IBM z/0S Debugger
14.2.6

Reference and Messages

.||I

Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 529.

Seventh Edition (December 2021)

This edition applies to IBM® z/0S® Debugger, Version 14.2.6 (Program Number 5724-T07 with the PTF for PH35865),
which supports the following compilers:

« AD/Cycle C/370 Version 1 Release 2 (Program Number 5688-216)

« C/C++ for MVS/ESA Version 3 (Program Number 5655-121)

« C/C++ feature of 0S5/390° (Program Number 5647-A01)

« C/C++ feature of z/OS Version 1 (Program Number 5694-A01)

« C/C++ feature of z/OS Version 2 (Program Number 5650-Z0S)

« OS/VS COBOL, Version 1 Release 2.4 (5740-CB1) - with limitations

« VS COBOLII Version 1 Release 3 and Version 1 Release 4 (Program Numbers 5668-958, 5688-023) - with limitations
« COBOL/370 Version 1 Release 1 (Program Number 5688-197)

« COBOL for MVS™ & VM Version 1 Release 2 (Program Number 5688-197)

« COBOL for 0S/390 & VM Version 2 (Program Number 5648-A25)

» Enterprise COBOL for z/OS and 0S/390 Version 3 (Program Number 5655-G53)

= Enterprise COBOL for z/OS Version 4 (Program Number 5655-571)

« Enterprise COBOL for z/OS Version 5 (Program Number 5655-W32)

» Enterprise COBOL for z/OS Version 6 Release 1, Release 2, and Release 3 (Program Number 5655-EC6)

= High Level Assembler for MVS & VM & VSE Version 1 Release 4, Version 1 Release 5, Version 1 Release 6 (Program
Number 5696-234)

« OS PL/I Version 2 Release 1, Version 2 Release 2, Version 2 Release 3 (Program Numbers 5668-909, 5668-910) - with
limitations

« PL/Ifor MVS & VM Version 1 Release 1 (Program Number 5688-235)

« VisualAge® PL/I for 0S/390 Version 2 Release 2 (Program Number 5655-B22)

« Enterprise PL/I for z/OS and 0S/390 Version 3 (Program Number 5655-H31)

« Enterprise PL/I for z/OS Version 4 (Program Number 5655-W67)

» Enterprise PL/I for z/OS Version 5 Release 1, Release 2, and Release 3 (Program Number 5655-PL5)

This edition also applies to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters.

You can access publications online at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
You can find out more about IBM z/OS Debugger by visiting the following IBM Web sites:
» IBM Debug for z/0S: https://www.ibm.com/us-en/marketplace/debug-for-z-systems

» IBM Developer for z/OS: https://www.ibm.com/us-en/marketplace/developer-for-z-systems

» IBM Wazi Developer for Red Hat CodeReady Workspaces: https://www.ibm.com/products/wazi-for-red-hat-codeready-
workspaces

© Copyright International Business Machines Corporation 1992, 2021.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/us-en/marketplace/debug-for-z-systems
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/products/wazi-for-red-hat-codeready-workspaces
https://www.ibm.com/products/wazi-for-red-hat-codeready-workspaces

Contents

ADOUL this dOCUMENT......c.ueeiieiiieiiiiititerietereseeseseseacesessesessssesessssesessnsessssnsessssasessnseX]

Who might Use this dOCUMENT......cceeieeeeeeee e e re e e ae e e ra e e e rae e e rae e enee e e naeesnees Xi
Accessing z/0OS licensed documents on the INTEIrNEt......cccuviiciieecciieceee e Xi
How this dOCUMENT IS OFGANIZEM.uiieciieecieeecee ettt e e e e s e e e e bee e e be e e e beeessbaeesnbeeesnseeeenseeesnses xii
Terms used iN thiS OCUMENT.....ccciiiieiieete ettt sttt e e sbe e st e be e saaeesbeesatessbaessaesasesnsaesnns xii
HOW 10 read SYNtaX dia@ramS. ...ccccuieieiieeeiiieeeieeeecite e et e e cteeetteeestaeeeteeessaeessaeeesseesnsseessseesnsseessseeensseenn Xiv
1YY 2] 0o =TSP Xiv
)Y 2 D =T 1 0 1= RSO Xiv
SYNEAX EXAMIPLES. .. utiieeiieectie ettt e e e et e e e e e e bt e e e aae e e bbe e e saeeesseeesaee e saee e steeestaeeantaeennsaeennenas Xiv
HOW 10 Provide YOUr COMMENTS......uiiiiiieciieeeiieeecteeectee et eesre e e teeestaeeebae e abaeessaeesssaeesnseesanseessnseessnsees XVi

SumMmMary of Changes......ccciuiiiiiiiiiiiiiiiieiieiieiieticiectesiestestsssasssssssssscsssssssasses XVil
Overview of IBM z/0S DebUBEer.......ccccciieiiuiieieieiecnncienienienianiesiessesessascssssnnsess XXIiil

Chapter 1. z/0S Debugger runtime options.......c.ccceieiieiieiieiiiiiiiiniiienieniencescenennen 1

Non-Language Environment positional Parameter........ccceeccieeiciee ettt eete e et e s reeeeans 1
COUNTRY FUNTIME OPLION...tiiiitiieiciieeccite e ettt erte e ectte e ecte e etee e sbee e e bae e s baeesbaeesasaeessaeesnsseessasessessssaessnsenesnes 2
NATLANG FUNTIME OPLION. c.utiiiitiieecieecciee ettt eete e eetteesette e e tte e s bteesebteesesteesseeesaseeesaseaesasseesasseesassassnsseesnns 2
NONLESP rUNTIME OPLiON...eiiiiiiieiieicieeceieeceieeeeteeeeteeeetee e ete e eetteeeeatee s steesesteessteessaeesseeessseessseaesnseesensens 2
RIS IO a4 L T= Yo} o314 o] 2 VU S 2

Syntax of the TEST ruNtime OPtiON.....cccuiiieieecceeeceeee ettt e e e e aa e e e saa e e e baeeesaeeeanaeean 3
LAY AN T 4T g TN o] o) L] o TR 9

Chapter 2. Common syntax elements in z/0S Debugger commands..........ccccceeeeee.. 11

AAANESS ettt ettt ettt eeet e e ee et e e e e et e e e bb et e e ea b b aaeeeeaabaaaeesabtareeeaaabbaeeeeebbreeeeearbaeeesenrraeeeeartes 11
o] FoTo Gl a T= L 1= 11
o] 1o o 1= o OO 12
(o7o] 2o [1 1 1e] o FORS U TR U TSRS 12
(oto] 0] o1 LTV 11 S g =11 0 L= TSRS 13
CU_SPIECuuurttteeeeeeeeeeresiuuertrteteeeessessssassssssasaeeeesessssssssssssssseseseeesssssssssssssseeseeesesssssssssssssssseeseeesessssssssssnsseseseees 13
Ly ST LTS o] 3 VO 14
oY= Ve I 10 e Yo LU 1 (=T g = U L= TR 14
T =T =Y o 1T o3RS 15
oL =T Y o L= o PR 15
O B EINICES . ceeii ittt ettt eee et e e ee e e e e esbae e e e ee bt e e e e e et aaaeese bt areeeeaabaaeeeeetbaaeeseanbareeeearrareeeennnes 15
[=X =] 1= 0 AT TR 16
statement_id_range and STMt_id_SPEC.....iiiiiiiiiiiciiieccie ettt e et e e ae e e e e et e e e nareaeas 16

Specifying a range of STAtEMENTS.......cic i e e rabe e e re e e aae e e aes 17
[=X =T 1= AL A E= o 1] PO 17
VLY o1 (=T =10 11T 18

Chapter 3. Syntax for assembler and disassembly expressions.........c.ccccecvencencnee. 19

COMMON SYNTAX BLEMENTS.....iiiiiiee ettt e e e ree e e tee e e tee e e tee e s beeesabeeesnbaeesaseeesnsaeesnsaeesnsesennses 19
(0] 1= 7= 1 (o] £ TP OUPPPPPPPRN 20
Operators that can be used in any EXPreSSION......cccviicieeecciee et eeee e eerre e e eree e e erae e ereeeenes 20
Operators that can be used only in conditional EXPreSSioNS.........cccveeecieeeciee e e 22
Arithmetic eXpression BVALUATION........cccii ittt e e e e s bee e e be e e e aree e sbeeeeabaeenanes 22

Chapter 4. Syntax for LangX COBOL eXPressSionS....cccccteeteireinecaecaecressessessessessascass 23

Restrictions on LangX COBOL EXPreSSIONS....ccuuiiecuteirirreeriireeeireesseeessreesssseesssesssssessssesessssesssssssssesessens 23
(0% paTaa o A Aa) €= D=1 =Y 0 a =T o £ 24
(0] 01T -1 (o] =7 SRR 24
Operators that can be USed iN ANy EXPrESSION...ii e eeceee e cectre e eecree e e e ecree e e e eerte e e e eeseeeeesesnsaneeeeas 24
Operators that can be used only in conditional EXPreSSiONS......ccuuiiieecciieeecccree e 25

Chapter 5. z/0S Debugger commands........ccccecieiincrennecreniecrenieiiacisccscsecsecsessecsesee 27

2 COMIMANT.ceiiiiiiiiiiii e ee et ettt e eeeeabbteeereeeeeseeeesassssbassassaeeeeesesasassssssassaasseseessessassssssssensesesseeeennnnsssres 31
ALLOCATE COMMANG...iiiiiiiiiitiiiiiiieee ettt e e e e et e eeeeeebbaaaeeeeeeeeeeesessssssssssresseseeesesesasssssraesseeeeesessesnnns 31
ANALYZE COMMANT (PL/I)uutttttiiiiitieeeeeeiietieiee ettt e e eeseeessserteeteeeessessssssssssssetesessessssssssssssssssesesessssssssnssnssssnses 32
Assignment command (assembler and diSasSSEMDBLY)......ccvuiiceerieeieerie e e 33
ASSIGNIMENT FULES.c.eteiiiieeecieeeie ettt ettt ettt e st e e st e e s tbeesateeesseeessteesasseessseessseessseessseesnnseenn 34
Assignment command (LaNGX COBOL).....uiiuiiceiiiieceeeieesieesteesteesteesteessaesseessaessseesseesnseessessnsesssessssesnses 35
PNy = {a a a T=Y g YAt e ' = UaTa I o SRS 36
AT COMIMANTG. ..ttt e eeeeeerrree e e et e e et eeesessbatarereeeeeeeeseaasssssassaesseeeessesaasssssasasseseessesesasssssrsssneseeeeessenns 37
EVETY_CLAUSE SYNTAX.ccuutiiiitiieeiiieectee et e ettt e eeiteeeetteeeeteeeeesseeeastea e sseeeassaeeasseeassesaasseseassesaassesaasseesanseanns 40
AT ALLOCATE (PL/I) COMMEANG..ciiiiiiiiititieieieeeeeeieeeeeeeeaeeeteeeeeessessessssssssseeeeesssssssssssssssssssesesssesssssssnsnns 40
AT APPEARANCE COMMANG....uutitiiiiiiieieieiiieiiiiiiieeereeeeeeeeseeessssssseeeeeeseesessessssssssssesseseesssesssssssssssssssees 41
AT CALL COMMANG. ittt e e et e e e ee e sbbrae e e e e e eeeeeeeeesasssssesaaereseeesesessnnsssrsereeeaeeesesannn 43
AT CHANGE command (full screen mode, line mode, batch Mode).......coccveeviieieeeiiecieeeceeeeee e 45
AT CHANGE command (remote debug MOdE).......cccvereiiiiiiieiiiesee e s eees 50
AT CURSOR command (fUll-SCre@n MOE)........ueeiiieueeiiiiiieee et ceetre e et ecesvee e e e e eaaee e e s esnaeee s 52
P DAY = elo] nalaat= UaTe I ({0] =10) Fu R 53
AT DELETE COMMANG..uittiiiiiiiiiiiiiiiiiiiireeiee e e e eeeeeiiraeeeeeeeeeeeseesssssssssesseeeesseesessssssssessesseseeeseesnsssssssnnns 53
AT ENTRY COMMANT....iiitiiiiiiiiiieieieeeceiirtteeeeee e e eeeeeeeabarreeeeeeeeeeeseesssssssaseeseesesssessssssssssssesseeeeesenssssnsne 54
AT EXIT COMMEANG....ciiiiiiiiiiiiieiiieeeeeeeeeeeiiirreeeeeee et eeseeessssasseeeeeseeseeseesssssssssesssesesssesesasssssssssnsseeeeessennes 56
AT GLOBAL COMMANG..iiiiiiiiiiiiiiiiiiiiitiieieee e e e eeeeeeeitrrreeeeeeeeeeeeseessssssssaesseeeesseesesssssssseseseseseessensasssssssnnns 58
AT GLOBAL LABEL command (remote debug MOde).......cecueeceirieeiienieeceesee e et ete e ee e eeeens 59
AT LABEL COMMANG. ..ottt e ee e e eeseebbabeaeeeeeeeeeesesessssssasaeeeseeeesssessssnsssrsrareeseeees 60
AT LABEL command (remote debug MOAE)......c.cocuieeiiriieeiieieeieeste et ete et sve e sa e srae s 62
AT LINE COMMANG.aiiiiiiiiiiiiiiiiiiiiieie e e eeeeeeitreeeeeeeeee et seeesssassssaaeeeeseesessessasssssssssreseessseseesssssssrsssesees 63
AT LOAD COMMANG.iiiiiiiiiiiiiiiiiiiiiitrieeeee et eeeeserareeeeeeeeeeeesesssssssasaeeseseesseesasssssssssreeeeeesesensssssrrseserseeees 63
AT OCCURRENCE COMMANG....cciiiiiittiiiiiieieeceeeeciiiteeeeee e e e e eeseeesasseeeeeseeeeeseesesssssssseseseseseesseesssssssssnnes 65
AT OFFSET command (diSASSEMDBLY)......ueiieiieeeiieceiee ettt ettt ee e e e e e eaae e e are e et e e e nae e e ssaeenneas 68
AT PATH COMMANTG....itiitiiiiiiiieeieee ettt e e e e eeeeeesabrereeeeeeeeeeeeessssssssaseseeeeeeesesssssssasrsreeeeesseesassssenes 68
AT Prefix command (fUll-SCre@N MOTE).....cccuuviiiiieieiee ettt et e e ereee e s e essaee e s s senaaeeessnns 69
AT STATEMENT COMMANG....ciiiiiiiiiiiiiiiieeec ettt e e e e e e eeeeabarreeeeeeeeseeesessssssseseessesesesessasssssssennens 70
AT TERMINATION COMMANG.....ciiiiiiiiiiiiiiiieeeeeeeeeeciirteeeeeeeeeeeseeeessssaeseereeeeeeeesesssssssseseesseseessessassssenes 73
BEGIN COMMEANTG....iiiiiiiiiiieeeeeeieecirtrree et e e et eeeeeebbrbeeeeeeeeeeeeeesasssssssasssesseesessssssassrsssessseseeseesennssssssssnnns 74
(o] (oYl [qoto T aplaat=TaLe I (OR=Ta Yo I O 2 TR 74
(oY r=t Y qote aTan t=TaTe I (OR=YaTe [08 TR 75
CALL COMIMANG...iittiiiiiiiiieiieeieeeiiittree e e et et eeeestbabaeereeeeeeeeseesasssssasesreeeeeseesassssssseasasseseeesesesssssssssnnaeeessennnn 76
CALL Y6CEBR COMMANG...uutiiiiiiiiiiiiiiiieiiiitiieree e e e e e eeeeeesaraeeeeeeeeeeeeeesssssssssasseeesesesesesssssssssssssseeeeeseesannn 76
CALL Y6CECT COMMANG....uutiiiiiiiieeeeiiiiiieiiitirereereeeeeeeeseeisssrareresseeeeesesesasssssssssssesesssesessssssssssssssseeesssesanns 76
CALL Y5DUMP COMMANG...ttiiiiiiiiiiiiiiiiiiciitieereeeeeeeeeeeeeeiabaraeeeeeeeeeeesesssssssssssessseseeesesesssssssssssesseeessssennnns 77
CALL Y0FA COMMANG.....ciiiiiiiiiiiiiiieeee ettt e e e e e e eeseee s ssbaaaerreeeeeeessessassssssaseereseeseeesesssssssraraeseeeens 81
CALL Y6FM COMMANG.ctttiiiiiiiiiiiiiiiiiiireieeeeeeeeeeeesisraraeereeeeeeeesesesssssssssseseeeeesessssssssssssssssseseeesesenssssssnnsnes 82
CALL Y0HOGAN COMMANG....cciiiiiiiiiiiiieieeeeeeeeecciiirreee et e e eeeesessssssseeeeeseeeeeseessassssrsssseeseessesesssssssrsreesees 82
CALL Z0VER COMMANG.uiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeiitbrteeeeeeeeeeeesesssssssessesseseeessssssssssssesseesesseesmnsssssssssseenes 82
CALL entry_name command (COBOL).......uiiiiiieeiieeeieeeecieeeecteeeeteeeeteeeereeeeteeesbeeeesaeesasseeensaeesaseeanns 83
CALL procedure COMMANT.......cceccuiieeeieiiiieeeeeitteeeeecteeeeeesbeeeessebeeeeseessseseessssssseessessseseesesssnessssnsseneennn 84
(0108 eo] 0 1120 =1 2 [« FSSS USSR 84
CHKSTGY COMMANG..uitiiiiiiiiiiiiiiiiiiiiiieteeeeee et eeeeeesisbarrreeeeeeeeeeseessssssseseeereeesesesesassssssassaseeeeeessesnasssssrernnees 85
(Of I =YY = oo] 121 0 F=1 2 [FEU U RS UP P 85

CLEAR prefix (full-SCre@n MOAE)......ii ettt ettt ettt e et e et e e e ae e e abe e e sbe e e abeeensaeenneean 921

CLEAR AT command (remote debUg MOUE)......cccueieieriieiieieecee ettt e e sre e e ae e e seeeaeesseesnreesaeean 92

COMMENT COMMANG..iiiiiiiiiiiiiiiiiiriiiee et e e eeeeeesirrrreeeeeeeeeeeeeseasssbaeereeeeeeeesesassssssssssreseessessassssssrssssseseesessannn 92
COMPUTE cOMMANT (COBOL)....uuveiieiiieiie ettt e et eeeave e e e esaaaeeessenasesesssaseseessansaneessesrnnessensneneas 92
CURSOR command (FULL-SCrEEN MOTE).......eiiiierieeiiieiieeee et e ceevtee e eeree e e e ssvee e e e sssseeeessensaeeessessseeeesesnnes 94
Declarations (assembler, disassembly, and LangX COBOL)....c.ueecuerrerriercieesierreeneeseessreesseeseeesseesnseenns 94
[BL=Yol =T =N AT AT (O T L I O o TSR 95
DECLarations (COBOL)....uuuiiiiieieeeeieeeeeeeceeiee e e e eebte e e s eesate e e e eesstaeeesesssseeseesssressessssesessssssaesessesssenesssnsseneessnnns 98
(D] (O I\ = elo T aTaat=TaTe BN (od IY 2) TR 100
DESCRIBE COMMEANG..iiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeecettraeeeeeeeeeeeeeeeesssssseaeeeeeeeeeseseassssssssseeeeeseessessasssrsssssnneseeees 101
DISABLE COMMEANT....uuitiiiiiiiiiiiiiiiiiiiiiiretteee e et e eeeeeesebstaeeeeeeeeeeeeeeessssssstarasseseeeesesessasssssssssssesesseesessssssssnnns 106
DISABLE prefiX (fUll-SCrE@N MOGE)...ccuiie ettt ettt e eette e e etee e et e e e be e e e bee e ebee e e reeeenneas 108
DO command (assembler, disassembly, LangX COBOL, and COBOL).......cceeeeereercieeneesiieeneeeseeeseeenenens 108
Lo foY ATVl aYI T ote]aa T at= VaTe I (OR=TaTe J O = RO 109
[DIONoTeYan T at=UaTe N ud IV) OO 109
ENABLE COMMANT....utttiiiiiiieieiiiiiciiiiiteeee e e e e e eeeeestrsseeeeeeeeeeeesessssssssssaseseeeesesseesasssssasssseeeessesssassssssssnees 112
ENABLE prefiX (full-SCre@n MOE).....cc.uii ettt ettt te e e re e e ate e e aae e e ate e e aeaeeneas 113
EVALUATE COMMANT (COBOL)..uuiiiiiiitiieiceteee e ceiteee e ceertee e e eestvee e e eeaveeeesssveeeesennsaeeessensaneesssnsseneessnnneenesan 113
Expression COMMANA (C anNd CH4).iiuuiieiiiieciieecieeeeieeeeiteeeeiteeee it e e e teeeebeeeeseeesseeessaeesseeeenseaesseeesnsens 115
FIND COMMANG.iiiiiiiiiiiiiiiiiiiiteeeeee e eeeeecrrrereeeeeee et eeesessbsbaeseeeseeeeeseesaasssssassseeseeeessesssasssssssesseeeeesessennnes 116
FINDBP COMMEANG.....ciiiiiitiiiiiiieeee e eeeeecirttee e ee e e e e e eeeesabbbaeaeeeeeseeesesesassssssesseseeseessesasssssssssssaeseeeeessennnnns 120
(oY arelo]nalnat= LaTe I (OR=1 aTe IO o TR 122
[= =i oo 4 211 0 F=1 2 [« FE USROS 123
GO COMMIANG.tttiiiiiiiiiiiiiiirtrtreeeeee e et eeeeeeabbrreerreeeeeeeeesa s sabaeseasaeaeessesesasssssssssasseeeessesassssssssessreseeseessennnes 123
GOTO COMMANT. . .uitiiiiitiiiieieeeeeeeeecirrrre e e e et eeeeeeeessraareeeeeeeeeeeseassssssssaeaeseseesseseaasssssassseeseeeessesnassssssnenrens 124
GOTO LABEL COMMANT.....uiitiiriiiiiiieeeeiieeieiiirtteeeeeeeeeeeeeeesasasseereeeeeeeesessssssssssesseeseesesssassssssssssesseesessennnns 126
%IF command (programming langUage NEULIAL).....cccecveecerrierceeree e e et e eteecre e st e ereesreesre e e e sreeesreenns 128
IF command (assembler, disassembly, and LangX COBOL).....cccceeeerreerceenieriieesreeeieesreeseeeseeeseeesseenns 128
1 foTeYanTant=TaTe I (OR=YaTe [OF = TR 129
| oloYan] nat=1aTe I (O] =10]) TR 130
Allowable comparisons for the IF command (COBOL)......ccouuiieeiiieeiieeeee ettt e 131
Lot aaYant=Na e I ad 10 A) TR 133
IMMEDIATE command (fUll-SCre@N MOTE)......ccuueriiiieieie ittt eevee e e et e s s esaee e e s eenbeeeee s 133
INPUT command (C, C++, @aNd COBOL)...uueiiiiieeeeee ettt eeateee s cesnaaee e e esaveeesssnreneessennanneas 134
JUMPTO COMMANG.iiiiiiiiiiiiiiiiiiiirieeeeeeeeeeeeeeeeebarareeeeeeeeseessssssssseseeeseeeeesesaaassssssssssseeeseesseesssssssrsresseeeeses 135
JUMPTO LABEL COMMANG.utiitiiiiiiiiiiiiiiiiitiieeeeeeeeeeeeecirrreeeeeeeeeeeesessssssssessessessesseesssssssssssssssseseeesensnnsnnses 136
LIST COMMANG....ciiiiiiiitiiieieeeee et e e e ettt e eeeeaaabbraerreeeeeeeesessssssssaseseeeeessesssasssssasssesseesesseesnnnssrrnnns 138
LIST (Dlank) COMMANT....ciiiuieiiiieieiie et eetee e et e e e e evaee e e e ebreeeeesabeseessenseseessenseeressesssseeessnsnrenesen 139
LIST AT COMMANG...cciiiiiiiiitiiiieeee e et ee e eeeeeeeeeesasababreereeeeeeeeeesassssssesesseeeeessesenassssrsssnseeeeeessnnns 140
LIST AT command (remote debug MOE)......cccueeeieiiierieriecee ettt ee e saeeeae e e e enee s 142
LIST CALLS COMMANG.ciiiiiiiiiiiiieiiiiiiiteeieee e e eeeeeieabaereereeeeeeeesesesssssasseeseeeesseessassssssessseseessesennnsssrases 143
LIST CC COMMANTG. . .uitititiiiiiiieeeeeieeieciittirrreeeeeeeeeeeseesssataeeeeeseeseesessssssssssessseseessesesssssssrsssesseeeeessesnnnnes 143
LIST CONTAINER COMMANG.cciiiiiiiiiiiiiiiiitiiieeeeeeeeeeeeeeetirteeeeeeeeeeeeeeessssssssesseeeseesesesssssssssssesseeeeesennns 145
LIST CURSOR command (fUll-SCre@n MOTE).......ciiieueeiiiieieeee ettt etree e s s e raae e s e enaaeeas 146
LIST DTCN OF CADP COMMANTG...uttiiiiiiiiieiiiiiiiiiiiiriireeeeeeeeeeeseeisaraeeeeeeeeseeeeessssssssssesreesesseesessssssssssseeses 147
LIST eXPresSion COMMANT......cuiiiciiieeeeciiieeeeeciieeeeeciteeeseeatreeeeesssaeeesesssteeessessesesseansesesssnnssenesssnnsenes 147
LIST FREQUENCY COMMANG....ciiiiiiiirtiiiiiieeeeeeeeeeeiiiitteeeeeeeeeeeeeesassssseeeeeeeesesssesssssssssessseseesseseansssssnes 153
LIST LAST COMMANG..iiiiiiiiiiiiiiiiiiiiiririeeeeeeeeeeeeeeisaraereeeeeeeeeseseassssssesseeseseesseessasssssssessseseeseesensnsssrares 153
LIST LDD COMMANG.eiiiiiiiiiiiiiiiiiiiiiiitieeeeeeeeeeeeeeeesaraeeeeeeeeeeeeeeeessssssesseseeesesssesssssssssssesseseessesenssssssssssnes 154
LIST LINE NUMBERS COMMANG..uuiiiiiiiiiiiiiiiiiiiiiieeeee e e e eeeeeiirrreeeeeseeeeeseesssssssseseeseesesssessssnssssssessenns 155
LIST LINES COMMANG...uiiiiiiiiiiiiiiiiieiiiiiiitteieeeeeeeeeeeeeesaraeseeeeeeeeeeeeeesssssssssessseeesssesasssssssssssesssessessennes 155
LIST MONITOR COMMANT...uttiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeesisasarereeeeeeeeeeesessssssssssresseeeesseesessssssseseesseeees 155
LIST NAMES COMMEANT...uttiiiiiiiiiiiiiiieiiitiiieteeeeeeeeeeeeeeiarrreeeeeeeeeeeeseesssssssssseeseeseessesesssssssressesseeeeeseenns 156
LIST NAMES LABELS command (remote debug Mode).......ccceeceereerieeiiesie e eeesee e eeeens 158
LIST ON (PL/I) COMMEANG.ctitiiiiiiiiiiiiiiiieiiiireeeteeeeeeeeseseessssesreereeeessesssssssssssssessessessessssssssssssssessessssssss 158
LIST PROCEDURES COMMANT.....ccciiuiiiiiiiieeeeeeeeeeeicirntreeeeeeeeeeeeeesssssssesseeseeseeeeesessssssssssesseesesssennnnes 158
LIST REGISTERS COMMANT...uuttiiiiiiiiiiiiiieiiiiiiiteeeeeeeeeeeeeeeeisssrreeeeeeeeeeesessssssssssesseesesseesesssssssssssesseeees 159
LIST STATEMENT NUMBERS COMMANG....cciiiiiiiiiiiiiiiieeeee e eeecciiirtreeeeeeeeeeeeeesssssseseeeseseessessssnnssnnes 160
LIST STATEMENTS COMMEANG..cciiiiiiiiiiiiitiiiieeee e eeeeciirteeee e e e e e eeeeeeeaasraaeeeeeeeeeeeeessssssssssseeeseseessesnnnnes 160

vi

LIST STORAGE COMMANT....ciiiiiiiiiiiiiiieeteetieeeeee e e e e e e e e e e e e e e e e eeeeee e e asssasaaa s asssesssseesaseeseseessssssnns 161

LIST TRACE LOAD COMMANG.....ciiiiiiiiirriiiiieeeeeeeeeeciiiiteeeeeeeeeeeeeeeesesssssseseeeeeseessesssssssssssssseeseseessennsnnes 163
LOAD COMIMANT....uutitiiiiiiiieieieieieieiiirreeee e et et eeeeesessssasrereeeeesseeesassssssassessseseeeseseasssssssssssssseesessessasssssssnsssees 164
LOADDEBUGDATA COMMANG..ciiiiiiiiiiiiiiiiiiieeieeeeeeeeieeiiitrseeeeeeeseeesesesssssssssssseseessssesssssssssssssseseesssssssssssnnes 165

Using LDD for assembler or LangX COBOL cOmMPIle UNITS......civiiiiriiieiiiieiiieeniieessieessveesseeessaveeens 165

Using LDD for high-level language compile units in explicit debug mode........ccceceevvveiinieennieennnen. 166
MEMORY COMMAN...uiiiiiiiiiiiiiiiiiiiiiieie e e eeeeeeeebrrrereeeeeeeeeeeessssbasaeaeeeseeeeesesasssssssssessseeesseeseesssssrsrsseeees 167
MONITOR COMMANG....cciiiiiitiriieeieeeeeeeeecerrrreree et e e e e eeesesbsaaeereeeeeeeeseessassssasaeseeeseseessesasssssrassesseeeesseesannn 169

M Prefix (fFUll-SCreEN MOAE)......cceiieeee ettt et ettt e et e et e e e be e eeabeeeeabeeeeaseeessseeannseean 171
MOVE COMMANT (COBOL)...uuuiiiiiicteeeeceeeeeecceetee e e e ettt e e e setveee s sessaeessesssseeeesesbeseessasaseessesssenesssnsseneessnnns 173

Allowable moves for the MOVE command (COBOL)......uuviiiiiueeieieeeeeceeeeeeee et e eevreeeeseaveeeeesanne 175
NAMES COMMEANG....cciiiiiiitiiiiieieee e eececerrrtre e e e ettt et eeesasaraarrereeeeeesesesssssssssessssaeseeesesasssssssssssseseeseessennnnes 177

NAMES DISPLAY COMMANG..iitiiiiiiiiiiiiiiiiiiiereereeeeeeeeeieiistreeeeeeeeeeeesesesssssssssesseseessesssssssssssssssssessessennnes 177

NAMES EXCLUDE COMMANG....iiiiiiiiiiiiiiiiieieeeeeeeeeeciiirtteeeeeeeeeeeesesssssssaeseesseeeessessssssssssssssessessessennnns 177

NAMES INCLUDE COMMANG..ciiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeenitreeeeeeeeeeeesesssssssseseeeseseesseessssnssssssssseseesessannnes 178
N[0 | oo a2 Ta 0 F=1 2 [PO OO 179
(011N el aaTa =N aTe I Q10 A) TR 179
PANEL command (fUll-SCre@N MOAE)......cocueeiiiieieiee ettt e eeeaae e e e e eabe e e s snreeeessennaeeeas 181
PERFORM COMMANT (COBOL)...cciiiueeiiiieeteieeceereeee e eeieee e e eeetvee e e e eeabaeressessaaeessessssesesssnssessessnssensessansennessens 183
PLAYBACK COMMANUS. . .uuitiiiiiiiiieeieiiieeeciiiterereeeeeeeeseeeeessrasseeereseeseesesssassssssesseseesssssesssssssssssesssesesssesnannes 185

PLAYBACK ENABLE COMMANT....uittiiiiiiiiiiiiiiiiiiiiiriieeeeeeeeeeeeeeesinssreeseeeeeeeessessssssssssesseseessesenssssssssssnes 186

PLAYBACK START COMMANG.cuiiiiiiiiiiiiiiiiiiiirtereeeeeeeeeeeseisssrtreeereeeeeesesssssssssessssseesessesssssssssssesseesesseenns 187

PLAYBACK FORWARD COMMANG...ciiiiiiiiiiiiiiiiiiieieeeeeeeeeecsirreeeeeeeeeeeeeesesnsssssssseeseseesssesssssssssessessess 188

PLAYBACK BACKWARD COMMANG......ciiiiiiiiiiiiiieiieeeeeeeeccciiirreeeeeeeeeeeeeeessnsssseeseseeeesessesssssssssessseseens 188

PLAYBACK STOP COMMANG.ciiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeesitiareeeeeeseeeeeseeesssssssssessessesssesessssssssssssseeeessennns 188

PLAYBACK DISABLE COMMANT....uuttiiiiiiiiiiiiiiiiiiiiiireieeeeeeeeeeeeeeeesssaseeeeeseeeeeseesssssssssssssseseesssssnsssssssnses 189
POPUP COMMANG...uittiiiiiiiiiieiieieeecitititere e ee et eeeeeseeaartaeeeeeeeeeeeeeeessssssssasereeseeeseesasssssssssssasseseeesesensssssrnnnnns 189
POSITION COMMANTG...titiiiiiiiiiiiiiiieiiiiiirrreeeeee et eeeeeeeeisbrreeeeeeeeeeeesesasssssssssasseseeseesseesasssssssssssesesseseensssssssnns 189
Prefix commands (fULl=SCre@N MOAE)........uueiiiiiiiiieiieeeeee ettt e et e e s et e e s seabaeeessensaeeeeeens 190
PROCEDURE COMMANG. ..ottt ettt et e e eeeeeeasaaeeeeeeeeeeeseseassssseseeeseseesseessssssssraesreeeeseeesnn 191
QUALIFY RESET COMMANG....ciiiiiiiiiiiiieieeeeeeeeeeeiiirteeeeeeeeeeeeeeeasssseeeeeeeeeeeeesessssssssssesseesesssessessssssssneesess 191
QUERY COMMANG..uttiiiiiiiiiiiieiiiiiittieeeee e eeeeeeeearaeereeeeeeeeeeesssssssssseereeeeeesesaassssssssresseeseeseesassssrsssesseeseseennnn 192

QUERY prefix (full-SCreen MOAE).....ccccuiie ettt et e tee et e e et e e e ree e e bee e e baeeenneas 197
QUIT COMIMEANG...uititiiiiiieeeiiieiiiiittree et eeeeeeeeeearrrrreereeeeeeeesasssssssaeereeeeseseseaasssssssssesseeeessenesasssssssesseeseesennns 197
(01010) i I eloT1 1122 F=1 2 o TR RO UPTRN 198
RESTORE COMMEANG..ciiiiiiiiiiiiiiiiiitiieeee e eeeeeccrrtrr e e e e e e e e e eeeesaaabsbaereeeeeeeeesessssssssassesseseesseesssssssrsssneesessessanns 199
RETRIEVE command (fUll-SCre@N MOTE).....ccivuveeiiieieeeec ettt et e et e e e e save e e e s saneeeesesnsaeeeseens 200
RUN COMIMANT... ittt et e e eeeeeebrar e e eeeeeesesesasssaseeeseeeeeeesesassssssssseaaeeseessesnasssssrsrarneseeees 201
RUNTO COMMANG.iitiiiiiiiiiiiiiiiiiiieiee e eeeeeeeeeetrrraeeeeeeeeeeeseessssssasaeeseeeeeseesassssssassseeseseeeseessssssrsrsesreeeeseensen 201

RUNTO prefix command (full-SCreen MOdE).......cueeeciieiciiieeeiieeeee et et et 202
SCROLL command (fUll-SCrE@N MOTE).....ccocueeieiieiieiee ettt eee e st e s s see e e s sesaaeeesennneeeas 202
SELECT COMMEANT (PL/I) ceiiiiiiiieeeieteetieeee et eeeeeeeesaaet et e eeeeeseesessssssassseeseeeeesssssssssssssasseeeessesssssssssnssnsseseees 205
SET COMMANG. ...ttt e et e e et s eee bbb arereeeeeeeseesasasbssaearaeseeeesseasssssssasesraeseeeessasnsssssrnnnnees 205

SET ASSEMBLER ON/OFF COMMANTG....cciiiiiiiiiiiiieeiieet e e e e e s e e e e e e e e e e e e e e e eeeeeseasssaassaaaa s seeas 208

SET ASSEMBLER STEPOVER COMMANG..uitiiiiiiiiiiiiiiiiiiirtieieeeeeeeeeeeecssrreeeeeeeeeeesesessnssssssssssseseessenssnes 209

SET AUTOMONITOR COMMANT....uuttiiiiiiiiiieiiiiiiiiiireteeeeeeeeeeeeseesssssseeeeeseeeeeseesssssssssssssesessessesssssssnses 210

SET CHANGE COMMANG....utttiiiiiiiiieiiiiieeiiiiireereeeeeeeeeeeeeebbreeereeeeeeeeesessssssssessesseseesseessassssssssseeeseeeeses 212

SET COLOR command (full-screen and liN€ MOAE)......cooeueeiiieeiieieiieieeee et 213

SET COUNTRY COMMANG..ciiiiiiiiiiiiiiiiiiiieieee e eeeeeeiiirtteeeeeeeeeeeesesssssssssaesseeeesseesssssssssssssseseeesesenesssssses 216

SET DBCS COMMANG...ciiiiiiiiiitiiiiieeeee e eeeeccrirer e e e e e et e e eeeeessbstaeeeeeeeeeeeeeessssssssresseseesssesasssssssresnneseeees 216

SET DEFAULT DBG COMMANG..uitiiiiiiiiiiiiiiiiiiiriiieeeeeeeeeeeeeieinneeeeeeeseeeeesesssssssssssesseeeesssessssssssssssseseeees 217

SET DEFAULT LISTINGS COMMANG...uuttiiiiiiiiiiiiiiiiiiiiiireeeeeeeeeeeeeesessssseeseeseeseeesessssssssssssssssesesssennsnes 218

SET DEFAULT MDBG COMMANG..ciiiiiiiiiiiiiiiiiiiiiiiereeeeeeeeeeetiereeeeeeeeeeeesesssssssssseeseeeesseessssssssssssssseessennes 219

SET DEFAULT SCROLL command (full-SCreen MOdE)......ccocueeeiiierieeei ettt e e e 220

SET DEFAULT VIEW COMMANG..uitiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeinreeereeeeeeeeeeesssssssssessessesssesssssssssssssseseeses 221

SET DEFAULT WINDOW command (full-SCreen Mode)........uueeeeeeueeeeiieieeee et e e 222

SET DISASSEMBLY COMMANG...iitiiiiiiiiiiiiiiiiiiiiirieeeeeeeeeeeeeearrereeeeeeeeeeesesssssssssseeseseesseesesssssssrsssessens 222

SET DYNDEBUG COMMANG..ciiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeiesarteeeeeeeeeeesesesssssssssesseseesesssssssssssssesssesesseessnnnes 223

