
Enterprise PL/I for z/OS

Programming Guide
Version 5 Release 1

GI13-4536-00

IBM

Enterprise PL/I for z/OS

Programming Guide
Version 5 Release 1

GI13-4536-00

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
521.

First Edition (August 2017)

This edition applies to Version 5 Release 1 of Enterprise PL/I for z/OS and to any subsequent releases until
otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for the
level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation, Department H150/090
555 Bailey Ave
San Jose, CA, 95141-1099
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1999, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables ix

Figures xi

Introduction xiii
About this document xiii
Runtime environment for Enterprise PL/I for z/OS xiii
Using your documentation xiii
Notation conventions used in this document . . . xiv

Conventions used xiv
How to read the syntax notation xv
How to read the notational symbols xvii

Summary of changes xviii
Enhancements in this release xviii
Enhancements from V4R5 xxi
Enhancements from V4R4 xxii
Enhancements from V4R3 xxiii
Enhancements from V4R2 xxiv
Enhancements from V4R1 xxv
Enhancements from V3R9 xxvi
Enhancements from V3R8 xxviii
Enhancements from V3R7 xxix
Enhancements from V3R6 xxx
Enhancements from V3R5 xxxi
Enhancements from V3R4 xxxii
Enhancements from V3R3 xxxiv
Enhancements from V3R2 xxxv
Enhancements from V3R1 xxxvi
Enhancements from VisualAge PL/I xxxvii

How to send your comments xxxviii
Accessibility. xxxviii

Part 1. Compiling your program . . . 1

Chapter 1. Using compiler options and
facilities. 3
Compile-time option descriptions 3

AGGREGATE 7
ARCH 8
ASSERT 9
ATTRIBUTES 9
BACKREG. 10
BIFPREC 10
BLANK. 11
BLKOFF 12
BRACKETS 12
CASE 12
CASERULES 13
CEESTART 13
CHECK 14
CMPAT. 15
CODEPAGE 16
COMMON 16
COMPILE 17

COPYRIGHT 17
CSECT 18
CSECTCUT 18
CURRENCY 19
DBCS 19
DD 19
DDSQL. 20
DECIMAL 20
DECOMP 22
DEFAULT 22
DEPRECATE 31
DEPRECATENEXT 32
DISPLAY 33
DLLINIT 33
EXIT. 33
EXPORTALL 34
EXTRN 34
FILEREF 34
FLAG 34
FLOAT 35
FLOATINMATH. 36
GOFF 37
GONUMBER 38
GRAPHIC 38
HEADER 39
IGNORE 39
INCAFTER 39
INCDIR 40
INCLUDE 40
INCPDS 41
INITAUTO 41
INITBASED 42
INITCTL 42
INITSTATIC 43
INSOURCE 43
INTERRUPT 44
JSON 44
LANGLVL. 45
LIMITS 45
LINECOUNT 47
LINEDIR 47
LIST 47
LISTVIEW 47
LP 49
MACRO 49
MAP 50
MARGINI 50
MARGINS. 50
MAXBRANCH 51
MAXGEN 52
MAXMEM. 52
MAXMSG 53
MAXNEST 53
MAXSTMT 54
MAXTEMP 54
MDECK 54

© Copyright IBM Corp. 1999, 2017 iii

||

||

MSGSUMMARY. 55
NAME 55
NAMES 56
NATLANG 56
NEST 56
NOT. 56
NULLDATE 57
NUMBER 57
OBJECT 58
OFFSET 58
OFFSETSIZE 58
ONSNAP 59
OPTIMIZE. 59
OPTIONS 60
OR 61
PP 61
PPCICS. 62
PPINCLUDE 63
PPLIST 63
PPMACRO 64
PPSQL 64
PPTRACE 65
PRECTYPE 65
PREFIX 65
PROCEED 66
PROCESS 66
QUOTE. 67
REDUCE 67
RENT 68
RESEXP 69
RESPECT 70
RTCHECK. 70
RULES 70
SEMANTIC 83
SERVICE 84
SOURCE 84
SPILL 85
STATIC 85
STDSYS 85
STMT 86
STORAGE 86
STRINGOFGRAPHIC 86
SYNTAX 87
SYSPARM 87
SYSTEM 88
TERMINAL 89
TEST 89
UNROLL 92
USAGE 92
WIDECHAR 93
WINDOW 94
WRITABLE 94
XINFO 95
XML. 98
XREF 98

Blanks, comments and strings in options 99
Changing the default options 99
Specifying options in the %PROCESS or *PROCESS
statements 100
Using % statements 101
Using the %INCLUDE statement 101

Using the compiler listing 103
Heading information 103
Options used for compilation 104
Preprocessor input 104
SOURCE program 104
Statement nesting level 105
ATTRIBUTE and cross-reference table 105
Aggregate length table 106
Statement offset addresses 106
Storage offset listing 109
Expressions and attributes listing 110
File reference table. 110
Messages and return codes 111
Example 112

Chapter 2. PL/I preprocessors 117
Include preprocessor 117
Macro preprocessor 118

Macro preprocessor options 118
Macro preprocessor example 121

SQL preprocessor 122
Programming and compilation considerations 123
SQL preprocessor options 125
Coding SQL statements in PL/I applications 129
Manipulating LOB data 140
Suppressing SQL preprocessor messages . . . 143

CICS preprocessor 144
Programming and compilation considerations 144
CICS preprocessor options 145
Coding CICS statements in PL/I applications 145
Writing CICS transactions in PL/I 146
Error-handling 146

Chapter 3. Using PL/I cataloged
procedures 147
IBM-supplied cataloged procedures 147

Compile only (IBMZC) 148
Compile and bind (IBMZCB) 149
Compile, bind, and run (IBMZCBG) 151

Invoking a cataloged procedure 153
Specifying multiple cataloged procedure
invocations 153
Modifying the PL/I cataloged procedures 154

EXEC statement 154
DD statement 155

Chapter 4. Compiling your program 157
Invoking the compiler under z/OS UNIX 157

Input files 157
Specifying compile-time options under z/OS
UNIX 158
-qoption_keyword 158
Single and multiletter flags 159

Invoking the compiler under z/OS using JCL . . 159
EXEC statement 160
DD statements for the standard data sets . . . 160
Listing (SYSPRINT) 162
Source Statement Library (SYSLIB) 162
Specifying options 163
Specifying options in the EXEC statement . . . 163

iv Enterprise PL/I for z/OS Programming Guide

Specifying options in the EXEC statement using
an options file 164

Chapter 5. Link-editing and running
for 31-bit programs 165
Link-edit considerations for 31-bit programs . . . 165

Using the binder in 31-bit programs 165
Using the ENTRY card 165

Runtime considerations for 31-bit programs . . . 165
Formatting conventions for PRINT files . . . 166
Changing the format on PRINT files for 31-bit
programs 166
Automatic prompting 167
Overriding automatic prompting 168
Punctuating long input lines 168
Punctuating GET LIST and GET DATA
statements 169
Automatic padding for GET EDIT 169
Use of SKIP for terminal input 169
ENDFILE. 169

SYSPRINT considerations for 31-bit programs . . 170
Using MSGFILE(SYSPRINT) 171

Using FETCH in your routines in 31-bit
applications 171

Fetching Enterprise PL/I routines in 31-bit
applications 172
Fetching PL/I MAIN routines in 31-bit
applications 180
Fetching z/OS C routines in 31-bit applications 181
Fetching assembler routines in 31-bit
applications 181

Invoking MAIN under TSO/E. 181
Invoking MAIN under z/OS UNIX 182

Chapter 6. Link-editing and running
for 64-bit programs 185
Link-edit considerations for 64-bit programs . . . 185

Using the binder in 64-bit programs 185
Using the ENTRY card in 64-bit programs . . . 185

Runtime considerations for 64-bit programs . . . 185
SYSPRINT considerations for 64-bit programs . . 186
Using FETCH in your routines in 64-bit
applications 186

Fetching Enterprise PL/I routines in 64-bit
applications 186
Fetching PL/I MAIN routines in 64-bit
applications 186
Fetching assembler routines in 64-bit
applications 186

Invoking MAIN under TSO/E. 187
Invoking MAIN under z/OS UNIX 188

Chapter 7. Considerations for
developing 64-bit applications 191
Using compiler options to build 64-bit applications 191
Using attributes HANDLE and POINTER under
LP(64) 192

HANDLE attribute 192
POINTER attribute 192

Using ENTRY variables under LP(64) 193

Using built-in functions under LP(64) 193
Considerations for SQL programs 194
Communicating with 31-bit routines. 196

Part 2. Using I/O facilities 199

Chapter 8. Using data sets and files 201
Allocating files 201
Associating data sets with files under z/OS . . . 203

Associating several files with one data set . . . 205
Associating several data sets with one file . . . 205
Concatenating several data sets 206
Accessing HFS files under z/OS 206

Associating data sets with files under z/OS UNIX 207
Using environment variables 207
Using the TITLE option of the OPEN statement 208
Attempting to use files not associated with data
sets. 210
How PL/I finds data sets 210
Specifying characteristics using DD_DDNAME
environment variables 210

Establishing data set characteristics 216
Blocks and records 217
Information interchange codes. 217
Record formats 217
Data set organization 219
Labels 220
Data Definition (DD) statement 220
Using the TITLE option of the OPEN statement 221
Associating PL/I files with data sets 222
Specifying characteristics in the
ENVIRONMENT attribute 224

Chapter 9. Using libraries 235
Types of libraries 235
Using a library 235
Creating a library 236

SPACE parameter 236
Creating and updating a library member 237

Example: Creating new libraries for compiled
object modules 237
Example: Placing a load module in an existing
library. 238
Example: Updating a library member 238

Extracting information from a library directory . . 239

Chapter 10. Defining and using
consecutive data sets. 241
Using stream-oriented data transmission 241

Defining files using stream I/O 241
Defining stream files using PL/I dynamic
allocation. 242
Specifying ENVIRONMENT options 242
Creating a data set with stream I/O 245
Accessing a data set with stream I/O 249
Using PRINT files with stream I/O 250
Using SYSIN and SYSPRINT files for 31-bit
programs 255

Contents v

Using SYSIN and SYSPRINT files for 64-bit
programs 255

Controlling input from the terminal 255
Format of data 257
Stream and record files 257
Defining QSAM files using PL/I dynamic
allocation. 258
Capital and lowercase letters 258
End-of-file 258
COPY option of GET statement 259

Chapter 11. Controlling output to the
terminal 261
Format of PRINT files 261
Stream and record files 261
Output from the PUT EDIT command 262

Chapter 12. Using record-oriented
data transmission 263
Specifying record format 264
Defining files using record I/O 264
Specifying ENVIRONMENT options 264

CONSECUTIVE 265
ORGANIZATION(CONSECUTIVE) 265
CTLASA|CTL360 266
LEAVE|REREAD 267

Creating a data set with record I/O 268
Essential information 268

Accessing and updating a data set with record I/O 269
Essential information 270
Example of consecutive data sets 270

Chapter 13. Defining and using
regional data sets 275
Defining REGIONAL(1) data sets using PL/I
dynamic allocation 277
Defining files for a regional data set 277

Specifying ENVIRONMENT options 277
Using keys with REGIONAL data sets 278

Using REGIONAL(1) data sets 278
Dummy Records 279
Creating a REGIONAL(1) data set 279
Accessing and updating a REGIONAL(1) data
set 280

Essential information for creating and accessing
regional data sets 283

Chapter 14. Defining and using VSAM
data sets 287
Defining VSAM file using PL/I dynamic allocation 287
Using VSAM data sets 287

Running a program with VSAM data sets . . . 287
Pairing an alternate index path with a file . . . 288

VSAM organization 288
Keys for VSAM data sets 290
Choosing a data set type 291

Defining files for VSAM data sets 293
Specifying ENVIRONMENT options 294
Performance options 297

Defining files for alternate index paths 297
Defining VSAM data sets 298
Entry-sequenced data sets 298

Loading an ESDS 299
Using a SEQUENTIAL file to access an ESDS 299

Key-sequenced and indexed entry-sequenced data
sets. 302

Loading a KSDS or indexed ESDS 304
Using a SEQUENTIAL file to access a KSDS or
indexed ESDS 306
Using a DIRECT file to access a KSDS or
indexed ESDS 306
Updating a KSDS 308
Alternate indexes for KSDSs or indexed ESDSs 309

Relative-record data sets. 316
Loading an RRDS 317
Using a SEQUENTIAL file to access an RRDS 320
Using a DIRECT file to access an RRDS . . . 320

Using files defined for non-VSAM data sets . . . 322
Using shared data sets 322

Part 3. Improving your program 323

Chapter 15. Improving performance 325
Selecting compiler options for optimal performance 325

OPTIMIZE 325
GONUMBER 325
ARCH. 326
REDUCE 326
RULES 326
PREFIX 327
CONVERSION 328
FIXEDOVERFLOW 328
DEFAULT 328
Summary of compiler options that improve
performance 331

Coding for better performance 331
DATA-directed input and output 332
Input-only parameters 332
GOTO statements 332
String assignments 333
Loop control variables 333
PACKAGEs versus nested PROCEDUREs . . . 334
REDUCIBLE functions 334
DESCLOCATOR or DESCLIST 335
DEFINED versus UNION 335
Named constants versus static variables . . . 336
Avoiding calls to library routines 337
Preloading library routines 338

Part 4. Using interfaces to other
products 339

Chapter 16. Using the Sort program 341
Preparing to use Sort 341

Choosing the type of Sort 342
Specifying the sorting field 345
Specifying the records to be sorted 346
Determining storage needed for Sort 347

vi Enterprise PL/I for z/OS Programming Guide

Calling the Sort program 348
Example 1 349
Example 2 350
Example 3 350
Example 4 350
Example 5 350
Determining whether the Sort was successful 351
Establishing data sets for Sort 351

Sort data input and output 352
Data input and output handling routines 352

E15—Input handling routine (Sort Exit E15) . . 353
E35—Output handling routine (Sort Exit E35) 356
Calling PLISRTA example 357
Calling PLISRTB example 357
Calling PLISRTC example 358
Calling PLISRTD example 359
Sorting variable-length records example . . . 361

Chapter 17. ILC with C 363
Equivalent data types 363

Simple type equivalence 363
Struct type equivalence 364
Enum type equivalence 364
File type equivalence 365

Using C functions 365
Matching simple parameter types 366
Matching string parameter types 369
Functions returning ENTRYs 370

Linkages 371
Sharing output and input 373

Sharing output 373
Sharing input 374
Using the ATTACH statement 374
Redirecting C standard streams 374

Summary. 374

Chapter 18. Interfacing with Java . . . 377
Java Native Interface (JNI) 377
Calling PL/I program from Java 378
JNI sample program #1 - 'Hello World' 378

Step 1: Writing the Java program 378
Step 2: Compiling the Java program 379
Step 3: Writing the PL/I Program 379
Step 4: Compiling and linking the PL/I program 381
Step 5: Running the sample program 381

JNI sample program #2 - Passing a string 382
Step 1: Writing the Java program 382
Step 2: Compiling the Java program 383
Step 3: Writing the PL/I program 384
Step 4: Compiling and linking the PL/I program 386
Step 5: Running the sample program 386

JNI sample program #3 - Passing an integer . . . 386
Step 1: Writing the Java program 386
Step 2: Compiling the Java program 389
Step 3: Writing the PL/I program 389
Step 4: Compiling and linking the PL/I program 390
Step 5: Running the sample program 391

JNI sample program #4 - Java invocation API . . 391
Step 1: Writing the Java program 391
Step 2: Compiling the Java program 392

Step 3: Writing the PL/I program 392
Step 4: Compiling and linking the PL/I program 395
Step 5: Running the sample program 395

Attaching programs to an existing Java VM . . . 395
Determining equivalent Java and PL/I data types 396

Part 5. Specialized programming
tasks 397

Chapter 19. Using the PLISAXA and
PLISAXB XML parsers 399
Overview. 399
The PLISAXA built-in subroutine 400
The PLISAXB built-in subroutine 400
The SAX event structure. 401

start_of_document. 401
version_information 402
encoding_declaration 402
standalone_declaration 402
document_type_declaration. 402
end_of_document 402
start_of_element 402
attribute_name 402
attribute_characters 402
attribute_predefined_reference. 403
attribute_character_reference 403
end_of_element. 403
start_of_CDATA_section 403
end_of_CDATA_section 403
content_characters 403
content_predefined_reference 404
content_character_reference. 404
processing_instruction 404
comment 404
unknown_attribute_reference 404
unknown_content_reference 404
start_of_prefix_mapping 404
end_of_prefix_mapping 404
exception 404
Parameters to the event functions 405

Coded character sets for XML documents 405
Supported EBCDIC code pages 406
Supported ASCII code pages 406
Specifying the code page 406

Exceptions 407
Example 408
Continuable exception codes 420
Terminating exception codes 424

Chapter 20. Using the PLISAXC and
PLISAXD XML parsers 429
Overview. 429
The PLISAXC built-in subroutine 430
The PLISAXD built-in subroutine. 430
The SAX event structure. 431

start_of_document. 432
version_information 432
encoding_declaration 432
standalone_declaration 432

Contents vii

document_type_declaration. 432
end_of_document 432
start_of_element 432
attribute_name 432
attribute_characters 432
end_of_element. 433
start_of_CDATA_section 433
end_of_CDATA_section 433
content_characters 433
processing_instruction 433
comment 434
namespace_declare 434
end_of_input 434
unresolved_reference 434
exception 434
Parameters to the event functions 434
Differences in the events 436

Coded character sets for XML documents 437
Supported code pages 438
Specifying the code page 438

Exceptions 439
Parsing XML documents with validation 439

XML schema 440
Creating an OSR 441

Example with a simple document 441
Example of using the PLISAXC built-in
subroutine 441
Example of using the PLISAXD built-in
subroutine 451

Chapter 21. Using PLIDUMP 463
PLIDUMP usage notes 464
Locating variables in the PLIDUMP output . . . 465

Locating AUTOMATIC variables 465
Locating STATIC variables 466
Locating CONTROLLED variables 467

Saved compilation data 471
Copyright 471
Timestamp 471
Saved options string 472

Chapter 22. Interrupts and attention
processing 473
Using ATTENTION ON-units 474
Interaction with a debugging tool 474

Chapter 23. Using the
Checkpoint/Restart facility. 475
Requesting a checkpoint record 475
Defining the checkpoint data set 476
Requesting a restart 477

Automatic restart after a system failure. . . . 477
Automatic restart within a program 477
Getting a deferred restart 477
Modifying checkpoint/restart activity 478

Chapter 24. Using user exits 479
Procedures performed by the compiler user exit 479

Structure of global control blocks 480
The IBM-supplied compiler exit, IBMUEXIT . . . 481
Activating the compiler user exit 482
Customizing the compiler user exit 482

Modifying SYSUEXIT 482
Writing your own compiler exit 483
Writing the initialization procedure 483
Writing the message filtering procedure . . . 483
Writing the termination procedure 485

Example of suppressing SQL messages 486

Chapter 25. PL/I descriptors 493
Passing an argument 493

Argument passing by descriptor list 493
Argument passing by locator/descriptor . . . 494

CMPAT(V*) descriptors 494
String descriptors 494
Array descriptors 496

CMPAT(LE) descriptors 496
String descriptors 497
Array descriptors 497

Part 6. Appendixes 499

Appendix. SYSADATA message
information 501
Understanding the SYSADATA file 501

Summary record 502
Options record 503
Counter records 503
Literal records 503
File records 504
Message records 504

Understanding SYSADATA symbol information 505
Ordinal type records 505
Ordinal element records 506
Symbol records 507

Understanding SYSADATA syntax information . . 510
Source records 510
Token records 511
Syntax records 512

Notices 521
Trademarks 522

Bibliography. 523
PL/I publications 523
Related publications 523

Glossary 525

Index 543

viii Enterprise PL/I for z/OS Programming Guide

||
||
||

Tables

1. How to use Enterprise PL/I publications xiii
2. How to use z/OS Language Environment

publications xiv
3. Compile-time options, abbreviations, and

IBM-supplied defaults 4
4. Supported CCSIDs 16
5. SYSTEM option table 88
6. Using the FLAG option to select the lowest

message severity listed 111
7. Description of PL/I error codes and return

codes 112
8. SQL preprocessor options and IBM-supplied

defaults 125
9. SQL data types generated from PL/I

declarations 136
10. SQL data types generated from SQL TYPE

declarations 136
11. SQL data types mapped to PL/I declarations 136
12. SQL data types mapped to SQL TYPE

declarations 137
13. Compile-time option flags supported by

Enterprise PL/I under z/OS UNIX 159
14. Compiler standard data sets 160
15. Attributes of PL/I file declarations 224
16. A comparison of data set types available to

PL/I record I/O 232
17. Information required when you create a

library 236
18. Statements and options allowed for creating

and accessing consecutive data sets 263
19. IBM machine code print control characters

(CTL360) 267

20. Effect of LEAVE and REREAD Options 267
21. Creating a consecutive data set with record

I/O: essential parameters of the DD statement 268
22. Accessing a consecutive data set with record

I/O: essential parameters of the DD statement 270
23. Statements and options allowed for creating

and accessing regional data sets 276
24. Creating a regional data set: essential

parameters of the DD statement 284
25. DCB subparameters for a regional data set 285
26. Accessing a regional data set: essential

parameters of the DD statement 285
27. Types of VSAM data sets and corresponding

PL/I data set organization 288
28. Types and advantages of VSAM data sets 290
29. VSAM data sets and allowed file attributes 292
30. Processing allowed on alternate index paths 293
31. Statements and options allowed for loading

and accessing VSAM entry-sequenced data
sets 298

32. Statements and options allowed for loading
and accessing VSAM indexed data sets . . . 302

33. Statements and options allowed for loading
and accessing VSAM relative-record data sets . 316

34. The entry points and arguments to PLISRTx
(x = A, B, C, or D) 348

35. C and PL/I type equivalents 363
36. Java primitive types and PL/I native

equivalents 396
37. Continuable exceptions 420
38. Terminating exceptions 424

© Copyright IBM Corp. 1999, 2017 ix

x Enterprise PL/I for z/OS Programming Guide

Figures

1. Including source statements from a library 103
2. Finding statement number (compiler listing

example) 108
3. Finding statement number (runtime message

example) 108
4. Compiler listing example 113
5. Using the macro preprocessor to produce a

source deck 122
6. The PL/I declaration of SQLCA 129
7. The PL/I declaration of an SQL descriptor

area 130
8. SQL statement containing indicator variables 139
9. pliclob sample program 142

10. Invoking a cataloged procedure 148
11. Cataloged Procedure IBMZC 149
12. Cataloged procedure IBMZCB 150
13. Cataloged procedure IBMZCBG 152
14. Declaration of PLITABS 167
15. PAGELENGTH and PAGESIZE 167
16. Output with automatic prompt 168
17. Output with no automatic prompt 168
18. Sample JCL to compile, link, and invoke the

user exit 174
19. Sample program to display program

arguments from the CPPL under TSO when
using SYSTEM(STD) option 182

20. Sample program to display z/OS UNIX
arguments and environment variables . . . 183

21. Sample program to display program
arguments from the CPPL under TSO when
using SYSTEM(STD) option 187

22. Sample program to display z/OS UNIX
arguments and environment variables . . . 189

23. Fixed-length records 218
24. How the operating system completes the

DCB 223
25. Creating new libraries for compiled object

modules 238
26. Placing a load module in an existing library 238
27. Creating a library member in a PL/I program 239
28. Updating a library member 239
29. Creating a data set with stream-oriented data

transmission 247
30. Writing graphic data to a stream file 248
31. Accessing a data set with stream-oriented

data transmission 250
32. Creating a print file via stream data

transmission 253
33. PL/I structure PLITABS for modifying the

preset tab settings 254
34. American National Standard print and card

punch control characters (CTLASA) 266
35. Merge Sort—creating and accessing a

consecutive data set 271
36. Printing record-oriented data transmission 273
37. Creating a REGIONAL(1) data set 280

38. Updating a REGIONAL(1) data set 282
39. Defining and loading an ESDS 301
40. Updating an ESDS 302
41. Defining and loading a key-sequenced data

set (KSDS) 305
42. Updating a KSDS 307
43. Creating a unique key alternate index path

for an ESDS 309
44. Creating a nonunique key alternate index

path for an ESDS 310
45. Creating a unique key alternate index path

for a KSDS 311
46. Alternate index paths and backward reading

with an ESDS 313
47. Using a unique alternate index path to access

a KSDS 315
48. Defining and loading a relative-record data

set (RRDS) 319
49. Updating an RRDS. 321
50. Flow of control for Sort program 344
51. Flowcharts for input and output handling

subroutines 354
52. Skeletal code for an input procedure 355
53. Skeletal code for an output handling

procedure 356
54. PLISRTA—sorting from input data set to

output data set 357
55. PLISRTB—sorting from input handling

routine to output data set 358
56. PLISRTC—sorting from input data set to

output handling routine 359
57. PLISRTD—sorting from input handling

routine to output handling routine 360
58. Sorting varying-length records using input

and output handling routines 361
59. Simple type equivalence 363
60. Sample struct type equivalence 364
61. Sample enum type equivalence 365
62. Start of the C declaration for its FILE type 365
63. PL/I equivalent for a C file 365
64. Sample code to use fopen and fread to dump

a file 366
65. Declarations for filedump program 366
66. C declaration of fread 367
67. First incorrect declaration of fread 367
68. Second incorrect declaration of fread 367
69. Third incorrect declaration of fread 367
70. Code generated for RETURNS BYADDR 368
71. Correct declaration of fread 368
72. Code generated for RETURNS BYVALUE 368
73. First incorrect declaration of fopen 369
74. Second incorrect declaration of fopen 369
75. Correct declaration of fopen 369
76. Optimal, correct declaration of fopen 369
77. Declaration of fclose 370
78. Commands to compile and run filedump 370

© Copyright IBM Corp. 1999, 2017 xi

79. Output of running filedump 370
80. Sample compare routine for C qsort function 370
81. Sample code to use C qsort function 371
82. Incorrect declaration of qsort 371
83. Correct declaration of qsort 371
84. Code when parameters are BYADDR 372
85. Code when parameters are BYVALUE 373
86. Java sample program #2 - Passing a string 383
87. PL/I sample program #2 - Passing a string 385
88. Java sample program #3 - Passing an integer 388
89. PL/I sample program #3 - Passing an integer 390
90. Java sample program #4 - Receiving and

printing a string 391
91. PL/I sample program #4 - Calling the Java

invocation API 394
92. Sample XML document 401
93. PLISAXA coding example - type declarations 409
94. PLISAXA coding example - event structure 410
95. PLISAXA coding example - main routine 411
96. PLISAXA coding example - event routines 412
97. PLISAXA coding example - program output 420
98. Sample XML document 431
99. PLISAXC coding example - type declarations 442

100. PLISAXC coding example - event structure 443
101. PLISAXC coding example - main routine 444
102. PLISAXC coding example - event routines 445
103. PLISAXC coding example - program output 451
104. PLISAXD coding example - event routines 452
105. Output from PLISAXD sample 462

106. Example PL/I routine calling PLIDUMP 463
107. Using an ATTENTION ON-unit 474
108. PL/I compiler user exit procedures 480
109. Example of an user exit input file 482
110. Suppressing SQL messages 486
111. Record types encoded as an ordinal value 502
112. Declare for the header part of a record 502
113. Declare for a summary record 503
114. Declare for a counter record 503
115. Declare for a literal record 504
116. Declare for a file record 504
117. Declare for a message record 505
118. Declare for an ordinal type record 506
119. Declare for an ordinal element record 507
120. Symbol indices assigned to the elements of a

structure 508
121. Data type of a variable 509
122. Declare for a source record 511
123. Declare for a token record 511
124. Declare for the token record kind 512
125. Node indices assigned to the blocks in a

program 512
126. Declare for a syntax record 513
127. Declare for the syntax record kind 516
128. Node indices assigned to the syntax records

in a program. 517
129. Declare for the expression kind 518
130. Declare for the number kind 518
131. Declare for the lexeme kind 519

xii Enterprise PL/I for z/OS Programming Guide

Introduction

About this document
This book is for PL/I programmers and system programmers. It helps you
understand how to use Enterprise PL/I for z/OS® in order to compile PL/I
programs. It also describes the operating system features that you might need to
optimize program performance or handle errors.

Important: Enterprise PL/I for z/OS is referred to as Enterprise PL/I throughout
this book.

Runtime environment for Enterprise PL/I for z/OS
Enterprise PL/I uses Language Environment as its runtime environment. It
conforms to the Language Environment architecture and can share the runtime
environment with other Language Environment-conforming languages.

Language Environment provides a common set of runtime options and callable
services. It also improves interlanguage communication (ILC) between high-level
languages (HLL) and the assembler by eliminating language-specific initialization
and termination on each ILC invocation.

Using your documentation
The publications provided with Enterprise PL/I are designed to help you program
with PL/I. The publications provided with Language Environment are designed to
help you manage your runtime environment for applications generated with
Enterprise PL/I. Each publication helps you perform a different task.

The following tables show you how to use the publications you receive with
Enterprise PL/I and Language Environment. You will want to know information
about both your compiler and runtime environment. For the complete titles and
order numbers of these and other related publications, see “Bibliography” on page
523.

PL/I information

Table 1. How to use Enterprise PL/I publications

To... Use...

Evaluate Enterprise PL/I Fact Sheet

Understand warranty information Licensed Program Specifications

Plan for and install Enterprise PL/I Enterprise PL/I Program Directory

Understand compiler and runtime changes
and adapt programs to Enterprise PL/I and
Language Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get
details on compiler options

Programming Guide

Get details on PL/I syntax and specifications
of language elements

Language Reference

© Copyright IBM Corp. 1999, 2017 xiii

Table 1. How to use Enterprise PL/I publications (continued)

To... Use...

Diagnose compiler problems and report them
to IBM®

Diagnosis Guide

Get details on compile-time messages Compile-Time Messages and Codes

Language Environment information

Table 2. How to use z/OS Language Environment publications

To... Use...

Evaluate Language Environment Concepts Guide

Plan for Language Environment Concepts Guide
Runtime Application Migration Guide

Install Language Environment on z/OS z/OS Program Directory

Customize Language Environment on z/OS Customization

Understand Language Environment program
models and concepts

Concepts Guide
Programming Guide

Find syntax for Language Environment
runtime options and callable services

Programming Reference

Develop applications that run with Language
Environment

Programming Guide and your language
Programming Guide

Debug applications that run with Language
Environment, get details on runtime
messages, diagnose problems with Language
Environment

Debugging Guide and Run-Time Messages

Develop interlanguage communication (ILC)
applications

Writing Interlanguage Applications

Migrate applications to Language
Environment

Runtime Application Migration Guide and
the migration guide for each Language
Environment-enabled language

Notation conventions used in this document
This book uses the conventions, diagramming techniques, and notation described
in “Conventions used” and “How to read the notational symbols” on page xvii to
illustrate PL/I and non-PL/I programming syntax.

Conventions used
Some of the programming syntax in this document uses type fonts to denote
different elements:
v Items shown in UPPERCASE letters indicate key elements that must be typed

exactly as shown.
v Items shown in lowercase letters indicate user-supplied variables for which you

must substitute appropriate names or values. The variables begin with a letter
and can include hyphens, numbers, or the underscore character (_).

v The term digit indicates that a digit (0 through 9) should be substituted.
v The term do-group indicates that a do-group should be substituted.
v Underlined items indicate default options.
v Examples are shown in monocase type.

xiv Enterprise PL/I for z/OS Programming Guide

v Unless otherwise indicated, separate repeatable items from each other by one or
more blanks.

Note: Any symbols shown that are not purely notational, as described in “How to
read the notational symbols” on page xvii, are part of the programming syntax
itself.

For an example of programming syntax that follows these conventions, see
“Example of notation” on page xvii.

How to read the syntax notation

The following rules apply to the syntax diagrams used in this document:

Arrow symbols
Read the syntax diagrams from left to right, from top to bottom, following
the path of the line.

►►─── Indicates the beginning of a statement.

───► Indicates that the statement syntax is continued on the next line.

►─── Indicates that a statement is continued from the previous line.

───►◄ Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
►─── symbol and end with the ───► symbol.

Conventions

v Keywords, their allowable synonyms, and reserved parameters, appear
in uppercase for MVS™ and OS/2 platforms, and lowercase for UNIX
platforms. These items must be entered exactly as shown.

v Variables appear in lowercase italics (for example, column-name). They
represent user-defined parameters or suboptions.

v When entering commands, separate parameters and keywords by at
least one blank if there is no intervening punctuation.

v Enter punctuation marks (slashes, commas, periods, parentheses,
quotation marks, equal signs) and numbers exactly as given.

v Footnotes are shown by a number in parentheses, for example, (1).
v A ⌂ symbol indicates one blank position.

Required items
Required items appear on the horizontal line (the main path).

►► REQUIRED_ITEM ►◄

Optional Items
Optional items appear below the main path.

►► REQUIRED_ITEM
optional_item

►◄

If an optional item appears above the main path, that item has no effect on
the execution of the statement and is used only for readability.

Introduction xv

►► REQUIRED_ITEM
optional_item

►◄

Multiple required or optional items
If you can choose from two or more items, they appear vertically in a
stack. If you must choose one of the items, one item of the stack appears on
the main path.

►► REQUIRED_ITEM required_choice1
required_choice2

►◄

If choosing one of the items is optional, the entire stack appears below the
main path.

►► REQUIRED_ITEM
optional_choice1
optional_choice2

►◄

Repeatable items
An arrow returning to the left above the main line indicates that an item
can be repeated.

►► REQUIRED_ITEM ▼ repeatable_item ►◄

If the repeat arrow contains a comma, you must separate repeated items
with a comma.

►► REQUIRED_ITEM ▼

,

repeatable_item ►◄

A repeat arrow above a stack indicates that you can specify more than one
of the choices in the stack.

Default keywords
IBM-supplied default keywords appear above the main path, and the
remaining choices are shown below the main path. In the parameter list
following the syntax diagram, the default choices are underlined.

►► REQUIRED_ITEM
default_choice

optional_choice
optional_choice

►◄

Fragments
Sometimes a diagram must be split into fragments. The fragments are
represented by a letter or fragment name, set off like this: | A |. The
fragment follows the end of the main diagram. The following example
shows the use of a fragment.

►► STATEMENT item 1 item 2 A ►◄

xvi Enterprise PL/I for z/OS Programming Guide

A:

item 3
item 4

KEYWORD
item 5
item 6

Substitution-block
Sometimes a set of several parameters is represented by a
substitution-block such as <A>. For example, in the imaginary /VERB
command you could enter /VERB LINE 1, /VERB EITHER LINE 1, or /VERB
OR LINE 1.

►► /VERB
<A>

LINE line# ►◄

where <A> is:

►► EITHER
OR

►◄

Parameter endings
Parameters with number values end with the symbol '#', parameters that
are names end with 'name', and parameters that can be generic end with
'*'.

►► /MSVERIFY MSNAME msname
SYSID sysid#

►◄

The MSNAME keyword in the example supports a name value and the
SYSID keyword supports a number value.

How to read the notational symbols
Some of the programming syntax in this book is presented using notational
symbols. This is to maintain consistency with descriptions of the same syntax in
other IBM publications, or to allow the syntax to be shown on single lines within a
table or heading.
v Braces, { }, indicate a choice of entry. Unless an item is underlined, indicating a

default, or the items are enclosed in brackets, you must choose at least one of
the entries.

v Items separated by a single vertical bar, |, are alternative items. You can select
only one of the group of items separated by single vertical bars. (Double vertical
bars, ||, specify a concatenation operation, not alternative items. See the PL/I
Language Reference for more information on double vertical bars.)

v Anything enclosed in brackets, [], is optional. If the items are vertically stacked
within the brackets, you can specify only one item.

v An ellipsis, ..., indicates that multiple entries of the type immediately preceding
the ellipsis are allowed.

Example of notation

The following example of PL/I syntax illustrates the notational symbols described
in “How to read the notational symbols”:

Introduction xvii

DCL file-reference FILE STREAM
{INPUT | OUTPUT [PRINT]}
ENVIRONMENT(option ...);

Interpret this example as follows:
v You must spell and enter the first line as shown, except for file-reference, for

which you must substitute the name of the file you are referencing.
v In the second line, you can specify INPUT or OUTPUT, but not both. If you

specify OUTPUT, you can optionally specify PRINT as well. If you do not
specify either alternative, INPUT takes effect by default.

v You must enter and spell the last line as shown (including the parentheses and
semicolon), except for option ..., for which you must substitute one or more
options separated from each other by one or more blanks.

Summary of changes

Enhancements in this release
This release provides the following functional enhancements that are described in
this and the other IBM PL/I books.

Changes in GI13-4536-00, August 2017

Compiler option enhancements:

The “RULES” on page 70 compiler option has these changes:
v The NOGOTO suboption now accepts a LOOSEFORWARD sub-suboption so

that GOTO statements that branch forward are exempted from the NOGOTO
flagging.

v The RULES option now accepts a NOMULTISEMI suboption that flags source
line that contain more than one semicolon.

v The RULES option now accepts a NOLAXCONV suboption that flags arithmetic
expressions where an operand does not have arithmetic type.

Changes in GI13-4536-00, April 2017

Enhancements in usability:

v The compiler now flags unreachable ASSERT UNREACHABLE statements with
a different message than it flags other unreachable statements.

v The compiler now expands in the AGGREGATE listing typed structures that are
member of other structures.

v The attributes listing now shows the contents of the VALUE attribute for
CHARACTER and BIT constants of length 256 or less and also for numeric
PICTURE constants

Compiler option enhancements:

v The new “ASSERT” on page 9 compiler option controls whether ASSERT
statements call a default library routine that will raise the ASSERTION condition
or a routine provided by the user.

v The new “CASE” on page 12 compiler option controls whether some names will
be shown in uppercase or in the same format as they appear in the source
program.

xviii Enterprise PL/I for z/OS Programming Guide

|

|

|

|
|
|

|
|

|
|

|

|

|
|

|
|

|
|
|

|

|
|
|

|
|
|

v The CMPAT(LE) and CMPAT(V1) have been restored in the “CMPAT” on page
15 compiler option.

v The “RULES” on page 70 compiler option has these new suboptions:

LAXINTERFACE | NOLAXINTERFACE
You can use RULES(NOLAXINTERFACE) to flag code that does not
contain a valid explicit declare for each of its external PROCEDUREs.

MULTIENTRY | NOMULTIENTRY
You can use RULES(NOMULTIENTRY) to flag code that contains
ENTRY statements.

MULTIEXIT | NOMULTIEXIT
You can use RULES(NOMULTIEXIT) to flag code that contains multiple
RETURN statements.

UNREFCTL | NOUNREFCTL
You can use RULES(NOUNREFCTL) to flag unreferenced CTL variables.

UNREFDEFINED | NOUNREFDEFINED
You can use RULES(NOUNREFDEFINED) to flag unreferenced
DEFINED variables.

UNREFENTRY | NOUNREFENTRY
You can use RULES(NOUNREFENTRY) to flag unreferenced ENTRY
constants.

UNREFFILE | NOUNREFFILE
You can use RULES(NOUNREFFILE) to flag unreferenced FILE
constants.

UNREFSTATIC | NOUNREFSTATIC
You can use RULES(NOUNREFSTATIC) to flag unreferenced STATIC
variables.

YY | NOYY
You can use RULES(NOYY) to flag the use of 2-digit years.

v The NOELSEIF suboption of the “RULES” on page 70 compiler option now also
flag ELSE statements immediately followed by an IF statement that is enclosed
in a simple DO-END.

CICS enhancements:

v The CICS preprocessor output now includes a listing of all the CICS options in
effect when the preprocessor run.

Performance improvements
v Enterprise PL/I now takes additional exploitation of the vector facility.
v Some fixed decimal divides with large precision are now done using the

Decimal Floating-Point (DFP) facility. This might cause some ZERODIVIDE
exceptions to be reported as INVALIDOP.

Usability enhancements
v Enterprise PL/I now provides support for compiling code for 64-bit applications.

For more information, see Chapter 7, “Considerations for developing 64-bit
applications,” on page 191.

v The compiler now issues a warning message if the option strings in the
IBMZIOP are the same as each other and if a user specifies an option that
conflicts with one of those non-overridable options.

Introduction xix

|
|

|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|
|

v The compiler now also includes information about the compiler options that are
used during compilation in the generated SYSADATA file. All the declarations
for SYSADATA records are now provided in include files in the samples data set
SIBMZSAM.

Compiler option enhancements
v The new “BRACKETS” on page 12 compiler option allows you to specify the

symbols that the SQL preprocessor accepts as the left and right brackets in SQL
array references. This option makes it easier to use such language.

v The new “DECOMP” on page 22 compiler option causes the compiler to
produce a listing section that shows all intermediate expressions and their
attributes for all expressions used in the source program.

v The “DECIMAL” on page 20 compiler option has a new suboption,
TRUNCFLOAT, which provides you with finer control over how the compiler
handles assignments of float to fixed decimal when truncation might occur.

v The new “EXPORTALL” on page 34 compiler option controls whether to export
all externally defined procedures and variable so that a DLL application can use
them.

v The new “HEADER” on page 39 compiler option lets you control what appears
in the middle of each header line in the compiler listing.

v The “INSOURCE” on page 43 compiler option has two new suboptions, FIRST
and ALL, which control how many source listings appear in the listing file.

v The new “LP” on page 49 compiler option allows you to specify whether the
compiler generates 31-bit code or 64-bit code.

v The “MDECK” on page 54 compiler option has two new suboptions, AFTERALL
and AFTERMACRO, which control when the MDECK is generated.

v The new “NULLDATE” on page 57 compiler option allows you to use the SQL
null date as a valid date in your program.

v The new “OFFSETSIZE” on page 58 compiler option determines the size of
OFFSET variables in 64-bit applications.

v The “RULES” on page 70 compiler option has these new suboptions:

LAXSTMT | NOLAXSTMT
You can use RULES(NOLAXSTMT) to flag any line that has more than
one statement.

UNREFBASED | NOUNREFBASED
You can use RULES(NOUNREFBASED) to flag unreferenced BASED
variables that are in BASED storage.

v The NOPROCENDONLY suboption of the “RULES” on page 70 compiler option
has two new suboptions, ALL and SOURCE. They make it easier to stage
enforcement of the rules that the END statement for every procedure must
include the name of that procedure.

v The “XREF” on page 98 compiler option has two new suboptions, EXPLICIT and
IMPLICIT, which allow you to determine whether implicit variable references
are included in the XREF listing.

Note:

All the compiler option default settings for a release is listed in the member with
the name IBMXOvrm, where v is the version number, r is the release number and
m is the modification number which is usually 0 (for example, IBMXO510 for V5R1
and IBMXO450 for V4R5), in the SIBMZSAM data set. The data set contains
IBMXOvrm members for all supported PL/I releases. To see what has changed in

xx Enterprise PL/I for z/OS Programming Guide

the default settings and what new options are added from one release to the next,
you can compare the IBMXOvrm files for the two releases. You can also use the
IBMXOvrm files as templates for creating your own options files with your
preferred settings.

SQL enhancements
v The SQL preprocessor now parses the DEFINE ALIAS, DEFINE ORDINAL, and

DEFINE STRUCTURE statements. If a DEFINE ALIAS statement defines a PL/I
type that can be used in SQL statements, a variable declared with that type can
also be used in SQL statements.

v If the “NULLDATE” on page 57 compiler option is specified, the SQL null date,
with year, month, and day all equal to 1, is accepted as a valid date in some of
the datetime handling built-in functions.

v The INDFOR attribute makes it easy to declare a structure of indicator variables
to match another PL/I structure.

v To make it easier to change the severity of the DSNH030 SQL preprocessor
message, it is now given its own preprocessor message IBM3317.

Enhancements from V4R5
This release provides the following functional enhancements that are described in
this and the other IBM PL/I books.

Performance improvements
v The code that is generated for the EXEC CICS® statement executes faster because

one MVC is eliminated.
v Much faster code is generated for MOD and REM of FIXED DEC with precision

greater than 15.
v The ARCH option now accepts 11 as its maximum value, and when ARCH(11) is

specified, the compiler generates code that exploits the new hardware
instructions on those z systems. This code especially improves the performance
of some instances of the SEARCH, and VERIFY built-in functions.

SQL enhancements
v The validation of an EXEC SQL statement will not stop when the first invalid

host variable is found, but will instead check all host variable references.
v The new SQL preprocessor option (NO)CODEPAGE determines how the

compiler CODEPAGE option is honored by the SQL preprocessor.
v The new SQL preprocessor option (NO)WARNDECP allows you to reduce the

amount of “noise” that is produced by the SQL preprocessor.
v A structure that is used as a host variable can now also have a structure as its

indicator variable.
v A named constant, that is, a PL/I variable with the VALUE attribute can now be

used as a host variable if SQL allows a constant in that setting.

Usability enhancements
v The new MAXBRANCH compiler option can help you find excessively complex

code.
v The new FILEREF and NOFILEREF compiler options control whether the

compiler produces a file reference table.
v The new JSON compiler option lets you choose the case of the names in the

JSON text generated by the JSONPUT built-in functions and expected by the
JSONGET built-in functions.

Introduction xxi

v The LIMITS compiler option now accepts STRING as a suboption with these
values as the threshold for the length of a BIT, CHARACTER or WIDECHAR
variable: 32K, 512K, 8M, and 128M.

v The XML compiler option now lets you choose whether XML attributes
generated by the XMLCHAR built-in function are enclosed in apostrophes or
quotation marks.

v The RULES(NOLAXRETURN) compiler option is enhanced so that ERROR will
be raised if code falls through to the END statement in a PROCEDURE with the
RETURNS attribute.

v The new ALL | SOURCE suboptions to the RULES(NOLAXNESTED) and
RULES(NOPADDING) compiler options provide finer control over when the
compiler flags questionable coding.

v The new FORCE(NOLAXQUAL) attribute and the new FORCE suboption of the
RULES(NOLAXQUAL) option enable users to enforce the NOLAXQUAL rules
in a structure-by-structure manner.

v The use of INITIAL on REFER objects will now be flagged with an E-level
message.

v The MACRO preprocessor now supports DEPRECATE and DEPRECATENEXT
options that allow you to remove selected macro procedures over a course of
planned stages.

v If a FIXED or FLOAT variable has the VALUE attribute, the compiler lists its
value as a character string in the ATTRIBUTES listing.

v The aggregate listing is enhanced to mark arrays of VARYING that contain
padding between array members (for example, when a structure contains an
array of CHAR(31) VARYING ALIGNED).

v When SUBSCRIPTRANGE is enabled and an array assignment includes arrays
with non-constant bounds, the compiler now generates code that raises the
SUBSCRIPTRANGE condition if the bounds do not match. If the bounds are all
constant, the compiler continues to check at compile-time that they match.

v If an event in any of the PLISAX event structures is set to null (via the
NULLENTRY built-in function or the UNSPEC pseudovariable), the XML parser
will not call that event. This allows you to limit your XML parsing code to only
the events in which you are interested and to improve the performance of the
overall parse at the same time.

v The compiler now flags an attempt to FETCH or RELEASE the procedure that it
is currently compiling.

Enhancements from V4R4
This release provides the following functional enhancements that are described in
this and the other IBM PL/I books.

Performance improvements
v The generation of the pseudo assembler listing is faster than the previous

releases.
v The compiler is now compiled with ARCH(7).
v The compiler now flags declarations for variables that do not have the STATIC

attribute but have more than 100 INITIAL items.

Usability enhancements
v The SQL preprocessor now issues more messages when programs contain

incorrect syntax. These messages make it easier to identify the source statement
that is in error.

xxii Enterprise PL/I for z/OS Programming Guide

v The new NOINCLUDE option can be used to prohibit the use of the
%INCLUDE and %XINCLUDE statements outside the MACRO preprocessor.

v The included files are now bracketed in the source listing when the %INCLUDE
statement is processed by the final compiler pass.

v The NULLSTRPTR suboption of the DEFAULT option has the new STRICT
suboption that flags the assignments and comparisons of ’’ to POINTERS as
invalid.

v When the STMT option is specified, the source and message listings will include
both the logical statement numbers and the source file numbers.

Enhancements from V4R3
This release provides the following functional enhancements described in this and
the other IBM PL/I books.

Performance improvements
v The ARCH(10) option provides exploitation of the IBM zEnterprise® EC12

System instructions.
v The compiler now generates inline code for VERIFY and SEARCH when they

have three arguments and the second argument is a single character.
v The compiler now generates inline code for more conversions from PICTURE to

DFP.
v The compiler now generates inline code for more conversions from BIT to

CHAR.
v The compiler now generates inline code for conversions of BIT to WIDECHAR.
v The code generated for TRIM of FIXED DEC is improved.

Usability enhancements
v The SQL preprocessor has the following improvements:

– It supports the ONEPASS option.
– It supports the use of some restricted expressions in the host variable

declarations.
– The listing of the EXEC SQL statement is displayed in a readable format that

is similar to the original source.
– It supports the use of host variables declared with the LIKE attribute.
– It supports the new DEPRECATE option that causes the preprocessor to flag a

list of statements that you want to deprecate.
v The ADATA file now records the use of the following attributes, built-in

functions, and statement:
– The INONLY, INOUT, and OUTONLY attributes
– The XMLATTR and XMLOMIT attributes
– The ALLCOMPARE, UTF8, UTF8TOCHAR, and UTF8TOWCHAR built-in

functions
– The ASSERT statement

v With the new CASERULES option, you can specify case rules for PL/I
keywords. For example, you can specify the rule that all keywords must be in
uppercase.

v The DEPRECATE option has a new STMT suboption that causes the compiler to
flag a list of statements that you want to deprecate.

v The new DEPRECATENEXT option allows for staged deprecation of functions.

Introduction xxiii

v The IGNORE option has a new ASSERT suboption that instructs the compiler to
ignore all ASSERT statements.

v The new (NO)MSGSUMMARY option controls whether the compiler adds a
summary of all messages that are issued during the compilation into the listing.

v The RTCHECK option has the new NULL370 suboption that checks whether a
pointer that equals to the old NULL() value is dereferenced. Pointers that equal
to the old NULL() value are these with the hexadecimal value of 'FF000000'x.

v The RULES option now accepts (NO)CONTROLLED as a suboption that controls
whether to flag the use of the CONTROLLED attribute.

v The RULES option now accepts (NO)LAXNESTED as a suboption that controls
whether to flag programs where nested procedures exist between sections of
executable code.

v The RULES option now accepts (NO)RECURSIVE as a suboption that
determines whether to flag any use of the RECURSIVE attribute or any
procedure that directly calls itself.

v The RULES(NOUNREF) option now accepts SOURCE | ALL as a suboption that
determines whether to flag all unreferenced variables.

v RULES(NOLAXIF) now also causes the compiler to flag the assignments of the
form x = y = z.

v RULES(NOLAXSCALE) now also causes the compiler to flag ROUND(x, p)
when p < 0.

Enhancements from V4R2
This release provides the following functional enhancements described in this and
the other IBM PL/I books.

Performance improvements
v The ARCH(9) option provides further exploitation of the IBM zEnterprise 196

(z196) System instructions, including the high-word, floating-point extension,
and population count facilities.

v The new UNROLL compiler option gives you control of loop unrolling.
v The compiler now generates inline code to resolve the ULENGTH and USUBSTR

built-in functions for character strings.
v The compiler now generates inline code for MEMINDEX(p, n, x) where x is

WCHAR(1).
v The compiler now generates inline code for STG(x) where x is BASED variable

using REFER and meets both of the following conditions:
– All NONVARYING BIT in x are specified with the ALIGNED attribute.
– All other elements in x are specified with UNALIGNED.

Debugging improvements
v The compiler now supports typed structures in Debug Tool.

SQL support enhancements
v The SQL Preprocessor has the following significant changes:

– It fully and correctly supports block scoping.
– The preprocessor load module is more than eight times smaller.
– The preprocessor runs faster.
– It supports the use of the SQL TYPE attribute anywhere you can specify a

PL/I data type.

xxiv Enterprise PL/I for z/OS Programming Guide

– It now supports the following compiler options when processing declarations
of host variables. It applies the defaults correctly and rejects unsuitable host
variables as appropriate.
- DEFAULT(ANS | IBM)
- DEFAULT(ASCII | EBCDIC)
- DEFAULT((NO)EVENDEC)
- DEFAULT((NON)NATIVE)
- DEFAUT(SHORT(HEX | IEEE))
- RULES((NO)LAXCTL)

– It now correctly processes the PRECISION attribute.
– It now recognizes the UNSIGNED and COMPLEX attributes and rejects the

use of these attributes in any host variable.
– It now ensures that DSNHMLTR is declared in the outermost procedure that

contains codes that need DSNHMLTR.
– It now handles packages correctly.
– It now ensures that characters in the source code are printable when it

generates code to set the SQLAVDAID.
– It no longer requires that indicator arrays have a lower bound of 1.
– It now generates an SQL parameter list structure that has fewer unions, fewer

init clauses, and no additional declarations based on elements of the structure.

Usability enhancements
v The new PPLIST compiler option conditionally erases the part of the listing that

is generated by any preprocessor phase that produces no messages.
v The compiler issues better messages when a comma is missing in a structure

declaration.
v The compiler issues new messages when the source code contains invalid

shift-in and shift-out bytes.
v The compiler applies the NONASSIGNABLE attribute to any parameter that is

declared with the INONLY attribute; it flags any assignment to a parameter that
is declared as INONLY.

v Under RULES(NOLAXENTRY), the compiler does not flag names that start with
DSN.

v Under RULES(NOUNREF), the compiler does not flag names that start with
DSN or SQL.

v Under the new NOSELFASSIGN suboption of the RULES compiler option, the
compiler flags assignments of variables to themselves.

v Under the new NOLAXRETURN suboption of the RULES compiler option, the
compiler generates codes to raise the ERROR condition when a RETURN
statement is used in some invalid ways.

Enhancements from V4R1
This release provides the following functional enhancements described in this and
the other IBM PL/I books.

Debugging improvements
v Under TEST(SEPARATE), the compiler optionally places the statement number

table in the debug file and thus reduces the size of the generated object deck.
v Under TEST(SEPARATE), the compiler includes information identifying the

source lines for declarations, references, and assignments.

Introduction xxv

v Under TEST(SEPARATE), the compiler generates information to identify the
implicit locator reference when a BASED variable is based on the ADDR of an
array element or other complex references.

Performance improvements
v The ARCH(9) option provides exploitation of the IBM zEnterprise System

instructions.
v If all the elements of structures using REFER are byte-aligned, the compiler

inlines code to resolve references to these elements rather than through library
calls.

Usability enhancements
v The new DEPRECATE compiler option flags variable names and included file

names that you want to deprecate.
v The new SEPARATE suboption of the GONUMBER option is provided to place

the generated statement number table in the separate debug file.
v The new NOGLOBALDO suboption of the RULES option flags all DO loop

control variables that are declared in the parent block.
v The new NOPADDING suboption of the RULES option flags all structures that

contain padding.
v The SQL preprocessor now supports the XREF option.
v The new PLISAXD built-in subroutine provides the ability to parse XML

documents with validation against a schema by using the XML System Services
parser.

Serviceability enhancements
v The use of either the GOSTMT option or the IMPRECISE option is now flagged

as unsupported.
v The compiler now always lists all SQL preprocessor options that are in effect.

Enhancements from V3R9
This release provides the following functional enhancements described in this and
the other IBM PL/I books.

Performance improvements
v UVALID will now be inlined for for strings of length 256 or less.
v Under ARCH(7) and higher, the CU12, CU14, CU21, CU24, CU41, and CU42

instructions will be used to provide for fast conversions between UTF-8, UFT-16
and UTF-32.

v Under ARCH(7) and higher, the TRTT, TROT, TRTO, and TROO instructions will
be used to provide for fast translations between one- and two-byte buffers.

v Assignments of like arrays of scalars will now be handled as storage copy
operations.

v All assignments of BIT VARYING to BIT VARYING will now be inlined.
v All assignments of byte-aligned BIT NONVARYING to BIT VARYING will now

be inlined.
v The ROUND and ROUNDDEC built-in functions will be inlined when the

argument to be rounded is DFP.

Note: From PL/I for z/OS V5.1, the ROUNDDEC built-in function has been
renamed as ROUNDAWAYFROMZERO.

xxvi Enterprise PL/I for z/OS Programming Guide

v To simplify the choosing of options for best performance,
– the COMPACT option has been dropped
– The default setting for DEFAULT(REORDER | ORDER) has been changed to

DEFAULT(REORDER)
– the TUNE option has been dropped

v Detection of the dereferencing of null pointers exploits the new
compare-and-trap instruction under ARCH(8).

v The compiler has been built with ARCH(6) to improve its performance.

Usability enhancements
v The CICS preprocessor now supports block-scoping and consequently will add

the needed local CICS declares to all non-nested procedures.
v The SQL preprocessor now supports the PL/I rules for the scope of declarations

when resolving host variable references through the new SCOPE option.
NOSCOPE is the default for compatibility with previous releases.

v The MACRO preprocessor will now leave %include, %xinclude, %inscan, and
%xinscan statements in the compiler listing as comments.

v The MACRO preprocessor now provides via the %DO SKIP; statement an easy
and clear way to omit sections of code from a compile.

v The MACRO preprocessor now supports an option called NAMEPREFIX which
allows the user to force macro procedures and variables to start with a specified
character.

v The IGNORE compiler option provides the ability to suppress PUT FILE and/or
DISPLAY statements (either of which may have been used for debug purposes
but which should be compiled out of the production version).

v The NULLSTRPTR suboption of the DEFAULT compiler option provides user
control of whether sysnull or null is assigned to a pointer when the source in the
assignment is a null string.

v The new MAXGEN option specifies the maximum number of intermediate
language statements that should be generated for any one user statement and
will cause the compiler to flag any statement where this maximum is exceeded.

v The new ONSNAP option will allow the user to request the compiler to insert
an ON STRINGRANGE SNAP; or an ON STRINGSIZE SNAP; statement into the
prologue of a MAIN or FROMALIEN proc.

v The new SHORT suboption of the INITAUTO option will limit the INITAUTO
option so that it does not duplicate all of the runtime STORAGE option, but
does initialize variables that might be optimized to registers.

v The new RTCHECK option will generate code to test for the dereferencing of
null pointers.

v The compiler will now flag various statements that may be risky:
– code where the result of a FIXED operation has a scale factor less than zero
– ENTRYs used as functions but declared without the RETURNS attribute
– parameters declared as BYVALUE when doing so is ill-advised, e.g. declaring

a FIXED DEC parameter BYVALUE
– FIXED DECIMAL add and multiply operations that might raise

FIXEDOVERFLOW
v The RULES option has been expanded to allow more control over and flagging

of poor code:
– NOPROCENDONLY will flag END statements for PROCs that don't name the

PROC they are closing

Introduction xxvii

– NOSTOP will flag the use of STOP and EXIT
– NOLAXQUAL(STRICT) will flag variables not qualified with their level-1

name
– NOLAXSCALE will flag declares of FIXED DEC(p,q) and FIXED BIN(p,q)

where q < 0 or p < q
– NOGOTO(LOOSE) will allow GOTOs only if in the same block
– More than one DELAY STATEMENTS can be concurrently executed in

different procedures.

Serviceability enhancements
v When the compiler cannot open a file, the compiler will now, if possible, also

include the related C runtime message in the message in the listing.
v If user code requires a DFP conversion at compile time but the compile is

running on a machine without DFP hardware, this error will be trapped and a
meaningful error issued.

v If the SQL preprocessor is invoked more than once without INCONLY as its
suboption, then the DBRM library created by the compiler will be empty, and
now an E-level message will be issued to warn the user about this problem.

Enhancements from V3R8
This release provides the following functional enhancements described in this and
the other IBM PL/I books.

Performance improvements
v The ARCH(8) and TUNE(8) options provide exploitation of the z/HE

instructions.
v The HGPR option supports using 64-bit registers in 32-bit code.
v The GOFF option supports generation of GOFF objects.
v The PFPO instruction will be exploited in conversions between differing float

formats.
v SRSTU will be used in code generated for UTF-16 INDEX.
v Calls to null internal procedures will now be completely removed.

Usability enhancements
v PLISAXC provides for access to the XML System Services parser via a SAX

interface.
v The INCDIR option is supported under batch.
v The LISTVIEW option now provides the support previously provided by the

AFTERMACRO etc suboptions of TEST.
v The NOLAXENTRY suboption of the RULES option allows for the flagging of

unprototyped ENTRYs.
v The (NO)FOFLONMULT suboption of the DECIMAL option allows for control

of whether FOFL is raised in MULTIPLY of FIXED DECIMAL.
v The HEX and SUBSTR suboptions of the USAGE option provide more user

control of the behavior of the corresponding built-in functions.
v The DDSQL compiler option provides the ability to specify an alternate DD

name to be used for EXEC SQL INCLUDEs.
v The INCONLY suboption provided by the MACRO and SQL preprocessors can

request those preprocessors to perform only INCLUDEs.

xxviii Enterprise PL/I for z/OS Programming Guide

v The integrated SQL preprocessor will now generate DB2® precompiler style
declares for all *LOB_FILE, *LOCATOR, ROWID, BINARY and VARBINARY
SQL types, in addition to the BLOB, CLOB and DBCLOB SQL types already
supported, when the LOB(DB2) SQL preprocessor option is selected.

Enhancements from V3R7
This release provides the following functional enhancements described in this and
the other IBM PL/I books.

Debugging improvements
v The TEST option has been enhanced so that users can choose to view the source

in the listing and in the Debug Tool source window as that source would appear
after a user-specified preprocessor had been run (or after all the preprocessors
had been run).

Performance improvements
v The BASR instruction will now be used instead of the BALR instruction.
v The conversions of FIXED DEC with large precision to FLOAT will be inlined

and speeded up by the use of FIXED BIN(63) as an intermediary.
v The CHAR built-in when applied to CHAR expressions will now always be

inlined.
v The code generated for conversions of FIXED BIN(p,q) to unscaled FIXED DEC

has been significantly improved.
v TRTR will be used, under ARCH(7), for SEARCHR and VERIFYR in the same

situations where TRT would be used for SEARCH and VERIFY.
v UNPKU will be used to convert some PICTURE to WIDECHAR (rather than

making a library call).

Usability enhancements
v IEEE Decimal Floating-Point (DFP) is supported.
v The new MEMCONVERT built-in function will allow the user to convert

arbitrary lengths of data between arbitrary code pages.
v The new ONOFFSET built-in function will allow the user to have easy access to

another piece of information formerly available only in the runtime error
message or dump, namely the offset in the user procedure at which a condition
was raised.

v The new STACKADDR built-in function will return the address of the current
dynamic save area (register 13 on z/OS) and will make it easier for users to
write their own diagnostic code.

v The length of the mnemonic field in the assembler listing will be increased to
allow for better support of the new z/OS instructions that have long
mnemonics.

v More of the right margin will be used in the attributes, cross-reference and
message listings.

v The CODEPAGE option will now accept 1026 (the Turkish code page) and 1155
(the 1026 code page plus the Euro symbol).

v The new MAXNEST option allows the user to flag excessive nesting of BEGIN,
DO, IF and PROC statements.

v Under the new (and non-default) suboption NOELSEIF of the RULES option, the
compiler will flag any ELSE statement that is immediately followed by an IF
statement and suggest that it be rewritten as a SELECT statement.

Introduction xxix

v Under the new (and non-default) suboption NOLAXSTG of the RULES option,
the compiler will flag declares where a variable A is declared as BASED on
ADDR(B) and STG(A) > STG(B) not only (as the compiler did before) when B is
AUTOMATIC, BASED or STATIC with constant extents but now also when B is
a parameter declared with constant extents.

v The new QUOTE option will allow the user to specify alternate code points for
the quote (") symbol since this symbol is not code-page invariant.

v The new XML compiler option can be used to specify that the tags in the output
of the XMLCHAR built-in function be either in all upper case or in the case in
which they were declared.

v For compilations that produce no messages, the compiler will now include a line
saying "no compiler messages" where the compiler messages would have been
listed.

v The MACRO preprocessor will support a new suboption that will allow the user
to specify whether it should process only %INCLUDE statements or whether it
should process all macro statements.

v The integrated SQL preprocessor will now generate DB2 precompiler style
declares for all *LOB_FILE, *LOCATOR, ROWID, BINARY and VARBINARY
SQL types, in addition to the BLOB, CLOB and DBCLOB SQL types already
supported, when the LOB(DB2) SQL preprocessor option is selected.

Enhancements from V3R6
This release provides the following functional enhancements described in this and
the other IBM PL/I books.

DB2 V9 support
v Support for STDSQL(YES/NO)
v Support for CREATE TRIGGER (aka multiple SQL statements)
v Support for FETCH CONTINUE
v Support for SQL style comments ('--') embedded in SQL statements
v Support for additional SQL TYPES including

– SQL TYPE IS BLOB_FILE
– SQL TYPE IS CLOB_FILE
– SQL TYPE IS DBCLOB_FILE
– SQL TYPE IS XML AS
– SQL TYPE IS BIGINT
– SQL TYPE IS BINARY
– SQL TYPE IS VARBINARY

v The SQL preprocessor will also now list the DB2 coprocessor options

Debugging improvements
v Under TEST(NOSEPNAME), the name of the debug side file will not be saved in

the object deck.

Performance improvements
v Support, under ARCH(7), of the z/OS extended-immediate facility
v Exploitation of the CLCLU, MVCLU, PKA, TP and UNPKA instructions under

ARCH(6)
v Exploitation of the CVBG and CVDG instructions under ARCH(5)
v Expanded use of CLCLE

xxx Enterprise PL/I for z/OS Programming Guide

v Conversions involving DB2 date-time patterns are now inlined
v The ALLOCATION built-in function is now inlined
v Conversions with a drifting $ have been inlined
v Conditional code has been eliminated from assignments to PIC'(n)Z'
v Conversions from FIXED BIN to a PICTURE that specifies a scale factor have

been inlined
v Assignments to BIT variables that have inherited dimensions but which have

strides that are divisible by 8 will now be inlined

Usability enhancements
v The MAP output will now also include a list in order of storage offset (per

block) of the AUTOMATIC storage used by the block
v Conformance checking has been extended to include structures
v Listings will now include 7 columns for the line number in a file
v The THREADID built-in function is now supported under z/OS
v The PICSPEC built-in function is now supported
v The new CEESTART option allows you to position the CEESTART csect at the

start or end of the object deck
v The new PPCICS, PPMACRO and PPSQL options allow you to specify the

default options to be used by the corresponding preprocessor
v The ENVIRONMENT option is now included in the ATTRIBUTES listing
v The DISPLAY option now supports a suboption to allow different DESC codes

for DISPLAY with REPLY versus DISPLAY without REPLY
v The message flagging a semicolon in a comment will now include the line

number of the line where the semicolon appears
v Flag assignments that can change a REFER object
v Flag use of KEYED DIRECT files without a KEY/KEYFROM clause
v Flag use of PICTURE as loop control variables

Enhancements from V3R5
This release provides the following functional enhancements described in this and
the other IBM PL/I books.

Debugging improvements
v Under TEST(SEPARATE), the vast majority of debug information will be written

to a separate debug file
v AUTOMONITOR will include the target in assignments
v The AT ENTRY hook will now be placed after AUTOMATIC has been initialized,

thereby eliminating the need to step into the block before looking at any
variables

Performance improvements
v Generation of branch-relative instructions so that the need for base registers and

transfer vectors will be significantly eliminated
v Support, under ARCH(6), of the z/OS long displacement facility
v Simple structures using REFER will be mapped inlined rather than via a library

call
v For structures using REFER still mapped via a library call, less code will be

generated if the REFER specifies the bound for an array of substructures

Introduction xxxi

v Faster processing of duplicate INCLUDEs
v Conversions to PICTURE variables with an I or R in the last position will now

be inlined (such conversions had already been inlined when the last character
was a T)

v Conversions to PICTURE variables ending with one or more B's will now be
inlined if the corresponding picture without the B's would have been inlined

v Conversions to from CHARACTER to PICTURE variables consisting only of X's
will now be inlined

Usability enhancements
v All parts of the listing, etc will count the source file as file 0, the first include file

as file 1, the second (unique) include file as file 2, etc
v Conformance checking extended to include arrays
v Listings will include the build dates for any preprocessors invoked
v One-byte FIXED BINARY arguments can be suppressed for easier ILC with

COBOL
v Alternate DD names may be specified for SYSADATA, SYSXMLSD and

SYSDEBUG
v RULES(NOLAXMARGINS) tolerates, under XNUMERIC, sequence numbers
v RULES(NOUNREF) flags unreferenced AUTOMATIC variables
v If an assignment to a variable is done via library call, the message flagging the

library call will include the name of the target variable
v Flag one-time DO loops
v Flag labels used as arguments
v Flag ALLOCATE and FREE of non-PARAMETER CONTROLLED in

FETCHABLE if PRV used
v Flag DEFINED and BASED larger than their base even if the base is declared

later
v Flag implicit FIXED DEC to 8-byte integer conversions

Enhancements from V3R4
This release provides the following functional enhancements described in this and
the other IBM PL/I books.

Migration enhancements
v Support sharing of CONTROLLED with old code
v Improve default initialization
v Ease decimal precision specification in ADD, DIVIDE and MULTIPLY
v Support old semantics for STRING of GRAPHIC
v Support old semantics for the DEFAULT statement
v Flag declares with storage overlay
v Lift restrictions on RETURN inside BEGIN
v Optionally flag semicolons in comments
v Support EXT STATIC initialized in assembler
v Flag invalid carriage control characters
v Flag more language misuse, especially with RETURN
v Support the REPLACEBY2 built-in function
v Optionally suppress FOFL on decimal assignments that would raise SIZE

xxxii Enterprise PL/I for z/OS Programming Guide

v Flag more language handled differently than the old compiler

Performance improvements
v Improve code generated for INDEX and TRANSLATE
v Inline more assignments to pictures
v Improve the code generated for conversions of CHARACTER to PICTURE when

the conversion would be done inline if the source were FIXED DEC
v Improve the code generated for packed decimal conversions
v Improve the code generated for some uses of REFER
v Inline compares of character strings of unknown length
v Reduce the amount of stack storage used for concatenates
v Inline more GET/PUT STRING EDIT statements
v Short-circuit more LE condition handling
v Inline more Or and And of BIN FIXED
v Inline SIGNED FIXED BIN(8) to ALIGNED BIT(8)
v Flag statements where the compiler generates a call to a library routine to map a

structure at run time
v Lessen the amount of I/O used to produce the listing

Usability enhancements
v Optionally provide offsets in the AGGREGATE listing in hex
v Support DEC(31) only when needed via the LIMITS(FIXEDDEC(15,31)) option
v Allow comments in options
v Optionally flag FIXED DEC declares with even precision
v Optionally flag DEC to DEC assignments that could raise SIZE
v Flag DEC/PIC to PIC assignments that could raise SIZE
v Support LIKE without INIT via the NOINIT attribute
v Ease includes from PDS’s under z/OS UNIX
v Support the LOWERCASE, MACNAME, TRIM and LOWERCASE built-in

functions in the MACRO preprocessor
v Ease introduction of options via PTF
v Optionally disallow use of *PROCESS
v Optionally keep *PROCESS in MDECK
v Support one-time INCLUDE
v Support macro-determined INCLUDE name
v Support runtime string parameter checking
v Flag more possibly uninitialized variables
v Flag unusual compares that are likely to be coding errors
v The output of the STORAGE option is now formatted more nicely, and the

output of the LIST option will now include the hex offset for each block from
the start of the compilation unit.

Debugging improvements
v Better support for overlay hooks
v Easier resolution of CONTROLLED variables in LE dumps
v Always include user specified options in the listing

Introduction xxxiii

Enhancements from V3R3
This release also provides all of the functional enhancements offered in Enterprise
PL/I V3R3, including the following:

More XML support

The XMLCHAR built-in function will write XML with the names and values of the
elements of a referenced structure to a buffer and return the number of bytes
written. This XML can then be passed to other applications, including code using
the PL/I SAX parser, which want to consume it.

Improved performance
v The compilation time under OPT(2) will be significantly less than under

Enterprise PL/I V3R2, especially for large programs.
v The compiler now uses the ED and EDMK instructions for inlined numeric

conversions to PICTURE and CHARACTER. This results in faster, shorter code
sequences and also in faster compilations.

v The compiler now generates better code for string comparisons. This also results
in faster, shorter code sequences.

v The compiler now generates shorter, faster code for conversion from FIXED
DECIMAL to PICTURE with trailing overpunch characters.

v The ARCH and TUNE compiler options now accept 5 as a valid sub-option.
Under ARCH(5), the compiler will generate, when appropriate, some new
z/Architecture® instructions such as NILL, NILH, OILL, OILH, LLILL, and
LLILH.

Easier migration
v The new BIFPREC compiler option controls the precision of the FIXED BIN

result returned by various built-in functions and thus provides for better
compatibility with the OS PL/I compiler.

v The new BACKREG compiler option controls which register the compiler uses as
the backchain register and thus allows for easier mixing of old and new object
code.

v The new RESEXP compiler option controls the evaluation of restricted
expressions in code, and thus provides for better compatibility with the OS PL/I
compiler.

v The new BLKOFF compiler option provides for controlling the way offsets in the
compiler's pseudo-assembler listing are calculated.

v The STORAGE compiler option causes the compiler to produce, as part of the
listing, a summary, similar to that produced by the OS PL/I compiler, of the
storage used by each procedure and begin-block.

Improved usability
v The new LAXDEF suboption of the RULES compiler option allows the use of

so-called illegal defining without having the compiler generate E-level messages.
v The new FLOATINMATH compiler option offers easier control of the precision

with which math functions are evaluated.
v The new MEMINDEX, MEMSEARCH(R) and MEMVERIFY(R) built-in functions

provide the ability to search strings larger than 32K.
v The new ROUTCDE and DESC suboptions of the DISPLAY(WTO) compiler

option offers control of the corresponding elements of the WTO.

xxxiv Enterprise PL/I for z/OS Programming Guide

v The compiler now stores in each object a short string that will be in storage even
when the associated code runs and that records all the options used to produce
that object. This allows various tools to produce better diagnostics.

v The compiler now issues messages identifying more of the places where
statements have been merged or deleted.

v The PLIDUMP output now includes a hex dump of user static.
v The PLIDUMP output now includes the options used to compile each program

in the Language Environment® traceback.
v The PLIDUMP output now includes more information on PL/I files.

Improved debug support
v BASED structures using REFER are now supported in DebugTool and in

data-directed I/O statements (with the same restrictions as on all other BASED
variables).

v BASED structures that are BASED on scalar members of other structures (which,
in turn, may be BASED, etc) are now supported in DebugTool and in
data-directed I/O statements (with the same restriction as on all other BASED
variables).

Enhancements from V3R2
This release also provides all of the functional enhancements offered in Enterprise
PL/I V3R2, including the following:

Improved performance
v The compiler now handles even more conversions by generating inline code

which means these conversions will be done much faster than previously. Also,
all conversions done by library call are now flagged by the compiler.

v The compiler-generated code now uses, in various situations, less stack storage.
v The compiler now generates much better code for references to the TRANSLATE

built-in function.
v The compiler-generated code for SUBSCRIPTRANGE checking is now, for arrays

with known bounds, twice as fast as before.
v The ARCH and TUNE options now support 4 as a suboption, thereby allowing

exploitation of instructions new to the zSeries machines.
v ARCH(2), FLOAT(AFP) and TUNE(3) are now the default.

Easier migration
v Compiler defaults have been changed for easier migration and compatibility. The

changed defaults are:
– CSECT
– CMPAT(V2)
– LIMITS(EXTNAME(7))
– NORENT

v The compiler now honors the NOMAP, NOMAPIN and NOMAP attributes for
PROCs and ENTRYs with OPTIONS(COBOL).

v The compiler now supports PROCs with ENTRY statements that have differing
RETURNS attribute in the same manner as did the old host compiler.

v The compiler will now assume OPTIONS(RETCODE) for PROCs and ENTRYs
with OPTIONS(COBOL).

v The SIZE condition is no longer promoted to ERROR if unhandled.

Introduction xxxv

v Various changes have been made to reduce compile time and storage
requirements.

v The OFFSET option will now produce a statement offset table much like the
ones it produced under the older PL/I compilers.

v The FLAG option now has exactly the same meaning as it had under the old
compilers, while the new MAXMSG option lets you decide if the compiler
should terminate after a specified number of messages of a given severity. For
example, with FLAG(I) MAXMSG(E,10), you can now ask to see all I-level
messages while terminating the compilation after 10 E-level messages.

v The AGGREGATE listing now includes structures with adjustable extents.
v The STMT option is now supported for some sections of the listing.
v The maximum value allowed for LINESIZE has been changed to 32759 for

F-format files and to 32751 for V-format files.

Improved usability
v The defaults for compiler options may now be changed at installation.
v The integrated SQL preprocessor now supports DB2 Unicode.
v The compiler now generates information that allows Debug Tool to support

Auto Monitor, whereby immediately before each statement is executed, all the
values of all the variables used in the statement are displayed.

v The new NOWRITABLE compiler option lets you specify that even under
NORENT and at the expense of optimal performance, the compiler should use
no writable static when generating code to handle FILEs and CONTROLLED.

v The new USAGE compiler option gives you full control over the IBM or ANS
behavior of the ROUND and UNSPEC built-in function without the other effects
of the RULES(IBM|ANS) option.

v The new STDSYS compiler option lets you specify that the compiler should
cause the SYSPRINT file to be equated to the C stdout file.

v The new COMPACT compiler option lets you direct the compiler to favor those
optimizations which tend to limit the growth of the code.

v The LRECL for SYSPRINT has been changed to 137 to match that of the C/C++
compiler.

v POINTERs are now allowed in PUT LIST and PUT EDIT statements: the 8-byte
hex value will be output.

v If specified on a STATIC variable, the ABNORMAL attribute will cause that
variable to be retained even if unused.

Enhancements from V3R1
This release also provides all of the functional enhancements offered in Enterprise
PL/I V3R1, including the following:
v Support for multithreading on z/OS
v Support for IEEE floating-point on z/OS
v Support for the ANSWER statement in the macro prepreprocessor
v SAX-style XML parsing via the PLISAXA and PLISAXB built-in subroutines
v Additional built-in functions:

– CS
– CDS
– ISMAIN
– LOWERCASE
– UPPERCASE

xxxvi Enterprise PL/I for z/OS Programming Guide

Enhancements from VisualAge PL/I
This release also provides all of the functional enhancements offered in VisualAge®

PL/I V2R2, including the following:
v Initial UTF-16 support via the WIDECHAR attribute

There is currently no support yet for
– WIDECHAR characters in source files
– W string constants
– use of WIDECHAR expressions in stream I/O
– implicit conversion to/from WIDECHAR in record I/O
– implicit endianness flags in record I/O

If you create a WIDECHAR file, you should write the endianness flag
('fe_ff'wx) as the first two bytes of the file.

v DESCRIPTORS and VALUE options supported in DEFAULT statements
v PUT DATA enhancements

– POINTER, OFFSET and other non-computational variables supported
– Type-3 DO specifications allowed
– Subscripts allowed

v DEFINE statement enhancements
– Unspecified structure definitions
– CAST and RESPEC type functions

v Additional built-in functions:
– CHARVAL
– ISIGNED
– IUNSIGNED
– ONWCHAR
– ONWSOURCE
– WCHAR
– WCHARVAL
– WHIGH
– WIDECHAR
– WLOW

v Preprocessor enhancements
– Support for arrays in preprocessor procedures
– WHILE, UNTIL and LOOP keywords supported in %DO statements
– %ITERATE statement supported
– %LEAVE statement supported
– %REPLACE statement supported
– %SELECT statement supported
– Additional built-in functions:

- COLLATE
- COMMENT
- COMPILEDATE
- COMPILETIME
- COPY
- COUNTER
- DIMENSION
- HBOUND
- INDEX
- LBOUND
- LENGTH

Introduction xxxvii

- MACCOL
- MACLMAR
- MACRMAR
- MAX
- MIN
- PARMSET
- QUOTE
- REPEAT
- SUBSTR
- SYSPARM
- SYSTEM
- SYSVERSION
- TRANSLATE
- VERIFY

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality
information.

If you have comments about this document or any other PL/I documentation,
contact us in one of these ways:
v Use the Online Readers' Comment Form at

www.ibm.com/software/awdtools/rcf/

Or send an email to comments@us.ibm.com
Ensure to include the name of the document, the publication number of the
document, the version of PL/I, and, if applicable, the specific location (for
example, page number) of the text that you are commenting on.

v Fill out the Readers' Comment Form at the back of this document, and return it
by mail or give it to an IBM representative. If the form has been removed,
address your comments to:

International Business Machines Corporation
Reader Comments
H150/090
555 Bailey Avenue
San Jose, CA 95141-1003
USA

v Fax your comments to this U.S. number: (800)426-7773.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

Accessibility
Accessibility features assist users who have a disability, such as restricted mobility
or limited vision, to use information technology content successfully. The
accessibility features in z/OS provide accessibility for Enterprise PL/I.

Accessibility features

z/OS includes the following major accessibility features:

xxxviii Enterprise PL/I for z/OS Programming Guide

v Interfaces that are commonly used by screen readers and screen-magnifier
software

v Keyboard-only navigation
v Ability to customize display attributes such as color, contrast, and font size

z/OS uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-
aria/), to ensure compliance to US Section 508 (http://www.access-board.gov/
guidelines-and-standards/communications-and-it/about-the-section-508-standards/
section-508-standards) and Web Content Accessibility Guidelines (WCAG) 2.0
(http://www.w3.org/TR/WCAG20/). To take advantage of accessibility features,
use the latest release of your screen reader in combination with the latest web
browser that is supported by this product.

The Enterprise PL/I online product documentation in IBM Knowledge Center is
enabled for accessibility. The accessibility features of IBM Knowledge Center are
described at http://www.ibm.com/support/knowledgecenter/en/about/
releasenotes.html.

Keyboard navigation

Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/OS services by using IBM Rational® Developer for System
z®.

For information about accessing these interfaces, see the following publications:
v z/OS TSO/E Primer (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/

ikj4p120)
v z/OS TSO/E User's Guide (http://publib.boulder.ibm.com/cgi-bin/bookmgr/

BOOKS/ikj4c240/APPENDIX1.3)
v z/OS ISPF User's Guide Volume I (http://publib.boulder.ibm.com/cgi-bin/

bookmgr/BOOKS/ispzug70)
v IBM Rational Developer for System z Knowledge Center (http://www.ibm.com/

support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en)

These guides describe how to use TSO/E and ISPF, including the use of keyboard
shortcuts or function keys (PF keys). Each guide includes the default settings for
the PF keys and explains how to modify their functions.

Interface information

The Enterprise PL/I online product documentation is available in IBM Knowledge
Center, which is viewable from a standard web browser.

PDF files have limited accessibility support. With PDF documentation, you can use
optional font enlargement, high-contrast display settings, and can navigate by
keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code
examples, and text that contains the period or comma PICTURE symbols, you
must set the screen reader to speak all punctuation.

Assistive technology products work with the user interfaces that are found in
z/OS. For specific guidance information, see the documentation for the assistive

Accessibility

Introduction xxxix

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/APPENDIX1.3
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/APPENDIX1.3
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/APPENDIX1.3
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en

technology product that you use to accessz/OS interfaces.

Related accessibility information

In addition to standard IBM help desk and support websites, IBM has established
a TTY telephone service for use by deaf or hard of hearing customers to access
sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility

For more information about the commitment that IBM has to accessibility, see IBM
Accessibility (www.ibm.com/able).

Accessibility

xl Enterprise PL/I for z/OS Programming Guide

http://www.ibm.com/able
http://www.ibm.com/able
http://www.ibm.com/able

Part 1. Compiling your program

© Copyright IBM Corp. 1999, 2017 1

2 Enterprise PL/I for z/OS Programming Guide

Chapter 1. Using compiler options and facilities

This chapter describes the options that you can use for the compiler, along with
their abbreviations and IBM-supplied defaults.

Important: PL/I requires access to the Language Environment run time when you
compile your applications.

With Enterprise PL/I, you can develop both 31-bit and 64-bit applications. When
you compile code, use the LP(32) option for 31-bit applications, or the LP(64)
option for 64-bit applications. However, the compiler behavior under LP(64) is
different from that under LP(32). For more information, see Chapter 7,
“Considerations for developing 64-bit applications,” on page 191 and Chapter 6,
“Link-editing and running for 64-bit programs,” on page 185.

You can override most defaults when you compile your PL/I program. You can
also override the defaults when you install the compiler.

All the compiler option default settings for a release is listed in the member with
the name IBMXOvrm, where v is the version number, r is the release number and
m is the modification number which is usually 0 (for example, IBMXO510 for V5R1
and IBMXO450 for V4R5), in the SIBMZSAM data set. The data set contains
IBMXOvrm members for all supported PL/I releases. To see what has changed in
the default settings and what new options are added from one release to the next,
you can compare the IBMXOvrm files for the two releases. You can also use the
IBMXOvrm files as templates for creating your own options files with your
preferred settings.

Compile-time option descriptions
Most compiler options have a positive and negative form. The negative form is the
positive with NO added at the beginning (as in TEST and NOTEST). Some options
have only a positive form (as in SYSTEM).

There are three types of compiler options:
1. Simple pairs of keywords: a positive form that requests a facility, and an

alternative negative form that inhibits that facility (for example, NEST and
NONEST)

2. Keywords that allow you to provide a value list that qualifies the option (for
example, FLAG(W))

3. A combination of 1 and 2 above (for example, NOCOMPILE(E))

Table 3 on page 4 lists all the compiler options with abbreviations (if any) and
IBM-supplied default values. If an option has any suboptions that can be
abbreviated, those abbreviations are described in the full description of the option.

For the sake of brevity, some of the options are described loosely in the table (for
example, only one suboption of LANGLVL is mandatory, and similarly, if you
specify one suboption of TEST, you do not have to specify the other). The full and
completely accurate syntax is described in the topics that follow.

© Copyright IBM Corp. 1999, 2017 3

Table 3. Compile-time options, abbreviations, and IBM-supplied defaults

Compile-time option Abbreviated name z/OS default

AGGREGATE[(DEC|HEX)] | NOAGGREGATE AG | NAG NOAGGREGATE

ARCH(n) - ARCH(8)

ASSERT(ENTRY | CONDITION) - ASSERT(ENTRY)

ATTRIBUTES[(FULL|SHORT)] |
NOATTRIBUTES

A | NA NA [(FULL)]1

BACKREG(5 | 11) - BACKREG(5)

BIFPREC(15 | 31) - BIFPREC(15)

BLANK('c') - BLANK('t')2

BLKOFF | NOBLKOFF - BLKOFF

BRACKETS('symbol_1symbol_2') - BRACKETS(‘[]’)

CASE(UPPER | ASIS) - CASE(UPPER)

CASERULES(KEYWORD(LOWER |
MIXED | START | UPPER))

- CASERULES(KEYWORD
(MIXED))

CEESTART(FIRST | LAST) - CEESTART(FIRST)

CHECK(STORAGE | NOSTORAGE,
CONFORMANCE | NOCONFORMANCE)

- CHECK(NSTG,
NOCONFORMANCE)

CMPAT(LE | V1 | V2 | V3) CMP CMPAT(V2)

CODEPAGE(n) CP CODEPAGE(1140)

COMMON | NOCOMMON - NOCOMMON

COMPILE | NOCOMPILE[(W | E | S)] C | NC NOCOMPILE(S)

COPYRIGHT(’string’) | NOCOPYRIGHT - NOCOPYRIGHT

CSECT | NOCSECT CSE | NOCSE CSECT

CSECTCUT(n) - CSECTCUT(4)

CURRENCY('c') CURR CURRENCY($)

DBCS | NODBCS - NODBCS

DD(ddname-list) - DD(SYSPRINT,SYSIN,
SYSLIB,SYSPUNCH,
SYSLIN,SYSADATA,
SYSXMLSD,SYSDEBUG)

DDSQL(ddname) - DDSQL('')

DECIMAL(FOFLONASGN | NOFOFLONASGN,
FOFLONMULT | NOFOFLONMULT,
FORCEDSIGN | NOFORCEDSIGN,
TRUNCFLOAT | NOTRUNCFLOAT)

DEC DEC(FOFLONASGN,
NOFOFLONMULT,
NOFORCEDSIGN,

NOTRUNCFLOAT)

DECOMP | NODECOMP - NODECOMP

DEFAULT(attribute | option) DFT See DEFAULT

DEPRECATE(BUILTIN(built-in-name)
| ENTRY(entry-name) | INCLUDE(filename)
| STMT(statement-name)
| VARIABLE(variable-name))

- DEPRECATE(BUILTIN()
ENTRY() INCLUDE()
STMT() VARIABLE())

DEPRECATENEXT(BUILTIN(built-in-name)
| ENTRY(entry-name) | INCLUDE(filename)
| STMT(statement-name)
| VARIABLE(variable-name))

- DEPRECATENEXT(
BUILTIN() ENTRY()
INCLUDE() STMT()
VARIABLE())

4 Enterprise PL/I for z/OS Programming Guide

|

|||

|||

|

Table 3. Compile-time options, abbreviations, and IBM-supplied defaults (continued)

Compile-time option Abbreviated name z/OS default

DISPLAY
(STD | WTO(ROUTCDE(x) DESC(y) REPLY(z)))

- DISPLAY(WTO)

DLLINIT | NODLLINIT - NODLLINIT

EXIT | NOEXIT - NOEXIT

EXTRN(FULL | SHORT) - EXTRN(FULL)

EXPORTALL - EXPORTALL

FILEREF | NOFILEREF - FILEREF

FLAG[(I | W | E | S)] F FLAG(W)

FLOAT(DFP | NODFP) - FLOAT(NODFP)

FLOATINMATH(ASIS | LONG | EXTENDED) - FLOATINMATH(ASIS)

GOFF | NOGOFF - NOGOFF

GONUMBER(SEPARATE | NOSEPARATE) | NOGONUMBER GN | NGN NOGONUMBER

GRAPHIC | NOGRAPHIC GR | NGR NOGRAPHIC

IGNORE(ASSERT | DISPLAY | PUT) | NOIGNORE - NOIGNORE

HEADER(SOURCE | FILE) - SOURCE

INCAFTER([PROCESS(filename)]) - INCAFTER()

INCDIR('directory name') | NOINCDIR - NOINCDIR

INCLUDE | NOINCLUDE - INCLUDE

INCPDS('PDS name') | NOINCPDS - NOINCPDS

INITAUTO([SHORT | FULL]) | NOINITAUTO - NOINITAUTO

INITBASED | NOINITBASED - NOINITBASED

INITCTL | NOINITCTL - NOINITCTL

INITSTATIC | NOINITSTATIC - NOINITSTATIC

INSOURCE[(FULL|SHORT)(ALL|FIRST)] | NOINSOURCE IS | NIS NOINSOURCE

INTERRUPT | NOINTERRUPT INT | NINT NOINTERRUPT

JSON(CASE(UPPER | ASIS)) - JSON(CASE(UPPER))

LANGLVL(NOEXT | OS) - LANGLVL(OS)

LIMITS(options) - See “LIMITS” on page 45

LINECOUNT(n) LC LINECOUNT(60)

LINEDIR | NOLINEDIR - NOLINEDIR

LIST | NOLIST - NOLIST

LISTVIEW(SOURCE | AFTERMACRO
| AFTERCICS | AFTERSQL | AFTERALL)

- LISTVIEW(SOURCE)

LP(32 | 64) - LP(32)

MACRO | NOMACRO M | NM NOMACRO

MAP | NOMAP - NOMAP

MARGINI('c') | NOMARGINI MI | NMI NOMARGINI

MARGINS(m,n[,c])| NOMARGINS MAR(m,n) MARGINS
F-format: (2,72)
V-format: (10,100)

MAXBRANCH(max) - MAXBRANCH(2000)

Chapter 1. Using compiler options and facilities 5

Table 3. Compile-time options, abbreviations, and IBM-supplied defaults (continued)

Compile-time option Abbreviated name z/OS default

MAXGEN(n) - MAXGEN(100000)

MAXMEM(n) MAXM MAXMEM(1048576)

MAXMSG(I | W | E | S,n) - MAXMSG(W,250)

MAXNEST(BLOCK(x) DO(y) IF(z)) - MAXNEST(BLOCK(17)
DO(17) IF(17))

MAXSTMT(n) - MAXSTMT(4096)

MAXTEMP(n) - MAXTEMP(50000)

MDECK | NOMDECK MD | NMD NOMDECK

MSGSUMMARY[(XREF | NOXREF)] | NOMSGSUMMARY - NOMSGSUMMARY

NAME[('external name')] | NONAME N NONAME

NAMES('lower'[,upper]) - NAMES('#@$','#@$')

NATLANG(ENU | UEN) - NATLANG(ENU)

NEST | NONEST - NONEST

NOT - NOT('¬')

NULLDATE | NONULLDATE - NONULLDATE

NUMBER | NONUMBER NUM | NNUM NUMBER

OBJECT | NOOBJECT OBJ | NOBJ OBJECT

OFFSET | NOOFFSET OF | NOF NOOFFSET

OFFSETSIZE(n)3 - OFFSETSIZE(4)

ONSNAP(STRINGRANGE, STRINGSIZE) | NOONSNAP - NOONSNAP

OPTIMIZE(0 | 2 | 3) | NOOPTIMIZE OPT | NOPT OPT(0)

OPTIONS[(ALL|DOC)] | NOOPTIONS OP | NOP NOOPTIONS

OR('c') - OR(' | ')

PP(pp-name) | NOPP - NOPP

PPCICS(’string’) | NOPPCICS - NOPPCICS

PPINCLUDE(’string’) | NOPPINCLUDE - NOPPINCLUDE

PPLIST(KEEP | ERASE) - PPLIST(KEEP)

PPMACRO(’string’) | NOPPMACRO - NOPPMACRO

PPSQL(’string’) | NOPPSQL - NOPPSQL

PPTRACE | NOPPTRACE - NOPPTRACE

PREFIX(condition) - See PREFIX

PRECTYPE(ANS | DECDIGIT | DECRESULT) - PRECTYPE(ANS)

PROCEED | NOPROCEED[(W | E | S)] PRO | NPRO NOPROCEED(S)

PROCESS[(KEEP | DELETE)] | NOPROCESS - PROCESS(DELETE)

QUOTE('"') - QUOTE('"')

REDUCE | NOREDUCE - REDUCE

RENT | NORENT - NORENT

RESEXP | NORESEXP - RESEXP

RESPECT([DATE]) - RESPECT()

RTCHECK(NULLPTR | NONULLPTR | NULL370) - RTCHECK(NONULLPTR)

6 Enterprise PL/I for z/OS Programming Guide

Table 3. Compile-time options, abbreviations, and IBM-supplied defaults (continued)

Compile-time option Abbreviated name z/OS default

RULES(options) - See “RULES” on page 70

SEMANTIC | NOSEMANTIC[(W | E | S)] SEM | NSEM NOSEMANTIC(S)

SERVICE('service string') | NOSERVICE SERV | NOSERV NOSERVICE

SOURCE | NOSOURCE S | NS NOSOURCE

SPILL(n) SP SPILL(512)

STATIC(FULL | SHORT) - STATIC(SHORT)

STDSYS | NOSTDSYS - NOSTDSYS

STMT | NOSTMT - NOSTMT

STORAGE | NOSTORAGE STG | NSTG NOSTORAGE

STRINGOFGRAPHIC(CHAR | GRAPHIC) - STRINGOFGRAPHIC
(GRAPHIC)

SYNTAX | NOSYNTAX[(W | E | S)] SYN | NSYN NOSYNTAX(S)

SYSPARM('string') - SYSPARM('')

SYSTEM(MVS | CICS | IMS | TSO | OS) - SYSTEM(MVS)

TERMINAL | NOTERMINAL TERM | NTERM

TEST(options) | NOTEST - See “TEST” on page 894

UNROLL(AUTO | NO) UNROLL(AUTO)

USAGE(options) - See “USAGE” on page 92

WIDECHAR(BIGENDIAN | LITTLEENDIAN) WCHAR WIDECHAR(BIGENDIAN)

WINDOW(w) - WINDOW(1950)

WRITABLE | NOWRITABLE[(FWS|PRV)] - WRITABLE

XINFO(options) - XINFO(NODEF,NOMSG,
NOSYM,NOSYN,NOXML)

XML(CASE(UPPER | ASIS)) - XML(CASE(UPPER))

XREF[(FULL | SHORT)(EXPLICIT | IMPLICIT)] | NOXREF X | NX NX [(FULL)]1

Notes:
1. FULL is the default suboption if the suboption is omitted with ATTRIBUTES or XREF.
2. The default value for the BLANK character is the tab character with value '05'x.
3. The OFFSETSIZE option is ignored if the LP(32) option is in effect.
4. (ALL,SYM) is the default suboption if the suboption is omitted with TEST.

The following topics describe the options in alphabetical order. For those options
specifying that the compiler is to list information, only a brief description is
included. For details about the generated listing, see “Using the compiler listing”
on page 103.

AGGREGATE
The AGGREGATE option creates an Aggregate Length Table that gives the lengths
of arrays and major structures in the source program in the compiler listing.

►►
NOAGGREGATE
AGGREGATE

DECIMAL
(HEXADEC)

►◄

Chapter 1. Using compiler options and facilities 7

ABBREVIATIONS: AG, NAG

The suboptions of the AGGREGATE option determine how the offsets of
subelements are displayed in the Aggregate Length Table:

DECIMAL
All offsets are displayed in decimal.

HEXADEC
All offsets are displayed in hexadecimal.

In the Aggregate Length Table, the length of an undimensioned major or minor
structure is always expressed in bytes, but the length might not be accurate if the
major or minor structure contains unaligned bit elements.

The Aggregate Length Table includes structures but not arrays that have
non-constant extents. However, the sizes and offsets of elements within structures
with non-constant extents might be inaccurate or specified as *.

ARCH
The ARCH option specifies the architecture for which the instructions of executable
programs are to be generated. It allows the optimizer to take advantage of specific
hardware instruction sets.

►►
8

ARCH (n) ►◄

You can specify the following values for the ARCH level:

8 Generates code that uses instructions available on the 2098-xxx models
(IBM System z10® BC) and 2097-xxx models (IBM System z10 EC) in
z/Architecture mode.

Specifically, these ARCH(8) machines and subsequent generations add
instructions supported by the general instruction extensions facility, which
can be exploited by the compiler.

9 Generates code that uses instructions available on the 2817-xxx (IBM
zEnterprise 196 (z196)) and 2818-xxx models (IBM zEnterprise 114 (z114))
models in z/Architecture mode.

Specifically, these ARCH(9) machines and their follow-ons add instructions
supported by the following facilities, which can be exploited by the
compiler:
v The high-word facility
v The population count facility
v The distinct-operands facility
v The floating-point extension facility
v The load/store-on-condition facility

For further information about these facilities, see the z/Architecture
Principles of Operation.

10 Generates code that uses instructions available on the 2827-xxx (IBM
zEnterprise EC12) models in z/Architecture mode.

8 Enterprise PL/I for z/OS Programming Guide

Specifically, these ARCH(10) machines and their follow-ons add
instructions supported by the following facilities, which can be exploited
by the compiler:
v The execution-hint facility
v The load-and-trap facility
v The miscellaneous-instructions-extension facility
v The transactional-execution facility

For further information about these facilities, see z/Architecture Principles of
Operation.

11 Generates code that uses instructions available on the 2964-xxxx (IBM
z13™) models in z/Architecture mode.

Specifically, these ARCH(11) machines and their follow-ons add
instructions supported by the following facilities:
v Vector facility

Notes:
1. If you specify an ARCH value less than 8, the compiler resets it to 8.
2. The x in the model numbers above (such as 2084-xxx) is a wildcard and stands

for any alphanumeric machine of that type.
3. Code that is compiled at ARCH(n) runs on machines in the ARCH(m) group if

and only if m >= n.
4. You can mix code that is compiled with different ARCH levels without any

restrictions.

ASSERT
The ASSERT option controls whether ASSERT statements call a default library
routine that will raise the ASSERTION condition or a routine provided by the user.

►►
ENTRY

ASSERT (CONDITION) ►◄

The default is ASSERT(ENTRY).

ENTRY
Specifies that ASSERT statements will call user-provided routines with the
interfaces documented in the Enterprise PL/I for z/OS Language Reference.

CONDITION
Specifies that ASSERT statements will call library routines that will raise
the ASSERTION condition with an appropriate ONCODE built-in function.

ATTRIBUTES
The ATTRIBUTES option specifies that the compiler includes a table of
source-program identifiers and their attributes in the compiler listing.

►►
NOATTRIBUTES
ATTRIBUTES

FULL
(SHORT)

►◄

ABBREVIATIONS: A, NA, F, S

Chapter 1. Using compiler options and facilities 9

|

|
|

||||||||||||||||||

|

|

|
|
|

|
|
|

FULL
All identifiers and attributes are included in the compiler listing. FULL is the
default.

SHORT
Unreferenced identifiers are omitted, making the listing more manageable.

If you include both ATTRIBUTES and XREF (which creates a cross-reference table),
the two tables are combined. However, if the SHORT and FULL suboptions are in
conflict, the last option specified is used. For example, if you specify
ATTRIBUTES(SHORT) XREF(FULL), FULL applies to the combined listing.

BACKREG
The BACKREG option controls the backchain register, which is the register used to
pass the address of the automatic storage of a parent routine when a nested
routine is invoked.

Note: Under the LP(64) option, the BACKREG option is ignored.

►►
5

BACKREG (11) ►◄

For best compatibility with PL/I for MVS & VM, OS PL/I V2R3, and earlier
compilers, use BACKREG(5).

All routines that share an ENTRY VARIABLE must be compiled with the same
BACKREG option, and it is strongly recommended that all code in application be
compiled with the same BACKREG option.

Note that code compiled with VisualAge PL/I for OS/390® effectively uses the
BACKREG(11) option. Code compiled with Enterprise PL/I V3R1 or V3R2 also
uses the BACKREG(11) option by default.

BIFPREC
The BIFPREC option controls the precision of the FIXED BIN result returned by
various built-in functions.

►►
15

BIFPREC (31) ►◄

For best compatibility with PL/I for MVS & VM, OS PL/I V2R3, and earlier
compilers, use BIFPREC(15).

BIFPREC affects the following built-in functions:
v COUNT
v INDEX
v LENGTH
v LINENO
v ONCOUNT
v PAGENO
v SEARCH

10 Enterprise PL/I for z/OS Programming Guide

v SEARCHR
v SIGN
v VERIFY
v VERIFYR

The effect of the BIFPREC compiler option is most visible when the result of one of
the above built-in functions is passed to an external function that has been
declared without a parameter list. For example, consider the following code
fragment:

dcl parm char(40) var;
dcl funky ext entry(pointer, fixed bin(15));
dcl beans ext entry;
call beans(addr(parm), verify(parm), ’ ’);

Suppose that the function beans actually declares its parameters as POINTER and
FIXED BIN(15). If the preceding code is compiled with the option BIFPREC(31)
and if it is run on a big-endian system such as z/OS, the compiler will pass a
4-byte integer as the second argument and the second parameter will be zero.

Note that the function funky will work on all systems with either option.

The BIFPREC option does not affect the built-in functions DIM, HBOUND and
LBOUND. The CMPAT option determines the precision of the FIXED BIN result
returned by these three functions:
v Under CMPAT(V1), these array-handling functions return a FIXED BIN(15)

result.
v Under CMPAT(V2) and CMPAT(LE), they return a FIXED BIN(31) result.
v Under CMPAT(V3), they return a FIXED BIN(63) result.

BLANK
The BLANK option specifies up to ten alternate symbols for the blank character.

►► BLANK ▼(' char ') ►◄

Note: Do not code any blanks between the quotation marks.

The IBM-supplied default code point for the BLANK symbol is '05'X.

char
A single SBCS character

You cannot specify any of the alphabetic characters, digits, or special characters
defined in the PL/I Language Reference.

If you specify the BLANK option, the standard blank symbol is still recognized as
a blank.

Chapter 1. Using compiler options and facilities 11

|
|

|

BLKOFF
The BLKOFF option controls whether the offsets shown in the pseudo-assembler
listing (produced by the LIST option) and the statement offset listing (produced by
the OFFSET option) are from the start of the current module or from the start of
the current procedure.

►►
BLKOFF
NOBLKOFF ►◄

The pseudo-assembler listing also includes the offset of each block from the start of
the current module (so that the offsets shown for each statement can be translated
to either block or module offsets).

BRACKETS
The BRACKETS option specifies the symbols that the SQL preprocessor accepts as
the left and right brackets in SQL array references.

►►
[]

BRACKETS (' symbol_1 symbol_2 ') ►◄

symbol_1
Specifies the symbol recognized as the left bracket in SQL array references.

symbol_2
Specifies the symbol recognized as the right bracket in SQL array references.

Note: The two values specified must be different from each other and must not be
characters used in the PL/I character set or in other PL/I options such as NAMES,
NOT, or OR.

The default is BRACKETS(‘[]’).
Related information:
“NAMES” on page 56
The NAMES option specifies the extralingual characters that are allowed in
identifiers.
“NOT” on page 56
The NOT option specifies up to seven alternate symbols that can be used as the
logical NOT operator.
“OR” on page 61
The OR option specifies up to seven alternate symbols as the logical OR operator.
These symbols are also used as the concatenation operator, which is defined as two
consecutive logical OR symbols.

CASE
The CASE option controls whether some names will be shown in uppercase or in
the same format as they appear in the source program.

►►
UPPER

CASE (ASIS) ►◄

The default is CASE(UPPER).

12 Enterprise PL/I for z/OS Programming Guide

|

|
|

||||||||||||||||||

|

|

UPPER
Specifies that all names will be shown in uppercase.

ASIS
Specifies that names will be shown in the case in which they appear in the
source in
v The AGGREGATE, ATTRIBUTES, and XREF listings.
v The values returned by the PACKAGENAME, PROCNAME and

ORDINALNAME built-in functions.
v PUT DATA output as long as the TEST option is not used and as long as the

compilation unit contains no GET DATA statements.

CASERULES
The CASERULES option controls the enforcement of case rules for keywords.

►►
MIXED

CASERULES (KEYWORD (UPPER))
LOWER
START

►◄

LOWER
Instructs the compiler to flag any keyword that is not in lowercase.

MIXED
Instructs the compiler to accept all keywords as they are coded. MIXED is the
default.

START
Instructs the compiler to flag any keyword whose first letter is not in
uppercase or whose remaining letters are not in lowercase.

UPPER
Instructs the compiler to flag any keyword that is not in uppercase.

Notes:

1. The CASERULES option does not apply to elements of the OPTIONS and
ENVIRONMENT attributes.

2. The CASERULES option does not apply to any of the preprocessors.

CEESTART
The CEESTART option specifies whether the compiler should place the CEESTART
csect before or after all the other generated object code.

Note: Under the LP(64) option, the CEESTART option is ignored.

►►
FIRST

CEESTART (LAST) ►◄

Under the CEESTART(FIRST) option, the compiler places the CEESTART csect
before all the other generated object code; however, under the CEESTART(LAST)
option, the compiler places it after all the other generated object code.

Using CEESTART(FIRST) will cause the binder to choose CEESTART as the entry
point for a module if no ENTRY card is specified during the bind step.

Chapter 1. Using compiler options and facilities 13

|
|

|
|
|

|

|
|

|
|

If you want to use linker CHANGE cards, you must use the CEESTART(LAST)
option.

However, MAIN routines should be linked with an ENTRY CEESTART linkage
editor card. But, if you use the CEESTART(LAST) option, you must include an
ENTRY CEESTART card when linking your MAIN routine.

CHECK
The CHECK option specifies whether the compiler should generate special code to
detect various programming errors.

►► ▼

,
NOCONFORMANCE

CHECK (CONFORMANCE)
NOSTORAGE
STORAGE

►◄

ABBREVIATIONS: STG, NSTG

CONFORMANCE | NOCONFORMANCE
Specifying CHECK(CONFORMANCE) causes the compiler to generate, under
the following circumstances, code that checks at run time if the attributes of
the arguments passed to a procedure match those of the declared parameters:
v If a parameter is a string (or an array of strings) declared with a constant

length, then the STRINGSIZE condition will be raised if the argument
passed does not have matching length.

v If a parameter is a string (or an array of strings), then the STRINGSIZE
condition will be raised if the argument does not have the same length type
(VARYING, NONVARYING or VARYINGZ).

v If a parameter is an array (of scalars or structures), then the
SUBSCRIPTRANGE condition will be raised if any constant bounds do not
match those of the passed argument. The SUBSCRIPTRANGE condition will
also be raised if all the extents are constant and the size and spacing of the
array elements in the argument do not match those in the parameter. Arrays
inside a structure are not checked.

v If a parameter is a structure or union with constant extents, then the
SUBSCRIPTRANGE condition will be raised if the offset of the last element
does not match that of the passed argument.

v If the procedure has the RETURNS BYADDR attribute and that attribute
specifies a string type, then the STRINGSIZE condition will be raised if the
string passed for the RETURNS value does not have matching length.

This extra code will not be generated if any of the following conditions are
true:
v The NODESCRIPTOR option applies to the procedure.
v The block contains ENTRY statements.
v The CMPAT(LE) option is in effect.

STORAGE | NOSTORAGE
When you specify CHECK(STORAGE), the compiler calls slightly different
library routines for ALLOCATE and FREE statements (except when these
statements occur within an AREA).

14 Enterprise PL/I for z/OS Programming Guide

|

Note: The STORAGE suboption is not supported under the LP(64) option.

The following built-in functions, described in the PL/I Language Reference, can
be used only when CHECK(STORAGE) has been specified:
v ALLOCSIZE
v CHECKSTG
v UNALLOCATED

AMODE(24) is not recommended for Enterprise PL/I applications. For code
compiled with the CHECK(STORAGE) option, if you have to use AMODE(24),
you must also specify the HEAP(,,BELOW) runtime option.

CMPAT
The CMPAT option specifies whether object compatibility with OS PL/I Version 1,
OS PL/I Version 2, PL/I for MVS & VM, or Enterprise PL/I for z/OS is to be
maintained for programs sharing strings, AREAs, arrays, or structures.

Note: Under the LP(64) option, the CMPAT option is ignored; effectively,
CMPAT(V3) is always on.

►► CMPAT (
V2
LE
V1
V3

) ►◄

ABBREVIATIONS: CMP

LE Under CMPAT(LE), your program can share strings, AREAs, arrays, or
structures only with programs compiled with VisualAge PL/I for OS/390 or
Enterprise PL/I for z/OS and only as long as the CMPAT(V1) and CMPAT(V2)
options were not used when they were compiled. DB2 stored procedures must
not be compiled with CMPAT(LE).

V1 Under CMPAT(V1), you can share strings, AREAs, arrays, or structures with
programs compiled with the OS PL/I compiler and with programs compiled
with later PL/I compilers as long as the CMPAT(V1) option was used. The
JSON built-in functions are not supported under CMPAT(V1).

V2 Under CMPAT(V2), you can share strings, AREAs, arrays, or structures with
programs compiled with the OS PL/I compiler and with programs compiled
with later PL/I compilers as long as the CMPAT(V2) option was used.

V3 Under CMPAT(V3), you can share strings with programs compiled with the OS
PL/I compiler and with programs compiled with later PL/I compilers as long
as one of the CMPAT(V*) options was used. However, you cannot share
AREAs, arrays, or structures with any code that was not compiled with
CMPAT(V3).

All the modules in an application must be compiled with the same CMPAT option.

Mixing old and new code still has some restrictions. For information about these
restrictions, see the Enterprise PL/I for z/OS Compiler and Run-Time Migration Guide.

The DFT(DESCLIST) option conflicts with the CMPAT(V*) options. If it is specified
with any CMPAT(V*) option, a message will be issued and the
DFT(DESCLOCATOR) option will be assumed.

Chapter 1. Using compiler options and facilities 15

||||||||||||||||||||||||||

|

||
|
|
|
|

||
|
|
|

Under CMPAT(V3), arrays can be declared with any value that an 8-byte integer
can assume. However, unless the LP(64) option is used, the total size of an array
currently still has the same limit as an array declared under CMPAT(V2).

Under CMPAT(V3), the following built-in functions will always return a FIXED
BIN(63) result:
v CURRENTSIZE/CSTG
v DIMENSION
v HBOUND
v LBOUND
v LOCATION
v SIZE/STG

Because these functions will return 8-byte integer values, under CMPAT(V3), the
second option in the FIXEDBIN suboption of the LIMITS option must be 63.

However, even under CMPAT(V3), statement and format label constants must be
specified using 4-byte integers.

CODEPAGE
The CODEPAGE option specifies the code page used for conversions between
CHARACTER and WIDECHAR. The option also specifies the default code page
used by the PLISAX built-in subroutines.

►► CODEPAGE (ccsid) ►◄

Table 4. Supported CCSIDs

01047
01140
01141
01142
01143
01144
01025

01145
01146
01147
01148
01149
00037
01155

00273
00277
00278
00280
00284
00285

00297
00500
00871
00819
00813
00920

The default CCSID 1140 is an equivalent of CCSID 37 (EBCDIC Latin-1, USA) but
includes the Euro symbol.

COMMON
The COMMON option directs the compiler to generate CM linkage records for
EXTERNAL STATIC variables.

Note: Under the LP(64) option, the COMMON option is ignored.

►►
NOCOMMON
COMMON ►◄

Under the COMMON option, if the NORENT option applies, CM linkage records
will be generated for EXTERNAL STATIC variables that are not RESERVED and
that contain no INITIAL values. This matches what the OS PL/I compiler does.

16 Enterprise PL/I for z/OS Programming Guide

|
|
|

Under the NOCOMMON option, SD records will be written as was true in earlier
releases of Enterprise PL/I.

The COMMON option must not be used with the RENT option or with
LIMITS(EXTNAME(n)) if n > 7.

COMPILE
The COMPILE option causes the compiler to stop compiling after all semantic
checking of the source program if it produces a message of a specified severity
during preprocessing or semantic checking.

Whether the compiler continues or not depends on the severity of the error
detected, as specified by the NOCOMPILE option in the list below. The
NOCOMPILE option specifies that processing stops unconditionally after semantic
checking.

►►

NOCOMPILE
S

(W)
E

COMPILE ►◄

ABBREVIATIONS: C, NC

COMPILE
Generates code unless a severe error or an unrecoverable error is detected. This
suboption is equivalent to NOCOMPILE(S).

NOCOMPILE
Compilation stops after semantic checking.

NOCOMPILE(W)
No code generation if a warning, an error, a severe error, or an unrecoverable
error is detected.

NOCOMPILE(E)
No code generation if an error, a severe error, or an unrecoverable error is
detected.

NOCOMPILE(S)
No code generation if a severe error or an unrecoverable error is detected.

If the compilation is terminated by the NOCOMPILE option, the cross-reference
listing and attribute listing can be produced; the other listings that follow the
source program will not be produced.

COPYRIGHT
The COPYRIGHT option places a string in the object module, if generated. This
string is loaded into memory with any load module into which this object is
linked.

►►
NOCOPYRIGHT
COPYRIGHT (‘copyright string’) ►◄

The string is limited to 1000 characters in length. However, if the string is longer
than 100 characters, it will not be shown in the option listing.

Chapter 1. Using compiler options and facilities 17

To ensure that the string remains readable across locales, only characters from the
invariant character set should be used.

CSECT
The CSECT option ensures that the object module, if generated, contains named
CSECTs.

Use this option if you use SMP/E to service your product or to help debug your
program.

►►
CSECT
NOCSECT ►◄

ABBREVIATIONS: CSE, NOCSE

Under the NOCSECT option, the code and static sections of your object module are
given default names.

Under the CSECT option, the code and static sections of your object module are
given names that depend on the "package name", which is defined as follows:
v If the package statement was used, the "package name" is the leftmost label on

the package statement.
v Otherwise, the "package name" is the leftmost label on the first procedure

statement.

A "modified package name" of length 7 is then formed as follows:
v When the package name is less than 7 characters long, asterisks (*) are prefixed

to it to make a modified package name that is 7 characters long.
v When the package name is more than 7 characters long, the first n and last 7 - n

characters are used to make the modified package name, where n is set by the
CSECTCUT option.

v Otherwise, the package name is copied to the modified package name.

The code csect name is built by taking the modified package name and appending
a 1 to it.

The static csect name is built by taking the modified package name and appending
a 2 to it.

So, for a package named SAMPLE, the code csect name is *SAMPLE1, and the static
csect name is *SAMPLE2.

CSECTCUT
The CSECTCUT option controls how the compiler, when processing the CSECT
option, handles long names.

►►
4

CSECTCUT (n) ►◄

The CSECTCUT option has no effect unless you specify the CSECT option. It also
has no effect if the "package name" used by the CSECT option has 7 or fewer
characters.

18 Enterprise PL/I for z/OS Programming Guide

The value n in the CSECTCUT option must be between 0 and 7.

If the "package name" used by the CSECT option has more than 7 characters, the
compiler will collapse the name to 7 characters by taking the first n and last 7 - n
characters.

For example, consider a compilation consisting of one procedure with the name
BEISPIEL:
v Under CSECTCUT(3), the compiler collapses the name to BEIPIEL.
v Under CSECTCUT(4), the compiler collapses the name to BEISIEL.

CURRENCY
The CURRENCY option allows you to specify an alternate character to be used in
picture strings instead of the dollar sign.

►►
$

CURRENCY (' x ') ►◄

ABBREVIATIONS: CURR

x Character that you want the compiler and run time to recognize and accept as
the dollar sign in picture strings

DBCS
The DBCS option ensures that the listing, if generated, is sensitive to the possible
presence of DBCS even though the GRAPHIC option has not been specified.

►►
NODBCS
DBCS ►◄

Under z/OS UNIX System Services, the NODBCS option causes the listing, if
generated, to show all DBCS shift-codes as ".".

Under both batch and z/OS UNIX System Services, the NODBCS option ensures
that the header text in the listing page does not contain unmatched shift codes.

The NODBCS option should not be specified if the GRAPHIC option is also
specified.

DD
Using the DD option, you can specify alternate DD names for the various data sets
used by the compiler.

►► DD
(SYSPRINT)

, SYSIN
, SYSLIB

, SYSPUNCH
, SYSLIN

, SYSADATA
, SYSXMLSD

, SYSDEBUG

►◄

Up to eight DD names can be specified. In order, they specify alternate DD names
for the following data sets:
v SYSPRINT

Chapter 1. Using compiler options and facilities 19

v SYSIN
v SYSLIB
v SYSPUNCH
v SYSLIN
v SYSADATA
v SYSXMLSD
v SYSDEBUG

If you want to use ALTIN as the DD name for the primary compiler source file,
you must specify DD(SYSPRINT,ALTIN). If you specify DD(ALTIN), SYSIN is used
as the DDNAME for the primary compiler source file and ALTIN is used as the
DD name for the compiler listing.

You can also use an asterisk (*) to indicate that the default DD name should be
used. Thus DD(*,ALTIN) is equivalent to DD(SYSPRINT,ALTIN).

DDSQL
Using the DDSQL option, you can specify an alternate DD name for the data set
that is used by the SQL preprocessor when the preprocessor resolves EXEC SQL
INCLUDE statements.

►►
''

DDSQL (ddname) ►◄

Under the DDSQL('') option, the DD name that is used to resolve EXEC SQL
INCLUDE statements is the DD name for SYSLIB from the DD compiler option.

This option might be useful when you are moving from the SQL precompiler to
the integrated SQL preprocessor.

DECIMAL
The DECIMAL option specifies how the compiler should handle certain FIXED
DECIMAL operations and assignments.

►► ▼

,
FOFLONASGN

DECIMAL (NOFOFLONASGN)
NOFOFLONMULT
FOFLONMULT
NOFORCEDSIGN
FORCEDSIGN
NOTRUNCFLOAT
TRUNCFLOAT

►◄

FOFLONASGN
When the FOFLONASGN option is enabled and the SIZE condition is disabled,
the FOFLONASGN option requires the compiler to generate code that will
raise the FIXEDOVERFLOW condition whenever a FIXED DECIMAL
expression is assigned to a FIXED DECIMAL target and significant digits are
lost.

20 Enterprise PL/I for z/OS Programming Guide

Conversely, under the NOFOFLONASGN option, the compiler will generate
code that will not raise the FIXEDOVERFLOW condition when significant
digits are lost in such an assignment.

For example, given a variable A declared as FIXED DEC(5), the assignment A =
A + 1 might raise FOFL under the FOFLONASGN option, but will never raise
FOFL under the NOFOFLONASGN option.

Note, however, that under the NOFOFLONASGN option, the
FIXEDOVERFLOW condition can still be raised by operations that produce a
result with more digits than allowed by the FIXEDDEC suboption of the
LIMITS option. For example, given a variable B declared as FIXED DEC(15)
with the value 999_999_999_999_999 and given that the FIXEDDEC suboption
of the LIMITS specifies the maximum precision as 15, then the assignment B =
B + 1 will raise the FIXEDOVERFLOW condition (if FOFL is enabled).

FOFLONMULT
The FOFLONMULT option requires the compiler to generate code that will
raise the FIXEDOVERFLOW condition for any use of the MULTIPLY built-in
function that will produce a FIXED DEC result that is too large for the
precision specified in the built-in function.

Conversely, under the NOFOFLONMULT option, the compiler will generate
code that will produce a truncated result for any such use of the MULTIPLY
built-in function.

Note that the use of the FOFLONMULT option changes the default language
semantics (which is to truncate a too large result of the MULTIPLY built-in
function applied to FIXED DEC - unless the SIZE condition is enabled).

FORCEDSIGN
The FORCEDSIGN option will force the compiler to generate extra code to
ensure that whenever a FIXED DECIMAL result with the value zero is
generated, the sign nibble of the result will have the value ’C’X. This option
can cause the compiler to generate code that will perform much, much worse
than the code generated under the NOFORCEDSIGN suboption.

Also, when this option is in effect, more data exceptions might occur when you
run your code. For example, if you assign one FIXED DEC(5) variable to
another FIXED DEC(5) variable, the compiler would normally generate an
MVC instruction to perform the move. However, if the FORCEDSIGN option is
in effect, to ensure that the result has the preferred sign, the compiler will
generate a ZAP instruction to perform the move. If the source contains invalid
packed decimal data, the ZAP instruction, but not the MVC instruction, will
raise a decimal data exception.

Under this option, data exceptions might also be raised when one PICTURE
variable is assigned to another PICTURE variable because that conversion
usually involves an implicit conversion to FIXED DEC, which, under this
option, will generate a ZAP instruction that will raise a data exception if the
source contains invalid data.

Under DECIMAL(NOFORCEDSIGN), a "negative zero" might be produced by
certain calculations. However, a programmer should rely on getting a negative
zero only when assigning a negative literal to a FIXED DEC that cannot hold a
value of that small a magnitude (such as assigning -.001 to a FIXED DEC(5,2)).

TRUNCFLOAT
This suboption instructs the compiler how to handle assignments of float to
fixed decimal when truncation might occur.

Chapter 1. Using compiler options and facilities 21

Under TRUNCFLOAT, if a hexadecimal float value is converted to FIXED
DEC(p,q) where p <=18 and abs(q) <= p, and if the source value is too large for
the target, the source value will be truncated and overflow will not be raised.

The default is NOTRUNCFLOAT.

DECOMP
The DECOMP option instructs the compiler to generate a listing section that gives
a decomposition of expressions used in the compilation.

►►
NODECOMP
DECOMP ►◄

Under the DECOMP option, the compiler generates a listing section that shows all
intermediate expressions and their attributes for all expressions used in the source
program.

Under the NODECOMP option, the compiler does not generate this listing section.

The default is NODECOMP.

DEFAULT
The DEFAULT option specifies defaults for attributes and options. These defaults
are applied only when the attributes or options are not specified or implied in the
source code.

22 Enterprise PL/I for z/OS Programming Guide

►► DEFAULT (

▼

,
ALIGNED
UNALIGNED
IBM
ANS
EBCDIC
ASCII
ASSIGNABLE
NONASSIGNABLE ()

INONLY
STATIC

BIN1ARG
NOBIN1ARG
BYADDR
BYVALUE
NONCONNECTED
CONNECTED
DESCLOCATOR
DESCLIST
DESCRIPTOR
NODESCRIPTOR

ALIGNED
DUMMY ()

UNALIGNED
HEXADEC

E ()
IEEE

EVENDEC
NOEVENDEC
HEXADEC

IEEE
NOINITFILL
INITFILL

(init_value)
NOINLINE
INLINE

OPTLINK
LINKAGE ()

SYSTEM
LOWERINC
UPPERINC
NATIVE
NONNATIVE
NATIVEADDR
NONNATIVEADDR
NULL370
NULLSYS
NULLSTRADDR
NONULLSTRADDR

NULL
NULLSTRPTR (STRICT)

SYSNULL
REORDER
ORDER

MIN
ORDINAL (MAX)
NOOVERLAP
OVERLAP
PSEUDODUMMY
NOPSEUDODUMMY
NONRECURSIVE
RECURSIVE
NORETCODE
RETCODE

BYADDR
RETURNS ()

BYVALUE
HEXADEC

SHORT ()
IEEE

) ►◄

Chapter 1. Using compiler options and facilities 23

ABBREVIATIONS: DFT, ASGN, NONASGN, NONCONN, CONN, INL, NOINL

ALIGNED | UNALIGNED
This suboption forces byte-alignment on all of your variables.

If you specify ALIGNED, all variables other than character, bit, graphic, and
picture are given the ALIGNED attribute unless the UNALIGNED attribute is
explicitly specified (possibly on a parent structure) or implied by a DEFAULT
statement.

If you specify UNALIGNED, all variables are given the UNALIGNED attribute
unless the ALIGNED attribute is explicitly specified (possibly on a parent
structure) or implied by a DEFAULT statement.

ALIGNED is the default.

IBM | ANS
The suboption specifies whether to use IBM defaults or ANS SYSTEM defaults.
The following table shows the arithmetic defaults for IBM and ANS.

Attributes DEFAULT(IBM) DEFAULT(ANS)

FIXED DECIMAL (5,0) (10,0)

FIXED BINARY (15,0) (31,0)

FLOAT DECIMAL (6) (6)

FLOAT BINARY (21) (21)

Under the IBM suboption, the default for variables with names beginning from
I to N is FIXED BINARY, and the default for any other variables is FLOAT
DECIMAL. If you select the ANS suboption, the default for all variables is
FIXED BINARY.

IBM is the default.

ASCII | EBCDIC
This suboption sets the default for the character set used for the internal
representation of character problem program data.

Specify ASCII only when compiling programs that depend on the ASCII
character set collating sequence. Such a dependency exists, for example, if your
program relies on the sorting sequence of digits or on lowercase and uppercase
alphabetics. This dependency also exists in programs that create an uppercase
alphabetic character by changing the state of the high-order bit.

Note: The compiler supports A and E as suffixes on character strings. The A
suffix indicates that the string is meant to represent ASCII data, even if the
EBCDIC compiler option is in effect. Alternately, the E suffix indicates that the
string is EBCDIC, even when you select DEFAULT(ASCII).

’123’A is the same as ’313233’X
’123’E is the same as ’F1F2F3’X

EBCDIC is the default.

ASSIGNABLE | NONASSIGNABLE
This option causes the compiler to apply the specified attribute to all static
variables that are not declared with the ASSIGNABLE or NONASSIGNABLE
attribute. The compiler flags statements in which NONASSIGNABLE variables
are the targets of assignments.

ASSIGNABLE is the default.

24 Enterprise PL/I for z/OS Programming Guide

INONLY
Specifying NONASSIGNABLE(INONLY) indicates that parameters
declared with the INONLY attribute are given the NONASSIGNABLE
attribute.

STATIC
Specifying NONASSIGNABLE(STATIC) indicates that STATIC variables are
given the NONASSIGNABLE attribute.

The INONLY and STATIC suboptions have no effect on either variables with
the ASSIGNABLE or NONASSIGNABLE attribute or structure members that
inherit the ASSIGNABLE or NONASSIGNABLE attribute from a parent.

BYVALUE parameters are given the INONLY attribute after the resolution of
the (NON)ASSIGNABLE attribute, and hence the
NONASSIGNABLE(INONLY) suboption has no effect on BYVALUE
parameters.

To specify the NONASSIGNABLE attribute to both STATIC and INONLY
variables, you must specify the suboption NONASSIGNABLE(STATIC
INONLY).

The NONASSIGNABLE attribute can be specified without any suboptions, in
which case it means NONASSIGNABLE(STATIC).

BIN1ARG | NOBIN1ARG
This suboption controls how the compiler handles 1-byte REAL FIXED BIN
arguments passed to an unprototyped function.

Under BIN1ARG, the compiler passes a FIXED BIN argument as is to an
unprototyped function.

But under NOBIN1ARG, the compiler assigns any 1-byte REAL FIXED BIN
argument passed to an unprototyped function to a 2-byte FIXED BIN
temporary and pass that temporary instead.

Consider the following example:
dcl f1 ext entry;
dcl f2 ext entry(fixed bin(15));

call f1(1b);
call f2(1b);

If you specify DEFAULT(BIN1ARG), the compiler passes the address of a
1-byte FIXED BIN(1) argument to the routine f1 and the address of a 2-byte
FIXED BIN(15) argument to the routine f2. However, if you specify
DEFAULT(NOBIN1ARG), the compiler passes the address of a 2-byte FIXED
BIN(15) argument to both routines.

Note that if the routine f1 is a COBOL routine, passing a 1-byte integer
argument to it might cause problems because COBOL has no support for
1-byte integers. In this case, using DEFAULT(NOBIN1ARG) might be helpful;
but it might be better to specify the argument attributes in the entry declare
statement.

BIN1ARG is the default.

BYADDR | BYVALUE
This suboption sets the default for whether arguments or parameters are
passed by reference or by value. BYVALUE applies only to certain arguments
and parameters. See the PL/I Language Reference for more information.

BYADDR is the default.

Chapter 1. Using compiler options and facilities 25

CONNECTED | NONCONNECTED
This suboption sets the default for whether parameters are connected or
nonconnected. CONNECTED allows the parameter to be used as a target or
source in record-oriented I/O or as a base in string overlay defining.

NONCONNECTED is the default.

DESCLIST | DESCLOCATOR
When you specify DEFAULT(DESCLIST), the compiler passes all descriptors in
a list as a 'hidden' last parameter.

If you specify DEFAULT(DESCLOCATOR), parameters requiring descriptors
are passed using a locator or descriptor in the same way as previous releases
of PL/I. This allows old code to continue to work even if it passes a structure
from one routine to a routine that is expecting to receive a pointer.

The DFT(DESCLIST) option conflicts with the CMPAT(V*) options, and if it is
specified with any of them, a message will be issued and the
DFT(DESCLOCATOR) option will be assumed.

DESCLOCATOR is the default.

DESCRIPTOR | NODESCRIPTOR
Using DESCRIPTOR with a PROCEDURE indicates that a descriptor list was
passed, while DESCRIPTOR with ENTRY indicates that a descriptor list should
be passed. NODESCRIPTOR results in more efficient code, but has the
following restrictions:
v For PROCEDURE statements, NODESCRIPTOR is invalid if any of the

parameters contains the following:
– An asterisk (*) specified for the bound of an array, the length of a string,

or the size of an area except if it is a VARYING or VARYINGZ string with
the NONASSIGNABLE attribute

– The NONCONNECTED attribute
– The UNALIGNED BIT attribute

v For ENTRY declarations, NODESCRIPTOR is invalid if an asterisk (*) is
specified for the bound of an array, the length of a string, or the size of an
area in the ENTRY description list.

DESCRIPTOR is the default.

DUMMY(ALIGNED | UNALIGNED)
This suboption reduces the number of situations in which dummy arguments
get created.

DUMMY(ALIGNED) indicates that a dummy argument should be created even
if an argument differs from a parameter only in its alignment.
DUMMY(UNALIGNED) indicates that no dummy argument should be created
for a scalar (except a nonvarying bit) or an array of such scalars if it differs
from a parameter only in its alignment.

Consider the following example:
dcl

1 a1 unaligned,
2 b1 fixed bin(31),
2 b2 fixed bin(15),
2 b3 fixed bin(31),
2 b4 fixed bin(15);

dcl x entry(fixed bin(31));

call x(b3);

26 Enterprise PL/I for z/OS Programming Guide

If you specify DEFAULT(DUMMY(ALIGNED)), a dummy argument is created,
while if you specify DEFAULT(DUMMY(UNALIGNED)), no dummy argument
is created.

DUMMY(ALIGNED) is the default.

E (HEXADEC | IEEE)
The E suboption determines how many digits will be used for the exponent in
E-format items.

If you specify E(IEEE), 4 digits will be used for the exponent in E-format items.

If you specify E(HEXADEC), 2 digits will be used for the exponent in E-format
items.

If DFT(E(HEXADEC)) is specified, an attempt to use an expression whose
exponent has an absolute value greater than 99 will cause the SIZE condition
to be raised.

If the compiler option DFT(IEEE) is in effect, you should normally also use the
option DFT(E(IEEE)). However, under this option, some E format items that
would be valid under DFT(E(HEXADEC)) are not valid. For instance, under
DFT(E(IEEE)), the statement put skip edit(x) (e(15,8)); will be flagged
because the E format item is invalid.

E(HEXADEC) is the default.

EVENDEC | NOEVENDEC
This suboption controls the compiler's tolerance of fixed decimal variables
declared with an even precision.

Under NOEVENDEC, the precision for any fixed decimal variable is rounded
up to the next highest odd number.

If you specify EVENDEC and then assign 123 to a FIXED DEC(2) variable, the
SIZE condition is raised. If you specify NOEVENDEC, the SIZE condition is
not raised.

EVENDEC is the default.

HEXADEC | IEEE
This suboption specifies the default representation that is used to hold all
FLOAT variables and all floating-point intermediate results. This suboption
also determines whether the compiler evaluates floating-point expressions
using the hexadecimal or IEEE float instructions and math routines.

It is recommended that you use the IEEE option for programs that
communicate with JAVA and also for programs that pass data to or receive
data from platforms where IEEE is the default representation for floating-point
data.

HEXADEC is the default.

INITFILL | NOINITFILL
This suboption controls the default initialization of automatic variables.

If you specify INITFILL with a hex value (nn), that value is used to initialize
the storage that is used by all automatic variables in a block each time that
block is entered. If you do not enter a hex value, the default is '00'.

Note that the hex value can be specified with or without quotation marks, but
if it is specified with quotation marks, the string should not have an X suffix.

