntax of list-directed data
	GET list-directed
	PUT list-directed

	PRINT attribute
	DBCS data in stream I/O

	Chapter 13. Edit-directed format items
	A-format item
	B-format item
	C-format item
	COLUMN format item
	E-format item
	F-format item
	G-format item
	L-format item
	LINE format item
	P-format item
	PAGE format item
	R-format item
	SKIP format item
	V-format item
	X-format item

	Chapter 14. Picture specification characters
	Picture repetition factor
	Picture characters for character data
	Picture characters for numeric character data
	Digits and decimal points
	Zero suppression
	Insertion characters
	Insertion and decimal point characters

	Defining currency symbols
	Using signs and currency symbols
	Static use
	Drifting use

	Credit, debit, overpunched, and zero replacement characters
	Credit and debit
	Overpunch
	Zero replacement

	Exponent characters
	Scaling factor

	Chapter 15. Condition handling
	Condition prefixes
	Scope of the condition prefix
	Raising conditions with OPTIMIZATION

	On-units
	ON statement
	Null ON-unit
	Scope of the ON-unit
	Dynamically descendent ON-units
	ON-units for file variables

	REVERT statement
	SIGNAL statement
	RESIGNAL statement
	Multiple conditions
	CONDITION attribute

	Chapter 16. Conditions
	ANYCONDITION condition
	AREA condition
	ASSERTION condition
	ATTENTION condition
	CONDITION condition
	CONFORMANCE condition
	CONVERSION condition
	ENDFILE condition
	ENDPAGE condition
	ERROR condition
	FINISH condition
	FIXEDOVERFLOW condition
	INVALIDOP condition
	KEY condition
	NAME condition
	OVERFLOW condition
	RECORD condition
	SIZE condition
	STORAGE condition
	STRINGRANGE condition
	STRINGSIZE condition
	SUBSCRIPTRANGE condition
	TRANSMIT condition
	UNDEFINEDFILE condition
	UNDERFLOW condition
	ZERODIVIDE condition

	Chapter 17. Multithreading facility
	Creating a thread
	ATTACH statement
	Terminating a thread
	Canceling a thread
	Waiting for a thread to complete
	Detaching a thread
	Condition handling
	Task data and attribute
	THREADID built-in function
	Sharing data between threads
	Sharing files between threads

	Chapter 18. Built-in functions, pseudovariables, and subroutines
	Declaring and invoking built-in functions, pseudovariables, and built-in subroutines
	BUILTIN attribute
	Invoking built-in functions and pseudovariables
	Invoking built-in subroutines

	Specifying arguments for built-in functions, pseudovariables, and built-in subroutines
	Aggregate arguments
	Null and optional arguments

	Accuracy of mathematical functions
	Categories of built-in functions
	Arithmetic built-in functions
	Array-handling built-in functions
	Buffer-management built-in functions
	Condition-handling built-in functions
	Date/time built-in functions
	Encoding and hashing built-in functions
	Floating-point inquiry built-in functions
	Floating-point manipulation built-in functions
	Input/output built-in functions
	Integer manipulation built-in functions
	JSON built-in functions
	Mathematical built-in functions
	Miscellaneous built-in functions
	Ordinal-handling built-in functions
	Precision-handling built-in functions
	Pseudovariables
	Storage control built-in functions
	String-handling built-in functions
	Subroutines