1] = I (1 S 1O I oo 2211 2 1= T2 e RS 224

SET EQUATE COMMANT....uutiiiiiiiiiiieeieiiieiiiiiitteeereeeeeeeeseesssssseereeseeseeseessesssssssssseeseseesseessssssssssssssseeees 225
SET EXECUTE COMMANT....uutiiiiiiiiieiiieiieiiiiiiirreeereeeeeeeeseesisssssesseeseeseeseesssssssssssssesseseessesssssssssssssssssesees 226
SET EXPLICITDEBUG COMMANT....cciiiiiiiiiiiiiieee e ieeecciiitrtreeeeeeeeeeeeeennsssseseeeseeeesseessnsssssssessseessssssennnns 226
SET FIND BOUNDS COMMANG.....ciiiiiiiiiiriiiiiiieeeeeeeeeecinittrereeeeeeeeeseeesssssssseseeseeseessessssssssssssssesessessenns 227
SET FREQUENCY COMMANG..ciiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeciitrteeeeeeeeeeeeessessssssseseesseseessessssssssssssssseeeeesssennnns 228
SET HISTORY COMMANT..uittiiiiiiiiiiiiiiiiiiitiieeeeeeeeeeeeeeieiareereeeeeeeeesesesssssssseeeeseeesesssssssssssssesssesesssennanses 229
SET IGNORELINK COMMANT...uttitiiiiiiiiiiiiieiiiiiiirieeee e e e eeseeeiisneereeeeeeeeeeeseessssssssssesseesesssesssssssssssseees 229
SET INTERCEPT coOmMMaNd (C @and CH+)uuuuiiiiieieeiei e ceeeeee et e e ceavee e e s saveeeessennseeessesnseeeessnnenns 230
SET INTERCEPT command (COBOL, full-screen mode, line mode, batch mode)........ccocouvvveeennneen. 231
SET INTERCEPT command (COBOL, remote debug Mode).......cccceeeueereerieeceenie e e 232
SET KEYS command (FULl-SCreeN MOTE).......oiiiveueeiiiiereeee ettt etee e eevtee e s eenaae e s sesnaeeeeeeennes 232
SET LDD COMMANT...uitttiiiiiiieeiiiiieiieiiiitieeeeeeee et eeeesesssrseseeeseeeeeseseasssssssssseeeeeesssaessssssssssssseseessenenssssssnes 233
SET LIST BY SUBSCRIPT command (COBOL).....ccoevurerieiieieeeieeeeeiireeeeeeeeeeessesessssssssereseseeesssssssssnnes 234
SET LIST BY SUBSCRIPT command (Enterprise PL/I, full-screen mode only)......ccccceeveeeeveeecneeenns 236
SET LIST TABULAR COMMANT.....cciiiiiriiiiiieeeeeeeeeceiiirreeee e ee e e eeeeeesassseeseeseeeeeesesessssssssssesseesesssennannes 237
SET LOG COMMANG....ciiiiiiiirieiiieeeeeeeeeeccerirrreeeeeeeeeeseesessssssreereeeesseesessassssssssasseseessessessssssssaseeereeeeees 237
SET LOG NUMBERS command (full-SCreen MOdE).........cooveueeeiiiirieie e ceereeee e e eeveeeeeeennees 239
SET LONGCUNAME COMMANTG...uutiiiiiiiiiiiiiiiiiiiiirireeeeeeeeeeeeeeessssseeeeeseeeeesesssssssssssssseeesssesasssssssssssesees 239
SET MDBG COMMANG.eiitiiiiiiiiiiieiiiiiiiiittiiee et e eeeeeeieiararreereeeeeeeesessssssssssesseeeesssesssssssssssseeseesessenssssssrases 240
SET MONITOR COMMANTG....uuiitiiiiiiiiieeeeeeeececiirtrreeeee e e e e eeeeeesarberreereeeeeeeesessssssassseeseseesssesssssssssssreeees 241
SET MSGID COMMANG....cciiiiiiiitiiiiiieeeeeeeeeeeieirtrreeeee et e e eeeeeesssbarreereeeeessesasssssssssseeeresaesssessssnsssrssnnnens 243
SET NATIONAL LANGUAGE COMMANG...utttiiiiiiiiieiiieeeeeeeeeeeeeeeee ettt s e s s e e s e e e e e e e e eeeseeeeseessssnnes 243
SET PACE COMMANG...itiiiiiiiiiiiiiiiiieciiittteee et e e eeeeeeeraraeeeeeeeeeeesesssssssasaeseeeaesseessassssssesseeseeseeeeensnssres 244
SET PFKEY COMMANT....uuiiiiiiiiiiiieieee ittt e e e e e e eeseseesaaseaeeeseeeeeeesesssssssseseseseseessesesasssssssssseseeseessennn 245
SET POPUP COMMANG..iiiiiiiiiiiiiiiiiiiiiiiiieieee e eeeeeeiirrreeeeeeeeeeeeeessasssssaseeseeeeeessesssssssssssssseseessesensnnsssnes 246
SET PROGRAMMING LANGUAGE COMMAN...uuiiiiiiiiiiiiiieiieeeeeeeeeeeee e e e s e e e e e e e e eeeeeeeeeseeeessasaees 246
SET PROMPT command (fUll-SCreeN MOTE).....ueiiieeeeiiiieeeeeee ettt eevree e e s eaaee e e s eaaeeee e 247
SET QUALIFY COMMANT....iiiiiiiiiieieeeeceeeecciirttree e e e e e et eeeeaabeaeeeeeeeeseeesessssssssssesseseeessesesassnsssssnensees 248
SET REFRESH command (full-SCreen MOAE)......ciicueeieiiireiee et e s 250
SET RESTORE COMMANG...cciiiiiiiiiieieieee ettt e e e e ee e eabaar e e e e e e e e e eesesasssssssseereseessesenssnnsssnnenes 251
SET REWRITE command (fUull-SCre@n MOAE)......ccoeeuueiiiieieiee ettt aaaee s s e 252
SET REWRITE command (remote debug MOde)......c.eicieeieeiieiieeceecieeseeste et e see e see e esveeseeens 253
SET SAVE COMMANG.uiiiiiiiiiiiiiiiiiiiiiiteeieeeeeeeeeeeeeearrteeeeeeeeeeeesessssssssesresseesesssessassssssssssseseeseesenssssssssssnns 253
SET SCREEN command (fUll-SCre@n MOAE)......ccuueriiieieiei ettt e e eaae e e e s eareeeeeenane 256
SET SCROLL DISPLAY command (full-SCreen MoOde).........eeeiveuveeeiieeiiee ettt 257
SET SEQUENCE COMMANT (PL/I) uuttiiiiiiieiiee et ee ettt e eetteee s ceeveee s e eesvaeeesesnaveeeessnneeeessensaneessennneneas 257
SET SOURCE COMMANG.....cciiiiiiitiiiiieieeee ettt e ee e e eeeeeesabaaseeeseeeeseeesesssssssssaesseseesssesassnsssssensesnes 257
SET SUFFIX command (FULl-SCreeNn MOTE).......coiiiiureiiiieeieeee ettt e e evree e s e eaae e e e s enaeeee s 259
SET TEST COMMEANG...iiiiiiiiiiiiiiiiiieiiiiitttie e et e e eeeeeeeabrterereeeeeeeeseesssssssssseeseseeessesasssssssseseseseseesseensnssres 260
SET WARNING command (C, C++, COBOL, and PL/I)..cccoeeeeeeeeeeeiieeeeeee et eeee e e e e s eeesnseveeeeees 261
o] =l Iefo) 10l n g b= Lo I (010] 210 1) FE 264
Allowable moves for the z/OS Debugger SET cOomMmMand........ccoccieirieeriiienniieennieensieessieessveesseeens 265
SHOW prefix command (full-SCreen MOAE).......ccueii ittt et tee e e e e 267
STEP COMMANG.iiiiiiiiiiiiiiieccieee et e e e e et e e e e e e e s babaeaeeeeeeeeeseesaassssabsesreeseeeeesenssnsssrsarensaeseesennns 267
STORAGE COMMEANG...utiiiiiiiiiiiiiiiieeiciirreeeeeeeeeeeeeeeeesbbrreeeeeeeeeeessesaasssssaeasseseeseessessasssrsssssssesesesssenssssssrsnns 269
YT el eednl nat=N e I (=10 To 0% R 271
SYSTEM COMMEANG (Z/OS) ettt ettt ettt et e e e e e e sessaaabeteeeeeessssssessssssseeseseessssssssssssssseesseseessssns 273
TRACE COMMANT...utttitiiiiiiiiiiiiieiiciitteee e ee et eeseseearreereeeeeeeeeeesasssssraeaeeseeeseesesesssssssssesseeeeeseesesasssssesnersees 274
TRIGGER COMMANTG..uitiiiiiiiiiiiiiiiiiiititieie e e e eeeeerrereeeeeeeeeeesessbasaeaeeeseseeeseesassssaasesreesesseesessnssssrrsneesees 274
TSO COMMANT (Z/OS) uuuuuteeriiiieeeeeeeeeeceeieeree e e ettt eesessessssaareeteeseessssessssssssssseesessessssssssssssssseaesessesssssssnssnsses 278
USE COMMEANT. ..ttt ettt et e e et e eeeeaabaraeeeeeeeeeeeeasssssssseasaeseseseseesasssssrssesseseeeesesesassssrrereerreeees 278
VY a1t ot paTant=TaTe I (OR=Ya Yo [05 X TSRO 279
WINDOW command (fUll-SCrE@N MOTE)......cocueeiiiieieeee ettt e s eeave e s eeeaaeeeeeensreeeeeennes 280
WINDOW CLOSE COMMANT....uttiiiiiiiiiiiiiiiiiiiiriteeeeeeeeeeeeeeesssssrreeeeeseeeessesssssssssssessessesssesesssssssssssersesees 280
WINDOW OPEN COMMANT....uitiiiiiiiiiiiieiiiieieiciiiireeeeeeeeeeeeeeeiasssssreseeeeesseesesssssssssssesseseesssesassssssssssseeses 281
WINDOW SIZE COMMANT....uttitiiiiiiieieiiiiieiiiiiriieeeeeeeeeeeeeeessssseeeeereseeseesesssssssssssessessssssesesssssssssssseseeses 282
WINDOW SWAP COMMANG....cciiiiiiiiiiiiiiieieeeieeeieiitreereeeeeeeeeseeeissssssseeereeeesseesssssssssssssesseseessessssssssranes 282

vii

viii

WINDOW ZOOM COMMANTG... ittt e e e s e e e e e e e e e eeeeeeeeeseeessssssassaas s sesseesaasssasennns 283

Chapter 6. EQAOPTS COMMANCS.....ccciuiiuieiiniinieiieretentecestossecassocssessscassassassssassans 285
Format of the EQAOPTS COMMANG....eiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeetirreeereeeeeeeesesessssssasreseeeseessesessssssssaresseens 292
EQAOPTS commands that have equivalent z/OS Debugger commands........cccceveveeriieeriiieeniveencnennans 293
Providing EQAOPTS commands @t FUN TIME...ccuuiiiiiieiiiieeiee sttt e st e ssieeessaeeessaeeesssaeesseeessnseenns 293
Creating EQAOPTS L0ad MOAULE.......uiiiiiiieiieeciteeete ettt ettt et e s re e s sbae e sba e s sbae e sbaesssaessasenenane 294
Descriptions of EQAOPTS COMMANGS...ciiiiiiiiiieiciiiee e ecciite e eeeciee e e eecteee e sesbreeessssseeeeseenstesessenssesessensssnns 294

ALTDISP. ..ttt ettt ettt e et e e e s e et e e s e et e e e s e b et e e e e nbte e e e s nr e e e e e e neee e e e neeee e e e nreaeeeeenraaeeaan 294
BROWISE. ..ttt ettt e ettt e e s e et e e e e e s st e e e e e nsee e e e snnteee e e nbeee e e e asbeeeeeannbaeeseannreeesaanns 295
CACHENUM. Lttt e e ettt e e e e bt e e s e s as et e e e s st e e e e e anetee e e s sseeeeeanseaeeeeanneeeensanns 295
COOUTPUTDSN. 1ttt ettt ettt ettt e e sttt e e s e bt e e e e s s bt e e eeenseeeeesnneeee e s nneeeeesanseaeesaanneaeeeaanneeaesaanns 295
CCOUTPUTDSNALLOC. ..ttt ettt ettt ettt ettt e e e ettt e e sttt e e s e st e e e s e s aseteesesunsteeeesnseeeeseannaeeeessanseaens 296
CCPROGSELECTDSN. . iutittetertteteetteste et e st s teseeestesutesbesatesbe et e sheebesatesbeeatesbeeueesaeeasesatenbesaeesbeeasesaean 297
CEEREACTAFTERQDBG. ... iitieieeittee ettt ettt ettt e sttt e e st e e s e set e e e esnseeeeesnneeeeseaneeeeeannneeeas 297
CODEPAGE. ... ettt sttt sttt et h et s bt et e s at et e e atesbeeatesbe et e eae et e satebeeatesbeeutesbeeasesaean 298
COMMANDSDSN. ..ttt ettt s et et s bt et e s bt et e s h e et e s at e be et e sbe et e sse e b e sat e besate bt enbesbeenbesaeennas 300
DEFAULTVIEW. ..ttt ettt et e e e e e e s e s ettt e e e e e e e s e s rren et e e eeeaeses e nnnneneneeeeas 301
DISABLERLIM. ittt ettt ettt e ettt e e e et e e s s ane e e e e e e aseee e s e seeeesseanseteeeenreeeeeasnreeeeennne 301
DLAYDBG. ... uuttteeeettteeeeeitte e e e ettt e e ettt e e ettt e e e s uset e e e s e neateeseaabeteeae e s bt e e e e e nneeee e e e nb e e e e e e nreeeeeaenneaeeeaanns 301
DOPTACBDSN. ...ttt ettt ettt e ettt e e e ettt e e e ettt e e s bt te e s e abeteeaesnsteeeesanseeeeeeanneeaeeeanseeeesaanneneas 304
DTCNDELETEDEADPROF ... ettt ettt ettt ettt e e sttt e e st e e s e ese e e e s e neeee s s nseeeesasanseeeeenanne 305
DTCNFORCEXXXX.ceeuteeremteereteereteeseteeseteesesteesenteesesteeseseeeseneeesemeeeseneeesemeeeseneeeseneeesaneeesanseesanseesanseesanee 305
DYNDEBUG. ...ttt ettt ettt ettt ettt e e ettt e e e e st e e e e e bt e e e e s ne e e e e e e aseeeessenneetessensaeeeeesnneeeeann 306
EQAQPP ettt e et et et e et e et e et et e e eeeeaeeee et et eeeee et eee et e eeeee e eeeeeaseeeeeanaeeeeaneeeeeananenen 306
EXPLICITDEBUG.etiie ittt ettt e et e e e et e e e e s anee e e e s nne e e e e s et e e e s nsateesesnseeeenannnne 306
GPEDSN. ettt ettt ettt ettt e e e et e e e e b et e e e e s et e e e s e ab et e e e e n b e e e e e e n bt e e e e e nnetee e e e nreeeeeeanneeeeeas 307
HOSTPORTS ..ttt ettt ettt ettt et sttt ettt e st e st e bt et e s at e be et e ebe et e eat et e sateabe et e ebe et e saeanbesneenee 308
TGN OREODOLIMIT . tttee ettt ettt e et te e e ettt e e e st e e e s see e e e semeete e s nseeeesesnsteeeeenseeeeaeanseeeesanannes 308
IMSISOORIGPSB......cutitiittetteterie ettt sttt e sttt s e bt et e s b e st e s bt et e sat e besatenbe et e bt entesheeabesaeeseentesbesaees 309
LOGDSN ...ttt ettt ettt ettt et b et s he e s at e bt s a e e e bt et e s be e b e e bt et e e ae et e e at e bt et e e bt e beehe e beeat e be et e nbeeaes 309
LOGDSNALLOC. ..ttt sttt sttt et ste st sat et et et st e s bt e b e s ae et e satebesat e bt e e e sheebesat e beeatesbeensesseesenaean 310
MAXTRANUSER. ...ttt ettt e e e ettt e e e st e e e e s anee e e s s meeteeeeeusrteeseennseeeeaeannseeeaanan 311
MDBG..c ettt ettt ettt ettt e e et e e e e et e e e s e bt e e e e e e s bt e e e e s nn et e e e e neeee e e ab e e e e e e beaeeeeenreeeeeeanreteeeeanren 312
MULTIPROGCESS. ...ttt ettt e ettt e ettt e e e sttt e e s e et e e s ase e e e s e s ansteeeeenseeeeeeansneeesannnen 312
N A S . ettt ettt e e ettt e e e s b e et e e s et et e e s e s bt e e e e e nre e e e e e netee e e e nreeeeeeanreeeens 313
INODISPLAY ..ttt ettt ettt ettt ettt e e sttt e e s e s et e e s e s st e e e e e nretee s e nbaeeaeaanseteeeeanseeeessansaaeesansneeeeannnne 314
PREFERENCESDSN.... .ttt ettt ettt ettt e e ettt e s sttt e e s e see e e e e s ant e e e e saneeeeeesnseeeeeaanneeeenaanns 314
SAVEBPDSN, SAVESETDSN. ... ittt ittt ettt ettt e et e e e et e e e e e sse e e e e s et e e e snneeee s e nneeeeesesnneaeesan 315
SAVESETDSNALLOC, SAVEBPDSNALLOC.......ciiiittee ettt ettt ettt e e st e e e senee e e e s eeeeesesnneeeeean 315
SESSTIONTIMEOUTeiieiittee ettt ettt e ettt e e e et e e e sttt e e s ab bt e e ee s et e e sesneteeesanreeesaenreeeeseanseeeannan 317
STARTSTOPMSG....c ettt ettt ettt e ettt e e ettt e e e et e e e s s aet e e e se s aeeeeesnseeeeesanseeeeesannbeeeesanseaeeaaannes 318
SUB Y Sttt ettt sttt a ettt b e et e h et e e a e e bt ea e e bt et e ehe e bt eht e be et e eheetesheebesaten 319
SVECSCREEN. ...ttt ettt h et s h ettt b e et e s bt et e s bt et e eat et e e at e bt e abeebeeabesatebesatenbeeaeesbeeaee 319
TCPIPDATADSN. ..ttt ettt ettt ettt e e ettt e e e bt e e e e e aat e e e s s aanbeee e e e useeee s e nseteessaanseteseeaneeeeeasanseeeeennne 322
THREADTERMUCOND.....cciiiiteee ettt ettt e ettt e e sttt e e sttt e e s e bee e e s e saneeeeeseanseeessenseeeeeesanneeens 323
TIMAC. ettt ettt e ettt e e e s ab et e e e s abe et e e s e bb e e e e e nb e e e e e e nneeee e e nneeee e e e nreeeeeeannee 323
N RO PP PPPRRPRIORE 324

Chapter 7. z/0S Debugger built-in functions.......ccccceiuiiniiiiiiiiniicinieiiiiniincincnee 325
%CHAR (assembler, disassembly, and LangX COBOL)......cccuevceereerieeniesieenreeeieesieeseeesseesseesaeesaeesneeas 325
%DEC (assembler, disassembly, and LANgX COBOL)....ccutiiirciirieeeeeieeieesee e esee e esveesreesveesreeeneeas 325
YOGENERATION (PL/I).ttietteiieietteeieestteesteesteeste e teessae s seesssessseessaesnseesseessseesseesssesseessseesessssssnsesssesensennses 326
Y | =) GO OO U PSSP PPPPTROPPP 326
YINSTANCES (C, CH4, @NA PL/D) .uiiiieeieeteeteeceee et stte et veeste e te e ste e b e sraeebeesaaeenseesseeenseennesnsannseas 327
YRECURSION (C, CH+, aNd PL/T)ueiiieiitiieieeteeete et eseeestessteesstessseeetessveesneesseessaesnseesseesnseensessnsessessseeans 328
%WHERE (assembler, disassembly, and LangX COBOL)......ccceeeerrierieeeierieeseeeieeseeeseeesseeseesssessseeens 329

Chapter 8. z/0S Debugger variables.......ccccviuiiiiiiiiienienienieiininiiniinieeees 331

DOADDRESS. ... ettt ettt et e et e te b e et e e b e et e et et e e teare e te e e e beeaaeeteenteera e teereeteentenreenes 333
B 2 41 1 =TSSR 333
Y= 10 11 < TR 333
OCAAADDRESS. ... e a e ———araeaeeeeeaeeaa e anrrraaraaaeaeeeaeaaann 334
%CC (assembler and disassSEMBLY ONLY)..c...eiiciiiieiie ettt e e e te e e e re e e s b aeeebeeeeareeaenns 334
81000 111 5 1 8 K 1 TSP 334
B 0L 10 1N [I PPN 334
2 01 U TSR 334
D] =1 2 VPSPPI 334
%EPRN or %EPRHN (%EPRHN assembler and disassembly only).......ccocceeeeiieeciieccieecceeeeeeeeee e 334
%EPRBnN (assembler and disassembly ONLY)......oocciieiciie ettt ettt et e e ee e e e e eeaaeeeans 335
%EPRDnN (assembler and disassembBLy ONLY)...cc.uieeciieeeieeeie ettt ettt e e e e te e e ra e e raeeas 335
%FPRn or %FPRHN (%FPRHnN assembler and disassembly Only)......cccceceeeecieeecieeeciieeecee e 335
%FPRBn (assembler and disassembly ONLY).......cceiiiieieiie e et 336
%FPRDn (assembler and disassembly ONLY)......oociiieiie ettt ree e e e e e rae e 336
L C T d o P TSRS 336
B 1€ d (] o TR 337
L€ d = [PSR 337
DOHARDWARE. ... ettt e et e e e e e e e e e s e et e e ta e e e eeeeeesesaa s sssaeaeaeaeaesessanasssrarnnanaeeeaeeaans 338
B N | S TN I I = 1 = 1 N U UPPPRRRRN 338
1Y USRS 338
%LPRn or %LPRHnN (%LPRHn assembler and disassembly Only).......ccceecieeecieeeiieeecieecceeeeciee e 338
%LPRBnN (assembler and disassembBLY)......cccciii e 339
%LPRDN (assembler and diSASSEMDBLY)....c..eiiciiiieiie ettt ettt et e e e e et e et e e e aree e areeeentaeanes 339
DONLANGUAGE......cciiii ettt ettt e e ee et ee e e e e e e s e e s e e araaaeeeaeeeeesessassnsssaeaaaeeeeseesesaaasnssssaennaeeeesesannnnns 339
B N I = (010] TSR 339
DOPLANGUARGE. ..ottt et e e e e e e e s s e e eaa e e e eeeeeeseseaea s ssseaaaaaaeesessesasnsnsssseennaneeesessnanannes 339
%PROGMASK (assembler and disassembly ONLY).....ccceieeiiieeiie ettt et e e et e e e e 340
D] 01 €13 SRR 340
%PSW (assembler and disassembly ONLY)......oocciie ittt e e e e e ear e e e nree s 340
] L USSR 340
ORSTDSETS. .. teetesteeitesteesteete st e e s e erte s e e tesstesbaestesseessesasassaestesseassesssasseessasseantesssantesssassennsessaansessaessenseens 340
DORUNMONDE ... ettt e e e e et e e e e e e e e s e e s aaa e e e e e eeeeeesesaaasasssseaeaeeeeesessssannsssssraanaeaeaeeeans 340
Y L P TS OSRSR 340
BSUBSYSTEM...ttiiiieee ettt e e e e e e e e e e s e e e ba e e e e eeeeeeses s assaaaaaeaeeeeeeeeaaansreraraneeeeeeeeeannnns 341
B3) A X 1 =1 S SPURN 341
Attributes of z/OS Debugger variables in different languages......cccccvcveiveieiiiieiiiieercieeecie e 341
Chapter 9. z/0S Debugger MeSSAZeS....cccuciriririresreirestestaststaisssecsessessessessassans 343
Chapter 10. Debug Manager MeSSAZES....cccuuctriieinirecrecrecresressestassassasssessessessessens 469
Chapter 11. Debug Profile Service API MesSSages.....ccccvererrurratniancaecsecsecsecsessesses 473
Chapter 12. Non-Language Environment IMS messages......cccccereeinineinecnecnecsenens 477
Chapter 13. Load Module Analyzer MeSSages.....ccccceererreirertecrainiaecsecsessessessessases 481
Chapter 14. z/0S Debugger Language Environment user exit messages............... 483
Chapter 15. z/0S Debugger Terminal Interface Manager messages.......cccceeveerenes 485
Chapter 16. IBM z/0S Debugger Utilities messages......cccceivireireiiecrecrenieciacnecaens 489

Appendix A. z/0S Debugger commands supported in remote debug mode........... 511

Specifying z/OS Debugger commands in launch configuration.......cceceevvciiiiviiinceeinieeeee e 513
Specifying the location of source, listing, or separate debug file in remote debug mode by using
ENVIFONMENT VATADLES. ... ittt st st s b s s e beesmeeeaneas 516
Appendix B. Changes in behavior of some commands.........cccceveiiuiinincncneceecnenne 517
Changes in the behavior introduced with Debug Tool for z/OS, Version 13.1......cccccecvvevviienriieencnennnns 517
Changes in the behavior introduced with Debug Tool for z/OS, Version 12.1, with the PTF for APAR
PM85967 for Enterprise COBOL for Z/OS VErsion 5.1.....cuiicciiieeiecciieeececiee e e ecreee e eereee e e eenreee e e 517
Changes in behavior introduced with Debug Tool for z/OS, Version 11.1.....cccccccvvvieeriieeniveenieeenieneens 518
Changes in behavior introduced with Debug Tool for z/OS, Version 10.1......ccccccevvieeriieenieeenieeensnneens 519
Changes in behavior introduced with Debug Tool for z/OS, Version 9.1, with the PTF for APAR
e N 7 BT oo 1Y RS 519
Appendix C. Support resources and problem solving information............c........... 521
Searching KNOWLEAEE DASES......uiiiiiiiiee ettt e s e e s bee s s be e e sbee e sbae s sabeeesanes 521
Searching IBM KNOWLEAZE CONTEN.c...uiiiiiiiiieeiteertte sttt sttt e s e s te e s s be e ssabe e s s baesssbaessasaeens 521
Searching product SUPPOIT OCUMENTS.....ciiiiiiiiieiieeeie ettt essaee e ssare e s sabeessseeesaeeen 521
LCT=Y AL 0T DT SRR 522
SUDSCIIDING t0 SUPPOIT UPAATES...iiiiiiiiiiiieiciieetee ettt et e s saee e st e e s aee e ssateesssbaesseeesanseess 522
RSS feeds and social media SUDSCIIPTIONS.......ciicciiiiei it e e e e e s e aaeee e 522
LY T 41 [or=Y o o [T 523
(0fo] a1 r- TordTaY =01 =1 BT U] o] o Yo o PR 523
Define the problem and determine the severity of the problem........cccoccoieiieciieiccceeee, 524
Gather diagnostiC INTOrMAtION.....iiiciiiiciee et e e s bt e s s bee s sbee s sabaeesanas 524
Submit the problem 10 IBM SUPPOIiiii ettt e e e e e e tree e s e e aaee e e s eensaeeeseennseeee s 525
Appendix D. AcCesSIibIlity...cccceiieiiniiiieiiiiiieiiiieiietiiieiitecietitasieceetestecsstessecassassnns 527
O] T T S AV (= Tod g a o] Ko == P 527
Keyboard navigation of the USEr iNtErfacCe.......ucuiiiiiiiiieec e 527
Accessibility Of thisS OCUMENT....cciieee e e e e ere e e s e raae e e seenraeeeeesnnteeeeean 527
NOTICES.cuuiiniiiiiiiiiirtirtcreicre ettt cr e ree e reetsreeserassseassseasssnsesensenansenes 529
(000] o)V 71 0 B LT ol=Y o 1 TR PR PRRPPPRRPPPROE 529
Programming interface iNformMation. ...t e s e s e 529
Trademarks and SEIrVICE MATKS.....ccuiiriieiieriieiie ettt ettt s e s e st e s b e e beeseeesbeesseeebeesmeesnreesneeens 530
GlOSSANY . cuiuuiuiiuieiieienteneetantenetassecastossssessssassassscassesssssssssasssssssassssassassssassassssassasas 531
=11 FT0 Y= - ¥] 1) 533
IBM Z/OS Debugger PUBLICAtIONS. .. .uiiiciiiiciee ettt ettt s et sstte e sie e s sbte e s bee e sbeeesbaeesbeeessneesans 533
High level language pUBLICAtIONS.ciii ittt et e e s ste e s steessseaesssseesnnes 533
=P 1 (= To J o 18] o] L Tot=1 o o |70 535

About this document

z/0S Debugger combines the richness of the z/OS environment with the power of Language Environment®
to provide a debugger for programmers to isolate and fix their program bugs and test their applications.
z/0OS Debugger gives you the capability of testing programs in batch, using a nonprogrammable terminal
in full-screen mode, or using a workstation interface to remotely debug your programs.

This document contains descriptions of the commands, functions, and variables available through z/0S
Debugger, as well as the messages that you might see as you use z/0OS Debugger. Many z/0OS Debugger
commands are similar to statements from the supported high-level languages (HLLs). This document
also describes the TEST runtime option, syntax elements that are common for all commands, and syntax
elements for expressions written in assembler, disassembly, and LangX COBOL.

Who might use this document

This document is intended for programmers using z/OS Debugger to debug high-level languages (HLLs)
with Language Environment and assembler programs either with or without Language Environment.
Throughout this document, the HLLs are referred to as C, C++, COBOL, and PL/I.

z/0OS Debugger runs on the z/0S operating system and supports the following subsystems:
« CICS®

« Db2°

« IMS

« JES batch

« TSO

« UNIX System Services in remote debug mode or full-screen mode using the Terminal Interface Manager
only

To use this document and debug a program written in one of the supported languages, you need to know
how to write, compile, and run such a program.

Accessing z/0S licensed documents on the Internet

z/0S licensed documentation is available on the Internet in PDF format at the IBM Resource Link® Web
site at:

http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to these documents
requires an IBM Resource Link user ID and password, and a key code. With your z/OS order you received a
Memo to Licensees, (GI10-8928), that includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/0S licensed documents unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

Printed licensed documents are not available from IBM.

© Copyright IBM Corp. 1992, 2021 xi

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

You can use the PDF format on either z/0S Licensed Product Library CD-ROM or IBM Resource Link to
print licensed documents.

How this document is organized

This document is divided into areas of similar information for easy retrieval of appropriate information.
The following list describes how the information is grouped:

Chapter 1 describes the syntax of the TEST runtime option.

Chapters 2, 3, 4, and 5 describe the complete syntax of the z/OS Debugger commands.
Chapter 6 describes the complete syntax of the EQAOPTS commands.

Chapters 7 and 8 describe the syntax of z/OS Debugger built-in functions and variables.

Chapters 9, 10, 11, 12, 13, 14, and 15 lists all the messages that z/OS Debugger and other tools
shipped with z/OS Debugger might display.

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511 has a list of
commands that are supported in remote debug mode. This topic also contains instructions on how you
can enter these commands.

Appendix B, “Changes in behavior of some commands,” on page 517 describes changes to default
behavior, including a comparison of the previous behavior and the new behavior, and with which version
and release of z/OS Debugger the change was introduced.

Appendix C, “Support resources and problem solving information,” on page 521 describes the resources
available to help you solve any problems you might have with z/OS Debugger.

Appendix D, “Accessibility,” on page 527 describes the features and tools available to people with
physical disabilities that help them use z/OS Debugger and z/OS Debugger documents.

The last several topics list notices, glossary of terms, and bibliography.

Terms used in this document

Because of differing terminology among the various programming languages supported by z/0OS
Debugger, as well as differing terminology between platforms, a group of common terms has been
established. The table below lists these terms and their equivalency in each language.

z/0S Debugger Cand C++ COBOL or LangX PL/I equivalent assembler
term equivalent COBOL equivalent
Compile unit Cand C++source Program . Program CSECT

file

« PL/I source file
for Enterprise
PL/I

« A package
statement or the
name of the main
procedure for
Enterprise PL/I%

Block Function or Program, nested Block CSECT
compound program, method
statement or PERFORM group

of statements

Label Label Paragraph name or Label Label

section name

Note:

xii IBM z/0S Debugger: Reference and Messages

1. The PL/I program must be compiled with and run in one of the following environments:

« Compiled with Enterprise PL/I for z/OS, Version 3.6 or later, and run with the following versions of
Language Environment:

— Language Environment Version 1.9, or later

— Language Environment Version 1.6, Version 1.7, or Version 1.8, with the PTF for APAR PK33738
applied
« Compiled with Enterprise PL/I for z/OS, Version 3.5, with the PTFs for APARs PK35230 and PK35489
applied and run with the following versions of Language Environment:

— Language Environment Version 1.9, or later

— Language Environment Version 1.6, Version 1.7, or Version 1.8, with the PTF for APAR PK33738
applied

z/OS Debugger provides facilities that apply only to programs compiled with specific levels of compilers.
Because of this, IBM z/0S Debugger Reference and Messages uses the following terms:

assembler
Refers to assembler programs with debug information assembled by using the High Level Assembler
(HLASM).

COBOL
Refers to the all COBOL compilers supported by z/OS Debugger except the COBOL compilers
described in the term LangX COBOL.

disassembly or disassembled
Refers to high-level language programs compiled without debug information or assembler programs
without debug information. The debugging support z/OS Debugger provides for these programs is
through the disassembly view.

Enterprise PL/I
Refers to the Enterprise PL/I for z/OS and 0S/390 and the VisualAge PL/I for 0S/390 compilers.

LangX COBOL
Refers to any of the following COBOL programs supported through use of the EQALANGX (or
IDILANGX) debug file:

» Programs compiled using the IBM 0S/VS COBOL compiler.

« Programs compiled using the VS COBOL II compiler with the NOTEST compiler option.

« Programs compiled using the Enterprise COBOL V3 and V4 compiler with the NOTEST compiler
option.

As you read through the information in this document, remember that 0S/VS COBOL programs are
non-Language Environment programs, even though you might have used Language Environment
libraries to link and run your program.

VS COBOL II programs are non-Language Environment programs when you link them with the non-
Language Environment library. VS COBOL II programs are Language Environment programs when you
link them with the Language Environment library.

Enterprise COBOL programs are always Language Environment programs. Note that COBOL DLL's
cannot be debugged as LangX COBOL programs.

Read the information regarding non-Language Environment programs for instructions on how to start
z/0OS Debugger and debug non-Language Environment COBOL programs, unless information specific
to LangX COBOL is provided.

PL/I
Refers to all levels of PL/I compilers. Exceptions will be noted in the text that describe which specific
PL/I compiler is being referenced.

About this document xiii

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that
may be contained within the diagrams (keywords, variables, delimiters, operators, fragment references,
operands) and provides syntax examples that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a
command statement. They are read from left to right and from top to bottom, following the main path of
the horizontal line.

Symbols

The following symbols may be displayed in syntax diagrams:
Symbol
Definition

Indicates the beginning of the syntax diagram.
Indicates that the syntax diagram is continued to the next line.
Indicates that the syntax is continued from the previous line.

_—

Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:

- Keywords - a command name or any other literal information.

« Variables - variables are italicized, appear in lowercase and represent the name of values you can
supply.

« Delimiters - delimiters indicate the start or end of keywords, variables, or operators. For example, a left
parenthesis is a delimiter.

« Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other
mathematical operations that may need to be performed.

- Fragment references - a part of a syntax diagram, separated from the diagram to show greater detail.

« Separators - a separator separates keywords, variables or operators. For example, a comma (,) is a
separator.

Keywords, variables, and operators may be displayed as required, optional, or default. Fragments,
separators, and delimiters may be displayed as required or optional.

Item type
Definition
Required
Required items are displayed on the main path of the horizontal line.

Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

Syntax examples

The following table provides syntax examples.

xiv IBM z/0S Debugger: Reference and Messages

Table 1. Syntax examples

Item

Syntax example

Required item.

Required items appear on the main path of the
horizontal line. You must specify these items.

»— KEYWORD — required_item -»«

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line.
You must choose one of the items in the stack.

»— KEYWORD T required_choicel

J-

required_choice2

Optional item.

»— KEYWORD >
Optional items appear below the main path of the L optional_item J
horizontal line.
Optional choice. »»— KEYWORD P
An optional choice (two or more items) appears in a optional_choicel
vertical stack below the main path of the horizontal))
line. You may choose one of the items in the stack. optional_choice2
Default. default_choicel
Default items appear above the main path of the »— KEYWORD I_ T »<
hor!zontal line. The remaujmg items (reqwre'd or optional_choice2
optional) appear on (required) or below (optional) the

main path of the horizontal line. The following example
displays a default with optional items.

optional_choice3

Variable.

Variables appear in lowercase italics. They represent
names or values.

»— KEYWORD — variable -»«

Repeatable item.

An arrow returning to the left above the main path
of the horizontal line indicates an item that can be
repeated.

A character within the arrow means you must separate
repeated items with that character.

An arrow returning to the left above a group of
repeatable items indicates that one of the items can
be selected, or a single item can be repeated.

»— KEYWORD L repeatable_item ln
»— KEYWORD L repeatable_item ln

Fragment.

The - fragment |—symbol indicates that a labelled
group is described below the main syntax diagram.
Syntax is occasionally broken into fragments if the
inclusion of the fragment would overly complicate the
main syntax diagram.

»— KEYWORD

fragment

»q

-

» , — required_choicel

f_ , — default_choice j
L , — optional_choice J

, — required_choice2

About this document xv

How to provide your comments

Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this document or any other z/OS Debugger documentation, you can leave a comment in
IBM Knowledge Center:

- IBM Developer for z/OS, IBM Debug for z/OS, and IBM Developer for z/OS Enterprise Edition: https://
www.ibm.com/support/knowledgecenter/SSQ2R2

« IBM Wazi Developer for Red Hat CodeReady Workspaces: https://www.ibm.com/support/
knowledgecenter/SSCH39

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

xvi IBM z/0S Debugger: Reference and Messages

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter/SSQ2R2
https://www.ibm.com/support/knowledgecenter/SSQ2R2
https://www.ibm.com/support/knowledgecenter/SSCH39
https://www.ibm.com/support/knowledgecenter/SSCH39

Summary of changes

14.2.6
« Debug Profile Service

— You now only need to expose one port to use Debug Profile Service. A new configuration switch is
added to eqaprof.env to select whether to use secure HTTP protocol. For more information, see
“Customizing with the sample job EQAPRFSU" in IBM z/0S Debugger Customization Guide.

14.2.5
« Debug Profile Service

— As an alternative of a keystore file, you can now use a RACF managed key ring to enable
secure communication with Debug Profile Service. For more information, see the "Enabling secure
communication with a RACF managed key ring" section in IBM z/0S Debugger Customization Guide.

— A new optional HOST attribute is added to the CICS region configuration. For more information, see
the instructions in the /etc/debug/dtcn.ports sample configuration file.

— The Debug Profile Service API now provides more detailed diagnostic messages when authentication
fails.

- IBM Z° Open Debug

— Log files can now be found in the user's home directory.

14.2.4
« Code coverage

— You can now also use Remote Debug Service to collect code coverage results similar to the headless
code coverage collector for IBM Wazi Developer for Red Hat® CodeReady Workspaces or IBM
Developer for z/OS Enterprise Edition. For more information, see the "Generating code coverage
in headless mode using Remote Debug Service" topic in IBM Documentation.

 Host configuration

— Remote Debug Service can now be configured to collect headless code coverage. For more
information, see the "Adding support for Remote Debug Service" section in IBM z/0S Debugger
Customization Guide.

14.2.3
- IBM Wazi for Red Hat CodeReady Workspaces

— z/0S Debugger is included as part of the new product IBM Wazi for Red Hat CodeReady Workspaces
and provides debug functions with the following clients:

- IBM Z Open Development Eclipse client
- Wazi Development, a set of Visual Studio Code extensions including IBM Z Open Debug

- IBM Developer for z/0S Enterprise Edition

— Starting from V14.2.3, IBM Developer for z/OS Enterprise Edition also offers Wazi Development, a set
of Visual Studio Code extensions including IBM Z Open Debug.

For a comparison of features provided in different products and clients, see Overview of IBM z/0S
Debugger.

The following updates are delivered with the Eclipse interface:

© Copyright IBM Corp. 1992, 2021 xvii

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/products/wazi-for-red-hat-codeready-workspaces
https://www.ibm.com/us-en/marketplace/developer-for-z-systems

« 2/0S Debugger Profiles view

— You can now export debug profiles in an export file, and import from a debug profile export file or a
workspace that was created with an older version of the product.

— Asearch field is added to display only the profiles that match your search text.

— More columns are now available. You can hide or display a column, modify the width of a column, and
reorder the columns.

— You can now return to the default order of the profiles by clicking the column header.
— You can now activate a non-CICS debug profile for code coverage.

— If Debug Manager is not available and the debug daemon is configured with a secured port, when you
activate a profile, the secured port is automatically detected.

For more information, see the "Managing debug profiles with the z/OS Debugger Profiles view" section
in IBM Documentation.

- 2/0S batch applications launches

— You can now view the batch job in the Remote Systems view.

— You can now select more than one step in the existing JCL to be augmented with debug or code
coverage options.

For more information, see the "Launching a debug session for z/OS Batch applications" section in IBM
Documentation.