Under NOINITFILL, the storage that is used by an automatic variable can hold
arbitrary bit patterns unless the variable is explicitly initialized.

Chapter 1. Using compiler options and facilities 27

INITFILL can cause programs to run slower and should not be specified in
production programs. However, the INITFILL option produces code that runs
faster than the LE STORAGE option. Also, during program development, this
option is useful for detecting uninitialized automatic variables: a program that
runs correctly with DFT(INITFILL('00')) and with DFT(INITFILL('ff')) probably
has no uninitialized automatic variables.

NOINITFILL is the default.

INLINE | NOINLINE
This option sets the default for the inline procedure option.

Specifying INLINE allows your code to run faster but, in some cases, also
creates a larger executable file. For more information about how inlining can
improve the performance of your application, see Chapter 15, “Improving
performance,” on page 325.

NOINLINE is the default.

LINKAGE
Here is the linkage convention for procedure invocations:

OPTLINK
The default linkage convention for Enterprise PL/I. This linkage provides
the best performance.

SYSTEM
The standard linking convention for system APIs.

Use LINKAGE(OPTLINK) for all routines called by or calling to JAVA and also
for all routines called by or calling to C (unless the C code has been compiled
with a nondefault linkage).

Use LINKAGE(SYSTEM) for all non-PL/I routines that expect the high-order
bit to be on in the address of the last (and only the last) parameter.

Note that specifying OPTIONS(ASSEMBLER) for a PROCEDURE or an ENTRY
forces LINKAGE(SYSTEM) regardless of the setting of this option.

LINKAGE(OPTLINK) is the default.

Note: The LINKAGE suboption is ignored under the LP(64) option.

LOWERINC | UPPERINC
If you specify LOWERINC, the compiler requires that the actual file names of
INCLUDE files are in lowercase. If you specify UPPERINC, the compiler
requires that the names are in uppercase.

Note: This suboption applies only to compilations under z/OS UNIX.

Under z/OS UNIX, the include name is built with the extension .inc. For
example, under the DFT(LOWERINC) option, the statement %INCLUDE
STANDARD; causes the compiler to try to include standard.inc. But, under the
DFT(UPPERINC) option, the statement %INCLUDE STANDARD; causes the
compiler to try to include STANDARD.INC.

LOWERINC is the default.

NATIVE | NONNATIVE
This suboption affects only the internal representation of fixed binary, ordinal,
offset, area, and varying string data. When the NONNATIVE suboption is in
effect, the NONNATIVE attribute is applied to all such variables not declared
with the NATIVE attribute.

28 Enterprise PL/I for z/OS Programming Guide

You should specify NONNATIVE only to compile programs that depend on
the nonnative format for holding these kind of variables.

If your program bases fixed binary variables on pointer or offset variables (or
conversely, pointer or offset variables on fixed binary variables), specify either
of the following combinations of suboptions:
v Both the NATIVE and NATIVEADDR suboptions
v Both the NONNATIVE and NONNATIVEADDR suboptions.

Other combinations produce unpredictable results.

NATIVE is the default.

NATIVEADDR | NONNATIVEADDR
This suboption affects only the internal representation of pointers. When the
NONNATIVEADDR suboption is in effect, the NONNATIVE attribute is
applied to all pointer variables not declared with the NATIVE attribute.

If your program bases fixed binary variables on pointer or offset variables (or
conversely, pointer or offset variables on fixed binary variables), specify either
of the following combinations of suboptions:
v Both the NATIVE and NATIVEADDR suboptions
v Both the NONNATIVE and NONNATIVEADDR suboptions.

Other combinations produce unpredictable results.

NATIVEADDR is the default.

NULLSYS | NULL370
This suboption determines which value is returned by the NULL built-in
function. If you specify NULLSYS, binvalue(null()) is equal to 0. If you want
binvalue(null()) to equal 'ff_00_00_00'xn as is true with previous releases of
PL/I, specify NULL370.

NULL370 is the default.

Note: The NULL370 or NULLSYS suboption is ignored under the LP(64)
option.

NULLSTRADDR | NONULLSTRADDR
This suboption controls how the compiler handles null strings when null
strings are passed as arguments.

Under NULLSTRADDR, when a null string is specified as an argument in an
entry invocation, the compiler will pass the address of an initialized piece of
automatic storage. This is compatible with what the OS PL/I and PL/I for
MVS compilers did.

But under NONULLSTRADDR, when a null string is specified as an argument
in an entry invocation, the compiler passes a null pointer as the address of the
argument. This is compatible with what early releases of the Enterprise PL/I
compiler did.

NULLSTRADDR is the default.

NULLSTRPTR
This suboption controls how the compiler handles null strings when null
strings are assigned to POINTERs.

Under NULLSTRPTR(SYSNULL), the result of assigning '' to a POINTER is the
same as assigning SYSNULL() to the pointer.

Under NULLSTRPTR(NULL), the result of assigning '' to a POINTER is the
same as assigning NULL() to the pointer.

Chapter 1. Using compiler options and facilities 29

Under NULLSTRPTR(STRICT), assignments and comparisons of ’’ to
POINTERs are flagged as invalid.

NULLSTRPTR(NULL) is the default.

ORDER | REORDER
This suboption affects the optimization of the object code. Specifying
REORDER allows more optimization of your code. For detailed information,
see Chapter 15, “Improving performance,” on page 325.

REORDER is the default.

ORDINAL(MIN | MAX)
If you specify ORDINAL(MAX), all ordinals whose definition does not include
a PRECISION attribute is given the attribute PREC(31). Otherwise, they are
given the smallest precision that covers their range of values.

ORDINAL(MIN) is the default.

OVERLAP | NOOVERLAP
If you specify OVERLAP, the compiler presumes the source and target in an
assignment can overlap and generates, as needed, extra code in order to ensure
that the result of the assignment is okay.

The OVERLAP suboption applies only to string variables. It has no effect on
assignments of FIXED DECIMAL or other variable types. In those assignments,
the source and target must not overlap.

NOOVERLAP produces code that performs better; however, if you use
NOOVERLAP, you must ensure that the source and target never overlap.

NOOVERLAP is the default.

PSEUDODUMMY | NOPSEUDODUMMY
This suboption determines whether dummy arguments are created when a
SUBSTR reference is specified as an argument to an unprototyped function.

If you specify PSEUDODUMMY, dummy arguments are created when a
SUBSTR reference is specified as an argument to an unprototyped function.

If you specify NOPSEUDODUMMY, dummy arguments are not created when
a SUBSTR reference is specified as an argument to an unprototyped function.

PSEUDODUMMY is the default.

RECURSIVE | NONRECURSIVE
When you specify DEFAULT(RECURSIVE), the compiler applies the
RECURSIVE attribute to all procedures. If you specify
DEFAULT(NONRECURSIVE), all procedures are nonrecursive except
procedures with the RECURSIVE attribute.

NONRECURSIVE is the default.

RETCODE | NORETCODE
If you specify RETCODE, for any external procedure that does not have the
RETURNS attribute, the compiler will generate extra code so that the
procedure returns the integer value obtained by invoking the PLIRETV built-in
function just before returning from that procedure.

If you specify NORETCODE, no special code is generated for procedures that
do not have the RETURNS attribute.

NORETCODE is the default.

30 Enterprise PL/I for z/OS Programming Guide

RETURNS (BYVALUE | BYADDR)
This suboption sets the default for how values are returned by functions. See
the PL/I Language Reference for more information.

You must specify RETURNS(BYADDR) if your application contains ENTRY
statements and the ENTRY statements or the containing procedure statement
have the RETURNS option. You must also specify RETURNS(BYADDR) on the
entry declarations for such entries.

RETURNS(BYADDR) is the default.

SHORT (HEXADEC | IEEE)
This suboption improves compatibility with other non-IBM UNIX compilers.
SHORT (HEXADEC) maps FLOAT BIN (p) to a short (4-byte) floating point
number if p <= 21. SHORT (IEEE) maps FLOAT BIN (p) to a short (4-byte)
floating point number if p <= 24.

SHORT (HEXADEC) is the default.

Default: DEFAULT(ALIGNED IBM EBCDIC ASSIGNABLE BIN1ARG BYADDR
NONCONNECTED DESCLOCATOR DESCRIPTOR DUMMY(ALIGNED)
E(HEXADEC) EVENDEC HEXADEC NOINITFILL NOINLINE
LINKAGE(OPTLINK) LOWERINC NATIVE NATIVEADDR NULL370
NULLSTRPTR(NULL) NULLSTRADDR REORDER ORDINAL(MIN) NOOVERLAP
PSEUDODUMMY NONRECURSIVE NORETCODE RETURNS(BYADDR)
SHORT(HEXADEC))

DEPRECATE
This option flags variable names, included file names, and statement names that
you want to deprecate with error messages.

►► ▼

,

DEPRECATE (BUILTIN ())
built-in-name

ENTRY ()
entry-name

INCLUDE ()
filename

STMT ()
statement-name

VARIABLE ()
variable-name

►◄

BUILTIN
Flags any declaration of built-in-name with the BUILTIN attribute.

built-in-name
Name of the BUILTIN variable

ENTRY
Flags any declaration of entry-name with the ENTRY attribute.

entry-name
Level-1 name

INCLUDE
Flags any %INCLUDE statement that includes filename.

Chapter 1. Using compiler options and facilities 31

filename
Name of the file

STMT
Flags all statements with the name as statement-name.

statement-name
Name of the statement

The names are identified by the initial keywords of PL/I statements. The
STMT option accepts the following keywords:

allocate assert attach begin call close delay delete
detach display exit fetch flush free get goto
iterate leave locate on open put read release

resignal revert rewrite signal stop wait write

VARIABLE
Flags any declaration of variable name that does not have the BUILTIN or
ENTRY attributes.

variable-name
Level-1 name

To specify the DEPRECATE option, you must specify at least one of these
suboptions with a possible empty suboption list. For example, both of the
following two specifications are invalid:
v DEPRECATE
v DEPRECATE(BUILTIN)

Specifying one of the suboptions does not change the setting of any of the other
suboptions that are specified previously.

Specifying a suboption a second time replaces the previous specifications.

In all cases, there is no checking of the suboption lists.

Default: DEPRECATE(BUILTIN() ENTRY() INCLUDE() STMT() VARIABLE())

Examples
v The following specifications are equivalent:

DEPRECATE(ENTRY(old)) DEPRECATE(BUILTIN(acos))
DEPRECATE(ENTRY(old) BUILTIN(acos))

v In the following example, x in the first specification is replaced by y:
DEPRECATE(BUILTIN(x)) DEPRECATE(BUILTIN(y))
DEPRECATE(BUILTIN(y))

DEPRECATENEXT
The purpose and usage of the DEPRECATENEXT option are the same as the
DEPRECATE option, except that the compiler issues warning messages rather than
error messages for items that you will deprecate in a future development phase.

Default: DEPRECATENEXT(BUILTIN() ENTRY() INCLUDE() STMT() VARIABLE())

For detailed information, see “DEPRECATE” on page 31.

32 Enterprise PL/I for z/OS Programming Guide

DISPLAY
The DISPLAY option determines how the DISPLAY statement performs I/O.

►►

▼

▼

▼

DISPLAY (WTO)
,

(ROUTCDE (x))
,

, DESC (y)
,

, REPLY (z)
STD

►◄

STD
All DISPLAY statements are completed by writing the text to stdout and
reading any REPLY text from stdin.

WTO
All DISPLAY statements without REPLY are completed by WTOs, and all
DISPLAY statements with REPLY are completed by WTORs. This is the default.

The following suboptions are supported:

ROUTCDE
Specifies one or more values to be used as the ROUTCDE in the WTO. The
default ROUTCDE is 2.

DESC
Specifies one or more values to be used as the DESC in the WTO. The
default DESC is 3.

REPLY
Specifies one or more values to be used as the DESC in the WTOR. If
omitted, the value from the DESC option (or the default) is used.

All values specified for the ROUTCDE, DESC and REPLY must between 1 and
16.

DLLINIT
The DLLINIT option applies OPTIONS(FETCHABLE) to all external procedures
that are not MAIN. Use this option only on compilation units containing one
external procedure, and then that procedure should be linked as a DLL.

►►
NODLLINIT
DLLINIT ►◄

NODLLINIT has no effect on your programs.

EXIT
The EXIT option enables the compiler user exit to be invoked.

►►
NOEXIT
EXIT

(inparm_string)
►◄

Chapter 1. Using compiler options and facilities 33

inparm_string
A string that is passed to the compiler user exit routine during initialization.
The string can be up to 31 characters long.

See Chapter 24, “Using user exits,” on page 479 for more information about how to
use this option.

EXPORTALL
The EXPORTALL option controls whether to export all externally defined
procedures and variable so that a DLL application can use them.

►►
EXPORTALL
NOEXPORTALL ►◄

Under EXPORTALL, all externally defined procedures and variables are exported
except those that specify OPTION(DLLINTERNAL).

Under NOEXPORTALL, no externally defined procedures and variables are
exported except those that specify OPTION(DLLEXTERNAL) or
OPTIONS(FETCHABLE).

When linking a module as a DLL that will be simply fetched (rather than accessed
through DLL functions), you must use the NOEXPORTALL option.

The default is EXPORTALL, but NOEXPORTALL is better for performance.

EXTRN
The EXTRN option controls when EXTRNs are emitted for external entry constants.

►►
FULL

EXTRN (SHORT) ►◄

FULL
Emits EXTRNs for all declared external entry constants. This is the default.

SHORT
Emits EXTRNs only for those constants that are referenced.

FILEREF
The (NO)FILEREF option controls whether the compiler produces a file reference
table. The NOFILEREF option eliminates the file reference table from the listing if
the compiler issues no messages for the specified FLAG setting.

►►
FILEREF
NOFILEREF ►◄

The default is FILEREF.

FLAG
The FLAG option specifies the minimum severity of error that requires a message
listed in the compiler listing.

34 Enterprise PL/I for z/OS Programming Guide

►► FLAG
W

(I)
E
S

►◄

ABBREVIATION: F

I List all messages.

W List all except information messages.

E List all except warning and information messages.

S List only severe error and unrecoverable error messages.

If messages are below the specified severity or are filtered out by a compiler exit
routine, they are not listed.

FLOAT
The FLOAT option controls the use of the additional floating-point registers and
whether Decimal Floating Point is supported.

►►
NODFP

FLOAT (DFP) ►◄

DFP
The DFP facility is used: all DECIMAL FLOAT data will be held in the DFP
format as described in the z/Architecture Principles of Operation manual, and
operations using DECIMAL FLOAT will be carried using the DFP hardware
instructions described therein.

NODFP
The DFP facility is not used.

Under FLOAT(DFP), the following applies:
v The maximum precision for extended DECIMAL FLOAT will be 34 (not 33 as it

is for hex float).
v The maximum precision for short DECIMAL FLOAT will be 7 (not 6 as it is for

hex float).
v The values for DECIMAL FLOAT for the following built-ins will all have the

appropriate changes:
– EPSILON
– HUGE
– MAXEXP
– MINEXP
– PLACES
– RADIX
– TINY

v The following built-in functions will all return the appropriate values for
DECIMAL FLOAT (and values that will be much easier for a human to
understand; for example, SUCC(1D0) will be 1.000_000_000_000_001, and the
ROUND function will round at a decimal place of course.)
– EXPONENT

Chapter 1. Using compiler options and facilities 35

– PRED
– ROUND
– SCALE
– SUCC

v Decimal floating-point literals, when converted to "right-units-view", that is,
when the exponent has been adjusted, if needed, so that no nonzero digits
follow the decimal point (for example, as would be done when viewing 3.1415E0
as 31415E-4), must have an exponent within the range of the normal numbers
for the precision given by the literal. These bounds are given by the value of
MINEXP-1 and MAXEXP-1. In particular, the following must hold:
– For short float, -95 <= exponent <= 90
– For long float, -383 <= exponent <= 369
– For extended float, -6143 <= exponent <= 6111

v When a DECIMAL FLOAT is converted to CHARACTER, the string will hold 4
digits for the exponent (as opposed to the 2 digits used for hexadecimal float).

v The IEEE and HEXADEC attributes will be accepted only if applied to FLOAT
BIN, and the DEFAULT(IEEE/HEXADEC) option will apply only to FLOAT
BIN.

v The mathematical built-in functions (ACOS, COS, SQRT, etc) will accept
DECIMAL FLOAT arguments and use corresponding Language Environment
functions to evaluate them. DECIMAL FLOAT exponentiation will be handled in
a similar way.

v Users of DFP need to be wary of the conversions that will arise in operations
where one operand is FLOAT DECIMAL and the other is binary (that is, FIXED
BINARY, FLOAT BINARY or BIT). In such operations, the PL/I language rules
dictate that the FLOAT DECIMAL operand be converted to FLOAT BINARY,
and that conversion will require a library call. For example, for an assignment of
the form A = A + B;, where A is FLOAT DECIMAL and B is FIXED BINARY,
three conversions will be done and two of those will be library calls:
1. A will be converted through library call from FLOAT DECIMAL to FLOAT

BINARY.
2. B will be converted through inline code from FIXED BINARY to FLOAT

BINARY.
3. The sum A + B will be converted through library call from FLOAT BINARY

to FLOAT DECIMAL.
The use of the DECIMAL built-in function might help here: if the statement is
changed to A = A + DEC(B);, the library calls will be eliminated. The library calls
can also be eliminated by assigning B to a FLOAT DECIMAL temporary variable
and then adding that temporary variable to A.

v The built-in function SQRTF is not supported for DECIMAL FLOAT arguments
(because there is no hardware instruction to which it can be mapped).

v DFP is not supported by the CAST type function.

FLOATINMATH
The FLOATINMATH option specifies that the precision that the compiler should
use when invoking the mathematical built-in functions.

►►
ASIS

FLOATINMATH (LONG)
EXTENDED

►◄

36 Enterprise PL/I for z/OS Programming Guide

ASIS
Arguments to the mathematical built-in functions will not be forced to have
long or extended floating-point precision.

LONG
Any argument to a mathematical built-in function with short floating-point
precision will be converted to the maximum long floating-point precision to
yield a result with the same maximum long floating-point precision.

EXTENDED
Any argument to a mathematical built-in function with short or long
floating-point precision will be converted to the maximum extended
floating-point precision to yield a result with the same maximum extended
floating-point precision.

A FLOAT DEC expression with precision p has short floating-point precision if p
<= 6, long floating-point precision if 6 < p <= 16, and the expression has extended
floating-point precision if p > 16.

A FLOAT BIN expression with precision p has short floating-point precision if p <=
21, long floating-point precision if 21 < p <= 53, and the expression has extended
floating-point precision if p > 53.

The maximum extended floating-point precision depends on the platform.

GOFF
The GOFF option instructs the compiler to produce an object file in the
Generalized Object File Format (GOFF).

►►
NOGOFF
GOFF ►◄

When the GOFF and OBJECT options are in effect, the compiler produces an object
file in GOFF format.

When the NOGOFF and OBJECT options are in effect, the compiler produces an
object file in XOBJ format.

The GOFF format supersedes the S/370 Object Module and Extended Object
Module formats. It removes various limitations of the previous format (for
example, 16 MB section size) and provides a number of useful extensions,
including native z/OS support for long names and attributes. GOFF incorporates
some aspects of industry standards such as XCOFF and ELF.

When you specify the GOFF option, you must use the binder to bind the output
object.

The following options are not supported with the GOFF option:
v COMMON
v NOWRITABLE(PRV)

Note: When using GOFF and source files with duplicate file names, the linker
might emit an error and discard one of the code sections. In this case, turn off the
CSECT option by specifying NOCSECT.

Chapter 1. Using compiler options and facilities 37

GONUMBER
The GONUMBER option specifies that the compiler produces additional
information that allows line numbers from the source program to be included in
runtime messages.

►►

NOGONUMBER
NOSEPARATE

GONUMBER (SEPARATE) ►◄

ABBREVIATIONS: GN, NGN

SEPARATE
Places the generated statement number table in the separate debug file if the
TEST(SEPARATE) option is specified. When you use GONUMBER(SEPARATE),
the statement numbers are not available for inclusion in runtime messages.

NOSEPARATE
Places the generated statement number table in the object deck.

Alternatively, the line numbers can be derived by using the offset address, which is
always included in runtime messages, and either the table produced by the
OFFSET option or the assembler listing produced by the LIST option.

GONUMBER is forced by the ALL and STMT suboptions of the TEST option.

Note that the GOSTMT option does not exist. The only option that produces
information at run time identifying where an error has occurred is the
GONUMBER option. When the GONUMBER option is used, the term statement in
the runtime error messages refers to the line numbers as used by the NUMBER
compiler option, even if the STMT option is in effect.

If the GONUMBER(SEPARATE) option is specified without TEST(SEPARATE), it is
changed to GONUMBER(NOSEPARATE).

If both TEST and NOGONUMBER are specified, the NOGONUMBER option is
changed to GONUMBER(NOSEPARATE).

The default is NOGONUMBER.

For compatibility, when the GONUMBER option is specified, the default suboption
is SEPARATE.

GRAPHIC
The GRAPHIC option specifies that the source program can contain double-byte
characters.

The hexadecimal code '0E' is treated as the shift-out control code, and '0F' is
treated as the shift-in control code, wherever they appear in the source program,
including occurrences in comments and string constants.

►►
NOGRAPHIC
GRAPHIC ►◄

ABBREVIATIONS: GR, NGR

38 Enterprise PL/I for z/OS Programming Guide

The GRAPHIC option will also cause the GRAPHIC ENVIRONMENT option to be
applied to any STREAM file used in the compilation.

The GRAPHIC option must be specified if the source program uses any of the
following:
v DBCS identifiers
v Graphic string constants
v Mixed-string constants
v Shift codes anywhere else in the source

HEADER
The HEADER option lets you control what appears in the middle of each header
line in the compiler listing.

►►
SOURCE

HEADER (FILE) ►◄

Specifying HEADER(SOURCE) causes the compiler to use the text in the first
source line after any *PROCESS statements as the middle of each header line in the
compiler listing.

Specifying HEADER(FILE) causes the compiler to use the name of the source file
as the middle of each header line in the compiler listing.

The default is HEADER(SOURCE).

IGNORE
The IGNORE option controls whether ASSERT, DISPLAY, and PUT statements are
ignored. When a statement is ignored, it is as if the statement is replaced by a
semicolon.

►► ▼

NOIGNORE

,

IGNORE (ASSERT)
DISPLAY
PUT

►◄

ASSERT
The compiler ignores all ASSERT statements, including any function references
contained in those statements.

DISPLAY
The compiler ignores all DISPLAY statements, including any function
references contained in those statements.

PUT
The compiler ignores all PUT FILE statements.

INCAFTER
The INCAFTER option specifies a file to be included after a particular statement in
your source program.

Chapter 1. Using compiler options and facilities 39

►► INCAFTER ()
PROCESS (filename)

►◄

filename
Name of the file to be included after the last PROCESS statement

Currently, PROCESS is the only suboption and specifies the name of a file to be
included after the last PROCESS statement.

Consider the following example:
INCAFTER(PROCESS(DFTS))

This example is equivalent to having the statement %INCLUDE DFTS; after the last
PROCESS statement in your source.

INCDIR
The INCDIR compiler option specifies a directory to be added to the search path
used to locate include files.

►►
NOINCDIR
INCDIR ('directory name') ►◄

directory name
Name of the directory that should be searched for include files. You can
specify the INCDIR option more than once and the directories are searched in
order.

Except under batch, the compiler looks for INCLUDE files in the following order:
1. Current® directory
2. Directories specified with the –I flag or with the INCDIR compiler option
3. /usr/include directory
4. PDS specified with the INCPDS compiler option

Under batch, this option is probably best used with the DFT(LOWERINC) option,
and it affects only include statements of the form %include x;. For these include
statements, an hfs file with the name x.inc will be sought first in the directories
specified in this option. If the hfs file is not found, x must be a member of the
pds(e) specified in the syslib dd. For include statements of the form %include
dd(x);, no hfs file will ever be included: the member x must always be a member
of the pds named by the specified dd.

INCLUDE
The INCLUDE compiler option controls whether the final pass of the compiler
handles %INCLUDE and %XINCLUDE statements.

►►
INCLUDE
NOINCLUDE ►◄

INCLUDE
Both the MACRO preprocessor and the final pass of the compiler handle
%INCLUDE and %XINCLUDE statements.

40 Enterprise PL/I for z/OS Programming Guide

NOINCLUDE
Only the MACRO preprocessor handles %INCLUDE and %XINCLUDE
statements.

INCLUDE is the default.

INCPDS
The INCPDS option specifies a PDS from which the compiler will include files
when compiling a program under z/OS UNIX.

Note: This option applies only to compilations under z/OS UNIX.

►►
NOINCPDS

INCPDS(‘PDS name’)
►◄

PDS name
Name of a PDS from which files will be included

For example, if you want to compile the program TEST from a PDS named
SOURCE.PLI and want to use the INCLUDE files from the PDS SOURCE.INC, you
can specify the following command:
pli -c -qincpds="SOURCE.INC" "//'SOURCE.PLI(TEST)'"

The compiler looks for INCLUDE files in the following order:
1. Current directory
2. Directories specified with the –I flag or with the INCDIR compiler option
3. /usr/include directory
4. PDS specified with the INCPDS compiler option

INITAUTO
The INITAUTO option directs the compiler to add an INITIAL attribute to any
AUTOMATIC variable declared without an INITIAL attribute.

►►
NOINITAUTO
INITAUTO

FULL
(SHORT)

►◄

Under INITAUTO(FULL), the compiler adds an INITIAL attribute to any
AUTOMATIC variable that does not have an INITIAL attribute according to its
data attributes:
v INIT((*) 0) if it is FIXED or FLOAT
v INIT((*) '') if it is PICTURE, CHAR, BIT, GRAPHIC or WIDECHAR
v INIT((*) SYSNULL()) if it is POINTER or OFFSET
v INIT((*) NULLENTRY()) if it is ENTRY

The compiler will not add an INITIAL attribute to variables with other attributes.

INITAUTO will cause more code to be generated in the prologue for each block
containing any AUTOMATIC variables that are not fully initialized (but unlike the
DFT(INITFILL) option, those variables will now have meaningful initial values)
and will have a negative impact on performance.

Chapter 1. Using compiler options and facilities 41

The INITAUTO option does not apply an INITIAL attribute to any variable
declared with the NOINIT attribute.

Under INITAUTO(SHORT), the compiler adds an INITIAL attribute to an
AUTOMATIC variable that does not have an INITIAL attribute only if it is also a
scalar and has one of the following attributes:
v POINTER
v OFFSET
v FIXED BIN
v FLOAT
v NONVARYING BIT
v NONVARYING CHAR(1)
v NONVARYING WCHAR(1)

As under INITAUTO(FULL), the added INITIAL attribute will be appropriate to
the data type.

If you are using the runtime STORAGE option to zero-out all storage, the
optimizer might still generate undesired code for uninitialized AUTOMATIC
variables and especially for those that are optimized to registers. Scalar variables
with the data types listed above are those most likely to be optimized to registers,
and hence using INITAUTO(SHORT) might have less of a performance impact
than using DFT(INITFILL); however, the latter would leave the optimizer with no
ambiguous code. Moreover, your code is correct only if all variables are explicitly
initialized before use.

INITBASED
The INITBASED option directs the compiler to add an INITIAL attribute to any
BASED variable declared without an INITIAL attribute.

►►
NOINITBASED
INITBASED ►◄

This option performs the same function as INITAUTO except for BASED variables.

The INITBASED option will cause more code to be generated for any ALLOCATE
of a BASED variable that is not fully initialized and will have a negative impact on
performance.

The INITBASED option does not apply an INITIAL attribute to any variable
declared with the NOINIT attribute.

INITCTL
The INITCTL option directs the compiler to add an INITIAL attribute to any
CONTROLLED variable declared without an INITIAL attribute.

►►
NOINITCTL
INITCTL ►◄

This option performs the same function as INITAUTO except for CONTROLLED
variables.

42 Enterprise PL/I for z/OS Programming Guide

The INITCTL option will cause more code to be generated for any ALLOCATE of a
CONTROLLED variable that is not fully initialized and will have a negative
impact on performance.

The INITCTL option does not apply an INITIAL attribute to any variable declared
with the NOINIT attribute.

INITSTATIC
The INITSTATIC option directs the compiler to add an INITIAL attribute to any
STATIC variable declared without an INITIAL attribute.

►►
NOINITSTATIC
INITSTATIC ►◄

This option performs the same function as INITAUTO except for STATIC variables.

The INITSTATIC option could make some objects larger and some compilations
longer, but should otherwise have no impact on performance.

The INITSTATIC option does not apply an INITIAL attribute to any variable
declared with the NOINIT attribute.

INSOURCE
The INSOURCE option specifies that the compiler should include a listing of the
source program before the PL/I macro, CICS, or SQL preprocessors translate it.

►►
NOINSOURCE
INSOURCE

FULL
(SHORT)

ALL
(FIRST)

►◄

ABBREVIATION: IS, NIS

FULL
The INSOURCE listing will ignore %NOPRINT statements and will contain all
the source before the preprocessor translates it.

FULL is the default.

SHORT
The INSOURCE listing will heed %PRINT and %NOPRINT statements.

ALL
The INSOURCE listing includes the source listings that are generated by each
of the preprocessors and by the compiler itself. ALL is the default.

FIRST
The INSOURCE listing includes only the source listing that is generated by the
first preprocessor.

Under the INSOURCE option, text is included in the listing not according to the
logic of the program, but as each file is read. For example, consider the following
simple program, which has a %INCLUDE statement between the PROC and END
statements.

Chapter 1. Using compiler options and facilities 43

insource: proc options(main);
%include member;

end;

The INSOURCE listing will contain all of the main program before any of the
included text from the file member (and it will contain all of that file before any text
included by it - and so on).

Under the INSOURCE(SHORT) option, text included by a %INCLUDE statement
inherits the print/noprint status that was in effect when the %INCLUDE statement
was executed, but that print/noprint status is restored at the end of the included
text (however, in the SOURCE listing, the print/noprint status is not restored at
the end of the included text).

INTERRUPT
The INTERRUPT option causes the compiled program to respond to attention
requests (interrupts).

►►
NOINTERRUPT
INTERRUPT ►◄

ABBREVIATION: INT, NINT

This option determines the effect of attention interrupts when the compiled PL/I
program runs under an interactive system. This option will have an effect only on
programs running under TSO. If you have written a program that relies on raising
the ATTENTION condition, you must compile it with the INTERRUPT option. This
option allows attention interrupts to become an integral part of programming. This
gives you considerable interactive control of the program.

If you specify the INTERRUPT option, an established ATTENTION ON-unit gets
control when an attention interrupt occurs. When the execution of an ATTENTION
ON-unit is complete, control returns to the point of interrupt unless directed
elsewhere by a GOTO statement. If you do not establish an ATTENTION ON-unit,
the attention interrupt is ignored.

If you specify NOINTERRUPT, an attention interrupt during a program run does
not give control to any ATTENTION ON-units.

If you require the attention interrupt capability only for testing purposes, use the
TEST option instead of the INTERRUPT option.
Related information:
“TEST” on page 89
The TEST option specifies the level of testing capability that the compiler generates
as part of the object code. You can use this option to control the location of test
hooks and to control whether to generate a symbol table.
Chapter 22, “Interrupts and attention processing,” on page 473

JSON
Using the JSON option, you can choose the case of the names in the JSON text
generated by the JSONPUT built-in functions and expected by the JSONGET
built-in functions.

44 Enterprise PL/I for z/OS Programming Guide

►►
UPPER

JSON (CASE (ASIS)) ►◄

CASE(UPPER | ASIS)
Under the CASE(UPPER) suboption, the names in the JSON text generated by
the JSONPUT built-in functions and expected by the JSONGET built-in
functions will all be in upper case.

Under the CASE(ASIS) suboption, the names in the JSON text generated by the
JSONPUT built-in functions and expected by the JSONGET built-in functions
will be in the case used in their declares. Note that if you use the MACRO
preprocessor without using the macro preprocessor option CASE(ASIS), the
source seen by the compiler will have all the names in upper case, which
makes specifying the JSON(CASE(ASIS)) option useless.

LANGLVL
The LANGLVL option specifies the level of PL/I language definition that you want
the compiler to accept.

►► LANGLVL (
OS
NOEXT) ►◄

NOEXT
Only the following ENVIRONMENT options are accepted:

Bkwd
Consecutive
Ctlasa
Deblock

Genkey
Graphic
Indexed
Keylength

Keyloc
Organization
Recsize
Regional

Relative
Scalarvarying
Vsam

OS All ENVIRONMENT options are allowed. For a complete list of the
ENVIRONMENT options, see Table 15 on page 224.

LIMITS
The LIMITS option specifies various implementation limits.

►► ▼

,
7

LIMITS (EXTNAME (n))
31

FIXEDBIN (63)
63

, 31
15

FIXEDDEC (31)
15

, 31
100

NAME (n)
32K

STRING (512K)
8M
128M

►◄

Chapter 1. Using compiler options and facilities 45

EXTNAME
Specifies the maximum length for the EXTERNAL name. The maximum value
for n is 100; the minimum value is 7.

FIXEDDEC
Specifies the maximum precision for FIXED DECIMAL to be either 15 or 31.
The default is FIXEDDEC(15,31).

If FIXEDDEC(15,31) is specified, you can declare FIXED DECIMAL variables
with precision greater than 15, but unless an expression contains an operand
with precision greater than 15, the compiler uses 15 as the maximum precision
for all arithmetic.

FIXEDDEC(15,31) will provide much better performance than FIXEDDEC(31).

FIXEDDEC(15) and FIXEDDEC(15,15) are equivalent; similarly, FIXEDDEC(31)
and FIXEDDEC(31,31) are equivalent.

FIXEDDEC(31,15) is not allowed.

FIXEDBIN
Specifies the maximum precision for SIGNED FIXED BINARY to be either 31
or 63. The default is (31,63).

If FIXEDBIN(31,63) is specified, you can declare 8-byte integers, but unless an
expression contains an 8-byte integer, the compiler uses 4-byte integers for all
integer arithmetic.

Note, however, that specifying the FIXEDBIN(31,63) or FIXEDBIN(63) option
might cause the compiler to use 8-byte integer arithmetic for expressions
mixing data types. For example, if a FIXED BIN(31) value is added to a FIXED
DEC(13) value, the compiler will produce a FIXED BIN result, and under
LIMITS(FIXEDBIN(31,63)) that result would have a precision greater than 31
(because the FIXED DEC precision is greater than 9). When this occurs, the
compiler will issue informational message IBM2809.

FIXEDBIN(31,63) will provide much better performance than FIXEDBIN(63).

FIXEDBIN(31) and FIXEDBIN(31,63) are equivalent; similarly, FIXEDBIN(63)
and FIXEDBIN(63,63) are equivalent.

FIXEDBIN(63,31) and FIXEDBIN(31,31) are not allowed.

The maximum precision for UNSIGNED FIXED BINARY is one greater, that is,
32 and 64.

NAME
Specifies the maximum length of variable names in your program. The
maximum value for n is 100; the minimum value is 31.

STRING
Accepts these values as the threshold for the length of a BIT, CHARACTER, or
WIDECHAR variable: 32K, 512K, 8M, and 128M. This means that the length
must be less than the threshold, and so the corresponding limits are 32767,
524287, 8388607, and 134217727.
v 32K is the default value. A larger value is accepted only if the CMPAT(V3)

and BIFPREC(31) options are also specified.
v This limit applies to NONVARYING, VARYINGZ, and VARYING4, but not

to VARYING. The maximum value allowed for VARYING is 32K.

46 Enterprise PL/I for z/OS Programming Guide

LINECOUNT
The LINECOUNT option specifies the number of lines per page for compiler
listings, including blank and heading lines.

►► LINECOUNT
60

(n) ►◄

ABBREVIATION: LC

n The number of lines in a page in the listing. The value range is 10 - 32767.

LINEDIR
The LINEDIR option specifies that the compiler should accept %LINE directives.

►►
NOLINEDIR
LINEDIR ►◄

If the LINEDIR option is specified, the compiler will reject all %INCLUDE
statements. If the LINEDIR option is specified, the compiler will also reject the use
of the SEPARATE suboption of the TEST option.

LIST
The LIST option specifies that the compiler should produce a pseudo-assembler
listing.

►►
NOLIST
LIST ►◄

Specifying the LIST option will increase the time and region required for a
compilation. The OFFSET and MAP options can provide the information you need
at much less cost.

The pseudo-assembler listing will also include at the end of the listing for each
block the offset of the first instruction in that block from the start of the whole
compilation unit.

LISTVIEW
The LISTVIEW option specifies whether the compiler should show the source in
the source listing or whether it should show the source after it has been processed
by one or more of the preprocessors.

The LISTVIEW option is ignored if the NOSOURCE option is in effect.

►►
SOURCE

LISTVIEW (AFTERALL)
AFTERCICS
AFTERMACRO
AFTERSQL

►◄

Chapter 1. Using compiler options and facilities 47

SOURCE
Causes the source listing to show the unadulterated source and, more
importantly perhaps, it will cause IBM Debug Tool to bring up this as the
source view.

AFTERALL
Causes the source listing to show the source as if it came from the MDECK
from the last invocation, if any, of the last preprocessor, and, more importantly
perhaps, it will cause Debug Tool to bring up this as the source view if the
SEPARATE suboption of the TEST compiler option is also specified.

AALL can be used as an abbreviation for AFTERALL.

AFTERCICS
Causes the source listing to show the source as if it came from the MDECK
from the last invocation, if any, of the CICS preprocessor, and, more
importantly perhaps, it will cause Debug Tool to bring up this as the source
view if the SEPARATE suboption of the TEST compiler option is also specified.

ACICS can be used as an abbreviation for AFTERCICS.

AFTERMACRO
Causes the source listing to show the source as if it came from the MDECK
from the last invocation, if any, of the MACRO preprocessor, and, more
importantly perhaps, it will cause Debug Tool to bring up this as the source
view if the SEPARATE suboption of the TEST compiler option is also specified.

AMACRO can be used as an abbreviation for AFTERMACRO.

AFTERSQL
Causes the source listing to show the source as if it came from the MDECK
from the last invocation, if any, of the SQL preprocessor, and, more importantly
perhaps, it will cause Debug Tool to bring up this as the source view if the
SEPARATE suboption of the TEST compiler option is also specified.

ASQL can be used as an abbreviation for AFTERSQL.

If the TEST option is specified and a suboption other than SOURCE is specified for
LISTVIEW, the SEPARATE suboption must also be specified for the TEST option.

The following example shows the differing effects of the AFTERMACRO,
AFTERSQL, and AFTERALL suboptions.

Suppose the PP option is PP(MACRO('INCONLY'), SQL, MACRO).
v Under LISTVIEW(AFTERMACRO), the "source" in the listing and in the Debug

Tool source window if TEST(SEP) were specified would appear as if it came
from the MDECK that the second invocation of the MACRO preprocessor would
have produced.

v Under LISTVIEW(AFTERSQL), the "source" in the listing and in the Debug Tool
source window if TEST(SEP) were specified would appear as if it came from the
MDECK that the invocation of the SQL preprocessor would have produced (and
hence %DCL and other macro statements would still be visible).

v Under LISTVIEW(AFTERALL), the "source" would be as under the
LISTVIEW(AFTERMACRO) option because the MACRO preprocessor is the last
in the PP option.

48 Enterprise PL/I for z/OS Programming Guide

LP
The LP option specifies whether the compiler generates 31-bit code or 64-bit code.
It also determines the default size of POINTER and HANDLE and related
variables.

►►
32

LP (64) ►◄

32 Under LP(32), the compiler generates 31-bit code. In addition, type size_t
resolves to FIXED BIN(31). The default size of POINTER and HANDLE is four
bytes.

64 Under LP(64), the compiler generates 64-bit code. In addition, type size_t
resolves to FIXED BIN(63). The default size of POINTER and HANDLE is
eight bytes.

Note: Under LP(64), some compiler options are not applicable. For more
information, see “Using compiler options to build 64-bit applications” on page
191.

The default is LP(32).
Related information:
Chapter 7, “Considerations for developing 64-bit applications,” on page 191
You can use Enterprise PL/I to develop 31-bit or 64-bit applications. For your
applications to support the 64-bit environment, you might need to adapt your code
as appropriate. This section describes considerations in development and
compilation that you must take into account.
Chapter 6, “Link-editing and running for 64-bit programs,” on page 185
After compilation with LP(64), your 64-bit program consists of one or more object
modules that contain unresolved references to each other, as well as references to
the Language Environment runtime library. These references are resolved during
link-editing (statically) or during execution (dynamically).

MACRO
The MACRO option invokes the MACRO preprocessor.

►►
NOMACRO
MACRO ►◄

ABBREVIATIONS: M, NM

You can also invoke the MACRO preprocessor through the PP(MACRO) option.
However, the use of both the MACRO option and the PP(MACRO) option in the
same compilation is not recommended.
Related information:
“PP” on page 61
The PP option specifies which (and in what order) preprocessors are invoked
before compilation.

Chapter 1. Using compiler options and facilities 49

“Macro preprocessor” on page 118
Macros allow you to write commonly used PL/I code in a way that hides
implementation details and the data that is manipulated and exposes only the
operations. In contrast with a generalized subroutine, macros allow generation of
only the code that is needed for each individual use. You can invoke the macro
preprocessor by specifying either the MACRO option or the PP(MACRO) option.

MAP
The MAP option specifies that the compiler produces additional information that
can be used to locate static and automatic variables in dumps.

►►
NOMAP
MAP ►◄

MARGINI
The MARGINI option specifies a character that the compiler will place in the
column preceding the left-hand margin, and also in the column following the
right-hand margin, of the listings produced by the INSOURCE and SOURCE
options.

►►
NOMARGINI
MARGINI (' c ') ►◄

ABBREVIATIONS: MI, NMI

c The character to be printed as the margin indicator

Note: NOMARGINI is equivalent to MARGINI(' ').

MARGINS
The MARGINS option specifies which part of each compiler input record contains
PL/I statements, and the position of the ANS control character that formats the
listing, if the SOURCE option, the INSOURCE option, or both apply. The compiler
does not process data that is outside these limits, but it does include it in the
source listings.

The PL/I source is extracted from the source input records so that the first data
byte of a record immediately follows the last data byte of the previous record. For
variable records, you must ensure that when you need a blank, you explicitly
insert it between margins of the records.

►►

2 72
MARGINS (m , n)

, c
NOMARGINS ►◄

ABBREVIATION: MAR

m The column number of the leftmost character (first data byte) that is processed
by the compiler. It must not exceed 100.

50 Enterprise PL/I for z/OS Programming Guide

||
|

n The column number of the rightmost character (last data byte) that is
processed by the compiler. It should be greater than m, but must not exceed
200.

Variable-length records are effectively padded with blanks to give them the
maximum record length.

c The column number of the ANS printer control character. It must not exceed
200, and it should be outside the values specified for m and n. A value of 0 for
c indicates that no ANS control character is present. Only the following control
characters can be used:

(blank)
Skip one line before printing

0 Skip two lines before printing

– Skip three lines before printing

+ No skip before printing

1 Start new page

Any other character is an error and is replaced by a blank.

Do not use a value of c that is greater than the maximum length of a source
record, because this causes the format of the listing to be unpredictable. To
avoid this problem, put the carriage control characters to the left of the source
margins for variable-length records.

Specifying MARGINS(,,c) is an alternative to using %PAGE and %SKIP
statements (described in the PL/I Language Reference).

The IBM-supplied default for fixed-length records is MARGINS(2,72). For
variable-length and undefined-length records, the IBM-supplied default is
MARGINS(10,100). This specifies that there is no printer control character.

Use the MARGINS option to override the default for the primary input in a
program. The secondary input must have the same margins as the primary input.

The NOMARGINS option will suppress any previously encountered instance of the
MARGINS option. The purpose of this option is to allow your installation to have
a default set of compile-time options that use a MARGINS option tailored for their
fixed format source preferences while retaining the ability to use variable source
format files.

You would usually specify the NOMARGINS option, if you use it at all, as part of
the parameter-string passed to the compiler. The compiler will ignore
NOMARGINS if it finds the option in a %PROCESS statement.

MAXBRANCH
The MAXBRANCH option flags blocks that have too many branches. Branches
include all conditional jumps and each WHEN in a SELECT statement that can be
turned into a branch table.

►► MAXBRANCH (max) ►◄

max
The limit that measures the cyclomatic or conditional complexity of the block.
The default is 2000.

Chapter 1. Using compiler options and facilities 51

||
|
|

|
|

||
|
|
|

|
|

||

||

||

||

|

|
|
|
|

|
|

A statement of the form "if a then ...; else ..." adds 1 to the total number of
branches in its containing block, and a statement of the form "if a = 0 | b = 0 then
..." adds 2.

MAXGEN
The MAXGEN option specifies the maximum number of intermediate language
statements that should be generated for any user statement. The option will cause
the compiler to flag any statement where this maximum is exceeded.

►► MAXGEN (size) ►◄

The number of intermediate language statements generated for any user statement
might vary depending on the compiler release, the compiler maintenance level,
and the compiler options in effect. This option is intended only to help you find
statements for which excessive amounts of code are generated, which might
indicate that they are perhaps are poorly coded.

However, note that using a preprocessor might cause the number of intermediate
language statements generated for some statements to be very large. In such a
situation, it might be better either to set the MAXGEN threshold to be larger or to
use the LISTVIEW(AFTERALL) option.

The default is MAXGEN(100000).

MAXMEM
When you compile with OPTIMIZE, the MAXMEM option limits the amount of
memory used for local tables of specific, memory-intensive optimizations to the
specified number of kilobytes.

The range of memory that you can specify for MAXMEM is 1 - 2097152. The
default is 1048576.

If you specify the maximum value of 2097152, the compiler will assume that
unlimited memory is available. If you specify any smaller value for MAXMEM, the
compiler, especially when the OPT(2) option is in effect, might issue a message
saying that optimization is inhibited and that you should try using a larger value
for MAXMEM.

Use the MAXMEM option if you know that less (or more) memory is available
than implied by the default value.

If the memory specified by the MAXMEM option is insufficient for a particular
optimization, the compilation is completed in such a way that the quality of the
optimization is reduced, and a warning message is issued.

►► MAXMEM (size) ►◄

ABBREVIATIONS: MAXM

When a large size is specified for MAXMEM, compilation might be aborted
because of insufficient virtual storage, depending on the source file being
compiled, the size of the subprogram in the source, and the virtual storage
available for the compilation.

52 Enterprise PL/I for z/OS Programming Guide

The advantage of using the MAXMEM option is that, for large and complex
applications, the compiler produces a slightly less-optimized object module and
generates a warning message, instead of terminating the compilation with an error
message of insufficient virtual storage.

MAXMSG
The MAXMSG option specifies the maximum number of messages with a given
severity (or higher) that the compilation should produce.

►► MAXMSG

▼

,
W

(I)
E
S
250
n

►◄

I Count all messages.

W Count all except information messages.

E Count all except warning and information messages.

S Count only severe error and unrecoverable error messages.

n Terminate the compilation if the number of messages exceeds this value. If
messages are below the specified severity or are filtered out by a compiler exit
routine, they are not counted in the number. Enter a value in the range 0 -
32767. If you specify 0, the compilation terminates when the first error of the
specified severity is encountered.

MAXNEST
The MAXNEST option specifies the maximum nesting of various kinds of
statements that are allowed before the compiler flags your program as too
complex.

►► ▼

,
17

MAXNEST (BLOCK (x))
17

DO (x)
17

IF (z)

►◄

BLOCK
Specifies the maximum nesting of BEGIN and PROCEDURE statements.

DO Specifies the maximum nesting of DO statements.

IF Specifies the maximum nesting of IF statements.

The value range of any nesting limit is 1 - 50.

The default is MAXNEST(BLOCK(17) DO(17) IF(17)).

Chapter 1. Using compiler options and facilities 53

MAXSTMT

The MAXSTMT option controls the compiler to flag blocks that have a larger
number of statements than a specified number. In addition, under OPT(2), the
compiler will turn off optimization for any block that has more than the specified
number of statements. Under OPT(3), the compiler will not turn off optimization
when a block has too many statements though the compile time might much
greater when the MAXSTMT limit is exceeded.

►► MAXSTMT (size) ►◄

When a large size is specified for MAXSTMT, if some blocks have a large number
of statements, compilation might be aborted if there is not enough virtual storage
available.

The default for MAXSTMT is 4096.

MAXTEMP
The MAXTEMP option determines when the compiler flags statements that are
using an excessive amount of storage for compiler-generated temporaries.

►► MAXTEMP (max) ►◄

max
The limit for the number of bytes that can be used for compiler-generated
temporaries. The compiler flags any statement that uses more bytes than the
amount specified by max. The default for max is 50000.

You should examine statements that are flagged under this option. If you code
them differently, you might be able to reduce the amount of stack storage required
by your code.

MDECK
The MDECK option specifies that the preprocessor produces a copy of its output
either on the file defined by the SYSPUNCH DD statement under z/OS or on the
.dek file under z/OS UNIX.

►►

NOMDECK
AFTERALL

MDECK (AFTERMACRO) ►◄

ABBREVIATIONS: MD, NMD

The MDECK option allows you to retain the output from the preprocessor as a file
of 80-column records. This option is applicable only when the MACRO option is in
effect.

AFTERALL
Causes the file to be generated after the invocation of the last preprocessor.

AFTERMACRO
Causes the file to be generated after the last invocation (if any) of the macro
preprocessor.

54 Enterprise PL/I for z/OS Programming Guide

|
|
|
|
|
|

Related information:
“MACRO” on page 49
The MACRO option invokes the MACRO preprocessor.

MSGSUMMARY
The MSGSUMMARY option determines whether the compiler adds a summary of
all messages that are issued during compilation into the listing.

►►

NOMSGSUMMARY
NOXREF

MSGSUMMARY ()
XREF

►◄

MSGSUMMARY(NOXREF)
The compiler adds a message summary to the listing. The summary is after the
file reference table in the listing. It is sorted by compiler component and within
each component by severity and then by message number.

The summary includes the following information:
v One instance of each message that is produced in the compilation
v The number of times that each message is produced

MSGSUMMARY(XREF)
The compiler adds a message summary to the listing. The summary is the
same as the one added when MSGSUMMARY(NOXREF) is specified with one
difference: after each message the summary lists all the line or statement
numbers where the message is issued.

NOMSGSUMMARY
No message summary is produced.

NOMSGSUMMARY is the default. When MSGSUMMARY is specified,
MSGSUMMARY(NOXREF) is the default.

For the compiler listing example with a message summary generated by using
MSGSUMMARY, see Figure 4 on page 113.

NAME
The NAME option specifies that the TEXT file created by the compiler will contain
a NAME record.

►►
NONAME
NAME

('name')
►◄

ABBREVIATIONS: N

If no name is specified as a suboption of the NAME option, then the name used is
determined as follows:
v If there is a PACKAGE statement, the leftmost name on it is used.
v Otherwise, the leftmost name on the first PROCEDURE statement is used.

The length of the name must not be greater than 8 characters if the
LIMITS(EXTNAME(n)) option is used with n <= 8.

Chapter 1. Using compiler options and facilities 55

NAMES
The NAMES option specifies the extralingual characters that are allowed in
identifiers.

Extralingual characters are those characters other than the 26 alphabetic, 10 digit,
and special characters defined in the PL/I Language Reference.

►► NAMES (▼' extraling_char '

▼' upp_extraling_char '
,

) ►◄

extralingual_char
An extralingual character

upp_extraling_char
The extralingual character that you want interpreted as the uppercase version
of the corresponding character in the first suboption

If you omit the second suboption, PL/I uses the character specified in the first
suboption as both the lowercase and the uppercase values. If you specify the
second suboption, you must specify the same number of characters as you specify
in the first suboption.

The default is NAMES('#@$' '#@$').

NATLANG
The NATLANG option specifies the language for compiler messages, headers, and
so on.

►► NATLANG (
ENU
UEN) ►◄

ENU
All compiler messages, headers, and so on will be in mixedcase English.

UEN
All compiler messages, headers, and so on will be in uppercase English.

NEST
The NEST option specifies that the listing resulting from the SOURCE option
indicates the block level and the do-group level for each statement.

►►
NONEST
NEST ►◄

NOT
The NOT option specifies up to seven alternate symbols that can be used as the
logical NOT operator.

56 Enterprise PL/I for z/OS Programming Guide

►► NOT ▼(' char ') ►◄

char
A single SBCS character

You cannot specify any of the alphabetic characters, digits, and special characters
defined in the PL/I Language Reference, except for the standard logical NOT symbol
(¬). You must specify at least one valid character.

When you specify the NOT option, the standard NOT symbol is no longer
recognized unless you specify it as one of the characters in the character string.

For example, NOT('~') means that the tilde character, 'A1'X, will be recognized as
the logical NOT operator, and the standard NOT symbol, '¬', '5F'X, will not be
recognized. Similarly, NOT('~¬') means that either the tilde or the standard NOT
symbol will be recognized as the logical NOT operator.

The IBM-supplied default code point for the NOT symbol is '5F'X. The logical NOT
sign might appear as a logical NOT symbol (¬) or a caret symbol (^) on your
keyboard.

NULLDATE
The NULLDATE option instructs the compiler to accept the SQL null date as a
valid date in some datetime handling built-in functions.

►►
NONULLDATE
NULLDATE ►◄

Under the NULLDATE option, the VALIDDATE and REPATTERN built-in
functions will accept the SQL null date (with year, day, and month all equal to one)
as a valid date.

The default is NONULLDATE.

NUMBER
The NUMBER option specifies that statements in the source program are to be
identified by the line and file number of the file from which they derived, and that
this pair of numbers is used to identify statements in the compiler listings resulting
from the AGGREGATE, ATTRIBUTES, LIST, MAP, OFFSET, SOURCE, and XREF
options.

The File Reference Table at the end of the listing shows the number assigned to
each of the input files read during compilation.

►►
NUMBER
NONUMBER ►◄

If a preprocessor has been used, more than one line in the source listing might be
identified by the same line and file numbers. For example, almost every EXEC
CICS statement generates several lines of code in the source listing, but these are
all identified by one line and file number.

Chapter 1. Using compiler options and facilities 57

In the pseudo-assembler listing produced by the LIST option, the file number is
left blank for the first file.

NUMBER and STMT are mutually exclusive and specifying one will negate the
other.

The default is NUMBER.

OBJECT
The OBJECT option specifies that the compiler creates an object module. Under
batch z/OS, the compiler stores the object in the data set defined by the SYSLIN
DD, and underz/OS UNIX, the compiler creates a .o file.

►►
OBJECT
NOOBJECT ►◄

ABBREVIATIONS: OBJ, NOBJ

Under the NOOBJECT option, the compiler does not create an object module.
However, under the NOOBJECT option, the compiler will complete all of its
syntactic and semantic analysis phases as well as all of its detection of uninitialized
variables, and hence it could produce more messages than under the
NOCOMPILE, NOSEMANTIC, or NOSYNTAX option.

Under the NOOBJECT option, the LIST, MAP, OFFSET, and STORAGE options will
be ignored.

OFFSET
The OFFSET option specifies that the compiler is to print a table of line numbers
for each procedure and BEGIN block with their offset addresses relative to the
primary entry point of the procedure. This table can be used to identify a
statement from a runtime error message if the GONUMBER option is not used.

►►
NOOFFSET
OFFSET ►◄

OFFSETSIZE
The OFFSETSIZE option determines the size of OFFSET variables in 64-bit
applications.

►►
4

OFFSETSIZE (8) ►◄

4 Under OFFSETSIZE(4), all OFFSET variables are four bytes in size. This is the
default.

8 Under OFFSETSIZE(8), all OFFSET variables are eight bytes in size.

Any code that shares either OFFSET or AREA variables must be compiled with the
same value for the OFFSETSIZE option.

The OFFSETSIZE option is ignored if the LP(32) option is in effect.

58 Enterprise PL/I for z/OS Programming Guide

ONSNAP
For a PROCEDURE with either the OPTIONS(MAIN) or the
OPTIONS(FROMALIEN) attribute, the ONSNAP option specifies that the compiler
should insert an ON STRINGRANGE SNAP; statement, an ON STRINGSIZE SNAP;
statement, or both into the prologue code for that PROCEDURE. This can make it
easier to determine the calling chain if the corresponding conditions are raised in
other routines called from such a PROCEDURE.

►► ▼

NOONSNAP

,

ONSNAP (STRINGRANGE)
STRINGSIZE

►◄

The ONSNAP option has no affect on a PROCEDURE without either of these
attributes.

OPTIMIZE
The OPTIMIZE option specifies the type of optimization required.

►►
NOOPTIMIZE
OPTIMIZE

2
(TIME)

0
3

►◄

ABBREVIATIONS: OPT, NOPT

OPTIMIZE(0)
Specifies fast compilation speed, but inhibits optimization.

OPTIMIZE(2)
Optimizes the machine instructions generated to produce a more efficient
object program. This type of optimization can also reduce the amount of main
storage required for the object module.

OPTIMIZE(3)
Performs all the optimizations done under OPTIMIZE(2) plus some additional
optimizations. Under OPTIMIZE(3), the compiler will generally, but especially
for programs with large blocks and many variables, generate smaller and more
efficient object code. However, it might also take considerably more time and
region to complete compilations under OPTIMIZE(3) than under OPTIMIZE(2).

It is strongly recommended that the DFT(REORDER) option be used with the
OPTIMIZE option. In fact, the effect of OPTIMIZE is severely limited for any
PROCEDURE or BEGIN-block for which all of the following conditions are true:
v The ORDER option applies to the block.
v The block contains ON-units for hardware-detected conditions (such as

ZERODIVIDE).
v The block has labels that are the (potential) target of branches out of those

ON-units.

Chapter 1. Using compiler options and facilities 59

The use of OPTIMIZE(2) could result in a substantial increase in compile time over
NOOPTIMIZE and a substantial increase in the space required. For example,
compiling a large program at OPTIMIZE(2) might take several minutes and could
require a region of 100M or more.

The use of OPTIMIZE(3) will increase the time and region needed for a
compilation over what is needed under OPTIMIZE(2). For large programs, the time
to compile a program under OPTIMIZE(3) can be more than twice the time needed
under OPTIMIZE(2).

During optimization the compiler can move code to increase runtime efficiency. As
a result, statement numbers in the program listing might not correspond to the
statement numbers used in runtime messages.

NOOPTIMIZE is the equivalent of OPTIMIZE(0).

OPTIMIZE(TIME) is the equivalent of OPTIMIZE(2).

Note that the use of OPTIMIZE(2) or OPTIMIZE(3) severely limits the functionality
of the TEST option, as follows:
v If the HOOK suboption of TEST is in effect, only block hooks will be generated.
v If the NOHOOK suboption of TEST is in effect, attempts to list or change a

variable might fail (because the variable might have been optimized into a
register), and attempts to stop at a particular statement might cause the
debugger to stop several times (because the statement might have split up into
several parts).

The use of the PREFIX option with one or more of the checkout conditions (SIZE,
STRINGRANGE, STRINGSIZE, and SUBSCRIPTRANGE) can significantly increase
the time and space needed for a compilation.
Related information:
Chapter 15, “Improving performance,” on page 325
Many considerations for improving the speed of your program are independent of
the compiler that you use and the platform on which it runs. This chapter,
however, identifies those considerations that are unique to the PL/I compiler and
the code it generates.

OPTIONS
The OPTIONS option specifies that the compiler includes a list showing the
compiler options to be used during this compilation in the compiler listing.

►►
NOOPTIONS
OPTIONS

DOC
(ALL)

►◄

ABBREVIATIONS: OP, NOP

This list includes all options applied by default, those specified in the PARM
parameter of an EXEC statement or in the invoking command (pli), those specified
in a %PROCESS statement, those specified in the IBM_OPTIONS environment
variable under z/OS, and all those incorporated from any options file.

60 Enterprise PL/I for z/OS Programming Guide

Under OPTIONS(DOC), the OPTIONS listing will include only those options (and
suboptions) documented in this document at the time of the compiler’s release.

Under OPTIONS(ALL), the OPTIONS listing will also include any option added by
PTF after the compiler’s release.

OR
The OR option specifies up to seven alternate symbols as the logical OR operator.
These symbols are also used as the concatenation operator, which is defined as two
consecutive logical OR symbols.

►► OR ▼(' char ') ►◄

Note: Do not code any blanks between the quotation marks.

The IBM-supplied default code point for the OR symbol (|) is '4F'X.

char
A single SBCS character

You cannot specify any of the alphabetic characters, digits, and special characters
defined in the PL/I Language Reference, except for the standard logical OR symbol
(|). You must specify at least one valid character.

If you specify the OR option, the standard OR symbol is no longer recognized
unless you specify it as one of the characters in the character string.

For example, OR('\') means that the backslash character, 'E0'X, will be recognized
as the logical OR operator, and two consecutive backslashes will be recognized as
the concatenation operator. The standard OR symbol, '|', '4F'X, will not be
recognized as either operator. Similarly, OR('\|') means that either the backslash or
the standard OR symbol will be recognized as the logical OR operator, and either
symbol or both symbols can be used to form the concatenation operator.

PP
The PP option specifies which (and in what order) preprocessors are invoked
before compilation.

►► ▼

NOPP

,

PP (pp-name)
(pp-string)

►◄

pp-name
The name given to a particular preprocessor. CICS, INCLUDE, MACRO and
SQL are the only preprocessors currently supported. Using an undefined name
causes a diagnostic error.

pp-string
A string, delimited by quotation marks, of up to 100 characters representing

Chapter 1. Using compiler options and facilities 61

the options for the corresponding preprocessor. For example,
PP(MACRO('CASE(ASIS)')) invokes the MACRO preprocessor with the option
CASE(ASIS).

Preprocessor options are processed from left to right, and if two options conflict,
the last (rightmost) option is used. For example, if you invoke the MACRO
preprocessor with the option string 'CASE(ASIS) CASE(UPPER)', then the option
CASE(UPPER) is used.

You can specify a maximum of 31 preprocessor steps, and you can specify the
same preprocessor more than once with the exception of the CICS and SQL
preprocessors. The CICS preprocessor must be invoked at most once, and the SQL
preprocessor must be invoked no more than twice. The SQL preprocessors can be
invoked twice only if the first specification specifies INCONLY as its option.

If the MACRO option is specified along with the PP option, the MACRO
preprocessor will be added to the beginning of the list of preprocessors in the PP
option unless it is already the first in that list. So, specifying MACRO and PP(SQL
MACRO) will cause the PP option to become PP(MACRO SQL MACRO), and the
MACRO preprocessor will be invoked twice. However, specifying MACRO and
PP(MACRO SQL) will leave the PP option unchanged, and the MACRO
preprocessor will be invoked only once. However, the use of both the MACRO
option and the PP(MACRO) option in the same compilation is not recommended.

If you specify the PP option more than once, the compiler effectively concatenates
them. So specifying PP(SQL) PP(CICS) is the same as specifying PP(SQL CICS).
This also means that if you specifies PP(MACRO SQL('CCSID0')) and PP(MACRO
SQL('CCSID0 DATE(ISO)')), the resulting PP option is PP(MACRO SQL('CCSID0')
MACRO SQL('CCSID0 DATE(ISO)')), and both the MACRO preprocessor and the
SQL preprocessor will be invoked twice, and the second invocation of the SQL
preprocessor will be in error. If you do this to override the earlier SQL options, it
might be better not to specify the preprocessor options in the PP option, but rather
to specify them through the PPSQL option, that is, specify PP(MACRO SQL)
PPSQL('CCSID0 DATE(ISO)').
Related information:
Chapter 2, “PL/I preprocessors,” on page 117
When you use the PL/I compiler, you can specify one or more of the integrated
preprocessors in your program. You can specify the include preprocessor, the
macro preprocessor, the SQL preprocessor, or the CICS preprocessor, and specify
the order in which you want them to be called.

PPCICS
The PPCICS option specifies options to be passed to the CICS preprocessor if it is
invoked.

►►
NOPPCICS
PPCICS ('options string') ►◄

Specifying PPCICS('EDF') PP(CICS) is the same as specifying PP(CICS('EDF')).

This option has no effect unless the PP(CICS) option is specified. However, if you
want to specify a set of CICS preprocessor options that should be used if and
when the CICS preprocessor is invoked, you can specify this option in the

62 Enterprise PL/I for z/OS Programming Guide

installation options exit. Then whenever you specify PP(CICS), the set of options
specified in the PPCICS option will be used.

Also, any options specified when the preprocessor is invoked overrule those
specified in the PPCICS option. So specifying PPCICS('EDF') PP(CICS('NOEDF')) is
the same as specifying PP(CICS('EDF NOEDF')) or the even simpler
PP(CICS('NOEDF')).

The options string is limited to 1000 characters in length. However, if the string is
longer than 100 characters, it will not be shown in the options listing.

PPINCLUDE
The PPINCLUDE option specifies options to be passed to the INCLUDE
preprocessor if it is invoked.

►►
NOPPINCLUDE
PPINCLUDE ('options string') ►◄

Specifying PPINCLUDE('ID(-inc)') PP(INCLUDE) is the same as specifying
PP(INCLUDE('ID(-inc)')).

This option has no effect unless the PP(INCLUDE) option is specified. However, if
you want to specify a set of INCLUDE preprocessor options that should be used if
and when the INCLUDE preprocessor is invoked, you can specify this option in
the installation options exit. Then whenever you specify PP(INCLUDE), the set of
options specified in the PPINCLUDE option will be used.

Also, any options specified when the preprocessor is invoked overrule those
specified in the PPINCLUDE option. So specifying PPINCLUDE('ID(-inc)')
PP(INCLUDE('ID(+include)')) is the same as specifying PP(INCLUDE('ID(-inc)
ID(+include)')) or the even simpler PP(INCLUDE('ID(+include)')).

The options string is limited to 1000 characters in length. However, if the string is
longer than 100 characters, it will not be shown in the options listing.

PPLIST
The PPLIST option controls whether the compiler keeps or erases the part of the
listing that is generated by each preprocessor phase.

►► PPLIST (
KEEP
ERASE) ►◄

When you specify PPLIST(KEEP), the compiler keeps the part of the listing that is
generated by each preprocessor phase.

When you specify PPLIST(ERASE), the compiler erases the part of the listing that
is generated by any preprocessor phase that produces no messages.

The compiler does not count messages that are suppressed by the EXIT and FLAG
options. Therefore, specifying both FLAG(W) and PPLIST(ERASE) causes the
compiler to suppress all output from any preprocessor that produces no warning,
error, or severe messages.

Chapter 1. Using compiler options and facilities 63

PPLIST(KEEP) is the default.

PPMACRO
The PPMACRO option specifies options to be passed to the MACRO preprocessor
if it is invoked.

►►
NOPPMACRO

PPMACRO(‘options string’)
►◄

Specifying PPMACRO('CASE(ASIS)') PP(MACRO) is the same as specifying
PP(MACRO('CASE(ASIS)')).

This option has no effect unless the PP(MACRO) option is specified. However, if
you want to specify a set of MACRO preprocessor options that should be used if
and when the MACRO preprocessor is invoked, you can specify this option in the
installation options exit. Then whenever you specify the MACRO or PP(MACRO)
options, the set of options specified in the PPMACRO option will be used.

Also, any options specified when the preprocessor is invoked overrule those
specified in the PPMACRO option. So specifying PPMACRO('CASE(ASIS)')
PP(MACRO('CASE(UPPER)')) is the same as specifying PP(MACRO('CASE(ASIS)
CASE(UPPER)')) or the even simpler PP(MACRO('CASE(UPPER)')).

The options string is limited to 1000 characters in length. However, if the string is
longer than 100 characters, it will not be shown in the options listing.

PPSQL
The PPSQL option specifies options to be passed to the SQL preprocessor.

►►
NOPPSQL

PPSQL(‘options string’)
►◄

Specifying PPSQL('APOSTSQL') PP(SQL) is the same as specifying
PP(SQL('APOSTSQL')).

This option has no effect unless the PP(SQL) option is specified. However, if you
want to specify a set of options that should be used if the SQL preprocessor is
invoked, you can specify this option in the installation options exit. Then,
whenever you specify PP(SQL), the set of options in the PPSQL option are used.

Also, any options that are specified when the preprocessor is invoked overrule
those that are specified in the PPSQL option. Therefore, specifying
PPSQL('APOSTSQL') PP(SQL('QUOTESQL')) is the same as specifying
PP(SQL('APOSTSQL QUOTESQL')) or the even simpler PP(SQL('QUOTESQL')).

The options string is limited to 1000 characters in length. However, if the string is
longer than 100 characters, it will not be shown in the options listing.

64 Enterprise PL/I for z/OS Programming Guide

PPTRACE
The PPTRACE option specifies that when a deck file is written for a preprocessor,
every nonblank line in that file is preceded by a line containing a %LINE directive.
The directive indicates the original source file and line to which the nonblank line
should be attributed.

►►
NOPPTRACE
PPTRACE ►◄

PRECTYPE
The PRECTYPE option determines how the compiler derives the attributes for the
MULTIPLY, DIVIDE, ADD and SUBTRACT built-in functions when the operands
are FIXED and at least one is FIXED BIN.

►►
ANS

PRECTYPE (DECDIGIT)
DECRESULT

►◄

ANS
Under PRECTYPE(ANS), the value p in BIF(x,y,p) and in BIF(x,y,p,0) is
interpreted as specifying a binary number of digits, the operation is performed
as a binary operation, and the result has the attributes FIXED BIN(p,0).

However, for BIF(x,y,p,q) if q is not zero, the operation will be performed as a
decimal operation, and the result will have the attributes FIXED DEC(t,u)
where t and u are the decimal equivalents of p and q, namely t = 1 + ceil(p /
3.32) and u = ceil(q / 3.32). In this case, x, y, p, and q are effectively all
converted to decimal (in contrast to the DECDIGIT suboption, which converts
only x and y to decimal and does so even if q is zero). The compiler will issue
the informational message 1BM1053 in this situation.

DECDIGIT
Under PRECTYPE(DECDIGIT), the value p in BIF(x,y,p) and BIF(x,y, p,0) is
interpreted as specifying a decimal number of digits, the operation is
performed as a binary operation, and the result has the attributes FIXED
BIN(s) where s is the corresponding binary equivalent to p (namely s =
ceil(3.32*p)). For an instance of BIF(x,y,p, q) where q is not zero, the results
under PRECTYPE(DECDIGIT) are the same as the results under
PRECTYPE(DECRESULT).

DECRESULT
Under PRECTYPE(DECRESULT), the value p in BIF(x,y,p) and the values p and
q in BIF(x,y,p,q) are interpreted as specifying a decimal number of digits, the
operation is performed as a decimal operation, and the result has the attributes
FIXED DEC(p,0) or FIXED DEC(p,q) respectively. The result is the same as
would be produced if the DECIMAL built-in were applied to x and y.

PREFIX
The PREFIX option enables or disables the specified PL/I conditions in the
compilation unit being compiled without you having to change the source
program. The specified condition prefixes are logically prefixed to the beginning of
the first PACKAGE or PROCEDURE statement.

Chapter 1. Using compiler options and facilities 65

►► PREFIX (

▼

,

condition

) ►◄

condition
Any condition that can be enabled or disabled in a PL/I program, as explained
in the PL/I Language Reference.

The use of the PREFIX option with one or more of the checkout conditions (SIZE,
STRINGRANGE, STRINGSIZE, and SUBSCRIPTRANGE) can significantly increase
the time and space needed for a compilation.

Default: PREFIX(CONVERSION FIXEDOVERFLOW INVALIDOP OVERFLOW
NOSIZE NOSTRINGRANGE NOSTRINGSIZE NOSUBSCRIPTRANGE
UNDERFLOW ZERODIVIDE)

PROCEED
The PROCEED option stops the compiler after processing by a preprocessor is
completed depending on the severity of messages issued by previous
preprocessors.

►►

NOPROCEED
S

(W)
E

PROCEED ►◄

ABBREVIATIONS: PRO, NPRO

PROCEED
Is equivalent to NOPROCEED(S).

NOPROCEED
Ends the processing after the preprocessor has finished compiling.

NOPROCEED(S)
The invocation of preprocessors and the compiler does not continue if a severe
or an unrecoverable error is detected in this stage of preprocessing.

NOPROCEED(E)
The invocation of preprocessors and the compiler does not continue if an error,
a severe error, or an unrecoverable error is detected in this stage of
preprocessing.

NOPROCEED(W)
The invocation of preprocessors and the compiler does not continue if a
warning, an error, a severe error, or an unrecoverable error is detected in this
stage of preprocessing.

PROCESS
The PROCESS option determines whether *PROCESS statements are allowed and,
if they are allowed, whether they are written to the MDECK file.

66 Enterprise PL/I for z/OS Programming Guide

►►

PROCESS
DELETE

(KEEP)

NOPROCESS
►◄

Under the NOPROCESS option, the compiler will flag any *PROCESS statement
with an E-level message.

Under the PROCESS(KEEP) option, the compiler will not flag *PROCESS
statements, and the compiler will retain any *PROCESS statements in the MDECK
output.

Under the PROCESS(DELETE) option, the compiler will not flag *PROCESS
statements, but the compiler will not retain any *PROCESS statements in the
MDECK output.

QUOTE
The QUOTE option specifies an alternate symbol that can be used as the quote
character.

►►
"

QUOTE (' char ') ►◄

Note: Do not code any blanks between the quotation marks.

The IBM-supplied default code point for the QUOTE symbol is '"'.

char
A single SBCS character

You cannot specify any of the alphabetic characters, digits, and special characters
defined in the PL/I Language Reference, except for the standard QUOTE symbol (").

You must specify a valid character.

The QUOTE option is ignored if the GRAPHIC option is also specified.

REDUCE
The REDUCE option specifies that the compiler is permitted to reduce an
assignment of a null string to a structure into simpler operations - even if that
means padding bytes might be overwritten.

The REDUCE option also allows the compiler to reduce the assignment of
matching structures into a simple aggregate move - even if the structures contain
POINTER fields.

►►
REDUCE
NOREDUCE ►◄

The NOREDUCE option specifies that the compiler must decompose an
assignment of a null string to a structure into a series of assignments of the null
string to the base members of the structure.

Chapter 1. Using compiler options and facilities 67

Under the NOREDUCE option, BY NAME assignments that can be reduced to
aggregate moves are not reduced if the elements that would be moved together
have the AREA or VARYING(Z) attributes.

The REDUCE option causes fewer lines of code to be generated for an assignment
of a null string to a structure, and that usually means your compilation is quicker
and your code runs much faster. However, padding bytes might be zeroed out.

For instance, in the following structure, there is one byte of padding between
field12 and field13.

dcl
1 sample ext,

5 field10 bin fixed(31),
5 field11 bin fixed(15),
5 field12 bit(8),
5 field13 bin fixed(31);

Now consider the assignment sample = '';.

Under the NOREDUCE option, it will cause four assignments to be generated, and
the padding byte will be unchanged.

However, under REDUCE, the assignment will be reduced to one operation, but
the padding byte will be zeroed out.

The NOREDUCE option makes the compiler act more like the OS PL/I and the
PL/I for MVS compilers. These compilers would reduce an assignment of
matching structures into a simple aggregate move unless the structures contain
POINTER fields. The NOREDUCE option will make this compiler act the same
way.

RENT
Your code is "naturally reentrant" if it does not alter any of its static variables. The
RENT option specifies that the compiler is to take code that is not naturally
reentrant and make it reentrant.

For a detailed description of reentrancy, see the z/OS Language Environment
Programming Guide. If you use the RENT option, the Linkage Editor cannot directly
process the object module that is produced; you must use PDSEs.

Note: Under the LP(64) option, the RENT option is ignored; effectively, RENT is
always on.

►►
NORENT
RENT ►◄

The NORENT option specifies that the compiler is not to specifically generate
reentrant code from nonreentrant code. Any naturally reentrant code remains
reentrant.

If you link a module (either MAIN or FETCHABLE) containing one or more
programs compiled with the RENT option, you must specify DYNAM=DLL and
REUS=RENT on the link step.

68 Enterprise PL/I for z/OS Programming Guide

If you specify the options NORENT and LIMITS(EXTNAME(n)) (with n <= 7), the
text decks generated by the compiler will have the same format as those generated
by the older PL/I compilers. If you use any other options, you must use PDSEs.

The code generated under the NORENT option might not be reentrant unless the
NOWRITABLE option is also specified.

The use of the NORENT does preclude the use of some features of the compiler. In
particular, note the following considerations:
v DLLs cannot be built.
v Reentrant, writeable static is not supported.
v A STATIC ENTRY VARIABLE cannot have an INITIAL value.

You can mix RENT and NORENT code subject to the following restrictions:
v Code compiled with RENT cannot be mixed with code compiled with NORENT

if they share any EXTERNAL STATIC variables.
v Code compiled with RENT cannot call an ENTRY VARIABLE set in code

compiled with NORENT.
v Code compiled with RENT cannot call an ENTRY CONSTANT that was fetched

in code compiled with NORENT.
v Code compiled with RENT can fetch a module containing code compiled with

NORENT if one of the following conditions is true:
– All the code in the fetched module was compiled with NORENT.
– The code containing the entry point to the module was compiled with RENT.

v Code compiled with NORENT code cannot fetch a module containing any code
compiled with RENT.

v Code compiled with NORENT WRITABLE cannot be mixed with code compiled
with NORENT NOWRITABLE if they share any external CONTROLLED
variables or any external FILEs.

Given the above restrictions, the following is still valid:
v A NORENT routine, called say mnorent, statically links and calls a RENT

routine, called say mrent.
v The RENT routine mrent then fetches and calls a separately-linked module with

an entry point compiled with RENT.

RESEXP
The RESEXP option specifies that the compiler is permitted to evaluate all
restricted expressions at compile time even if this would cause a condition to be
raised and the compilation to end with S-level messages.

►►
RESEXP
NORESEXP ►◄

Under the NORESEXP compiler option, the compiler will still evaluate all
restricted expression occurring in declarations, including those in INITIAL value
clauses.

For example, under the NORESEXP option, the compiler will not flag the following
statement (and the ZERODIVIDE exception will be raised at run time).
if preconditions_not_met then

x = 1 / 0;

Chapter 1. Using compiler options and facilities 69

RESPECT
The RESPECT option causes the compiler to honor any specification of the DATE
attribute and to apply the DATE attribute to the result of the DATE built-in
function.

►► RESPECT ()
DATE

►◄

Using the default, RESPECT(), causes the compiler to ignore any specification of the
DATE attribute and ensures that the compiler does not apply the DATE attribute to
the result of the DATE built-in function.

RTCHECK
The RTCHECK option specifies that extra code is generated to force the ERROR
condition to be raised if a null pointer is dereferenced, that is, if the pointer is used
to change or obtain the value of a variable.

►►
NONULLPTR

RTCHECK (NULLPTR)
NULL370

►◄

NULLPTR
Extra code is generated to force the ERROR condition to be raised if a null
pointer, that is, a pointer equal to SYSNULL(), is dereferenced. To use
NULLPTR, you must specify ARCH(8).

NULL370
Extra code is generated to force the ERROR condition to be raised if a pointer
equal to the old NULL() value is dereferenced. The old NULL() value is the
hexadecimal value of 'FF000000'x. To use NULL370, you must specify ARCH(8)
or greater.

NONULLPTR
No extra code is generated to force the ERROR condition to be raised if a null
pointer is dereferenced.

The default is RTCHECK(NONULLPTR).

Note: When a null pointer is dereferenced, a compare-and-trap data exception
occurs.

RULES
The RULES option allows or disallows certain language capabilities and lets you
choose semantics when alternatives are available. It can help you diagnose
common programming errors.

70 Enterprise PL/I for z/OS Programming Guide

►► ▼

,

IBM

RULES (ANS)

BYNAME

NOBYNAME

CONTROLLED

NOCONTROLLED

NODECSIZE

DECSIZE

ELSEIF

NOELSEIF

EVENDEC

NOEVENDEC

GLOBALDO

NOGLOBALDO

GOTO

NOGOTO

STRICT

(LOOSE)

LOOSEFORWARD

NOLAXBIF

LAXBIF

LAXCONV

NOLAXCONV

ALL

(SOURCE)

NOLAXCTL

LAXCTL

NOLAXDCL

LAXDCL

NOLAXDEF

LAXDEF

LAXINTERFACE

NOLAXINTERFACE

LAXENTRY

NOLAXENTRY

STRICT

(LOOSE)

NOLAXIF

LAXIF

LAXINOUT

NOLAXINOUT

LAXLINK

NOLAXLINK

LAXMARGINS

NOLAXMARGINS

STRICT

(XNUMERIC)

LAXNESTED

NOLAXNESTED

ALL

(SOURCE)

LAXPUNC

NOLAXPUNC

LAXQUAL

NOLAXQUAL

LOOSE ALL

(STRICT) (FORCE)

LAXRETURN

NOLAXRETURN

NOLAXSCALE

LAXSCALE

LAXSEMI

NOLAXSEMI

LAXSTG

NOLAXSTG

LAXSTMT

NOLAXSTMT

ALL

(SOURCE)

NOLAXSTRZ

LAXSTRZ

►◄

Chapter 1. Using compiler options and facilities 71

|||||||||

▼

,

NOMULTICLOSE

RULES (MULTICLOSE)

MULTIENTRY

NOMULTIENTRY

ALL

(SOURCE)

MULTIEXIT

NOMULTIEXIT

ALL

(SOURCE)

MULTISEMI

NOMULTISEMI

ALL

(SOURCE)

PADDING

NOPADDING

ALL

(SOURCE)

PROCENDONLY

NOPROCENDONLY

ALL

(SOURCE)

RECURSIVE

NORECURSIVE

SELFASSIGN

NOSELFASSIGN

UNREF

ALL

NOUNREF (SOURCE)

UNREFBASED

ALL

NOUNREFBASED (SOURCE)

UNREFCTL

ALL

NOUNREFCTL (SOURCE)

UNREFDEFINED

ALL

NOUNREFDEFINED (SOURCE)

UNREFENTRY

ALL

NOUNREFENTRY (SOURCE)

UNREFDEFFILE

ALL

NOUNREFDEFFILE (SOURCE)

UNREFSTATIC

ALL

NOUNREFSTATIC (SOURCE)

YY

NOYY

IBM | ANS
Under the IBM suboption:
v For operations requiring string data, data with the BINARY attribute is

converted to BIT.
v Conversions in arithmetic operations or comparisons occur as described in

the PL/I Language Reference.
v Conversions for the ADD, DIVIDE, MULTIPLY, and SUBTRACT built-in

functions occur as described in the PL/I Language Reference except that
operations specified as scaled fixed binary are evaluated as scaled fixed
decimal.

v Nonzero scale factors are permitted in FIXED BIN declarations.
v If the result of any precision-handling built-in function (ADD, BINARY, and

so on) has FIXED BIN attributes, the specified or implied scale factor can be
nonzero.

v Even if all arguments to the MAX or MIN built-in functions are UNSIGNED
FIXED BIN, all the arguments are converted to SIGNED, the function is
evaluated with these converted arguments, and the result is always SIGNED.

v Even when you add, multiply, or divide two UNSIGNED FIXED BIN
operands, all the operands are converted to SIGNED, the operation is
evaluated with these converted arguments, and the result has the SIGNED
attribute.

72 Enterprise PL/I for z/OS Programming Guide

||

v Even when you apply the MOD or REM built-in functions to two
UNSIGNED FIXED BIN operands, all the arguments are converted to
SIGNED, the function is evaluated with these converted arguments, and the
result has the SIGNED attribute.

v Declaring a variable with the OPTIONS attribute implies the ENTRY
attribute.

Under the ANS suboption:
v For operations requiring string data, data with the BINARY attribute is

converted to CHARACTER.
v Conversions in arithmetic operations or comparisons occur as described in

the PL/I Language Reference.
v Conversions for the ADD, DIVIDE, MULTIPLY, and SUBTRACT built-in

functions occur as described in the PL/I Language Reference.
v Nonzero scale factors are not permitted in FIXED BIN declares.
v If the result of any precision-handling built-in function (ADD, BINARY, and

so on) has FIXED BIN attributes, the specified or implied scale factor must
be zero.

v If all arguments to the MAX or MIN built-in functions are UNSIGNED
FIXED BIN, the result is UNSIGNED.

v When you add, multiply, or divide two UNSIGNED FIXED BIN operands,
the result has the UNSIGNED attribute.

v When you apply the MOD or REM built-in functions to two UNSIGNED
FIXED BIN operands, the result has the UNSIGNED attribute.

v Declaring a variable with the OPTIONS attribute does not imply the ENTRY
attribute.

Also, under RULES(ANS), the following errors, which the old compilers
ignored, produce E-level messages:
v Specifying a string constant as the argument to the STRING built-in
v Giving too many asterisks as subscripts in an array reference
v Qualifying a CONTROLLED variable with a POINTER reference (as if the

CONTROLLED variable were BASED)

The default is RULES(IBM).

BYNAME | NOBYNAME
Specifying NOBYNAME causes the compiler to flag all BYNAME assignments
with an E-level message.

The default is RULES(BYNAME).

CONTROLLED | NOCONTROLLED
Specifying NOCONTROLLED causes the compiler to flag any use of the
CONTROLLED attribute.

Specifying CONTROLLED causes the compiler not to flag the use of the
CONTROLLED attribute.

The default is RULES(CONTROLLED).

DECSIZE | NODECSIZE
Specifying DECSIZE causes the compiler to flag any assignment of a FIXED
DECIMAL expression to a FIXED DECIMAL variable when the SIZE condition
is disabled if the SIZE condition could be raised by the assignment.

Chapter 1. Using compiler options and facilities 73

Specifying RULES(DECSIZE) might cause the compiler to produce many
messages because when SIZE is disabled, any statement of the form X = X + 1
will be flagged if X is FIXED DECIMAL.

The default is RULES(NODECSIZE).

ELSEIF | NOELSEIF
Specifying NOELSEIF causes the compiler to flag any ELSE statement that is
immediately followed by an IF statement and suggest that it be rewritten as a
SELECT statement.

This option can be useful in enforcing that SELECT statements be used rather
than a series of nested IF-THEN-ELSE statements.

The RULES(NOELSEIF) compiler option now also flags ELSE statements
immediately followed by an IF statement that is enclosed in a simple DO-END.

The default is RULES(ELSEIF).

EVENDEC | NOEVENDEC
Specifying NOEVENDEC causes the compiler to flag any FIXED DECIMAL
declaration that specifies an even precision.

The default is RULES(EVENDEC).

GLOBALDO | NOGLOBALDO
Specifying NOGLOBALDO instructs the compiler to flag all DO loops with
control variables that are declared in a parent block.

The default is RULES(GLOBALDO).

GOTO | NOGOTO
Specifying NOGOTO(STRICT) causes the compiler to flag any GOTO statement
to a label constant unless the GOTO is exiting an ON-unit.

Specifying NOGOTO(LOOSE) causes the compiler to flag any GOTO statement
to a label constant unless the GOTO is exiting an ON-unit or unless the target
label constant is in the same block as the GOTO statement.

Specifying NOGOTO(LOOSEFORWARD) causes the compiler to flag any
GOTO statement to a label constant unless the GOTO is exiting an ON-unit or
unless the target label constant is in the same block as the GOTO statement
and comes after the GOTO statement.

The default is RULES(GOTO). When you specify RULES(NOGOTO), the
default is STRICT.

LAXBIF | NOLAXBIF
Specifying LAXBIF causes the compiler to build a contextual declaration for
built-in functions, such as NULL, even when used without an empty
parameter list.

The default is RULES(NOLAXBIF).

LAXCONV | NOLAXCONV
Specifying RULES(LAXCONV) causes the compiler not to flag arithmetic
expressions where an operand does not have arithmetic type.

Specifying RULES(NOLAXCONV) causes the compiler to flag arithmetic
expressions where an operand does not have arithmetic type.

ALL
Under ALL, all violations of RULES(NOLAXCONV) are flagged. ALL is
the default.

74 Enterprise PL/I for z/OS Programming Guide

|
|

|
|
|
|

|
|
|

|
|

|
|
|

SOURCE
Under SOURCE, only those violations that occur in the primary source file
are flagged.

The default is RULES(LAXCONV). When you specify RULES(NOLAXCONV),
the default is ALL.

LAXCTL | NOLAXCTL
Specifying LAXCTL allows a CONTROLLED variable to be declared with a
constant extent and yet to be allocated with a differing extent. NOLAXCTL
requires that if a CONTROLLED variable is to be allocated with a varying
extent, that extent must be specified as an asterisk or as a non-constant
expression.

The following code is illegal under NOLAXCTL:
dcl a bit(8) ctl;
alloc a;
alloc a bit(16);

But this code would still be valid under NOLAXCTL:
dcl b bit(n) ctl;
dcl n fixed bin(31) init(8);
alloc b;
alloc b bit(16);

The default is RULES(NOLAXCTL).

LAXDCL | NOLAXDCL
Specifying LAXDCL allows implicit declarations. NOLAXDCL disallows all
implicit and contextual declarations except for BUILTINs and for files SYSIN
and SYSPRINT.

The default is RULES(NOLAXDCL).

LAXDEF | NOLAXDEF
Specifying LAXDEF allows so-called illegal defining to be accepted without
any compiler messages (rather than the E-level messages that the compiler
would usually produce).

The default is RULES(NOLAXDEF).

LAXENTRY | NOLAXENTRY
Specifying LAXENTRY allows unprototyped entry declarations. Specifying
NOLAXENTRY causes the compiler to flag all unprototyped entry declarations,
that is, all ENTRY declares that do not specify a parameter list.

Note: If an ENTRY should have no parameters, it should be declared as
ENTRY() rather than simply as ENTRY.

STRICT
Specifying RULES(NOLAXENTRY(STRICT)) causes the compiler to flag
unprototyped entry declarations that have the OPTIONS(ASM) attribute.

LOOSE
Specifying RULES(NOLAXENTRY(LOOSE)) causes the compiler not to flag
unprototyped entry declarations that have the OPTIONS(ASM) attribute.

The default is RULES(LAXENTRY). When you specify RULES(NOLAXENTRY),
the default is STRICT.

LAXIF | NOLAXIF
Specifying RULES(NOLAXIF) causes the compiler to flag any IF, WHILE,

Chapter 1. Using compiler options and facilities 75

|
|
|

|
|

UNTIL, and WHEN clauses that do not have the attributes BIT(1)
NONVARYING. It also causes the compiler to flag the assignments of the form
x=y=z, but it does not flag assignments of the x=(y=z) form.

The following code will all be flagged under NOLAXIF:
dcl i fixed bin;
dcl b bit(8);

.

.

.
if i then ...
if b then ...

The default is RULES(NOLAXIF).

LAXINOUT | NOLAXINOUT
Specifying NOLAXINOUT causes the compiler to assume that all
ASSIGNABLE BYADDR parameters are input (and possibly output) parameters
and hence to issue a warning if the compiler thinks such a parameter has not
been initialized.

The default is RULES(LAXINOUT).

LAXINTERFACE | NOLAXINTERFACE
Specifying NOLAXINTERFACE causes the compiler to flag code that does not
contain a valid explicit declaration for each of its external PROCEDUREs.
v Under NOLAXINTERFACE, the compiler will not flag any MAIN routines.
v Under NOLAXINTERFACE, the compiler will flag any PROCEDURE that

does not have an explicit declaration at the PACKAGE level (and hence any
code not in a PACKAGE).

v Under NOLAXINTERFACE, the compiler will also flag any PROCEDUREs
for which the implicit and explicit declarations do not match.

The default is RULES(LAXINTERFACE).

LAXLINK | NOLAXLINK
Specifying NOLAXLINK causes the compiler to flag any assign or compare of
two ENTRY variables or constants if any of the following do not match:
v The parameter description lists

For instance, if A1 is declared as ENTRY(CHAR(8)) and A2 as
ENTRY(POINTER) VARIABLE, under RULES(NOLAXLINK) the compiler
will flag an attempt to assign A1 to A2.

v The RETURNS attribute
For instance, if A3 is declared as ENTRY RETURNS(FIXED BIN(31)) and A4
as an ENTRY VARIABLE without the RETURNS attribute, under
RULES(NOLAXLINK) the compiler will flag an attempt to assign A3 to A4.

v The LINKAGE and other OPTIONS suboptions
For instance, if A5 is declared as ENTRY OPTIONS(ASM) and A6 as an
ENTRY VARIABLE without the OPTIONS attribute, under
RULES(NOLAXLINK) the compiler will flag an attempt to assign A5 to A6.
This is because the OPTIONS(ASM) in the declare of A5 implies that A5 has
LINKAGE(SYSTEM)), and in contrast, because A6 has no OPTIONS
attribute, it will have LINKAGE(OPTLINK) by default).

The default is RULES(LAXLINK).

LAXMARGINS | NOLAXMARGINS
Specifying NOLAXMARGINS causes the compiler to flag, depending on the
setting of the STRICT and XNUMERIC suboption, lines containing nonblank

76 Enterprise PL/I for z/OS Programming Guide

|
|
|

|

|
|
|

|
|

|

characters after the right margin. This can be useful in detecting code, such as
a closing comment, that has accidentally been pushed out into the right
margin.

If the NOLAXMARGINS and STMT options are used together with one of the
preprocessors, any statements that would be flagged because of the
NOLAXMARGINS option will be reported as statement zero (because
statement numbering occurs only after all the preprocessors are finished, but
the detection of text outside the margins occurs as soon as the source is read).

STRICT
Under STRICT, the compiler flags any line that contains nonblank
characters after the right margin.

XNUMERIC
Under XNUMERIC, the compiler flags any line that contains nonblank
characters after the right margin except if the right margin is column 72
and columns 73 through 80 all contain numeric digits.

The default is RULES(LAXMARGINS). When you specify
RULES(NOLAXMARGINS), the default is ALL.

LAXNESTED | NOLAXNESTED
Specifying RULES(LAXNESTED) causes the compiler not to flag the executable
code in a procedure that follows any subprocedures.

Specifying RULES(NOLAXNESTED) causes the compiler to flag any executable
code in a procedure that follows any subprocedures.

ALL
Under ALL, all violations of RULES(NOLAXNESTED) are flagged. ALL is
the default.

SOURCE
Under SOURCE, only those violations that occur in the primary source file
are flagged.

The default is RULES(LAXNESTED). When you specify
RULES(NOLAXNESTED), the default is ALL.

LAXPUNC | NOLAXPUNC
Specifying NOLAXPUNC causes the compiler to flag with an E-level message
any place where it assumes punctuation is missing.

For instance, given the statement I = (1 * (2);, the compiler assumes that a
closing right parenthesis is meant before the semicolon. Under
RULES(NOLAXPUNC), this statement will be flagged with an E-level message;
otherwise, it will be flagged with a W-level message.

The default is RULES(LAXPUNC).

LAXQUAL | NOLAXQUAL
Specifying NOLAXQUAL(LOOSE) causes the compiler to flag any reference to
structure members that are not level 1 and are not dot qualified. Consider the
following example:
dcl

1 a,
2 b,

3 b fixed bin,
3 c fixed bin;

Chapter 1. Using compiler options and facilities 77

c = 11; /* would be flagged */
b.c = 13; /* would not be flagged */
a.c = 17; /* would not be flagged */

Specifying NOLAXQUAL(STRICT) causes the compiler to flag any reference to
structure members that do not include the level-1 name. Consider the
following example:
dcl

1 a,
2 b,

3 b fixed bin,
3 c fixed bin;

c = 11; /* would be flagged */
b.c = 13; /* would be flagged */
a.c = 17; /* would not be flagged */

ALL
Under ALL, all violations of RULES(NOLAXQUAL) are flagged. ALL is the
default.

FORCE
Under FORCE, only those violations that occur in structures with the
FORCE(NOLAXQUAL) attribute are flagged.

The default is RULES(LAXQUAL). When you specify RULES(NOLAXQUAL),
LOOSE and ALL are defaults.

LAXRETURN | NOLAXRETURN
Specifying NOLAXRETURN causes the compiler to generate code to raise the
ERROR condition when a RETURN statement is used in either of the following
ways:
v With an expression in a procedure that is coded without the RETURNS

option
v Without an expression in a procedure that is coded with the RETURNS

option

ERROR will also be raised if the code falls through to the END statement in a
PROCEDURE with the RETURNS attribute.

The default is RULES(LAXRETURN).

LAXSCALE | NOLAXSCALE
Specifying NOLAXSCALE causes the compiler to flag any FIXED BIN(p,q) or
FIXED DEC(p,q) declaration where q < 0 or p < q.

It also causes the compiler to flag ROUND(x,p) when p < 0.

The message issued when the compiler flags ROUND(x,p) is different from that
issued when the compiler flags the FIXED BIN(p,q) or FIXED DEC(p,q)
declaration. Therefore, you can use the EXIT option to suppress the message
issued when ROUND(x,p) is flagged and keep the message for other
questionable declarations.

The default is RULES(NOLAXSCALE).

LAXSEMI | NOLAXSEMI
Specifying NOLAXSEMI causes the compiler to flag any semicolons appearing
inside comments.

The default is RULES(LAXSEMI).

78 Enterprise PL/I for z/OS Programming Guide

LAXSTG | NOLAXSTG
Specifying NOLAXSTG causes the compiler to flag declarations where a
variable A is declared as BASED on ADDR(B) and STG(A) > STG(B) even (and
this is the key part) if B is a parameter.

Note that even with NOLAXSTG specified, if B has subscripts, no IBM2402I
E-level message will be produced.

The compiler would already flag this kind of problem if B were in
AUTOMATIC or STATIC storage, but it does not, by default, flag this when B
is a parameter (because some programmers declare B with placeholder
attributes that do not describe the actual argument). For situations where
parameter and argument declarations match (or should match), specifying
RULES(NOLAXSTG) can help detect more storage overlay problems.

The default is RULES(LAXSTG).

LAXSTMT | NOLAXSTMT
Specifying NOLAXSTMT causes the compiler to flag any line that has more
than one statement.

ALL
Specifying RULES(NOLAXSTMT(ALL)) causes the compiler to flag all
violations of NOLAXSTMT. ALL is the default.

SOURCE
Specifying RULES(NOLAXSTMT(SOURCE)) causes the compiler to flag
only those violations in the primary source file.

Additionally, NOLAXSTMT accepts EXCEPT with a (possibly empty) list of
keywords that are not be flagged when a second statement on a line begins
with one of these keywords. For example, this can allow DO; to appear on the
same line as an IF ... THEN statement.

The following keywords are allowed in EXCEPT:

allocate
assert
attach
begin
call
cancel
close
declare
define
delay
delete
detach
display
do
else
end
exit
fetch
flush
free
get
go
goto

halt
if
iterate
leave
locate
on
open
otherwise
put
read
reinit
release
resignal
return
revert
rewrite
select
signal
stop
unlock
wait
when
write

Chapter 1. Using compiler options and facilities 79

The default is RULES(LAXSTMT). When you specify RULES(NOLAXSTMT),
the default is ALL.

LAXSTRZ | NOLAXSTRZ
Specifying LAXSTRZ causes the compiler not to flag any bit or character
variable that is initialized to or assigned a constant value that is too long if the
excess bits are all zeros (or if the excess characters are all blank).

The default is RULES(NOLAXSTRZ).

MULTICLOSE | NOMULTICLOSE
Specifying NOMULTICLOSE causes the compiler to flag all statements that
force the closure of multiple groups of statement with an E-level message.

The default is RULES(NOMULTICLOSE).

MULTIENTRY | NOMULTIENTRY
Specifying NOMULTIENTRY causes the compiler to flag code that contains
multiple ENTRY statements.

ALL
Specifying NOMULTIENTRY(ALL) causes the compiler to flag all
violations of RULES(NOMULTIENTRY).

SOURCE
Specifying NOMULTIENTRY(SOURCE) causes the compiler to flag only
those violations that occur in the primary source file.

The default is RULES(MULTIENTRY). When you specify
RULES(NOMULTIENTRY), the default sub-suboption is ALL.

MULTIEXIT | NOMULTIEXIT
Specifying NOMULTIEXIT causes the compiler to flag code that contains
multiple RETURN statements.

ALL
Specifying NOMULTIEXIT(ALL) causes the compiler to flag all violations
of RULES(NOMULTIEXIT).

SOURCE
Specifying NOMULTIEXIT(SOURCE) causes the compiler to flag only those
violations that occur in the primary source file.

The default is RULES(MULTIEXIT). When you specify
RULES(NOMULTIEXIT), the default sub-suboption is ALL.

MULTISEMI | NOMULTISEMI
Specifying NOMULTISEMI causes the compiler to flag any line that contains
more than one semicolon not in a comment or string.

ALL
Specifying NOMULTISEMI(ALL) causes the compiler to flag all violations
of RULES(NOMULTISEMI).

SOURCE
Specifying NOMULTISEMI(SOURCE) causes the compiler to flag only
those violations that occur in the primary source file.

The default is RULES(MULTISEMI). When you specify
RULES(NOMULTISEMI), the default sub-suboption is ALL.

80 Enterprise PL/I for z/OS Programming Guide

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

PADDING | NOPADDING
Specifying NOPADDING causes the compiler to flag all structures that contain
padding.

ALL
Specifying NOPADDING(ALL) causes the compiler to flag all violations of
RULES(NOPADDING).

SOURCE
Specifying NOPADDING(SOURCE) causes the compiler to flag only those
violations that occur in the primary source files.

The default is RULES(PADDING). When you specify RULES(NOPADDING),
the default sub-suboption is ALL.

PROCENDONLY | NOPROCENDONLY
Specifying NOPROCENDONLY causes any END statement that closes a
PROCEDURE to be flagged if the END statement does not name the
PROCEDURE, that is, if the END keyword is immediately followed by a
semicolon.

ALL
Under RULES(NOPROCENDONLY(ALL)), the compiler flags all violations
of NOPROCENDONLY. ALL is the default.

SOURCE
Under RULES(NOPROCENDONLY(SOURCE)), the compiler flags only
those violations in the primary source file.

The default is RULES(PROCENDONLY). When you specify
RULES(NOPROCENDONLY), the default sub-suboption is ALL.

RECURSIVE | NORECURSIVE
Specifying NORECURSIVE causes the compiler to flag any use of the
RECURSIVE attribute or any procedure that directly calls itself.

Specifying RECURSIVE causes the compiler not to flag the use of the
RECURSIVE attribute or any procedure that directly calls itself.

Note: Do not use RULES(NORECURSIVE) and DFT(RECURSIVE) together.

The default is RULES(RECURSIVE).

SELFASSIGN | NOSELFASSIGN
Specifying NOSELFASSIGN causes the compiler to flag all assignments where
the source and the target are the same.

The default is RULES(SELFASSIGN).

UNREF | NOUNREF
Specifying NOUNREF causes the compiler to flag any level-1 AUTOMATIC
variable that is not referenced and that, if it is a structure or union, contains no
subelement that is referenced. NOUNREF ignores variables with names that
start with any of the following prefixes: DSN, DFH, EYU, and SQL.

ALL
Specifying RULES(NOUNREF(ALL)) causes the compiler to flag all
unreferenced variables. When NOUNREF is specified, ALL is the default.

SOURCE
Specifying RULES(NOUNREF(SOURCE)) causes the compiler to flag
unreferenced variables that are not declared in an INCLUDE file.

Chapter 1. Using compiler options and facilities 81

The default is RULES(UNREF). When you specify RULES(NOUNREF), the
default sub-suboption is ALL.

UNREFBASED | NOUNREFBASED
Specifiying NOUNREFBASED causes the compiler to flag unreferenced BASED
variables that are in BASED storage.

ALL
Specifying RULES(NOUNREFBASED(ALL)) causes the compiler to flag all
unreferenced BASED variables.

SOURCE
Specifying RULES(NOUNREFBASED(SOURCE)) causes the compiler to
flag unreferenced BASED variables that are not declared in an INCLUDE
file.

The default is RULES(UNREFBASED). When you specify
RULES(NOUNREFBASED), the default sub-suboption is ALL.

UNREFCTL | NOUNREFCTL
Specifiying NOUNREFCTL causes the compiler to flag unreferenced CTL
variables.

ALL
Specifying RULES(NOUNREFCTL(ALL)) causes the compiler to flag all
unreferenced CTL variables.

SOURCE
Specifying RULES(NOUNREFCTL(SOURCE)) causes the compiler to flag
unreferenced CTL variables that are not declared in an INCLUDE file.

The default is RULES(UNREFCTL). When you specify RULES(NOUNREFCTL),
the default sub-suboption is ALL.

UNREFDEFINED | NOUNREFDEFINED
Specifiying NOUNREFDEFINED causes the compiler to flag unreferenced
DEFINED variables.

ALL
Specifying RULES(NOUNREFDEFINED(ALL)) causes the compiler to flag
all unreferenced DEFINED variables.

SOURCE
Specifying RULES(NOUNREFDEFINED(SOURCE)) causes the compiler to
flag unreferenced DEFINED variables that are not declared in an
INCLUDE file.

The default is RULES(UNREFDEFINED). When you specify
RULES(UNREFDEFINED), the default sub-suboption is ALL.

UNREFENTRY | NOUNREFENTRY
Specifiying NOUNREFENTRY causes the compiler to flag unreferenced ENTRY
constants.

ALL
Specifying RULES(NOUNREFENTRY(ALL)) causes the compiler to flag all
unreferenced ENTRY constants.

SOURCE
Specifying RULES(NOUNREFENTRY(SOURCE)) causes the compiler to
flag unreferenced ENTRY constants that are not declared in an INCLUDE
file.

82 Enterprise PL/I for z/OS Programming Guide

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

The default is RULES(UNREFENTRY). When you specify
RULES(NOUNREFENTRY), the default sub-suboption is ALL.

UNREFFILE | NOUNREFFILE
Specifiying NOUNREFFILE causes the compiler to flag unreferenced FILE
constants.

ALL
Specifying RULES(NOUNREFFILE(ALL)) causes the compiler to flag all
unreferenced FILE constants.

SOURCE
Specifying RULES(NOUNREFFILE(SOURCE)) causes the compiler to flag
unreferenced FILE constants that are not declared in an INCLUDE file.

The default is RULES(UNREFFILE). When you specify
RULES(NOUNREFFILE), the default sub-suboption is ALL.

UNREFSTATIC | NOUNREFSTATIC
Specifiying NOUNREFSTATIC causes the compiler to flag unreferenced
STATIC variables.

ALL
Specifying RULES(NOUNREFSTATIC(ALL)) causes the compiler to flag all
unreferenced STATIC variables.

SOURCE
Specifying RULES(NOUNREFSTATIC(SOURCE)) causes the compiler to
flag unreferenced STATIC variables that are not declared in an INCLUDE
file.

The default is RULES(UNREFSTATIC). When you specify
RULES(NOUNREFSTATIC), the default sub-suboption is ALL.

YY | NOYY
Specifying NOYY causes the compiler to flag the use of 2-digit years,
including:
v date-time patterns with the year specified as YY or ZY,
v the DATE attribute without a date-time pattern (since that implies a pattern

of YYMMDD),
v Y4DATE, Y4JULIAN, and Y4YEAR built-in functions,
v DATE built-in function,
v date-time functions with a window argument.

The default is RULES(YY).

Default: RULES (IBM BYNAME CONTROLLED NODECSIZE EVENDEC ELSEIF
GLOBALDO GOTO NOLAXBIF LAXCONV NOLAXCTL NOLAXDCL
NOLAXDEF LAXENTRY NOLAXIF LAXINOUT LAXINTERFACE LAXLINK
LAXNESTED LAXPUNC LAXMARGINS(STRICT) LAXQUAL LAXRETURN
NOLAXSCALE LAXSEMI LAXSTG LAXSTMT NOLAXSTRZ NOMULTICLOSE
MULTIENTRY MULTIEXIT MULTISEMI PADDING PROCENDONLY RECURSIVE
SELFASSIGN UNREF UNREFBASED UNREFCTL UNREFDEFINED
UNREFENTRY UNREFFILE UNREFSTATIC YY)

SEMANTIC
The SEMANTIC option specifies that the execution of the semantic checking stage
depends on the severity of messages issued before this stage of processing.

Chapter 1. Using compiler options and facilities 83

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|

|
|

|

|

|

|

|
|

|
|
|

►►

NOSEMANTIC
S

(W)
E

SEMANTIC ►◄

ABBREVIATIONS: SEM, NSEM

SEMANTIC
Equivalent to NOSEMANTIC(S).

NOSEMANTIC
Processing stops after syntax checking. No semantic checking is performed.

NOSEMANTIC (S)
No semantic checking is performed if a severe error or an unrecoverable error
has been encountered.

NOSEMANTIC (E)
No semantic checking is performed if an error, a severe error, or an
unrecoverable error has been encountered.

NOSEMANTIC (W)
No semantic checking is performed if a warning, an error, a severe error, or an
unrecoverable error has been encountered.

Semantic checking is not performed if certain kinds of severe errors are found. If
the compiler cannot validate that all references resolve correctly (for example, if
built-in function or entry references are found with too few arguments) the
suitability of any arguments in any built-in function or entry reference is not
checked.

SERVICE
The SERVICE option places a string in the object module, if generated. This string
is loaded into memory with any load module into which this object is linked, and
if the LE dump includes a traceback, this string will be included in that traceback.

►►
NOSERVICE
SERVICE ('service string') ►◄

ABBREVIATIONS: SERV, NOSERV

The string is limited to 64 characters in length.

To ensure that the string remains readable across locales, only characters from the
invariant character set should be used.

SOURCE
The SOURCE option specifies that the compiler includes a listing of the source
program in the compiler listing. The source program listed is either the original
source input or, if any preprocessors were used, the output from the last
preprocessor.

►►
NOSOURCE
SOURCE ►◄

84 Enterprise PL/I for z/OS Programming Guide

ABBREVIATIONS: S, NS

SPILL
The SPILL option specifies the size of the spill area to be used for the compilation.
When too many registers are in use at once, the compiler dumps some of the
registers into temporary storage that is called the spill area.

►► SPILL (size) ►◄

ABBREVIATIONS: SP

If you have to expand the spill area, you will receive a compiler message telling
you the size to which you should increase it. When you know the spill area that
your source program requires, you can specify the required size (in bytes) as
shown in the syntax diagram above. The maximum spill area size is 3900.
Typically, you need to specify this option only when compiling very large
programs with OPTIMIZE.

STATIC
The STATIC option controls whether INTERNAL STATIC variables are retained in
the object module even if unreferenced.

►►
SHORT

STATIC (FULL) ►◄

SHORT
INTERNAL STATIC will be retained in the object module only if used.

FULL
All INTERNAL STATIC with INITIAL will be retained in the object module.

If INTERNAL STATIC variables are used as "eyecatchers", you should specify the
STATIC(FULL) option to ensure that they will be in the generated object module.

STDSYS
The STDSYS option specifies that the compiler should cause the SYSPRINT file to
be equated to the C stdout file and the SYSIN file to be equated to the C stdin file.

Note: Under the LP(64) option, the STDSYS option is ignored; effectively, STDSYS
is always on.

►►
NOSTDSYS
STDSYS ►◄

Using the STDSYS option might make it easier to develop and debug a mixed
PL/I and C application.

When SYSPRINT is equated to stdout, its LINESIZE cannot be greater than 132
(the largest value allowed by C).

Chapter 1. Using compiler options and facilities 85

STMT
The STMT option specifies that statements in the source program are to be counted
and that this statement number is used to identify statements in the compiler
listings resulting from the AGGREGATE, ATTRIBUTES, SOURCE, and XREF
options.

►►
NOSTMT
STMT ►◄

The default is NOSTMT.

When the STMT option is specified, the source and message listings include both
the logical statement numbers and the source file numbers.

Note that the GOSTMT option does not exist. The only option that produces
information at run time identifying where an error has occurred is the
GONUMBER option. When the GONUMBER option is used, the term statement in
the runtime error messages refers to line numbers as used by the NUMBER
compiler option even if the STMT option is in effect.

NUMBER and STMT are mutually exclusive and specifying one will negate the
other.

STORAGE
The STORAGE option directs the compiler to produce as part of the listing a
summary of the storage used by each procedure and begin-block.

►►
NOSTORAGE
STORAGE ►◄

ABBREVIATIONS: STG, NSTG

The STORAGE output also includes the amount of storage used for the internal
static for the compilation.

STRINGOFGRAPHIC
The STRINGOFGRAPHIC option determines whether the result of the STRING
built-in function when applied to a GRAPHIC aggregate has the attribute
CHARACTER or GRAPHIC.

►►
GRAPHIC

STRINGOFGRAPHIC (CHARACTER) ►◄

ABBREVIATIONS: CHAR, G

CHARACTER
Under STRINGOFGRAPHIC(CHAR), if the STRING built-in is applied to an
array or a structure of UNALIGNED NONVARYING GRAPHIC variables, the
result will have the CHARACTER attribute.

86 Enterprise PL/I for z/OS Programming Guide

GRAPHIC
Under STRINGOFGRAPHIC(GRAPHIC), if the STRING built-in is applied to
an array or a structure of GRAPHIC variables, the result will have the
GRAPHIC attribute.

SYNTAX
The SYNTAX option specifies that the compiler continues into syntax checking
after preprocessing when you specify the MACRO option, unless an unrecoverable
error has occurred. Whether the compiler continues with the compilation depends
on the severity of the error, as specified by the NOSYNTAX option.

►►

NOSYNTAX
S

(W)
E

SYNTAX ►◄

ABBREVIATIONS: SYN, NSYN

SYNTAX
Continues syntax checking after preprocessing unless a severe error or an
unrecoverable error has occurred. SYNTAX is equivalent to NOSYNTAX(S).

NOSYNTAX
Processing stops unconditionally after preprocessing.

NOSYNTAX(W)
No syntax checking if a warning, an error, a severe error, or an unrecoverable
error is detected.

NOSYNTAX(E)
No syntax checking if the compiler detects an error, a severe error, or an
unrecoverable error.

NOSYNTAX(S)
No syntax checking if the compiler detects a severe error or an unrecoverable
error.

If the NOSYNTAX option terminates the compilation, no cross-reference listing,
attribute listing, or other listings that follow the source program is produced.

You can use this option to prevent wasted runs when debugging a PL/I program
that uses the preprocessor.

If the NOSYNTAX option is in effect, any specification of the CICS preprocessor
through the CICS, XOPT or XOPTS options will be ignored. This allows the
MACRO preprocessor to be invoked before the compiler invokes the CICS
translator.

SYSPARM
The SYSPARM option specifies the value of the string that is returned by the
macro facility built-in function SYSPARM.

►► SYSPARM ('string') ►◄

Chapter 1. Using compiler options and facilities 87

string
Can be up to 64 characters long. A null string is the default.

For more information about the macro facility, see the PL/I Language Reference.

SYSTEM
The SYSTEM option specifies the format used to pass parameters to the MAIN
PL/I procedure, and generally indicates the host system under which the program
runs.

►► SYSTEM
MVS

(CICS)
IMS
OS
TSO

►◄

Table 5 shows the type of parameter list you can expect, and how the program
runs under the specified host system. It also shows the implied settings of
NOEXECOPS. Your MAIN procedure must receive only those types of parameter
lists that are indicated as valid in this table. Additional runtime information for the
SYSTEM option is provided in the z/OS Language Environment Programming Guide.

Table 5. SYSTEM option table

SYSTEM option Type of parameter list Program runs as NOEXECOPS implied

SYSTEM(MVS) Single CHARACTER string
or no parameters

z/OS application program NO

Otherwise, arbitrary
parameter list

YES

SYSTEM(CICS) Pointer(s) CICS transaction YES

SYSTEM(IMS™) Pointer(s) IMS application program YES

SYSTEM(OS) z/OS UNIX parameter list z/OS UNIX application
program

YES

SYSTEM(TSO) Pointer to CPPL1 TSO command processor YES

Note:

1. See “Invoking MAIN under TSO/E” on page 181 for more details about how to invoke a MAIN procedure
under TSO.

Under SYSTEM(IMS), all pointers are presumed to be passed by value (BYVALUE),
but under SYSTEM(MVS) they are presumed to be passed by address (BYADDR).

MAIN procedures run under CICS must be compiled with SYSTEM(CICS) or
SYSTEM(MVS).

It is highly recommended that NOEXECOPS be specified in the MAIN procedure
OPTIONS option for code, such as a DB2 stored procedure, compiled with
SYSTEM(MVS) but run where runtime options would not be passed.

The compiler will flag any MAIN program compiled with SYSTEM(MVS) if it has
either more than one parameter or a single parameter that is not CHARACTER
VARYING. It is probably better to compile such MAIN programs with
SYSTEM(OS) because the library then simply passes on to MAIN the parameter list
without any scanning for options or other massaging of the parameter list.

88 Enterprise PL/I for z/OS Programming Guide

TERMINAL
The TERMINAL option determines whether diagnostic and information messages
produced during compilation are displayed on the terminal.

Note: This option applies only to compilations under z/OS UNIX.

►►
TERMINAL
NOTERMINAL ►◄

ABBREVIATIONS: TERM, NTERM

TERMINAL
Messages are displayed on the terminal.

NOTERMINAL
No information or diagnostic compiler messages are displayed on the terminal.

TEST
The TEST option specifies the level of testing capability that the compiler generates
as part of the object code. You can use this option to control the location of test
hooks and to control whether to generate a symbol table.

►► ▼

NOTEST

,
ALL

TEST (STMT)
PATH
BLOCK
NONE
SYM
NOSYM
HOOK
NOHOOK
NOSEPARATE
SEPARATE
SEPNAME
NOSEPNAME

►◄

ABBREVIATIONS: AALL, ACICS, AMACRO, ASQL

STMT
Causes the compiler to generate a statement table, and if the HOOK suboption
is in effect, inserts hooks at statement boundaries and block boundaries.

PATH
Causes the compiler to generate a statement table, and if the HOOK suboption
is in effect, tells the compiler to insert hooks at these places:
v Before the first statement enclosed by an iterative DO statement
v Before the first statement of the true part of an IF statement
v Before the first statement of the false part of an IF statement
v Before the first statement of a true WHEN or OTHERWISE statement of a

SELECT group
v Before the statement following a user label, excluding labeled FORMAT

statements

Chapter 1. Using compiler options and facilities 89

If a statement has multiple labels, only one hook is inserted.
v At CALLs or function references - both before and after control is passed to

the routine
v At block boundaries

BLOCK
Causes the compiler to generate a statement table, and if the HOOK suboption
is in effect, tells the compiler to insert hooks at block boundaries (block entry
and block exit).

ALL
Causes the compiler to generate a statement table, and if the HOOK suboption
is in effect, inserts hooks at all possible locations and generates a statement
table.

Note: Under opt(2) and opt(3), hooks are set only at block boundaries.

NONE
No hooks are put into the program.

SYM
Creates a symbol table that allows you to examine variables by name.

NOSYM
No symbol table is generated.

NOTEST
Suppresses the generation of all testing information.

HOOK
Causes the compiler to insert hooks into the generated code if any of the TEST
suboptions ALL, STMT, BLOCK, or PATH are in effect.

NOHOOK
Causes the compiler not to insert hooks into the generated code.

For IBM Debug Tool to generate overlay hooks, one of the suboptions ALL,
PATH, STMT, or BLOCK must be specified, but HOOK need not be specified,
and NOHOOK would in fact be recommended.

If NOHOOK is specified, ENTRY and EXIT breakpoints are the only PATH
breakpoints at which Debug Tool will stop.

SEPARATE
Causes the compiler to place most of the debug information it generates into a
separate debug file. Using this option will substantially reduce the size of the
object deck created by the compiler when the TEST option is in effect.

If your program contains GET or PUT DATA statements, the separate debug
file will contain less debug information because those statements require that
symbol table information be placed into the object deck.

The generated debug information always includes a compressed version of the
source that is passed to the compiler. This means that the source might be
specified by using SYSIN DD *, or that the source might be a temporary data
set that is created by an earlier job step (for example, the source might be the
output of the old SQL or CICS precompilers). The suboptions that you specify
for the LISTVIEW option control the content of the source.

If SEPARATE is used in a batch compilation, the JCL for that compilation must
include a DD card for SYSDEBUG that must name a data set with RECFM=FB
and with 80 <= LRECL <= 1024.

90 Enterprise PL/I for z/OS Programming Guide

This suboption cannot be used with the LINEDIR compiler option.

NOSEPARATE
Causes the compiler to place all of the debug information it generates into the
object deck.

Under this option, the generated debug information will not include a
compressed version of the source passed to the compiler. This means that the
source must in a data set that can be found by Debug Tool when you try to
debug the program.

SEPNAME
Causes the compiler to place the name of the separate debug file into the
object deck.

This option is ignored if the SEPARATE option is not in effect.

NOSEPNAME
Causes the compiler not to place the name of the separate debug file into the
object deck.

This option is ignored if the SEPARATE option is not in effect.

Notes:

v Under LP(64), no hooks are generated and that the SEP or NOSEP compiler
option is ignored.

v Under opt(2) or opt(3), hooks are set only at block boundaries. This means that
debugging of optimized code is effectively limited to tracing entry and exit to
PROCEDUREs and BEGIN blocks.

v You must use Debug Tool Version 6 (or later) to debug code compiled with the
SEPARATE compiler option.

v There is no support for an input file that spans concatenated data sets.

Specifying TEST(NONE,NOSYM) causes the compiler to set the option to NOTEST.

Use of TEST(NONE,SYM) is strongly discouraged, and it is unclear what is
intended when you specify these settings. You would probably be much better off
if you specified TEST(ALL,SYM,NOHOOK) or TEST(STMT,SYM,NOHOOK).

Any TEST option other than NOTEST and TEST(NONE,NOSYM) will
automatically provide the attention interrupt capability for program testing.

If the program has an ATTENTION ON-unit that you want invoked, you must
compile the program with either of the following options:
v The INTERRUPT option
v A TEST option other than NOTEST or TEST(NONE,NOSYM)

Note: ATTENTION is supported only under TSO.

The TEST option will imply GONUMBER.

Because the TEST option can increase the size of the object code and can affect
performance, you might want to limit the number and placement of hooks.

If the TEST option is specified, no inlining will occur.

Structures with REFER are supported in the symbol table.

Chapter 1. Using compiler options and facilities 91

|
|

If TEST(SYM) is in effect, the compiler will generate tables to enable the
automonitor feature of Debug Tool. These tables might substantially increase the
size of the object module unless the TEST(SEPARATE) option is in effect. When the
automonitor feature of Debug Tool is activated, these tables are used to display the
values of the variables used in a statement before the statement executes - as long
as the variable has computational type or has the attribute POINTER, OFFSET or
HANDLE. If the statement is an assignment statement, the value of the target is
also displayed; however, if the target has not been initialized or assigned
previously, its value is meaningless.

Any variable declared with an * for its name is not visible when you use Debug
Tool. Additionally, if an * is used as the name of a parent structure or substructure,
all of its children are also invisible. Therefore, it might be better to use a single
underscore for the name of any structure elements that you want to leave
"unnamed".

UNROLL
The UNROLL option controls loop unrolling under optimization. Loop unrolling is
an optimization that replicates a loop body multiple times and adjusts the loop
control code accordingly.

►►
AUTO

UNROLL (NO) ►◄

AUTO
Indicates that the compiler is permitted to unroll loops that it determines are
appropriate for unrolling.

Specifying the UNROLL option can increase the size of the object code that is
generated.

NO Indicates that the compiler is not permitted to unroll loops.

The UNROLL option is ignored when the NOOPTIMIZE option is in effect.

Loop unrolling improves the performance of a program by exposing instruction
level parallelism for instruction scheduling and software pipelining. It also creases
code in the new loop body, which might increase pressure on register allocation,
cause register spilling, and thus cause a loss in performance.

Therefore, before you unroll a loop, take the following steps to check if the
UNROLL option improves the performance of a particular application:
1. Compile the program with the usual options.
2. Run the program with a representative workload.
3. Recompile the program with the UNROLL option.
4. Rerun the program under the same conditions.

UNROLL(AUTO) is the default.

USAGE
Using the USAGE option, you can choose different semantics for selected built-in
functions.

92 Enterprise PL/I for z/OS Programming Guide

►► USAGE (▼

,
SIZE

HEX (CURRENTSIZE)
IBM

ROUND (ANS)
STRICT

SUBSTR (LOOSE)
IBM

UNSPEC (ANS)

) ►◄

HEX(SIZE | CURRENTSIZE)
Under the HEX(SIZE) suboption, when HEX is applied to a VARYING or
VARYINGZ string, it will a return a hex string that represents the maximum
amount of storage used by the string.

Under the HEX(CURRENTSIZE) suboption, when HEX is applied to a
VARYING or VARYINGZ string, it will a return a hex string that represents the
current amount of storage used by the string.

ROUND(IBM | ANS)
Under the ROUND(IBM) suboption, the second argument to the ROUND
built-in function is ignored if the first argument has the FLOAT attribute.

Under the ROUND(ANS) suboption, the ROUND built-in function is
implemented as described in the PL/I Language Reference.

SUBSTR(STRICT | LOOSE)
Under the SUBSTR(STRICT) suboption, if x has CHARACTER type, a
SUBSTR(x,y,z) built-in function reference will return a string whose length is
equal to MIN(z, MAXLENGTH(x)).

Under the SUBSTR(LOOSE) suboption, the same reference will return a string
whose length is z.

The SUBSTR(LOOSE) suboption might be useful for those who have
SUBSTR(x,y,z) references where x is a CHAR(1) BASED variable.

UNSPEC(IBM | ANS)
Under the UNSPEC(IBM) suboption, UNSPEC cannot be applied to a structure,
and if applied to an array, returns an array of bit strings.

Under the UNSPEC(ANS) suboption, UNSPEC can be applied to structures,
and when applied to a structure or an array, UNSPEC returns a single bit
string.

Default: USAGE(HEX(SIZE) ROUND(IBM) SUBSTR(STRICT) UNSPEC(IBM))

WIDECHAR
The WIDECHAR option specifies the format in which WIDECHAR data will be
stored.

►► WIDECHAR (
BIGENDIAN
LITTLEENDIAN) ►◄

BIGENDIAN
Indicates that WIDECHAR data will be stored in big-endian format. For
instance, the WIDECHAR value for the UTF-16 character 1 will be stored as
'0031'x.

Chapter 1. Using compiler options and facilities 93

LITTLEENDIAN
Indicates that WIDECHAR data will be stored in little-endian format. For
instance, the WIDECHAR value for the UTF-16 character 1 will be stored as
'3100'x.

WX constants should always be specified in big-endian format. Thus the value '1'
should always be specified as '0031'wx, even if under the
WIDECHAR(LITTLEENDIAN) option, it is stored as '3100'x.

WINDOW
The WINDOW option sets the value for the w window argument used in various
date-related built-in functions.

►►
1950

WINDOW (w) ►◄

w Either an unsigned integer that represents the start of a fixed window or a
negative integer that specifies a “sliding” window. For example, WINDOW(-20)
indicates a window that starts 20 years before the year when the program
runs.

WRITABLE
The WRITABLE option specifies that the compiler can treat static storage as
writable (and if it does, this will make the resultant code nonreentrant).

This option has no effect on programs compiled with the RENT option.

Note: The WRITABLE option is ignored under the LP(64) option.

►►
WRITABLE
NOWRITABLE

FWS
(PRV)

►◄

The NORENT WRITABLE options allow the compiler to write on static storage to
implement the following constants or variables:
v CONTROLLED variables
v FETCHABLE ENTRY constants
v FILE constants

Under the NORENT WRITABLE options, a module using CONTROLLED
variables, performing I/O, or using FETCH is not reentrant.

The NORENT NOWRITABLE options require the compiler not to write on static
storage for the following constants or variables:
v CONTROLLED variables
v FETCHABLE ENTRY constants
v FILE constants

Under the NORENT NOWRITABLE options, a module using CONTROLLED
variables, performing I/O, or using FETCH is reentrant.

94 Enterprise PL/I for z/OS Programming Guide

The FWS and PRV suboptions determine how the compiler handles
CONTROLLED variables:

FWS
Upon entry to an EXTERNAL procedure, the compiler makes a library call to
find storage it can use to address the CONTROLLED variables in that
procedure (and any subprocedures).

PRV
The compiler will use the same pseudoregister variable mechanism used by the
old OS PL/I compiler to address CONTROLLED variables.

Hence, under the NORENT NOWRITABLE(PRV) options, old and new code
can share CONTROLLED variables.

However, this also means that under the NORENT NOWRITABLE(PRV)
options, the use of CONTROLLED variables is subject to all the same
restrictions as under the old compiler.

Under the NORENT NOWRITABLE(FWS) options, the following application might
not perform as well as if they were compiled with the RENT or WRITABLE
options:
v Applications that use CONTROLLED variables
v Applications that assign FILE CONSTANTs to FILE VARIABLEs

The performance of an application under NORENT NOWRITABLE(FWS) might be
especially bad if it uses many CONTROLLED variables in many PROCEDUREs.

Under the NOWRITABLE option, the following variables and constants cannot be
declared in a PACKAGE outside a PROCEDURE:
v CONTROLLED variables
v FETCHABLE ENTRY constants
v FILE constants

Code compiled with NORENT WRITABLE cannot be mixed with code compiled
with NORENT NOWRITABLE if they share any external CONTROLLED variables.
In general, you should avoid mixing code compiled with WRITABLE with code
compiled with NOWRITABLE.
Related information:
“RENT” on page 68
Your code is "naturally reentrant" if it does not alter any of its static variables. The
RENT option specifies that the compiler is to take code that is not naturally
reentrant and make it reentrant.

XINFO
The XINFO option specifies that the compiler should generate additional files with
extra information about the current compilation unit.

Chapter 1. Using compiler options and facilities 95

►► ▼

,
NODEF

XINFO (DEF)
NOMSG
MSG
NOSYM
SYM
NOSYN
SYN
NOXML
XML

►◄

DEF
A definition side-deck file is created. This file lists the following information
for the compilation unit:
v All defined EXTERNAL procedures
v All defined EXTERNAL variables
v All statically referenced EXTERNAL routines and variables
v All dynamically called fetched modules

Under batch, this file is written to the file specified by the SYSDEFSD DD
statement. Under z/OS UNIX System Services, this file is written to the same
directory as the object deck and has the extension def.

For instance, given the program:
defs: proc;

dcl (b,c) ext entry;
dcl x ext fixed bin(31) init(1729);
dcl y ext fixed bin(31) reserved;
call b(y);
fetch c;
call c;

end;

The following def file would be produced:
EXPORTS CODE
DEFS

EXPORTS DATA
X

IMPORTS
B
Y

FETCH
C

The def file can be used to be build a dependency graph or cross-reference
analysis of your application.

NODEF
No definition side-deck file is created.

MSG
Message information is generated to the ADATA file.

Under batch, the ADATA file is generated to the file specified by the
SYSADATA DD statement. Under z/OS UNIX, the ADATA is generated in the
same directory as the object file and has the extension adt.

NOMSG
No message information is generated to the ADATA file. If neither MSG nor
SYM is specified, no ADATA file is generated.

96 Enterprise PL/I for z/OS Programming Guide

SYM
Symbol information is generated to the ADATA file.

Under batch, the ADATA file is generated to the file specified by the
SYSADATA DD statement. Under z/OS UNIX, the ADATA file is generated in
the same directory as the object file and has the extension adt.

NOSYM
No symbol information is generated to the ADATA file.

SYN
Syntax information is generated to the ADATA file. Specifying the
XINFO(SYN) option can greatly increase the amount of storage, both in
memory and for the file produced, required by the compiler.

Under batch, the ADATA file is generated to the file specified by the
SYSADATA DD statement. Under z/OS UNIX, the ADATA file is generated in
the same directory as the object file and has the extension adt.

NOSYN
No syntax information is generated to the ADATA file.

XML
An XML side-file is created. This XML file includes the following:
v The file reference table for the compilation
v The block structure of the program compiled
v The messages produced during the compilation

Under batch, this file is written to the file specified by the SYSXMLSD DD
statement. Under z/OS UNIX System Services, this file is written to the same
directory as the object deck and has the extension xml.

The DTD file for the XML produced is as follows:
<?xml encoding="UTF-8"?>

<!ELEMENT PACKAGE ((PROCEDURE)*,(MESSAGE)*,FILEREFERNCETABLE)>
<!ELEMENT PROCEDURE (BLOCKFILE,BLOCKLINE,(PROCEDURE)*,(BEGINBLOCK)*)>
<!ELEMENT BEGINBLOCK (BLOCKFILE,BLOCKLINE,(PROCEDURE)*,(BEGINBLOCK)*)>
<!ELEMENT MESSAGE (MSGNUMBER,MSGLINE?,MSGFILE?,MSGTEXT)>
<!ELEMENT FILE (FILENUMBER,INCLUDEDFROMFILE?,INCLUDEDONLINE?,FILENAME)>
<!ELEMENT FILEREFERENCETABLE (FILECOUNT,FILE+)>

<!ELEMENT BLOCKFILE (#PCDATA)>
<!ELEMENT BLOCKLINE (#PCDATA)>
<!ELEMENT MSGNUMBER (#PCDATA)>
<!ELEMENT MSGLINE (#PCDATA)>
<!ELEMENT MSGFILE (#PCDATA)>
<!ELEMENT MSGTEXT (#PCDATA)>
<!ELEMENT FILECOUNT (#PCDATA)>
<!ELEMENT FILENUMBER (#PCDATA)>
<!ELEMENT FILENAME (#PCDATA)>
<!ELEMENT INCLUDEFROMFILE (#PCDATA)>
<!ELEMENT INCLUDEDONLINE (#PCDATA)>

NOXML
No XML side-file is created.

Related information:
“SYSADATA message information,” on page 501
When you specify the MSG suboption of the XINFO compile-time option, the
compiler generates a SYSADATA file.

Chapter 1. Using compiler options and facilities 97

XML
The XML option specifies the case of the names in the XML generated by the
XMLCHAR built-in function.

►► ▼

,
UPPER

XML (CASE (ASIS))
APOSTROPHE

XMLATTR (QUOTE)

►◄

CASE(UPPER | ASIS)
Under the CASE(UPPER) suboption, the names in the XML generated by the
XMLCHAR built-in function will all be in uppercase.

Under the CASE(ASIS) suboption, the names in the XML generated by the
XMLCHAR built-in function will be in the case used in their declarations. Note
that if you use the MACRO preprocessor without using the macro preprocessor
option CASE(ASIS), the source seen by the compiler will have all the names in
uppercase - and that would make specifying the XML(CASE(ASIS)) option
useless.

XMLATTR(APOSTROPHE | QUOTE)
Under the XMLATTR(APOSTROPHE) suboption, all XML attributes generated
by the XMLCHAR built-in function are enclosed in apostrophes.