	Descriptions of individual built-in functions, pseudovariables, and subroutines
	ABS
	ACOS
	ADD
	ADDR
	ADDRDATA
	ALL
	ALLCOMPARE
	ALLOC31
	ALLOCATE
	ALLOCATION
	ALLOCNEXT
	ALLOCSIZE
	ANY
	ASIN
	ATAN
	ATAND
	ATANH
	AUTOMATIC
	AVAILABLEAREA
	BASE64DECODE
	BASE64DECODE8
	BASE64DECODE16
	BASE64ENCODE
	BASE64ENCODE8
	BASE64ENCODE16
	BETWEEN
	BETWEENEXCLUSIVE
	BETWEENLEFTEXCLUSIVE
	BETWEENRIGHTEXCLUSIVE
	BINARY
	BINARYVALUE
	BINSEARCH
	BINSEARCHX
	BIT
	BITLOCATION
	BOOL
	BYTE
	BYTELENGTH
	CDS
	CEIL
	CENTERLEFT
	CENTERRIGHT
	CENTRELEFT
	CENTRERIGHT
	CHARACTER
	CHARGRAPHIC
	CHARVAL
	CHECKSTG
	CHECKSUM
	CODEPAGE
	COLLATE
	COLLAPSE
	COMPARE
	COMPLEX
	CONJG
	COPY
	COS
	COSD
	COSH
	COUNT
	CS
	CURRENTSIZE
	CURRENTSTORAGE
	DATAFIELD
	DATE
	DATETIME
	DAYS
	DAYSTODATE
	DAYSTOMICROSECS
	DAYSTOSECS
	DECIMAL
	DIMENSION
	DIVIDE
	EDIT
	EMPTY
	ENDFILE
	ENTRYADDR
	ENTRYADDR pseudovariable
	EPSILON
	ERF
	ERFC
	EXP
	EXPONENT
	FILEDDINT
	FILEDDTEST
	FILEDDWORD
	FILEID
	FILENEW
	FILEOPEN
	FILEREAD
	FILESEEK
	FILETELL
	FILEWRITE
	FIXED
	FIXEDBIN
	FIXEDDEC
	FLOAT
	FLOATBIN
	FLOATDEC
	FLOOR
	FOLDEDFULLMATCH
	FOLDEDSIMPLEMATCH
	GAMMA
	GETENV
	GETJCLSYMBOL
	GETSYSINT
	GETSYSWORD
	GRAPHIC
	GTCA
	HANDLE
	HBOUND
	HBOUNDACROSS
	HEX
	HEX8
	HEXDECODE
	HEXDECODE8
	HEXENCODE
	HEXENCODE8
	HEXIMAGE
	HEXIMAGE8
	HIGH
	HUGE
	IAND
	ICLZ
	IEOR
	IFTHENELSE
	IMAG
	IMAG pseudovariable
	INARRAY
	INDEX
	INDEXR
	INDICATORS
	INLIST
	INOT
	IOR
	IRLL
	IRRL
	ISFINITE
	ISIGNED
	ISINF
	ISJCLSYMBOL
	ISLL
	ISMAIN
	ISNAN
	ISNORMAL
	ISRL
	ISZERO
	IUNSIGNED
	JSONGETARRAYEND
	JSONGETARRAYSTART
	JSONGETCOLON
	JSONGETCOMMA
	JSONGETMEMBER
	JSONGETOBJECTEND
	JSONGETOBJECTSTART
	JSONGETVALUE
	JSONPUTARRAYEND
	JSONPUTARRAYSTART
	JSONPUTCOLON
	JSONPUTCOMMA
	JSONPUTMEMBER
	JSONPUTOBJECTEND
	JSONPUTOBJECTSTART
	JSONPUTVALUE
	JSONVALID
	JULIANTOSMF
	LBOUND
	LBOUNDACROSS
	LEFT
	LENGTH
	LINENO
	LOCATION
	LOCNEWSPACE
	LOCNEWVALUE
	LOCSTG
	LOCVAL
	LOG
	LOGGAMMA
	LOG2
	LOG10
	LOW
	LOWERASCII
	LOWERCASE
	LOWERLATIN1
	LOWER2
	MAINNAME
	MAX
	MAXDATE
	MAXEXP
	MAXLENGTH
	MAXVAL
	MEMCOLLAPSE
	MEMCONVERT
	MEMCU12
	MEMCU14
	MEMCU21
	MEMCU24
	MEMCU41
	MEMCU42
	MEMINDEX
	MEMREPLACE
	MEMSEARCH
	MEMSEARCHR
	MEMSQUEEZE
	MEMVERIFY
	MEMVERIFYR
	MICROSECS
	MICROSECSTODATE
	MICROSECSTODAYS
	MIN
	MINDATE
	MINEXP
	MINVAL
	MOD
	MPSTR
	MULTIPLY
	NULL
	NULLENTRY
	OFFSET
	OFFSETADD
	OFFSETDIFF
	OFFSETSUBTRACT
	OFFSETVALUE
	OMITTED
	ONACTUAL
	ONAREA
	ONCHAR
	ONCHAR pseudovariable
	ONCODE
	ONCONDCOND
	ONCONDID
	ONCOUNT
	ONEXPECTED
	ONFILE
	ONGSOURCE
	ONGSOURCE pseudovariable
	ONHBOUND
	ONJSONNAME
	ONKEY
	ONLBOUND
	ONLINE