- Debug preferences

— IBM z/0S Debugger preferences: You can now specify to inactivate the remote profiles when the
Remote System Explorer connection associated with the profiles disconnects so that the debugger
will not be triggered accidentally when you run applications that match the active profiles.

— Debug Daemon preferences: Instructions are added to set up a secure daemon connection.

For more information, see the "Setting debug preferences" topic in IBM Documentation.

The following features are delivered with the z/OS Debugger host component:
« CICS support

— Support is added for CICS Transaction Server for z/OS Version 5 Release 6.
« Compiler support

— In Debug Tool compatibility mode, support is added for TEST (SEPARATE (DSNAME) , SOURCE) in
Enterprise COBOL for z/OS Version 6 Release 2 with APAR PH04485 installed or later. Specify
TEST (SEPARATE (DSNAME) , SOURCE) to store the separate debug file name, which is the SYSDEBUG
DD data set name, in the program object. You will not need to specify the separate debug file
location if it is not moved after compilation. For more information, see the "Choosing TEST or NOTEST
compiler suboptions for COBOL programs" topic in IBM z/0S Debugger User's Guide.

14.2.2

The following changes were added for IBM z/OS Debugger Version 14.2.2.
The following updates are delivered with the Eclipse interface:

- z/0S Debugger Profiles view

— The z/0S Debugger Profiles view is added to create and manage CICS and non-CICS debug profiles.
The following profiles and launch configurations are migrated to this new view:

- DTCN profiles from the DTCN Local Profile view. The DTCN profiles are now called CICS profiles in
the client.

- DTSP profiles from the DTSP Local Profile view. The DTSP profiles are now called non-CICS profiles
in the client.

- Remote CICS Application launch configurations

xviii IBM z/0OS Debugger: Reference and Messages

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

- Remote Db2 Application launch configurations
- Remote IMS Application launch configurations

Edit the profiles to provide additional information that is required before you activate any profiles. For
more information, see the following topics in IBM Documentation: Working with the z/OS Debugger
Profiles view, Creating a debug profile for a CICS application, and Creating a debug profile for a
non-CICS application.

To use this view, system programmers need to configure the following services:

- Remote System Explorer from z/OS Explorer is required for z/OS connections.

- To enable all the features in the view for the best user experience, see the "Adding support for
Debug Profile Service and APIs" section in IBM z/0S Debugger Customization Guide. Use z/0S
Explorer host V3.1.1.23 or later with Debug Profile Service.

- For CICS users, also see the "Adding support for the DTCN profiles and APIs" section in IBM z/0S
Debugger Customization Guide.

— The DTCN and DTSP plug-ins are deprecated and will be removed in a future release.

- 2/0S batch applications launches
— MVS Batch Application launch configurations are replaced with z/OS Batch Application using property
groups and z/0S Batch Application using existing JCL launch configurations to simplify debugging
and running code coverage on batch applications on IBM Z. Any MVS Batch Application launch
configurations are automatically migrated to the appropriate new configuration types. You can use
debug profiles with z/OS Batch Application using existing JCL launch configurations.

For more information, see the "Launching a debug session for z/OS Batch applications" topic in IBM
Documentation.

z/0S Batch Application launch configurations require the Remote System Explorer from z/0OS
Explorer.

The following features are delivered with the z/OS Debugger host component:
« TEST runtime option

— A simple TEST runtime option now starts z/OS Debugger in delay debug mode under most conditions
for non-CICS tasks if the Debug Profile Service API is started. This option simplifies the debug setup
for batch jobs, IMS MPP regions, and WLM address spaces for Db2 stored procedures. For more
information, see the "Simple TEST options" topic in IBM z/0S Debugger User's Guide.

« Compiler support

— In Debug Tool compatibility mode, support is added for debugging COBOL programs that contain
dynamic length elementary items and compiled with Enterprise COBOL for z/OS Version 6 Release 3.
Dynamic length elementary items are not supported in standard mode.

« Documentation only updates

— Instructions are added for debugging non-Language Environment programs under IMS Batch
Terminal Simulator. For more information, see the "Debugging non-Language Environment IMS BTS
programs" topic in IBM z/0S Debugger User's Guide.

— Chapter 7, "Debug Manager (DBGMGR)" and Chapter 17, "Adding support for remote debug users"
are combined into Chapter 7, "Adding support for remote debug users" in IBM z/0S Debugger
Customization Guide.

14.2.1
The following changes were added for IBM z/OS Debugger Version 14.2.1.

« Compiler support

Summary of changes xix

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

— In Debug Tool compatibility mode, support is added for debugging COBOL programs that contain
fixed-length UTF-8 data items and compiled with Enterprise COBOL for z/OS Version 6 Release 3.
UTF-8 data items are not supported in standard mode.

Debug Manager

— Debug Manager and Remote System Explorer can use different chain certificates. If the different
certificates are of the same CA root, the Debug Manager certificate is regarded as trusted and
automatically accepted. Otherwise, the certificate is not regarded as trusted. In Debug Tool
compatibility mode, a window appears to ask you to import the certificate for Debug Manager.

Terminal Interface Manager

— Terminal Interface Manager now supports MFA-generated tokens and password phrases.

14.2.0
The following changes were added for IBM z/OS Debugger Version 14.2.0.

New support

— z/0S Version 2 Release 4

— Enterprise COBOL for z/OS Version 6 Release 3
— Enterprise PL/I for z/OS Version 5 Release 3
Product renaming

IBM Application Delivery Foundation for z Systems® is renamed as Application Delivery Foundation
for z/OS.

IBM Developer for z Systems Enterprise Edition is renamed as IBM Developer for z/OS Enterprise
Edition.

IBM Developer for z Systems is renamed as IBM Developer for z/OS.
IBM Debug for Systems is renamed as IBM Debug for z/0S.
IBM Debug for z/0S client installation

— In addition to using IBM Installation Manager, you can now install the IBM Debug for z/OS client with
Eclipse p2. For more information, see the "Installing the IBM Debug for z/OS client" topic in IBM
Documentation.

Debug Profile Service

— Debug Profile Service is a REST API that uses the HTTP protocol to provide RESTful access to a set
of resources related to debug profiles. You can use this service to create, retrieve, update and delete
debug profiles.

For more information about host configuration, see the "Adding support for Debug Profile Service and
APIs" section in IBM z/0S Debugger Customization Guide.

For more details about the API, see the "z/0S Debug Profile Service API" documentation in IBM
Documentation.

Section breakpoint support

— When you edit COBOL with the COBOL Editor or the z Systems LPEX Editor, a Toggle Section
Breakpoint action is available in the left ruler context menu of the editor and the context menu
for sections in the outline view. For more information, see the "Source entry breakpoints" topic in IBM
Documentation.

IMS Transaction Isolation facility

— IMS Transaction Isolation facility no longer accesses IMS ACB libraries. It has a simplified setup and
is compatible with ACB management by IMS Catalog. The setting of IMSISOORIGPSB in EQAOPTS
no longer has any effect and the original PSB is always preserved. For more information, see the
“Scenario F: Enabling the Transaction Isolation Facility" topic in IBM z/0S Debugger Customization
Guide.

xx IBM z/0S Debugger: Reference and Messages

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

— Instructions for using the IMS PSTOP command are added to end the wait state of the IMS region
when PWFI is used, so that you can continue with the program. For more information, see the "Using
IMS pseudo wait-for-input (PWFI) with IMS Transaction Isolation" topic in IBM z/0S Debugger User's
Guide.

Summary of changes xxi

xxii IBM z/0S Debugger: Reference and Messages

Overview of IBM z/0S Debugger

IBM z/OS Debugger is the next iteration of IBM debug technology on IBM Z and consolidates the IBM
Integrated Debugger and IBM Debug Tool engines into one unified technology. IBM z/0OS Debugger is
progressing towards one remote debug mode based on Debug Tool compatibility mode. In support of this
direction, Debug Tool compatibility mode, when available in the user interface, is selected by default for
V14.1.2 or later.

IBM z/0S Debugger is a host component that supports various debug interfaces, like the Eclipse and
Visual Studio Code IDEs. z/OS Debugger and the supported debug interfaces are provided with the
following products:

IBM Developer for z/OS Enterprise Edition
This product is included in IBM Application Delivery Foundation for z/OS. IBM Developer for z/0OS
Enterprise Edition provides all the debug features.

IBM Developer for z/OS Enterprise Edition currently provides debug functions in the following IDEs:

« IBM Developer for z/OS Eclipse
« Wazi Developer for VS Code, through IBM Z Open Debug

See Table 3 on page xxv for the debug features supported in different IDEs.

IBM Developer for z/0S
IBM Developer for z/OS is a subset of IBM Developer for z/OS Enterprise Edition. IBM Developer for
z/0S, previously known as IBM Developer for z Systems or IBM Rational® Developer for z Systems, is
an Eclipse-based integrated development environment for creating and maintaining z/OS applications
efficiently.

IBM Developer for z/OS includes all enhancements in IBM Developer for z/OS Enterprise Edition
except for the debug features noted in Table 2 on page xxiv.

IBM Debug for z/0S
IBM Debug for z/0S is a subset of IBM Developer for z/OS Enterprise Edition. IBM Debug for z/OS
focuses on debugging solutions for z/OS application developers. See Table 2 on page xxiv for the
debug features supported.

IBM Debug for z/OS does not provide advanced developer features that are available in IBM
Developer for z/OS Enterprise Edition.

For information about how to install the IBM Debug for z/OS Eclipse IDE, see Installation of
IBM Developer for z Systems and IBM Debug for z Systems (https://developer.ibm.com/mainframe/
2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/).

IBM Wazi Developer for Red Hat CodeReady Workspaces
IBM Wazi Developer for Red Hat CodeReady Workspaces is a single integrated solution, which delivers
a cloud-native developer experience for z/0OS. It enables application developers to develop and
test z/OS application components in a virtual z/OS environment on an OpenShift-powered hybrid
multicloud platform, and to use an industry standard integrated development environment (IDE) of
their choice.

IBM Wazi Developer for Red Hat CodeReady Workspaces currently provides debug functions in the
following IDEs:

« Wazi Developer for Workspaces, through IBM Z Open Debug
- Wazi Developer for VS Code, through IBM Z Open Debug
- Wazi Developer for Eclipse

See Table 2 on page xxiv and Table 3 on page xxv for the debug features supported in the product
and different IDEs.

Table 2 on page xxiv maps out the features that differ in products. Not all the available features are listed.
To find the features available in different remote IDEs, see Table 3 on page xxv.

© Copyright IBM Corp. 1992, 2021 xxiii

https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/products/app-delivery-foundation-on-zsystems
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/us-en/marketplace/debug-for-z-systems
https://developer.ibm.com/mainframe/2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/
https://developer.ibm.com/mainframe/2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/
https://www.ibm.com/products/wazi-developer

Table 2. Debug feature comparison

IBM Debug for
z/0S

IBM Developer for
z/0S

IBM Developer for
z/0S Enterprise
Edition

IBM Wazi
Developer for Red
Hat CodeReady
Workspaces

Main features

3270 interface,
including z/OS
Debugger Utilities

Eclipse IDE, see
Table 3 on page
xxv for feature
details.t

IBM Z Open Debug
provided with the
Wazi Developer
for Workspaces
IDE, see Table 3
on page xxv for
feature details.

IBM Z Open Debug
provided with the
Wazi Developer for
VS Code IDE, see
Table 3 on page
xxv for feature
details.

Code Coverage features

Compiled
Language Code
Coverage

)

Headless Code
Coverage

Java™ Code
Coverage

ZUnit Code
Coverage3

z/0S Debugger
Code Coverage
(3270 and remote
interfaces) 4

3270 features

z/0S Debugger full
screen, batch or
line mode

IMS Isolation
support

Compiler support features

xxiv IBM z/0S Debugger: Reference and Messages

Table 2. Debug feature comparison (continued)

IBM Wazi
IBM Developer for | Developer for Red
IBM Debug for IBM Developer for |z/OS Enterprise Hat CodeReady
z/0S z/0S Edition Workspaces
Assembler Vv v Vv
support: Create
EQALANGX files
Assembler v v Ve Ve
support:
Debugging °
LANGX COBOL v v v
support 7
Support for Vv Vv Vv
Automatic Binary
Optimizer (ABO)
Load Module v v
Analyzer
Notes:

1. The following features are supported only in the standard mode of a remote Eclipse IDE:

« Support for 64 bit Enterprise PL/I for z/OS Version 5
« Support for 64 bit C/C++ feature of z/OS
» Source view for COBOL V6.2 and later

2. IBM Developer for z/OS includes z/OS Debugger remote debug and compiled code coverage Eclipse
interface, but does not include z/OS Debugger Code Coverage.

3. ZUnit Code Coverage is only supported in Debug Tool compatibility mode.
4. z/OS Debugger Code Coverage can only be enabled in the 3270 interface.

5. Debugging assembler requires that you have EQALANGX files that have been created via ADFz
Common Components or a product that ships the ADFz Common Components.

6. This feature is only available with the Eclipse IDE.
7. LANGX COBOL refers to any of the following programs:
« A program compiled with the IBM OS/VS COBOL compiler.
« A program compiled with the IBM VS COBOL II compiler with the NOTEST compiler option.

« A program compiled with the IBM Enterprise COBOL for z/OS Version 3 or Version 4 compiler with
the NOTEST compiler option.

Table 3. Remote IDE debug feature comparison

Feature Eclipse-based debug interface |IBM Z Open Debug 1
Debug Tool compatibility mode2 | v v

Standard mode3 VA

Integration with Language « COBOL Editor® « Z Open Editor
Editors

- PL/I Editor®
« Remote C/C++ Editor®2
« System z LPEX Editor42

Overview of IBM z/0S Debugger xxv

Table 3. Remote IDE debug feature comparison (continued)

Feature Eclipse-based debug interface |IBM Z Open Debug 1
Visual Debug V&
Debugging ZUnit tests Ve
Debug profile management VA4 v
IMS Isolation UI v?
Integration with CICS Explorer Va5
views
Integration with property groups |v2
Team Debug support V45,
Integrated launch « z/0S UNIX Application launch
configuration
- z/0S Batch Application using
existing JCL
« z/0OS Batch Application using a
property group2
Debug Tool Plug-ins v4 8
Modules v
Memory v
Program navigation
Step over/Next v v
Step into/Step in v
Step return/Step out v
Jump to location v
Run to location/Run to cursor Vv
Resume/Continue v v
Terminate v
Animated step v
Playback v
Breakpoints
Line/statement breakpoints Vv i
Entry breakpoints v
Source entry breakpoints v
Event breakpoint v
Address breakpoint v
Watch breakpoint v
Variables & Registers
Variables v v

xxvi IBM z/0S Debugger: Reference and Messages

Table 3. Remote IDE debug feature comparison (continued)

Feature Eclipse-based debug interface |IBM Z Open Debug 1

Registers \ V2

Modifying variable and register v v
values

Setting variable filter

Changing variable representation

Dereferencing variables

Displaying in memory view

< | < <<

Monitors

Displaying monitor

Modifying monitor value

Changing variable representation

Dereferencing variables

<< <<

Debug Console

Evaluating variables and Vv
expressions

z/0S Debugger commands v

Notes:

1.
2.
3.

0 3 o o b

IBM Z Open Debug is provided with Wazi Developer for Workspaces and Wazi Developer for VS Code.
Debug Tool compatibility mode does not support 64-bit programs.

The following features are supported only in standard mode:

« Support for 64 bit Enterprise PL/I for z/OS Version 5

» Support for 64 bit C/C++ feature of z/OS

 Source view for COBOL V6.2 and later

. This feature is not available in Wazi Developer for Eclipse.

. This feature is not available in IBM Debug for z/0S.

. Debugging ZUnit tests is only supported in Debug Tool compatibility mode.

. This feature is only available in IBM Developer for z/OS Enterprise Edition.

. IBM Developer for z/OS includes Debug Tool plug-ins, but does not include Load Module Analyzer and

z/0OS Debugger Code Coverage 3270 interfaces.

. Registers are available in the Variables view.

Overview of IBM z/0S Debugger xxuvii

xxviii IBM z/0OS Debugger: Reference and Messages

Chapter 1. z/0S Debugger runtime options

This topic describes the runtime options that you can use to control the operation of z/OS Debugger.

"Table 10" in the IBM z/0S Debugger User's Guide describes most of the methods you can use to specify
the TEST runtime options. Use that table with the information in the topic "Planning your debug session"
in IBM z/0S Debugger User's Guide to select the method that works best for your site.

Some methods use the standard Language Environment runtime options. Other methods use z/0S
Debugger keyword options with the same syntax and semantics as the corresponding Language
Environment option. In all cases, you can omit these options if the default values are acceptable.

When you specify runtime options for a Language Environment program, they are handled by Language
Environment and the following rules apply:

 You can mix them with other Language Environment runtime options in any order.
« Separate them with either blanks or commas.
 Separate all runtime options from user-program options with a slash ('/").

« The placement of these options (before or after the slash) depends on the programming language of the
MAIN routine.

When you specify runtime options for a non-Language Environment program by using EQANMDBG under
z/0S batch or TSO, z/0OS Debugger processes the options and the following rules apply:

« You must specify the name of the program to be debugged as the first parameter; this is a positional
parameter.

« Specify the runtime options in any order following the name of the program to be debugged.
« Separate all options with commas.

« Separate the runtime options from user-program options with a slash ('/*). If you do not specify any
runtime options, the slash follows the name of the program.

« Specify any parameters to the user-program after the slash.
- If no user-program parameters are required, you can omit the slash.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Planning your debug session" in IBM z/0S Debugger User's Guide

Related references
z/0S Language Environment Programming Reference

Non-Language Environment positional parameter

If you use EQANMDBG to start z/OS Debugger to debug MVS batch or TSO programs that do not run
in Language Environment, the first positional parameter must be the name of the program you want to
debug. This name must be immediately followed by one of the following options:

« one or more of the z/OS Debugger keyword runtime options described in the following sections of this
chapter and then a slash ('/") and any user-program parameters

« aslash ('/') and any user-program parameters
If no user-program parameters are required, the slash is optional.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Planning your debug session" in IBM z/0S Debugger User's Guide.

© Copyright IBM Corp. 1992, 2021 1

COUNTRY runtime option

Use the COUNTRY option to specify the country code to be used by z/OS Debugger. The default is always
us.

The syntax for this option is:

»— COUNTRY — (— country code —) -»«

country_code
A valid country code, one of:

us
United States of America

JP
Japan

NATLANG runtime option

Use the NATLANG option to specify the desired national language for z/OS Debugger. This determines the
language that is used to display z/OS Debugger output, such as messages. If you do not specify NATLANG,
the installation default is used.

The syntax for this option is:

»— NATLANG — (— language Id —) >«

language_Id
A valid national language identifier, one of:

ENU
English

UEN
Upper-case English

JPN
Japanese

KOR
Korean

If you set NATLANG to JPN or KOR and you are using full-screen mode, enter the SET DBCS ON
command so that z/OS Debugger displays messages in the correct format.

NONLESP runtime option

Use the NONLESP option to direct z/OS Debugger to use a different storage subpool for its storage, in
cases where the program being debugged does a FREEMAIN of subpool 1 (where z/OS Debugger places

its data by default).

The syntax for this option is:
»— NONLESP — (— n—) >«

n
An integer with a value between 2 and 127

TEST runtime option

The TEST runtime option gives control of your program to z/OS Debugger.

2 IBM z/0S Debugger: Reference and Messages

This topic describes the TEST runtime option and its suboptions. The suboptions of the TEST runtime
option control how, when, and where z/OS Debugger gains control of your program. For a description of
how to specify the TEST runtime option, refer to "Planning your debug session" in the IBM z/0S Debugger
User's Guide.

Syntax of the TEST runtime option

For examples of using the TEST runtime option to illustrate runtime options available for your programs,
see the "Example: TEST runtime options" topic in IBM z/0S Debugger User's Guide.

You can combine any of the suboptions for the TEST runtime option but only in the order specified by the
TEST syntax. Any option or suboption referred to as "default" is the IBM-supplied default, and might have
been changed by your system administrator during installation.

The syntax for this option is:
NOTEST T
»L TEST >
L (»)_J

» »d

1 ,)
prompt_level preferences_file

test_level
ALL

ERROR
NONE

commands_file

[|

M——-—— NULLFILE ———

»d
1|

¥

M— commands_file_designator —

~—— VADSCP nnnnn ——

prompt_level

ﬁ PROMPT ﬁ

M——-—— NOPROMPT ——

¥

’

*
H
— “gm:ndl nw__J

preferences_file

Chapter 1. z/OS Debugger runtime options 3

% terminal _id

L network_identifier — J

— %

VTAM_LU id —

¥
v

VTAM% user id

%8001
DIRECT& —— fcpip_id f_ j
L %port_id J

1
—— TCPIP& ——

— VADTCPIP& 1)

DBM : J
L DBMDT —J L %user_id J
ﬁ INSPPREF ﬁ
»<

M————— NULLFILE —

Y

M preferences_file _designator —

. * J

Notes:
1 Specifies remote debug mode.
The following list explains what actions are taken by each option and suboption.

NOTEST
Specifies that z/OS Debugger is not started at program initialization. However, Starting z/OS Debugger
is still possible through the use of CEETEST, PLITEST, or the __ctest () function. In such a case,
the suboptions specified with NOTEST are used when z/OS Debugger is started.

TEST
Specifies that z/OS Debugger is given control according to the specified suboptions. The TEST
suboptions supplied are used if z/OS Debugger is started with CEETEST, PLITEST, or __ctest().

If z/OS Debugger is started by using CALL CEETEST (or an equivalent entry), you cannot debug
higher-level non-Language Environment programs or intercept non-Language Environment events
that occur in higher-level programs after you return from the program that started z/OS Debugger.

test_level:

ALL (or blank)
Specifies that the occurrence of an attention interrupt, ABEND of a program, or any program or
Language Environment condition of Severity 1 and above causes z/OS Debugger to gain control,
regardless of whether a breakpoint is defined for that condition.

When a FINISH, CEE066 or CEEOQ67 thread termination condition is raised by Language Environment,
z/0OS Debugger can be prevented from stopping at this condition by specifying the EQAOPTS
THREADTERMCOND command. You or your system administrator can specify this command by creating
an EQAOPTS load module or providing the command at run time.

If a condition occurs and a breakpoint exists for the condition, the commands specified in the
breakpoint are executed. If a condition occurs and a breakpoint does not exist for that condition,
or if an attention interrupt occurs, z/OS Debugger does the following:

« In full-screen mode, z/OS Debugger reads commands from a commands file (if it exists and is
available) or prompts you for commands.

4 IBM z/OS Debugger: Reference and Messages

 In batch mode, z/OS Debugger reads commands from the commands file. If none is available, the
program runs uninterrupted.

ERROR
Specifies that only the following conditions cause z/OS Debugger to gain control without a user-
defined breakpoint.

« For Cand C++:

An attention interrupt

Program termination

A predefined Language Environment condition of Severity 2 or above
Any C and C++ condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.
- For COBOL:

— An attention interrupt

— Program termination

— A predefined Language Environment condition of Severity 2 or above.
« For PL/I:

— An attention interrupt
— Program termination
— A predefined Language Environment condition of Severity 2 or above.

If a breakpoint exists for one of the above conditions, commands specified in the breakpoint are
executed. If no commands are specified, z/OS Debugger reads commands from a commands file or
prompts you for them in interactive mode.

NONE
Specifies that z/OS Debugger gains control from a condition only if a breakpoint is defined for that
condition. If a breakpoint exists for the condition, the commands specified in the breakpoint are
executed. An attention interrupt does not cause z/OS Debugger to gain control unless z/OS Debugger
was started. To change the TEST level after you start your debug session, use the SET TEST
command.

commands_file:

* (or blank)
Indicates that you did not supply a commands file.

In the following situation, z/OS Debugger reads commands from a default user commands file:

« You or your site specify a default naming pattern, through the EQAOPTS COMMANDSDSN command,
identifying a user commands file.

« The user commands file exists.
« The user commands file contains a member with a name that matches the initial load module name
of the first enclave.

If you or your site do not specify the name of a default user commands file or that file does not exist,
and you are debugging in line mode, z/OS Debugger reads commands from the terminal.

To learn how to supply the EQAOPTS COMMANDSDSN command, see Chapter 6, “EQAOPTS
commands,” on page 285.

NULLFILE
Indicates that you did not supply a commands file and z/OS Debugger ignores any specification of
the EQAOPTS COMMANDSDSN command. If you are debugging in line mode, z/OS Debugger reads
commands from the terminal.

commands_file_designator
Valid designation for the primary commands file. A commands file is used instead of the terminal as
the initial source of commands, and only after the preferences file, if specified, is processed.

Chapter 1. z/OS Debugger runtime options 5

If the designation contains non-alphanumeric characters (for example, a parenthesis), the designation
must be enclosed in either quotation marks (") or apostrophes ('). However, when a data set name

is enclosed in quotation marks or apostrophes, z/OS Debugger still considers the data set name a
partially-qualified data set name and prefixes the user ID to form the fully-qualified data set name.

The commands_file_designator has a maximum length of 80 characters.

If the specified DD name is longer than eight characters, it is automatically truncated. No error
message is issued.

The primary commands file is required when you debug in batch mode. z/OS Debugger reads and
executes commands listed in the commands file until the file runs out of commands or the program
finishes running. You can use a log file from one z/OS Debugger session as the commands file for a
subsequent z/OS Debugger session.

The primary commands file is shared across multiple enclaves.

VADSCPnnnnn
Specifies a CCSID (Coded Character Set Identifiers) to use when you are debugging programs in
remote debug mode and the source or compiler use a code page other than 037.

If your C/C++ source contains square brackets or other special characters, you might need to specify
the VADSCPnnnnn suboption to override the z/OS Debugger default code page (037). Consult with
your system programmer to determine if he implemented the CODEPAGE option to specify a code
page of 1047. If not, check the code page specified when you compiled your source. The C/C++
compiler uses a default code page of 1047 if you do not explicitly specify one. If the code page used is
1047 or a code page other than 037, you need to specify the VADSCPnnnnn suboption specifying that
code page.

The following examples show how to use VADSCPnnnnn:
« For Japanese EBCDIC CCSID 930

TEST(ALL,VADSCP930, , TCPIP&9.10.11.12%8001:*)
« For Japanese EBCDIC CCSID 939

TEST(ALL,VADSCP939, , TCPIP&9.10.11.12%8001:*)
» For German EBCDIC CCSID 1141

TEST(ALL,VADSCP1141, , TCPIP&9.10.11.12%8001:*)
+ For Korean EBCDIC CCSID 933

TEST (ALL,VADSCP933, , TCPIP&9.10.11.129%8001: %)

If a CODEPAGE option exists, the code page specified in the CODEPAGE option overrides the CCSID
specified in VADSCPnnnnn.

If neither the CODEPAGE option or the VADSCPnnnnn option are specified, the default code page is US
code page (037).

prompt_level:

PROMPT (or ; or blank)
Indicates that you want z/OS Debugger started immediately after Language Environment initialization.
Commands are read from the preferences file and then any designated primary commands file. If
neither file exists, commands are read from your terminal or workstation.

NOPROMPT (or *)
Indicates that you do not want z/OS Debugger started immediately after Language Environment
initialization. Instead, your application begins running. When z/OS Debugger is running without the

6 IBM z/0S Debugger: Reference and Messages

Language Environment run time (started by using EQANMDBG), the NOPROMPT option is ignored;
PROMPT is always in effect.

If you specify the NOPROMPT suboption, you cannot debug higher-level non-Language Environment
programs or intercept non-Language Environment events that occur in higher-level programs after you
return from the program that started z/OS Debugger.

command
One or more valid z/OS Debugger commands. z/OS Debugger is started immediately after program
initialization, and then the command (or command string) is executed. The command string can
have a maximum length of 250 characters, and must be enclosed in quotation marks ("). Multiple
commands must be separated by a semicolon.

If you include a STEP command or GO command in your command string, none of the subsequent
commands are processed.

The use of acommand in prompt_level is not supported in remote debug mode.
preferences_file:

MFI (Main Frame Interface)
Specifies z/OS Debugger should be started in full-screen mode for your debug sessions.

terminal_id (CICS only)
Specifies up to a four-character terminal id to receive z/OS Debugger screen output during dual
terminal session. The corresponding terminal should be in service and acquired, ready to receive z/0S
Debugger-related I/0.

network_identifier (full-screen mode using a dedicated terminal without Terminal Interface Manager
only)
Specifies an optional 1-8 character network name that identifies the network in which the partner LU,
identified by the VTAM_LU_Id parameter, resides.

VTAM_LU_id (full-screen mode using a dedicated terminal without Terminal Interface Manager only)
Specifies up to an eight-character VTAM® logical unit (LU) identifier for a terminal used in full-screen
mode using a dedicated terminal without Terminal Interface Manager. The VTAM_LU_id parameter
cannot be used to debug CICS applications. Contact your system programmer to determine how to
access this type of terminal LU at your site.

VTAM (full-screen mode using the Terminal Interface Manager only)
Specifies z/OS Debugger should be started in full-screen mode using the Terminal Interface Manager
for your debug sessions and that you have used the z/OS Debugger Terminal Interface Manager.

user_id (full-screen mode using the Terminal Interface Manager only)
Specifies the user ID that you used to log on to the z/OS Debugger Terminal Interface Manager.
Contact your system programmer to determine how to access this type of terminal at your site.

INSPPREF (or blank)
The default DD name, supplied by z/OS Debugger, for the preferences file.

In the following situation, z/OS Debugger reads commands from a default user preferences file:

« You specify INSPPREF or leave it blank, but do not allocate the DD name.

« You or your site specify a default naming pattern, through the EQAOPTS PREFERENCESDSN
command, identifying a user preferences file.

« The user preferences file exists.

Any preferences file you or your site specifies to z/OS Debugger becomes the first source of z/0OS
Debugger commands after z/OS Debugger is started. Use preferences files to set up the z/OS
Debugger environment; for example, PF key assignments or screen layout.

preferences_file_designator
A valid DD name or data set designation specifying the preferences file to use.

This file is read the first time z/OS Debugger is started and must contain a sequence of z/OS Debugger
commands to be processed.

Chapter 1. z/OS Debugger runtime options 7

The designation can be either a DD name or a data set name. z/OS Debugger uses the following
procedure to determine if the designation is a DD name or data set name:

« If the designation does not contain periods (.), z/OS Debugger considers it a DD name.

« Otherwise, if you are running under CICS, z/OS Debugger considers it a fully-qualified data set
name.

« Otherwise, z/OS Debugger considers it a partially-qualified data set name and prefixes it with the
user ID to form the fully-qualified data set name. If you want z/OS Debugger to interpret the data
set name as a fully-qualified name, put a minus sign (-) in front of the name. In this case, z/0S
Debugger does not append the user ID to the data set name.

If the designation contains non-alphanumeric characters (for example, a parenthesis), the designation
must be enclosed in either quotation marks (") or apostrophes ('). However, when a data set name

is enclosed in quotation marks or apostrophes, z/OS Debugger still considers the data set name a
partially-qualified data set name and prefixes the user ID to form the fully-qualified data set name.

Specifies that you did not supply a preferences file.

If you or your site specifies a naming pattern, through the EQAOPTS PREFERENCESDSN command,
identifying a user preferences file, z/OS Debugger reads commands from that file.

To learn how to supply the EQAOPTS PREFERENCESDSN command, see Chapter 6, “EQAOPTS
commands,” on page 285.

NULLFILE
Indicates that you did not supply a preferences file and z/OS Debugger ignores any specification of the
EQAOPTS PREFERENCESDSN command.

The following TEST suboptions are for remote debug mode and code coverage:

DIRECT&, TCPIP&, or VADTCPIP&
Specifies that z/OS Debugger starts in remote debug mode with a client.

Use DIRECT& to start the debugger in standard mode. Use TCPIP& or VADTCPIP& to start the
debugger in Debug Tool compatibility mode.

Notes:

1. IBM Wazi Developer for Red Hat CodeReady Workspaces can only be used in Debug Tool
compatibility mode.

2. Standard mode does not support commands files or preferences files. If they are specified, they
are ignored.

tepip_id
TCP/IP name or address where the remote debug daemon is running, in one of the following formats:
IPv4

You can specify the address as a symbolic address, such as some . name. com, or a numeric
address, suchas 9.112.26.333.

IPv6
You must specify the address as a numeric address, such as 1080:0:FF::0970:1A21.
%port_id
Specifies a unique TCP/IP port on your workstation that is used by the remote debug daemon. The
default port number is 8001.

If you changed the default TCP/IP port settings used by the remote debugger client, you must
specify the new number as the port ID in your TEST runtime options string. For example,

if you changed the default TCP/IP port to 8003, your TEST runtime options string would be
TEST(ALL, '+«',PROMPT, 'TCPIP&9.112.26.333%8003:").

8 IBM z/0S Debugger: Reference and Messages

DBM and DBMDT
Specifies that z/OS Debugger uses the Debug Manager to automatically determine the client IP and
port number to connect to when you start remote debug mode with one of the remote debuggers
listed previously under DIRECT&, TCPIP& or VADTCPIP&.

Use DBM to start the debugger in standard mode. Use DBMDT to start the debugger in Debug Tool
compatibility mode.
Notes:

- DBM and DBMDT are only supported with Eclipse clients.

« Standard mode does not support commands files or preferences files. If they are specified, they are
ignored.

« Standard mode is not supported in IBM Wazi Developer for Red Hat CodeReady Workspaces.

Before you start z/OS Debugger with DBM or DBMDT TEST runtime parameters, you must log on to the
host via the Remote System Explorer (RSE) in IBM Explorer for z/OS.

You can start a debug session only when Debug Manager and RSE both run in secured mode or
unsecured mode. To establish a secured connection between Debug Manager and RSE, they need to
use the same certificates or different chained certificates of the same CA root. Otherwise, you need
to import the certificates that are regarded as untrusted. For more information, see the "Encrypted
communication with Debug Manager" topic in IBM Knowledge Center.

user_id
Optionally specifies a user ID for routing the debug session. By default the same user ID as the job
launching or running the debug session is assumed.

Usage notes

- If the code page is not specified correctly or the conversion images are not available in the system, the
default code page (00037) is used for the debug session.

- If the code page is specified correctly and the conversion images are available in the system, but the
string conversion is not successful, default code page (00037) is used for this conversion.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
z/0S Language Environment Debugging Guide

Related tasks
IBM z/0S Debugger User's Guide

TRAP runtime option

Use the TRAP option to specify how z/OS Debugger handles ABENDs and program interrupts.

The syntax for this option is:

ON
»— TRAP — (I_OFFT) >

ON
Enable z/OS Debugger to trap ABENDs.

OFF
Prevent z/OS Debugger from trapping ABENDs; an ABEND causes abnormal termination of both z/0OS
Debugger and the program under test.

Chapter 1. z/OS Debugger runtime options 9

https://www.ibm.com/support/knowledgecenter

10 IBM z/OS Debugger: Reference and Messages

Chapter 2. Common syntax elements in z/0S
Debugger commands

Several syntax elements are used in multiple z/OS Debugger commands. These elements are described in
the following topics. Some of these syntax elements are generic and do not require a syntax diagram.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“block_name” on page 11
“block_spec” on page 12
“compile_unit_name” on page 13
“cu_spec” on page 13
“expression” on page 14
“load_module_name” on page 14
“load_spec” on page 15
“offset_spec” on page 15
“references” on page 15
“statement_id” on page 16
“statement_id_range and stmt_id_spec” on page 16
“statement_label” on page 17

address

A hexadecimal address for a location in memory. An address can contain up to 16 hexadecimal digits.
If address contains more than 8 significant hexadecimal digits, z/OS Debugger assumes that address
references 64-bit addressable storage. If address contains 7 or 8 significant hexadecimal digits, z/OS
Debugger assumes that address references 31-bit addressable storage. Otherwise, z/OS Debugger
assumes address references 24-bit addressable storage.

References to code (instructions) and save areas can contain no more than 8 significant hexadecimal
digits.

address must have one of the following formats:

« For all programming languages, x or X followed by apostrophes (') surrounding the hexadecimal value.
« For C, Ox preceding the hexadecimal value.

» For COBOL, H followed by apostrophes (') or quotation marks (") surrounding the hexadecimal value.

For COBOL or LangX COBOL, X followed by apostrophes (') or quotation marks (") surrounding the
hexadecimal value.

« For PL/I, the hexadecimal value surrounded by apostrophes (') or quotation marks ("), followed by PX.

« For assembler or disassembly, X followed by apostrophes (') or quotation marks (") surrounding the
hexadecimal value.

block_name

A block_name identifies:

« A C and C++ function or a block statement
« A COBOL nested program or method contained within a complete COBOL program
« APL/I block

The current block qualification can be changed by using the SET QUALIFY BLOCK command.

© Copyright IBM Corp. 1992, 2021 11

« For C++ only:
Include full declaration in block qualification.
« For COBOL only:

Enclose the block name in quotation marks (") or apostrophes () if it is case sensitive. If the name is
not inside quotation marks or apostrophes, z/OS Debugger will convert the name to uppercase.

If a name contains an internal quotation mark ("), you should enclose the name in apostrophes (').
Similarly, if the name contains an internal apostrophe ('), you should enclose the name in quotation
marks (").

You can use block_name only for blocks known in the current enclave.

block_spec

A block_spec identifies a block in the program being debugged.

S

block_name L _J
%BLOCK _J > — block_name

cu_spec L :> — block_name

block_name

Name of the block. See “block_name” on page 11.
%BLOCK

Represents the currently qualified block. See Chapter 8, “z/0S Debugger variables,” on page 331.
cu_spec

A valid compile unit specification; see “cu_spec” on page 13.

You can use block_name only for blocks known in the current enclave.
« For C++ only:
— Block_spec must include the formal parameters for the function. The correct block qualification is:

int function(int, int) is function(int, int)

— Use Describe CUS to determine correct block_spec for blocks known in the current enclave.
Refer to the following topics for more information related to the material discussed in this topic.

Related references

“block_name” on page 11

Chapter 8, “z/0OS Debugger variables,” on page 331
“cu_spec” on page 13

condition

A simple relational condition. Particular rules for forming the relational condition depend on the current
programming language setting.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Allowable comparisons for the IF command (COBOL)” on page 131

12 IBM z/OS Debugger: Reference and Messages

compile_unit_name

A compile_unit_name identifies any of the following items:

An assembler CSECT name

A C or C++ source file

A LangX COBOL program

A COBOL program

The external procedure name of a PL/I for MVS program

The package statement or the name of the main procedure, for an Enterprise PL/I program compiled
with one of the following compilers and running in the following environment:

— Enterprise PL/I for z/OS, Version 3.6 or later
— Enterprise PL/I for z/OS, Version 3.5 with the PTFs for APARs PK35230 and PK35489 applied
— Language Environment Version 1.6 through 1.8 with the PTF for APAR PK33738 applied, or later

The name of the source file, for an Enterprise PL/I program compiled with a compiler earlier than
Enterprise PL/I for z/OS, Version 3.5 with the PTFs for APARs PK35230 and PK35489 applied.

For C and C++ only:

— The compile unit name must always be enclosed in quotation marks ("). For example, the following
statement is ambiguous because the compile unit and a function in that compile unit have the same
name:

LIST CU2:>CU2:>varl

To avoid the ambiguity, use the following statement to list the value of the variable varl correctly
scoped to the function CU2:

LIST "CU2":>CU2:>varl
— Escape sequences in compile unit names that are specified as strings are not processed if the string

is part of a qualification statement.
For COBOL only:

Enclose the compile unit name in quotation marks (") or apostrophes (') if it is case sensitive. If
the name is not inside quotation marks (") or apostrophes ('), z/OS Debugger converts the name to
uppercase.

For Enterprise PL/I only:

— The compile unit name must be enclosed in quotation marks (") or apostrophes ('). If your program
was compiled with one of the following compilers and is running in the following environment, you do
not need to enclose the compile unit name in quotation marks (") or apostrophes ('):

- Enterprise PL/I for z/OS, Version 3.6 or later
- Enterprise PL/I for z/OS, Version 3.5, with the PTFs for APARs PK35230 and PK35489 applied
- Language Environment Version 1.6 through 1.8 with the PTF for APAR PK33738 applied, or later

If the compile unit name is not a valid identifier in the current programming language, it must be entered
as a character string constant in the current programming language.