Under the XMLATTR(QUOTE) suboption, all XML attributes generated by the
XMLCHAR built-in function are enclosed in quotation marks. Under
CODEPAGE(1026) and COEPAGE(1155), the hex value for the quote character
is 'FC'x, and under all other supported EBCDIC code pages, it is '7F'x.

XREF
The XREF option provides a cross-reference table of names used in the program
together with the numbers of the statements in which they are declared or
referenced in the compiler listing.

►►
NOXREF
XREF

FULL
(SHORT)

IMPLICIT
(EXPLICIT)

►◄

ABBREVIATIONS: X, NX

FULL
Under XREF(FULL), all identifiers and attributes are included in the compiler
listing. FULL is the default.

SHORT
Under XREF(SHORT), unreferenced identifiers are omitted from the compiler
listing.

EXPLICIT
Under XREF(EXPLICIT), a reference to a structure causes only that structure to
be included in the compiler listing.

98 Enterprise PL/I for z/OS Programming Guide

IMPLICIT
Under XREF(IMPLICIT), a reference to a structure causes the structure and all
of its members to be included in the compiler listing. IMPLICIT is the default.

The only names not included in the cross reference listing created when you use
the XREF option are label references on END statements. For example, assume that
statement number 20 in the procedure PROC1 is END PROC1;. In this situation,
statement number 20 does not appear in the cross reference listing for PROC1.

If you specify both the XREF and ATTRIBUTES options, the two listings are
combined. If there is a conflict between SHORT and FULL, the usage is determined
by the last option specified. For example, ATTRIBUTES(SHORT) XREF(FULL)
results in the FULL option for the combined listing.
Related information:
“Cross-reference table” on page 106
If you specify ATTRIBUTES and XREF, the cross-reference table and the attribute
table are combined. The list of attributes for a name is identified by the file
number and the line number.

Blanks, comments and strings in options
Wherever you can use a blank when specifying an option, you can also specify as
many blanks or comments as you wish. However, there are a few rules that you
must take notice of.

If a comment is specified in %PROCESS line or in a line in an options file, the
comment must end on the same line as which it begins.

Similarly, if a comment starts in the command line or in the PARM= specification,
it must also end there.

The same rule applies to strings: if a string is specified in %PROCESS line or in a
line in an options file, the string must end on the same line as which it begins.
Similarly, if a string starts in the command line or in the PARM= specification, it
must also end there.

Changing the default options
If you want to change the supplied default compiler options, during installation of
the compiler, you should edit and submit sample job IBMZWIOP.

This job will let you specify options that will be applied before any other options,
thus effectively changing the default options. This job will also let you specify
options that will be applied after all other options, thus effectively changing the
default options and preventing them from being overridden.

If you want to change the defaults for the macro preprocessor options, you can
also do this at installation time by specifying the appropriate PPMACRO option as
part of this job. The PPCICS and PPSQL options let you make the corresponding
changes for the CICS and SQL preprocessors respectively.

Consult the instructions in the sample job for more information.

Chapter 1. Using compiler options and facilities 99

Specifying options in the %PROCESS or *PROCESS statements
The %PROCESS or *PROCESS statement identifies the start of each external
procedure and allows compiler options to be specified for each compilation. You
can use either %PROCESS or *PROCESS in your program; they are equally
acceptable.

Note: For consistency and readability, %PROCESS or *PROCESS statements are
always referred to as %PROCESS.

The options you specify in adjacent %PROCESS statements apply to the
compilation of the source statements to the end of input or the next %PROCESS
statement.

To specify options in the %PROCESS statement, code as follows:
%PROCESS options;

where options is a list of compiler options.

You must end the list of options with a semicolon, and the options list should not
extend beyond the default right-hand source margin. The percent sign (%) or
asterisk (*) must appear in the first column of the record. The keyword PROCESS
can follow in the next byte (column) or after any number of blanks. You must
separate option keywords by a comma or at least one blank.

The number of characters is limited only by the length of the record. If you do not
wish to specify any options, code as follows:
%PROCESS;

If you find it necessary to continue the %PROCESS statement onto the next record,
terminate the first part of the list after any delimiter, and continue on the next
record. You cannot split keywords or keyword arguments across records. You can
continue a %PROCESS statement on several lines, or start a new %PROCESS
statement. The following example shows multiple adjacent %PROCESS statements:
%PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
%PROCESS LIST TEST ;

Compile-time options, their abbreviated syntax, and their IBM-supplied defaults
are shown in Table 3 on page 4.

How the compiler determines whether there are any %PROCESS statements
depends on the format of the initial source file:

F or FB format
If the first character in the record is an asterisk (*) or a percent sign (%),
the compiler will check whether the next nonblank characters are PROCESS.

V or VB format
If the first character in the record is a numeric, the compiler will assume
that the first 8 characters are sequence numbers, and if the ninth character
is an asterisk (*) or a percent sign (%), it will check whether the next
nonblank characters are PROCESS. However, if the first character is not a
numeric but an asterisk (*) or a percent sign (%), the compiler will check if
the next nonblank characters are PROCESS.

100 Enterprise PL/I for z/OS Programming Guide

U format
If the first character in the record is an asterisk (*) or a percent sign (%),
the compiler will check if the next nonblank characters are PROCESS.

Using % statements
Statements that direct the operation of the compiler begin with a percent (%)
symbol. You can use % statements to control the source program listing and to
include external strings in the source program. % statements must not have label
or condition prefixes and cannot be a unit of a compound statement. You should
place each % statement on a line by itself.

The usage of each % control statement is listed below. For a complete description
of these statements, see the PL/I Language Reference.

%INCLUDE
Directs the compiler to incorporate external text into the source program.

%XINCLUDE
Directs the compiler to incorporate external text into the source program if
it has not been previously included.

%PRINT
Directs the compiler to resume printing the source and insource listings.

%NOPRINT
Directs the compiler to suspend printing the source and insource listings
until a %PRINT statement is encountered.

%PAGE
Directs the compiler to print the statement immediately after a %PAGE
statement in the program listing on the first line of the next page.

%POP Directs the compiler to restore the status of the %PRINT and %NOPRINT
saved by the most recent %PUSH.

%PUSH
Saves the current status of the %PRINT and %NOPRINT in a push down
stack on a last-in, first-out basis.

%SKIP
Specifies the number of lines to be skipped.

Using the %INCLUDE statement
%INCLUDE statements are used to include additional PL/I files at specified points
in a compilation unit.

For information about how to use the %INCLUDE statement to incorporate source
text from a library into a PL/I program, see the PL/I Language Reference.

For a batch compilation
A library is an z/OS partitioned data set that can be used to store other
data sets called members. Source text that you might want to insert into a
PL/I program using a %INCLUDE statement must exist as a member
within a library. For further information about the process of defining a
source statement library to the compiler, see “Source Statement Library
(SYSLIB)” on page 162.

The statement %INCLUDE DD1 (INVERT); specifies that the source statements
in member INVERT of the library defined by the DD statement with the

Chapter 1. Using compiler options and facilities 101

name DD1 are to be inserted consecutively into the source program. The
compilation job step must include appropriate DD statements.

If you omit the ddname, the ddname SYSLIB is assumed. In such a case,
you must include a DD statement with the name SYSLIB. (The
IBM-supplied cataloged procedures do not include a DD statement with
this name in the compilation procedure step.)

For a z/OS UNIX compilation
The name of the actual include file must be lowercase, unless you specify
UPPERINC. For example, if you use the include statement %include
sample, the compiler can find the file sample.inc but cannot find the file
SAMPLE.inc. Even if you use the include statement %include SAMPLE, the
compiler still looks for sample.inc.

The compiler looks for INCLUDE files in the following order:
1. Current directory
2. Directories specified with the –I flag or with the INCDIR compiler

option
3. /usr/include directory
4. PDS specified with the INCPDS compiler option

The first file found by the compiler is included into your source.

A %PROCESS statement in source text included by a %INCLUDE statement results
in an error in the compilation.

Figure 1 on page 103 shows the use of a %INCLUDE statement to include the
source statements for FUN in the procedure TEST. The library HPU8.NEWLIB is
defined in the DD statement with the qualified name PLI.SYSLIB, which is added
to the statements of the cataloged procedure for this job. Because the source
statement library is defined by a DD statement with the name SYSLIB, the
%INCLUDE statement need not include a ddname.

It is not necessary to invoke the preprocessor if your source program and any text
to be included do not contain any macro statements.

102 Enterprise PL/I for z/OS Programming Guide

Using the compiler listing
During compilation, the compiler generates a listing, most of which is optional,
that contains information about the source program, the compilation, and the
object module.

The following description of the listing refers to its appearance on a printed page.

Note: Although the compiler listing is for your use, it is not a programming
interface and is subject to change.

If compilation terminates before reaching a particular stage of processing, the
corresponding listings do not appear.

Heading information
The first page of the listing is identified by the product number, the compiler
version number, a string specifying when the compiler was built, and the date and
the time compilation began. This page and subsequent pages are numbered.

The listing will then show any options that have been specified for this
compilation. These options will be shown even if the NOOPTIONS option has
been specified and will include, in order, the following options:
v The initial install options (those are the options set at install time and which are

applied before any other options)
v Under z/OS UNIX, any options specified in the IBM_OPTIONS environment

variable
v Any options specified in the parameter string passed to the compiler (that is, in

the command line under z/OS UNIX or in the PARM= under batch)
v Any options specified in options files named in the compiler parameter string

//OPT4#9 JOB
//STEP3 EXEC IBMZCBG,PARM.PLI=’INC,S,A,X,NEST’
//PLI.SYSLIB DD DSN=HPU8.NEWLIB,DISP=OLD
//PLI.SYSIN DD *

TEST: PROC OPTIONS(MAIN) REORDER;
DCL ZIP PIC ’99999’; /* ZIP CODE */
DCL EOF BIT INIT(’0’B);
ON ENDFILE(SYSIN) EOF = ’1’B;
GET EDIT(ZIP) (COL(1), P’99999’);
DO WHILE(¬EOF);

PUT SKIP EDIT(ZIP, CITYFUN(ZIP)) (P’99999’, A(16));
GET EDIT(ZIP) (COL(1), P’99999’);

END;
%PAGE;
%INCLUDE FUN;

END; /* TEST */
//GO.SYSIN DD *
95141
95030
94101
//

Figure 1. Including source statements from a library

Chapter 1. Using compiler options and facilities 103

This will include the name of each options file and its contents in the same form
as read by the compiler.

v Any options specified in *PROCESS or %PROCESS lines in the source
v The final install options (those are the options set at installation and which are

applied after any other options)

Near the end of the listing you will find either a statement that no errors or
warning conditions were detected during the compilation, or a message that one or
more errors were detected. For information about the format of the messages, see
“Messages and return codes” on page 111. The second to the last line of the listing
shows the time taken for the compilation. The last line of the listing is END OF
COMPILATION OF xxxx, where xxxx is the external procedure name. If you specify
the NOSYNTAX compiler option, or if the compiler aborts early in the compilation,
the external procedure name xxxx is not included and the line truncates to END OF
COMPILATION.

The following topics describe the optional parts of the listing in the order in which
they appear.

Options used for compilation
If you specify the OPTIONS option, a complete list of the options specified for the
compilation, including the default options, appears on the following pages.

The listing shows the settings of all the options finally in effect during the
compilation. If the setting of an option differs from the default setting after the
initial install options were applied, that line is marked with a plus sign (+).

Preprocessor input
If you specify both the MACRO and INSOURCE options, the compiler lists input
to the preprocessor, one record per line, each line numbered sequentially at the left.

If the preprocessor detects an error or the possibility of an error, it prints a
message on the page or pages following the input listing. The format of these
messages is the same as the format for the compiler messages described in
“Messages and return codes” on page 111.

SOURCE program
If you specify the SOURCE option, the compiler lists one record per line. These
records always include the source line and file numbers. However, if a file contains
999999 or more lines, the compiler flags the file as too large and lists only the last 6
digits in the source line numbers for that file.

If the input records contain printer control characters, or %SKIP or %PAGE
statements, the lines are spaced accordingly.

Use the %NOPRINT statement to stop the printing of the listing.

Use the %PRINT statement to restart the printing of the listing.

If you specify the MACRO option, the source listing shows the included text in
place of the %INCLUDE statements in the primary input data set.

104 Enterprise PL/I for z/OS Programming Guide

Statement nesting level
If you specify the NEST option, the block level and the DO-level are printed to the
right of the statement or line number under the headings LEV and NT respectively.

See the following example:
Line.File LV NT

1.0 A: PROC OPTIONS(MAIN);
2.0 1 B: PROC;
3.0 2 DCL K(10,10) FIXED BIN (15);
4.0 2 DCL Y FIXED BIN (15) INIT (6);
5.0 2 DO I=1 TO 10;
6.0 2 1 DO J=1 TO 10;
7.0 2 2 K(I,J) = N;
8.0 2 2 END;
9.0 2 1 BEGIN;
10.0 3 1 K(1,1)=Y;
11.0 3 1 END;
12.0 2 1 END B;
13.0 1 END A;

ATTRIBUTE and cross-reference table
If you specify the ATTRIBUTES option, the compiler prints an attribute table
containing a list of the identifiers in the source program together with their
declared and default attributes. If you specify the XREF option, the compiler prints
a cross-reference table containing a list of the identifiers in the source program
together with the file and line numbers of the statements in which they appear.

If you specify both ATTRIBUTES and XREF, the two tables are combined. In these
tables, if you explicitly declare an identifier, the compiler will list file number and
line number of its DECLARE. Contextually declared variables are marked by
+++++, and other implicitly declared variables are marked by *****.

Attribute table
The attribute table contains a list of the identifiers in the source program together
with their declared and default attributes.

The compiler never includes the attributes INTERNAL and REAL. You can assume
them unless the respective conflicting attributes, EXTERNAL and COMPLEX,
appear.

For a file identifier, the attribute FILE always appears, and the attribute
EXTERNAL appears if it applies; otherwise, the compiler lists only explicitly
declared attributes.

The OPTIONS attribute will not appear unless the ENTRY attribute applies, and
then only the following options will appear as appropriate:
v ASSEMBLER
v COBOL
v FETCHABLE
v FORTRAN
v NODESCRIPTOR
v RETCODE

Chapter 1. Using compiler options and facilities 105

The compiler prints the dimension attribute for an array first. It prints the bounds
as in the array declaration, but expressions are replaced by asterisks unless they
have been reduced by the compiler to a constant, in which case the value of the
constant is shown.

For a character string, a bit string, a graphic string, or an area variable, the
compiler prints the length, as in the declaration, but expressions are replaced by
asterisks unless they have been reduced by the compiler to a constant, in which
case the value of the constant is shown.

Cross-reference table
If you specify ATTRIBUTES and XREF, the cross-reference table and the attribute
table are combined. The list of attributes for a name is identified by the file
number and the line number.

An identifier appears in the Sets: part of the cross-reference table under the
following conditions:
v It is the target of an assignment statement.
v It is used as a loop control variable in DO loops.
v It is used in the SET option of an ALLOCATE or LOCATE statement.
v It is used in the REPLY option of a DISPLAY statement.

If there are unreferenced identifiers, they are displayed in a separate table.

Aggregate length table
An aggregate length table is obtained by the AGGREGATE option. The table
includes structures but not arrays that have non-constant extents, but the sizes and
offsets of elements within structures with non-constant extents can be inaccurate or
specified as *.

For the aggregates listed, the table contains the following information:
v Where the aggregate is declared
v The name of the aggregate and each element within the aggregate
v The byte offset of each element from the beginning of the aggregate
v The length of each element
v The total length of each aggregate, structure, and substructure
v The total number of dimensions for each element

Be careful when interpreting the data offsets indicated in the data length table. An
odd offset does not necessarily represent a data element without halfword,
fullword, or even double word alignment. If you specify or infer the aligned
attribute for a structure or its elements, the proper alignment requirements are
consistent with respect to other elements in the structure, even though the table
does not indicate the proper alignment relative to the beginning of the table.

If there is padding between two structure elements, a /*PADDING*/ comment
appears with appropriate diagnostic information.

Statement offset addresses
If the LIST compile option is used, the compiler includes a pseudo-assembler
listing in the compiler listing. This listing includes, for each instruction, an offset
whose meaning depends on the setting of the BLKOFF compiler option.

106 Enterprise PL/I for z/OS Programming Guide

v Under the BLKOFF option, this offset is the offset of the instruction from the
primary entry point for the function or subroutine to which it belongs. Thus
under this option, the offsets are reset with each new block.

v Under the NOBLKOFF option, this offset is the offset of the instruction from the
start of the compilation unit. Thus under this option, the offsets are cumulative.

The pseudo-assembler listing also includes, at the end of the code for each block,
the offset of the block from the start of the current module (so that the offsets
shown for each statement can be translated to either block or module offsets).

These offsets can be used with the offset given in a runtime error message to
determine the statement to which the message applies.

The OFFSET option produces a table that gives for each statement, the offset of the
first instruction belonging to that statement.

In the example shown in Figure 2 on page 108, the message indicates that the
condition was raised at offset +98 from the SUB1 entry. The compiler listing
excerpt shows this offset associated with line number 8. The runtime output from
this erroneous statement is shown if Figure 3 on page 108.

Chapter 1. Using compiler options and facilities 107

Compiler Source
Line.File

1.0
2.0 TheMain: proc options(main);
3.0 call sub1();
4.0 Sub1: proc;
5.0 dcl (i, j) fixed bin(31);
6.0
7.0 i = 0; j = 0;
8.0 j = j / i;
9.0 put skip data(j);
10.0 end Sub1;
11.0 end TheMain;

. . .

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

000000 000002 | THEMAIN DS 0D
000000 47F0 F024 000002 | B 36(,r15)
000004 01C3C5C5 CEE eyecatcher
000008 000000B0 DSA size
00000C 000001F8 =A(PPA1-THEMAIN)
000010 47F0 F001 000002 | B 1(,r15)

. . .

000000 000004 | SUB1 DS 0D
000000 47F0 F024 000004 | B 36(,r15)
000004 01C3C5C5 CEE eyecatcher
000008 00000140 DSA size
00000C 00000190 =A(PPA1-SUB1)
000010 47F0 F001 000004 | B 1(,r15)

...

000086 5020 D0B8 000007 | ST r2,I(,r13,184)
00008A 1842 000007 | LR r4,r2
00008C 5040 D0BC 000007 | ST r4,J(,r13,188)
000090 5800 D0B8 000008 | L r0,I(,r13,184)
000094 8E40 0020 000008 | SRDA r4,32
000098 1D40 000008 | DR r4,r0
00009A 1805 000008 | LR r0,r5
00009C 5000 D0BC 000008 | ST r0,J(,r13,188)
0000A0 4100 D0C0 000009 | LA r0,_temp1(,r13,192)
0000A4 5000 D130 000009 | ST r0,_temp2(,r13,304)
0000A8 A708 5A88 000009 | LHI r0,H’23176’
0000AC 4000 D0EC 000009 | STH r0,_temp1(,r13,236)
0000B0 5800 6004 000009 | L r0,SYSPRINT(,r6,4)
0000B4 5000 D12C 000009 | ST r0,_temp2(,r13,300)
0000B8 4100 0001 000009 | LA r0,1
0000BC 5000 D0C0 000009 | ST r0,_temp1(,r13,192)
0000C0 4100 D128 000009 | LA r0,_temp2(,r13,296)

...

Figure 2. Finding statement number (compiler listing example)

Message :

IBM0301S ONCODE=320 The ZERODIVIDE condition was raised.
From entry point SUB1 at compile unit offset +00000098
at entry offset +00000098 at address 0EB00938.

Figure 3. Finding statement number (runtime message example)

108 Enterprise PL/I for z/OS Programming Guide

Entry offsets given in dump and ON-unit SNAP error messages can be compared
with this table and the erroneous statement discovered. The statement is identified
by finding the section of the table that relates to the block named in the message
and then finding the largest offset less than or equal to the offset in the message.
The statement number associated with this offset is the one needed.

Storage offset listing
If the MAP compile option is used, the compiler includes a storage offset listing in
the compiler listing.

This listing gives the location in storage of the following level-1 variables if they
are used in the program:
v AUTOMATIC
v CONTROLLED except for PARAMETERs
v STATIC except for ENTRY CONSTANTs that are not FETCHABLE

The listing might also include some compiler generated temporaries.

For an AUTOMATIC variable with adjustable extents, there will be two entries in
this table:
v An entry with _addr prefixing the variable name - this entry gives the location of

the address of the variable
v An entry with _desc prefixing the variable name - this entry gives the location of

the address of the variable's descriptor

For STATIC and CONTROLLED variables, the storage location will depend on the
RENT/NORENT compiler option, and if the NORENT option is in effect, the
location of CONTROLLED variables will also depend on the WRITABLE/
NOWRITABLE compiler option.

The first column in the Storage Offset Listing is labeled IDENTIFIER and holds the
name of the variable whose location appears in the fourth column.

The second column in the Storage Offset Listing is labeled DEFINITION and holds
a string in the format "B-F:N", where
v B is the number of the block where the variable is declared.

You can find the name of the block corresponding to this block number in the
Block Name List, which will proceed the Storage Offset Listing (and the Pseudo
Assembly Listing, if any).

v F is the number of the source file where the variable is declared.
You can find the name of the file corresponding to this file number in the File
Reference Table, which will appear very near the end of the entire compilation
listing.

v N is the number of the source line where the variable is declared in that source
file.

The third column in the Storage Offset Listing is labeled ATTRIBUTES and
indicates the storage class of the variable.

The fourth column in the Storage Offset Listing is unlabeled and tells how to find
the location of the variable.

Chapter 1. Using compiler options and facilities 109

This storage offset listing is sorted by block and by variable name, and it also
includes only user variables. However, specifying the MAP option also causes the
compiler to produce the following maps:
v A "static map" that lists all STATIC variables but sorted by hex offset
v An "automatic map" that lists, for each block, all AUTOMATIC variables but

sorted by hex offset

The mapping rules of the PL/I language might require that a structure be offset by
up to 8 bytes from where it would seem to start. For example, consider the
AUTOMATIC structure A declared as follows:

dcl
1 A,
2 B char(2),
2 C fixed bin(31);

Because C must be aligned on a 4-byte boundary, 2 bytes of padding will be
needed for this structure. However, PL/I places those 2 bytes not after B, but
before B. These 2 bytes of "padding" before a structure starts are referred to as the
hang bytes for the structure.

These hang bytes will also be reflected in the "automatic map" generated by the
compiler. The "storage offset listing" will show the offset and length for A without
including its hang bytes:

A Class = automatic, Location = 186 : 0xBA(r13), Length = 6

In contrast, the "automatic map" will show the offset and length for A with its hang
bytes included:

OFFSET (HEX) LENGTH (HEX) NAME

98 8 #MX_TEMP1
A0 18 _Sfi
B8 8 A

Expressions and attributes listing
If you use the DECOMP compiler option, the compiler includes, in the compiler
listing, a section that shows all intermediate expressions and their attributes for all
expressions used in the source program.
Related information:
“DECOMP” on page 22
The DECOMP option instructs the compiler to generate a listing section that gives
a decomposition of expressions used in the compilation.

File reference table
The file reference table provides information about the files read during the
compilation.

The file reference table consists of three columns that list the following file
information:
v The number assigned by the compiler to the file
v The included-from data for the file
v The name of the file

110 Enterprise PL/I for z/OS Programming Guide

The first entry in the included-from column is blank because the first file listed is
the source file. Subsequent entries in this column show the line number of the
include statement followed by a period and the file number of the source file
containing the include statement.

If the file is a member of a PDS or PDSE, the file name lists the fully qualified data
set name and the member name.

If the file is included by a subsystem (such as Librarian), the file name will have
the form DD:ddname(member), where
v ddname is the ddname specified on the %INCLUDE statement (or SYSLIB if no

ddname was specified).
v member is the member name specified on the %INCLUDE statement.

Messages and return codes
If the preprocessor or the compiler detects an error, or the possibility of an error,
messages are generated. For every compilation job or job step, the compiler
generates a return code that indicates the degree of success or failure.

Messages

Messages generated by the preprocessor appear in the listing immediately after the
listing of the statements processed by the preprocessor. You can generate your own
messages in the preprocessing stage by using the %NOTE statement. Such
messages might be used to show how many times a particular replacement had
been made. Messages generated by the compiler appear at the end of the listing.

For compilations that produce no messages, the compiler will include a line saying
no compiler messages where the compiler messages would have been listed.

Messages are displayed in the following format:
PPPnnnnI X

PPP
Is the prefix identifying the origin of the message (for example, IBM indicates
the PL/I compiler).

nnnn
Is the 4-digit message number.

X Identifies the severity code.

All messages are graded according to their severity, and the severity codes are I,
W, E, S, and U.

The compiler lists only messages that have a severity equal to or greater than that
specified by the FLAG option, as shown in Table 6.

Table 6. Using the FLAG option to select the lowest message severity listed

Type of message Option

Information FLAG(I)
Warning FLAG(W)
Error FLAG(E)
Severe Error FLAG(S)
Unrecoverable Error Always listed

Chapter 1. Using compiler options and facilities 111

For information about the text of each message, an explanation of each message,
and any recommended programmer response for the message, see the Enterprise
PL/I Messages and Codes.

Return codes

For every compilation job or job step, the compiler generates a return code that
indicates to the operating system the degree of success or failure it achieved. For
z/OS, this code appears in the end-of-step message that follows the listing of the job
control statements and job scheduler messages for each step.

Table 7 provides an explanation of each severity code and its comparable return
code.

Table 7. Description of PL/I error codes and return codes

Severity
code

Return
code

Message type Description

I 0000 Informational The compiled program should run correctly. The compiler might
inform you of a possible inefficiency in your code or some other
condition of interest.

W 0004 Warning A statement might be in error (warning) even though it is
syntactically valid. The compiled program should run correctly, but
it might produce different results than expected or be significantly
inefficient.

E 0008 Error A simple error fixed by the compiler. The compiled program
should run correctly, but it might produce different results than
expected.

S 0012 Severe An error not fixed by the compiler. If the program is compiled and
an object module is produced, it should not be used.

U 0016 Unrecoverable An error that forces termination of the compilation. An object
module is not successfully created.

Note: Compiler messages are printed in groups according to these severity levels.

Example
This example of the compiler listing is generated when the compiler compiles the
following msgsumm program with these options: PP(SQL,MACRO,CICS), SOURCE,
FLAG(I), INSOURCE, MSGSUMMARY(XREF).
msgsumm: proc;

exec sql include sqlca;

exec cics what now;

exec cics not this;

%dcl z0 fixed bin;
%dcl z1 fixed dec;

end;

Note: The program is intentionally incorrect. Because the MSGSUMMARY option
is specified, the compiler includes the Summary of Messages section at the end of
the listing. This section also includes the line numbers associated with each of the
messages in the summary because the XREF suboption to the MSGSUMMARY
option is specified.

112 Enterprise PL/I for z/OS Programming Guide

5655-PL5 IBM(R) Enterprise PL/I for z/OS V5.R1.M0 (Built:20160513)
2016.05.13 14:19:23 Page 1

Options Specified
Install:
Command: +DD:OPTIONS
File: DD:OPTIONS
PP(SQL,MACRO,CICS),S,F(I),IS,MSGSUMMARY(XREF)

Install:

5655-PL5 IBM(R) Enterprise PL/I for z/OS 2016.05.13 14:19:23 Page 2
SQL (Built:20160421) Preprocessor Source

Line.File
1.0
2.0 msgsumm: proc;
3.0
4.0 exec sql include sqlca;
5.0
6.0 exec cics what now;
7.0 exec cics not this;
8.0
9.0 %dcl z0 fixed bin;
10.0 %dcl z1 fixed dec;
11.0 end;

5655-PL5 IBM(R) Enterprise PL/I for z/OS 2016.05.13 14:19:23 Page 3
SQL Preprocessor Options Used

CCSID0
NOCODEPAGE

DEPRECATE(STMT())
NOEMPTYDBRM
NOINCONLY
NOWARNDECP

DB2 for z/OS Coprocessor Options Used
APOST
APOSTSQL
ATTACH(TSO)
CCSID(500)
CONNECT(2)
DEC(15)
FLOAT(S390)
NEWFUN(YES)
TWOPASS
PERIOD
STDSQL(NO)
SQL(DB2)
NO XREF
NO SOURCE
DSNHDECP LOADED FROM - (DSN910.SDSNLOAD(DSNHDECP)

5655-PL5 IBM(R) Enterprise PL/I for z/OS 2016.05.13 14:19:23 Page 4
SQL Preprocessor Messages
Message Line.File Message Description

Figure 4. Compiler listing example

Chapter 1. Using compiler options and facilities 113

5655-PL5 IBM(R) Enterprise PL/I for z/OS 2016.05.13 14:19:23 Page 5
MACRO (Built:20160111) Preprocessor Source

Line.File
1.0
2.0 msgsumm: proc;
2.0
3.0
4.0
4.0 /*$*$*$
4.0 exec sql include sqlca
4.0 $*$*$*/
4.0 DCL
4.0 1 SQLCA ,
4.0 2 SQLCAID CHAR(8),
4.0 2 SQLCABC FIXED BIN(31),
4.0 2 SQLCODE FIXED BIN(31),
4.0 2 SQLERRM CHAR(70) VAR,
4.0 2 SQLERRP CHAR(8),
4.0 2 SQLERRD(6) FIXED BIN(31),
4.0 2 SQLWARN,
4.0 3 SQLWARN0 CHAR(1),
4.0 3 SQLWARN1 CHAR(1),
4.0 3 SQLWARN2 CHAR(1),
4.0 3 SQLWARN3 CHAR(1),
4.0 3 SQLWARN4 CHAR(1),
4.0 3 SQLWARN5 CHAR(1),
4.0 3 SQLWARN6 CHAR(1),
4.0 3 SQLWARN7 CHAR(1),
4.0 2 SQLEXT,
4.0 3 SQLWARN8 CHAR(1),
4.0 3 SQLWARN9 CHAR(1),
4.0 3 SQLWARNA CHAR(1),
4.0 3 SQLSTATE CHAR(5);
4.0
5.0
6.0 exec cics what now;
7.0 exec cics not this;
8.0
9.0 %dcl z0 fixed bin;
10.0 %dcl z1 fixed dec;
11.0 end;

Compiler listing example (continued)

114 Enterprise PL/I for z/OS Programming Guide

5655-PL5 IBM(R) Enterprise PL/I for z/OS 2016.05.13 14:19:23 Page 6
MACRO Messages
Message Line.File Message Description
IBM3552I E 9.0 The statement element BIN is invalid. The statement

will be ignored.
IBM3552I E 10.0 The statement element DEC is invalid. The statement

will be ignored.
IBM3258I W 9.0 Missing ; assumed before BIN.
IBM3258I W 10.0 Missing ; assumed before DEC.

5655-PL5 IBM(R) Enterprise PL/I for z/OS 2016.05.13 14:19:23 Page 7
CICS (Built:20160101) Preprocessor Source

Line.File
1.0
2.0 MSGSUMM: PROC;
2.0
3.0
4.0
4.0 /*$*$*$
4.0 exec sql include sqlca
4.0 $*$*$*/
4.0 DCL
4.0 1 SQLCA ,
4.0 2 SQLCAID CHAR(8),
4.0 2 SQLCABC FIXED BIN(31),
4.0 2 SQLCODE FIXED BIN(31),
4.0 2 SQLERRM CHAR(70) VAR,
4.0 2 SQLERRP CHAR(8),
4.0 2 SQLERRD(6) FIXED BIN(31),
4.0 2 SQLWARN,
4.0 3 SQLWARN0 CHAR(1),
4.0 3 SQLWARN1 CHAR(1),
4.0 3 SQLWARN2 CHAR(1),
4.0 3 SQLWARN3 CHAR(1),
4.0 3 SQLWARN4 CHAR(1),
4.0 3 SQLWARN5 CHAR(1),
4.0 3 SQLWARN6 CHAR(1),
4.0 3 SQLWARN7 CHAR(1),
4.0 2 SQLEXT,
4.0 3 SQLWARN8 CHAR(1),
4.0 3 SQLWARN9 CHAR(1),
4.0 3 SQLWARNA CHAR(1),
4.0 3 SQLSTATE CHAR(5);
4.0
5.0
6.0 EXEC CICS WHAT NOW;
7.0 EXEC CICS NOT THIS;
8.0
11.0 END;

Compiler listing example (continued)

Chapter 1. Using compiler options and facilities 115

5655-PL5 IBM(R) Enterprise PL/I for z/OS 2016.05.13 14:19:23 Page 8
CICS Messages
Message Line.File Message Description
IBM3750I S 6.0 DFH7059I S WHAT COMMAND IS NOT VALID AND IS NOT

TRANSLATED.
IBM3750I S 7.0 DFH7059I S NOT COMMAND IS NOT VALID AND IS NOT

TRANSLATED.

5655-PL5 IBM(R) Enterprise PL/I for z/OS 2016.05.13 14:19:23 Page 9
No Compiler Messages
File Reference Table
File Included From Name

0 DD:SYSIN

5655-PL5 IBM(R) Enterprise PL/I for z/OS 2016.05.13 14:19:23 Page 10
Summary of Messages
Component Message Total Default Message Description
SQL IBM3250I W 1 DSNH053I DSNHPSRV NO SQL STATEMENTS WERE FOUND

Refs: 4.0
MACRO IBM3552I E 2 The statement element %1 is invalid. The statement

will be ignored.
Refs: 9.0 10.0

MACRO IBM3258I W 2 Missing %1 assumed before %2.
Refs: 9.0 10.0

CICS IBM3750I S 2 DFH7059I S WHAT COMMAND IS NOT VALID AND IS NOT
TRANSLATED.
Refs: 6.0 7.0

Compiler <none>

Component Return Code Messages (Total/Suppressed) Time
SQL 4 1 / 0 0 secs
MACRO 8 4 / 0 0 secs
CICS 12 2 / 0 0 secs
Compiler 0 0 / 0 0 secs
End of compilation

Compiler listing example (continued)

116 Enterprise PL/I for z/OS Programming Guide

Chapter 2. PL/I preprocessors

When you use the PL/I compiler, you can specify one or more of the integrated
preprocessors in your program. You can specify the include preprocessor, the
macro preprocessor, the SQL preprocessor, or the CICS preprocessor, and specify
the order in which you want them to be called.
v The include preprocessor processes special include directives and incorporates

external source files.
v The macro preprocessor, based on %statements and macros, modifies your

source program.
v The SQL preprocessor modifies your source program and translates EXEC SQL

statements into PL/I statements.
v The CICS preprocessor modifies your source program and translates EXEC CICS

statements into PL/I statements.

Each preprocessor supports a number of options that you can use to tailor the
processing to your needs.

The compile-time options MDECK, INSOURCE, and SYNTAX are meaningful only
when you also specify the PP option.
Related information:
“MDECK” on page 54
The MDECK option specifies that the preprocessor produces a copy of its output
either on the file defined by the SYSPUNCH DD statement under z/OS or on the
.dek file under z/OS UNIX.
“INSOURCE” on page 43
The INSOURCE option specifies that the compiler should include a listing of the
source program before the PL/I macro, CICS, or SQL preprocessors translate it.
“SYNTAX” on page 87
The SYNTAX option specifies that the compiler continues into syntax checking
after preprocessing when you specify the MACRO option, unless an unrecoverable
error has occurred. Whether the compiler continues with the compilation depends
on the severity of the error, as specified by the NOSYNTAX option.

Include preprocessor
The include preprocessor allows you to incorporate external source files into your
programs by using include directives other than the PL/I directive %INCLUDE.

The following syntax diagram illustrates the options supported by the INCLUDE
preprocessor:

►► PP (INCLUDE (' ID(<directive>) ')) ►◄

ID Specifies the name of the include directive. Any line that starts with this
directive as the first set of nonblank characters is treated as an include
directive.

The specified directive must be followed by one or more blanks, an include
member name, and finally an optional semicolon. Syntax for
ddname(membername) is not supported.

© Copyright IBM Corp. 1999, 2017 117

In the following example, the first include directive is valid and the second one
is not:

++include payroll
++include syslib(payroll)

Example 1

The following example causes all lines that start with -INC (and possibly preceding
blanks) to be treated as include directives:

pp(include(’id(-inc)’))

Example 2

The following example causes all lines that start with ++INCLUDE (and possibly
preceding blanks) to be treated as include directives:

pp(include(’id(++include)’))

Macro preprocessor
Macros allow you to write commonly used PL/I code in a way that hides
implementation details and the data that is manipulated and exposes only the
operations. In contrast with a generalized subroutine, macros allow generation of
only the code that is needed for each individual use. You can invoke the macro
preprocessor by specifying either the MACRO option or the PP(MACRO) option.

You can specify PP(MACRO) without any options or with options described in
“Macro preprocessor options.”

The defaults for all these options cause the macro preprocessor to behave the same
as the OS PL/I V2R3 macro preprocessor.

If options are specified, the list must be enclosed in quotation marks (single or
double, as long as they match); for example, to specify the FIXED(BINARY) option,
you must specify PP(MACRO(’FIXED(BINARY)’)).

If you want to specify more than one option, you must separate them with a
comma or one or more blanks. For example, to specify the CASE(ASIS) and
RESCAN(UPPER) options, you can specify PP(MACRO(’CASE(ASIS)
RESCAN(UPPER)’)) or PP(MACRO("CASE(ASIS),RESCAN(UPPER)")). You can
specify the options in any order.

The macro preprocessing facilities of the compiler are described in the PL/I
Language Reference.

Macro preprocessor options
This section describes the options that the macro preprocessor supports.

CASE
This option specifies whether the preprocessor should convert the input text to
uppercase.

►►
UPPER

CASE (ASIS) ►◄

Include preprocessor

118 Enterprise PL/I for z/OS Programming Guide

||||||||||||||||||

|

UPPER
The input text is to be converted to uppercase.

ASIS
The input text is left "as is".

Under the GRAPHIC option, CASE(ASIS) is always in effect.

DBCS
This option specifies whether the preprocessor should normalize DBCS during text
replacement.

►►
INEXACT

DBCS (EXACT) ►◄

EXACT
The input text is left "as is", and the preprocessor will treat <kk.B> and <kk>B
as different names.

INEXACT
The input text is "normalized", and the preprocessor will treat <kk.B> and
<kk>B as two versions of the same name.

DEPRECATE
This option flags the usage of macro procedures that you want to deprecate with
error messages.

►► ▼ ▼

,

,

DEPRECATE (ENTRY (entry-name)) ►◄

ENTRY
Flags any usage of a macro procedure with name entry-name.

DEPRECATENEXT
This option flags the usage of macro procedures that you want to deprecate with
warning messages.

►► ▼ ▼

,

,

DEPRECATENEXT (ENTRY (entry-name)) ►◄

ENTRY
Flags any usage of a macro procedure with name entry-name.

Macro preprocessor

Chapter 2. PL/I preprocessors 119

|

FIXED
This option specifies the default base for FIXED variables.

►►
DECIMAL

FIXED (BINARY) ►◄

DECIMAL
FIXED variables will have the attributes REAL FIXED DEC(5).

BINARY
FIXED variables will have the attributes REAL SIGNED FIXED BIN(31).

INCONLY
The INCONLY option specifies that the preprocessor should process only
%INCLUDE and %XINCLUDE statements.

The NOINCONLY option specifies that the preprocessor should process all
preprocessor statements, not only %INCLUDE and %XINCLUDE statements.

►►
NOINCONLY
INCONLY ►◄

When the INCONLY option is in effect, you can use neither INCLUDE nor
XINCLUDE as a macro:
v Procedure name
v Statement label
v Variable name

The INCONLY option and the NOINCONLY option are mutually exclusive.

For compatibility, the default is NOINCONLY.

NAMEPREFIX
The NAMEPREFIX option specifies that the names of preprocessor procedures and
variables must start with the specified character.

The NONAMEPREFIX option specifies that the names of preprocessor procedures
and variables are not required to start with one particular character.

►►
NONAMEPREFIX
NAMEPREFIX (character) ►◄

The character should be specified "as is" and should not be enclosed in quotation
marks.

The default is NONAMEPREFIX.

RESCAN
This option specifies how the preprocessor should handle the case of identifiers
when rescanning text.

Macro preprocessor

120 Enterprise PL/I for z/OS Programming Guide

►►
ASIS

RESCAN (UPPER) ►◄

UPPER
Rescans will not be case-sensitive.

ASIS
Rescans will be case-sensitive.

To see the effect of this option, consider the following code fragment:
%dcl eins char ext;
%dcl text char ext;

%eins = ’zwei’;

%text = ’EINS’;
display(text);

%text = ’eins’;
display(text);

When you compile with PP(MACRO('RESCAN(ASIS)')), in the second display
statement, the value of text is replaced by eins, but no further replacement occurs.
This is because under RESCAN(ASIS), eins does not match the macro variable
eins; the former is left as is while the latter is in uppercase. Hence the following
text is generated:

DISPLAY(zwei);

DISPLAY(eins);

But when you compile with PP(MACRO('RESCAN(UPPER)')), in the second
display statement, the value of text is replaced by eins , but further replacement
does occur because under RESCAN(UPPER), eins does match the macro variable
eins (both are in uppercase). Hence the following text is generated:

DISPLAY(zwei);

DISPLAY(zwei);

In summary, RESCAN(UPPER) ignores case while RESCAN(ASIS) does not.

Macro preprocessor example
This example shows how to use the preprocessor to produce a source deck.

In the example shown in Figure 5 on page 122, according to the value assigned to
the preprocessor variable USE, the source statements represent either a subroutine
(CITYSUB) or a function (CITYFUN).

The DSNAME used for SYSPUNCH specifies a source program library on which
the preprocessor output will be placed. Normally compilation will continue and
the preprocessor output will be compiled.

Macro preprocessor

Chapter 2. PL/I preprocessors 121

SQL preprocessor
In general, the coding for your PL/I program is the same whether or not you want
it to access a DB2 database. However, to retrieve, update, insert, and delete DB2
data and use other DB2 services, you must use SQL statements. You can use
dynamic and static EXEC SQL statements in PL/I applications.

To communicate with DB2, you need to do the following:
v Code any SQL statements you need, delimiting them with EXEC SQL.
v Use the DB2 precompiler, or if using DB2 for z/OS Version 9 Release 1 or later,

compile with the PL/I PP(SQL()) compiler option.

Before you can take advantage of the EXEC SQL support, you must have authority
to access a DB2 system. Contact your local DB2 Database Administrator for your
authorization.

//OPT4#8 JOB
//STEP2 EXEC IBMZC,PARM.PLI=’MACRO,MDECK,NOCOMPILE,NOSYNTAX’
//PLI.SYSPUNCH DD DSNAME=HPU8.NEWLIB(FUN),DISP=(NEW,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(1,1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)
//PLI.SYSIN DD *
/* GIVEN ZIP CODE, FINDS CITY */
%DCL USE CHAR;
%USE = ’FUN’ /* FOR SUBROUTINE, %USE = ’SUB’ */ ;
%IF USE = ’FUN’ %THEN %DO;
CITYFUN: PROC(ZIPIN) RETURNS(CHAR(16)) REORDER; /* FUNCTION */

%END;
%ELSE %DO;

CITYSUB: PROC(ZIPIN, CITYOUT) REORDER; /* SUBROUTINE */
DCL CITYOUT CHAR(16); /* CITY NAME */

%END;
DCL (LBOUND, HBOUND) BUILTIN;
DCL ZIPIN PIC ’99999’; /* ZIP CODE */
DCL 1 ZIP_CITY(7) STATIC, /* ZIP CODE - CITY NAME TABLE */

2 ZIP PIC ’99999’ INIT(
95141, 95014, 95030,
95051, 95070, 95008,
0), /* WILL NOT LOOK AT LAST ONE */

2 CITY CHAR(16) INIT(
’SAN JOSE’, ’CUPERTINO’, ’LOS GATOS’,
’SANTA CLARA’, ’SARATOGA’, ’CAMPBELL’,
’UNKNOWN CITY’); /* WILL NOT LOOK AT LAST ONE */

DCL I FIXED BIN(31);
DO I = LBOUND(ZIP,1) TO /* SEARCH FOR ZIP IN TABLE */

HBOUND(ZIP,1)-1 /* DON’T LOOK AT LAST ELEMENT */
WHILE(ZIPIN ¬= ZIP(I));

END;
%IF USE = ’FUN’ %THEN %DO;

RETURN(CITY(I)); /* RETURN CITY NAME */
%END;

%ELSE %DO;
CITYOUT=CITY(I); /* RETURN CITY NAME */

%END;
END;

Figure 5. Using the macro preprocessor to produce a source deck

SQL preprocessor

122 Enterprise PL/I for z/OS Programming Guide

Programming and compilation considerations
When you use the PL/I SQL preprocessor, the PL/I compiler handles your source
program containing embedded SQL statements at compile time, without your
having to use a separate precompile step. Although the use of a separate
precompile step continues to be supported, use of the PL/I SQL preprocessor is
recommended.

Interactive debugging with IBM Debug Tool is enhanced when you use the
preprocessor because you see only the SQL statements while debugging (and not
the generated PL/I source). However, you must have DB2 for z/OS Version 9
Release 1, or later to use the SQL preprocessor.

Using the preprocessor lifts some of the DB2 precompiler's restrictions on SQL
programs. When you process SQL statements with the preprocessor, you can do
the following:
v Use nested SQL INCLUDE statements.
v Use fully-qualified names for structured host variables.
v Include SQL statements at any level of a nested PL/I program, instead of in only

the top-level source file.
v Use the SQL TYPE attribute anywhere you can specify a PL/I data type. All

such attributes can be factored and can be used in structure elements, in arrays,
and with any storage class like BASED.

v Use variables declared with the LIKE attribute as host variables.

All PL/I statements must be syntactically correct, because the SQL preprocessor
scans the source looking for EXEC SQL statements, DECLARE statements, and
statements that delimit blocks of declarations. If a statement is coded incorrectly,
this might mislead the preprocessor when the preprocessor looks for the END
statement to a BEGIN, DO, PACKAGE, PROCEDURE, or SELECT statement, and
that can cause the preprocessor to be unable to resolve some host variable
references correctly. To help identify such incorrect code, the SQL preprocessor
flags errors as follows:
v Left parentheses without matching right parentheses
v SELECT statements that do not end with a semicolon
v IF statements that do not contain a THEN keyword
v Statements that start with an invalid symbol

If your source contains both MACRO and SQL statements:
v You might invoke the SQL preprocessor without the INCONLY option only after

invoking the MACRO preprocessor. In that case, EXEC SQL statements are
allowed anywhere executable PL/I statements are allowed.

v You might invoke the SQL preprocessor with the INCONLY option before
invoking the MACRO preprocessor, but in that case, EXEC SQL statements are
allowed only if they are immediately preceded by a semicolon (with possibly
intervening whitespace and comments, of course).

The SQL preprocessor supports DBCS in the same manner as the PL/I compiler
does. When the GRAPHIC PL/I compiler option is in effect, some source language
elements can be written in DBCS and SBCS characters. In particular, you can use
DBCS characters in the source program in following places:
v Inside comments
v As part of statement labels and identifiers

Programming and compilation considerations

Chapter 2. PL/I preprocessors 123

|

|
|
|

|
|
|
|

v In G or M literals

The following restrictions apply to the use of PL/I built-in functions, compiler
options, and statements when you program and compile SQL statements:
v When EXEC SQL statements are translated to PL/I, the following built-in

functions might be included in the generated code. If you use any of the
following built-in functions as the names of elements in structures, you must
also explicitly declare them as BUILTIN:
– ADDR
– LENGTH
– MAXLENGTH
– PTRVALUE
– SYSNULL

v You must not use PL/I type functions, such as BIND(: t,p:), in EXEC SQL
statements.

v When compiling with the preprocessor, you must not use these compiler
options:
– DFT(ASCII)
– DFT(IEEE)

v Do not use DECLARE STATEMENT statements in SQL queries, because the PL/I
preprocessor always ignores these statements.

Compiling with the SQL preprocessor option generates a DB2 database request
module (DBRM) along with the usual PL/I compiler output such as object module
and listing. As input to the DB2 bind process, the DBRM data set contains
information about the SQL statements and host variables in the program. Not all of
the information in the DBRM is important in terms of the bind or runtime
processing, however. For example, if the HOST value in the DBRM specifies a
language other than PL/I, there is no reason to be concerned. All this means that
the other language is selected as the installation default for the HOST value, which
does not affect the bind or runtime processing of your program.

If the EMPTYDBRM option is in effect and if the source meets one of the following
conditions, the preprocessor issues a message indicating that no statements
required translation, and does not create a DBRM:
v The source contains no EXEC SQL statements.
v The source contains only EXEC SQL INCLUDE statements other than EXEC SQL

INCLUDE SQLCA and EXEC SQL INCLUDE SQLDA.

The PL/I compiler listing includes the error diagnostics (such as syntax errors in
the SQL statements) that the preprocessor generates. The listing of the EXEC SQL
statement is displayed in a readable format that is similar to the original source.

To use the preprocessor, you need to do the following:
v Specify the following option when you compile your program:

PP(SQL(’options’))

This compiler option indicates that you want the compiler to invoke the
integrated SQL preprocessor. Specify a list of SQL processing options in the
parenthesis after the SQL keyword. The options can be separated by a comma or
by a space and the list of options must be enclosed in quotation marks (single or
double, as long as they match).

Programming and compilation considerations

124 Enterprise PL/I for z/OS Programming Guide

For example, PP(SQL(’DATE(USA),TIME(USA)’) tells the preprocessor to use the
USA format for both DATE and TIME data types.
In addition, for LOB support you must specify the following option:

LIMITS(FIXEDBIN(31,63) FIXEDDEC(15,31))

An alternative way to specify SQL preprocessor options is to use the PPSQL
compiler option. For information about how to use it, see “PPSQL” on page 64.

v Include DD statements for the following data sets in the JCL for your compile
step:
– DB2 load library (prefix.SDSNLOAD)

The SQL preprocessor calls DB2 modules to do the SQL statement processing.
Therefore, you need to include the name of the DB2 load library data set in
the STEPLIB concatenation for the compile step.

– Library for SQL INCLUDE statements
If your program contains SQL INCLUDE member-name statements that specify
secondary input to the source program, you need to include the name of the
data set that contains member-name in the SYSLIB concatenation for the
compile step.

– DBRM library
The compilation of the PL/I program generates a DB2 database request
module (DBRM), and the DBRMLIB DD statement is required to designate
the data set to which the DBRM is written.
The DBRMLIB DD statement must name a data set that can be opened and
closed more than once during the compilation.

For example, you might have the following lines in your JCL:
//STEPLIB DD DSN=DSNA10.SDSNLOAD,DISP=SHR
//SYSLIB DD DSN=PAYROLL.MONTHLY.INCLUDE,DISP=SHR
//DBRMLIB DD DSN=PAYROLL.MONTHLY.DBRMLIB.DATA(MASTER),DISP=SHR

SQL preprocessor options
This section describes the options that the SQL preprocessor supports.

Two groups of options can be passed to the SQL preprocessor: those handled by
the PL/I SQL preprocessor and those handled by the DB2 coprocessor. You must
specify these options in the options string of the PP(SQL('option-list')) option, and
the options can be intermingled in the options string.

When you specify SQL preprocessor options, the list of options must be enclosed
in a pair of quotation marks. For example, to specify the CCSID0 option, you must
specify PP(SQL('CCSID0')).

Table 8 lists the PL/I SQL preprocessor options with abbreviations (if any) and the
IBM-supplied default values. This table uses a vertical bar (|) to separate mutually
exclusive options, and brackets ([]) to indicate that you can sometimes omit the
enclosed option.

For more information about DB2 coprocessor options, see the DB2 for z/OS
Application Programming and SQL Guide.

Table 8. SQL preprocessor options and IBM-supplied defaults

SQL Preprocessor option Abbreviated name z/OS default

CCSID0 | NOCCSID0 - CCSID0

CODEPAGE | NOCODEPAGE - NOCODEPAGE

Programming and compilation considerations

Chapter 2. PL/I preprocessors 125

Table 8. SQL preprocessor options and IBM-supplied defaults (continued)

SQL Preprocessor option Abbreviated name z/OS default

DEPRECATE(STMT([EXPLAIN |
GRANT | REVOKE |
SET_CURRENT_SQLID]))

- DEPRECATE(STMT())

EMPTYDBRM | NOENTRYDBRM - NOENTRYDBRM

HOSTCOPY | NOHOSTCOPY - HOSTCOPY

INCONLY | NOINCONLY - NOINCONLY

WARNDECP | NOWARNDECP - NOWARNDECP

CCSID0
The CCSID0 option specifies that no host variable other than WIDECHAR is to be
assigned a CCSID value by the PL/I SQL preprocessor.

The NOCCSID0 option allows host variables to be assigned a CCSID value by the
PL/I SQL preprocessor.

►►
CCSID0

NOCCSID0
►◄

If your program updates FOR BIT DATA columns with a data type that is not BIT
data, choose CCSID0. CCSID0 informs DB2 that the host variable is not associated
with a CCSID, allowing the assignment to be made. Otherwise, if a host variable
that is associated with a CCSID that is not BIT data is assigned to a FOR BIT
DATA column, a DB2 error occurs.

WIDECHAR is always assigned a CCSID value of 1200.

For compatibility with older PL/I programs that used the DB2 precompiler, enable
CCSID0.

CCSID0 and NOCCSID0 are mutually exclusive options.

The default is CCSID0.

CODEPAGE
When the CODEPAGE option is in effect, the compiler CODEPAGE option is
always used as the CCSID for SQL host variables of character type.

When the NOCODEPAGE option is in effect, the compiler CODEPAGE option is
used as the CCSID for SQL host variables of character type only if the SQL
preprocessor option NOCCSID0 is also in effect.

►►
NOCODEPAGE

CODEPAGE
►◄

The default is NOCODEPAGE.

SQL preprocessor options

126 Enterprise PL/I for z/OS Programming Guide

DEPRECATE
The DEPRECATE option indicates that the preprocessor flags the specified
statements as deprecated.

►► ▼

,

DEPRECATE (STMT ())
EXPLAIN
GRANT
REVOKE
SET_CURRENT_SQLID

►◄

STMT
Specifies a list of statements that the preprocessor should flag as deprecated.
The list can be empty.

EXPLAIN
The EXPLAIN SQL statement.

GRANT
The GRANT SQL statement.

REVOKE
The REVOKE SQL statement.

SET_CURRENT_SQLID
The SET CURRENT SQLID SQL statement.

The default is DEPRECATE(STMT()).

EMPTYDBRM
The EMPTYDBRM option specifies that the SQL preprocessor always creates a
DBRM even if the code contains no EXEC SQL statements. However, the SQL
preprocessor does not create a DBRM when the INCONLY option is invoked.

The NOENTRYDBRM option specifies that the SQL preprocessor does not create a
DBRM.

►►
NOENTRYDBRM

EMPTYDBRM
►◄

The default is NOENTRYDBRM.

HOSTCOPY
The HOSTCOPY option determines if the SQL preprocessor, when running under
LP(64), generates code to copy host variables to and from below-the-bar storage
around each EXEC SQL statement.

If the NOHOSTCOPY is specified, the SQL preprocessor does not generate this
code. However, it is then the user's responsibility to ensure that all host variables
reside in below-the-bar storage (for example, by making them BASED variables
whose base pointers are obtained via the ALLOC31 built-in function).

SQL preprocessor options

Chapter 2. PL/I preprocessors 127

►►
HOSTCOPY

NOHOSTCOPY
►◄

The default is HOSTCOPY.

The HOSTCOPY option is ignored under LP(32).

INCONLY
The INCONLY option specifies that the SQL preprocessor should process only
EXEC SQL INCLUDE statements except for includes of the SQL communication
area (SQLCA) and the SQL descriptor area (SQLDA). No code is generated by the
SQL preprocessor when this option is in effect.

The NOINCONLY option specifies that the SQL preprocessor should process all
statements, not only EXEC SQL INCLUDE statements.

►►
NOINCONLY

INCONLY
►◄

When you specify the INCONLY option, the compiler does not produce the SQL
options listing, because all other options are ignored under INCONLY.

The INCONLY option and the NOINCONLY option are mutually exclusive.

For compatibility, the default is NOINCONLY.

WARNDECP
When the WARNDECP option is in effect, the preprocessor issues a warning
message if the compilation uses the DSNHDECP module supplied with DB2.

When the NOWARNDECP option is in effect, no warning message is issued.

►►
NOWARNDECP

WARNDECP
►◄

The default is NOWARNDECP.

PL/I-specific notes for SQL processor options
The topic describes some rules that you must follow when specifying SQL
processor options FLOAT, ONEPASS, and STDSQL.

When you specify the following SQL processor options for the PL/I compiler, the
following rules apply:

FLOAT
An error message is issued if the FLOAT option is different from the PL/I
DEFAULT(HEXADEC | IEEE) option.

ONEPASS | TWOPASS
Under the option ONEPASS, you must declare all host variables before they
are used by any SQL statement.

SQL preprocessor options

128 Enterprise PL/I for z/OS Programming Guide

STDSQL
Under the option STDSQL(YES), you must declare all host variables between
SQL BEGIN DECLARE SECTION and SQL END DECLARE SECTION
statements.

Coding SQL statements in PL/I applications
You can code SQL statements in your PL/I applications by using the language
defined in DB2 UDB for z/OS SQL Reference. This section describes specific
requirements for your SQL code.

Defining the SQL communications area
A PL/I program that contains SQL statements must include either an SQLCODE
variable (if the STDSQL(86) preprocessor option is used) or an SQL
communications area (SQLCA).

As shown in Figure 6, part of an SQLCA consists of an SQLCODE variable and an
SQLSTATE variable.
v The SQLCODE value is set by the Database Services after each SQL statement is

executed. An application can check the SQLCODE value to determine whether
the last SQL statement was successful.

v The SQLSTATE variable can be used as an alternative to the SQLCODE variable
when the compiler analyzes the result of an SQL statement. Like the SQLCODE
variable, the SQLSTATE variable is set by the Database Services after each SQL
statement is executed.

To include the SQLCA declaration, use the EXEC SQL INCLUDE statement:
exec sql include sqlca;

The SQLCA structure must not be defined within an SQL declare section. The
scope of the SQLCODE and SQLSTATE declarations must include the scope of all
SQL statements in the program.

Dcl
1 Sqlca,

2 sqlcaid char(8), /* Eyecatcher = ’SQLCA ’ */
2 sqlcabc fixed binary(31), /* SQLCA size in bytes = 136 */
2 sqlcode fixed binary(31), /* SQL return code */
2 sqlerrmc char(70) var, /* Error message tokens */
2 sqlerrp char(8), /* Diagnostic information */
2 sqlerrd(0:5) fixed binary(31), /* Diagnostic information */
2 sqlwarn, /* Warning flags */

3 sqlwarn0 char(1),
3 sqlwarn1 char(1),
3 sqlwarn2 char(1),
3 sqlwarn3 char(1),
3 sqlwarn4 char(1),
3 sqlwarn5 char(1),
3 sqlwarn6 char(1),
3 sqlwarn7 char(1),

2 sqlext,
3 sqlwarn8 char(1),
3 sqlwarn9 char(1),
3 sqlwarna char(1),
3 sqlstate char(5); /* State corresponding to SQLCODE */

Figure 6. The PL/I declaration of SQLCA

SQL preprocessor options

Chapter 2. PL/I preprocessors 129

Defining SQL descriptor areas
Unlike the SQLCA, there can be more than one SQL descriptor area (SQLDA) in a
program, and an SQLDA can have any valid name.

The following statements require an SQLDA:
PREPARE statement-name INTO descriptor-name FROM host-variable
EXECUTE...USING DESCRIPTOR descriptor-name
FETCH...USING DESCRIPTOR descriptor-name
OPEN...USING DESCRIPTOR descriptor-name
DESCRIBE statement-name INTO descriptor-name

To include an SQLDA, use the EXEC SQL INCLUDE statement:
exec sql include sqlda;

The SQLDA must not be defined within an SQL declare section.

Embedding SQL statements
The first statement of your program must be a PROCEDURE or PACKAGE
statement. You can add any SQL statement to your program wherever executable
statements can appear.

You can also add the following SQL statements in a PACKAGE and outside of any
procedure:
v EXEC SQL BEGIN DECLARE SECTION
v EXEC SQL END DECLARE SECTION

Dcl
1 Sqlda based(Sqldaptr),

2 sqldaid char(8), /* Eye catcher = ’SQLDA ’ */
2 sqldabc fixed binary(31), /* SQLDA size in bytes=16+44*SQLN*/
2 sqln fixed binary(15), /* Number of SQLVAR elements*/
2 sqld fixed binary(15), /* # of used SQLVAR elements*/
2 sqlvar(Sqlsize refer(sqln)), /* Variable Description */

3 sqltype fixed binary(15), /* Variable data type */
3 sqllen fixed binary(15), /* Variable data length */
3 sqldata pointer, /* Pointer to variable data value*/
3 sqlind pointer, /* Pointer to Null indicator*/
3 sqlname char(30) var ; /* Variable Name */

Dcl
1 Sqlda2 based(Sqldaptr),

2 sqldaid2 char(8), /* Eye catcher = ’SQLDA ’ */
2 sqldabc2 fixed binary(31), /* SQLDA size in bytes=16+44*SQLN*/
2 sqln2 fixed binary(15), /* Number of SQLVAR elements*/
2 sqld2 fixed binary(15), /* # of used SQLVAR elements*/
2 sqlvar2(Sqlsize refer(sqln2)), /* Variable Description */

3 sqlbiglen,
4 sqllongl fixed binary(31),
4 sqlrsvdl fixed binary(31),

3 sqldatal pointer,
3 sqltname char(30) var;

dcl Sqlsize fixed binary(15); /* number of sqlvars (sqln) */
dcl Sqldaptr pointer;
dcl Sqltripled char(1) value('3');
dcl Sqldoubled char(1) value('2');
dcl Sqlsingled char(1) value(' ');

Figure 7. The PL/I declaration of an SQL descriptor area

Coding SQL statements in PL/I applications

130 Enterprise PL/I for z/OS Programming Guide

v EXEC SQL DECLARE if no executable code needs to be generated for the
statement

v EXEC SQL INCLUDE

Each SQL statement must begin with EXEC (or EXECUTE) SQL and end with a
semicolon (;).

For example, an UPDATE statement might be coded as follows:
exec sql update DSN8A10.DEPT
set Mgrno = :Mgr_Num
where Deptno = :Int_Dept;

Comments:

In addition to SQL statements, comments can be included in embedded SQL
statements wherever a blank is allowed.

If a comment appears inside a SQL statement, the forward slash (/) that closes the
comment is shown as a greater than sign (>) in the listing. The following example
illustrates how the compiler will show a given SQL statement in the source listing.

The following example SQL statement contains comments:
exec sql insert into table /* some text */ values(:data);

The compiler will show it in the source listing as follows:
/*$*$*$
exec sql insert into table /* some text *> values(:data)
$*$*$*/

SQL style comments ('--') are supported when embedded in SQL statements.

Continuation for SQL statements:

The line continuation rules for SQL statements are the same as those for other PL/I
statements.

Including code: You can include SQL statements or PL/I host variable declaration
statements by placing the following SQL statement in the source code. Place it at
the point where the statements are to be embedded.

exec sql include member;

Margins: You must code SQL statements in columns m through n, where m and n
are specified in the MARGINS(m,n) compiler option.

Names: You can use any valid PL/I variable name for a host variable. The length
of a host variable name must not exceed the value n specified in the
LIMITS(NAME(n)) compiler option.

Statement labels: With the exception of the END DECLARE SECTION statement
and the INCLUDE text-file-name statement, executable SQL statements, like PL/I
statements, can have a label prefix.

WHENEVER statement: The target for the GOTO clause in an SQL WHENEVER
statement must be a label in the PL/I source code and must be within the scope of
any SQL statements affected by the WHENEVER statement.

Coding SQL statements in PL/I applications

Chapter 2. PL/I preprocessors 131

Using host variables
All host variables used in SQL statements must be explicitly declared, and all host
variables within an SQL statement must be preceded by a colon (:).

Subscripts must not be used in host variable references.

The following topics describe the details of using host variables:
v “Using arrays as host variables”
v “Declaring host variables”
v “Declaring scalar host variables” on page 133
v “Determining equivalent SQL and PL/I data types” on page 135
v “Determining compatibility of SQL and PL/I data types” on page 138

Using arrays as host variables: You can use an array as a host variable only in
the following two ways:
v As an array of indicator variables for a host structure
v As an array of host variables when used in any of the following statements:

– A FETCH statement for a multiple row fetch
– An INSERT statement with a multiple row insert
– A multiple row MERGE statement

All such arrays must be one-dimensional, have the CONNECTED attribute, and
have constant bounds.

All other use of arrays as host variables is invalid.

Declaring host variables:

Host variable declarations can be made at the same place as regular PL/I variable
declarations.

Only a subset of valid PL/I declarations are recognized as valid host variable
declarations.

The SQL preprocessor parses the DEFINE ALIAS, DEFINE ORDINAL, and
DEFINE STRUCTURE statements. This means that if a DEFINE ALIAS statement
defines a PL/I type that can be used in SQL statements, a variable declared with
that type can also be used in SQL statements.

The preprocessor does not use the data attribute defaults specified in the PL/I
DEFAULT statement. If the declaration for a variable is not recognized, any
statement that references the variable might result in the message:
’The host variable token ID is not valid’

To use a structure that is declared with LIKE or an element of this structure as a
host variable, the declaration for the LIKE object must be visible to the SQL
preprocessor. For example, the LIKE object must not be in a %INCLUDE file that
has not been included.

You can use restricted expressions in host variable declarations to define the
bounds of an array or the length of a string as long as the expression has one of
the following forms:

Coding SQL statements in PL/I applications

132 Enterprise PL/I for z/OS Programming Guide

v A prefix operator applied to an expression where the expression can be
collapsed to an integer

v An add operator or a subtract operator applied to two expressions where both
expressions can be collapsed to integers

v A multiply operator applied to two expressions where both expressions can be
collapsed to integers

v A reference to a named constant where the reference can be collapsed to an
integer

v One of these built-in functions: INDICATORS, HBOUND, HBOUNDACROSS,
LENGTH, and MAXLENGTH

v A number that is an integer

Although you can use a named constant to define the bounds and lengths of a
host variable, you cannot use a named constant itself as a host variable except if
both of the following conditions apply:
v DB2 allows a simple, unnamed constant at that place in the EXEC SQL

statement.
v The named constant has any of these attributes:

– CHARACTER, in which case the VALUE attribute of the named constant
must specify a character string.

– FIXED, in which case the VALUE attribute of the named constant must
specify a decimal number or an expression that can be reduced, with the
same restrictions as above, to an integer constant.

Only the names and data attributes of the variables are used by the preprocessor;
the alignment, scope, and storage attributes are ignored.

Declaring scalar host variables: You must declare a scalar host variable with one
of the following data attributes:

CHARACTER, GRAPHIC, or WIDECHAR
Host variables that are declared with the CHARACTER, GRAPHIC, or
WIDECHAR attributes are called string host variables. The following
restrictions apply to the string host variable:
v It must have either the NONVARYING or VARYING attribute.
v If it has the VARYING attribute, it must have the NATIVE attribute.

FIXED BINARY, FIXED DECIMAL, or FLOAT
Host variables that are declared with the FIXED and BINARY, FIXED and
DECIMAL, or FLOAT attributes are called numeric host variables. The
following restrictions apply to the numeric host variable:
v It must have the REAL attribute.
v If it has the FIXED and BINARY attributes, it must have the SIGNED

and NATIVE attributes, a zero scale factor, and a precision greater than
7.

v If it has the FIXED and DECIMAL attributes, it must have a nonnegative
scale factor that is smaller than its precision.

v If it has the FLOAT and DECIMAL attributes, it must have a precision
that is less than 17 unless the FLOAT(DFP) option is in effect.

v If it has the FLOAT and BINARY attributes, it must have a precision that
is less than 54.

Coding SQL statements in PL/I applications

Chapter 2. PL/I preprocessors 133

SQL TYPE
Host variables that are declared with the SQL TYPE attribute are called
SQL TYPE host variables. The attribute specification must conform to one
of the following syntax diagrams:

BINARY

►► SQL TYPE IS BINARY (length) ►◄

VARBINARY

►► SQL TYPE IS VARBINARY (length) ►◄

Result set locator

►► SQL TYPE IS RESULT_SET_LOCATOR ►◄

ROWID

►► SQL TYPE IS ROWID ►◄

Table locator

►► SQL TYPE IS TABLE LIKE table-name AS LOCATOR ►◄

LOB file reference

►► SQL TYPE IS BLOB_FILE
CLOB_FILE
DBCLOB_FILE

►◄

LOB locator

►► SQL TYPE IS BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR

►◄

LOB variable

►► SQL TYPE IS BLOB (length)
CLOB K
DBCLOB M

G

►◄

BLOB
You can also use BINARY LARGE OBJECT as an alternative
to BLOB.

CLOB
You can also use either CHARACTER LARGE OBJECT or
CHAR LARGE OBJECT as an alternative to CLOB.

XML LOB variable

Coding SQL statements in PL/I applications

134 Enterprise PL/I for z/OS Programming Guide

►► SQL TYPE IS XML AS BLOB (length)
CLOB K
DBCLOB M

G

►◄

BLOB
You can also use BINARY LARGE OBJECT as an alternative
to BLOB.

CLOB
You can also use either CHARACTER LARGE OBJECT or
CHAR LARGE OBJECT as an alternative to CLOB.

XML file reference

►► SQL TYPE IS XML AS BLOB_FILE
CLOB_FILE
DBCLOB_FILE

►◄

The following constant declarations are generated by the SQL preprocessor.
You can use them to set the file option variable when you use the file
reference host variables:
DCL SQL_FILE_READ FIXED BIN(31) VALUE(2);
DCL SQL_FILE_CREATE FIXED BIN(31) VALUE(8);
DCL SQL_FILE_OVERWRITE FIXED BIN(31) VALUE(16);
DCL SQL_FILE_APPEND FIXED BIN(31) VALUE(32);

Determining equivalent SQL and PL/I data types: The base SQLTYPE and
SQLLEN of host variables are determined according to Table 9 and Table 10 on
page 136. If a host variable appears with an indicator variable, the SQLTYPE is the
base SQLTYPE plus one.

To determine the PL/I data type that is equivalent to a given SQL data type, you
can use Table 11 on page 136 and Table 12 on page 137.

Table 9. SQL data types generated from PL/I declarations

PL/I data type SQLTYPE of
host variable

SQLLEN of host
variable

SQL data type

BIN FIXED(p), 7 < p <= 15 500 2 SMALLINT

BIN FIXED(p), 15 < p <= 31 496 4 INTEGER

BIN FIXED(p), 31 < p <= 63 492 8 BIGINT

DEC FIXED(p,s), 0<=p<=15 and
0<=s<=p

484 p (byte 1)

s (byte 2)

DECIMAL(p,s)

BIN FLOAT(p), 1 ≤ p ≤ 21 480 4 REAL or FLOAT(n) 1<=n<=21

BIN FLOAT(p), 22 ≤ p ≤ 53 480 8 DOUBLE PRECISION

or

FLOAT(n), 22<=n<=53

Under FLOAT(NODFP):

DEC FLOAT(p), 1 ≤ p ≤ 6 480 4 FLOAT (single precision)

DEC FLOAT(p), 7 ≤ p ≤ 16 480 8 FLOAT (double precision)

Coding SQL statements in PL/I applications

Chapter 2. PL/I preprocessors 135

Under FLOAT(DFP):

DEC FLOAT(p), 1 ≤ p ≤ 7 996 4 DECFLOAT (single precision)

DEC FLOAT(p), 7 ≤ p ≤ 16 996 8 DECFLOAT (double precision)

DEC FLOAT(p), 16 ≤ p ≤ 34 996 16 DECFLOAT (extended decimal)

CHAR(n) 452 n CHAR(n)

CHAR(n) VARYING 448 n VARCHAR(n)

GRAPHIC(n), 1 ≤ n ≤ 127 468 n GRAPHIC(n)

GRAPHIC(n) VARYING 464 n VARGRAPHIC(n)

Table 10. SQL data types generated from SQL TYPE declarations

PL/I data type SQLTYPE of host
variable

SQLLEN of host
variable

SQL data type

SQL TYPE IS BLOB(n)
1<n<2147483647

404 n BLOB(n)

SQL TYPE IS CLOB(n)
1<n<2147483647

408 n CLOB(n)

SQL TYPE IS DBCLOB(n)
1<n<1073741823 (2)

412 n DBCLOB(n) (2)

SQL TYPE IS ROWID 904 40 ROWID

SQL TYPE IS VARBINARY(n)
1<n<32704

908 n VARBINARY(n)

SQL TYPE IS BINARY(n) 1<n<255 912 n BINARY(n)

SQL TYPE IS BLOB_FILE 916 267 BLOB File Reference (1)

SQL TYPE IS CLOB_FILE 920 267 CLOB File Reference (1)

SQL TYPE IS DBCLOB_FILE 924 267 DBCLOB File Reference (1)

SQL TYPE IS BLOB_LOCATOR 960 4 BLOB Locator (1)

SQL TYPE IS CLOB_LOCATOR 964 4 CLOB Locator (1)

SQL TYPE IS DBCLOB_LOCATOR 968 4 DBCLOB Locator (1)

SQL TYPE IS
RESULT_SET_LOCATOR

972 4 Result Set Locator

SQL TYPE IS TABLE LIKE
table-name AS LOCATOR

976 4 Table Locator (1)

Notes:
1. Do not use this data type as a column type.
2. n is the number of double-byte characters.

Table 11. SQL data types mapped to PL/I declarations

SQL data type PL/I equivalent Notes®

SMALLINT BIN FIXED(15)

INTEGER BIN FIXED(31)

BIGINT BIN FIXED(63)

DECIMAL(p,s) DEC FIXED(p)

or

DEC FIXED(p,s)

p = precision and s = scale; 1 ≤ p ≤ 31 and 0 ≤ s
≤ p

Coding SQL statements in PL/I applications

136 Enterprise PL/I for z/OS Programming Guide

Under FLOAT(NODFP):

REAL or FLOAT(n) BIN FLOAT(p)

or

DEC FLOAT(m)

1 ≤ p ≤ 21 and 1 ≤ m ≤ 6

DOUBLE PRECISION, DOUBLE, or
FLOAT(n)

BIN FLOAT(p) or DEC
FLOAT(m)

22 ≤ p ≤ 53 and 7 ≤ m ≤ 16

Under FLOAT(DFP):

DECFLOAT DEC FLOAT(m) Short Decimal Float 1 ≤ m ≤ 7

DECFLOAT DEC FLOAT(m) Long Decimal Float 7 ≤ m ≤ 16

DECFLOAT DEC FLOAT(m) Extended Decimal Float 16 ≤ m ≤ 34

CHAR(n) CHAR(n) 1 ≤ n ≤ 32767

VARCHAR(n) CHAR(n) VAR

GRAPHIC(n) GRAPHIC(n) n is a positive integer that refers to the number
of double-byte characters, not to the number of
bytes; 1 ≤ n ≤ 16383

VARGRAPHIC(n) GRAPHIC(n) VAR n is a positive integer that refers to the number
of double-byte characters, not to the number of
bytes; 1 ≤ n ≤ 16383

DATE CHAR(n) n must be at least 10.

TIME CHAR(n) n must be at least 8.

TIMESTAMP CHAR(n) n must be at least 26.

Table 12. SQL data types mapped to SQL TYPE declarations

SQL data type PL/I equivalent Notes

Result set locator SQL TYPE IS
RESULT_SET_LOCATOR

Use this data type only for receiving result sets.
Do not use this data type as a column type.

Table locator SQL TYPE IS TABLE LIKE
table-name AS LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive rows of a
transition table. Do not use this data type as a
column type.

BLOB locator SQL TYPE IS BLOB_LOCATOR Use this data type only to manipulate data in
BLOB columns. Do not use this data type as a
column type.

CLOB locator SQL TYPE IS CLOB_LOCATOR Use this data type only to manipulate data in
CLOB columns. Do not use this data type as a
column type.

DBCLOB locator SQL TYPE IS
DBCLOB_LOCATOR

Use this data type only to manipulate data in
DBCLOB columns. Do not use this data type as
a column type.

BLOB file reference SQL TYPE IS BLOB_FILE Use this data type only as a reference to a BLOB
file. Do not use this data type as a column type.

CLOB file reference SQL TYPE IS CLOB_FILE Use this data type only as a reference to a CLOB
file. Do not use this data type as a column type.

Coding SQL statements in PL/I applications

Chapter 2. PL/I preprocessors 137

Table 12. SQL data types mapped to SQL TYPE declarations (continued)

SQL data type PL/I equivalent Notes

DBCLOB file reference SQL TYPE IS DBCLOB_FILE Use this data type only as a reference to a
DBCLOB file. Do not use this data type as a
column type.

BLOB(n) SQL TYPE IS BLOB(n) 1<n<2147483647

CLOB(n) SQL TYPE IS CLOB(n) 1<n<2147483647

DBCLOB(n) SQL TYPE IS DBCLOB(n) n is the number of double-byte characters.
1<n<1073741823

ROWID SQL TYPE IS ROWID

XML AS SQL TYPE IS XML AS ... Used to describe an XML version of a BLOB,
CLOB, DBCLOB, BLOB_FILE, CLOB_FILE, or
DBCLOB_FILE

Determining compatibility of SQL and PL/I data types: PL/I host variables in
SQL statements must be type-compatible with the columns that use them:
v Numeric data types are compatible with each other. A SMALLINT, INTEGER,

DECIMAL, or FLOAT column is compatible with a PL/I host variable of BIN
FIXED(15), BIN FIXED(31), DECIMAL(p,s), BIN FLOAT(n) where n is in the
range 22 - 53, or DEC FLOAT(m) where m is in the range 7 - 16.

v Character data types are compatible with each other. A CHAR or VARCHAR
column is compatible with a fixed-length or varying-length PL/I character host
variable.

v Datetime data types are compatible with character host variables. A DATE,
TIME, or TIMESTAMP column is compatible with a fixed-length or
varying-length PL/I character host variable.
When necessary, the Database Manager automatically converts a fixed-length
character string to a varying-length string or a varying-length string to a
fixed-length character string.

Using host structures
A PL/I host structure name can be a structure name with members that are not
structures or unions.

In the following example, B is the name of a host structure consisting of the scalars
C1 and C2.

dcl 1 A,
2 B,

3 C1 char(...),
3 C2 char(...);

Host structures are limited to two levels. A host structure can be thought of as a
named collection of host variables.

Each leaf element of a host structure must have one of the following valid host
data attributes as discussed in “Declaring host variables” on page 132:
v CHARACTER, GRAPHIC, or WIDECHAR
v FIXED BINARY, FIXED DECIMAL, or FLOAT
v SQL TYPE

Coding SQL statements in PL/I applications

138 Enterprise PL/I for z/OS Programming Guide

Using indicator variables
An indicator variable is a two-byte integer (BIN FIXED(15)), an array of two-byte
integers, or a structure that contains only two-byte integers (or arrays thereof).

On retrieval, an indicator variable is used to show whether its associated host
variable has been assigned a null value. On assignment to a column, a negative
indicator variable is used to indicate that a null value should be assigned.

A structure can be used as an indicator variable only when the associated host
variable is also a structure.

Indicator variables are declared in the same way as host variables and the
declarations of the two can be mixed in any way that seems appropriate to the
programmer.

The SQL Preprocessor does not require that indicator arrays have a lower bound of
one.

An indicator variable must have the attribute REAL NATIVE SIGNED FIXED
BIN(15).

The following example shows how to declare variables for the statement shown in
Figure 8.

You can declare variables as follows:
exec sql begin declare section;
dcl Cls_Cd char(7);
dcl Day bin fixed(15);
dcl Bgn char(8);
dcl End char(8);
dcl (Day_Ind, Bgn_Ind, End_Ind) bin fixed(15);
exec sql end declare section;

Host structure example
This example shows the declaration of a host structure and an indicator array
followed by an SQL statement that can be used to retrieve the data into the host
structure.

dcl 1 games,
5 sunday,

10 opponents char(30),
10 gtime char(10),
10 tv char(6),
10 comments char(120) var;

dcl indicator(4) fixed bin (15);

exec sql
fetch cursor_a
into :games.sunday:indicator;

exec sql fetch Cls_Cursor into :Cls_Cd,
:Day :Day_Ind,
:Bgn :Bgn_Ind,
:End :End_Ind;

Figure 8. SQL statement containing indicator variables

Using indicator variables

Chapter 2. PL/I preprocessors 139

Manipulating LOB data
LOBS, CLOBS, and BLOBS can be as large as 2,147,483,647 bytes long (2
Gigabytes). Double Byte CLOBS can be 1,073,741,823 characters long (1 Gigabyte).
To use large object (LOB) data from a DB2 table, use techniques like LOB locators
and LOB file references to manipulate the data while the data is still in the
database.

Declaring a host variable to hold all of the LOB data can be inefficient or
impractical, because this requires your program to allocate large amounts of
storage and requires DB2 to move large amounts of data. Therefore, it is
recommended that you use the following techniques to manipulate LOB data:
v LOB locators

Using LOB locators, you can manipulate LOB data without moving the LOB
data into host variables. By using LOB locators, you need much smaller amounts
of memory for your programs.

v LOB file references
You can use LOB file reference variables to import or export data between a
LOB column and an external file outside the DB2 system.

For more information about these techniques to minimize the moving around of
large pieces of data, see the DB2 for z/OS Application Programming and SQL Guide,
or the IBM Redbooks® publication, LOBs with DB2 for z/OS: Stronger and Faster.

See pliclob sample program for an example of how to manipulate CLOBs in a PL/I
and DB2 environment.

LOB locators
You can use LOB Locators to avoid materialization of the LOB data and all the
underlying activities associated with it.

The benefits of using LOB locators are listed as follows:
v Saving storage when manipulating LOBs with LOB locators
v Manipulating data without retrieving it from the database
v Avoiding the use of large amounts of storage to hold the LOB
v Avoiding the time and resource expenditures for moving large pieces of data

thereby improving performance

LOB locators are especially useful under the following circumstances:
v When you need only a small part of the LOB
v When you do not have enough memory for the entire LOB
v When performance is important
v In a client or server environment to avoid moving data over the network from

one system to another

The following code example is from pliclob sample program. The sample program
uses LOB locators to identify and manipulate sections of the resume CLOB from
the dsn8a10.emp_photo_resume DB2 V10 table. (The numbers that precede each line
are not part of the program, but are used in the explanation after the program.)
1. dcl hv_loc_resume sql type is clob_locator;
2. exec sql
3. select resume into :hv_loc_resume
4. from dsn8a10.emp_photo_resume
5. where empno = :hv_empno;

Host structure example

140 Enterprise PL/I for z/OS Programming Guide

6.
7. exec sql
8. set :start_resume = (posstr(:hv_loc_resume, ’Resume:’));

In lines 2 - 5, LOB locator hv_loc_resume is set to the location of the resume of the
employee number hv_empno in the emp_photo_resume table. In lines 7 - 8, the
start_resume host variable is set to the beginning of the ’Resume:’ section of the
resume. Then you can start manipulating the resume data while the resume is still
in the data base.

LOB file reference variables
You can use LOB file reference variables to import or export data between a LOB
column and an external file outside the DB2 system.

The benefits of using LOB file reference variables are listed as follows:
v Uses less processing time than moving LOB data with a host variable. The

movement of the data would not be overlapped with any DB2 processing or
network transfer time.

v Uses less application storage. LOB data is moved directly from DB2 to a file and
is not materialized in the memory of the application.

The following code example is from pliclob sample program. The sample program
uses LOB file references to create a new, trimmed down version of the resume in an
external file. (The numbers that precede each line are not part of the program, but
are used in the explanation after the program.)
1. dcl hv_clob_file sql type is clob_file;
2. name_string = ’/SYSTEM/tmp/pliclob2.txt’;
3. hv_clob_file.sql_lob_file_name_len = length(name_string);
4. hv_clob_file.sql_lob_file_name = name_string;
5. hv_clob_file.sql_lob_file_options = ior(sql_file_overwrite);
6.
7. exec sql
8. values (substr(:hv_loc_resume,:start_resume,
9. :start_pers_info-:start_resume)
10. || substr(:hv_loc_resume,:start_work_hist,
11. :start_interests-:start_work_hist)
12.)
13. into :hv_clob_file;

The host variable hv_clob_file is declared as a LOB file reference. In lines 2 - 4, the
file name field of the LOB file reference is set to the fully qualified file name and
file name length is set to its length. The overwrite option is set so any existing file
is overwritten (line 5). For details of these and other file options, see the DB2 for
z/OS Application Programming and SQL Guide.

Next the SQL VALUES statement is used to concatenate the resume name and work
history sections of the resume directly into the hv_clob_file LOB file reference, as
in lines 8 - 13.

Example: pliclob sample program
This sample PL/I program shows how to manipulate CLOBs in a PL/I and DB2
environment.

You must have the DB2 supplied sample database installed for this program to run
properly. This sample assumes DB2 V10 and table dsn8a10.emp_photo_resume. If
you use a different version of DB2, you must change the table reference.

Notes:

Host structure example

Chapter 2. PL/I preprocessors 141

v When you use the LOB locators and LOB file reference variables, the resume
CLOB is still within the database and not in memory or storage.

v The format of the resume CLOB in the database remains unchanged, with the
reformatting of the resume taking place only in the second file that was written
out.

pliclob: procedure options(main);
display(’begin pliclob’);
exec sql include sqlca;

dcl hv_empno char(06);
dcl name_string char(256) var;
dcl hv_resume sql type is clob(50k);
dcl hv_clob_file sql type is clob_file;
dcl hv_loc_resume sql type is clob_locator;

dcl start_resume fixed bin(31);
dcl start_pers_info fixed bin(31);
dcl start_dept_info fixed bin(31);
dcl start_education fixed bin(31);
dcl start_work_hist fixed bin(31);
dcl start_interests fixed bin(31);

/* Extract resume CLOB for employee ’000130’ into a file in z/OS */
/* UNIX file system. The contents of this file shows the initial */
/* format of the resume CLOB in the data base. */
/* Note: this program must have ’write’ access to the directory */
/* designated in the ’name_string’ variable. */
name_string = ’/SYSTEM/tmp/pliclob1.txt’;
hv_clob_file.sql_lob_file_name_len = length(name_string);
hv_clob_file.sql_lob_file_name = name_string;
hv_clob_file.sql_lob_file_options = ior(sql_file_overwrite);

hv_empno = ’000130’;
exec sql

select resume into :hv_clob_file
from dsn8a10.emp_photo_resume
where empno = :hv_empno;

display(’file1 sqlca.sqlcode = ’ || sqlca.sqlcode);

/* Next, a CLOB locator is used to locate the resume CLOB for */
/* employee number ’000130’ in the data base. Then a series of */
/* DB2 SET statements using the posstr DB2 function finds the */
/* beginning position of each section within the resume. */
exec sql

select resume into :hv_loc_resume
from dsn8a10.emp_photo_resume
where empno = :hv_empno;

display(’select resume sqlcode = ’|| sqlca.sqlcode);

exec sql set :start_resume =
(posstr(:hv_loc_resume, ’Resume:’));

display(’first set sqlcode = ’|| sqlca.sqlcode);

exec sql set :start_pers_info =
(posstr(:hv_loc_resume, ’Personal Information’));

display(’second set sqlcode = ’|| sqlca.sqlcode);

Figure 9. pliclob sample program

Host structure example

142 Enterprise PL/I for z/OS Programming Guide

exec sql set :start_dept_info =
(posstr(:hv_loc_resume, ’Department Information’));

display(’third set sqlcode = ’|| sqlca.sqlcode);

exec sql set :start_education =
(posstr(:hv_loc_resume, ’Education’));

display(’fourth set sqlcode = ’|| sqlca.sqlcode);

exec sql set :start_work_hist =
(posstr(:hv_loc_resume, ’Work History’));

display(’fifth set sqlcode = ’|| sqlca.sqlcode);

exec sql set :start_interests =
(posstr(:hv_loc_resume, ’Interests’));

display(’sixth set sqlcode = ’|| sqlca.sqlcode);

/* Finally, by using the CLOB locator and the start references */
/* of each section in the resume, along with the DB2 substr and */
/* concatenate (||) functions, the resume CLOB is written out to */
/* a second file in a slightly different format: */
/* 1. the Personal Information section is omitted due to */
/* privacy concerns. */
/* 2. the sections within the resume are written out in this */
/* order: Resume, Work History, Education then Department */
/* Information. */
/* */
/* After the second file is written out, the changes to the */
/* resume CLOB can be verified by comparing the contents of the */
/* two files pliclob1.txt and pliclob2.txt. */
/* */
/* Note: this program must have ’write’ access to the directory */
/* designated in the ’name_string’ variable. */
name_string = ’/SYSTEM/tmp/pliclob2.txt’;
hv_clob_file.sql_lob_file_name_len = length(name_string);
hv_clob_file.sql_lob_file_name = name_string;
hv_clob_file.sql_lob_file_options = ior(sql_file_overwrite);

exec sql
values (substr(:hv_loc_resume,:start_resume,

:start_pers_info-:start_resume)
|| substr(:hv_loc_resume,:start_work_hist,

:start_interests-:start_work_hist)
|| substr(:hv_loc_resume,:start_education,

:start_work_hist-:start_education)
|| substr(:hv_loc_resume,:start_dept_info,

:start_education-:start_dept_info)
)

into :hv_clob_file;

display(’file2 sqlca.sqlcode = ’ || sqlca.sqlcode);
display(’End pliclob’);

end;

pliclob sample program (continued)

Suppressing SQL preprocessor messages
You can use the IBM-supplied compiler user exit (IBMUEXIT) to suppress a
message or to change the severity of a message.

See “Example of suppressing SQL messages” on page 486 for an example of
suppressing the preprocessor messages by modifying the user exit.

Host structure example

Chapter 2. PL/I preprocessors 143

CICS preprocessor
You can use EXEC CICS statements in PL/I applications that run as transactions
under CICS.

If you do not specify the PP(CICS) option, EXEC CICS statements are parsed and
variable references in them are validated. If they are correct, no messages are
issued as long as the NOCOMPILE option is in effect. If you do not invoke the
CICS translator and the COMPILE option is in effect, the compiler will issue
S-level messages.

The compiler will invoke the CICS preprocessor if you specify the CICS suboption
of the PP option. For compatibility, the compiler will also invoke the CICS
preprocessor if any of these options is in effect: CICS, XOPT, or XOPTS. However,
you should not specify any of these options together with the PP(CICS) option.

Programming and compilation considerations
When you are developing programs for execution under CICS, all the EXEC CICS
commands must be translated in one of two ways:
v By the command language translator provided by CICS in a job step before the

PL/I compilation
v By the PL/I CICS preprocessor as part of the PL/I compilation (this requires

CICS TS 2.2 or later)

To use the CICS preprocessor, you must also specify the PP(CICS) and
DFT(EBCDIC) compile time options. All data passed to CICS must be in the
NATIVE format.

Unless you specify CICS as one of the suboptions of the PP(CICS) option, the
compiler will flag any EXEC CICS statements in the source. Similarly, it will flag
any EXEC CPSM or EXEC DLI statements if you do not specify CPSM or DLI
respectively as a suboption of the PP(CICS) option.

If your CICS program is a MAIN procedure, you must also compile it with the
SYSTEM(CICS) or SYSTEM(MVS) option. If you compile with SYSTEM(MVS), the
PTFs for runtime APAR PQ91318 must be applied. NOEXECOPS is implied with
this option and all parameters passed to the MAIN procedure must be POINTERs.
For a description of the SYSTEM compile time option, see “SYSTEM” on page 88.

If your want your CICS program to be reentrant and if your program uses FILEs
or CONTROLLED variables, you must compile it with the NOWRITABLE as well.

If your CICS program includes any files or uses any macros that contain EXEC
CICS statements, you must also run the MACRO preprocessor before your code is
translated (in either of the ways described above). If you are using the CICS
preprocessor, you can specify this with one PP option as illustrated in the
following example:

pp (macro(...) cics(...))

The CICS preprocessor will add a set of declares for CICS variables and APIs to all
non-nested procedures. Consequently, it keeps tracks of all statements that require
a matching END statement, and if some of these statements are missing or
incorrect, the preprocessor might be misled and not insert these declares. The
preprocessor will also terminate with a severe message if such statements are
nested more than 150 deep.

CICS Preprocessor

144 Enterprise PL/I for z/OS Programming Guide

Finally, in order to use the CICS preprocessor, you must have the CICS
SDFHLOAD data set as part of the STEPLIB DD for the PL/I compiler.

CICS preprocessor options
There are many options supported by the CICS translator.

For a description of these options, see the CICS Application Programming Guide.

Note that these options should be enclosed in quotation marks (single or double,
as long as they match). For instance, to invoke the CICS preprocessor with the EDF
option, you must specify the option PP(CICS(’EDF’)).

Coding CICS statements in PL/I applications
You can code CICS statements in your PL/I applications by using the language
defined in CICS on Open Systems Application Programming Guide. Specific
requirements for your CICS code are described in the sections that follow.

Embedding CICS statements
If you use the CICS translator rather than the integrated preprocessor, the first
statement of your PL/I program must be a PROCEDURE statement. You can add
CICS statements to your program wherever executable statements can appear. Each
CICS statement must begin with EXEC (or EXECUTE) CICS and end with a
semicolon (;).

For example, the GETMAIN statement might be coded as follows:
EXEC CICS GETMAIN SET(BLK_PTR) LENGTH(STG(BLK));

Comments:

In addition to the CICS statements, PL/I comments can be included in embedded
CICS statements wherever a blank is allowed.

Continuation for CICS statements:

Line continuation rules for CICS statements are the same as those for other PL/I
statements.

Including code:

If included code contains EXEC CICS statements or if your program uses PL/I
macros that generate EXEC CICS statements, you must use one of the following
options:
v The MACRO compile-time option
v The MACRO option of the PP option (before the CICS option of the PP option)

Margins:

CICS statements must be coded within the columns specified in the MARGINS
compile-time option.

Statement labels:

EXEC CICS statements, like PL/I statements, can have a label prefix.

Programming and compilation considerations

Chapter 2. PL/I preprocessors 145

Writing CICS transactions in PL/I
You can use PL/I with CICS facilities to write application programs (transactions)
for CICS subsystems. If you do this, CICS provides facilities, which would
normally be provided directly by the operating system, to the PL/I program. These
facilities include most data management facilities and all job and task management
facilities.

You must observe the following restrictions on PL/I CICS programs:
v Macro-level CICS is not supported.
v You cannot use PL/I input or output except for the following:

– PUT FILE(SYSPRINT)
– DISPLAY
– CALL PLIDUMP

v You cannot use the PLISRTx built-in subroutines.
v Routines written in a language other than PL/I cannot be called from a PL/I

CICS program if those routines contain their own EXEC CICS statements. If you
want to communicate with a non-PL/I program that contains EXEC CICS
statements, you must use EXEC CICS LINK or EXEC CICS XCTL.

Although PUT FILE(SYSPRINT) is permitted under CICS, you should generally not
use it in production programs because it might degrade performance.

Because the CICS EIB address is only generated by either the CICS translator or
the PL/I CICS preprocessor for an OPTIONS(MAIN) program, you must establish
the addressability to the EIB for the OPTIONS(FETCHABLE) routine in one of the
following ways:
v Use this command:

EXEC CICS ADDRESS EIB(DFHEIPTR)

v Pass the EIB address as an argument to the CALL statement that invokes the
external procedure.

Error-handling
Language Environment prohibits the use of some EXEC CICS commands in any
PL/I ON-unit or in any code called from a PL/I ON-unit.

The following EXEC CICS commands are not allowed in ON-unit:
v EXEC CICS ABEND
v EXEC CICS HANDLE AID
v EXEC CICS HANDLE ABEND
v EXEC CICS HANDLE CONDITION
v EXEC CICS IGNORE CONDITION
v EXEC CICS POP HANDLE
v EXEC CICS PUSH HANDLE

All other EXEC CICS commands are allowed within an ON-unit. However, you
must code them by using the NOHANDLE option, the RESP option, or the RESP2
option.

Writing CICS transactions in PL/I

146 Enterprise PL/I for z/OS Programming Guide

Chapter 3. Using PL/I cataloged procedures

This chapter describes the standard cataloged procedures supplied by IBM for use
with the IBM Enterprise PL/I for z/OS compiler. It explains how to invoke them,
and how to temporarily or permanently modify them.

The Language Environment SCEERUN data set must be located in STEPLIB and
accessible to the compiler when you use any of the cataloged procedures.

A cataloged procedure is a set of job control statements, stored in a library, that
includes one or more EXEC statements, each of which can be followed by one or
more DD statements. You can retrieve the statements by naming the cataloged
procedure in the PROC parameter of an EXEC statement in the input stream.

You can use cataloged procedures to save time and reduce Job Control Language
(JCL) errors. If the statements in a cataloged procedure do not match your
requirements exactly, you can easily modify them or add new statements for the
duration of a job. You should review these procedures and modify them to obtain
the most efficient use of the facilities available and to allow for your own
conventions.

IBM-supplied cataloged procedures
This section describes PL/I cataloged procedures supplied for use with Enterprise
PL/I for z/OS.

For a description of the individual statements for compiling and link editing, see
“Invoking the compiler under z/OS using JCL” on page 159 and the z/OS Language
Environment Programming Guide.

The following PL/I cataloged procedures are supplied for use with Enterprise PL/I
for z/OS:
IBMZC

Compile only
IBMZCB

Compile and bind
IBMZCBG

Compile, bind, and run

Cataloged procedures IBMZCB and IBMZCBG use features of the program
management binder introduced in DFSMS/MVS 1.4. These procedures produce a
program object in a PDSE.

These cataloged procedures do not include a DD statement for the input data set;
you must always provide one. The example shown in Figure 10 on page 148
illustrates the JCL statements you might use to invoke the cataloged procedure
IBMZCBG to compile, bind, and run a PL/I program.

Enterprise PL/I requires a minimum REGION size of 32M. Large programs require
more storage. If you do not specify REGION on the EXEC statement that invokes
the cataloged procedure you are running, the compiler uses the default REGION
size for your site. The default size might or might not be adequate, depending on
the size of your PL/I program.

© Copyright IBM Corp. 1999, 2017 147

If you compile your programs with optimization turned on, the REGION size (and
time) required might be much, much larger. For an example of specifying REGION
on the EXEC statement, see Figure 10.

Example: Invoking a cataloged procedure

Compile only (IBMZC)
The IBMZC cataloged procedure, shown in Figure 11 on page 149, includes only
one procedure step, in which the options specified for the compilation are OBJECT
and OPTIONS. (IBMZPLI is the symbolic name of the compiler.) In common with
the other cataloged procedures that include a compilation procedure step, IBMZC
does not include a DD statement for the input data set; you must always supply
an appropriate statement with the qualified ddname PLI.SYSIN.

The OBJECT compile-time option causes the compiler to place the object module,
in a syntax suitable for input to the linkage editor, in the standard data set defined
by the DD statement with the name SYSLIN. This statement defines a temporary
data set named &&LOADSET on a sequential device; if you want to retain the
object module after the end of your job, you must substitute a permanent name for
&&LOADSET (that is, a name that does not start with &&) and specify KEEP in
the appropriate DISP parameter for the last procedure step that used the data set.
You can do this by providing your own SYSLIN DD statement, as shown below.
The data set name and disposition parameters on this statement will override those
on the IBMZC procedure SYSLIN DD statement. In this example, the compile step
is the only step in the job.
//PLICOMP EXEC IBMZC
//PLI.SYSLIN DD DSN=MYPROG,DISP=SHR
//PLI.SYSIN DD ...

The term MOD in the DISP parameter in Figure 11 on page 149 allows the
compiler to place more than one object module in the data set, and PASS ensures
that the data set is available to a later procedure step providing a corresponding
DD statement is included there.

The SYSLIN SPACE parameter allows an initial allocation of 1 cylinder and, if
necessary, 15 further allocations of 1 cylinder (a total of 16 cylinders).

//COLEGO JOB
//STEP1 EXEC IBMZCBG, REGION.PLI=32M
//PLI.SYSIN DD *

.

.

.
(insert PL/I program to be compiled here)

.

.

.
/*

Figure 10. Invoking a cataloged procedure

148 Enterprise PL/I for z/OS Programming Guide

Compile and bind (IBMZCB)
The IBMZCB cataloged procedure, shown in Figure 12 on page 150, includes two
procedure steps: PLI, which is identical to cataloged procedure IBMZC, and BIND,
which invokes the Program Management binder (symbolic name IEWBLINK) to
bind the object module produced in the first procedure step.

Input data for the compilation procedure step requires the qualified ddname
PLI.SYSIN. The COND parameter in the EXEC statement BIND specifies that this
procedure step should be bypassed if the return code produced by the compiler is
greater than 8 (that is, if a severe error or an unrecoverable error occurs during
compilation).

//IBMZC PROC LNGPRFX=’IBMZ.V5R1M0’,LIBPRFX=’CEE’,
// SYSLBLK=3200
//*
//**
//* *
//* LICENSED MATERIALS - PROPERTY OF IBM *
//* *
//* 5655-H31 COPYRIGHT IBM CORP. 1999, 2009 *
//* ALL RIGHTS RESERVED. *
//* *
//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, *
//* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA *
//* ADP SCHEDULE CONTRACT WITH IBM CORP. *
//* *
//**
//*
//* IBM ENTERPRISE PL/I FOR Z/OS
//* VERSION 5 RELEASE 1 MODIFICATION
0
//*
//* COMPILE A PL/I PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IBMZ.V5R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET
//*
//* USER MUST SUPPLY //PLI.SYSIN DD STATEMENT THAT IDENTIFIES
//* LOCATION OF COMPILER INPUT
//*
//***
//* COMPILE STEP
//***
//PLI EXEC PGM=IBMZPLI,PARM=’OBJECT,OPTIONS’
//STEPLIB DD DSN=&LNGPRFX;.SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX;.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(CYL,(1,1)),DCB=(LRECL=80,BLKSIZE=&SYSLBLK)
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024

Figure 11. Cataloged Procedure IBMZC

Chapter 3. Using PL/I cataloged procedures 149

The Program Management binder always places the program objects it creates in
the standard data set defined by the DD statement with the name SYSLMOD. This
statement in the cataloged procedure specifies a new temporary library &&GOSET,
in which the program object will be placed and given the member name GO. In
specifying a temporary library, the cataloged procedure assumes that you will run

//IBMZCB PROC LNGPRFX=’IBMZ.V5R1M0’,LIBPRFX=’CEE’,
// SYSLBLK=3200,GOPGM=GO
//*
//**
//* *
//* LICENSED MATERIALS - PROPERTY OF IBM *
//* *
//* 5655-H31 (C) COPYRIGHT IBM CORP. 1999, 2009 *
//* ALL RIGHTS RESERVED. *
//* *
//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, *
//* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA *
//* ADP SCHEDULE CONTRACT WITH IBM CORP. *
//* *
//**
//*
//* IBM ENTERPRISE PL/I FOR Z/OS
//* VERSION 5 RELEASE 1 MODIFICATION
0
//*
//* COMPILE AND BIND A PL/I PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IBMZ.V5R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET
//* GOPGM GO MEMBER NAME FOR PROGRAM OBJECT
//*
//***
//* COMPILE STEP
//***
//PLI EXEC PGM=IBMZPLI,PARM=’OBJECT,OPTIONS’
//STEPLIB DD DSN=&LNGPRFX;.SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX;.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(CYL,(1,1)),DCB=(LRECL=80,BLKSIZE=&SYSLBLK)
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//***
//* BIND STEP
//***
//BIND EXEC PGM=IEWBLINK,COND=(8,LT,PLI),
// PARM=’XREF,COMPAT=PM3’
//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=*.PLI.SYSLIN,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(1024,(50,20,1)),DSNTYPE=LIBRARY
//SYSDEFSD DD DUMMY
//SYSIN DD DUMMY

Figure 12. Cataloged procedure IBMZCB

150 Enterprise PL/I for z/OS Programming Guide

the program object in the same job; if you want to retain the program object, you
must substitute your own statement for the DD statement with the name
SYSLMOD.

Compile, bind, and run (IBMZCBG)
The IBMZCBG cataloged procedure, shown in Figure 13 on page 152, includes
three procedure steps: PLI, BIND, and GO. PLI and BIND are identical to the two
procedure steps of IBMZCB, and GO runs the program object created in the step
BIND. The GO step is executed only if no severe or unrecoverable errors occurred
in the preceding procedure steps.

Input data for the compilation procedure step should be specified in a DD
statement with the name PLI.SYSIN, and for the GO step in a DD statement with
the name GO.SYSIN.

Chapter 3. Using PL/I cataloged procedures 151

//IBMZCBG PROC LNGPRFX=’IBMZ.V5R1M0’,LIBPRFX=’CEE’,
// SYSLBLK=3200,GOPGM=GO
//*
//**
//* *
//* LICENSED MATERIALS - PROPERTY OF IBM *
//* *
//* 5655-H31 (C) COPYRIGHT IBM CORP. 1999, 2015 *
//* ALL RIGHTS RESERVED. *
//* *
//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, *
//* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA *
//* ADP SCHEDULE CONTRACT WITH IBM CORP. *
//* *
//**
//*
//* IBM ENTERPRISE PL/I FOR Z/OS
//* VERSION 5 RELEASE 1 MODIFICATION
0
//*
//* COMPILE, BIND, AND RUN A PL/I PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IBMZ.V5R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET
//* GOPGM GO MEMBER NAME FOR PROGRAM OBJECT
//*
//***
//* COMPILE STEP
//***
//PLI EXEC PGM=IBMZPLI,PARM=’OBJECT,OPTIONS’
//STEPLIB DD DSN=&LNGPRFX;.SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX;.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(CYL,(1,1)),DCB=(LRECL=80,BLKSIZE=&SYSLBLK)
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024

//***
//* BIND STEP
//***
//BIND EXEC PGM=IEWBLINK,COND=(8,LT,PLI),
// PARM=’XREF,COMPAT=PM3’
//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=*.PLI.SYSLIN,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSALLDA,
// SPACE=(1024,(50,20,1)),DSNTYPE=LIBRARY
//SYSDEFSD DD DUMMY
//SYSIN DD DUMMY
//***
//* RUN STEP
//***
//GO EXEC PGM=*.BIND.SYSLMOD,COND=((8,LT,PLI),(8,LE,BIND))
//STEPLIB DD DSN=&LIBPRFX;.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Figure 13. Cataloged procedure IBMZCBG

152 Enterprise PL/I for z/OS Programming Guide

Invoking a cataloged procedure
To invoke a cataloged procedure, specify its name in the PROC parameter of an
EXEC statement.

For example, to use the cataloged procedure IBMZC, you can include the following
statement in the appropriate position among your other job control statements in
the input stream:
//stepname EXEC PROC=IBMZC

You do not need to code the keyword PROC. If the first operand in the EXEC
statement does not begin with PGM= or PROC=, the job scheduler interprets it as
the name of a cataloged procedure. The following statement is equivalent to that
given above:
//stepname EXEC IBMZC

If you include the parameter MSGLEVEL=1 in your JOB statement, the operating
system will include the original EXEC statement in its listing, and will add the
statements from the cataloged procedure. In the listing, cataloged procedure
statements are identified by XX or X/ as the first two characters; X/ signifies a
statement that was modified for the current invocation of the cataloged procedure.

You might be required to modify the statements of a cataloged procedure for the
duration of the job step in which it is invoked, either by adding DD statements or
by overriding one or more parameters in the EXEC or DD statements. For example,
cataloged procedures that invoke the compiler require the addition of a DD
statement with the name SYSIN to define the data set containing the source
statements. Also, whenever you use more than one standard link-edit procedure
step in a job, you must modify all but the first cataloged procedure that you
invoke if you want to run more than one of the load modules.

Specifying multiple cataloged procedure invocations
You can invoke different cataloged procedures, or invoke the same cataloged
procedure several times, in the same job.

No special problems are likely to arise unless more than one of these cataloged
procedures involves a link-edit procedure step, in which case you must take the
following precautions to ensure that all your load modules can be run.

When the linkage editor creates a load module, it places the load module in the
standard data set defined by the DD statement with the name SYSLMOD. When
the binder creates a program object, it places the program object in the PDSE
defined by the DD statement with the name SYSLMOD. In the absence of a linkage
editor NAME statement, the linkage editor or the binder uses the member name
specified in the DSNAME parameter as the name of the module. In the standard
cataloged procedures, the DD statement with the name SYSLMOD always specifies
a temporary library &&GOSET with the member name GO.

If you use the cataloged procedure IBMZCBG twice within the same job to
compile, bind, and run two PL/I programs, and do not name each of the two
program objects that the binder creates, the first program object runs twice, and the
second one not at all.

Chapter 3. Using PL/I cataloged procedures 153

To prevent this, use one of the following methods:
v Delete the library &&GOSET at the end of the GO step. In the first invocation of

the cataloged procedure at the end of the GO step, add a DD statement with the
syntax:
//GO.SYSLMOD DD DSN=&&GOSET,
// DISP=(OLD,DELETE)

v Modify the DD statement with the name SYSLMOD in the second and
subsequent invocations of the cataloged procedure so as to vary the names of
the load modules; for example, //BIND.SYSLMOD DD DSN=&&GOSET(GO1), and so
on.

v Use the NAME linkage editor option to give a different name to each program
object and change each job step EXEC statement to specify the running of the
program object with the name for that job step.

To assign a membername to the program object, you can use the linkage editor
NAME option with the DSNAME parameter on the SYSLMOD DD statement.
When you use this procedure, the membername must be identical to the name on
the NAME option if the EXEC statement that runs the program refers to the
SYSLMOD DD statement for the name of the module to be run.

Another option is to give each program a different name by using GOPGM on the
EXEC procedure statement, as in the following example:
// EXEC IBMZCBG,GOPGM=GO2

Modifying the PL/I cataloged procedures
You can modify a cataloged procedure temporarily by including parameters in the
EXEC statement that invokes the cataloged procedure, or by placing additional DD
statements after the EXEC statement.

Temporary modifications apply only for the duration of the job step in which the
procedure is invoked. They do not affect the master copy of the cataloged
procedure in the procedure library.

Temporary modifications can apply to EXEC or DD statements in a cataloged
procedure. To change a parameter of an EXEC statement, you must include a
corresponding parameter in the EXEC statement that invokes the cataloged
procedure. To change one or more parameters of a DD statement, you must
include a corresponding DD statement after the EXEC statement that invokes the
cataloged procedure. Although you cannot add a new EXEC statement to a
cataloged procedure, you can always include additional DD statements.

EXEC statement
You can modify a cataloged procedure temporarily by including parameters in the
EXEC statement that invokes the cataloged procedure.

If a parameter of an EXEC statement that invokes a cataloged procedure has an
unqualified name, the parameter applies to all the EXEC statements in the
cataloged procedure. The effect on the cataloged procedure depends on the
parameters, as follows:
v PARM applies to the first procedure step and nullifies any other PARM

parameters.
v COND and ACCT apply to all the procedure steps.

154 Enterprise PL/I for z/OS Programming Guide

v TIME and REGION apply to all the procedure steps and override existing
values.

For example, the following statement has these effects:
//stepname EXEC IBMZCBG,PARM=’OFFSET’,REGION=32M

v Invokes the cataloged procedure IBMZCBG.
v Substitutes the option OFFSET for OBJECT and OPTIONS in the EXEC

statement for procedure step PLI.
v Nullifies the PARM parameter in the EXEC statement for procedure step BIND.
v Specifies a region size of 32M for all three procedure steps.

To change the value of a parameter in only one EXEC statement of a cataloged
procedure, or to add a new parameter to one EXEC statement, you must identify
the EXEC statement by qualifying the name of the parameter with the name of the
procedure step. For example, to alter the region size for procedure step PLI only in
the preceding example, code as follows:
//stepname EXEC PROC=IBMZCBG,PARM=’OFFSET’,REGION.PLI=90M

A new parameter specified in the invoking EXEC statement completely overrides
the corresponding parameter in the procedure EXEC statement.

You can nullify all the options specified by a parameter by coding the keyword
and equal sign without a value. For example, to suppress the bulk of the linkage
editor listing when invoking the cataloged procedure IBMZCBG, code as follows:
//stepname EXEC IBMZCBG,PARM.BIND=

DD statement
You can modify a cataloged procedure temporarily by placing additional DD
statements after the EXEC statement.

To add a DD statement to a cataloged procedure, or to modify one or more
parameters of an existing DD statement, you must include a DD statement with
the form procstepname.ddname in the appropriate position in the input stream. If
ddname is the name of a DD statement already present in the procedure step
identified by procstepname, the parameters in the new DD statement override the
corresponding parameters in the existing DD statement; otherwise, the new DD
statement is added to the procedure step. For example, the following statement
adds a DD statement to the procedure step PLI of cataloged procedure IBMZC:
//PLI.SYSIN DD *

The following statement modifies the existing DD statement SYSPRINT (causing
the compiler listing to be transmitted to the system output device of class C).
//PLI.SYSPRINT DD SYSOUT=C

Overriding DD statements must appear after the procedure invocation and in the
same order as they appear in the cataloged procedure. Additional DD statements
can appear after the overriding DD statements are specified for that step.

To override a parameter of a DD statement, code either a revised form of the
parameter or a replacement parameter that performs a similar function (for
example, SPLIT for SPACE). To nullify a parameter, code the keyword and equal
sign without a value. You can override DCB subparameters by coding only those

Chapter 3. Using PL/I cataloged procedures 155

you want to modify; that is, the DCB parameter in an overriding DD statement
does not necessarily override the entire DCB parameter of the corresponding
statement in the cataloged procedures.

156 Enterprise PL/I for z/OS Programming Guide

Chapter 4. Compiling your program

This chapter describes how to invoke the compiler under z/OS UNIX System
Services (z/OS UNIX) and the job control statements used for compiling under
z/OS.

The Language Environment SCEERUN data set must be accessible to the compiler
when you compile your program.

Invoking the compiler under z/OS UNIX
To compile your program under the z/OS UNIX environment, use the pli
command.

►►

▼ ▼

pli

command_line_option input_file

►◄

command_line_option
You can specify a command_line_option in the following ways:
v -qoption
v Option flag (usually a single letter preceded by -)

If you specify compile time options on the command line, the format differs
from the format if you set them in your source file using %PROCESS
statements. See “Specifying compile-time options under z/OS UNIX” on page
158.

input_file
The z/OS UNIX file specification for your program files.

If you omit the extension from your file specification, the compiler assumes the
extension .pli. If you omit the complete path, the compiler assumes the
current directory.

Input files
The pli command compiles PL/I source files, links the resulting object files with
any object files and libraries specified on the command line in the order indicated,
and produces a single executable file.

The pli command accepts the following types of files:

Source files—.pli
All .pli files are source files for compilation. The pli command sends source
files to the compiler in the order they are listed. If the compiler cannot find a
specified source file, it produces an error message and the pli command
proceeds to the next file if one exists.

All HFS source files must be line-delimited and encoded in EBCDIC.

Object files—.o
All .o files are object files. The pli command sends all object files along with
library files to the linkage editor at link-edit time unless you specify the -c
option. After it compiles all the source files, the compiler invokes the linkage

© Copyright IBM Corp. 1999, 2017 157

editor to link-edit the resulting object files with any object files specified in the
input file list, and produces a single executable output file.

Library files—.a
The pli command sends all of the library files (.a files) to the linkage editor at
link-edit time.

Specifying compile-time options under z/OS UNIX
Enterprise PL/I provides compile-time options to change any of the default
settings of the compiler. You can specify options on the command line, and they
remain in effect for all compilation units in the file unless %PROCESS statements
in your source program override them.

See “Compile-time option descriptions” on page 3 for a description of these
options.

When you specify options on the command line, they override the default settings
of the option. They are overridden by options set in the source file.

You can specify compile-time options on the command line in three ways:
v -qoption_keyword (compiler-specific)
v Single and multiletter flags
v -q+/u/myopts.txt

-qoption_keyword
You can specify options on the command line by using the -qoption format.

►► -q option_keyword

▼

:

= suboption
suboption=argument

►◄

You can have multiple -qoptions on the same command line, but they must be
separated by blanks. Option keywords can appear in either uppercase or
lowercase, but you must specify the -q in lowercase.

Some compile-time options allow you to specify suboptions. These suboptions are
indicated on the command line with an equal sign following the -qoption_keyword.
Multiple suboptions must be separated with a colon(:) and no intervening blanks.

An option, for example, that contains multiple suboptions is RULES. To specify
RULES(LAXDCL) on the command line, enter the following command:
-qrules=ibm:laxdcl

The LIMITS option is slightly more complex because each of its suboptions also
has an argument. You can specify LIMITS(EXTNAME(31),FIXEDDEC(15)) on the
command line as shown in the following example:
-qlimits=extname=31:fixeddec=15

Related information:
“RULES” on page 70
The RULES option allows or disallows certain language capabilities and lets you
choose semantics when alternatives are available. It can help you diagnose
common programming errors.

158 Enterprise PL/I for z/OS Programming Guide

“LIMITS” on page 45
The LIMITS option specifies various implementation limits.

Single and multiletter flags
The z/OS UNIX family of compilers uses a number of common conventional flags.
Each language has its own set of additional flags.

Some flag options have arguments that form part of the flag. In the following
example, /home/test3/include is an include directory to be searched for INCLUDE
files.
pli samp.pli -I/home/test3/include

Each flag option should be specified as a separate argument.

Table 13. Compile-time option flags supported by Enterprise PL/I under z/OS UNIX

Option Description

-c Compile only.

-e Create names and entries for a fetchable load module.

-I<dir>* Add path <dir> to the directories to be searched for INCLUDE files. -I
must be followed by a path and only a single path is allowed per -I
option. To add multiple paths, use multiple -I options. There should
not be any spaces between -I and the path name.

-O, -O2 Optimize generated code. This option is equivalent to -qOPT=2.

-q<option>* Pass it to the compiler. <option> is a compile-time option. Each option
should be delimited by a comma and each suboption should be
delimited by an equal sign or a colon. There should not be any spaces
between -q and <option>.

-v Display compile and link steps, and execute them.

-# Display compile and link steps, but do not execute them.

Note: *You must specify an argument where indicated; otherwise, the results are
unpredictable.

Invoking the compiler under z/OS using JCL
Although you will probably use cataloged procedures rather than supply all the
JCL statements required for a job step that invokes the compiler, you must be
familiar with these statements so that you can make the best use of the compiler
and, if necessary, override the statements of the cataloged procedures.

So-called "batch compilation", whereby one compilation produces more than one
object deck, is not supported.

Invoking the compiler by BPXBATCH is also not supported.

The following section describes the JCL needed for compilation. The IBM-supplied
cataloged procedures described in “IBM-supplied cataloged procedures” on page
147 contain these statements. You need to code them yourself only if you are not
using the cataloged procedures.

Specifying compile-time options

Chapter 4. Compiling your program 159

EXEC statement
The basic EXEC statement is //stepname EXEC PGM.

512K is required for the REGION parameter of this statement.

If you compile your programs with optimization turned on, the REGION size (and
time) required might be much, much larger.

The PARM parameter of the EXEC statement can be used to specify one or more of
the optional facilities provided by the compiler. These facilities are described under
“Specifying options in the EXEC statement” on page 163. See Chapter 1, “Using
compiler options and facilities,” on page 3 for a description of the options.

DD statements for the standard data sets
The compiler requires several standard data sets. The number of data sets depends
on the optional facilities specified. You must define these data sets in DD
statements.

You must define these data sets in DD statements with the standard ddnames
shown, together with other characteristics of the data sets, in Table 14. The DD
statements SYSIN, SYSUT1, and SYSPRINT are always required.

You can store any of the standard data sets on a direct access device, but you must
include the SPACE parameter in the DD statement. This parameter defines the data
set to specify the amount of auxiliary storage required. The amount of auxiliary
storage allocated in the IBM-supplied cataloged procedures should suffice for most
applications.

Table 14. Compiler standard data sets

Standard DDNAME Contents of data set Possible
device
classes1

Record
format
(RECFM)

Record size (LRECL)

SYSDEBUG TEST(SEPARATE) output SYSDA F,FB >=80 and <=1024

SYSDEFSD XINFO(DEF) output SYSDA F,FB 128

SYSIN Input to the compiler SYSSQ F,FB,U <101(100)

VB,V <105(104)

SYSLIB Source statements for INCLUDE
files

SYSDA F,FB,U <101

V,VB <105

SYSLIN Object module SYSSQ FB 80

SYSPRINT Listing, including messages SYSSQ VBA 137 if MARGINS <= 100)

255 (if MARGINS > 100)

SYSPUNCH Preprocessor output, compiler
output

SYSSQ

SYSCP

FB 80

or

MARGINS() value

SYSUT1 Temporary workfile SYSDA F 4051

SYSUT2 Temporary workfile SYSDA FB 3200

SYSUT3 Temporary workfile SYSDA FB 3200

SYSXMLSD XINFO(XML) output SYSDA VB 16383

Specifying compile-time options

160 Enterprise PL/I for z/OS Programming Guide

|

|

Table 14. Compiler standard data sets (continued)

Standard DDNAME Contents of data set Possible
device
classes1

Record
format
(RECFM)

Record size (LRECL)

SYSADATA XINFO(MSG) output SYSDA U 1024

1. Descriptions of device classes
SYSSQ

Sequential device
SYSDA

Direct access device

Block size can be specified except for SYSUT1. The block size and logical record length for SYSUT1 is chosen by
the compiler.

Notes:

1. The only value for compile-time SYSPRINT that can be overridden is BLKSIZE.

2. SYSUT2 and SYSUT3 are required only under LP(64) and only if the GONUMBER or TEST option is in effect.

Input (SYSIN)
Input to the compiler must be a data set defined by a DD statement with the name
SYSIN.

This data set must have the CONSECUTIVE organization. The input must be one
or more external PL/I procedures. If you want to compile more than one external
procedure in a single job or job step, precede each procedure, except possibly the
first, with a %PROCESS statement.

80-byte records are commonly used as the input medium for PL/I source
programs. The input data set can be on a direct access device or on some other
sequential media. The input data set can contain either fixed-length records
(blocked or unblocked), variable-length records (coded or uncoded), or
undefined-length records. The maximum record size is 100 bytes.

The maximum number of lines in the input file is 999999.

When data sets are concatenated for input to the compiler, the concatenated data
sets must have similar characteristics (for example, block size and record format).

Output (SYSLIN, SYSPUNCH)
Output in the form of one or more object modules from the compiler will be stored
in the data set SYSLIN if you specify the OBJECT compile-time option. This data
set is defined by the DD statement.

The object module is always in the form of 80-byte fixed-length records, blocked or
unblocked. If the BLKSIZE is specified for SYSLIN and is not 80, the LRECL must
be specified as 80.

The SYSLIN DD must name either a temporary data set or a permanent data set: it
cannot specify a concatenation of data sets of any type.

The SYSLIN DD must specify a sequential data set, not a PDS or PDSE.

The data set defined by the DD statement with the name SYSPUNCH is also used
to store the output from the preprocessor if you specify the MDECK compile-time
option.

Specifying compile-time options

Chapter 4. Compiling your program 161

Temporary workfile (SYSUT1)
The compiler requires a data set for use as a temporary workfile. It is defined by a
DD statement with the name SYSUT1, and is known as the spill file. It must be on
a direct access device, and must not be allocated as a multivolume data set.

The spill file is used as a logical extension to main storage and is used by the
compiler and by the preprocessor to contain text and dictionary information. The
LRECL and BLKSIZE for SYSUT1 is chosen by the compiler based on the amount
of storage available for spill file pages.

The DD statements given in this publication and in the cataloged procedures for
SYSUT1 request a space allocation in blocks of 1024 bytes. This is to ensure that
adequate secondary allocations of direct access storage space are acquired.

Temporary workfile (SYSUT2, SYSUT3)
The compiler requires SYSUT2 and SYSUT3 as temporary data sets when
compiling programs under the LP(64) option and the GONUMBER or TEST option
is in effect.

For large programs, if there is not enough space available in the SYSUT2 or the
SYSUT3 data set, then the compiler might abend.

Listing (SYSPRINT)
The compiler generates a listing that includes all the source statements that it
processed, information relating to the object module, and, when necessary,
messages.

Most of the information included in the listing is optional, and you can specify
those parts that you require by including the appropriate compile-time options. For
details about the information that can appear and the associated compile-time
options, see “Using the compiler listing” on page 103.

You must define the data set, in which you want the compiler to store its listing, in
a DD statement with the name SYSPRINT. This data set must have the
CONSECUTIVE organization. Although the listing is usually printed, it can be
stored on any sequential or direct access device. For printed output, the following
statement will suffice if your installation follows the convention that output class A
refers to a printer:
//SYSPRINT DD SYSOUT=A

Source Statement Library (SYSLIB)
If you use the %INCLUDE statement to introduce source statements into the PL/I
program from a library, you can either define the library in a DD statement with
the name SYSLIB, or choose your own ddname (or ddnames) and specify a
ddname in each %INCLUDE statement.

The DD statement should specify a PDS or PDSE, but not the actual member. For
example, to include the file HEADER from the library SYSLIB by using the data set
INCLUDE.PLI, you can use one of the following %INCLUDE statements:
v %INCLUDE HEADER;

v %INCLUDE SYSLIB(HEADER);

The DD statement should be specified as follows:
SYSLIB DD DISP=SHR,DSN=INCLUDE.PLI

Specifying compile-time options

162 Enterprise PL/I for z/OS Programming Guide

But the following statement is not valid:
SYSLIB DD DISP=SHR,DSN=INCLUDE.PLI(HEADER)

All %INCLUDE files must have the same record format (fixed, variable, or
undefined), the same logical record length, and the same left and right margins as
the SYSIN source file.

The BLOCKSIZE of the library must be less than or equal to 32760 bytes.

The maximum number of lines in any one include file is 999999.

Specifying options
For each compilation, the IBM-supplied or installation default for a compile-time
option applies unless it is overridden by specifying the option in a %PROCESS
statement or in the PARM parameter of an EXEC statement.

An option specified in the PARM parameter overrides the default value, and an
option specified in a %PROCESS statement overrides both the value specified in
the PARM parameter and the default value.

Note: When conflicting attributes are specified either explicitly or implicitly by the
specification of other options, the latest implied or explicit option is accepted. No
diagnostic message is issued to indicate that any options are overridden in this
way.

Specifying options in the EXEC statement
To specify options in the EXEC statement, code PARM= followed by the list of
options. You can list the options in any order. You must separate the options with
commas, and enclose the list within single quotation marks.

See the following example:
//STEP1 EXEC PGM=IBMZPLI,PARM=’OBJECT,LIST’

If any option has quotation marks, for example MARGINI(’c’), you must duplicate
the quotation marks. The length of the option list must not exceed 100 characters,
including the separating commas. However, you can use the abbreviated syntax of
options, if available, to save space. If you need to continue the statement onto
another line, you must enclose the list of options in parentheses (instead of in
quotation marks), enclose the options list on each line in quotation marks, and
ensure that the last comma on each line except the last line is outside the quotation
marks. The following example illustrates all these points:
//STEP1 EXEC PGM=IBMZPLI,PARM=(’AG,A’,
// ’C,F(I)’,
// ’M,MI(’’X’’),NEST,STG,X’)

If you are using a cataloged procedure and want to specify options explicitly, you
must include the PARM parameter in the EXEC statement that invokes it,
qualifying the keyword PARM with the name of the procedure step that invokes
the compiler, as in the following example:
//STEP1 EXEC nnnnnnn,PARM.PLI=’A,LIST’

Specifying compile-time options

Chapter 4. Compiling your program 163

Specifying options in the EXEC statement using an options
file

Another way to specify options in the EXEC statement is by declaring all your
options in an options file and coding the following:
//STEP1 EXEC PGM=IBMZPLI,PARM=’+DD:OPTIONS’

This method allows you to provide a consistent set of options that you frequently
use. This is especially effective if you want other programmers to use a common
set of options. It also gets you past the 100-character limit.

The MARGINS option does not apply to options files: the data in column 1 will be
read as part of the options. Also, if the file is F-format, any data after column 72
will be ignored.

The parm string can contain "normal" options and can point to more than one
options file. For instance, to specify the option LIST as well as options from both
the file in the GROUP DD and the file in the PROJECT DD, you can specify the
following:

PARM=’LIST +DD:GROUP +DD:PROJECT’

The options in the PROJECT file have precedence over options in the GROUP file.

Also, in this case, the LIST option might be turned off by a NOLIST option
specified in either of the options files. To ensure that the LIST option is on, you can
specify the following:

PARM=’+DD:GROUP +DD:PROJECT LIST’

You can also use options files under z/OS UNIX. For example, in z/OS UNIX, to
compile sample.pli with options from the file /u/pli/group.opt, you can use the
following command:

pli -q+/u/pli/group.opt sample.pli

Earlier releases of the compiler used the character '@' as the trigger character that
preceded the options file specification. This character is not part of the invariant set
of EBCDIC code points, and for that reason the character '+', which is invariant, is
preferred. However, the '@' character can still be used as long as it is specified with
the hex value '7C'x.

Specifying compile-time options

164 Enterprise PL/I for z/OS Programming Guide

Chapter 5. Link-editing and running for 31-bit programs

After compilation with LP(32), your 31-bit program consists of one or more object
modules that contain unresolved references to each other, as well as references to
the Language Environment runtime library. These references are resolved during
link-editing (statically) or during execution (dynamically).

After you compile your PL/I program, the next step is to link and run your
program with test data to verify that it produces the results you expect.

Language Environment provides the runtime environment and services you need
to execute your program. For instructions on linking and running PL/I and all
other Language Environment-conforming language programs, see the z/OS
Language Environment Programming Guide. For information about migrating your
existing PL/I programs to Language Environment, see the Enterprise PL/I for z/OS
Compiler and Run-Time Migration Guide.

Link-edit considerations for 31-bit programs
If you compile with the option RENT or the option LIMITS(EXTNAME(n)) with n
> 8, you must use a PDSE for your linker output.

Using the binder in 31-bit programs
You must place the binder output into a PDSE.

When linking a DLL, you must specify any needed definition side-decks during
the bind step.

Using the ENTRY card
If you are building a module that will be fetched and that has an Enterprise PL/I
routine as its entry point, the ENTRY card should specify the name of that PL/I
entry point.

If the module is to be fetched from Enterprise PL/I, you can specify CEESTART on
the ENTRY card, although this is strongly not recommended. However, if the
module is to be fetched from COBOL or the assembler, the ENTRY card absolutely
must specify the name of the PL/I entry point into the module and not
CEESTART.

Runtime considerations for 31-bit programs
You can specify runtime options as parameters passed to the program initialization
routine. You can also specify runtime options in the PLIXOPT variable. It might
also prove beneficial, from a performance standpoint, if you alter your existing
programs by using the PLIXOPT variable to specify your runtime options and
recompiling your programs.

For a description of using PLIXOPT, see the z/OS Language Environment
Programming Guide.

To simplify input/output at the terminal, various conventions have been adopted
for stream files that are assigned to the terminal. Three areas are affected:

© Copyright IBM Corp. 1999, 2017 165

1. Formatting of PRINT files
2. The automatic prompting feature
3. Spacing and punctuation rules for input

Note: No prompting or other facilities are provided for record I/O at the terminal,
so you are strongly advised to use stream I/O for any transmission to or from a
terminal.

Formatting conventions for PRINT files
When a PRINT file is assigned to the terminal, it is assumed that it will be read as
it is being printed. Spacing is therefore reduced to a minimum to reduce printing
time.

The following rules apply to the PAGE, SKIP, and ENDPAGE keywords:
v PAGE options or format items result in three lines being skipped.
v SKIP options or format items larger than SKIP (2) result in three lines being

skipped. SKIP (2) or less is treated in the usual manner.
v The ENDPAGE condition is never raised.

Changing the format on PRINT files for 31-bit programs
If you want normal spacing to apply to output from a PRINT file at the terminal,
you must supply your own tab table for PL/I.

Follow these steps:
1. Declare an external structure called PLITABS in the main program or in a

program linked with the main program.
2. Initializing the element PAGELENGTH to the number of lines that can fit on

your page. This value differs from PAGESIZE, which defines the number of
lines you want to print on the page before ENDPAGE is raised (see Figure 15
on page 167).

If you require a PAGELENGTH of 64 lines, declare PLITABS as shown in Figure 14
on page 167. For information about overriding the tab table, see “Overriding the
tab control table” on page 253.

If your code contains a declare for PLITABS, ensure that the values and the first
field in the PLITABS structure must are all valid. This field is supposed to hold the
offset to the field specifying the number of tabs set by the structure, and the
Enterprise PL/I library code will not work correctly if this is not true.

166 Enterprise PL/I for z/OS Programming Guide

Automatic prompting
When the program requires input from a file that is associated with a terminal, it
issues a prompt. This takes the form of printing a colon on the next line and then
skipping to column 1 on the line following the colon. This gives you a full line to
enter your input.

See the following example:

DCL 1 PLITABS STATIC EXTERNAL,
(2 OFFSET INIT (14),

2 PAGESIZE INIT (60),
2 LINESIZE INIT (120),
2 PAGELENGTH INIT (64),
2 FILL1 INIT (0),
2 FILL2 INIT (0),
2 FILL3 INIT (0),
2 NUMBER_OF_TABS INIT (5),
2 TAB1 INIT (25),
2 TAB2 INIT (49),
2 TAB3 INIT (73),
2 TAB4 INIT (97),
2 TAB5 INIT (121)) FIXED BIN (15,0);

Figure 14. Declaration of PLITABS. This declaration gives the standard page size, line size,
and tabulating positions.

Figure 15. PAGELENGTH and PAGESIZE. PAGELENGTH defines the size of your paper;
PAGESIZE defines the number of lines in the main printing area.

Chapter 5. Link-editing and running for 31-bit programs 167

:
(space for entry of your data)

This type of prompt is referred to as a primary prompt.

Overriding automatic prompting
You can override the primary prompt by making a colon the last item in the
request for the data. You cannot override the secondary prompt.

For example, the following two PL/I statements result in the terminal displaying
output shown in Figure 16.
PUT SKIP EDIT (’ENTER TIME OF PERIHELION’) (A);
GET EDIT (PERITIME) (A(10));

However, if the first statement has a colon at the end of the output as follows, the
automatic prompt is overridden; Figure 17 shows the sequence that is displayed on
the terminal.
PUT EDIT (’ENTER TIME OF PERIHELION:’) (A);

Note: The override remains in force for only one prompt. You will be
automatically prompted for the next item unless the automatic prompt is again
overridden.