	ONLOC
	ONOFFSET
	ONOPERATOR
	ONPACKAGE
	ONPROCEDURE
	ONSOURCE
	ONSOURCE pseudovariable
	ONSUBCODE
	ONSUBCODE2
	ONSUBSCRIPT
	ONTEXT
	ONUCHAR
	ONUCHAR pseudovariable
	ONUSOURCE
	ONUSOURCE pseudovariable
	ONWCHAR
	ONWCHAR pseudovariable
	ONWSOURCE
	ONWSOURCE pseudovariable
	ORDINALNAME
	ORDINALPRED
	ORDINALSUCC
	PACKAGENAME
	PAGENO
	PICSPEC
	PLACES
	PLIASCII
	PLIATTN
	PLICANC
	PLICKPT
	PLIDELETE
	PLIDUMP
	PLIEBCDIC
	PLIFILL
	PLIFREE
	PLIMOVE
	PLIOVER
	PLIPARSE
	PLIREST
	PLIRETC
	PLIRETV
	PLISAXA
	PLISAXB
	PLISAXC
	PLISAXD
	PLISRTA
	PLISRTB
	PLISRTC
	PLISRTD
	PLISTCK
	PLISTCKE
	PLISTCKELOCAL
	PLISTCKEUTC
	PLISTCKF
	PLISTCKLOCAL
	PLISTCKP
	PLISTCKPLOCAL
	PLISTCKPUTC
	PLISTCKUTC
	PLITRAN11
	PLITRAN12
	PLITRAN21
	PLITRAN22
	POINTER
	POINTERADD
	POINTERDIFF
	POINTERSUBTRACT
	POINTERVALUE
	POLY
	POPCNT
	PRECISION
	PRECVAL
	PRED
	PRESENT
	PROCEDURENAME
	PROD
	PUTENV
	QUICKSORT
	QUICKSORTX
	RADIX
	RAISE2
	RANDOM
	RANK
	REAL
	REAL pseudovariable
	REGEX
	REM
	REPATTERN
	REPEAT
	REPLACE
	REPLACEBY2
	REVERSE
	RIGHT
	ROUND
	ROUNDAWAYFROMZERO
	ROUNDTOEVEN
	SAMEKEY
	SCALE
	SCALEVAL
	SCRUBOUT
	SEARCH
	SEARCHR
	SECS
	SECSTODATE
	SECSTODAYS
	SHA1DIGEST
	SHA1FINAL
	SHA1INIT
	SHA1UPDATE
	SHA2DIGEST224, SHA2DIGEST256, SHA2DIGEST384, and SHA2DIGEST512
	SHA2FINAL224, SHA2FINAL256, SHA2FINAL384, and SHA2FINAL512
	SHA2INIT224, SHA2INIT256, SHA2INIT384, and SHA2INIT512
	SHA2UPDATE224, SHA2UPDATE256, SHA2UPDATE384, and SHA2UPDATE512
	SHA3DIGEST224, SHA3DIGEST256, SHA3DIGEST384, and SHA3DIGEST512
	SHA3FINAL224, SHA3FINAL256, SHA3FINAL384, and SHA3FINAL512
	SHA3INIT224, SHA3INIT256, SHA3INIT384, and SHA3INIT512
	SHA3UPDATE224, SHA3UPDATE256, SHA3UPDATE384, and SHA3UPDATE512
	SIGN
	SIGNED
	SIN
	SIND
	SINH
	SIZE
	SMFTOJULIAN
	SOURCEFILE
	SOURCELINE
	SQRT
	SQRTF
	SQUEEZE
	STACKADDR
	STCKETODATE
	STCKTODATE
	STORAGE
	STRING
	STRING pseudovariable
	SUBSTR
	SUBSTR pseudovariable
	SUBTO
	SUBTO pseudovariable
	SUBTRACT
	SUCC
	SUM
	SYSNULL
	SYSTEM
	TALLY
	TAN
	TAND
	TANH
	THREADID
	TIME
	TIMESTAMP
	TINY
	TRANSLATE
	TRIM
	TRUNC
	TYPE
	TYPE pseudovariable
	UHIGH
	ULENGTH
	ULENGTH8
	ULENGTH16
	ULOW
	UNALLOCATED
	UNHEX
	UNSIGNED
	UNSPEC
	UNSPEC pseudovariable
	UPOS
	UPPERASCII
	UPPERCASE
	UPPERLATIN1
	USUBSTR
	USUPPLEMENTARY
	UTCDATETIME
	UTCMICROSECS
	UTCSECS
	UTF8
	UTF8STG
	UTF8TOCHAR
	UTF8TOWCHAR
	UUID
	UUID4
	UVALID
	UWIDTH
	VALID
	VALIDDATE
	VALIDVALUE
	VARGLIST
	VARGSIZE
	VERIFY
	VERIFYR
	WCHARVAL
	WEEKDAY
	WHIGH
	WHEREDIFF
	WIDECHAR
	WLOW
	WSCOLLAPSE
	WSCOLLAPSE16
	WSREPLACE
	WSREPLACE16
	XMLCHAR
	XMLSCRUB
	XMLSCRUB16
	XMLUCHAR
	Y4DATE
	Y4JULIAN
	Y4YEAR