The current compile unit qualification can be changed using the SET QUALIFY CUcommand.

cu_spec

A cu_spec identifies a compile unit in the application being debugged. In PL/I, the compile unit name is
the same as the outermost procedure name in the program.

Chapter 2. Common syntax elements in z/OS Debugger commands 13

¥

L J compile_unit_name —»«
load_spec — >

%CU

~ %PROGRAM 7

If cu_spec is omitted, the current load module qualification is used.
compile_unit_name
The name of the compile unit, depending on the programming language. See “compile_unit_name” on
page 13.
load_spec
The name of the load module. See “load_spec” on page 15.
%CU
Represents the currently qualified compile unit. %CU is equivalent to %PROGRAM.

%PROGRAM
Is equivalent to %CU.

You can use cu_spec to specify compile units only in an enclave that is currently running. Therefore, you
can qualify only variable names, function names, labels, and statement_ids to blocks within compile units
in the current enclave.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“load_spec” on page 15

“compile_unit_name” on page 13

Chapter 8, “z/0S Debugger variables,” on page 331

expression

An expression is a combination of references and operators that result in a value. For example, it can

be a single constant, a program, session, or z/OS Debugger variable, a built-in function reference, or a
combination of constants, variables, and built-in function references, or operators and punctuation (such
as parentheses).

Particular rules for forming an expression depend on the current programming language setting and what
release level of the language run-time library under which z/OS Debugger is running. For example, if

you upgrade your version of the HLL compiler without upgrading your version of z/OS Debugger, certain
application programming interface inconsistencies might exist.

You can use expressions for only variables contained in the current enclave.
Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15

load_module_name

A load_module_name is the name of a file, object, or dynamic link library (DLL) that has been loaded by a
supported HLL load service or a subsystem. For example, an enclave can contain load modules, which in
turn contain compile units.

For C, escape sequences in load module names that are specified as strings are not processed if the string
is part of a qualification statement.

If the load_module_name is omitted from a name that allows it as a qualifier, the current load module
qualification is assumed. The load_module_name can be changed by using the SET QUALIFY LOAD
command.

14 IBM z/OS Debugger: Reference and Messages

If two enclaves contain duplicate modules, references to compile units in the modules will be ambiguous,
and will be flagged as errors. However, if the compile unit is in the currently executing load module, that

load module is assumed and no check for ambiguity will be performed. Therefore, for z/OS Debugger, load
module names must be unique.

load_spec

A load_spec identifies a load module in the program being debugged.
»T load_module_name TN
%LOAD

The load_spec can be specified as a string constant in the current programming language, for example, a
string literal in C or a character literal in COBOL. If not specified as such, it must be a valid identifier in the
current programming language.

load_module_name
Name of a file, object, or Dynamic Link Library (DLL) that has been loaded by a supported HLL load
service, or a subsystem. See “load_module_name” on page 14.

%LOAD
Represents the currently qualified load module.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“load_module_name” on page 14
Chapter 8, “z/0OS Debugger variables,” on page 331

offset_spec

An offset_spec identifies an offset specification.

»- X'offset' >«
%lock_spec j— D> —J
cu_spec
offset
A hexadecimal offset in the disassembly view as displayed in the Source window prefix area.

Refer to the following topics for more information related to the material discussed in this topic.
Related references
“block_spec” on page 12
“cu_spec” on page 13

references

A reference is a subset of an expression that resolves to an area of storage, that is, a possible target

of an assighment statement. For example, it can be a program, session, or z/OS Debugger variable, an
array or array element, or a structure or structure element, and any of these can be pointer-qualified (in
programming languages that allow it). Any identifying name in a reference can be optionally qualified by
containing structure names and names of blocks where the item is visible. It is optionally followed by
subscript and substring modifiers, following the rules of the current programming language.

The specification of a qualified reference includes all containing structures and blocks as qualifiers, and
can optionally begin with a load module name qualifier. For example, when the current programming
language setting is C, mod: :>cu:>proc:>strucl.struc2.array[23]. However, in assembler,

Chapter 2. Common syntax elements in z/OS Debugger commands 15

disassembly, and LangX COBOL, variable names cannot be qualified with load module, compile unit,
or block names.

When the current programming language setting is C and C++, the term 1value is used in place of
reference.

If you are debugging a program that was compiled with a version earlier than Enterprise PL/I Version 3.5
with the PTFs for APARs PK35230 and PK35489 applied, z/OS Debugger does not support the use of a
qualified reference that includes block_spec, cu_spec, or load_spec.

If you are debugging a program compiled with one of the following compilers and running in the following
environment, z/OS Debugger does support the use of a qualified reference that includes block_spec,
cu_spec, or load_spec:

« Enterprise PL/I for z/OS, Version 3.6 or later

« Enterprise PL/I for z/OS, Version 3.5 with the PTFs for APARs PK35230 and PK35489 applied

« Language Environment Version 1.6 through 1.8 with the PTF for APAR PK33738 applied, or later

If you are debugging a program that was compiled with an Enterprise PL/I compiler and z/OS Debugger
is at an entry to a block, you cannot list or reference any variable or expression that includes variables
declared in the block being entered.

A COBOL reference can be a data name, which can be any of the following, according to the rules of the
COBOL language:

« qualified

« subscripted

- indexed

- reference modified

A COBOL reference can be to any special register, except for the following special registers:
« ADDRESS-OF

« LENGTH-OF

- WHEN-COMPILED
Particular rules for forming a reference depend on the current programming language setting and what
release level of the language run-time library z/OS Debugger is running under. For example, if you upgrade

your version of the HLL compiler without upgrading your version of z/OS Debugger, certain application
programming interface inconsistencies might exist.

statement_id

A statement_id identifies an executable statement in a manner appropriate for the current programming
language. This can be a statement number, sequence number, or source line number. The statement id is
an integer or integer.integer (where the first integer is the line number and the second integer is the relative
statement number). For example, you can specify 3, 3.0, or 3.1 to signify the first relative statement on
line 3. C, C++, COBOL, and PL/I allow multiple statements or verbs within a source line.

You can only use statement identifiers for statements that are known in the current enclave.

statement_id_range and stmt_id_spec

A statement_id_range identifies a source statement id or range of statement ids. Stmt_id_spec identifies a
statement id specification.

16 IBM z/OS Debugger: Reference and Messages

»—| stmt_id_spec L >4

- —~— statement_id —— ;—J

%LINE

~— %STATEMENT —

stmt_id_spec

»— J statement_id —»<
%}Iock_spec j— D>
cu_spec

%LINE

- %STATEMENT /

block_spec
A valid block specification. The default is the currently qualified block. For the currently supported
programming languages, block qualification is extraneous because statement identifiers are unique
within a compile unit. Therefore, block qualification is ignored.

cu_spec
A valid compile unit specification; see “cu_spec” on page 13. The default is the currently qualified
compile unit.

statement_id
A valid statement identifier number; see “statement_id” on page 16.

%LINE
Represents the currently suspended source statement or line. See Chapter 8, “z/0S Debugger
variables,” on page 331. %LINE is equivalent to %STATEMENT.

%STATEMENT
Is equivalent to %LINE.

Specifying a range of statements

A range of statements can be identified by specifying a beginning and ending statement id, separated by
a hyphen (-). When the current programming language setting is COBOL, blanks are required around the
hyphen (-). Blanks are optional for C and C++ and PL/I. Both statement ids must be in the same block, the
second statement cannot occur before the first in the source program, and they cannot be equal.

A single statement id is also an acceptable statement id range and is considered to begin and end
at the same statement. A single statement id range consists of only one statement or verb evenin a
multistatement line.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“block_spec” on page 12

“cu_spec” on page 13

“statement_id” on page 16

Chapter 8, “z/0OS Debugger variables,” on page 331

statement_label

A statement_label identifies a statement using its source label. The specification of a qualified statement
label includes all containing compile unit names or block names, and can optionally begin with a load
module name qualifier. For example:

mod: :>procl:>proc2:>blockl:>start

The form of a label depends on the current programming language:

Chapter 2. Common syntax elements in z/OS Debugger commands 17

« In C and C++, labels must be valid identifiers.
« In COBOL, labels must be valid identifiers and can be qualified with the section name.
« In PL/I, labels must be valid identifiers, which can include a label variable.

You can only use statement labels for labels that are known in the current enclave.

variable_name

A contiguous text string that represents a changeable value. You can create a variable_name that can
be used in several different programming languages. The variable_name must comply with the following
syntax rules:

« all uppercase

starts with one of the characters A through Z
characters A through Z
decimal O through 9

* NO spaces

z/OS Debugger also supports the creation of a variable_name that is written to programming language-
specific syntax rules. However, if you create a variable_name that is written to a specific programming
language syntax, you cannot use that variable_name in programs written in a different programming
language. For example, in COBOL a variable name can contain the dash character (-). If you create a
variable_name that contains a dash, you cannot use that variable_name in a PL/I or C/C++ program.

18 IBM z/0OS Debugger: Reference and Messages

Chapter 3. Syntax for assembler and disassembly
expressions

Use the syntax defined in this section to write expressions for z/OS Debugger commands while you debug
an assembler or disassembly program.

Assembler expressions can be written in the following forms:

A standard assembler expression with an implied length. The following are three examples:
- X
- 133
- X+15

« Astandard assembler expression without an implied length. Expressions can be written in this form only
if the length can be specified or derived from an operand. For example: R3->+X"'2C"

« A conditional assembler expression which is written with conditional operators and can be used only as
the operand of an IF command. For example: X+1=Y & Z=4

Common syntax elements

You can use the following syntax elements to write an assembler expression:

ddd
A decimal constant, where ddd are valid decimal digits. For example: 145

ddd.ddd, dd.dEdd, ddEdd, dd.dE+dd, ddE+dd, dd.dE-dd, ddE-dd
A floating-point constant, where d is one or more decimal digits and E is the letter "E". Examples:
1.23,0.22,12E+10, or 2.456E-5.

X'xxxx' or X" xxxa"
A hexadecimal constant, where xxxx are valid hexadecimal digits. Examples: X'1F4C' or X"1F4C"

If this constant is from 1 to 4 bytes in length, it can be used in arithmetic or string contexts.
Otherwise, it can only be used in string contexts.

C'cccc', 'cccc',or"cccc"
A character constant. For example: C'F$3' or "F$3"

If this constant is from 1 to 4 bytes in length, it can be used in arithmetic or string contexts.
Otherwise, it can only be used in string contexts.

symbol
A valid symbol used in the assembler source program. Examples: lastName, UserVar8

If a symbol is defined by using the EQU instruction and the first usage of the symbol is as a register,
the symbol is associated with that register. If you define a symbol with the intent to use the symbol as
a register but you never reference the symbol or the first reference to the symbol is not as a register,
z/0S Debugger defines the symbol as a constant, not as a register. For example, if you define the
symbol R7 by using the instruction R7 EQU 7 and you never reference R7 or the first reference is not
as aregister, z/OS Debugger defines the symbol R7 as the constant 7, not as register R7.

z/0S Debugger implicitly defines the following symbols in all disassembly compilation units and in any
assembler compilation units where the symbol is not already defined:

« RO, R1, R2, R3, R4, R5,R6,R7,R8, R9, R10, R11, R12, R13, R14, R15. These symbols are implicitly
defined as z/OS Debugger 32-hit basic general purpose registers. For example, RO is defined as %R0.
If you are debugging an assembler compilation unit that defines the symbol RO and RO is not used
as a register, you can use the %R0 variable to reference 32-bit General Purpose Register RO. These
are the low-order 32 bits of the 64 bit General Purpose Register.

© Copyright IBM Corp. 1992, 2021 19

* RHO, RH1, RH2, RH3, RH4, RH5, RH6, RH7, RH8, RH9, RH10, RH11, RH12, RH13, RH14, RH15.

These symbols are implicitly defined as z/OS Debugger 32-bit high general purpose registers. For
example, RHO is defined as %GPRHO. If you are debugging an assembler compilation unit that
defines the symbol RHO and RHO is not used as a register, you can use the %GPRHO variable to
reference 32-bit high General Purpose Register RHO. These are the high-order 32 bits of the 64 bit
General Purpose Register.

RGO, RG1, RG2, RG3, RG4, RG5, RG6, RG7, RG8, RG9, RG10, RG11, RG12, RG13, RG14, RG15.
These symbols are implicitly defined as z/OS Debugger 64-bit General Purpose Registers. For
example, RGO is defined as %GPRGO. If you are debugging an assembler compilation unit that
defines the symbol RGO and RGO is not used as a register, you can use the %GPRGO variable

to reference 64-bit General Purpose Register RO. These symbols are available only when 64-bit
General Purpose Registers are available.

_STORAGE. This symbol is implicitly defined as a symbol representing all of main memory. You can
reference any area of memory by using the _STORAGE symbol with the following syntax:

»— STORAGE — (— address — :: — length —) >«

For example, _STORAGE (X'1FF3C': :4) references the four bytes of storage at address X'1FF3C'.
A length of zero might be specified in which case no bytes of storage are accessed. This form is used
primarily by the AUTOMONITOR command when displaying an operand of an instruction such as LA
that computes an effective address but references no data at that address.

%symbol

A valid z/OS Debugger variable. For example: %ADDRESS

Operators

You can use the operators defined in this section to write assembler expression and conditional
assembler expressions.

Operators that can be used in any expression

Use the operators defined in this section to write assembler expressions.

+

(...)

Addition

Subtraction or prefix minus

Multiplication

Division

Remainder

Concatenation (C and X-type operands only)
Bitwise AND

Bitwise OR

Parenthesis to control the order of operation, specify the subscript of an array, or select a substring.

symbol(subscript)

Parenthesis to specify a subscript for an array. For example, if an array is defined by the
instruction X DS 5F, you can specify the first word in the array as X(1).

20 IBM z/0OS Debugger: Reference and Messages

)

symbol(substring)
Parenthesis to select a substring of a single byte from a character or hexadecimal variable

symbol(substrstart:substrend)
Parenthesis to select a substring of the bytes from substrstart to substrend from a character or
hexadecimal variable

symbol(substrstart::substrlen)
Parenthesis to select a substring of substrlen bytes beginning at substrstart from a character or
hexadecimal variable

For an array of character or hexadecimal strings, these forms can be
combined by using symbol(subscript,substring), symbol(subscript,substrstart:substrend), or
symbol(subscript,substrstart::substrlen).

=>,%>, or ==
Indirection operator. You can use an indirection operator as follows:

operandi<indirection_operator>operand2
Use the contents of operandl as the base address of the DSECT which contains operand2. For
example, R1->DCBDDNAME instructs z/OS Debugger to use the contents of register 1 as the base
address of the DSECT which contains DCBDDNAME.

operandi<indirection_operator> or operand2<indirection_operator>+operand2
If the <indirection_operator> is followed by a plus sign (+), use operand?2 as an offset. For
example, X-> instructs z/OS Debugger to use the contents of X as the address of the storage. For a
second example, R3->+X"'22" instructs z/OS Debugger to use the contents of register 3 and add
hexadecimal 22 (the offset) to determine the address of storage.

If the indirection operator is not followed by a symbol, no length is implied. This form is most
commonly used where the length can be determined by another operand. For example, the
command STORAGE (R10->,4) =22 provides the length in the second operand of the STORAGE
command. If you use this form in a situation where a length is required but not provided by
another operand, the length defaults to four.

The following indirection operators indicate which address specification to use:
->
Use the current Amode specification.
==>
Use a 64—bit address specification.
=>
Use a 31-bit address specification.
%>

Use a 24-bit address specification.

Dot operator (period). You can use a dot operator to qualify a name in a DSECT by the name on a
labeled USING statement. The dot operator must be immediately preceded by a label from a previous
labeled USING statement and must be immediately followed by a name defined in a DSECT.

ADDR'

Returns the address of a symbol. If the operand of ADDR' is a symbol that is known in the current
CU but resides in another CSECT, the ADDR ' function returns 0. For example, ADDR ' ABC returns the
address of symbol ABC.

If the address of the symbol is a 64-bit address, then ADDR' returns an 8-byte value. Otherwise,
ADDR' returns a 4-byte value.

Returns the length of a symbol. For example, L ' ABC returns the length of the symbol ABC.

Chapter 3. Syntax for assembler and disassembly expressions 21

Operators that can be used only in conditional expressions

The following operators can be used only in conditional expressions (for example, the IF command):

Compare the two operands for equality.

Compare the two operands for inequality.

<
Determines whether the left operand is less than the right operand.
>
Determines whether the left operand is greater than the right operand.
<=
Determines whether the left operand is less than or equal to the right operand.
>=
Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.
Logical "or" operation.

Arithmetic expression evaluation

Assembler and disassembly expressions are evaluated in 32-bit precision until a 64-bit operand is
encountered. At that point, the precision of both operands is converted to 64-bit and all subsequent
operators in the expression are evaluated in 64-bit precision. If you want the entire expression evaluated
in 64-bit precision, you can use parentheses to alter the order of operations so that the first operand
evaluated has at least one 64-bit operand.

If you are running your program on hardware that does not support 64-bit instructions, z/OS Debugger
evaluates the 64-bit arithmetic expressions but you cannot access the 64-bit General Purpose Registers.

22 IBM z/0OS Debugger: Reference and Messages

Chapter 4. Syntax for LangX COBOL expressions

Note: This chapter is not applicable to IBM Wazi Developer for Red Hat CodeReady Workspaces.

You can use the syntax defined in this section to write expressions for z/OS Debugger commands while
you debug LangX COBOL programs.

In general, whenever you enter a LangX COBOL expression as part of a command (for example, as the
operand of the LIST expression command, an assignment command, or the IF command), you must
enclose the LangX COBOL expression in apostrophes (‘). The following example shows the appropriate
use of apostrophes:

LIST 'A-B IN C';
IAI = IBI;
IF 'A = 22' THEN...

There are some z/0S Debugger commands that can be used for debugging LangX COBOL programs that
use the assembler syntax. A note to this effect is found in the section describing each of these commands.
For example, while debugging a LangX COBOL program you might use the following command:

STORAGE (X"1B4C0",3) = X"0102FC";

Restrictions on LangX COBOL expressions

In addition to the requirement that LangX COBOL expressions be enclosed in apostrophes ('), the
following restrictions apply to LangX COBOL expressions:

« The following operators are supported by z/OS Debugger in LangX COBOL expressions:
— INor OF

Subscript / index

LENGTH OF

+ - *

LIS]

/] (remainder)

|| (concatenation)
-0

« In asubscript or index list, the subscript or index expressions must be separated by a comma. A space
is not sufficient for separating subscript or index expressions.

« Lower-case letters are accepted in contexts other that non-numeric literals as a substitute for (and
equivalent to) upper case letters.

 z/0S Debugger does not support the use of COBOL special registers (for example, DAY, DATE, and TIME)
in LangX COBOL expressions.

« All non-numeric literals must be enclosed in quotation marks (). Apostrophes () cannot be used.
 You cannot list or alter level-88 variables in LangX COBOL.

« Only the following subset of figurative constants are supported in z/OS Debugger LangX COBOL
expressions:

— HIGH-VALUE, HIGH-VALUES
LOW-VALUE, LOW-VALUES
QUOTE, QUOTES

SPACE, SPACES

ZERO, ZEROES, ZEROS

© Copyright IBM Corp. 1992, 2021 23

Common syntax elements

You can use the following syntax elements to write a LangX COBOL expression:

ddd or ddd.ddd

A decimal constant, where ddd are valid decimal digits. For example: 145 or 12.72.
X"xxxxx"

A hexadecimal constant, where xxxx are valid hexadecimal digits. For example:

X"1F4C"

Ilccccll
A non-numeric literal. For example:

" F$3 "

symbol
A valid symbol used in the LangX COBOL source program. Examples:

LASTNAME
USERVAR8
12CENTS

z/0S Debugger implicitly defines the _STORAGE symbol in all LangX COBOL programs as a symbol
representing all of main memory. You can reference any area of memory by using the _STORAGE
symbol with the substring notation defined in “Operators that can be used in any expression” on page
24. For example, _STORAGE(X"1FF3C"::4) references the four bytes of storage at address X"1FF3C".
The substring notation used by the _STORAGE symbol specifies an actual address; therefore, to
reference the first byte of storage, use a 0 instead of a 1 in the substring notation.

%symbol
A valid z/OS Debugger variable or built-in function. For example:

J%6ADDRESS
%HEX (expression)

Operators

You can use the operators defined in this section to write LangX COBOL expressions and conditional
LangX COBOL expressions.

Operators that can be used in any expression

Use the operators defined in this section to write LangX COBOL expressions.

+
Addition

Subtraction or prefix minus
Multiplication

Division
/7
Remainder

Concatenation (non-arithmetic operands only)

(..)

Parenthesis to control the order of operation, specify the subscript of an array, or select a substring.

24 IBM z/0OS Debugger: Reference and Messages

symbol(subscript,subscript,...)
Parenthesis to specify a subscript or index for an array. Note that commas are required between
subscript or index values. Blanks alone are not acceptable.

symbol(substrstart:substrend)
Parenthesis to select a substring of the bytes from substrstart to substrend from a character
variable.

symbol(substrstart::substrlen)

Parenthesis to select a substring of substrlen bytes beginning at substrstart from a character
variable.

For an array of character strings, these forms can be combined by using
symbol(subscript,substrstart:substrend), or symbol(subscript,substrstart::substrlen).

LENGTH OF
Returns the length of a symbol. For example, LENGTH OF ABC returns the length of the symbol ABC.

Operators that can be used only in conditional expressions

The following operators can be used only in conditional expressions (for example, the IF command):

Compare the two operands for equality.

Compare the two operands for inequality.

<
Determines whether the left operand is less than the right operand.
>
Determines whether the left operand is greater than the right operand.
<=
Determines whether the left operand is less than or equal to the right operand.
>=
Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.

Logical "or" operation.

Chapter 4. Syntax for LangX COBOL expressions 25

26 IBM z/0OS Debugger: Reference and Messages

Chapter 5. z/0S Debugger commands

Commands and keywords can be abbreviated. The abbreviations shown with some commands are the
minimum abbreviations. However, you can use a minimum abbreviation or any string from the minimum to
completely spelling out the keyword; all are valid. This is true of all keywords for commands.

If you are debugging in full-screen mode, you can get help with z/OS Debugger command syntax by
either pressing PF1 or entering a question mark (?) on the command line. This lists all z/OS Debugger

commands in the Log window.

To get a list of options for a command, enter a partial command followed by a question mark.

Remote debug mode only accepts these commands (if indicated) if you run it in Debug Tool compatibility

mode.

The table below summarizes the z/OS Debugger commands.

“? command” on page 31

Displays all z/OS Debugger commands in the Log window.

“ALLOCATE command” on page 31

Allocates a file to an existing data set, a concatenation of
existing data sets, or a temporary data set.

“ANALYZE command (PL/I)” on page
32

Displays the process of evaluating an expression and the data
attributes of any intermediate results.

“Assignment command (assembler and
disassembly)” on page 33

Assigns the value of an expression to a specified storage
location or register.

“Assignment command (LangX COBOL)”
on page 35

Assigns the value of an expression to a specified reference.

“Assignment command (PL/I)” on page
36

Assigns the value of an expression to a specified reference.

“AT command” on page 37

Defines a breakpoint (gives control of your program to z/0OS
Debugger under the specified circumstances).

“BEGIN command” on page 74

BEGIN and END delimit a sequence of one or more
commands to form one longer command.

“block command (C and C++)” on page
74

Allows you to group any number of z/OS Debugger commands
into one command.

“break command (C and C++)” on page
75

Allows you to terminate and exit a loop (that is, do, for, and
while) or switch command from any point other than the
logical end.

“CALL command” on page 76

The CALL command calls either a procedure, entry name, or
program name, or it requests that a utility function be run.

“CC command” on page 84

Controls whether code coverage data is collected.

“CLEAR command” on page 85

Removes the actions of previously issued z/OS Debugger
commands (such as breakpoints).

“COMMENT command” on page 92

Used to insert commentary into the session log.

“COMPUTE command (COBOL)” on page
92

Assigns the value of an arithmetic expression to a specified
reference.

“CURSOR command (full-screen mode)”
on page 94

Moves the cursor between the last saved position on the z/0OS
Debugger session panel (excluding the header fields) and the
command line.

© Copyright IBM Corp. 1992, 2021

27

“Declarations (assembler, disassembly,
and LangX COBOL)” on page 94

Declares session variables that are effective during a z/0OS
Debugger session.

“Declarations (C and C++)” on page 95

Declares session variables and tags that are effective during a
z/0S Debugger session.

“Declarations (COBOL)” on page 98

Declares session variables that are effective during a z/0S
Debugger session.

“DECLARE command (PL/I)” on page
100

Declares session variables that are effective during a z/OS
Debugger session.

“DESCRIBE command” on page 101

Displays the attributes of references, compile units, and the
execution environment.

“DISABLE command” on page 106

Makes the AT breakpoint inoperative, but does not clear it;
you can ENABLE it later without typing the entire command
again.

“do/while command (C and C++)” on
page 109

Performs a command before evaluating the test expression.

“DO command (PL/I)” on page 109

Allows one or more commands to be collected into a group
which can (optionally) be run repeatedly.

“ENABLE command” on page 112

Makes AT breakpoints operative after they have been
disabled by the DISABLE command.

“EVALUATE command (COBOL)” on page
113

Provides a shorthand notation for a series of nested IF
statements.

“Expression command (C and C++)” on
page 115

Evaluates the given expression which can be used to either
assign a value to a variable or to call a function.

“FIND command” on page 116

Provides full-screen and line mode searching of source and
listing files, and full-screen searching of Log and Monitor
windows.

“FINDBP command” on page 120

Provides full-screen searching of the source for line,
statement, and offset breakpoints.

“for command (C and C++)” on page 122

Provides iterative looping.

“FREE command” on page 123

Frees (deallocates) an allocated file.

“GO command” on page 123

Causes z/0OS Debugger to start or resume running your
program.

“GOTO command” on page 124

Causes z/0S Debugger to resume program execution at the
specified statement id.

“GOTO LABEL command” on page 126

Causes z/0S Debugger to resume running program at the
specified statement label.

“%IF command (programming language
neutral)” on page 128

Lets you conditionally perform a command; use this syntax if
you are constructing a command that might run in different
programming languages.

“IF command (assembler, disassembly,
and LangX COBOL)” on page 128

Lets you conditionally perform a command.

“if command (C and C++)” on page 129

Lets you conditionally perform a command.

“IF command (COBOL)” on page 130

Lets you conditionally perform a command.

“IF command (PL/I)” on page 133

Lets you conditionally perform a command.

28 IBM z/0OS Debugger: Reference and Messages

“IMMEDIATE command (full-screen
mode)” on page 133

Causes a command within a command list to be performed
immediately. For use with commands assigned to a PF key.

“INPUT command (C, C++, and COBOL)”
on page 134

Provides input for an intercepted read and is valid only when
there is a read pending for an intercepted file.

“JUMPTO command” on page 135

Jumps to the specified statement and then stops the program
at that statement.

“LIST command” on page 138

Displays information about your z/OS Debugger session.

“LOAD command” on page 164

Specifies that the named module should be loaded for
debugging purposes.

“LOADDEBUGDATA command” on page
165

Specifies that a compile unit (CU) as an assembler CU and
loads debug data.

“MEMORY command” on page 167

Identifies an address in memory to display in the Memory
window.

“MONITOR command” on page 169

Defines or redefines a command whose output is displayed in
the Monitor window (full-screen mode), terminal output (line
mode), or log file (batch mode).

“MOVE command (COBOL)” on page 173

Transfers data from one area of storage to another.

“NAMES command” on page 177

Specify names of load modules or compile units to debug
orignore, and display the current setting of the NAMES
command.

“Null command” on page 179

A semicolon written where a command is expected.

“ON command (PL/I)” on page 179

Establishes the actions to be executed when the specified
PL/I condition is raised.

“PANEL command (full-screen mode)”
on page 181

Displays special panels (for example, to customize your full-
screen session).

“PERFORM command (COBOL)” on page
183

Identifies a series of commands to be run. The series of
commands can be run repeatedly, if you use the UNTIL
keyword of the command.

“PLAYBACK commands” on page 185

Commands to start and stop recording application execution
states and replay the recorded execution states.

“POPUP command” on page 189

Displays the Command pop-up window, where you type in
commands.

“POSITION command” on page 189

Positions the cursor to a specific line in the specified window.

“Prefix commands (full-screen mode)”
on page 190

Apply only to source listing lines and are typed into the
Source window.

“PROCEDURE command” on page 191

Allows the definition of a group of commands that can be
accessed using the CALL procedure command.

“QUALIFY RESET command” on page
191

Resets qualification to the block of the suspended program
and scrolls the Source window to display the current
statement line.

“QUERY command” on page 192

Displays the current value of z/OS Debugger settings (such as
the current location in the suspended program).

“QUIT command” on page 197

Ends a z/OS Debugger session (with a return code, if
specified).

Chapter 5. z/OS Debugger commands 29

“QQUIT command” on page 198

Ends a z/OS Debugger session (without additional prompting)

“RETRIEVE command (full-screen
mode)” on page 200

Displays the last command entered on the command line.

“RESTORE command” on page 199

Enables explicit restoring of settings, breakpoints, and
monitor specifications.

“RUN command” on page 201

Causes z/0OS Debugger to start or resume running your
program.

“RUNTO command” on page 201

Causes z/0S Debugger to run your program to a specific point
(without setting a breakpoint)

“SCROLL command (full-screen mode)”
on page 202

Provides horizontal and vertical scrolling in full-screen mode.

“SELECT command (PL/I)” on page 205

Chooses one of a set of alternate commands.

“SET command” on page 205

Controls various z/OS Debugger settings.

“SET command (COBOL)” on page 264

Assigns a value to a COBOL reference.

“SHOW prefix command (full-screen
mode)” on page 267

Specifies what relative statement (for C) or relative verb
(for COBOL) within the line is to have its frequency count
temporarily shown in the suffix area.

“STEP command” on page 267

Causes z/0S Debugger to dynamically step through a
program, running one or more program statements.

“STORAGE command” on page 269

Enables you to alter up to eight bytes of storage.

“switch command (C and C++)” on page
271

Enables you to transfer control to different commands within
the switch body, depending on the value of the switch
expression.

“SYSTEM command (z/0S)” on page 273

Lets you issue TSO commands during a z/OS Debugger
session.

“TRIGGER command” on page 274

Raises the specified AT condition in z/OS Debugger, or
raises the specified programming language condition in your
program.

“TSO command (z/0S)” on page 278

Lets you issue TSO commands during a z/OS Debugger
session (this command is valid only in a TSO environment).

“USE command” on page 278

Causes the z/OS Debugger commands in the specified file or
data set to be either performed or syntax checked.

“while command (C and C++)” on page
279

Enables you to repeatedly perform the body of a loop until the
specified condition is no longer met or evaluates to false

“WINDOW command (full-screen
mode)” on page 280

Opens, close, resizes, or expands to full screen (zooms) the
specified window on the z/0S Debugger session panel.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0OS Debugger User's Guide

Related references

Chapter 7, “z/OS Debugger built-in functions,” on page 325

Chapter 8, “z/0S Debugger variables,” on page 331

30 IBM z/OS Debugger: Reference and Messages

? command

The ? command displays a list of z/OS Debugger commands in the Log window.
»—?— ; >d

Usage note
In the following cases, z/OS Debugger does not display the syntax help after you enter the ? command:

« The z/OS Debugger SYSTEM and TSO commands followed by the ? command do not display the syntax
help; instead the ? is sent to the host as part of the system command.

« The COMMENT command followed by the ? command does not display the syntax help.

« The SET PFx command accepts a ? as the "command" operand and, in this case, does not display
syntax help.

ALLOCATE command

The ALLOCATE command allocates a file to an existing data set, a concatenation of existing data sets, or a
temporary data set.

»— ALLOCATE — FILE — ddname attributes ; >

attributes

OLD

»—~————— DSNAME — dsn h }
M—— DSNAME — (i dsn j r

I

oLD 1
L SHR —J

“— TEMP — TRACKS — (— primspc — , — secspc —) —’
FILE ddname
The DD name of the file.
DSNAME dsn
The name of an existing data set.
DSNAME (dsn,dsn,...)
The names of the existing data sets that need to be concatenated.
TEMP

A temporary data set is allocated.

TRACKS (primspc,secspc,...)
The number of tracks for the primary space (primspc) and secondary space (secspc) to allocate for the
temporary data set.

oLD
Set the disposition of the data set to OLD.

SHR
Set the disposition of the data set to SHR.

MOD
Set the disposition of the data set to MOD.

Usage note

Chapter 5. z/OS Debugger commands 31

This command is not available under CICS.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“FREE command” on page 123
“DESCRIBE command” on page 101

ANALYZE command (PL/I)

The ANALYZE command displays the process of evaluating an expression and the data attributes of any
intermediate results. To display the results of the expression, use the LIST command.

»— ANALYZE — EXPRESSION — (— expression —) — ; -»«

EXPRESSION

Requests that the accompanying expression be evaluated from the following points of view:
« What are the attributes of each element during the evaluation of the expression?
« What are the dimensions and bounds of the elements of the expression, if applicable?

« What are the attributes of any intermediate results that will be created during the processing of the
expression?

expression

A valid z/OS Debugger PL/I expression.

Usage notes

If SET SCREEN ONis in effect, and you want to issue ANALYZE EXPRESSION for an expression in your
program, you can bring the expression from the Source window up to the command line by typing over
any character in the line that contains the expression. Then, edit the command line to form the desired
ANALYZE EXPRESSION command.

If SET WARNING ON is in effect, z/OS Debugger displays messages about PL/I computational
conditions that might be raised when evaluating the expression.

Although the PL/I compiler supports the concatenation of GRAPHIC strings, z/OS Debugger does not.
The ANALYZE command cannot be used to debug Enterprise PL/I programs.

The ANALYZE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

The ANALYZE command cannot be used while you debug a disassembled program.

Example

This example is based on the following program segment:

DECLARE lo_point FIXED BINARY(31,5);

DECLARE hi_point FIXED BINARY(31,3);

DECLARE offset FIXED DECIMAL(12,2);

DECLARE percent CHARACTER(12);

lo_point = 5.4; hi_point = 28.13; offset = -6.77;
percent = '18';

The following is an example of the information prepared by issuing ANALYZE EXPRESSION. Specifically,
the following shows the effect that mixed precisions and scales have on intermediate and final results of
an expression:

ANALYZE EXPRESSION ((hi_point - lo_point) + offset / pezxcent)
>>> Expression Analysis <<<
(HI_POINT - LO_POINT) + OFFSET / PERCENT
| HI_POINT - LO_POINT
[[HI_POINT
[FIXED BINARY(31,3) REAL
| | LO_POINT
| | FIXED BINARY(31,5) REAL

32 IBM z/0OS Debugger: Reference and Messages

FIXED BINARY(31,5) REAL

OFFSET / PERCENT

| OFFSET

| FIXED DECIMAL(12,2) REAL

[PERCENT

| CHARACTER(12)

FIXED DECIMAL(15,5) REAL
FIXED BINARY(31,17) REAL

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET WARNING command (C, C++, COBOL, and PL/I)” on page 261
“PLAYBACK commands” on page 185

Assignment command (assembler and disassembly)

The Assignment command assigns the value of an expression to a specified memory location or register.

»— receiver = — sourceexpr — ; »«
L—— < >——J

L receiverlen J

receiver
A valid z/OS Debugger assembler reference or expression.

receiverlen
A valid z/OS Debugger assembler reference or expression enclosed in opening and closing brackets
(<, >). The value of this reference is used as the length of the receiver.

sourceexpr
A valid z/OS Debugger assembler expression.

Usage notes

« When the receiver expression does not have an implicit length, you must specify a length override
and enclose it in angle brackets (<>). For example %¥R1->+10 <4> = 20; requires an explicit length
expression because the receiver expression has no implicit length. However, X=X+1; (where X is
defined as X DS F) would not normally have an explicit length specification.

« The Assignment command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

- Assign the value 6 to variable x.

X =6 ;
« Increment the value of X by 5.
X=X+5;

Assign to R5 the address of name_table.

%R5 = addr'name_table ;

Assign to the prg_name variable the value of the character string 'MYPROG'.

prg_name = 'MYPROG' ;

Assign the value of X to the 4 bytes at offset 8 from the contents of R8.

%R8->+8 <1'x> = Xx;

Chapter 5. z/OS Debugger commands 33

« Move a string of 14 bytes pointed to by the contents of R8 (where R8 was an equated register used in
the program) to 6 bytes past the location pointed to by R2.

%R2->+6 <14> = R8->+0;
« Set 32 bytes pointed to by R6 to zero.
%R6->+0 <X'20'> = X'00"';
Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15
“PLAYBACK commands” on page 185

Assignment rules

An assembler assignment is an arithmetic assignment, a bit assignment, or a character assignment.

« Arithmetic assignments are padded (usually with zeros) and truncated on the left. If the source has a
type of F or H, the arithmetic statement is padded with sign bits.

« Bit assignments are padded (with zeros) and truncated on the right.
« Character assignments are padded (with blanks) and truncated on the right.

The following table shows how the assignment type is determined from the source and receiver data
types. In this table, the following definitions are used:

2

Indicates an unknown type, for example, R1->+2.
*

Indicates any type or length.
Arithmetic

Indicates an arithmetic assignment. Padding is on left with sign bits.
Bit

Indicates a string assignment padded with zeros.
Character

Indicates a string assignment padded with blanks.
Hex Float

Hexadecimal floating point assignment.

String assignment
The number of bytes that correspond to the Min(receiver length, source length) are moved
from the source to the receiver. If the receiver length is larger, it is padded. If the source length is
larger, it is truncated. All padding and truncation is done on the right.

Move
The number of bytes that correspond to the receiver length are moved directly into the receiver
location.

Error
Statement that is flagged as not valid.

Table 4. Assignment rules depending on the source and receiver type

Receiver Source Assignment Pad or
type Truncate
Type Length Type Length yp
* 1-* ? ? Move None

34 IBM z/0OS Debugger: Reference and Messages

Table 4. Assignment rules depending on the source and receiver type (continued)
Receiver Source Assignment Pad or
Type Length Type Length type Truncate
F,HAY 1-4 F,HAY X, B, [1-4 Arithmetic Left
C
E,D, L 4,8,16 Hex Float Right - 0
P,Z 1-* Arithmetic
X,B,C >4 Error
Other Other Error
X 1-4 F,HAY 1-4 Arithmetic Left
P,Z 1-* Arithmetic
1-* X, B 1-* Bit Right - 0
C Bit Right - 0
Other Error
C 1-4 F,HAY 1-4 Arithmetic Left
P, Z 1-* Arithmetic
1-* X, B 1-* Bit Right - 0
C Character Right — blank
Other Error
Pz 1-* P,z 1-* Packed
FFHAYX B, [1-4 Packed
C
E,D, L 4,8,16 Hex Float Right - 0
E,D, L 4,8,16 X = Move None
E,D, L 4,8,16 Hex Float Right - 0
F,HAY 1-4 Hex Float Right - 0
P,Z 1-* Hex Float Right - 0
? 1-4 F,HAY 1-4 Arithmetic Left
1-* X,B,C 1-* Bit Right -0
All others Error

Assignment command (LangX COBOL)

The Assignment command assigns the value of an expression to a specified reference. It is the
equivalent of the COBOL COMPUTE statement.

»— '— receiver — '— =—"— sourceexpr — '— ; >«

receiver

A valid z/OS Debugger LangX COBOL reference enclosed in apostrophes (').

Chapter 5. z/OS Debugger commands 35

sourceexpr
A valid z/OS Debugger LangX COBOL expression enclosed in apostrophes (').

Usage notes

- When receiver is an arithmetic variable, then sourceexpr can be a hexadecimal string of the same
length as receiver. z/OS Debugger assumes that the correct internal representation is used and the
hexadecimal value is moved directly into receiver.