Punctuating long input lines
To transmit data that requires two or more lines of space at the terminal as one
data item, you must use an SBCS hyphen as the line continuation character. Type
an SBCS hyphen as the last character in each line except the last line.

For example, you must enter data as follows to transmit this sentence: this data
must be transmitted as one unit.

:’this data must be transmitted -
+:as one unit.’

Transmission does not occur until you press ENTER after unit.’. The hyphen is
removed. The item transmitted is called a logical line.

Note: To transmit a line whose last data character is a hyphen or a PL/I minus
sign, enter two hyphens at the end of the line, followed by a null line as the next
line. See the following example:
xyz--
(press ENTER only on this line)

ENTER TIME OF PERIHELION
: (automatic prompt)
(space for entry of data)

Figure 16. Output with automatic prompt

ENTER TIME OF PERIHELION: (space for entry of data)

Figure 17. Output with no automatic prompt

168 Enterprise PL/I for z/OS Programming Guide

Punctuating GET LIST and GET DATA statements
For GET LIST and GET DATA statements, a comma is added to the end of each
logical line transmitted from the terminal, if the programmer omits it. Thus there is
no need to enter blanks or commas to delimit items if they are entered on separate
logical lines.

Given the PL/I statement GET LIST(A,B,C);, you can enter data as follows at the
terminal:
:1
+:2
+:3

This rule also applies when you enter character-string data. Therefore, a character
string must transmit as one logical line. Otherwise, commas are placed at the break
points. For example, suppose you enter the following data:
:’COMMAS SHOULD NOT BREAK
+:UP A CLAUSE.’

The resulting string is COMMAS SHOULD NOT BREAK, UP A CLAUSE.

The comma is not added if a hyphen was used as a line continuation character.

Automatic padding for GET EDIT
For a GET EDIT statement, you do not need to enter blanks at the end of the line.
The data will be padded to the specified length.

For example, given the PL/I statement GET EDIT (NAME) (A(15));, you can enter
the 5 characters SMITH, and the data will be padded with ten blanks so that the
program receives the fifteen characters:
’SMITH ’

Note: A single data item must transmit as a logical line. Otherwise, the first line
transmitted will be padded with the necessary blanks and taken as the complete
data item.

Use of SKIP for terminal input
All uses of SKIP for input are interpreted as SKIP(1) when the file is allocated to
the terminal. SKIP(1) is treated as an instruction to ignore all unused data on the
currently available logical line.

ENDFILE
You can enter end-of-file at the terminal by typing a logical line that consists of the
two characters /*.

Any further attempts to use the file without closing it result in the ENDFILE
condition being raised.

Chapter 5. Link-editing and running for 31-bit programs 169

SYSPRINT considerations for 31-bit programs
The PL/I standard SYSPRINT file is shared by multiple enclaves within an
application. You can issue I/O requests, for example STREAM PUT, from the same
or different enclaves. These requests are handled using the standard PL/I
SYSPRINT file as a file that is common to the entire application. The SYSPRINT
file is implicitly closed only when the application terminates, not at the termination
of the enclave.

The standard PL/I SYSPRINT file contains user-initiated output only, such as
STREAM PUTs. Runtime library messages and other similar diagnostic output are
directed to the Language Environment MSGFILE. See the z/OS Language
Environment Programming Guide for details on redirecting SYSPRINT file output to
the Language Environment MSGFILE.

To be shared by multiple enclaves within an application, the PL/I SYSPRINT file
must be declared as an EXTERNAL FILE constant with a file name of SYSPRINT
and also have the attributes STREAM and OUTPUT as well as the (implied)
attribute of PRINT, when OPENed. This is the standard SYSPRINT file as
defaulted by the compiler.

There exists only one standard PL/I SYSPRINT FILE within an application and
this file is shared by all enclaves within the application. For example, the
SYSPRINT file can be shared by multiple nested enclaves within an application or
by a series of enclaves that are created and terminated within an application by the
Language Environment preinitialization function. To be shared by an enclave
within an application, the PL/I SYSPRINT file must be declared in that enclave.
The standard SYSPRINT file cannot be shared by passing it as a file argument
between enclaves. The declared attributes of the standard SYSPRINT file should be
the same throughout the application, as with any EXTERNALly declared constant.
PL/I does not enforce this rule. Both the TITLE option and the
MSGFILE(SYSPRINT) option attempt to route SYSPRINT to another data set. As
such, if the two options are used together, there will be a conflict and the TITLE
option will be ignored.

Having a common SYSPRINT file within an application can be an advantage to
applications that utilize enclaves that are closely tied together. However, since all
enclaves in an application write to the same shared data set, this might require
some coordination among the enclaves.

The SYSPRINT file is opened (implicitly or explicitly) when first referenced within
an enclave of the application. When the SYSPRINT file is CLOSEd, the file
resources are released (as though the file had never been opened) and all enclaves
are updated to reflect the closed status.

If SYSPRINT is utilized in a multiple enclave application, the LINENO built-in
function only returns the current line number until after the first PUT or OPEN in
an enclave has been issued. This is required in order to maintain full compatibility
with old programs.

The COUNT built-in function is maintained at an enclave level. It always returns a
value of zero until the first PUT in the enclave is issued. If a nested child enclave
is invoked from a parent enclave, the value of the COUNT built-in function is
undefined when the parent enclave regains control from the child enclave.

170 Enterprise PL/I for z/OS Programming Guide

The TITLE option can be used to associate the standard SYSPRINT file with
different operating system data sets, keeping in mind that a particular open
association has to be closed before another one is opened. This association is
retained across enclaves for the duration of the open.

PL/I condition handling associated with the standard PL/I SYSPRINT file retains
its current semantics and scope. For example, an ENDPAGE condition raised
within a child enclave will only invoke an established ON-unit within that child
enclave. It does not cause invocation of an ON-unit within the parent enclave.

The tabs for the standard PL/I SYSPRINT file can vary when PUTs are done from
different enclaves, if the enclaves contain a user PLITABS table.

If the PL/I SYSPRINT file is utilized as a RECORD file or as a STREAM INPUT
file, PL/I supports it at an individual enclave or task level, but not as a shareable
file among enclaves. If the PL/I SYSPRINT file is open at the same time with
different file attributes (for example, RECORD and STREAM) in different enclaves
of the same application, results are unpredictable.

SYSPRINT can also be shared between code compiled by Enterprise PL/I and by
older PL/I compilers, but the following conditions must all apply:
v SYSPRINT must be declared as STREAM OUTPUT.
v The application must not be running under TSO.
v If the runtime option MSGFILE(SYSPRINT) is in effect, there must be no

preinitialized programs and no stored procedures in the application.

Using MSGFILE(SYSPRINT)
Any file attributes that are specified in the ENVIRONMENT option of the file
declaration for SYSPRINT STREAM PRINT are ignored.

Any attributes that are specified on the OPEN statement for SYSPRINT are
ignored.

When you use the OPEN statement to open the PL/I SYSPRINT STREAM PRINT file,
the file is marked as opened in the PL/I control blocks, but it is actually opened by
the Language Environment.

When you use the CLOSE statements to close the PL/I SYSPRINT STREAM PRINT file,
the file is marked as closed in the PL/I control blocks, but Language Environment
still keeps it open.

The synchronization between the Language Environment messages and PL/I
user-specified output is not provided, so the order of the output is unpredictable.

The use of MSGFILE(SYSPRINT) restricts the line size specified by the LINESIZE
option to a maximum of 225 characters.

Using FETCH in your routines in 31-bit applications
In Enterprise PL/I, you can fetch routines compiled by PL/I, C, COBOL, or the
assembler.

Chapter 5. Link-editing and running for 31-bit programs 171

Fetching Enterprise PL/I routines in 31-bit applications
Almost all the restrictions imposed by the older PL/I compilers on fetched
modules have been removed. So a fetched module can now perform the following
operations:
v Fetch other modules.
v Perform any I/O operations on any PL/I file. The file can be opened either by

the fetched module, by the main module, or by some other fetched module.
v ALLOCATE and FREE its own CONTROLLED variables.

There are, however, a few restrictions on an Enterprise PL/I module that is to be
fetched:
1. OPTIONS(FETCHABLE) should be specified on the PROCEDURE statement of

the fetched routine if there is no ENTRY card provided during the link-edit
step.

2. The ENTRY card should specify the name of that PL/I entry point.
v If the module is to be fetched from Enterprise PL/I, you can specify

CEESTART on the ENTRY card, although this is strongly not recommended.
v However, if the module is to be fetched from COBOL or the assembler, the

ENTRY card absolutely must specify the name of the PL/I entry point into
the module and not CEESTART.

3. If the RENT compiler option was used to compile any of the fetched code, the
module must be linked as a DLL.

4. If the NORENT compiler option was used to compile the fetching code, the
fetched module must satisfy at least one of the following conditions:
v It is a MAIN module.
v It consists only of NORENT code.
v It has as its entry point code compiled with the C or Enterprise PL/I

compiler with the NORENT option in effect. In this case, the module can also
contain code compiled with the RENT option, but calling that code is not
supported.

5. If the RENT compiler option was used to compile the fetching code, the
ENTRY that is fetched must not be declared in the fetching module as
OPTIONS(COBOL) or OPTIONS(ASM). If you want to avoid passing
descriptors in this situation, you should specify the
OPTIONS(NODESCRIPTOR) attribute on the ENTRY declare.

6. An Enterprise PL/I routine can not fetch itself.
In the case of a nonreentrant and nonreusable module that is loaded multiple
times, the order of processing occurs in a last-in first-out order.
For example, if Program A loads module LOADMODA, then calls Program B,
which also loads LOADMODA, and then issues a DELETE against
LOADMODA, the copy of LOADMODA to be deleted is the one associated
with Program B. At this point, the copy of LOADMODA associated with
Program A still exists.
In other words, the DELETE requested against LOADMODA will release the
last copy that was loaded, regardless of which program issues the request.

NORENT WRITABLE code is serially usable, and for that reason, the pointer that
is used to represent a FETCHABLE constant is zeroed out in the prologue code of
any NORENT WRITABLE routine. While this ensures that the code is serially
reusable while also providing the correct PL/I semantics, it does impose a
restriction on the use of FETCH with TITLE in NORENT WRITABLE code: if a

172 Enterprise PL/I for z/OS Programming Guide

routine that did a FETCH A TITLE('B') is exited and reentered, it must re-execute
the FETCH A TITLE('B'), before executing any CALL A statements (otherwise, it
would do an implicit FETCH of A (but without any TITLE) before making the
CALL).

As an illustration of these restrictions, consider the compiler user exit. If you
specify the EXIT compile-time option, the compiler will fetch and call a Enterprise
PL/I module named IBMUEXIT.

First note that the compiler user exit must be compiled with the RENT option
because the compiler expects it to be a DLL.

In accordance with Item 1 above, the PROCEDURE statement for this routine looks
like:
ibmuexit:

proc (addr_Userexit_Interface_Block,
addr_Request_Area)

options(fetchable);

dcl addr_Userexit_Interface_Block pointer byvalue;

dcl addr_Request_Area pointer byvalue;

In accordance with Item 3 above, the linker option DYNAM=DLL must be
specified when linking the user exit into a DLL. The DLL must be linked either
into a PDSE or into a temporary data set (in which case DSNTYPE=LIBRARY must
be specified on the SYSLMOD DD statement).

All the JCL to compile, link, and invoke the user exit is given in the JCL below in
Figure 18 on page 174. The one significant difference between the sample below
and the code excerpts above is that, in the code below, the fetched user exit does
not receive two BYVALUE pointers to structures, but instead it receives the two
structures by reference (BYADDR). In order to make this change work, the code
specifies OPTIONS(NODESCRIPTOR) on each of its PROCEDURE statements.

Chapter 5. Link-editing and running for 31-bit programs 173

//*
//***
//* compile the user exit
//***
//PLIEXIT EXEC PGM=IBMZPLI,
//STEPLIB DD DSN=IBMZ.V5R1M0.SIBMZCMP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
// SPACE=(CYL,(3,1))
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//SYSIN DD *
*Process or(’|’) not(’!’);
*Process limits(extname(31));
*Process RENT;

/**/
/* */
/* NAME - IBMUEXIT.PLI */
/* */
/* DESCRIPTION */
/* User-exit sample program. */
/* */
/* Licensed Materials - Property of IBM */
/* 5639-A83, 5639-A24 (C) Copyright IBM Corp. 1992,2015. */
/* All Rights Reserved. */
/* US Government Users Restricted Rights-- Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/* */
/* DISCLAIMER OF WARRANTIES */
/* The following "enclosed" code is sample code created by IBM */
/* Corporation. This sample code is not part of any standard */
/* IBM product and is provided to you solely for the purpose of */
/* assisting you in the development of your applications. The */
/* code is provided "AS IS", without warranty of any kind. */
/* IBM shall not be liable for any damages arising out of your */
/* use of the sample code, even if IBM has been advised of the */
/* possibility of such damages. */
/* */
/**/

/**/
/* */
/* During initialization, IBMUEXIT is called. It reads */
/* information about the messages being screened from a text */
/* file and stores the information in a hash table. IBMUEXIT */
/* also sets up the entry points for the message filter service */
/* and termination service. */
/* */
/* For each message generated by the compiler, the compiler */
/* calls the message filter registered by IBMUEXIT. The filter */
/* looks the message up in the hash table previously created. */
/* */
/* The termination service is called at the end of the compile */
/* but does nothing. It could be enhanced to generate reports */
/* or do other cleanup work. */
/* */
/**/

Figure 18. Sample JCL to compile, link, and invoke the user exit

174 Enterprise PL/I for z/OS Programming Guide

pack: package exports(*);

Dcl
1 Uex_UIB native Based(null()),
2 Uex_UIB_Length fixed bin(31),

2 Uex_UIB_Exit_token pointer, /* for user exit’s use*/

2 Uex_UIB_User_char_str pointer, /* to exit option str */
2 Uex_UIB_User_char_len fixed bin(31),

2 Uex_UIB_Filename_str pointer, /* to source filename */
2 Uex_UIB_Filename_len fixed bin(31),

2 Uex_UIB_return_code fixed bin(31), /* set by exit procs */
2 Uex_UIB_reason_code fixed bin(31), /* set by exit procs */

2 Uex_UIB_Exit_Routs, /* exit entries setat
initialization */

3 (Uex_UIB_Termination,
Uex_UIB_Message_Filter, /* call for each msg */
*, *, *, *)

limited entry (
, / to Uex_UIB */
* /* to a request area */
);

/***/
/* */
/* Request Area for Initialization exit */
/* */
/***/

Dcl 1 Uex_ISA native based(null()),
2 Uex_ISA_Length fixed bin(31);

/***/
/* */
/* Request Area for Message_Filter exit */
/* */
/***/

Dcl 1 Uex_MFA native based(null()),
2 Uex_MFA_Length fixed bin(31),
2 Uex_MFA_Facility_Id char(3),
2 * char(1),
2 Uex_MFA_Message_no fixed bin(31),
2 Uex_MFA_Severity fixed bin(15),
2 Uex_MFA_New_Severity fixed bin(15); /* set by exit proc */

/***/
/* */
/* Request Area for Terminate exit */
/* */
/***/

Dcl 1 Uex_TSA native based(null()),
2 Uex_TSA_Length fixed bin(31);

Sample JCL to compile, link, and invoke the user exit (continued)

Chapter 5. Link-editing and running for 31-bit programs 175

/***/
/* */
/* Severity Codes */
/* */
/***/

dcl uex_Severity_Normal fixed bin(15) value(0);
dcl uex_Severity_Warning fixed bin(15) value(4);
dcl uex_Severity_Error fixed bin(15) value(8);
dcl uex_Severity_Severe fixed bin(15) value(12);
dcl uex_Severity_Unrecoverable fixed bin(15) value(16);

/***/
/* */
/* Return Codes */
/* */
/***/

dcl uex_Return_Normal fixed bin(15) value(0);
dcl uex_Return_Warning fixed bin(15) value(4);
dcl uex_Return_Error fixed bin(15) value(8);
dcl uex_Return_Severe fixed bin(15) value(12);
dcl uex_Return_Unrecoverable fixed bin(15) value(16);

/***/
/* */
/* Reason Codes */
/* */
/***/

dcl uex_Reason_Output fixed bin(15) value(0);
dcl uex_Reason_Suppress fixed bin(15) value(1);

dcl hashsize fixed bin(15) value(97);
dcl hashtable(0:hashsize-1) ptr init((hashsize) null());

dcl 1 message_item native based,
2 message_Info,
3 facid char(3),
3 msgno fixed bin(31),
3 newsev fixed bin(15),
3 reason fixed bin(31),

2 link pointer;

Sample JCL to compile, link, and invoke the user exit (continued)

176 Enterprise PL/I for z/OS Programming Guide

ibmuexit: proc (ue, ia)
options(fetchable nodescriptor);

dcl 1 ue like uex_Uib byaddr;
dcl 1 ia like uex_Isa byaddr;

dcl sysuexit file stream input env(recsize(80));
dcl p pointer;
dcl bucket fixed bin(31);
dcl based_Chars char(8) based;
dcl title_Str char(8) var;

ue.uex_Uib_Message_Filter = message_Filter;
ue.uex_Uib_Termination = exitterm;

on undefinedfile(sysuexit)
begin;
put edit (’** User exit unable to open exit file ’)

(A) skip;
put skip;
signal error;

end;

if ue.uex_Uib_User_Char_Len = 0 then
do;

open file(sysuexit);
end;

else
do;

title_Str
= substr(ue.uex_Uib_User_Char_Str->based_Chars,

1, ue.uex_Uib_User_Char_Len);
open file(sysuexit) title(title_Str);

end;

on error, endfile(sysuexit)
goto done;

allocate message_item set(p);

/***/
/* */
/* Skip header lines and read first data line */
/* */
/***/

get file(sysuexit) list(p->message_info) skip(3);

Sample JCL to compile, link, and invoke the user exit (continued)

Chapter 5. Link-editing and running for 31-bit programs 177

do loop;

/***/
/* */
/* Put message information in hash table */
/* */
/***/

bucket = mod(p->msgno, hashsize);
p->link = hashtable(bucket);
hashtable(bucket) = p;

/***/
/* */
/* Read next data line */
/* */
/***/

allocate message_item set(p);
get file(sysuexit) skip;
get file(sysuexit) list(p->message_info);

end;

/***/
/* */
/* Clean up */
/* */
/***/

done:

free p->message_Item;
close file(sysuexit);

end;

message_Filter:
proc (ue, mf)
options(nodescriptor);

dcl 1 ue like uex_Uib byaddr;
dcl 1 mf like uex_Mfa byaddr;

dcl p pointer;
dcl bucket fixed bin(15);

on error snap system;

ue.uex_Uib_Reason_Code = uex_Reason_Output;
ue.uex_Uib_Return_Code = 0;

mf.uex_Mfa_New_Severity = mf.uex_Mfa_Severity;

/***/
/* */
/* Calculate bucket for error message */
/* */
/***/

bucket = mod(mf.uex_Mfa_Message_No, hashsize);

Sample JCL to compile, link, and invoke the user exit (continued)

178 Enterprise PL/I for z/OS Programming Guide

/***/
/* */
/* Search bucket for error message */
/* */
/***/

do p = hashtable(bucket) repeat (p->link) while(p!=null())
until (p->msgno = mf.uex_Mfa_Message_No &

p->facid = mf.Uex_Mfa_Facility_Id);
end;

if p = null() then;
else
do;

/***/
/* */
/* Filter error based on information in has table */
/* */
/***/

ue.uex_Uib_Reason_Code = p->reason;
if p->newsev < 0 then;
else

mf.uex_Mfa_New_Severity = p->newsev;
end;

end;

exitterm:
proc (ue, ta)
options(nodescriptor);

dcl 1 ue like uex_Uib byaddr;
dcl 1 ta like uex_Tsa byaddr;

ue.uex_Uib_return_Code = 0;
ue.uex_Uib_reason_Code = 0;

end;

end pack;

//***
//* link the user exit
//***
//LKEDEXIT EXEC PGM=IEWL,PARM=’XREF,LIST,LET,DYNAM=DLL’,
// COND=(9,LT,PLIEXIT),REGION=5000K
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLMOD DD DSN=&&EXITLIB(IBMUEXIT),DISP=(NEW,PASS),UNIT=SYSDA,
// SPACE=(TRK,(7,1,1)),DSNTYPE=LIBRARY
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(CYL,(3,1)),
// DCB=BLKSIZE=1024
//SYSPRINT DD SYSOUT=X
//SYSDEFSD DD DUMMY
//SYSLIN DD DSN=&&LOADSET,DISP=SHR
// DD DDNAME=SYSIN
//LKED.SYSIN DD *
ENTRY IBMUEXIT

Sample JCL to compile, link, and invoke the user exit (continued)

Chapter 5. Link-editing and running for 31-bit programs 179

//***
//* compile main
//***
//PLI EXEC PGM=IBMZPLI,PARM=’F(I),EXIT’,
// REGION=256K
//STEPLIB DD DSN=&&EXITLIB,DISP=SHR
// DD DSN=IBMZ.V5R1M0.SIBMZCMP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET2,DISP=(MOD,PASS),UNIT=SYSSQ,
// SPACE=(CYL,(3,1))
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,
// SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024
//SYSIN DD *
*process;
MainFet: Proc Options(Main);
/* the exit will suppress the message for the next dcl */
dcl one_byte_integer fixed bin(7);

End ;
//*
//SYSUEXIT DD DISP=SHR,DSN=hlq.some.user.exit.input.file *
Fac Id Msg No Severity Suppress Comment

+--------+--------+----------+----------+-------------------------------
’IBM’ 1042 -1 1 String spans multiple lines
’IBM’ 1044 -1 1 FIXED BIN 7 mapped to 1 byte

Sample JCL to compile, link, and invoke the user exit (continued)

Fetching PL/I MAIN routines in 31-bit applications
In an Enterprise PL/I application, you can also fetch a PL/I MAIN program. When
a FETCH of a PL/I MAIN program occurs, a child enclave is created.

You must follow these rules:
v You cannot pass any runtime options to a fetched MAIN program in the

parameter string.
v If the SYSTEM(MVS) compiler option is specified, you can pass an arbitrary

parameter list, but if the parameter is anything other than a single CHAR
VARYING string, the compiler flags the MAIN routine with a warning message.

v You must not specify OPTIONS(ASM) or OPTIONS(NODESCRIPTOR) in the
ENTRY declaration for the fetched MAIN routine in the fetching program.

v Avoid passing runtime options because attempts to parse them might produce
LE informational messages regarding invalid runtime options. If NOEXECOPS is
specified in the fetched MAIN routine, the passed char varying string is not
parsed for the runtime options.

v If no parameters are passed to the fetched MAIN program, the fetching program
should either specify OPTIONS(LINKAGE(SYSTEM)) in its ENTRY declaration
for the fetched MAIN routine, or be compiled with
DEFAULT(LINKAGE(SYSTEM)).

Examples

Here is the sample of the PL/I fetched MAIN program:
FMAIN: proc(parm) options(main,noexecops);

DCL parm char(*) var;
DCL SYSPRINT print;
DCL PLIXOPT CHAR(11) VAR INIT(’RPTOPTS(ON)’)

180 Enterprise PL/I for z/OS Programming Guide

STATIC EXTERNAL;
Put skip list("FMAIN parm: "|| parm);
Put skip list("FMAIN finished ");

End FMAIN;

Here is the sample of the PL/I MAIN program that fetches another PL/I MAIN
program:

MainFet: Proc Options(main);
Dcl Parm char(1000) var;
Dcl SYSPRINT print;
Dcl Fmain entry(char(*) var) ;
Put skip list("MainFet: start ");
Parm = ’local-parm’;
Put skip list("MainFet parm: "|| Parm);
Fetch Fmain;
Call Fmain(Parm);
Release Fmain;
Put skip list("MainFet:testcase finished ");

End;

Fetching z/OS C routines in 31-bit applications
Unless the NORENT option has been specified, the ENTRY declaration in the
routine that fetches a z/OS C routine must not specify OPTIONS(COBOL) or
OPTIONS(ASM)—these should be specified only for COBOL or ASM routines not
linked as DLLs.

The z/OS C documentation provides instructions on how to compile and link a
z/OS C DLL.

Fetching assembler routines in 31-bit applications
Unless the NORENT option has been specified, the ENTRY declaration in the
routine that fetches an assembler routine must specify OPTIONS(ASM).

When fetching data-only assembler modules, you must use the FETCH A SET(P)
construct to ensure that pointer P is set correctly.

Invoking MAIN under TSO/E
If you compile your MAIN program with the SYSTEM(MVS) option, you can
invoke the program by using the TSO CALL command or as a TSO command
processor. Both the runtime options and parameters can be passed in the same way
as under MVS batch.

For example, if the MAIN program TSOARG1 was link-edited as a member of a
data set named userid.TEST.load, it can be invoked as follows:

CALL TEST(TSOARG1) ’RPTSTG(ON),TRAP(ON)/THIS IS MY ARGUMENT’
or
CALL TEST(TSOARG1) ’/THIS IS MY ARGMENT’

or
TSOARG1 TRAP(ON)/THIS IS MY ARGUMENT

or
TSOARG1 /THIS IS MY ARGUMENT

Note: The data set containing TSOARG1 (userid.TEST.load) must be in the
standard TSO program search list to run the program without using the CALL
statement. This can be accomplished by issuing the TSO command:

TSOLIB ACTIVATE DSN(’userid.TEST.load’)

Chapter 5. Link-editing and running for 31-bit programs 181

However, if you compile your MAIN program with the SYSTEM(TSO) option, the
program will be passed a pointer to the Command Processor Parameter List
(CPPL). In this case, NOEXECOPS is in effect. Your program can be invoked as a
TSO command, but it cannot be invoked by a TSO CALL statement. See the
following example:

TSOARG2 This is my argument

The program in Figure 19 uses the SYSTEM(TSO) interface to address and display
the program arguments from the CPPL.

Whether your MAIN program is invoked as a command or by CALL, you can
always specify runtime options through the PLIXOPT string.

Invoking MAIN under z/OS UNIX
Under z/OS UNIX, you can compile a MAIN program with the SYSTEM(MVS) or
SYSTEM(OS) option; however, the number and format of the parameters passed to
the program differs based on the option that you use.

If you compile a MAIN program with the SYSTEM(MVS) option, the program will
be passed, as usual, one CHARACTER VARYING string containing the parameters
specified when it was invoked.

However, if you compile a MAIN program with the SYSTEM(OS) option, the
program will be passed 7 parameters as specified in the z/OS UNIX manuals.
These 7 parameters include the following:
v The argument count (which includes the name of the executable as the first

"argument")
v The address of an array of addresses of the arguments

*process system(tso);
tsoarg2: proc (cppl_ptr) options(main);

dcl cppl_ptr pointer;
dcl 1 cppl based(cppl_ptr),

2 cpplcbuf pointer,
2 cpplupt pointer,
2 cpplpscb pointer,
2 cpplect pointer;

dcl 1 cpplbuf based(cpplcbuf),
2 len fixed bin(15),
2 offset fixed bin(15),
2 argstr char(1000);

dcl my_argument char(1000) varying;
dcl my_argument_len fixed bin(31);
dcl length builtin;

my_argument_len = len - offset - 4;
if my_argument_len = 0 then

my_argument = ’’;
else

my_argument = substr(argstr,offset + 1, my_argument_len);
display(’Program args: ’ || my_argument);

end tsoarg2;

Figure 19. Sample program to display program arguments from the CPPL under TSO when
using SYSTEM(STD) option

182 Enterprise PL/I for z/OS Programming Guide

v The address of an array of addresses of the arguments as null-terminated
character strings

v The count of environment variables set
v The address of an array of addresses of the lengths of the environment variables
v The address of an array of addresses of the environment variables as

null-terminated character strings

The program in Figure 20 uses the SYSTEM(OS) interface to address and display
the individual arguments and environment variables.

*process display(std) system(os);

sayargs:
proc(argc, pArgLen, pArgStr, envc, pEnvLen, pEnvStr, pParmSelf)
options(main, noexecops);

dcl argc fixed bin(31) nonasgn byaddr;
dcl pArgLen pointer nonasgn byvalue;
dcl pArgStr pointer nonasgn byvalue;
dcl envc fixed bin(31) nonasgn byaddr;
dcl pEnvLen pointer nonasgn byvalue;
dcl pEnvStr pointer nonasgn byvalue;
dcl pParmSelf pointer nonasgn byvalue;

dcl q(4095) pointer based;
dcl bxb fixed bin(31) based;
dcl bcz char(31) varz based;

display(’argc = ’ || argc);
do jx = 1 to argc;

display(’pargStr(jx) =’ || pArgStr->q(jx)->bcz);
end;
display(’envc = ’ || envc);
do jx = 1 to envc;

display(’pEnvStr(jx) =’ || pEnvStr->q(jx)->bcz);
end;

end;

Figure 20. Sample program to display z/OS UNIX arguments and environment variables

Chapter 5. Link-editing and running for 31-bit programs 183

184 Enterprise PL/I for z/OS Programming Guide

Chapter 6. Link-editing and running for 64-bit programs

After compilation with LP(64), your 64-bit program consists of one or more object
modules that contain unresolved references to each other, as well as references to
the Language Environment runtime library. These references are resolved during
link-editing (statically) or during execution (dynamically).

After you compile your PL/I program, the next step is to link and run your
program with test data to verify that it produces the results that you expect.

Language Environment provides the runtime environment and services that you
need to execute your program. For instructions on linking and running PL/I and
all other Language Environment-conforming language programs, see the z/OS
Language Environment Programming Guide for 64-bit Virtual Addressing Mode. For
information about migrating your existing PL/I programs to Language
Environment, see the Enterprise PL/I for z/OS Compiler and Run-Time Migration
Guide.

Link-edit considerations for 64-bit programs
You must use a PDSE for your linker output.

Using the binder in 64-bit programs
You must place the binder output into a PDSE.

When linking a DLL, specify any needed definition side-decks during the bind
step. At a minimum, the PL/I side-deck IBMPQV11 and the C side-deck CELQS003
must be included. These side-decks can be found in the SCEELIB data set.

Using the ENTRY card in 64-bit programs
If you are building a module that will be fetched and that has an Enterprise PL/I
routine as its entry point, the ENTRY card must specify CELQSTRT.

Runtime considerations for 64-bit programs
You can specify runtime options as parameters passed to the program initialization
routine. You can also specify runtime options in the PLIXOPT variable. It might
also prove beneficial, from a performance standpoint, if you alter your existing
programs by using the PLIXOPT variable to specify your runtime options and
recompiling your programs.

For a description of using PLIXOPT, see the z/OS Language Environment
Programming Guide.

To simplify input/output at the terminal, various conventions have been adopted
for stream files that are assigned to the terminal. Three areas are affected:
1. Formatting of PRINT files
2. The automatic prompting feature
3. Spacing and punctuation rules for input

© Copyright IBM Corp. 1999, 2017 185

Note: No prompting or other facilities are provided for record I/O at the terminal,
so you are strongly advised to use stream I/O for any transmission to or from a
terminal.

SYSPRINT considerations for 64-bit programs
For 64-bit programs, SYSPRINT is equated to the C stdout file. In addition, shared
SYSPRINT is not supported.

The LINESIZE of SYSPRINT cannot be greater than 132 (the largest value allowed
by C).

Using FETCH in your routines in 64-bit applications
In Enterprise PL/I, you can fetch routines compiled by PL/I, C, or the assembler.

Fetching Enterprise PL/I routines in 64-bit applications
A fetched module can perform FETCH, I/O, ALLOCATE, and FREE operations.
However, a few restrictions still apply.

A fetched module can perform the following operations:
v Fetch other modules.
v Perform any I/O operations on any PL/I file. The file can be opened either by

the fetched module, by the main module, or by some other fetched module.
v ALLOCATE and FREE its own CONTROLLED variables.

There are, however, a few restrictions on an Enterprise PL/I module that is to be
fetched:
1. You must specify OPTIONS(FETCHABLE) on the PROCEDURE statement of

the fetched routine if no ENTRY card is provided during the link-edit step.
2. The ENTRY card must specify CELQSTRT.
3. Because under LP(64) RENT is effectively always on, the ENTRY that is fetched

must not be declared in the fetching module as OPTIONS(COBOL) or
OPTIONS(ASM). If you want to avoid passing descriptors in this situation, you
must specify the OPTIONS(NODESCRIPTOR) attribute on the ENTRY
declaration.

4. An Enterprise PL/I routine cannot fetch itself.

Fetching PL/I MAIN routines in 64-bit applications
A 64-bit PL/I MAIN routine cannot fetch a 64-bit PL/I MAIN routine.

Fetching assembler routines in 64-bit applications
The ENTRY declaration in the routine that fetches an assembler routine must
specify OPTIONS(ASM). The assembler routine must be linked with AMODE=64.
LINKAGE(SYSTEM) should be specified.

When fetching data-only assembler modules, you must use the FETCH A SET(P)
construct to ensure that pointer P is set correctly.

186 Enterprise PL/I for z/OS Programming Guide

Invoking MAIN under TSO/E
If you compile your MAIN program with the SYSTEM(MVS) option, you can
invoke the program by using the TSO CALL command or as a TSO command
processor. Both the runtime options and parameters can be passed in the same way
as under MVS batch.

For example, if the MAIN program TSOARG1 was link-edited as a member of a
data set named userid.TEST.load, it can be invoked as follows:

CALL TEST(TSOARG1) ’RPTSTG(ON),TRAP(ON)/THIS IS MY ARGUMENT’
or
CALL TEST(TSOARG1) ’/THIS IS MY ARGMENT’

or
TSOARG1 TRAP(ON)/THIS IS MY ARGUMENT

or
TSOARG1 /THIS IS MY ARGUMENT

Note: The data set containing TSOARG1 (userid.TEST.load) must be in the
standard TSO program search list to run the program without using the CALL
statement. This can be accomplished by issuing the TSO command:

TSOLIB ACTIVATE DSN(’userid.TEST.load’)

However, if you compile your MAIN program with the SYSTEM(TSO) option, the
program will be passed a pointer to the Command Processor Parameter List
(CPPL). In this case, NOEXECOPS is in effect. Your program can be invoked as a
TSO command, but it cannot be invoked by a TSO CALL statement. See the
following example:

TSOARG2 This is my argument

The program in Figure 21 uses the SYSTEM(TSO) interface to address and display
the program arguments from the CPPL.

*process system(tso);
tsoarg2: proc (cppl_ptr) options(main);

dcl cppl_ptr pointer;
dcl 1 cppl based(cppl_ptr),

2 cpplcbuf pointer,
2 cpplupt pointer,
2 cpplpscb pointer,
2 cpplect pointer;

dcl 1 cpplbuf based(cpplcbuf),
2 len fixed bin(15),
2 offset fixed bin(15),
2 argstr char(1000);

dcl my_argument char(1000) varying;
dcl my_argument_len fixed bin(31);
dcl length builtin;

my_argument_len = len - offset - 4;
if my_argument_len = 0 then

my_argument = ’’;
else

my_argument = substr(argstr,offset + 1, my_argument_len);
display(’Program args: ’ || my_argument);

end tsoarg2;

Figure 21. Sample program to display program arguments from the CPPL under TSO when
using SYSTEM(STD) option

Chapter 6. Link-editing and running for 64-bit programs 187

Whether your MAIN program is invoked as a command or by CALL, you can
always specify runtime options through the PLIXOPT string.

Invoking MAIN under z/OS UNIX
Under z/OS UNIX, you can compile a MAIN program with the SYSTEM(MVS) or
SYSTEM(OS) option; however, the number and format of the parameters passed to
the program differs based on the option that you use.

If you compile a MAIN program with the SYSTEM(MVS) option, the program will
be passed, as usual, one CHARACTER VARYING string containing the parameters
specified when it was invoked.

However, if you compile a MAIN program with the SYSTEM(OS) option, the
program will be passed 7 parameters as specified in the z/OS UNIX manuals.
These 7 parameters include the following:
v The argument count (which includes the name of the executable as the first

"argument")
v The address of an array of addresses of the arguments
v The address of an array of addresses of the arguments as null-terminated

character strings
v The count of environment variables set
v The address of an array of addresses of the lengths of the environment variables
v The address of an array of addresses of the environment variables as

null-terminated character strings

The program in Figure 22 on page 189 uses the SYSTEM(OS) interface to address
and display the individual arguments and environment variables.

188 Enterprise PL/I for z/OS Programming Guide

*process display(std) system(os);

sayargs:
proc(argc, pArgLen, pArgStr, envc, pEnvLen, pEnvStr, pParmSelf)
options(main, noexecops);

dcl argc fixed bin(31) nonasgn byaddr;
dcl pArgLen pointer nonasgn byvalue;
dcl pArgStr pointer nonasgn byvalue;
dcl envc fixed bin(31) nonasgn byaddr;
dcl pEnvLen pointer nonasgn byvalue;
dcl pEnvStr pointer nonasgn byvalue;
dcl pParmSelf pointer nonasgn byvalue;

dcl q(4095) pointer based;
dcl bxb fixed bin(31) based;
dcl bcz char(31) varz based;

display(’argc = ’ || argc);
do jx = 1 to argc;

display(’pargStr(jx) =’ || pArgStr->q(jx)->bcz);
end;
display(’envc = ’ || envc);
do jx = 1 to envc;

display(’pEnvStr(jx) =’ || pEnvStr->q(jx)->bcz);
end;

end;

Figure 22. Sample program to display z/OS UNIX arguments and environment variables

Chapter 6. Link-editing and running for 64-bit programs 189

190 Enterprise PL/I for z/OS Programming Guide

Chapter 7. Considerations for developing 64-bit applications

You can use Enterprise PL/I to develop 31-bit or 64-bit applications. For your
applications to support the 64-bit environment, you might need to adapt your code
as appropriate. This section describes considerations in development and
compilation that you must take into account.

Using compiler options to build 64-bit applications
To compile code for 64-bit applications, you must use the LP(64) compiler option.
You must be aware that under LP(64), some compiler options or suboptions are not
supported, and that some options or suboptions are ignored during compilation.

Note the following compiler options when you compile code under LP(64):

“BACKREG” on page 10
This option is ignored.

“CEESTART” on page 13
This option is ignored.

“CHECK” on page 14
The STORAGE suboption is not supported under LP(64). This means that
you cannot use the following built-in functions:
v ALLOCSIZE
v CHECKSTG
v UNALLOCATED

“CMPAT” on page 15
This option is ignored; effectively, CMPAT(V3) is always on under LP(64).

“COMMON” on page 16
This option is ignored.

“DEFAULT” on page 22
The following suboptions are ignored under LP(64):
v LINKAGE
v NULL370 | NULLSYS

“RENT” on page 68
This option is ignored; effectively, RENT is always on under LP(64).

“STDSYS” on page 85
This option is ignored; effectively, STDSYS is always on under LP(64).

“WRITABLE” on page 94
This option is ignored.

Related information:
“LP” on page 49
The LP option specifies whether the compiler generates 31-bit code or 64-bit code.
It also determines the default size of POINTER and HANDLE and related
variables.

© Copyright IBM Corp. 1999, 2017 191

Using attributes HANDLE and POINTER under LP(64)
The default size and alignment of HANDLE and POINTER under LP(64) are
different from the default under LP(32).

HANDLE attribute
Under LP(32), the default is HANDLE(32); under LP(64), the default is
HANDLE(64).

Syntax

►► HANDLE structure_type_name
(32)

64

►◄

A HANDLE(32) is four bytes in size and by default fullword-aligned.

A HANDLE(64) is eight bytes in size and by default doubleword-aligned.

HANDLE(64) is valid only under LP(64).

Assigning a HANDLE(32) to a HANDLE(64) is always valid; the reverse is valid
only if the first four bytes of the HANDLE(64) are zero.

Because of the change in the size and alignment of handles, structures that contain
them might have padding bytes.
Related information:
“LP” on page 49
The LP option specifies whether the compiler generates 31-bit code or 64-bit code.
It also determines the default size of POINTER and HANDLE and related
variables.

POINTER attribute
Under LP(32), the default is POINTER(32); under LP(64), the default is
POINTER(64).

Syntax

►► POINTER
(32)

64

►◄

A POINTER(32) is four bytes in size and by default fullword-aligned.

A POINTER(64) is eight bytes in size and by default doubleword-aligned.

POINTER(64) is valid only under LP(64).

Assigning a POINTER(32) to a POINTER(64) is always valid; the reverse is valid
only if the first four bytes of the POINTER(64) are zero.

Because of the change in the size and alignment of pointers, structures that contain
them might have padding bytes.

192 Enterprise PL/I for z/OS Programming Guide

Related information:
“LP” on page 49
The LP option specifies whether the compiler generates 31-bit code or 64-bit code.
It also determines the default size of POINTER and HANDLE and related
variables.

Using ENTRY variables under LP(64)
Under LP(64), all ENTRY variables, whether they have the LIMITED attribute or
not, are eight bytes in size and are by default doubleword-aligned. Therefore, a
structure that contains an ENTRY variable might now have padding bytes.

Using built-in functions under LP(64)
When you develop 64-bit applications, you must be aware that the argument and
return types of some built-in functions are different.

Built-in functions that return a FIXED BIN(63) value under LP(64)

The following built-in functions return a FIXED BIN(63) value under LP(64), but
under LP(32) they return a FIXED BIN(31) value.

AUTOMATIC
AVAILABLEAREA
BASE64DECODE16
BASE64DECODE8
BASE64ENCODE16
BASE64ENCODE8
CURRENTSTORAGE
FILEID
FILEREAD
FILESEEK
FILETELL
HEXDECODE
HEXDECODE8
JSONGETARRAYEND
JSONGETARRAYSTART
JSONGETCOLON
JSONGETCOMMA
JSONGETMEMBER
JSONGETOBJECTEND
JSONGETOBJECTSTART
JSONGETVALUE
JSONPUTARRAYEND
JSONPUTARRAYSTART
JSONPUTCOLON
JSONPUTCOMMA
JSONPUTMEMBER

JSONPUTOBJECTEND
JSONPUTOBJECTSTART
JSONPUTVALUE
JSONVALID
MEMCONVERT
MEMCU12
MEMCU14
MEMCU21
MEMCU24
MEMCU12
MEMCU41
MEMCU42
MEMINDEX
MEMSEARCH
MEMSEARCHR
MEMVERIFY
MEMVERIFYR
LOCATION
LOCSTG
OFFSETDIFF
POINTERDIFF
STORAGE
WHITESPACECOLLAPSE
WHITESPACEREPLACE
XMLCHAR
XMLCLEAN

Built-in functions whose integer arguments are converted to
FIXED BIN(63) under LP(64)

The following built-in functions have one or more arguments that represent the
size of a piece of storage. These arguments are converted to FIXED BIN(63) under
LP(64), if necessary.

Chapter 7. Considerations for developing 64-bit applications 193

ALLOCATE
BASE64DECODE8
BASE64DECODE16
BASE64ENCODE8
BASE64ENCODE16
CHECKSUM
COMPARE
FILEWRITE
HEXDECODE
HEXDECODE8
JSONGETARRAYEND
JSONGETARRAYSTART
JSONGETCOLON
JSONGETCOMMA
JSONGETMEMBER
JSONGETOBJECTEND
JSONGETOBJECTSTART
JSONGETVALUE
JSONPUTARRAYEND
JSONPUTARRAYSTART
JSONPUTCOLON
JSONPUTCOMMA
JSONPUTMEMBER
JSONPUTOBJECTEND
JSONPUTOBJECTSTART
JSONPUTVALUE
JSONVALID
MEMCONVERT

MEMCU12
MEMCU14
MEMCU21
MEMCU24
MEMCU41
MEMCU42
MEMINDEX
MEMSEARCH
MEMSEARCHR
MEMVERIFY
MEMVERIFYR
PLIASCII
PLIEBCDIC
PLIFILL
PLIMOVE
PLIOVER
PLISAXA
PLISAXB
PLISAXC
PLISAXD
PLITRAN11
PLITRAN12
PLITRAN21
PLITRAN22
WHITESPACECOLLAPSE
WHITESPACEREPLACE
XMLCHAR
XMLCLEAN

Built-in functions that are not supported under LP(64)

Under LP(64), you cannot use the following built-in functions because the
STORAGE suboption of the CHECK compiler option is not supported:
v ALLOCSIZE
v CHECKSTG
v UNALLOCATED

Considerations for SQL programs
To use the same source to develop 32-bit and 64-bit applications, it is
recommended that you declare sqlda or sqlda2 by using the EXEC SQL INCLUDE
statement, and that the sqldabc field be set to use stg(sqlvar(1)) as the size of
sqlvar. If your SQL program is not following these recommendations, you might
need to change your code to develop a 64-bit application.

If needed, you can make these changes to existing 32-bit SQL programs without
changing their behavior. These changes can make these programs easier to port.

Declaring sqlda

If sqlda is not declared with the EXEC SQL INCLUDE sqlda statement, you must
change the declaration for sqlda by adding the following field after the sqllen
field:

char(length(hex(sysnull()))/2 - 4),

194 Enterprise PL/I for z/OS Programming Guide

For example, assume that in your program the sqlda structure is declared as
follows:
dcl

1 fsqlda based(fsqldaptr),
2 sqldaid char(8),
2 sqldabc fixed bin(31),
2 sqln fixed bin(15),
2 sqld fixed bin(15),
2 sqlvar(fsqlsize refer(sqln)),

3 sqltype fixed bin(15),
3 sqllen fixed bin(15),
3 sqldata pointer,
3 sqlind pointer,
3 sqlname char(30) var;

You must change the declaration as follows:
dcl

1 fsqlda based(fsqldaptr),
2 sqldaid char(8),
2 sqldabc fixed bin(31),
2 sqln fixed bin(15),
2 sqld fixed bin(15),
2 sqlvar(fsqlsize refer(sqln)),

3 sqltype fixed bin(15),
3 sqllen fixed bin(15),
3 * char(length(hex(sysnull()))/2 - 4),
3 sqldata pointer,
3 sqlind pointer,
3 sqlname char(30) var;

Declaring sqlda2

If sqlda2 is not declared with the EXEC SQL INCLUDE sqlda2 statement, you must
change the declaration for sqlda2 by adding the following field after the sqlrsvdl
field:

char(length(hex(sysnull())) - 8),

For example, assume that in your program the sqlda2 structure is declared as
follows:
dcl

1 fsqlda2 based(fsqldaptr),
2 sqldaid2 char(8),
2 sqldabc2 fixed bin(31),
2 sqln2 fixed bin(15),
2 sqld2 fixed bin(15),
2 sqlvar2(fsqlsize refer(sqln2)),

3 sqlbiglen,
4 sqllongl fixed bin(31),
4 sqlrsvdl fixed bin(31),

3 sqldatal pointer,
3 sqltname char(30) var;

You must change the declaration as follows:
dcl

1 fsqlda2 based(fsqldaptr),
2 sqldaid2 char(8),
2 sqldabc2 fixed bin(31),
2 sqln2 fixed bin(15),
2 sqld2 fixed bin(15),
2 sqlvar2(fsqlsize refer(sqln2)),

3 sqlbiglen,
4 sqllongl fixed bin(31),

Chapter 7. Considerations for developing 64-bit applications 195

4 sqlrsvdl fixed bin(31),
3 * char(length(hex(sysnull())) - 8),
3 sqldatal pointer,
3 sqltname char(30) var;

Setting sqldabc

If the sqldabc field is set to 44 as the size of sqlvar, you must set it to use
stg(sqlvar(1)) instead.

For example, the statement sqlda.sqldabc = 16 + (44 * sqlda.sqld); should be
changed to sqlda.sqldabc = 16 + (stg(sqlda.sqlvar(1)) * sqlda.sqld);.

You can code as follows:
SQLDABC = LEN_SQLDA + SQLN * LEN_SQLVAR;

You must change the declaration for LEN_SQLVAR as follows:

Original
declaration:

DCL LEN_SQLVAR FIXED BIN(15) VALUE(44);

Updated
declaration:

DCL LEN_SQLVAR FIXED BIN(15) VALUE(STG(SQLDA.SQLVAR(1)));

Communicating with 31-bit routines
Language Environment does not support mixing 64-bit and 31-bit programs in the
same application. For example, you cannot call a PL/I program compiled with
LP(32) from a PL/I program compiled with LP(64).

To facilitate communicating with non-Language Environment based 31-bit routines, a
generic interface is provided to load, call and release a 31-bit routine. A function to
retrieve the entry point address for the loaded module is also provided.

Invoke IBMPC32I to load a 31-bit routine. It takes a pointer to an 8-bit character
string that holds the name of the module as input and returns a file handle to be
used for the call and release functions.

dcl <load32> ext("_IBMPC32I")
entry(char(8) byaddr inonly)
returns(pointer byvalue)
options(nodescriptor linkage(optlink));

Invoke IBMPC32C to call a 31-bit routine. It takes two parameters as input: the
first parameter is the file handle returned from the IBMPC32I call, and the second
parameter is the user parameter list to the 31-bit routine. Note that the user
parameter list has to reside in below-the-bar storage. IBMPC32C returns the
register 15 value from the called 31-bit routine.

dcl <call32> ext("_IBMPC32C")
entry(pointer byvalue, pointer byvalue)
returns(fixed bin(31) byvalue)
options(nodescriptor linkage(optlink));

Invoke IBMPC32T to release a 31-bit routine. It takes the file handle as a
parameter.

dcl <rel32> ext("_IBMPC32T")
entry(pointer byvalue)
options(nodescriptor linkage(optlink));

196 Enterprise PL/I for z/OS Programming Guide

|
|
|

|

Invoke IBMPC32E to get the entry point address of the loaded module. It takes the
file handle as a parameter and returns the entry point address of the loaded
module. Note that it is not valid to branch to this address directly.

dcl <epa32> ext("_IBMPC32E")
entry(pointer byvalue)
returns(pointer byvalue)
options(nodescriptor linkage(optlink));

The following code fragment example shows how the above interfaces can be used.
DSNALI is a 31-bit DB2 facility.

....

dcl load32 ext("_IBMPC32I")
entry(char(8) byaddr inonly)
returns(pointer byvalue)
options(nodescriptor);

dcl call32 ext("_IBMPC32C")
entry(pointer byvalue, pointer byvalue)
returns(fixed bin(31) byvalue)
options(nodescriptor);

dcl file_pointer pointer;
dcl plist_pointer pointer;
dcl 1 dsnali_plist based(plist_pointer),
3 args_list(10) pointer(32),
3 content union,
5 connect,
7 functioncode char(12),
7 subsystemid char(4),
7 tecb fixed bin(31),
7 secb fixed bin(31),
7 ribpointer ptr(32),
7 returncode fixed bin(31),
7 reasoncode fixed bin(31),
5 open,
7 functioncode char(12),
7 subsystemid char(4),
7 planname char(8),
7 returncode fixed bin(31),
7 reasoncode fixed bin(31);

dcl lastargflag bit(1) based;

....

plist_pointer = alloc31(stg(dsnali_plist));
file_pointer = load32("DSNALI");

/* set up argument list for CONNECT function for DSNALI call */
args_list(1) = addr(connect.functioncode);
args_list(2) = addr(connect.subsystemid);
args_list(3) = addr(connect.tecb);
args_list(4) = addr(connect.secb);
args_list(5) = addr(connect.ribpointer);
args_list(6) = addr(connect.returncode) ;
args_list(7) = addr(connect.reasoncode) ;

/* mark last argument */
addr(args_list(7)).lastargflag = ’1’b;

/* set up values for CONNECT function parameters */
connect.functioncode = ’CONNECT’;
connect.subsystemid = ’DB2S’;
connect.tecb = 0;

Chapter 7. Considerations for developing 64-bit applications 197

connect.secb = 0;
connect.ribpointer = sysnull;
connect.returncode = 0;
connect.reasoncode = 0;

/* invoke DSNALI with CONNECT function */
rc = call32(file_pointer, plist_pointer);

...

/* set up argument list for OPEN function for DSNALI call */
args_list(1) = addr(open.functioncode);
args_list(2) = addr(open.subsystemid);
args_list(3) = addr(open.planname);
args_list(4) = addr(open.returncode);
args_list(5) = addr(open.reasoncode);

/* mark last argument */
addr(args_list(5)).lastargflag = ’1’b;

/* set up values for OPEN function parameters */
open.functioncode = ’OPEN’;
open.subsystemid = ’DB2S’;
open.planname = ’TESTCASE’;
open.returncode = 0;
open.reasoncode = 0;

/* invoke DSNALI with OPEN function */
rc = call32(file_pointer, plist_pointer) ;

....

198 Enterprise PL/I for z/OS Programming Guide

Part 2. Using I/O facilities

© Copyright IBM Corp. 1999, 2017 199

200 Enterprise PL/I for z/OS Programming Guide

Chapter 8. Using data sets and files

This chapter describes how to allocate files and associate data sets with the files
known within your program. It introduces the five major types of data sets,
describes how they are organized and accessed, and helps you learn how to
specify some of the file and data set characteristics.

Your PL/I programs process and transmit units of information called records. A
collection of records is called a data set. Data sets are physical collections of
information external to PL/I programs; they can be created, accessed, or modified
by programs written in PL/I or other languages or by the utility programs of the
operating system.

Your PL/I program recognizes and processes information in a data set by using a
symbolic or logical representation of the data set called a file.

Note: INDEXED implies VSAM and is supported only under batch.

Note: Regional data sets are not supported for 64-bit programs in PL/I V5.1.

Allocating files
For any type of file, including sequential, VSAM, REGIONAL(1), and HFS, you can
define the external name by using the following methods:
v In the MVS or TSO environment:

– A ddname in the JCL
– An environment variable name
– The TITLE option of the OPEN statement

v In the z/OS UNIX System Services environment:
– An environment variable name
– The TITLE option of the OPEN statement

For HFS files under the batch environment, the following rules apply:
v If FILEDATA is not specified, the default setting is TEXT.
v If the record format or the ENVIRONMENT option is not specified, the default

is V with the LF type.
v If FILEDATA is BINARY, only fixed-length files are valid. Error message

MSGIBM0210S is issued when FILEDATA=BINARY is specified with
varying-length files.

v For varying-length files, files are assumed to be TYPE=LF; that is, the records are
delimited with the LF (x'15') character.

v For data files that contain delimiters, specify FILEDATA=TEXT, so the PL/I
library can handle the delimiters properly.

Dynamic allocation

A PL/I program dynamically allocates the file by using the attributes that are
specified by the environment variable or the TITLE option.

© Copyright IBM Corp. 1999, 2017 201

To use PL/I dynamic allocation, you must specify the file names by using the
DSN() format for MVS data sets or the PATH() format for HFS files. All options
and attributes must be in uppercase, except for the pathname suboption of the
PATH option, which is case-sensitive. Do not use temporary data set names in the
DSN() option. See the following examples to specify file names:
OPEN FILE(FILEIN) TITLE(’DSN(USER.FILE.EXT),SHR’);
OPEN FILE(FILEIN) TITLE(’PATH(/usr/FILE.EXT)’);

EXPORT DD_FILE="DSN(USER.FILE.EXT),SHR"
EXPORT DD_FILE="PATH(/usr/FILE.EXT)"

The following rules of precedence apply in determining when the dynamic
allocation takes place:
1. If one of the following DD statements exists for the file, it is used. This rule is

not valid in the z/OS UNIX System Services environment.
v JCL DD
v TSO ALLOCATE
v User-initiated dynamic allocation

2. If a DD statement does not exist for the file and the TITLE option is specified
in the OPEN statement, the TITLE option is used by associating it with the
external name for the file.

3. If a DD statement does not exist for the file and the TITLE option is not
specified, but an environment variable exists for the file, the environment
variable is used by associating it with the external name for the file.

For MVS data sets, the Enterprise PL/I run time checks the contents of the
environment variable or TITLE option at each OPEN statement:
v If a file with the same external name was dynamically allocated by a previous

OPEN statement, and the contents of the environment variable or the TITLE
option have changed since that OPEN statement, the run time dynamically
deallocates the previous allocation and reallocates the file by using the options
that are currently set in the environment variable or specified in the TITLE
option.

v If the contents of the environment variable or the TITLE option have not
changed, the run time uses the current allocation without deallocating or
reallocating.

For HFS files, the DD statement is deallocated and reallocated at each subsequent
OPEN statement.

Note:

1. When you use the DSN() or the PATH() format specification for PL/I dynamic
allocation, if a DD statement and the TITLE option of the OPEN statement are
both specified for a file, the DD statement is used and the TITLE option is
ignored.

2. Under the z/OS UNIX System Services environment, user-initiated dynamic
allocation is not supported. If it is attempted, the UNDEFINEDFILE condition
is raised, even when the TITLE option or the environment variable is used,
because the external name is in use.

202 Enterprise PL/I for z/OS Programming Guide

Associating data sets with files under z/OS
A file used within a PL/I program has a PL/I file name. The physical data set
external to the program has a name by which it is known to the operating system:
a data set name or dsname. In some cases the data set has no name; it is known to
the system by the device on which it exists.

The operating system needs a way to recognize which physical data set is referred
to by your program, so you must write a data definition or DD statement, external
to your program, that associates the PL/I file name with a dsname.

For example, if you have the following file declaration in your program, you must
create a DD statement with a data definition name (ddname) that matches the name
of the PL/I file.
DCL STOCK FILE STREAM INPUT;

The DD statement specifies a physical data set name (dsname) and gives its
characteristics:
//GO.STOCK DD DSN=PARTS.INSTOCK, . . .

For more detail about writing DD statements, refer to the job control language
(JCL) manuals for your system.

There is more than one way to associate a data set with a PL/I file. You associate a
data set with a PL/I file by ensuring that the ddname of the DD statement that
defines the data set is the same as one of the following:
v The declared PL/I file name
v The character-string value of the expression specified in the TITLE option of the

associated OPEN statement.

You must choose your PL/I file names so that the corresponding ddnames
conform to the following restrictions:
v If a file is opened implicitly, or if no TITLE option is included in the OPEN

statement that explicitly opens the file, the ddname uses the file name by
default. If the file name is longer than 8 characters, the default ddname is
composed of the first 8 characters of the file name.

v The character set of the JCL does not contain the break character (_).
Consequently, this character cannot appear in ddnames. Do not use break
characters among the first 8 characters of file names, unless the file is to be
opened with a TITLE option with a valid ddname as its expression. The
alphabetic extender characters $, @, and #, however, are valid for ddnames, but
the first character must be one of the letters A through Z.

Because external names are limited to 7 characters, an external file name of more
than 7 characters is shortened into a concatenation of the first 4 and the last 3
characters of the file name. Such a shortened name is not, however, the name used
as the ddname in the associated DD statement.

Consider the following statements:
1. OPEN FILE(MASTER);

2. OPEN FILE(OLDMASTER);

3. READ FILE(DETAIL) ...;

Chapter 8. Using data sets and files 203

When statement number 1 is run, the file name MASTER is taken to be the same
as the ddname of a DD statement in the current job step. When statement number
2 is run, the name OLDMASTE is taken to be the same as the ddname of a DD
statement in the current job step. (The first 8 characters of a file name form the
ddname. If OLDMASTER is an external name, it will be shortened by the compiler
to OLDMTER for use within the program.) If statement number 3 causes implicit
opening of the file DETAIL, the name DETAIL is taken to be the same as the
ddname of a DD statement in the current job step.

In each of the above cases, a corresponding DD statement must appear in the job
stream; otherwise, the UNDEFINEDFILE condition is raised. The three DD
statements could start as follows:
1. //MASTER DD ...

2. //OLDMASTE DD ...

3. //DETAIL DD ...

If the file reference in the statement that explicitly or implicitly opens the file is not
a file constant, the DD statement name must be the same as the value of the file
reference. The following example illustrates how a DD statement should be
associated with the value of a file variable:
DCL PRICES FILE VARIABLE,

RPRICE FILE;
PRICES = RPRICE;
OPEN FILE(PRICES);

The DD statement should associate the data set with the file constant RPRICE,
which is the value of the file variable PRICES:
//RPRICE DD DSNAME=...

Use of a file variable also allows you to manipulate a number of files at various
times by a single statement. See the following example:
DECLARE F FILE VARIABLE,

A FILE,
B FILE,
C FILE;

.

.

.
DO F=A,B,C;

READ FILE (F) ...;
.
.
.

END;

The READ statement reads the three files A, B, and C, each of which can be
associated with a different data set. The files A, B, and C remain open after the
READ statement is executed in each instance.

The following OPEN statement illustrates use of the TITLE option:
OPEN FILE(DETAIL) TITLE(’DETAIL1’);

For this statement to be executed successfully, you must have a DD statement in
the current job step with DETAIL1 as its ddname. It could start as follows:
//DETAIL1 DD DSNAME=DETAILA,...

204 Enterprise PL/I for z/OS Programming Guide

Thus, you associate the data set DETAILA with the file DETAIL through the
ddname DETAIL1.

Associating several files with one data set
You can use the TITLE option to associate two or more PL/I files with the same
external data set, provided that the first file association is closed before a second
file association is opened against the same TITLE name.

In the following example, INVNTRY is the name of a DD statement defining a
data set to be associated with two files:
OPEN FILE (FILE1) TITLE(’INVNTRY’);
.....
CLOSE FILE (FILE1);
.....
OPEN FILE (FILE2) TITLE(’INVNTRY’);

If the file is not closed first before the second open is done, the UNDEFINEDFILE
condition will be raised with a subcode1 value of 59, stating that an open was
attempted against a file that was already open.

Associating several data sets with one file
You can use the TITLE option to associate several data sets with one file.

The file name can, at different times, represent entirely different data sets. Consider
the following OPEN statement:
OPEN FILE(DETAIL) TITLE(’DETAIL1’);

For this statement to be executed successfully, a DD statement must be specified in
the current job step with DETAIL1 as its ddname:
//DETAIL1 DD DSNAME=DETAILA,...

The file DETAIL1 is associated with the data set named in the DSNAME parameter
of the DD statement DETAIL1. If you close and reopen the file, you can specify a
different ddname in the TITLE option to associate the file with a different data set.

Using the TITLE option, you can choose dynamically, at open time, one among
several data sets to be associated with a particular file name. Consider the
following example:
DO IDENT=’A’,’B’,’C’;

OPEN FILE(MASTER)
TITLE(’MASTER1’||IDENT);

.

.

.
CLOSE FILE(MASTER);

END;

In this example, when MASTER is opened during the first iteration of the
do-group, the associated ddname is taken to be MASTER1A. After processing, the
file is closed, dissociating the file name and the ddname. During the second
iteration of the do-group, MASTER is opened again. This time, MASTER is
associated with the ddname MASTER1B. Similarly, during the final iteration of the
do-group, MASTER is associated with the ddname MASTER1C.

Chapter 8. Using data sets and files 205

Concatenating several data sets
For input only, you can concatenate two or more sequential or regional data sets
(that is, link them so that they are processed as one continuous data set) by
omitting the ddname from all but the first of the DD statements that describe the
data sets.

For example, the following DD statements cause the data sets LIST1, LIST2, and
LIST3 to be treated as a single data set for the duration of the job step in which the
statements appear:
//GO.LIST DD DSNAME=LIST1,DISP=OLD
// DD DSNAME=LIST2,DISP=OLD
// DD DSNAME=LIST3,DISP=OLD

When read from a PL/I program, the concatenated data sets need not be on the
same volume.

You cannot process concatenated data sets backward.

Accessing HFS files under z/OS
You can access HFS files from a batch program by specifying the HFS file name in
the DD statement or in the TITLE option of the OPEN statement.

For example, to access the HFS file /u/USER/sample.txt by using the DD HFS, you
can code the DD statement as follows:

//HFS DD PATH=’/u/USER/sample.txt’,PATHOPTS=ORDONLY,DSNTYPE=HFS

To access the same file by using the TITLE option of the OPEN statement, you can
code as follows:

OPEN FILE(HFS) TITLE(’//u/USER/sample.txt’);

Note the two forward slashes in the TITLE option: the first indicates that what
follows is a file name (rather than a DD name), and the second is the start of the
fully qualified HFS file name. You must use fully qualified names when HFS files
are referenced under batch, because there is no current directory that can be used
to complete a file specification.

You can access HFS files from a batch program using PL/I dynamic allocation by
specifying the HFS file name using one of the following methods:
v The DD statement
v The TITLE option of the OPEN statement
v The PUTENV built-in function
v The PLIXOPT string using the ENVAR option

The following example shows how to access HFS files by using these methods:
//HFS DD PATH=’/u/USER/sample.txt’,PATHOPTS=ORDONLY...

OPEN FILE(HFS) TITLE(’PATH(/u/USER/sample.txt)’);

xx = putenv(’DD_HFS=/u/USER/sample.txt’);

Dcl plixopt char(100) var ext static
init(’ENVAR("DD_HFS=PATH(/u/USER/sample.txt)")’);

Note: To use PL/I dynamic allocation, specify the file names by using the DSN()
format for MVS data sets, or the PATH() format for HFS files.

206 Enterprise PL/I for z/OS Programming Guide

PL/I decides how to treat HFS files under batch in the following order:
1. If ENV(F) is specified in the file declaration, the file is assumed to consist of

fixed length records.
2. If ENV(V) is specified in the file declaration, the file is assumed to consist of

lf-delimited records.
3. If FILEDATA=BINARY is specified on the file's DD statement, the file is

assumed to consist of fixed length records.
4. Otherwise the file is assumed to consist of lf-delimited records.

To access a fixed length z/OS file from UNIX, the record size of the file must be
specified either in the ENVIRONMENT attribute of the file or in the TITLE option
on the OPEN statement.
v If the file declaration does not contain ENV(F RECSIZE(...)), you must specify

the data set name and these attributes in the TITLE option. For example, for a
file of fixed length 80-byte records, you could specify a TITLE option as follows:

’/dataset.name,type(fixed),recsize(80)’

v If the ENVIRONMENT attribute specifies only one of F or RECSIZE, you must
specify the data set name and the omitted attribute in the TITLE option.

v If the ENVIRONMENT attribute specifies both F and RECSIZE, you need to
specify only the data set name in the TITLE option.

Associating data sets with files under z/OS UNIX
A file used within a PL/I program has a PL/I file name. A data set also has a
name by which it is known to the operating system.

PL/I needs a way to recognize the data sets to which the PL/I files in your
program refer, so you must provide an identification of the data set to be used, or
allow PL/I to use a default identification.

You can identify the data set explicitly using either an environment variable or the
TITLE option of the OPEN statement.

To use PL/I dynamic allocation, you must specify the file names by using the
DSN() format for MVS data sets, or the PATH() format for HFS files.

To access HFS files from z/OS UNIX program using PL/I dynamic allocation, you
can specify the HFS filename by using one of the following methods:
v The TITLE option of the OPEN statement
v The PUTENV built-in function
v The PLIXOPT string using the ENVAR option
v The EXPORT statement

Using environment variables
Use the export command to establish an environment variable that identifies the
data set to be associated with a PL/I file, and, optionally, to specify the
characteristics of that data set. The information provided by the environment
variable is called data definition (or DD) information.

These environment variable names have the form DD_DDNAME, where the DDNAME
is the name of a PL/I file constant (or an alternate DDNAME, as defined below). If

Chapter 8. Using data sets and files 207

the filename refers to an HFS file, the filename must be properly qualified.
Otherwise, the PL/I library assumes that the filename refers to an MVS data set.

Examples
v declare MyFile stream output;

export DD_MYFILE=/datapath/mydata.dat

where /datapath/mydata.dat refers to an HFS file. The filename is
fully-qualified.

v export DD_MYFILE=./mydata.dat

where ./mydata.dat refers to an HFS file in the current directory.
v export DD_MYFILE=mydata.dat

where mydata.dat refers to an MVS data set.

The following examples show that the HFS files are accessed when you use PL/I
dynamic allocation:
export DD_HFS="PATH(/u/USER/sample.txt)"
export DD_FILE="DSN(USER.FILE.EXT),SHR"

If you are familiar with the IBM mainframe environment, you can think of the
environment variable much like the following statement:

DD statement in z/OS
ALLOCATE statement in TSO

For more information about the syntax and options you can use with the
DD_DDNAME environment variable, see “Specifying characteristics using
DD_DDNAME environment variables” on page 210.

Under z/OS UNIX, where more types of varying length HFS files are supported
than under batch, PL/I treats an HFS file as follows:
1. If ENV(F) is specified in the file declaration, the file is assumed to consist of

fixed length records.
2. If a TYPE is specified in the file's EXPORT statement, the file is assumed to

consist of records of that type.
3. Otherwise the file is assumed to consist of lf-delimited records.

Using the TITLE option of the OPEN statement
You can use the TITLE option of the OPEN statement to identify the data set to be
associated with a PL/I file, and, optionally, to provide additional characteristics of
that data set.

►► TITLE ('expression') ►◄

The expression must yield a character string with the following syntax:

208 Enterprise PL/I for z/OS Programming Guide

►►

▼

▼

alternate_ddname

/filespec
, dd_option

DSN (dsname) , dsn_option
PATH (pathname)

►◄

alternate_ddname
The name of an alternate DD_DDNAME environment variable

An alternate DD_DDNAME environment variable is not named after a file
constant. For example, if you have a file named INVENTRY in your program
and you establish two DD_DDNAME environment variables with the first
named INVENTRY and the second named PARTS, you can associate the file
with the second one by using this statement:
open file(Inventry) title(’PARTS’);

filespec
Any valid file specification on the system you are using

The maximum length of filespec is 1023 characters.

dd_option
One or more options allowed in a DD_DDNAME environment variable

For more information about the options of the DD_DDNAME environment
variable, see “Specifying characteristics using DD_DDNAME environment
variables” on page 210.

dsname
The fully qualified MVS data set name

dsn_option
One or more DSN options

For more information about the DSN options, see “Defining QSAM files using
PL/I dynamic allocation” on page 258, “Defining REGIONAL(1) data sets
using PL/I dynamic allocation” on page 277, and “Defining VSAM file using
PL/I dynamic allocation” on page 287.

pathname
The fully qualified HFS path name

Here is an example of using the OPEN statement in this manner with a z/OS
DSN:
open file(Payroll) title(’/June.Dat,append(n),recsize(52)’);

Note the required leading forward slash in the TITLE option. This leading forward
slash indicates that what follows is a file name (rather than a DD name). In this
case, June.Dat refers to an MVS data set.

If June.Dat is an HFS file, the OPEN statement example is as follows:
open file(Payroll) title(’//u/USER/June.Dat,append(n),recsize(52)’);

Note the two forward slashes in the TITLE option: the first indicates that what
follows is a file name (rather than a DD name), and the second is the start of the
fully qualified HFS file name.

Chapter 8. Using data sets and files 209

You can also specify relative HFS file names in place of fully qualified names. See
the following example:
open file(Payroll) title(’./June.Dat,append(n),recsize(52)’);

The data set name June.Dat will be prefixed with the pathname of the current
z/OS UNIX directory.

With this form, PL/I obtains all DD information either from the TITLE expression
or from the ENVIRONMENT attribute of a file declaration - a DD_DDNAME
environment variable is not referenced.

The following examples show how to use the OPEN statement with PL/I dynamic
allocation support:
v For a z/OS data set:

OPEN FILE(QSAM01) title(’DSN(USER.FILE.EXT),SHR’);

v For an HFS file:
OPEN FILE(QSAM01) title(’PATH(/u/USER/sample.txt)’);

Attempting to use files not associated with data sets
If you attempt to use a file that has not been associated with a data set, (either
through the use of the TITLE option of the OPEN statement or by establishing a
DD_DDNAME environment variable), the UNDEFINEDFILE condition is raised.

The only exceptions are the files SYSIN and SYSPRINT; these default to stdin and
stdout, respectively.

How PL/I finds data sets
PL/I establishes the path for creating new data sets or accessing existing data sets
in one of the following ways:
v The current directory
v The paths as defined by the export DD_DDNAME environment variable

Specifying characteristics using DD_DDNAME environment
variables

You use the export command to establish an environment variable that identifies
the data set to be associated with a PL/I file, and, optionally, provide additional
characteristics of that data set. This information provided by the environment
variable is called data definition (or DD) information.

DD_DDNAME syntax

►► ▼

▼

DD_DDNAME = " filespec "
, option

DSN (dsname) , dsn_option
PATH (pathname)

►◄

Blanks are acceptable within the syntax. In addition, the syntax of the statement is
not checked at the time the command is entered. It is verified when the data set is
opened. If the syntax is wrong, UNDEFINEDFILE is raised with the oncode 96.

210 Enterprise PL/I for z/OS Programming Guide

DD_DDNAME
The name of the environment variable

The DDNAME must be in uppercase and can be either the name of a file
constant or an alternate DDNAME that you specify in the TITLE option of
your OPEN statement. For more information, see “Using the TITLE option of
the OPEN statement” on page 208.

If you use an alternate DDNAME that is longer than 31 characters, only the
first 31 characters are used in forming the environment variable name.

filespec
The specifications of a file or the name of a device to be associated with the
PL/I file

option
The options that you can specify as DD information

dsname
The fully-qualified MVS data set name

pathname
The fully-qualified HFS path name

The following topics describe the options that you can specify as DD information.
Note that these options do no apply to the DSN() or PATH() formats.

APPEND
The APPEND option specifies whether an existing data set is to be extended or
re-created.

►► APPEND
Y

(N) ►◄

Y Specifies that new records are to be added to the end of a sequential data set,
or inserted in a relative or indexed data set.

N Specifies that, if the file exists, it is to be re-created.

The APPEND option applies only to OUTPUT files. APPEND is ignored under the
following conditions:
v The file does not exist.
v The file does not have the OUTPUT attribute.
v The organization is REGIONAL(1).

BUFSIZE
The BUFSIZE option specifies the number of bytes for a buffer.

►► BUFSIZE (n) ►◄

RECORD output is buffered by default and has a default value for BUFSIZE of
64k. STREAM output is buffered, but not by default; the default BUFSIZE value for
STREAM output is zero.

If the value of BUFSIZE is zero, the number of bytes for buffering is equal to the
value specified in the RECSIZE or LRECL option.

Chapter 8. Using data sets and files 211

The BUFSIZE option is valid only for a consecutive binary file. If the file is used
for terminal input, you should assign the value of zero to BUFSIZE for increased
efficiency.

CHARSET for record I/O
This version of the CHARSET option applies only to consecutive files using record
I/O. It allows the user to use ASCII data files as input files and specify the
character set of output files.

►► CHARSET
ASIS

(EBCDIC)
ASCII

►◄

Choose a suboption of CHARSET based on what form the file has (input) or what
form you want the file to have (output).

CHARSET for stream I/O
This version of the CHARSET option applies for stream input and output files. It
allows the user to use ASCII data files as input files and specify the character set
of output files.

If you attempt to specify ASIS when using stream I/O, no error is issued and
character sets are treated as EBCDIC.

►► CHARSET
EBCDIC

(ASCII) ►◄

Choose a suboption of CHARSET based on what form the file has (input) or what
form you want the file to have (output).

DELAY
The DELAY option specifies the number of milliseconds to delay before the
compiler retries an operation that fails when a file or record lock cannot be
obtained by the system.

►► DELAY
0

(n) ►◄

This option is applicable only to VSAM files.

DELIMIT
The DELIMIT option specifies whether the input file contains field delimiters.

A field delimiter is a blank or a user-defined character that separates the fields in a
record. This is applicable for sort input files only.

►► DELIMIT
N

(Y) ►◄

The sort utility distinguishes text files from binary files with the presence of field
delimiters. Input files that contain field delimiters are processed as text files;

212 Enterprise PL/I for z/OS Programming Guide

otherwise, they are considered to be binary files. The library needs this information
in order to pass the correct parameters to the sort utility.

LRECL
The LRECL option is the same as the RECSIZE option.

►► LRECL (n) ►◄

If LRECL is not specified and not implied by a LINESIZE value (except for
TYPE(FIXED) files, the default is 1024.

LRMSKIP
The LRMSKIP option allows output to begin on the nth line of the first page for
the first SKIP format item to be executed after a file is opened. n refers to the value
specified with the SKIP option of the PUT or GET statement.

►► LRMSKIP
N

(Y) ►◄

If n is zero or 1, output begins on the first line of the first page.

PROMPT
The PROMPT option specifies whether colons should be visible as prompts for
stream input from the terminal.

►► PROMPT
N

(Y) ►◄

PUTPAGE
The PUTPAGE option specifies whether the form feed character should be
followed by a carriage return character. This option applies only to printer-destined
files.

Printer-destined files are stream output files declared with the PRINT attribute, or
record output files declared with the CTLASA environment option.

►► PUTPAGE
NOCR

(CR) ►◄

NOCR
Indicates that the form feed character ('0C'x) is not followed by a carriage
return character ('0D'x).

CR Indicates that the carriage return character is appended to the form feed
character. This option should be specified if output is sent to non-IBM printers.

RECCOUNT
The RECCOUNT option specifies the maximum number of records that can be
loaded into a relative or regional data set that is created during the PL/I file
opening process.

Note: The RECCOUNT option is not supported for 64-bit programs in PL/I V5.1.

Chapter 8. Using data sets and files 213

►► RECCOUNT (n) ►◄

The RECCOUNT option is ignored if PL/I does not create or re-create the data set.

The default for the RECCOUNT option is 50.

Note: Under z/OS, it is recommended that you omit the TITLE option with both
the /filespec parameter and RECCOUNT parameter for improved functionality
and performance of REGIONAL(1) data sets. In such a case, the number of records
that will be loaded into the file depends on the space allocated to the first extent of
the data set. See Chapter 13, “Defining and using regional data sets,” on page 275
for additional information.

RECSIZE
The RECSIZE option specifies the length of records in the data set. For regional
and fixed-length data sets, RECSIZE specifies the length of each record in the data
set; for all other data set types, RECSIZE specifies the maximum length that
records can have.

►► RECSIZE
512

(n) ►◄

SAMELINE
The SAMELINE option specifies whether the system prompt occurs on the same
line as the statement that prompts for input.

►► SAMELINE
N

(Y) ►◄

The following examples show the results of certain combinations of the PROMPT
and SAMELINE options.

Example 1

Given the statement PUT SKIP LIST(’ENTER:’);, output is as follows:

prompt(y) sameline(y) ENTER: (cursor)

prompt(y) sameline(n) ENTER:
(cursor)

prompt(n) sameline(y) ENTER: (cursor)

prompt(n) sameline(n) ENTER:
(cursor)

214 Enterprise PL/I for z/OS Programming Guide

Example 2

Given the statement PUT SKIP LIST(’ENTER’);, output is as follows:

prompt(y) sameline(y) ENTER: (cursor)

prompt(y) sameline(n) ENTER
:
(cursor)

prompt(n) sameline(y) ENTER (cursor)

prompt(n) sameline(n) ENTER
(cursor)

SKIP0
The SKIP0 option specifies where the line cursor moves when SKIP(0) statement is
coded in the source program. SKIP0 applies to terminal files that are not linked as
PM applications.

►► SKIP0
N

(Y) ►◄

SKIP0(N)
Specifies that the cursor moves to the beginning of the next line.

SKIP0(Y)
Specifies that the cursor moves to the beginning of the current line.

The following example shows how you could make the output to the terminal skip
zero lines so that the cursor moves to the beginning of the current output line:

export DD_SYSPRINT=’stdout:,SKIP0(Y)’

TYPE
The TYPE option specifies the format of records in a native file.

►► TYPE
LF

(CRLF)
TEXT
FIXED
CRLFEOF
U

►◄

CRLF
Specifies that records are delimited by the CR - LF character combination. ('CR'
and 'LF' represent the ASCII values of carriage return and line feed, '0D'x and
'0A'x, respectively. For an output file, PL/I places the characters at the end of
each record; for an input file, PL/I discards the characters. For both input and
output, the characters are not counted in consideration for RECSIZE.

The data set must not contain any record that is longer than the value
determined for the record length of the data set.

LF Specifies that records are delimited by the LF character combination. ('LF'

Chapter 8. Using data sets and files 215

represents the ASCII values of feed or '0A'x.) For an output file, PL/I places
the characters at the end of each record; for an input file, PL/I discards the
characters. For both input and output, the characters are not counted in
consideration for RECSIZE.

The data set must not contain any record that is longer than the value
determined for the record length of the data set.

TEXT
Equivalent to LF.

FIXED
Specifies that each record in the data set has the same length. The length
determined for records in the data set is used to recognize record boundaries.

All characters in a TYPE(FIXED) file are considered as data, including control
characters if they exist. Make sure the record length you specify reflects the
presence of these characters, or make sure the record length you specify
accounts for all characters in the record.

CRLFEOF
Except for output files, this suboption specifies the same information as CRLF.
When one of these files is closed for output, an end-of-file marker is appended
to the last record.

U Indicates that records are unformatted. These unformatted files cannot be used
by any record or stream I/O statements except OPEN and CLOSE. You can
read from a TYPE(U) file only by using the FILEREAD built-in function. You
can write to a TYPE(U) file only by using the FILEWRITE built-in function.

The TYPE option applies only to CONSECUTIVE files, except that it is ignored for
printer-destined files with ASA(N) applied.

If your program attempts to access an existing data set with TYPE(FIXED) in effect
and the length of the data set is not a multiple of the logical record length you
specify, PL/I raises the UNDEFINEDFILE condition.

When nonprint files with the TYPE(FIXED) attribute are used, SKIP is replaced by
trailing blanks to the end of the line. If TYPE(LF) is being used, SKIP is replaced
by LF with no trailing blanks.

Establishing data set characteristics
A data set consists of records stored in a particular format that the operating
system data management routines understand. When you declare or open a file in
your program, you are describing to PL/I and to the operating system the
characteristics of the records that file will contain.

You can also use JCL or an expression in the TITLE option of the OPEN statement
to describe to the operating system the characteristics of the data in data sets or in
the PL/I files associated with the data sets.

You do not always need to describe your data both within the program and
outside it; often one description will serve for both data sets and their associated
PL/I files. There are, in fact, advantages to describing the characteristics of your
data in only one place.

To effectively describe your program data and the data sets you will be using, you
need to understand how the operating system moves and stores data.

216 Enterprise PL/I for z/OS Programming Guide

Blocks and records
The items of data in a data set are arranged in blocks separated by interblock gaps
(IBG). (Some manuals refer to these as interrecord gaps.)

A block is the unit of data transmitted to and from a data set. Each block contains
one record, part of a record, or several records. You can specify the block size in
the BLKSIZE parameter of the DD statement or in the BLKSIZE option of the
ENVIRONMENT attribute.

A record is the unit of data transmitted to and from a program. You can specify the
record length in the LRECL parameter of the DD statement, in the TITLE option of
the OPEN statement, or in the RECSIZE option of the ENVIRONMENT attribute.

When writing a PL/I program, you need consider only the records that you are
reading or writing; but when you describe the data sets that your program will
create or access, you must be aware of the relationship between blocks and records.

Blocking conserves storage space in a magnetic storage volume because it reduces
the number of interblock gaps, and it can increase efficiency by reducing the
number of input/output operations required to process a data set. Records are
blocked and deblocked by the data management routines.

Information interchange codes
The normal code in which data is recorded is the Extended Binary Coded Decimal
Interchange Code (EBCDIC).

Each character in the ASCII code is represented by a 7-bit pattern and there are 128
such patterns. The ASCII set includes a substitute character (the SUB control
character) that is used to represent EBCDIC characters having no valid ASCII code.
The ASCII substitute character is translated to the EBCDIC SUB character, which
has the bit pattern 00111111.

Record formats
The records in a data set have one of the following formats:

Fixed-length
Variable-length
Undefined-length.

Records can be blocked if required. The operating system will deblock fixed-length
and variable-length records, but you must provide code in your program to
deblock undefined-length records.

You specify the record format in the RECFM parameter of the DD statement, in the
TITLE option of the OPEN statement, or as an option of the ENVIRONMENT
attribute.

Fixed-length records

You can specify the following formats for fixed-length records:
F Fixed-length, unblocked
FB Fixed-length, blocked
FS Fixed-length, unblocked, standard
FBS Fixed-length, blocked, standard.

Chapter 8. Using data sets and files 217

In a data set with fixed-length records, as shown in Figure 23, all records have the
same length. If the records are blocked, each block usually contains an equal
number of fixed-length records (although a block can be truncated). If the records
are unblocked, each record constitutes a block.

Because it bases blocking and deblocking on a constant record length, the
operating system processes fixed-length records faster than variable-length records.

Variable-length records

You can specify the following formats for variable-length records:
V Variable-length, unblocked
VB Variable-length, blocked
VS Variable-length, unblocked, spanned
VBS Variable-length, blocked, spanned

V-format allows both variable-length records and variable-length blocks. A 4-byte
prefix of each record and the first 4 bytes of each block contain control information
for use by the operating system (including the length in bytes of the record or
block). Because of these control fields, variable-length records cannot be read
backward.

V-format signifies unblocked variable-length records. Each record is treated as a
block containing only one record. The first 4 bytes of the block contain block
control information, and the next 4 contain record control information.

VB-format signifies blocked variable-length records. Each block contains as many
complete records as it can accommodate. The first 4 bytes of the block contain
block control information, and a 4-byte prefix of each record contains record
control information.

Spanned Records: A spanned record is a variable-length record in which the length
of the record can exceed the size of a block. If this occurs, the record is divided
into segments and accommodated in two or more consecutive blocks by specifying
the record format as either VS or VBS. Segmentation and assembly are handled by
the operating system. The use of spanned records allows you to select a block size,
independently of record length, that will combine optimum use of auxiliary
storage with maximum efficiency of transmission.

Figure 23. Fixed-length records

218 Enterprise PL/I for z/OS Programming Guide

VS-format is similar to V-format. Each block contains only one record or segment
of a record. The first 4 bytes of the block contain block control information, and the
next 4 contain record or segment control information (including an indication of
whether the record is complete or is a first, intermediate, or last segment).

VBS-format differs from VS-format in that each block contains as many complete
records or segments as it can accommodate; each block is, therefore, approximately
the same size (although there can be a variation of up to 4 bytes, because each
segment must contain at least 1 byte of data).

Undefined-length records

U-format allows the processing of records that do not conform to F- and V-formats.
The operating system and the compiler treat each block as a record; your program
must perform any required blocking or deblocking.

Data set organization
The data management routines of the operating system can handle a number of
types of data sets, which differ in the way data is stored within them and in the
allowed means of access to the data.

The following table shows the three main types of non-VSAM data sets and the
corresponding keywords describing their PL/I organization1.

Type of data set PL/I organization
Sequential CONSECUTIVE or ORGANIZATION(consecutive)
Indexed INDEXED or ORGANIZATION(indexed)
Direct REGIONAL or ORGANIZATION(relative)

A fourth type, partitioned, has no corresponding PL/I organization.

PL/I also provides support for three types of VSAM data organization: ESDS,
KSDS, and RRDS. For more information about VSAM data sets, see Chapter 14,
“Defining and using VSAM data sets,” on page 287.

In a sequential (or CONSECUTIVE) data set, records are placed in physical
sequence. Given one record, the location of the next record is determined by its
physical position in the data set. Sequential organization can be selected for direct
access devices.

An indexed sequential (or INDEXED) data set must reside on a direct access volume.
An index or a set of indexes maintained by the operating system gives the location
of certain principal records. This allows direct retrieval, replacement, addition, and
deletion of records, as well as sequential processing.

A direct (or REGIONAL) data set must reside on a direct access volume. The data
set is divided into regions, each of which contains one or more records. A key that
specifies the region number allows direct access to any record; sequential
processing is also possible.

In a partitioned data set, independent groups of sequentially organized data, each
called a member, reside in a direct access data set. The data set includes a directory

1. Do not confuse the terms sequential and direct with the PL/I file attributes SEQUENTIAL and DIRECT. The attributes refer to how
the file is to be processed, and not to the way the corresponding data set is organized.

Chapter 8. Using data sets and files 219

that lists the location of each member. Partitioned data sets are often called libraries.
The compiler includes no special facilities for creating and accessing partitioned
data sets. Each member can be processed as a CONSECUTIVE data set by a PL/I
program. For more information about using partitioned data sets as libraries, see
Chapter 9, “Using libraries,” on page 235.

Labels
The operating system uses internal labels to identify direct access volumes and to
store data set attributes (for example, record length and block size). The attribute
information must originally come from a DD statement or from your program.

IBM standard labels have two parts: the initial volume label and header labels. The
initial volume label identifies a volume and its owner; the header labels precede
and follow each data set on the volume. Header labels contain system information,
device-dependent information (for example, recording technique), and data set
characteristics.

Direct access volumes have IBM standard labels. Each volume is identified by a
volume label, which is stored on the volume. This label contains a volume serial
number and the address of a volume table of contents (VTOC). The table of
contents, in turn, contains a label, called a data set control block (DSCB), for each
data set stored on the volume.

Data Definition (DD) statement
A data definition (DD) statement is a job control statement that defines a data set
to the operating system, and is a request to the operating system for the allocation
of input/output resources. If the data sets are not dynamically allocated, each job
step must include a DD statement for each data set that is processed by the step.

The z/OS MVS JCL User's Guide describes the syntax of job control statements. The
operand field of the DD statement can contain keyword parameters that describe
the location of the data set (for example, volume serial number and identification
of the unit on which the volume will be mounted) and the attributes of the data
itself (for example, record format).

The DD statement enables you to write PL/I source programs that are independent
of the data sets and input/output devices they will use. You can modify the
parameters of a data set or process different data sets without recompiling your
program.

The LEAVE and REREAD options of the ENVIRONMENT attribute allow you to
use the DISP parameter to control the action taken when the end of a
magnetic-tape volume is reached or when a magnetic-tape data set is closed. For
information about the LEAVE and REREAD options, see “LEAVE|REREAD” on
page 267.

Write validity checking, which was standard in PL/I Version 1, is no longer
performed. Write validity checking can be requested through the OPTCD
subparameter of the DCB parameter of the JCL DD statement. See the OS/VS2 Job
Control Language manual.

Use of the conditional subparameters
If you use the conditional subparameters of the DISP parameter for data sets
processed by PL/I programs, the step abend facility must be used.

220 Enterprise PL/I for z/OS Programming Guide

The step abend facility is obtained as follows:
1. The ERROR condition should be raised or signaled whenever the program is to

terminate execution after a failure that requires the application of the
conditional subparameters.

2. The PL/I user exit must be changed to request an ABEND.

Data set characteristics
The DCB (data control block) parameter of the DD statement allows you to
describe the characteristics of the data in a data set and the way it will be
processed at run time. Whereas the other parameters of the DD statement deal
chiefly with the identity, location, and disposal of the data set, the DCB parameter
specifies information required for the processing of the records themselves.

The subparameters of the DCB parameter are described in the OS/VS2 Job Control
Language.

The DCB parameter contains subparameters that describe the following data
characteristics:
v The organization of the data set and how it will be accessed (CYLOFL, DSORG,

LIMCT, NTM, and OPTCD subparameters)
v Device-dependent information such as the line spacing for a printer (CODE,

FUNC, MODE, OPTCD=J, PRTSP, and STACK subparameters)
v The record format (BLKSIZE, KEYLEN, LRECL, and RECFM subparameters)
v The ASA control characters (if any) that will be inserted in the first byte of each

record (RECFM subparameter)

You can specify BLKSIZE, LRECL, KEYLEN, and RECFM (or their equivalents) in
the ENVIRONMENT attribute of a file declaration in your PL/I program instead of
in the DCB parameter.

You cannot use the DCB parameter to override information already established for
the data set in your PL/I program (by the file attributes declared and the other
attributes that are implied by them). DCB subparameters that attempt to change
information already supplied are ignored.

For a new data set, the attributes of the file defined in the program will be used if
there is a conflict with the DD statement.

You might see message IEC225I with RC=4 issued when closing PDS files. This
message can be safely ignored.

The following example of the DCB parameter specifies that fixed-length records, 40
bytes in length, are to be grouped together in a block 400 bytes long:
DCB=(RECFM=FB,BLKSIZE=400,LRECL=40)

Using the TITLE option of the OPEN statement
You can use the TITLE option of the OPEN statement to identify the data set to be
associated with a PL/I file and, optionally, to provide additional characteristics of
the data set.
Related information:
“Using the TITLE option of the OPEN statement” on page 208
You can use the TITLE option of the OPEN statement to identify the data set to be
associated with a PL/I file, and, optionally, to provide additional characteristics of

Chapter 8. Using data sets and files 221

that data set.

Associating PL/I files with data sets
The execution of a PL/I OPEN statement associates a file with a data set. The
execution of a PL/I CLOSE statement dissociates a file from the data set with
which it was associated.

Opening a file
The execution of a PL/I OPEN statement associates a file with a data set. This
requires merging of the information describing the file and the data set. If any
conflict is detected between file attributes and data set characteristics, the
UNDEFINEDFILE condition is raised.

Subroutines of the PL/I library create a skeleton data control block for the data set.
They use the file attributes from the DECLARE and OPEN statements and any
attributes implied by the declared attributes, to complete the data control block as
far as possible. (See Figure 24 on page 223.) They then issue an OPEN macro
instruction, which calls the data management routines to check that the correct
volume is mounted and to complete the data control block.

The data management routines examine the data control block to see what
information is still needed and then look for this information, first in the DD
statement, and finally, if the data set exists and has standard labels, in the data set
labels. For new data sets, the data management routines begin to create the labels
(if they are required) and to fill them with information from the data control block.

For INPUT data sets, the PL/I program can override the DCB attributes as long as
there is no conflict in attributes. For OUTPUT data sets, the PL/I program cannot
override the DCB attributes. However, if any DCB attributes are missing from the
data set when it is opened, they will be obtained from the PL/I program, if
provided.

When the DCB fields are filled in from these sources, control returns to the PL/I
library subroutines. If any fields still are not filled in, the PL/I OPEN subroutine
provides default information for some of them. For example, if LRECL is not
specified, it is provided from the value given for BLKSIZE.

222 Enterprise PL/I for z/OS Programming Guide

Using system-determined block size:

If you use the system-determined block size function of the Data Facility Product
on z/OS, DFP determines the optimal block size for the device type that is
assigned.

When you create a new DASD data set, the system derives the optimum block size
and saves it in the data set label when all of the following conditions are true:
v Block size is not available or specified from any source. BLKSIZE=0 can be

specified.
v You specify LRECL, or it is in the data class. The data set does not have to be

SMS managed.
v You specify RECFM, or it is in the data class. It must be fixed or variable.
v You specify DSORG as PS or PO, or if you omit DSORG, it is PS or PO in the

data class.

When system-determined block size is active, DFP determines the block size and
places it in the data set label before PL/I opens the file. Therefore, if the PL/I
program specifies a block size with its ENVIRONMENT option, it must not be in
conflict with the value from the system-determined block size.

For detailed information about system-determined block size, see z/OS DFSMS
Using Data Sets.

Closing a file
The execution of a PL/I CLOSE statement dissociates a file from the data set with
which it was associated.

The PL/I library subroutines first issue a CLOSE macro instruction; when control
returns from the data management routines, the subroutines release the data

Figure 24. How the operating system completes the DCB

Chapter 8. Using data sets and files 223

control block that was created when the file was opened. The data management
routines complete the writing of labels for new data sets and update the labels of
existing data sets.

Specifying characteristics in the ENVIRONMENT attribute
You can use various options in the ENVIRONMENT attribute to specify data
characteristics. Each type of file has different attributes and environment options.

The ENVIRONMENT attribute
You use the ENVIRONMENT attribute of a PL/I file declaration file to specify
information about the physical organization of the data set associated with a file,
and describe other related information. The format of this information must be a
parenthesized option list.

►► ENVIRONMENT (option-list) ►◄

Abbreviation: ENV

You can specify the options in any order, separated by blanks or commas.

The following example illustrates the syntax of the ENVIRONMENT attribute in
the context of a complete file declaration (the options specified are for VSAM).
DCL FILENAME FILE RECORD SEQUENTIAL

INPUT ENV(VSAM GENKEY);

Table 15 summarizes the ENVIRONMENT options and file attributes. Certain
qualifications on their use are presented in the notes and comments in the table.

Table 15. Attributes of PL/I file declarations

Data set type

S
t
r
e
a
m

Record

Legend:

C Checked for VSAM

D Default

I Must be specified or
implied

N Ignored for VSAM

O Optional

S Must be specified

- Invalid

File
Type

C
o
n
s
e
c
u
t
i
v
e

Sequential Direct

Consecutive

B
u
f
f
e
r
e
d

U
n
b
u
f
f
e
r
e
d

R
e
g
i
o
n
a
l

T
e
l
e
p
r
o
c
e
s
s
i
n
g

I
n
d
e
x
e
d

V
S
A
M

R
e
g
i
o
n
a
l

I
n
d
e
x
e
d

V
S
A
M

File attributes1 Attributes implied

File I I I I I I I I I I

224 Enterprise PL/I for z/OS Programming Guide

Input1 D D D D D D D D D D File
Output O O O O O O O O O O File
Environment I I I S S S S S S S File
Stream D - - - - - - - - - File
Print1 O - - - - - - - - - File stream output
Record - I I I I I I I I I File
Update - O O O - O O O O O File record
Sequential - D D D - D D - - D File record
Buffered - D - - I D D - - S File record
Keyed2 - - - O I O O I I O File record
Direct - - - - - - S S S S File record keyed

ENVIRONMENT options Comments

F|FB|FS|FBS|V|
VB|VS|VBS||U

I S S - - - N - - N VS and VBS are invalid
with Stream

F|FB|U S S - - - - N - - N ASCII data sets only
F|V|U - - - S - - N S - N Only F for REGIONAL(1)
F|FB|V|VB - - - - - S N - S N

RECSIZE(n) I I I I S I C I I C
RECSIZE and/or BLKSIZE
must be specified for
consecutive

BLKSIZE(n) I I I I - I N I I N indexed, and regional files
SCALARVARYING - O O O - O O O O O Invalid for ASCII data sets
CONSECUTIVE D D D - - - O - - O Allowed for VSAM ESDS
LEAVE|REREAD O O O - - - - - - -
CTLASA|CTL360 - O O - - - - - - - Invalid for ASCII data sets
GRAPHIC O - - - - - - - - -
INDEXED - - - - - S O - S O Allowed for VSAM ESDS
KEYLOC(n) - - - - - O - - O -
ORGANIZATION D - - - - - - - - -

GENKEY - - - - - O O - O O
INPUT or UPDATE files only;

KEYED is required
REGIONAL(1) - - - S - - - S - -
VSAM - - - - - - S - - S
BKWD - - - - - - O - - O
REUSE - - - - - - O - - O OUTPUT file only

Notes:
1. A file with the INPUT attribute cannot have the PRINT attribute.
2. Keyed is required for INDEXED and REGIONAL output.

Those ENVIRONMENT options that apply to more than one data set organization
are described in the topics that follow. In addition, in the following sections, each
option is described with each data set organization to which it applies.
Related information:
Chapter 14, “Defining and using VSAM data sets,” on page 287
This chapter covers VSAM (the Virtual Storage Access Method) organization for
record-oriented data transmission, VSAM ENVIRONMENT options, compatibility
with other PL/I data set organizations, and the statements you use to load and
access the three types of VSAM data sets that PL/I supports—entry-sequenced,

Chapter 8. Using data sets and files 225

key-sequenced, and relative record.

Data set organization options: The following options specify the data set
organization:

►► CONSECUTIVE
INDEXED
REGIONAL (1)
VSAM

►◄

Each option is described in the discussion of the data set organization to which it
applies.

Other ENVIRONMENT options:

You can use a constant or variable with those ENVIRONMENT options that
require integer arguments, such as block sizes and record lengths. The variable
must not be subscripted or qualified, and must have attributes FIXED
BINARY(31,0) and STATIC.

The following list shows ENVIRONMENT options and equivalent DCB
parameters.

ENVIRONMENT option DCB subparameter

Record format RECFM1

RECSIZE LRECL

BLKSIZE BLKSIZE

CTLASA|CTL360 RECFM

KEYLENGTH KEYLEN

Note: 1VS must be specified as an ENVIRONMENT option, not in the DCB.

Record formats for record-oriented data transmission
Record formats supported depend on the data set organization.

►► F
FS
FB
FBS
V
VS
VB
VBS
U

►◄

Records can have one of the following formats:

Fixed-length F
FB
FS
FBS

unblocked
blocked
unblocked, standard
blocked, standard

226 Enterprise PL/I for z/OS Programming Guide

Variable-length V
VB
VS
VBS

unblocked
blocked
spanned
blocked, spanned

Undefined-length U (cannot be blocked)

When U-format records are read into a varying-length string, PL/I sets the length
of the string to the block length of the retrieved data.

These record format options do not apply to VSAM data sets. If you specify a
record format option for a file associated with a VSAM data set, the option is
ignored.

You can specify VS-format records only for data sets with consecutive organization.

Record formats for stream-oriented data transmission
For information about the record format options for stream-oriented data
transmission, see “Using stream-oriented data transmission” on page 241.

RECSIZE option
The RECSIZE option specifies the record length.

►► RECSIZE (record-length) ►◄

For files associated with VSAM data sets, record-length is the sum of the following:
1. The length required for data

For variable-length and undefined-length records, this is the maximum length.
2. Any control bytes required

Variable-length records require 4 (for the record-length prefix); fixed-length and
undefined-length records do not require any.

For VSAM data sets, the maximum and average lengths of the records are
specified to the Access Method Services utility when the data set is defined. If you
include the RECSIZE option in the file declaration for checking purposes, you
should specify the maximum record size. If you specify RECSIZE and it conflicts
with the values defined for the data set, the UNDEFINEDFILE condition is raised.

You can specify record-length as an integer or as a variable with attributes FIXED
BINARY(31,0) STATIC.

The value is subject to the following conventions:

Maximum:
Fixed-length, and undefined (except ASCII data sets): 32760

V-format, and VS- and VBS-format with UPDATE files: 32756

VS- and VBS-format with INPUT and OUTPUT files: 16777215

ASCII data sets: 9999

VSAM data sets: 32761

Chapter 8. Using data sets and files 227

Note: For VS- and VBS-format records longer than 32,756 bytes, you must
specify the length in the RECSIZE option of ENVIRONMENT, and for the
DCB subparameter of the DD statement you must specify LRECL=X. If
RECSIZE exceeds the allowed maximum for INPUT or OUTPUT, either a
record condition occurs or the record is truncated. UPDATE files are not
supported with LRECL=X.

Zero value:
A search for a valid value is made first in the DD statement for the data
set associated with the file and second in the data set label:

If neither of these provides a value, the default action is taken (see “Record
format, BLKSIZE, and RECSIZE defaults” on page 229).

Negative Value:
The UNDEFINEDFILE condition is raised.

BLKSIZE option
The BLKSIZE option specifies the maximum block size on the data set.

►► BLKSIZE (block-size) ►◄

block-size is the sum of the following:
1. The total length(s) of one of the following:
v A single record
v A single record and either one or two record segments
v Several records
v Several records and either one or two record segments
v Two record segments
v A single record segment.
For variable-length records, the length of each record or record segment
includes the 4 control bytes for the record or segment length.
The preceding list summarizes all the possible combinations of records and
record segments options: fixed- or variable-length, blocked or unblocked,
spanned or unspanned. When specifying a block size for spanned records, note
that each record and each record segment requires 4 control bytes for the record
length and that these quantities are in addition to the 4 control bytes required
for each block.

2. Any further control bytes required
v Variable-length blocked records require 4 (for the block size).
v Fixed-length and undefined-length records do not require any further control

bytes.
3. Any block prefix bytes required (ASCII data sets only)

block-size can be specified as an integer, or as a variable with attributes FIXED
BINARY(31,0) STATIC.

The value is subject to the following conventions:

Maximum:
32760

Zero value:
If you set BLKSIZE to 0, under z/OS the Data Facility Product sets the
block size. For more information, see “Record format, BLKSIZE, and
RECSIZE defaults” on page 229.

228 Enterprise PL/I for z/OS Programming Guide

Negative value:
The UNDEFINEDFILE condition is raised.

The relationship of block size to record length depends on the record format:

FB-format or FBS-format
The block size must be a multiple of the record length.

VB-format:
The block size must be equal to or greater than the sum of the following:
1. The maximum length of any record
2. Four control bytes

VS-format or VBS-format:
The block size can be less than, equal to, or greater than the record length.

Notes:

v Use the BLKSIZE option with unblocked (F- or V-format) records in either of the
following ways:
– Specify the BLKSIZE option, but not the RECSIZE option. Set the record

length equal to the block size (minus any control or prefix bytes), and leave
the record format unchanged.

– Specify both BLKSIZE and RECSIZE and ensure that the relationship of the
two values is compatible with blocking for the record format you use. Set the
record format to FB or VB, whichever is appropriate.

v If for FB-format or FBS-format records the block size equals the record length,
the record format is set to F.

v The BLKSIZE option does not apply to VSAM data sets, and is ignored if you
specify it for one.

Record format, BLKSIZE, and RECSIZE defaults
If you do not specify either the record format, block size, or record length for a
non-VSAM data set, a default action is taken.

Record format:
A search is made in the associated DD statement or data set label. If the
search does not provide a value, the UNDEFINEDFILE condition is raised,
except for files associated with dummy data sets or the foreground
terminal, in which case the record format is set to U.

Block size or record length:
If one of these is specified, a search is made for the other in the associated
DD statement or data set label. If the search provides a value, and if this
value is incompatible with the value in the specified option, the
UNDEFINEDFILE condition is raised. If the search is unsuccessful, a value
is derived from the specified option (with the addition or subtraction of
any control or prefix bytes).

If neither is specified, the UNDEFINEDFILE condition is raised, except for
files associated with dummy data sets, in which case BLKSIZE is set to 121
for F-format or U-format records and to 129 for V-format records. For files
associated with the foreground terminal, RECSIZE is set to 120.

If you are using z/OS with the Data Facility Product system-determined
block size, DFP determines the optimum block size for the device type
assigned. If you specify BLKSIZE(0) in either the DD assignment or the
ENVIRONMENT statement, DFP calculates BLKSIZE by using the record
length, record format, and device type.

Chapter 8. Using data sets and files 229

GENKEY option — key classification
The GENKEY (generic key) option applies only to INDEXED and VSAM
key-sequenced data sets. You can use this option to classify keys recorded in a data
set and use a SEQUENTIAL KEYED INPUT or SEQUENTIAL KEYED UPDATE
file to access records according to their key classes.

►► GENKEY ►◄

A generic key is a character string that identifies a class of keys; all keys that begin
with the string are members of that class. For example, the recorded keys “ABCD”,
“ABCE”, and “ABDF” are all members of the classes identified by the generic keys
“A” and “AB”, and the first two are also members of the class “ABC”; and the
three recorded keys can be considered to be unique members of the classes
“ABCD”, “ABCE”, and “ABDF”, respectively.

The GENKEY option allows you to start sequential reading or updating of a
VSAM data set from the first record that has a key in a particular class, and for an
INDEXED data set from the first nondummy record that has a key in a particular
class. You identify the class by including its generic key in the KEY option of a
READ statement. Subsequent records can be read by READ statements without the
KEY option. No indication is given when the end of a key class is reached.

Although you can retrieve the first record that has a key in a particular class by
using a READ with the KEY option, you cannot obtain the actual key unless the
records have embedded keys, because the KEYTO option cannot be used in the
same statement as the KEY option.

In the following example, a key length of more than 3 bytes is assumed:
DCL IND FILE RECORD SEQUENTIAL KEYED

UPDATE ENV (GENKEY);
.
.
.

READ FILE(IND) INTO(INFIELD)
KEY (’ABC’);

.

.

.
NEXT: READ FILE (IND) INTO (INFIELD);

.

.

.
GO TO NEXT;

The first READ statement causes the first nondummy record in the data set whose
key begins with “ABC” to be read into INFIELD; each time the second READ
statement is executed, the nondummy record with the next higher key is retrieved.
Repeated execution of the second READ statement results in reading records from
higher key classes, because no indication is given when the end of a key class is
reached. It is your responsibility to check each key if you do not wish to read
beyond the key class. Any subsequent execution of the first READ statement will
reposition the file to the first record of the key class “ABC”.

If the data set contains no records with keys in the specified class, or if all the
records with keys in the specified class are dummy records, the KEY condition is
raised. The data set is then positioned either at the next record that has a higher
key or at the end of the file.

230 Enterprise PL/I for z/OS Programming Guide

The presence or absence of the GENKEY option affects the execution of a READ
statement which supplies a source key that is shorter than the key length specified
in the KEYLEN subparameter. This KEYLEN subparameter is found in the DD
statement that defines the indexed data set. If you specify the GENKEY option, it
causes the source key to be interpreted as a generic key, and the data set is
positioned to the first nondummy record in the data set whose key begins with the
source key. If you do not specify the GENKEY option, a READ statement's short
source key is padded on the right with blanks to the specified key length, and the
data set is positioned to the record that has this padded key (if such a record
exists). For a WRITE statement, a short source key is always padded with blanks.

Use of the GENKEY option does not affect the result of supplying a source key
whose length is greater than or equal to the specified key length. The source key,
truncated on the right if necessary, identifies a specific record (whose key can be
considered to be the only member of its class).

SCALARVARYING option — varying-length strings
You use the SCALARVARYING option in the input/output of varying-length
strings; you can use it with records of any format.

►► SCALARVARYING ►◄

When storage is allocated for a varying-length string, the compiler includes a
2-byte prefix that specifies the current length of the string. For an element
varying-length string, this prefix is included on output, or recognized on input,
only if SCALARVARYING is specified for the file.

When you use locate mode statements (LOCATE and READ SET) to create and
read a data set with element varying-length strings, you must specify
SCALARVARYING to indicate that a length prefix is present, because the pointer
that locates the buffer is always assumed to point to the start of the length prefix.

When you specify SCALARVARYING and element varying-length strings are
transmitted, you must allow two bytes in the record length to include the length
prefix.

A data set created with SCALARVARYING should be accessed only by a file that
also specifies SCALARVARYING.

You must not specify SCALARVARYING and CTLASA/CTL360 for the same file,
because this causes the first data byte to be ambiguous.

KEYLENGTH option
The KEYLENGTH option specifies the length of the recorded key for KEYED files.
You can specify KEYLENGTH for INDEXED files.

►► KEYLENGTH (n) ►◄

n Specifies the length of the recorded key for KEYED files

If you include the KEYLENGTH option in a VSAM file declaration for checking
purposes, and if the key length you specify in the option conflicts with the value
defined for the data set, the UNDEFINEDFILE condition is raised.

Chapter 8. Using data sets and files 231

ORGANIZATION option
The ORGANIZATION option specifies the organization of the data set associated
with the PL/I file.

►► ORGANIZATION
CONSECUTIVE

(INDEXED)
RELATIVE

►◄

CONSECUTIVE
Specifies that the files is associated with a consecutive data set. A consecutive
file can be either a native data set or a VSAM, ESDS, RRDS, or KSDS data set.

RELATIVE
Specifies that the file is associated with a relative data set. RELATIVE specifies
that the data set contains records that do not have recorded keys. A relative file
is a VSAM direct data set. Relative keys range from 1 to nnnn.

Data set types used by PL/I record I/O
Data sets with the RECORD attribute are processed by record-oriented data
transmission in which data is transmitted to and from auxiliary storage exactly as
it appears in the program variables; no data conversion takes place. A record in a
data set corresponds to a variable in the program.

Table 16 shows the facilities that are available with the various types of data sets
that can be used with PL/I record I/O.

Table 16. A comparison of data set types available to PL/I record I/O

VSAM
KSDS

VSAM
ESDS

VSAM
RRDS INDEXED CONSECUTIVE

REGIONAL
(1)

SEQUENCE Key
order

Entry
order

Num-
bered

Key
order

Entry
order

By
region

DEVICES DASD DASD DASD DASD DASD,
card, etc.

DASD

ACCESS

1 By key
2 Sequential
3 Backward

123 123 123 12 2 12

Alternate
index

access
as above

123 123 No No No No

How
extended

With
new
keys

At
end

In
empty
slots

With
new
keys

At
end

In
empty
slots

DELETION

1 Space
reusable

2 Space not
reusable

Yes, 1 No Yes, 1 Yes, 2 No Yes, 1

The following sections describe how to use Record I/O data sets for different types
of data sets:
v Chapter 10, “Defining and using consecutive data sets,” on page 241

232 Enterprise PL/I for z/OS Programming Guide

v Chapter 13, “Defining and using regional data sets,” on page 275
v Chapter 14, “Defining and using VSAM data sets,” on page 287

Setting environment variables under z/OS UNIX
Some environment variables can be set and exported for use with z/OS UNIX. To
set the environment variables system wide so all users have access to them, add
the lines suggested in the subsections to the file /etc/profile. To set them for a
specific user only, add them to the file .profile in the user's home directory.

The variables are set the next time the user logs on.

The following example illustrates how to set environment variables:
LANG=ja_JP
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/prime/%N
LIBPATH=/home/joe/usr/lib:/home/joe/mylib:/usr/lib
export LANG NLSPATH LIBPATH

Rather than using the last statement in the previous example, you can add export
to each of the preceding lines (export LANG=ja_JP...).

You can use the ECHO command to determine the current setting of an
environment variable. To define the value of BYPASS, you can use either of the
following two examples:
echo $LANG

echo $LIBPATH

PL/I standard files (SYSPRINT and SYSIN) under z/OS UNIX
SYSIN is read from stdin and SYSPRINT is directed to stdout by default. If you
want either to be associated differently, you must use the TITLE option of the
OPEN statement, or establish a DD_DDNAME environment variable naming a
data set or another device.
Related information:
“Setting environment variables under z/OS UNIX”
Some environment variables can be set and exported for use with z/OS UNIX. To
set the environment variables system wide so all users have access to them, add
the lines suggested in the subsections to the file /etc/profile. To set them for a
specific user only, add them to the file .profile in the user's home directory.

Redirecting standard input, output, and error devices under z/OS
UNIX
You can redirect standard input, standard output, and standard error devices to a
file.

For example, you can use redirection in the following program:
Hello2: proc options(main);

put list(’Hello!’);
end;

After compiling and linking the program, you can invoke it from the command
line by entering the following command:
hello2 > hello2.out

If you want to combine stdout and stderr in a single file, enter the following
command:
hello2 > hello2.out 2>&1

Chapter 8. Using data sets and files 233

As is true with display statements, the greater than sign redirects the output to the
file that is specified after it, in this case hello2.out. This means that the word
'Hello' is written in the file hello2.out. Note also that the output includes printer
control characters because the PRINT attribute is applied to SYSPRINT by default.

READ statements can also access data from stdin.

234 Enterprise PL/I for z/OS Programming Guide

Chapter 9. Using libraries

Within the z/OS operating system, the terms partitioned data set, partitioned data
set/extension, and library are synonymous and refer to a type of data set that can be
used for the storage of other data sets (usually programs in the form of source,
object, or load modules).

A library must be stored on direct access storage and be wholly contained in one
volume. It contains independent, consecutively organized data sets, called
members. Each member has a unique name, not more than 8 characters long,
which is stored in a directory that is part of the library. All the members of one
library must have the same data characteristics because only one data set label is
maintained.

You can create members individually until there is insufficient space left for a new
entry in the directory, or until there is insufficient space for the member itself. You
can access members individually by specifying the member name.

Use DD statements or their conversational mode equivalent to create and access
members.

You can delete members by using the IBM utility program IEHPROGM. This
program deletes the member name from the directory so that the member can no
longer be accessed, but you cannot use the space occupied by the member itself
again unless you re-create the library or compress the unused space by using, for
example, the IBM utility program IEBCOPY. If you attempt to delete a member by
using the DISP parameter of a DD statement, it causes the whole data set to be
deleted.

Types of libraries
Types of libraries include the system program library, the system procedure library,
and private program libraries.

You can use the following types of libraries with a PL/I program:
v The system program library SYS1.LINKLIB or its equivalent

This library can contain all system processing programs such as compilers and
the linkage editor.

v Private program libraries
These libraries usually contain user-written programs. It is often convenient to
create a temporary private library to store the load module output from the
linkage editor until it is executed by a later job step in the same job. The
temporary library will be deleted at the end of the job. Private libraries are also
used for automatic library call by the linkage editor and the loader.

v The system procedure library SYS1.PROCLIB or its equivalent
This library contains the job control procedures that have been cataloged for
your installation.

Using a library
A PL/I program can use a library directly.

© Copyright IBM Corp. 1999, 2017 235

If you are adding a new member to a library, its directory entry will be made by
the operating system when the associated file is closed, using the member name
specified as part of the data set name.

If you are accessing a member of a library, its directory entry can be found by the
operating system from the member name that you specify as part of the data set
name.

More than one member of the same library can be processed by the same PL/I
program, but only one such file can be open as output at any one time. You access
different members by giving the member name in a DD statement.

Creating a library
To create a library, include in your job step a DD statement containing the
information required for creating a library.

See Table 17 for the information required when you create a library. The
information required is similar to that for a consecutively organized data set (see
“Defining files using record I/O” on page 264) except for the SPACE parameter.

Table 17. Information required when you create a library

Information required Parameter of DD statement

Type of device that will be used UNIT=

Serial number of the volume that will contain the
library

VOLUME=SER

Name of the library DSNAME=

Amount of space required for the library SPACE=

Disposition of the library DISP=

SPACE parameter
You can use the SPACE parameter in a DD statement to specify the amount of
space required for the library that you want to create.

The SPACE parameter in a DD statement that defines a library must always be of
the form:
SPACE=(units,(quantity,increment,directory))

The third term (increment) is optional, and you can indicate its absence by a
comma. The last term, which specifies the number of directory blocks to be
allocated, is required.

The amount of auxiliary storage required for a library depends on the number and
sizes of the members to be stored in it and on how often members will be added
or replaced. (Space occupied by deleted members is not released.) The number of
directory blocks required depends on the number of members and the number of
aliases. You can specify an incremental quantity in the SPACE parameter that
allows the operating system to obtain more space for the data set, if such is
necessary at the time of creation or at the time a new member is added; the
number of directory blocks, however, is fixed at the time of creation and cannot be
increased.

236 Enterprise PL/I for z/OS Programming Guide

Example

In the following example, the DD statement requests the job scheduler to allocate 5
cylinders of the DASD with a volume serial number 3412 for a new library name
ALIB and to enter this name in the system catalog. The last term of the SPACE
parameter requests that part of the space allocated to the data set be reserved for
ten directory blocks.
// PDS DD UNIT=SYSDA,VOL=SER=3412,
// DSNAME=ALIB,
// SPACE=(CYL,(5,,10)),
// DISP=(,CATLG)

Creating and updating a library member
When you create and update library members, you must follow the guidelines in
this topic.

The members of a library must have identical characteristics. Otherwise, you might
later have difficulty retrieving them. Identical characteristics are necessary because
the volume table of contents (VTOC) will contain only one data set control block
(DSCB) for the library and not one for each member. When you use a PL/I
program to create a member, the operating system creates the directory entry; you
cannot place information in the user data field.

When you create a library and a member at the same time, your DD statement
must include all the parameters listed under “Creating a library” on page 236
(although you can omit the DISP parameter if the data set is to be temporary). The
DSNAME parameter must include the member name in parentheses. For example,
DSNAME=ALIB(MEM1) names the member MEM1 in the data set ALIB. If the
member is placed in the library by the linkage editor, you can use the linkage
editor NAME statement or the NAME compile-time option instead of including the
member name in the DSNAME parameter. You must also describe the
characteristics of the member (such as, record format, and so on) either in the DCB
parameter or in your PL/I program. These characteristics will also apply to other
members added to the data set.

When creating a member to be added to an existing library, you do not need the
SPACE parameter. The original space allocation applies to the whole of the library
and not to an individual member. Furthermore, you do not need to describe the
characteristics of the member, because these are already recorded in the DSCB for
the library.

To add two more members to a library in one job step, you must include a DD
statement for each member, and you must close one file that refers to the library
before you open another.

Example: Creating new libraries for compiled object modules
This example uses the cataloged procedure IBMZC to compile a simple PL/I
program and place the object module in a new library named EXLIB. The DD
statement that defines the new library and names the object module overrides the
DD statement SYSLIN in the cataloged procedure.

The PL/I program is a function procedure that, given two values in the form of
the character string produced by the TIME built-in function, returns the difference
in milliseconds.

Chapter 9. Using libraries 237

Example: Placing a load module in an existing library
The example uses the cataloged procedure IBMZCL to compile and link-edit a
PL/I program and place the load module in the existing library HPU8.CCLM.

Example: Updating a library member
To use a PL/I program to add or delete one or more records within a member of a
library, you must rewrite the entire member in another part of the library. This is
rarely an economic proposition because the space originally occupied by the
member cannot be used again. You must use two files in your PL/I program, but
both can be associated with the same DD statement.

The program shown in Figure 28 on page 239 updates the member created by the
program in Figure 27 on page 239. It copies all the records of the original member

//OPT10#1 JOB
//TR EXEC IBMZC
//PLI.SYSLIN DD UNIT=SYSDA,DSNAME=HPU8.EXLIB(ELAPSE),
// SPACE=(TRK,(1,,1)),DISP=(NEW,CATLG)
//PLI.SYSIN DD *

ELAPSE: PROC(TIME1,TIME2);
DCL (TIME1,TIME2) CHAR(9),

H1 PIC ’99’ DEF TIME1,
M1 PIC ’99’ DEF TIME1 POS(3),
MS1 PIC ’99999’ DEF TIME1 POS(5),
H2 PIC ’99’ DEF TIME2,
M2 PIC ’99’ DEF TIME2 POS(3),
MS2 PIC ’99999’ DEF TIME2 POS(5),
ETIME FIXED DEC(7);

IF H2<H1 THEN H2=H2+24;
ETIME=((H2*60+M2)*60000+MS2)-((H1*60+M1)*60000+MS1);
RETURN(ETIME);

END ELAPSE;
/*

Figure 25. Creating new libraries for compiled object modules

//OPT10#2 JOB
//TRLE EXEC IBMZCL
//PLI.SYSIN DD *

MNAME: PROC OPTIONS(MAIN);
.
.
.
program
.
.
.

END MNAME;
/*
//LKED.SYSLMOD DD DSNAME=HPU8.CCLM(DIRLIST),DISP=OLD

Figure 26. Placing a load module in an existing library

238 Enterprise PL/I for z/OS Programming Guide

except those that contain only blanks.

Extracting information from a library directory
The directory of a library is a series of records (entries) at the beginning of the data
set. There is at least one directory entry for each member. Each entry contains a
member name, the relative address of the member within the library, and a
variable amount of user data.

//OPT10#3 JOB
//TREX EXEC IBMZCBG
//PLI.SYSIN DD *

NMEM: PROC OPTIONS(MAIN);
DCL IN FILE RECORD SEQUENTIAL INPUT,

OUT FILE RECORD SEQUENTIAL OUTPUT,
P POINTER,
IOFIELD CHAR(80) BASED(P),
EOF BIT(1) INIT(’0’B);

OPEN FILE(IN),FILE (OUT);
ON ENDFILE(IN) EOF=’1’B;
READ FILE(IN) SET(P);
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (IOFIELD) (A);
WRITE FILE(OUT) FROM(IOFIELD);
READ FILE(IN) SET(P);
END;
CLOSE FILE(IN),FILE(OUT);

END NMEM;
/*
//GO.OUT DD UNIT=SYSDA,DSNAME=HPU8.ALIB(NMEM),
// DISP=(NEW,CATLG),SPACE=(TRK,(1,1,1)),
// DCB=(RECFM=FB,BLKSIZE=3600,LRECL=80)
//GO.IN DD *

MEM: PROC OPTIONS(MAIN);
/* this is an incomplete dummy library member */

Figure 27. Creating a library member in a PL/I program

//OPT10#4 JOB
//TREX EXEC IBMZCBG
//PLI.SYSIN DD *

UPDTM: PROC OPTIONS(MAIN);
DCL (OLD,NEW) FILE RECORD SEQUENTIAL,

EOF BIT(1) INIT(’0’B),
DATA CHAR(80);

ON ENDFILE(OLD) EOF = ’1’B;
OPEN FILE(OLD) INPUT,FILE(NEW) OUTPUT TITLE(’OLD’);
READ FILE(OLD) INTO(DATA);
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (DATA) (A);
IF DATA=’ ’ THEN ;
ELSE WRITE FILE(NEW) FROM(DATA);
READ FILE(OLD) INTO(DATA);
END;

CLOSE FILE(OLD),FILE(NEW);
END UPDTM;

/*
//GO.OLD DD DSNAME=HPU8.ALIB(NMEM),DISP=(OLD,KEEP)

Figure 28. Updating a library member

Chapter 9. Using libraries 239

User data is information inserted by the program that created the member. An
entry that refers to a member (load module) written by the linkage editor includes
user data in a standard format, described in the systems manuals.

If you use a PL/I program to create a member, the operating system creates the
directory entry for you and you cannot write any user data. However, you can use
assembler language macro instructions to create a member and write your own
user data. The method for using macro instructions to do this is described in the
data management manuals.

240 Enterprise PL/I for z/OS Programming Guide

Chapter 10. Defining and using consecutive data sets

This chapter covers consecutive data set organization and the ENVIRONMENT
options that define consecutive data sets for stream and record-oriented data
transmission. It then covers how to create, access, and update consecutive data sets
for each type of transmission.

In a data set with consecutive organization, records are organized solely on the
basis of their successive physical positions; when the data set is created, records
are written consecutively in the order in which they are presented. You can retrieve
the records only in the order in which they were written. See Table 15 on page 224
for valid file attributes and ENVIRONMENT options for consecutive data sets.

Using stream-oriented data transmission
This section covers how to define data sets for use with PL/I files that have the
STREAM attribute. It covers the ENVIRONMENT options you can use and how to
create and access data sets. The essential parameters of the DD statements you use
in creating and accessing these data sets are summarized in tables, and several
examples of PL/I programs are included to illustrate the text.

Data sets with the STREAM attribute are processed by stream-oriented data
transmission, which allows your PL/I program to ignore block and record
boundaries and treat a data set as a continuous stream of data values in character
or graphic form.

You create and access data sets for stream-oriented data transmission by using the
list-, data-, and edit-directed input and output statements described in the PL/I
Language Reference.

For output, PL/I converts the data items from program variables into character
form if necessary, and builds the stream of characters or graphics into records for
transmission to the data set.

For input, PL/I takes records from the data set and separates them into the data
items requested by your program, converting them into the appropriate form for
assignment to program variables.

You can use stream-oriented data transmission to read or write graphic data. There
are terminals, printers, and data-entry devices that, with the appropriate
programming support, can display, print, and enter graphics. You must be sure
that your data is in a format acceptable for the intended device or for a print
utility program.

Defining files using stream I/O
You can define files for stream-oriented data transmission by a file declaration.
DCL filename FILE STREAM

INPUT | {OUTPUT [PRINT]}
ENVIRONMENT(options);

For information about the default file attributes, see Table 15 on page 224. For
information about the FILE attribute, see the PL/I Language Reference. For more

© Copyright IBM Corp. 1999, 2017 241

information about the PRINT attribute, see “Using PRINT files with stream I/O”
on page 250. For information about the options of the ENVIRONMENT attribute,
see “Specifying ENVIRONMENT options.”

Defining stream files using PL/I dynamic allocation
To define the stream files, you can use a DD statement, an environment variable,
or the TITLE option of the OPEN statement.

When an environment variable or the TITLE option is used, the name must be in
uppercase. Specify the MVS data set in one of the following ways:
v DSN(data-set-name)
v DSN(data-set-name(member-name))

data-set-name must be fully qualified and cannot be a temporary data set; for
example, it must not start with &.

Specify the HFS file as follows:
PATH(absolute-path-name)

You can specify the following attributes in any order after the DSN keyword:
NEW, OLD, SHR, or MOD
TRACKS or CYL
SPACE(n,m)
VOL(volser)
UNIT(type)
KEEP, DELETE, CATALOG, or UNCATALOG
STORCLAS(storageclass)
MGMTCLAS(managementclass)
DATACLAS(dataclass)

Note: You cannot create a PDS or PDSE by using an environment variable or the
TITLE option of the OPEN statement, but you can create a new member in an
existing PDS or PDSE.

Specifying ENVIRONMENT options
This topic describes the ENVIRONMENT options that define consecutive data sets
for stream and record-oriented data transmission.

Table 15 on page 224 summarizes the ENVIRONMENT options. The following
options are applicable to stream-oriented data transmission:
CONSECUTIVE or ORGANIZATION(CONSECUTIVE)
F|FB|FS|FBS|V|VB|VS|VBS|U
RECSIZE(record-length)
BLKSIZE(block-size)
GRAPHIC
LEAVE|REREAD

For information about how to specify these options for stream-oriented data
transmission, see the following topics.

Option See this topic

CONSECUTIVE “CONSECUTIVE” on page 243

F|FB|FS|FBS|V|VB|VS|VBS|U “Record format options” on page 243

RECSIZE “RECSIZE” on page 244

BLKSIZE “BLKSIZE option” on page 228

242 Enterprise PL/I for z/OS Programming Guide

Option See this topic

GRAPHIC “GRAPHIC” on page 244

LEAVE|REREAD “LEAVE|REREAD” on page 267

CONSECUTIVE
STREAM files must have CONSECUTIVE data set organization; however, it is not
necessary to specify this in the ENVIRONMENT options because CONSECUTIVE
is the default data set organization.

The CONSECUTIVE option for STREAM files is the same as that described in
“Data set organization” on page 219.

►► CONSECUTIVE ►◄

Record format options
Although record boundaries are ignored in stream-oriented data transmission,
record format is important when you create a data set. This is not only because
record format affects the amount of storage space occupied by the data set and the
efficiency of the program that processes the data, but also because the data set can
later be processed by record-oriented data transmission.

Having specified the record format, you need not concern yourself with records
and blocks as long as you use stream-oriented data transmission. You can consider
your data set a series of characters or graphics arranged in lines, and you can use
the SKIP option or format item (and, for a PRINT file, the PAGE and LINE options
and format items) to select a new line.

►► F
FS
FB
FBS
V
VS
VB
VBS
U

►◄

Records can have one of the following formats, which are described in details in
“Record formats” on page 217.

Fixed-length F
FB
FS
FBS

unblocked
blocked
unblocked, standard
blocked, standard

Variable-length V
VB
VS
VBS

unblocked
blocked

Undefined-length U (cannot be blocked)

Blocking and deblocking of records are performed automatically.

Chapter 10. Defining and using consecutive data sets 243

RECSIZE

RECSIZE for stream-oriented data transmission is the same as that described in
“Specifying characteristics in the ENVIRONMENT attribute” on page 224.
Additionally, a value specified by the LINESIZE option of the OPEN statement
overrides a value specified in the RECSIZE option. LINESIZE is discussed in the
PL/I Language Reference.

Additional record-size considerations for list- and data-directed transmission of
graphics are given in the PL/I Language Reference.

Defaults for record format, BLKSIZE, and RECSIZE
If you do not specify the record format, BLKSIZE, or RECSIZE option in the
ENVIRONMENT attribute, or in the associated DD statement or data set label,
PL/I determines the default values.
v Input files:

Defaults are applied as for record-oriented data transmission, described in
“Record format, BLKSIZE, and RECSIZE defaults” on page 229.

v Output files:

Record format
Set to VB-format.

Record length
The specified or default LINESIZE value is used:
– PRINT files:

- F, FB, FBS, or U: line size + 1
- V or VB: line size + 5

– Non-PRINT files:
- F, FB, FBS, or U: linesize
- V or VB: linesize + 4

Block Size
Files associated with SYSOUT:
– F, FB, or FBS: record length
– V or VB: record length + 4

New or temporary data set:
– Optimum block size determined by DFP

GRAPHIC
Specify the GRAPHIC option for edit-directed I/O.

►► GRAPHIC ►◄

The ERROR condition is raised for list- and data-directed I/O if you have graphics
in input or output data and do not specify the GRAPHIC option.

For edit-directed I/O, the GRAPHIC option specifies that left and right delimiters
are added to DBCS variables and constants on output, and that input graphics will
have left and right delimiters. If you do not specify the GRAPHIC option, left and
right delimiters are not added to output data, and input graphics do not require
left and right delimiters. When you do specify the GRAPHIC option, the ERROR
condition is raised if left and right delimiters are missing from the input data.

244 Enterprise PL/I for z/OS Programming Guide

For information about the graphic data type and about the G-format item for
edit-directed I/O, see the PL/I Language Reference.

Creating a data set with stream I/O
To create a data set, you must give the operating system certain information either
in your PL/I program or in the DD statement that defines the data set.

For z/OS UNIX, use one of the following methods to provide the additional
information:
v TITLE option of the OPEN statement
v DD_DDNAME environment variable
v ENVIRONMENT attribute

The following topics describe the essential information that you need to provide to
create a data set and discuss some of the optional information you can supply.

Essential information
When your application creates a STREAM file, PL/I will derive a line-size value
for that file.

PL/I derives the line-size value from one of the following sources in order of
declining precedence.
v LINESIZE option of the OPEN statement
v RECSIZE option of the ENVIRONMENT attribute
v RECSIZE option of the TITLE option of the OPEN statement
v RECSIZE option of the DD_DDNAME environment variable
v PL/I-supplied default value

If a LINESIZE value is supplied but a RECSIZE valus is not, PL/I derives the
record-length value as follows:
v For a V-format PRINT file, the value is LINESIZE + 5.
v For a V-format non-PRINT file, the value is LINESIZE + 4.
v For a F-format PRINT file, the value is LINESIZE + 1.
v In all other cases, the value is LINESIZE.

If a LINESIZE value is not supplied but a RECSIZE value is, PL/I derives the
line-size value from RECSIZE as follows:
v For a V-format PRINT file, the value is RECSIZE - 5.
v For a V-format non-PRINT file, the value is RECSIZE - 4.
v For a F-format PRINT file, the value is RECSIZE - 1.
v In all other cases, the value is RECSIZE.

If neither LINESIZE nor RECSIZE is supplied, PL/I determines a default line-size
value based on the attributes of the file and the type of associated data set. If PL/I
cannot supply an appropriate default line size, the UNDEFINEDFILE condition is
raised.

A default line-size value is supplied for an OUTPUT file under the following
conditions:
v The file has the PRINT attribute. In this case, the value is obtained from the tab

control table.

Chapter 10. Defining and using consecutive data sets 245

v The associated data set is the terminal (stdout: or stderr:). In this case, the value
is 120.

Note that if the LINESIZE option is specified (on the OPEN statement) and
RECSIZE is also specified (in the ENVIRONMENT attribute, the TITLE option, or
the DD statement), and if the record size value is too small to hold the LINESIZE
(taking into account the record format and appropriate control byte overhead), the
following occurs:
v If you are using Language Environment for z/OS 1.9 or earlier releases, for DD

SYSOUT= files, the LINESIZE option will be used to determine a new record
size that matches the given LINESIZE; for DD DSN= files and all other files, the
UNDEFINEDFILE condition will be raised.

v If you are using Language Environment for z/OS releases subsequent to 1.9, the
UNDEFINEDFILE condition will be raised for all files.