	Chapter 19. Type functions
	Invoking type functions
	Specifying arguments for type functions
	Brief descriptions of type functions
	BIND
	CAST
	FIRST
	LAST
	NEW
	RESPEC
	SIZE
	VALUE

	Chapter 20. Preprocessor facilities
	Preprocessor options
	Preprocessor scan
	Execution of preprocessor statements
	Execution of listing control statements
	Execution of input text

	Preprocessor variables and data elements
	Preprocessor references and expressions
	Scope of preprocessor names
	Preprocessor procedures
	Arguments and parameters for preprocessor procedures
	%PROCEDURE statement
	Preprocessor RETURN statement
	Preprocessor ANSWER statement
	Preprocessor CALL statement

	Preprocessor built-in functions
	COLLATE
	COMMENT
	COMPILEDATE
	COMPILETIME
	COPY
	COUNTER
	DIMENSION
	HBOUND
	INDEX
	LBOUND
	LENGTH
	LOWERCASE
	MACCOL
	MACLMAR
	MACNAME
	MACRMAR
	MAX
	MIN
	PARMSET
	QUOTE
	REPEAT
	SUBSTR
	SYSDIMSIZE
	SYSOFFSETSIZE
	SYSPARM
	SYSPOINTERSIZE
	SYSTEM
	SYSVERSION
	TRANSLATE
	TRIM
	UPPERCASE
	VERIFY

	Preprocessor statements
	%ACTIVATE statement
	%assignment statement
	%DEACTIVATE statement
	%DECLARE statement
	%DO statement
	%END statement
	%GO TO statement
	%IF statement
	%INCLUDE statement
	%INSCAN statement
	%ITERATE statement
	%LEAVE Statement
	%NOTE statement
	%null statement
	%REPLACE statement
	%SELECT statement
	%XINCLUDE statement
	%XINSCAN statement

	Preprocessor examples

	Appendix A. Limits
	Notices
	Trademarks

	Bibliography
	PL/I publications
	Related publications

	Glossary
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