« When receiver is a non-numeric string, then sourceexpr can be a hexadecimal string of any length. If the
length of sourceexpr is less than the length of receiver, then receiver is padded on the right with binary
zeros.

« When receiver is a COBOL INDEX variable, then z/OS Debugger assumes that sourceexpr is a subscript
value and converts it to the proper offset before storing the value into receiver.

« The Assignment command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples
- Assign the value 6 to variable x.
'x' = '6' ;
« Increment the value of X by 5.
'X' = 'X + 5' ;
Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15
“PLAYBACK commands” on page 185

Assignment command (PL/I)

The Assignment command assigns the value of an expression to a specified reference.

»»— reference — = — expression — ; -»«
reference

A valid z/OS Debugger PL/I reference.
expression

A valid z/OS Debugger PL/I expression.
Usage notes
« The PL/I repetition factor is not supported by z/OS Debugger.

For example, the following is not valid: tx = (16) '01'B;

- If z/OS Debugger was started because of a computational condition or an attention interrupt, using an
assignment to set a variable might not give the expected results. This is because z/OS Debugger cannot
determine variable values within statements, only at statement boundaries.

« The PL/I assignment statement option BY NAME is not valid in the z/OS Debugger.

- If you are debugging a Enterprise PL/I program, the target of an assignment command cannot be the
variables %EPRn, %FPRn, %GPRnN, or %LPRn.

« The Assignment command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

36 IBM z/0OS Debugger: Reference and Messages

- Assign the value 6 to variable x.
X = 6;

- Assign to the z/OS Debugger variable %GPR5 the address of name_table.
%GPR5 = ADDR (name_table);

 Assign to the prg_name variable the value of z/OS Debugger variable %PROGRAM.
prg_name = 9%PROGRAM;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15
“PLAYBACK commands” on page 185

AT command

The AT command defines a breakpoint or a set of breakpoints. By defining breakpoints, you can
temporarily suspend program execution and use z/OS Debugger to perform other tasks. By specifying
an AT-condition in the AT command, you instruct z/OS Debugger when to gain control. You can also
specify in the AT command what action z/OS Debugger should take when the AT-condition occurs.

A breakpoint for the specified AT-condition remains established until either another AT command
establishes a new action for the same AT-condition or a CLEAR command removes the established
breakpoint. An informational message is issued when the first case occurs. Some breakpoints might
become obsolete during a debug session and will be cleared automatically by z/OS Debugger.

For MVS batch, TSO, and CICS programs, the SET SAVE and SET RESTORE commands can be used to
automatically save and restore breakpoints between z/OS Debugger sessions. For all other programs, the
SET SAVE and RESTORE commands can be used to automatically save and manually restore breakpoints
between sessions.

For CICS only: If you do not use the SET SAVE and SET RESTORE commands to control the saving and
restoring of breakpoints or monitor specifications and you use a DTCN profile to start a full-screen mode
debugging session, z/OS Debugger preserves the following breakpoints for that session until the DTCN
profile is deleted:

« APPEARANCE breakpoints

e CALL breakpoints

« DELETE breakpoints

« ENTRY breakpoints

« EXIT breakpoints

« GLOBAL APPEARANCE breakpoints
« GLOBAL CALL breakpoints

« GLOBAL DELETE breakpoints

« GLOBAL ENTRY breakpoints

« GLOBAL EXIT breakpoints

« GLOBAL LABEL breakpoints

« GLOBAL LOAD breakpoints

« GLOBAL STATEMENT/LINE breakpoints
« LABEL breakpoints

« LOAD breakpoints

* OCCURRENCE breakpoints

Chapter 5. z/OS Debugger commands 37

« STATEMENT/LINE breakpoints
« TERMINATION breakpoint

If a deferred AT ENTRY breakpoint has not been encountered, it is not saved nor restored.

For optimized COBOL programs: The order in which breakpoints are encountered in optimized programs
is generally the same as in unoptimized programs. There might be differences due to the effects of

optimization.

The following table summarizes the forms of the AT command.

“AT ALLOCATE (PL/I)
command” on page 40

Gives z/0S Debugger control when storage for a named controlled
variable or aggregate is dynamically allocated by PL/I.

“AT APPEARANCE
command” on page 41

Gives z/0S Debugger control:

« For C and PL/I, when the specified compile unit is found in storage
« For COBOL, the first time the specified compile unit is called

“AT CALL command” on
page 43

Gives z/OS Debugger control on an attempt to call the specified entry
point.

“AT CHANGE command
(full screen mode,
line mode, batch

mode)” on page 45

Gives z/0OS Debugger control when either the specified variable value or
storage location is changed.

“AT CHANGE command
(remote debug mode)”

on page 50

Gives z/0S Debugger control when the specified variable value is
changed.

“AT CURSOR command
(full-screen mode)” on
page 52

Defines a statement breakpoint by cursor pointing.

“AT DATE command
(COBOL)"” on page 53

For COBOL, gives z/OS Debugger control for each date processing
statement within the specified block.

“AT DELETE command” on
page 53

Gives z/OS Debugger control when a load module is deleted.

“AT ENTRY command” on
page 54 or “AT ENTRY
command (remote debug
mode)"” on page 56

Defines a breakpoint at the specified entry point.

“AT EXIT command” on
page 56

Defines a breakpoint at the specified exit point.

“AT GLOBAL command” on
page 58

Gives z/0S Debugger control for every instance of the specified AT-
condition.

“AT LABEL command” on
page 60

Gives z/0S Debugger control at the specified statement label.

“AT LINE command” on
page 63

Gives z/OS Debugger control at the specified line.

“AT LOAD command” on
page 63 or “AT LOAD
command (remote debug
mode)"” on page 64

Gives z/OS Debugger control when the specified load module is loaded.

38 IBM z/0OS Debugger: Reference and Messages

“AT OCCURRENCE Gives z/0S Debugger control on a language or Language Environment

command” on page 65 condition or exception.

“AT OFFSET command Gives z/0S Debugger control at the specified offset in the disassembly
(disassembly)” on page |view.

68

“AT PATH command” on Gives z/0OS Debugger control at a path point.

page 68

“AT Prefix command Defines a statement breakpoint through the Source window prefix area.

(full-screen mode)” on

page 69

“AT STATEMENT command” |Gives z/OS Debugger control at the specified statement.

on page 70or

“AT STATEMENT command

(remote debug mode)”

on page 72
“AT TERMINATION Gives z/OS Debugger control when the application program is
command” on page 73 terminated.

Usage notes

To set breakpoints at specific locations in a program, z/OS Debugger depends on that program being
loaded into storage. If you issue an AT command for a specific EXIT, LABEL, LINE, or STATEMENT
breakpoint and the program is not known by z/OS Debugger, a warning message is issued and the
breakpoint is not set. For ENTRY, the breakpoint becomes a deferred breakpoint.

To set a global breakpoint, you can specify an asterisk (*) with the AT command or you can specify an AT
GLOBAL command. For example, if you want to set a global AT ENTRY breakpoint, specify:

AT ENTRY x;

or

AT GLOBAL ENTRY;
AT CHANGE, AT EXIT, AT LABEL, AT LINE, or AT STATEMENT breakpoints (when entered for a

specific block, label, line, or statement) are automatically cleared when the containing compile unit is
removed from storage. AT ENTRY breakpoints are converted to deferred AT ENTRY breakpoints.

AT CHANGE breakpoints are usually automatically cleared when the containing blocks are no longer
active or if the relevant variables are in dynamic storage that is freed by a language construct in the
program (for example, a C call to £ree ()). However, such breakpoints are not cleared when storage in
an assembler or disassembly program is freed via a STORAGE RELEASE macro.

Clearing of a breakpoint is independent of whether the breakpoint is enabled by using the ENABLE
command or disable by using the DISABLE command.

When multiple AT conditions are raised at the same statement or line, z/OS Debugger processes them in
the following order:

1. Any global breakpoints other than PATH.
2. Any PATH breakpoints.

3. Any statement breakpoints.

4. Any CHANGE breakpoints

If you want breakpoints to stop your program only under certain conditions, you can use a combination
of the AT and IF command or the AT command with a WHEN condition to establish a conditional
breakpoint.

The AT commands cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Refer to the following topics for more information related to the material discussed in this topic.

Chapter 5. z/OS Debugger commands 39

Related tasks
IBM z/0S Debugger User's Guide

Related references
“LIST command” on page 138

every_clause syntax

Most forms of the AT command contain an optional every_clause that controls whether the specified
action is taken based on the number of times a situation has occurred. For example, you might want an
action to occur only every 10th time a breakpoint is reached.

The syntax for every_clause is:

<

- 1 L EVERY — integer —J L FROM — integer —J L TO — integer —J J A

EVERY

EVERY integer
Specifies how frequently the breakpoint is taken. For example, EVERY 5 means that z/OS Debugger is
started every fifth time the AT-condition is met. The default is EVERY 1.

FROM integer
Specifies when z/0OS Debugger invocations are to begin. For example, FROM 8 means that z/OS
Debugger is not started until the eighth time the AT-condition is met. If the FROM value is not
specified, its value is equal to the EVERY value.

TO integer
Specifies when z/0S Debugger invocations are to end. For example, TO 20 means that after the 20th
time this AT-condition is met, it should no longer start z/OS Debugger. If the TO value is not specified,
the every clause continues indefinitely.

Usage notes

« FROM integer cannot exceed TO integer and all integers must be = 1.

« EVERY by itself is the same as EVERY 1 FROM 1.

« The EVERY, FROM, and TO clauses can be specified in any order.

Examples

- Break every third time statement 50 is reached, beginning with the 48th time and ending after the 59th
time. The breakpoint action is performed the 48th, 51st, 54th, and 57th time statement 50 is reached.

AT EVERY 3 FROM 48 TO 59 STATEMENT 50;

« At the fifth change of structure field member of the structure named mystruct, print a message
saying that it has changed and list its new value. In addition, clear the CHANGE breakpoint. The current
programming language setting is C.

AT FROM 5 CHANGE mystruct.member {
LIST ("mystruct.member has changed.
It is now", mystruct.member);
CLEAR AT CHANGE mystruct.member;

AT ALLOCATE (PL/I) command

AT ALLOCATE gives z/OS Debugger control when storage for a named controlled variable or aggregate is
dynamically allocated by PL/I. When the AT ALLOCATE breakpoint occurs, the allocated storage has not
yet been initialized; initialization, if any, occurs when control is returned to the program.

40 IBM z/OS Debugger: Reference and Messages

»— AT L J ALLOCATE identifier command — ; »<
every clause f , 41
(identifier)
*

identifier
The name of a PL/I controlled variable whose allocation causes an invocation of z/OS Debugger. If the
variable is the name of a structure, only the major structure name can be specified.

Sets a breakpoint at every ALLOCATE.

command
A valid z/OS Debugger command.

Usage notes

« The AT ALLOCATE command is not available to debug Enterprise PL/I programs.

« The AT ALLOCATE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

« When the major structure area_name is allocated, display the address of the storage that was
obtained.

AT ALLOCATE area_name LIST ADDR (area_name);
- List the changes to temp where the storage for temp has been allocated.

DECLARE temp CHAR(80) CONTROLLED INITIAL('abc');
AT ALLOCATE temp;

BEGIN;
AT CHANGE temp;
BEGIN;
LIST (temp);
GO;
END;
GO;
END;
GO;
temp = 'The first time.';
temp = 'The second time.';
temp = 'The second time.';

When temp is allocated the value of temp has not yet been initialized. When it is initialized to 'abc' by
the INITIAL phrase, the first AT CHANGE is recognized and 'abc' is listed. The three assignments to
temp cause the value to be set again but the third assignment doesn't change the value. This example
results in one ALLOCATE breakpoint and three CHANGE breakpoints.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“PLAYBACK commands” on page 185

AT APPEARANCE command

Gives z/0S Debugger control when the specified compile unit is found in storage. This is usually the result
of a new load module being loaded. However, for modules with the main compile unit in COBOL, the
breakpoint does not occur until the compile unit is first entered after being loaded.

Chapter 5. z/OS Debugger commands 41

»w— AT L J APPEARANCE cu_spec command —»
every clause f ,41
(cu_spec)
*

| s 2 |
*
Sets a breakpoint at every APPEARANCE of any compile unit.
command

A valid z/OS Debugger command.
Usage notes

« If this breakpoint is set in a parent enclave it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

« If the compile unit is qualified with a load module name, the AT APPEARANCE breakpoint will only be
recognized for the compile unit that is contained in the specified load module. For example, if a compile
unit cux thatis in load module 1loady appears, the breakpoint AT APPEARANCE loadx: :>cux will
not be triggered.

« If the compile unit is not qualified with a load module name, the current load module qualification is not
used.

« z/OS Debugger gains control when the specified compile unit is first recognized by z/OS Debugger. This
can occur when a program is reached that contains a reference to that compile unit. This occurs late
enough that the program can be operated on (setting breakpoints, for example), but early enough that
the program has not yet been executed. In addition, for C, static variables can also be referenced.

- The AT APPEARANCE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

« AT APPEARANCE is helpful when setting breakpoints in unknown compile units. You can set
breakpoints at locations currently unknown to z/OS Debugger by using the proper qualification and
embedding the breakpoints in the command list associated with an APPEARANCE breakpoint. However,
there can be only one APPEARANCE breakpoint set at any time for a given compile unit and you must
include all breakpoints for that unknown compile unit in a single APPEARANCE breakpoint.

« For a non-CICS application, the AT APPEARANCE breakpoint is cleared at the end of a process.

 Before you enter the AT APPEARANCE command while you debug an assembler or disassembled
program, enter the SET ASSEMBLER ON or SET DISASSEMBLY ON command.

« For C, C++, and Enterprise COBOL for z/0OS Version 5 only: AT APPEARANCE is not triggered for
compile units that reside in a loaded module because the compile units are known at the time of the
load.

 For C, C++, Enterprise COBOL for z/0OS Version 5, and PL/I only: An APPEARANCE breakpoint is
triggered when z/0S Debugger finds the specified compile unit in storage. To be triggered, however, the
APPEARANCE breakpoint must be set before the compile unit is loaded.

 For Enterprise COBOL for z/0S Version 4 or earlier: An APPEARANCE breakpoint is triggered when
z/0S Debugger finds the specified compile unit in storage. To be triggered, however, the APPEARANCE
breakpoint must be set before the compile unit is called.

At the time the APPEARANCE breakpoint is triggered, the compile unit you are monitoring has not
become the currently-running compile unit. The compile unit that is current when the new compile
unit appears in storage, triggering the APPEARANCE breakpoint, remains the current compile unit until
execution passes to the new compile unit.

« For CICS only: The AT APPEARANCE breakpoint is cleared at the end of the last process in the
application.

42 IBM z/0OS Debugger: Reference and Messages

Examples

- Establish an entry breakpoint when compile unit cu is found in storage. The current programming
language setting is C.

AT APPEARANCE cu {
AT ENTRY a;
GO;

b

« Deferthe AT EXIT and AT LABEL breakpoints until compile unit cuy is first entered after being loaded
into storage. The current programming language setting is COBOL.

AT APPEARANCE cuy PERFORM
AT EXIT cuy:>blocky LIST ('Exiting blocky.');
AT LABEL cuy:>labl QUERY LOCATION;
END-PERFORM;

If cuy is later deleted from storage, the breakpoints that are dependent on cuy are automatically
cleared. However, if cuy is then loaded again, the APPEARANCE breakpoint for cuy is triggered and the
AT EXIT and AT LABEL breakpoints are redefined.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“cu_spec” on page 13

“PLAYBACK commands” on page 185

AT CALL command

Gives z/0S Debugger control when the application code attempts to call the specified entry point. Using
CALL breakpoints, you can simulate the execution of unfinished subroutines, create dummy or stub
programs, or set variables to mimic resultant values, allowing you to test sections of code before the
whole is complete.

»w— AT L J CALL entry_name command — ; >«
every clause

entry_name
A valid external entry point name constant or zero (0); however, 0 can only be specified if the current
programming language setting is C or PL/I.

Sets a breakpoint at every CALL of any entry point.

command
A valid z/OS Debugger command.

Usage notes

« AT CALL intercepts the call itself, not the subroutine entry point. C, COBOL, and PL/I programs
compiled with the PATH suboption of the TEST or DEBUG compiler option identify call targets even
if they are unresolved.

« A breakpoint set with AT CALL for a call to a C, C++, or PL/I built-in function is never triggered.

« AT CALL intercepts calls to entry points known to z/OS Debugger at compile time. Calls to entry
variables are not intercepted, except when the current programming language setting is either C or
COBOL (compiled with the TEST run-time option).

Chapter 5. z/OS Debugger commands 43

« AT CALL Ointercepts calls to unresolved entry points when the current programming language setting
is C or PL/I (compiled with the TEST run-time option).

« AT CALL allows you to intercept or bypass the target program by using GO BYPASS or GOTO. If
resumed by a normal GO or STEP, execution resumes by performing the call.

- If you set a breakpoint in a parent enclave, the breakpoint can be triggered and operated on with
breakpoint commands while the application is in a child enclave.

- While debugging a CICS application, the breakpoint is cleared at the end of the last process in the CICS
application. While debugging a non-CICS application, the breakpoint is cleared at the end of a process.

« The AT CALL command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

« You cannot use the AT CALL command while you debug a disassembly program.

 z/OS Debugger does not support the AT CALL command while you debug a LangX COBOL or any VS
COBOL IT program.

« For C and C++ only: The following usage notes apply:

— If your C and C++ program has unresolved entry points or entry variables, enter the command AT
CALL 0.

— To be able to set breakpoints in a C program using the AT CALL command, you must compile your
program in one of the following ways:

- With either the PATH or ALL suboption of the TEST compiler option.
- With either the PATH or ALL suboption of the DEBUG compiler option.

— To be able to set breakpoints in a C++ program using the AT CALL command, you must compile your
program in one of the following ways:

- With the TEST compiler option.
- With either the PATH or ALL suboption of the DEBUG compiler option.
« For COBOL only: The following usage notes apply:
— entry_name can refer to a method as well as a procedure.
— If entry_name is case sensitive, enclose it in quotation marks (") or apostrophes ().

— To be able to set breakpoints in a COBOL program by using the AT CALL command, you must
compile your program with the correct TEST compiler suboptions. The following list describes the
TEST compiler suboptions to use for the corresponding version of the COBOL compiler:

- Specify the HOOK or NOHOOK suboption of the TEST compiler option for Enterprise COBOL for z/0S,
Version 4

- Specify the PATH, ALL, or NONE suboption of the TEST compiler option for the following compilers:
« Enterprise COBOL for z/OS and 0S/390, Version 3
« COBOL for 0S/390 & VM, Version 2

If you compile your program with one of the following compilers and suboptions, you cannot use the
AT CALL entry_name command:

- Itis not supported for Enterprise COBOL for z/OS Version 5.
- NOHOOK suboption of the TEST compiler option for Enterprise COBOL for z/OS, Version 4.
- NONE suboption of the TEST compiler option for the following compilers:
« Enterprise COBOL for z/OS and 0S/390, Version 3.
« COBOL for 0S/390 & VM, Version 2.
Instead, use AT CALL =*.

— AT CALL 0is not supported for use with COBOL programs. However, COBOL is able to identify CALL
targets even if they are unresolved, and also identify entry variables and intercept them. Therefore,
not all external references need be resolved for COBOL programs.

44 1BM z/0OS Debugger: Reference and Messages

 For PL/I only: The following usage notes apply:

— To be able to set CALL breakpoints in PL/I, you must compile your program with either the PATH or
ALL suboptions of the TEST compiler option. AT CALL 0 is supported and is called for unresolved
external references.

— CALL statements within an INITIAL attribute on a PL/I variable declaration will not trigger AT CALL
breakpoints.

« For assembler only: A CALL statement can be a call to an internal or external routine. A CALL
statement is defined to be one of the following opcodes: BALR, BASR, BASSM, BAL, BAS, BRASL,
SVC, or PC. You can use the command AT CALL MVS to give z/OS Debugger control at any SVC or PC
instruction.

Examples

« Intercept all calls and request input from the terminal.
AT CALL *;

« If the program starts function badsubz, intercept the call, set variable varbl to 50, and then bypass
the target function. The current programming language setting is C.

AT CALL badsubr {
varbl = 50;
GO BYPASS;

b

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0OS Debugger User's Guide

Related references
“every_clause syntax” on page 40
“PLAYBACK commands” on page 185

AT CHANGE command (full screen mode, line mode, batch mode)

Gives z/0S Debugger control when either the program or z/OS Debugger command changes the specified
variable value or storage location.

Chapter 5. z/OS Debugger commands 45

ﬁ GLOBAL ﬁ
CHANGE >

»

L LOCAL %CU

J
L cu_spec J

»— AT
L every clause J

v

reference

M——"— reference — '
L WHEN — condition J
— %STORAGE — (— address
L ,— length J

— ({ reference])y—

' — reference — '

“— %STORAGE — (— address
L ,— length J

»— command — ; <

A 4

)_J

)_/

GLOBAL
Specifies that the AT CHANGE breakpoint is global. The AT CHANGE breakpoint is not limited to a
specific compile unit; it spans the entire application. This is the default.

LOCAL
Specifies that the AT CHANGE breakpoint is limited to a specific compile unit.

cu_spec
A valid compile unit specification. Specifies that the AT CHANGE breakpoint is limited to this
compile unit.
condition

A valid, simple z/OS Debugger conditional expression. Simple means that you use only one operator;
for example, a < b.

reference
A valid z/OS Debugger reference in the current programming language.

'reference’
A valid z/OS Debugger reference when the current programming language is LangX COBOL.

%STORAGE
A built-in function that provides an alternative way to select an AT CHANGE subject.
address
The starting address of storage to be watched for changes.

length
The number of bytes of storage being watched for changes. This must be a positive integer
constant. The default value is 1.

command
A valid z/OS Debugger command. If you are using remote debug mode, you can specify only
commands that are supported in remote debug mode.

Usage notes

- Touse the AT CHANGE command for a COBOL level-88 variable, the PTF for Language Environment
APAR PK12834 must be installed on z/OS Version 1 Release 6 and Version 1 Release 7.

« Ifan AT CHANGE breakpoint is set on a file record of a BLOCKED QSAM file that is open OUTPUT
or EXTEND, the breakpoint might not occur as expected when the WRITE statement is used. The

46 IBM z/OS Debugger: Reference and Messages

breakpoint behavior in this case is not predictable because the file record is mapped onto the data
management buffer.

To get predictable AT CHANGE behavior in this case, set up the file to use a SAME RECORD AREA clause.

Data is watched only in storage; hence a value that is being kept in a register because of compiler
optimization cannot be watched. In addition, the z/OS Debugger variables %GPRn, %Rn, %FPRn, %LPRn,
%EPRN, and any assembler or disassembly symbols representing registers cannot be watched.

Only entire bytes are watched; bits or bit strings within a byte cannot be singled out.

Because AT CHANGE breakpoints are identified by storage address and length, it is not possible to
have two AT CHANGE breakpoints for the same area (address and length) of storage. That is, an AT
CHANGE command replaces a previous AT CHANGE command if the storage address and length are the
same. However, any other overlap is ignored and the breakpoints are considered to be for two separate
variables. For example, if the storage address is the same, but the length is different, the AT CHANGE
command does not replace the previous AT CHANGE.

When more than one AT CHANGE breakpoint is triggered at a time, AT CHANGE breakpoints are
triggered in the order that they were entered. However, if the triggering of one breakpoint causes a
variable watched by a different breakpoint to change, the ordering of the triggers will not necessarily be
according to when they were originally entered. For example,

AT CHANGE y LIST vy;
AT CHANGE x y = 4;
GO;

If the next statement to be executed in your program causes the value of x to change, the CHANGE x
breakpoint is triggered when z/0OS Debugger gains control. Processing of CHANGE x causes the value of
y to change. If you type GO; after being informed that CHANGE x was triggered, z/OS Debugger triggers
the CHANGE vy breakpoint (before returning control to your program).

In this case, the CHANGE y breakpoint was entered first, but the CHANGE x breakpoint was triggered
first (because it caused the CHANGE y breakpoint to be triggered).

9%STORAGE is a z/OS Debugger built-in function that is available only with the AT CHANGE command.

For a CICS application on z/OS Debugger, the CHANGE 9%STORAGE breakpoint is cleared at the end of
the last process in the application. For a non-CICS application on z/OS Debugger, it is cleared at the end
of a process.

The referenced variables must exist when the AT CHANGE breakpoint is defined. One way to ensure this
is to embed the AT CHANGE in an AT ENTRY.

An AT CHANGE breakpoint gets removed automatically when the specified variable is no longer defined.
AT CHANGEs for C static variables are removed when the module defining the variable is removed from
storage. For C storage that is allocated usingmalloc () or calloc (), this occurs when the dynamic
storage is freed using free ().

Changes are not detected immediately, but only at the completion of any command that has the
potential of changing storage, variable values, or the logical condition. If you specify a single reference,
you can restrict the circumstances under which the CHANGE condition is raised by specifying a WHEN
condition. If you enter a z/OS Debugger command that modifies a variable being watched, the CHANGE
condition is raised immediately if no WHEN condition is specified. If a WHEN condition is specified, the
CHANGE condition is only raised if the variable is modified and the WHEN condition is true. You can force
more or less frequent checking by using the SET CHANGE command.

C and C++ AT CHANGE breakpoint requirements

— The variable must be an lvalue or an array.

— The variable must be declared in an active block if the variable is a parameter or has a storage class
of auto.

— A CHANGE breakpoint defined for a static variable is automatically removed when the file in which
the variable was declared is no longer active. A CHANGE breakpoint defined for an external variable is
automatically removed when the module where the variable was declared is no longer active.

Chapter 5. z/OS Debugger commands 47

— If reference is a pointer, z/OS Debugger stops when the contents of storage at the address given by
that pointer changes.

« COBOL AT CHANGE breakpoint requirements

— AT CHANGE using a storage address should not reference a data item that follows a variable-size
element or subgroup within a group. COBOL dynamically remaps the group when a variable-size
element changes size.

— Be careful when examining a variable whose allocated storage follows that of a variable-size element.
COBOL dynamically remaps the storage for the element any time it changes size. This could alter the
address of the variable you want to examine.

— You cannot set a CHANGE breakpoint for a COBOL file record before the file is opened.

— The variable, when in the local storage section, must be declared in an active block.

« PL/I AT CHANGE breakpoint requirements

— CHANGE breakpoint is removed for based or controlled variables when they are FREEd and for
parameters and AUTOMATIC variables when the block in which they are declared is no longer active.

— CHANGE monitors only structures with single scalar elements. Structures containing more than one
scalar element are not supported.

— The variable must be a valid reference for the current block.
— The breakpoint is automatically removed after the referenced variable ceases to exist.

— A CHANGE breakpoint monitors the storage allocated to the current generation of a controlled
variable. If you subsequently allocate new generations, they are not monitored.

« For PL/I and C/C++, when you specify a reference, z/OS Debugger calculates the address of the
reference only once, when it runs the AT CHANGE command the first time. Thereafter, z/OS Debugger
monitors the storage location indicated by that address.

For the following items, z/OS Debugger recalculates the address of reference each time it monitors the
storage location. If the address of reference changes, z/OS Debugger uses the new storage location as
the address to monitor:

— COBOL variables whose address can change

— Assembler DSECT items that are in the range of an active USING when you enter the AT CHANGE
command

— Assembler absolute locations that are in the range of an active USING when you enter the AT
CHANGE command

« When you free storage with the STORAGE RELEASE macro in an assembler or disassembly program,
it is not possible to detect when the storage is freed. If you set an AT CHANGE breakpoint on storage
freed by a STORAGE RELEASE macro, unexpected results might occur, such as the triggering of the
breakpoint at unexpected times.

« The AT CHANGE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

« For optimized COBOL programs, the specified variable cannot be a variable that was discarded due to
compiler optimization.

« When you use a COBOL level-88 variable on an AT CHANGE command, the current setting of the value is
saved. z/OS Debugger stops at the breakpoint only if the setting of the COBOL level-88 variable changes
from the saved value to a different value. For example, if the saved value was TRUE and the new value
is FALSE, z/OS Debugger stops at the breakpoint. Note that level-88 variables cannot be listed in LangX
COBOL.

« To use a COBOL level-88 variable with the AT CHANGE command, you (through a z/OS Debugger
command) or the program must have previously set the variable to one of the values specified in the
variable's declaration. If you do not do this, z/OS Debugger behavior becomes unpredictable.

« When you use a condition, the variables used in the condition or the condition are not evaluated at the
time the breakpoint is set but when the location associated with the AT CHANGE command changes.

48 IBM z/0OS Debugger: Reference and Messages

- Only the following conditional operators can be used in a condition:

Compare the two operands for equality.

-=

Compare the two operands for inequality.

<
Determines whether the left operand is less than the right operand.
>
Determines whether the left operand is greater than the right operand.
<=
Determines whether the left operand is less than or equal to the right operand.
>=
Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.

Logical "or" operation.

« If you use the AT CHANGE command with a WHEN condition, every time the variable changes the
condition is evaluated. If the condition evaluates to true, z/OS Debugger stops and runs the command
associated with the breakpoint.

« When z/0S Debugger evaluates the condition and the condition is invalid, z/OS Debugger does one of
the following actions:

— If SET WARNING is set to ON, z/OS Debugger stops and displays a message that it could not evaluate
the condition. You need to enter a command to indicate what action you want z/OS Debugger to take.

— If SET WARNING is set to OFF, z/OS Debugger does not stop nor display a message that it could not
evaluate the condition. z/OS Debugger continues running the program.

- If you specify address with more than 8 significant digits or if reference references 64-bit addressable
storage, z/OS Debugger assumes that the storage location is 64-bit addressable storage. Otherwise,
z/0S Debugger assumes that the storage location is 31-bit addressable storage.

Examples

- Identify the current location each time variable varbll1 or varbl2 is found to have a changed value.
The current programming language setting is COBOL.

AT CHANGE (varbll, varbl2) PERFORM
QUERY LOCATION;
GO;

END-PERFORM;

« When storage at the hex address 22222 changes, print a message in the log. Eight bytes of storage are
to be watched. The current programming language setting is C.

AT CHANGE %STORAGE (0x00022222, 8)
LIST "Storage has changed at hex address 22222";

« Set two breakpoints when storage at the hex address 1000 changes. The variable x is defined at hex
address 1000 and is 20 bytes in length. In the first breakpoint, 20 bytes of storage are to be watched.
In the second breakpoint, 50 bytes of storage are to be watched. The current programming language
setting is C.

AT CHANGE %STORAGE (0x00001000, 20) /* Breakpoint 1 set x/
AT CHANGE %STORAGE (0x00001000, 50) /* Breakpoint 2 set x/
AT CHANGE x /* Replaces breakpoint 1, since x is at =*/

/* hex address 1000 and is 20 bytes long x/

« Stop when a variable reaches a value that is greater than 200.

Chapter 5. z/OS Debugger commands 49

AT CHANGE MYVAR WHEN MYVAR > 200 ;

MYVAR > 200 is a condition. Every time the value of MYVAR changes, the condition MYVAR > 200 is
evaluated. Changes to MYVAR do not trigger the AT CHANGE breakpoint. Only when MYVAR changes and
the condition MYVAR > 200 becomes true is the AT CHANGE breakpoint triggered.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Controlling how z/0OS Debugger handles invalid comparisons" in the IBM z/OS Debugger User's Guide

Related references

“address” on page 11

“every_clause syntax” on page 40

“references” on page 15

“PLAYBACK commands” on page 185

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

AT CHANGE command (remote debug mode)

Gives z/0S Debugger control when the program changes the specified variable value.
»— AT — CHANGE T" — reference — " =
'— reference — '

'reference' or "reference"
A valid z/OS Debugger reference in the current programming language.

Usage notes

« When you enter an AT CHANGE command, the breakpoint is set relative to the location the program
is stopped, which might not be the program displayed in the source view. For example, your program
is stopped at program SUB1, which was called by program MAIN1, and the source view displays the
source for program SUBL. Then, you click on MAIN1 in the Debug view so that the source view displays
the source for MAIN1. If you enter the command AT CHANGE "Vazrl", a breakpoint is set to monitor
any changes to a variable called "Varl" in SUB1, not a variable called "Varl" in MAIN1.

« To use the AT CHANGE command for a COBOL level-88 variable, the PTF for Language Environment
APAR PK12834 must be installed on z/OS Version 1 Release 6 and Version 1 Release 7.

« If an AT CHANGE breakpoint is set on a file record of a BLOCKED QSAM file that is open OUTPUT
or EXTEND, the breakpoint might not occur as expected when the WRITE statement is used. The
breakpoint behavior in this case is not predictable because the file record is mapped onto the data
management buffer.

To get predictable AT CHANGE behavior in this case, set up the file to use a SAME RECORD AREA clause.

- Data is watched only in storage; hence a value that is being kept in a register because of compiler
optimization cannot be watched. In addition, the z/OS Debugger variables %GPRn, %Rn, %FPRn, %LPRn,
%EPRN, and any assembler or disassembly symbols representing registers cannot be watched.

Only entire bytes are watched; bits or bit strings within a byte cannot be singled out.

Because AT CHANGE breakpoints are identified by storage address and length, it is not possible to
have two AT CHANGE breakpoints for the same area (address and length) of storage. That is, an AT
CHANGE command replaces a previous AT CHANGE command if the storage address and length are the
same. However, any other overlap is ighored and the breakpoints are considered to be for two separate
variables. For example, if the storage address is the same, but the length is different, the AT CHANGE
command does not replace the previous AT CHANGE.

« When more than one AT CHANGE breakpoint is triggered at a time, AT CHANGE breakpoints are
triggered in the order that they were entered. However, if the triggering of one breakpoint causes a

50 IBM z/0OS Debugger: Reference and Messages

variable watched by a different breakpoint to change, the ordering of the triggers will not necessarily be
according to when they were originally entered. For example,

AT CHANGE y LIST vy;
AT CHANGE x y = 4;
GO;

If the next statement to be executed in your program causes the value of x to change, the CHANGE x
breakpoint is triggered when z/OS Debugger gains control. Processing of CHANGE x causes the value of
y to change. If you type GO; after being informed that CHANGE x was triggered, z/OS Debugger triggers
the CHANGE vy breakpoint (before returning control to your program).

In this case, the CHANGE y breakpoint was entered first, but the CHANGE x breakpoint was triggered
first (because it caused the CHANGE y breakpoint to be triggered).

« The referenced variable must exist when the AT CHANGE breakpoint is defined.

« An AT CHANGE breakpoint gets removed automatically when the specified variable is no longer defined.
AT CHANGEs for C static variables are removed when the module defining the variable is removed from
storage. For C storage that is allocated usingmalloc () or calloc (), this occurs when the dynamic
storage is freed using free ().

- Changes are not detected immediately, but only at the completion of any command that has the
potential of changing storage or variable values.

« Cand C++ AT CHANGE breakpoint requirements

— The variable must be an lvalue or an array.

— The variable must be declared in an active block if the variable is a parameter or has a storage class
of auto.

— A CHANGE breakpoint defined for a static variable is automatically removed when the file in which
the variable was declared is no longer active. A CHANGE breakpoint defined for an external variable is
automatically removed when the module where the variable was declared is no longer active.

— If reference is a pointer, z/OS Debugger stops when the contents of storage at the address given by
that pointer changes.

« COBOL AT CHANGE breakpoint requirements

— AT CHANGE using a storage address should not reference a data item that follows a variable-size
element or subgroup within a group. COBOL dynamically remaps the group when a variable-size
element changes size.

— Be careful when examining a variable whose allocated storage follows that of a variable-size element.
COBOL dynamically remaps the storage for the element any time it changes size. This could alter the
address of the variable you want to examine.

— You cannot set a CHANGE breakpoint for a COBOL file record before the file is opened.
— The variable, when in the local storage section, must be declared in an active block.
« PL/I AT CHANGE breakpoint requirements

— CHANGE breakpoint is removed for based or controlled variables when they are FREEd and for
parameters and AUTOMATIC variables when the block in which they are declared is no longer active.

— CHANGE monitors only structures with single scalar elements. Structures containing more than one
scalar element are not supported.

— The variable must be a valid reference for the current block.
— The breakpoint is automatically removed after the referenced variable ceases to exist.

— A CHANGE breakpoint monitors the storage allocated to the current generation of a controlled
variable. If you subsequently allocate new generations, they are not monitored.

« When you free storage with the STORAGE RELEASE macro in an assembler or disassembly program,
it is not possible to detect when the storage is freed. If you set an AT CHANGE breakpoint on storage
freed by a STORAGE RELEASE macro, unexpected results might occur, such as the triggering of the
breakpoint at unexpected times.

Chapter 5. z/OS Debugger commands 51

« For optimized COBOL programs, the specified variable cannot be a variable that was discarded due to
compiler optimization.

« When you use a COBOL level-88 variable on an AT CHANGE command, the current setting of the value is
saved. z/OS Debugger stops at the breakpoint only if the setting of the COBOL level-88 variable changes
from the saved value to a different value. For example, if the saved value was TRUE and the new value is
FALSE, z/OS Debugger stops at the breakpoint.

« To use a COBOL level-88 variable with the AT CHANGE command, you (through a z/OS Debugger
command) or the program must have previously set the variable to one of the values specified in the
variable's declaration. If you do not do this, z/OS Debugger behavior becomes unpredictable.

- If reference references 64-bit addressable storage, z/OS Debugger assumes that the storage location
is 64-bit addressable storage. Otherwise, z/OS Debugger assumes that the storage location is 31-bit
addressable storage.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“references” on page 15

“AT CHANGE command (full screen mode, line mode, batch mode)” on page 45
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

AT CURSOR command (full-screen mode)

Provides a cursor controlled method for setting a statement breakpoint. It is most useful when assigned
to a PF key.

CURSOR
»— AT J—_ _1' Hao)
1——TOGGLE——J

TOGGLE

Specifies that if the cursor-selected statement already has an associated statement breakpoint then
the breakpoint is removed rather than replaced.

Usage notes

« AT CURSOR does not allow specification of an every clause or a command.
Do not use a semicolon.

« The cursor must be in the Source window and positioned on a line where an executable statement
begins. An AT STATEMENT command for the first executable statement in the line is generated and
executed (or cleared if one is already defined and TOGGLE is specified). For optimized COBOL programs,
the first statement on the line might have been discarded due to optimization effects. Therefore, the
first executable statement might be the second statement or later.

« The AT CURSOR command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Example

Define a PF key to toggle the breakpoint setting at the cursor position.

SET PF10 = AT TOGGLE CURSOR;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 185

52 IBM z/0OS Debugger: Reference and Messages

AT DATE command (COBOL)

Gives z/0OS Debugger control for each date processing statement within the specified block. A date
processing statement is a statement that references a date field, or an EVALUATE or SEARCH statement
WHEN phrase that references a date field.

»w— AT L J DATE block_spec command — ; >4
every clause

(£ block_spec l)

Sets a breakpoint at every date processing statement.
command
A valid z/OS Debugger command.
Usage notes
« When you use AT DATE, execution is halted only for COBOL compile units compiled with the DATEPROC
compiler option.
e The AT DATE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.
Examples

- Each time a date processing statement is encountered in the nested subprogram subzrx, display the
location of the statement.

AT DATE subrx QUERY LOCATION;

- Each time a date processing statement is encountered in the compile unit, display the name of the
compile unit.

AT DATE * LIST %CU;

- Each time a date processing statement is encountered in the compile unit, display the location of the
statement, list a specific variable, and resume running the program.

AT DATE % PERFORM
QUERY LOCATION;
LIST DATE-FIELD
GO;

END-PERFORM;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“block_spec” on page 12
“PLAYBACK commands” on page 185

AT DELETE command

Gives z/OS Debugger control when a load module is removed from storage by a Language Environment,
MVS, or CICS delete service, such as on completion of a successful C release (), COBOL CANCEL, PL/I
RELEASE, assembler DELETE macro, or EXEC CICS RELEASE.

Chapter 5. z/OS Debugger commands 53

»— AT L J DELETE load_spec command — ; >4
every clause f , 41
(load_spec)
%*

*

Sets a breakpoint at every DELETE of any load module.

command
A valid z/OS Debugger command.