Example: Creating a data set with stream-oriented data
transmission
This example shows how to use edit-directed stream-oriented data transmission to
create a data set on a direct access storage device.

The data read from the input stream by the file SYSIN includes a field VREC that
contains five unnamed 7-character subfields; the field NUM defines the number of
these subfields that contain information. The output file WORK transmits to the
data set the whole of the field FREC and only those subfields of VREC that contain
information.

246 Enterprise PL/I for z/OS Programming Guide

Example: Writing graphic data to a stream file
This example shows a program that uses list-directed output to write graphics to a
stream file.

This example assumes that you have an output device that can print graphic data.
The program reads employee records and selects persons living in a certain area. It
then edits the address field, inserting one graphic blank between each address
item, and prints the employee number, name, and address.

//EX7#2 JOB
//STEP1 EXEC IBMZCBG
//PLI.SYSIN DD *
PEOPLE: PROC OPTIONS(MAIN);

DCL WORK FILE STREAM OUTPUT,
1 REC,

2 FREC,
3 NAME CHAR(19),
3 NUM CHAR(1),
3 PAD CHAR(25),

2 VREC CHAR(35),
EOF BIT(1) INIT(’0’B),
IN CHAR(80) DEF REC;

ON ENDFILE(SYSIN) EOF=’1’B;
OPEN FILE(WORK) LINESIZE(400);
GET FILE(SYSIN) EDIT(IN)(A(80));
DO WHILE (¬EOF);
PUT FILE(WORK) EDIT(IN)(A(45+7*NUM));
GET FILE(SYSIN) EDIT(IN)(A(80));
END;
CLOSE FILE(WORK);
END PEOPLE;

/*
//GO.WORK DD DSN=HPU8.PEOPLE,DISP=(NEW,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//GO.SYSIN DD *
R.C.ANDERSON 0 202848 DOCTOR
B.F.BENNETT 2 771239 PLUMBER VICTOR HAZEL
R.E.COLE 5 698635 COOK ELLEN VICTOR JOAN ANN OTTO
J.F.COOPER 5 418915 LAWYER FRANK CAROL DONALD NORMAN BRENDA
A.J.CORNELL 3 237837 BARBER ALBERT ERIC JANET
E.F.FERRIS 4 158636 CARPENTER GERALD ANNA MARY HAROLD
/*

Figure 29. Creating a data set with stream-oriented data transmission

Chapter 10. Defining and using consecutive data sets 247

//EX7#3 JOB
//STEP1 EXEC IBMZCBG
//PLI.SYSIN DD *
% PROCESS GRAPHIC;

XAMPLE1: PROC OPTIONS(MAIN);
DCL INFILE FILE INPUT RECORD,

OUTFILE FILE OUTPUT STREAM ENV(GRAPHIC);
/* GRAPHIC OPTION MEANS DELIMITERS WILL BE INSERTED ON OUTPUT FILES. */

DCL
1 IN,

3 EMPNO CHAR(6),
3 SHIFT1 CHAR(1),
3 NAME,

5 LAST G(7),
5 FIRST G(7),

3 SHIFT2 CHAR(1),
3 ADDRESS,

5 ZIP CHAR(6),
5 SHIFT3 CHAR(1),
5 DISTRICT G(5),
5 CITY G(5),
5 OTHER G(8),
5 SHIFT4 CHAR(1);

DCL EOF BIT(1) INIT(’0’B);
DCL ADDRWK G(20);

ON ENDFILE (INFILE) EOF = ’1’B;
READ FILE(INFILE) INTO(IN);
DO WHILE(¬EOF);

DO;
IF SUBSTR(ZIP,1,3)¬=’300’

THEN LEAVE;
L=0;
ADDRWK=DISTRICT;
DO I=1 TO 5;
IF SUBSTR(DISTRICT,I,1)= < >

THEN LEAVE; /* SUBSTR BIF PICKS 3P */
END; /* THE ITH GRAPHIC CHAR */
L=L+I+1; /* IN DISTRICT */
SUBSTR(ADDRWK,L,5)=CITY;
DO I=1 TO 5;
IF SUBSTR(CITY,I,1)= < >

THEN LEAVE;
END;
L=L+I;
SUBSTR(ADDRWK,L,8)=OTHER;
PUT FILE(OUTFILE) SKIP /* THIS DATA SET */
EDIT(EMPNO,IN.LAST,FIRST,ADDRWK) /* REQUIRES UTILITY */

(A(8),G(7),G(7),X(4),G(20)); /* TO PRINT GRAPHIC */
/* DATA */

END; /* END OF NON-ITERATIVE DO */
READ FILE(INFILE) INTO (IN);
END; /* END OF DO WHILE(¬EOF) */

END XAMPLE1;
/*
//GO.OUTFILE DD SYSOUT=A,DCB=(RECFM=VB,LRECL=121,BLKSIZE=129)
//GO.INFILE DD *
ABCDEF<

>300099< 3 3 3 3 3 3 3 >
ABCD <

>300011< 3 3 3 3 >
/*

Figure 30. Writing graphic data to a stream file

248 Enterprise PL/I for z/OS Programming Guide

Accessing a data set with stream I/O
A data set accessed through stream-oriented data transmission does not require to
be created by stream-oriented data transmission, but it must have CONSECUTIVE
organization, and all the data in it must be in character or graphic form. You can
open the associated file for input, and read the records the data set contains; or
you can open the file for output, and extend the data set by adding records at the
end.

To access a data set, you must use one of the following ways to identify it:
v ENVIRONMENT attribute
v DD_DDNAME environment variable
v TITLE option of the OPEN statement

The following topics describe the essential information you must include in the DD
statement and discuss some of the optional information you can supply. The
discussions do not apply to data sets in the input stream.

Essential information
When your application accesses an existing STREAM file, PL/I must obtain a
record-length value for that file.

If the data set does not have a record-length, the value can come from one of the
following sources:
v The LINESIZE option of the OPEN statement
v The RECSIZE option of the ENVIRONMENT attribute
v The RECSIZE option of the DD_DDNAME environment variable
v The RECSIZE option of the TITLE option of the OPEN statement
v PL/I-supplied default value

If you are using an existing OUTPUT file, or if you supply a RECSIZE value, PL/I
determines the record-length value as described in “Creating a data set with
stream I/O” on page 245.

PL/I uses a default record-length value for an INPUT file under the following
conditions:
v The file is SYSIN, value = 80
v The file is associated with the terminal (stdout: or stderr:), value = 120

Record format
When using stream-oriented data transmission to access a data set, you do not
need to know the record format of the data set (except when you must specify a
block size); each GET statement transfers a discrete number of characters or
graphics to your program from the data stream.

If you do give record-format information, it must be compatible with the actual
structure of the data set. For example, if a data set is created with F-format records,
a record size of 600 bytes, and a block size of 3600 bytes, you can access the
records as if they are U-format with a maximum block size of 3600 bytes; but if
you specify a block size of 3500 bytes, your data will be truncated.

Example: Accessing a data set with stream-oriented data
transmission
This example shows a program that accesses a data set with stream-oriented data
transmission.

Chapter 10. Defining and using consecutive data sets 249

The program in Figure 31 reads the data set created by the program in Figure 29 on
page 247 and uses the file SYSPRINT to list the data that it contains.

Each set of data is read, by the GET statement, into two variables: FREC, which
always contains 45 characters; and VREC, which always contains 35 characters. At
each execution of the GET statement, VREC consists of the number of characters
generated by the expression 7*NUM, together with sufficient blanks to bring the
total number of characters to 35. The DISP parameter of the DD statement could
read simply DISP=OLD; if DELETE is omitted, an existing data set will not be
deleted.

Using PRINT files with stream I/O
Both the operating system and the PL/I language include features that facilitate
the formatting of printed output.

The operating system allows you to use the first byte of each record for a print
control character. The control characters, which are not printed, cause the printer to
skip to a new line or page. (Tables of print control characters are given in Figure 34
on page 266 and Table 19 on page 267.)

In a PL/I program, the use of a PRINT file provides a convenient means of
controlling the layout of printed output from stream-oriented data transmission.
The compiler automatically inserts print control characters in response to the
PAGE, SKIP, and LINE options and format items.

You can apply the PRINT attribute to any STREAM OUTPUT file, even if you do
not intend to print the associated data set directly. When a PRINT file is associated
with a direct access data set, the print control characters have no effect on the
layout of the data set, but appear as part of the data in the records.

//EX7#5 JOB
//STEP1 EXEC IBMZCBG
//PLI.SYSIN DD *
PEOPLE: PROC OPTIONS(MAIN);

DCL WORK FILE STREAM INPUT,
1 REC,

2 FREC,
3 NAME CHAR(19),
3 NUM CHAR(1),
3 SERNO CHAR(7),
3 PROF CHAR(18),

2 VREC CHAR(35),
IN CHAR(80) DEF REC,
EOF BIT(1) INIT(’0’B);

ON ENDFILE(WORK) EOF=’1’B;
OPEN FILE(WORK);
GET FILE(WORK) EDIT(IN,VREC)(A(45),A(7*NUM));
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT(IN)(A);
GET FILE(WORK) EDIT(IN,VREC)(A(45),A(7*NUM));
END;
CLOSE FILE(WORK);
END PEOPLE;

/*
//GO.WORK DD DSN=HPU8.PEOPLE,DISP=(OLD,DELETE)

Figure 31. Accessing a data set with stream-oriented data transmission

250 Enterprise PL/I for z/OS Programming Guide

PRINT files opened with FB or VB will cause the UNDEFINEDFILE condition to
be raised. PRINT files should be opened with the "A" option, that is, FBA or VBA.

The compiler reserves the first byte of each record transmitted by a PRINT file for
an American National Standard print control character, and inserts the appropriate
characters automatically.

A PRINT file uses only the following five print control characters:

Character
Action
Space 1 line before printing (blank character)

0 Space 2 lines before printing
- Space 3 lines before printing
+ No space before printing
1 Start new page

The compiler handles the PAGE, SKIP, and LINE options or format items by
padding the remainder of the current record with blanks and inserting the
appropriate control character in the next record. If SKIP or LINE specifies more
than a 3-line space, the compiler inserts sufficient blank records with appropriate
control characters to accomplish the required spacing. In the absence of a print
control option or format item, when a record is full, the compiler inserts a blank
character (single line space) in the first byte of the next record.

If a PRINT file is being transmitted to a terminal, the PAGE, SKIP, and LINE
options will never cause more than 3 lines to be skipped, unless formatted output
is specified.

Controlling printed line length
You can limit the length of the printed line produced by a PRINT file either by
specifying a record length in your PL/I program (ENVIRONMENT attribute) or in
a DD statement, or by giving a line size in an OPEN statement (LINESIZE option).

The record length must include the extra byte for the print control character, that
is, it must be 1 byte larger than the length of the printed line (5 bytes larger for
V-format records). The value you specify in the LINESIZE option refers to the
number of characters in the printed line; the compiler adds the print control
character.

The blocking of records has no effect on the appearance of the output produced by
a PRINT file, but it does result in more efficient use of auxiliary storage when the
file is associated with a data set on a direct access device. If you use the LINESIZE
option, ensure that your line size is compatible with your block size. For F-format
records, block size must be an exact multiple of (line size+1); for V-format records,
block size must be at least 9 bytes greater than line size.

Although you can vary the line size for a PRINT file during execution by closing
the file and opening it again with a new line size, you must do so with caution if
you are using the PRINT file to create a data set on a direct access device. You
cannot change the record format that is established for the data set when the file is
first opened. If the line size you specify in an OPEN statement conflicts with the
record format already established, the UNDEFINEDFILE condition is raised. To
prevent this, either specify V-format records with a block size at least 9 bytes
greater than the maximum line size you intend to use, or ensure that the first
OPEN statement specifies the maximum line size. (Output destined for the printer

Chapter 10. Defining and using consecutive data sets 251

can be stored temporarily on a direct access device, unless you specify a printer by
using UNIT=, even if you intend it to be fed directly to the printer.)

Because PRINT files have a default line size of 120 characters, you need not give
any record format information for them. In the absence of other information, the
compiler assumes V-format records. The complete default information is as follows:

BLKSIZE=129
LRECL=125
RECFM=VBA

Example

Figure 32 on page 253 illustrates the use of a PRINT file and the printing options
of stream-oriented data transmission statements to format a table and write it onto
a direct access device for printing on a later occasion. The table comprises the
natural sines of the angles from 0° to 359° 54' in steps of 6'.

The statements in the ENDPAGE ON-unit insert a page number at the bottom of
each page, and set up the headings for the following page.

The DD statement defining the data set created by this program includes no
record-format information. The compiler infers the following from the file
declaration and the line size specified in the statement that opens the file TABLE:

Record format =
V (the default for a PRINT file)

Record size =
98 (line size + 1 byte for print control character + 4 bytes for record control
field)

Block size =
102 (record length + 4 bytes for block control field)

The program in Figure 36 on page 273 uses record-oriented data transmission to
print the table created by the program in Figure 32 on page 253.

252 Enterprise PL/I for z/OS Programming Guide

Overriding the tab control table
Data-directed and list-directed output to a PRINT file are aligned on preset
tabulator positions. For 31-bit programs, you can customize the tab control table.
However, user-defined PLITAB is not supported for 64-bit programs, which means
that you cannot override the tab control table.

See Figure 14 on page 167 and Figure 33 on page 254 for examples of declaring a
tab table. The definitions of the fields in the table are as follows:

OFFSET OF TAB COUNT:
Halfword binary integer that gives the offset of Tab count, the field that
indicates the number of tabs to be used

PAGESIZE:
Halfword binary integer that defines the default page size

%PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
%PROCESS LIST;

SINE: PROC OPTIONS(MAIN);
DCL TABLE FILE STREAM OUTPUT PRINT;
DCL DEG FIXED DEC(5,1) INIT(0); /* INIT(0) FOR ENDPAGE */
DCL MIN FIXED DEC(3,1);
DCL PGNO FIXED DEC(2) INIT(0);
DCL ONCODE BUILTIN;

ON ERROR
BEGIN;

ON ERROR SYSTEM;
DISPLAY (’ONCODE = ’|| ONCODE);

END;

ON ENDPAGE(TABLE)
BEGIN;

DCL I;
IF PGNO ¬= 0 THEN

PUT FILE(TABLE) EDIT (’PAGE’,PGNO)
(LINE(55),COL(80),A,F(3));

IF DEG ¬= 360 THEN
DO;

PUT FILE(TABLE) PAGE EDIT (’NATURAL SINES’) (A);
IF PGNO ¬= 0 THEN

PUT FILE(TABLE) EDIT ((I DO I = 0 TO 54 BY 6))
(SKIP(3),10 F(9));

PGNO = PGNO + 1;
END;

ELSE
PUT FILE(TABLE) PAGE;

END;

OPEN FILE(TABLE) PAGESIZE(52) LINESIZE(93);
SIGNAL ENDPAGE(TABLE);

PUT FILE(TABLE) EDIT
((DEG,(SIND(DEG+MIN) DO MIN = 0 TO .9 BY .1) DO DEG = 0 TO 359))
(SKIP(2), 5 (COL(1), F(3), 10 F(9,4)));

PUT FILE(TABLE) SKIP(52);
END SINE;

Figure 32. Creating a print file via stream data transmission. The example in Figure 36 on
page 273 will print the resultant file.

Chapter 10. Defining and using consecutive data sets 253

This page size is used for dump output to the PLIDUMP data set as well
as for stream output.

LINESIZE:
Halfword binary integer that defines the default line size

PAGELENGTH:
Halfword binary integer that defines the default page length for printing at
a terminal

FILLERS:
Three halfword binary integers, reserved for future use

TAB COUNT:
Halfword binary integer that defines the number of tab position entries in
the table (maximum 255)

If tab count = 0, any specified tab positions are ignored.

Tab1–Tabn:
n halfword binary integers that define the tab positions within the print
line

The first position is numbered 1, and the highest position is numbered 255.
The value of each tab should be greater than that of the tab preceding it in
the table; otherwise, it is ignored. The first data field in the printed output
begins at the next available tab position.

You can override the default PL/I tab settings for your program by causing the
linkage editor to resolve an external reference to PLITABS. To cause the reference
to be resolved, supply a table with the name PLITABS, in the format described
above.

To supply this tab table, include a PL/I structure in your source program with the
name PLITABS, which you must declare to be STATIC EXTERNAL in your MAIN
procedure or in a program linked with your MAIN procedure. An example of the
PL/I structure is shown in Figure 33. This example creates three tab settings, in
positions 30, 60, and 90, and uses the defaults for page size and line size. Note that
TAB1 identifies the position of the second item printed on a line; the first item on a
line always starts at the left margin. The first item in the structure is the offset to
the NO_OF_TABS field. The FILL fields must not be omitted.

DCL 1 PLITABS STATIC EXT,
2 (OFFSET INIT(14),

PAGESIZE INIT(60),
LINESIZE INIT(120),
PAGELENGTH INIT(0),
FILL1 INIT(0),
FILL2 INIT(0),
FILL3 INIT(0),
NO_OF_TABS INIT(3),
TAB1 INIT(30),
TAB2 INIT(60),
TAB3 INIT(90)) FIXED BIN(15,0);

Figure 33. PL/I structure PLITABS for modifying the preset tab settings

254 Enterprise PL/I for z/OS Programming Guide

Using SYSIN and SYSPRINT files for 31-bit programs
If you code a GET statement without the FILE option in your program, the
compiler inserts the file name SYSIN. If you code a PUT statement without the
FILE option, the compiler inserts the name SYSPRINT.

If you do not declare SYSPRINT, the compiler gives the file the attribute PRINT in
addition to the normal default attributes. Here is the complete set of attributes:
FILE STREAM OUTPUT PRINT EXTERNAL

Because SYSPRINT is a PRINT file, the compiler also supplies a default line size of
120 characters and a V-format record. You need give only a minimum of
information in the corresponding DD statement; if your installation uses the usual
convention that the system output device of class A is a printer, the following is
sufficient:
//SYSPRINT DD SYSOUT=A

Note: SYSIN and SYSPRINT are established in the User Exit during initialization.
IBM-supplied defaults for SYSIN and SYSPRINT are directed to the terminal.

You can override the attributes given to SYSPRINT by the compiler by explicitly
declaring or opening the file. For more information about the interaction between
SYSPRINT and the z/OS Language Environment message file option, see the z/OS
Language Environment Programming Guide.

The compiler does not supply any special attributes for the input file SYSIN; if you
do not declare it, it receives only the default attributes. The data set associated
with SYSIN is usually in the input stream; if it is not in the input stream, you must
supply full DD information.
Related information:
“SYSPRINT considerations for 31-bit programs” on page 170

Using SYSIN and SYSPRINT files for 64-bit programs
For 64-bit programs, SYSPRINT is equated to the C stdout file; and SYSIN is
equated to the C stdin file.
Related information:
“SYSPRINT considerations for 64-bit programs” on page 186
For 64-bit programs, SYSPRINT is equated to the C stdout file. In addition, shared
SYSPRINT is not supported.

Controlling input from the terminal
You can enter data at the terminal for an input file in your PL/I program if you do
the following:
1. Declare the input file explicitly or implicitly with the CONSECUTIVE

environment option (all stream files meet this condition).
2. Allocate the input file to the terminal.

You can usually use the standard default input file SYSIN because it is a stream
file and can be allocated to the terminal.

You are prompted for input to stream files by a colon (:). You will see the colon
each time a GET statement is executed in the program. The GET statement causes
the system to go to the next line. You can then enter the required data. If you enter

Chapter 10. Defining and using consecutive data sets 255

a line that does not contain enough data to complete execution of the GET
statement, a further prompt, which is a plus sign followed by a colon (+:), is
displayed.

By adding a hyphen to the end of any line that is to continue, you can delay
transmission of the data to your program until you enter two or more lines.

If you include output statements that prompt you for input in your program, you
can inhibit the initial system prompt by ending your own prompt with a colon. For
example, the GET statement could be preceded by a PUT statement as follows:
PUT SKIP LIST(’ENTER NEXT ITEM:’);

To inhibit the system prompt for the next GET statement, your own prompt must
meet the following conditions:
1. It must be either list-directed or edit-directed, and if list-directed, must be to a

PRINT file.
2. The file transmitting the prompt must be allocated to the terminal. If you are

merely copying the file at the terminal, the system prompt is not inhibited.

Under TSO, there is support of an environment variable called TSO_INPUT_OPT
to help control the input from a terminal in a more flexible way than the default
way described above.

The syntax for the TSO_INPUT_OPT environment variable, which must be in
uppercase, is as follows:

►► TSO_INPUT_OPT =option ►◄

When you specify the options, which can be in uppercase or lowercase, blanks are
not allowed. If more than one option is specified, they have to be separated by a
comma. In addition, the syntax of the statement is not checked at the time the
command is entered. It is verified when the data set is opened. If the syntax is
wrong, the UNDEFINEDFILE condition is raised with the oncode 96.

You can specify the following options:

PROMPT
The PROMPT option specifies whether a colon should be visible as prompts
for stream input from the terminal.

►► PROMPT
N

(Y) ►◄

SAMELINE
The SAMELINE option specifies whether the system prompt occurs on the
same line as the statement that prompts for input.

►► SAMELINE
N

(Y) ►◄

For more information about how these options affect your input and output to the
terminal, see the examples in “SAMELINE” on page 214.

256 Enterprise PL/I for z/OS Programming Guide

One way to specify this environment variable under TSO is through the PLIXOPT
string. See the following example:

DCL PLIXOPT char(50) var ext static
init(’ENVAR("TSO_INPUT_OPT=PROMPT(Y),SAMELINE(Y)")’);

Format of data
The data you enter at the terminal should have exactly the same format as stream
input data in batch mode, but there are a few variations.
v Simplified punctuation for input

If you enter separate items of input on separate lines, there is no need to enter
intervening blanks or commas; the compiler will insert a comma at the end of
each line.
For instance, in response to the statement:
GET LIST(I,J,K);

your terminal interaction could be as follows:
:
1
+:2
+:3

with a carriage return following each item. It would be equivalent to:
:
1,2,3

If you wish to continue an item onto another line, you must end the first line
with a continuation character. Otherwise, for a GET LIST or GET DATA
statement, a comma will be inserted, and for a GET EDIT statement, the item
will be padded (see next paragraph).

v Automatic padding for GET EDIT
There is no need to enter blanks at the end of a line of input for a GET EDIT
statement. The item you enter will be padded to the correct length.
For instance, consider the following PL/I statement:
GET EDIT(NAME)(A(15));

You can enter the five characters, SMITH, followed immediately by a carriage
return. The item will be padded with 10 blanks, so that the program receives a
string 15 characters long. If you want to continue an item on a second or
subsequent line, you must add a continuation character to the end of every line
except the last; the first line transmitted would otherwise be padded and treated
as the complete data item.

v SKIP option or format item
A SKIP in a GET statement asks the program to ignore data not yet entered. All
uses of SKIP(n) where n is greater than one are taken to mean SKIP(1). SKIP(1)
means that all unused data on the current line is ignored.

Stream and record files
You can allocate both stream and record files to the terminal. However, no
prompting is provided for record files.

If you allocate more than one file to the terminal and one or more of them is a
record file, the output of the files will not necessarily be synchronized. The order

Chapter 10. Defining and using consecutive data sets 257

in which data is transmitted to and from the terminal is not guaranteed to be the
same order in which the corresponding PL/I I/O statements are executed.

Also, record file input from the terminal is received in uppercase letters because of
a TCAM restriction. To avoid problems, you should use stream files wherever
possible.

Defining QSAM files using PL/I dynamic allocation
You can define QSAM or HFS files by using a DD statement, an environment
variable, or the TITLE option of the OPEN statement.

When an environment variable or the TITLE option is used, the name must be in
uppercase. Specify the MVS data set in one of the following ways:
v DSN(data-set-name)

v DSN(data-set-name (member-name))

data-set-name must be fully qualified and cannot be a temporary data set; for
example, it must not start with &.

Specify the HFS file as follows:

PATH (absolute-path-name)

The following attributes can be specified in any order after the DSN keyword:
NEW, OLD, SHR, or MOD
TRACKS or CYL
SPACE(n,m)
VOL(volser)
UNIT(type)
KEEP, DELETE, CATALOG, or UNCATALOG
STORCLAS(storageclass)
MGMTCLAS(managementclass)
DATACLAS(dataclass)

Note: You cannot create a PDS or PDSE by using an environment variable or the
TITLE option of the OPEN statement, but you can create a new member in an
existing PDS or PDSE.

Capital and lowercase letters
For stream files, character strings are transmitted to the program as entered in
lowercase or uppercase. For record files, all characters become uppercase.

End-of-file
The characters /* in positions one and two of a line that contains no other
characters are treated as an end-of-file marker; that is, they raise the ENDFILE
condition.

Under the USS environment, you can also use the key sequence ESC-D as the
end-of-file marker. ESC is predefined as a specific character, and you need to use
this predefined character in the sequence.

258 Enterprise PL/I for z/OS Programming Guide

COPY option of GET statement
The GET statement can specify the COPY option; but if the COPY file, as well as
the input file, is allocated to the terminal, no copy of the data will be printed.

Chapter 10. Defining and using consecutive data sets 259

260 Enterprise PL/I for z/OS Programming Guide

Chapter 11. Controlling output to the terminal

At your terminal you can obtain data from a PL/I file that meets the following
conditions:
1. The file is declared explicitly or implicitly with the CONSECUTIVE

environment option. All stream files meet this condition.
2. The file is allocated to the terminal.

The standard print file SYSPRINT generally meets both these conditions.

Format of PRINT files
Data from SYSPRINT or other PRINT files is not normally formatted into pages at
the terminal. Three lines are always skipped for PAGE and LINE options and
format items. The ENDPAGE condition is normally never raised. SKIP(n) where n
is greater than three causes only three lines to be skipped. SKIP(0) is implemented
by backspacing, and should therefore not be used with terminals that do not have
a backspace feature.

You can cause a PRINT file to be formatted into pages by inserting a tab control
table in your program. The table must be called PLITABS, and its contents are
explained in “Overriding the tab control table” on page 253. You must initialize the
element PAGELENGTH to the length of page you require—that is, the length of
the sheet of paper on which each page is to be printed, expressed as the maximum
number of lines that could be printed on it. You must initialize the element
PAGESIZE to the actual number of lines to be printed on each page. After the
number of lines in PAGESIZE has been printed on a page, ENDPAGE is raised, for
which standard system action is to skip the number of lines equal to
PAGELENGTH minus PAGESIZE, and then start printing the next page. For other
than standard layout, you must initialize the other elements in PLITABS to the
values shown in Figure 14 on page 167. You can also use PLITABS to alter the
tabulating positions of list-directed and data-directed output. You can use PLITABS
for SYSPRINT when you need to format page breaks in ILC applications. Set
PAGESIZE to 32767 and use the PUT PAGE statement to control page breaks.

Although some types of terminals have a tabulating facility, tabulating of
list-directed and data-directed output is always achieved by transmission of blank
characters.

Stream and record files
You can allocate both stream and record files to the terminal. However, if you
allocate multiple files to the terminal among which one is SYSPRINT or a record
file, the output of the files is not necessarily synchronized.

There is no guarantee that the order in which data is transmitted between the
program and the terminal is the same as the order in which the corresponding
PL/I output statements are executed.

© Copyright IBM Corp. 1999, 2017 261

Output from the PUT EDIT command
The format of the output from a PUT EDIT command to a terminal is line mode
TPUTs with Start of field and end of field characters appearing as blanks on the
screen.

262 Enterprise PL/I for z/OS Programming Guide

Chapter 12. Using record-oriented data transmission

PL/I supports various types of data sets with the RECORD attribute. This section
covers how to use consecutive data sets.

Table 18 lists the statements and options that you can use to create and access a
consecutive data set using record-oriented data transmission.

Table 18. Statements and options allowed for creating and accessing consecutive data sets

File declaration1 Valid statements2 with options you must
specify

Other options you can specify

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

SET(pointer-reference)

SEQUENTIAL OUTPUT WRITE FILE(file-reference)
FROM(reference);

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

SEQUENTIAL INPUT READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE(expression);

SEQUENTIAL UPDATE

BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference); FROM(reference)

© Copyright IBM Corp. 1999, 2017 263

Table 18. Statements and options allowed for creating and accessing consecutive data sets (continued)

File declaration1 Valid statements2 with options you must
specify

Other options you can specify

SEQUENTIAL UPDATE READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference)
FROM(reference);

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT.

2. The statement READ FILE (file-reference); is a valid statement and is equivalent to READ FILE(file-reference)
IGNORE (1);.

Related information:
“Creating a data set with record I/O” on page 268
When you create a consecutive data set, you must open the associated file for
SEQUENTIAL OUTPUT. You can use either the WRITE or LOCATE statement to
write records.

Specifying record format
If you give record-format information, it must be compatible with the actual
structure of the data set.

For example, if you create a data set with FB-format records, with a record size of
600 bytes and a block size of 3600 bytes, you can access the records as if they were
U-format with a maximum block size of 3600 bytes. If you specify a block size of
3500 bytes, your data is truncated.

Defining files using record I/O
You define files for record-oriented data transmission by using a file declaration.
DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE
SEQUENTIAL
BUFFERED
ENVIRONMENT(options);

For information about the default file attributes, see Table 15 on page 224. The file
attributes are described in the PL/I Language Reference. For information about the
options of the ENVIRONMENT attribute, see “Specifying ENVIRONMENT
options.”

Specifying ENVIRONMENT options
This section describes the ENVIRONMENT options that are applicable to
consecutive data sets.

The following ENVIRONMENT options are applicable to consecutive data sets:

264 Enterprise PL/I for z/OS Programming Guide

F|FB|FS|FBS|V|VB|U
RECSIZE(record-length)
BLKSIZE(block-size)
SCALARVARYING

CONSECUTIVE or ORGANIZATION(CONSECUTIVE)
CTLASA|CTL360
LEAVE|REREAD

See the following topics for information about these options.

ENVIRONMENT options See these topics

F|FB|FS|FBS|V|VB|U v “The ENVIRONMENT attribute” on page
224

v “Record formats for record-oriented data
transmission” on page 226

RECSIZE(record-length) v “The ENVIRONMENT attribute” on page
224

v “RECSIZE option” on page 227

BLKSIZE(block-size) v “The ENVIRONMENT attribute” on page
224

v “BLKSIZE option” on page 228

SCALARVARYING v “The ENVIRONMENT attribute” on page
224

v “SCALARVARYING option —
varying-length strings” on page 231

CONSECUTIVE “CONSECUTIVE”

ORGANIZATION(CONSECUTIVE) “ORGANIZATION(CONSECUTIVE)”

CTLASA|CTL360 “CTLASA|CTL360” on page 266

LEAVE|REREAD “LEAVE|REREAD” on page 267

See Table 15 on page 224 to find which options you must specify, which are
optional, and which are defaults.

CONSECUTIVE
The CONSECUTIVE option defines a file with consecutive data set organization.

►► CONSECUTIVE ►◄

CONSECUTIVE is the default.
Related information:
“Data set organization” on page 219
The data management routines of the operating system can handle a number of
types of data sets, which differ in the way data is stored within them and in the
allowed means of access to the data.

ORGANIZATION(CONSECUTIVE)
The ORGANIZATION(CONSECUTIVE) option specifies that the file is associated
with a consecutive data set.

Chapter 12. Using record-oriented data transmission 265

The file can be either a native data set or a VSAM data set.
Related information:
“ORGANIZATION option” on page 232
The ORGANIZATION option specifies the organization of the data set associated
with the PL/I file.

CTLASA|CTL360
The printer control options CTLASA and CTL360 apply only to OUTPUT files
associated with consecutive data sets. They specify that the first character of a
record is to be interpreted as a control character.

►► CTLASA
CTL360

►◄

The CTLASA option specifies American National Standard Vertical Carriage
Positioning Characters or American National Standard Pocket Select Characters
(Level 1). The CTL360 option specifies IBM machine-code control characters.

The American National Standard control characters, listed in Figure 34, cause the
specified action to occur before the associated record is printed or punched.

The machine code control characters differ according to the type of device. The
IBM machine code control characters for printers are listed in Table 19 on page 267.

Code Action
Space 1 line before printing (blank code)

0 Space 2 lines before printing
- Space 3 lines before printing
+ Suppress space before printing
1 Skip to channel 1
2 Skip to channel 2
3 Skip to channel 3
4 Skip to channel 4
5 Skip to channel 5
6 Skip to channel 6
7 Skip to channel 7
8 Skip to channel 8
9 Skip to channel 9
A Skip to channel 10
B Skip to channel 11
C Skip to channel 12
V Select stacker 1
W Select stacker 2

Figure 34. American National Standard print and card punch control characters (CTLASA)

266 Enterprise PL/I for z/OS Programming Guide

Table 19. IBM machine code print control characters (CTL360)

Print and
Then Act

Code byte

Action Act immediately
(no printing)

Code byte

00000001 Print only (no space) —
00001001 Space 1 line 00001011
00010001 Space 2 lines 00010011
00011001 Space 3 lines 00011011
10001001 Skip to channel 1 10001011
10010001 Skip to channel 2 10010011
10011001 Skip to channel 3 10011011
10100001 Skip to channel 4 10100011
10101001 Skip to channel 5 10101011
10110001 Skip to channel 6 10110011
10111001 Skip to channel 7 10111011
11000001 Skip to channel 8 11000011
11001001 Skip to channel 9 11001011
11010001 Skip to channel 10 11010011
11011001 Skip to channel 11 11011011
11100001 Skip to channel 12 11100011

LEAVE|REREAD
The magnetic tape handling options LEAVE and REREAD specify the action to be
taken when the end of a magnetic tape volume is reached, or when a data set on a
magnetic tape volume is closed.

The LEAVE option prevents the tape from being rewound. The REREAD option
rewinds the tape to allow reprocessing of the data set. If you do not specify either
of these, the action at end-of-volume or on closing of a data set is controlled by the
DISP parameter of the associated DD statement.

►► LEAVE
REREAD

►◄

If a data set is first read or written forward and then read backward in the same
program, specify the LEAVE option to prevent rewinding when the file is closed
(or, with a multivolume data set, when volume switching occurs).

Table 20 summarizes the effects of the LEAVE and REREAD options.

Table 20. Effect of LEAVE and REREAD Options

ENVIRONMENT option DISP parameter Action

REREAD — Positions the current volume to
reprocess the data set.

LEAVE — Positions the current volume at
the logical end of the data set.

Chapter 12. Using record-oriented data transmission 267

Table 20. Effect of LEAVE and REREAD Options (continued)

ENVIRONMENT option DISP parameter Action

Neither REREAD nor LEAVE PASS Positions the volume at the end
of the data set.

DELETE Rewinds the current volume.
KEEP
CATLG
UNCATLG

Rewinds and unloads the
current volume.

Creating a data set with record I/O
When you create a consecutive data set, you must open the associated file for
SEQUENTIAL OUTPUT. You can use either the WRITE or LOCATE statement to
write records.

Table 18 on page 263 shows the statements and options for creating a consecutive
data set.

When creating a data set, you must identify it to the operating system in a DD
statement. Table 21 summarizes the essential information that you must include in
the DD statement and the optional information that you can supply.

Table 21. Creating a consecutive data set with record I/O: essential parameters of the DD statement

Storage device When required What you must state Parameters

All Always Output device UNIT= or SYSOUT=

or

VOLUME=REF=

Block size1 DCB=(BLKSIZE=...

Direct access only Always Storage space required SPACE=

Direct access Data set to be used by another job step
but not required at end of job

Disposition DISP=

Data set to be kept after end of job Disposition DISP=

Name of data set DSNAME=

Data set to be on particular device Volume serial number VOLUME=SER=

or

VOLUME=REF=

Note:

1. Or you can specify the block size in your PL/I program by using the ENVIRONMENT attribute.

Essential information
When creating a data set, you must identify it to the operating system in a DD
statement. This topic describes the essential information that you must include in
the statement.

When you create a consecutive data set, you must specify the following essential
information in the DD statement:
v The name of data set to be associated with your PL/I file

268 Enterprise PL/I for z/OS Programming Guide

A data set with consecutive organization can exist on any type of device.
v The record length

You can specify the record length by using the RECSIZE option of the
ENVIRONMENT attribute, of the DD_DDNAME environment variable, or of the
TITLE option of the OPEN statement.
For files associated with the terminal device (stdout: or stderr:), PL/I uses a
default record length of 120 when the RECSIZE option is not specified.

Accessing and updating a data set with record I/O
After you create a consecutive data set, you can open the file that accesses it for
sequential input, for sequential output, or, for data sets on direct access devices, for
updating.

See Figure 35 on page 271 for an example of a program that accesses and updates a
consecutive data set. If you open the file for output and extend the data set by
adding records at the end, you must specify DISP=MOD in the DD statement. If
you do not, the data set will be overwritten. If you open a file for updating, you
can update only records in their existing sequence, and if you want to insert
records, you must create a new data set. Table 18 on page 263 shows the
statements and options for accessing and updating a consecutive data set.

When you access a consecutive data set by a SEQUENTIAL UPDATE file, you
must retrieve a record with a READ statement before you can update it with a
REWRITE statement; however, every record that is retrieved need not be rewritten.
A REWRITE statement will always update the last record read.

Consider the following statement:
READ FILE(F) INTO(A);

.

.

.
READ FILE(F) INTO(B);

.

.

.
REWRITE FILE(F) FROM(A);

The REWRITE statement updates the record that was read by the second READ
statement. The record that was read by the first statement cannot be rewritten after
the second READ statement has been executed.

You cannot update a consecutive data set on magnetic tape except by adding
records at the end. To replace or insert records, you must read the data set and
write the updated records into a new data set.

You can read a consecutive data set on magnetic tape forward only. Reading
backward is not supported.

To access a data set, you must identify it to the operating system in a DD
statement. Table 22 on page 270 summarizes the DD statement parameters needed
to access a consecutive data set.

Chapter 12. Using record-oriented data transmission 269

Table 22. Accessing a consecutive data set with record I/O: essential parameters of the DD
statement

Parameters What you must state When required

DSNAME= Name of data set Always

DISP= Disposition of data set Always

UNIT= or
VOLUME=REF=

Input device If data set not cataloged (all devices)

VOLUME=SER= Volume serial number If data set not cataloged (direct access)

DCB=(BLKSIZE= Block size1 If data set does not have standard labels

Note:

1. Or you could specify the block size in your PL/I program by using the ENVIRONMENT
attribute.

The following topics describe the essential information that you must include in
the DD statement, and discuss some of the optional information that you can
supply. The discussions do not apply to data sets in the input stream.

Essential information
If the data set is cataloged, you need to supply only the following information in
the DD statement:
v The name of the data set (DSNAME parameter)

The operating system will locate the information describing the data set in the
system catalog, and, if necessary, will request the operator to mount the volume
containing it.

v Confirmation that the data set exists (DISP parameter)
If you open the data set for output with the intention of extending it by adding
records at the end, code DISP=MOD; otherwise, opening the data set for output
will result in it being overwritten.

If the data set is not cataloged, you must additionally specify the device that will
read the data set, and for direct access devices, give the serial number of the
volume that contains the data set (UNIT and VOLUME parameters).

Example of consecutive data sets
Example: Merge Sort—creating and accessing a consecutive
data set

Figure 35 on page 271 illustrates creating and accessing consecutive data sets. The
program merges the contents of two data sets, in the input stream, and writes
them onto a new data set, &&TEMP; each of the original data sets contains 15-byte
fixed-length records arranged in EBCDIC collating sequence. The two input files,
INPUT1 and INPUT2, have the default attribute BUFFERED, and locate mode is
used to read records from the associated data sets into the respective buffers.
Access of based variables in the buffers should not be attempted after the file has
been closed.

270 Enterprise PL/I for z/OS Programming Guide

//EXAMPLE JOB
//STEP1 EXEC IBMZCBG
//PLI.SYSIN DD *
%PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
%PROCESS LIST;

MERGE: PROC OPTIONS(MAIN);
DCL (INPUT1, /* FIRST INPUT FILE */

INPUT2, /* SECOND INPUT FILE */
OUT) FILE RECORD SEQUENTIAL; /* RESULTING MERGED FILE*/

DCL SYSPRINT FILE PRINT; /* NORMAL PRINT FILE */

DCL INPUT1_EOF BIT(1) INIT(’0’B); /* EOF FLAG FOR INPUT1 */
DCL INPUT2_EOF BIT(1) INIT(’0’B); /* EOF FLAG FOR INPUT2 */
DCL OUT_EOF BIT(1) INIT(’0’B); /* EOF FLAG FOR OUT */
DCL TRUE BIT(1) INIT(’1’B); /* CONSTANT TRUE */
DCL FALSE BIT(1) INIT(’0’B); /* CONSTANT FALSE */

DCL ITEM1 CHAR(15) BASED(A); /* ITEM FROM INPUT1 */
DCL ITEM2 CHAR(15) BASED(B); /* ITEM FROM INPUT2 */
DCL INPUT_LINE CHAR(15); /* INPUT FOR READ INTO */
DCL A POINTER; /* POINTER VAR */
DCL B POINTER; /* POINTER VAR */

ON ENDFILE(INPUT1) INPUT1_EOF = TRUE;
ON ENDFILE(INPUT2) INPUT2_EOF = TRUE;
ON ENDFILE(OUT) OUT_EOF = TRUE;

OPEN FILE(INPUT1) INPUT,
FILE(INPUT2) INPUT,
FILE(OUT) OUTPUT;

READ FILE(INPUT1) SET(A); /* PRIMING READ */
READ FILE(INPUT2) SET(B);

DO WHILE ((INPUT1_EOF = FALSE) & (INPUT2_EOF = FALSE));
IF ITEM1 > ITEM2 THEN
DO;

WRITE FILE(OUT) FROM(ITEM2);
PUT FILE(SYSPRINT) SKIP EDIT(’1>2’, ITEM1, ITEM2)

(A(5),A,A);
READ FILE(INPUT2) SET(B);

END;
ELSE
DO;

WRITE FILE(OUT) FROM(ITEM1);
PUT FILE(SYSPRINT) SKIP EDIT(’1<2’, ITEM1, ITEM2)

(A(5),A,A);
READ FILE(INPUT1) SET(A);

END;
END;

Figure 35. Merge Sort—creating and accessing a consecutive data set

Chapter 12. Using record-oriented data transmission 271

DO WHILE (INPUT1_EOF = FALSE); /* INPUT2 IS EXHAUSTED */
WRITE FILE(OUT) FROM(ITEM1);
PUT FILE(SYSPRINT) SKIP EDIT(’1’, ITEM1) (A(2),A);
READ FILE(INPUT1) SET(A);

END;

DO WHILE (INPUT2_EOF = FALSE); /* INPUT1 IS EXHAUSTED */
WRITE FILE(OUT) FROM(ITEM2);
PUT FILE(SYSPRINT) SKIP EDIT(’2’, ITEM2) (A(2),A);
READ FILE(INPUT2) SET(B);

END;

CLOSE FILE(INPUT1), FILE(INPUT2), FILE(OUT);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(OUT) SEQUENTIAL INPUT;

READ FILE(OUT) INTO(INPUT_LINE); /* DISPLAY OUT FILE */
DO WHILE (OUT_EOF = FALSE);

PUT FILE(SYSPRINT) SKIP EDIT(INPUT_LINE) (A);
READ FILE(OUT) INTO(INPUT_LINE);

END;
CLOSE FILE(OUT);

END MERGE;
/*
//GO.INPUT1 DD *
AAAAAA
CCCCCC
EEEEEE
GGGGGG
IIIIII
/*
//GO.INPUT2 DD *
BBBBBB
DDDDDD
FFFFFF
HHHHHH
JJJJJJ
KKKKKK
/*
//GO.OUT DD DSN=&&TEMP,DISP=(NEW,DELETE),UNIT=SYSDA,
// DCB=(RECFM=FB,BLKSIZE=150,LRECL=15),SPACE=(TRK,(1,1))

Merge Sort—creating and accessing a consecutive data set (continued)

Example: Printing record-oriented data transmission

The program in Figure 36 on page 273 uses record-oriented data transmission to
print the table created by the program in Figure 32 on page 253.

272 Enterprise PL/I for z/OS Programming Guide

%PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
%PROCESS LIST;

PRT: PROC OPTIONS(MAIN);
DCL TABLE FILE RECORD INPUT SEQUENTIAL;
DCL PRINTER FILE RECORD OUTPUT SEQL

ENV(V BLKSIZE(102) CTLASA);
DCL LINE CHAR(94) VAR;

DCL TABLE_EOF BIT(1) INIT(’0’B); /* EOF FLAG FOR TABLE */
DCL TRUE BIT(1) INIT(’1’B); /* CONSTANT TRUE */
DCL FALSE BIT(1) INIT(’0’B); /* CONSTANT FALSE */

ON ENDFILE(TABLE) TABLE_EOF = TRUE;

OPEN FILE(TABLE),
FILE(PRINTER);

READ FILE(TABLE) INTO(LINE); /* PRIMING READ */

DO WHILE (TABLE_EOF = FALSE);
WRITE FILE(PRINTER) FROM(LINE);
READ FILE(TABLE) INTO(LINE);

END;

CLOSE FILE(TABLE),
FILE(PRINTER);

END PRT;

Figure 36. Printing record-oriented data transmission

Chapter 12. Using record-oriented data transmission 273

274 Enterprise PL/I for z/OS Programming Guide

Chapter 13. Defining and using regional data sets

This chapter covers regional data set organization, data transmission statements,
and ENVIRONMENT options that define regional data sets. It also includes
information about how to create and access regional data sets for each type of
regional organization.

Note: Regional data sets are not supported for 64-bit programs in PL/I V5.1.

A data set with regional organization is divided into regions, each of which is
identified by a region number, and each of which can contain one record or more
than one record, depending on the type of regional organization. The regions are
numbered in succession, beginning with zero, and a record can be accessed by
specifying its region number, and perhaps a key, in a data transmission statement.

Regional data sets are confined to direct access devices.

Regional organization of a data set allows you to control the physical placement of
records in the data set, and to optimize the access time for a particular application.
Such optimization is not available with consecutive or indexed organization, in
which successive records are written either in strict physical sequence or in logical
sequence depending on ascending key values; neither of these methods takes full
advantage of the characteristics of direct access storage devices.

You can create a regional data set in a manner similar to a consecutive or indexed
data set, presenting records in the order of ascending region numbers; alternatively,
you can use direct access, in which you present records in random sequence and
insert them directly into preformatted regions. After you create a regional data set,
you can access it by using a file with the attributes SEQUENTIAL or DIRECT as
well as INPUT or UPDATE. You do not need to specify either a region number or
a key if the data set is associated with a SEQUENTIAL INPUT or SEQUENTIAL
UPDATE file. When the file has the DIRECT attribute, you can retrieve, add,
delete, and replace records at random.

Records within a regional data set are either actual records containing valid data or
dummy records.

The major advantage of regional organization over other types of data set
organization is that it allows you to control the relative placement of records; by
judicious programming, you can optimize record access in terms of device
capabilities and the requirements of particular applications.

Direct access of regional data sets is quicker than that of indexed data sets, but
regional data sets have the disadvantage that sequential processing can present
records in random sequence; the order of sequential retrieval is not necessarily that
in which the records were presented, nor need it be related to the relative key
values.

Table 23 on page 276 lists the data transmission statements and options that you
can use to create and access a regional data set.

© Copyright IBM Corp. 1999, 2017 275

Table 23. Statements and options allowed for creating and accessing regional data sets

File declaration1 Valid statements2 with options you must
include

Other options you can also
include

SEQUENTIAL OUTPUT WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FROM(file-reference)
KEYFROM(expression);

SET(pointer-reference)

SEQUENTIAL INPUT READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

KEYTO(reference)

KEYTO(reference)

SEQUENTIAL UPDATE3 READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference);

KEYTO(reference)

KEYTO(reference)

FROM(reference)

DIRECT OUTPUT WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DIRECT INPUT READ FILE(file-reference)
INTO(reference)
KEY(expression);

DIRECT UPDATE READ FILE(file-reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY(expression);

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT; if you use any
of the options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-reference)
IGNORE(1);.

3. When you create new data sets, the file must not have the UPDATE attribute.

276 Enterprise PL/I for z/OS Programming Guide

Defining REGIONAL(1) data sets using PL/I dynamic allocation
You can define REGIONAL(1) data sets by using a DD statement, an environment
variable, or the TITLE option of the OPEN statement.

When an environment variable or the TITLE option is used, the name must be in
uppercase. Specify the MVS data set as follows:
DSN(data-set-name)

data-set-name must be fully qualified and cannot be a temporary data set; for
example, it must not start with &.

You must specify one of the following attributes after the DSN keyword:
OLD
SHR

Defining files for a regional data set
You can use a file declaration to define a regional data set.

Defining a sequential regional data set

To define a sequential regional data set, use a file declaration with the following
attributes:
DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE
SEQUENTIAL
BUFFERED
[KEYED]
ENVIRONMENT(options);

Because BUFFERED and UNBUFFERED will be treated the same for
REGIONAL(1) data sets, you can specify either option in the ENVIRONMENT
option. For example, the FROM option is not required on a REWRITE for a
SEQUENTIAL UNBUFFERED file and the LOCATE statement is allowed for
OUTPUT SEQUENTIAL data sets even if UNBUFFERED is specified.

Defining a direct regional data set

To define a direct regional data set, use a file declaration with the following
attributes:
DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE
DIRECT
ENVIRONMENT(options);

For information about the default file attributes, see Table 15 on page 224. For
detailed information about the file attributes, see the PL/I Language Reference. For
information about the suboptions of the ENVIRONMENT option, see “Specifying
ENVIRONMENT options.”

Specifying ENVIRONMENT options
This section describes ENVIRONMENT options that are applicable to regional data
sets.

The following ENVIRONMENT options are applicable to regional data sets:

Chapter 13. Defining and using regional data sets 277

REGIONAL({1})
F
RECSIZE(record-length)
BLKSIZE(block-size)
SCALARVARYING

REGIONAL
You can use the REGIONAL option to define a file with regional organization.

►► REGIONAL (1) ►◄

1 Specifies REGIONAL(1).

REGIONAL(1)
Specifies that the data set contains F-format records that do not have recorded
keys. Each region in the data set contains only one record; therefore, each
region number corresponds to a relative record within the data set (that is,
region numbers start with 0 at the beginning of the data set).

Although REGIONAL(1) data sets have no recorded keys, you can use
REGIONAL(1) DIRECT INPUT or UPDATE files to process data sets that do
have recorded keys.

RECSIZE(record-length)
BLKSIZE(block-size)

If both RECSIZE and BLKSIZE are specified, they must specify the same value.

REGIONAL(1) organization is most suited to applications where there are no
duplicate region numbers, and where most of the regions will be filled (reducing
wasted space in the data set).

Using keys with REGIONAL data sets
There are two kinds of keys, recorded keys and source keys.

A recorded key is a character string that immediately precedes each record in the
data set to identify that record; its length cannot exceed 255 characters. A source key
is the character value of the expression that appears in the KEY or KEYFROM
option of a data transmission statement to identify the record to which the
statement refers. When you access a record in a regional data set, the source key
gives a region number, and can also give a recorded key.

Unlike the keys for indexed data sets, recorded keys in a regional data set are
never embedded within the record.

Using REGIONAL(1) data sets
In a REGIONAL(1) data set, because there are no recorded keys, the region
number serves as the sole identification of a particular record.

The character value of the source key should represent an unsigned decimal
integer that should not exceed 16777215, although the actual number of records
allowed can be smaller, depending on a combination of record size, device
capacity, and limits of your access method. For direct regional(1) files with fixed
format records, the maximum number of tracks that can be addressed by relative
track addressing is 65536. If the region number exceeds this figure, it is treated as
modulo 16777216; for instance, 16777226 is treated as 10. Only the characters 0
through 9 and the blank character are valid in the source key; leading blanks are

278 Enterprise PL/I for z/OS Programming Guide

interpreted as zeros. Embedded blanks are not allowed in the number; the first
embedded blank, if any, terminates the region number. If more than 8 characters
appear in the source key, only the rightmost 8 are used as the region number; if
there are fewer than 8 characters, blanks (interpreted as zeros) are inserted on the
left.

Dummy Records
Records in a REGIONAL(1) data set are either actual records containing valid data
or dummy records. A dummy record in a REGIONAL(1) data set is identified by
the constant (8)'1'B in its first byte.

Although such dummy records are inserted in the data set either when it is created
or when a record is deleted, they are not ignored when the data set is read; your
PL/I program must be prepared to recognize them. You can replace dummy
records with valid data. Note that if you insert (8)'1'B in the first byte, the record
can be lost if you copy the file onto a data set that has dummy records that are not
retrieved.

Creating a REGIONAL(1) data set
You can create a REGIONAL(1) data set either sequentially or by direct access.

Table 23 on page 276 shows the statements and options for creating a regional data
set.

When you use a SEQUENTIAL OUTPUT file to create the data set, the opening of
the file causes all tracks on the data set to be cleared, and a capacity record to be
written at the beginning of each track to record the amount of space available on
that track. You must present records in ascending order of region numbers; any
region you omit from the sequence is filled with a dummy record. If there is an
error in the sequence, or if you present a duplicate key, the KEY condition is
raised. When the file is closed, any space remaining at the end of the current
extent is filled with dummy records.

If you use a DIRECT OUTPUT file to create the data set, the whole primary extent
allocated to the data set is filled with dummy records when the file is opened. You
can present records in random order; if you present a duplicate, the existing record
will be overwritten.

For sequential creation, the data set can have up to 15 extents, which can be on
more than one volume. For direct creation, the data set can have only one extent,
and can therefore reside on only one volume.

Example

Figure 37 on page 280 illustrates how to create a REGIONAL(1) data set. The data
set is a list of telephone numbers with the names of the subscribers to whom they
are allocated. The telephone numbers correspond with the region numbers in the
data set, the data in each occupied region being a subscriber's name.

Chapter 13. Defining and using regional data sets 279

Accessing and updating a REGIONAL(1) data set
After you create a REGIONAL(1) data set, you can open the file that accesses it for
SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. You can
open it for OUTPUT only if the existing data set is to be overwritten.

//EX9 JOB
//STEP1 EXEC IBMZCBG,PARM.PLI=’NOP,MAR(1,72)’,PARM.BIND=’LIST’
//PLI.SYSIN DD *
CRR1: PROC OPTIONS(MAIN);
/* CREATING A REGIONAL(1) DATA SET - PHONE DIRECTORY */

DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(REGIONAL(1));
DCL SYSIN FILE INPUT RECORD;
DCL SYSIN_REC BIT(1) INIT(’1’B);
DCL 1 CARD,

2 NAME CHAR(20),
2 NUMBER CHAR(2),
2 CARD_1 CHAR(58);

DCL IOFIELD CHAR(20);

ON ENDFILE (SYSIN) SYSIN_REC = ’0’B;
OPEN FILE(NOS);
READ FILE(SYSIN) INTO(CARD);

DO WHILE(SYSIN_REC);
IOFIELD = NAME;
WRITE FILE(NOS) FROM(IOFIELD) KEYFROM(NUMBER);
PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);
READ FILE(SYSIN) INTO(CARD);

END;

CLOSE FILE(NOS);
END CRR1;

/*
//GO.SYSLMOD DD DSN=&&GOSET,DISP=(OLD,DELETE)
//GO.NOS DD DSN=MYID.NOS,UNIT=SYSDA,SPACE=(20,100),
// DCB=(RECFM=F,BLKSIZE=20,DSORG=DA),DISP=(NEW,KEEP)
//GO.SYSIN DD *
ACTION,G. 12
BAKER,R. 13
BRAMLEY,O.H. 28
CHEESNAME,L. 11
CORY,G. 36
ELLIOTT,D. 85
FIGGINS,E.S. 43
HARVEY,C.D.W. 25
HASTINGS,G.M. 31
KENDALL,J.G. 24
LANCASTER,W.R. 64
MILES,R. 23
NEWMAN,M.W. 40
PITT,W.H. 55
ROLF,D.E. 14
SHEERS,C.D. 21
SURCLIFFE,M. 42
TAYLOR,G.C. 47
WILTON,L.W. 44
WINSTONE,E.M. 37
/*

Figure 37. Creating a REGIONAL(1) data set

280 Enterprise PL/I for z/OS Programming Guide

Table 23 on page 276 shows the statements and options for accessing a regional
data set.

Sequential access
To open a SEQUENTIAL file that is used to process a REGIONAL(1) data set, use
either the INPUT or UPDATE attribute.

You must not include the KEY option in data transmission statements, but the file
can have the KEYED attribute, because you can use the KEYTO option. If the
target character string referenced in the KEYTO option has more than 8 characters,
the value returned (the 8-character region number) is padded on the left with
blanks. If the target string has fewer than 8 characters, the value returned is
truncated on the left.

Sequential access is in the order of ascending region numbers. All records are
retrieved, whether dummy or actual, and you must ensure that your PL/I program
recognizes dummy records.

Using sequential input with a REGIONAL(1) data set, you can read all the records
in ascending region-number sequence, and in sequential update you can read and
rewrite each record in turn.

The rules governing the relationship between READ and REWRITE statements for
a SEQUENTIAL UPDATE file that accesses a REGIONAL(1) data set are identical
to those for a consecutive data set.
Related information:
Chapter 10, “Defining and using consecutive data sets,” on page 241
This chapter covers consecutive data set organization and the ENVIRONMENT
options that define consecutive data sets for stream and record-oriented data
transmission. It then covers how to create, access, and update consecutive data sets
for each type of transmission.

Direct access
To open a DIRECT file that is used to process a REGIONAL(1) data set, you can
use either the INPUT or the UPDATE attribute. All data transmission statements
must include source keys; the DIRECT attribute implies the KEYED attribute.

Use DIRECT UPDATE files to retrieve, add, delete, or replace records in a
REGIONAL(1) data set according to the following conventions:

Retrieval
All records, whether dummy or actual, are retrieved. Your program must
recognize dummy records.

Addition
A WRITE statement substitutes a new record for the existing record (actual
or dummy) in the region specified by the source key.

Deletion
The record you specify by the source key in a DELETE statement is
converted to a dummy record.

Replacement
The record you specify by the source key in a REWRITE statement,
whether dummy or actual, is replaced.

Example
This example illustrates how to update a REGIONAL(1) data set.

Chapter 13. Defining and using regional data sets 281

The program shown in Figure 38 updates the data set and lists its contents. Before
each new or updated record is written, the existing record in the region is tested to
ensure that it is a dummy; this is necessary because a WRITE statement can
overwrite an existing record in a REGIONAL(1) data set even if it is not a dummy.
Similarly, during the sequential reading and printing of the contents of the data
set, each record is tested and dummy records are not printed.

//EX10 JOB
//STEP2 EXEC IBMZCBG,PARM.PLI=’NOP,MAR(1,72)’,PARM.BIND=’LIST’
//PLI.SYSIN DD *
ACR1: PROC OPTIONS(MAIN);
/* UPDATING A REGIONAL(1) DATA SET - PHONE DIRECTORY */
DCL NOS FILE RECORD KEYED ENV(REGIONAL(1));
DCL SYSIN FILE INPUT RECORD;
DCL (SYSIN_REC,NOS_REC) BIT(1) INIT(’1’B);
DCL 1 CARD,

2 NAME CHAR(20),
2 (NEWNO,OLDNO) CHAR(2),
2 CARD_1 CHAR(1),
2 CODE CHAR(1),
2 CARD_2 CHAR(54);

DCL IOFIELD CHAR(20);
DCL BYTE CHAR(1) DEF IOFIELD;

ON ENDFILE(SYSIN) SYSIN_REC = ’0’B;
OPEN FILE (NOS) DIRECT UPDATE;
READ FILE(SYSIN) INTO(CARD);

DO WHILE(SYSIN_REC);
SELECT(CODE);

WHEN(’A’,’C’) DO;
IF CODE = ’C’ THEN

DELETE FILE(NOS) KEY(OLDNO);
READ FILE(NOS) KEY(NEWNO) INTO(IOFIELD);
IF UNSPEC(BYTE) = (8)’1’B

THEN WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);
ELSE PUT FILE(SYSPRINT) SKIP LIST (’DUPLICATE:’,NAME);

END;
WHEN(’D’) DELETE FILE(NOS) KEY(OLDNO);

OTHERWISE PUT FILE(SYSPRINT) SKIP LIST (’INVALID CODE:’,NAME);
END;
READ FILE(SYSIN) INTO(CARD);

END;

CLOSE FILE(SYSIN),FILE(NOS);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(NOS) SEQUENTIAL INPUT;
ON ENDFILE(NOS) NOS_REC = ’0’B;
READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
DO WHILE(NOS_REC);

IF UNSPEC(BYTE) ¬= (8)’1’B
THEN PUT FILE(SYSPRINT) SKIP EDIT (NEWNO,IOFIELD)(A(2),X(3),A);

PUT FILE(SYSPRINT) SKIP EDIT (IOFIELD) (A);
READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);

END;
CLOSE FILE(NOS);
END ACR1;

/*

Figure 38. Updating a REGIONAL(1) data set

282 Enterprise PL/I for z/OS Programming Guide

//GO.NOS DD DSN=J44PLI.NOS,DISP=(OLD,DELETE),UNIT=SYSDA,VOL=SER=nnnnnn
//GO.SYSIN DD *
NEWMAN,M.W. 5640 C
GOODFELLOW,D.T. 89 A
MILES,R. 23 D
HARVEY,C.D.W. 29 A
BARTLETT,S.G. 13 A
CORY,G. 36 D
READ,K.M. 01 A
PITT,W.H. 55
ROLF,D.F. 14 D
ELLIOTT,D. 4285 C
HASTINGS,G.M. 31 D
BRAMLEY,O.H. 4928 C
/*

Updating a REGIONAL(1) data set (continued)

Essential information for creating and accessing regional data sets
To create a regional data set, in your PL/I program or in the DD statement, you
must give the operating system certain information that defines the data set.

You must supply the following information when creating a regional data set:
v Device that will write your data set (UNIT or VOLUME parameter of DD

statement)
v Block size

You can specify the block size either in your PL/I program (in the BLKSIZE
option of the ENVIRONMENT attribute) or in the DD statement (BLKSIZE
subparameter). If you do not specify a record length, unblocked records are the
default and the record length is determined from the block size. If you do
specify a record length, it must be equal to the block size.

If you want to keep a data set (that is, you do not want the operating system to
delete it at the end of your job), the DD statement must name the data set and
indicate how it is to be disposed of (DSNAME and DISP parameters). The DISP
parameter alone will suffice if you want to use the data set in a later step but do
not need it after the end of your job.

If you want your data set stored on a particular direct access device, you must
indicate the volume serial number in the DD statement (SER or REF subparameter
of VOLUME parameter). If you do not supply a serial number for a data set that
you want to keep, the operating system allocates one, informs the operator, and
prints the number on your program listing.

Table 24 on page 284 summarizes all the essential parameters required in a DD
statement to create a regional data set. Table 25 on page 285 lists the DCB
subparameters that are needed. See your z/OS MVS JCL User's Guide for a
description of the DCB subparameters.

You cannot place a regional data set on a system output (SYSOUT) device.

In the DCB parameter, if you specify the DSORG parameter, you must specify the
data set organization as direct by coding DSORG=DA. You cannot specify the

Chapter 13. Defining and using regional data sets 283

DUMMY or DSN=NULLFILE parameters in a DD statement for a regional data set.
Using DSORG=DA might cause message IEC225I to be issued. This message can be
safely ignored.

Table 24. Creating a regional data set: essential parameters of the DD statement

Parameters What you must state When required

UNIT=

or

VOLUME=REF=

Output device1 Always

SPACE= Storage space required2 Always

DCB= Data control block information

See Table 25 on page 285.

Always

DISP= Disposition Data set to be used in another job step but
not required in another job

DISP= Disposition Data set to be kept after end of job

DSNAME= Name of data set

VOLUME=SER=

or

VOLUME=REF=

Volume serial number Data set to be on particular volume

Notes:

1. Regional data sets are confined to direct access devices.

2. For sequential access, the data set can have up to 15 extents, which can be on more than one volume. For creation
with DIRECT access, the data set can have only one extent.

To access a regional data set, you must identify it to the operating system in a DD
statement. The following paragraphs indicate the minimum information you must
include in the DD statement; this information is summarized in Table 26 on page
285.

If the data set is cataloged, you need to supply only the following information in
your DD statement:
v The name of the data set (DSNAME parameter)

The operating system locates the information that describes the data set in the
system catalog and, if necessary, requests the operator to mount the volume that
contains it.

v Confirmation that the data set exists (DISP parameter)

If the data set is not cataloged, you must, in addition, specify the device that will
read the data set and give the serial number of the volume that contains the data
set (UNIT and VOLUME parameters).

When opening a multiple-volume regional data set for sequential update, the
ENDFILE condition is raised at the end of the first volume.

284 Enterprise PL/I for z/OS Programming Guide

Table 25. DCB subparameters for a regional data set

Subparameters To specify When required

RECFM=F Record format1 Always

BLKSIZE= Block size1

DSORG=DA Data set organization
1Or you can specify the block size in the ENVIRONMENT attribute.

Table 26. Accessing a regional data set: essential parameters of the DD statement

Parameters What you must state When required

DSNAME= Name of data set Always

DISP= Disposition of data set

UNIT=

or

VOLUME=REF=

Input device If data set not cataloged

VOLUME=SER= Volume serial number

Chapter 13. Defining and using regional data sets 285

286 Enterprise PL/I for z/OS Programming Guide

Chapter 14. Defining and using VSAM data sets

This chapter covers VSAM (the Virtual Storage Access Method) organization for
record-oriented data transmission, VSAM ENVIRONMENT options, compatibility
with other PL/I data set organizations, and the statements you use to load and
access the three types of VSAM data sets that PL/I supports—entry-sequenced,
key-sequenced, and relative record.

The chapter is concluded by a series of examples showing the PL/I statements,
Access Method Services commands, and JCL statements necessary to create and
access VSAM data sets.

Enterprise PL/I provides no support for ISAM datasets.

For additional information about the facilities of VSAM, the structure of VSAM
data sets and indexes, the way in which they are defined by Access Method
Services, and the required JCL statements, see the VSAM publications for your
system.

Defining VSAM file using PL/I dynamic allocation
You can define VSAM data sets by using a DD statement, an environment variable,
or the TITLE option of the OPEN statement.

When an environment variable or the TITLE option is used, the name must be in
uppercase. Specify the MVS data set as follows:
DSN(data-set-name)

data-set-name must be fully qualified and cannot be a temporary data set; for
example, it must not start with &.

You must specify one of the following attributes after the DSN keyword:
OLD
SHR

Using VSAM data sets
If your program needs to use VSAM data sets, you must specify a DD statement to
give the program access to the data sets. Your program can also access key
sequenced and entry sequenced data sets through alternate index paths.

Running a program with VSAM data sets
To allow your program to access VSAM data sets, you must provide certain
information in your DD statement.

Before you execute a program that accesses a VSAM data set, you need to know
the following information:
v The name of the VSAM data set
v The name of the PL/I file
v Whether you intend to share the data set with other users

Then you can write the required DD statement to access the data set:

© Copyright IBM Corp. 1999, 2017 287

//filename DD DSNAME=dsname,DISP=OLD|SHR

For example, if your file is named PL1FILE, your data set is named VSAMDS, and
you want exclusive control of the data set, enter the following statement:
//PL1FILE DD DSNAME=VSAMDS,DISP=OLD

To share your data set, use DISP=SHR.

Enterprise PL/I has no support for ISAM data sets.

To optimize VSAM's performance by controlling the number of VSAM buffers used
for your data set, see the VSAM publications.

Pairing an alternate index path with a file
When using an alternate index, you simply specify the name of the path in the
DSNAME parameter of the DD statement associating the base data set/alternate
index pair with your PL/I file.

Before using an alternate index, you must be aware of the restrictions on
processing; these are summarized in Table 30 on page 293.

Given a PL/I file called PL1FILE and the alternate index path called PERSALPH,
the DD statement required is as follows:
//PL1FILE DD DSNAME=PERSALPH,DISP=OLD

VSAM organization
There are three types of VSAM data sets. Each type roughly corresponds to a PL/I
data set organization. All three types of VSAM data sets are ordered, and they can
all have keys associated with their records. Both sequential and keyed access are
possible with all three types.

Table 27. Types of VSAM data sets and corresponding PL/I data set organization

VSAM data set type Corresponding PL/I data set organization

Key-sequenced data sets (KSDS) Indexed data set

Entry-sequenced data sets (ESDS) Consecutive data set

Relative record data sets (RRDS) Regional data set

Although only key-sequenced data sets have keys as part of their logical records,
keyed access is also possible for entry-sequenced data sets (using relative-byte
addresses) and relative record data sets (using relative record numbers).

All VSAM data sets are held on direct access storage devices, and a virtual storage
operating system is required to use them.

The physical organization of VSAM data sets differs from those used by other
access methods. VSAM does not use the concept of blocking, and, except for
relative record data sets, records need not be of a fixed length. In data sets with
VSAM organization, the data items are arranged in control intervals, which are in
turn arranged in control areas. For processing purposes, the data items within a
control interval are arranged in logical records. A control interval can contain one
or more logical records, and a logical record can span two or more control
intervals. Concern about blocking factors and record length is largely removed by

288 Enterprise PL/I for z/OS Programming Guide

VSAM, although records cannot exceed the maximum specified size. VSAM allows
access to the control intervals, but this type of access is not supported by PL/I.

VSAM data sets can have two types of indexes—prime and alternate. A prime index
is the index to a KSDS that is established when you define a data set; it always
exists and can be the only index for a KSDS. You can have one or more alternate
indexes on a KSDS or an ESDS. Defining an alternate index for an ESDS enables you
to treat the ESDS, in general, as a KSDS. An alternate index on a KSDS enables a
field in the logical record different from that in the prime index to be used as the
key field. Alternate indexes can be either nonunique, in which duplicate keys are
allowed, or unique, in which they are not. The prime index can never have
duplicate keys.

Any change in a data set that has alternate indexes must be reflected in all the
indexes if they are to remain useful. This activity is known as index upgrade, and is
done by VSAM for any index in the index upgrade set of the data set. (For a KSDS,
the prime index is always a member of the index upgrade set.) However, you must
avoid making changes in the data set that would cause duplicate keys in the prime
index or in a unique alternate index.

Before using a VSAM data set for the first time, you need to define it to the system
with the DEFINE command of Access Method Services, which you can use to
completely define the type, structure, and required space of the data set. This
command also defines the data set's indexes (together with their key lengths and
locations) and the index upgrade set if the data set is a KSDS or has one or more
alternate indexes. A VSAM data set is thus “created” by Access Method Services.

The operation of writing the initial data into a newly created VSAM data set is
referred to as loading in this publication.

Use the three different types of data sets according to the following purposes:
v Use entry-sequenced data sets for data that you primarily access in the order in

which it was created (or the reverse order).
v Use key-sequenced data sets when you normally access records through keys

within the records (for example, a stock-control file where the part number is
used to access a record).

v Use relative record data sets for data in which each item has a particular number,
and you normally access the relevant record by that number (for example, a
telephone system with a record associated with each number).

You can access records in all types of VSAM data sets either directly by a key, or
sequentially (backward or forward). You can also use a combination of the two
ways: Select a starting point with a key and then read forward or backward from
that point.

You can create alternate indexes for key-sequenced and entry-sequenced data sets.
You can then access your data in many sequences or by one of many keys. For
example, you could take a data set held or indexed in order of employee number
and index it by name in an alternate index. Then you could access it in alphabetic
order, in reverse alphabetic order, or directly by using the name as a key. You
could also access it in the same kind of combinations by employee number.

Table 28 on page 290 shows how the same data could be held in the three different
types of VSAM data sets and illustrates their respective advantages and
disadvantages.

Chapter 14. Defining and using VSAM data sets 289

Table 28. Types and advantages of VSAM data sets

Data set type Method of loading Method of reading Method of updating Pros and cons

Key-Sequenced Sequentially in order
or prime index which
must be unique

KEYED by
specifying key of
record in prime
index

SEQUENTIAL
backward or forward
in order of any index

Positioning by key
followed by
sequential reading
either backward or
forward

KEYED specifying a
unique key in any
index

SEQUENTIAL
following positioning
by unique key

Record deletion
allowed

Record insertion
allowed

Advantages: Complete
access and updating

Disadvantages:
Records must be in
order of prime index
before loading

Uses: For uses where
access will be related
to key

Entry-Sequenced Sequentially (forward
only)

The RBA of each
record can be
obtained and used as
a key

SEQUENTIAL
backward or forward

KEYED using RBA

Positioning by key
followed by
sequential either
backward or forward

New records at end
only

Existing records
cannot have length
changed

Record deletion not
allowed

Advantages: Simple
fast creation

No requirement for a
unique index

Disadvantages:
Limited updating
facilities

Uses: For uses where
data will primarily be
accessed sequentially

Relative Record Sequentially starting
from slot 1

KEYED specifying
number of slot

Positioning by key
followed by
sequential writes

KEYED specifying
numbers as key

Sequential forward
or backward
omitting empty
records

Sequentially starting
at a specified slot and
continuing with next
slot

Keyed specifying
numbers as key

Record deletion
allowed

Record insertion into
empty slots allowed

Advantages: Speedy
access to record by
number

Disadvantages:
Structure tied to
numbering sequences

Fixed length records

Uses: For use where
records will be
accessed by number

Keys for VSAM data sets
All VSAM data sets can have keys associated with their records.

For key-sequenced data sets, and for entry-sequenced data sets accessed through
an alternate index, the key is a defined field within the logical record. For
entry-sequenced data sets, the key is the relative byte address (RBA) of the record.
For relative-record data sets, the key is a relative record number.

Keys for indexed VSAM data sets
Keys for key-sequenced data sets and for entry-sequenced data sets that are
accessed through an alternate index are part of the logical records recorded on the
data set. You define the length and location of the keys when you create the data
set.

290 Enterprise PL/I for z/OS Programming Guide

For information about how you can reference the keys in the KEY, KEYFROM, and
KEYTO options, see the topics about the KEY(expression) option,
KEYFROM(expression) option, and KEYTO(reference) option in the PL/I Language
Reference.

Relative byte addresses (RBA)
Relative byte addresses allow you to use keyed access on an ESDS associated with
a KEYED SEQUENTIAL file.

The RBAs, or keys, are character strings of length 4, and their values are defined
by VSAM. You cannot construct or manipulate RBAs in PL/I; you can, however,
compare their values in order to determine the relative positions of records within
the data set. RBAs are not normally printable.

You can obtain the RBA for a record by using the KEYTO option, either on a
WRITE statement when you are loading or extending the data set, or on a READ
statement when the data set is being read. You can subsequently use an RBA
obtained in either of these ways in the KEY option of a READ or REWRITE
statement.

Do not use an RBA in the KEYFROM option of a WRITE statement.

VSAM allows use of the relative byte address as a key to a KSDS, but this use is
not supported by PL/I.

Relative record numbers
Records in an RRDS are identified by a relative record number that starts at 1 and
increments by 1 for each succeeding record. You can use these relative record
numbers as keys for keyed access to the data set.

Keys used as relative record numbers are character strings of length 8. The
character value of a source key you use in the KEY or KEYFROM option must
represent an unsigned integer. If the source key is not 8 characters long, it is
truncated or padded with blanks (interpreted as zeros) on the left. The value
returned by the KEYTO option is a character string of length 8, with leading zeros
suppressed.

Choosing a data set type
When you plan your program, you must first decide which type of data set to use.
There are three types of VSAM data sets and five types of non-VSAM data sets
available to you.

VSAM data sets can provide all the function of the other types of data sets, plus
additional functions available only in VSAM. VSAM can usually match other data
set types in performance, and often improve upon it. However, VSAM is more
subject to performance degradation through misuse of function.

For a comparison of all eight types of data sets, see Table 16 on page 232; however,
many factors in the choice of data set type for a large installation are beyond the
scope of this document.

When choosing between the VSAM data set types, you should base your choice on
the most common sequence in which you will require your data. You can use the
following procedure to help ensure a combination of data sets and indexes that
provide the function you require.

Chapter 14. Defining and using VSAM data sets 291

1. Determine the type of data and how it will be accessed.
a. Primarily sequentially — favors ESDS.
b. Primarily by key — favors KSDS.
c. Primarily by number — favors RRDS.

2. Determine how you will load the data set. Note that you must load a KSDS in
key sequence; thus an ESDS with an alternate index path can be a more practical
alternative for some applications.

3. Determine whether you require access through an alternate index path. These
are only supported on KSDS and ESDS. If you require an alternate index path,
determine whether the alternate index will have unique or nonunique keys. Use
of nonunique keys can limit key processing. However, it might also be
impractical to assume that you will use unique keys for all future records; if
you attempt to insert a record with a nonunique key in an index that you have
created for unique keys, it will cause an error.

4. When you have determined the data sets and paths that you require, ensure
that the operations you have in mind are supported. Table 29 might be helpful.

Do not try to access a dummy VSAM data set, because you will receive an error
message indicating that you have an undefined file.

Table 29 shows the compatible file attribute combinations based on the type of
VSAM data sets.

Table 29. VSAM data sets and allowed file attributes

SEQUENTIAL
KEYED
SEQUENTIAL DIRECT

INPUT ESDS

KSDS

RRDS

Path(N)

Path(U)

ESDS

KSDS

RRDS

Path(N)

Path(U)

KSDS

RRDS

Path(U)

OUTPUT ESDS

RRDS

ESDS

KSDS

RRDS

KSDS

RRDS

Path(U)

UPDATE ESDS

KSDS

RRDS

Path(N)

Path(U)

ESDS

KSDS

RRDS

Path(N)

Path(U)

KSDS

RRDS

Path(U)

292 Enterprise PL/I for z/OS Programming Guide

Table 29. VSAM data sets and allowed file attributes (continued)

SEQUENTIAL
KEYED
SEQUENTIAL DIRECT

Key:

ESDS Entry-sequenced data set

KSDS Key-sequenced data set

RRDS Relative record data set

Path(N)
Alternate index path with nonunique keys

Path(U)
Alternate index path with unique keys

Notes:

v You can combine the attributes on the left with those at the top of the figure for the data
sets and paths shown. For example, only an ESDS and an RRDS can be SEQUENTIAL
OUTPUT.

v PL/I does not support dummy VSAM data sets.

Table 30. Processing allowed on alternate index paths

Base cluster type
Alternate index key
type Processing Restrictions

KSDS Unique key As normal KSDS Cannot modify key of
access.

Nonunique key Limited keyed access Cannot modify key of
access.

ESDS Unique key As KSDS No deletion.

Cannot modify key of
access.

Nonunique key Limited keyed access No deletion.

Cannot modify key of
access.

Related information:
“Entry-sequenced data sets” on page 298
This topic describes the statements and options that are allowed for files associated
with an entry-sequenced data set (ESDS).
“Key-sequenced and indexed entry-sequenced data sets” on page 302
An indexed data set can be a key-sequenced data set (KSDS) with its prime index;
it can also be a KSDS or an entry-sequenced data set (ESDS) with an alternate index.
This topic describes the statements and options that are allowed for files associated
with indexed VSAM data sets.
“Relative-record data sets” on page 316
This topic describes the statements and options that are allowed for files associated
with VSAM relative-record data sets (RRDS).

Defining files for VSAM data sets
This topic describes the file declaration that you can use to define a sequential or
direct VSAM data set.

Chapter 14. Defining and using VSAM data sets 293

Defining sequential VSAM data set

You define a sequential VSAM data set by using a file declaration with the
following attributes:
DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE
SEQUENTIAL
BUFFERED
[KEYED]
ENVIRONMENT(options);

Defining direct VSAM data set

You define a direct VSAM data set by using a file declaration with the following
attributes:
DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE
DIRECT
[KEYED]
ENVIRONMENT(options);

Table 15 on page 224 shows the default attributes. The file attributes are described
in the PL/I Language Reference. For information about the options of the
ENVIRONMENT attribute, see “Specifying ENVIRONMENT options.”

Some combinations of the file attributes INPUT, OUTPUT, or UPDATE and
DIRECT, SEQUENTIAL, or KEYED SEQUENTIAL are allowed only for certain
types of VSAM data sets. Table 29 on page 292 shows the compatible combinations.

Specifying ENVIRONMENT options
This section describes the ENVIRONMENT options that are applicable to VSAM
data sets.

Many of the options of the ENVIRONMENT attribute affecting data set structure
are not needed for VSAM data sets. If you specify them, they are either ignored or
used for checking purposes. If those that are checked conflict with the values
defined for the data set, the UNDEFINEDFILE condition is raised when an attempt
is made to open the file.

You can use the following ENVIRONMENT options for VSAM data sets:
BKWD
BUFND (n)
BUFNI (n)
BUFSP (n)
GENKEY
PASSWORD (password-specification)
REUSE
SCALARVARYING
SKIP
VSAM

GENKEY and SCALARVARYING options have the same effect as they do when
you use them for non-VSAM data sets. Note that under VSAM RLS, options
BUFND, BUFNI, and BUFSP are ignored.

294 Enterprise PL/I for z/OS Programming Guide

The options that are checked for a VSAM data set are RECSIZE and, for a
key-sequenced data set, KEYLENGTH and KEYLOC. Table 15 on page 224 shows
which options are ignored for VSAM. Table 15 on page 224 also shows the required
and default options.

For VSAM data sets, you specify the maximum and average lengths of the records
to the Access Method Services utility when you define the data set. If you include
the RECSIZE option in the file declaration for checking purposes, specify the
maximum record size. If the RECSIZE value that you specify conflicts with the
values defined for the data set, the UNDEFINEDFILE condition is raised.

BKWD
The BKWD option specifies backward processing for a SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file associated with a VSAM data set.

►► BKWD ►◄

Sequential reads (that is, reads without the KEY option) retrieve the previous
record in sequence. For indexed data sets, the previous record is, in general, the
record with the next lower key. However, if you are accessing the data set through
a nonunique alternate index, records with the same key are recovered in their
normal sequence. For example, consider the following records, where C1, C2, and
C3® have the same key:
A B C1 C2 C3 D E

The records are recovered in the following sequence:
E D C1 C2 C3 B A

When a file with the BKWD option is opened, the data set is positioned at the last
record. ENDFILE is raised in the normal way when the start of the data set is
reached.

Do not specify the BKWD option with either the REUSE option or the GENKEY
option. Also, the WRITE statement is not allowed for files declared with the BKWD
option.

BUFND
The BUFND option specifies the number of data buffers required for a VSAM data
set.

►► BUFND (n) ►◄

n Specifies an integer, or a variable with attributes FIXED BINARY(31) STATIC.

Multiple data buffers help performance when the file has the SEQUENTIAL
attribute and you are processing long group of contiguous records sequentially.

BUFNI
The BUFNI option specifies the number of index buffers required for a VSAM
key-sequence data set.

►► BUFNI (n) ►◄

n Specifies an integer, or a variable with attributes FIXED BINARY(31) STATIC.

Chapter 14. Defining and using VSAM data sets 295

Multiple index buffers help performance when the file has the KEYED attribute.
Specify at least as many index buffers as there are levels in the index.

BUFSP
The BUFSP option specifies, in bytes, the total buffer space required for a VSAM
data set (for both the data and index components).

►► BUFSP (n) ►◄

n Specifies an integer, or a variable with attributes FIXED BINARY(31) STATIC.

It is usually preferable to specify the BUFNI and BUFND options rather than
BUFSP.

GENKEY
The GENKEY (generic key) option applies only to INDEXED and VSAM
key-sequenced data sets. You can use this option to classify keys recorded in a data
set and use a SEQUENTIAL KEYED INPUT or SEQUENTIAL KEYED UPDATE
file to access records according to their key classes.

For detailed information, see “GENKEY option — key classification” on page 230.

PASSWORD
When you define a VSAM data set to the system (by using the DEFINE command
of Access Method Services), you can associate READ and UPDATE passwords with
it. From that point on, you must include the appropriate password in the
declaration of any PL/I file that you use to access the data set.

►► PASSWORD (password-specification) ►◄

password-specification
Specifies a character constant or character variable that specifies the password
for the type of access your program requires. If you specify a constant, it must
not contain a repetition factor; if you specify a variable, it must be level-1,
element, static, and unsubscripted.

The character string is padded or truncated to 8 characters and passed to VSAM
for inspection. If the password is incorrect, the system operator is given a number
of chances to specify the correct password. You specify the number of chances to
be allowed when you define the data set. After this number of unsuccessful tries,
the UNDEFINEDFILE condition is raised.

REUSE
The REUSE option specifies that an OUTPUT file associated with a VSAM data set
is to be used as a work file.

►► REUSE ►◄

The data set is treated as an empty data set each time the file is opened. Any
secondary allocations for the data set are released, and the data set is treated
exactly as if it were being opened for the first time.

Do not associate a file that has the REUSE option with a data set that has alternate
indexes or the BKWD option, and do not open it for INPUT or UPDATE.

296 Enterprise PL/I for z/OS Programming Guide

The REUSE option takes effect only if you specify REUSE in the Access Method
Services DEFINE CLUSTER command.

SKIP
The SKIP option specifies that the VSAM OPTCD "SKP" is to be used whenever
possible. It is applicable to key-sequenced data sets that you access by means of a
KEYED SEQUENTIAL INPUT or UPDATE file.

►► SKIP ►◄

You should specify this option for the file if your program accesses individual
records scattered throughout the data set, but does so primarily in ascending key
order.

Omit this option if your program reads large numbers of records sequentially
without the use of the KEY option, or if it inserts large numbers of records at
specific points in the data set (mass sequential insert).

It is never an error to specify (or omit) the SKIP option; its effect on performance is
significant only in the circumstances described.

VSAM
You must specify the VSAM option for VSAM data sets.

►► VSAM ►◄

Performance options
You can specify the buffer options in the AMP parameter of the DD statement;
they are explained in your Access Method Services manual.

Defining files for alternate index paths
VSAM allows you to define alternate indexes on key sequenced and entry
sequenced data sets.

Using alternate indexes, you can access key sequenced data sets in a number of
ways other than from the prime index; you can also index and access entry
sequenced data sets by key or sequentially in order of the keys. Consequently, data
created in one form can be accessed in a large number of different ways. For
example, an employee file might be indexed by personnel number, by name, and
also by department number.

When an alternate index has been built, you actually access the data set through a
third object known as an alternate index path that acts as a connection between the
alternate index and the data set.

Two types of alternate indexes are allowed—unique key and nonunique key. For a
unique key alternate index, each record must have a different alternate key. For a
nonunique key alternate index, any number of records can have the same alternate
key. In the example suggested above, the alternate index using the names can be a
unique key alternate index (provided each person had a different name). The
alternate index using the department number would be a nonunique key alternate
index because more than one person would be in each department.

Chapter 14. Defining and using VSAM data sets 297

In most respects, you can treat a data set accessed through a unique key alternate
index path like a KSDS accessed through its prime index. You can access the
records by key or sequentially, you can update records, and you can add new
records. If the data set is a KSDS, you can delete records, and alter the length of
updated records. Restrictions and allowed processing are shown in Table 30 on
page 293. When you add or delete records, all indexes associated with the data set
are by default altered to reflect the new situation.

In data sets accessed through a nonunique key alternate index path, the record
accessed is determined by the key and the sequence. The key can be used to
establish positioning so that sequential access can follow. The use of the key
accesses the first record with that key. When the data set is read backwards, only
the order of the keys is reversed. The order of the records with the same key
remains the same whichever way the data set is read.

Defining VSAM data sets
You can use the DEFINE CLUSTER command of Access Method Services to define
and catalog VSAM data sets.

To use the DEFINE command, you need to know the following information:
v The name and password of the master catalog if the master catalog is password

protected
v The name and password of the VSAM private catalog you are using if you are

not using the master catalog
v Whether VSAM space for your data set is available
v The type of VSAM data set you are going to create
v The volume on which your data set is to be placed
v The average and maximum record size in your data set
v The position and length of the key for an indexed data set
v The space to be allocated for your data set
v How to code the DEFINE command
v How to use the Access Method Services program

When you have the information, you can code the DEFINE command and then
define and catalog the data set by using Access Method Services.

Entry-sequenced data sets
This topic describes the statements and options that are allowed for files associated
with an entry-sequenced data set (ESDS).

Table 31. Statements and options allowed for loading and accessing VSAM entry-sequenced data sets

File declaration1 Valid statements with options you must
include

Other options you can also
include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

KEYTO(reference)

SET(pointer-reference)

298 Enterprise PL/I for z/OS Programming Guide

Table 31. Statements and options allowed for loading and accessing VSAM entry-sequenced data sets (continued)

File declaration1 Valid statements with options you must
include

Other options you can also
include

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);

KEYTO(reference) or
KEY(expression)3

KEYTO(reference) or
KEY(expression)3

IGNORE(expression)

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)2

WRITE FILE(file-reference)
FROM(reference);

REWRITE FILE(file-reference);

KEYTO(reference) or
KEY(expression)3

KEYTO(reference) or
KEY(expression)3

IGNORE(expression)

KEYTO(reference)

FROM(reference)
and/or
KEY(expression)3

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT; if you use either
of the options KEY or KEYTO, it must also include the attribute KEYED.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-reference) IGNORE
(1);.

3. The expression used in the KEY option must be a relative byte address, previously obtained by the KEYTO
option.

Loading an ESDS
When an ESDS is being loaded, the associated file must be opened for
SEQUENTIAL OUTPUT. The records are retained in the order in which they are
presented.

You can use the KEYTO option to obtain the relative byte address of each record as
it is written. You can subsequently use these keys to achieve keyed access to the
data set.

Using a SEQUENTIAL file to access an ESDS
You can open a SEQUENTIAL file that is used to access an ESDS with either the
INPUT or the UPDATE attribute. If you use either of the options KEY or KEYTO,
the file must also have the KEYED attribute.

Sequential access is in the order that the records were originally loaded into the
data set. You can use the KEYTO option on the READ statements to recover the
RBAs of the records that are read. If you use the KEY option, the record that is
recovered is the one with the RBA you specify. Subsequent sequential access
continues from the new position in the data set.

For an UPDATE file, the WRITE statement adds a new record at the end of the
data set. With a REWRITE statement, the record rewritten is the one with the

Chapter 14. Defining and using VSAM data sets 299

specified RBA if you use the KEY option; otherwise, it is the record accessed on the
previous READ. You must not attempt to change the length of the record that is
being replaced with a REWRITE statement.

The DELETE statement is not allowed for entry-sequenced data sets.

Defining and loading an ESDS
This topic shows an example PL/I program that defines and loads an
entry-sequenced data set (ESDS). The program writes to the data set by using a
SEQUENTIAL OUTPUT file.

In the program shown in Figure 39 on page 301, the data set is defined with the
DEFINE CLUSTER command and given the name PLIVSAM.AJC1.BASE. The
NONINDEXED keyword causes an ESDS to be defined.

The PL/I program writes to the data set by using a SEQUENTIAL OUTPUT file
and a WRITE FROM statement. The DD statement for the file contains the
DSNAME of the data set given in the NAME parameter of the DEFINE CLUSTER
command.

You can obtain the RBA of the records as keys in a KEYED file for subsequent use.
To do this, you must declare a suitable variable to hold the key and use the
WRITE...KEYTO statement. See the following example:
DCL CHARS CHAR(4);
WRITE FILE(FAMFILE) FROM (STRING)
KEYTO(CHARS);

Note that the keys would not normally be printable, but could be retained for
subsequent use.

The cataloged procedure IBMZCBG is used. Because the same program (in
Figure 39 on page 301) can be used for adding records to the data set, it is retained
in a library. For more information about the procedure of adding records, see the
example in “Updating an ESDS” on page 301.

300 Enterprise PL/I for z/OS Programming Guide

Updating an ESDS
This topic shows an example of adding a new record at the end of an ESDS.

This example is based on the PL/I program shown in Figure 39. That program can
also be used for adding records to the data set. In the program, the data set
PLIVSAM.AJC1.BASE is defined with the DEFINE CLUSTER command.

Figure 40 on page 302 shows the addition of a new record at the end of the ESDS.
A SEQUENTIAL OUTPUT file is used, and the data set associated with it,
PLIVSAM.AJC1.BASE, is specified in the DSNAME parameter.

//OPT9#7 JOB
//STEP1 EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DEFINE CLUSTER -
(NAME(PLIVSAM.AJC1.BASE) -
VOLUMES(nnnnnn) -
NONINDEXED -
RECORDSIZE(80 80) -
TRACKS(2 2))

/*
//STEP2 EXEC IBMZCLG
//PLI.SYSIN DD *

CREATE: PROC OPTIONS(MAIN);

DCL
FAMFILE FILE SEQUENTIAL OUTPUT ENV(VSAM),
IN FILE RECORD INPUT,
STRING CHAR(80),
EOF BIT(1) INIT(’0’B);

ON ENDFILE(IN) EOF=’1’B;

READ FILE(IN) INTO (STRING);
DO I=1 BY 1 WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT (STRING) (A);
WRITE FILE(FAMFILE) FROM (STRING);
READ FILE(IN) INTO (STRING);

END;

PUT SKIP EDIT(I-1,’ RECORDS PROCESSED’)(A);
END;

/*
//LKED.SYSLMOD DD DSN=HPU8.MYDS(PGMA),DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(1,1,1))
//GO.FAMFILE DD DSNAME=PLIVSAM.AJC1.BASE,DISP=OLD
//GO.IN DD *
FRED 69 M
ANDY 70 M
SUZAN 72 F
/*

Figure 39. Defining and loading an ESDS

Chapter 14. Defining and using VSAM data sets 301

You can rewrite existing records in an ESDS, provided that the length of the record
is not changed. You can use a SEQUENTIAL or KEYED SEQUENTIAL update file
to do this. If you use keys, they can be the RBAs or keys of an alternate index path.

Delete statements are not allowed for ESDS.

Key-sequenced and indexed entry-sequenced data sets
An indexed data set can be a key-sequenced data set (KSDS) with its prime index;
it can also be a KSDS or an entry-sequenced data set (ESDS) with an alternate index.
This topic describes the statements and options that are allowed for files associated
with indexed VSAM data sets.

Except where otherwise stated, the description in Table 32 applies to all indexed
VSAM data sets.

Table 32. Statements and options allowed for loading and accessing VSAM indexed data
sets

File declaration1 Valid statements with options
you must include

Other options you can
also include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FILE(file-reference)
KEYFROM(expression);

SET(pointer-reference)

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

//OPT9#8 JOB
//STEP1 EXEC PGM=PGMA
//STEPLIB DD DSN=HPU8.MYDS(PGMA),DISP=(OLD,KEEP)
// DD DSN=CEE.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=A
//FAMFILE DD DSN=PLIVSAM.AJC1.BASE,DISP=SHR
//IN DD *
JANE 75 F
//

Figure 40. Updating an ESDS

302 Enterprise PL/I for z/OS Programming Guide

Table 32. Statements and options allowed for loading and accessing VSAM indexed data
sets (continued)

File declaration1 Valid statements with options
you must include

Other options you can
also include

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

REWRITE FILE(file-reference);

DELETE FILE(file-reference)

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

FROM(reference) and/or
KEY(expression)

KEY(expression)

DIRECT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

DIRECT OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DIRECT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

DELETE FILE(file-reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

Chapter 14. Defining and using VSAM data sets 303

Table 32. Statements and options allowed for loading and accessing VSAM indexed data
sets (continued)

File declaration1 Valid statements with options
you must include

Other options you can
also include

Notes:

1. The complete file declaration would include the attributes FILE and RECORD. If you use
any of the options KEY, KEYFROM, or KEYTO, you must also include the attribute
KEYED in the declaration.

2. The statement READ FILE(file-reference); is equivalent to the statement READ
FILE(file-reference) IGNORE(1);.

3. Do not associate a SEQUENTIAL OUTPUT file with a data set accessed through an
alternate index.

4. Do not associate a DIRECT file with a data set accessed through a nonunique alternate
index.

5. DELETE statements are not allowed for a file associated with an ESDS accessed through
an alternate index.

Loading a KSDS or indexed ESDS
When a KSDS is being loaded, you must open the associated file for KEYED
SEQUENTIAL OUTPUT. You must present the records in ascending key order, and
you must use the KEYFROM option.

Note that you must use the prime index for loading the data set; you cannot load a
VSAM data set through an alternate index.

If a KSDS already contains some records and you open the associated file with the
SEQUENTIAL and OUTPUT attributes, you can add records only at the end of the
data set. The rules given in the previous paragraph apply; in particular, the first
record you present must have a key greater than the highest key present on the
data set.

Figure 41 on page 305 shows the DEFINE command used to define a KSDS. The
data set is given the name PLIVSAM.AJC2.BASE and defined as a KSDS because of
the use of the INDEXED operand. The position of the keys within the record is
defined in the KEYS operand.

Within the PL/I program, a KEYED SEQUENTIAL OUTPUT file is used with a
WRITE...FROM...KEYFROM statement. The data is presented in ascending key
order. A KSDS must be loaded in this manner.

The file is associated with the data set by a DD statement that uses the name given
in the DEFINE command as the DSNAME parameter.

304 Enterprise PL/I for z/OS Programming Guide

//OPT9#12 JOB
// EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DEFINE CLUSTER -
(NAME(PLIVSAM.AJC2.BASE) -
VOLUMES(nnnnnn) -
INDEXED -
TRACKS(3 1) -
KEYS(20 0) -
RECORDSIZE(23 80))

/*
// EXEC IBMZCBG
//PLI.SYSIN DD *
TELNOS: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD SEQUENTIAL OUTPUT KEYED ENV(VSAM),
CARD CHAR(80),
NAME CHAR(20) DEF CARD POS(1),
NUMBER CHAR(3) DEF CARD POS(21),
OUTREC CHAR(23) DEF CARD POS(1),
EOF BIT(1) INIT(’0’B);

ON ENDFILE(SYSIN) EOF=’1’B;

OPEN FILE(DIREC) OUTPUT;

GET FILE(SYSIN) EDIT(CARD)(A(80));
DO WHILE (¬EOF);
WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);
GET FILE(SYSIN) EDIT(CARD)(A(80));
END;

CLOSE FILE(DIREC);

END TELNOS;
/*
//GO.DIREC DD DSNAME=PLIVSAM.AJC2.BASE,DISP=OLD
//GO.SYSIN DD *
ACTION,G. 162
BAKER,R. 152
BRAMLEY,O.H. 248
CHEESEMAN,D. 141
CORY,G. 336
ELLIOTT,D. 875
FIGGINS,S. 413
HARVEY,C.D.W. 205
HASTINGS,G.M. 391
KENDALL,J.G. 294
LANCASTER,W.R. 624
MILES,R. 233
NEWMAN,M.W. 450
PITT,W.H. 515
ROLF,D.E. 114
SHEERS,C.D. 241
SUTCLIFFE,M. 472
TAYLOR,G.C. 407
WILTON,L.W. 404
WINSTONE,E.M. 307
//

Figure 41. Defining and loading a key-sequenced data set (KSDS)

Chapter 14. Defining and using VSAM data sets 305

Using a SEQUENTIAL file to access a KSDS or indexed ESDS
You can open a SEQUENTIAL file that is used to access a KSDS with either the
INPUT or the UPDATE attribute.

For READ statements without the KEY option, the records are recovered in
ascending key order (or in descending key order if the BKWD option is used). You
can obtain the key of a record recovered in this way by using the KEYTO option.

If you use the KEY option, the record recovered by a READ statement is the one
with the specified key. Such a READ statement positions the data set at the
specified record; subsequent sequential reads will recover the following records in
sequence.

WRITE statements with the KEYFROM option are allowed for KEYED
SEQUENTIAL UPDATE files. You can make insertions anywhere in the data set,
without respect to the position of any previous access. If you are accessing the data
set through a unique index, the KEY condition is raised if an attempt is made to
insert a record with the same key as a record that already exists on the data set.
For a nonunique index, subsequent retrieval of records with the same key is in the
order that they were added to the data set.

REWRITE statements with or without the KEY option are allowed for UPDATE
files. If you use the KEY option, the record that is rewritten is the first record with
the specified key; otherwise, it is the record that was accessed by the previous
READ statement. When you rewrite a record by using an alternate index, do not
change the prime key of the record.

Using a DIRECT file to access a KSDS or indexed ESDS
You can open a DIRECT file that is used to access an indexed VSAM data set with
the INPUT, OUTPUT, or UPDATE attribute. Do not use a DIRECT file to access the
data set through a nonunique index.

If you use a DIRECT OUTPUT file to add records to the data set, and if an attempt
is made to insert a record with the same key as a record that already exists, the
KEY condition is raised.

If you use a DIRECT INPUT or DIRECT UPDATE file, you can read, write, rewrite,
or delete records in the same way as for a KEYED SEQUENTIAL file.

Figure 42 on page 307 shows one method to update a KSDS by using the prime
index.

306 Enterprise PL/I for z/OS Programming Guide

//OPT9#13 JOB
//STEP1 EXEC IBMZCBG
//PLI.SYSIN DD *
DIRUPDT: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD KEYED ENV(VSAM),
ONCODE BUILTIN,
OUTREC CHAR(23),
NUMBER CHAR(3) DEF OUTREC POS(21),
NAME CHAR(20) DEF OUTREC,
CODE CHAR(1),
EOF BIT(1) INIT(’0’B);

ON ENDFILE(SYSIN) EOF=’1’B;

ON KEY(DIREC) BEGIN;
IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT

(’NOT FOUND: ’,NAME)(A(15),A);
IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT

(’DUPLICATE: ’,NAME)(A(15),A);
END;

OPEN FILE(DIREC) DIRECT UPDATE;

GET FILE(SYSIN) EDIT (NAME,NUMBER,CODE)
(COLUMN(1),A(20),A(3),A(1));

DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (’ ’,NAME,’#’,NUMBER,’ ’,CODE)
(A(1),A(20),A(1),A(3),A(1),A(1));
SELECT (CODE);

WHEN(’A’) WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);
WHEN(’C’) REWRITE FILE(DIREC) FROM(OUTREC) KEY(NAME);
WHEN(’D’) DELETE FILE(DIREC) KEY(NAME);
OTHERWISE PUT FILE(SYSPRINT) SKIP EDIT

(’INVALID CODE: ’,NAME) (A(15),A);
END;
GET FILE(SYSIN) EDIT (NAME,NUMBER,CODE)

(COLUMN(1),A(20),A(3),A(1));
END;

CLOSE FILE(DIREC);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(DIREC) SEQUENTIAL INPUT;

EOF=’0’B;
ON ENDFILE(DIREC) EOF=’1’B;

READ FILE(DIREC) INTO(OUTREC);
DO WHILE(¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT(OUTREC)(A);
READ FILE(DIREC) INTO(OUTREC);
END;
CLOSE FILE(DIREC);

END DIRUPDT;

Figure 42. Updating a KSDS

Chapter 14. Defining and using VSAM data sets 307

/*
//GO.DIREC DD DSNAME=PLIVSAM.AJC2.BASE,DISP=OLD
//GO.SYSIN DD *
NEWMAN,M.W. 516C
GOODFELLOW,D.T. 889A
MILES,R. D
HARVEY,C.D.W. 209A
BARTLETT,S.G. 183A
CORY,G. D
READ,K.M. 001A
PITT,W.H.
ROLF,D.F. D
ELLIOTT,D. 291C
HASTINGS,G.M. D
BRAMLEY,O.H. 439C
/*

Updating a KSDS (continued)

A DIRECT update file is used and the data is altered according to a code that is
passed in the records in the file SYSIN:
A Add a new record
C Change the number of an existing name
D Delete a record

At the label NEXT, the name, number, and code are read in and action taken
according to the value of the code. A KEY ON-unit is used to handle any incorrect
keys. When the updating is finished (at the label PRINT), the file DIREC is closed
and reopened with the attributes SEQUENTIAL INPUT. The file is then read
sequentially and printed.

The file is associated with the data set by a DD statement that uses the DSNAME
PLIVSAM.AJC2.BASE defined in the Access Method Services DEFINE CLUSTER
command in Figure 41 on page 305.

Updating a KSDS
There are a number of methods of updating a KSDS. For mass sequential insertion,
use a KEYED SEQUENTIAL UPDATE file.

This method gives faster performance because the data is written onto the data set
only when strictly necessary and not after every write statement, and also because
the balance of free space within the data set is retained.

You can use the following statements to achieve effective mass sequential insertion:
DCL DIREC KEYED SEQUENTIAL UPDATE

ENV(VSAM);
WRITE FILE(DIREC) FROM(OUTREC)
KEYFROM(NAME);

The PL/I input/output routines detect that the keys are in sequence and make the
correct requests to VSAM. If the keys are not in sequence, this too is detected and
no error occurs, although the performance advantage is lost.

The example shown in Figure 42 on page 307 uses a DIRECT file to update a
KSDS. This method is suitable for the data as is shown in the example.

308 Enterprise PL/I for z/OS Programming Guide

Alternate indexes for KSDSs or indexed ESDSs
Alternate indexes allow you to access KSDSs or indexed ESDSs in various ways,
by using either unique or nonunique keys.

Creating unique key alternate index path for ESDS
This topic provides an example that illustrates how to create a unique key alternate
index path for an ESDS.

Figure 43 shows the creation of a unique key alternate index path for the ESDS
defined and loaded in Figure 39 on page 301. Using this path, the data set is
indexed by the name of the child in the first 15 bytes of the record.

The following Access Method Services commands are used:

DEFINE ALTERNATEINDEX
Defines the alternate index as a data set to VSAM.

BLDINDEX
Places the pointers to the relevant records in the alternate index.

DEFINE PATH
Defines an entity that can be associated with a PL/I file in a DD statement.

DD statements are required for the INFILE and OUTFILE operands of BLDINDEX
and for the sort files. Ensure that the correct names are specified at the various
points.

Creating nonunique key alternate index path for ESDS
This topic provides an example that illustrates how to create a nonunique key
alternate index path for an ESDS.

Figure 44 on page 310 shows the creation of a nonunique key alternate index path
for an ESDS. The alternate index enables the data to be selected by the gender of

//OPT9#9 JOB
//STEP1 EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DEFINE ALTERNATEINDEX -
(NAME(PLIVSAM.AJC1.ALPHIND) -
VOLUMES(nnnnnn) -
TRACKS(4 1) -
KEYS(15 0) -
RECORDSIZE(20 40) -
UNIQUEKEY -

RELATE(PLIVSAM.AJC1.BASE))
/*
//STEP2 EXEC PGM=IDCAMS,REGION=512K
//DD1 DD DSNAME=PLIVSAM.AJC1.BASE,DISP=SHR
//DD2 DD DSNAME=PLIVSAM.AJC1.ALPHIND,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

BLDINDEX INFILE(DD1) OUTFILE(DD2)
DEFINE PATH -

(NAME(PLIVSAM.AJC1.ALPHPATH) -
PATHENTRY(PLIVSAM.AJC1.ALPHIND))

//

Figure 43. Creating a unique key alternate index path for an ESDS

Chapter 14. Defining and using VSAM data sets 309

the children. This enables the girls or the boys to be accessed separately and every
member of each group to be accessed by use of the key.

The following Access Method Services commands are used:

DEFINE ALTERNATEINDEX
Defines the alternate index as a data set to VSAM.

BLDINDEX
Places the pointers to the relevant records in the alternate index.

DEFINE PATH
Defines an entity that can be associated with a PL/I file in a DD statement.

DD statements are required for the INFILE and OUTFILE operands of BLDINDEX
and for the sort files. Ensure that the correct names are specified at the various
points.

In this example, the NONUNIQUEKEY operand specifies that the index has
nonunique keys. When creating an index with nonunique keys, ensure that the
RECORDSIZE you specify is large enough. In a nonunique alternate index, each
alternate index record contains pointers to all the records that have the associated
index key. The pointer takes the form of an RBA for an ESDS and the prime key
for a KSDS. When a large number of records might have the same key, a large
record is required.

Creating unique key alternate index path for KSDS
This topic provides an example that illustrates how to create a unique key alternate
index path for a KSDS.

Figure 45 on page 311 shows the creation of a unique key alternate index path for a
KSDS. The data set is indexed by the telephone number, enabling the number to be

//OPT9#10 JOB
//STEP1 EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

/* care must be taken with recordsize */
DEFINE ALTERNATEINDEX -

(NAME(PLIVSAM.AJC1.SEXIND) -
VOLUMES(nnnnnn) -
TRACKS(4 1) -
KEYS(1 37) -
RECORDSIZE(20 400) -
NONUNIQUEKEY -

RELATE(PLIVSAM.AJC1.BASE))
/*
//STEP2 EXEC PGM=IDCAMS,REGION=512K
//DD1 DD DSNAME=PLIVSAM.AJC1.BASE,DISP=SHR
//DD2 DD DSNAME=PLIVSAM.AJC1.SEXIND,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

BLDINDEX INFILE(DD1) OUTFILE(DD2)
DEFINE PATH -

(NAME(PLIVSAM.AJC1.SEXPATH) -
PATHENTRY(PLIVSAM.AJC1.SEXIND))

//

Figure 44. Creating a nonunique key alternate index path for an ESDS

310 Enterprise PL/I for z/OS Programming Guide

used as a key to discover the name of the person on that extension. Also, the data
set can be listed in numerical order to show which numbers are not used.

In this example, the UNIQUEKEY operand specifies that keys are unique.

The following Access Method Services commands are used:

DEFINE ALTERNATEINDEX
Defines the data set that will hold the alternate index data.

BLDINDEX
Places the pointer to the relevant records in the alternate index.

DEFINE PATH
Defines the entity that can be associated with a PL/I file in a DD
statement.

DD statements are required for the INFILE and OUTFILE of BLDINDEX and for
the sort files. Be careful not to confuse the names involved.

When creating an alternate index with a unique key, ensure that no further records
could be included with the same alternate key. In practice, a unique key alternate
index would not be entirely satisfactory for a telephone directory as it would not
allow two people to have the same number. Similarly, the prime key would
prevent one person having two numbers. A solution would be to have an ESDS
with two nonunique key alternate indexes, or to restructure the data format to
allow more than one number per person and to have a nonunique key alternate
index for the numbers.

Detecting nonunique alternate index keys
If you are accessing a VSAM data set through an alternate index path, the presence
of nonunique keys can be detected by the SAMEKEY built-in function.

//OPT9#14 JOB
//STEP1 EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DEFINE ALTERNATEINDEX -
(NAME(PLIVSAM.AJC2.NUMIND) -
VOLUMES(nnnnnn) -
TRACKS(4 4) -
KEYS(3 20) -
RECORDSIZE(24 48) -
UNIQUEKEY -

RELATE(PLIVSAM.AJC2.BASE))
/*
//STEP2 EXEC PGM=IDCAMS,REGION=512K
//DD1 DD DSNAME=PLIVSAM.AJC2.BASE,DISP=SHR
//DD2 DD DSNAME=PLIVSAM.AJC2.NUMIND,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

BLDINDEX INFILE(DD1) OUTFILE(DD2)
DEFINE PATH -

(NAME(PLIVSAM.AJC2.NUMPATH) -
PATHENTRY(PLIVSAM.AJC2.NUMIND))

//

Figure 45. Creating a unique key alternate index path for a KSDS

Chapter 14. Defining and using VSAM data sets 311

After each retrieval, SAMEKEY indicates whether any further records exist with
the same alternate index key as the record just retrieved. Hence, it is possible to
stop at the last of a series of records with nonunique keys without having to read
beyond the last record. SAMEKEY (file-reference) returns '1'B if the input/output
statement has completed successfully and the accessed record is followed by
another with the same key; otherwise, it returns '0'B.

Using alternate indexes with ESDSs

Figure 46 on page 313 shows the use of alternate indexes and backward reading on
an ESDS. The program has four files:

BASEFLE
Reads the base data set forward.

BACKFLE
Reads the base data set backward.

ALPHFLE
Is the alphabetic alternate index path indexing the children by name.

SEXFILE
Is the alternate index path that corresponds to the gender of the children.

There are DD statements for all the files. They connect BASEFLE and BACKFLE to
the base data set by specifying the name of the base data set in the DSNAME
parameter, and connect ALPHFLE and SEXFILE by specifying the names of the
paths given in Figure 43 on page 309 and Figure 44 on page 310.

The program uses SEQUENTIAL files to access the data and print it first in the
normal order, then in the reverse order. At the label AGEQUERY, a DIRECT file is
used to read the data associated with an alternate index key in the unique alternate
index.

Finally, at the label SPRINT, a KEYED SEQUENTIAL file is used to print a list of
the females in the family, using the nonunique key alternate index path. The
SAMEKEY built-in function is used to read all the records with the same key. The
names of the females will be accessed in the order in which they were originally
entered. This will happen whether the file is read forward or backward. For a
nonunique key path, the BKWD option only affects the order in which the keys are
read; the order of items with the same key remains the same as it is when the file
is read forward.

At the end of the example, the Access Method Services DELETE command is used
to delete the base data set. When this is done, the associated alternate indexes and
paths will also be deleted.

Using alternate indexes with KSDSs

Figure 47 on page 315 shows the use of a path with a unique alternate index key to
update a KSDS and then to access and print it in the order of the alternate index.

The alternate index path is associated with the PL/I file by a DD statement that
specifies the name of the path (PLIVSAM.AJC2.NUMPATH, given in the DEFINE
PATH command in Figure 45 on page 311) as the DSNAME.

In the first section of the program, a DIRECT OUTPUT file is used to insert a new
record by using the alternate index key. Note that any alteration made with an

312 Enterprise PL/I for z/OS Programming Guide

alternate index must not alter the prime key or the alternate index key of access of
an existing record. Also, the alternation must not add a duplicate key in the prime
index or in any unique key alternate index.

In the second section of the program (at the label PRINTIT), the data set is read in
the order of the alternate index keys by using a SEQUENTIAL INPUT file. It is
then printed onto SYSPRINT.

//OPT9#15 JOB
//STEP1 EXEC IBMZCLG
//PLI.SYSIN DD *

READIT: PROC OPTIONS(MAIN);
DCL BASEFLE FILE SEQUENTIAL INPUT ENV(VSAM),

/*File to read base data set forward */
BACKFLE FILE SEQUENTIAL INPUT ENV(VSAM BKWD),

/*File to read base data set backward */
ALPHFLE FILE DIRECT INPUT ENV(VSAM),
/*File to access via unique alternate index path */
SEXFILE FILE KEYED SEQUENTIAL INPUT ENV(VSAM),
/*File to access via nonunique alternate index path */
STRING CHAR(80), /*String to be read into */
1 STRUC DEF (STRING),

2 NAME CHAR(25),
2 DATE_OF_BIRTH CHAR(2),
2 FILL CHAR(10),
2 SEX CHAR(1);
DCL NAMEHOLD CHAR(25),SAMEKEY BUILTIN;
DCL EOF BIT(1) INIT(’0’B);

/*Print out the family eldest first*/

ON ENDFILE(BASEFLE) EOF=’1’B;
PUT EDIT(’FAMILY ELDEST FIRST’)(A);
READ FILE(BASEFLE) INTO (STRING);
DO WHILE(¬EOF);

PUT SKIP EDIT(STRING)(A);
READ FILE(BASEFLE) INTO (STRING);

END;
CLOSE FILE(BASEFLE);
PUT SKIP(2);
/*Close before using data set from other file not

necessary but good practice to prevent potential
problems*/

EOF=’0’B;
ON ENDFILE(BACKFLE) EOF=’1’B;
PUT SKIP(3) EDIT(’FAMILY YOUNGEST FIRST’)(A);
READ FILE(BACKFLE) INTO(STRING);
DO WHILE(¬EOF);

PUT SKIP EDIT(STRING)(A);
READ FILE(BACKFLE) INTO (STRING);

END;

CLOSE FILE(BACKFLE);
PUT SKIP(2);

/*Print date of birth of child specified in the file
SYSIN*/

ON KEY(ALPHFLE) BEGIN;
PUT SKIP EDIT

(NAMEHOLD,’ NOT A MEMBER OF THE SMITH FAMILY’) (A);
GO TO SPRINT;

END;

Figure 46. Alternate index paths and backward reading with an ESDS

Chapter 14. Defining and using VSAM data sets 313

AGEQUERY:
EOF=’0’B;
ON ENDFILE(SYSIN) EOF=’1’B;
GET SKIP EDIT(NAMEHOLD)(A(25));
DO WHILE(¬EOF);

READ FILE(ALPHFLE) INTO (STRING) KEY(NAMEHOLD);
PUT SKIP (2) EDIT(NAMEHOLD,’ WAS BORN IN ’,

DATE_OF_BIRTH)(A,X(1),A,X(1),A);
GET SKIP EDIT(NAMEHOLD)(A(25));

END;
SPRINT:

CLOSE FILE(ALPHFLE);
PUT SKIP(1);

/*Use the alternate index to print out all the females in the
family*/

ON ENDFILE(SEXFILE) GOTO FINITO;
PUT SKIP(2) EDIT(’ALL THE FEMALES’)(A);
READ FILE(SEXFILE) INTO (STRING) KEY(’F’);
PUT SKIP EDIT(STRING)(A);
DO WHILE(SAMEKEY(SEXFILE));

READ FILE(SEXFILE) INTO (STRING);
PUT SKIP EDIT(STRING)(A);

END;

FINITO:
END;

/*
//GO.BASEFLE DD DSN=PLIVSAM.AJC1.BASE,DISP=SHR
//GO.BACKFLE DD DSN=PLIVSAM.AJC1.BASE,DISP=SHR
//GO.ALPHFLE DD DSN=PLIVSAM.AJC1.ALPHPATH,DISP=SHR
//GO.SEXFILE DD DSN=PLIVSAM.AJC1.SEXPATH,DISP=SHR
//GO.SYSIN DD *
ANDY
/*
//STEP2 EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DELETE -
PLIVSAM.AJC1.BASE

//

Alternate Index Paths and Backward Reading with an ESDS (continued)

314 Enterprise PL/I for z/OS Programming Guide

//OPT9#16 JOB
//STEP1 EXEC IBMZCLG,REGION.GO=256K
//PLI.SYSIN DD *

ALTER: PROC OPTIONS(MAIN);
DCL NUMFLE1 FILE RECORD DIRECT OUTPUT ENV(VSAM),

NUMFLE2 FILE RECORD SEQUENTIAL INPUT ENV(VSAM),
IN FILE RECORD,
STRING CHAR(80),
NAME CHAR(20) DEF STRING,
NUMBER CHAR(3) DEF STRING POS(21),
DATA CHAR(23) DEF STRING,
EOF BIT(1) INIT(’0’B);

ON KEY (NUMFLE1) BEGIN;
PUT SKIP EDIT(’DUPLICATE NUMBER’)(A);

END;

ON ENDFILE(IN) EOF=’1’B;

READ FILE(IN) INTO (STRING);
DO WHILE(¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT (STRING) (A);
WRITE FILE(NUMFLE1) FROM (STRING) KEYFROM(NUMBER);
READ FILE(IN) INTO (STRING);

END;

CLOSE FILE(NUMFLE1);

EOF=’0’B;
ON ENDFILE(NUMFLE2) EOF=’1’B;

READ FILE(NUMFLE2) INTO (STRING);
DO WHILE(¬EOF);

PUT SKIP EDIT(DATA)(A);
READ FILE(NUMFLE2) INTO (STRING);

END;

PUT SKIP(3) EDIT(’****SO ENDS THE PHONE DIRECTORY****’)(A);
END;

/*
//GO.IN DD *
RIERA L 123
/*
//NUMFLE1 DD DSN=PLIVSAM.AJC2.NUMPATH,DISP=OLD
//NUMFLE2 DD DSN=PLIVSAM.AJC2.NUMPATH,DISP=OLD
//STEP2 EXEC PGM=IDCAMS,COND=EVEN
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DELETE -
PLIVSAM.AJC2.BASE

//

Figure 47. Using a unique alternate index path to access a KSDS

Chapter 14. Defining and using VSAM data sets 315

Relative-record data sets
This topic describes the statements and options that are allowed for files associated
with VSAM relative-record data sets (RRDS).

Table 33. Statements and options allowed for loading and accessing VSAM relative-record data sets

File declaration1 Valid statements with options you
must include

Other options you can also
include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

KEYFROM(expression) or
KEYTO(reference)

SET(pointer-reference)

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

WRITE FILE(file-reference)
FROM(reference);

REWRITE FILE(file-reference);

DELETE FILE(file-reference);

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

KEYFROM(expression) or
KEYTO(reference)

FROM(reference)
and/or
KEY(expression)

KEY(expression)

DIRECT OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DIRECT INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

316 Enterprise PL/I for z/OS Programming Guide

Table 33. Statements and options allowed for loading and accessing VSAM relative-record data sets (continued)

File declaration1 Valid statements with options you
must include

Other options you can also
include

DIRECT UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

DELETE FILE(file-reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

Notes:

1. The complete file declaration would include the attributes FILE and RECORD. If you use any of the options KEY,
KEYFROM, or KEYTO, your declaration must also include the attribute KEYED.

The UNLOCK statement for DIRECT UPDATE files is ignored if you use it for files associated with a VSAM
RRDS.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-reference)
IGNORE(1);.

Loading an RRDS
When an RRDS is being loaded, you must open the associated file for OUTPUT.
Use either a DIRECT or a SEQUENTIAL file.

For a DIRECT OUTPUT file, each record is placed in the position specified by the
relative record number (or key) in the KEYFROM option of the WRITE statement
(see “Keys for VSAM data sets” on page 290).

For a SEQUENTIAL OUTPUT file, use WRITE statements with or without the
KEYFROM option. If you specify the KEYFROM option, the record is placed in the
specified slot; if you omit it, the record is placed in the slot following the current
position. There is no requirement for the records to be presented in ascending
relative record number order. If you omit the KEYFROM option, you can obtain
the relative record number of the written record by using the KEYTO option.

If you want to load an RRDS sequentially, without use of the KEYFROM or
KEYTO options, your file is not required to have the KEYED attribute.

It is an error to attempt to load a record into a position that already contains a
record: if you use the KEYFROM option, the KEY condition is raised; if you omit
it, the ERROR condition is raised.

In Figure 48 on page 319, the data set is defined with a DEFINE CLUSTER
command and given the name PLIVSAM.AJC3.BASE. The fact that it is an RRDS is
determined by the NUMBERED keyword. In the PL/I program, it is loaded with a
DIRECT OUTPUT file and a WRITE...FROM...KEYFROM statement is used.

Chapter 14. Defining and using VSAM data sets 317

If the data had been in order and the keys in sequence, it would have been
possible to use a SEQUENTIAL file and write into the data set from the start. The
records would then have been placed in the next available slot and given the
appropriate number. The number of the key for each record could have been
returned by using the KEYTO option.

The PL/I file is associated with the data set by the DD statement, which uses as
the DSNAME the name given in the DEFINE CLUSTER command.

318 Enterprise PL/I for z/OS Programming Guide

//OPT9#17 JOB
//STEP1 EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DEFINE CLUSTER -
(NAME(PLIVSAM.AJC3.BASE) -
VOLUMES(nnnnnn) -
NUMBERED -
TRACKS(2 2) -
RECORDSIZE(20 20))

/*
//STEP2 EXEC IBMZCBG
//PLI.SYSIN DD *
CRR1: PROC OPTIONS(MAIN);

DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(VSAM),
CARD CHAR(80),
NAME CHAR(20) DEF CARD,
NUMBER CHAR(2) DEF CARD POS(21),
IOFIELD CHAR(20),
EOF BIT(1) INIT(’0’B);

ON ENDFILE (SYSIN) EOF=’1’B;
OPEN FILE(NOS);
GET FILE(SYSIN) EDIT(CARD)(A(80));

DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);
IOFIELD=NAME;
WRITE FILE(NOS) FROM(IOFIELD) KEYFROM(NUMBER);
GET FILE(SYSIN) EDIT(CARD)(A(80));
END;
CLOSE FILE(NOS);

END CRR1;
/*
//GO.NOS DD DSN=PLIVSAM.AJC3.BASE,DISP=OLD
//GO.SYSIN DD *
ACTION,G. 12
BAKER,R. 13
BRAMLEY,O.H. 28
CHEESNAME,L. 11
CORY,G. 36
ELLIOTT,D. 85
FIGGINS.E.S. 43
HARVEY,C.D.W. 25
HASTINGS,G.M. 31
KENDALL,J.G. 24
LANCASTER,W.R. 64
MILES,R. 23
NEWMAN,M.W. 40
PITT,W.H. 55
ROLF,D.E. 14
SHEERS,C.D. 21
SURCLIFFE,M. 42
TAYLOR,G.C. 47
WILTON,L.W. 44
WINSTONE,E.M. 37
//

Figure 48. Defining and loading a relative-record data set (RRDS)

Chapter 14. Defining and using VSAM data sets 319

Using a SEQUENTIAL file to access an RRDS
You can open a SEQUENTIAL file that is used to access an RRDS with either the
INPUT or the UPDATE attribute. If you use any of the options KEY, KEYTO, or
KEYFROM, your file must also have the KEYED attribute.

For READ statements without the KEY option, the records are recovered in
ascending relative record number order. Any empty slots in the data set are
skipped.

If you use the KEY option, the record recovered by a READ statement is the one
with the relative record number you specify. Such a READ statement positions the
data set at the specified record; subsequent sequential reads will recover the
following records in sequence.

WRITE statements with or without the KEYFROM option are allowed for KEYED
SEQUENTIAL UPDATE files. You can make insertions anywhere in the data set,
regardless of the position of any previous access. For WRITE with the KEYFROM
option, the KEY condition is raised if an attempt is made to insert a record with
the same relative record number as a record that already exists on the data set. If
you omit the KEYFROM option, an attempt is made to write the record in the next
slot, relative to the current position. The ERROR condition is raised if this slot is
not empty.

You can use the KEYTO option to recover the key of a record that is added by
means of a WRITE statement without the KEYFROM option.

REWRITE statements, with or without the KEY option, are allowed for UPDATE
files. If you use the KEY option, the record that is rewritten is the record with the
relative record number you specify; otherwise, it is the record that was accessed by
the previous READ statement.

You can use DELETE statements, with or without the KEY option, to delete records
from the data set.

Using a DIRECT file to access an RRDS
A DIRECT file used to access an RRDS can have the OUTPUT, INPUT, or UPDATE
attribute. You can read, write, rewrite, or delete records exactly as though a
KEYED SEQUENTIAL file were used.

Figure 49 on page 321 shows an RRDS being updated. A DIRECT UPDATE file is
used and new records are written by key. There is no need to check for the records
being empty, because the empty records are not available under VSAM.

In the second half of the program, starting at the label PRINT, the updated file is
printed out. Again there is no need to check for the empty records as there is in
REGIONAL(1).

The PL/I file is associated with the data sets by a DD statement that specifies the
DSNAME PLIVSAM.AJC3.BASE, the name given in the DEFINE CLUSTER
command in Figure 49 on page 321.

At the end of the example, the DELETE command is used to delete the data set.

320 Enterprise PL/I for z/OS Programming Guide

//* NOTE: WITH A WRITE STATEMENT AFTER THE DELETE FILE STATEMENT,
//* A DUPLICATE MESSAGE IS EXPECTED FOR CODE ’C’ ITEMS
//* WHOSE NEWNO CORRESPONDS TO AN EXISTING NUMBER IN THE LIST,
//* FOR EXAMPLE, ELLIOT.
//* WITH A REWRITE STATEMENT AFTER THE DELETE FILE STATEMENT,
//* A NOT FOUND MESSAGE IS EXPECTED FOR CODE ’C’ ITEMS
//* WHOSE NEWNO DOES NOT CORRESPOND TO AN EXISTING NUMBER IN
//* THE LIST, FOR EXAMPLE, NEWMAN AND BRAMLEY.
//OPT9#18 JOB
//STEP1 EXEC IBMZCBG
//PLI.SYSIN DD *
ACR1: PROC OPTIONS(MAIN);

DCL NOS FILE RECORD KEYED ENV(VSAM),NAME CHAR(20),
(NEWNO,OLDNO) CHAR(2),CODE CHAR(1),IOFIELD CHAR(20),
BYTE CHAR(1) DEF IOFIELD, EOF BIT(1) INIT(’0’B),
ONCODE BUILTIN;

ON ENDFILE(SYSIN) EOF=’1’B;
OPEN FILE(NOS) DIRECT UPDATE;
ON KEY(NOS) BEGIN;

IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT
(’NOT FOUND:’,NAME)(A(15),A);

IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT
(’DUPLICATE:’,NAME)(A(15),A);

END;
GET FILE(SYSIN) EDIT(NAME,NEWNO,OLDNO,CODE)

(COLUMN(1),A(20),A(2),A(2),A(1));
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (’ ’,NAME,’#’,NEWNO,OLDNO,’ ’,CODE)

(A(1),A(20),A(1),2(A(2)),X(5),2(A(1)));
SELECT(CODE);

WHEN(’A’) WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);
WHEN(’C’) DO;
DELETE FILE(NOS) KEY(OLDNO);
WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);
END;
WHEN(’D’) DELETE FILE(NOS) KEY(OLDNO);
OTHERWISE PUT FILE(SYSPRINT) SKIP EDIT
(’INVALID CODE: ’,NAME)(A(15),A);

END;

Figure 49. Updating an RRDS

Chapter 14. Defining and using VSAM data sets 321

GET FILE(SYSIN) EDIT(NAME,NEWNO,OLDNO,CODE)
(COLUMN(1),A(20),A(2),A(2),A(1));

END;
CLOSE FILE(NOS);

PRINT:
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(NOS) SEQUENTIAL INPUT;
EOF=’0’B;
ON ENDFILE(NOS) EOF=’1’B;
READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT(NEWNO,IOFIELD)(A(5),A);
READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
END;

CLOSE FILE(NOS);
END ACR1;

/*
//GO.NOS DD DSN=PLIVSAM.AJC3.BASE,DISP=OLD
//GO.SYSIN DD *
NEWMAN,M.W. 5640C
GOODFELLOW,D.T. 89 A
MILES,R. 23D
HARVEY,C.D.W. 29 A
BARTLETT,S.G. 13 A
CORY,G. 36D
READ,K.M. 01 A
PITT,W.H. 55
ROLF,D.F. 14D
ELLIOTT,D. 4285C
HASTINGS,G.M. 31D
BRAMLEY,O.H. 4928C
//STEP3 EXEC PGM=IDCAMS,REGION=512K,COND=EVEN
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DELETE -
PLIVSAM.AJC3.BASE

//

Updating an RRDS (continued)

Using files defined for non-VSAM data sets

Using shared data sets
PL/I allows cross-region or cross-system sharing of data sets. The support for this
type of sharing is provided by VSAM.

For details about the support, see the following DFSMS manuals:
v DFSMS: Using Data Sets

v DFSMS: Access Method Services for Catalogs

322 Enterprise PL/I for z/OS Programming Guide

Part 3. Improving your program

© Copyright IBM Corp. 1999, 2017 323

324 Enterprise PL/I for z/OS Programming Guide

Chapter 15. Improving performance

Many considerations for improving the speed of your program are independent of
the compiler that you use and the platform on which it runs. This chapter,
however, identifies those considerations that are unique to the PL/I compiler and
the code it generates.

Selecting compiler options for optimal performance
The compiler options you choose can greatly improve the performance of the code
generated by the compiler; however, like most performance considerations, there
are trade-offs associated with these choices.

Fortunately, you can weigh the trade-offs associated with compiler options without
editing your source code because these options can be specified on the command
line or in the configuration file.

If you want to avoid details, the least complex way to improve the performance of
generated code is to specify the following (nondefault) compiler options:

OPT(2) or OPT(3)
DFT(REORDER)

The following topics describe, in more detail, performance improvements and
trade-offs associated with specific compiler options.

OPTIMIZE
You can specify the OPTIMIZE option to improve the speed of your program;
otherwise, the compiler makes only basic optimization efforts.

Choosing OPTIMIZE(2) directs the compiler to generate code for better
performance. Usually, the resultant code is shorter than when the program is
compiled under NOOPTIMIZE. Sometimes, however, a longer sequence of
instructions runs faster than a shorter sequence. This occurs, for instance, when a
branch table is created for a SELECT statement where the values in the WHEN
clauses contain gaps. The increased number of instructions generated is usually
offset by the execution of fewer instructions in other places.

Choosing OPTIMIZE(3) directs the compiler to generate even better code.
However, when you specify the OPTIMIZE(3) option, the compilation will take
longer (and sometimes much, much longer) than when you specify OPTIMIZE(2).

GONUMBER
You can specify the GONUMBER option to generate a statement number table that
is used for debugging.

This added information can be extremely helpful when you debug, but including
statement number tables increases the size of your executable file. Larger
executable files can take longer to load.

© Copyright IBM Corp. 1999, 2017 325

ARCH
You can use the highest value in the ARCH option to instruct the compiler to select
from the largest set of instructions available under z/OS. This allows the compiler
to generate the most optimal code.

REDUCE
The REDUCE option specifies that the compiler is permitted to reduce an
assignment of a null string to a structure into a simple copy operation - even if
that means padding bytes might be overwritten.

The REDUCE option will cause fewer lines of code to be generated for an
assignment of a null string to a structure, and that will usually mean your
compilation will be quicker and your code will run much faster. However, padding
bytes might be zeroed out.

For instance, in the following structure, there is one byte of padding between
field11 and field12.

dcl
1 sample ext,

5 field10 bin fixed(31),
5 field11 dec fixed(13),
5 field12 bin fixed(31),
5 field13 bin fixed(31),
5 field14 bit(32),
5 field15 bin fixed(31),
5 field16 bit(32),
5 field17 bin fixed(31);

Now consider the assignment sample = '';.

Under the NOREDUCE option, eight assignments will be generated, but the
padding byte will be unchanged.

However, under REDUCE, the assignment will be reduced to three operations.

RULES
Most of the RULES suboptions affect only the severity with which certain coding
practices, such as not declaring variables, are flagged and have no impact on
performance. However, these suboptions do have an impact on performance.

IBM/ANS
When you use the RULES(IBM) option, the compiler supports scaled FIXED
BINARY and, what is more important for performance, generates scaled FIXED
BINARY results in some operations.

Under RULES(ANS), scaled FIXED BINARY is not supported and scaled FIXED
BINARY results are never generated. This means that the code generated under
RULES(ANS) always runs at least as fast as the code generated under
RULES(IBM), and sometimes runs faster.

For example, consider the following code fragment:
dcl (i,j,k) fixed bin(15);

.

.

.
i = j / k;

Improving performance

326 Enterprise PL/I for z/OS Programming Guide

Under RULES(IBM), the result of the division has the attributes FIXED BIN(31,16).
This means that a shift instruction is required before the division and several more
instructions are needed to perform the assignment.