Usage notes

- z/OS Debugger gains control for deletes that are affected by the Language Environment delete service,
MVS delete service, or EXEC CICS RELEASE. If the Dynamic Debug facility is deactivated (by entering
the SET DYNDEBUG OFF command) or SVC screening is disabled, z/OS Debugger is not notified
of deletes affected by the MVS delete service. Refer to IBM z/0S Debugger Customization Guide for
instructions on how to control SVC screening.

« AT DELETE cannot specify the initial load module.

- If this breakpoint is set in a parent enclave, it can be triggered and operated on with commands while
the application is in a child enclave.

« For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

- The AT DELETE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

« Each time a load module is deleted, request input from the terminal.

AT DELETE x;
« Stop watching variable varl:>x when load module mymod is deleted.

AT DELETE mymod CLEAR AT CHANGE (varl:>x);

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“load_spec” on page 15

“PLAYBACK commands” on page 185

AT ENTRY command

Defines a breakpoint at the specified entry point in the specified block.

»— AT L J ENTRY block_spec
every clause f , 41
(block_spec)
*

> L J command — ; »<«
WHEN — condition

54 IBM z/0OS Debugger: Reference and Messages

Sets a breakpoint at every ENTRY of any block.

command

A valid z/OS Debugger command. If you are using remote debug mode, you can specify only
commands that are supported in remote debug mode.

condition

A valid z/OS Debugger conditional expression.

Usage notes

For VS COBOL II programs, z/OS Debugger supports only the AT ENTRY * command.

To specify an AT ENTRY breakpoint for a program that is not currently known to z/OS Debugger, you
must do one of the following:

— If the name of the program is the same as the block_spec, you do not need to qualify the block_spec
with the name of the program.

— If the name of the program is not the same as the block_spec, you need to qualify the block_spec with
a program name. When z/0S Debugger detects a program name that matches the one you specified,
it sets the breakpoint.

An ENTRY breakpoint set for a compile unit that becomes nonactive (one that is not in the current
enclave), is suspended until the compile unit becomes active. An ENTRY breakpoint set for a compile
unit that is deleted from storage is suspended until the compile unit is reloaded. A suspended
breakpoint cannot be triggered until it is reactivated.

For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

ENTRY breakpoints for blocks in a fetched or loaded program are converted to deferred breakpoints
when that program is released.

The AT ENTRY command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

You cannot use the AT ENTRY command to stop at the entry to a Language Environment MAIN routine
for an enclave other than the first enclave if you do not have debug data available for the containing
compile unit.

You can restrict the circumstances under which the AT ENTRY break point is raised by specifying a
WHEN condition. If a WHEN condition is specified, z/OS Debugger stops at the AT ENTRY break point if
the specified entry point matches the current entry point and the WHEN condition is true.

The following conditional operators can be used in a condition:

Compare the two operands for equality.

Compare the two operands for inequality.

) Determines whether the left operand is less than the right operand.

’ Determines whether the left operand is greater than the right operand.

= Determines whether the left operand is less than or equal to the right operand.

. Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.

Logical "or" operation.

Chapter 5. z/OS Debugger commands 55

« If you use the AT ENTRY command with a WHEN condition, every time z/OS Debugger reaches the
entry, it evaluates the condition. If the condition evaluates to true, z/OS Debugger stops and runs the
command associated with the breakpoint.

« When z/0OS Debugger evaluates the condition and the condition is invalid, z/OS Debugger does one of
the following actions:

— If SET WARNING is set to ON, z/OS Debugger stops and displays a message that it could not evaluate
the condition. You need to enter a command to indicate what action you want z/OS Debugger to take.

— If SET WARNING is set to OFF, z/OS Debugger does not stop nor display a message that it could not
evaluate the condition. z/OS Debugger continues running the program.
« Adeferred AT ENTRY command creates an implicit NAMES INCLUDE for the target of the deferred AT
ENTRY.

« You cannot use the AT ENTRY command to stop at the entry of a nested block in a C or C++ program. A
nested block is a group of statements delimited by { and }. The compiler assigns a name to these blocks
using the following pattern: %BLOCKn, where n is a sequentially-assigned number.

Examples

« At the entry of program subzxx, initialize variable ix and continue program execution. The current
programming language setting is COBOL.

AT ENTRY subrx PERFORM
SET ix TO 5;
GO;

END-PERFORM;

- At the entry of program myprog with parameter mypazxm, to stop at the entry point to myprog only
when myparm equals 100, enter the following command:

AT ENTRY myprog WHEN myparm=100;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40

“condition” on page 12

“block_spec” on page 12

“AT APPEARANCE command” on page 41

“PLAYBACK commands” on page 185

Appendix A, “z/0OS Debugger commands supported in remote debug mode,” on page 511

AT ENTRY command (remote debug mode)
Defines a breakpoint at the entry point of the specified block.

»— AT — ENTRY — block_spec — ; >«

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“block_spec” on page 12

“AT ENTRY command” on page 54

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

AT EXIT command

Defines a breakpoint at the specified exit point in the specified block.

56 IBM z/0OS Debugger: Reference and Messages

»w— AT L J EXIT block_spec command — ; >4
every clause

(£ block_spec l)

Sets a breakpoint at every EXIT of any block.
command

A valid z/OS Debugger command.
Usage notes

« For VS COBOL II programs, z/OS Debugger supports only the AT EXIT *command.

« An AT EXIT breakpoint can only be set for programs that are currently fetched or loaded. To set an exit
breakpoint for a currently unknown compile unit, use the AT APPEARANCE command.

« An EXIT breakpoint set for a compile unit that becomes nonactive (one that is not in the current
enclave), is suspended until the compile unit becomes active. An EXIT breakpoint set for a compile unit
that is deleted from storage is suspended until the compile unit is reloaded. A suspended breakpoint
cannot be triggered until it is reactivated.

« For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

« EXIT breakpoints for blocks in a fetched or loaded program are removed when that program is
released.

« The AT EXIT command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

« You cannot use the AT EXIT command when you are in a disassembly compile unit.

« You cannot use the AT EXIT command when you are in a LangX COBOL compile unit.

« For assembler only: AT EXIT gains control on exit from internal or external routines. An EXIT is
defined to be one of the following opcodes:
- BR
— BALR, BASR, or BASSM when it is not followed by a valid instruction

« You cannot use the AT EXIT command to stop at the exit of a nested block in a C or C++ program. A

nested block is a group of statements delimited by { and }. The compiler assigns a name to these blocks
using the following pattern: %BLOCKn, where n is a sequentially-assigned number.

Example

At exit of main, print a message and TRIGGER the SIGUSR1 condition. The current programming
language setting is C.
AT EXIT main {
puts("At exit of the program");
TRIGGER SIGUSR1;
GO;
%

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“block_spec” on page 12
“PLAYBACK commands” on page 185

Chapter 5. z/OS Debugger commands 57

AT GLOBAL command

Gives z/0S Debugger control for every instance of the specified AT-condition. These breakpoints are
independent of their nonglobal counterparts (except for AT PATH, which is identical to AT GLOBAL
PATH). Global breakpoints are always performed before their specific counterparts.

GLOBAL

»— AT
L every clause J

»— command — ; <

command
A valid z/OS Debugger command.

ALLOCATE

APPEARANCE
CALL

DATE

DELETE

M—— ENTRY

L WHEN — condition J

EXIT

LABEL

LINE

M—————————— OCCURRENCE

LOAD

PATH

~— STATEMENT

L WHEN — condition J

v

You should use GLOBAL breakpoints where you don't have specific information of where to set your
breakpoint. For example, you want to halt at entry to block Abcdefg_Unknwn but cannot remember the
name, you can issue AT GLOBAL ENTRY and z/OS Debugger will halt every time a block is being entered.
If you want to halt at every function call, you can issue AT GLOBAL CALL.

Usage notes

- z/OS Debugger does not support the AT CALL, AT LABEL and AT PATH commands for disassembled

or VS COBOL IT programs.

« z/OS Debugger does not support the AT CALL command for LangX COBOL programs.

« To set a global breakpoint, you can specify an asterisk (*) with the AT command or you can specify an AT

GLOBAL command.

« Although you can define GLOBAL breakpoints to coexist with singular breakpoints of the same type at
the same location or event, COBOL does not allow you to define two or more single breakpoints of
the same type for the same location or event. The last breakpoint you define replaces any previous

breakpoint.

- The AT GLOBAL command cannot be used while you replay recorded statements by using the

PLAYBACK commands.

« The AT GLOBAL OCCURRENCE breakpoint takes precedence over an AT OCCURRENCE condition

breakpoint.

« The AT GLOBAL OCCURRENCE command takes precedence over the test_level setting of the TEST
runtime option. For example, if your test_level setting is ALL, a condition is raised, and you set an AT
GLOBAL OCCURRENCE breakpoint, then z/OS Debugger stops only for the breakpoint. z/OS Debugger
does not stop twice (once for the AT GLOBAL OCCURRENCE and once for the test_level setting of ALL).

58 IBM z/0OS Debugger: Reference and Messages

« You cannot use the AT GLOBAL ENTRY, AT GLOBAL EXIT,and AT GLOBAL PATHcommands to
stop at the entry or exit of a nested block in a C or C++ program. A nested block is a group of
statements delimited by { and }. The compiler assigns a name to these blocks using the following
pattern: %BLOCKn, where n is a sequentially-assigned number.

Examples
- If you want to set a global AT ENTRY breakpoint, specify:

AT ENTRY =*;

or
AT GLOBAL ENTRY;

At every statement or line, display a message identifying the statement or line. The current
programming language setting is COBOL.

AT GLOBAL STATEMENT LIST ('At Statement:', %STATEMENT);
- If you enter (for COBOL):

AT EXIT tablel PERFORM
LIST TITLED (age, pay);

GO;
END-PERFORM;
then enter:

AT EXIT tablel PERFORM

LIST TITLED (benefits, scale);
GO;

END-PERFORM;

only benefits and scale are listed when your program reaches the exit point of block tablel. The
second AT EXIT replaces the first because the breakpoints are defined for the same location. However,
if you define the following GLOBAL breakpoint with the first EXIT breakpoint, when your program
reaches the exit from tablel, all four variables (age, pay, benefits, and scale) are listed with their
values, because the GLOBAL EXIT breakpoint can coexist with the EXIT breakpoint set for tablel:

AT GLOBAL EXIT PERFORM

LIST TITLED (benefits, scale);
GO;

END-PERFORM;

» To set a GLOBAL DATE breakpoint, specify:
AT DATE *;
or
AT GLOBAL DATE;
« To combine a global breakpoint with other z/OS Debugger commands, specify:
AT GLOBAL DATE QUERY LOCATION;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“PLAYBACK commands” on page 185

AT GLOBAL LABEL command (remote debug mode)

Gives z/0S Debugger control for every instance of the specified AT-Label condition. Global breakpoints
are always performed for all Compile Units that are known to z/OS Debugger.

Chapter 5. z/OS Debugger commands 59

»— AT — GLOBAL — LABEL — ; >«

Use AT GLOBAL LABEL breakpoints if you do not have specific information of where to set your
breakpoint. For example, if you want to halt at a label that you do not know the name of, enter AT
GLOBAL LABEL command to halt z/OS Debugger when it encounters a label.

Usage note

To set a global breakpoint, specify an asterisk (*) with the AT command, or enter the AT GLOBAL
command.

Example

If you want to set a global AT LABEL breakpoint, specify one of the following commands:
AT LABEL =%;

or

AT GLOBAL LABEL;

AT LABEL command

Gives z/0OS Debugger control when execution has reached the specified statement label or group of
labels. For C and PL/I, if there are multiple labels associated with a single statement, you can specify
several labels and z/OS Debugger gains control at each label. For COBOL and LangX COBOL, AT LABEL
lets you specify several labels, but for any group of labels that are associated with a single statement,
z/0S Debugger gains control for that statement only once.

»w— AT L J LABEL statement_label
every_clause M 'statement_label'! —————

— (L statement_label l) ——
— (L ‘statement_label’ l) —

— * J

L LOCAL %CU
L cu_spec J

v

»— command — ; <

Sets a breakpoint at every LABEL.

LOCAL
Specifies that the AT LABEL breakpoint is limited to all labels in the specified compile unit.

cu_spec
A valid compile unit specification.

command
A valid z/OS Debugger command.

Usage notes

« Use the syntax of statement_label enclosed in apostrophes (') only for LangX COBOL programs. It is not
supported in any other programming language.

« z/OS Debugger does not support the AT LABEL command with VS COBOL II programs.

60 IBM z/0OS Debugger: Reference and Messages

- A COBOL statement_label can have either of the following forms:
- name

This form can be used in COBOL for reference to a section name or for a COBOL paragraph name that
is not within a section or is in only one section of the block.

— namel OF name2 or namel IN name2

This form must be used for any reference to a COBOL paragraph (namel) that is within a section
(name?2), if the same name also exists in other sections in the same block. You can specify either OF
or IN, but z/OS Debugger always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load module qualifiers.

« For C, C++ or PL/I, you can set a LABEL breakpoint at each label located at a statement. This is the only
circumstance where you can set more than one breakpoint at the same location.

« A LABEL breakpoint set for a nonactive compile unit (one that is not in the current enclave) is suspended
until the compile unit becomes active. A LABEL breakpoint set for a compile unit that is deleted from
storage is suspended until the compile unit is reloaded. A suspended breakpoint cannot be triggered
until it is reactivated.

« For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

« You cannot set LABEL breakpoints at PL/I label variables.

- LABEL breakpoints for label constants in a fetched, loaded program or DLL are removed when that
program is released.

« To be able to set LABEL breakpoints in PL/I, you must compile your program with either the PATH and
SYM suboptions or the ALL suboption of the TEST compiler option.

- For C, to be able to set LABEL breakpoints, you must compile your program in one of the following ways:
— With either the PATH and SYM suboptions or ALL suboption of the TEST compiler option.
— With either the PATH and SYM suboptions or ALL suboption of the DEBUG compiler option.

« For C++, to be able to set LABEL breakpoints, you must compile your program in one of the following
ways:
— With the TEST compiler option.
— With either the PATH and SYM suboptions or ALL suboption of the DEBUG compiler option.

 You can set breakpoints for more than one label at the same location. z/OS Debugger is entered for each
specified label.

« To be able to set LABEL breakpoints in COBOL programs, you must compile your program with one of
the following compilers and TEST compiler suboptions:

— Specify the HOOK suboption with Enterprise COBOL for z/0S, Version 4

— Specify the STMT, PATH, or ALL suboption and the SYM suboption with one of the following compilers:
- any release of the Enterprise COBOL for z/OS and 0S/390, Version 3, compiler
- any release of the COBOL for 0S/390 and VM, Version 2, compiler

When defining specific LABEL breakpoints z/OS Debugger sets a breakpoint for each label specified,
unless there are several labels on the same statement. In this case, only the last LABEL breakpoint
defined is set.

« For COBOL, a reference to a label or a label constant can take either of the following forms:
- name

This form is used to refer to a section name or the name of a paragraph contained in not more than
one section of the block.

— namel OF name2 or namel IN name2

Chapter 5. z/OS Debugger commands 61

This form is used to refer to a paragraph contained within a section if the paragraph name exists in
other sections in the same block. You can use either OF or IN, but z/OS Debugger only uses OF for
output to the log file.

« For PL/I users:

— If you are running any version of VisualAge PL/I or Enterprise PL/I Version 3 Release 1 through
Version 3 Release 3 programs, you cannot use the AT LABEL command.

— If you are running Enterprise PL/I for z/OS, Version 3.4, or later, programs and you comply with the
following requirements, you can use the AT LABEL command to set breakpoints (except at a label
variable):

- If you are running z/OS Version 1 Release 6, apply the Language Environment PTF for APAR
PQ99039.

- If you are compiling with Enterprise PL/I Version 3 Release 4, apply PTFs for APARs PK0O0118 and
PK00339.

 You cannot use the AT LABEL command while you use the disassembly view.

« The AT LABEL command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

 Set a breakpoint at label create in the currently qualified block.
AT LABEL create;

« At program label para OF sectl display variable names x and y and their values, and continue
program execution. The current programming language setting is COBOL.

AT LABEL para OF sectl PERFORM
LIST TITLED (x, y);
GO;

END-PERFORM;

 Set a breakpoint at labels 1abell and 1label?2, even though both labels are associated to the same
statement. The current programming language setting is C.

AT LABEL labell LIST 'Stopped at labell'; /*x Labell is first =/
AT LABEL label2 LIST 'Stopped at label2'; /x Label2 is second */

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“statement_label” on page 17
“PLAYBACK commands” on page 185

AT LABEL command (remote debug mode)

Gives z/0OS Debugger control when execution reaches the statement label that you specify. For C and PL/I
programs, if multiple labels are associated with a single statement, z/OS Debugger gains control at each
label that you set an AT LABEL breakpoint for. For COBOL programs, you can issue AT LABEL commands
for multiple labels on the same statement, but for any group of labels that are associated with a single
statement, z/OS Debugger gains control for that statement only once.

»— AT LABEL T statement_label T ; >
*

*

Sets a breakpoint at every LABEL

Usage notes

62 IBM z/0OS Debugger: Reference and Messages

If you set a breakpoint for a specific label (for example, AT LABEL MYLABEL), and AT GLOBAL LABEL
command is also set, the remote debugger stops only one time.

z/0S Debugger does not support the AT LABEL command for VS COBOL II programs.
A COBOL statement_label can have only the form of — name.

A LABEL breakpoint in remote mode is limited to labels in the currently executing compile unit.

« For more information about restrictions for the AT LABEL command, see Usage notes on “AT LABEL
command” on page 60

Example
Set a breakpoint at Label create in the currently qualified block.
AT LABEL create;

AT LINE command

Gives z/0S Debugger control at the specified line.
The AT LINE command is synonymous to the AT STATEMENT command.

You cannot use the AT LINE while you debug a disassembled program. Instead, use the AT OFFSET
command.

The AT LINE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“AT OFFSET command (disassembly)” on page 68
“PLAYBACK commands” on page 185

“AT STATEMENT command” on page 70

AT LOAD command

Gives z/OS Debugger control when the specified load module is brought into storage. For example, z/OS
Debugger gains control on completion of a successful C fetch (), a PL/I FETCH, during a COBOL dynamic
CALL, MVS LOAD service, or EXEC CICS LOAD. To stop at a compile unit or program in a COBOL DLL, use
AT APPEARANCE. Once the breakpoint is raised for the specified load module, it is not raised again unless
either the load module is released and fetched again or another load module with the specified name is
fetched.

You can set LOAD breakpoints regardless of what compiler options are in effect.

»— AT L _J LOAD module_name
every clause L
(

ge_:@)

load_spec command — ; >«

*

Sets a breakpoint at every LOAD of any load module.

command
A valid z/OS Debugger command.

Chapter 5. z/OS Debugger commands 63

Usage notes

« z/OS Debugger gains control for loads that are affected by the Language Environment load service,
the MVS LOAD service, or EXEC CICS LOAD. A LOAD breakpoint is triggered when a new enclave is
entered. If the Dynamic Debug facility is deactivated (by entering the SET DYNDEBUG OFF command)
or SVC screening is disabled, z/OS Debugger is not notified of any loads that are affected by the MVS
LOAD service. Refer to IBM z/0S Debugger Customization Guide for instructions on how to control SVC
screening.

« AT LOAD can be used to detect the loading of specific language library load modules; however, the
loading of language library load modules does not trigger an AT GLOBAL LOAD or AT LOAD .

« AT LOAD cannot specify the initial load module because it is already loaded when z/OS Debugger is
started.

- If this breakpoint is set in a parent enclave, it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

« For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

« AT LOAD on an implicitly or explicitly loaded DLL is not supported by z/OS Debugger.

« Depending on the version of the C or C++ compiler used, z/OS Debugger might recognize a compile unit
in a DLL only after it has had a function in it called. For example, if a DLL contains a function £nl in
CU filel and it contains a function £n2 in CU £ile2, a call to £n1 will not enable z/OS Debugger
to recognize £ile2, only £ilel. Similarly, a call to £n2 will not enable z/OS Debugger to recognize
filel.

- At the triggering of a LOAD breakpoint for C, C++, and PL/I, z/OS Debugger has enough information
about the loaded module to set breakpoints and examine variables of static and extern storage classes.

At the triggering of a LOAD breakpoint for COBOL, C, and C++ DLL's, z/OS Debugger does not have
enough information about the loaded module to set breakpoints in blocks contained within the module.
At the triggering of an APPEARANCE breakpoint, however, you can set such breakpoints.

« The AT LOAD command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

 Print a message when load module mymod is loaded. The current programming language setting is
either C, C++, or COBOL.

AT LOAD mymod LIST ("Load module mymod has been loaded");

« Establish an entry breakpoint when load module a is fetched and then resume execution. The current
programming language setting is C.

AT LOAD a {
AT ENTRY a;
GO;

%

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“load_spec” on page 15

“PLAYBACK commands” on page 185

AT LOAD command (remote debug mode)

Gives z/0S Debugger control when the specified load module is brought into storage. For example, z/0S
Debugger gains control on completion of a successful C fetch (), a PL/I FETCH, during a COBOL dynamic
CALL, MVS LOAD service, or EXEC CICS LOAD. Once the breakpoint is raised for the specified load

64 IBM z/0OS Debugger: Reference and Messages

module, it is not raised again unless either the load module is released and fetched again or another load
module with the specified name is fetched.

You can set LOAD breakpoints regardless of what compiler options are in effect.

»w— AT — LOAD — module_name — ; »<

Related references
“AT LOAD command” on page 63
Appendix A, “z/0OS Debugger commands supported in remote debug mode,” on page 511

AT OCCURRENCE command
Gives z/OS Debugger control on a language or Language Environment condition or exception or an MVS or
CICS ABEND.
»— AT OCCURRENCE condition command —»
L every clause —J f , 41
(condition)

e |

condition

A valid condition or exception. This can be one of the following codes or conditions:

A Language Environment symbolic feedback code.
- Alanguage-oriented keyword or code, depending on the current programming language setting.

« An MVS System or User ABEND code Sxxx or Uxxx, where xxx is three hexadecimal digits
corresponding to the desired ABEND code. These codes are valid only when you are running without
the Language Environment run time.

« Any four-character string representing a CICS ABEND code. This code is valid only when you are
running without the Language Environment run time.

Following are the C and C++ condition constants; they must be uppercase and not abbreviated:

SIGABND SIGILL SIGTERM

SIGABRT SIGINT SIGUSR1

SIGFPE SIGIOERR SIGUSR2
SIGSEGV THROWOBJ

When a C++ user specifies AT CONDITION THROWOBJ, z/OS Debugger transfers control to the user
at the point of the throw in C++ code.

PL/I condition constants can be used. For conditions associated with file handling, the file reference
can be a wildcard.

There are no COBOL condition constants. Instead, an Language Environment symbolic feedback code
must be used, for example, CEE347.

The TRAP (ON) run-time option must be used to stop on Language Environment conditions or MVS or
CICS Abends.

command
A valid z/OS Debugger command.

Program conditions and condition handling vary from language to language. The methods the
OCCURRENCE breakpoint uses to adapt to each language are described below.

For C and C++:

Chapter 5. z/OS Debugger commands 65

When a C and C++ or an Language Environment condition occurs during your session, the following series
of events takes place:

1. z/OS Debugger is started before any C or C++ signal handler.

2. If you set an OCCURRENCE breakpoint for that condition, z/OS Debugger processes that breakpoint and
executes any commands you have specified. If you did not set an OCCURRENCE breakpoint for that
condition, and:

« If the current test-level setting is ALL, z/OS Debugger prompts you for commands or reads them
from a commands file.

- If the current test-level setting is ERROR, and the condition has an error severity level (that
is, anything but SIGUSR1, SIGUSR2, SIGINT, or SIGTERM), z/OS Debugger gets commands by
prompting you or by reading from a commands file.

- If the current test-level setting is NONE, z/OS Debugger ignores the condition and returns control to
the program.

You can set OCCURRENCE breakpoints for equivalent C and C++ signals and Language Environment
conditions. For example, you can set AT OCCURRENCE CEE345and AT OCCURRENCE SIGSEGV during
the same debug session. Both indicate an addressing exception and, if you set both breakpoints, no error
occurs. However, if you set 0OCCURRENCE breakpoints for a condition using both its C, C++, and Language
Environment designations, the Language Environment breakpoint is the only breakpoint triggered. Any
command list associated with the C condition is not executed.

You can use OCCURRENCE breakpoints to control your program's response to errors.
Usage notes

- If the application program also has established an exception handler for the condition then that handler
is entered when z/0OS Debugger releases control, unless return is by use of GO BYPASS or GOTO or a
specific statement.

« OCCURRENCE breakpoints for COBOL IGZ conditions can only be set after a COBOL run-time module
has been initialized.

« For C, C++, and PL/I, certain Language Environment conditions map to C and C++ SIGxxx values
and PL/I condition constants. It is possible to enter two AT OCCURRENCE breakpoints for the
same condition. For example, one could be entered with the Language Environment condition name
and the other could be entered with the C and C++ SIGxxx condition constant. In this case, the
AT OCCURRENCE breakpoint for the Language Environment condition name is triggered and the AT
OCCURRENCE breakpoint for the C or C++ condition constant is not. However, if an AT OCCURRENCE
breakpoint for the Language Environment condition name is not defined, the corresponding mapped C,
C++, or PL/I condition constant is triggered.

- If this breakpoint is set in a parent enclave it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

« For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

« For COBOL and LangX COBOL, z/OS Debugger detects Language Environment conditions. If a Language
Environment condition occurs during your session, the following series of events takes place:

1. z/OS Debugger is started before any condition handler.

2. If you set an OCCURRENCE breakpoint for that condition, z/OS Debugger processes that breakpoint
and executes any commands you have specified. If you have not set an OCCURRENCE breakpoint for
that condition, and:

— If the current test-level setting is ALL, z/OS Debugger prompts you for commands or reads them
from a commands file.

— If the current test-level setting is ERROR, and the condition has a severity level of 2 or higher, z/0OS
Debugger gets commands by prompting you or by reading from a commands file.

— If the current test-level setting is NONE, z/OS Debugger ignores the condition and returns control
to the program.

66 IBM z/0OS Debugger: Reference and Messages

You can use OCCURRENCE breakpoints to control your program's response to errors.

« For PL/I, z/OS Debugger detects Language Environment and PL/I conditions. If a condition occurs,
z/0S Debugger is started before any condition handler. If you have issued an ON command or set an
OCCURRENCE breakpoint for the specified condition, z/OS Debugger runs the associated commands.

« If thereis no AT OCCURRENCE or ON set, then:

— If the current test-level setting is ALL, z/OS Debugger prompts you for commands or reads them from
a commands file.

— If the current test-level setting is ERROR, and the condition has an error severity level of 2 or higher,
z/0S Debugger gets commands by prompting you or by reading from a commands file.

— If the current test-level setting is NONE, z/OS Debugger ignores the condition and returns control to
the program.

« Once z/0OS Debugger returns control to the program, any relevant PL/I ON-unit is run.

- If you are debugging a program that uses SPIE or ESPIE, while SPIE or ESPIE is active, the program
behaves as if TRAP (OFF) was specified for all program checks except for a program check that might
arise from the use of the CALL command.

- If you are debugging a program that uses ESTAE or ESTAEX, while ESTAE or ESTAEX is active, the
program behaves as if TRAP (OFF) was specified for all abends except program checks. z/OS Debugger
does not handle any conditions. The ESTAE or ESTAEX exit handles any abends except for program
checks.

« The AT OCCURRENCE command cannot be used while you replay recorded statements using the
PLAYBACK commands.

Examples

« When a data exception occurs, query the current location. The current programming language setting is
either C or COBOL.

AT OCCURRENCE CEE347 QUERY LOCATION;

- When you are running in MVS without the Language Environment run time, that is under EQANMDBG,
when a System 0C1 ABEND occurs, list information about the current CUs with the following command:

AT OCCURRENCE SOC1 DESCRIBE CUS;

« When the SIGSEGV condition is raised, set an error flag and call a user termination routine. The current
programming language setting is C.
AT OCCURRENCE SIGSEGV {
error = 1;
terminate (error);

%

« Suppose SIGFPE maps to CEE347 and the following breakpoints are defined. The current programming
language setting is C.

AT OCCURRENCE SIGFPE LIST "SIGFPE condition";
AT OCCURRENCE CEE347 LIST "CEE347 condition";

If the Language Environment condition CEE347 is raised, the CEE347 breakpoint is triggered.

However, if a breakpoint had not been defined for CEE347 and the CEE347 condition is raised, the
SIGFPE breakpoint is triggered (because it is mapped to CEE347).

- Stop for every file where ENDFILE condition occurs. The current programming language is PL/I.
AT OCCURRENCE ENDFILE(*);

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40

Chapter 5. z/OS Debugger commands 67

“ON command (PL/I)” on page 179

“PLAYBACK commands” on page 185

z/0S Language Environment Programming Guide
z/0S Language Environment Debugging Guide
PL/I for MVS and VM Language Reference

AT OFFSET command (disassembly)

Gives z/0S Debugger control at the specified offset in the disassembly view.

»— AT — OFFSET offset_spec command — ; »<«
(foffset_:;D—)
command

A valid z/OS Debugger command.
Usage note

The AT OFFSET command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

« Set a breakpoint at offset '2A" in the current block:
AT OFFSET X'2A';

« Set a breakpoint at offsets '2A" and '30" in the current block:
AT OFFSET (X'2A',X'30');

« Set a breakpoint in the block MYPROG at offset '3A":
AT OFFSET MYPROG:>X'3A';

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 185
“offset_spec” on page 15

AT PATH command

Gives z/0S Debugger control when the flow of control changes (at a path point). AT PATH is identical to
AT GLOBAL PATH.

»— AT L J PATH — command — ; »«
every clause

command
A valid z/OS Debugger command.

Usage notes

 For Enterprise COBOL for z/OS Version 5, when z/OS Debugger stops at an AFTER CALL Path point
because of an AT PATH breakpoint, the location where z/OS Debugger stops is the statement after the
CALL statement.

« For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

68 IBM z/0OS Debugger: Reference and Messages

 For C, to be able to set PATH breakpoints, you must compile your program in one of the following ways:

— With either the PATH or ALL suboption of the TEST compiler option.
— With either the PATH or ALL suboption of the DEBUG compiler option.
« For C++, to be able to set PATH breakpoints, you must compile your program in one of the following
ways:
— With the TEST compiler option.
— With either the PATH or ALL suboption of the DEBUG compiler option.
 For COBOL programs compiled with the following compilers, compile your program with the NONE,
PATH, or ALL suboption of the TEST compiler option to be able to set PATH breakpoints:
— Enterprise COBOL for z/OS and 0S/390, Version 3
— COBOL for 0S/390 and VM, Version 2

« For PL/I, to be able to set PATH breakpoints, you must compile your program with the PATH or ALL
suboption of the TEST compiler option.

« You cannot use the AT PATH command while you replay recorded statements by using the PLAYBACK
commands.

« z/OS Debugger does not support the AT PATH command while you debug a disassembled program or a
VS COBOL II program.

« You cannot use the AT PATH command to stop at the entry or exit of a nested block ina C or C++
program. A nested block is a group of statements delimited by { and }. The compiler assigns a name to
these blocks using the following pattern: %BLOCKn, where n is a sequentially-assigned number.

Examples

« Whenever a path point has been reached, display the five most recently processed breakpoints and
conditions.

AT PATH LIST LAST 5 HISTORY;

- Whenever a path point has been reached, display a message and query the current location. The current
programming language setting is COBOL.

AT PATH PERFORM
LIST "Path point reached";
QUERY LOCATION;
GO;

END-PERFORM;

« Whenever a path point has been reached, the value of ¥PATHCODE contains the code representing the
type of path point stopped at. If the program is stopped at the entry to a block, display the %PATHCODE.

AT PATH LIST 9%PATHCODE;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0OS Debugger User's Guide

Related references

“every_clause syntax” on page 40
“%PATHCODE” on page 339
“PLAYBACK commands” on page 185

AT Prefix command (full-screen mode)

Sets a statement breakpoint when you issue this command through the Source window prefix area. When
one or more breakpoints have been set on a line, the prefix area for that line is highlighted.

Chapter 5. z/OS Debugger commands 69

»— AT ; >
L integer J

integer
Selects a relative statement (for C, C++, and PL/I) or a relative verb (for COBOL) within the line. The
default value is 1. For optimized COBOL programs, the default value is the first executable statement
on the line, which was not discarded due to optimization effects.

Usage note

The AT Prefix command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Example

Set a breakpoint at the third statement or verb in the line (typed in the prefix area of the line where the
statement is found).

AT 3

No space is needed as a delimiter between the keyword and the integer; hence, AT 3 is equivalent to
AT3.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 185

AT STATEMENT command

Gives z/OS Debugger control at each specified statement or line within the given set of ranges.

»w— AT L _J >
every clause LINE

~— STATEMENT —/

statement_id_range L _J command — ; >«
< WHEN — condition

(L statement_id_range l) —

* J

Sets a breakpoint at every STATEMENT or LINE.

command
A valid z/OS Debugger command. If you are using remote debug mode, you can specify only
commands that are supported in remote debug mode.

condition
A valid z/OS Debugger conditional expression.

Usage notes

« With Enterprise COBOL for z/OS Version 5, you cannot set AT STATEMENT breakpoints for statements
that are inside a declarative section.

« With Enterprise COBOL for z/OS Version 5, you can set AT STATEMENT breakpoints for the WHEN and
EVALUATE statements.

» You cannot use the AT STATEMENT command (except for the AT STATEMENT * form) while you debug
a disassembled program. Instead, use the AT OFFSET command.

70 IBM z/OS Debugger: Reference and Messages

A STATEMENT breakpoint set for a nonactive compile unit (one that is not in the current enclave), is
suspended until the compile unit becomes active. A STATEMENT breakpoint set for a compile unit that
is deleted from storage is suspended until the compile unit is reloaded. A suspended breakpoint cannot
be triggered until it is reactivated.

For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

You can specify the first relative statement on each line in any one of three ways. If, for example, you
want to set a STATEMENT breakpoint at the first relative statement on line three, you can enter AT 3, AT
3.0,0r AT 3.1.However, z/OS Debugger logs them differently according to the current programming
language as follows:

— ForCand C++

The first relative statement on a line is specified with "0". All of the above breakpoints are logged as
AT 3.0.

— For COBOL or PL/I

The first relative statement on a line is specified with "1". All of the above breakpoints are logged
as AT 3.1. For optimized COBOL programs, the first relative statement is the first executable
statement. This might not be the first statement if the optimizer discarded the first statement.

When the STORAGE run-time option is in effect, the AT STATEMENT command cannot be used to set a
breakpoint in the prologue of an assembler compile unit between the first BALR 14,15 instruction and
the following LR 13,x instruction.

The AT STATEMENT command cannot be used while you replay recorded statements by using the
PLAYBACK command.

You can restrict the circumstances under which the AT STATEMENT break point is raised by specifying
a WHEN condition. If a WHEN condition is specified, z/OS Debugger stops at the AT STATEMENT break
point if the specified statement matches the current statement and the WHEN condition is true.

The following conditional operators can be used in a condition:

Compare the two operands for equality.

Compare the two operands for inequality.

) Determines whether the left operand is less than the right operand.

’ Determines whether the left operand is greater than the right operand.

= Determines whether the left operand is less than or equal to the right operand.

. Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.

Logical "or" operation.

If you use the AT STATEMENT command with a WHEN condition, every time z/OS Debugger reaches the
statement, it evaluates the condition. If the condition evaluates to true, z/OS Debugger stops and runs
the command associated with the breakpoint.

z/0S Debugger evaluates references in a WHEN condition before it runs a statement.

When z/0S Debugger evaluates the condition and the condition is invalid, z/OS Debugger does one of
the following actions:

Chapter 5. z/OS Debugger commands 71

— If SET WARNING is set to ON, z/OS Debugger stops and displays a message that it could not evaluate
the condition. You need to enter a command to indicate what action you want z/OS Debugger to take.

— If SET WARNING is set to OFF, z/OS Debugger does not stop nor display a message that it could not
evaluate the condition. z/OS Debugger continues running the program.

Examples

« Set a breakpoint at statement or line number 23. The current programming language setting is COBOL.
AT 23 LIST 'About to close the file';

« Set breakpoints at statements 5 through 9 of compile unit mycu. The current programming language
setting is C.

AT STATEMENT "mycu":>5 - 9;
« Set breakpoints at lines 19 through 23 and at statements 27 and 31.
AT LINE (19 - 23, 27, 31);
or
AT LINE (27, 31, 19 - 23);

» To set a breakpoint at statement or line 100 that is raised only when the value of myvax is equal to 100,
enter the following command:

AT 100 WHEN myvar=100;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40

“statement_id_range and stmt_id_spec” on page 16

“AT OFFSET command (disassembly)” on page 68

“PLAYBACK commands” on page 185

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

AT STATEMENT command (remote debug mode)

Gives z/0S Debugger control at the specified statement or line.

»— AT statement_id — ; >«
LINE

~— STATEMENT —~

Usage note

When you enter an AT STATEMENT command, the breakpoint is set relative to the location the program
is stopped, which might not be the program displayed in the source view. For example, your program is
stopped at program SUB1, which was called by program MAIN1, and the source view displays the source
for program SUB1. Then, you click on MAIN1 in the Debug view so that the source view displays the
source for MAINL. If you enter the command AT STATEMENT 13, a breakpoint is set at statement 13 in
SUB1, not statement 13 in MAIN1.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“statement_id” on page 16

“AT STATEMENT command” on page 70

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

72 IBM z/OS Debugger: Reference and Messages

AT TERMINATION command

Gives z/0S Debugger control when the application program is terminated.

»— AT — TERMINATION — command — ; >«

command
A valid z/OS Debugger command.

Usage notes

 The setting of the current programming language when the application program terminates might be
unpredictable.

« AT TERMINATION does not allow specification of an every clause because termination can only occur
once.

- If this breakpoint is set in a parent enclave, it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

« When z/0S Debugger gains control, normal execution of the program is complete; however, a CALL
or function invocation from z/OS Debugger can continue to perform program code. When the AT
TERMINATION breakpoint gives control to z/OS Debugger:

— Fetched load modules have not been released
— Files have not been closed
— Language-specific termination has been started yet no action has been taken

In C, the user atexit () lists have already been called.

In PL/I, the FINISH condition was already raised.

 You are allowed to enter any command with AT TERMINATION. However, normal error messages are
issued for any command that cannot be completed successfully because of lack of information about
your program.

« You can enter DISABLE AT TERMINATION; or CLEAR AT TERMINATION; at any time to disable or
clear the breakpoint. It remains disabled or cleared until you reenable or reset it.

 For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

« The AT TERMINATION command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

« When the program ends, check the z/OS Debugger environment to see what files have not been closed.
AT TERMINATION DESCRIBE ENVIRONMENT;

« When the program ends, display the message "Program has ended" and end the z/OS Debugger session.
The current programming language setting is C.

AT TERMINATION {
LIST "Program has ended";
QUIT;

L

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 185

Chapter 5. z/OS Debugger commands 73

BEGIN command

BEGIN and END delimit a sequence of one or more commands to form one longer command. The BEGIN
and END keywords cannot be abbreviated.

»—BEGIN—;Q‘I’I‘EEND—;—N

command
A valid z/OS Debugger command.

Usage notes

« The BEGIN command is most helpful when used in AT or PROCEDURE commands.

« The BEGIN command is helpful when you use it as a programming language neutral command.
For example, if you create a commands file that might be used by an application created with
several different programming languages, the BEGIN command works for all supported programming
languages.

« For Enterprise PL/I, the BEGIN command is helpful when used in IF or ON commands.
« The BEGIN command does not imply a new block or name scope. It is equivalent to a PL/I simple DO.

« You cannot use the BEGIN command while you replay recorded statements by using the PLAYBACK
commands.

Examples

- Set a breakpoint at statement 320 listing the value of variable x and assigning the value of 2 to variable
a.

AT 320 BEGIN;
LIST (x);
a=2;

END;

« When the PL/I condition FIXEDOVERFLOW is raised (that is, when the length of the result of a fixed-
point arithmetic operation exceeds the maximum length allowed) list the value of variable x and assign
the value of 2 to variable a. The current programming language setting is PL/I.

ON FIXEDOVERFLOW BEGIN; LIST (x); a=2; END;

block command (C and C++)

The block command allows you to group any number of z/OS Debugger commands into one command.
When you enclose z/0S Debugger commands within a single set of braces ({}), everything within the
braces is treated as a single command. You can place a block anywhere a command is allowed.

»—{ P— >

command
command
A valid z/OS Debugger command.
Usage notes

« Declarations are not allowed within a nested block.

« The C block command does not end with a semicolon. A semicolon after the closing brace is treated as
a Null command.

74 1IBM z/0OS Debugger: Reference and Messages

 You cannot use the block command while you replay recorded statements by using the PLAYBACK
commands.

Example

Establish an entry breakpoint when load module a is fetched.

AT LOAD a %
AT ENTRY a;
GO;

3

break command (C and C++)

The break command allows you to terminate and exit a loop (that is, do, for, and while) or switch
command from any point other than the logical end. You can place a break command only in the body
of a looping command or in the body of a switch command. The break keyword must be lowercase and
cannot be abbreviated.

»— break — ; >«

In a looping statement, the break command ends the loop and moves control to the next command
outside the loop. Within nested statements, the break command ends only the smallest enclosing do,
for, switch, orwhile commands.

Inaswitch body, the break command ends the execution of the switch body and gives control to the
next command outside the switch body.

Usage notes

 You cannot use the break command while you replay recorded statements by using the PLAYBACK
commands.

Examples

« The following example shows a break command in the action part of a for command. If the i-th
element of the array stringis equalto '\0', the break command causes the for command to end.

for (i = 0; i < 5; i++) {

if (string[i] == '\0"')
break;
length++;

« The following switch command contains several case clauses and one default clause. Each clause
contains a function call and a break command. The break commands prevent control from passing
down through subsequent commands in the switch body.

char key;

key = '-';
AT LINE 15 switch (key)
3
case '+':
add() ;
break;
case '-':
subtract();
break;
default:
printf("Invalid key\n");
break;

Chapter 5. z/OS Debugger commands 75

CALL command

The CALL command calls either a procedure, entry name, or program name, or it requests that a utility
function be run. The C and C++ equivalent for CALL is a function reference. PL/I subroutines or functions
cannot be called dynamically during a z/OS Debugger session. The CALL keyword cannot be abbreviated.

In C++, calls can be made to any user function provided that the function is declared with the following
syntax:

extern "C"

In COBOL, the CALL command cannot be issued when z/OS Debugger is at initialization.

The following table summarizes the forms of the CALL command.

“CALL 9%CEBR command” on page Starts the CICS Temporary Storage Browser Program.

76

“CALL 9%CECI command” on page Starts the CICS Command Level Interpreter Program.
76

“CALL 9%DUMP command” on page Calls a dump service to obtain a formatted dump.

77

“CALL %FA command” on page 81 [Calls IBM Fault Analyzer to provide a formatted dump of the
current machine state.

“CALL 9%HOGAN command” on page [Starts Computer Sciences Corporation's KORE-HOGAN

82 application.
“CALL 9%VER command” on page Adds a line to the log describing the maintenance level of
82 z/0S Debugger that you have installed on your system.
“CALL entry_name command Calls an entry name in the application program (COBOL).
(COBOL)" on page 83
“CALL procedure command” on Calls a procedure that has been defined with the PROCEDURE
page 84 command.

CALL %CEBR command

Starts the CICS Temporary Storage Browser Program.

»— CALL — %CEBR — ; »«

Usage notes

« z/OS Debugger performs an EXEC CICS LINK to the CICS browser program. When CEBR processing is
complete, control is returned to z/OS Debugger through an EXEC CICS return.

« You can use this command only when you debug CICS programs in single-terminal mode in full-screen
mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
CICS Supplied Transactions
CICS Application Programming Guide

CALL %CECI command

Starts the CICS Command Level Interpreter Program.

76 IBM z/OS Debugger: Reference and Messages

»— CALL — %CECI — ; >«

Usage notes

» z/0S Debugger performs an EXEC CICS LINK to the CICS command level interpreter program. When
CECI processing is complete, control is returned to z/OS Debugger through an EXEC CICS return.

« You can use this command only when you debug CICS programs in single-terminal mode in full-screen
mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
CICS Supplied Transactions
CICS Application Programming Guide

CALL %DUMP command
Calls a dump service to obtain a formatted dump.
»— CALL — %DUMP L _J ;>
(— options_string)
L , — title J
title

Specifies the identification printed at the top of each page of the dump. It must be a fixed-length
character string. It must conform to the syntax rules for a character string constant enclosed in
quotation marks (") or apostrophes (') for the current programming language. The string length cannot
exceed 80 bytes.

options_string
A fixed-length character string that specifies the type, format, and destination of dump information.
The string must conform to the syntax rules for a character string constant enclosed in quotation
marks (") or apostrophes (') for the current programming language. The string length cannot exceed
247 bytes.

Options are declared as a string of keywords separated by blanks or commas. Some options have
suboptions that follow the option keyword and are contained in parentheses. The options can be
specified in any order, but the last option declaration is honored if there is a conflict between it and
any preceding options.

The options_string can include the following:

THREAD (ALL | CURRENT)
Dumps the current thread or all threads associated with the current enclave. The default is to
dump only the current thread. Only one thread is supported. For enclaves that consist of a single
thread, THREAD (ALL) and THREAD (CURRENT) are equivalent.

THREAD can be abbreviated as THR.
CURRENT can be abbreviated as CUR.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

TRACEBACK
Requests a traceback of active procedures, blocks, condition handlers, and library modules on the
call chain. The traceback shows transfers of control from either calls or exceptions. The traceback
extends backward to the main program of the current thread.

TRACEBACK can be abbreviated as TRACE.

NOTRACEBACK
Suppresses traceback.

Chapter 5. z/OS Debugger commands 77

NOTRACEBACK can be abbreviated as NOTRACE.

FILES
Requests a complete set of attributes of all files that are open and the contents of the buffers used
by the files.

FILES can be abbreviated as FILE.

NOFILES
Suppresses file attributes of files that are open.

NOFILES can be abbreviated as NOFILE.

VARIABLES
Requests a symbolic dump of all variables, arguments, and registers.

Variables include arrays and structures. Register values are those saved in the stack frame at the
time of call. There is no way to print a subset of this information.

Variables and arguments are printed only if the symbol tables are available. A symbol table is
generated if a program is compiled using the compile options shown below for each language:

Language Compiler option

C TEST(SYM)

C++ TEST

COBOL TEST or TEST (h,SYM)
PL/I TEST(,SYM)

The variables, arguments, and registers are dumped starting with z/OS Debugger. The dump
proceeds up the chain for the number of routines specified by the STACKFRAME option.

VARIABLES can be abbreviated as VAR.

NOVARIABLES
Suppresses dump of variables, arguments, and registers.

NOVARIABLES can be abbreviated as NOVAR.

BLOCKS
Produces a separate hexadecimal dump of control blocks.

Global control blocks and control blocks associated with routines on the call chain are printed.
Control blocks are printed for z/OS Debugger. The dump proceeds up the call chain for the number
of routines specified by the STACKFRAME option.

If FILES is specified, this is used to produce a separate hexadecimal dump of control blocks used
in the file analysis.

BLOCKS can be abbreviated as BLOCK.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

NOBLOCKS
Suppresses the hexadecimal dump of control blocks.

NOBLOCKS can be abbreviated as NOBLOCK.

STORAGE
Dumps the storage used by the program.

The storage is displayed in hexadecimal and character format. Global storage and storage
associated with each routine on the call chain is printed. Storage is dumped for z/OS Debugger.
The dump proceeds up the call chain for the number of routines specified by the STACKFRAME
option. Storage for all file buffers is also dumped if the FILES option is specified. When the

78 IBM z/OS Debugger: Reference and Messages

Dynamic Debug facility is activated, some of the original application instructions are not displayed
because they are replaced by 'OA91 ' x instructions.

STORAGE can be abbreviated as STOR.

NOSTORAGE
Suppresses storage dumps.

NOSTORAGE can be abbreviated as NOSTOR.

STACKFRAME (n|ALL)
Specifies the number of stack frames dumped from the call chain.

If STACKFRAME (ALL) is specified, all stack frames are dumped. No stack frame storage is
dumped if STACKFRAME (0) is specified.

The particular information dumped for each stack frame depends on the VARIABLE, BLOCK, and
STORAGE option declarations specified. The first stack frame dumped is the one associated with
z/0OS Debugger, followed by its caller, and proceeding backward up the call chain.

STACKFRAME can be abbreviated to SF.

PAGESIZE (n)
Specifies the number of lines on each page of the dump.

This value must be greater than 9. A value of zero (0) indicates that there should be no page
breaks in the dump.

PAGESIZE can be abbreviated to PAGE.

FNAME (s)
Specifies the ddname of the file where the dump report is written.

The default ddname CEEDUMP is used if this option is not specified.

CONDITION
Specifies that for each condition active on the call chain, the following information is dumped from
the Condition Information Block (CIB):

- The address of the CIB

« The message associated with the current condition token

- The message associated with the original condition token, if different from the current one
« The location of the error

« The machine state at the time the condition manager was started

« The ABEND code and REASON code, if the condition occurred because of an ABEND.

The particular information that is dumped depends on the condition that caused the condition
manager to be started. The machine state is included only if a hardware condition or ABEND
occurred. The ABEND and REASON codes are included only if an ABEND occurred.

CONDITION can be abbreviated as COND.

NOCONDITION
Suppresses dump condition information for active conditions on the call chain.

NOCONDITION can be abbreviated as NOCOND.

ENTRY
Includes in the dump a description of the z/OS Debugger routine that called the dump service
and the contents of the registers at the point of the call. For the currently supported programming
languages, ENTRY is extraneous and will be ignored.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

Chapter 5. z/OS Debugger commands 79

NOENTRY
Suppresses the description of the z/OS Debugger routine that called the dump service and the
contents of the registers at the point of the call.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

The defaults for the preceding options are:

CONDITION

FILES

FNAME (CEEDUMP)
NOBLOCKS
NOENTRY
NOSTORAGE
PAGESIZE (60)
STACKFRAME (ALL)
THREAD (CURRENT)
TRACEBACK
VARIABLES

Usage notes

« Ifincorrect options are used, a default dump is written.
« The service used to format the dump is determined by the following conditions:

Language Environment is active
Language Environment dump service: z/OS Debugger does not analyze any of the CALL %DUMP
options, but just passes them to the Language Environment dump service. Some of these options
might not be appropriate, because the call is being made from z/OS Debugger rather than from your
program.

Language Environment not active and you are running under CICS
The command: EXEC CICS DUMP TRANSACTION DUMPCODE('DT') COMPLETE
Language Environment not active and you are not running under CICS
The MVS SNAP dump service
« When you use CALL %DUMP, one of the following DD names must be allocated for you to receive a
formatted dump:
— CEEDUMP (default)
— SYSPRINT.
Control might not be returned to z/OS Debugger after the dump is produced, depending on the option
string specified.

CICS: You do not need this allocation when you are running without Language Environment under CICS.
Under those conditions, EXEC CICS DUMP TRANSACTION isissued, and a transaction dump with a
code of DT is written to the CICS dump data set.

« COBOL does not do anything if the FILES option is specified; the BLOCKS option gives the file
information instead.

 Using a small n (like 1 or 2) with the STACKFRAME option will not produce useful results because only
the z/OS Debugger stack frames appear in your dump. Larger values of n or ALL should be used to
ensure that application stack frames are shown.

« When you use the CALL %DUMP command and the Language Environment run time is not active, the
MVS SNAP macro or the EXEC CICS DUMP command is used to generate the dump. When you are not
running under CICS, the following restrictions apply:

— The specified or default ddname must be allocated to a data set with these attributes: RECFM=VBA,
LRECL=125, and BLKSIZE=1632

80 IBM z/0OS Debugger: Reference and Messages

— The previously described options are mapped into SNAP options as shown in the following table:

Table 5. %DUMP options mapping to SNAP options

%DUMP option SNAP option
THREAD ignored
TRACEBACK SDATA=(PCDATA) ,PDATA=(SA,SAH)
FILES SDATA=(DM, I0)
VARIABLES SDATA=(CB)
BLOCKS SDATA=(SQA, LSAQ,SWA)
STORAGE PDATA=(LPA,JPA,SPLS)
STACKFRAME ignored
PAGESIZE ignored
FNAME ddname for dump
CONDITION SDATA=(Q,TRT,ERR)
ENTRY PDATA=(SUBTASKS)
« The CALL %DUMP command cannot be used while you replay recorded statements by using the
PLAYBACK commands.
Examples

« Request a formatted dump that traces active procedures, blocks, condition handlers, and library
modules. Identify the dump as "Dump after read".

CALL %DUMP ("TRACEBACK", "Dump after read");

« Call the dump service to obtain a formatted dump including traceback information, file attributes, and
buffers.

CALL %DUMP ("TRACEBACK FILES");

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“PLAYBACK commands” on page 185

z/0S Language Environment Programming Guide
z/0S Language Environment Debugging Guide

CALL %FA command

Starts and instructs IBM Fault Analyzer to provide a formatted dump of the current machine state.

»— CALL — %FA — ; >«

Usage notes

- If you are replaying recorded statements by using the PLAYBACK commands, CALL %FA provides a
formatted dump of the machine state when you entered PLAYBACK START.

 You can use this command in remote debug mode.
Refer to the following topics for more information related to the material discussed in this topic.

« Appendix A, “z/0OS Debugger commands supported in remote debug mode,” on page 511

Chapter 5. z/OS Debugger commands 81

CALL %FM command
Starts IBM File Manager for z/0S.

e
L userID J L BACKGROUND J

»— CALL — %FM

userID

The ID of an MVS user. If you do not specify a userID, then File Manager takes one of the following
options:

« If you sign on using CESN and File Manager has been installed with either xDEFAULT=SIGNON or
*PASSWORD=REMEMBER, then userID is assigned the user ID used to sign on.

« If you have not signed on, then File Manager prompts you for a user ID before it displays the logon
panel.

BACKGROUND
Specifies that all non-terminal processing be routed to a background task.

Usage notes

« You can use this command only when you debug CICS programs.
 You need to have IBM File Manager for z/OS V9R1 installed in the CICS region.

CALL %HOGAN command

Starts Computer Sciences Corporation's KORE-HOGAN application, also known as SMART (System
Memory Access Retrieval Tool).

»— CALL — %HOGAN — ; »«

Usage notes

« You can use this command only when you debug CICS programs in single-terminal mode in full-screen
mode.

« If you do not have the KORE-HOGAN application, do not use this command. If you do use this
command, a Program not loadable error occurs, which raises an AEI0 exception.

CALL %VER command

Adds a line to the log describing the maintenance level of z/OS Debugger that you have installed on your
system.

»— CALL — %VER — ; >«

Usage note
You can use this command in remote debug mode.
Example

You have z/0S Debugger, Version 14.2, installed on your system. Enter the CALL %VER command to
display the following information in the Log window:

IBM z/0S Debugger Version 14 Release 2 Mod m
08/14/2019 08:01:00 AM Level: V14R2Mm PHnnnnn
5724-T07: Copyright IBM Corp. 1992, 2019

The time stamp that is shown is the product build date and time.
Refer to the following topics for more information related to the material discussed in this topic.

« Appendix A, “z/0OS Debugger commands supported in remote debug mode,” on page 511

82 IBM z/0OS Debugger: Reference and Messages

CALL entry_name command (COBOL)

Calls an entry name in the application program. The entry name must be a valid external entry point name
(that is, callable from other compile units).

»— CALL tidentifier
literal —J L
USING

identifier_clause

identifier_clause

i ﬁ REFERENCE J L ADDRESS — OF J
BY

&
<

CONTENT { identifier
BY tADDRESS — OFj
LENGTH — OF

literal

identifier

identifier
A valid z/OS Debugger COBOL identifier.

literal
A valid COBOL literal.

Usage notes

- If you have a COBOL entry point name that is the same as a z/OS Debugger procedure name, the
procedure name takes precedence when using the CALL command. If you want the entry name to take
precedence over the z/OS Debugger procedure name, you must qualify the entry name when using the
CALL command.

« You can use the CALL entry_name command to change program flow dynamically. You can pass
parameters to the called module.

« The CALL follows the same rules as calls within the COBOL language.

« The COBOLON OVERFLOW and ON EXCEPTION phrases are not supported, so END-CALL is not
supported.

« Only calls to separately compiled programs are supported; nested programs are not callable by this
z/0S Debugger command (they can of course be started by GOTO or STEP to a compiled-in CALL).

« All calls are dynamic, that is, the called program (whether specified as a literal or as an identifier) is
loaded when it is called.

 See Enterprise COBOL for z/0S Language Reference for an explanation of the following COBOL keywords:
ADDRESS, BY, CONTENT, LENGTH, OF, REFERENCE, USING.

« An entry_name cannot refer to a method.
« A windowed date field cannot be specified as the identifier containing the entry name.

« The CALL entry_name command cannot be used while you replay recorded statements by using the
PLAYBACK commands by using the PLAYBACK command.

Example

Chapter 5. z/OS Debugger commands 83

Call the entry name subl passing the variables a, b, and c.

CALL "subl" USING a b c;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 185
Enterprise COBOL for z/OS Language Reference

CALL procedure command
Calls a procedure that has been defined with the PROCEDURE command.

»— CALL — procedure_name — ; »«

procedure_name
The name given to a sequence of z/OS Debugger commands delimited by a PROCEDURE command and
a corresponding END command.

Usage notes

« Because the z/OS Debugger procedure names are always uppercase, the procedure name is converted
to uppercase even for programming languages that have mixed-case symbols.

« The CALL keyword is required even for programming languages that do not use CALL for subroutine
invocations.

« The CALL command is restricted to calling procedures in the currently executing enclave.
Example

Create and call the procedure named procl.

procl: PROCEDURE;
LIST (x, c);

END;

AT 54 CALL procl;

CC command

Controls whether code coverage data is collected.
»— CC START ; >
L STOP —J

Usage notes

« The CC START command collects data for the following compile unit or programs:

— The currently qualified z/OS Debugger compile unit from the point in the program where the
command is entered.

— Programs that are run after the CC START command is issued and that are selected by a user-
specified action. This action can be stepping into a compile unit, setting a breakpoint in a compile
unit, or defining a compile unit in the DTCN or CADP profile.

« CC STOP deletes all code coverage data.

 To view the code coverage information generated by CC START, issue LIST CC before entering CC
STOP.

« The collection of code coverage data can add a substantial amount of overhead. Therefore, it is a good
practice to issue the CC START command only when you want to gather this data. Do not routinely issue
the CC START command in debug sessions in which you do not want to gather this data.

84 IBM z/0OS Debugger: Reference and Messages

Examples

- Specify that code coverage data be collected.
CC START;
- List the code coverage data.
LIST cC;
- Specify that code coverage stop and the data be deleted.

CC STOP;

Related references
“LIST CC command” on page 143

CHKSTGVY command

Checks whether the CICS storage check zone of a user-storage element has been overlaid.

»— CHKSTGV — ; >«

Usage notes

« This command applies only to CICS applications.
 You can use this command in remote debug mode.

« Do not use this command to replace the practices described in CICS Problem Determination Guide in the
section Dealing with storage violations.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
CICS Problem Determination Guide
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

Related tasks
"Detecting CICS storage violations early" in the IBM z/OS Debugger User's Guide

CLEAR command

The CLEAR command removes the actions of previously entered z/OS Debugger commands. Some
breakpoints are removed automatically when z/OS Debugger determines that they are no longer
meaningful. For example, if you set a breakpoint in a fetched or loaded compile unit, the breakpoint
is discarded when the compile unit is released.

Chapter 5. z/OS Debugger commands 85

»— CLEAR AT ;>

AT_command ——

— generic_AT_command —

——DECLARE

—— identifier ———

M———— identifier ———

\— EQUATE

LDD
M—————— number ———
~—— ldd_number_range ———
LOAD

L module_name

(module_@)
LOG

MEMORY

M——- MONITOR

number

M (Z number :) —

NM— monitor_number_range —

L CURSOR —J

J

ON

M pli_conditon ———

procedure_name ———

— (L procedure_name i)y—

——— VARIABLES 4

M PROCEDURE

identifier

— (E identifier :)—
AT

Removes all breakpoints, including GLOBAL breakpoints, set by previously entered AT commands,
except for AT TERMINATION and suspended breakpoints.

86 IBM z/0OS Debugger: Reference and Messages

AT_command
A valid AT command that includes at least one operand. The AT command must be complete
except that the every _clause and command are omitted.

genexric_AT_command
A valid AT command without operands. It can be one of the following: ALLOCATE, APPEARANCE,
CALL, CHANGE, CURSOR, DATE, DELETE, ENTRY, EXIT, LABEL, LOAD, OFFSET, OCCURRENCE,
PATH, STATEMENT (the LINE keyword can be used in place of STATEMENTS), or TERMINATION.

DECLARE
Removes previously defined variables and tags. If no identifier follows DECLARE, all session variables
and tags are cleared. DECLARE is equivalent to VARTIABLES.
identifier
The name of a session variable or tag declared during the z/OS Debugger session. This operand
must follow the rules for the current programming language.

EQUATE
Removes previously defined symbolic references. If no identifier follows EQUATE, all existing SET
EQUATE synonyms are cleared.
identifier
The name of a previously defined reference synonym declared during the z/OS Debugger session
using SET EQUATE. This operand must follow the rules for the current programming language.

LDD
Removes one or more LOADDEBUGDATA (LDD) commands known to z/OS Debugger. The LDD
command's sub-parameter must be one of those listed in the output of the LIST LDD command. It
is recommended that you enter the LIST LDD command before each CLEAR LDD command because
the LDD entry numbers are affected by previous CLEAR LDD commands. This command has the
following sub-parameters:
*

Removes all LDD commands known to z/OS Debugger across all enclaves.

number
A positive integer that refers to the output of the LIST LDD command. If a list of integers is
specified, all commands that are represented by the specified list are cleared.

ldd_number_range
Identifies the first and last number as seen in the LIST LDD command's output, separated by
a hyphen (-), that you want to clear. When the current programming language setting is COBOL,
blanks are required around the hyphen (-). Blanks are optional for other programming languages.
However, in remote debug mode, blanks are required around the hyphen (-) for all programming
languages.

Usage note
You can use the CLEAR LDD command in remote debug mode.

LOAD
Removes the load module. This command has the following sub-parameter:

module_name
The name of one or more load modules that were loaded by z/OS Debugger using the LOAD
command.

LOG
Erases the log file and clears out the data being retained for scrolling. In line mode, CLEAR LOG clears
only the log file.

If the log file is directed to a SYSOUT type file, CLEAR LOG will not clear the log contents in the file.

MEMORY
Clears the Memory window including the memory currently being displayed, the base address, and
the history area.

Chapter 5. z/OS Debugger commands 87

MONITOR
Clears the commands defined for MONITOR. If no number follows MONITOR, the entire list of
commands affecting the monitor window is cleared; the monitor window is empty.

number
A positive integer that refers to a monitored command. If a list of integers is specified, all
commands represented by the specified list are cleared.

monitor_number_range
Identifies the first and last monitor number in a range of monitors, separated by a hyphen (-),
that you want to delete. When the current programming language setting is COBOL, blanks are
required around the hyphen (-). Blanks are optional for other programming languages.

CURSOR
Indicates that you want to delete the variable identified by the cursor’s current location. The
cursor can be placed only in the Monitor window.
ON (PL/I)
Removes the effect of an earlier ON command. If no pli_condition follows ON, all existing ON
commands are cleared.
pli_condition
Identifies an exception condition for which there is an ON command defined.
PROCEDURE

Clears previously defined z/OS Debugger procedures. If no procedure_name follows PROCEDURE, all
inactive procedures are cleared.

procedure_name
The name given to a sequence of z/OS Debugger commands delimited by a PROCEDURE command
and a corresponding END command. The procedure must be currently in storage and not active.

VARIABLES
Removes previously defined variables and tags. If no identifier follows VARIABLES, all session
variables and tags are cleared. VARIABLES is equivalent to DECLARE.

identifier
The name of a session variable or tag declared during the z/OS Debugger session. This operand
must follow the rules for the current programming language.

Usage notes

« You can use the CLEAR AT command to clear either active or suspended breakpoints. However, you
cannot use it to clear suspended label breakpoints.

« If you want to clear a suspended breakpoint, you must specify both the load module and CU name.
 You can use the CLEAR LOAD command in remote debug mode.

- In some environments, a loaded module cannot be removed from storage. In this case the command
fails and the load module remains in storage.

« You can enter CL in the prefix area of the monitor window to clear the selected line in the Monitor
window. You can enter CC prefix commands to clear a selected block of lines from the Monitor window.

« You can use the CLEAR MONITOR ncommand to clear an automonitor entry in the Monitor window.
e Only an AT LINE or AT STATEMENT breakpoint can be cleared with a CLEAR AT CURSOR command.

« To clear every single breakpoint in the z/OS Debugger session, issue CLEAR AT followed by CLEAR AT
TERMINATION.

« To clear a global breakpoint, you can specify an asterisk (*) with the CLEAR AT command or you can
specify a CLEAR AT GLOBAL command.
If you have only a global breakpoint set and you specify CLEAR AT ENTRY without the asterisk (*) or
GLOBAL keyword, you get a message saying there are no such breakpoints.

« The CLEAR AT, CLEAR DECLARE, CLEAR LDD, CLEAR ON, and CLEAR VARIABLES commands cannot
be used while you replay recorded statements by using the PLAYBACK commands.

88 IBM z/0OS Debugger: Reference and Messages

« To use the cursor to indicate which variable in the Monitor window to remove, do one of the following
methods:

— Assign the CLEAR MONITOR CURSOR to a PF key. Move the cursor to a variable in the Monitor
window and press the PF key. This method is more convenient.

— Type the CLEAR MONITOR command on the command line, then move the cursor to a variable in the
Monitor window. Press Enter.

- Based on the application flow and structure, the CLEAR LDD command might not take effect until the
next z/OS Debugger session is started.

e The CLEAR LDD * command removes all LDD commands known to z/OS Debugger across all enclaves.

« Because the SAVEBPS data set is updated during each enclave exit, if at any time the CLEAR LDD
command is issued afterwards, the LDD commands will have already been saved in the SAVEBPS data
set and thus will be restored during the next debug session.

« The SET EXPLICITDEBUG ON command takes precedence overthe CLEAR LDD command. As a
result, even though the CLEAR LDD command is processed, it will not undo the already processed LDD
command.

Examples

« Remove the LABEL breakpoint set in the program at label create
CLEAR AT LABEL create;

« Remove previously defined variables x, y, and z.
CLEAR DECLARE (x, y, z);

- Remove the effect of the ninth command defined for MONITOR
CLEAR MONITOR 9;

« Remove the structure type definition tagone (assuming all variables declared interactively using the
structure tag have been cleared). The current programming language setting is C.

CLEAR VARIABLES struct tagone;

« Establish some breakpoints with the AT command and then remove them with the CLEAR command
(checking the results with the LIST command).

AT 50;

AT 56;

AT 55 LIST (r, c);
LIST AT;

CLEAR AT 50;

LIST AT;

CLEAR AT;

LIST AT;

« If you want to clear an AT ENTRY =* breakpoint, specify:

CLEAR AT ENTRY =*;
or
CLEAR AT GLOBAL ENTRY;

« If you want to remove the DATE breakpoint for block MYBLOCK, specify:
CLEAR AT DATE MYBLOCK;

- If you want to remove a generic DATE breakpoint, specify:
CLEAR AT DATE *;

« The following examples show how to display the LDD commands known to z/OS Debugger and how to
use the CLEAR LDD command:

Chapter 5. z/OS Debugger commands 89

— To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD TBNDOO3::>TBNDOO3A;
2. LDD MYPROG;

3. LDD MYPROG3;

4. LDD PROG4::>PROG5;

To remove all the LDD commands, specify:

CLEAR LDD =;

If you then enter the following command:
LIST LDD;
You will get the following result:
There are no LDD commands established.
— Todisplay the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD 1A::>1AB;
2. LDD PGM1C;

To remove the LDD 1A: :>1AB command, specify:
CLEAR LDD 1;
— To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD TBNDOOS5::>TBNDOO5A;
2. LDD MYPROG;

3. LDD MYPROG5;

4. LDD PROG5::>PROG5Y;

If you then enter the CLEAR LDD 5 command, you will get the following output:
No LDD command was established for LDD 5.
— To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

LDD TBNDGOG3::>TBNDOO3A;
LDD MYPROG;

LDD MYPROG3;

LDD PROG3::>PROG3C;

[ENYOSN O

If you then enter the CLEAR LDD (1,4) command, you will get the following output:

Removes LDD TBNDOO3::>TBNDOO3A and LDD PROG3::>PROG3C

90 IBM z/0OS Debugger: Reference and Messages

— To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD TBNDGOG3::>TBNDOO3A;
2. LDD MYPROG;

S LDD MYPROG3;

4. LDD PROG6: :>PROG6F;

If you then enter the CLEAR LDD 4 - 5command (for COBOL or all languages in remote debug
mode), you will get the following output:

No LDD command was established for LDD 5.

However, z/OS Debugger removes the LDD PROG6: : >PROG6F command.
Refer to the following topics for more information related to the material discussed in this topic.

Related references

“CLEAR prefix (full-screen mode)” on page 91

“AT command” on page 37

“LIST command” on page 138

“PLAYBACK commands” on page 185

“Prefix commands (full-screen mode)” on page 190

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

CLEAR prefix (full-screen mode)
Clears a breakpoint when you enter this command through the Source window prefix area or clears a
selected member of the current set of MONITOR commands when you enter this command through the
Monitor window prefix area.

; >
L integer J

»— CLEAR

integer
Selects a relative statement (for C and PL/I) or a relative verb (for COBOL) within the line to remove
the breakpoint if there are multiple statements on that line. The default value is 1. For optimized
COBOL programs, the first relative statements is the first executable statement, which was not
discarded by the optimizer.

Usage notes

« The CLEAR prefix command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

« Use CL in the Monitor window prefix area to clear a member of Monitor window.
« Use CC in the Monitor window prefix area to clear a selected block of lines from the Monitor window.

Examples

« In the Source window, clear a breakpoint at the third statement or verb in the line (typed in the prefix
area of the line where the statement is found).

CLEAR 3

No space is needed as a delimiter between the keyword and the integer; hence, CLEAR 3 is equivalent
to CLEARS.

« In the Monitor window, type CL in the prefix area to on the line that displays the entry you want to
remove, then press Enter.

Chapter 5. z/OS Debugger commands 91

CLEAR AT command (remote debug mode)

You can use the CLEAR AT command to remove actions that were completed by using the AT GLOBAL
LABEL or the AT LABEL commands.

»— CLEAR AT T GLOBAL — LABEL —f_ He ol
LABEL

% statement_label {
*

To clear a global breakpoint, specify an asterisk (*) with the CLEAR AT LABEL command, or specify a
CLEAR AT GLOBAL LABEL command.

COMMENT command

Usage note

The COMMENT command can be used to insert commentary in to the session log. The COMMENT keyword
cannot be abbreviated.

; >
L commentary J

»— COMMENT

commentary
Commentary text not including a semicolon. An embedded semicolon is not allowed; text after a
semicolon is treated as another z/OS Debugger command. DBCS characters can be used within the
commentary.

Examples
« Comment that varblxx seems to have the wrong value.

COMMENT At this point varblxx seems to have the wrong value;
« Combine a commentary with valid z/OS Debugger commands.

COMMENT Entering subroutine testrun; LIST (x); GO;

The COMMENT command can be used as an executable command, but it is treated as a Null command
and no output is produced. For example, there will be no output of the COMMENT command in the
following cases:

« When it is specified as a command to be executed as an action of another command. For example:

AT 10 COMMENT xxXx;

« When it is used inside of any command that allows one to specify a sequence of commands such as
DO/END, BEGIN/END, or PERFORM/END-PERFORM.

« When it is used inside of a PROCEDURE command.

To get output in these cases, use the LIST command instead of the COMMENT command. For example:

AT 10 LIST 'xxx';

COMPUTE command (COBOL)

The COMPUTE command assigns the value of an arithmetic expression to a specified reference. The
COMPUTE keyword cannot be abbreviated.

92 IBM z/0OS Debugger: Reference and Messages

»w— COMPUTE — reference — = — expression — ; »<

reference

A valid z/OS Debugger COBOL numeric reference.

expression

A valid z/OS Debugger COBOL numeric expression.

Usage notes

If you are debugging an optimized COBOL program, you can use the COMPUTE command to assign a
value to a program variable only if you first enter the SET WARNING OFF command.

If you are debugging an optimized COBOL program and you specify an expression, you can reference
program variables that were not discarded by the optimizer.

If z/OS Debugger was started because of a computational condition or an attention interrupt, using an
assignment to set a variable might not give expected results. This is due to the uncertainty of variable
values within statements as opposed to their values at statement boundaries.

COMPUTE assigns a value only to a single receiver; unlike COBOL, multiple receiver variables are not
supported.

The COBOL EQUAL keyword is not supported ("=" must be used).
The COBOL ROUNDED and SIZE ERROR phrases are not supported, so END-COMPUTE is not supported.

COMPUTE cannot be used to perform a computation with a windowed date field if the expression
consists of more than one operand.

Any expanded date field specified as an operand in the expression is treated as a nondate field.
The result of the evaluation of the expression is always considered to be a nondate field.

If the expression consists of a single numeric operand, the COMPUTE will be treated as a MOVE and
therefore subject to the same rules as the MOVE command.

If the DATA parameter of the PLAYBACK ENABLE command is in effect for the current compile unit,
the COMPUTE command can be used while you replay recorded statements by using the PLAYBACK
commands. The target of the COMPUTE command must be a session variable.

The value assigned to a variable is always assigned to the storage for that variable. In an optimized
program, a variable can be temporarily assigned to a register, and a new value assigned to that variable
does not necessarily alter the value used by the program.

Examples

Assign to variable x the value of a + 6.
COMPUTE x = a + 6;

Assign to the variable mycode the value of the z/OS Debugger variable PATHCODE + 1.
COMPUTE mycode = %PATHCODE + 1;

Assign to variable xx the result of the expression (a + e(1)) / ¢ * 2.

COMPUTE xx = (a + e(1)) / c * 2;

You can also use table elements in such assignments as shown in the following example.

COMPUTE itm-2(1,2) = (a + 10) / e(2);

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“MOVE command (COBOL)” on page 173

“PLAYBACK commands” on page 185

“SET WARNING command (C, C++, COBOL, and PL/I)” on page 261

Chapter 5. z/OS Debugger commands 93

CURSOR command (full-screen mode)

The CURSOR command moves the cursor between the last saved position on the z/OS Debugger session
panel (excluding the header fields) and the command line.

»— CURSOR — ; »«

Usage notes

= The cursor position can be saved by typing the CURSOR command on the command line and moving the
cursor before pressing Enter, or by moving the cursor and pressing a PF key with the CURSOR command
assigned to it.

« If the CURSOR command precedes any command on the command line, the cursor is moved before the
other command is performed. This behavior can be useful in saving cursor movement for commands
that are performed repeatedly in one of the windows.

« The CURSOR command is not logged.
Example

Move the cursor between the last saved position on the z/OS Debugger session panel and the command
line.

CURSOR;

Declarations (assembler, disassembly, and LangX COBOL)

Use declarations to declare session variables that are effective during a z/OS Debugger session. Session
variables remain in effect for the entire debug session, or process in which they were declared. Variables
declared with declarations can be used in other z/OS Debugger commands as if they were declared to
the compiler. Declared variables are removed when your z/OS Debugger session ends or when the CLEAR
command is used to remove them.

»»— identifier — DS ——— F ——»«
— FLn —
X —
— XLn —
—— C —
— CLn —
— H—
— HLn —
A —
— ALn —j
B —
M BLn —
— p—
M PLn —
M 7 —
M ZLn —
—— E—

— D—4

-

94 IBM z/0OS Debugger: Reference and Messages

identifier
A valid assembler identifier.

F, FLn, X, XLn, C, CLn, H, HLn, A, ALn, B, BLn, P, PLn, Z, ZLn, E, D, L
Type codes that correspond to the types used in the assembler DC instruction. See the High Level
Assembler for MVS & VM & VSE: Language Reference for details about the meaning of these type
codes.

Usage note

The range of valid n values depends on the type specifier as follows:
e« Cand X: 1to 65525

« F,H andA:1to 4

B:1to 256

« PandZ:1to 16

Declarations (C and C++)

Use declarations to declare session variables and tags that are effective during a z/OS Debugger
session. Session variables remain in effect for the entire debug session, or process in which they

were declared. Variables and tags declared with declarations can be used in other z/OS Debugger
commands as if they were declared to the compiler. Declared variables and tags are removed when your
z/0S Debugger session ends or when the CLEAR command is used to remove them. The keywords must
be the correct case and cannot be abbreviated.

You can also declare enum, struct, and union data types. The syntax is identical to C except that enum
members can only be initialized to an optionally sighed integer constant.

declarator

scalar_def

enum_def

’

struct_def

[

union_def

scalar_def

Chapter 5. z/OS Debugger commands 95

»w—~————— char >4
k signed ﬂ
unsigned
double
L long J

float

int
unsigned short

M long
k signed L int J
u

nsigned

double

short
k signed L int J
unsigned

M signed
h long j L int J
short

char
M unsigned
t long j L int J
short
char

. void — * /
declarator
» identifier >

M———— (— identifier —) ———

* <
“— identifier L [— integer —]i/

enum_def
{ { identifier] } >«

»— enum L J L J
identifier = — constant_expr

struct_def

96 IBM z/0OS Debugger: Reference and Messages

Z identifier

» struct
L _Packed J L identifier J . <

enum_def

==l
| ()
(]

union_def

Z identifier

» union
L _Packed J L identifier J

- &
s €

H.'

(e

A Cindirect operator.

identifier

A valid C identifier.

integer

A valid C array bound integer constant.

constant_expr

Avalid C integer constant.

Usage notes

As in C and C++, the keywords can be specified in any order. For example, unsigned long int is equivalent
to int unsigned long. Some permutations are shown in the syntax diagram to make sure that every
keyword is shown at least once in the initial position.

As in C and C++, the identifiers are case-sensitive; that is, "X" and "x" are different names.
A structure definition must have either an identifier, a declarator, or both specified.
Initialization is not supported.

A declaration cannot be used in a command list; for example, as the subject of an if command or case
clause.

Declarations of the form struct tag identifier must have the tag previously declared
interactively.

See the C and C++ Language References for an explanation of the following keywords:

char short
double signed
enum struct
float union
int unsigned
lon void
_Packed (1)

(1) _Packed is not supported in C++.

Chapter 5. z/OS Debugger commands 97

« You cannot use the declarations command while you replay recorded statements by using the
PLAYBACK commands by using the PLAYBACK command.

Examples
« Define two Cintegers.
int myvar, hisvar;

« Define an enumeration variable status that represents the following values:

Enumeration Constant Integer Representation
run 0
create 1
delete 5
suspend 6

enum statustag {run, create, delete=5, suspend} status;
« Define avariable in a struct declaration.

struct atag $
char foo;
int vari;

t avar;

« Interactively declare variables using structure tags.
struct tagone {int a; int b;% c;
then specify:
struct tagone d;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

Declarations (COBOL)

Use declarations to declare session variables that are effective during a z/OS Debugger session. Session
variables remain in effect for the entire debug session, or process in which they were declared. Variables
declared with declarations can be used in other z/OS Debugger commands as if they were declared to
the compiler. Declared variables are removed when your z/OS Debugger session ends or when the CLEAR

command is used to remove them. The keywords cannot be abbreviated.

»L level — identifier

usage_attribute

attribute

Py e st s
PICTURE IS

usage_attribute

98 IBM z/0OS Debugger: Reference and Messages

POINTER

s ﬁ_j S
IS

M——COMP —
M— COMPUTATIONAL —
fM———COMP-1 —

M COMPUTATIONAL-1 —

M——COMP-2 ——

~— COMPUTATIONAL-2 —

level

1or77.

identifier

A valid COBOL data name (including DBCS data names).

picture

A sequence of characters from the set: S X 9 (replication factor is optional).