Under RULES(ANS), the result of the division has the attributes FIXED BIN(15,0).
This means that a shift is not needed before the division, and no extra instructions
are needed to perform the assignment.

(NO)LAXCTL
Under RULES(LAXCTL), a CONTROLLED variable can be declared with constant
extents and yet allocated with different extents. However, this coding practice
severely impacts performance. It is recommended that you use the
RULES(NOLAXCTL) option to disallow such practice.

For instance, under RULES(LAXCTL), you can declare a structure as follows:
dcl
1 a controlled,

2 b char(17),
2 c char(29);

However, you can then allocate it as follows:
allocate
1 a,

2 b char(170),
2 c char(290);

Whenever the compiler sees a reference to the structure A or to any member of that
structure, the compiler is forced to assume that it knows nothing about the lengths,
dimensions, or offsets of the fields in the structure. This can severely degrade
performance.

Under RULES(NOLAXCTL), if you want to allocate a CONTROLLED variable
with a variable extent, that extent must be declared either with an asterisk or with
a nonconstant expression. Consequently, under RULES(NOLAXCTL), when a
CONTROLLED variable is declared with constant extents, the compiler can
generate much better code for any reference to that variable.

PREFIX
The PREFIX option determines whether selected PL/I conditions are enabled by
default. The default suboptions for PREFIX are set to conform to the PL/I
language definition; however, overriding the defaults can have a significant effect
on the performance of your program.

These are the default suboptions:
CONVERSION
INVALIDOP
FIXEDOVERFLOW
OVERFLOW
INVALIDOP
NOSIZE
NOSTRINGRANGE
NOSTRINGSIZE
NOSUBSCRIPTRANGE
UNDERFLOW
ZERODIVIDE

Improving performance

Chapter 15. Improving performance 327

By specifying the SIZE, STRINGRANGE, STRINGSIZE, or SUBSCRIPTRANGE
suboptions, the compiler generates extra code that helps you pinpoint various
problem areas in your source that would otherwise be hard to find. This extra
code, however, can slow program performance significantly.

CONVERSION
When you disable the CONVERSION condition, some character-to-numeric
conversions are done inline and without checking the validity of the source;
therefore, specifying NOCONVERSION also affects program performance.

FIXEDOVERFLOW
On some platforms, the FIXEDOVERFLOW condition is raised by the hardware
and the compiler does not need to generate any extra code to detect it.

DEFAULT
Using the DEFAULT option, you can select attribute defaults. As is true with the
PREFIX option, the suboptions for DEFAULT are set to conform to the PL/I
language definition. Changing the defaults in some instances can affect
performance.

Some of the suboptions, such as IBM/ANS and ASSIGNABLE/
NONASSIGNABLE, have no effect on program performance. But other suboptions
can affect performance to varying degrees and, if applied inappropriately, can
make your program invalid. The following topics provide more information about
some suboptions of more importance.

BYADDR or BYVALUE

When the DEFAULT(BYADDR) option is in effect, arguments are passed by
reference (as required by PL/I) unless an attribute in an entry declaration indicates
otherwise. As arguments are passed by reference, the address of the argument is
passed from one routine (calling routine) to another (called routine) as the variable
itself is passed. Any change made to the argument while in the called routine is
reflected in the calling routine when it resumes execution.

Program logic often depends on passing variables by reference. Passing a variable
by reference, however, can hinder performance in two ways:
1. Every reference to that parameter requires an extra instruction.
2. Because the address of the variable is passed to another routine, the compiler is

forced to make assumptions about when that variable might change and
generate very conservative code for any reference to that variable.

Consequently, you should pass parameters by value using the BYVALUE
suboption whenever your program logic allows. Even if you use the BYADDR
attribute to indicate that one parameter should be passed by reference, you can use
the DEFAULT(BYVALUE) option to ensure that all other parameters are passed by
value.

A BYVALUE argument should be one that could reasonably be passed in a register.
Hence its type should be one of the following:
v REAL FIXED BIN
v REAL FLOAT
v POINTER

Improving performance

328 Enterprise PL/I for z/OS Programming Guide

v OFFSET
v HANDLE
v LIMITED ENTRY
v FILE
v ORDINAL
v CHAR(1)
v WCHAR(1)
v ALIGNED BIT(n) with n less than or equal to 8

Moreover, when using BYVALUE parameters with assembler code, you must note
that any BYVALUE parameter that does not require a multiple of 4 bytes will be
widened so that 4 bytes are used in the parameter list.

If a procedure receives and modifies only one parameter that is passed by
BYADDR, consider converting the procedure to a function that receives that
parameter by value. The function would then end with a RETURN statement
containing the updated value of the parameter.

Procedure with BYADDR parameter
a: proc(parm1, parm2, ..., parmN);

dcl parm1 byaddr ...;
dcl parm2 byvalue ...;
.
.
.
dcl parmN byvalue ...;

/* program logic */

end;

Faster, equivalent function with BYVALUE parameter
a: proc(parm1, parm2, ..., parmN)

returns(... /* attributes of parm1 */);

dcl parm1 byvalue ...;
dcl parm2 byvalue ...;
.
.
.
dcl parmN byvalue ...;

/* program logic */

return(parm1);

end;

(NON)CONNECTED
The DEFAULT(NONCONNECTED) option indicates that the compiler assumes
that any aggregate parameters are NONCONNECTED. References to elements of
NONCONNECTED aggregate parameters require the compiler to generate code to
access the parameter's descriptor, even if the aggregate is declared with constant
extents.

Improving performance

Chapter 15. Improving performance 329

The compiler does not generate these instructions if the aggregate parameter has
constant extents and is CONNECTED. Consequently, if your application never
passes nonconnected parameters, your code is more optimal if you use the
DEFAULT(CONNECTED) option.

(NO)DESCRIPTOR
The DEFAULT(DESCRIPTOR) option indicates that, by default, a descriptor is
passed for any string, area, or aggregate parameter; however, the descriptor is used
only if the parameter has nonconstant extents or if the parameter is an array with
the NONCONNECTED attribute.

In this case, the instructions and space required to pass the descriptor provide no
benefit and incur substantial cost (the size of a structure descriptor is often greater
than size of the structure itself). Consequently, by specifying
DEFAULT(NODESCRIPTOR) and using OPTIONS(DESCRIPTOR) only as needed
on PROCEDURE statements and ENTRY declarations, your code runs more
optimally.

(NO)INLINE
The NOINLINE suboption indicates that procedures and begin blocks should not
be inlined. Inlining occurs only when you specify optimization.

Inlining user code eliminates the overhead of the function call and linkage, and
also exposes the function's code to the optimizer, resulting in faster code
performance. Inlining produces the best results when the overhead for the function
is nontrivial, for example, when functions are called within nested loops. Inlining
is also beneficial when the inlined function provides additional opportunities for
optimization, such as when constant arguments are used.

For programs containing many procedures that are not nested, consider the
following information:
v If the procedures are small and only called from a few places, you can increase

performance by specifying INLINE.
v If the procedures are large and called from several places, inlining duplicates

code throughout the program. This increase in the size of the program might
offset any increase of speed. In this case, you might prefer to leave NOINLINE
as the default and specify OPTIONS(INLINE) only on individually selected
procedures.

When you use inlining, you need more stack space. When a function is called, its
local storage is allocated at the time of the call and freed when it returns to the
calling function. If that same function is inlined, its storage is allocated when the
function that calls it is entered, and is not freed until that calling function ends.
Ensure that you have enough stack space for the local storage of the inlined
functions.

LINKAGE
This LINKAGE suboption specifies the default linkage that the compiler should
use when the LINKAGE suboption of the OPTIONS attribute or option for an
entry has not been specified. The compiler supports various linkages, each with its
unique performance characteristics.

When you invoke an ENTRY provided by an external entity (such as an operating
system), you must use the linkage previously defined for that ENTRY.

Improving performance

330 Enterprise PL/I for z/OS Programming Guide

As you create your own applications, however, you can choose the linkage
convention. The OPTLINK linkage is strongly recommended because it provides
significantly better performance than other linkage conventions.

(RE)ORDER
The DEFAULT(ORDER) option indicates that the ORDER option is applied to
every block, meaning that variables in that block referenced in ON-units (or blocks
dynamically descendant from ON-units) have their latest values. This effectively
prohibits almost all optimization on such variables.

Consequently, if your program logic allows, use DEFAULT(REORDER) to generate
superior code.

NOOVERLAP
The DEFAULT(NOOVERALP) option lets the compiler assume that the source and
target in an assignment do not overlap, and it can therefore generate smaller and
faster code.

However, if you use this option, you must ensure that the source and target in
assignment do not overlap. For example, under the DEFAULT(NOOVERLAP)
option, the assignment in this example is invalid:

dcl c char(20);
substr(c,2,5) = substr(c,1,5);

RETURNS(BYVALUE) or RETURNS(BYADDR)
When the DEFAULT(RETURNS(BYVALUE)) option is in effect, the BYVALUE
attribute is applied to all RETURNS description lists that do not specify BYADDR.
This means that these functions return values in registers, when possible, in order
to produce the most optimal code.

Summary of compiler options that improve performance

In summary, the following options (if appropriate for your application) can
improve performance:
v OPTIMIZE(3)
v ARCH(11)
v REDUCE
v RULES(ANS NOLAXCTL)
v DEFAULT with the following suboptions

BYVALUE
CONNECTED
NODESCRIPTOR
INLINE
LINKAGE(OPTLINK)
REORDER
NOOVERLAP
RETURNS(BYVALUE)

Coding for better performance
As you write code, there is generally more than one correct way to accomplish a
given task. Many important factors influence the coding style you choose,
including readability and maintainability. The following topics discuss choices that
you can make while coding that potentially affect the performance of your
program.

Improving performance

Chapter 15. Improving performance 331

|

DATA-directed input and output
Using GET DATA and PUT DATA statements for debugging can prove very
helpful. When you use these statements, however, you generally pay the price of
decreased performance. This cost to performance is usually very high when you
use either GET DATA or PUT DATA without a variable list.

Many programmers use PUT DATA statements in their ON ERROR code as
illustrated in the following example:
on error

begin;
on error system;
.
.
.
put data;
.
.
.
end;

In this case, the program would perform more optimally by including a list of
selected variables with the PUT DATA statement.

The ON ERROR block in the previous example contained an ON ERROR system
statement before the PUT DATA statement. This prevents the program from getting
caught in an infinite loop if an error occurs in the PUT DATA statement (which
could occur if any variables to be listed contained invalid FIXED DECIMAL
values) or elsewhere in the ON ERROR block.

Input-only parameters
If a procedure has a BYADDR parameter that it uses as input only, it is best to
declare that parameter as NONASSIGNABLE (rather than letting it get the default
attribute of ASSIGNABLE). If that procedure is later called with a constant for that
parameter, the compiler can put that constant in static storage and pass the address
of that static area.

This practice is particularly useful for strings and other parameters that cannot be
passed in registers (input-only parameters that can be passed in registers are best
declared as BYVALUE).

In the following declaration, for instance, the first parameter to getenv is an
input-only CHAR VARYINGZ string:
dcl getenv entry(char(*) varyingz nonasgn byaddr,

pointer byaddr)
returns(native fixed bin(31) optional)
options(nodescriptor);

If this function is invoked with the string IBM_OPTIONS, the compiler can pass the
address of that string rather than assigning it to a compiler-generated temporary
storage area and passing the address of that area.

GOTO statements
A GOTO statement that uses either a label in another block or a label variable
severely limits optimizations that the compiler might perform.

Coding for better performance

332 Enterprise PL/I for z/OS Programming Guide

If a label array is initialized and declared AUTOMATIC, either implicitly or
explicitly, any GOTO to an element of that array will hinder optimization.
However, if the array is declared as STATIC, the compiler assumes the
CONSTANT attribute for it and no optimization is hindered.

String assignments
When one string is assigned to another, the compiler ensures that the target has the
correct value even if the source and target overlap, and that the source string is
truncated if it is longer than the target. This assurance comes at the cost of some
extra instructions.

The compiler attempts to generate these extra instructions only when necessary,
but often you, as the programmer, know they are not necessary when the compiler
cannot be sure. For instance, if the source and target are based character strings
and you know they cannot overlap, you could use the PLIMOVE built-in function
to eliminate the extra code the compiler would otherwise be forced to generate.

In the following example, faster code is generated for the second assignment
statement:
dcl based_Str char(64) based(null());
dcl target_Addr pointer;
dcl source_Addr pointer;

target_Addr->based_Str = source_Addr->based_Str;

call plimove(target_Addr, source_Addr, stg(based_Str));

If you have any doubts about whether the source and target might overlap or
whether the target is big enough to hold the source, you should not use the
PLIMOVE built-in.

Loop control variables
Program performance improves if you define your loop control variables
appropriately.

For better program performance, use one of the following types for your loop
control variables. You should rarely, if ever, use other types of variables.

FIXED BINARY with zero scale factor
FLOAT
ORDINAL
HANDLE
POINTER
OFFSET

Performance also improves if loop control variables are not members of arrays,
structures, or unions. The compiler issues a warning message when they are. Loop
control variables that are AUTOMATIC and not used for any other purpose give
you the optimal code generation.

If a loop control variable is a FIXED BINARY, performance is best if it has
precision 31 and is SIGNED.

Performance is decreased if your program depends not only on the value of a loop
control variable, but also on its address. For example, the performance is decreased
if the ADDR built-in function is applied to the variable or if the variable is passed
by reference (BYADDR) to another routine.

Coding for better performance

Chapter 15. Improving performance 333

PACKAGEs versus nested PROCEDUREs
Calling nested procedures requires that an extra hidden parameter (the backchain
pointer) is passed. As a result, the fewer nested procedures that your application
contains, the faster it runs.

To improve the performance of your application, you can convert a
mother-daughter pair of nested procedures into level-1 sister procedures inside of a
package. This conversion is possible if your nested procedure does not rely on any
of the automatic and internal static variables declared in its parent procedures.

If procedure b in “Example with nested procedures” does not use any of the
variables declared in a, you can improve the performance of both procedures by
reorganizing them into the package illustrated in “Example with packaged
procedures.”

Example with nested procedures
a: proc;

dcl (i,j,k) fixed bin;
dcl ib based fixed bin;
.
.
.
call b(addr(i));
.
.
.
b: proc(px);
dcl px pointer;
display(px->ib);

end;
end;

Example with packaged procedures
p: package exports(a);

dcl ib based fixed bin;

a: proc;

dcl (i,j,k) fixed bin;
.
.
.
call b(addr(i));
.
.
.
end;

b: proc(px);
dcl px pointer;
display(px->ib);

end;

end p;

REDUCIBLE functions
REDUCIBLE indicates that a procedure or an entry need not be invoked multiple
times if the argument(s) stays unchanged, and that the invocation of the procedure
has no side effects.

Coding for better performance

334 Enterprise PL/I for z/OS Programming Guide

For example, a user-written function that computes a result based on unchanging
data should be declared REDUCIBLE. A function that computes a result based on
changing data, such as a random number or time of day, should be declared
IRREDUCIBLE.

In the following example, f is invoked only once because REDUCIBLE is part of
the declaration. If IRREDUCIBLE had been used in the declaration, f would be
invoked twice.
dcl (f) entry options(reducible) returns(fixed bin);

select;
when(f(x) < 0)
.
.
.
when(f(x) > 0)
.
.
.
otherwise
.
.
.

end;

DESCLOCATOR or DESCLIST
When the DEFAULT(DESCLOCATOR) option is in effect, the compiler passes
arguments requiring descriptors (such as strings and structures) through a
descriptor locator in much the same way that the old compiler did.

This option allows you to invoke an entry point that is not always passed all of the
arguments that it declares.

This option also allows you to continue the somewhat unwise programming
practice of passing a structure and receiving it as a pointer.

However, the code generated by the compiler for DEFAULT(DESCLOCATOR)
might, in some situations, perform less well than that for DEFAULT(DESCLIST).
Related information:
Chapter 25, “PL/I descriptors,” on page 493
This chapter describes PL/I parameter passing conventions between PL/I routines
at run time.

DEFINED versus UNION
The UNION attribute is more powerful than the DEFINED attribute and provides
more functions. In addition, the compiler generates better code for union
references.

In the following example, the pair of variables b3 and b4 perform the same
function as b1 and b2, but the compiler generates more optimal code for the pair in
the union.
dcl b1 bit(32);
dcl b2 bit(16) def b1;

dcl
1 * union,
2 b3 bit(32),
2 b4 bit(16);

Coding for better performance

Chapter 15. Improving performance 335

Code that uses UNIONs instead of the DEFINED attribute is subject to less
misinterpretation. Variable declarations in unions are in a single location making it
easy to realize that when one member of the union changes, all of the others
change also. This dynamic change is less obvious in declarations that use
DEFINED variables because the declare statements can be several lines apart.

Named constants versus static variables
You can define named constants by declaring a variable with the VALUE attribute.
If you use static variables with the INITIAL attribute and you do not alter the
variable, you should declare the variable a named constant by using the VALUE
attribute. The compiler does not treat NONASSIGNABLE scalar STATIC variables
as true named constants.

The compiler generates better code whenever expressions are evaluated during
compilation, so you can use named constants to produce efficient code with no loss
in readability. For example, identical object code is produced for the two usages of
the VERIFY built-in function in the following example:
dcl numeric char value(’0123456789’);

jx = verify(string, numeric);

jx = verify(string, ’0123456789’);

The following examples illustrate how you can use the VALUE attribute to get
optimal code without sacrificing readability.

Example with optimal code but no meaningful names
dcl x bit(8) aligned;

select(x);
when(’01’b4)
.
.
.
when(’02’b4)
.
.
.
when(’03’b4)
.
.
.

end;

Example with meaningful names but not optimal code
dcl (a1 init(’01’b4)

,a2 init(’02’b4)
,a3 init(’03’b4)
,a4 init(’04’b4)
,a5 init(’05’b4)

) bit(8) aligned static nonassignable;

dcl x bit(8) aligned;

select(x);
when(a1)
.
.
.
when(a2)
.

Coding for better performance

336 Enterprise PL/I for z/OS Programming Guide

.

.
when(a3)
.
.
.

end;

Example with optimal code and meaningful names
dcl (a1 value(’01’b4)

,a2 value(’02’b4)
,a3 value(’03’b4)
,a4 value(’04’b4)
,a5 value(’05’b4)

) bit(8);

dcl x bit(8) aligned;

select(x);
when(a1)
.
.
.
when(a2)
.
.
.
when(a3)
.
.
.

end;

Avoiding calls to library routines
The bitwise operations (prefix NOT, infix AND, infix OR, and infix EXCLUSIVE
OR) are often evaluated by calls to library routines.

These operations are, however, handled without a library call if either of the
following conditions is true:
v Both operands are bit(1).
v Both operands are aligned and have the same constant length.

For certain assignments, expressions, and built-in function references, the compiler
generates calls to library routines. If you avoid these calls, your code generally
runs faster.

To help you determine when the compiler generates such calls, the compiler
generates a message whenever a conversion is done by a library routine.

When your code refers to a member of a BASED structure with REFER, the
compiler often has to generate one or more calls to a library routine to map the
structure at run time. These calls can be expensive, and so when the compiler
makes these calls, it will issue a message so that you can locate these potential
hot-spots in your code.

If you do have code that uses BASED structures with REFER, which the compiler
flags with this message, you might get better performance by passing the structure
to a subroutine that declares a corresponding structure with * extents. This will
cause the structure to be mapped once at the CALL statement, but there will no
further remappings when it is accessed in the called subroutine.

Coding for better performance

Chapter 15. Improving performance 337

Preloading library routines
The PL/I library contains one RMODE 24 routine, IBMPOIOA, that is used for
low-level system i/o functions. If your code does RECORD i/o or uses SYSPRINT
as a STREAM OUTPUT file (without compiling with the STDSYS option), you will
significantly improve your performance if you preload this routine or put it into
the (E)LPA.

Coding for better performance

338 Enterprise PL/I for z/OS Programming Guide

Part 4. Using interfaces to other products

© Copyright IBM Corp. 1999, 2017 339

340 Enterprise PL/I for z/OS Programming Guide

Chapter 16. Using the Sort program

The compiler provides an interface called PLISRTx (x = A, B, C, or D) that allows
you to make use of the IBM-supplied Sort programs.

To use the Sort program with PLISRTx, you must do the following:
1. Include a call to one of the entry points of PLISRTx, passing it the information

on the fields to be sorted. This information includes the length of the records,
the maximum amount of storage to use, the name of a variable to be used as a
return code, and other information required to carry out the sort.

2. Specify the data sets required by the Sort program in JCL DD statements.

When used from PL/I, the Sort program sorts records of all normal lengths on a
large number of sorting fields. Data of most types can be sorted into ascending or
descending order. The source of the data to be sorted can be either a data set or a
user-written PL/I procedure that the Sort program will call each time a record is
required for the sort. Similarly, the destination of the sort can be a data set or a
PL/I procedure that handles the sorted records.

Using PL/I procedures allows processing to be done before or after the sort itself,
thus allowing a complete sorting operation to be handled completely by a call to
the sort interface. It is important to understand that the PL/I procedures handling
input or output are called from the Sort program itself and will effectively become
part of it.

PL/I can operate with DFSORT or a program with the same interface. DFSORT is a
release of the program product 5740-SM1. DFSORT has many built-in features you
can use to eliminate the need for writing program logic (for example, INCLUDE,
OMIT, OUTREC, and SUM statement plus the many ICETOOL operators). See
DFSORT Application Programming Guide for details and Getting Started with DFSORT
for a tutorial.

The following information applies to DFSORT. Because you can use programs
other than DFSORT, the actual capabilities and restrictions vary. For these
capabilities and restrictions, see DFSORT Application Programming Guide or the
equivalent publication for your sort product.

To use the Sort program, you must include the correct PL/I statements in your
source program and specify the correct data sets in your JCL.

Preparing to use Sort
Before using Sort, you must determine the type of sort you require, the length and
format of the sorting fields in the data, the length of your data records, and the
amount of auxiliary and main storage you will allow for sorting.

To determine the PLISRTx entry point that you will use, you must decide the
source of your unsorted data, and the destination of your sorted data. You must
choose between data sets and PL/I subroutines. Using data sets is simpler to
understand and gives faster performance. Using PL/I subroutines gives you more
flexibility and more function, enabling you to manipulate or print the data before it

© Copyright IBM Corp. 1999, 2017 341

is sorted, and to make immediate use of it in its sorted form. If you decide to use
an input or output handling subroutine, see “Data input and output handling
routines” on page 352.

The entry points and the source and destination of data are as follows:

Entry point Source Destination

PLISRTA Data set Data set
PLISRTB Subroutine Data set
PLISRTC Data set Subroutine
PLISRTD Subroutine Subroutine

Having determined the entry point you are using, you must now determine these
about your data set:
v The position of the sorting fields; these can be either the complete record or any

part or parts of it
v The type of data these fields represent, for example, character or binary
v Whether you want the sort on each field to be in ascending or descending order
v Whether you want equal records to be retained in the order of the input, or

whether their order can be altered during sorting

Specify these options on the SORT statement, which is the first argument to
PLISRTx. Then, you must determine these about the records to be sorted:
v Whether the record format is fixed or varying
v The length of the record, which is the maximum length for varying

Specify these on the RECORD statement, which is the second argument to
PLISRTx.

Finally, you must decide on the amount of main and auxiliary storage you will
allow for the Sort program. For further details, see “Determining storage needed
for Sort” on page 347.

Choosing the type of Sort
In your PL/I program, you specify a sort by using a CALL statement to the sort
interface subroutine PLISRTx. This subroutine has four entry points: x=A, B, C, and
D. Each specifies a different source for the unsorted data and destination for the
data when it has been sorted.

For example, a call to PLISRTA specifies that the unsorted data (the input to sort)
is on a data set, and that the sorted data (the output from sort) is to be placed on
another data set. The CALL PLISRTx statement must contain an argument list
giving the Sort program information about the data set to be sorted, the fields on
which it is to be sorted, the amount of space available, the name of a variable into
which Sort will place a return code indicating the success or failure of the sort, and
the name of any output or input handling procedure that can be used.

The sort interface routine builds an argument list for the Sort program from the
information supplied by the PLISRTx argument list and the choice of PLISRTx
entry point. Control is then transferred to the Sort program. If you have specified
an output- or input-handling routine, this will be called by the Sort program as
many times as is necessary to handle each of the unsorted or sorted records. When
the sort operation is complete, the Sort program returns to the PL/I calling

342 Enterprise PL/I for z/OS Programming Guide

procedure communicating its success or failure in a return code, which is placed in
one of the arguments passed to the interface routine. The return code can then be
tested in the PL/I routine to discover whether processing should continue.
Figure 50 on page 344 is a simplified flowchart showing this operation.

Chapter 16. Using the Sort program 343

Within the Sort program itself, the flow of control between the Sort program and
input- and output-handling routines is controlled by return codes. The Sort

Figure 50. Flow of control for Sort program

344 Enterprise PL/I for z/OS Programming Guide

program calls these routines at the appropriate point in its processing. (Within the
Sort program, and its associated documentation, these routines are known as user
exits. The routine that passes input to be sorted is the E15 sort user exit. The
routine that processes sorted output is the E35 sort user exit.) From the routines,
Sort expects a return code indicating either that it should call the routine again, or
that it should continue with the next stage of processing.

You must remember the following important points about Sort:
v It is a self-contained program that handles the complete sort operation.
v It communicates with the caller, and with the user exits that it calls, through

return codes.

Specifying the sorting field
This topic describes the required PL/I statements that you must specify to use Sort
from PL/I. The SORT statement is the first argument to PLISRTx.

The syntax of the SORT statement must be a character string expression that takes
the form:
’bSORTbFIELDS=(start1,length1,form1,seq1,
...startn,lengthn,formn,seqn)[,other options]b’

See the following example:
’ SORT FIELDS=(1,10,CH,A) ’

b Represents one or more blanks. Blanks shown are mandatory. No other blanks
are allowed.

start,length,form,seq
Defines a sorting field. You can specify any number of sorting fields, but there
is a limit on the total length of the fields. If more than one field is to be sorted
on, the records are sorted first according to the first field, and then those that
are of equal value are sorted according to the second field, and so on. If all the
sorting values are equal, the order of equal records will be arbitrary unless you
use the EQUALS option. (See later in this definition list.) Fields can overlay
each other.

For DFSORT (5740-SM1), the maximum total length of the sorting fields is
restricted to 4092 bytes and all sorting fields must be within 4092 bytes of the
start of the record. Other sort products might have different restrictions.

start Specifies the starting position within the record. Specify the value in
bytes except for binary data where you can use a “byte.bit” notation.
The first byte in a string is considered to be byte 1, and the first bit is
bit 0. (Thus the second bit in byte 2 is referred to as 2.1.) For varying
length records, you must include the 4-byte length prefix, making 5 the
first byte of data.

length Specifies the length of the sorting field. Specify the value in bytes
except for binary where you can use “byte.bit” notation. The length of
sorting fields is restricted according to their data type.

form Specifies the format of the data. This is the format assumed for the
purpose of sorting. All data passed between PL/I routines and Sort
must be in the form of character strings. The main data types and the
restrictions on their length are shown below. Additional data types are
available for special-purpose sorts. See the DFSORT Application
Programming Guide or the equivalent publication for your sort product.

Chapter 16. Using the Sort program 345

Code Data type and length

CH Character 1–4096

ZD Zoned decimal, signed 1–32

PD Packed decimal, signed 1–32

FI Fixed point, signed 1–256

BI Binary, unsigned 1 bit to 4092 bytes

FL Floating-point, signed 1–256

The sum of the lengths of all fields must not exceed 4092 bytes.

seq Specifies the sequence in which the data will be sorted:

A Ascending (that is, 1,2,3,...)

D Descending (that is, ...,3,2,1)

Note: You cannot specify E, because PL/I does not provide a method
of passing a user-supplied sequence.

other options
You can specify a number of other options, depending on your Sort program.
You must separate them from the FIELDS operand and from each other by
commas. Do not place blanks between operands.

FILSZ=y
Specifies the number of records in the sort and allows for optimization by
Sort. If y is only approximate, E should precede y.

SKIPREC=y
Specifies that y records at the start of the input file are to be ignored before
Sort starts sorting the remaining records.

CKPT or CHKPT
Specifies that checkpoints are to be taken. If you use this option, you must
provide a SORTCKPT data set. In addition, when you install DFSORT, you
must specify the 16NCKPT=NO installation option.

EQUALS|NOEQUALS
Specifies whether the order of equal records will be preserved as it was in
the input (EQUALS) or will be arbitrary (NOEQUALS). You could improve
sort performance by using the NOEQUALS. The default option is chosen
when Sort is installed. The IBM-supplied default is NOEQUALS.

DYNALLOC=(d,n)
(OS/VS Sort only) Specifies that the program dynamically allocates
intermediate storage.
d Specifies the device type (3380, and so on).
n Specifies the number of work areas.

Specifying the records to be sorted
This topic describes the required PL/I statements that you must specify to use Sort
from PL/I. The RECORD statement is the second argument to PLISRTx.

The syntax of the RECORD statement must be a character string expression, which,
when evaluated, takes the following syntax:
’bRECORDbTYPE=rectype[,LENGTH=(L1,[,,L4,L5])]b’

346 Enterprise PL/I for z/OS Programming Guide

See the following example:
’ RECORD TYPE=F,LENGTH=(80) ’

b Represents one or more blanks. Blanks shown are mandatory. No other blanks
are allowed.

TYPE
Specifies the type of record as follows:
F Fixed length
V Varying length EBCDIC
D Varying length ASCII

Even when you use input and output routines to handle the unsorted and
sorted data, you must specify the record type as it applies to the work data
sets used by Sort.

If varying length strings are passed to Sort from an input routine (E15 exit),
you should normally specify V as a record format. However, if you specify F,
the records are padded to the maximum length with blanks.

LENGTH
Specifies the length of the record to be sorted. You can omit LENGTH if you
use PLISRTA or PLISRTC, because the length will be taken from the input data
set. Note that there is a restriction on the maximum and minimum length of
the record that can be sorted. For varying length records, you must include the
4-byte prefix.

L1 Specifies the length of the record to be sorted. For VSAM data sets
sorted as varying records, it is the maximum record size + 4.

,, Represents two arguments that are not applicable to Sort when called
from PL/I. You must include the commas if the arguments that follow
are used.

L4 Specifies the minimum length of record when varying length records
are used. If supplied, it is used by Sort for optimization purposes.

L5 Specifies the modal (most common) length of record when varying
length records are used. If supplied, it is used by Sort for optimization
purposes.

Maximum record lengths: The length of a record can never exceed the maximum
length specified by the user. The maximum record length for variable length
records is 32756 bytes, and for fixed length records, it is 32760 bytes.

Determining storage needed for Sort
Sort requires both main and auxiliary storage.

Main storage

The minimum main storage for DFSORT is 88K bytes, but for best performance,
more storage (on the order of 1 megabyte or more) is recommended. DFSORT can
take advantage of storage above 16M virtual or extended architecture processors.
Under z/OS, DFSORT can also take advantage of expanded storage. You can
specify that Sort use the maximum amount of storage available by passing a
storage parameter in the following manner:
DCL MAXSTOR FIXED BINARY (31,0);
UNSPEC(MAXSTOR)=’00000000’B||UNSPEC(’MAX’);
CALL PLISRTA

(’ SORT FIELDS=(1,80,CH,A) ’,

Chapter 16. Using the Sort program 347

’ RECORD TYPE=F,LENGTH=(80) ’,
MAXSTOR,
RETCODE,
’TASK’);

If files are opened in E15 or E35 exit routines, enough residual storage should be
allowed for the files to open successfully.

Auxiliary storage

Calculating the minimum auxiliary storage for a particular sorting operation is a
complicated task. To achieve maximum efficiency with auxiliary storage, use direct
access storage devices (DASDs) whenever possible. For more information about
improving program efficiency, see the DFSORT Application Programming Guide,
particularly the information about dynamic allocation of workspace that allows
DFSORT to determine the auxiliary storage needed and allocate it for you.

If you are interested only in providing enough storage to ensure that the sort will
work, make the total size of the SORTWK data sets large enough to hold three sets
of the records being sorted. (You will not gain any advantage by specifying more
than three if you have enough space in three data sets.)

However, because this suggestion is an approximation, it might not work, so you
should check the sort manuals. If this suggestion does work, you will probably
have wasted space.

Calling the Sort program
You should write the CALL PLISRTx statement with some care. This topic lists the
entry points and arguments that you can use.

Table 34. The entry points and arguments to PLISRTx (x = A, B, C, or D)

Entry points Arguments

PLISRTA
Sort input: data set
Sort output: data set

(sort statement,record statement,storage,return code
[,data set prefix,message level, sort technique])

PLISRTB
Sort input: PL/I subroutine
Sort output: data set

(sort statement,record statement,storage,return code,input routine
[,data set prefix,message level,sort technique])

PLISRTC
Sort input: data set
Sort output: PL/I subroutine

(sort statement,record statement,storage,return code,output routine
[,data set prefix,message level,sort technique])

PLISRTD
Sort input: PL/I subroutine
Sort output: PL/I subroutine

(sort statement,record statement,storage,return code,input routine,output
routine[,data set prefix,message level,sort technique])

Sort statement Character string expression containing the Sort program SORT statement. Describes
sorting fields and format. See “Specifying the sorting field” on page 345.

Record statement Character string expression containing the Sort program RECORD statement.
Describes the length and record format of data. See “Specifying the records to be
sorted” on page 346.

Storage Fixed binary expression giving maximum amount of main storage to be used by
the Sort program. Must be >88K bytes for DFSORT. See also “Determining storage
needed for Sort” on page 347.

348 Enterprise PL/I for z/OS Programming Guide

Table 34. The entry points and arguments to PLISRTx (x = A, B, C, or D) (continued)

Entry points Arguments

Return code Fixed binary variable of precision (31,0) in which Sort places a return code when it
has completed. The meaning of the return code is:

 0=Sort successful

16=Sort failed

20=Sort message data set missing

Input routine (PLISRTB and PLISRTD only.) Name of the PL/I external or internal procedure
used to supply the records for the Sort program at sort exit E15.

Output routine (PLISRTC and PLISRTD only.) Name of the PL/I external or internal procedure to
which Sort passes the sorted records at sort exit E35.

Data set prefix Character string expression of four characters that replaces the default prefix of
'SORT' in the names of the sort data sets SORTIN, SORTOUT, SORTWKnn and
SORTCNTL, if used. Thus if the argument is “TASK”, the data sets TASKIN,
TASKOUT, TASKWKnn, and TASKCNTL can be used. This facility enables multiple
invocations of Sort to be made in the same job step. The four characters must start
with an alphabetic character and must not be one of the reserved names PEER,
BALN, CRCX, OSCL, POLY, DIAG, SYSC, or LIST. You must code a null string for
this argument if you require either of the following arguments but do not require
this argument.

Message level Character string expression of two characters indicating how Sort's diagnostic
messages are to be handled, as follows:

NO No messages to SYSOUT

AP All messages to SYSOUT

CP Critical messages to SYSOUT

SYSOUT will normally be allocated to the printer, hence the use of the mnemonic
letter “P”. Other codes are also allowed for certain of the Sort programs. For
further details on these codes, see DFSORT Application Programming Guide. You
must code a null string for this argument if you require the following argument
but you do not require this argument.

Sort technique (This is not used by DFSORT; it appears for compatibility reasons only.) Character
string of length 4 that indicates the type of sort to be carried out, as follows:

PEER Peerage sort

BALN Balanced

CRCX Criss-cross sort

OSCL Oscillating

POLY Polyphase sort

Normally the Sort program will analyze the amount of space available and choose
the most effective technique without any action from you. You should use this
argument only as a bypass for sorting problems or when you are certain that
performance could be improved by another technique. See DFSORT Application
Programming Guide for further information.

The following examples indicate the form that the CALL PLISRTx statement
normally takes.

Example 1
This example shows a call to PLISRTA, sorting 80-byte records from SORTIN to
SORTOUT, using 1048576 (1 megabyte) of storage and a return code, RETCODE,
declared as FIXED BINARY (31,0).

Chapter 16. Using the Sort program 349

CALL PLISRTA (’ SORT FIELDS=(1,80,CH,A) ’,
’ RECORD TYPE=F,LENGTH=(80) ’,

1048576,
RETCODE);

Example 2
This example is the same as example 1 except that the input, output, and work
data sets are called TASKIN, TASKOUT, TASKWK01, and so forth.

This might occur if Sort was being called twice in one job step.
CALL PLISRTA (’ SORT FIELDS=(1,80,CH,A) ’,

’ RECORD TYPE=F,LENGTH=(80) ’,
1048576,
RETCODE,
’TASK’);

Example 3
This example is the same as example 1 except that the sort is to be undertaken on
two fields (first, bytes 1 to 10, which are characters, and then, if these are equal,
bytes 11 and 12, which contain a binary field).

Both fields are to be sorted in ascending order.
CALL PLISRTA (’ SORT FIELDS=(1,10,CH,A,11,2,BI,A) ’,

’ RECORD TYPE=F,LENGTH=(80) ’,
1048576,
RETCODE);

Example 4
This example shows a call to PLISRTB.

The input is to be passed to Sort by the PL/I routine PUTIN. The sort is to be
carried out on characters 1 to 10 of an 80-byte fixed length record.
CALL PLISRTB (’ SORT FIELDS=(1,10,CH,A) ’,

’ RECORD TYPE=F,LENGTH=(80) ’,
1048576,
RETCODE,
PUTIN);

Example 5
This example shows a call to PLISRTD.

The input is to be supplied by the PL/I routine PUTIN and the output is to be
passed to the PL/I routine PUTOUT. The record to be sorted is 84 bytes varying
(including the length prefix). It is to be sorted on bytes 1 through 5 of the data in
ascending order, then if these fields are equal, on bytes 6 through 10 in descending
order. (Note that the 4-byte length prefix is included so that the actual values used
are 5 and 10 for the starting points.) If both these fields are the same, the order of
the input is to be retained. (The EQUALS option does this.)
CALL PLISRTD (’ SORT FIELDS=(5,5,CH,A,10,5,CH,D),EQUALS ’,

’ RECORD TYPE=V,LENGTH=(84) ’,
1048576,
RETCODE,
PUTIN, /*input routine (sort exit E15)*/
PUTOUT); /*output routine (sort exit E35)*/

350 Enterprise PL/I for z/OS Programming Guide

Determining whether the Sort was successful
When the sort is completed, Sort sets a return code in the variable named in the
fourth argument of the call to PLISRTx.

It then returns control to the statement that follows the CALL PLISRTx statement.
The value returned indicates the success or failure of the sort as follows:
0 Sort successful
16 Sort failed
20 Sort message data set missing

You must declare the variable to which the return code is passed as FIXED
BINARY (31,0). It is standard practice to test the value of the return code after the
CALL PLISRTx statement and take appropriate action according to the success or
failure of the operation.

See the following example (assuming that the return code is called RETCODE):
IF RETCODE¬=0 THEN DO;

PUT DATA(RETCODE);
SIGNAL ERROR;

END;

If the job step that follows the sort depends on the success or failure of the sort,
you should set the value returned in the Sort program as the return code from the
PL/I program. This return code is then available for the following job step. The
PL/I return code is set by a call to PLIRETC. You can call PLIRETC with the value
returned from Sort:
CALL PLIRETC(RETCODE);

You should not confuse this call to PLIRETC with the calls made in the input and
output routines, where a return code is used for passing control information to
Sort.

Establishing data sets for Sort
If DFSORT is installed in a library not known to the system, you must specify the
DFSORT library in a JOBLIB or STEPLIB DD statement.

When you call Sort, the following sort data sets must not be open:

SYSOUT
A data set (normally the printer) on which messages from the Sort
program will be written.

Sort work data sets: SORTWK01–SORTWK32

Note: If you specify more than 32 sort work data sets, DFSORT will only
use the first 32.

****WK01–****WK32
From 1 to 32 working data sets that are used in the sorting process

These must be direct access. For a discussion of space required and
number of data sets, see “Determining storage needed for Sort” on
page 347.

**** represents the four characters that you can specify as the data set
prefix argument in calls to PLISRTx. This allows you to use data sets

Chapter 16. Using the Sort program 351

with prefixes other than SORT. They must start with an alphabetic
character and must not be the names PEER, BALN, CRCX, OSCL,
POLY, SYSC, LIST, or DIAG.

Input data set: SORTIN

****IN
The input data set that is used when PLISRTA and PLISRTC are called

See ****WK01–****WK32 for a detailed description.

Output data set: SORTOUT

****OUT
The output data set that is used when PLISRTA and PLISRTB are
called

See ****WK01–****WK32 for a detailed description.

Checkpoint data set: SORTCKPT
Data set that is used to hold checkpoint data, if the CKPT or CHKPT
option is used in the SORT statement argument and the DFSORT
16NCKPT=NO installation option is specified

For information about this program DD statement, see DFSORT Application
Programming Guide.

DFSPARM SORTCNTL
Data set from which additional or changed control statements can be read
(optional)

For additional information about this program DD statement, see DFSORT
Application Programming Guide.

See ****WK01–****WK32 for a detailed description.

Sort data input and output
The source of the data to be sorted is provided either directly from a data set or
indirectly by a routine (Sort Exit E15) written by the user. Similarly, the destination
of the sorted output is either a data set or a routine (Sort Exit E35) provided by the
user.

PLISRTA is the simplest of all of the interfaces because it sorts from data set to
data set. For an example of a PLISRTA program, see Figure 54 on page 357. Other
interfaces require the input handling routine, the output handling routine, or both.

Data input and output handling routines
The input handling and output handling routines are called by Sort when
PLISRTB, PLISRTC, or PLISRTD is used.

The routines must be written in PL/I, and can be either internal or external
procedures. If they are internal to the routine that calls PLISRTx, they behave in
the same way as ordinary internal procedures in respect of scope of names. The
input and output procedure names must themselves be known in the procedure
that makes the call to PLISRTx.

The routines are called individually for each record required by Sort or passed
from Sort. Therefore, each routine must be written to handle one record at a time.
Variables declared as AUTOMATIC within the procedures will not retain their

352 Enterprise PL/I for z/OS Programming Guide

values between calls. Consequently, items such as counters, which need to be
retained from one call to the next, should either be declared as STATIC or be
declared in the containing block.

The E15 and E35 sort exits must not be MAIN procedures.

E15—Input handling routine (Sort Exit E15)
Input routines are normally used to process the data in some way before it is
sorted.

You can use input routines to print the data, as shown in Figure 55 on page 358
and Figure 57 on page 360, or to generate or manipulate the sorting fields to
achieve the correct results.

The input handling routine is used by Sort when a call is made to either PLISRTB
or PLISRTD. When Sort requires a record, it calls the input routine, which should
return a record in character string format, with return code 12. This return code
means that the record passed is to be included in the sort. Sort continues to call the
routine until return code 8 is passed. Return code 8 means that all records have
already been passed, and that Sort is not to call the routine again. If a record is
returned when the return code is 8, it is ignored by Sort.

The data returned by the routine must be a character string. It can be fixed or
varying. If it is varying, you should normally specify V as the record format in the
RECORD statement, which is the second argument in the call to PLISRTx.
However, you can specify F, in which case the string will be padded to its
maximum length with blanks. The record is returned with a RETURN statement,
and you must specify the RETURNS attribute in the PROCEDURE statement. The
return code is set in a call to PLIRETC. A flowchart for a typical input routine is
shown in “E15—Input handling routine (Sort Exit E15).”

Chapter 16. Using the Sort program 353

Skeletal code for a typical input routine is shown in Figure 52 on page 355.

Figure 51. Flowcharts for input and output handling subroutines

354 Enterprise PL/I for z/OS Programming Guide

For examples of an input routine, see Figure 55 on page 358 and Figure 57 on page
360.

In addition to return codes 12 (include current record in sort) and 8 (all records
sent), Sort allows the use of return code 16 (Sort failed). This return code ends the
sort and causes Sort to return to your PL/I program with return code 16.

Note: A call to PLIRETC sets a return code that will be passed by your PL/I
program, and will be available to any job steps that follow it. When an output
handling routine has been used, it is good practice to reset the return code with a
call to PLIRETC after the call to PLISRTx to avoid receiving a nonzero completion
code. By calling PLIRETC with the return code from Sort as the argument, you can
make the PL/I return code reflect the success or failure of the sort. This practice is
shown in Figure 56 on page 359.

E15: PROC RETURNS (CHAR(80));
/*---*/
/*RETURNS attribute must be used specifying length of data to be */
/* sorted, maximum length if varying strings are passed to Sort. */
/*---*/

DCL STRING CHAR(80); /*--*/
/*A character string variable will normally be*/
/* required to return the data to Sort */
/*--*/

IF LAST_RECORD_SENT THEN
DO;
/*---*/
/*A test must be made to see if all the records have been sent, */
/*if they have, a return code of 8 is set up and control returned*/
/*to Sort */
/*---*/

CALL PLIRETC(8); /*---*/
/* Set return code of 8, meaning last record */
/* already sent. */
/*---*/

RETURN(’’);
END;

ELSE
DO;
/*--*/
/* If another record is to be sent to Sort, do the*/
/* necessary processing, set a return code of 12 */
/* by calling PLIRETC, and return the data as a */
/* character string to Sort */
/*--*/

****(The code to do your processing goes here)

CALL PLIRETC (12); /*--------------------------------------*/
/* Set return code of 12, meaning this */
/* record is to be included in the sort */
/*--------------------------------------*/

RETURN (STRING); /*Return data with RETURN statement*/
END;

END; /*End of the input procedure*/

Figure 52. Skeletal code for an input procedure

Chapter 16. Using the Sort program 355

E35—Output handling routine (Sort Exit E35)
Output handling routines are normally used for any processing that is necessary
after the sort.

For example, you can use output handling routines to print the sorted data, as
shown in Figure 56 on page 359 and Figure 57 on page 360, or to use the sorted
data to generate further information. The output handling routine is used by Sort
when a call is made to PLISRTC or PLISRTD. When the records have been sorted,
Sort passes them, one at a time, to the output handling routine. The output routine
then processes them as required. When all the records have been passed, Sort sets
up its return code and returns to the statement after the CALL PLISRTx statement.
Sort does not indicate to the output handling routine that the last record has been
reached. Any end-of-data handling must therefore be done in the procedure that
calls PLISRTx.

The record is passed from Sort to the output routine as a character string, and you
must declare a character string parameter in the output handling subroutine to
receive the data. The output handling subroutine must also pass return code 4 to
Sort to indicate that it is ready for another record. You set the return code by a call
to PLIRETC.

To stop the sort, pass return code 16 to Sort. This will result in Sort returning to
the calling program with return code 16–Sort failed.

The record passed to the routine by Sort is a character string parameter. If you
specify the record type as F in the second argument in the call to PLISRTx, you
should declare the parameter with the length of the record. If you specify the
record type as V, you should declare the parameter as adjustable, as in the
following example:
DCL STRING CHAR(*);

Figure 58 on page 361 shows a program that sorts varying length records.

A flowchart for a typical output handling routine is given in “E15—Input handling
routine (Sort Exit E15)” on page 353. Skeletal code for a typical output handling
routine is shown in Figure 53.

You should note that a call to PLIRETC sets a return code that will be passed by
your PL/I program, and will be available to any job steps that follow it. When you
have used an output handling routine, it is good practice to reset the return code
with a call to PLIRETC after the call to PLISRTx to avoid receiving a nonzero
completion code. By calling PLIRETC with the return code from Sort as the

E35: PROC(STRING); /*The procedure must have a character string
parameter to receive the record from Sort*/

DCL STRING CHAR(80); /*Declaration of parameter*/

(Your code goes here)

CALL PLIRETC(4); /*Pass return code to Sort indicating that the next
sorted record is to be passed to this procedure.*/

END E35; /*End of procedure returns control to Sort*/

Figure 53. Skeletal code for an output handling procedure

356 Enterprise PL/I for z/OS Programming Guide

argument, you can make the PL/I return code reflect the success or failure of the
sort. This practice is shown in the examples that follow this topic.

Calling PLISRTA example
This topic shows an example of a PLISRTA program.

After each time that the PL/I input- and output-handling routines communicate
the return code information to the Sort program, the return code field is reset to
zero; therefore, it is not used as a regular return code other than its specific use for
the Sort program.

For details on handling conditions, especially those that occur during the input-
and output-handling routines, see z/OS Language Environment Programming Guide.

Calling PLISRTB example
This topic shows an example of a PLISRTB program, which calls an input routine
to get data and places sorted records on a data set.

//OPT14#7 JOB ...
//STEP1 EXEC IBMZCBG
//PLI.SYSIN DD *
EX106: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,0);

CALL PLISRTA (’ SORT FIELDS=(7,74,CH,A) ’,
’ RECORD TYPE=F,LENGTH=(80) ’,

1048576
RETURN_CODE);

SELECT (RETURN_CODE);
WHEN(0) PUT SKIP EDIT

(’SORT COMPLETE RETURN_CODE 0’) (A);
WHEN(16) PUT SKIP EDIT

(’SORT FAILED, RETURN_CODE 16’) (A);
WHEN(20) PUT SKIP EDIT

(’SORT MESSAGE DATASET MISSING ’) (A);
OTHER PUT SKIP EDIT (

’INVALID SORT RETURN_CODE = ’, RETURN_CODE) (A,F(2));
END /* select */;
CALL PLIRETC(RETURN_CODE);
/*set PL/I return code to reflect success of sort*/
END EX106;

//GO.SORTIN DD *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*
//GO.SYSPRINT DD SYSOUT=A
//GO.SORTOUT DD SYSOUT=A
//GO.SYSOUT DD SYSOUT=A
//GO.SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,2)
/*

Figure 54. PLISRTA—sorting from input data set to output data set

Chapter 16. Using the Sort program 357

Calling PLISRTC example
This topic shows an example of a PLISRTC program, which sorts records in an
input data set and calls an output handling routine to print sorted data.

//OPT14#8 JOB ...
//STEP1 EXEC IBMZCBG
//PLI.SYSIN DD *
EX107: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,0);

CALL PLISRTB (’ SORT FIELDS=(7,74,CH,A) ’,
’ RECORD TYPE=F,LENGTH=(80) ’,
1048576
RETURN_CODE,
E15X);

SELECT(RETURN_CODE);
WHEN(0) PUT SKIP EDIT

(’SORT COMPLETE RETURN_CODE 0’) (A);
WHEN(16) PUT SKIP EDIT

(’SORT FAILED, RETURN_CODE 16’) (A);
WHEN(20) PUT SKIP EDIT

(’SORT MESSAGE DATASET MISSING ’) (A);
OTHER PUT SKIP EDIT

(’INVALID RETURN_CODE = ’,RETURN_CODE)(A,F(2));
END /* select */;
CALL PLIRETC(RETURN_CODE);
/*set PL/I return code to reflect success of sort*/

E15X: /* INPUT HANDLING ROUTINE GETS RECORDS FROM THE INPUT
STREAM AND PUTS THEM BEFORE THEY ARE SORTED*/

PROC RETURNS (CHAR(80));
DCL SYSIN FILE RECORD INPUT,

INFIELD CHAR(80);

ON ENDFILE(SYSIN) BEGIN;
PUT SKIP(3) EDIT (’END OF SORT PROGRAM INPUT’)(A);
CALL PLIRETC(8); /* signal that last record has

already been sent to sort*/
INFIELD = ’’;
GOTO ENDE15;
END;

READ FILE (SYSIN) INTO (INFIELD);
PUT SKIP EDIT (INFIELD)(A(80)); /*PRINT INPUT*/
CALL PLIRETC(12); /* request sort to include current

record and return for more*/
ENDE15:

RETURN(INFIELD);
END E15X;

END EX107;
/*
//GO.SYSIN DD *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*
//GO.SYSPRINT DD SYSOUT=A
//GO.SORTOUT DD SYSOUT=A
//GO.SYSOUT DD SYSOUT=A
//*
//GO.SORTCNTL DD *

OPTION DYNALLOC=(3380,2),SKIPREC=2
/*

Figure 55. PLISRTB—sorting from input handling routine to output data set

358 Enterprise PL/I for z/OS Programming Guide

Calling PLISRTD example
This topic shows an example of a PLISRTD program, which calls the input
handling routine to print unsorted data and calls the output handling routine to
print sorted data.

//OPT14#9 JOB ...
//STEP1 EXEC IBMZCBG
//PLI.SYSIN DD *
EX108: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,0);

CALL PLISRTC (’ SORT FIELDS=(7,74,CH,A) ’,
’ RECORD TYPE=F,LENGTH=(80) ’,
1048576
RETURN_CODE,
E35X);

SELECT(RETURN_CODE);
WHEN(0) PUT SKIP EDIT

(’SORT COMPLETE RETURN_CODE 0’) (A);
WHEN(16) PUT SKIP EDIT

(’SORT FAILED, RETURN_CODE 16’) (A);
WHEN(20) PUT SKIP EDIT

(’SORT MESSAGE DATASET MISSING ’) (A);
OTHER PUT SKIP EDIT

(’INVALID RETURN_CODE = ’, RETURN_CODE) (A,F(2));
END /* select */;

CALL PLIRETC (RETURN_CODE);
/*set PL/I return code to reflect success of sort*/

E35X: /* output handling routine prints sorted records*/
PROC (INREC);

DCL INREC CHAR(80);
PUT SKIP EDIT (INREC) (A);
CALL PLIRETC(4); /*request next record from sort*/

END E35X;
END EX108;

/*
//GO.STEPLIB DD DSN=SYS1.SORTLINK,DISP=SHR
//GO.SYSPRINT DD SYSOUT=A
//GO.SYSOUT DD SYSOUT=A
//GO.SORTIN DD *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*
//GO.SORTCNTL DD *

OPTION DYNALLOC=(3380,2),SKIPREC=2
/*

Figure 56. PLISRTC—sorting from input data set to output handling routine

Chapter 16. Using the Sort program 359

//OPT14#10 JOB ...
//STEP1 EXEC IBMZCBG
//PLI.SYSIN DD *
EX109: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,0);
CALL PLISRTD (’ SORT FIELDS=(7,74,CH,A) ’,

’ RECORD TYPE=F,LENGTH=(80) ’,
1048576
RETURN_CODE,
E15X,
E35X);

SELECT(RETURN_CODE);
WHEN(0) PUT SKIP EDIT

(’SORT COMPLETE RETURN_CODE 0’) (A);
WHEN(20) PUT SKIP EDIT

(’SORT MESSAGE DATASET MISSING ’) (A);
OTHER PUT SKIP EDIT

(’INVALID RETURN_CODE = ’, RETURN_CODE) (A,F(2));
END /* select */;

CALL PLIRETC(RETURN_CODE);
/*set PL/I return code to reflect success of sort*/

E15X: /* Input handling routine prints input before sorting*/
PROC RETURNS(CHAR(80));

DCL INFIELD CHAR(80);

ON ENDFILE(SYSIN) BEGIN;
PUT SKIP(3) EDIT (’END OF SORT PROGRAM INPUT. ’,

’SORTED OUTPUT SHOULD FOLLOW’)(A);
CALL PLIRETC(8); /* Signal end of input to sort*/
INFIELD = ’’;
GOTO ENDE15;

END;

GET FILE (SYSIN) EDIT (INFIELD) (A(80));
PUT SKIP EDIT (INFIELD)(A);
CALL PLIRETC(12); /*Input to sort continues*/

ENDE15:
RETURN(INFIELD);
END E15X;

E35X: /* Output handling routine prints the sorted records*/
PROC (INREC);

DCL INREC CHAR(80);
PUT SKIP EDIT (INREC) (A);

NEXT: CALL PLIRETC(4); /* Request next record from sort*/
END E35X;

END EX109;

/*
//GO.SYSOUT DD SYSOUT=A
//GO.SYSPRINT DD SYSOUT=A
//GO.SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//GO.SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,1)
//GO.SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,1)
//GO.SYSIN DD *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*

Figure 57. PLISRTD—sorting from input handling routine to output handling routine

360 Enterprise PL/I for z/OS Programming Guide

Sorting variable-length records example
This example shows a program that sorts varying length records.

//OPT14#11 JOB ...
//STEP1 EXEC IBMZCBG
//PLI.SYSIN DD *
/* PL/I EXAMPLE USING PLISRTD TO SORT VARIABLE-LENGTH

RECORDS */

EX1306: PROC OPTIONS(MAIN);
DCL RETURN_CODE FIXED BIN(31,0);
CALL PLISRTD (’ SORT FIELDS=(11,14,CH,A) ’,

’ RECORD TYPE=V,LENGTH=(84,,,24,44) ’,
/*NOTE THAT LENGTH IS MAX AND INCLUDES
4 BYTE LENGTH PREFIX*/

1048576
RETURN_CODE,
PUTIN,
PUTOUT);

SELECT(RETURN_CODE);
WHEN(0) PUT SKIP EDIT (

’SORT COMPLETE RETURN_CODE 0’) (A);
WHEN(16) PUT SKIP EDIT (

’SORT FAILED, RETURN_CODE 16’) (A);
WHEN(20) PUT SKIP EDIT (

’SORT MESSAGE DATASET MISSING ’) (A);
OTHER PUT SKIP EDIT (

’INVALID RETURN_CODE = ’, RETURN_CODE)
(A,F(2));

END /* SELECT */;

CALL PLIRETC(RETURN_CODE);
/*SET PL/I RETURN CODE TO REFLECT SUCCESS OF SORT*/
PUTIN: PROC RETURNS (CHAR(80) VARYING);

/*OUTPUT HANDLING ROUTINE*/
/*NOTE THAT VARYING MUST BE USED ON RETURNS ATTRIBUTE
WHEN USING VARYING LENGTH RECORDS*/
DCL STRING CHAR(80) VAR;

ON ENDFILE(SYSIN) BEGIN;
PUT SKIP EDIT (’END OF INPUT’)(A);
CALL PLIRETC(8);
STRING = ’’;
GOTO ENDPUT;
END;

GET EDIT(STRING)(A(80));
I=INDEX(STRING||’ ’,’ ’)-1;/*RESET LENGTH OF THE*/
STRING = SUBSTR(STRING,1,I); /* STRING FROM 80 TO */

/* LENGTH OF TEXT IN */
/* EACH INPUT RECORD.*/

Figure 58. Sorting varying-length records using input and output handling routines

Chapter 16. Using the Sort program 361

PUT SKIP EDIT(I,STRING) (F(2),X(3),A);
CALL PLIRETC(12);

ENDPUT: RETURN(STRING);
END;

PUTOUT:PROC(STRING);
/*OUTPUT HANDLING ROUTINE OUTPUT SORTED RECORDS*/
DCL STRING CHAR (*);
/*NOTE THAT FOR VARYING RECORDS THE STRING
PARAMETER FOR THE OUTPUT-HANDLING ROUTINE
SHOULD BE DECLARED ADJUSTABLE BUT CANNOT BE
DECLARED VARYING*/

PUT SKIP EDIT(STRING)(A); /*PRINT THE SORTED DATA*/
CALL PLIRETC(4);
END; /*ENDS PUTOUT*/
END;

/*
//GO.SYSIN DD *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*
//GO.SYSPRINT DD SYSOUT=A
//GO.SORTOUT DD SYSOUT=A
//GO.SYSOUT DD SYSOUT=A
//GO.SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//GO.SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,1)
//*

Sorting varying-length records using input and output handling routines (continued)

362 Enterprise PL/I for z/OS Programming Guide

Chapter 17. ILC with C

This chapter describes some aspects of InterLanguage Communication (ILC)
between PL/I and C. The examples illustrate how to use many of the data types
common to both languages and help you write PL/I code that either calls or is
called by C.

Equivalent data types
This topic lists the common C and PL/I data type equivalents.

Table 35. C and PL/I type equivalents

C type Matching PL/I type

char[...] char(...) varyingz

wchar[...] wchar(...) varyingz

signed char fixed bin(7)

unsigned char unsigned fixed bin(8)

short fixed bin(15)

unsigned short unsigned fixed bin(16)

int fixed bin(31)

unsigned int unsigned fixed bin(32)

long long fixed bin(63)

unsigned long long unsigned fixed bin(64)

float float bin(21)

double float bin(53)

long double float bin(p) (p >= 54)

enum ordinal

typedef define alias

struct define struct

union define union

struct * handle

Simple type equivalence
This example illustrates the translation of the simple typedef for time_t from the C
header file time.h.

typedef long time_t;

define alias time_t fixed bin(31);

Figure 59. Simple type equivalence

© Copyright IBM Corp. 1999, 2017 363

Struct type equivalence
This example illustrates the translation of the simple struct for tm from the C
header file time.h.

Enum type equivalence
This example illustrates the translation of the simple enum __device_t from the C
header file stdio.h.

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

define structure
1 tm

,2 tm_sec fixed bin(31)
,2 tm_min fixed bin(31)
,2 tm_hour fixed bin(31)
,2 tm_mday fixed bin(31)
,2 tm_mon fixed bin(31)
,2 tm_year fixed bin(31)
,2 tm_wday fixed bin(31)
,2 tm_yday fixed bin(31)
,2 tm_isdst fixed bin(31)

;

Figure 60. Sample struct type equivalence

364 Enterprise PL/I for z/OS Programming Guide

File type equivalence
A C file declaration depends on the platform, but it often starts as follows:

What is needed is a pointer (or token) for a file, so this translation can be finessed
as follows:

Using C functions
Suppose the programmer wants to write a program to read a file and dump it as
formatted hex, by using the C functions fopen and fread.

The code for this program is straightforward:

typedef enum {
__disk = 0,
__terminal = 1,
__printer = 2,
__tape = 3,
__tdq = 5,
__dummy = 6,
__memory = 8,
__hfs = 9,
__hiperspace = 10

} __device_t;

define ordinal __device_t (
__disk value(0)

, __terminal value(1)
, __printer value(2)
, __tape value(3)
, __tdq value(4)
, __dummy value(5)
, __memory value(8)
, __hfs value(9)
, __hiperspace value(10)

);

Figure 61. Sample enum type equivalence

struct __file {
unsigned char *__bufPtr;

... } FILE;

Figure 62. Start of the C declaration for its FILE type

define struct 1 file;
define alias file_Handle handle file;

Figure 63. PL/I equivalent for a C file

Chapter 17. ILC with C 365

Most of the declarations in the INCLUDE file filedump are obvious:

Matching simple parameter types
It would be easy to mistranslate the declarations for the C functions. For instance,
the declaration for the C function fread shown in Figure 66 on page 367 can be
translated to the declaration as shown in Figure 67 on page 367.

filedump:
proc(fn) options(noexecops main);

dcl fn char(*) var;

%include filedump;

file = fopen(fn, ’rb’);

if file = sysnull() then
do;

display(’file could not be opened’);
return;

end;

do forever;
unspec(buffer) = ’’b;

read_In = fread(addr(buffer), 1, stg(buffer), file);

if read_In = 0 then
leave;

display(heximage(addr(buffer),16,’ ’) || ’ ’
|| translate(buffer,(32)’.’,unprintable));

if read_In < stg(buffer) then
leave;

end;

call fclose(file);
end filedump;

Figure 64. Sample code to use fopen and fread to dump a file

define struct 1 file;
define alias file_Handle handle file;

define alias size_t unsigned fixed bin(32);
define alias int signed fixed bin(31);

dcl file type(file_Handle);
dcl read_In fixed bin(31);
dcl buffer char(16);

dcl unprintable char(32) value(substr(collate(),1,32));

Figure 65. Declarations for filedump program

366 Enterprise PL/I for z/OS Programming Guide

On some platforms, this would not link successfully because C names are case
sensitive. In order to prevent this kind of linker problem, it is best to specify the
name in mixed case by using the extended form of the external attribute. So, for
instance, the declaration for fread would be better as follows:

But this would not run right, because while PL/I parameters are byaddr by default,
C parameters are byvalue by default. To fix this issue, add the byvalue attribute to
the parameters:

But note how the return value is set in Figure 70 on page 368: a fourth parameter
(the address of the temporary _temp5) is passed to the function fread, which is
then expected to place the return code in the integer at that address. This is the
convention for how values are returned when the byaddr attribute applies to
returns, and PL/I uses this convention by default.

size_t fread(void *,
size_t,
size_t,
FILE *);

Figure 66. C declaration of fread

dcl fread ext
entry(pointer,

type size_t,
type size_t,
type file_Handle)

returns(type size_t);

Figure 67. First incorrect declaration of fread

dcl fread ext(’fread’)
entry(pointer,

type size_t,
type size_t,
type file_Handle)

returns(type size_t);

Figure 68. Second incorrect declaration of fread

dcl fread ext(’fread’)
entry(pointer byvalue,

type size_t byvalue,
type size_t byvalue,
type file_Handle byvalue)

returns(type size_t);

Figure 69. Third incorrect declaration of fread

Chapter 17. ILC with C 367

This would not run right, because C return values are byvalue. To fix this error,
add one more byvalue attribute.

Note how the return value is set now in Figure 72: no extra address is passed, and
the return value is simply returned in register 15.

* read_In = fread(addr(buffer), 1, stg(buffer), file);
*

L r4,FILE(,r13,176)
L r1,fread(,r5,12)
LA r2,_temp5(,r13,420)
LA r8,BUFFER(,r13,184)
L r15,&EPA_&WSA(,r1,8)
L r0,&EPA_&WSA(,r1,12)
ST r0,_CEECAA_(,r12,500)
LA r1,#MX_TEMP1(,r13,152)
ST r8,#MX_TEMP1(,r13,152)
LA r8,1
ST r8,#MX_TEMP1(,r13,156)
ST r7,#MX_TEMP1(,r13,160)
ST r4,#MX_TEMP1(,r13,164)
ST r2,#MX_TEMP1(,r13,168)
BALR r14,r15
L r0,_temp5(,r13,420)
ST r0,READ_IN(,r13,180)

Figure 70. Code generated for RETURNS BYADDR

dcl fread ext(’fread’)
entry(pointer byvalue,

type size_t byvalue,
type size_t byvalue,
type file_Handle byvalue)

returns(type size_t byvalue);

Figure 71. Correct declaration of fread

* read_In = fread(addr(buffer), 1, stg(buffer), file);
*

L r2,FILE(,r13,176)
L r1,fread(,r5,12)
LA r7,BUFFER(,r13,184)
L r15,&EPA_&WSA(,r1,8)
L r0,&EPA_&WSA(,r1,12)
ST r0,_CEECAA_(,r12,500)
LA r1,#MX_TEMP1(,r13,152)
ST r7,#MX_TEMP1(,r13,152)
LA r7,1
ST r7,#MX_TEMP1(,r13,156)
ST r4,#MX_TEMP1(,r13,160)
ST r2,#MX_TEMP1(,r13,164)
BALR r14,r15
LR r0,r15
ST r0,READ_IN(,r13,180)

Figure 72. Code generated for RETURNS BYVALUE

368 Enterprise PL/I for z/OS Programming Guide

Matching string parameter types
Now that fread is translated correctly, suppose a programmer tries this translation
for fopen:

But C has no strings, only pointers, and these pointers would be passed by value
(byvalue); so the strings should be by reference (byaddr):

But PL/I passes descriptors with strings and C does not understand them, so they
must be suppressed. To suppress the descriptors, add options(nodescriptor) to
the declaration:

This will work, but is not optimal because the parameters are input-only; if the
parameter is a constant, the nonassignable attribute will prevent a copy being
made and passed. Hence, the best translation of the declaration of fopen is as
follows:

At this point, the declare for the fclose function presents few surprises except
perhaps for the optional attribute in the returns specification. This attribute
allows you to invoke the fclose function through a CALL statement and not have
to dispose of the return code. But note that if the file were an output file, the
return code on fclose should always be checked because the last buffer is written

dcl fopen ext(’fopen’)
entry(char(*) varyingz byvalue,

char(*) varyingz byvalue)
returns(byvalue type file_handle);

Figure 73. First incorrect declaration of fopen

dcl fopen ext(’fopen’)
entry(char(*) varyingz byaddr,

char(*) varyingz byaddr)
returns(byvalue type file_handle);

Figure 74. Second incorrect declaration of fopen

dcl fopen ext(’fopen’)
entry(char(*) varyingz byaddr,

char(*) varyingz byaddr)
returns(byvalue type file_handle)
options (nodescriptor);

Figure 75. Correct declaration of fopen

dcl fopen ext(’fopen’)
entry(char(*) varyingz nonasgn byaddr,

char(*) varyingz nonasgn byaddr)
returns(byvalue type file_handle)
options (nodescriptor);

Figure 76. Optimal, correct declaration of fopen

Chapter 17. ILC with C 369

out only when the file is closed and that write could fail for lack of space.

Now, on z/OS UNIX, you can compile and run the programs with the commands:

This will produce the following output:

Functions returning ENTRYs
The C quicksort function qsort takes a compare routine. For instance, to sort an
array of integers, the following function (which use the byvalue attribute twice)
could be used:

And the C qsort function could be used with this compare routine to sort an array
of integers, as in the following code fragment:

dcl fclose ext(’fclose’)
entry(type file_handle byvalue)
returns(optional type int byvalue)
options (nodescriptor);

Figure 77. Declaration of fclose

pli -qdisplay=std filedump.pli

filedump filedump.pli

Figure 78. Commands to compile and run filedump

15408689 938584A4 94977A40 97999683 . filedump: proc
4D86955D 409697A3 899695A2 4D959685 (fn) options(noe
A7858396 97A24094 8189955D 5E151540 xecops main);..

Figure 79. Output of running filedump

comp2:
proc(key, element)
returns(fixed bin(31) byvalue);

dcl (key, element) pointer byvalue;
dcl word based fixed bin(31);

select;
when(key->word < element->word)

return(-1);
when(key->word = element->word)

return(0);
otherwise

return(+1);
end;

end;

Figure 80. Sample compare routine for C qsort function

370 Enterprise PL/I for z/OS Programming Guide

But because C function pointers are not the same as PL/I ENTRY variables, the C
qsort function must not be declared simply as follows:

Recall that a PL/I ENTRY variable might point to a nested function (and thus
requires a backchain address as well as an entry point address). But a C function
pointer is limited in pointing to a non-nested function only, and so a PL/I ENTRY
variable and a C function pointer do not even use the amount of storage.

However, a C function pointer is equivalent to the PL/I type LIMITED ENTRY.
Therefore, the C qsort function could be declared as follows:

Linkages
On z/OS, there are two crucial facts about linkages:
v IBM C, JAVA and Enterprise PL/I use the same linkage by default.
v This linkage is not the system linkage.

For a traditional PL/I application where all parameters are byaddr, the differences
between the code generated when a function has the default linkage and the code
generated when the function has the system linkage would usually not matter. But
if the parameters are byvalue (as they usually are in C and JAVA), the differences
can break your code.

dcl a(1:4) fixed bin(31) init(19,17,13,11);

put skip data(a);

call qsort(addr(a), dim(a), stg(a(1)), comp2);

put skip data(a);

Figure 81. Sample code to use C qsort function

dcl qsort ext(’qsort’)
entry(pointer,

fixed bin(31),
fixed bin(31),
entry returns(byvalue fixed bin(31))

)
options(byvalue nodescriptor);

Figure 82. Incorrect declaration of qsort

dcl qsort ext(’qsort’)
entry(pointer,

fixed bin(31),
fixed bin(31),
limited entry
returns(byvalue fixed bin(31))

)
options(byvalue nodescriptor);

Figure 83. Correct declaration of qsort

Chapter 17. ILC with C 371

In fact, there is only a small difference if the parameters are byaddr. In Figure 84,
the only difference between the code generated for a function with the default
linkage and for one with the system linkage is that the high-order bit is turned on
for the last parameter of the system linkage call.

This difference is transparent to most programs.

But, there is a big difference if the parameters are byvalue rather than byaddr. In
Figure 85 on page 373, for the function with the default linkage, register 1 points to
the values of the integers passed, while for the function with the system linkage,
register 1 points to the addresses of those values.

This difference is not transparent to most programs.

dcl dfta ext entry(fixed bin(31) byaddr
,fixed bin(31) byaddr);

dcl sysa ext entry(fixed bin(31) byaddr
,fixed bin(31) byaddr)

options(linkage(system));

* call dfta(n, m);
*

LA r0,M(,r13,172)
LA r2,N(,r13,168)
L r15,=V(DFTV)(,r3,126)
LA r1,#MX_TEMP1(,r13,152)
ST r2,#MX_TEMP1(,r13,152)
ST r0,#MX_TEMP1(,r13,156)
BALR r14,r15

*
* call sysa(n, m);
*

LA r0,M(,r13,172)
LA r2,N(,r13,168)
O r0,=X’80000000’
L r15,=V(SYSV)(,r3,130)
LA r1,#MX_TEMP1(,r13,152)
ST r2,#MX_TEMP1(,r13,152)
ST r0,#MX_TEMP1(,r13,156)
BALR r14,r15

Figure 84. Code when parameters are BYADDR

372 Enterprise PL/I for z/OS Programming Guide

Sharing output and input
This section provides information about sharing output and input with a C
program by specifying the STDSYS option.

For more information and limitations about the STDSYS option, see the following
information:
v “STDSYS” on page 85 in Chapter 1, “Using compiler options and facilities,” on

page 3.
v Stream I/O with unprintable characters in Enterprise PL/I for z/OS Compiler and

Run-Time Migration Guide.

Sharing output
If you want to share SYSPRINT with a C program, you must compile your PL/I
code with the STDSYS option.

By default, DISPLAY statements use WTO’s to display their output. If you specify
the DISPLAY(STD) compiler option, DISPLAY statements will use the C puts
function to display their output. This can be particularly useful under z/OS UNIX.

Behavior of the standard C stream for sharing output under MVS batch, TSO
batch, IMS batch, and IMS interactive is as follows:
1. stdout goes first to DD:SYSPRINT.

dcl dftv ext entry(fixed bin(31) byvalue
,fixed bin(31) byvalue);

dcl sysv ext entry(fixed bin(31) byvalue
,fixed bin(31) byvalue)

options(linkage(system));

* call dftv(n, m);
*

L r2,N(,r13,168)
L r0,M(,r13,172)
L r15,=V(DFTV)(,r3,174)
LA r1,#MX_TEMP1(,r13,152)
ST r2,#MX_TEMP1(,r13,152)
ST r0,#MX_TEMP1(,r13,156)
BALR r14,r15

*
* call sysv(n, m);
*

L r1,N(,r13,168)
L r0,M(,r13,172)
ST r0,#wtemp_1(,r13,176)
LA r0,#wtemp_1(,r13,176)
ST r1,#wtemp_2(,r13,180)
LA r2,#wtemp_2(,r13,180)
O r0,=X’80000000’
L r15,=V(SYSV)(,r3,178)
LA r1,#MX_TEMP1(,r13,152)
ST r2,#MX_TEMP1(,r13,152)
ST r0,#MX_TEMP1(,r13,156)
BALR r14,r15

Figure 85. Code when parameters are BYVALUE

Chapter 17. ILC with C 373

2. If DD:SYSPRINT does not exist, stdout looks for DD:SYSTERM.
3. If neither DD:SYSTERM nor DD:SYSERR exists, the library opens a sysout=*

data set by using DD SYSPRINT and sends the stdout stream to it.

Sharing input
To share SYSIN with a C program, you must compile the application with the
STDSYS option and open SYSIN as an input stream file. Avoid using the DD names
that are reserved by the C Library.

You can also copy SYSIN to a temporary data set in a prior job step and use that as
SYSIN in your PL/I job step; it can be shared when it is not allocated to an
instream file.

An input stream file can be opened only once when it is allocated to the SYSIN DD
in JCL.

Behavior of the standard C stream for sharing input under MVS batch, TSO batch,
IMS batch, and IMS interactive is as follows:
1. stdin goes to DD:SYSIN.
2. If DD:SYSIN does not exist, all read operations from stdin fails.

Using the ATTACH statement
The ATTACH statement in a PL/I program uses the underlying pthread library to
perform thread management. When the ATTACH statement is issued, the pthread
library tries to allocate standard C stream files.

After the ATTACH statement is issued, any attempt to open SYSIN by the
application fails when SYSIN is an instream file that is allocated to the SYSIN DD in
JCL (for example, //SYSIN DD * or //SYSIN DD DATA). A SYSIN OPEN FAILED error is
issued.

Redirecting C standard streams
Use the STDSYS option in all mixed PL/I and C applications and all
multithreading applications.

If you compile your program with the NOSTDSYS option, it might conflict with
the use of the SYSIN DD name and the SYSPRINT DD name in C.

For example, if your program has the ATTACH statement, it starts the C
environment directly. Starting the C environment causes the SYSIN and SYSPRINT
streams to be opened and closed independent of your PL/I application programs.
In same cases, SYSIN might fail to open, or the SYSPRINT data set might be
overwritten.

Summary
This topic provides a summary of the key points described in this section.
v C is case sensitive.
v Parameters should be BYVALUE.
v Return values should be BYVALUE.
v String parameters should be BYADDR.
v Arrays and structures should also be BYADDR.

374 Enterprise PL/I for z/OS Programming Guide

v No descriptors should be passed.
v Input-only strings should be NONASSIGNABLE.
v C function pointers map to LIMITED ENTRYs.
v The IBM C compilers and the IBM PL/I compilers use the same default linkage

(and it matters).

Chapter 17. ILC with C 375

376 Enterprise PL/I for z/OS Programming Guide

Chapter 18. Interfacing with Java

This chapter gives a brief description of Java™ and the Java Native Interface (JNI)
and explains why you might be interested in using it with PL/I.

This chapter describes a simple Java-PL/I application and provides information
about compatibility between the two languages. Instructions on how to build and
run the Java-PL/I sample applications assume that the work is being done in the
z/OS UNIX System Services environment of z/OS.

Before you can communicate with Java from PL/I, you need to have Java installed
on your z/OS system. Contact your local System Administrator for more
information about how to set up your z/OS Java environment.

These sample programs have been compiled and tested with Java JRE Version
1.6.0. To determine the level of Java in your z/OS UNIX System Services
environment, enter this command from the command line:
java -version

The active Java version is then displayed, as in the following example:
java version "1.6.0"
Java(TM) SE Runtime Environment (build pmz3160_26sr1-20111114_01(SR1))
IBM J9 VM (build 2.6, JRE 1.6.0 z/OS s390-31 20111113_94967 (JIT enabled, AOT enabled)

Java Native Interface (JNI)
Java is an object-oriented programming language invented by Sun Microsystems
and provides a powerful way to make Internet documents interactive. The Java
Native Interface (JNI) is the Java interface to native programming languages and is
part of the Java Development Kits.

By writing programs that use JNI, you can ensure that your code is portable across
many platforms.

The JNI allows Java code that runs within a Java Virtual Machine (JVM) to operate
with applications and libraries written in other languages, such as PL/I. In
addition, the Invocation API allows you to embed a Java Virtual Machine into your
PL/I applications.

Java is a fairly complete programming language; however, there are situations in
which you want to call a program written in another programming language. You
can do this from Java with a method call to a native language, known as a native
method.

These are some reasons to use native methods:
v The native language has a special capability that your application needs and that

the standard Java class libraries lack.
v You already have many existing applications in your native language and you

wish to make them accessible to a Java application.
v You want to implement an intensive series of complicated calculations in your

native language and have your Java applications call these functions.

© Copyright IBM Corp. 1999, 2017 377

v You or your programmers have a broader skill set in your native language and
you do not wish to loose this advantage.

Programming through the JNI lets you use native methods to do many different
operations:
v A native method can utilize Java objects in the same way that a Java method

uses these objects.
v A native method can create Java objects, including arrays and strings, and then

inspect and use these objects to perform its tasks.
v A native method can inspect and use objects created by Java application code.
v A native method can update Java objects that it created or were passed to it, and

these updated objects can then be made available to the Java application.

Finally, native methods can also easily call already existing Java methods,
capitalizing on the functionality already incorporated in the Java programming
framework. In these ways, both the native language side and the Java side of an
application can create, update, and access Java objects and then share these objects
between them.

Calling PL/I program from Java
When a PL/I program is called from a Java program, all files opened in PL/I must
be explicitly closed in PL/I before PL/I returns control to Java for the last time.

Similarly, all modules that are fetched in the PL/I program must be released.

JNI sample program #1 - 'Hello World'
The first sample program is another variation of the "Hello World!" program. The
"Hello World!" program has one Java class, callingPLI.java. The native method,
written in PL/I, is contained in hiFromPLI.pli.

Here is a brief overview of the steps to create this sample program:
1. Write a Java program that defines a class containing a native method, loads the

native load library, and calls the native method.
2. Compile the Java program to create a Java class.
3. Write a PL/I program that implements the native method and displays the

"Hello!" text.
4. Compile and link the PL/I program.
5. Run the Java program that calls the native method in the PL/I program.

Step 1: Writing the Java program

Procedure
1. Declare the native method.

All methods, whether Java methods or native methods, must be declared
within a Java class. The only difference in the declaration of a Java method and
a native method is the keyword native. The native keyword tells Java that the
implementation of this method will be found in a native library that will be
loaded during the execution of the program. You can declare the native method
as follows:
public native void callToPLI();

378 Enterprise PL/I for z/OS Programming Guide

In the above statement, the void means that there is no return value expected
from this native method call. The empty parentheses in the method name
callToPLI() means that there are no parameters being passed on the call to
the native method.

2. Load the native library so that the native library will be loaded at execution
time.
You can use the following Java statement to load the native library:
static {
System.loadLibrary("hiFromPLI");

}

In the above statement, the Java System method System.loadLibrary(...) is
called to find and load the native library. The PL/I shared library,
libhiFromPLI.so, will be created during the step that compiles and links the
PL/I program.

3. Write the Java Main method.
The callingPLI class also includes a main method to instantiate the class and
call the native method. The main method instantiates callingPLI and calls the
callToPLI() native method.
The complete definition of the callingPLI class, including all the points
addressed above in this topic, is as follows:
public class callingPLI {
public native void callToPLI();
static {

System.loadLibrary("hiFromPLI");
}
public static void main(String[] argv) {

callingPLI callPLI = new callingPLI();
callPLI.callToPLI();
System.out.println("And Hello from Java, too!");

}
}

Step 2: Compiling the Java program

Procedure

Use the Java compiler to compile the callingPLI class into an executable form. You
can use the following command:
javac callingPLI.java

Step 3: Writing the PL/I Program

The PL/I implementation of the native method looks much like any other PL/I
subroutine.

Useful PL/I compiler options

The sample program contains a series of *PROCESS statements that define the
important compiler options.
*Process Limits(Extname(100)) Margins(1, 100) ;
*Process Display(Std) Dllinit Extrn(Short);
*Process Rent Default(ASCII IEEE);

Here is a brief description of them and why they are useful:

Chapter 18. Interfacing with Java 379

Extname(100)
Allows for longer, Java style, external names.

Margins(1,100)
Extending the margins gives you more room for Java style names and
identifiers.

Display(Std)
Writes the "Hello World" text to stdout, not through WTOs. In the z/OS UNIX
environment WTOs would not be seen by the user.

Dllinit
Includes the initialization code needed for creating a DLL.

Extrn(Short)
EXTRNs are emitted only for those constants that are referenced. This option is
necessary for Enterprise PL/I V3R3 and later.

Default(ASCII IEEE);
ASCII specifies that CHARACTER and PICTURE data is held in ASCII - the
form in which it is held by JAVA.

IEEE specifies that FLOAT data is held in IEEE format - the form in which it is
held by JAVA.

RENT
Ensures that code is reentrant even if it writes on static variables.

Correct form of PL/I procedure name and procedure statement

The PL/I procedure name must conform to the Java naming convention in order to
be located by the Java Class Loader at execution time. The Java naming scheme
consists of three parts. The first part identifies the routine to the Java environment,
the second part is the name of the Java class that defines the native method, and
the third part is the name of the native method itself.

Here is a breakdown of PL/I procedure name Java_callingPLI_callToPLI in the
sample program:

Java
All native methods resident in dynamic libraries must begin with Java.

_callingPLI
The name of the Java class that declares the native method.

_callToPLI
The name of the native method itself.

Note: There is an important difference between coding a native method in PL/I
and in C. The javah tool, which is supplied with the JDK, generates the form of
the external references required for C programs. When you write your native
methods in PL/I and follow the rules above for naming your PL/I external
references, performing the javah step is not necessary for PL/I native methods.

In addition, the following options must be specified in the OPTIONS option on the
PROCEDURE statement:
v FromAlien
v NoDescriptor
v ByValue

380 Enterprise PL/I for z/OS Programming Guide

The complete procedure statement for the sample program is as follows:
Java_callingPLI_callToPLI:
Proc(JNIEnv , MyJObject)
External("Java_callingPLI_callToPLI")
Options(FromAlien NoDescriptor ByValue);

JNI include file

The two PL/I include files that contain the PL/I definitions of the Java Native
interface are ibmzjni.inc, which in turn includes ibmzjnim.inc. These include files
are included with this statement:

%include ibmzjni;

The ibmzjni and ibmzjnim include files are provided in the PL/I SIBMZSAM data
set.

The complete PL/I procedure

For completeness, here is the entire PL/I program that defines the native method:
*Process Limits(Extname(100)) Margins(1, 100) ;
*Process Display(Std) Dllinit Extrn(Short);
*Process Rent Default(ASCII IEEE);
PliJava_Demo: Package Exports(*);

Java_callingPLI_callToPLI:
Proc(JNIEnv , MyJObject)
External("Java_callingPLI_callToPLI")
Options(FromAlien NoDescriptor ByValue);

%include ibmzjni;
Dcl myJObject Type jObject;

Display(’Hello from Enterprise PL/I!’);

End;

Step 4: Compiling and linking the PL/I program

Procedure
1. Compile the PL/I sample program with the following command:

pli -c hiFromPLI.pli

2. Link the resulting PL/I object deck into a shared library with this command:
c89 -o libhiFromPLI.so hiFromPLI.o

Ensure to include the lib prefix on the name of the PL/I shared library;
otherwise, the Java class loader cannot find it.

Step 5: Running the sample program

Procedure

Run the Java-PL/I sample program with this command:
java callingPLI

The output of the sample program is as follows:
Hello from Enterprise PL/I!
And Hello from Java, too!

Chapter 18. Interfacing with Java 381

The first line written from the PL/I native method. The second line is from the
calling Java class after returning from the PL/I native method call.

JNI sample program #2 - Passing a string
This sample program passes a string back and forth between Java and PL/I.

See Figure 86 on page 383 for the complete listing of the jPassString.java
program. The Java portion has one Java class, jPassString.java. The native
method, written in PL/I, is contained in passString.pli. Much of the information
from “JNI sample program #1 - 'Hello World'” on page 378 applies to this sample
program as well. The following topics discuss only new or different aspects for this
sample program.

Step 1: Writing the Java program

Procedure
1. Declare the native method.

public native void pliShowString();

2. Load the native library.
static {

System.loadLibrary("passString");
}

3. Write the Java Main method.
The jPassString class also includes a main method to instantiate the class and
call the native method. The main method instantiates jPassString and calls the
pliShowString() native method.
This sample program prompts the user for a string and reads that value in
from the command line. This is done within a try/catch statement as shown in
Figure 86 on page 383.

382 Enterprise PL/I for z/OS Programming Guide

Step 2: Compiling the Java program

Procedure

Use the Java compiler to compile the Java code. You can use the following
command:

// Read a string, call PL/I, display new string upon return
import java.io.*;

public class jPassString{

/* Field to hold Java string */
String myString;

/* Load the PL/I native library */
static {

System.loadLibrary("passString");
}

/* Declare the PL/I native method */
public native void pliShowString();

/* Main Java class */
public static void main(String[] arg) {

System.out.println(" ");

/* Instantiate Java class and initialize string */
jPassString myPassString = new jPassString();
myPassString.myString = " ";

/* Prompt user for a string */
try {

BufferedReader in = new BufferedReader(
new InputStreamReader(System.in));

/* Process until ’quit’ received */
while (!myPassString.myString.equalsIgnoreCase("quit")) {

System.out.println(
"From Java: Enter a string or ’quit’ to quit.");

System.out.print("Java Prompt > ");
/* Get string from command line */
myPassString.myString = in.readLine();
if (!myPassString.myString.equalsIgnoreCase("quit"))

{
/* Call PL/I native method */
myPassString.pliShowString();
/* Return from PL/I and display new string */
System.out.println(" ");
System.out.println(

"From Java: String set by PL/I is: "
+ myPassString.myString);

}
}
} catch (IOException e) {
}

}
}

Figure 86. Java sample program #2 - Passing a string

Chapter 18. Interfacing with Java 383

javac jPassString.java

Step 3: Writing the PL/I program

All of the information about writing the PL/I "Hello World" sample program, as
described in “Step 3: Writing the PL/I Program” on page 379, applies to this
program as well.

Correct form of PL/I procedure name and procedure statement

The PL/I procedure name for this program is Java_jPassString_pliShowString.

The complete procedure statement for the sample program is as follows:
Java_jPassString_pliShowString:
Proc(JNIEnv , myjobject)
external("Java_jPassString_pliShowString")
Options(FromAlien NoDescriptor ByValue);

JNI include file

The two PL/I include files that contain the PL/I definitions of the Java Native
interface are ibmzjni.inc, which in turn includes ibmzjnim.inc. These include files
are included with this statement:

%include ibmzjni;

The ibmzjni and ibmzjnim include files are provided in the PL/I SIBMZSAM data
set.

The complete PL/I procedure

The complete PL/I program is shown in Figure 87 on page 385. This sample PL/I
program makes several calls through JNI.

Upon entry, a reference to the calling Java Object, myObject is passed into the PL/I
procedure. The PL/I program uses this reference to get information from the
calling object. The first piece of information is the Class of the calling object, which
is retrieved through the GetObjectClass JNI function. This Class value is then used
by the GetFieldID JNI function to get the identity of the Java string field in the
Java object. This Java field is further identified by the name of the field, myString,
and the JNI field descriptor, Ljava/lang/String;, which identifies the field as a
Java String field. The value of the Java string field is then retrieved by the
GetObjectField JNI function. Before PL/I can use the Java string value, it must be
unpacked into a form that PL/I can understand. The GetStringUTFChars JNI
function converts the Java string into a PL/I varyingz string, which is then
displayed by the PL/I program.

After displaying the retrieved Java string, the PL/I program prompts the user for a
PL/I string to be used to update the string field in the calling Java object. The
PL/I string value is converted to a Java string by the NewString JNI function. This
new Java string is then used to update the string field in the calling Java object by
the SetObjectField JNI function.

When the PL/I program ends, control is returned to Java, where the newly
updated Java string is displayed by the Java program.

384 Enterprise PL/I for z/OS Programming Guide

*Process Limits(Extname(100)) Margins(1, 100) ;
*Process Display(Std) Dllinit Extrn(Short);
*Process Rent Default(ASCII IEEE);
plijava_demo: package exports(*);

Java_passString_pliShowString:
Proc(JNIEnv , myJObject)

external("Java_jPassString_pliShowString")
Options(FromAlien NoDescriptor ByValue);

%include ibmzjni;

Dcl myBool Type jBoolean;
Dcl myClazz Type jClass;
Dcl myFID Type jFieldID;
Dcl myJObject Type jObject;
Dcl myJString Type jString;
Dcl newJString Type jString;
Dcl myID Char(9) Varz static init(’myString’);
Dcl mySig Char(18) Varz static

init(’Ljava/lang/String;’);
Dcl pliStr Char(132) Varz Based(pliStrPtr);
Dcl pliReply Char(132) Varz;
Dcl pliStrPtr Pointer;
Dcl nullPtr Pointer;

Display(’ ’);

/* Get information about the calling Class */
myClazz = GetObjectClass(JNIEnv, myJObject);

/* Get Field ID for String field from Java */
myFID = GetFieldID(JNIEnv, myClazz, myID, mySig);

/* Get the Java String in the string field */
myJString = GetObjectField(JNIEnv, myJObject, myFID);

/* Convert the Java String to a PL/I string */
pliStrPtr = GetStringUTFChars(JNIEnv, myJString, myBool);

Display(’From PLI: String retrieved from Java is: ’ || pliStr);
Display(’From PLI: Enter a string to be returned to Java:’)

reply(pliReply);

/* Convert the new PL/I string to a Java String */
newJString = NewString(JNIEnv, trim(pliReply), length(pliReply));

/* Change the Java String field to the new string value */
nullPtr = SetObjectField(JNIEnv, myJObject, myFID, newJString);

End;

end;

Figure 87. PL/I sample program #2 - Passing a string

Chapter 18. Interfacing with Java 385

Step 4: Compiling and linking the PL/I program

Procedure
1. Compile the PL/I sample program with the following command:

pli -c passString.pli

2. Link the resulting PL/I object deck into a shared library with this command:
c89 -o libpassString.so passString.o

Ensure to include the lib prefix on the name; otherwise, the PL/I shared
library or the Java class loader cannot find it.

Step 5: Running the sample program

Procedure

Run the Java-PL/I sample program with this command:
java jPassString

The output of the sample program, complete with the prompts for user input from
both Java and PL/I, is as follows:
>java jPassString

From Java: Enter a string or ’quit’ to quit.
Java Prompt > A string entered in Java

From PLI: String retrieved from Java is: A string entered in Java
From PLI: Enter a string to be returned to Java:
A string entered in PL/I

From Java: String set by PL/I is: A string entered in PL/I
From Java: Enter a string or ’quit’ to quit.
Java Prompt > quit
>

JNI sample program #3 - Passing an integer
This sample program passes an integer back and forth between Java and PL/I.

See Figure 88 on page 388 for the complete listing of the jPassInt.java program.
The Java portion has one Java class, jPassInt.java. The native method, written in
PL/I, is contained in passInt.pli. Much of the information from “JNI sample
program #1 - 'Hello World'” on page 378 applies to this sample program as well.
The following topics discuss only new or different aspects for this sample program.

Step 1: Writing the Java program

Procedure
1. Declare the native method.

public native void pliShowInt();

2. Load the native library.
static {

System.loadLibrary("passInt");
}

3. Write the Java Main method.

386 Enterprise PL/I for z/OS Programming Guide

The jPassInt class also includes a main method to instantiate the class and call
the native method. The main method instantiates jPassInt and calls the
pliShowInt() native method.
This sample program prompts the user for an integer and reads that value in
from the command line. This is done within a try/catch statement as shown in
Figure 88 on page 388.

Chapter 18. Interfacing with Java 387

// Read an integer, call PL/I, display new integer upon return
import java.io.*;
import java.lang.*;

public class jPassInt{

/* Fields to hold Java string and int */
int myInt;
String myString;

/* Load the PL/I native library */
static {

System.loadLibrary("passInt");
}

/* Declare the PL/I native method */
public native void pliShowInt();

/* Main Java class */
public static void main(String[] arg) {

System.out.println(" ");

/* Instantiate Java class and initialize string */
jPassInt pInt = new jPassInt();
pInt.myInt = 1024;
pInt.myString = " ";

/* Prompt user for an integer */
try {

BufferedReader in = new BufferedReader(
new InputStreamReader(System.in));

/* Process until ’quit’ received */
while (!pInt.myString.equalsIgnoreCase("quit")) {

System.out.println
("From Java: Enter an Integer or ’quit’ to quit.");

System.out.print("Java Prompt > ");
/* Get string from command line */
pInt.myString = in.readLine();
if (!pInt.myString.equalsIgnoreCase("quit"))

{
/* Set int to integer value of String */
pInt.myInt = Integer.parseInt(pInt.myString);
/* Call PL/I native method */
pInt.pliShowInt();
/* Return from PL/I and display new string */
System.out.println(" ");
System.out.println

("From Java: Integer set by PL/I is: " + pInt.myInt);
}

}
} catch (IOException e) {
}

}

}

Figure 88. Java sample program #3 - Passing an integer

388 Enterprise PL/I for z/OS Programming Guide

Step 2: Compiling the Java program

Procedure

Use the Java compiler to compile the Java code. You can use the following
command:
javac jPassInt.java

Step 3: Writing the PL/I program

All of the information about writing the PL/I "Hello World" sample program, as
described in “Step 3: Writing the PL/I Program” on page 379, applies to this
program as well.

Correct form of PL/I procedure name and procedure statement

The PL/I procedure name for this program is Java_jPassInt_pliShowInt.

The complete procedure statement for the sample program is as follows:
Java_passNum_pliShowInt:
Proc(JNIEnv , myjobject)
external("Java_jPassInt_pliShowInt")
Options(FromAlien NoDescriptor ByValue);

JNI include file

The two PL/I include files that contain the PL/I definitions of the Java native
interface are ibmzjni.inc, which in turn includes ibmzjnim.inc. These include files
are included with this statement:

%include ibmzjni;

The ibmzjni and ibmzjnim include files are provided in the PL/I SIBMZSAM data
set.

The complete PL/I procedure

The complete PL/I program is shown in Figure 89 on page 390. This sample PL/I
program makes several calls through the JNI.

Upon entry, a reference to the calling Java object, myObject, is passed into the PL/I
procedure. The PL/I program uses this reference to get information from the
calling object. The first piece of information is the Class of the calling object, which
is retrieved by the GetObjectClass JNI function. This Class value is then used by
the GetFieldID JNI function to get the identity of the Java integer field in the Java
object. This Java field is further identified by the name of the field, myInt, and the
JNI field descriptor, I, which identifies the field as an integer field. The value of
the Java integer field is then retrieved by the GetIntField JNI function, which is
then displayed by the PL/I program.

After displaying the retrieved Java integer, the PL/I program prompts the user for
a PL/I integer to be used to update the integer field in the calling Java object. The
PL/I integer value is then used to update the integer field in the calling Java object
by the SetIntField JNI function.

Chapter 18. Interfacing with Java 389

When the PL/I program ends, control is returned to Java, where the newly
updated Java integer is displayed by the Java program.

Step 4: Compiling and linking the PL/I program

Procedure
1. Compile the PL/I sample program with the following command:

pli -c passInt.pli

2. Link the resulting PL/I object deck into a shared library with this command:
c89 -o libpassInt.so passInt.o

Ensure to include the lib prefix on the name; otherwise, the PL/I shared
library or the Java class loader cannot find it.

*Process Limits(Extname(100)) Margins(1, 100) ;
*Process Display(Std) Dllinit Extrn(Short);
*Process Rent Default(ASCII IEEE);
plijava_demo: package exports(*);

Java_passNum_pliShowInt:
Proc(JNIEnv , myjobject)

external("Java_jPassInt_pliShowInt")
Options(FromAlien NoDescriptor ByValue);

%include ibmzjni;

Dcl myClazz Type jClass;
Dcl myFID Type jFieldID;
Dcl myJInt Type jInt;
dcl rtnJInt Type jInt;
Dcl myJObject Type jObject;
Dcl pliReply Char(132) Varz;
Dcl nullPtr Pointer;

Display(’ ’);

/* Get information about the calling Class */
myClazz = GetObjectClass(JNIEnv, myJObject);

/* Get Field ID for int field from Java */
myFID = GetFieldID(JNIEnv, myClazz, "myInt", "I");

/* Get Integer value from Java */
myJInt = GetIntField(JNIEnv, myJObject, myFID);

display(’From PLI: Integer retrieved from Java is: ’ || trim(myJInt));
display(’From PLI: Enter an integer to be returned to Java:’)

reply(pliReply);

rtnJInt = pliReply;

/* Set Integer value in Java from PL/I */
nullPtr = SetIntField(JNIEnv, myJObject, myFID, rtnJInt);

End;

end;

Figure 89. PL/I sample program #3 - Passing an integer

390 Enterprise PL/I for z/OS Programming Guide

Step 5: Running the sample program

Procedure

Run the Java-PL/I sample program with this command:
java jPassInt

The output of the sample program, complete with the prompts for user input from
both Java and PL/I, is as follows:
>java jPassInt

From Java: Enter an Integer or ’quit’ to quit.
Java Prompt > 12345

From PLI: Integer retrieved from Java is: 12345
From PLI: Enter an integer to be returned to Java:
54321

From Java: Integer set by PL/I is: 54321
From Java: Enter an Integer or ’quit’ to quit.
Java Prompt > quit
>

JNI sample program #4 - Java invocation API
This sample program is a little different from the previous samples. In this sample,
PL/I invokes Java first through the Java invocation API, creating an embedded
Java Virtual Machine (JVM). PL/I then calls a Java method, passing to it a string
that the Java method then displays.

The PL/I sample program is named createJVM.pli and the Java method it calls is
contained in javaPart.java.

Step 1: Writing the Java program

About this task

Because this sample does not use a PL/I native method, there is no need to declare
one. Instead, the Java portion for this sample is just a simple Java method.

Procedure

Write the Java Main method.
The javaPart class contains only one statement. This statement prints out a short
'Hello World...' from Java, and then appends the string that was passed to it
from the PL/I program. The entire class is shown in Figure 90.

// Receive a string from PL/I then display it after saying "Hello"
public class javaPart {

public static void main(String[] args) {
System.out.println("From Java - Hello World... " + args[0]);

}
}

Figure 90. Java sample program #4 - Receiving and printing a string

Chapter 18. Interfacing with Java 391

Step 2: Compiling the Java program

Procedure

Use the Java compiler to compile the Java code. You can use the following
command:
javac javaPart.java

Step 3: Writing the PL/I program

Most of the information about writing the PL/I "Hello World" sample program, as
described in “Step 3: Writing the PL/I Program” on page 379, applies to this
program as well. However, because in this sample PL/I is calling Java, there are
some additional points to consider.

Correct form of PL/I procedure name and procedure statement

Because in this sample the PL/I program is calling Java, the PL/I program is
MAIN. There is no need to be concerned about the external name of this PL/I
program because it is not referenced.

The complete procedure statement for the sample program is as follows:
createJVM: Proc Options(Main);

JNI include file

The two PL/I include files that contain the PL/I definitions of the Java native
interface are ibmzjni.inc, which in turn includes ibmzjnim.inc. Even though in
this sample PL/I is calling Java, these include files are still necessary. These include
files are included with this statement:

%include ibmzjni;

The ibmzjni and ibmzjnim include files are provided in the PL/I SIBMZSAM data
set.

Linking the PL/I program with the Java library

Because this PL/I sample program calls Java, the program must link to the Java
library. The Java libraries are linked with XPLINK and the PL/I modules are not.
PL/I can still link to and call XPLINK libraries but you must use the PLIXOPT
variable to specify the XPLINK=ON runtime option. You can declare the PLIXOPT
variable as follows:

Dcl PLIXOPT Char(40) Varying Ext Static Init(’XPLINK(ON)’e);

For a description of PLIXOPT, see the z/OS Language Environment Programming
Guide.

Using the Java invocation API

This PL/I sample program calls the Java invocation API JNI_CreateJavaVM to
create its own embedded JVM. This API requires certain structures to be set up
and initialized correctly as shown in Figure 91 on page 394.
1. JNI_GetDefaultJavaVMInitArgs is called to get the default initilization options.

392 Enterprise PL/I for z/OS Programming Guide

2. These default options are modified with the addition of the java.class.path
information.

3. JNI_CreateJavaVM is called to create the embedded JVM.

The complete PL/I program

The complete PL/I program is shown in Figure 91 on page 394. This sample PL/I
program makes several calls through the JNI.

In this sample, the reference to the Java object, a newly created JVM in this case, is
not passed in but is instead returned from the call to the JNI_CreateJavaVM API.
The PL/I program uses this reference to get information from the JVM. The first
piece of information is the Class containing the Java method to call. This Class is
found by the FindClass JNI function. The Class value is then used by the
GetStaticMethodID JNI function to get the identity of the Java method that will be
called.

Before calling this Java method, convert the PL/I string into a format that Java
understands. The PL/I program holds the string in ASCII format. Java strings are
stored in UTF format. In addition, Java strings are not really strings as PL/I
programmers understand them but are themselves a Java class and can only be
modified through methods. To create a Java string, use the NewStringUTF JNI
function. This function returns a Java object called myJString that contains the
PL/I string converted to UTF. Next create a Java object array by calling the
NewObjectArray JNI function, passing to it the reference to the myJString object.
This function returns a reference to a Java object array containing the string for the
Java method to display.

Now the Java method can be called by the CallStaticVoidMethod JNI function and
will then display the string passed to it. After displaying the string, the PL/I
program destroys the embedded JVM by using the DestroyJavaVM JNI function and
the PL/I program completes.

The complete source of the PL/I program is shown in Figure 91 on page 394.

Chapter 18. Interfacing with Java 393

*Process Limits(Extname(100)) Margins(1, 100);
*Process Margins(1, 100) ;
*Process Display(STD) Rent;
*Process Default(ASCII) Or(’|’);
createJVM: Proc Options(Main);

%include ibmzjni;

Dcl myJObjArray Type jobjectArray;
Dcl myClass Type jclass;
Dcl myMethodID Type jmethodID;
Dcl myJString Type jstring;
Dcl myRC Fixed Bin(31) Init(0);
Dcl myPLIStr Char(50) Varz

Init(’... a PLI string in a Java Virtual Machine!’);
Dcl OptStr1 char(1024) varz;
Dcl OptStr2 char(1024) varz;
Dcl myNull Pointer;
Dcl VM_Args Like JavaVMInitArgs;
Dcl myOptions Like JavaVMOption;
Dcl PLIXOPT Char(40) Varying Ext Static Init(’XPLINK(ON)’e);

Display(’From PL/I - Beginning execution of createJVM...’);
VM_Args.version = JNI_VERSION_1_6;

myRC = JNI_GetDefaultJavaVMInitArgs(addr(VM_Args));
OptStr1 = "-Djava.class.path=.:";
OptStr2 = "-Djava.compiler=NONE";

myOptions(1).theOptions = addr(OptStr1);
myOptions(2).theOptions = addr(OptStr2);
VM_Args.nOptions = 2;
VM_Args.JavaVMOption = addr(myOptions);

/* Create the Java VM */
myrc = JNI_CreateJavaVM(

addr(jvm_ptr),
addr(JNIEnv),
addr(VM_Args));

/* Get the Java Class for the javaPart class */
myClass = FindClass(JNIEnv, "javaPart");
/* Get static method ID */
myMethodID = GetStaticMethodID(JNIEnv, myClass,"main",

"([Ljava/lang/String;)V");
/* Create a Java String Object from the PL/I string. */
myJString = NewStringUTF(JNIenv, myPLIStr);
myJObjArray = NewObjectArray(JNIEnv, 1,

FindClass(JNIEnv,"java/lang/String"), myJString);
Display(’From PL/I - Calling Java method in new JVM from PL/I...’);
Display(’ ’);
myNull = CallStaticVoidMethod(JNIEnv, myClass,

myMethodID, myJObjArray);
/* destroy the Java VM */
Display(’ ’);
Display(’From PL/I - Destroying the new JVM from PL/I...’);
myRC = DestroyJavaVM(JavaVM);

end;

Figure 91. PL/I sample program #4 - Calling the Java invocation API

394 Enterprise PL/I for z/OS Programming Guide

Step 4: Compiling and linking the PL/I program

Procedure
1. Compile the PL/I sample program with the following command:

pli -c createJVM.pli

2. Link the resulting PL/I object deck into a shared library with this command:
c89 -o createJVM createJVM.o $JAVA_HOME/bin/classic/libjvm.x

Notice the reference to the $JAVA_HOME environment variable. This variable
should point to the directory where your Java 1.4 product is installed. For
example, to set up this variable in your environment, you can use the following
command:

export JAVA_HOME="/usr/lpp/java/J6.0"

In this case, the Java 1.4 product is assumed to be installed in
/usr/lpp/java/J6.0.

Step 5: Running the sample program

Procedure

Run the Java-PL/I sample program with this command:
createJVM

The output of the sample program is as follows:
From PL/I - Beginning execution of createJVM...
From PL/I - Calling Java method in new JVM from PL/I...
From Java - Hello World... ... a PLI string in a Java Virtual Machine!
From PL/I - Destroying the new JVM from PL/I...

Attaching programs to an existing Java VM
You can use the Java invocation API to attach your program to an existing Java
VM that was not created by your program.

About this task

When your PL/I application is running within an IMS JMP (Java messaging
processing) region, IMS already created a Java VM. You can take the following
steps to attach your program to the Java VM. Then you can call any functions that
you need through the Java native interface.

Procedure
1. Locate the Java VM instance to attach your program to by using the

JNI_GetCreatedJavaVMs API. In this IMS environment, only one Java VM is
created, so you ask for only one Java VM pointer to be returned. You can code
the call as follows:

rc = JNI_GetCreatedJavaVMs(jvm_ptr, 1, nVMs);

jvm_ptr
Is a pointer to a Java VM and is declared in the IBMZJNI include file.
Java returns the address of the Java VM in this variable when the call
returns successfully.

nVMs Is a fixed bin(31) variable that Java updates with the number of Java
VM addresses when it returns. nVMs is 1 if the call is successful.

Chapter 18. Interfacing with Java 395

2. Acquire JNI environment pointer for the Java VM. You can use the JGetEnv
function in the JNIInvokeInterface_ structure that is declared in the IBMZJNI
include file:

rc = JGetEnv(jvm_ptr, JNIEnv, JNI_VERSION_1_6);

jvm_ptr
Is the pointer to the Java VM instance.

JNIEnv
Is a pointer that Java sets to the JNI environment pointer for the Java
VM instance.

JNI_VERSION_1_6
Is a constant holding the value of an interface version number, which is
also declared in the IBMZJNI include file.

Results

Now that you have the JNI environment pointer for the Java VM, you can make
calls to any of the JNI functions through the Java native interface.

Determining equivalent Java and PL/I data types
When you communicate with Java from PL/I, you need to match the data types
between the two programming languages.

This table shows Java primitive types and their PL/I equivalents.

Table 36. Java primitive types and PL/I native equivalents

Java type PL/I type Size in Bits

Boolean jboolean 8, unsigned

byte jbyte 8

char jchar 16, unsigned

short jshort 16

int jint 32

long jlong 64

float jfloat 21

double jdouble 53

void jvoid n/a

396 Enterprise PL/I for z/OS Programming Guide

Part 5. Specialized programming tasks

© Copyright IBM Corp. 1999, 2017 397

398 Enterprise PL/I for z/OS Programming Guide

Chapter 19. Using the PLISAXA and PLISAXB XML parsers

The PLISAXx (x = A or B) built-in subroutines provide basic XML parsing
capability, which allows programs to consume inbound XML documents, check
them for well-formedness, and react to their contents.

These subroutines do not provide XML generation, which must instead be
accomplished by the PL/I program logic or by using the XMLCHAR built-in
function.

PLISAXA and PLISAXB have no special environmental requirements. They execute
in all the principal runtime environments, including CICS, IMS, MQ Series, z/OS
batch, and TSO.

PLISAXA and PLISAXB do have some important limits:
v They have no support for XML name spaces.
v They have no support for Unicode UTF-8 documents.
v They require that the entire XML document be passed to them (either in a buffer

or a file) before they do any parsing of it.

The PLISAXC and PLISAXD built-in subroutines do not have these limits.
Related information:
Chapter 20, “Using the PLISAXC and PLISAXD XML parsers,” on page 429
The PLISAXC and PLISAXD built-in subroutines provide basic XML parsing
capability, which allows programs to consume inbound XML documents, check
them for well-formedness, and react to their contents.

Overview
There are two major types of interfaces for XML parsing: event-based and
tree-based.

For an event-based API, the parser reports events to the application through
callbacks. Such events include the start of the document, the beginning of an
element, and so on. The application provides handlers to deal with the events
reported by the parser. The Simple API for XML (SAX) is an example of an
industry-standard event-based API.

For a tree-based API such as the Document Object Model (DOM), the parser
translates the XML into an internal tree-based representation. Interfaces are
provided to navigate the tree.

IBM PL/I provides a SAX-like event-based interface for parsing XML documents.
The parser invokes an application-supplied handler for parser events, passing
references to the corresponding document fragments.

The parser has the following characteristics:
v It provides high-performance, but nonstandard interfaces.
v It supports XML files encoded in either Unicode UTF-16 or any of several

single-byte code pages listed in “Coded character sets for XML documents” on
page 405.

© Copyright IBM Corp. 1999, 2017 399

v The parser is nonvalidating, but does partially check well-formedness, and
generates exception events if it discovers any.

XML documents have two levels of conformance: well-formedness and validity,
both of which are defined in the XML standard, which you can find at
http://www.w3c.org/XML/. Recapitulating these definitions, an XML document is
well-formed if it complies with the basic XML grammar, and with a few specific
rules, such as the requirement that the names on start and end element tags must
match. A well-formed XML document is also valid if it has an associated document
type declaration (DTD) and if it complies with the constraints expressed in the
DTD.

For each parser event, you must provide a PL/I function that accepts the
appropriate parameters and returns the appropriate return value - as in the
example code shown in Figure 92 on page 401. Note in particular that the return
value must be returned by value (BYVALUE). Also, these functions must all use
the OPTLINK linkage. You can use the DEFAULT(LINKAGE(OPTLINK)) option to
specify this linkage, or you can specify it on the individual PROCEDUREs and
ENTRYs through the OPTIONS(LINKAGE(OPTLINK)) attribute.

The PLISAXA built-in subroutine
You can use the PLISAXA built-in subroutine to invoke the XML parser for an
XML document that is in a buffer in your program.

►► PLISAXA(e,p,x,n)
,c

►◄

e An event structure

p A pointer value or "token" that the parser will pass back to the event functions

x The address of the buffer containing the input XML

n The number of bytes of data in that buffer

c A numeric expression specifying the purported codepage of that XML

Notes:

v If the XML is contained in a CHARACTER VARYING or WIDECHAR VARYING
string, you must use the ADDRDATA built-in function to obtain the address of
the first data byte.

v If the XML is contained in a WIDECHAR string, the value for the number of
bytes is twice the value returned by the LENGTH built-in function.

The PLISAXB built-in subroutine
You can use the PLISAXB built-in subroutine to invoke the XML parser for an
XML document in a file.

►► PLISAXB(e,p,x)
,c

►◄

e An event structure

p A pointer value or "token" that the parser will pass back to the event functions

400 Enterprise PL/I for z/OS Programming Guide

x A character string expression specifying the input file

c A numeric expression specifying the purported codepage of that XML

Under batch, the character string specifying the input file should have the form
file://dd:ddname, where ddname is the name of the DD statement specifying the
file.

Under z/OS UNIX, the character string specifying the input file should have the
form file://filename, where filename is the name of a z/OS UNIX file.

Under both batch and z/OS UNIX, the character string specifying the input file
should have no leading or trailing blanks.

The input XML file must be less than 2G in size. Moreover, because the parser will
read the entire file into memory, the REGION for your program must be large
enough for the parser to obtain a piece of storage that can contain all of the
document.

The SAX event structure
The event structure is a structure consisting of 24 LIMITED ENTRY variables that
point to functions that the parser will invoke for various "events".

All these ENTRYs must use the OPTLINK linkage.

The library routines that support the XML parsers recognize whether an event in
any of the PLISAX event structures is set to null (through the NULLENTRY
built-in function or through use of UNSPEC), and do not call it in that case. This
allows you to limit your XML parsing code to only the events in which you are
interested and to improve the performance of the overall parse at the same time.

In the order of their appearance in this structure, the parser might recognize the
following events:

Note: The descriptions of each event refer to the example of an XML document in
Figure 92. In these descriptions, the term XML text refers to the string based on the
pointer and length passed to the event.

start_of_document
This event occurs once, at the beginning of parsing the document. The parser
passes the address and length of the entire document, including any line-control

xmlDocument =
’<?xml version="1.0" standalone="yes"?>’

|| ’<!--This document is just an example-->’
|| ’<sandwich>’
|| ’<bread type="baker"s best"/>’
|| ’<?spread please use real mayonnaise ?>’
|| ’<meat>Ham & turkey</meat>’
|| ’<filling>Cheese, lettuce, tomato, etc.</filling>’
|| ’<![CDATA[We should add a <relish> element in future!]]>’
|| ’</sandwich>’
|| ’junk’;

Figure 92. Sample XML document

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 401

characters, such as LF (Line Feed) or NL (New Line). For the example shown in
Figure 92 on page 401, the document is 305 characters in length.

version_information
This event occurs within the optional XML declaration for the version information.
The parser passes the address and length of the text containing the version value
(1.0 for the example shown in Figure 92 on page 401).

encoding_declaration
This event occurs within the XML declaration for the optional encoding
declaration. The parser passes the address and length of the text containing the
encoding value.

standalone_declaration
This event occurs within the XML declaration for the optional standalone
declaration. The parser passes the address and length of the text containing the
standalone value (yes for the example shown in Figure 92 on page 401).

document_type_declaration
This event occurs when the parser finds a document type declaration. Document
type declarations begin with the character sequence <!DOCTYPE and end with a >
character, with some fairly complicated grammar rules describing the content in
between. The parser passes the address and length of the text containing the entire
declaration, including the opening and closing character sequences, and it is the
only event where XML text includes the delimiters. The example shown in
Figure 92 on page 401 does not have a document type declaration.

end_of_document
This event occurs once, when document parsing has completed.

start_of_element
This event occurs once for each element start tag or empty element tag. The parser
passes the address and length of the text containing the element name. For the first
start_of_element event during parsing of the example shown in Figure 92 on page
401, this is the string sandwich.

attribute_name
This event occurs for each attribute in an element start tag or empty element tag
after the parser recognizes a valid name. The parser passes the address and length
of the text containing the attribute name. The only attribute name in the example
shown in Figure 92 on page 401 is type.

attribute_characters
This event occurs for each fragment of an attribute value. The parser passes the
address and length of the text containing the fragment. An attribute value
normally consists of a single string only, even if it is split across lines:
<element attribute="This attribute value is
split across two lines"/>

The attribute value might consist of multiple pieces, however. For instance, the
value of the type attribute in the example shown in Figure 92 on page 401 consists
of three fragments: the string baker, the single character ’, and the string s best.

402 Enterprise PL/I for z/OS Programming Guide

The parser passes these fragments as three separate events. It passes each string,
baker and s best, as attribute_characters events, and the single character ’ as an
attribute_predefined_reference event.
Related information:
“attribute_predefined_reference”

attribute_predefined_reference
This event occurs in attribute values for the five predefined entity references &, ’,
>, <, and ". The parser passes a CHAR(1) or WIDECHAR(1) value that contains
one of &, ’, >, <, or " respectively.

attribute_character_reference
This event occurs in attribute values for numeric character references (Unicode
code points or "scalar values") of the form &#dd; or &#xhh;, where d represents
decimal digits and h represents hexadecimal digits. The parser passes a FIXED
BIN(31) value that contains the corresponding integer value.

end_of_element
This event occurs once for each element end tag or empty element tag when the
parser recognizes the closing angle bracket of the tag. The parser passes the
address and length of the text containing the element name.

start_of_CDATA_section
This event occurs at the start of a CDATA section. CDATA sections begin with the
string <![CDATA[and end with the string]]>, and are used to "escape" blocks of
text containing characters that would otherwise be recognized as XML markup.
The parser passes the address and length of the text containing the opening
characters <![CDATA[. The parser passes the content of a CDATA section between
these delimiters as a single content-characters event. For the example shown in
Figure 92 on page 401, the content-characters event is passed the text We should
add a <relish> element in future!.

end_of_CDATA_section
This event occurs when the parser recognizes the end of a CDATA section. The
parser passes the address and length of the text containing the closing character
sequence,]]>.

content_characters
This event represents the "heart" of an XML document: the character data between
element start and end tags. The parser passes the address and length of the text
containing the data, which usually consists of a single string only, even if it is split
across lines:
<element1>This character content is
split across two lines</element1>

If the content of an element includes any references or other elements, the
complete content might comprise several segments. For instance, the content of the
meat element in the example shown in Figure 92 on page 401 consists of the string
Ham , the character &, and the string turkey. Notice the trailing and leading
spaces, respectively, in these two string fragments. The parser passes these three
content fragments as separate events. It passes the string content fragments, Ham
and turkey, as content_characters events, and the single & character as a

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 403

content_predefined_reference event. The parser also uses the content_characters
event to pass the text of CDATA sections to the application.

content_predefined_reference
This event occurs in element content for the five pre-defined entity references &, ’,
>, <, and ". The parser passes a CHAR(1) or WIDECHAR(1) value that contains
one of &, ’, >, <, or "respectively.

content_character_reference
This event occurs in element content for numeric character references (Unicode
code points or "scalar values") of the form &#dd; or &#xhh;, where d represents
decimal digits and h represents hexadecimal digits. The parser passes a FIXED
BIN(31) value that contains the corresponding integer value.

processing_instruction
Processing instructions (PIs) allow XML documents to contain special instructions
for applications. This event occurs when the parser recognizes the name following
the PI opening character sequence, <?. The event also covers the data following the
processing instruction (PI) target, up to but not including the PI closing character
sequence, ?>. Trailing but not leading white space characters in the data are
included. The parser passes the address and length of the text containing the
target, spread in the example shown in Figure 92 on page 401, and passes the
address and length of the text containing the data (please use real mayonnaise in
the example).

comment
This event occurs for any comments in the XML document. The parser passes the
address and length of the text between the opening comment delimiter <!-- and
the closing comment delimiter -->. In the example shown in Figure 92 on page
401, the text of the only comment is This document is just an example.

unknown_attribute_reference
This event occurs within attribute values for entity references other than the five
predefined entity references, listed for the event attribute_predefined_character.
The parser passes the address and length of the text containing the entity name.

unknown_content_reference
This event occurs within element content for entity references other than the five
predefined entity references listed for the content_predefined_character event. The
parser passes the address and length of the text containing the entity name.

start_of_prefix_mapping
This event is currently not generated.

end_of_prefix_mapping
This event is currently not generated.

exception
The parser generates this event when it detects an error in processing the XML
document.

404 Enterprise PL/I for z/OS Programming Guide

Parameters to the event functions
All of these functions must return a BYVALUE FIXED BIN(31) value that is a
return code to the parser. For the parser to continue normally, this value should be
zero.

All of these functions will be passed as the first argument a BYVALUE POINTER
that is the token value passed originally as the second argument to the built-in
function.

With the following exceptions, all of the functions will also be passed a BYVALUE
POINTER and a BYVALUE FIXED BIN(31) that supply the address and length of
the text element for the event. The following functions and events are different:

end_of_document
No argument other than the user token is passed.

attribute_predefined_reference
In addition to the user token, one additional argument is passed: a BYVALUE
CHAR(1), or, for a UTF-16 document, a BYVALUE WIDECHAR(1) that holds
the value of the predefined character.

content_predefined_reference
In addition to the user token, one additional argument is passed: a BYVALUE
CHAR(1), or, for a UTF-16 document, a BYVALUE WIDECHAR(1) that holds
the value of the predefined character.

attribute_character_reference
In addition to the user token, one additional argument is passed: a BYVALUE
FIXED BIN(31) that holds the value of the numeric reference.

content_character_reference
In addition to the user token, one additional argument is passed: a BYVALUE
FIXED BIN(31) that holds the value of the numeric reference.

processing_instruction
In addition to the user token, four additional arguments are passed:
1. A BYVALUE POINTER that is the address of the target text
2. A BYVALUE FIXED BIN(31) that is the length of the target text
3. A BYVALUE POINTER that is the address of the data text
4. A BYVALUE FIXED BIN(31) that is the length of the data text

exception
In addition to the user token, three additional arguments are passed:
1. A BYVALUE POINTER that is the address of the offending text
2. A BYVALUE FIXED BIN(31) that is the byte offset of the offending text

within the document
3. A BYVALUE FIXED BIN(31) that is the value of the exception code

Coded character sets for XML documents
The PLISAX built-in subroutine supports only XML documents in WIDECHAR
encoded in Unicode UTF-16, or in CHARACTER encoded in one of the explicitly
supported single-byte character sets listed in this section.

The parser uses up to three sources of information about the encoding of your
XML document, and signals an exception XML event if it discovers any conflicts
between these sources:

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 405

1. The parser determines the basic encoding of a document by inspecting its
initial characters.

2. If step 1 succeeds, the parser then looks for any encoding declaration.
3. Finally, it refers to the codepage value on the PLISAX built-in subroutine call. If

this parameter was omitted, it defaults to the value provided by the
CODEPAGE compiler option value that you specified explicitly or by default.

If the XML document begins with an XML declaration that includes an encoding
declaration specifying one of the supported code pages listed in this section, the
parser honors the encoding declaration if it does not conflict with either the basic
document encoding or the encoding information from the PLISAX built-in
subroutine. If the XML document does not have an XML declaration at all, or if the
XML declaration omits the encoding declaration, the parser uses the encoding
information from the PLISAX built-in subroutine to process the document, as long
as it does not conflict with the basic document encoding.

Supported EBCDIC code pages
In the following table, the first number is for the Euro Country Extended Code
Page (ECECP), and the second is for Country Extended Code Page (CECP).

CCSID Description

01047 Latin 1 / Open Systems

01140, 00037 USA, Canada, etc.

01141, 00273 Austria, Germany

01142, 00277 Denmark, Norway

01143, 00278 Finland, Sweden

01144, 00280 Italy

01145, 00284 Spain, Latin America (Spanish)

01146, 00285 UK

01147, 00297 France

01148, 00500 International

01149, 00871 Iceland

Supported ASCII code pages

CCSID Description

00813 ISO 8859-7 Greek / Latin

00819 ISO 8859-1 Latin 1 / Open Systems

00920 ISO 8859-9 Latin 5 (ECMA-128, Turkey TS-5881)

Specifying the code page
If your document does not include an encoding declaration in the XML
declaration, or if it does not have an XML declaration at all, the parser uses the
encoding information provided by the PLISAX built-in subroutine call together
with the basic encoding of the document.

406 Enterprise PL/I for z/OS Programming Guide

You can also specify the encoding information for the document in the XML
declaration, with which most XML documents begin. The following example is an
XML declaration that includes an encoding declaration:

<?xml version="1.0" encoding="ibm-1140"?>

If your XML document includes an encoding declaration, ensure that it is
consistent with the encoding information provided by the PLISAX built-in
subroutine and with the basic encoding of the document. If there is any conflict
between the encoding declaration, the encoding information provided by the
PLISAX built-in subroutine, and the basic encoding of the document, the parser
signals an exception XML event.

You can specify the encoding declaration by using a number or an alias.

Specifying the encoding declaration using a number

You can specify the CCSID number (with or without any number of leading
zeroes), prefixed by any of the following (in any mixture of uppercase or lowercase
characters).

IBM_
IBM-

CP
CP_
CP-

CCSID_
CCSID-

Specifying the encoding declaration using an alias

You can use any of the following supported aliases (in any mixture of lowercase
and uppercase characters).

Code page Supported aliases

037 EBCDIC-CP-US, EBCDIC-CP-CA, EBCDIC-CP-WT,
EBCDIC-CP-NL

500 EBCDIC-CP-BE, EBCDIC-CP-CH

813 ISO-8859-7, ISO_8859-7

819 ISO-8859-1, ISO_8859-1

920 ISO-8859-9, ISO_8859-9

1200 UTF-16

Exceptions
For most exceptions, the XML text contains the part of the document that was
parsed up to including the point where the exception was detected. For encoding
conflict exceptions, which are signaled before parsing begins, the length of the
XML text is zero, or the XML text contains just the encoding declaration value
from the document.

The example shown in Figure 92 on page 401 contains one item that causes an
exception event, the superfluous junk following the sandwich element end tag.

There are two kinds of exceptions:
1. Exceptions that allow you to continue parsing optionally

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 407

Continuable exceptions have exception codes in the range 1 through 99, 100001
through 165535, or 200001 through 265535. The exception event in the example
has an exception number of 1 and thus is continuable.

2. Fatal exceptions, which do not allow continuation
Fatal exceptions have exception codes greater than 99 (but less than 100000).

Returning from the exception event function with a nonzero return code normally
causes the parser to stop processing the document, and return control to the
program that invoked the PLISAXA or PLISAXB built-in subroutine.

For continuable exceptions, returning from the exception event function with a
zero return code requests the parser to continue processing the document, although
further exceptions might subsequently occur. See “Continuable exception codes” on
page 420 for details of the actions that the parser takes when you request
continuation.

A special case applies to exceptions with exception numbers in the ranges 100001
through 165535 and 200001 through 265535. These ranges of exception codes
indicate that the document's CCSID (determined by examining the beginning of
the document, including any encoding declaration) is not identical to the CCSID
value provided (explicitly or implicitly) by the PLISAXA or PLISAXB built-in
subroutine, even if both CCSIDs are for the same basic encoding, EBCDIC or
ASCII.

For these exceptions, the exception code passed to the exception event contains the
document's CCSID, plus 100000 for EBCDIC CCSIDs, or 200000 for ASCII CCSIDs.
For instance, if the exception code contains 101140, the document's CCSID is 01140.
The CCSID value provided by the PLISAXA or PLISAXB built-in subroutine is set
either explicitly as the last argument on the call or implicitly when the last
argument is omitted and the value of the CODEPAGE compiler option is used.

Depending on the value of the return code after returning from the exception event
function for these CCSID conflict exceptions, the parser takes one of three actions:
1. If the return code is zero, the parser proceeds using the CCSID provided by the

built-in subroutine.
2. If the return code contains the document's CCSID (that is, the original

exception code value minus 100000 or 200000), the parser proceeds using the
document's CCSID. This is the only case where the parser continues after a
nonzero value is returned from one of the parsing events.

3. Otherwise, the parser stops processing the document, and returns control to the
PLISAXA or PLISAXB built-in subroutine, which will raise the ERROR
condition.

Example
This example illustrates the use of the PLISAXA built-in subroutine.

The example uses the example XML document shown in Figure 92 on page 401.

408 Enterprise PL/I for z/OS Programming Guide

saxtest: package exports(saxtest);

define alias event
limited entry(pointer, pointer, fixed bin(31))
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_end_of_document
limited entry(pointer)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_predefined_ref
limited entry(pointer, char(1))
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink) nodescriptor);

define alias event_character_ref
limited entry(pointer, fixed bin(31))
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_pi
limited entry(pointer, pointer, fixed bin(31),

pointer, fixed bin(31))
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_exception
limited entry(pointer, pointer, fixed bin(31),

fixed bin(31))
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

Figure 93. PLISAXA coding example - type declarations

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 409

saxtest: proc options(main);

dcl
1 eventHandler static

,2 e01 type event
init(start_of_document)

,2 e02 type event
init(version_information)

,2 e03 type event
init(encoding_declaration)

,2 e04 type event
init(standalone_declaration)

,2 e05 type event
init(document_type_declaration)

,2 e06 type event_end_of_document
init(end_of_document)

,2 e07 type event
init(start_of_element)

,2 e08 type event
init(attribute_name)

,2 e09 type event
init(attribute_characters)

,2 e10 type event_predefined_ref
init(attribute_predefined_reference)

,2 e11 type event_character_ref
init(attribute_character_reference)

,2 e12 type event
init(end_of_element)

,2 e13 type event
init(start_of_CDATA)

,2 e14 type event
init(end_of_CDATA)

,2 e15 type event
init(content_characters)

,2 e16 type event_predefined_ref
init(content_predefined_reference)

,2 e17 type event_character_ref
init(content_character_reference)

,2 e18 type event_pi
init(processing_instruction)

,2 e19 type event
init(comment)

,2 e20 type event
init(unknown_attribute_reference)

,2 e21 type event
init(unknown_content_reference)

,2 e22 type event
init(start_of_prefix_mapping)

,2 e23 type event
init(end_of_prefix_mapping)

,2 e24 type event_exception
init(exception)

;

Figure 94. PLISAXA coding example - event structure

410 Enterprise PL/I for z/OS Programming Guide

dcl token char(8);

dcl xmlDocument char(4000) var;

xmlDocument =
’<?xml version="1.0" standalone="yes"?>’

|| ’<!--This document is just an example-->’
|| ’<sandwich>’
|| ’<bread type="baker"s best"/>’
|| ’<?spread please use real mayonnaise ?>’
|| ’<meat>Ham & turkey</meat>’
|| ’<filling>Cheese, lettuce, tomato, etc.</filling>’
|| ’<![CDATA[We should add a <relish> element in future!]]>’.
|| ’</sandwich>’
|| ’junk’;

call plisaxa(eventHandler,
addr(token),
addrdata(xmlDocument),
length(xmlDocument));

end;

Figure 95. PLISAXA coding example - main routine

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 411

dcl chars char(32000) based;

start_of_document:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ length=’ || tokenlength);

return(0);
end;

version_information:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

encoding_declaration:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

Figure 96. PLISAXA coding example - event routines

412 Enterprise PL/I for z/OS Programming Guide

standalone_declaration:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

document_type_declaration:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

end_of_document:
proc(userToken)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;

put skip list(lowercase(procname()));

return(0);
end;

PLISAXA coding example - event routines (continued)

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 413

start_of_element:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

attribute_name:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

attribute_characters:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

PLISAXA coding example - event routines (continued)

414 Enterprise PL/I for z/OS Programming Guide

attribute_predefined_reference:
proc(userToken, reference)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink) nodescriptor);

dcl userToken pointer;
dcl reference char(1);

put skip list(lowercase(procname())
|| ’ ’ || hex(reference));

return(0);
end;

attribute_character_reference:
proc(userToken, reference)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl reference fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || hex(reference));

return(0);
end;

end_of_element:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

PLISAXA coding example - event routines (continued)

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 415

start_of_CDATA:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

end_of_CDATA:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

content_characters:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

PLISAXA coding example - event routines (continued)

416 Enterprise PL/I for z/OS Programming Guide

content_predefined_reference:
proc(userToken, reference)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink) nodescriptor);

dcl userToken pointer;
dcl reference char(1);

put skip list(lowercase(procname())
|| ’ ’ || hex(reference));

return(0);
end;

content_character_reference:
proc(userToken, reference)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl reference fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || hex(reference));

return(0);
end;

processing_instruction:
proc(userToken, piTarget, piTargetLength,

piData, piDataLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl piTarget pointer;
dcl piTargetLength fixed bin(31);
dcl piData pointer;
dcl piDataLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(piTarget->chars,1,piTargetLength) || ’>’);

return(0);
end;

PLISAXA coding example - event routines (continued)

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 417

comment:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

unknown_attribute_reference:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

unknown_content_reference:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

PLISAXA coding example - event routines (continued)

418 Enterprise PL/I for z/OS Programming Guide

start_of_prefix_mapping:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

end_of_prefix_mapping:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

exception:
proc(userToken, xmlToken, currentOffset, errorID)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl currentOffset fixed bin(31);
dcl errorID fixed bin(31);

put skip list(lowercase(procname())
|| ’ errorid =’ || errorid);

return(0);
end;

end;

PLISAXA coding example - event routines (continued)

The preceding program produces the following output:

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 419

Continuable exception codes
This topic describes the exception codes and the action that the parser takes when
you request it to continue after the exception.

In the following table, each value of the exception code parameter passed to the
exception event is listed in the Number column. For each exception code, a
description is provided along with the actions that the parser takes when you
request it to continue after the exception. In these descriptions, the term XML text
refers to the string based on the pointer and length passed to the event.

Table 37. Continuable exceptions

Number Description Parser action on continuation

1 The parser found an invalid character while
scanning white spaces outside element content.

The parser generates a content_characters event
with the XML text containing the (single)
invalid character. Parsing continues at the
character after the invalid character.

start_of_dcoument length= 305
version_information <1.0>
standalone_declaration <yes>
comment <This document is just an example>
start_of_element <sandwich>
start_of_element <bread>
attribute_name <type>
attribute_characters <baker>
attribute_predefined_reference 7D
attribute_characters <s best>
end_of_element <bread>
processing_instruction <spread>
start_of_element <meat>
content_characters <Ham >
content_predefined_reference 50
content_characters < turkey>
end_of_element <meat>
start_of_element <filling>
content_characters <Cheese, lettuce, tomato, etc.>
end_of_element <filling>
start_of_cdata <<![CDATA[>
content_characters <We should add a <relish> element in future!>
end_of_cdata <]]>
end_of_element <sandwich>
exception errorid = 1
content_characters <j>
exception errorid = 1
content_characters <u>
exception errorid = 1
content_characters <n>
exception errorid = 1
content_characters <k>
end_of_document

Figure 97. PLISAXA coding example - program output

420 Enterprise PL/I for z/OS Programming Guide

Table 37. Continuable exceptions (continued)

Number Description Parser action on continuation

2 The parser found an invalid start of a
processing instruction, element, comment, or
document type declaration outside element
content.

The parser generates a content_characters event
with the XML text containing the 2- or
3-character invalid initial character sequence.
Parsing continues at the character after the
invalid sequence.

3 The parser found a duplicate attribute name. The parser generates an attribute_name event
with the XML text containing the duplicate
attribute name.

4 The parser found the markup character < in an
attribute value.

Before generating the exception event, the
parser generates an attribute_characters event
for any part of the attribute value preceding the
< character. After the exception event, the
parser generates an attribute_characters event
with the XML text containing <. Parsing then
continues at the character after the <.

5 The start and end tag names of an element did
not match.

The parser generates an end_of_element event
with the XML text containing the mismatched
end name.

6 The parser found an invalid character in
element content.

The parser includes the invalid character in the
XML text for the subsequent content_characters
event.

7 The parser found an invalid start of an element,
comment, processing instruction, or CDATA
section in element content.

Before generating the exception event, the
parser generates a content_characters event for
any part of the content preceding the < markup
character. After the exception event, the parser
generates a content_characters event with the
XML text containing 2 characters: the <
followed by the invalid character. Parsing
continues at the character after the invalid
character.

8 The parser found in element content the
CDATA closing character sequence]]> without
the matching opening character sequence
<![CDATA[.

Before generating the exception event, the
parser generates a content_characters event for
any part of the content preceding the]]>
character sequence. After the exception event,
the parser generates a content_characters event
with the XML text containing the 3-character
sequence]]>. Parsing continues at the character
after this sequence.

9 The parser found an invalid character in a
comment.

The parser includes the invalid character in the
XML text for the subsequent comment event.

10 The parser found in a comment the character
sequence -- not followed by >.

The parser assumes that the -- character
sequence terminates the comment, and
generates a comment event. Parsing continues
at the character after the -- sequence.

11 The parser found an invalid character in a
processing instruction data segment.

The parser includes the invalid character in the
XML text for the subsequent
processing_instruction event.

12 A processing instruction target name was xml in
lowercase, uppercase, or mixed-case.

The parser generates a processing_instruction
event with the XML text containing xml in the
original case.

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 421

Table 37. Continuable exceptions (continued)

Number Description Parser action on continuation

13 The parser found an invalid digit in a
hexadecimal character reference (of the form
�).

The parser generates an attribute_characters or
content_characters event with the XML text
containing the invalid digit. Parsing of the
reference continues at the character after this
invalid digit.

14 The parser found an invalid digit in a decimal
character reference (of the form &#dddd;).

The parser generates an attribute_characters or
content_characters event with the XML text
containing the invalid digit. Parsing of the
reference continues at the character after this
invalid digit.

15 The encoding declaration value in the XML
declaration did not begin with lowercase or
uppercase A through Z.

The parser generates the encoding event with
the XML text containing the encoding
declaration value as it was specified.

16 A character reference did not refer to a legal
XML character.

The parser generates an
attribute_character_reference event or a
content_character_reference event with
XML-NTEXT containing the single Unicode
character specified by the character reference.

17 The parser found an invalid character in an
entity reference name.

The parser includes the invalid character in the
XML text for the subsequent
unknown_attribute_reference or
unknown_content_reference event.

18 The parser found an invalid character in an
attribute value.

The parser includes the invalid character in the
XML text for the subsequent
attribute_characters event.

50 The document was encoded in EBCDIC, and
the CODEPAGE compiler option specified a
supported EBCDIC code page, but the
document encoding declaration did not specify
a recognizable encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

51 The document was encoded in EBCDIC, and
the document encoding declaration specified a
supported EBCDIC encoding, but the parser
does not support the code page specified by the
CODEPAGE compiler option.

The parser uses the encoding specified by the
document encoding declaration.

52 The document was encoded in EBCDIC, and
the CODEPAGE compiler option specified a
supported EBCDIC code page, but the
document encoding declaration specified an
ASCII encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

53 The document was encoded in EBCDIC, and
the CODEPAGE compiler option specified a
supported EBCDIC code page, but the
document encoding declaration specified a
supported Unicode encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

54 The document was encoded in EBCDIC, and
the CODEPAGE compiler option specified a
supported EBCDIC code page, but the
document encoding declaration specified a
Unicode encoding that the parser does not
support.

The parser uses the encoding specified by the
CODEPAGE compiler option.

422 Enterprise PL/I for z/OS Programming Guide

Table 37. Continuable exceptions (continued)

Number Description Parser action on continuation

55 The document was encoded in EBCDIC, and
the CODEPAGE compiler option specified a
supported EBCDIC code page, but the
document encoding declaration specified an
encoding that the parser does not support.

The parser uses the encoding specified by the
CODEPAGE compiler option.

56 The document was encoded in ASCII, and the
CODEPAGE compiler option specified a
supported ASCII code page, but the document
encoding declaration did not specify a
recognizable encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

57 The document was encoded in ASCII, and the
document encoding declaration specified a
supported ASCII encoding, but the parser does
not support the code page specified by the
CODEPAGE compiler option.

The parser uses the encoding specified by the
document encoding declaration.

58 The document was encoded in ASCII, and the
CODEPAGE compiler option specified a
supported ASCII code page, but the document
encoding declaration specified a supported
EBCDIC encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

59 The document was encoded in ASCII, and the
CODEPAGE compiler option specified a
supported ASCII code page, but the document
encoding declaration specified a supported
Unicode encoding.

The parser uses the encoding specified by the
CODEPAGE compiler option.

60 The document was encoded in ASCII, and the
CODEPAGE compiler option specified a
supported ASCII code page, but the document
encoding declaration specified a Unicode
encoding that the parser does not support.

The parser uses the encoding specified by the
CODEPAGE compiler option.

61 The document was encoded in ASCII, and the
CODEPAGE compiler option specified a
supported ASCII code page, but the document
encoding declaration specified an encoding that
the parser does not support.

The parser uses the encoding specified by the
CODEPAGE compiler option.

100001 through
165535

The document was encoded in EBCDIC; the
encoding specified by the CODEPAGE compiler
option and the encoding specified by the
document encoding declaration are both
supported EBCDIC code pages, but are not the
same. The exception code contains the CCSID
for the encoding declaration plus 100000.

If you return zero from the exception event, the
parser uses the encoding specified by the
CODEPAGE compiler option. If you return the
CCSID from the document encoding declaration
(by subtracting 100000 from the exception
code), the parser uses this encoding.

200001 through
265535

The document was encoded in ASCII; the
encoding specified by the CODEPAGE compiler
option and the encoding specifies by the
document encoding declaration are both
supported ASCII code pages, but are not the
same. The exception code contains the CCSID
for the encoding declaration plus 200000.

If you return zero from the exception event, the
parser uses the encoding specified by the
CODEPAGE compiler option. If you return the
CCSID from the document encoding declaration
(by subtracting 200000 from the exception
code), the parser uses this encoding.

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 423

Terminating exception codes
This topic describes the terminating exception codes.

Table 38. Terminating exceptions

Number Description

100 The parser reached the end of the document while scanning the start of the XML
declaration.

101 The parser reached the end of the document while looking for the end of the XML
declaration.

102 The parser reached the end of the document while looking for the root element.

103 The parser reached the end of the document while looking for the version information
in the XML declaration.

104 The parser reached the end of the document while looking for the version information
value in the XML declaration.

106 The parser reached the end of the document while looking for the encoding declaration
value in the XML declaration.

108 The parser reached the end of the document while looking for the standalone
declaration value in the XML declaration.

109 The parser reached the end of the document while scanning an attribute name.

110 The parser reached the end of the document while scanning an attribute value.

111 The parser reached the end of the document while scanning a character reference or an
entity reference in an attribute value.

112 The parser reached the end of the document while scanning an empty element tag.

113 The parser reached the end of the document while scanning the root element name.

114 The parser reached the end of the document while scanning an element name.

115 The parser reached the end of the document while scanning character data in element
content.

116 The parser reached the end of the document while scanning a processing instruction in
element content.

117 The parser reached the end of the document while scanning a comment or CDATA
section in element content.

118 The parser reached the end of the document while scanning a comment in element
content.

119 The parser reached the end of the document while scanning a CDATA section in
element content.

120 The parser reached the end of the document while scanning a character reference or an
entity reference in element content.

121 The parser reached the end of the document while scanning after the close of the root
element.

122 The parser found a possible invalid start of a document type declaration.

123 The parser found a second document type declaration.

124 The first character of the root element name was not a letter, _, or :.

125 The first character of the first attribute name of an element was not a letter, _, or :.

126 The parser found an invalid character either in or following an element name.

127 The parser found a character other than = following an attribute name.

128 The parser found an invalid attribute value delimiter.

424 Enterprise PL/I for z/OS Programming Guide

Table 38. Terminating exceptions (continued)

Number Description

130 The first character of an attribute name was not a letter, _, or :.

131 The parser found an invalid character either in or following an attribute name.

132 An empty element tag was not terminated by a > following the /.

133 The first character of an element end tag name was not a letter, _, or :.

134 An element end tag name was not terminated by a >.

135 The first character of an element name was not a letter, _, or :.

136 The parser found an invalid start of a comment or CDATA section in element content.

137 The parser found an invalid start of a comment.

138 The first character of a processing instruction target name was not a letter, _, or :.

139 The parser found an invalid character in or following a processing instruction target
name.

140 A processing instruction was not terminated by the closing character sequence ?>.

141 The parser found an invalid character following & in a character reference or an entity
reference.

142 The version information was not present in the XML declaration.

143 'version' in the XML declaration was not followed by a =.

144 The version declaration value in the XML declaration is either missing or improperly
delimited.

145 The version information value in the XML declaration specified a bad character, or the
start and end delimiters did not match.

146 The parser found an invalid character following the version information value closing
delimiter in the XML declaration.

147 The parser found an invalid attribute instead of the optional encoding declaration in the
XML declaration.

148 encoding in the XML declaration was not followed by a =.

149 The encoding declaration value in the XML declaration is either missing or improperly
delimited.

150 The encoding declaration value in the XML declaration specified a bad character, or the
start and end delimiters did not match.

151 The parser found an invalid character following the encoding declaration value closing
delimiter in the XML declaration.

152 The parser found an invalid attribute instead of the optional standalone declaration in
the XML declaration.

153 'standalone' in the XML declaration was not followed by a =.

154 The standalone declaration value in the XML declaration is either missing or improperly
delimited.

155 The standalone declaration value was neither yes nor no only.

156 The standalone declaration value in the XML declaration specified a bad character, or
the start and end delimiters did not match.

157 The parser found an invalid character following the standalone declaration value
closing delimiter in the XML declaration.

158 The XML declaration was not terminated by the proper character sequence ?>, or
contained an invalid attribute.

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 425

Table 38. Terminating exceptions (continued)

Number Description

159 The parser found the start of a document type declaration after the end of the root
element.

160 The parser found the start of an element after the end of the root element.

300 The document was encoded in EBCDIC, but the CODEPAGE compiler option specified
a supported ASCII code page.

301 The document was encoded in EBCDIC, but the CODEPAGE compiler option specified
Unicode.

302 The document was encoded in EBCDIC, but the CODEPAGE compiler option specified
an unsupported code page.

303 The document was encoded in EBCDIC, but the CODEPAGE compiler option is
unsupported and the document encoding declaration was either empty or contained an
unsupported alphabetic encoding alias.

304 The document was encoded in EBCDIC, but the CODEPAGE compiler option is
unsupported and the document did not contain an encoding declaration.

305 The document was encoded in EBCDIC, but the CODEPAGE compiler option is
unsupported and the document encoding declaration did not specify a supported
EBCDIC encoding.

306 The document was encoded in ASCII, but the CODEPAGE compiler option specified a
supported EBCDIC code page.

307 The document was encoded in ASCII, but the CODEPAGE compiler option specified
Unicode.

308 The document was encoded in ASCII, but the CODEPAGE compiler option did not
specify a supported EBCDIC code page, ASCII, or Unicode.

309 The CODEPAGE compiler option specified a supported ASCII code page, but the
document was encoded in Unicode.

310 The CODEPAGE compiler option specified a supported EBCDIC code page, but the
document was encoded in Unicode.

311 The CODEPAGE compiler option specified an unsupported code page, but the
document was encoded in Unicode.

312 The document was encoded in ASCII, but both the encoding provided externally and
the encoding specified by the document encoding declaration are unsupported.

313 The document was encoded in ASCII, but the CODEPAGE compiler option is
unsupported and the document did not contain an encoding declaration.

314 The document was encoded in ASCII, but the CODEPAGE compiler option is
unsupported and the document encoding declaration did not specify a supported ASCII
encoding.

315 The document was encoded in UTF-16 Little Endian, which the parser does not support
on this platform.

316 The document was encoded in UCS4, which the parser does not support.

317 The parser cannot determine the document encoding. The document may be damaged.

318 The document was encoded in UTF-8, which the parser does not support.

319 The document was encoded in UTF-16 Big Endian, which the parser does not support
on this platform.

501, 502, 503 An internal error occurred in PLISAX(A|B). Contact IBM support.

500 Memory allocation failed for the PLISAXA internal data structures. Increase the amount
of storage available to the application program.

426 Enterprise PL/I for z/OS Programming Guide

Table 38. Terminating exceptions (continued)

Number Description

520 Memory allocation failed for the PLISAXB internal data structures. Increase the amount
of storage available to the application program.

521 An internal error occurred in PLISAX(A|B). Contact IBM support.

523 PLISAXB encountered a file I/O error.

524 Memory allocation failed in PLISAXB while attempting to cache the XML document
from the file system. Increase the amount of storage available to the application
program.

525 An unsupported URI scheme was specified to PLISAXB.

526 The XML document provided to PLISAXB was less than the minimum of 4 characters
or was too large.

527, 560 An internal error occurred in PLISAX(A|B). Contact IBM support.

561 No event handler was specified to either PLISAX(A|B).

562, 563, 580, 581 An internal error occurred in PLISAX(A|B). Contact IBM support.

600 through 99999 Internal error. Report the error to your service representative.

Chapter 19. Using the PLISAXA and PLISAXB XML parsers 427

428 Enterprise PL/I for z/OS Programming Guide

Chapter 20. Using the PLISAXC and PLISAXD XML parsers

The PLISAXC and PLISAXD built-in subroutines provide basic XML parsing
capability, which allows programs to consume inbound XML documents, check
them for well-formedness, and react to their contents.

The XML parser used by PLISAXC is non-validating, but does partially check for
well-formedness errors, and generates exception events if it discovers any.

The PLISAXD built-in subroutine provides XML parsing with validation capability.
It determines whether an inbound XML documentation conforms to a set of rules
specified in an inbound XML schema.

The PLISAXC and PLISAXD subroutines do not provide XML generation, which
must instead be accomplished by the PL/I program logic or by the XMLCHAR
built-in function.

PLISAXC and PLISAXD have no special environmental requirements except that it
is not supported in AMODE 24. It executes in all the principal runtime
environments, including CICS, IMS, MQ Series, z/OS batch, and TSO.

Because the PLISAXC and PLISAXD built-in subroutines and the PLISAXA and
PLISAXB built-in subroutines do have much similarity, some information in this
section repeats information in Chapter 19, “Using the PLISAXA and PLISAXB XML
parsers,” on page 399.

Overview
There are two major types of interfaces for XML parsing: event-based and
tree-based.

For an event-based API, the parser reports events to the application through
callbacks. Such events include the start of the document, the beginning of an
element, and so on. The application provides handlers to deal with the events
reported by the parser. The Simple API for XML (SAX) is an example of an
industry-standard event-based API.

For a tree-based API such as the Document Object Model (DOM), the parser
translates the XML into an internal tree-based representation. Interfaces are
provided to navigate the tree.

IBM PL/I compiler provides, by using PLISAXC or PLISAXD, a SAX-like
event-based interface for parsing XML documents. The parser invokes an
application-supplied handler for parser events, passing references to the
corresponding document fragments.

The parser has the following characteristics:
v It provides high-performance, but nonstandard interfaces.
v It supports XML files encoded in either Unicode UTF-16, UTF-8 or any of several

single-byte code pages listed in “Coded character sets for XML documents” on
page 437.

© Copyright IBM Corp. 1999, 2017 429

XML documents have two levels of conformance: well-formedness and validity,
both of which are defined in the XML standard, which you can find at
http://www.w3c.org/XML/. Recapitulating these definitions, an XML document is
well-formed if it complies with the basic XML grammar, and with a few specific
rules, such as the requirement that the names on start and end element tags must
match. A well-formed XML document is also valid if it has an associated document
type declaration (DTD) and if it complies with the constraints expressed in the
DTD.

For each parser event, you must provide a PL/I function that accepts the
appropriate parameters and returns the appropriate return value - as in the
example code shown in Figure 98 on page 431.

Notes:

v For these functions, the return value must be returned by value (BYVALUE).
v For these functions, the linkage used must be the OPTLINK linkage. You can use

the DEFAULT(LINKAGE(OPTLINK)) option to specify this linkage, or you can
specify it on the individual PROCEDUREs and ENTRYs by using the
OPTIONS(LINKAGE(OPTLINK)) attribute.

The PLISAXC built-in subroutine
The PLISAXC built-in subroutine allows you to invoke the XML parser for an XML
document that is in one or more buffers in your program.

►► PLISAXC(e,p,x,n)
,c

►◄

e An event structure

p A pointer value or "token" that the parser will pass back to the event functions

x The address of the initial buffer containing the input XML

n The number of bytes of data in that buffer

c A numeric expression specifying the codepage of that XML

Notes:

v If the XML is contained in a CHARACTER VARYING or WIDECHAR VARYING
string, you must use the ADDRDATA built-in function to obtain the address of
the first data byte.

v If the XML is contained in a WIDECHAR string, the value for the number of
bytes is twice the value returned by the LENGTH built-in function.

The PLISAXD built-in subroutine
The PLISAXD built-in subroutine allows you to invoke the XML parser with the
validation capability. Both the XML document and the Optimized Schema
Representation (OSR) file are in one or more buffers in your program.

►► PLISAXD(e,p,x,n,o)
,c

►◄

e An event structure

430 Enterprise PL/I for z/OS Programming Guide

p A pointer value or "token" that the parser passes back to the event functions

x The address of the initial buffer containing the input XML

n The number of bytes of data in that buffer

o The address of the buffer containing the input OSR

c A numeric expression specifying the codepage of the XML document

Note:

v If the XML is contained in a CHARACTER VARYING or WIDECHAR VARYING
string, you must use the ADDRDATA built-in function to obtain the address of
the first data byte.

v If the XML is contained in a WIDECHAR string, the value for the number of
bytes is twice the value returned by the LENGTH built-in function.

v An OSR is the preprocessed version of a schema. For more information about
OSR, see XML System Services User’s Guide and Reference.

The SAX event structure
The event structure is a structure consisting of 19 LIMITED ENTRY variables,
which point to functions that the parser invokes for various "events".

All of these ENTRYs must use the OPTLINK linkage.

The library routines that support the XML parsers recognize if an event in any of
the PLISAX event structures is set to null (through the NULLENTRY built-in
function or through use of UNSPEC) and do not call it in that case. This allows
you to limit your XML parsing code to only the events in which you are interested
and to improve the performance of the overall parse at the same time.

All of these ENTRYs have a first (and sometimes the only) parameter: the user
token passed by the program to PLISAXC and PLISAXD.

In this section, the descriptions of these 19 events refer to the example of an XML
document in Figure 98. In these descriptions, the term XML text refers to the string
based on the pointer and length passed to the event.

Depending on the contents of the XML documents, the parser might recognize the
following events:

xmlDocument =
’<?xml version="1.0" standalone="yes"?>’

|| ’<!--This document is just an example-->’
|| ’<sandwich>’
|| ’<bread type="baker"s best"/>’
|| ’<?spread please use real mayonnaise ?>’
|| ’<meat>Ham & turkey</meat>’
|| ’<filling>Cheese, lettuce, tomato, etc.</filling>’
|| ’<![CDATA[We should add a <relish> element in future!]]>’
|| ’</sandwich>’;

Figure 98. Sample XML document

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 431

start_of_document
This event occurs once, at the beginning of parsing the document. The parser
passes no parameters to this event (except the user token).

version_information
This event occurs within the optional XML declaration for the version information.
The parser passes the address and length of the text containing the version value
(1.0 for the example shown in Figure 98 on page 431).

encoding_declaration
This event occurs within the XML declaration for the optional encoding
declaration. The parser passes the address and length of the text containing the
encoding value.

standalone_declaration
This event occurs within the XML declaration for the optional standalone
declaration. The parser passes the address and length of the text containing the
standalone value (yes for the example shown in Figure 98 on page 431).

document_type_declaration
This event occurs when the parser finds a document type declaration. Document
type declarations begin with the character sequence <!DOCTYPE and end with a >
character, with some fairly complicated grammar rules describing the content in
between. The parser passes the address and length of the text containing the entire
declaration, including the opening and closing character sequences, and it is the
only event where XML text includes the delimiters. The example shown in
Figure 98 on page 431 does not have a document type declaration.

end_of_document
This event occurs once, when document parsing has completed. The parser passes
no parameters to this event (except the user token).

start_of_element
This event occurs once for each element start tag or empty element tag. The parser
passes the address and length of the text containing the element name as well as
any applicable namespace information. For the first start_of_element event during
parsing of the example shown in Figure 98 on page 431, this is the string sandwich.

attribute_name
This event occurs for each attribute in an element start tag or empty element tag
after the parser recognizes a valid name. The parser passes the address and length
of the text containing the attribute name as well as any applicable namespace
information. The only attribute name in the example shown in Figure 98 on page
431 is type.

attribute_characters
This event occurs for each attribute value. The parser passes the address and
length of the text containing the fragment. An attribute value normally consists of
a single string only, even if it is split across lines:
<element attribute="This attribute value is
split across two lines"/>

432 Enterprise PL/I for z/OS Programming Guide

The parser also passes a flag byte, which indicates whether the next event provides
additional characters that form part of the content. This can be true when there is a
lot of data between the start and end tags.

end_of_element
This event occurs once for each element end tag or empty element tag when the
parser recognizes the closing angle bracket of the tag. The parser passes the
address and length of the text containing the element name as well as any
applicable namespace information.

start_of_CDATA_section
This event occurs at the start of a CDATA section. CDATA sections begin with the
string <![CDATA[and end with the string]]>, and are used to "escape" blocks of
text containing characters that would otherwise be recognized as XML markup.
The parser passes no parameters to this event (except the user token). After this
event, the parser passes the content of the CDATA section between these delimiters
as one or more content-characters events. For the example shown in Figure 98 on
page 431, the content-characters event is passed the text We should add a <relish>
element in future!.

end_of_CDATA_section
This event occurs when the parser recognizes the end of a CDATA section. The
parser passes no parameters to this event (except the user token).

content_characters
This event represents the "heart" of an XML document: the character data between
element start and end tags. The parser passes the address and length of the text
containing the data, which usually consists of a single string only, even if it is split
across lines:
<element1>This character content is
split across two lines</element1>

The parser also passes a flag byte, which indicates if the next event provides
additional characters that form part of the content. This can be true when there is a
lot of data between the start and end tags.

The parser also uses the content_characters event to pass the text of CDATA
sections to the application.

processing_instruction
Processing instructions (PIs) allow XML documents to contain special instructions
for applications. This event occurs when the parser recognizes the name following
the PI opening character sequence <?. The event also covers the data following the
processing instruction (PI) target, up to but not including the PI closing character
sequence ?>. Trailing but not leading white space characters in the data are
included. The parser passes the address and length of the text containing the
target, spread in the example shown in Figure 98 on page 431, and passes the
address and length of the text containing the data (please use real mayonnaise in
the example).

The parser also passes a flag byte, which indicates whether the next event provides
additional characters that form part of the content. This can be true when there is a
lot of data between the start and end tags.

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 433

comment
This event occurs for any comments in the XML document. The parser passes the
address and length of the text between the opening comment delimiter <!-- and
the closing comment delimiter -->. In the example shown in Figure 98 on page
431, the text of the only comment is This document is just an example.

The parser also passes a flag byte, which indicates whether the next event provides
additional characters that form part of the content. This can be true when there is a
lot of data between the start and end tags.

namespace_declare
This event occurs for any namespace declarations in the XML document. The
parser passes the address and length of the namespace prefix (if any) as well as the
address and length of the namespace uri. If there is no namespace prefix, the
passed length will be zero and the value of the address should not be used. There
is no corresponding event in the PLIXSAXA and PLISAXB built-in subroutines.

end_of_input
This event occurs whenever the parser reaches the end of the current input buffer.
The parser passes (along with the BYVALUE user token) two BYADDR parameters:
the address and length of the next buffer for it to process. Note that this and the
content character events are the only events that have any BYADDR parameters,
but this is the only event that has parameters that the called event should change.
There is no corresponding event in the PLIXSAXA and PLISAXB built-in
subroutines, and it is this event that allows PLISAXC and PLISAXD to parse an
XML document of arbitrary size.

unresolved_reference
This event occurs for any unresolved references in the XML document. The parser
passes the address and length of the unresolved reference.

exception
The parser generates this event when it detects an error in processing the XML
document.

Parameters to the event functions
All of these functions must return a BYVALUE FIXED BIN(31) value that is a
return code to the parser. If any value other than zero is returned, the parser will
terminate.

All of these functions are passed a BYVALUE POINTER as the first argument. This
pointer is the token value that is passed originally as the second argument to the
built-in function.

With the following exceptions, all of the functions will also be passed a BYVALUE
POINTER and a BYVALUE FIXED BIN(31) that supply the address and length of
the text element for the event. The following functions and events are different:

start_of_document
No argument other than the user token is passed.

end_of_document
No argument other than the user token is passed.

434 Enterprise PL/I for z/OS Programming Guide

start_of_CDATA
No argument other than the user token is passed.

end_of_CDATA
No argument other than the user token is passed.

start_of_element
In addition to the usual three parameters, four additional arguments are
passed:
1. A BYVALUE POINTER that is the address of the namespace prefix
2. A BYVALUE FIXED BIN(31) that is the length of the namespace prefix
3. A BYVALUE POINTER that is the address of the namespace uri
4. A BYVALUE FIXED BIN(31) that is the length of the namespace uri

end_of_element
In addition to the usual three parameters, four additional arguments are
passed:
1. A BYVALUE POINTER that is the address of the namespace prefix
2. A BYVALUE FIXED BIN(31) that is the length of the namespace prefix
3. A BYVALUE POINTER that is the address of the namespace uri
4. A BYVALUE FIXED BIN(31) that is the length of the namespace uri

attribute_name
In addition to the usual three parameters, four additional arguments are
passed:
1. A BYVALUE POINTER that is the address of the namespace prefix
2. A BYVALUE FIXED BIN(31) that is the length of the namespace prefix
3. A BYVALUE POINTER that is the address of the namespace uri
4. A BYVALUE FIXED BIN(31) that is the length of the namespace uri

attribute_characters
In addition to the usual three parameters, one additional argument is passed:
v a BYVALUE ALIGNED BIT(8) flag byte that indicates the following

information:
– Whether more content characters will be presented in the next event - this

is true if the first bit is on, that is, this is true if this field anded with
'80'BX is nonnull

– Whether there are no characters that need to be escaped if converted back
to XML - this is true if the second bit is on, that is, this is true if this field
anded with '40'BX is nonnull

Note that this entry must also be declared with OPTIONS(NODESCRIPTOR).

namespace_declare
In addition to the user token, four additional arguments passed:
1. A BYVALUE POINTER that is the address of the namespace prefix
2. A BYVALUE FIXED BIN(31) that is the length of the namespace prefix
3. A BYVALUE POINTER that is the address of the namespace uri
4. A BYVALUE FIXED BIN(31) that is the length of the namespace uri

content_characters
In addition to the usual three parameters, one additional argument is passed:
v A BYVALUE ALIGNED BIT(8) flag byte that indicates the following

information:

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 435

– Whether more content characters will be presented in the next event - this
is true if the first bit is on, that is, this is true if this field anded with
'80'BX is nonnull

– Whether there are no characters that need to be escaped if converted back
to XML - this is true if the second bit is on, that is, this is true if this field
anded with '40'BX is nonnull

Note that this entry must also be declared with OPTIONS(NODESCRIPTOR).

end_of_input
In addition to the user token, two additional arguments are passed:
1. A BYADDR POINTER that is the address of the next input buffer
2. A BYADDR FIXED BIN(31) that is the length of the next input buffer

processing_instruction
In addition to the user token, five additional arguments are passed:
1. A BYVALUE POINTER that is the address of the target text
2. A BYVALUE FIXED BIN(31) that is the length of the target text
3. A BYVALUE POINTER that is the address of the data text
4. A BYVALUE FIXED BIN(31) that is the length of the data text
5. A BYVALUE ALIGNED BIT(8) flag byte that indicates the following

information:
v Whether more content characters will be presented in the next event -

this is true if the first bit is on, that is, this is true if this field anded with
'80'BX is nonnull

v Whether there are no characters that need to be escaped if converted
back to XML - this is true if the second bit is on, that is, this is true if
this field anded with '40'BX is nonnull

Note that this entry must also be declared with
OPTIONS(NODESCRIPTOR).

comment
In addition to the usual three parameters, one additional argument is passed:
v A BYVALUE ALIGNED BIT(8) flag byte that indicates the following

information:
– Whether more content characters will be presented in the next event - this

is true if the first bit is on, that is, this is true if this field anded with
'80'BX is nonnull

– Whether there are no characters that need to be escaped if converted back
to XML - this is true if the second bit is on, that is, this is true if this field
anded with '40'BX is nonnull

Note that this entry must also be declared with OPTIONS(NODESCRIPTOR).

exception
In addition to the user token, three additional arguments are passed:
1. A BYVALUE FIXED BIN(31) that is the byte offset of the offending text

within the document
2. A BYVALUE FIXED BIN(31) that is the return code for the exception
3. A BYVALUE FIXED BIN(31) that is the reason code for the exception

Differences in the events
The following events are part of the PLISAXA and PLISAXB event structure, but
are not in PLISAXC and PLISAXD:

436 Enterprise PL/I for z/OS Programming Guide

v attribute_predefined_reference
v attribute_character_reference
v content_predefined_reference
v content_character_reference
v unknown_attribute_reference
v unknown_content_reference
v start_of_prefix_mapping
v end_of_prefix_mapping

The following events are not part of the PLISAXA and PLISAXB event structure,
but are in PLISAXC and PLISAXD:
v namespace_declare
v unresolved_reference
v end_of_input

Some of the events that are common to PLISAXA and PLISAXB, PLISAXC and
PLISAXD are passed different parameters (apart from the omnipresent user token):

start_of_document
is passed no parameters

start_of_element
is passed namespace data as well

end_of_element
is passed namespace data as well

attribute_name
is passed namespace data as well

attribute_characters
is passed a flag byte as well

start_of_cdata
is passed no parameters

end_of_cdata
is passed no parameters

content_characters
is passed a flag byte as well

processing_instruction
is passed a flag byte as well

comment
is passed a flag byte as well

exception
is passed a return and reason code instead of an error id

Coded character sets for XML documents
The PLISAXC and PLISAXD built-in subroutines support only XML documents in
WIDECHAR encoded in Unicode UTF-16 or in CHARACTER encoded in either
UTF-8 or one of the explicitly supported single-byte character sets listed in this
section.

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 437

The parser uses up to three sources of information about the encoding of your
XML document, and signals an exception XML event if it discovers any conflicts
between these sources:
1. The parser determines the basic encoding of a document by inspecting its

initial characters.
2. If step 1 succeeds, the parser then looks for any encoding declaration.
3. Finally, it refers to the codepage value on the PLISAXC or PLISAXD built-in

subroutine call. If this parameter was omitted, it defaults to the value provided
by the CODEPAGE compiler option value that you specified explicitly or by
default.

If the XML document begins with an XML declaration that includes an encoding
declaration specifying one of the supported code pages, the parser honors the
encoding declaration if it does not conflict with either the basic document
encoding or the encoding information from the PLISAXC or PLISAXD built-in
subroutine. If the XML document does not have an XML declaration at all, or if the
XML declaration omits the encoding declaration, the parser uses the encoding
information from the PLISAXC or PLISAXD built-in subroutine to process the
document, as long as it does not conflict with the basic document encoding.

Supported code pages
In the following table, the first number is for the Euro Country Extended Code
Page (ECECP), and the second is for Country Extended Code Page (CECP).

CCSID Description

01208 Unicode UTF-8

01047 Latin 1 / Open Systems

01140, 00037 USA, Canada, etc.

01141, 00273 Austria, Germany

01142, 00277 Denmark, Norway

01143, 00278 Finland, Sweden

01144, 00280 Italy

01145, 00284 Spain, Latin America (Spanish)

01146, 00285 UK

01147, 00297 France

01148, 00500 International

01149, 00871 Iceland

Specifying the code page
If your document does not include an encoding declaration in the XML
declaration, or if it does not have an XML declaration at all, the parser uses the
encoding information provided by the PLISAXC or PLISAXD built-in subroutine
call along with the basic encoding of the document.

You can also specify the encoding information for the document in the XML
declaration, with which most XML documents begin. The following example is an
XML declaration that includes an encoding declaration:

<?xml version="1.0" encoding="ibm-1140"?>

438 Enterprise PL/I for z/OS Programming Guide

If your XML document includes an encoding declaration, ensure that it is
consistent with the encoding information provided by the PLISAXC or PLISAXD
built-in subroutine and with the basic encoding of the document. If there is any
conflict between the encoding declaration, the encoding information provided by
the PLISAXC or PLISAXD built-in subroutine, and the basic encoding of the
document, the parser signals an exception XML event.

You can specify the encoding declaration by using a number or an alias.

Specifying the encoding declaration using a number

You can specify the CCSID number (with or without any number of leading
zeroes), prefixed by any of the following (in any mixture of uppercase or lowercase
characters):

IBM_
IBM-

CP
CP_
CP-

CCSID_
CCSID-

Specifying the encoding declaration using an alias

You can use any of the following supported aliases (in any mixture of lowercase
and uppercase characters).

Code page Supported aliases

037 EBCDIC-CP-US, EBCDIC-CP-CA, EBCDIC-CP-WT,
EBCDIC-CP-NL

500 EBCDIC-CP-BE, EBCDIC-CP-CH

813 ISO-8859-7, ISO_8859-7

819 ISO-8859-1, ISO_8859-1

920 ISO-8859-9, ISO_8859-9

1200 UTF-16

Exceptions
If an exception event occurs, the reason and return codes passed to it are those
from the XML System Services parser, and the documentation provided with that
parser explains what these return and reason codes mean.

Parsing XML documents with validation
The PLISAXD built-in subroutine not only parses XML documents in the same
manner as PLISAXC, but also determines whether an inbound XML document
conforms to a set of rules specified in an inbound XML schema.

When you use the PLISAXD built-in subroutine, the inbound schema used for
XML validation must be in a preprocessed format known as an Optimized Schema
Representation (OSR).

The following topics contain the description of the XML schema and the way to
build an OSR for an XML schema. For an example of using PLISAXD built-in

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 439

subroutine to parse XML documents with validation, see “Example of using the
PLISAXD built-in subroutine” on page 451.

XML schema
An XML schema is a mechanism, defined by the W3C, for describing and
constraining the structure and content of XML documents.

Through its support for datatypes and namespaces, an XML schema has the
potential to provide the standard structure for XML elements and attributes.
Therefore, an XML schema, which is itself expressed in XML, can effectively define
a class of XML documents of a given type, for example, stock item.

The following sample XML document describes an item for stock keeping
purposes:

’<?xml version="1.0" standalone="yes"?>’
|| ’<!--Document for stock keeping example-->’
|| ’<stockItem itemNumber="453-SR">’
|| ’<itemName>Stainless steel rope thimbles</itemName>’
|| ’<quantityOnHand>23</quantityOnHand>’
|| ’<stockItem>’;

The stock keeping example document is both well formed and valid according to
the following schema called stock.xsd. (The numbers that precede each line are
not part of the schema, but are used in the explanation after the schema.)
1. <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
2.
3. <xsd:element name="stockItem" type="stockItemType"/>
4.
5. <xsd:complexType name="stockItemType">
6. <xsd:sequence>
7. <xsd:element name="itemName" type="xsd:string" minOccurs="0"/>
8. <xsd:element name="quantityOnHand">
9. <xsd:simpleType>
10. <xsd:restriction base="xsd:nonNegativeInteger">
11. <xsd:maxExclusive value="100"/>
12. </xsd:restriction>
13. </xsd:simpleType>
14. </xsd:element>
15. </xsd:sequence>
16. <xsd:attribute name="itemNumber" type="SKU" use="required"/>
17. </xsd:complexType>
18.
19. <xsd:simpleType name="SKU">
20. <xsd:restriction base="xsd:string">
21. <xsd:pattern value="\d{3}-[A-Z]{2}"/>
22. </xsd:restriction>
23. </xsd:simpleType>
24.
25. </xsd:schema>

The schema declares (line 3) that the root element is stockItem, which has a
mandatory itemNumber attribute (line 16) of type SKU, and includes a sequence
(lines 6 - 15) of other elements:
v An optional itemName element of type string (line 7)
v A required quantityOnHand element that has a constrained range of 1 - 99 based

on the type nonNegativeInteger (lines 8 - 14)

Type declarations can be inline and unnamed, as in lines 9 - 13, which includes the
maxExclusive facet to specify the legal values for the quantityOnHand element.

440 Enterprise PL/I for z/OS Programming Guide

For the itemNumber attribute, by contrast, the named type SKU is declared separately
in lines 19 - 23, which includes a pattern facet that uses regular expression syntax
to specify that the legal values for that type consist of (in order) 3 digits, a
hyphen-minus, and then two uppercase letters.

Creating an OSR
To generate a schema in the OSR format from a text-form schema, use the z/OS
UNIX command xsdosrg, which invokes the OSR generator provided by z/OS
UNIX System Services.

For example, to convert the text-form schema in the stock.xsd file to a schema in
preprocessed format in the stock.osr file, you can use the following z/OS UNIX
command:
xsdosrg -v –o /u/HLQ/xml/stock.osr /u/HLQ/xml/stock.xsd

/u/HLQ/xml/ is the directory where the stock.osr and stock.xsd files are located.

If you want to copy the generated OSR file into a PDS, use the z/OS UNIX cp
command. To specify an MVS data set name, precede the name with double
slashes (//). For example, to copy the HFS file stock.osr into a fixed block record
format PDS called HLQ.XML.OSR with record length 80, you can use the following
command:
cp –p /u/HLQ/xml/stock.osr “//'HLQ.XML.OSR(STOCK)'”

To omit the fully qualified name of the PDS, you can eliminate the single quotation
mark in the cp statement such as follows:
cp –p /u/HLQ/xml/stock.osr “//XML.OSR(STOCK)”

For more information, see the XML System Services User's Guide and Reference.

Example with a simple document
This section contains two examples that illustrate the use of the PLISAXC and
PLISAXD built-in subroutines.

Example of using the PLISAXC built-in subroutine
This example illustrates the use of the PLISAXC built-in subroutine.

The example uses the example XML document shown in Figure 98 on page 431.
This example does not use namespaces, and all the input is passed when PLISAXC
is first invoked (and as a result, the end_of_input event should not be invoked).

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 441

saxtest: package exports(saxtest);

define alias event
limited entry(pointer, pointer, fixed bin(31))
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_with_flag
limited entry(pointer, pointer, fixed bin(31),

bit(8) aligned)
returns(byvalue fixed bin(31))
options(nodescriptor byvalue linkage(optlink));

define alias event_with_namespace
limited entry(pointer, pointer, fixed bin(31),

pointer, fixed bin(31),
pointer, fixed bin(31))

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_without_data
limited entry(pointer)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_pi
limited entry(pointer, pointer, fixed bin(31),

pointer, fixed bin(31))
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_namespace_dcl
limited entry(pointer, pointer, fixed bin(31),

pointer, fixed bin(31))
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_exception
limited entry(pointer, fixed bin(31),

fixed bin(31),
fixed bin(31))

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_end_of_input
limited entry(pointer,

pointer byaddr,
fixed bin(31) byaddr)

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

Figure 99. PLISAXC coding example - type declarations

442 Enterprise PL/I for z/OS Programming Guide

saxtest: proc options(main);

dcl
1 eventHandler static

,2 e01 type event_without_data
init(start_of_document)

,2 e02 type event
init(version_information)

,2 e03 type event
init(encoding_declaration)

,2 e04 type event
init(standalone_declaration)

,2 e05 type event
init(document_type_declaration)

,2 e06 type event_without_data
init(end_of_document)

,2 e07 type event_with_namespace
init(start_of_element)

,2 e08 type event_with_namespace
init(attribute_name)

,2 e09 type event_with_flag
init(attribute_characters)

,2 e10 type event_with_namespace
init(end_of_element)

,2 e11 type event_without_data
init(start_of_CDATA)

,2 e12 type event_without_data
init(end_of_CDATA)

,2 e13 type event_with_flag
init(content_characters)

,2 e14 type event_pi
init(processing_instruction)

,2 e15 type event_with_flag
init(comment)

,2 e16 type event_namespace_dcl
init(namespace_declare)

,2 e17 type event_end_of_input
init(end_of_input)

,2 e18 type event
init(unresolved_reference)

,2 e19 type event_exception
init(exception)

;

Figure 100. PLISAXC coding example - event structure

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 443

dcl token char(8);

dcl xmlDocument char(4000) var;

xmlDocument =
’<?xml version="1.0" standalone="yes"?>’

|| ’<!--This document is just an example-->’
|| ’<sandwich>’
|| ’<bread type="baker’s best"/>’
|| ’<?spread please use real mayonnaise ?>’
|| ’<meat>Ham & turkey</meat>’
|| ’<filling>Cheese, lettuce, tomato, etc.</filling>’
|| ’<![CDATA[We should add a <relish> element in future!]]>’.
|| ’</sandwich>’
|| ’ ’;

call plisaxc(eventHandler,
addr(token),
addrdata(xmlDocument),
length(xmlDocument));

end;

Figure 101. PLISAXC coding example - main routine

444 Enterprise PL/I for z/OS Programming Guide

dcl chars char(32000) based;

start_of_document:
proc(userToken)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ length=’ || tokenlength);

return(0);
end;

version_information:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

encoding_declaration:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

standalone_declaration:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

Figure 102. PLISAXC coding example - event routines

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 445

document_type_declaration:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

namespace_declare:
proc(userToken, nsPrefix, nsPrefixLength,

nsUri, nsUriLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl nsPrefix pointer;
dcl nsPrefixLength fixed bin(31);
dcl nsUri pointer;
dcl nsUriLength fixed bin(31);

put skip list(lowercase(procname()));
put skip list(’prefix = ’
|| ’ <’ || substr(nsPrefix->chars,1,nsPrefixlength) || ’>’);

put skip list(’Uri = ’
|| ’ <’ || substr(nsUri->chars,1,nsUrilength) || ’>’);

return(0);
end;

end_of_document:
proc(userToken)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;

put skip list(lowercase(procname()));

return(0);
end;

PLISAXC coding example - event routines (continued)

446 Enterprise PL/I for z/OS Programming Guide

start_of_element:
proc(userToken, xmlToken, TokenLength,

nsPrefix, nsPrefixLength,
nsUri, nsUriLength)

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl nsPrefix pointer;
dcl nsPrefixLength fixed bin(31);
dcl nsUri pointer;
dcl nsUriLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

attribute_name:
proc(userToken, xmlToken, TokenLength,

nsPrefix, nsPrefixLength,
nsUri, nsUriLength)

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl nsPrefix pointer;
dcl nsPrefixLength fixed bin(31);
dcl nsUri pointer;
dcl nsUriLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

end_of_element:
proc(userToken, xmlToken, TokenLength,

nsPrefix, nsPrefixLength,
nsUri, nsUriLength)

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl nsPrefix pointer;
dcl nsPrefixLength fixed bin(31);
dcl nsUri pointer;
dcl nsUriLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

PLISAXC coding example - event routines (continued)

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 447

content_characters:
proc(userToken, xmlToken, TokenLength, flags)
returns(byvalue fixed bin(31))
options(nodescriptor, byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl flags bit(8) aligned;

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

if flags = ’’b then;
else

put skip list(’!!flags = ’ || flags);

return(0);
end;

attribute_characters:
proc(userToken, xmlToken, TokenLength, flags)
returns(byvalue fixed bin(31))
options(nodescriptor, byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl flags bit(8) aligned;

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

if flags = ’’b then;
else

put skip list(’!!flags = ’ || flags);

return(0);
end;

start_of_CDATA:
proc(userToken)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;

put skip list(lowercase(procname()));

return(0);
end;

end_of_CDATA:
proc(userToken)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;

put skip list(lowercase(procname()));

return(0);
end;

PLISAXC coding example - event routines (continued)

448 Enterprise PL/I for z/OS Programming Guide

processing_instruction:
proc(userToken,

piTarget, piTargetLength,
piData, piDataLength,
flags)

returns(byvalue fixed bin(31))
options(nodescriptor, byvalue linkage(optlink));

dcl userToken pointer;
dcl piTarget pointer;
dcl piTargetLength fixed bin(31);
dcl piData pointer;
dcl piDataLength fixed bin(31);
dcl flags bit(8) aligned;

put skip list(lowercase(procname())
|| ’ <’ || substr(piTarget->chars,1,piTargetLength) || ’>’);

if flags = ’’b then;
else

put skip list(’!!flags = ’ || flags);

return(0);
end;

comment:
proc(userToken, xmlToken, TokenLength, flags)
returns(byvalue fixed bin(31))
options(nodescriptor, byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl flags bit(8) aligned;

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

if flags = ’’b then;
else

put skip list(’!!flags = ’ || flags);

return(0);
end;

unresolved_reference:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(nodescriptor, byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

return(0);
end;

PLISAXC coding example - event routines (continued)

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 449

exception:
proc(userToken, currentOffset, return_code, reason_code)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl currentOffset fixed bin(31);
dcl return_code fixed bin(31);
dcl reason_code fixed bin(31);

put skip list(lowercase(procname())
|| ’ return_code =’ || hex(return_code)
|| ’, reason_code =’ || hex(reason_code)
|| ’, offset =’ || currentOffset);

return(0);
end;

end_of_input:
proc(userToken, addr_xml, length_xml)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl addr_xml byaddr pointer;
dcl length_xml byaddr fixed bin(31);

return(1);
end;

end;

PLISAXC coding example - event routines (continued)

The preceding program produces the following output:

450 Enterprise PL/I for z/OS Programming Guide

Example of using the PLISAXD built-in subroutine
This example illustrates the use of the PLISAXD built-in subroutine.

The example uses the example XML document shown in Figure 98 on page 431
and the XML schema cited in the examples in “Example of using the PLISAXC
built-in subroutine” on page 441.

This example includes the validation of 8 different XML files against the same
stock.osr schema. In the following output, you can see which XML documents in
the saxdtest program fail validation against the schema.

The PLISAXD built-in subroutine requires the XML schema file to be read into a
buffer. The OSR file in the following example is in a PDS. The initial size of the
OSR buffer is set to 4096. If you have a larger OSR file, you can increase the initial
size of the OSR buffer accordingly.

start_of_document
version_information <1.0>
standalone_declaration <yes>
comment <This document is just an example>
start_of_element <sandwich>
prefix = <>
Uri = <>
start_of_element <bread>
prefix = <>
Uri = <>
attribute_name <type>
prefix = <>
Uri = <>
attribute_characters <baker’s best>
end_of_element <bread>
prefix = <>
Uri = <>
processing_instruction <spread>
piData = <please use real mayonnaise >
start_of_element <meat>
prefix = <>
Uri = <>
content_characters <Ham & turkey>
end_of_element <meat>
prefix = <>
Uri = <>
start_of_element <filling>
prefix = <>
Uri = <>
content_characters <Cheese, lettuce, tomato, etc.>
!!flags = 01000000
end_of_element <filling>
prefix = <>
Uri = <>
start_of_cdata
content_characters <We should add a <relish> element in future >
end_of_cdata
end_of_element <sandwich>
prefix = <>
Uri = <>
end_of_document

Figure 103. PLISAXC coding example - program output

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 451

If the inbound schema file were in an HFS file instead, you could use the following
code to read the OSR file into the buffer:
dcl osrin file input stream environment(u);
dcl fileddint builtin;
dcl fileread builtin;

/* Read the HFS OSR file into buffer*/

open file(osrin);
osr_length = fileddint(osrin, ’filesize’);
osr_ptr = allocate(osr_length);
rc = fileread(osrin,osr_ptr,osr_length);

To run a program by using an OSR in a PDS, you can specify the following DD
statement in the JCL:
//OSRIN DD DSN=HLQ.XML.OSR(STOCK),DISP=SHR

If the associated ddname OSRIN is an HFS file, use the following JCL statement
instead:
//OSRIN DD PATH=“/u/HLQ/xml/stock.osr”

saxdtest: package exports(saxdtest);
/**/
/* saxdtest: Test PL/I XML validation support */
/* expected output: */
/* */
/* SAXDTEST: PL/I XML Validation sample */
/* SAXDTEST: Document Successfully parsed */
/* SAXDTEST: Document Successfully parsed */
/* Invalid: missing attribute itemNumber. */
/* exception return_code =00000018, reason_code =8613 */
/* Invalid: unexpected attribute warehouse. */
/* exception return_code =00000018, reason_code =8612 */
/* Invalid: illegal attribute value 123-Ab. */
/* exception return_code =00000018, reason_code =8809 */
/* Invalid: missing element quantityOnHand. */
/* exception return_code =00000018, reason_code =8611 */
/* Invalid: unexpected element comment. */
/* exception return_code =00000018, reason_code =8607 */
/* Invalid: out-of-range element value 100 */
/* exception return_code =00000018, reason_code =8803 */
/* */
/**/

define alias event
limited entry(pointer, pointer, fixed bin(31))
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_with_flag
limited entry(pointer, pointer, fixed bin(31),

bit(8) aligned)
returns(byvalue fixed bin(31))
options(nodescriptor byvalue linkage(optlink));

Figure 104. PLISAXD coding example - event routines

452 Enterprise PL/I for z/OS Programming Guide

define alias event_with_namespace
limited entry(pointer, pointer, fixed bin(31),

pointer, fixed bin(31),
pointer, fixed bin(31))

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_without_data
limited entry(pointer)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_pi
limited entry(pointer, pointer, fixed bin(31),

pointer, fixed bin(31))
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_namespace_dcl
limited entry(pointer, pointer, fixed bin(31),

pointer, fixed bin(31))
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_exception
limited entry(pointer, fixed bin(31),

fixed bin(31),
fixed bin(31))

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

define alias event_end_of_input
limited entry(pointer,

pointer byaddr,
fixed bin(31) byaddr)

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

PLISAXD coding example - event routines (continued)

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 453

saxdtest: proc options(main);

dcl
1 eventHandler static

,2 e01 type event_without_data
init(start_of_document)

,2 e02 type event
init(version_information)

,2 e03 type event
init(encoding_declaration)

,2 e04 type event
init(standalone_declaration)

,2 e05 type event
init(document_type_declaration)

,2 e06 type event_without_data
init(end_of_document)

,2 e07 type event_with_namespace
init(start_of_element)

,2 e08 type event_with_namespace
init(attribute_name)

,2 e09 type event_with_flag
init(attribute_characters)

,2 e10 type event_with_namespace
init(end_of_element)

,2 e11 type event_without_data
init(start_of_CDATA)

,2 e12 type event_without_data
init(end_of_CDATA)

,2 e13 type event_with_flag
init(content_characters)

,2 e14 type event_pi
init(processing_instruction)

,2 e15 type event_with_flag
init(comment)

,2 e16 type event_namespace_dcl
init(namespace_declare)

,2 e17 type event_end_of_input
init(end_of_input)

,2 e18 type event
init(unresolved_reference)

,2 e19 type event_exception
init(exception)

;

PLISAXD coding example - event routines (continued)

454 Enterprise PL/I for z/OS Programming Guide

dcl token char(45);

dcl rc fixed bin(31);
dcl i fixed bin(31);
dcl xml_document(8) char(300) var;
dcl xml_valid_msg(8) char(45) var;
dcl osr_ptr pointer;
dcl record char(80);
dcl osr_index fixed bin;
dcl osr_buf_tail fixed bin;
dcl temp_osr pointer;
dcl buf_size fixed bin(31) init(4096);
dcl rec_size fixed bin(31);
dcl osr_length fixed bin(31);
dcl buf_length fixed bin(31);
dcl eof fixed bin(31) init(0);
dcl osrin file input;

on endfile(osrin) begin;
eof = 1;

end;

/* read the entire PDS osr file into the buffer */

put skip list (’SAXDTEST: PL/I XML Validation sample ’);

osr_length = buf_size;
osr_index = 0;
osr_buf_tail = 0;
rec_size = length(record);

osr_ptr = allocate(osr_length);

do while (eof = 0);

read file(osrin) into(record);
osr_buf_tail += rec_size;
if osr_buf_tail > buf_size then
do;

buf_length = osr_length;
osr_length +=buf_size;
temp_osr = allocate(osr_length);

call plimove(temp_osr, osr_ptr, buf_length);
call plifree(osr_ptr);
osr_ptr = temp_osr;
osr_buf_tail = rec_size;

call plimove(osr_ptr+osr_index, addr(record), rec_size);
osr_index += rec_size;

end;
else
do;

call plimove(osr_ptr+osr_index, addr(record), rec_size);
osr_index +=rec_size;

end;

end;

PLISAXD coding example - event routines (continued)

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 455

/* Valid XMLFILE */
xml_document(1) = ’<stockItem itemNumber="453-SR">’
|| ’<itemName>Stainless steel rope thimbles</itemName>’
|| ’<quantityOnHand>23</quantityOnHand>’
|| ’</stockItem>’;

xml_valid_msg(1) = ’Valid XMLFILE ’;
/* Valid: the ITEMNAME element can be omitted */
xml_document(2) = ’<stockItem itemNumber="453-SR">’
|| ’<quantityOnHand>23</quantityOnHand>’
|| ’</stockItem>’;

xml_valid_msg(2) = ’Valid: the ITEMNAME element can be omitted.’;

/* Invalid: missing attribute itemNumber */
xml_document(3) = ’<stockItem>’
|| ’<itemName>Stainless steel rope thimbles</itemName>’
|| ’<quantityOnHand>23</quantityOnHand>’
|| ’</stockItem>’;

xml_valid_msg(3) = ’Invalid: missing attribute itemNumber.’;

/* Invalid: unexpected attribute warehouse */
xml_document(4) = ’<stockItem itemNumber="453-SR" warehouse="NY">’
|| ’<itemName>Stainless steel rope thimbles</itemName>’
|| ’<quantityOnHand>23</quantityOnHand>’
|| ’</stockItem>’;

xml_valid_msg4) = ’Invalid: unexpected attribute warehouse.’;

/* Invalid: illegal attribute value 123-Ab */
xml_document(5) = ’<stockItem itemNumber="123-Ab">’
|| ’<itemName>Stainless steel rope thimbles</itemName>’
|| ’<quantityOnHand>23</quantityOnHand>’
|| ’</stockItem>’;

xml_valid_msg(5) = ’Invalid: illegal attribute value 123-Ab.’;

/* Invalid: missing element quantityOnHand */
xml_document(6) = ’<stockItem itemNumber="074-UN">’
|| ’<itemName>Stainless steel rope thimbles</itemName>’
|| ’</stockItem>’;

xml_valid_msg(6) = ’Invalid: missing element quantityOnHand.’;

/* Invalid: unexpected element comment */
xml_document(7) = ’<stockItem itemNumber="453-SR">’
|| ’<itemName>Stainless steel rope thimbles</itemName>’
|| ’<quantityOnHand>1</quantityOnHand>’
|| ’<commnet>Nylon bristles</comment>’
|| ’</stockItem>’;

xml_valid_msg(7) = ’Invalid: unexpected element comment.’;

/* Invalid: out-of-range element value 100 */
xml_document(8) = ’<stockItem itemNumber="123-AB">’
|| ’<itemName>Paintbrush</itemName>’
|| ’<quantityOnHand>100</quantityOnHand>’
|| ’</stockItem>’;

xml_valid_msg(8) = ’Invalid: out-of-range element value 100’;

PLISAXD coding example - event routines (continued)

456 Enterprise PL/I for z/OS Programming Guide

do i = 1 to hbound(xml_document);;
token = xml_valid_msg(i);
call plisaxd(eventHandler,

addr(token),
addrdata(xml_document(i)),
length(xml_document(i)),
osr_ptr,
37);

end;

close file(osrin);
call plifree(osr_ptr);

end;

start_of_document:
proc(userToken)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;

return(0);
end;

version_information:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

return(0);
end;

encoding_declaration:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

return(0);
end;

standalone_declaration:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

return(0);
end;

PLISAXD coding example - event routines (continued)

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 457

document_type_declaration:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

return(0);
end;

end_of_document:
proc(userToken)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;

put skip list(’SAXDTEST: Document Successfully parsed ’);

return(0);
end;

start_of_element:
proc(userToken, xmlToken, TokenLength,

nsPrefix, nsPrefixLength,
nsUri, nsUriLength)

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl nsPrefix pointer;
dcl nsPrefixLength fixed bin(31);
dcl nsUri pointer;
dcl nsUriLength fixed bin(31);

return(0);
end;

PLISAXD coding example - event routines (continued)

458 Enterprise PL/I for z/OS Programming Guide

attribute_name:
proc(userToken, xmlToken, tokenLength,

nsPrefix, nsPrefixLength,
nsUri, nsUriLength)

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl nsPrefix pointer;
dcl nsPrefixLength fixed bin(31);
dcl nsUri pointer;
dcl nsUriLength fixed bin(31);

return(0);
end;

attribute_characters:
proc(userToken, xmlToken, TokenLength, flags)
returns(byvalue fixed bin(31))
options(nodescriptor, byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl flags bit(8) aligned;

put skip list(lowercase(procname())
||’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

if flags = ’’b then;
else

put skip list(’!!flags = ’ || flags);

return(0);
end;

end_of_element:
proc(userToken, xmlToken, TokenLength,

nsPrefix, nsPrefixLength,
nsUri, nsUriLength)

returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl nsPrefix pointer;
dcl nsPrefixLength fixed bin(31);
dcl nsUri pointer;
dcl nsUriLength fixed bin(31);

return(0);
end;

PLISAXD coding example - event routines (continued)

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 459

start_of_CDATA:
proc(userToken)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;

return(0);
end;

end_of_CDATA:
proc(userToken)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;

return(0);
end;

content_characters:
proc(userToken, xmlToken, TokenLength, flags)
returns(byvalue fixed bin(31))
options(nodescriptor, byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl flags bit(8) aligned;

if flags = ’’b then;
else

return(0);
end;

processing_instruction:
proc(userToken,

piTarget, piTargetLength,
piData, piDataLength,
flags)

returns(byvalue fixed bin(31))
options(nodescriptor, byvalue linkage(optlink));

dcl userToken pointer;
dcl piTarget pointer;
dcl piTargetLength fixed bin(31);
dcl piData pointer;
dcl piDataLength fixed bin(31);
dcl flags bit(8) aligned;

put skip list(lowercase(procname())
|| ’ <’ || substr(piTarget->chars,1,piTargetLength) || ’>’);

if flags = ’’b then;
else

put skip list(’!!flags = ’ || flags);

return(0);
end;

PLISAXD coding example - event routines (continued)

460 Enterprise PL/I for z/OS Programming Guide

comment:
proc(userToken, xmlToken, TokenLength, flags)
returns(byvalue fixed bin(31))
options(nodescriptor, byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);
dcl flags bit(8) aligned;

put skip list(lowercase(procname())
|| ’ <’ || substr(xmltoken->chars,1,tokenlength) || ’>’);

if flags = ’’b then;
else

put skip list(’!!flags = ’ || flags); return(0);
end;

namespace_declare:
proc(userToken, nsPrefix, nsPrefixLength,

nsUri, nsUriLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl nsPrefix pointer;
dcl nsPrefixLength fixed bin(31);
dcl nsUri pointer;
dcl nsUriLength fixed bin(31);

return(0);
end;

unresolved_reference:
proc(userToken, xmlToken, TokenLength)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl xmlToken pointer;
dcl tokenLength fixed bin(31);

return(0);
end;

exception:
proc(userToken, currentOffset, return_code, reason_code)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl currentOffset fixed bin(31);
dcl return_code fixed bin(31);
dcl reason_code fixed bin(31);
dcl validmsg char(45) based;

put skip list(userToken -> validmsg);
put skip list(lowercase(procname())
|| ’ return_code =’ || hex(return_code)
|| ’, reason_code =’ || substr(hex(reason_code),5,4));

return(0);
end;

PLISAXD coding example - event routines (continued)

Chapter 20. Using the PLISAXC and PLISAXD XML parsers 461

end_of_input:
proc(userToken, addr_xml, length_xml)
returns(byvalue fixed bin(31))
options(byvalue linkage(optlink));

dcl userToken pointer;
dcl addr_xml byaddr pointer;
dcl length_xml byaddr fixed bin(31);

return(0);
end;

PLISAXD coding example - event routines (continued)

The following output shows the result of the sample program. For those
documents that are not valid, the PLISAXD built-in subroutine invokes the XML
exception event with the return code and reason code listed. For a detailed
description of each return code and reason code, see XML System Services User’s
Guide and Reference.

SAXDTEST: PL/I XML Validation sample
SAXDTEST: Document Successfully parsed
SAXDTEST: Document Successfully parsed
Invalid: missing attribute itemNumber.
exception return_code =00000018, reason_code =8613
Invalid: unexpected attribute warehouse.
exception return_code =00000018, reason_code =8612
Invalid: illegal attribute value 123-Ab.
exception return_code =00000018, reason_code =8809
Invalid: missing element quantityOnHand.
exception return_code =00000018, reason_code =8611
Invalid: unexpected element comment.
exception return_code =00000018, reason_code =8607
Invalid: out-of-range element value 100
exception return_code =00000018, reason_code =8803

Figure 105. Output from PLISAXD sample

462 Enterprise PL/I for z/OS Programming Guide

Chapter 21. Using PLIDUMP

This section provides information about dump options and the syntax used to call
PLIDUMP, and describes PL/I-specific information included in the dump that can
help you debug your routine.

Note: PLIDUMP conforms to National Language Support standards.

Figure 106 shows an example of a PL/I routine calling PLIDUMP to produce a
z/OS Language Environment dump. In this example, the main routine PLIDMP
calls PLIDMPA, which then calls PLIDMPB. The call to PLIDUMP is made in
routine PLIDMPB.

The syntax and options for PLIDUMP are as follows:

►► PLIDUMP (character-string-expression 1,character-string-expression 2) ►◄

character-string-expression 1
A dump options character string consisting of one or more of the following
options:

A Requests information relevant to all tasks in a multitasking program.

B BLOCKS (PL/I hexadecimal dump).

%PROCESS MAP SOURCE STG LIST OFFSET LC(101);
PLIDMP: PROC OPTIONS(MAIN) ;

Declare (H,I) Fixed bin(31) Auto;
Declare Names Char(17) Static init(’Bob Teri Bo Jason’);
H = 5; I = 9;
Put skip list(’PLIDMP Starting’);
Call PLIDMPA;

PLIDMPA: PROC;
Declare (a,b) Fixed bin(31) Auto;
a = 1; b = 3;
Put skip list(’PLIDMPA Starting’);
Call PLIDMPB;

PLIDMPB: PROC;
Declare 1 Name auto,

2 First Char(12) Varying,
2 Last Char(12) Varying;

First = ’Teri’;
Last = ’Gillispy’;
Put skip list(’PLIDMPB Starting’);
Call PLIDUMP(’TBFC’,’PLIDUMP called from procedure PLIDMPB’);
Put Data;

End PLIDMPB;

End PLIDMPA;

End PLIDMP;

Figure 106. Example PL/I routine calling PLIDUMP

© Copyright IBM Corp. 1999, 2017 463

C Continue. The routine continues after the dump.

E Exit from current task of a multitasking program. The program
continues to run after the requested dump is completed.

F FILES.

H STORAGE.

This includes all Language Environment storage, and hence all the
BASED and CONTROLLED storage acquired through ALLOCATE
statements.

Note: A ddname of CEESNAP should be specified with the H option
to produce a SNAP dump of a PL/I routine, but if this is omitted,
Language Environment will issue a message but still produce a dump
with much very useful information.

K BLOCKS (when running under CICS). The Transaction Work Area is
included.

NB NOBLOCKS.

NF NOFILES.

NH NOSTORAGE.

NK NOBLOCKS (when running under CICS).

NT NOTRACEBACK.

O Only information relevant to the current task in a multitasking
program.

S Stop. The enclave is terminated with a dump.

T TRACEBACK.

T, F, and C are the default options.

character-string-expression 2
A user-identified character string up to 80 characters long that is printed as the
dump header.

PLIDUMP usage notes
If you use PLIDUMP, the following considerations apply:
v If a routine calls PLIDUMP a number of times, use a unique user-identifier for

each PLIDUMP invocation. This simplifies identifying the beginning of each
dump.

v A DD statement with the ddname PLIDUMP, PL1DUMP, or CEEDUMP can be
used to define the data set for the dump.

v The data set defined by the PLIDUMP, PL1DUMP, or CEEDUMP DD statement
should specify a logical record length (LRECL) of at least 133 to prevent dump
records from wrapping. If SYSOUT is used as the target in any one of these
DDs, you must specify MSGFILE(SYSOUT,FBA,133,0) or
MSGFILE(SYSOUT,VBA,137,0) to ensure that the lines are not wrapped.

v When you specify the H option in a call to PLIDUMP, the PL/I library issues an
OS SNAP macro to obtain a dump of virtual storage. The first invocation of
PLIDUMP results in a SNAP identifier of 0. For each successive invocation, the
ID is increased by one to a maximum of 256, after which the ID is reset to 0.

464 Enterprise PL/I for z/OS Programming Guide

v Support for SNAP dumps using PLIDUMP is only provided under z/OS. SNAP
dumps are not produced in a CICS environment.
– If the SNAP is not successful, the CEE3DMP DUMP file displays the message:

Snap was unsuccessful

– If the SNAP is successful, CEE3DMP displays the message:
Snap was successful; snap ID = nnn

where nnn corresponds to the SNAP identifier described above. An
unsuccessful SNAP does not increment the identifier.

v If you want the program unit name, program unit address, and program unit
offset to be listed correctly in the dump traceback table, ensure that your PL/I
program unit is compiled with a compile-time option other than
TEST(NONE,NOSYM). For example, you can specify the option as
TEST(NOSYM,NOHOOK,BLOCK).

If you want to ensure portability across system platforms, use PLIDUMP to
generate a dump of your PL/I routine.

Locating variables in the PLIDUMP output
To find variables in the PLIDUMP output, you should compile your program with
the MAP option. The MAP option will cause the compiler to add to the listing a
table showing the offset within AUTOMATIC and STATIC storage of all level-1
variables that are AUTOMATIC or STATIC.

To find a variable that is an element in a structure, it is also useful if you compile
your program with the AGGREGATE option. This option will cause the compiler
to add to the listing a table showing the offsets of all the elements of all the
structures in your program.

Locating AUTOMATIC variables
To find an AUTOMATIC variable in the dump, you should find its offset within
automatic using the output from the MAP option (and if necessary the
AGGREGATE option).

If PLIDUMP has been invoked with the B option, the dump output will contain a
hex dump of the dynamic save area (DSA) for each block. This is the automatic
storage for that block.

For example, consider the following simple program:
Compiler Source

Line.File
2.0 test: proc options(main);
3.0
4.0 dcl a fixed bin(31);
5.0 dcl b fixed bin(31);
6.0
7.0 on error
8.0 begin;
9.0 call plidump(’TFBC’);

10.0 end;
11.0
12.0 a = 0;
13.0 b = 29;
14.0 b = 17 / a;

Chapter 21. Using PLIDUMP 465

The result of the compiler MAP option for this program looks like this, except that
there is actually one more column on the right and the columns are actually
spaced much further apart:
* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *
IDENTIFIER DEFINITION ATTRIBUTES

A 1-0:4 Class = automatic, Location = 160 : 0xA0(r13),
B 1-0:5 Class = automatic, Location = 164 : 0xA4(r13),

So, A is located at hex A0 off of register 13 and B is located at hex A4 off of
register 13, where register 13 points to the DSA.

Because in this program PLIDUMP is called with the B option, it will include a
hexadecimal dump of automatic storage for each block in the current calling chain.
This will look like the following (again with the right columns cutoff):
Dynamic save area (TEST): 0AD963C8

+000000 0AD963C8 10000000 0AD96188 00000000 00000000
+000020 0AD963E8 00000000 00000000 00000000 00000000
+000040 0AD96408 00000000 00000000 00000000 0AD96518
+000060 0AD96428 00000000 00000000 00000000 00000000
+000080 0AD96448 - +00009F 0AD96467 same as above
+0000A0 0AD96468 00000000 0000001D 00100000 00000000
+0000C0 0AD96488 0B300000 0A700930 0AD963C8 00000000
+0000E0 0AD964A8 00000000 00000000 00000000 00000000
+000100 0AD964C8 0AA47810 0A70E6D0 0AD96540 0AD960F0
+000120 0AD964E8 00000001 0A70F4F8 0AD96318 00000000
+000140 0AD96508 00000000 00000000 00000000 00000000

Because A is at hex offset A0 and B is at hex offset A4 in AUTOMATIC, the dump
shows that A and B have the (expected) hex values of 00000000 and 0000001D
respectively.

Note that under the compiler options OPT(2) and OPT(3), some variables,
particularly FIXED BIN and POINTER scalar variables, might never be allocated
storage and thus could not be found in the dump output.

Locating STATIC variables
If you compiled your code with the RENT option, static variables are located in the
Writeable Static Area (WSA) for the current load module.

The offset of a variable within the WSA can be found from the output of the MAP
option, and the WSA is held in the Language Environment control block called the
CAA. The value of the WSA is also listed in the Language Environment dump.

However, if you compiled your code with the NORENT option, EXTERNAL
STATIC is found as usual (using the linker listing and the output of the compiler's
MAP option). INTERNAL STATIC will be dumped as part of the Language
Environment dump (if PLIDUMP was called with the B option).

Note that unlike the older PL/I compilers, the address of static is not dedicated to
any one register.

For example, consider the program above with the variables changed to STATIC:
Compiler Source

Line.File
2.0 test: proc options(main);
3.0
4.0 dcl a fixed bin(31) static;

466 Enterprise PL/I for z/OS Programming Guide

5.0 dcl b fixed bin(31) static;
6.0
7.0 on error
8.0 begin;
9.0 call plidump(’TFBC’);

10.0 end;
11.0
12.0 a = 0;
13.0 b = 29;
14.0 b = 17 / a;

When the program is compiled with the NORENT option, the result of the
compiler MAP option for this program looks like this, except that there is actually
one more column on the right and the columns are actually spaced much further
apart:
* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *
IDENTIFIER DEFINITION ATTRIBUTES

A 1-0:4 Class = static, Location = 0 : 0x0 + CSECT ***TEST2
B 1-0:5 Class = static, Location = 4 : 0x4 + CSECT ***TEST2

So, A is located at hex offset 00 into the static CSECT for the compilation unit
TEST while B is located at hex offset 04.

Because in this program PLIDUMP is called with the B option, it will include a
hexadecimal dump of static storage for each compilation in the current calling
chain. This will look like (again with the right columns cutoff):
Static for procedure TEST Timestamp: 2004.08.12

+000000 0FC00AA0 00000000 0000001D 0FC00DC8 0FC00AC0
+000020 0FC00AC0 0FC00AA8 00444042 00A3AE01 0FC009C8
+000040 0FC00AE0 6E3BFFE0 00000000 00000000 00000000
+000060 0FC00B00 00000000 00000000 00000000 00000000
+000000 0AD963C8 10000000 0AD96188 00000000 00000000

So, A at hex offset 00 has the (expected) hex value 00000000, and B at hex offset 04
has the (also expected) hex value 0000001D or the decimal value 29.

Locating CONTROLLED variables
CONTROLLED variables are essentially LIFO stacks, and each CONTROLLED
variable has an "anchor" that points to the top of that stack. The key to locating a
CONTROLLED variable is to locate this anchor, and its location depends on the
compiler options.

In the rest of this discussion of CONTROLLED variables, the program source is the
same program as in Figure 106 on page 463, but with the storage class changed to
CONTROLLED:
Compiler Source

Line.File
2.0 test: proc options(main);
3.0
4.0 dcl a fixed bin(31) controlled;
5.0 dcl b fixed bin(31) controlled;
6.0
7.0 on error
8.0 begin;
9.0 call plidump(’TFBHC’);

10.0 end;
11.0

Chapter 21. Using PLIDUMP 467

12.0 allocate a, b;
13.0 a = 0;
14.0 b = 29;
15.0 b = 17 / a;

Under NORENT WRITABLE

The result of the compiler MAP option looks like this, except that again there is
actually one more column on the right and the columns are actually spaced much
further apart:
* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *
IDENTIFIER DEFINITION ATTRIBUTES

A 1-0:4 Class = static, Location = 8 : 0x8 + CSECT ***TEST2
B 1-0:5 Class = static, Location = 12 : 0xC + CSECT ***TEST2

Note that these lines describe the location of the anchors for A and B (not the
location of A and B themselves). So the anchor for A is located at hex 08 into the
static CSECT for the compilation unit TEST, and the anchor for B is located at hex
0C.

If PLIDUMP is called with the B option, it will include a hexadecimal dump of
static storage for each compilation in the current calling chain. This will look like
(again with the right columns cutoff):
Static for procedure TEST Timestamp: . . .

+000000 0FC00A88 0FC00DB0 0FC00AA8 102B8A30 102B8A50
+000020 0FC00AA8 0FC00A88 00444042 00A3AE01 0FC009B0
+000040 0FC00AC8 6E3BFFE0 00000000 00000000 00000000

So the anchor for A is at 102B8A30 and the anchor for B is at 102B8A50. But
because these are CONTROLLED variables, their storage was obtained through
ALLOCATE statements, and hence these addresses point into heap storage. But If
PLIDUMP is called with the H option, it will include a hexadecimal dump of heap
storage. This will look like (again with the right columns cutoff):
Enclave Storage:

Initial (User) Heap
+000000 102B7018 C8C1D5C3 0FC0F990 0FC0F990 00000000

. . .
+001A00 102B8A18 102B7018 00000020 0FC00A90 00000014

00000000 00000000 00000000 00000000
+001A20 102B8A38 102B7018 00000020 0FC00A94 00000014

00000000 00000000 0000001D 00000000

Because the anchor for A was at 102B8A30, A has the hex value 00000000, and
because the anchor for B was at 102B8A50, B has the (expected) hex value
0000001D.

Under NORENT NOWRITABLE(FWS)

The result of the compiler MAP option under these options looks like this, except
that again there is actually one more column on the right and the columns are
actually spaced much further apart:
* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *
IDENTIFIER DEFINITION ATTRIBUTES

A 1-0:4 Class = automatic, Location = 236 : 0xEC(r13)
B 1-0:5 Class = automatic, Location = 240 : 0xF0(r13)

468 Enterprise PL/I for z/OS Programming Guide

Note: Under these options, there is an extra level of indirection in locating
CONTROLLED variables, and hence the lines above describe the locations of the
addresses of the anchors for A and B. So the address of the anchor for A is located
at hex EC into the automatic for the block TEST, and the anchor for B is located at
hex F0.

Because PLIDUMP is called with the B option, it will include a hexadecimal dump
of automatic storage for each block in the current calling chain. This will look like
(again with the right columns cutoff):
Dynamic save area (TEST): 102973C8
+000000 102973C8 10000000 10297188 00000000 8FC007DA

....
+0000E0 102974A8 0FC00998 00000000 00000000 102B8A40

102B8A28 10297030 102977D0 8FDF3D7E

So the address of the anchor for A is 102B8A40 and the address of the anchor for B
is 102B8A28.

Because PLIDUMP was also called with the H option, it will include a hexadecimal
dump of heap storage. This will look like (again with the right columns cutoff):
Enclave Storage:

Initial (User) Heap
+000000 102B7018 C8C1D5C3 0FC0F990 0FC0F990 00000000
. . .

+001A00 102B8A18 102B7018 00000018 00000000 0FC00A78
102B8A80 00000000 102B7018 00000018

+001A20 102B8A38 102B8A20 0FC00A74 102B8A60 00000000
102B7018 00000020 102B8A40 00000014

+001A40 102B8A58 00000000 00000000 00000000 00000000
102B7018 00000020 102B8A28 00000014

+001A60 102B8A78 00000000 00000000 0000001D 00000000
00000000 00000000 00000000 00000000

Because the address of the anchor for B was at 102B8A28, the anchor for B is at
102B8A80, and B has, as expected, the hex value 0000001D or decimal 29.

Under NORENT NOWRITABLE(PRV)

The MAP listing when the program is compiled with these options would look like
this:
* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *
IDENTIFIER DEFINITION ATTRIBUTES

***TEST3 1-0:4 Class = ext def, Location = CSECT ***TEST3
***TEST4 1-0:5 Class = ext def, Location = CSECT ***TEST4
_PRV_OFFSETS 1-0:1 Class = static, Location = 8 : 0x8 + CSECT ***TEST2

The key here is the last line in this output: _PRV_OFFSETS is a static table that
holds the offset into the PRV table for each CONTROLLED variable. This static
table is generated only if the MAP option is specified.

To interpret this table, the compiler will also produce, immediately after the block
names table, another, usually small, listing, which for our program would look like
this:

PRV Offsets

Number Offset Name
1 8 A
1 C B

Chapter 21. Using PLIDUMP 469

This table lists the hex offset within the runtime _PRV_OFFSETS table for each of
the named CONTROLLED variables. The block number (in the first column) can
be used to distinguish variables with the same name but declared in different
blocks.

Because the _PRV_OFFSETS table is in static storage (at hex offset 8) and because
PLIDUMP was called with the B option, it will appear in the dump output, which
would look like this:
Static for procedure TEST Timestamp: . . .

+000000 10908EC8 02020240 00000005 6DD7D9E5 6DD6C6C6
00000000 00000004 D00000A0 00100000

+000020 10908EE8 6E3BFFE0 00000000 00000000 00000000
00000000 90010000 00000000 00000000

So the offset of A in the PRV table is 0, and the offset of B in the PRV table is 4.
Note also the eyecatcher "_PRV_OFF" that occupies the first 8 bytes of the
_PRV_OFFSETs table.

The PRV table is always located at offset 4 within the CAA, which, because
PLIDUMP was called with the H option, will be in the dump output. The CAA
looks like this:
Control Blocks Associated with the Thread:

CAA: 0A7107D0
+000000 0A7107D0 00000800 0ADB7DE0 0AD97018 0ADB7018

00000000 00000000 00000000 00000000

So the address of the PRV table is 0ADB7DE0, and it will also be in the dump
output amongst the HEAP storage:
Enclave Storage:

Initial (User) Heap
+000000 102B7018 C8C1D5C3 0FC0F990 0FC0F990 00000000
. . .

+000DC0 0ADB7DD8 00000000 00000000 0ADB8A38 0ADB8A58
0ADB7018 00000488 00000000 00000000

So the PRV table contains 0ADB8A38 0ADB8A58 and so on, and because, as
derived from the _PRV_OFFSETS table, the offset of A into the PRV table is 0 and
the offset of B is 4, these are also the addresses of A and B respectively.

These addresses will also appear in the HEAP storage in the dump:
Enclave Storage:
Initial (User) Heap

+000000 102B7018 C8C1D5C3 0FC0F990 0FC0F990 00000000
. . .

+001A00 0ADB8A18 00000000 00000000 0ADB7018 00000020
00000000 00000014 0A7107D4 00000000

+001A20 0ADB8A38 00000000 00000000 0ADB7018 00000020
00000004 00000014 0A7107D4 00000000

+001A40 0ADB8A58 0000001D 00000000 00000000 00000000
00000000 00000000 00000000 00000000

So because the address of A is 0ADB8A38, the hex value of A is, as expected,
00000000, and because the address of B is 0ADB8A58, the hex value of B is, also as
expected, 0000001D.

470 Enterprise PL/I for z/OS Programming Guide

Saved compilation data
During a compilation, the compiler saves various information about the
compilation in the load module. This information can be very useful in debugging
and in future migration efforts. This section describes the information saved.

Copyright
If you specify the COPYRIGHT compiler option, the compiler will save the
COPYRIGHT string as a CHARACTER VARYING string placed immediately
before the timestamp data in the object.

This string will be followed by as many blanks as necessary so that the string plus
these blanks will occupy a multiple of 4 bytes.

Timestamp
The compiler saves in every load module a timestamp, which is a 20-byte character
string of the form YYYYMMDDHHMISSVNRNML, which records the date and
time of the compilation as well as the version of the compiler that produced this
string.

The elements of the string have the following meanings:

YYYY
The year of the compilation

MM The month of the compilation

DD The day of the compilation

HH The hour of the compilation

MI The minute of the compilation

SS The second of the compilation

VN The version number of the compiler

RN The release number of the compiler

ML The maintenance level of the compiler

The timestamp can be located from the PPA2: at offset 12 in the PPA2 is a
four-byte integer giving the offset (possibly negative) to the timestamp from the
address of the PPA2.

The PPA2, in turn, can be located from the PPA1: at offset 4 in the PPA1 is a
four-byte integer giving the offset (possibly negative) to the PPA2 from the entry
point address corresponding to that PPA1.

You can locate the PPA1 as follows:
v If the code was compiled with LP(32), you can locate the PPA1 from the entry

point address for a block: at offset 12 from the entry point address is a four-byte
integer giving the offset (possibly negative) to the PPA1 from the entry point
address.

v If the code was compiled with LP(64), the offset to the PPA1 is in the fullword
eight bytes in front of each entry point address.

Chapter 21. Using PLIDUMP 471

Saved options string
The compiler stores in the load module a 32-byte string that records the compiler
options used in building the load module.

The declaration for the saved options string is provided in the include file ibmvsos
in the samples data set SIBMZSAM.

For most of the fields in the structure, the meaning of the field is obvious given its
name, but a few of the fields need some explanation:
v sos_words holds the number of the bytes in the structure divided by 4.
v sos_version is the version number for this structure. It is not a compiler version

number.
v The size of the structure and what fields have been set depends on the version

number.

The saved options string is located after the timestamp in one of two ways:
1. If the service option has been specified, the string specified in the service

option follows immediately after the timestamp as a character varying string.
Then the saved options string follows after the service string as a second
character varying string.

2. If the service option has not been specified, the saved options string follows
immediately after the timestamp as a character varying string.

The length of the varying string that holds the saved options string might be
longer than the size of the saved options string itself.

The presence (or absence) of the service string is indicated in the PPA2 by the flag
byte at decimal offset 20 in the PPA2: if the result of anding this byte with '20'bx is
not zero, then the service string is present.

In some earlier releases of the PL/I compiler, the compiler did not place a saved
options string in the load module. The presence (or absence) of the saved options
string is indicated in the PPA2 by the flag byte at decimal offset 20 in the PPA2: if
the result of anding this byte with '02'bx is not zero, the saved options string is
present.

472 Enterprise PL/I for z/OS Programming Guide

Chapter 22. Interrupts and attention processing

To enable a PL/I program to recognize attention interrupts, two operations must
be possible:
v You must be able to create an interrupt. This is done in different ways

depending upon both the terminal you use and the operating system.
v Your program must be prepared to respond to the interrupt. You can write an

ON ATTENTION statement in your program so that the program receives
control when the ATTENTION condition is raised.

Note: If the program has an ATTENTION ON-unit that you want invoked, you
must compile the program with either of the following options:
– The INTERRUPT option (supported only in TSO)
– A TEST option other than NOTEST or TEST(NONE,NOSYM)

Compiling this way causes INTERRUPT(ON) to be in effect, unless you
explicitly specify INTERRUPT(OFF) in PLIXOPT.

You can find the procedure used to create an interrupt in the IBM instruction
manual for the operating system and terminal that you are using.

There is a difference between the interrupt (the operating system recognized your
request) and the raising of the ATTENTION condition.

An interrupt is your request that the operating system notify the running program.
If a PL/I program was compiled with the INTERRUPT compile-time option,
instructions are included that test an internal interrupt switch at discrete points in
the program. The internal interrupt switch can be set if any program in the load
module was compiled with the INTERRUPT compile-time option.

The internal switch is set when the operating system recognizes that an interrupt
request was made. The execution of the special testing instructions (polling) raises
the ATTENTION condition. If a debugging tool hook (or a CALL PLITEST) is
encountered before the polling occurs, the debugging tool can be given control
before the ATTENTION condition processing starts.

Polling ensures that the ATTENTION condition is raised between PL/I statements,
rather than within the statements.

Figure 107 on page 474 shows a skeleton program, an ATTENTION ON-unit, and
several situations where polling instructions will be generated. In the program,
polling will occur at the following:
v LABEL1
v Each iteration of the DO
v The ELSE PUT SKIP ... statement
v Block END statements

© Copyright IBM Corp. 1999, 2017 473

Using ATTENTION ON-units
You can use processing within the ATTENTION ON-unit to terminate potentially
endless looping in a program.

Control is given to an ATTENTION ON-unit when polling instructions recognize
that an interrupt has occurred. Normal return from the ON-unit is to the statement
following the polling code.

Interaction with a debugging tool
If the program has the TEST(ALL) or TEST(ERROR) runtime option in effect, an
interrupt causes the debugging tool to receive control the next time a hook is
encountered. This might be before the program's polling code recognizes that the
interrupt occurred.

Later, when the ATTENTION condition is raised, the debugging tool receives
control again for condition processing.

%PROCESS INTERRUPT;
.
.
.

ON ATTENTION
BEGIN;

DCL X FIXED BINARY(15);
PUT SKIP LIST (’Enter 1 to terminate, 0 to continue.’);
GET SKIP LIST (X);
IF X = 1 THEN

STOP;
ELSE

PUT SKIP LIST (’Attention was ignored’);
END;

.

.

.
LABEL1:
IF EMPNO ...

.

.

.
DO I = 1 TO 10;

.

.

.
END;

.

.

.

Figure 107. Using an ATTENTION ON-unit

474 Enterprise PL/I for z/OS Programming Guide

Chapter 23. Using the Checkpoint/Restart facility

This chapter describes the PL/I Checkpoint/Restart feature, which provides a
convenient method of taking checkpoints during the execution of a long-running
program in a batch environment.

At points specified in the program, information about the current status of the
program is written as a record on a data set. If the program terminates due to a
system failure, you can use this information to restart the program close to the
point where the failure occurred, avoiding the need to rerun the program
completely.

This restart can be either automatic or deferred. An automatic restart is one that
takes place immediately (provided the operator authorizes it when requested by a
system message). A deferred restart is one that is performed later as a new job.

You can request an automatic restart from within your program without a system
failure having occurred.

PL/I Checkpoint/Restart uses the Advanced Checkpoint/Restart Facility of the
operating system. This facility is described in the books listed in “Bibliography” on
page 523.

To use checkpoint/restart, you must do the following operations:
v Request, at suitable points in your program, that a checkpoint record is written.

This is done with the built-in subroutine PLICKPT.
v Provide a data set on which the checkpoint record can be written.
v To ensure the desired restart activity, you might need to specify the RD

parameter in the EXEC or JOB statement (see the z/OS JCL Reference).

Note: You should be aware of the restrictions affecting data sets used by your
program. These are detailed in the “Bibliography” on page 523.

Requesting a checkpoint record
Each time you want a checkpoint record to be written, you must invoke, from your
PL/I program, the built-in subroutine PLICKPT.

►► CALL PLICKPT
(ddname)

, check-id
, org

, code

►◄

The four arguments are all optional. If you do not use an argument, you need not
specify it unless you specify another argument that follows it in the given order. In
this case, you must specify the unused argument as a null string ('').

ddname
Is a character string constant or variable specifying the name of the DD
statement defining the data set that is to be used for checkpoint records. If you
omit this argument, the system will use the default ddname SYSCHK.

© Copyright IBM Corp. 1999, 2017 475

check-id
Is a character string constant or variable specifying the name that you want to
assign to the checkpoint record so that you can identify it later. If you omit this
argument, the system will supply a unique identification and print it at the
operator's console.

org
Is a character string constant or variable with the attributes CHARACTER(2)
whose value indicates, in operating system terms, the organization of the
checkpoint data set. You can specify the following values:

PS Indicates sequential (that is, CONSECUTIVE) organization.

PO Represents partitioned organization.

If you omit this argument, PS is assumed.

code
Is a variable with the attributes FIXED BINARY (31), which can receive a
return code from PLICKPT. The return code has the following values:

0 A checkpoint has been successfully taken.

4 A restart has been successfully made.

8 A checkpoint has not been taken. The PLICKPT statement should be
checked.

12 A checkpoint has not been taken. Check for a missing DD statement, a
hardware error, or insufficient space in the data set. A checkpoint will
fail if taken while a DISPLAY statement with the REPLY option is still
incomplete.

16 A checkpoint has been taken, but ENQ macro calls are outstanding and
will not be restored on restart. This situation will not normally arise for
a PL/I program.

Defining the checkpoint data set
You must include a DD statement in the job control procedure to define the data
set in which the checkpoint records are to be placed.

This data set can have either CONSECUTIVE or partitioned organization. You can
use any valid ddname. If you use the ddname SYSCHK, you do not need to
specify the ddname when invoking PLICKPT.

You must specify a data set name only if you want to keep the data set for a
deferred restart. The I/O device can be any direct access device.

To obtain only the last checkpoint record, specify status as NEW (or OLD if the
data set already exists). This will cause each checkpoint record to overwrite the
previous one.

To retain more than one checkpoint record, specify status as MOD. This will cause
each checkpoint record to be added after the previous one.

If the checkpoint data set is a library, “check-id” is used as the member-name.
Thus a checkpoint will delete any previously taken checkpoint with the same
name.

476 Enterprise PL/I for z/OS Programming Guide

For direct access storage, you should allocate enough primary space to store as
many checkpoint records as you will retain. You can specify an incremental space
allocation, but it will not be used. A checkpoint record is approximately 5000 bytes
longer than the area of main storage allocated to the step.

No DCB information is required, but you can include any of the following, where
applicable:
OPTCD=W, OPTCD=C, RECFM=UT

For information about these subparameters, see the z/OS MVS JCL User's Guide.

Requesting a restart
A restart can be automatic or deferred.

You can make automatic restarts after a system failure or from within the program
itself. The system operator must authorize all automatic restarts when requested by
the system.

Automatic restart after a system failure

If a system failure occurs after a checkpoint has been taken, the automatic restart
will occur at the last checkpoint if you have specified RD=R (or omitted the RD
parameter) in the EXEC or JOB statement.

If a system failure occurs before any checkpoint has been taken, an automatic
restart, from the beginning of the job step, can still occur if you have specified
RD=R in the EXEC or JOB statement.

After a system failure occurs, you can still force automatic restart from the
beginning of the job step by specifying RD=RNC in the EXEC or JOB statement. By
specifying RD=RNC, you are requesting an automatic step restart without
checkpoint processing if another system failure occurs.

Automatic restart within a program
You can request a restart at any point in your program.

The rules for the restart are the same as for a restart after a system failure. To
request the restart, you must execute the statement:
CALL PLIREST;

To effect the restart, the compiler terminates the program abnormally, with a
system completion code of 4092. Therefore, to use this facility, the system
completion code 4092 must not have been deleted from the table of eligible codes
at system generation.

Getting a deferred restart
To ensure that automatic restart activity is canceled, but that the checkpoints are
still available for a deferred restart, specify RD=NR in the EXEC or JOB statement
when the program is first executed.

Chapter 23. Using the Checkpoint/Restart facility 477

►► RESTART = (stepname)
,
check-id

►◄

If you subsequently require a deferred restart, you must submit the program as a
new job, with the RESTART parameter in the JOB statement. Use the RESTART
parameter to specify the job step at which the restart is to be made and, if you
want to restart at a checkpoint, the name of the checkpoint record.

For a restart from a checkpoint, you must also provide a DD statement that defines
the data set containing the checkpoint record. The DD statement must be named
SYSCHK. The DD statement must occur immediately before the EXEC statement
for the job step.

Modifying checkpoint/restart activity
You can cancel automatic restart activity from any checkpoints taken in your
program.

To cancel automatic restart, execute this statement:
CALL PLICANC;

However, if you specified RD=R or RD=RNC in the JOB or EXEC statement,
automatic restart can still take place from the beginning of the job step.

Also, any checkpoints already taken are still available for a deferred restart.

You can cancel any automatic restart and the taking of checkpoints, even if they
were requested in your program, by specifying RD=NC in the JOB or EXEC
statement.

478 Enterprise PL/I for z/OS Programming Guide

Chapter 24. Using user exits

PL/I provides a number of user exits that you can use to customize the PL/I
product to suit your needs.

The PL/I products supply default exits and the associated source files.

If you want the exits to perform functions that are different from those supplied by
the default exits, it is recommended that you modify the supplied source files as
appropriate.

At times, it is useful to be able to tailor the compiler to meet the needs of your
organization. For example, you might want to suppress certain messages or alter
the severity of others. You might want to perform a specific function with each
compilation, such as logging statistical information about the compilation into a
file. A compiler user exit handles this type of function.

With PL/I, you can write your own user exit or use the exit provided with the
product, either 'as is' or modified, depending on what you want to do with it. The
user exit source code provided with the product can be seen in Figure 18 on page
174.

This chapter provides the following information:
v Procedures that the compiler user exit supports
v How to activate the compiler user exit
v IBMUEXIT, the IBM-supplied compiler user exit
v Requirements for writing your own compiler user exit

Procedures performed by the compiler user exit
The compiler user exit performs three specific procedures: initialization,
interception and filtering of compiler messages, and termination.

As illustrated in Figure 108 on page 480, the compiler passes control to the
initialization procedure, the message filter procedure, and the termination
procedure. Each of these three procedures, in turn, passes control back to the
compiler when the requested procedure is completed.

© Copyright IBM Corp. 1999, 2017 479

Each of the three procedures is passed two different control blocks:
v A global control block that contains information about the compilation. This is

passed as the first parameter.
v A function-specific control block that is passed as the second parameter. The

content of this control block depends upon which procedure has been invoked.
For detailed information, see “Writing the initialization procedure” on page 483,
“Writing the message filtering procedure” on page 483, and “Writing the
termination procedure” on page 485.

Related information:
“Structure of global control blocks”
The global control block is passed to each of the three user exit procedures
(initialization, filtering, and termination) whenever they are invoked.

Structure of global control blocks
The global control block is passed to each of the three user exit procedures
(initialization, filtering, and termination) whenever they are invoked.

The following code and accompanying explanations describe the contents of each
field in the global control block.

Dcl
1 Uex_UIB native based(null()),

2 Uex_UIB_Length fixed bin(31),

2 Uex_UIB_Exit_token pointer, /* for user exit’s use */

2 Uex_UIB_User_char_str pointer, /* to exit option str */
2 Uex_UIB_User_char_len fixed bin(31),

2 Uex_UIB_Filename_str pointer, /* to source filename */
2 Uex_UIB_Filename_len fixed bin(31),

2 Uex_UIB_return_code fixed bin(31), /* set by exit procs */
2 Uex_UIB_reason_code fixed bin(31), /* set by exit procs */

2 Uex_UIB_Exit_Routs, /* exit entries set at
initialization */

Figure 108. PL/I compiler user exit procedures

480 Enterprise PL/I for z/OS Programming Guide

3 (Uex_UIB_Termination,
Uex_UIB_Message_Filter, /* call for each msg */
*, *, *, *)

limited entry (
, / to Uex_UIB */
, / to a request area */

);

Data Entry Fields

Uex_UIB_ Length
Contains the length of the control block in bytes. The value is storage
(Uex_UIB).

Uex_UIB_Exit_token
Used by the user exit procedure. For example, the initialization might set it
to a data structure that is used by both the message filter and the
termination procedures.

Uex_UIB_User_char_str
Points to an optional character string, if you specify it. For example, pli
filename (EXIT (’string’))...fn can be a character string up to
thirty-one characters in length.

Uex_UIB_char_len
Contains the length of the string pointed to by the User_char_str. The
compiler sets this value.

Uex_UIB_Filename_str
Contains the name of the source file that you are compiling, and includes
the drive and subdirectories as well as the filename. The compiler sets this
value.

Uex_UIB_Filename_len
Contains the length of the name of the source file pointed to by the
Filename_str. The compiler sets this value.

Uex_UIB_return_code
Contains the return code from the user exit procedure. The user sets this
value.

Uex__UIB_reason_code
Contains the procedure reason code. The user sets this value.

Uex_UIB_Exit_Routs
Contains the exit entries set up by the initialization procedure.

Uex_UIB_Termination
Contains the entry that is to be called by the compiler at termination time.
The user sets this value.

Uex_UIB_Message_Filter
Contains the entry that is to be called by the compiler whenever a message
needs to be generated. The user sets this value.

The IBM-supplied compiler exit, IBMUEXIT
IBM supplies you with the sample compiler user exit, IBMUEXIT, which filters
messages for you.

This compiler exit monitors messages and, based on the message number that you
specify, suppresses the message or changes the severity of the message.

Chapter 24. Using user exits 481

See the source of IBMUEXIT in Figure 18 on page 174.

Activating the compiler user exit
To activate the compiler user exit, you must specify the EXIT compile-time option.

The EXIT compile-time option allows you to specify a user-option-string that
specifies the DDname for the user exit input file. If you do not specify a string,
SYSUEXIT is used as the DDname for the user exit input file.

The user-option-string is passed to the user exit functions in the global control
block. For additional information, see “Uex_UIB_User_char_str” in “Structure of
global control blocks” on page 480.
Related information:
“EXIT” on page 33
The EXIT option enables the compiler user exit to be invoked.

Customizing the compiler user exit
You can write your own compiler user exit or simply use the one supplied with
the compiler. In either case, the name of the fetchable file for the compiler user exit
must be IBMUEXIT.

This section describes how to complete the following tasks:
v Modify the user exit input file for customized message filtering.
v Create your own compiler user exit.

Modifying SYSUEXIT
Rather than spending the time to write a completely new compiler user exit, you
can simplify modify the user exit input file.

Edit the file to indicate which message numbers you want to suppress, and which
message number severity levels you want to change. A sample file is shown in
Figure 109.

The first two lines are header lines and are ignored by IBMUEXIT. The remaining
lines contain input separated by a variable number of blanks.

Each column of the file is relevant to the compiler user exit:
v The first column should contain the letters ’IBM’ in single quotation marks for

all compiler messages to which you want the exit to apply.
v The second column contains the four digit message number.
v The third column shows the new message severity. Severity -1 indicates that the

severity should be left as the default value.

Fac Id Msg No Severity Suppress Comment
+--------+--------+----------+----------+--------------------------------

’IBM’ 1042 -1 1 String spans multiple lines
’IBM’ 1044 -1 1 FIXED BIN 7 mapped to 1 byte
’IBM’ 1047 8 0 Order inhibits optimization
’IBM’ 1052 -1 1 Nodescriptor with * extent arg
’IBM’ 1059 0 0 Select without OTHERWISE
’IBM’ 1169 0 1 Precision of result determined

Figure 109. Example of an user exit input file

482 Enterprise PL/I for z/OS Programming Guide

v The fourth column indicates whether the message is to be suppressed. Specify
one of the following values:

1 Suppresses the message.

0 Prints the message.
v The comment field, found in the last column, is for your information, and is

ignored by IBMUEXIT.

Writing your own compiler exit
To write your own user exit, you can use IBMUEXIT as a model. When you write
the exit, make sure it covers the areas of initialization, message filtering, and
termination.

See the source of IBMUEXIT in Figure 18 on page 174.

The compiler user exit must be compiled with the RENT option and linked as a
DLL.

Writing the initialization procedure
Your initialization procedure should perform any initialization required by the exit,
such as opening files and allocating storage.

Code the initialization procedure-specific control block as follows:
Dcl 1 Uex_ISA native based(null()),

2 Uex_ISA_Length_fixed bin(31); /* storage(Uex_ISA) * /

For information about the global control block syntax for the initialization
procedure, see “Structure of global control blocks” on page 480.

Upon completion of the initialization procedure, you should set the return/reason
codes to the following:

0/0
Continue compilation

4/n
Reserved for future use

8/n
Reserved for future use

12/n
Reserved for future use

16/n
Abort compilation

Writing the message filtering procedure
The message filtering procedure permits you to either suppress messages or alter
the severity of messages.

You can increase the severity of any of the messages but you can decrease the
severity only of ERROR (severity code 8) or WARNING (severity code 4)
messages.

Chapter 24. Using user exits 483

The procedure-specific control block contains information about the messages. It is
used to pass information back to the compiler indicating how a particular message
should be handled.

The following example shows a procedure-specific message filter control block:
Dcl 1 Uex_MFX native based(null()),

2 Uex_MFX_Length fixed bin(31),

2 Uex_MFX_Facility_Id char(3), /* of component writing
message */

2 * char(1),
2 Uex_MFX_Message_no fixed bin(31),
2 Uex_MFX_Severity fixed bin(15),
2 Uex_MFX_New_Severity fixed bin(15), /* set by exit proc */
2 Uex_MFX_Inserts fixed bin(15),
2 Uex_MFX_Inserts_Data(6 refer(Uex_MFX_Inserts)),
3 Uex_MFX_Ins_Type fixed bin(7),
3 Uex_MFX_Ins_Type_Data union unaligned,

4 * char(8),
4 Uex_MFX_Ins_Bin8 fixed bin(63),
4 Uex_MFX_Ins_Bin fixed bin(31),
4 Uex_MFX_Ins_Str,
5 Uex_MFX_Ins_Str_Len fixed bin(15),
5 Uex_MFX_Ins_Str_Addr pointer,

4 Uex_MFX_Ins_Series,
5 Uex_MFX_Ins_Series_Sep char(1),
5 Uex_MFX_Ins_Series_Addr pointer;

Data Entry Fields

Uex_MFX_Length
Contains the length of the control block in bytes. The value is storage
(Uex_MFX).

Uex_MFX_Facility_Id
Contains the ID of the facility; for the compiler, the ID is IBM. The compiler
sets this value.

Uex_MFX_Message_no
Contains the message number that the compiler is going to generate. The
compiler sets this value.

Uex_MFX_Severity
Contains the severity level of the message; it can be from one to fifteen
characters in length. The compiler sets this value.

Uex_MFX_New_Severity
Contains the new severity level of the message; it can be from one to
fifteen characters in length. The user sets this value.

Uex_MFX_Inserts
Contains the number of inserts for the message; it can range from zero to
six. The compiler sets this value.

Uex_MFX_Inserts_Data
Contains fields to describe each of the inserts. The compiler sets these
values.

Uex_MFX_Ins_Type
Contains the type of the insert. These are the possible insert types:

Uex_Ins_Type_Xb31
Is used for a FIXED BIN(31) and has the value 1.

484 Enterprise PL/I for z/OS Programming Guide

Uex_Ins_Type_Char
Is used for a CHAR string and has the value 2.

Uex_Ins_Type_Series
Is used for a series of CHAR strings and has the value 3.

Uex_Ins_Type_Xb63
Is used for a FIXED BIN(63) and has the value 4.

The compiler sets this value.

Uex_MFX_Ins_Bin
Contains the integer value for an insert that has integer type. The compiler
sets this value.

Uex_MFX_Ins_Str_Len
Contains the length (in bytes) for an insert that has character type. The
compiler sets this value.

Uex_MFX_Ins_Str_Addr
Contains the address of the character string for an insert that has character
type. The compiler sets this value.

Uex_MFX_Ins_Series_Sep
Contains the character that should be inserted between each element for an
insert that has series type. Typically, this is a blank, period, or comma. The
compiler sets this value.

Uex_MFX_Ins_Series_Addr
Contains the address of the series of varying character strings for an insert
that has series type. The address points to a FIXED BIN(31) field holding
the number of strings to concatenate followed by the addresses of those
strings. The compiler sets this value.

Upon completion of the message filtering procedure, set the return/reason codes to
one of the following:

0/0
Continue compilation, output message

0/1
Continue compilation, do not output message

4/n
Reserved for future use

8/n
Reserved for future use

16/n
Abort compilation

Writing the termination procedure
You should use the termination procedure to perform any cleanup required, such
as closing files. You might also want to write out final statistical reports based on
information collected during the error message filter procedures and the
initialization procedures.

Code the termination procedure-specific control block as follows:
Dcl 1 Uex_ISA native based,

2 Uex_ISA_Length_fixed bin(31); /* storage(Uex_ISA) */

Chapter 24. Using user exits 485

For information about the global control block syntax for the termination
procedure, see “Structure of global control blocks” on page 480. Upon completion
of the termination procedure, set the return/reason codes to one of the following:

0/0
Continue compilation

4/n
Reserved for future use

8/n
Reserved for future use

12/n
Reserved for future use

16/n
Abort compilation

Example of suppressing SQL messages
This example shows how to modify the user exit to examine the message inserts
and suppress two SQL informational messages and one SQL warning message.

*Process dft(nodescriptor connected);
*Process or(’|’) not(’!’);
*Process limits(extname(31)) rent;

/**/
/* */
/* NAME - IBMUEXIT.PLI */
/* */
/* DESCRIPTION */
/* User-exit sample program. */
/* */
/* Licensed Materials - Property of IBM */
/* 5639-A83, 5639-A24 (C) Copyright IBM Corp. 1992,2011. */
/* All Rights Reserved. */
/* US Government Users Restricted Rights-- Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/* */
/* DISCLAIMER OF WARRANTIES */
/* The following enclosed code is sample code created by IBM */
/* Corporation. This sample code is not part of any standard */
/* IBM product and is provided to you solely for the purpose of */
/* assisting you in the development of your applications. The */
/* code is provided "AS IS", without warranty of any kind. */
/* IBM shall not be liable for any damages arising out of your */
/* use of the sample code, even if IBM has been advised of the */
/* possibility of such damages. */
/* */
/**/

Figure 110. Suppressing SQL messages

486 Enterprise PL/I for z/OS Programming Guide

/**/
/* */
/* During initialization, IBMUEXIT is called. It reads */
/* information about the messages being screened from a text */
/* file and stores the information in a linked list. IBMUEXIT */
/* also sets up the entry points for the message filter service */
/* and termination service. */
/* */
/* For each message generated by the compiler, the compiler */
/* calls the message filter registered by IBMUEXIT. The filter */
/* looks the message up in the linked list previously created */
/* to see if it is one for which some action should be taken. */
/* */
/* The termination service is called at the end of the compile */
/* but does nothing. It could be enhanced to generates reports */
/* or do other cleanup work. */
/* */
/**/

pack: package exports(*);

Dcl
1 Uex_UIB native Based(null()),
2 Uex_UIB_Length fixed bin(31),

2 Uex_UIB_Exit_token pointer, /* for user exit’s use */

2 Uex_UIB_User_char_str pointer, /* to exit option str */
2 Uex_UIB_User_char_len fixed bin(31),

2 Uex_UIB_Filename_str pointer, /* to source filename */
2 Uex_UIB_Filename_len fixed bin(31),

2 Uex_UIB_return_code fixed bin(31), /* set by exit procs */
2 Uex_UIB_reason_code fixed bin(31), /* set by exit procs */

2 Uex_UIB_Exit_Routs, /* exit entries setat
initialization */

3 (Uex_UIB_Termination,
Uex_UIB_Message_Filter, /* call for each msg */
*, *, *, *)
limited entry (
, / to Uex_UIB */
* /* to a request area */
);

/***/
/* */
/* request area for initialization exit */
/* */
/***/

Dcl 1 Uex_ISA native based(null()),
2 Uex_ISA_Length fixed bin(31);

Suppressing SQL messages (continued)

Chapter 24. Using user exits 487

/***/
/* */
/* request area for message_filter exit */
/* */
/***/

Dcl 1 Uex_MFX based(null()),
2 Uex_MFX_Length fixed bin(31),
2 Uex_MFX_Facility_Id char(3),
2 Uex_MFX_Version fixed bin(7),
2 Uex_MFX_Message_no fixed bin(31),
2 Uex_MFX_Severity fixed bin(15),
2 Uex_MFX_New_Severity fixed bin(15),
2 Uex_MFX_Inserts fixed bin(15),
2 Uex_MFX_Inserts_Data(6),

3 Uex_MFX_Ins_Type fixed bin(7),
3 Uex_MFX_Ins_Type_Data union unaligned,
4 * char(8),
4 Uex_MFX_Ins_Bin fixed bin(31),
4 Uex_MFX_Ins_Str,
5 Uex_MFX_Ins_Str_Len fixed bin(15),
5 Uex_MFX_Ins_Str_Addr pointer,

4 Uex_MFX_Ins_Series,
5 Uex_MFX_Ins_Series_Sep char(1),
5 Uex_MFX_Ins_Series_Addr pointer;

dcl uex_Ins_Type_Xb31 fixed bin(15) value(1);
dcl uex_Ins_Type_Char fixed bin(15) value(2);
dcl uex_Ins_Type_Series fixed bin(15) value(3);

/***/
/* */
/* request area for terminate exit */
/* */
/***/

Dcl 1 Uex_TSA native based(null()),
2 Uex_TSA_Length fixed bin(31);

/***/
/* */
/* severity codes */
/* */
/***/

dcl uex_Severity_Normal fixed bin(15) value(0);
dcl uex_Severity_Warning fixed bin(15) value(4);
dcl uex_Severity_Error fixed bin(15) value(8);
dcl uex_Severity_Severe fixed bin(15) value(12);
dcl uex_Severity_Unrecoverable fixed bin(15) value(16);

/***/
/* */
/* return codes */
/* */
/***/

dcl uex_Return_Normal fixed bin(15) value(0);
dcl uex_Return_Warning fixed bin(15) value(4);
dcl uex_Return_Error fixed bin(15) value(8);
dcl uex_Return_Severe fixed bin(15) value(12);
dcl uex_Return_Unrecoverable fixed bin(15) value(16);

Suppressing SQL messages (continued)

488 Enterprise PL/I for z/OS Programming Guide

/***/
/* */
/* reason codes */
/* */
/***/

dcl uex_Reason_Output fixed bin(15) value(0);
dcl uex_Reason_Suppress fixed bin(15) value(1);

dcl header pointer;

dcl
1 message_item native based,
2 message_Info,

3 facid char(3),
3 msgno fixed bin(31),
3 newsev fixed bin(15),
3 reason fixed bin(31),
3 variable char(31) var,

2 link pointer;

ibmuexit: proc (ue, ia) options(fetchable);

dcl 1 ue like uex_Uib byaddr;
dcl 1 ia like uex_Isa byaddr;

dcl sysuexit file stream input env(recsize(80));
dcl next pointer;
dcl based_Chars char(8) based;
dcl title_Str char(8) var;
dcl eof bit(1);

on error
begin;
on error system;
call plidump(’TFBHS’);

end;

on undefinedfile(sysuexit)
begin;
put edit (’** User exit unable to open exit file ’)

(A) skip;
put skip;
signal error;

end;

if ue.uex_Uib_User_Char_Len = 0 then
do;
open file(sysuexit);

end;
else

do;
title_Str
= substr(ue.uex_Uib_User_Char_Str->based_Chars,

1, ue.uex_Uib_User_Char_Len);
open file(sysuexit) title(title_Str);

end;

Suppressing SQL messages (continued)

Chapter 24. Using user exits 489

/***/
/* */
/* save the address of the message filter so that it will */
/* be invoked by the compiler */
/* */
/***/

ue.Uex_UIB_Message_Filter = message_filter;

/***/
/* */
/* set the pointer to the linked list to null */
/* */
/* then allocate the first message record */
/* */
/***/

header = sysnull();
allocate message_item set(next);

/**/
/* */
/* skip header lines and read the file */
/* */
/* the file is expected to start with a header line and */
/* then a line with a scale and then the data lines, for example,*/
/* it could look like the 5 lines below starting with "Fac Id" */
/* */
/* Fac Id Msg No Severity Suppress Insert */
/* +-------+-------+---------+---------+------------------------ */
/* ’IBM’ 3259 0 1 ’DSNH527’ */
/* ’IBM’ 3024 0 1 ’DSNH4760’ */
/* ’IBM’ 3024 0 1 ’DSNH050’ */
/* */
/**/

eof = ’0’b;
on endfile(sysuexit)

eof = ’1’b;

get file(sysuexit) list(next->message_info) skip(3);

do while(eof = ’0’b);

/***/
/* */
/* put message information in linked list */
/* */
/***/

next->link = header;
header = next;

/***/
/* */
/* read next data line */
/* */
/***/

allocate message_item set(next);
get file(sysuexit) skip;
get file(sysuexit) list(next->message_info);

end;

Suppressing SQL messages (continued)

490 Enterprise PL/I for z/OS Programming Guide

/***/
/* */
/* free the last message record allocated and close the file */
/* */
/***/

free next->message_Item;
close file(sysuexit);

end;

message_Filter: proc (ue, mf);

dcl 1 ue like uex_Uib byaddr;
dcl 1 mf like uex_Mfx byaddr;

dcl next pointer;
dcl jx fixed bin(31);
dcl insert char(256) var;
dcl based_Chars char(256) based;

on error
begin;
on error system;
call plidump(’TFBHS’);

end;

/***/
/* */
/* by default, leave the reason code etc unchanged */
/* */
/***/

ue.uex_Uib_Reason_Code = uex_Reason_Output;
ue.uex_Uib_Return_Code = 0;

mf.uex_Mfx_New_Severity = mf.uex_Mfx_Severity;

/***/
/* */
/* save the first insert if it has character type */
/* */
/***/

insert = ’*’;
if mf.Uex_MFX_Length < stg(mf) then;
else

if mf.Uex_MFX_Inserts = 0 then;
else
do jx = 1 to mf.Uex_MFX_Inserts;

select(mf.Uex_MFX_Ins_Type(jx));
when(uex_Ins_Type_Char)

do;
if jx = 1 then
insert =

substr(mf.Uex_MFX_Ins_Str_Addr(jx)->based_Chars,
1,mf.Uex_MFX_Ins_Str_Len(jx));

end;
otherwise;

end;
end;

Suppressing SQL messages (continued)

Chapter 24. Using user exits 491

/***/
/* */
/* search list for matching error message */
/* */
/***/

search_list:
do next = header repeat(next->link) while(next !=sysnull());

if next->msgno = mf.uex_Mfx_Message_No
& next->facid = mf.Uex_Mfx_Facility_Id then
do;
if next->variable = ’*’ then
leave search_list;

if next->variable
= substr(insert,1,length(next->variable)) then
leave search_list;

end;
end;

/***/
/* */
/* if list exhausted, then */
/* no match was found */
/* else */
/* filter the message according to the match found */
/* */
/***/

if next = sysnull() then;
else

do;
/***/
/* */
/* filter error based on information in table */
/* */
/***/

ue.uex_Uib_Reason_Code = next->reason;
if next->newsev < 0 then;
else
mf.uex_Mfx_New_Severity = next->newsev;

end;
end;

exitterm: proc (ue, ta);

dcl 1 ue like uex_Uib byaddr;
dcl 1 ta like uex_Tsa byaddr;

ue.uex_Uib_return_Code = 0;
ue.uex_Uib_reason_Code = 0;

end;

end;

Suppressing SQL messages (continued)

492 Enterprise PL/I for z/OS Programming Guide

Chapter 25. PL/I descriptors

This chapter describes PL/I parameter passing conventions between PL/I routines
at run time.

For additional information about Language Environment runtime environment
considerations, other than descriptors, see the z/OS Language Environment
Programming Guide. This includes runtime environment conventions and assembler
macros supporting these conventions.

Passing an argument
When a string, an array, or a structure is passed as an argument, the compiler
passes a descriptor for that argument unless the called routine is declared with
OPTIONS(NODESCRIPTOR).

There are two methods for passing such descriptors:
v By descriptor list
v By descriptor locator

Note the following key features about each of these two methods:
v When arguments are passed with a descriptor list

– The number of arguments passed is one greater than the number of
arguments specified if any of the arguments needs a descriptor.

– An argument passed with a descriptor can be received as a pointer passed by
value (BYVALUE).

– The compiler uses this method when the DEFAULT(DESCLIST) compiler
option is in effect.

v When arguments are passed by descriptor locator

– The number of arguments passed always matches the number of arguments
specified.

– An argument passed with a descriptor can be received as a pointer passed by
reference (BYADDR).

– The compiler uses this method when the DEFAULT(DESCLOCATOR)
compiler option is in effect.

Argument passing by descriptor list
When arguments and their descriptors are passed with a descriptor list, an extra
argument is passed whenever at least one argument needs a descriptor.

This extra argument is a pointer to a list of pointers. The number of entries in this
list equals the number of arguments passed. For arguments that do not require a
descriptor, the corresponding pointer in the descriptor list is set to SYSNULL. For
arguments that do require a descriptor, the corresponding pointer in the descriptor
list is set to the address of that argument's descriptor.

For example, suppose the routine sample is declared as follows:
declare sample entry(fixed bin(31), varying char(*))

options(byaddr descriptor);

© Copyright IBM Corp. 1999, 2017 493

Assume that sample is called as in the following statement:
call sample(1, ’test’);

The following three arguments are passed to the routine:
v Address of a fixed bin(31) temporary with the value 1
v Address of a varying char(4) temporary with the value test
v Address of a descriptor list consisting of the following:

– SYSNULL()
– Address of the descriptor for a varying char(4) string

Argument passing by locator/descriptor
When arguments and their descriptors are passed by locator/descriptor, whenever
an argument requires a descriptor, the address of a locator/descriptor for the
argument is passed instead.

Except for strings, the locator/descriptor is a pair of pointers. The first pointer is
the address of the data; the second pointer is the address of the descriptor. For
strings, under CMPAT(LE), the locator/descriptor is still such a pair of pointers.
But under the other CMPAT options, the locator/descriptor consists of the address
of the string and then the string descriptor itself.

For example, suppose that the routine sample is declared as follows:
declare sample entry(fixed bin(31), varying char(*))

options(byaddr descriptor);

Assume that sample is called as in the following statement:
call sample(1, ’test’);

The following two arguments are passed to the routine:
v The address of a fixed bin(31) temporary with the value 1
v The address of a locator/descriptor that consists of the following address and

descriptor:
– The address of a varying char(4) temporary with the value test
– Under CMPAT(LE), the address of the CMPAT(LE) descriptor for a varying

char(4) string
– Under CMPAT(V*), the CMPAT(V*) descriptor for a varying char(4) string

CMPAT(V*) descriptors
Unlike LE descriptors, the CMPAT(V*) descriptors are not self-describing.
However, the string descriptors are the same for all CMPAT(V*) options, and they
also share the same codepage encoding as the LE string descriptors.

String descriptors
In a string descriptor, the first 2 bytes specify the maximum length for the string.
This maximum length is always held in native format.

The third byte contains various flags (to indicate, for example, if the string length
in a VARYING string is held in littleendian or bigendian format or if the data in a
WIDECHAR string is held in littleendian or bigendian format).

494 Enterprise PL/I for z/OS Programming Guide

|
|
|
|

|
|

In a string descriptor for a nonvarying bit string, the fourth byte gives the bit
offset.

In a string descriptor for a CHARACTER string, the fourth byte encodes the
compiler CODEPAGE option.

The declare for a string descriptor under CMPAT(V2) is as follows:
declare

1 dso_string based(null()),
2 dso_string_length fixed bin(15),
2 dso_string_flags,

3 dso_string_is_varying bit(1),
3 dso_string_is_varyingz bit(1),
3 dso_string_has_nonnative_len bit(1), /* for varying */
3 dso_string_is_ascii bit(1), /* for char */
3 dso_string_has_nonnative_data bit(1), /* for wchar */
3 * bit(1), /* reserved, ’0’b */
3 * bit(1), /* reserved, ’0’b */
3 * bit(1), /* reserved, ’0’b */

2 * union,
3 dso_String_Codepage ordinal ccs_Codepage_Enum,
3 dso_string_bitofs fixed bin(8) unsigned,

2 dso_string_end char(0);

The declare for a string descriptor under CMPAT(V3) is as follows:
declare

1 dso_longstr based(null()),
2 dso_longstr_info,

3 * fixed bin(8) unsigned,
3 dso_datatype fixed bin(8) unsigned,
3 * union,
4 dso_longstr_bitofs fixed bin(8) unsigned,
4 dso_longstr_codepage type ccs_Codepage_Enum,

3 dso_longstr_info2,
4 dso_longstr_has_nonnative_len bit(1), /* for varying */
4 dso_longstr_is_ebcdic bit(1), /* for char */
4 dso_longstr_has_nonnative_data bit(1), /* for wchar */
4 * bit(1),
4 dso_longstr_is_varying bit(1),
4 dso_longstr_is_varyingz bit(1),
4 dso_longstr_is_varying4 bit(1),
4 * bit(1),

2 dso_longstr_length fixed bin(31),
2 dso_longstr_end char(0);

The possible values for the codepage encoding are defined as follows:
define ordinal

ccs_Codepage_Enum
(ccs_Codepage_01047 value(1)
,ccs_Codepage_01140
,ccs_Codepage_01141
,ccs_Codepage_01142
,ccs_Codepage_01143
,ccs_Codepage_01144
,ccs_Codepage_01145
,ccs_Codepage_01146
,ccs_Codepage_01147
,ccs_Codepage_01148
,ccs_Codepage_01149
,ccs_Codepage_00819
,ccs_Codepage_00813
,ccs_Codepage_00920
,ccs_Codepage_00037
,ccs_Codepage_00273

Chapter 25. PL/I descriptors 495

,ccs_Codepage_00277
,ccs_Codepage_00278
,ccs_Codepage_00280
,ccs_Codepage_00284
,ccs_Codepage_00285
,ccs_Codepage_00297
,ccs_Codepage_00500
,ccs_Codepage_00871
,ccs_Codepage_01026
,ccs_Codepage_01155

) unsigned prec(8);

Array descriptors
In the following declares, the upper bound for the arrays is declared as 15, but it
should be understood that the actual upper bound will always match the number
of dimensions in the array it describes.

The declare for a CMPAT(V1) array descriptor is as follows:
declare

1 dso_v1 based(null()),
2 dso_v1_rvo fixed bin(31), /* relative virtual origin */
2 dso_v1_data(1:15),

3 dso_v1_stride fixed bin(31), /* multiplier */
3 dso_v1_hbound fixed bin(15), /* hbound */
3 dso_v1_lbound fixed bin(15); /* lbound */

The declare for a CMPAT(V2) array descriptor is as follows:
declare

1 dso_v2 based(null()),
2 dso_v2_rvo fixed bin(31), /* relative virtual origin */
2 dso_v2_data(1:15),

3 dso_v2_stride fixed bin(31), /* multiplier */
3 dso_v2_hbound fixed bin(31), /* hbound */
3 dso_v2_lbound fixed bin(31); /* lbound */

The declare for a CMPAT(V3) array descriptor is as follows:
declare

1 dso_v3 based(null()),
2 dso_v3_rvo fixed bin(63), /* relative virtual origin */
2 dso_v3_data(1:15),

3 dso_v3_stride fixed bin(63), /* multiplier */
3 dso_v3_hbound fixed bin(63), /* hbound */
3 dso_v3_lbound fixed bin(63); /* lbound */

CMPAT(LE) descriptors

Every LE descriptor starts with a 4-byte field. The first byte specifies the descriptor
type (scalar, array, structure, or union). The remaining three bytes are zero unless
they are set by the particular descriptor type.

The declare for a descriptor header is as follows:
declare

1 dsc_Header based(sysnull()),
2 dsc_Type fixed bin(8) unsigned,
2 dsc_Datatype fixed bin(8) unsigned,
2 * fixed bin(8) unsigned,
2 * fixed bin(8) unsigned;

These are possible values for the dsc_Type field:

496 Enterprise PL/I for z/OS Programming Guide

|

|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|

|

declare
dsc_Type_Unset fixed bin(8) value(0),
dsc_Type_Element fixed bin(8) value(2),
dsc_Type_Array fixed bin(8) value(3),
dsc_Type_Structure fixed bin(8) value(4),
dsc_Type_Union fixed bin(8) value(4);

String descriptors
In a string descriptor, the second byte of the header indicates the string type (bit,
character or graphic as well as nonvarying, varying or varyingz).

In a string descriptor for a nonvarying bit string, the third byte of the header gives
the bit offset.

In a string descriptor for a CHARACTER string, the third byte of the header
encodes the compiler CODEPAGE option.

In a string descriptor for a varying string, the fourth byte has a bit indicating if the
string length is held in nonnative format.

In a string descriptor for a character string, the fourth byte also has a bit indicating
if the string data is in EBCDIC.

The declare for a string descriptor is as follows:
declare

1 dsc_String based(sysnull()),
2 dsc_String_Header,

3 * fixed bin(8) unsigned,
3 dsc_String_Type fixed bin(8) unsigned,
3 * union,
4 dsc_String_Codepage ordinal ccs_Codepage_Enum,
4 dsc_String_BitOfs fixed bin(8) unsigned,

3 *,
4 dsc_String_Has_Nonnative_Len bit(1),
4 dsc_String_Is_Ebcdic bit(1),
4 dsc_String_Has_Nonnative_Data bit(1),
4 * bit(5),

2 dsc_String_Length fixed bin(31); /* max length of string */

These are the possible values for the dsc_String_Type field:
declare

dsc_String_Type_Unset fixed bin(8) value(0),
dsc_String_Type_Char_Nonvarying fixed bin(8) value(2),
dsc_String_Type_Char_Varyingz fixed bin(8) value(3),
dsc_String_Type_Char_Varying2 fixed bin(8) value(4),
dsc_String_Type_Bit_Nonvarying fixed bin(8) value(6),
dsc_String_Type_Bit_Varying2 fixed bin(8) value(7),
dsc_String_Type_Graphic_Nonvarying fixed bin(8) value(9),
dsc_String_Type_Graphic_Varyingz fixed bin(8) value(10),
dsc_String_Type_Graphic_Varying2 fixed bin(8) value(11),
dsc_String_Type_Widechar_Nonvarying fixed bin(8) value(13),
dsc_String_Type_Widechar_Varyingz fixed bin(8) value(14),
dsc_String_Type_Widechar_Varying2 fixed bin(8) value(15);

Array descriptors
The declare for an array descriptor is as follows:
declare

1 dsc_Array based(sysnull()),
2 dsc_Array_Header like dsc_Header,
2 dsc_Array_EltLen fixed bin(31), /* Length of array element */

Chapter 25. PL/I descriptors 497

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

2 dsc_Array_Rank fixed bin(31), /* Count of dimensions */
2 dsc_Array_RVO fixed bin(31), /* Relative virtual origin */
2 dsc_Array_Data(1: 1 refer(dsc_Array_Rank)),

3 dsc_Array_LBound fixed bin(31), /* LBound */
3 dsc_Array_Extent fixed bin(31), /* HBound - LBound + 1 */
3 dsc_Array_Stride fixed bin(31); /* Multiplier */

498 Enterprise PL/I for z/OS Programming Guide

|
|
|
|
|
|

Part 6. Appendixes

© Copyright IBM Corp. 1999, 2017 499

500 Enterprise PL/I for z/OS Programming Guide

Appendix. SYSADATA message information

When you specify the MSG suboption of the XINFO compile-time option, the
compiler generates a SYSADATA file.

The SYSADATA file contains the following records:
v Counter records
v Literal records
v File records
v Message records
v Options record

The full set of declarations for all the ADATA records are available in the members
ibmwxin and ibmwxop in the samples data set SIBMZSAM.

You should note that the records in the file are not necessarily produced in the
order listed above; for example, literal and file records might be interleaved. If you
are writing code that reads a SYSADATA file, you should not rely on the order of
the records in the file except for the following exceptions:
v Counter records are the first records in the file.
v Each literal record precedes any reference to the literal it defines.
v Each file record precedes any reference to the file it describes.

Understanding the SYSADATA file
The SYSADATA file is a sequential binary file.

Under z/OS batch, the compiler writes the SYSADATA records to the file specified
by the SYSADATA DD statement, and that file must not be a member of a PDS. On
all other systems, the compiler writes to a file with the extension adt.

Each record in the file contains a header. This 12-byte header has fields that are the
same for all records in the file:

Compiler
A number representing the compiler that produced the data. For PL/I, the
number is 40.

Edition number
The edition number of the compiler that produced the data. For this product, it
is the number 2.

SYSADATA level
A number representing the level of SYSADATA that this file format represents.
For this product, it is the number 4.

The header also has some fields that vary from record to record:
v Record type
v Whether the record is continued onto the next record

© Copyright IBM Corp. 1999, 2017 501

Possible record types are encoded as an ordinal value as shown in Figure 111.

The declare for the header part of a record is shown in Figure 112.

Summary record
The record with type Xin_Rect_Sum is the summary record and is the first record
in the file.

Define ordinal xin_Rect
(Xin_Rect_Msg value(50), /* Message record */
Xin_Rect_Fil value(57), /* File record */
Xin_Rect_Opt value(60), /* Options record */
Xin_Rect_Sum value(61), /* Summary record */
Xin_Rect_Rep value(62), /* Replace record */
Xin_Rect_Src value(63), /* Source record */
Xin_Rect_Tok value(64), /* Token record */
Xin_Rect_Sym value(66), /* Symbol record */
Xin_Rect_Lit value(67), /* Literal record */
Xin_Rect_Syn value(69), /* Syntax record */
Xin_Rect_Ord_Type value(80), /* Ordinal type record */
Xin_Rect_Ord_Elem value(81), /* Ordinal element record */
Xin_Rect_Ctr value(82)) /* Counter record */

prec(15);

Figure 111. Record types encoded as an ordinal value

Dcl
1 Xin_Hdr Based(null()), /* Header portion */

/* */
2 Xin_Hdr_Prod /* Language code */

fixed bin(8) unsigned, /* */
/* */

2 Xin_Hdr_Rect /* Record type */
unal ordinal xin_Rect, /* */

/* */
2 Xin_Hdr_Level /* SYSADATA level */

fixed bin(8) unsigned, /* */
/* */

2 * union, /* */
3 xin_Hdr_Flags bit(8), /* flags */
3 *, /* */

4 * bit(6), /* Reserved */
4 Xin_Hdr_Little_Endian /* ints are little endian */

bit(1), /* */
4 Xin_Hdr_Cont bit(1), /* Record continued in next rec */

/* */
2 Xin_Hdr_Edition /* compiler "edition" */

fixed bin(8) unsigned, /* */
/* */

2 Xin_Hdr_Fill bit(32), /* reserved */
/* */

2 Xin_Hdr_Data_Len /* length of data part */
fixed bin(16) unsigned, /* */

/* */
2 Xin_Hdr_End char(0); /* */

Figure 112. Declare for the header part of a record

502 Enterprise PL/I for z/OS Programming Guide

Its declare is shown in Figure 113.

Options record
The record with type Xin_Rect_Opt is the options record. It lists all the compiler
options that are in effect during compilation.

The declaration for the options record is provided in the member ibmwxop in the
samples data set SIBMZSAM.

Counter records
Each counter record specifies, for a subsequent record type, how many records of
that type the file contains and how many bytes those records occupy.

Literal records
Each literal record assigns a number, called a literal index, that is used by later
records to refer to the characters named in this particular record.

Dcl
1 Xin_Sum Based(null()), /* summary record */

/* */
2 Xin_Sum_Hdr /* standard header */

like Xin_Hdr, /* */
/* */

2 Xin_Sum_Max_Severity /* max severity from compiler */
fixed bin(32) unsigned, /* */

/* */
2 Xin_Sum_Left_Margin /* left margin */

fixed bin(16) unsigned, /* */
/* */

2 Xin_Sum_Right_Margin /* right margin */
fixed bin(16) unsigned, /* */

/* */
2 xin_Sum_Rsrvd(15) /* reserved */

fixed bin(32) unsigned; /* */

Figure 113. Declare for a summary record

Dcl
1 xin_Ctr Based(null()), /* counter/size record */

/* */
2 xin_Ctr_Hdr /* standard header */

like xin_Hdr, /* */
/* */

2 xin_Ctr_Rect /* record type */
unal ordinal xin_Rect, /* */

/* */
2 * /* */

fixed bin(16) unsigned, /* */
/* */

2 xin_Ctr_Count /* count of that record type */
fixed bin(31) unsigned, /* */

/* */
2 xin_Ctr_Size /* size used */

fixed bin(31) unsigned; /* */

Figure 114. Declare for a counter record

Appendix. SYSADATA message information 503

File records
Each file record assigns a number, called a file index, that is used by later records
to refer to the file described by this record. The described file might be the primary
PL/I source file or an INCLUDEd file. Each file record specifies a literal index for
the fully qualified name of the file.

For an INCLUDEd file, each file record also contains the file index and source line
number from where the INCLUDE request came. (For primary source files, these
fields are zero.)

Message records
Each message record describes a message issued during the compilation. Message
records are not generated for suppressed messages.

Each message record contains the following data:
v The file index and source line number for the file and line to which the message

is attributed. If the message pertains to the compilation as a whole, these fields
are zero.

v The identifier (for example, IBM1502) and severity associated with the message.

Dcl
1 xin_Lit Based(null()), /* literal record */

/* */
2 xin_Lit_Hdr /* standard header */

like xin_Hdr, /* */
/* */

2 xin_Lit_Inx /* adata index for literal */
fixed bin(31) unsigned, /* */

/* */
2 xin_Lit_Len /* length of literal */

fixed bin(31) unsigned, /* */
/* */

2 xin_Lit_Val char(2000); /* literal value */

Figure 115. Declare for a literal record

Dcl
1 xin_Fil Based(null()), /* file record */

/* */
2 xin_Fil_Hdr /* standard header */

like xin_Hdr, /* */
/* */

2 xin_Fil_File_Id /* file id from whence it */
fixed bin(31) unsigned, /* was INCLUDEd */

/* */
2 xin_Fil_Line_No /* line no within that file */

fixed bin(31) unsigned, /* */
/* */

2 xin_Fil_Id /* id assigned to this file */
fixed bin(31) unsigned, /* */

/* */
2 xin_Fil_Name /* literal index of the */

fixed bin(31) unsigned; /* fully qualified file name */

Figure 116. Declare for a file record

504 Enterprise PL/I for z/OS Programming Guide

v The text of the message.

The declare for a message record is as follows:

Understanding SYSADATA symbol information
When you specify the SYM suboption of the XINFO compile-time option, the
compiler generates a SYSADATA file that contains symbol information in addition
to the records generated for the MSG suboption.

The following records contain symbol information:
v Ordinal type records
v Ordinal element records
v Symbol records

Symbol records are not generated for built-in functions, generic variables, or
variables with non-constant extents.

Ordinal type records
Each ordinal type record assigns a number, called an ordinal type index, that is
used by later records to refer to an ordinal type described by this record. The name
of the type is indicated by a literal index. Each ordinal type record contains the file
index and source line number for the file and line in which the ordinal type was
declared.

Each ordinal type record contains:
v A count of the number of values defined by that type
v The precision associated with the type
v Bits indicating if it is signed or unsigned

Dcl
1 xin_Msg Based(null()), /* message record */

/* */
2 xin_Msg_Hdr /* standard header */

like xin_Hdr, /* */
/* */

2 xin_Msg_File_Id /* file id */
fixed bin(31) unsigned, /* */

/* */
2 xin_Msg_Line_No /* line no within file */

fixed bin(31) unsigned, /* */
/* */

2 xin_Msg_Id /* identifier (i.e. IBM1502) */
char(16), /* */

/* */
2 xin_Msg_Severity /* severity (0, 4, 8, 12 or 16) */

fixed bin(15) signed, /* */
/* */

2 xin_Msg_Length /* length of message */
fixed bin(16) unsigned, /* */

/* */
2 Xin_Msg_Text /* actual message */

char(100 refer(xin_Msg_Length));

Figure 117. Declare for a message record

Appendix. SYSADATA message information 505

Ordinal element records
Each ordinal type record is immediately followed by a series of records (as many
as specified by the ordinal type count) that describes the values named by that
ordinal. Each ordinal element record assigns a number, called an ordinal element
index, that is used by later records to refer to an ordinal element described by this
record.

The name of the element is indicated by a literal index. Each ordinal element
record contains the file index and source line number for the file and line in which
the ordinal element was declared.

Additionally, each ordinal element record contains the following data:
v The ordinal type index of the ordinal type to which it belongs
v The value for that element

declare /* */
1 xin_Ord_Type based(null()), /* */

/* */
2 xin_Ord_Type_Hdr /* standard header */

like xin_Hdr, /* */
/* */

2 xin_Ord_Type_File_Id /* file id */
fixed bin(31) unsigned, /* */

/* */
2 xin_Ord_Type_Line_No /* line no within file */

fixed bin(31) unsigned, /* */
/* */

2 xin_Ord_Type_Id /* identifying number */
fixed bin(31), /* */

/* */
2 xin_Ord_Type_Count /* count of elements */

fixed bin(31), /* */
/* */

2 xin_Ord_Type_Prec /* precision for ordinal */
fixed bin(08) unsigned, /* */

/* */
2 *, /* */

3 xin_Ordinal_Type_Signed /* signed attribute applies */
bit(1), /* */

3 xin_Ordinal_Type_Unsigned /* unsigned attribute applies */
bit(1), /* */

3 * /* unused */
bit(6), /* */

/* */
2 * /* unused */

char(2), /* */
/* */

2 xin_Ord_Type_Name /* type name */
fixed bin(31); /* */

Figure 118. Declare for an ordinal type record

506 Enterprise PL/I for z/OS Programming Guide

Symbol records
The declaration for the symbol record is in the member ibmwxin in the samples
data set SIBMZSAM. Each symbol record assigns a number that is called a symbol
index. The index is used by later records to refer to the symbol described by this
record.

For example, the index can be used as the name of a user variable or constant. The
name of the identifier is indicated by a literal index. Each symbol record contains
the file index and source line number for the file and line in which the symbol was
declared.

If the identifier is part of a structure or union, the symbol record contains a symbol
index for each of the following:
v The first sibling, if any
v The parent, if any
v The first child, if any

Consider the following structure:
dcl

1 a
, 3 b fixed bin
, 3 c fixed bin
, 3 d

, 5 e fixed bin
, 5 f fixed bin

;

The symbol indices assigned to the elements of the preceding structure would be
as follows:

declare /* */
1 xin_Ord_Elem based(null()), /* */

/* */
2 xin_Ord_Elem_Hdr /* standard header */

like xin_Hdr, /* */
/* */

2 xin_Ord_Elem_File_Id /* file id */
fixed bin(31) unsigned, /* */

/* */
2 xin_Ord_Elem_Line_No /* line no within file */

fixed bin(31) unsigned, /* */
/* */

2 xin_Ord_Elem_Id /* identifying number */
fixed bin(31), /* */

/* */
2 xin_Ord_Elem_Type_Id /* id of ordinal type */

fixed bin(31), /* */
/* */

2 xin_Ord_Elem_Value /* ordinal value */
fixed bin(31), /* */

/* */
2 xin_Ord_Elem_Name /* ordinal name */

fixed bin(31); /* */

Figure 119. Declare for an ordinal element record

Appendix. SYSADATA message information 507

Each symbol record also contains a series of bit(1) fields that indicate if various
attributes apply to this variable.

Each symbol record also contains the following elements:

User-given structure level
This is a user-given structure level for the identifier. For the element c of the
structure above, the value is 3. For non-structure members, the value is set to
1.

Logican structure level
The logical structure level for the identifier For the element c of the structure
above, the value is 2. For non-structure members, the value is set to 1.

Dimensions

The number of dimensions declared for the variable not counting any inherited
dimensions.

The number of dimensions for the variable including all inherited dimensions.

Offset
The offset into the outermost parent structure.

Elemental size
Elemental size is in bytes unless the variable is bit aligned, in which case it is
in bits. In either case, this does not factor any in dimensions.

Size
Size in bytes with its dimensions factored in.

Alignment
Identified by the following:
v 0 for bit-aligned
v 7 for byte-aligned
v 15 for halfword-aligned
v 31 for fullword-aligned
v 63 for quadword-aligned

A union within the record is dedicated to describing information that is dependent
on the variable's storage class:

Static variables
If the variable is declared as external with a separate external name (dcl x
ext('y')), the literal index of that name is specified.

Based variables
If the variable is declared as based on another mapped variable that is not an
element of an array, the symbol index of that variable is specified.

symbol index sibling parent child
----- ----- ------- ------ -----

a 1 0 0 2
b 2 3 1 0
c 3 4 1 0
d 4 0 1 5
e 5 6 4 0
f 6 0 4 0

Figure 120. Symbol indices assigned to the elements of a structure

508 Enterprise PL/I for z/OS Programming Guide

Defined variables
If the variable is declared as defined on another mapped variable that is not an
element of an array, the symbol index of that variable is specified here. If its
position attribute is constant, it is also specified.

The variable's data type is specified by the ordinal shown in Figure 121.

A union within the record is dedicated to describing information that is dependent
on the variable's data type. Most of this information is self-explanatory (for
example, the precision for an arithmetic type) except perhaps for the following
variables:

Picture variables
The literal index of the picture specification is specified.

Entry variables
If the variable has the returns attribute, the symbol index of the returns
description is specified.

Ordinal variables
The ordinal type index is specified.

Typed variables and handles
The symbol index of the underlying type is specified.

String and area variables
The type and value of the extent is specified in addition to the symbol index of
the returns description. The type of the extent is encoded by the values:

define
ordinal

xin_Data_Kind
(xin_Data_Kind_Unset

,xin_Data_Kind_Character
,xin_Data_Kind_Bit
,xin_Data_Kind_Graphic
,xin_Data_Kind_Fixed
,xin_Data_Kind_Float
,xin_Data_Kind_Picture
,xin_Data_Kind_Pointer
,xin_Data_Kind_Offset
,xin_Data_Kind_Entry
,xin_Data_Kind_File
,xin_Data_Kind_Label
,xin_Data_Kind_Format
,xin_Data_Kind_Area
,xin_Data_Kind_Task
,xin_Data_Kind_Event
,xin_Data_Kind_Condition
,xin_Data_Kind_Structure
,xin_Data_Kind_Union
,xin_Data_Kind_Descriptor
,xin_Data_Kind_Ordinal
,xin_Data_Kind_Handle
,xin_Data_Kind_Type
,xin_Data_Kind_Builtin
,xin_Data_Kind_Generic
,xin_Data_Kind_Widechar

) prec(8) unsigned;

Figure 121. Data type of a variable

Appendix. SYSADATA message information 509

declare
(xin_Extent_Constant value(01)
,xin_Extent_Star value(02)
,xin_Extent_Nonconstant value(04)
,xin_Extent_Refer value(08)
,xin_Extent_In_Error value(16)

)
fixed bin;

If the element has any dimensions, the type and values for its lower and upper
bounds are specified at the very end of the record. These fields are not present if
the element has no dimensions.

Note that the attributes flags reflect the attributes after the compiler has applied all
defaults. So, for example, every numeric variable (including numeric PICTURE
variables) has either the REAL or COMPLEX attribute flag set.

Understanding SYSADATA syntax information
When you specify the SYN suboption of the XINFO compile-time option, the
compiler generates a SYSADATA file that contains syntax information in addition
to the records generated for the MSG and SYM suboptions.

The following records contain syntax information:
v Source records
v Token records
v Syntax records

Source records
Each source record assigns a number, called a source id, that is used by later
records to refer to the source line described by this record. The line might be from
the primary PL/I source file or an INCLUDE file, as indicated by the source file id
and line number fields in the record. The rest of the record holds the actual data in
the source line.

510 Enterprise PL/I for z/OS Programming Guide

Token records
Each token record assigns a number, called a token index, that is used by later
records to refer to a token recognized by the PL/I compiler. The record also
identifies the type of the token plus the column and line on which it started and
ended.

Dcl
1 Xin_Src Based(null()), /* source record */

/* */
2 Xin_Src_Hdr /* standard header */

like Xin_Hdr, /* */
/* */

2 Xin_Src_File_Id /* file id */
fixed bin(32) unsigned, /* */

/* */
2 Xin_Src_Line_No /* line no within file */

fixed bin(32) unsigned, /* */
/* */

2 Xin_Src_Id /* id for this source record */
fixed bin(32) unsigned, /* */

/* */
2 Xin_Src_Length /* length of text */

fixed bin(16) unsigned, /* */
/* */

2 Xin_Src_Text /* actual text */
char(137 refer(xin_Src_Length));

Figure 122. Declare for a source record

Dcl
1 Xin_Tok Based(null()), /* token record */

/* */
2 Xin_Tok_Hdr /* standard header */

like Xin_Hdr, /* */
/* */

2 Xin_Tok_Inx /* adata index for token */
fixed bin(32) unsigned, /* */

/* */
2 Xin_Tok_Begin_Line /* starting line no within file */

fixed bin(32) unsigned, /* */
/* */

2 Xin_Tok_End_Line_Offset /* offset of end line from first */
fixed bin(16) unsigned, /* */

/* */
2 Xin_Tok_Kind_Value /* token kind */

ordinal xin_Tok_Kind, /* */
/* */

2 Xin_Tok_Rsrvd /* reserved */
fixed bin(8) unsigned, /* */

/* */
2 Xin_Tok_Begin_Col /* starting column */

fixed bin(16) unsigned, /* */
/* */

2 Xin_Tok_End_Col /* ending column */
fixed bin(16) unsigned; /* */

Figure 123. Declare for a token record

Appendix. SYSADATA message information 511

The ordinal xin_Tok_Kind identifies the type of the token record.

Syntax records
Each syntax record assigns a number, called a node id, that is used by later records
to refer to other syntax records. The first syntax record will have kind
xin_Syn_Kind_Package, and if the compilation unit has any procedures, the child
node of this record will point to the first of these procedures. The parent, sibling
and child nodes will then provide a map with the appropriate relationships of all
the procedures and begin blocks in the compilation unit.

Consider the following simple program:
a: proc;
call b;
call c;
b: proc;
end b;
c: proc;
call d;
d: proc;
end d;

end c;
end a;

The node indices are assigned to the blocks of the preceding program as follows:

Define
ordinal

xin_Tok_Kind
(xin_Tok_Kind_Unset

,xin_Tok_Kind_Lexeme
,xin_Tok_Kind_Comment
,xin_Tok_Kind_Literal
,xin_Tok_Kind_Identifier
,xin_Tok_Kind_Keyword

) prec(8) unsigned;

Figure 124. Declare for the token record kind

symbol index sibling parent child
----- ----- ------- ------ -----

- 1 0 0 2
a 2 0 1 3
b 3 4 2 0
c 4 0 2 5
d 5 0 4 0

Figure 125. Node indices assigned to the blocks in a program

512 Enterprise PL/I for z/OS Programming Guide

Dcl
1 Xin_Syn Based(null()), /* syntax record */

/* */
2 Xin_Syn_Hdr /* standard header */

like Xin_Hdr, /* */
/* */

2 Xin_Syn_Node_Id /* node id */
fixed bin(32) unsigned, /* */

/* */
2 Xin_Syn_Node_Kind /* node type */

ordinal xin_syn_kind, /* */
/* */

2 Xin_Syn_Node_Exp_Kind /* node sub type */
ordinal xin_exp_kind, /* */

/* */
2 * /* reserved */

fixed bin(16) unsigned, /* */
/* */

2 Xin_Syn_Parent_Node_Id /* node id of parent */
fixed bin(32) unsigned, /* */

/* */
2 Xin_Syn_Sibling_Node_Id /* node id of sibling */

fixed bin(32) unsigned, /* */
/* */

2 Xin_Syn_Child_Node_Id /* node id of child */
fixed bin(32) unsigned, /* */

/* */
2 xin_Syn_First_Tok /* id of first spanned token */

fixed bin(32) unsigned, /* */
/* */

2 xin_Syn_Last_Tok /* id of last spanned token */
fixed bin(32) unsigned, /* */

Figure 126. Declare for a syntax record

Appendix. SYSADATA message information 513

/* */
2 * union, /* qualifier for node */

/* */
3 Xin_Syn_Int_Value /* used if int */

fixed bin(31), /* */
/* */

3 Xin_Syn_Literal_Id /* used if name, number, picture */
fixed bin(31), /* */

/* */
3 Xin_Syn_Node_Lex /* used if lexeme, assignment, */

ordinal xin_Lex_kind, /* infix_op, prefix_op */
/* */

3 Xin_Syn_Node_Voc /* used if keyword, end_for_do */
ordinal xin_Voc_kind, /* */

/* */
3 Xin_Syn_Block_Node /* used if call_begin */

fixed bin(31), /* to hold node of begin block */
/* */

3 Xin_Syn_Bif_Id /* used if bif_rfrnc */
fixed bin(32) unsigned, /* */

/* */
3 Xin_Syn_Sym_Id /* used if label, unsub_rfrnc, */

fixed bin(32) unsigned, /* subscripted_rfrnc */
/* */

3 Xin_Syn_Proc_Data, /* used if package, proc or begin*/
/* */

4 Xin_Syn_First_Sym /* id of first contained sym */
fixed bin(32) unsigned, /* */

/* */
4 Xin_Syn_Block_Sym /* id of sym for this block */

fixed bin(32) unsigned, /* */

Declare for a syntax record (continued)

514 Enterprise PL/I for z/OS Programming Guide

/* */
3 Xin_Syn_Number_Data, /* used if number */

/* */
4 Xin_Syn_Number_Id /* id of literal */

fixed bin(32) unsigned, /* */
/* */

4 Xin_Syn_Number_Type /* type */
ordinal xin_Number_Kind,/* */

/* */
4 Xin_Syn_Number_Prec /* precision */

fixed bin(8) unsigned, /* */
/* */

4 Xin_Syn_Number_Scale /* scale factor */
fixed bin(7) signed, /* */

/* */
4 Xin_Syn_Number_Bytes /* bytes it would occupy */

fixed bin(8) unsigned, /* in its internal form */
/* */

3 Xin_Syn_String_Data, /* used if char_string, */
/* bit_string, graphic_string */
/* */

4 Xin_Syn_String_Id /* id of literal */
fixed bin(32) unsigned, /* */

/* */
4 Xin_Syn_String_Len /* string length in its units */

fixed bin(32) unsigned, /* */
/* */

3 Xin_Syn_Stmt_Data, /* used if stmt */
/* */

4 Xin_Syn_File_Id /* file id */
fixed bin(32) unsigned, /* */

/* */
4 Xin_Syn_Line_No /* line no within file */

fixed bin(32) unsigned, /* */
/* */

2 * char(0); /* */

Declare for a syntax record (continued)

The ordinal xin_Syn_Kind identifies the type of the syntax record.

Appendix. SYSADATA message information 515

Consider the following simple program:
a: proc(x);
dcl x char(8);
x = substr(datetime(),1,8);

end;

The node indices are assigned to the blocks of the preceding program as follows:

Define
ordinal

xin_Syn_Kind
(xin_Syn_Kind_Unset

,xin_Syn_Kind_Lexeme
,xin_Syn_Kind_Asterisk
,xin_Syn_Kind_Int
,xin_Syn_Kind_Name
,xin_Syn_Kind_Expression
,xin_Syn_Kind_Parenthesized_Expr
,xin_Syn_Kind_Argument_List
,xin_Syn_Kind_Keyword
,xin_Syn_Kind_Proc_Stmt
,xin_Syn_Kind_Begin_Stmt
,xin_Syn_Kind_Stmt
,xin_Syn_Kind_Substmt
,xin_Syn_Kind_Label
,xin_Syn_Kind_Invoke_Begin
,xin_Syn_Kind_Assignment
,xin_Syn_Kind_Assignment_Byname
,xin_Syn_Kind_Do_Fragment
,xin_Syn_Kind_Keyed_List
,xin_Syn_Kind_Iteration_Factor
,xin_Syn_Kind_If_Clause
,xin_Syn_Kind_Else_Clause
,xin_Syn_Kind_Do_Stmt
,xin_Syn_Kind_Select_Stmt
,xin_Syn_Kind_When_Stmt
,xin_Syn_Kind_Otherwise_Stmt
,xin_Syn_Kind_Procedure
,xin_Syn_Kind_Package
,xin_Syn_Kind_Begin_Block
,xin_Syn_Kind_Picture
,xin_Syn_Kind_Raw_Rfrnc
,xin_Syn_Kind_Generic_Desc

) prec(8) unsigned;

Figure 127. Declare for the syntax record kind

516 Enterprise PL/I for z/OS Programming Guide

The procedure record contains the identifier (in the block_sym field) for the symbol
record for ENTRY A. This symbol record contains, in turn, the node identifier (in
the first_stmt_id field) for the first statement in that procedure.

Note that for the statement records, the sibling node identifier points to the next
statement record, if any; the child node identifier points to the first element of that
statement record.

The records for the PROCEDURE statement consists of 4 records:
v A label record
v A keyword record (for the PROCEDURE keyword)
v An expression record (for the parameter X) with expression kind of unsub_rfrnc

and a sym_id for the symbol X
v A lexeme record (for the semicolon)

The records for the assignment statement consists of 2 records:
v An assignment record that has 2 children:

– An expression record (for the target X) with expression kind of unsub_rfrnc
and a sym_id for the symbol X

– An expression record (for the source) with expression kind of builtin_rfrnc
and a sym_id for the symbol SUBSTR, and this record has itself 3 children:
- An expression record (for the first argument) with expression kind of

builtin_rfrnc and a sym_id for the symbol DATETIME
- An expression record (for the second argument) with expression kind of

number and a literal_id for the value 1
- An expression record (for the third argument) with expression kind of

number and a literal_id for the value 8
v A lexeme record (for the semicolon)

The records for the END statement consists of 2 records:
v A keyword record (for the END keyword)

node_kind index sibling parent child
----------- ----- ------- ------ -----
package 1 0 0 2
procedure 2 0 1 0
expression 3 0 0 0
stmt 4 5 2 6
stmt 5 10 2 11
label 6 7 4 0
keyword 7 8 4 0
expression 8 9 4 0
lexeme 9 0 4 0
stmt 10 0 2 18
assignment 11 12 5 13
lexeme 12 0 5 0
expression 13 14 11 0
expression 14 0 11 15
expression 15 16 14 0
expression 16 17 14 0
expression 17 0 14 0
keyword 18 19 10 0
lexeme 19 0 10 0

Figure 128. Node indices assigned to the syntax records in a program

Appendix. SYSADATA message information 517

v A lexeme record (for the semicolon)

The ordinal xin_Exp_Kind identifies the type of an expression for a syntax record
that describes an expression. Some of these records will have nonzero child nodes;
for example:
v An infix op, such as a minus for a subtraction, will have a child node that

describes its lefthand operand (and the sibling node of that operand will
describe the righthand operator).

v A prefix op, such as a minus for a negation, will have a child node that
describes its operand.

The ordinal xin_Number_Kind identifies the type of a number for a syntax record
that describes a number.

The ordinal xin_Lex_Kind identifies the type of a lexeme for a syntax record that
describes a lexical unit.
v In these ordinal names, "vrule" means "vertical rule", which is used, for instance,

as the "or" symbol.

Define
ordinal

xin_Exp_Kind
(xin_Exp_Kind_Unset

,xin_Exp_Kind_Bit_String
,xin_Exp_Kind_Char_String
,xin_Exp_Kind_Graphic_String
,xin_Exp_Kind_Number
,xin_Exp_Kind_Infix_Op
,xin_Exp_Kind_Prefix_Op
,xin_Exp_Kind_Builtin_Rfrnc
,xin_Exp_Kind_Entry_Rfrnc
,xin_Exp_Kind_Qualified_Rfrnc
,xin_Exp_Kind_Unsub_Rfrnc
,xin_Exp_Kind_Subscripted_Rfrnc
,xin_Exp_Kind_Type_Func
,xin_Exp_Kind_Widechar_String

) prec(8) unsigned;

Figure 129. Declare for the expression kind

Define
ordinal

xin_Number_Kind
(xin_Number_Kind_Unset

,xin_Number_Kind_Real_Fixed_Bin
,xin_Number_Kind_Real_Fixed_Dec
,xin_Number_Kind_Real_Float_Bin
,xin_Number_Kind_Real_Float_Dec
,xin_Number_Kind_Cplx_Fixed_Bin
,xin_Number_Kind_Cplx_Fixed_Dec
,xin_Number_Kind_Cplx_Float_Bin
,xin_Number_Kind_Cplx_Float_Dec

) prec(8) unsigned;

Figure 130. Declare for the number kind

518 Enterprise PL/I for z/OS Programming Guide

v In these ordinal names, "dbl" means "double", so that dbl_Vrule is a doubled
vertical rule that is used, for instance, as the "concatenate" symbol.

The ordinal xin_Voc_Kind identifies the keyword for a syntax record that describes
an item from the compiler's "vocabulary".

The declaration for the voc kind is provided in the member ibmwxin in the samples
data set SIBMZSAM.

Define
ordinal

xin_Lex_Kind
(xin_Lex_Undefined

,xin_Lex_Period
,xin_Lex_Colon
,xin_Lex_Semicolon
,xin_Lex_Lparen
,xin_Lex_Rparen
,xin_Lex_Comma
,xin_Lex_Equals
,xin_Lex_Gt
,xin_Lex_Ge
,xin_Lex_Lt
,xin_Lex_Le
,xin_Lex_Ne
,xin_Lex_Lctr
,xin_Lex_Star
,xin_Lex_Dbl_Colon
,xin_Lex_Not
,xin_Lex_Vrule
,xin_Lex_Dbl_Vrule
,xin_Lex_And
,xin_Lex_Dbl_Star
,xin_Lex_Plus
,xin_Lex_Minus
,xin_Lex_Slash
,xin_Lex_Equals_Gt
,xin_Lex_Lparen_Colon
,xin_Lex_Colon_Rparen
,xin_Lex_Plus_Equals
,xin_Lex_Minus_Equals
,xin_Lex_Star_Equals
,xin_Lex_Slash_Equals
,xin_Lex_Vrule_Equals
,xin_Lex_And_Equals
,xin_Lex_Dbl_Star_Equals
,xin_Lex_Dbl_Vrule_Equals
,xin_Lex_Dbl_Slash

) unsigned prec(16);

Figure 131. Declare for the lexeme kind

Appendix. SYSADATA message information 519

520 Enterprise PL/I for z/OS Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user!s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Corporation
J74/G4
555 Bailey Avenue
San Jose, CA 95141-1099
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1999, 2017 521

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Intel is a registered trademark of Intel Corporation in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States and other countries.

Pentium is a registered trademark of Intel Corporation in the United States and
other countries.

Unicode is a trademark of the Unicode Consortium.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be the trademarks or service marks
of others.

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

522 Enterprise PL/I for z/OS Programming Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

PL/I publications
Enterprise PL/I for z/OS

Programming Guide, GI11-9145
Language Reference, SC14-7285
Messages and Codes, GC14-7286
Compiler and Run-Time Migration Guide, GC14-7284

PL/I for MVS & VM
Installation and Customization under MVS, SC26-3119
Language Reference, SC26-3114
Compile-Time Messages and Codes, SC26-3229
Diagnosis Guide, SC26-3149
Migration Guide, SC26-3118
Programming Guide, SC26-3113
Reference Summary, SX26-3821

Enterprise PL/I for AIX
Programming Guide, SC14-7319
Language Reference, SC14-7320
Messages and Codes, GC14-7321
Installation Guide, GC14-7322

Related publications
DB2 for z/OS

Administration Guide, SC19-2968
Application Programming and SQL Guide, SC19-2969
Command Reference, SC19-2972
Messages, GC19-2979
Codes, GC19-2971
SQL Reference, SC19-2983
See also the Information Center: publib.boulder.ibm.com/infocenter/dzichelp/
v2r2/topic/com.ibm.db2z10.doc/src/alltoc/db2z_10_prodhome.htm
LOBs with DB2 for z/OS: Stronger and Faster, SG24-7270

DFSORT
Application Programming Guide, SC33-4035
Installation and Customization, SC33-4034

IMS/ESA®

Application Programming: Database Manager, SC26-8015
Application Programming: Database Manager Summary, SC26-8037
Application Programming: Design Guide, SC26-8016
Application Programming: Transaction Manager, SC26-8017
Application Programming: Transaction Manager Summary, SC26-8038
Application Programming: EXEC DL/I Commands for CICS and IMS™, SC26-8018

© Copyright IBM Corp. 1999, 2017 523

Application Programming: EXEC DL/I Commands for CICS and IMS Summary,
SC26-8036

TXSeries® for Multiplatforms
Encina Administration Guide Volume 2: Server Administration, SC09-4474
Encina SFS Programming Guide, SC09-4483
See also the Information Center: publib.boulder.ibm.com/infocenter/txformp/
v7r1/index.jsp

z/Architecture
Principles of Operation, SA22-7832

z/OS Language Environment
Concepts Guide, SA22-7567
Debugging Guide, GA22-7560
Run-Time Messages, SA22-7566
Customization, SA22-7564
Programming Guide, SA22-7561
Programming Reference, SA22-7562
Run-Time Application Migration Guide, GA22-7565
Writing Interlanguage Communication Applications, SA22-7563

z/OS MVS
JCL Reference, SA22-7597
JCL User's Guide, SA22-7598
System Commands, SA22-7627

z/OS TSO/E
Command Reference, SA22-7782
User's Guide, SA22-7794

z/OS UNIX System Services
z/OS UNIX System Services Command Reference, SA22-7802
z/OS UNIX System Services Programming: Assembler Callable Services Reference,
SA22-7803
z/OS UNIX System Services User's Guide, SA22-7801

Unicode and character representation
z/OS Support for Unicode: Using Conversion Services, SC33-7050

524 Enterprise PL/I for z/OS Programming Guide

Glossary

This glossary defines terms for all platforms and
releases of PL/I. It might contain terms that this
manual does not use. If you do not find the terms
for which you are looking, see the index in this
manual or IBM Dictionary of Computing,
SC20-1699.

A

access To reference or retrieve data.

action specification
In an ON statement, the ON-unit or the
single keyword SYSTEM, either of which
specifies the action to be taken whenever
the appropriate condition is raised.

activate (a block)
To initiate the execution of a block. A
procedure block is activated when it is
invoked. A begin-block is activated when
it is encountered in the normal flow of
control, including a branch. A package
cannot be activated.

activate (a preprocessor variable or preprocessor
entry point)

To make a macro facility identifier eligible
for replacement in subsequent source
code. The %ACTIVATE statement
activates preprocessor variables or
preprocessor entry points.

active The state of a block after activation and
before termination. The state in which a
preprocessor variable or preprocessor
entry name is said to be when its value
can replace the corresponding identifier in
source program text. The state in which
an event variable is said to be during the
time it is associated with an asynchronous
operation. The state in which a task
variable is said to be when its associated
task is attached. The state in which a task
is said to be before it has been
terminated.

actual origin (AO)
The location of the first item in the array
or structure.

additive attribute
A file description attribute for which there
are no defaults, and which, if required,
must be stated explicitly or implied by

another explicitly stated attribute.
Contrast with alternative attribute.

adjustable extent
The bound (of an array), the length (of a
string), or the size (of an area) that might
be different for different generations of
the associated variable. Adjustable extents
are specified as expressions or asterisks
(or by REFER options for based
variables), which are evaluated separately
for each generation. They cannot be used
for static variables.

aggregate
See data aggregate.

aggregate expression
An array, structure, or union expression.

aggregate type
For any item of data, the specification
whether it is structure, union, or array.

allocated variable
A variable with which main storage is
associated and not freed.

allocation
The reservation of main storage for a
variable. A generation of an allocated
variable. The association of a PL/I file
with a system data set, device, or file.

alignment
The storing of data items in relation to
certain machine-dependent boundaries
(for example, a fullword or halfword
boundary).

alphabetic character
Any of the characters A through Z of the
English alphabet and the alphabetic
extenders #, $, and @ (which can have a
different graphic representation in
different countries).

alphameric character
An alphabetic character or a digit.

alternative attribute
A file description attribute that is chosen
from a group of attributes. If none is
specified, a default is assumed. Contrast
with additive attribute.

© Copyright IBM Corp. 1999, 2017 525

ambiguous reference
A reference that is not sufficiently
qualified to identify one and only one
name known at the point of reference.

area A portion of storage within which based
variables can be allocated.

argument
An expression in an argument list as part
of an invocation of a subroutine or
function.

argument list
A parenthesized list of zero or more
arguments, separated by commas,
following an entry name constant, an
entry name variable, a generic name, or a
built-in function name. The list becomes
the parameter list of the entry point.

arithmetic comparison
A comparison of numeric values. See also
bit comparison, character comparison.

arithmetic constant
A fixed-point constant or a floating-point
constant. Although most arithmetic
constants can be signed, the sign is not
part of the constant.

arithmetic conversion
The transformation of a value from one
arithmetic representation to another.

arithmetic data
Data that has the characteristics of base,
scale, mode, and precision. Coded
arithmetic data and pictured numeric
character data are included.

arithmetic operators
Either of the prefix operators + and -, or
any of the following infix operators: + - *
/ **

array A named, ordered collection of one or
more data elements with identical
attributes, grouped into one or more
dimensions.

array expression
An expression whose evaluation yields an
array of values.

array of structures
An ordered collection of identical
structures specified by giving the
dimension attribute to a structure name.

array variable
A variable that represents an aggregate of

data items that must have identical
attributes. Contrast with structure variable.

ASCII American National Standard Code for
Information Interchange.

assignment
The process of giving a value to a
variable.

asynchronous operation
The overlap of an input/output operation
with the execution of statements. The
concurrent execution of procedures using
multiple flows of control for different
tasks.

attachment of a task
The invocation of a procedure and the
establishment of a separate flow of
control to execute the invoked procedure
(and procedures it invokes)
asynchronously, with execution of the
invoking procedure.

attention
An occurrence, external to a task, that
could cause a task to be interrupted.

attribute
A descriptive property associated with a
name to describe a characteristic
represented. A descriptive property used
to describe a characteristic of the result of
evaluation of an expression.

automatic storage allocation
The allocation of storage for automatic
variables.

automatic variable
A variable whose storage is allocated
automatically at the activation of a block
and released automatically at the
termination of that block.

B

base The number system in which an
arithmetic value is represented.

base element
A member of a structure or a union that
is itself not another structure or union.

base item
The automatic, controlled, or static
variable or the parameter upon which a
defined variable is defined.

526 Enterprise PL/I for z/OS Programming Guide

based reference
A reference that has the based storage
class.

based storage allocation
The allocation of storage for based
variables.

based variable
A variable whose storage address is
provided by a locator. Multiple
generations of the same variable are
accessible. It does not identify a fixed
location in storage.

begin-block
A collection of statements delimited by
BEGIN and END statements, forming a
name scope. A begin-block is activated
either by the raising of a condition (if the
begin-block is the action specification for
an ON-unit) or through the normal flow
of control, including any branch resulting
from a GOTO statement.

binary A number system whose only numerals
are 0 and 1.

binary digit
See bit.

binary fixed-point value
An integer consisting of binary digits and
having an optional binary point and
optional sign. Contrast with decimal
fixed-point value.

binary floating-point value
An approximation of a real number in the
form of a significand, which can be
considered as a binary fraction, and an
exponent, which can be considered as an
integer exponent to the base of 2. Contrast
with decimal floating-point value.

bit A 0 or a 1. The smallest amount of space
of computer storage.

bit comparison
A left-to-right, bit-by-bit comparison of
binary digits. See also arithmetic
comparison, character comparison.

bit string constant
A series of binary digits enclosed in and
followed immediately by the suffix B.
Contrast with character constant. A series
of hexadecimal digits enclosed in single
quotes and followed by the suffix B4.

bit string
A string composed of zero or more bits.

bit string operators
The logical operators not and exclusive-or
(¬), and (&), and or (|).

bit value
A value that represents a bit type.

block A sequence of statements, processed as a
unit, that specifies the scope of names
and the allocation of storage for names
declared within it. A block can be a
package, procedure, or a begin-block.

bounds
The upper and lower limits of an array
dimension.

break character
The underscore symbol (_). It can be
used to improve the readability of
identifiers. For instance, a variable could
be called OLD_INVENTORY_TOTAL
instead of OLDINVENTORYTOTAL.

built-in function
A predefined function supplied by the
language, such as SQRT (square root).

built-in function reference
A built-in function name, which has an
optional argument list.

built-in name
The entry name of a built-in subroutine.

built-in subroutine
Subroutine that has an entry name that is
defined at compile-time and is invoked
by a CALL statement.

buffer Intermediate storage, used in
input/output operations, into which a
record is read during input and from
which a record is written during output.

C

call To invoke a subroutine by using the
CALL statement or CALL option.

character comparison
A left-to-right, character-by-character
comparison according to the collating
sequence. See also arithmetic comparison,
bit comparison.

Glossary 527

character string constant
A sequence of characters enclosed in
single quotes; for example, 'Shakespeare''s
'Hamlet:''.

character set
A defined collection of characters. See
also ASCII and EBCDIC.

character string picture data
Picture data that has only a character
value. This type of picture data must have
at least one A or X picture specification
character. Contrast with numeric picture
data.

closing (of a file)
The dissociation of a file from a data set
or device.

coded arithmetic data
Data items that represent numeric values
and are characterized by their base
(decimal or binary), scale (fixed-point or
floating-point), and precision (the number
of digits each can have). This data is
stored in a form that is acceptable,
without conversion, for arithmetic
calculations.

combined nesting depth
The deepest level of nesting, determined
by counting the levels of
PROCEDURE/BEGIN/ON, DO, SELECT,
and IF...THEN...ELSE nestings in the
program.

comment
A string of zero or more characters used
for documentation that are delimited by
/* and */.

commercial character

v CR (credit) picture specification
character

v DB (debit) picture specification
character

comparison operator
An operator that can be used in an
arithmetic, string locator, or logical
relation to indicate the comparison to be
done between the terms in the relation.
The comparison operators are:

= (equal to)
> (greater than)
< (less than)
>= (greater than or equal to)

<= (less than or equal to)
¬= (not equal to)
¬> (not greater than)
¬< (not less than)

compile time
In general, the time during which a
source program is translated into an
object module. In PL/I, it is the time
during which a source program can be
altered, if desired, and then translated
into an object program.

compiler options
Keywords that are specified to control
certain aspects of a compilation, such as:
the nature of the object module generated,
the types of printed output produced, and
so forth.

complex data
Arithmetic data, each item of which
consists of a real part and an imaginary
part.

composite operator
An operator that consists of more than
one special character, such as <=, **, and
/*.

compound statement
A statement that contains other
statements. In PL/I, IF, ON, OTHERWISE,
and WHEN are the only compound
statements. See statement body.

concatenation
The operation that joins two strings in the
order specified, forming one string whose
length is equal to the sum of the lengths
of the two original strings. It is specified
by the operator ||.

condition
An exceptional situation, either an error
(such as an overflow), or an expected
situation (such as the end of an input
file). When a condition is raised
(detected), the action established for it is
processed. See also established action and
implicit action.

condition name
Name of a PL/I-defined or
programmer-defined condition.

condition prefix
A parenthesized list of one or more
condition names prefixed to a statement.

528 Enterprise PL/I for z/OS Programming Guide

It specifies whether the named conditions
are to be enabled or disabled.

connected aggregate
An array or structure whose elements
occupy contiguous storage without any
intervening data items. Contrast with
nonconnected aggregate.

connected reference
A reference to connected storage. It must
be apparent, prior to execution of the
program, that the storage is connected.

connected storage
Main storage of an uninterrupted linear
sequence of items that can be referred to
by a single name.

constant
An arithmetic or string data item that
does not have a name and whose value
cannot change. An identifier declared
with the VALUE attribute. An identifier
declared with the FILE or the ENTRY
attribute but without the VARIABLE
attribute.

constant reference
A value reference which has a constant as
its object

contained block, declaration, or source text
All blocks, procedures, statements,
declarations, or source text inside a begin,
procedure, or a package block. The entire
package, procedure, and the BEGIN
statement and its corresponding END
statements are not contained in the block.

containing block
The package, procedure, or begin-block
that contains the declaration, statement,
procedure, or other source text in
question.

contextual declaration
The appearance of an identifier that has
not been explicitly declared in a
DECLARE statement, but whose context
of use allows the association of specific
attributes with the identifier.

control character
A character in a character set whose
occurrence in a particular context specifies
a control function. One example is the
end-of-file (EOF) marker.

control format item
A specification used in edit-directed

transmission to specify positioning of a
data item within the stream or printed
page.

control variable
A variable that is used to control the
iterative execution of a DO statement.

controlled parameter
A parameter for which the
CONTROLLED attribute is specified in a
DECLARE statement. It can be associated
only with arguments that have the
CONTROLLED attribute.

controlled storage allocation
The allocation of storage for controlled
variables.

controlled variable
A variable whose allocation and release
are controlled by the ALLOCATE and
FREE statements, with access to the
current generation only.

control sections
Grouped machine instructions in an object
module.

conversion
The transformation of a value from one
representation to another to conform to a
given set of attributes. For example,
converting a character string to an
arithmetic value such as FIXED BINARY
(15,0).

cross section of an array
The elements represented by the extent of
at least one dimension of an array. An
asterisk in the place of a subscript in an
array reference indicates the entire extent
of that dimension.

current generation
The generation of an automatic or
controlled variable that is currently
available by referring to the name of the
variable.

D

data Representation of information or of value
in a form suitable for processing.

data aggregate
A data item that is a collection of other
data items.

Glossary 529

data attribute
A keyword that specifies the type of data
that the data item represents, such as
FIXED BINARY.

data-directed transmission
The type of stream-oriented transmission
in which data is transmitted. It resembles
an assignment statement and is of the
form name = constant.

data item
A single named unit of data.

data list
In stream-oriented transmission, a
parenthesized list of the data items used
in GET and PUT statements. Contrast
with format list.

data set
A collection of data external to the
program that can be accessed by reference
to a single file name. A device that can be
referenced.

data specification
The portion of a stream-oriented
transmission statement that specifies the
mode of transmission (DATA, LIST, or
EDIT) and includes the data list(s) and,
for edit-directed mode, the format list(s).

data stream
Data being transferred from or to a data
set by stream-oriented transmission, as a
continuous stream of data elements in
character form.

data transmission
The transfer of data from a data set to the
program or vice versa.

data type
A set of data attributes.

DBCS In the character set, each character is
represented by two consecutive bytes.

deactivated
The state in which an identifier is said to
be when its value cannot replace a
preprocessor identifier in source program
text. Contrast with active.

debugging
Process of removing bugs from a
program.

decimal
The number system whose numerals are 0
through 9.

decimal digit picture character
The picture specification character 9.

decimal fixed-point constant
A constant consisting of one or more
decimal digits with an optional decimal
point.

decimal fixed-point value
A rational number consisting of a
sequence of decimal digits with an
assumed position of the decimal point.
Contrast with binary fixed-point value.

decimal floating-point constant
A value made up of a significand that
consists of a decimal fixed-point constant,
and an exponent that consists of the letter
E followed by an optionally signed
integer constant not exceeding three
digits.

decimal floating-point value
An approximation of a real number, in
the form of a significand, which can be
considered as a decimal fraction, and an
exponent, which can be considered as an
integer exponent to the base 10. Contrast
with binary floating-point value.

decimal picture data
See numeric picture data.

declaration
The establishment of an identifier as a
name and the specification of a set of
attributes (partial or complete) for it. A
source of attributes of a particular name.

default
Describes a value, attribute, or option that
is assumed when none has been specified.

defined variable
A variable that is associated with some or
all of the storage of the designated base
variable.

delimit
To enclose one or more items or
statements with preceding and following
characters or keywords.

delimiter
All comments and the following
characters: percent, parentheses, comma,
period, semicolon, colon, assignment
symbol, blank, pointer, asterisk, and
single quote. They define the limits of
identifiers, constants, picture
specifications, iSUBs, and keywords.

530 Enterprise PL/I for z/OS Programming Guide

descriptor
A control block that holds information
about a variable, such as area size, array
bounds, or string length.

digit One of the characters 0 through 9.

dimension attribute
An attribute that specifies the number of
dimensions of an array and indicates the
bounds of each dimension.

disabled
The state of a condition in which no
interrupt occurs and no established action
will take place.

do-group
A sequence of statements delimited by a
DO statement and ended by its
corresponding END statement, used for
control purposes. Contrast with block.

do-loop
See iterative do-group.

dummy argument
Temporary storage that is created
automatically to hold the value of an
argument that cannot be passed by
reference.

dump Printout of all or part of the storage used
by a program as well as other program
information, such as a trace of an error's
origin.

E

EBCDIC
(Extended Binary-Coded Decimal
Interchange Code). A coded character set
consisting of 8-bit coded characters.

edit-directed transmission
The type of stream-oriented transmission
in which data appears as a continuous
stream of characters and for which a
format list is required to specify the
editing desired for the associated data list.

element
A single item of data as opposed to a
collection of data items such as an array;
a scalar item.

element expression
An expression whose evaluation yields an
element value.

element variable
A variable that represents an element; a
scalar variable.

elementary name
See base element.

enabled
The state of a condition in which the
condition can cause an interrupt and then
invocation of the appropriate established
ON-unit.

end-of-step message
message that follows the listng of the job
control statements and job scheduler
messages and contains return code
indicating success or failure for each step.

entry constant
The label prefix of a PROCEDURE
statement (an entry name). The
declaration of a name with the ENTRY
attribute but without the VARIABLE
attribute.

entry data
A data item that represents an entry point
to a procedure.

entry expression
An expression whose evaluation yields an
entry name.

entry name
An identifier that is explicitly or
contextually declared to have the ENTRY
attribute (unless the VARIABLE attribute
is given) or An identifier that has the
value of an entry variable with the
ENTRY attribute implied.

entry point
A point in a procedure at which it can be
invoked. primary entry point and secondary
entry point.

entry reference
An entry constant, an entry variable
reference, or a function reference that
returns an entry value.

entry variable
A variable to which an entry value can be
assigned. It must have both the ENTRY
and VARIABLE attributes.

entry value
The entry point represented by an entry
constant or variable; the value includes

Glossary 531

the environment of the activation that is
associated with the entry constant.

environment (of an activation)
Information associated with and used in
the invoked block regarding data declared
in containing blocks.

environment (of a label constant)
Identity of the particular activation of a
block to which a reference to a
statement-label constant applies. This
information is determined at the time a
statement-label constant is passed as an
argument or is assigned to a
statement-label variable, and it is passed
or assigned along with the constant.

established action
The action taken when a condition is
raised. See also implicit action and
ON-statement action.

epilogue
Those processes that occur automatically
at the termination of a block or task.

evaluation
The reduction of an expression to a single
value, an array of values, or a structured
set of values.

event An activity in a program whose status
and completion can be determined from
an associated event variable.

event variable
A variable with the EVENT attribute that
can be associated with an event. Its value
indicates whether the action has been
completed and the status of the
completion.

explicit declaration
The appearance of an identifier (a name)
in a DECLARE statement, as a label
prefix, or in a parameter list. Contrast
with implicit declaration.

exponent characters
The following picture specification
characters:
1. K and E, which are used in

floating-point picture specifications to
indicate the beginning of the exponent
field.

2. F, the scaling factor character, specified
with an integer constant that indicates
the number of decimal positions the
decimal point is to be moved from its

assumed position to the right (if the
constant is positive) or to the left (if
the constant is negative).

expression
A notation, within a program, that
represents a value, an array of values, or
a structured set of values. A constant or a
reference appearing alone, or a
combination of constants and/or
references with operators.

extended alphabet
The uppercase and lowercase alphabetic
characters A through Z, $, @ and #, or
those specified in the NAMES compiler
option.

extent The range indicated by the bounds of an
array dimension, by the length of a string,
or by the size of an area. The size of the
target area if this area were to be assigned
to a target area.

external name
A name (with the EXTERNAL attribute)
whose scope is not necessarily confined
only to one block and its contained
blocks.

external procedure
A procedure that is not contained in any
other procedure. A level-2 procedure
contained in a package that is also
exported.

external symbol
Name that can be referred to in a control
section other than the one in which it is
defined.

External Symbol Dictionary (ESD)
Table containing all the external symbols
that appear in the object module.

extralingual character
Characters (such as $, @, and #) that are
not classified as alphanumeric or special.
This group includes characters that are
determined with the NAMES compiler
option.

F

factoring
The application of one or more attributes
to a parenthesized list of names in a
DECLARE statement, eliminating the
repetition of identical attributes for
multiple names.

532 Enterprise PL/I for z/OS Programming Guide

field (in the data stream)
That portion of the data stream whose
width, in number of characters, is defined
by a single data or spacing format item.

field (of a picture specification)
Any character-string picture specification
or that portion (or all) of a numeric
character picture specification that
describes a fixed-point number.

file A named representation, within a
program, of a data set or data sets. A file
is associated with the data set(s) for each
opening.

file constant
A name declared with the FILE attribute
but not the VARIABLE attribute.

file description attributes
Keywords that describe the individual
characteristics of each file constant. See
also alternative attribute and additive
attribute.

file expression
An expression whose evaluation yields a
value of the type file.

file name
A name declared for a file.

file variable
A variable to which file constants can be
assigned. It has the attributes FILE and
VARIABLE and cannot have any of the
file description attributes.

fixed-point constant
See arithmetic constant.

fix-up A solution, performed by the compiler
after detecting an error during
compilation, that allows the compiled
program to run.

floating-point constant
See arithmetic constant.

flow of control
Sequence of execution.

format
A specification used in edit-directed data
transmission to describe the
representation of a data item in the
stream (data format item) or the specific
positioning of a data item within the
stream (control format item).

format constant
The label prefix on a FORMAT statement.

format data
A variable with the FORMAT attribute.

format label
The label prefix on a FORMAT statement.

format list
In stream-oriented transmission, a list
specifying the format of the data item on
the external medium. Contrast with data
list.

fully qualified name
A name that includes all the names in the
hierarchical sequence above the member
to which the name refers, as well as the
name of the member itself.

function (procedure)
A procedure that has a RETURNS option
in the PROCEDURE statement. A name
declared with the RETURNS attribute. It
is invoked by the appearance of one of its
entry names in a function reference and it
returns a scalar value to the point of
reference. Contrast with subroutine.

function reference
An entry constant or an entry variable,
either of which must represent a function,
followed by a possibly empty argument
list. Contrast with subroutine call.

G

generation (of a variable)
The allocation of a static variable, a
particular allocation of a controlled or
automatic variable, or the storage
indicated by a particular locator
qualification of a based variable or by a
defined variable or parameter.

generic descriptor
A descriptor used in a GENERIC
attribute.

generic key
A character string that identifies a class of
keys. All keys that begin with the string
are members of that class. For example,
the recorded keys 'ABCD', 'ABCE', and
'ABDF', are all members of the classes
identified by the generic keys 'A' and
'AB', and the first two are also members
of the class 'ABC'; and the three recorded

Glossary 533

keys can be considered to be unique
members of the classes 'ABCD', 'ABCE',
'ABDF', respectively.

generic name
The name of a family of entry names. A
reference to the generic name is replaced
by the entry name whose parameter
descriptors match the attributes of the
arguments in the argument list at the
point of invocation.

group A collection of statements contained
within larger program units. A group is
either a do-group or a select-group and it
can be used wherever a single statement
can appear, except as an on-unit.

H

hex See hexadecimal digit.

hexadecimal
Pertaining to a numbering system with a
base of sixteen; valid numbers use the
digits 0 through 9 and the characters A
through F, where A represents 10 and F
represents 15.

hexadecimal digit
One of the digits 0 through 9 and A
through F. A through F represent the
decimal values 10 through 15,
respectively.

I

identifier
A string of characters, not contained in a
comment or constant, and preceded and
followed by a delimiter. The first
character of the identifier must be one of
the 26 alphabetic characters and
extralingual characters, if any. The other
characters, if any, can additionally include
extended alphabetic, digit, or the break
character.

IEEE Institute of Electrical and Electronics
Engineers.

implicit
The action taken in the absence of an
explicit specification.

implicit action
The action taken when an enabled
condition is raised and no ON-unit is
currently established for the condition.
Contrast with ON-statement action.

implicit declaration
A name not explicitly declared in a
DECLARE statement or contextually
declared.

implicit opening
The opening of a file as the result of an
input or output statement other than the
OPEN statement.

infix operator
An operator that appears between two
operands.

inherited dimensions
For a structure, union, or element, those
dimensions that are derived from the
containing structures. If the name is an
element that is not an array, the
dimensions consist entirely of its inherited
dimensions. If the name is an element
that is an array, its dimensions consist of
its inherited dimensions plus its explicitly
declared dimensions. A structure with one
or more inherited dimensions is called a
nonconnected aggregate. Contrast with
connected aggregate.

input/output
The transfer of data between auxiliary
medium and main storage.

insertion point character
A picture specification character that is,
on assignment of the associated data to a
character string, inserted in the indicated
position. When used in a P-format item
for input, the insertion character is used
for checking purposes.

integer
An optionally signed sequence of digits or
a sequence of bits without a decimal or
binary point. An optionally signed whole
number, commonly described as FIXED
BINARY (p,0) or FIXED DECIMAL (p,0).

integral boundary
A byte multiple address of any 8-bit unit
on which data can be aligned. It usually
is a halfword, fullword, or doubleword
(2-, 4-, or 8-byte multiple respectively)
boundary.

interleaved array
An array that refers to nonconnected
storage.

534 Enterprise PL/I for z/OS Programming Guide

interleaved subscripts
Subscripts that exist in levels other than
the lowest level of a subscripted qualified
reference.

internal block
A block that is contained in another block.

internal name
A name that is known only within the
block in which it is declared, and possibly
within any contained blocks.

internal procedure
A procedure that is contained in another
block. Contrast with external procedure.

interrupt
The redirection of the program's flow of
control as the result of raising a condition
or attention.

invocation
The activation of a procedure.

invoke
To activate a procedure.

invoked procedure
A procedure that has been activated.

invoking block
A block that activates a procedure.

iteration factor
In an INITIAL attribute specification, an
expression that specifies the number of
consecutive elements of an array that are
to be initialized with the given value. In a
format list, an expression that specifies
the number of times a given format item
or list of format items is to be used in
succession.

iterative do-group
A do-group whose DO statement specifies
a control variable and/or a WHILE or
UNTIL option.

K

key Data that identifies a record within a
direct access data set. See source key and
recorded key.

keyword
An identifier that has a specific meaning
in PL/I when used in a defined context.

keyword statement
A simple statement that begins with a
keyword, indicating the function of the
statement.

known (applied to a name)
Recognized with its declared meaning. A
name is known throughout its scope.

L

label A name prefixed to a statement. A name
on a PROCEDURE statement is called an
entry constant; a name on a FORMAT
statement is called a format constant; a
name on other kinds of statements is
called a label constant. A data item that
has the LABEL attribute.

label constant
A name written as the label prefix of a
statement (other than PROCEDURE,
ENTRY, FORMAT, or PACKAGE) so that,
during execution, program control can be
transferred to that statement through a
reference to its label prefix.

label data
A label constant or the value of a label
variable.

label prefix
A label prefixed to a statement.

label variable
A variable declared with the LABEL
attribute. Its value is a label constant in
the program.

leading zeroes
Zeros that have no significance in an
arithmetic value. All zeros to the left of
the first nonzero in a number.

level number
A number that precedes a name in a
DECLARE statement and specifies its
relative position in the hierarchy of
structure names.

level-one variable
A major structure or union name. Any
unsubscripted variable not contained
within a structure or union.

lexically
Relating to the left-to-right order of units.

library
An MVS partitioned data set or a CMS

Glossary 535

MACLIB that can be used to store other
data sets called members.

list-directed
The type of stream-oriented transmission
in which data in the stream appears as
constants separated by blanks or commas
and for which formatting is provided
automatically.

locator
A control block that holds the address of
a variable or its descriptor.

locator/descriptor
A locator followed by a descriptor. The
locator holds the address of the variable,
not the address of the descriptor.

locator qualification
In a reference to a based variable, either a
locator variable or function reference
connected by an arrow to the left of a
based variable to specify the generation of
the based variable to which the reference
refers. It might be an implicit reference.

locator value
A value that identifies or can be used to
identify the storage address.

locator variable
A variable whose value identifies the
location in main storage of a variable or a
buffer. It has the POINTER or OFFSET
attribute.

locked record
A record in an EXCLUSIVE DIRECT
UPDATE file that has been made
available to one task only and cannot be
accessed by other tasks until the task
using it relinquishes it.

logical level (of a structure or union member)
The depth indicated by a level number
when all level numbers are in direct
sequence (when the increment between
successive level numbers is one).

logical operators
The bit-string operators not and
exclusive-or (¬), and (&), and or (|).

loop A sequence of instructions that is
executed iteratively.

lower bound
The lower limit of an array dimension.

M

main procedure
An external procedure whose
PROCEDURE statement has the
OPTIONS (MAIN) attribute. This
procedure is invoked automatically as the
first step in the execution of a program.

major structure
A structure whose name is declared with
level number 1.

member
A structure, union, or element name in a
structure or union. Data sets in a library.

minor structure
A structure that is contained within
another structure or union. The name of a
minor structure is declared with a level
number greater than one and greater than
its parent structure or union.

mode (of arithmetic data)
An attribute of arithmetic data. It is either
real or complex.

multiple declaration
Two or more declarations of the same
identifier internal to the same block
without different qualifications. Two or
more external declarations of the same
identifier.

multiprocessing
The use of a computing system with two
or more processing units to execute two
or more programs simultaneously.

multiprogramming
The use of a computing system to execute
more than one program concurrently,
using a single processing unit.

multitasking
A facility that allows a program to
execute more than one PL/I procedure
simultaneously.

N

name Any identifier that the user gives to a
variable or to a constant. An identifier
appearing in a context where it is not a
keyword. Sometimes called a user-defined
name.

nesting
The occurrence of:
v A block within another block
v A group within another group

536 Enterprise PL/I for z/OS Programming Guide

v An IF statement in a THEN clause or in
an ELSE clause

v A function reference as an argument of
a function reference

v A remote format item in the format list
of a FORMAT statement

v A parameter descriptor list in another
parameter descriptor list

v An attribute specification within a
parenthesized name list for which one
or more attributes are being factored

nonconnected storage
Storage occupied by nonconnected data
items. For example, interleaved arrays
and structures with inherited dimensions
are in nonconnected storage.

null locator value
A special locator value that cannot
identify any location in internal storage. It
gives a positive indication that a locator
variable does not currently identify any
generation of data.

null statement
A statement that contains only the
semicolon symbol (;). It indicates that no
action is to be taken.

null string
A character, graphic, or bit string with a
length of zero.

numeric-character data
See decimal picture data.

numeric picture data
Picture data that has an arithmetic value
as well as a character value. This type of
picture data cannot contain the characters
'A' or 'X.'

O

object A collection of data referred to by a single
name.

offset variable
A locator variable with the OFFSET
attribute, whose value identifies a location
in storage relative to the beginning of an
area.

ON-condition
An occurrence, within a PL/I program,
that could cause a program interrupt. It
can be the detection of an unexpected

error or of an occurrence that is expected,
but at an unpredictable time.

ON-statement action
The action explicitly established for a
condition that is executed when the
condition is raised. When the
ON-statement is encountered in the flow
of control for the program, it executes,
establishing the action for the condition.
The action executes when the condition is
raised if the ON-unit is still established or
a RESIGNAL statement reestablishes it.
Contrast with implicit action.

ON-unit
The specified action to be executed when
the appropriate condition is raised.

opening (of a file)
The association of a file with a data set.

operand
The value of an identifier, constant, or an
expression to which an operator is
applied, possibly in conjunction with
another operand.

operational expression
An expression that consists of one or
more operators.

operator
A symbol specifying an operation to be
performed.

option A specification in a statement that can be
used to influence the execution or
interpretation of the statement.

P

package constant
The label prefix on a PACKAGE
statement.

packed decimal
The internal representation of a
fixed-point decimal data item.

padding
One or more characters, graphics, or bits
concatenated to the right of a string to
extend the string to a required length.
One or more bytes or bits inserted in a
structure or union so that the following
element within the structure or union is
aligned on the appropriate integral
boundary.

Glossary 537

parameter
A name in the parameter list following
the PROCEDURE statement, specifying an
argument that will be passed when the
procedure is invoked.

parameter descriptor
The set of attributes specified for a
parameter in an ENTRY attribute
specification.

parameter descriptor list
The list of all parameter descriptors in an
ENTRY attribute specification.

parameter list
A parenthesized list of one or more
parameters, separated by commas and
following either the keyword
PROCEDURE in a procedure statement or
the keyword ENTRY in an ENTRY
statement. The list corresponds to a list of
arguments passed at invocation.

partially qualified name
A qualified name that is incomplete. It
includes one or more, but not all, of the
names in the hierarchical sequence above
the structure or union member to which
the name refers, as well as the name of
the member itself.

picture data
Numeric data, character data, or a mix of
both types, represented in character form.

picture specification
A data item that is described using the
picture characters in a declaration with
the PICTURE attribute or in a P-format
item.

picture specification character
Any of the characters that can be used in
a picture specification.

PL/I character set
A set of characters that has been defined
to represent program elements in PL/I.

PL/I prompter
Command processor program for the PLI
command that checks the operands and
allocates the data sets required by the
compiler.

point of invocation
The point in the invoking block at which
the reference to the invoked procedure
appears.

pointer
A type of variable that identifies a
location in storage.

pointer value
A value that identifies the pointer type.

pointer variable
A locator variable with the POINTER
attribute that contains a pointer value.

precision
The number of digits or bits contained in
a fixed-point data item, or the minimum
number of significant digits (excluding
the exponent) maintained for a
floating-point data item.

prefix A label or a parenthesized list of one or
more condition names included at the
beginning of a statement.

prefix operator
An operator that precedes an operand
and applies only to that operand. The
prefix operators are plus (+), minus (-),
and not (¬).

preprocessor
A program that examines the source
program before the compilation takes
place.

preprocessor statement
A special statement appearing in the
source program that specifies the actions
to be performed by the preprocessor. It is
executed as it is encountered by the
preprocessor.

primary entry point
The entry point identified by any of the
names in the label list of the
PROCEDURE statement.

priority
A value associated with a task, that
specifies the precedence of the task
relative to other tasks.

problem data
Coded arithmetic, bit, character, graphic,
and picture data.

problem-state program
A program that operates in the problem
state of the operating system. It does not
contain input/output instructions or other
privileged instructions.

procedure
A collection of statements, delimited by

538 Enterprise PL/I for z/OS Programming Guide

PROCEDURE and END statements. A
procedure is a program or a part of a
program, delimits the scope of names,
and is activated by a reference to the
procedure or one of its entry names. See
also external procedure and internal
procedure.

procedure reference
An entry constant or variable. It can be
followed by an argument list. It can
appear in a CALL statement or the CALL
option, or as a function reference.

program
A set of one or more external procedures
or packages. One of the external
procedures must have the
OPTIONS(MAIN) specification in its
procedure statement.

program control data
Area, locator, label, format, entry, and file
data that is used to control the processing
of a PL/I program.

prologue
The processes that occur automatically on
block activation.

pseudovariable
Any of the built-in function names that
can be used to specify a target variable. It
is usually on the left-hand side of an
assignment statement.

Q

qualified name
A hierarchical sequence of names of
structure or union members, connected by
periods, used to identify a name within a
structure. Any of the names can be
subscripted.

R

range (of a default specification)
A set of identifiers and/or parameter
descriptors to which the attributes in a
DEFAULT statement apply.

record The logical unit of transmission in a
record-oriented input or output operation.
A collection of one or more related data
items. The items usually have different
data attributes and usually are described
by a structure or union declaration.

recorded key
A character string identifying a record in
a direct access data set where the
character string itself is also recorded as
part of the data.

record-oriented data transmission
The transmission of data in the form of
separate records. Contrast with stream data
transmission.

recursive procedure
A procedure that can be called from
within itself or from within another active
procedure.

reentrant procedure
A procedure that can be activated by
multiple tasks, threads, or processes
simultaneously without causing any
interference between these tasks, threads,
and processes.

REFER expression
The expression preceding the keyword
REFER, which is used as the bound,
length, or size when the based variable
containing a REFER option is allocated,
either by an ALLOCATE or LOCATE
statement.

REFER object
The variable in a REFER option that holds
or will hold the current bound, length, or
size for the member. The REFER object
must be a member of the same structure
or union. It must not be locator-qualified
or subscripted, and it must precede the
member with the REFER option.

reference
The appearance of a name, except in a
context that causes explicit declaration.

relative virtual origin (RVO)
The actual origin of an array minus the
virtual origin of an array.

remote format item
The letter R followed by the label
(enclosed in parentheses) of a FORMAT
statement. The format statement is used
by edit-directed data transmission
statements to control the format of data
being transmitted.

repetition factor
A parenthesized unsigned integer
constant that specifies:

Glossary 539

1. The number of times the string
constant that follows is to be repeated.

2. The number of times the picture
character that follows is to be
repeated.

repetitive specification
An element of a data list that specifies
controlled iteration to transmit one or
more data items, generally used in
conjunction with arrays.

restricted expression
An expression that can be evaluated by
the compiler during compilation, resulting
in a constant. Operands of such an
expression are constants, named
constants, and restricted expressions.

returned value
The value returned by a function
procedure.

RETURNS descriptor
A descriptor used in a RETURNS
attribute, and in the RETURNS option of
the PROCEDURE and ENTRY statements.

S

scalar variable
A variable that is not a structure, union,
or array.

scale A system of mathematical notation whose
representation of an arithmetic value is
either fixed-point or floating-point.

scale factor
A specification of the number of fractional
digits in a fixed-point number.

scaling factor
See scale factor.

scope (of a condition prefix)
The portion of a program throughout
which a particular condition prefix
applies.

scope (of a declaration or name)
The portion of a program throughout
which a particular name is known.

secondary entry point
An entry point identified by any of the
names in the label list of an entry
statement.

select-group
A sequence of statements delimited by
SELECT and END statements.

selection clause
A WHEN or OTHERWISE clause of a
select-group.

self-defining data
An aggregate that contains data items
whose bounds, lengths, and sizes are
determined at program execution time
and are stored in a member of the
aggregate.

separator
See delimiter.

shift Change of data in storage to the left or to
the right of original position.

shift-in
Symbol used to signal the compiler at the
end of a double-byte string.

shift-out
Symbol used to signal the compiler at the
beginning of a double-byte string.

sign and currency symbol characters
The picture specification characters. S, +,
-, and $ (or other national currency
symbols enclosed in < and >).

simple parameter
A parameter for which no storage class
attribute is specified. It can represent an
argument of any storage class, but only
the current generation of a controlled
argument.

simple statement
A statement other than IF, ON, WHEN,
and OTHERWISE.

source Data item to be converted for problem
data.

source key
A key referred to in a record-oriented
transmission statement that identifies a
particular record within a direct access
data set.

source program
A program that serves as input to the
source program processors and the
compiler.

source variable
A variable whose value participates in
some other operation, but is not modified
by the operation. Contrast with target
variable.

540 Enterprise PL/I for z/OS Programming Guide

spill file
Data set named SYSUT1 that is used as a
temporary workfile.

standard default
The alternative attribute or option
assumed when none has been specified
and there is no applicable DEFAULT
statement.

standard file
A file assumed by PL/I in the absence of
a FILE or STRING option in a GET or
PUT statement. SYSIN is the standard
input file and SYSPRINT is the standard
output file.

standard system action
Action specified by the language to be
taken for an enabled condition in the
absence of an ON-unit for that condition.

statement
A PL/I statement, composed of keywords,
delimiters, identifiers, operators, and
constants, and terminated by a semicolon
(;). Optionally, it can have a condition
prefix list and a list of labels. See also
keyword statement and null statement.

statement body
A statement body can be either a simple
or a compound statement.

statement label
See label constant.

static storage allocation
The allocation of storage for static
variables.

static variable
A variable that is allocated before
execution of the program begins and that
remains allocated for the duration of
execution.

stream-oriented data transmission
The transmission of data in which the
data is treated as though it were a
continuous stream of individual data
values in character form. Contrast with
record-oriented data transmission.

string A contiguous sequence of characters,
graphics, or bits that is treated as a single
data item.

string variable
A variable declared with the BIT,

CHARACTER, or GRAPHIC attribute,
whose values can be either bit, character,
or graphic strings.

structure
A collection of data items that need not
have identical attributes. Contrast with
array.

structure expression
An expression whose evaluation yields a
structure set of values.

structure of arrays
A structure that has the dimension
attribute.

structure member
See member.

structuring
The hierarchy of a structure, in terms of
the number of members, the order in
which they appear, their attributes, and
their logical level.

subroutine
A procedure that has no RETURNS option
in the PROCEDURE statement. Contrast
with function.

subroutine call
An entry reference that must represent a
subroutine, followed by an optional
argument list that appears in a CALL
statement. Contrast with function reference.

subscript
An element expression that specifies a
position within a dimension of an array. If
the subscript is an asterisk, it specifies all
of the elements of the dimension.

subscript list
A parenthesized list of one or more
subscripts, one for each dimension of the
array, which together uniquely identify
either a single element or cross section of
the array.

subtask
A task that is attached by the given task
or any of the tasks in a direct line from
the given task to the last attached task.

synchronous
A single flow of control for serial
execution of a program.

T

Glossary 541

target Attributes to which a data item (source) is
converted.

target reference
A reference that designates a receiving
variable (or a portion of a receiving
variable).

target variable
A variable to which a value is assigned.

task The execution of one or more procedures
by a single flow of control.

task name
An identifier used to refer to a task
variable.

task variable
A variable with the TASK attribute whose
value gives the relative priority of a task.

termination (of a block)
Cessation of execution of a block, and the
return of control to the activating block
by means of a RETURN or END
statement, or the transfer of control to the
activating block or to some other active
block by means of a GO TO statement.

termination (of a task)
Cessation of the flow of control for a task.

truncation
The removal of one or more digits,
characters, graphics, or bits from one end
of an item of data when a string length or
precision of a target variable has been
exceeded.

type The set of data attributes and storage
attributes that apply to a generation, a
value, or an item of data.

U

undefined
Indicates something that a user must not
do. Use of a undefined feature is likely to
produce different results on different
implementations of a PL/I product. In
that case, the application program is in
error.

union A collection of data elements that overlay
each other, occupying the same storage.
The members can be structures, unions,
elementary variables, or arrays. They
need not have identical attributes.

union of arrays
A union that has the DIMENSION
attribute.

upper bound
The upper limit of an array dimension.

V

value reference
A reference used to obtain the value of an
item of data.

variable
A named entity used to refer to data and
to which values can be assigned. Its
attributes remain constant, but it can refer
to different values at different times.

variable reference
A reference that designates all or part of a
variable.

virtual origin (VO)
The location where the element of the
array whose subscripts are all zero are
held. If such an element does not appear
in the array, the virtual origin is where it
would be held.

Z

zero-suppression characters
The picture specification characters Z and
*, which are used to suppress zeros in the
corresponding digit positions and replace
them with blanks or asterisks respectively.

542 Enterprise PL/I for z/OS Programming Guide

Index

Special characters
/ (forward slash) 209
*PROCESS, specifying options in 100
% statements 101
%INCLUDE statement 101, 162

control statement 101
source statement library 162

%NOPRINT 101
control statement 101

%NOPRINT statement 101
%PAGE 101

control statement 101
%PAGE statement 101
%POP statement 101
%PRINT 101

control statement 101
%PRINT statement 101
%PROCESS, specifying options in 100
%PUSH statement 101
%SKIP 101

control statement 101
%SKIP statement 101

A
access

ESDS 301
REGIONAL(1) data set 282
relative-record data set 320

access method services
regional data set 283
REGIONAL(1) data set

direct access 281
sequential access 281

accessibility
of Enterprise PL/I for z/OS xxxviii

ACCT EXEC statement parameter 154
aggregate

length table 106
AGGREGATE compiler option 7
ALIGNED compiler suboption 24
ALL option

hooks location suboption 89
ALLOCATE statement 106
alternate ddname under z/OS UNIX, in

TITLE option 209
AMP parameter 287
ANS

compiler suboption 24
APPEND option under z/OS UNIX 211
ARCH compiler option 8, 326
argument passing

by descriptor list 493
by descriptor-locator 494

array descriptor
array descriptor 496, 497

ASCII
compiler suboption

description 24

assembler routines
FETCHing 181, 186

ASSERT compiler option 9
ASSIGNABLE compiler suboption 24
ATTENTION ON-units 474
attention processing

attention interrupt,effect of 44
ATTENTION ON-units 474
debugging tool 474
main description 473

attribute table 105
ATTRIBUTES option 9
automatic

padding 169
prompting

overriding 168
using 167

restart
after system failure 477
checkpoint/restart facility 475
within a program 477

auxiliary storage for sort 348
avoiding calls to library routines 337

B
BACKREG compiler option 10
batch compile

OS/390 157, 159
BIFPREC compiler option 10
BIN1ARG compiler suboption 25
BKWD option 224, 295
BLANK compiler option 11
BLKOFF compiler option 12
BLKSIZE

ENVIRONMENT 224
comparison with DCB

subparameter 226
for record I/O 228

option of ENVIRONMENT
for stream I/O 242

subparameter 221
block

and record 217
size

maximum 228
object module 161
PRINT files 251
record length 229
regional data sets 284
specifying 217

BRACKETS 12
BRACKETS compiler option 12
BUFFERS option

for stream I/O 242
BUFND option 295
BUFNI option 295
BUFSIZE option under z/OS UNIX 211
BUFSP option 296
BYADDR

description 328

BYADDR (continued)
effect on performance 329
using with DEFAULT option 25

BYVALUE
description 328
effect on performance 329
using with DEFAULT option 25

C
C routines

FETCHing 181
capacity record

REGIONAL(1) 279
carriage control character 51, 250
carriage return-line feed (CR - LF) 215
CASERULES compiler option 13
cataloged procedure

compile and bind 149
compile only 148
compile, bind, and run 151
compile, input data for 151
description of 147
invoking 153
listing 153
modifying

DD statement 155
EXEC statement 154

multiple invocations 153
under OS/390

IBM-supplied 147
to invoke 153
to modify 154

CEESTART compiler option 13
character string attribute table 105
characters

carriage control 51, 250
print control 51, 250

CHECK compiler option 14
checkpoint data

for sort 352
checkpoint data, defining, PLICKPT

built-in suboption 476
checkpoint/restart

deferred restart 478
PLICANC statement 478

checkpoint/restart facility
CALL PLIREST statement 477
checkpoint data set 476
description of 475
modify activity 478
PLICKPT built-in subroutine 475
request checkpoint record 475
request restart 477
RESTART parameter 478
return codes 475

CHKPT sort option 346
CICS

preprocessor options 145
support 144

CKPT sort option 346

© Copyright IBM Corp. 1999, 2017 543

CMPAT compiler option 15
COBOL

map structure 106
CODE subparameter 221
CODEPAGE compiler option 16
coding

CICS statements 145
improving performance 332
SQL statements 129

comments
within options 99

communications area, SQL 129
compilation

user exit
activating 482
customizing 482
example 486
IBMUEXIT 481
procedures 479

compile and bind, input data for 149
COMPILE compiler option 17
compile-time options

under z/OS UNIX 158
compiler

% statements 101
DBCS identifier 38
descriptions of options 3
general description of 157
graphic string constant 38
invoking 157
JCL statements, using 159
listing

aggregate length table 106
attribute table 105
block level 105
cross-reference table 106
DO-level 105
file reference table 110
heading information 103
include source program 43
input to compiler 104
input to preprocessor 104
messages 111
printing options 162
return codes 112
SOURCE option program 104
source program 84
stack storage used 86
statement offset addresses 107
SYSPRINT 162
using 103

mixed string constant 38
PROCESS statement 100
reduce storage requirement 59
severity of error condition 17
temporary workfile (SYSUT1) 162
under OS/390 batch 159

compiler options
abbreviations 7
AGGREGATE 7
ARCH 8, 326
ASSERT 9
ATTRIBUTES 9
BACKREG 10
BIFPREC 10
BLANK 11
BLKOFF 12

compiler options (continued)
CASERULES 13
CEESTART 13
CHECK 14
CMPAT 15
CODEPAGE 16
COMPILE 17
COPYRIGHT 17
CSECT 18
CSECTCUT 18
CURRENCY 19
DBCS 19
DD 19
DDSQL 20
default 3
DEFAULT 22, 328
DEPRECATE 31
DEPRECATENEXT 32
description of 3
DISPLAY 33
DLLINIT 33
EXIT 33
EXTRN 34
FILEREF 34
FLAG 35
FLOAT 35
FLOATINMATH 36
GOFF 37
GONUMBER 38, 325
GRAPHIC 38
IGNORE 39
INCAFTER 40
INCDIR 40
INCLUDE 40
INSOURCE 43
INTERRUPT 44
LANGLVL 45
LIMITS 45
LINECOUNT 47
LINEDIR 47
LIST 47
LISTVIEW 47
MACRO 49
MAP 50
MARGINI 50
MARGINS 50
MAXBRANCH 51
MAXGEN 52
MAXMEM 52
MAXMSG 53
MAXNEST 53
MAXSTMT 54
MAXTEMP 54
MDECK 54
MSGSUMMARY 55
NAME 55
NAMES 56
NATLANG 56
NEST 56
NOMARGINS 50
NOT 57
NUMBER 57
OBJECT 58
OFFSET 58
OFFSETSIZE 58
ONSNAP 59
OPTIMIZE 59, 325

compiler options (continued)
OPTIONS 60
OR 61
PP 61
PPCICS 62
PPINCLUDE 63
PPLIST 63
PPMACRO 64
PPSQL 64
PPTRACE 65
PRECTYPE 65
PREFIX 65, 327
PROCEED 66
QUOTE 67
REDUCE 67, 326
RENT 68
RESEXP 69
RESPECT 70
RTCHECK 70
RULES 70, 326
SEMANTIC 84
SERVICE 84
SOURCE 84
SPILL 85
STATIC 85
STDSYS 85
STMT 86
STORAGE 86
STRINGOFGRAPHIC 86
SYNTAX 87
SYSPARM 87
SYSTEM 88
TERMINAL 89
TEST 89
UNROLL 92
USAGE 92
WIDECHAR 93
WINDOW 94
WRITABLE 94
XINFO 95
XML 45, 98
XREF 98

compiling
under z/OS UNIX 157

concatenating
data sets 206
external references 203

COND EXEC statement parameter 154
conditional compilation 17
conditional subparameter 221
CONNECTED compiler suboption

description 26
effect on performance 330

CONSECUTIVE
option of ENVIRONMENT 243, 265

consecutive data sets
controlling input from the terminal

capital and lowercase letters 258
condition format 255
COPY option of GET

statement 261
defining QSAM files 258
end-of-file 258
format of data 257
stream and record files 257

controlling output to the terminal
conditions 261

544 Enterprise PL/I for z/OS Programming Guide

consecutive data sets (continued)
controlling output to the terminal

(continued)
format of PRINT files 261
output from the PUT EDIT

command 263
stream and record files 261

defining and using 241
input from the terminal 255
output to the terminal 261
record-oriented data transmission

accessing and updating a data
set 269

creating a data set 268
defining files 264
specifying ENVIRONMENT

options 264
statements and options

allowed 263
record-oriented I/O 263
stream-oriented data

transmission 241
accessing a data set 249
creating a data set 245
defining files 241, 242
specifying ENVIRONMENT

options 242
using PRINT files 250
using SYSIN and SYSPRINT

files 255
control

area 288
CONTROL option

EXEC statement 163
interval 288

control blocks
function-specific 480
global control 483

control characters
carriage 51, 250
print 51, 250

COPY option 261
COPYRIGHT compiler option 17
COPYRIGHT option 471
counter records, SYSADATA 503
cross-reference table

compiler listing 106
using XREF option 105

CSECT compiler option 18
CSECTCUT compiler option 18
CTLASA and CTL360 options

ENVIRONMENT option
for consecutive data sets 266
SCALARVARYING 231

CURRENCY compiler option 19
customizing

user exit
modifying SYSUEXIT 482
structure of global control

blocks 480
writing your own compiler

exit 483
CYLOFL subparameter

DCB parameter 221

D
data

conversion under z/OS UNIX 207
files

creating under z/OS UNIX 210
sort program 352

PLISRT(x) command 357
sorting

description of 341
types

equivalent Java and PL/I 396
equivalent SQL and PL/I 135

data definition (DD) information under
z/OS UNIX 207

data set
associating PL/I files with

closing a file 223
opening a file 222
specifying characteristics in the

ENVIRONMENT attribute 224
associating several data sets with one

file 205
blocks and records 217
checkpoint 476
conditional subparameter

characteristics 221
consecutive stream-oriented data 241
data set control block (DSCB) 220
ddnames 160
defining for dump

DD statement 464
logical record length 464

defining relative-record 317
direct 219
dissociating from a file 223

system-determined block size 223
dissociating from PL/I file 205
establishing characteristics 216
indexed

sequential 219
information interchange codes 217
label modification 222
labels 220, 235
libraries

extracting information 240
SPACE parameter 236
types of 235
use 236

organization
conditional subparameters 221
data definition (DD)

statement 220
types of 219

partitioned 235
record format defaults 226
record formats

fixed-length 217
undefined-length 219
variable-length 218

records 217
regional 275
REGIONAL(1) 278

accessing and updating 281
creating 279

sequential 219
sort program

checkpoint data set 352

data set (continued)
sort program (continued)

input data set 352
output data set 352
sort work data set 351

sorting 351
SORTWK 348

source statement library 162
SPACE parameter 160
stream files 241
temporary 162
to establish characteristics 216
types of

comparison 232
used by PL/I record I/O 232

unlabeled 220
using 201
VSAM

blocking 288
data set type 291
defining 298
defining files 294
dummy data set 292
indexed data set 302
keys 290
mass sequential insert 308
organization 288
running a program 287
specifying ENVIRONMENT

options 294
VSAM option 297

VSAM.
performance options 297

data set under OS/390
associating one data set with several

files 205
concatenating 206
HFS 206

data set under z/OS UNIX
associating a PL/I file with a data set

how PL/I finds data sets 210
using environment variables

under 207
using the TITLE option of the

OPEN statement 208
using unassociated files 210

DD_DDNAME environment
variable 207

default identification 207
establishing a path 210
establishing characteristics

DD_DDNAME environment
variable 211

extending on output 211
maximum number of regions 213
number of regions 213
recreating output 211

data sets
allocating files 201
associating data sets with files 203
closing 223
defining data sets under OS/390 203

data-directed I/O 332
coding for performance 332

DBCS compiler option 19
DBCS identifier compilation 38
DCB subparameter 226

Index 545

DCB subparameter (continued)
equivalent ENVIRONMENT

options 226
main discussion of 221
overriding in cataloged

procedure 155
regional data set 284

DD (data definition) information under
z/OS UNIX 207

DD compiler option 19
DD information under z/OS UNIX

TITLE statement 208
DD statement 220

%INCLUDE 101
add to cataloged procedure 155
cataloged procedure, modifying 155
checkpoint/restart 475
create a library 236
modifying cataloged procedure 154
OS/390 batch compile 160
regional data set 284
standard data set 160

input (SYSIN) 161
output (SYSLIN,

SYSPUNCH) 161
DD Statement

modify cataloged procedure 155
DD_DDNAME environment variables

alternate ddname under z/OS
UNIX 209

APPEND 211
DELAY 212
DELIMIT 212
LRECL 213
LRMSKIP 213
PROMPT 213
PUTPAGE 213
RECCOUNT 213
RECSIZE 214
SAMELINE 214
SKIP0 215
specifying characteristics under z/OS

UNIX 210
TYPE 215

ddname
%INCLUDE 101
standard data sets 160

DDSQL compiler option 20
deblocking of records 217
declaration

of files under OS/390 201, 203
declaring

host variables, SQL preprocessor 132
DECOMP 22
DECOMP compiler option 22
DEFAULT compiler option

description and syntax 22
suboptions

ALIGNED 24
ASCII or EBCDIC 24
ASSIGNABLE or

NONASSIGNABLE 24
BIN1ARG or NOBIN1ARG 25
BYADDR or BYVALUE 25
CONNECTED or

NONCONNECTED 26
DESCLIST or DESCLOCATOR 26

DEFAULT compiler option (continued)
suboptions (continued)

DESCRIPTOR or
NODESCRIPTOR 26

DUMMY 26
E 27
EVENDEC or NOEVENDEC 27
HEXADEC 27
IBM or ANS 24
INITFILL or NOINITFILL 27
INLINE or NOINLINE 28
LINKAGE 28
LOWERINC | UPPERINC 28
NATIVE or NONNATIVE 28
NATIVEADDR or

NONNATIVEADDR 29
NULLSTRADDR or

NONULLSTRADDR 29
NULLSTRPTR 29
NULLSYS or NULL370 29
ORDER or REORDER 30
ORDINAL(MIN | MAX) 30
OVERLAP | NOOVERLAP 30
PSEUDODUMMY or

NOPSEUDODUMMY 30
RECURSIVE or

NONRECURSIVE 30
RETCODE 30
RETURNS 31
SHORT 31

deferred restart 478
define data set

associating several data sets with one
file 205

associating several files with one data
set 205

closing a file 223
concatenating several data sets 206
ENVIRONMENT attribute 224
ESDS 300
opening a file 222

system-determined block size 223
specifying characteristics 224

define file
associating several files with one data

set 205
closing a file 223
concatenating several data sets 206
ENVIRONMENT attribute 224
opening a file 222

system-determined block size 223
regional data set 277

ENV options 277
keys 278

specifying characteristics 224
VSAM data set 294

define file under OS/390
associating several data sets with one

file 205
DEFINED

versus UNION 335
DELAY option under z/OS UNIX

description 212
DELIMIT option under z/OS UNIX

description 212
DEPRECATE compiler option 31
DEPRECATENEXT compiler option 32

DESCLIST compiler suboption 26
DESCLOCATOR compiler suboption 26
descriptor 493
descriptor area, SQL 130
DESCRIPTOR compiler option

effect on performance 330
DESCRIPTOR compiler suboption

description 26
descriptor list, argument passing 493
descriptor-locator, argument passing 494
DFSORT 341
direct data sets 219
DIRECT file

indexed ESDS with VSAM
accessing data set 306
updating data set 308

RRDS
access data set 320

DISP parameter
consecutive data sets 270
to delete a data set 235

DISPLAY compiler option 33
DLL

DYNAM=DLL linker option 173
linking considerations and

side-decks 165, 185
RENT compiler option and

fetching 172
DLLINIT compiler option 33
DSA

saved in PLIDUMP built-in subroutine
for each block 465

DSCB (data set control block) 220, 237
DSNAME parameter

for consecutive data sets 270
DSORG subparameter 221
DUMMY compiler suboption 26
dummy records

REGIONAL(1) data set 279
VSAM 292

dump
calling PLIDUMP 463
defining data set for

DD statement 464
logical record length 464

identifying beginning of 464
PLIDUMP built-in subroutine 463
producing z/OS Language

Environment dump 463
SNAP 464

DYNALLOC sort option 346

E
E compiler message 111
E compiler suboption 27
E15 input handling routine 353
E35 output handling routine 356
EBCDIC

compiler suboption 24
EBCDIC (Extended Binary Coded

Decimal Interchange Code) 217
embedded

CICS statements 145
SQL statements 130

ENDFILE
under OS/390 169

546 Enterprise PL/I for z/OS Programming Guide

Enterprise PL/I for z/OS
accessibility xxxviii

Enterprise PL/I library
Enterprise PL/I for z/OS library xiii
Language Environment library xiv

entry-sequenced data set
defining 300
VSAM 289

loading an ESDS 299
SEQUENTIAL file 299
statements and options 298

ENVIRONMENT attribute
list 224
specifying characteristics under z/OS

UNIX
BUFSIZE 211

ENVIRONMENT options
BLKSIZE option

comparison with DCB
subparameter 226

CONSECUTIVE 243, 265
CTLASA and CTL360 266

comparison with DCB
subparameter 226

equivalent DCB subparameters 226
GRAPHIC option 244
KEYLENGTH option

comparison with DCB
subparameter 226

LEAVE and REREAD 267
organization options 226
record format options 243
RECSIZE option

comparison with DCB
subparameter 226

record format 244
usage 244

regional data set 277
VSAM

BKWD option 295
BUFND option 295
BUFNI option 295
BUFSP option 296
GENKEY option 296
PASSWORD option 296
REUSE option 296
SKIP option 297
VSAM option 297

environment variables
setting under z/OS UNIX 233

EQUALS sort option 346
error

severity of error compilation 17
error devices

redirecting 233
ESDS (entry-sequenced data set)

defining 300
nonunique key alternate index

path 310
unique key alternate index path 309
VSAM 289

loading 299
statements and options 298

EVENDEC compiler suboption 27
examples

calling PLIDUMP 463
EXEC SQL statements 122

EXEC statement
cataloged procedure, modifying 154
compiler 160
introduction 160
maximum length of option list 163
minimum region size 160
modify cataloged procedure 154
OS/390 batch compile 157, 160
PARM parameter 163
to specify options 163

Exit (E15) input handling routine 353
Exit (E35) output handling routine 356
EXIT compiler option 33
export command 210
EXPORTALL 34
EXPORTALL compiler option 34
extended binary coded decimal

interchange code (EBCDIC) 217
EXTERNAL attribute 105
external references

concatenating names 203
EXTRN compiler option 34

F
F option of ENVIRONMENT

for record I/O 226
for stream I/O 242, 243

F-format records 217
FB option of ENVIRONMENT

for record I/O 226
for stream I/O 242, 243

FB-format records 217
FBS option of ENVIRONMENT

for record I/O 226
for stream I/O 242

FETCH
assembler routines 181, 186
Enterprise PL/I routines 172, 186
OS/390 C routines 181
PL/I MAIN Routines 180, 186

field for sorting 345
file

allocating files 201
associating data sets with files 203
closing 223
defining data sets under OS/390 203
establishing characteristics 216

FILE attribute 105
file records, SYSADATA 504
FILEREF compiler option 34
filespec 211
FILLERS, for tab control table 253
FILSZ sort option 346
filtering messages 481
FIXED

TYPE option under z/OS UNIX 216
fixed-length records 217
FLAG compiler option 35
flags, specifying compile-time

options 159
FLOAT option 35
FLOATINMATH compiler option 36
flowchart for sort 353
format notation, rules for xv
forward slash (/) 209

FS option of ENVIRONMENT
for record I/O 226
for stream I/O 242

FUNC subparameter
usage 221

Functions
using C functions with ILC 365

G
GENKEY option

key classification 230
usage 224
VSAM 294

GET DATA statement 169
GET EDIT statement 169
GET LIST statement 169
global control blocks

writing the initialization
procedure 483

writing the message filtering
procedure 483

writing the termination
procedure 485

GOFF compiler option 37
GONUMBER compiler option 325

definition 38
GOTO statements 333
graphic data 241
GRAPHIC option

compiler 38
of ENVIRONMENT 224, 244
stream I/O 242

graphic string constant compilation 38

H
handling routines

data for sort
input (sort exit E15) 353
output (sort exit E35) 356
PLISRTB 358
PLISRTC 359
PLISRTD 360
to determine success 351
variable length records 361

HEADER 39
HEADER compiler option 39
header label 220
HEXADEC compiler suboption 27
hook

location suboptions 89
host

structures 138
variables, using in SQL

statements 132

I
I compiler message 111
IBM compiler suboption 24
IBMUEXIT compiler exit 481
IBMZC cataloged procedure 148
IBMZCB cataloged procedure 149
IBMZCBG cataloged procedure 151

Index 547

identifiers
not referenced 9
source program 9

IEC225I 221, 284
IGNORE option 39
ILC

linkage considerations 371
with C 363

data types 363
Enum data type 365
File type 365
Functions returning ENTRYs 370
parameter matching 366
Redirecting C standard

streams 374
sharing input 374
sharing output 373
string parameter type

matching 369
structure data type 364
Using the ATTACH statement 374

improving application performance 325
INCAFTER compiler option 40
INCDIR compiler option 40
INCLUDE compiler option 40
include preprocessor

syntax 117
INCLUDE statement

compiler 101
INDEXAREA option 224
indexed data sets

indexed sequential data set 219
indexed ESDS (entry-sequenced data set)

DIRECT file 306
loading 304
SEQUENTIAL file 306

indicator variables, SQL 139
information interchange codes 217
INITFILL compiler suboption 27
initial volume label 220
initialization procedure of compiler user

exit 483
INLINE compiler suboption 28
input

data for PLISRTA 357
data for sort 352
defining data sets for stream

files 241, 242
redirecting 233
routines for sort program 352
SEQUENTIAL 268
skeletal code for sort 356
sort data set 352

input/output
compiler

data sets 161
data for compile and bind 149
in cataloged procedures 148
OS/390, punctuating long lines 168
skeletal code for sort 354
sort data set 352

INSOURCE option 43
Inter Language Communication

linkage considerations 371
Redirecting C standard streams 374
Using the ATTACH statement 374
with C 363

Inter Language Communication
(continued)

data types 363
Enum data type 365
File type 365
Functions returning ENTRYs 370
parameter matching 366
sharing input 374
sharing output 373
string parameter type

matching 369
structure data type 364
using C functions 365

interactive program
attention interrupt 44

interblock gap (IBG) 217
interchange codes 217
INTERNAL attribute 105
INTERRUPT compiler option 44
interrupts

attention interrupts under interactive
system 44

ATTENTION ON-units 474
debugging tool 474
main description 473

invoking
cataloged procedure 153

link-editing multitasking
programs 154

multiple invocations 153

J
Java 378, 379, 381, 382, 383, 384, 386,

389, 390, 391, 392, 395
JAVA 377
Java code, compiling 379, 383, 389, 392
Java code, writing 378, 382, 386, 391
JCL (job control language)

improving efficiency 147
using during compilation 159

jni
JNI sample program 378, 382, 386,

391

K
key indexed VSAM data set 291
key-sequenced data sets

accessing with a DIRECT file 306
accessing with a SEQUENTIAL

file 306
loading 304
statements and options for 302

KEYLEN subparameter 221
KEYLENGTH option 224, 231
KEYLOC option

usage 224
keys

alternate index
nonunique 309
unique 309

REGIONAL(1) data set 278
dummy records 279

VSAM
indexed data set 291

keys (continued)
VSAM (continued)

relative byte address 291
relative record number 291

KEYTO option
under VSAM 299

KSDS (key-sequenced data set)
define and load 304
unique key alternate index path 311
updating 306
VSAM

DIRECT file 306
loading 304
SEQUENTIAL file 306

KSDS with VSAM
indexed ESDS with VSAM

access data set 306
accessing data set 306
updating data set 308

L
label

for data sets 220
LANGLVL compiler option 45
Language Environment library xiv
LEAVE and REREAD options

ENVIRONMENT option
for consecutive data sets 267

length of record
specifying under z/OS UNIX 214

library
compiled object modules 238
creating a data set library 236
creating and updating a library

member 237
directory 236
extracting information from a library

directory 240
general description of 219
how to use 236
information required to create 236
placing a load module 238
source statement 162
source statement library 157
SPACE parameter 236
structure 240
system procedure

(SYS1.PROCLIB) 235
types of 235
using 235

LIMCT subparameter 221, 284
LIMITS compiler option 45
line

length 251
numbers in messages 38

line feed (LF)
definition 216

LINE option 243, 251
LINECOUNT compiler option 47
LINEDIR compiler option 47
LINESIZE option

for tab control table 253
OPEN statement 244

link-editing
description of 165, 185

548 Enterprise PL/I for z/OS Programming Guide

LINKAGE compiler suboption
effect on performance 330
syntax 28

linkage considerations with ILC 371
LIST compiler option 47
listing

cataloged procedure 153
compiler

aggregate length table 106
ATTRIBUTE and cross-reference

table 105
ddname list 3
file reference table 110
heading information 103
messages 111
options 104
preprocessor input 104
return codes 112
SOURCE option program 104
statement nesting level 105
statement offset addresses 107
storage offset listing 109

OS/390 batch compile 157, 162
source program 84
statement offset address 107
storage offset listing 109
SYSPRINT 162

LISTVIEW compiler option 47
literal records, SYSADATA 504
logical not 57
logical or 61
loops

control variables 333
LOWERINC compiler suboption 28
LP 49
LP compiler option 49
LRECL option under z/OS UNIX 213
LRECL subparameter 217, 221
LRMSKIP option under z/OS UNIX 213

M
MACRO option 49
macro preprocessor

macro definition 118
main storage for sort 347
MAP compiler option 50
MARGINI compiler option 50
MARGINS compiler option 50
mass sequential insert 308
MAXBRANCH compiler option 51
MAXGEN compiler option 52
MAXMEM compiler option 52
MAXMSG compiler option 53
MAXSTMT compiler option 54
MAXTEMP compiler option 54
MDECK compiler option

description 54
message

compiler list 111
printed format 255
runtime message line numbers 38

message records, SYSADATA 504
messages

filter function 483
modifying in compiler user exit 482

mixed string constant compilation 38

MODE subparameter
usage 221

module
create and store object module 58

MSGSUMMARY compiler option 55
multiple

invocations
cataloged procedure 153

N
NAME compiler option 55
named constants

defining 336
versus static variables 336

NAMES compiler option 56
NATIVE compiler suboption

description 28
NATIVEADDR compiler suboption 29
NATLANG compiler option 56
negative value

block-size 228
record length 227

NEST option 56
NOBIN1ARG compiler suboption 25
NODESCRIPTOR compiler suboption 26
NOEQUALS sort option 346
NOEVENDEC compiler suboption 27
NOINITFILL compiler suboption 27
NOINLINE compiler suboption 28
NOINTERRUPT compiler option 44
NOMAP option 106
NOMARGINS compiler option 50
NONASSIGNABLE compiler

suboption 24
NONCONNECTED compiler

suboption 26
NONE, hooks location suboption 89
NONNATIVE compiler suboption 28
NONNATIVEADDR compiler

suboption 29
NONRECURSIVE compiler

suboption 30
NONULLSTRADDR compiler

suboption 29
NOOVERLAP compiler suboption 30

effect on performance 331
NOPSEUDODUMMY compiler

suboption 30
NOSYNTAX compiler option 87
NOT compiler option 57
note statement 111
NTM subparameter

usage 221
NULL370 compiler suboption 29
NULLDATE 57
NULLDATE compiler option 57
NULLSTRADDR compiler suboption 29
NULLSTRPTR compiler suboption 29
NULLSYS compiler suboption 29
NUMBER compiler option 57

O
object

module
create and store 58
record size 161

OBJECT compiler option
definition 58

offset
of tab count 253
table 107

OFFSET compiler option 58
OFFSETSIZE compiler option 58
ONSNAP compiler option 59
OPEN statement

subroutines of PL/I library 222
TITLE option 221

Operating system
data definition (DD) information

under z/OS UNIX 207
OPTCD subparameter 220, 221
optimal coding

coding style 332
compiler options 325

OPTIMIZE compiler option 325
OPTIMIZE option 59
options

for compiling 104
for creating regional data set 275
saved options string in

PLIDUMP 472
specifying comments within 99
specifying strings within 99
to specify for compilation 163

OPTIONS option 60
options record, SYSADATA 503
options under z/OS UNIX

DD_DDNAME environment variables
APPEND 211
DELAY 212
DELIMIT 212
LRECL 213
LRMSKIP 213
PROMPT 213
PUTPAGE 213
RECCOUNT 213
RECSIZE 214
SAMELINE 214
SKIP0 215
TYPE 215

PL/I ENVIRONMENT attribute
BUFSIZE 211

using
DD information 208
TITLE 208

OR compiler option 61
ORDER compiler suboption

description 30
effect on performance 331

ORDINAL compiler suboption 30
ordinal element records,

SYSADATA 506
ordinal type records, SYSADATA 505
ORGANIZATION option 232

usage 224
OS/390

batch compilation
DD statement 160

Index 549

OS/390 (continued)
batch compilation (continued)

EXEC statement 160, 163
listing (SYSPRINT) 162
source statement library

(SYSLIB) 162
specifying options 163
temporary workfile (SYSUT1) 162

general compilation 157
long input lines 168

output
data for PLISRTA 357
data for sort 352
defining data sets for stream

files 241, 242
limit preprocessor output 54
redirecting 233
routines for sort program 352
SEQUENTIAL 268
skeletal code for sort 356
sort data set 352
SYSLIN 161
SYSPUNCH 161

OVERLAP compiler suboption 30

P
PACKAGEs versus nested

PROCEDUREs 334
PAGE option 243
PAGELENGTH, for tab control table 253
PAGESIZE, for tab control table 253
parameter passing

argument passing 493
CMPAT(LE) descriptors 496
CMPAT(V*) descriptors 494

PARM parameter
for cataloged procedure 154
specify options 163

passing an argument 493
PASSWORD option 296
performance

VSAM options 297
performance improvement

coding for performance
avoiding calls to library

routines 337
DATA-directed input and

output 332
DEFINED versus UNION 335
GOTO statements 333
input-only parameters 332
loop control variables 333
named constants versus static

variables 336
PACKAGEs versus nested

PROCEDUREs 334
preloading calls to library

routines 339
REDUCIBLE functions 335
string assignments 333

selecting compiler options
ARCH 326
DEFAULT 328
GONUMBER 325
OPTIMIZE 325
PREFIX 327

performance improvement (continued)
selecting compiler options (continued)

REDUCE 326
RULES 326

PL/I
compiler

user exit procedures 480
files

associating with a data set under
z/OS UNIX 207

PL/I code, compiling 381, 386, 390, 395
PL/I code, linking 381, 386, 390, 395
PL/I code, writing 379, 384, 389, 392
PL/I dynamic allocation

access HFS files under z/OS 206
allocate data sets 201
associating data sets with files under

z/OS UNIX 207
define files

QSAM files 258
REGIONAL(1) data sets 277
stream files 242
VSAM file 287

PL/I MAIN Routines
FETCHing 180, 186

PLICANC statement, and
checkpoint/request 478

PLICKPT built-in subroutine 475
PLIDUMP built-in subroutine

calling to produce a z/OS Language
Environment dump 463

DSA saved for each block 465
H option 464
output

locating variables in 465
program unit name in dump

traceback table 465
saved load module timestamp 471
saved options string 472
syntax of 463
user-identifier 464
variables

locating AUTOMATIC variables
in 465

locating CONTROLLED variables
in 467

locating in PLIDUMP output 465
locating STATIC variables in 466

PLIREST statement 477
PLIRETC built-in subroutine

return codes for sort 351
PLISAXA 399, 400
PLISAXB 399, 400
PLISAXC 429, 430
PLISAXD 429, 430
PLISRTA interface 357
PLISRTB interface 358
PLISRTC interface 359
PLISRTD interface 360
PLITABS external structure

control section 254
declaration 166

PLIXOPT variable 165, 185
PP compiler option 61
PPCICS compiler option 62
PPINCLUDE compiler option 63
PPLIST compiler option 63

PPMACRO compiler option 64
PPSQL compiler option 64
PPTRACE compiler option 65
PRECTYPE compiler option 65
PREFIX compiler option 65, 327

using default suboptions 327
preloading library routines 339
preprocessing

%INCLUDE statement 101
input 104
limit output to 80 bytes 54
source program 49
with MACRO 49

preprocessor options
CCSID0 126
CODEPAGE 126
DEPRECATE 127
EMPTYDBRM 127
HOSTCOPY 127
INCONLY 128
WARNDECP 128

preprocessors
available with PL/I 117
CICS options 145
include 117
macro preprocessor 118
SQL options 125
SQL preprocessor 122

print
PRINT file

format 261
line length 251
stream I/O 250

print control character 51, 250
PRINT file

formatting conventions 166
punctuating output 166

record I/O 270
procedure

cataloged, using under OS/390 147
compile and bind (IBMZCB) 149
compile only (IBMZC) 148
compile, bind, and run

(IBMZCBG) 151
PROCEED compiler option 66
PROCESS statement

description 100
override option defaults 163

program unit name in dump traceback
table 465

PROMPT option under z/OS UNIX 213
prompting

automatic, overriding 168
automatic, using 167

PRTSP subparameter
usage 221

PSEUDODUMMY compiler
suboption 30

punctuation
automatic prompting

overriding 168
using 167

OS/390
automatic padding for GET

EDIT 169
continuation character 168

550 Enterprise PL/I for z/OS Programming Guide

punctuation (continued)
OS/390 (continued)

entering ENDFILE at
terminal 169

GET DATA statement 169
GET LIST statement 169
SKIP option 169

output from PRINT files 166
PUT EDIT command 263
PUTPAGE option under z/OS

UNIX 213

Q
QUOTE compiler option 67

R
REAL attribute 105
RECCOUNT option under z/OS

UNIX 213
RECFM subparameter 221

in organiza tion of data set 221
usage 221

record
checkpoint 475

data set 476
deblocking 217
maximum size for compiler

input 161
sort program 346

record format
fixed-length records 217
options 243
stream I/O 249
to specify 264
types 217
undefined-length records 219
variable-length records 218

record I/O
data set

access 269
consecutive data sets 270
create 268
types of 232

data transmission 263
ENVIRONMENT option 264
format 226
record format 264

record length
regional data sets 275
specify 217
value of 227

RECORD statement 346
recorded key

regional data set 278
records

length under z/OS UNIX 213
RECSIZE option

consecutive data set 244
defaults 244
definition 227
description under z/OS UNIX 214
for stream I/O 242, 244

RECURSIVE compiler suboption 30
REDUCE compiler option 67

REDUCE compiler option (continued)
effect on performance 326

reduce storage requirement 59
REDUCIBLE functions 335
region

REGION parameter 154
size, EXEC statement 160

regional data sets
DD statement

accessing 285
creating 284

defining files for
regional data set 277
specifying ENVIRONMENT

options 277
using keys 278

operating system requirement 283
REGIONAL(1) data set

accessing and updating 281
creating 279
using 278

REGIONAL option of
ENVIRONMENT 278

REGIONAL(1) data sets
defining files for

regional data set 277
regions under z/OS UNIX 213
relative byte address (RBA) 291
relative record number 291
relative-record data sets

accessing with a DIRECT file 320
accessing with a SEQUENTIAL

file 320
loading 317
statements and options for 316

RENT compiler option 68
REORDER compiler suboption

description 30
effect on performance 331

RESEXP compiler option 69
RESPECT compiler option 70
restarting

requesting 477
RESTART parameter 478
to request

automatic after system failure 477
automatic within a program 477
deferred restart 478
to cancel 477
to modify 478

RETCODE compiler suboption 30
return code

checkpoint/restart routine 475
PLIRETC 351

return codes
in compiler listing 112

RETURNS compiler suboption 31, 331
REUSE option 224, 296
RRDS (relative record data set)

define 318
load with VSAM 317
updating 320
VSAM

DIRECT file 320
loading 317
SEQUENTIAL file 320

RTCHECK compiler option 70

RULES compiler option 70
effect on performance 326

run time
message line numbers 38

run-time
OS/390 considerations

automatic prompting 167
formatting conventions 166
GET EDIT statement 169
GET LIST and GET DATA

statements 169
punctuating long lines 168
SKIP option 169

using PLIXOPT 165, 185

S
S compiler message 111
SAMELINE option under z/OS

UNIX 214
sample program, running 381, 386, 391,

395
saved options string in PLIDUMP 472
SAX parser 399, 429
SCALARVARYING option 231
SEMANTIC compiler option 84
sequential access

REGIONAL(1) data set 281
sequential data set 219
SEQUENTIAL file

ESDS with VSAM
defining and loading 300
updating 301

indexed ESDS with VSAM
access data set 306

RRDS, access data set 320
serial number volume label 220
SERVICE compiler option 84
shift code compilation 38
SHORT compiler suboption 31
SKIP option 297

in stream I/O 243
under OS/390 169

SKIP0 option under z/OS UNIX 215
SKIPREC sort option 346
sorting

assessing results 351
calling sort 348
CHKPT option 346
choosing type of sort 342
CKPT option 346
data 341
data input and output 352
description of 341
DYNALLOC option 346
E15 input handling routine 353
EQUALS option 346
FILSZ option 346
maximum record length 347
PLISRT 341
PLISRTA(x) command 357, 361
preparation 341
RECORD statement 353
RETURN statement 353
SKIPREC option 346
SORTCKPT 352
SORTCNTL 352

Index 551

sorting (continued)
SORTIN 352
sorting field 345
SORTLIB 351
SORTOUT 352
SORTWK 348, 351
storage

auxiliary 348
main 347

writing input/output routines 352
source

key
in REGIONAL(1) data sets 278

listing
location 50

program
compiler list 104
data set 161
identifiers 9
included in compiler list 43
list 84
preprocessor 49
shifting outside text 50

SOURCE compiler option 84
source records, SYSADATA 511
source statement library 162
SPACE parameter

library 236
standard data sets 160

specifying compile-time options
using flags under 159

SPILL compiler option 85
spill file 162
SQL preprocessor

communications area 129
descriptor area 130
EXEC SQL statements 122
options 125
using host structures 138
using host variables 132
using IBMUEXIT with 143
using indicator variables 139

SQL preprocessor options 126, 127, 128
SQLCA 129
SQLDA 130
STACK subparameter

usage 221
standard data set 160
standard files (SYSPRINT and

SYSIN) 233
statement

nesting level 105
offset addresses 107

statements 101
STATIC compiler option 85
STDSYS compiler option 85
step abend 221
STMT compiler option 86
STMT suboption of test 89
storage

blocking print files 251
library data sets 236
report in listing 86
sort program 347

auxiliary storage 348
main storage 347

standard data sets 160

storage (continued)
to reduce requirement 59

STORAGE compiler option 86
stream and record files 257, 261
STREAM attribute 241
stream I/O

consecutive data sets 241
data set

access 249
create 245
record format 249

DD statement 246, 250
ENVIRONMENT options 242
file

define 241
PRINT file 250
SYSIN and SYSPRINT files 255

record formats for data
transmission 227

string
graphic string constant

compilation 38
string assignments 333
string descriptors

string descriptors 494, 497
STRINGOFGRAPHIC compiler

option 86
structure of global control blocks

writing the initialization
procedure 483

writing the message filtering
procedure 483

writing the termination
procedure 485

SUB control character 217
summary record, SYSADATA 503
symbol records, SYSADATA 507
symbol table 89
SYNTAX option 87
syntax records, SYSADATA 512
syntax, diagrams, how to read xv
SYS1.PROCLIB (system procedure

library) 235
SYSADATA information, counter

records 503
SYSADATA information, file records 504
SYSADATA information,

introduction 501
SYSADATA information, literal

records 504
SYSADATA information, message

records 504
SYSADATA information, options

record 503
SYSADATA information, ordinal element

records 506
SYSADATA information, ordinal type

records 505
SYSADATA information, source

records 511
SYSADATA information, summary

record 503
SYSADATA information, symbol

information 505
SYSADATA information, symbol

records 507

SYSADATA information, syntax
information 510

SYSADATA information, syntax
records 512

SYSADATA information, token
records 511

SYSCHK default 475, 476
SYSIN 161, 233

sharing with C 374
SYSIN and SYSPRINT files 255
SYSLIB

%INCLUDE 101
preprocessing 162

SYSLIN 161
SYSOUT 351
SYSPARM compiler option 87
SYSPRINT 233

and z/OS UNIX 233
compiler listing written to 162
effect of STDSYS option on 85
required DD statement 160
shared with older PL/I 171
sharing between enclaves 170
sharing with C 373, 374
specifying on the DD option 19
using MSGFILE(SYSPRINT) 171
using with the PUT statement 255

SYSPUNCH 161
system

failure 477
restart after failure 477
SYSTEM compiler options

SYSTEM(CICS) 88
SYSTEM(IMS) 88
SYSTEM(MVS) 88
SYSTEM(OS) 88
SYSTEM(TSO) 88
type of parameter list 88

SYSUT1 compiler data set 162

T
tab control table 253
temporary workfile

SYSUT1 162
terminal

input 255
capital and lowercase letters 258
COPY option of GET

statement 261
defining QSAM files 258
end of file 258
format of data 257
stream and record files 257

output 261
format of PRINT file 261
output from PUT EDIT

command 263
stream and record files 261

TERMINAL compiler option 89
terminating

compilation 17
termination procedure

compiler user exit 485
example of procedure-specific control

block 485

552 Enterprise PL/I for z/OS Programming Guide

termination procedure (continued)
syntax

global 480
specific 485

TEST compiler option
definition 89

TIME parameter 154
TIMESTAMP

saved load module timestamp in
PLIDUMP 471

TITLE option
associating standard SYSPRINT

file 171
description under z/OS UNIX 208
using 221

TITLE option under OS/390
specifying character string value 203

TITLE option under z/OS UNIX
using files not associated with data

sets 210
token records, SYSADATA 511
traceback table

program unit name in 465
trailer label 220
TYPE option under z/OS UNIX 215

U
U compiler message 111
U option of ENVIRONMENT

for record I/O 226
for stream I/O 242, 243

U-format 219
undefined-length records 219
UNDEFINEDFILE condition

BLKSIZE error 228
line size conflict in OPEN 251
raising when opening a file under

z/OS UNIX 216
UNDEFINEDFILE condition under

OS/390
DD statement error 204

UNDEFINEDFILE condition under z/OS
UNIX

using files not associated with data
sets 216

UNIT parameter
consecutive data sets 270

unreferenced identifiers 9
UNROLL compiler option 92
updating

ESDS 301
REGIONAL(1) data set 282
relative-record data set 320

UPPERINC compiler suboption 28
USAGE compiler option 92
user exit

compiler 479
customizing

modifying SYSUEXIT 482
structure of global control

blocks 480
writing your own compiler

exit 483
functions 480
sort 344

using
arrays as host variable, SQL

preprocessor 132
using host variables, SQL

preprocessor 132

V
V option of ENVIRONMENT

for record I/O 226
for stream I/O 242, 243

variable-length records
format 218
sort program 361

VB option of ENVIRONMENT
for record I/O 226
for stream I/O 242, 243

VB-format records 218
VBS option of ENVIRONMENT

for stream I/O 242
VOLUME parameter

consecutive data sets 270
volume serial number

direct access volumes 220
regional data sets 283

VS option of ENVIRONMENT
for stream I/O 242

VSAM (virtual storage access method)
data sets

alternate index paths 297
alternate indexes 309
blocking 288
choosing a type 291
defining 287, 298
defining files for 294
dummy data set 292
entry-sequenced 298
key-sequenced and indexed

entry-sequenced 302
keys for 290
organization 288
performance options 297
relative record 316
running a program with 287
specifying ENVIRONMENT

options 294
using 287

defining files 294
ENV option 294
performance option 297

indexed data set
load statement and options 302

mass sequential insert 308
relative-record data set 317
VSAM option 297

VTOC 220

W
W compiler message 111
WIDECHAR compiler option 93
WINDOW compiler option 94
work data sets for sort 351
WRITABLE compiler option 94

X
XINFO compiler option 95
XML

support in the SAX parser 399, 429
XML compiler option 45, 98
XREF compiler option 98

Z
z/OS UNIX

compile-time options
specifying 158

compiling under 157
DD_DDNAME environment

variable 210
export command 210
setting environment variables 233
specifying compile-time options

command line 158
using flags 159

zero value 227

Index 553

554 Enterprise PL/I for z/OS Programming Guide

Readers’ Comments — We'd Like to Hear from You

Enterprise PL/I for z/OS
Programming Guide
Version 5 Release 1

Publication No. GI13-4536-00

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Send your comments to the address on the reverse side of this form.

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
GI13-4536-00

GI13-4536-00

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM
H150/090
555 Bailey Avenue
San Jose, CA
USA 95141-1099

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

Product Number: 5655-PL5

Printed in USA

GI13-4536-00

	Contents
	Tables
	Figures
	Introduction
	About this document
	Runtime environment for Enterprise PL/I for z/OS
	Using your documentation
	Notation conventions used in this document
	Conventions used
	How to read the syntax notation
	How to read the notational symbols

	Summary of changes
	Enhancements in this release
	Enhancements from V4R5
	Enhancements from V4R4
	Enhancements from V4R3
	Enhancements from V4R2
	Enhancements from V4R1
	Enhancements from V3R9
	Enhancements from V3R8
	Enhancements from V3R7
	Enhancements from V3R6
	Enhancements from V3R5
	Enhancements from V3R4
	Enhancements from V3R3
	Enhancements from V3R2
	Enhancements from V3R1
	Enhancements from VisualAge PL/I

	How to send your comments
	Accessibility

	Part 1. Compiling your program
	Chapter 1. Using compiler options and facilities
	Compile-time option descriptions
	AGGREGATE
	ARCH
	ASSERT
	ATTRIBUTES
	BACKREG
	BIFPREC
	BLANK
	BLKOFF
	BRACKETS
	CASE
	CASERULES
	CEESTART
	CHECK
	CMPAT
	CODEPAGE
	COMMON
	COMPILE
	COPYRIGHT
	CSECT
	CSECTCUT
	CURRENCY
	DBCS
	DD
	DDSQL
	DECIMAL
	DECOMP
	DEFAULT
	DEPRECATE
	DEPRECATENEXT
	DISPLAY
	DLLINIT
	EXIT
	EXPORTALL
	EXTRN
	FILEREF
	FLAG
	FLOAT
	FLOATINMATH
	GOFF
	GONUMBER
	GRAPHIC
	HEADER
	IGNORE
	INCAFTER
	INCDIR
	INCLUDE
	INCPDS
	INITAUTO
	INITBASED
	INITCTL
	INITSTATIC
	INSOURCE
	INTERRUPT
	JSON
	LANGLVL
	LIMITS
	LINECOUNT
	LINEDIR
	LIST
	LISTVIEW
	LP
	MACRO
	MAP
	MARGINI
	MARGINS
	MAXBRANCH
	MAXGEN
	MAXMEM
	MAXMSG
	MAXNEST
	MAXSTMT
	MAXTEMP
	MDECK
	MSGSUMMARY
	NAME
	NAMES
	NATLANG
	NEST
	NOT
	NULLDATE
	NUMBER
	OBJECT
	OFFSET
	OFFSETSIZE
	ONSNAP
	OPTIMIZE
	OPTIONS
	OR
	PP
	PPCICS
	PPINCLUDE
	PPLIST
	PPMACRO
	PPSQL
	PPTRACE
	PRECTYPE
	PREFIX
	PROCEED
	PROCESS
	QUOTE
	REDUCE
	RENT
	RESEXP
	RESPECT
	RTCHECK
	RULES
	SEMANTIC
	SERVICE
	SOURCE
	SPILL
	STATIC
	STDSYS
	STMT
	STORAGE
	STRINGOFGRAPHIC
	SYNTAX
	SYSPARM
	SYSTEM
	TERMINAL
	TEST
	UNROLL
	USAGE
	WIDECHAR
	WINDOW
	WRITABLE
	XINFO
	XML
	XREF

	Blanks, comments and strings in options
	Changing the default options
	Specifying options in the %PROCESS or *PROCESS statements
	Using % statements
	Using the %INCLUDE statement
	Using the compiler listing
	Heading information
	Options used for compilation
	Preprocessor input
	SOURCE program
	Statement nesting level
	ATTRIBUTE and cross-reference table
	Attribute table
	Cross-reference table

	Aggregate length table
	Statement offset addresses
	Storage offset listing
	Expressions and attributes listing
	File reference table
	Messages and return codes
	Example

	Chapter 2. PL/I preprocessors
	Include preprocessor
	Macro preprocessor
	Macro preprocessor options
	CASE
	DBCS
	DEPRECATE
	DEPRECATENEXT
	FIXED
	INCONLY
	NAMEPREFIX
	RESCAN

	Macro preprocessor example

	SQL preprocessor
	Programming and compilation considerations
	SQL preprocessor options
	CCSID0
	CODEPAGE
	DEPRECATE
	EMPTYDBRM
	HOSTCOPY
	INCONLY
	WARNDECP
	PL/I-specific notes for SQL processor options

	Coding SQL statements in PL/I applications
	Defining the SQL communications area
	Defining SQL descriptor areas
	Embedding SQL statements
	Using host variables
	Using host structures
	Using indicator variables
	Host structure example

	Manipulating LOB data
	LOB locators
	LOB file reference variables
	Example: pliclob sample program

	Suppressing SQL preprocessor messages

	CICS preprocessor
	Programming and compilation considerations
	CICS preprocessor options
	Coding CICS statements in PL/I applications
	Embedding CICS statements

	Writing CICS transactions in PL/I
	Error-handling

	Chapter 3. Using PL/I cataloged procedures
	IBM-supplied cataloged procedures
	Compile only (IBMZC)
	Compile and bind (IBMZCB)
	Compile, bind, and run (IBMZCBG)

	Invoking a cataloged procedure
	Specifying multiple cataloged procedure invocations
	Modifying the PL/I cataloged procedures
	EXEC statement
	DD statement

	Chapter 4. Compiling your program
	Invoking the compiler under z/OS UNIX
	Input files
	Specifying compile-time options under z/OS UNIX
	-qoption_keyword
	Single and multiletter flags

	Invoking the compiler under z/OS using JCL
	EXEC statement
	DD statements for the standard data sets
	Input (SYSIN)
	Output (SYSLIN, SYSPUNCH)
	Temporary workfile (SYSUT1)
	Temporary workfile (SYSUT2, SYSUT3)

	Listing (SYSPRINT)
	Source Statement Library (SYSLIB)
	Specifying options
	Specifying options in the EXEC statement
	Specifying options in the EXEC statement using an options file

	Chapter 5. Link-editing and running for 31-bit programs
	Link-edit considerations for 31-bit programs
	Using the binder in 31-bit programs
	Using the ENTRY card

	Runtime considerations for 31-bit programs
	Formatting conventions for PRINT files
	Changing the format on PRINT files for 31-bit programs
	Automatic prompting
	Overriding automatic prompting
	Punctuating long input lines
	Punctuating GET LIST and GET DATA statements
	Automatic padding for GET EDIT
	Use of SKIP for terminal input
	ENDFILE

	SYSPRINT considerations for 31-bit programs
	Using MSGFILE(SYSPRINT)

	Using FETCH in your routines in 31-bit applications
	Fetching Enterprise PL/I routines in 31-bit applications
	Fetching PL/I MAIN routines in 31-bit applications
	Fetching z/OS C routines in 31-bit applications
	Fetching assembler routines in 31-bit applications

	Invoking MAIN under TSO/E
	Invoking MAIN under z/OS UNIX

	Chapter 6. Link-editing and running for 64-bit programs
	Link-edit considerations for 64-bit programs
	Using the binder in 64-bit programs
	Using the ENTRY card in 64-bit programs

	Runtime considerations for 64-bit programs
	SYSPRINT considerations for 64-bit programs
	Using FETCH in your routines in 64-bit applications
	Fetching Enterprise PL/I routines in 64-bit applications
	Fetching PL/I MAIN routines in 64-bit applications
	Fetching assembler routines in 64-bit applications

	Invoking MAIN under TSO/E
	Invoking MAIN under z/OS UNIX

	Chapter 7. Considerations for developing 64-bit applications
	Using compiler options to build 64-bit applications
	Using attributes HANDLE and POINTER under LP(64)
	HANDLE attribute
	POINTER attribute

	Using ENTRY variables under LP(64)
	Using built-in functions under LP(64)
	Considerations for SQL programs
	Communicating with 31-bit routines

	Part 2. Using I/O facilities
	Chapter 8. Using data sets and files
	Allocating files
	Associating data sets with files under z/OS
	Associating several files with one data set
	Associating several data sets with one file
	Concatenating several data sets
	Accessing HFS files under z/OS

	Associating data sets with files under z/OS UNIX
	Using environment variables
	Using the TITLE option of the OPEN statement
	Attempting to use files not associated with data sets
	How PL/I finds data sets
	Specifying characteristics using DD_DDNAME environment variables
	APPEND
	BUFSIZE
	CHARSET for record I/O
	CHARSET for stream I/O
	DELAY
	DELIMIT
	LRECL
	LRMSKIP
	PROMPT
	PUTPAGE
	RECCOUNT
	RECSIZE
	SAMELINE
	SKIP0
	TYPE

	Establishing data set characteristics
	Blocks and records
	Information interchange codes
	Record formats
	Fixed-length records
	Variable-length records
	Undefined-length records

	Data set organization
	Labels
	Data Definition (DD) statement
	Use of the conditional subparameters
	Data set characteristics

	Using the TITLE option of the OPEN statement
	Associating PL/I files with data sets
	Opening a file
	Closing a file

	Specifying characteristics in the ENVIRONMENT attribute
	The ENVIRONMENT attribute
	Record formats for record-oriented data transmission
	Record formats for stream-oriented data transmission
	RECSIZE option
	BLKSIZE option
	Record format, BLKSIZE, and RECSIZE defaults
	GENKEY option — key classification
	SCALARVARYING option — varying-length strings
	KEYLENGTH option
	ORGANIZATION option
	Data set types used by PL/I record I/O
	Setting environment variables under z/OS UNIX
	PL/I standard files (SYSPRINT and SYSIN) under z/OS UNIX
	Redirecting standard input, output, and error devices under z/OS UNIX

	Chapter 9. Using libraries
	Types of libraries
	Using a library
	Creating a library
	SPACE parameter

	Creating and updating a library member
	Example: Creating new libraries for compiled object modules
	Example: Placing a load module in an existing library
	Example: Updating a library member

	Extracting information from a library directory

	Chapter 10. Defining and using consecutive data sets
	Using stream-oriented data transmission
	Defining files using stream I/O
	Defining stream files using PL/I dynamic allocation
	Specifying ENVIRONMENT options
	CONSECUTIVE
	Record format options
	RECSIZE
	Defaults for record format, BLKSIZE, and RECSIZE
	GRAPHIC

	Creating a data set with stream I/O
	Essential information
	Example: Creating a data set with stream-oriented data transmission
	Example: Writing graphic data to a stream file

	Accessing a data set with stream I/O
	Essential information
	Record format
	Example: Accessing a data set with stream-oriented data transmission

	Using PRINT files with stream I/O
	Controlling printed line length
	Overriding the tab control table

	Using SYSIN and SYSPRINT files for 31-bit programs
	Using SYSIN and SYSPRINT files for 64-bit programs

	Controlling input from the terminal
	Format of data
	Stream and record files
	Defining QSAM files using PL/I dynamic allocation
	Capital and lowercase letters
	End-of-file
	COPY option of GET statement

	Chapter 11. Controlling output to the terminal
	Format of PRINT files
	Stream and record files
	Output from the PUT EDIT command

	Chapter 12. Using record-oriented data transmission
	Specifying record format
	Defining files using record I/O
	Specifying ENVIRONMENT options
	CONSECUTIVE
	ORGANIZATION(CONSECUTIVE)
	CTLASA|CTL360
	LEAVE|REREAD

	Creating a data set with record I/O
	Essential information

	Accessing and updating a data set with record I/O
	Essential information
	Example of consecutive data sets

	Chapter 13. Defining and using regional data sets
	Defining REGIONAL(1) data sets using PL/I dynamic allocation
	Defining files for a regional data set
	Specifying ENVIRONMENT options
	REGIONAL

	Using keys with REGIONAL data sets

	Using REGIONAL(1) data sets
	Dummy Records
	Creating a REGIONAL(1) data set
	Accessing and updating a REGIONAL(1) data set
	Sequential access
	Direct access
	Example

	Essential information for creating and accessing regional data sets

	Chapter 14. Defining and using VSAM data sets
	Defining VSAM file using PL/I dynamic allocation
	Using VSAM data sets
	Running a program with VSAM data sets
	Pairing an alternate index path with a file

	VSAM organization
	Keys for VSAM data sets
	Keys for indexed VSAM data sets
	Relative byte addresses (RBA)
	Relative record numbers

	Choosing a data set type

	Defining files for VSAM data sets
	Specifying ENVIRONMENT options
	BKWD
	BUFND
	BUFNI
	BUFSP
	GENKEY
	PASSWORD
	REUSE
	SKIP
	VSAM

	Performance options

	Defining files for alternate index paths
	Defining VSAM data sets
	Entry-sequenced data sets
	Loading an ESDS
	Using a SEQUENTIAL file to access an ESDS
	Defining and loading an ESDS
	Updating an ESDS

	Key-sequenced and indexed entry-sequenced data sets
	Loading a KSDS or indexed ESDS
	Using a SEQUENTIAL file to access a KSDS or indexed ESDS
	Using a DIRECT file to access a KSDS or indexed ESDS
	Updating a KSDS
	Alternate indexes for KSDSs or indexed ESDSs
	Creating unique key alternate index path for ESDS
	Creating nonunique key alternate index path for ESDS
	Creating unique key alternate index path for KSDS
	Detecting nonunique alternate index keys
	Using alternate indexes with ESDSs
	Using alternate indexes with KSDSs

	Relative-record data sets
	Loading an RRDS
	Using a SEQUENTIAL file to access an RRDS
	Using a DIRECT file to access an RRDS

	Using files defined for non-VSAM data sets
	Using shared data sets

	Part 3. Improving your program
	Chapter 15. Improving performance
	Selecting compiler options for optimal performance
	OPTIMIZE
	GONUMBER
	ARCH
	REDUCE
	RULES
	IBM/ANS
	(NO)LAXCTL

	PREFIX
	CONVERSION
	FIXEDOVERFLOW
	DEFAULT
	BYADDR or BYVALUE
	(NON)CONNECTED
	(NO)DESCRIPTOR
	(NO)INLINE
	LINKAGE
	(RE)ORDER
	NOOVERLAP
	RETURNS(BYVALUE) or RETURNS(BYADDR)

	Summary of compiler options that improve performance

	Coding for better performance
	DATA-directed input and output
	Input-only parameters
	GOTO statements
	String assignments
	Loop control variables
	PACKAGEs versus nested PROCEDUREs
	REDUCIBLE functions
	DESCLOCATOR or DESCLIST
	DEFINED versus UNION
	Named constants versus static variables
	Avoiding calls to library routines
	Preloading library routines

	Part 4. Using interfaces to other products
	Chapter 16. Using the Sort program
	Preparing to use Sort
	Choosing the type of Sort
	Specifying the sorting field
	Specifying the records to be sorted
	Determining storage needed for Sort

	Calling the Sort program
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Determining whether the Sort was successful
	Establishing data sets for Sort

	Sort data input and output
	Data input and output handling routines
	E15—Input handling routine (Sort Exit E15)
	E35—Output handling routine (Sort Exit E35)
	Calling PLISRTA example
	Calling PLISRTB example
	Calling PLISRTC example
	Calling PLISRTD example
	Sorting variable-length records example

	Chapter 17. ILC with C
	Equivalent data types
	Simple type equivalence
	Struct type equivalence
	Enum type equivalence
	File type equivalence

	Using C functions
	Matching simple parameter types
	Matching string parameter types
	Functions returning ENTRYs

	Linkages
	Sharing output and input
	Sharing output
	Sharing input
	Using the ATTACH statement
	Redirecting C standard streams

	Summary

	Chapter 18. Interfacing with Java
	Java Native Interface (JNI)
	Calling PL/I program from Java
	JNI sample program #1 - 'Hello World'
	Step 1: Writing the Java program
	Step 2: Compiling the Java program
	Step 3: Writing the PL/I Program
	Step 4: Compiling and linking the PL/I program
	Step 5: Running the sample program

	JNI sample program #2 - Passing a string
	Step 1: Writing the Java program
	Step 2: Compiling the Java program
	Step 3: Writing the PL/I program
	Step 4: Compiling and linking the PL/I program
	Step 5: Running the sample program

	JNI sample program #3 - Passing an integer
	Step 1: Writing the Java program
	Step 2: Compiling the Java program
	Step 3: Writing the PL/I program
	Step 4: Compiling and linking the PL/I program
	Step 5: Running the sample program

	JNI sample program #4 - Java invocation API
	Step 1: Writing the Java program
	Step 2: Compiling the Java program
	Step 3: Writing the PL/I program
	Step 4: Compiling and linking the PL/I program
	Step 5: Running the sample program

	Attaching programs to an existing Java VM
	Determining equivalent Java and PL/I data types

	Part 5. Specialized programming tasks
	Chapter 19. Using the PLISAXA and PLISAXB XML parsers
	Overview
	The PLISAXA built-in subroutine
	The PLISAXB built-in subroutine
	The SAX event structure
	start_of_document
	version_information
	encoding_declaration
	standalone_declaration
	document_type_declaration
	end_of_document
	start_of_element
	attribute_name
	attribute_characters
	attribute_predefined_reference
	attribute_character_reference
	end_of_element
	start_of_CDATA_section
	end_of_CDATA_section
	content_characters
	content_predefined_reference
	content_character_reference
	processing_instruction
	comment
	unknown_attribute_reference
	unknown_content_reference
	start_of_prefix_mapping
	end_of_prefix_mapping
	exception
	Parameters to the event functions

	Coded character sets for XML documents
	Supported EBCDIC code pages
	Supported ASCII code pages
	Specifying the code page
	Specifying the encoding declaration using a number
	Specifying the encoding declaration using an alias

	Exceptions
	Example
	Continuable exception codes
	Terminating exception codes

	Chapter 20. Using the PLISAXC and PLISAXD XML parsers
	Overview
	The PLISAXC built-in subroutine
	The PLISAXD built-in subroutine
	The SAX event structure
	start_of_document
	version_information
	encoding_declaration
	standalone_declaration
	document_type_declaration
	end_of_document
	start_of_element
	attribute_name
	attribute_characters
	end_of_element
	start_of_CDATA_section
	end_of_CDATA_section
	content_characters
	processing_instruction
	comment
	namespace_declare
	end_of_input
	unresolved_reference
	exception
	Parameters to the event functions
	Differences in the events

	Coded character sets for XML documents
	Supported code pages
	Specifying the code page
	Specifying the encoding declaration using a number
	Specifying the encoding declaration using an alias

	Exceptions
	Parsing XML documents with validation
	XML schema
	Creating an OSR

	Example with a simple document
	Example of using the PLISAXC built-in subroutine
	Example of using the PLISAXD built-in subroutine

	Chapter 21. Using PLIDUMP
	PLIDUMP usage notes
	Locating variables in the PLIDUMP output
	Locating AUTOMATIC variables
	Locating STATIC variables
	Locating CONTROLLED variables
	Under NORENT WRITABLE
	Under NORENT NOWRITABLE(FWS)
	Under NORENT NOWRITABLE(PRV)

	Saved compilation data
	Copyright
	Timestamp
	Saved options string

	Chapter 22. Interrupts and attention processing
	Using ATTENTION ON-units
	Interaction with a debugging tool

	Chapter 23. Using the Checkpoint/Restart facility
	Requesting a checkpoint record
	Defining the checkpoint data set
	Requesting a restart
	Automatic restart after a system failure
	Automatic restart within a program
	Getting a deferred restart
	Modifying checkpoint/restart activity

	Chapter 24. Using user exits
	Procedures performed by the compiler user exit
	Structure of global control blocks
	The IBM-supplied compiler exit, IBMUEXIT
	Activating the compiler user exit
	Customizing the compiler user exit
	Modifying SYSUEXIT
	Writing your own compiler exit
	Writing the initialization procedure
	Writing the message filtering procedure
	Writing the termination procedure

	Example of suppressing SQL messages

	Chapter 25. PL/I descriptors
	Passing an argument
	Argument passing by descriptor list
	Argument passing by locator/descriptor

	CMPAT(V*) descriptors
	String descriptors
	Array descriptors

	CMPAT(LE) descriptors
	String descriptors
	Array descriptors

	Part 6. Appendixes
	Appendix. SYSADATA message information
	Understanding the SYSADATA file
	Summary record
	Options record
	Counter records
	Literal records
	File records
	Message records

	Understanding SYSADATA symbol information
	Ordinal type records
	Ordinal element records
	Symbol records

	Understanding SYSADATA syntax information
	Source records
	Token records
	Syntax records

	Notices
	Trademarks

	Bibliography
	PL/I publications
	Related publications

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Readers’ Comments — We'd Like to Hear from You