If picture is not X(*), the COBOL USAGE clause is required.

Usage notes

For Enterprise COBOL for z/OS Version 5, if you declare a session variable by using the attribute
UNSIGNED BINARY, it can be used only when the current qualification is an Enterprise COBOL for z/OS
Version 5 program.

For Enterprise COBOL for z/OS Version 5, it enforces COBOL rules for variable names when session
variables are declared. Version 4 allows some invalid names to be used. Some examples are as follows:

— For Version 5, it does not allow the name "4-44"; however, the name is allowed in Version 4. The
name is invalid because COBOL requires at least one alphabetical character in a variable name.

— For Version 5, it does not allow the name "SV12#"; however, the name is allowed in Version 4. The

name is invalid because '#' is not allowed. Only '-','_', and alphanumerical characters are allowed in a
COBOL variable name.

— For Version 5, it does not allow the name "_SV12"; however, the name is allowed in Version 4. The
name is invalid because '_' cannot be used as the first character in a variable name.

For Enterprise COBOL for z/OS Version 5, COMP-4 and COMPUTATIONAL -4 are also accepted.

A declaration cannot be used in a command list; for example, as the subject of an IF command or WHEN
clause.

BINARY and COMP are equivalent.

Use BINARY or COMP for COMPUTATIONAL-4.

COMP-1 is short floating point (4 bytes).

COMP-2 is long floating point (8 bytes).

Only COBOL PICTURE and USAGE clauses are supported.
Short forms of COMPUTATIONAL (COMP) are supported.

Examples

Define a variable named £loattmp to hold a floating-point number.
01 floattmp USAGE COMP-1;
Define an integer variable name temp.

77 temp PIC S9(9) USAGE COMP;

Refer to the following topics for more information related to the material discussed in this topic.

Chapter 5. z/OS Debugger commands 99

Related tasks

IBM z/0S Debugger User's Guide

Related references

Enterprise COBOL for z/OS Language Reference

DECLARE command (PL/I)

The DECLARE command declares session variables that are effective during a z/OS Debugger session.
Variables declared this way can be used in other z/OS Debugger commands as if they were declared to
the compiler. They are removed with the CLEAR command or when your z/OS Debugger session ends. The
keywords cannot be abbreviated.

DECLARE scalar

major_structure
»L level — name] >«

attribute

scalar
name j >
(Z name j) attribute
level

An unsigned positive integer. Level 1 must be specified for major structure names.

name
A valid PL/I identifier. The name must be unique within a particular structure level.

When name conflicts occur, z/OS Debugger uses session variables before using other variables of the
same name that appear in the running programs. Use qualification to refer to the program variable
during a z/OS Debugger session. For example, to display the variable a declared with the DECLARE
command as well as the variable a in the program, issue the LIST command as follows:

LIST (a, %BLOCK:a);
If a name conflict occurs because the variable was declared earlier with a DECLARE command, the
new declaration overrides the previous one.

attribute
A PL/I data or storage attribute.

Acceptable PL/I data attributes include:

BINARY CPLX FIXED LABEL PTR

BIT DECIMAL FLOAT OFFSET REAL
CHARACTERS EVENT GRAPHIC POINTER VARYING
COMPLEX

Acceptable PL/I storage attributes include:

100 IBM z/OS Debugger: Reference and Messages

BASED ALIGNED UNALIGNED

Pointers cannot be specified with the BASED option.

Only simple factoring of attributes is allowed. DECLAREs such as the following are not allowed:

DCL (a(2), b) PTR;
DCL (x REAL, y CPLX) FIXED BIN(31);

Also, the precision attribute and scale factor as well as the bounds of a dimension can be specified. If
a session variable has dimensions and bounds, these must be declared following PL/I language rules.

Usage notes

« DECLARE is not valid as a subcommand. That is, it cannot be used as part of a DO/END or BEGIN/END
block.

« Initialization is not supported.
« Program DEFAULT statements do not affect the DECLARE command.

- If you are debugging a Enterprise PL/I program, you cannot declare arrays, structures, factor attributes,
or multiple session variables in one command line.

« The DECLARE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

- Declare x, y, and z as variables that can be used as pointers.
DECLARE (x, y, z) POINTER;

« Declare a as a variable that can represent binary, fixed-point data items of 15 bits.
DECLARE a FIXED BIN(15);

« Declare d03 as a variable that can represent binary, floating-point, complex data items.
DECLARE d03 FLOAT BIN COMPLEX;

This dO3 will have the attribute of FLOAT BINARY (21).

« Declare x as a pointer, and setx as a major structure with structure elements a and b as fixed-point
data items.

DECLARE x POINTER, 1 setx, 2 a FIXED, 2 b FIXED;

This a and b will have the attributes of FIXED DECIMAL (5).
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Enterprise PL/I for z/OS Language Reference

DESCRIBE command

The DESCRIBE command displays the file allocations or attributes of references, compile units, known
load modules, the run-time environment, and CICS channels and containers.

Chapter 5. z/OS Debugger commands 101

- CURSOR .

(— USER ﬂ

»— DESCRIBE ALLOCATIONS ALL ; e
M— SYSTEM —

M— LINKLIST —
M— LPALIST —
M— APFLIST —
M CATALOG —
M PARMLIB —

~— PROCLIB —
M— ATTRIBUTES

reference

— reference —

% reference j—l —
— reference —

CHANNEL

*

M channel_name —]

~ SOAP 7

cus
L PROGRAMS J [cuspec ———

L

ENVIRONMENT

—— LOADMODS o

A *

M load_spec ————

e)
CURSOR (Full-Screen Mode only)

Provides a cursor-controlled method for describing variables, structures, and arrays. If you have
assigned DESCRIBE to a PF key, you can display the attributes of a selected variable by positioning
the cursor at that variable and pressing the assigned PF key.

ALLOCATIONS
Lists the current file allocations.
USER
Indicates that files allocated in the user's address space are to be described.

ALL
Indicates that both USER and SYSTEM allocations are to be described.

102 IBM z/OS Debugger: Reference and Messages

SYSTEM
Indicates that all of the following allocations are to be described.

LINKLIST
Indicates that the current LINKLIB, JOBLIB, STEPLIB, and TASKLIB allocations are to be
described.

LPALIST
Indicates that the current LPA list is to be described.

APFLIST
Indicates that the current list of APF authorized data sets is to be described.

CATALOG
Indicates that the current list of active catalogs is to be described.

PARMLIB
Indicates that the current PARMLIB concatenation is to be described.

PROCLIB
Indicates that the current PROCLIB concatenation is to be described.

ATTRIBUTES
Displays the attributes of a specified variable or, in C and C++, an expression. The attributes
are ordinarily those that appeared in the declaration of a variable or are assumed because of
the defaulting rules. DESCRIBE ATTRIBUTES works only for variables accessible to the current
programming language. All variables in the currently qualified block are described if no operand is
specified.
reference
A valid z/OS Debugger reference in the current programming language. Note the following points:

In C and C++, this can be a valid expression. For a C and C++ expression, the type is the only
attribute displayed. For a C and C++ structure or class, DESCRIBE ATTRIBUTES displays only the
attributes of the structure or class. To display the attributes of a data object within a structure or
data member in a class, use DESCRIBE ATTRIBUTES for the specific data object or member.

In COBOL, this can be any user-defined name appearing in the DATA DIVISION. Names can be
subscripted or substringed per their definitions (that is, if they are defined as alphanumeric data or
as arrays).

In PL/1, if the variable is in a structure, it can have inherited dimensions from a higher level parent.
The inherited dimensions appear as if they have been part of the declaration of the variable.

In optimized COBOL programs, if reference refers to a variable that was discarded by the optimizer,
the address information is replaced with a message.

'reference’
A valid z/OS Debugger LangX COBOL reference. This form must be used for LangX COBOL. It can
contain a simple variable or a variable with IN or OF qualifications.

Describes all variables in the compile unit. The % is not supported for assembler, disassembly,
PL/I, or LangX COBOL programs.

CHANNEL
Describes CICS channels and containers, including containers that hold Web services state data. You
can specify one of the following suboptions:

channel_name
Describe all containers in the channel channel_name.
*
Describe all the containers in all the channels in the current scope.

SOAP
Describe all SOAP containers. SOAP is a synonym for DFHNODE.

If you do not specify a suboption, z/OS Debugger lists all of the containers in the current channel.

Chapter 5. z/OS Debugger commands 103

Ccus
Describes the attributes of compile units, including such things as the compiler options and list of
internal blocks. The information returned is dependent on the HLL that the compile unit was compiled
under. CUS is equivalent to PROGRAMS.
cu_spec
The name of the compile unit whose attributes you want to list.
*
Describes all compile units.

PROGRAMS
Is equivalent to CUS.

ENVIRONMENT
The information returned includes a list of the currently opened files. Names of files that have been
opened but are currently closed are excluded from the list. COBOL, LangX COBOL, assembler, and
disassembly do not provide any information for DESCRIBE ENVIRONMENT.

LOADMODS
This command displays information about load modules known to z/OS Debugger and the known or
potential CUs in these load modules.

If no operand is specified, the currently active load module is assumed.

*
Displays a list of all load modules known to z/OS Debugger along with the address, length, entry
point, and the dataset from which the module was loaded.

load_spec

Display information about the specified load module or load modules and all known and potential
CUs in these load modules. This CU information consists of CSECT name, address, length, and
programming language.

Usage notes

« For Enterprise COBOL for z/OS Version 5, the output of DESCRIBE ATTRUBUTES for RENAMES data
items shows PIC Xinstead of AN-GR.

« For Enterprise COBOL for z/OS Version 5, If two or more level 01 or 77 data items have the same name,
DESCRIBE ATTRIBUTES with no operand displays an error message when you attempt to show the
attributes of those data items.

 For Enterprise COBOL for z/OS Version 5, the output of DESCRIBE ATTRIBUTES for a level 88 variable
does not show an address.

« If you use the DESCRIBE ATTRIBUTES command without specifying any data item, it shows the
attributes of all data items defined in the currently qualified block. The output of this command is
changed for Enterprise COBOL for z/OS Version 5 in the following ways:

— For records, the output shows only the high-level attributes of the record, such as length and address.
The output does not show the attributes of each subordinate group or data item defined within the
record. This reduces the amount of the output produced. For Enterprise COBOL for z/OS Version 4, it
also shows the attributes of all subordinate data items within each record or group, that is, the entire
data hierarchy. To see this level of detail in Enterprise COBOL for z/OS Version 5, you can specify a
particular data item on the DESCRIBE ATTRIBUTES command. If the data item is a record or group,
it shows the attributes of all subordinate data items within that record or group.

— For data items that are not records, which are scalar data items, the type of the data item is no
longer displayed on a separate line in the output as it was in Enterprise COBOL for z/OS Version 4, but
instead it is shown after the data item name on the line that includes "ATTRIBUTES for". This further
reduces the number of lines of the output produced, and makes the output for scalar data items more
consistent with the output for records.

« You can use the DESCRIBE CUS, DESCRIBE CHANNEL, and DESCRIBE LOADMODS commands in
remote debug mode.

« The DESCRIBE ALLOCATIONS command is not available under CICS.

104 IBM z/OS Debugger: Reference and Messages

Cursor pointing can be used by typing the DESCRIBE CURSOR command on the command line and
moving the cursor to a variable in the Source window before pressing Enter, or by moving the cursor and
pressing a PF key with the DESCRIBE CURSOR command assigned to it.

When using the DESCRIBE CURSOR command for a variable that is located by the cursor position, the
variable's name cannot be split across different lines of the source listing.

In C, C++, and COBOL, expressions containing parentheses () must be enclosed in another set
of parentheses when used with the DESCRIBE ATTRIBUTES command. For example, DESCRIBE
ATTRIBUTES ((x + vy) ./ z);.

For COBOL, if DESCRIBE ATTRIBUTES = is specified and your compile unit is large, you might receive
an out of storage error message.

For PL/I, DESCRIBE ATTRIBUTES returns only the top-level names for structures. DESCRIBE
ATTRIBUTES = is not supported for PL/I. To get more detail, specify the structure name as the
reference.

In order to use DESCRIBE ATTRIBUTES in an Enterprise PL/I program, the PTF for Language
Environment APAR PK30522 must be installed on z/OS Version 1 Release 6, Version 1 Release 7, and
Version 1 Release 8.

For Enterprise COBOL for z/OS Version 5, the PIC definition and other attributes of a variable are
displayed as declared in the program.

For Enterprise COBOL for z/OS Version 5, the result of issuing DESCRIBE ATTRIBUTES for a z/OS
Debugger variable that represents a register does not include an address. For example, DESCRIBE
ATTRIBUTES %GPR15.

For Enterprise COBOL for z/OS Version 5, the output of DESCRIBE ATTRIBUTES for a record or a group
variable is displayed with the levels as declared in the program.

LangX COBOL PIC attributes might not match the original PIC specification in the following situations:

— A COMP-3 variable always has an odd number of digits in its PIC value.
— All non-numerical strings have a PIC value of X's.

If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, the
DESCRIBE ATTRIBUTES and DESCRIBE CURSOR commands can be used while you replay recorded
statements by using the PLAYBACK commands.

The DESCRIBE ENVIRONMENT command cannot be used while you replay recorded statements by
using the PLAYBACK commands.

The DESCRIBE LOADMODS command does not display information about load modules or compile units
provided by operating system, subsystem, or runtime software (for example: MVS, CICS, Db2, IMS, and
Language Environment) because z/OS Debugger ignores these modules.

The DESCRIBE LOADMODS command cannot display the DSNAME of load modules loaded by LPA, LLA,
AOS loader, or an unknown provider because the DSNAME for these providers is not available.

CU information displayed by DESCRIBE LOADMODS includes information about the following types of
CUs:

— Known CUs (CUs that appear in LIST NAMES CUS output)

— Hidden disassembly CUs (If SET DISASSEMBLY OFF is in effect these are the names of the CUs that
would be created if you SET DISASSEMBLY ON)

— Hidden COBOL CUs (COBOL CUs that have not yet been entered)

— A CU name shown as a load module name followed by ">" indicates the entry point CU for a load
module that is the target of an AT LOAD command.

You can use the DESCRIBE CHANNEL command only if your application program runs on CICS
Transaction Server Version 3.1 or later.

For PL/I, COBOL, LangX COBOL, assembler, and disassembly, if a channel name is mixed case, you
must enclose it in quotation marks (") or apostrophes ('). If you do not enclose it in quotation marks or
apostrophes, z/OS Debugger converts it to all upper case.

Chapter 5. z/OS Debugger commands 105

« For C and C++, all channels names are case sensitive. The following table compares how the same
command must be typed differently, depending on the programming language you are debugging:

Table 6. Comparison of the same command used in different programming languages

If the If the programming language is PL/I,

container COBOL, LangX COBOL, assembler or If the programming language is C or C+

name is... disassembly, type in... +, type in...

chname DESCRIBE CHANNEL ‘chname’ DESCRIBE CHANNEL chname

conNAME DESCRIBE CHANNEL 'conNAME' DESCRIBE CHANNEL conNAME
Examples

« Describe the attributes of argc, argv, boolean, i, 1d, and structure.
DESCRIBE ATTRIBUTES (argc, argv, boolean, i, 1ld, structure);

« Describe the current environment.
DESCRIBE ENVIRONMENT;

« Display information describing program myprog.
DESCRIBE PROGRAMS myprog;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“references” on page 15

“cu_spec” on page 13

“LIST CONTAINER command” on page 145

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

DISABLE command

The DISABLE command makes an AT or pattern-match breakpoint inoperative. However, the breakpoint
is not cleared. Later, you can make the breakpoint operative by using the ENABLE command.

»»— DISABLE —»

A 4

v

AT_command

M CADP *
1 J

L PROGRAM tprog_id L cu Lcu_id_J J

— DTCN * 4
1 J

L LOADMOD ﬂmod_id L CuU Lcu_id_J I
* %*

— ;>
AT_command

An enabled AT command. The AT command must be complete except that the every clause and
command are omitted. Valid forms are the same as those allowed with CLEAR AT.

106 IBM z/OS Debugger: Reference and Messages

DTCN LOADMOD, DTCN CU, CADP PROGRAM, or CADP CU
Prevents z/OS Debugger from being started by a program, load module, or compile unit specified in
prog_id, loadmod_id, or cu_id that matches a program or compile unit specified in a DTCN or CADP
profile. The following comparisons are made:

« For DTCN, z/OS Debugger compares loadmod_id with the value in the LoadMod field and cu_id with
the value in the CU field.

» For CADP, prog_id is compared to what is specified in the Program field and cu_id is compared to
what is specified in the Compile Unit field.

You can specify a specific name (for example, PROG1) or a partial name with the wild card character
(for example, EMPL¥).

Usage notes

« You can use the DISABLE CADP and DISABLE DTCN commands in remote debug mode.

« You can use the DISABLE command to disable either active or suspended breakpoints. However, you
cannot use it to disable suspended label breakpoints.

« If you want to disable a suspended breakpoint, you must specify both the load module and CU name.
« To reenable a disabled AT command, use the ENABLE command.

« Disabling an AT command does not affect its replacement by a new (enabled) version if an overlapping
AT command is later specified. It also does not prevent removal by a CLEAR AT command.

« Breakpoints already disabled within the range(s) specified in the specific AT command are unaffected;
however, a warning message is issued for any specified range found to contain no enabled breakpoints.

« The DISABLE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

 For pseudo-conversational applications running under CICS, the DISABLE CADP or DISABLE DTCN
commands apply only to the current CICS pseudo-conversational task.

« For PL/I, COBOL, LangX COBOL, assembler and disassembly, if the cu_id is mixed case or case
sensitive, you must enclose the name in quotation marks (") or apostrophes (*).

« For C and C++, z/OS Debugger always treats the cu_id as case sensitive, even if it is not enclosed in
quotation marks (*).

Examples

« Disable the breakpoint that was set by the command AT ENTRY myprog CALL procl;.
DISABLE AT ENTRY myprog;
- If statement 25 is in a loop and you set the following breakpoint:
AT EVERY 5 FROM 1 TO 100 STATEMENT 25 LIST x;
to disable it, enter:
DISABLE AT STATEMENT 25;
You do not need to reenter the every_clause or the command list. To restore the breakpoint, enter:
ENABLE AT STATEMENT 25;

« z/OS Debugger starts every time PROGA runs because you have a DTCN profile that specifies an asterisk
(*) in the LoadMod field and PROGA in the CU field. field. If you do not want z/OS Debugger to start
every time PROGA runs, enter one of the following commands:

— DISABLE DTCN LOADMOD = CU PROGA;
— DISABLE DTCN CU PROGA;

Chapter 5. z/OS Debugger commands 107

 You have a CADP profile that specifies PROG1 in the Program field and CU1 in the Compile Unit field.
If you do not want z/OS Debugger to start every time this program and compile unit are run, enter the
following command:

DISABLE CADP PROGRAM PROG1 CU CU1;

« You have a CADP profile that specifies CU1 in the Compile Unit field. If you do not want z/OS Debugger
to start every time the compile unit is run, enter one of the following commands:

DISABLE CADP PROGRAM * CU CUZ1;
DISABLE CADP CU CU1;
« You have several CADP profiles and z/OS Debugger is started every time a program matches one of

these profiles. If you do not want z/OS Debugger to be started every time a program matches any of
these profiles, enter the following command:

DISABLE CADP *;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Controlling pattern-match breakpoints with the ENABLE and DISABLE commands" in the IBM z/0S
Debugger User's Guide

Related references

“ENABLE command” on page 112

“DISABLE prefix (full-screen mode)” on page 108

“LIST DTCN or CADP command” on page 147

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

DISABLE prefix (full-screen mode)

Disables a statement breakpoint or offset breakpoint when you issue this command through the Source
window prefix area.

; >
L integer —J

»»— DISABLE

integer
Selects a relative statement (for C and C++ or PL/I) or a relative verb (for COBOL) within the line. The
default value is 1.

Example

Disable the breakpoint at the third statement or verb in the line by entering the following command in the
prefix area of the line where the statement is found.

DIS 3
You do not need to enter a space between the keyword and the integer: DIS 3 is equivalent to DIS3.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

DO command (assembler, disassembly, LangX COBOL, and COBOL)

The DO command performs one or more commands that are collected into a group. The DO and END
keywords delimit a group of commands called a DO group. The keywords cannot be abbreviated.

108 IBM z/OS Debugger: Reference and Messages

»—- DO —; END — ; >«

command

command
A valid z/OS Debugger command.

do/while command (C and C++)

The do/while command performs a command before evaluating the test expression. Due to this order of
execution, the command is performed at least once. The do and while keywords must be lowercase and
cannot be abbreviated.

»— do — command — while — (— expression —) — ; -»«
command

A valid z/OS Debugger command.
expression

A valid z/OS Debugger C and C++ expression.

The body of the loop is performed before the while clause (the controlling part) is evaluated. Further
execution of the do,/while command depends on the value of the while clause. If the while clause
does not evaluate to false, the command is performed again. Otherwise, execution of the command ends.

A break command can cause the execution of a do,/while command to end, even when the while
clause does not evaluate to false.

Usage note

The do/while command cannot be used while you replay recorded statements by using the PLAYBACK
commands by using the PLAYBACK command.

Example

The following command prompts you to enter a 1. If you enter a 1, the command ends execution.
Otherwise, the command displays another prompt.

int replyl;

do {
printf("Enter a 1.\n");
scanf("%d", &replyl);

t while (zreplyl != 1);

DO command (PL/I)

The DO command allows one or more commands to be collected into a group that can (optionally) be
repeatedly executed. The DO and END keywords delimit a group of commands collectively called a DO
group. The keywords cannot be abbreviated.

Simple

»- DO —; END — ; >«

command

command
A valid z/OS Debugger command.

Repeating

Chapter 5. z/OS Debugger commands 109

»— DO T WHILE — (— expression —) L J ;=
UNTIL — (— expression —) J

UNTIL — (— expression —)
L WHILE — (— expression —) J

END — ; >«

A 4

command

WHILE
Specifies that expression is evaluated before each execution of the command list. If the expression
evaluates to true, the commands are executed and the DO group begins another cycle; if it evaluates
to false, execution of the DO group ends.

expression
A valid z/OS Debugger PL/I Boolean expression.
UNTIL
Specifies that expression is evaluated after each execution of the command list. If the expression

evaluates to false, the commands are executed and the DO group begins another cycle; if it evaluates
to true, execution of the DO group ends.

command
A valid z/OS Debugger command.
Iterative
»w— DO — reference — = % : ; END — ; »«
command
iteration

»— expression

\4

M BY — expression
L TO — expression J

M TO — expression L J
BY — expression

——— REPEAT — expression —

»g
P4

A 4

WHILE — (— expression —)
L UNTIL — (— expression —) —J

UNTIL — (— expression —)
L WHILE — (— expression —) J

J

reference
A valid z/OS Debugger PL/I reference.

expression
A valid z/OS Debugger PL/I expression.

110 IBM z/OS Debugger: Reference and Messages

BY
Specifies that expression is evaluated at entry to the DO specification and saved. This saved value
specifies the increment to be added to the control variable after each execution of the DO group.

If BY expression is omitted from a DO specification and if TO expression is specified, expression
defaults to the value of 1.

If BY O is specified, the execution of the DO group continues indefinitely unless it is halted by a WHILE
or UNTIL option, or control is transferred to a point outside the DO group.

The BY option allows you to vary the control variable in fixed positive or negative increments.

TO
Specifies that expression is evaluated at entry of the DO specification and saved. This saved value
specifies the terminating value of the control variable.

If TO expression is omitted from a DO specification and if BY expression is specified, repetitive
execution continues until it is terminated by the WHILE or UNTIL option, or until some statement
transfers control to a point outside the DO group.

The TO option allows you to vary the control variable in fixed positive or negative increments.

REPEAT
Specifies that expression is evaluated and assigned to the control variable after each execution of the
DO group. Repetitive execution continues until it is terminated by the WHILE or UNTIL option, or until
some statement transfers control to a point outside the DO group.

The REPEAT option allows you to vary the control variable nonlinearly. This option can also be used for
nonarithmetic control variables, such as pointers.

WHILE
Specifies that expression is evaluated before each execution of the command list. If the expression
evaluates to true, the commands are executed and the DO group begins another cycle; if it evaluates
to false, execution of the DO group ends.

UNTIL
Specifies that expression is evaluated after each execution of the command list. If the expression
evaluates to false, the commands are executed and the DO group begins another cycle; if it evaluates
to true, execution of the DO group ends.

command
A valid z/OS Debugger command.

Usage note

You cannot use the DO command while you replay recorded statements by using the PLAYBACK
commands by using the PLAYBACK command.

Examples

« At statement 25, initialize variable a and display the values of variables x, y, and z.
AT 25 DO; %BLOCK:>a = O; LIST (x, y, z); END;
« Execute the DO group until ctzr is greater than 4 or less than 0.
DO UNTIL (ctr > 4) WHILE (ctr >= 0); END;
« Execute the DO group with 1 having the values 1, 2, 4, 8, 16, 32, 64, 128, and 256.
DO i = 1 REPEAT 2xi UNTIL (i = 256); END;
« Repeat execution of the DO group with j having values 1 through 20, but only if k has the value 1.

DO j =1 TO 20 BY 1 WHILE (k = 1); END;

Chapter 5. z/OS Debugger commands 111

ENABLE command

The ENABLE command activates an AT or pattern-match breakpoint after it was disabled with the
DISABLE command.

»— ENABLE —

AT_command

Y
v

M—— CADP 1 *

L PROGRAM ﬂg_id cu_id J
* \ %* J

— DTCN 1 * o

J
L LOADMOD ﬂmod_id L (o{V] Lcu_id_J J
* *

J

Loy

— >

AT_command

A disabled AT command. The AT command must be complete except that the every clause and
command are omitted. Valid forms are the same as those allowed with CLEAR AT.

DTCN LOADMOD, DTCN CU, CADP PROGRAM, or CADP CU

Re-enable a CADP or DTCN profile that was previously disabled by the DISABLE command. The
names you specify for loadmod_id, prog_id, or cu_id must match the loadmod_id, prog_id, or cu_id
you specified in the DISABLE command.

If you do not specify a loadmod_id, prog_id, or cu_id, z/OS Debugger enables all previously disabled
DTCN or CADP profiles. If you try to specify a loadmod_id, prog_id, or cu_id for a profile that was not
disabled, z/OS Debugger displays an error message.

Usage notes

You can use the ENABLE CADP and ENABLE DTCN commands in remote debug mode.

You can use the ENABLE command to enable either active or suspended breakpoints. However, you
cannot use it to enable suspended label breakpoints.

If you want to enable a suspended breakpoint, you must specify both the load module and CU name.
To disable an AT command, use the DISABLE command.

Breakpoints already enabled within the range(s) specified in the specific AT command are unaffected;
however, a warning message is issued for any specified range found to contain no disabled breakpoints.

The ENABLE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

For pseudo-conversational applications running under CICS, the ENABLE CADP or ENABLE DTCN
commands apply only to the current CICS pseudo-conversational task.

For PL/I, COBOL, LangX COBOL, assembler and disassembly, if the cu_id is mixed case or case
sensitive, you must enclose the name in quotation marks (") or apostrophes (*).

For C and C++, z/OS Debugger always treats the cu_id as case sensitive, even if it is not enclosed in
quotation marks (").

Examples

Reenable the previously disabled command AT ENTRY mysub CALL procl;.

ENABLE AT ENTRY mysub;

112 IBM z/OS Debugger: Reference and Messages

« Allow DTCN to start z/OS Debugger every time PROGA runs, which was previously prevented with the
command DISABLE DTCN CU PROGA;, by entering the following command:

ENABLE DTCN CU PROGA;

« Allow CADP to start z/OS Debugger every time a program that matches any of the CADP profiles is run.
This was previously prevented with the command DISABLE CADP x*;.

ENABLE CADP *;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Controlling pattern-match breakpoints with the ENABLE and DISABLE commands" in the IBM z/0S
Debugger User's Guide

Related references

“DISABLE prefix (full-screen mode)” on page 108

“ENABLE prefix (full-screen mode)” on page 113

“LIST DTCN or CADP command” on page 147

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

ENABLE prefix (full-screen mode)

Enables a disabled statement breakpoint or a disabled offset breakpoint when you issue this command
through the Source window prefix area.

;P
L integer J

»— ENABLE

integer
Selects a relative statement (for C and C++ or PL/I) or a relative verb (for COBOL) within the line. The
default value is 1. For optimized COBOL programs, the default value is the first executable statement
which was not discarded by the optimizer.

Example

Enable the breakpoint at the third statement or verb in the line (typed in the prefix area of the line where
the statement is found).

ENABLE 3

No space is needed as a delimiter between the keyword and the integer; hence, ENABLE 3 is equivalent
to ENABLES3.

EVALUATE command (COBOL)

The EVALUATE command provides a shorthand notation for a series of nested IF statements. The
keywords cannot be abbreviated.

Chapter 5. z/OS Debugger commands 113

A

»w— EVALUATE —~—— constant — WHEN command

any_clause

M— expression —
M reference —

TRUE

~—— FALSE —

END-EVALUATE — ; >«

Y

WHEN — OTHER command

any_clause

»»- ANY >«
M condition —

M— TRUE —

“—— FALSE —~
constant
L NOT J L reference _J ﬁHROUGH constant j—j
THRU jT reference

constant
A valid z/OS Debugger COBOL constant.

expression
A valid z/OS Debugger COBOL arithmetic expression.

reference
A valid z/OS Debugger COBOL reference.

condition
A simple relation condition.

command
A valid z/OS Debugger command.

Usage notes

« Only a single subject is supported.

« Consecutive WHENs without associated commands are not supported.

« THROUGH,”THRU ranges can be specified as constants or references.

 See Enterprise COBOL for z/0S Language Reference for an explanation of the following COBOL keywords:

ANY
FALSE
NOT
OTHER
THROUGH
THRU
TRUE
WHEN

« z/0OS Debugger implements the EVALUATE command as a series of IF commands.

114 IBM z/OS Debugger: Reference and Messages

« If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit,
the EVALUATE command can be used while you replay recorded statements by using the PLAYBACK
commands.

« For optimized COBOL programs, the value of reference cannot refer to any variables discarded by the
optimizer.

- If a COBOL variable is defined as National and it is an operand in a relation condition with an alphabetic,
alphanumeric operand, or National numeric, the operand that is not National is converted to Unicode
before that comparison is done, except for Group items. See Enterprise COBOL for z/OS Language
Reference for more information about using COBOL variables in conditional expressions.

Example

The following example shows an EVALUATE command and the equivalent coding for an IF command:

EVALUATE menu-input
WHEN "O"
CALL init-proc
WHEN "1" THRU "9"
CALL process-proc
WHEN "R"
CALL read-parms
WHEN "X"
CALL cleanup-proc
WHEN OTHER
CALL error-proc
END-EVALUATE;

The equivalent IF command:

IF (menu-input = "0") THEN
CALL init-proc
ELSE
IF (menu-input >= "1") AND (menu-input <= "9") THEN
CALL process-proc
ELSE
IF (menu-input = "R") THEN
CALL read-parms
ELSE
IF (menu-input = "X") THEN
CALL cleanup-pzroc
ELSE
CALL error-proc
END-IF;
END-IF;
END-IF;
END-IF;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Allowable comparisons for the IF command (COBOL)” on page 131
Enterprise COBOL for z/OS Language Reference

Expression command (C and C++)

The Expression command evaluates the given expression. The expression can be used to either assign
avalue to a variable or to call a function.

»— expression — ; >4

expression
A valid z/OS Debugger C and C++ expression. Assignment is affected by including one of the C and
C++ assignment operators in the expression. No use is made of the value resulting from a stand-alone
expression.

Usage notes

Chapter 5. z/OS Debugger commands 115

 Function invocations in expressions are restricted to functions contained in the currently executing
enclave.

« The Expression command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

« Initialize the variables x, y, z. You can use functions to provide values for variables.

X

3 + 4,5;
y .
z

7:
8 * func(x, y);

« Increment y and assign the remainder of the integer division of omega by 4 to alpha.
alpha = (y++, omega % 4);
- To list and assign a new value to R1 in the disassembly view:

LIST(R1);
R1 = OxO001FAFO;

FIND command

The FIND command provides full-screen and line mode search capability in the source object, and
full-screen searching of the log and monitor objects.

»— FIND —
l string L I
l * J leftcolumn FIRST M—— CURSOR —
t rightcolumn j LAST LOG
* NEXT M MONITOR —

PREV ~— SOURCE —~

—
v

— ;<

string
The string you want to find, which conforms to the syntax for a character string constant of the current
programming language. The string must comply with the following restrictions:

 The length of the string cannot exceed 128 bytes.

« If the string contains spaces, or is an asterisk (*), a question mark (?) or a semicolon (;) it must be
enclosed in quotation marks (") or apostrophes (') as described in the following rules:

— For C and C++, use quotation marks ().

— For COBOL, LangX COBOL, assembler, disassembly, or PL/I, use quotation marks (") or
apostrophes (').

Table 7. Examples of how to specify quotation marks (") and apostrophes (') for strings in a FIND
command.
COBOL or LangX | Assembler or
Cc C++ coBOL disassembly PL/I
"ABC" "IntLink::*" "A5" or 'A5' 'ABC' or "ABC" or |'ABC' or "ABC"
C'ABC'

116 IBM z/OS Debugger: Reference and Messages

« If the string contains a quotation mark (") or apostrophe ('), you might have to specify the string with
an even number of quotation marks or apostrophes (also known as balance). Use the following rules
to determine how to balance the string:

— For PL/I, if the string has an apostrophe, you must add an apostrophe immediately following that
apostrophe. If the string contains a space, surround the entire string with apostrophes.

— For C and C++, if the string has a quotation mark, you must add a quotation mark immediately
following that quotation mark. If the string contains a space, surround the entire string with
quotation marks.

— Forassembler, COBOL, LangX COBOL, or disassembly, if the string contains an apostrophe and it
is delimited by apostrophes, you must add an apostrophe immediately after the apostrophe that
is in the string. If the string contains a quotation mark and it is delimited by quotation marks, you
must add a quotation mark immediately after the quotation mark that is in the string. If the string
contains a space, you do not have to balance the quotation marks; however you must surround
the entire string with a quotation marks or apostrophes.

If no operands are specified, a repeat FIND is performed. The usage notes and IBM z/0S Debugger
User's Guide describes repeat FIND.

*
Use the string from the previous FIND command.
leftcolumn
A positive integer that specifies the leftmost column for the search. This is supported only in the
Source window and in line mode. It is ignored in the Log and Monitor windows. If rightcolumn and *
are omitted, then the string must start in leftcolumn.
rightcolumn
A positive integer that specifies the rightmost column for the search. This is supported only in the
Source window and in line mode. It is ignored in the Log and Monitor windows.
*
Specifies that the length of each source record is used as the right column for the search. This is
supported only in the Source window and in line mode. It is ignored in the Log and Monitor windows.
FIRST
Starts at the beginning of the object and searches forward to find the first occurrence of the string.
LAST
Starts at the end of the object and searches backward to find the last occurrence of the string.
NEXT

Starts at the first position after the current cursor location and searches forward to find the next
occurrence of the string.

PREV
Starts at the current cursor location and searches backward to find the previous occurrence of the
string.

CURSOR (Full-Screen Mode)
Specifies that the current cursor position selects the object searched.

LOG (Full-Screen Mode)
Selects the object in the session log window.

MONITOR (Full-Screen Mode)
Selects the object in the monitor window.

SOURCE (Full-Screen Mode)
Selects the object in the source listing window.

Usage notes
« If no operands are specified, a repeat FIND is performed. A repeat FIND behaves in the following ways:

— The string from the previous FIND that you entered is used.
— If no FIND string has been previously specified, z/OS Debugger displays an error message.

Chapter 5. z/OS Debugger commands 117

— If the previous FIND command that you entered specified or implied the FIRST or NEXT parameter,
z/0S Debugger uses the NEXT parameter.

— If the previous FIND command that you entered specified the LAST or PREV parameter, z/OS
Debugger uses the PREV parameter.

— If the previous FIND command that you entered specified a leftcolumn parameter, z/OS Debugger
uses that leftcolumn parameter.

— If the previous FIND command that you entered specified a rightcolumn parameter, z/OS Debugger
uses that rightcolumn parameter.

— If arepeat FIND immediately follows an unsuccessful FIND or repeat FIND, z/OS Debugger continues
searching, wrapping from the last line to the first line. If the original direction of the FIND was
backward to the beginning of the object, z/OS Debugger wraps from the first line to the last line.

— If the cursoris not in a window, z/OS Debugger uses the same window that was used for the previous
FIND command.

« In full-screen mode, z/OS Debugger chooses the window it searches through in the following ways:

— If you specify a string and you do not place the cursor in a window nor specify an object on
the command, z/OS Debugger searches the object in the window specified by the SET DEFAULT
WINDOW command or the Default window entry in your Profile Settings panel.

— If you place the cursor in a window and do not specify a different window on the command, z/0S
Debugger searches the object in the window where you placed the cursor.

« If you specify a string without a direction keyword, forward is the default direction.
« FIND can be made immediately effective in full-screen mode with the IMMEDIATE command.

« If the current programming language setting is C or C++, the search is case-sensitive. Otherwise, the
search is not case-sensitive.

« In full-screen mode, searches show the following behavior:

— If you specify FIRST, the search begins at the beginning of the first line of the object.
— If you specify LAST, the search begins at the end of the last line of the object.

— If you specify NEXT or the command defaults to NEXT and the cursor is within the window for the
object being searched, the search begins at the first position after the current cursor location.

— If you specify NEXT or the command defaults to NEXT and the cursor is outside the window for the
object being searched, the search begins at the beginning of the first line displayed in the window.

— If you specify PREV or the command defaults to PREV and the cursor is within the window for the
object being searched, the search begins at the current cursor location.

— If you specify PREV or the command defaults to PREV and the cursor is outside the window for the
object being searched, the search begins at the end of the line preceding the first line displayed in
the window of the object being searched. If the beginning of the object is displayed, z/OS Debugger
wraps to the end of the object and continues from the end of the last line in the object.

— If z/OS Debugger finds the string, the window for the object being searched is scrolled until the string
is visible. If the string is DBCS, it is displayed without alteration. If the string is not DBCS, the string is
highlighted as specified by the SET COLOR command and the cursor is placed at the beginning of the
string. The highlighted string is protected from overtyping. If you need to overtype the string, press
enter and place the cursor where you want to type and proceed with the overtype.

— If z/OS Debugger does not find the string, the screen does not change and the cursor is not moved. If
you specified NEXT or PREV or the command defaults to NEXT or PREV and z/OS Debugger searched
only part of the object, then z/OS Debugger displays the message 'Bottom of data reached' or 'Top of
data reached!, as appropriate. If z/OS Debugger searched through the entire object, then it displays
the message 'Search target not found'.

« In line mode, searches show the following behavior:

— If you specify FIRST, the search begins at the beginning of the first line of the source.
— If you specify LAST, the search begins at the end of the last line of the source.

118 IBM z/OS Debugger: Reference and Messages

— If you specify NEXT or the command defaults to NEXT, z/OS Debugger begins searching at the first
character of the first line of the source or, if a previous FIND command was done in the same compile
unit, at the location after the last string that was successfully found by a FIND command.

— If you specify PREV or the command defaults to PREV, z/OS Debugger begins searching at the last
character of the last line of the source, or if a previous FIND command was done in the same compile
unit, at the location before the last string that was successfully found by a FIND command.

— If you specify NEXT or PREV or the command defaults to NEXT or PREV and z/OS Debugger searched
only part of the source and did not find the string, then z/OS Debugger displays the message 'Bottom
of data is reached' or 'Top of data is reached’, as appropriate. If z/OS Debugger searched through the
entire source without finding the string, then it displays the message 'Search target not found'.

— If z/OS Debugger finds the string, the line that contains the string is displayed and marked with a
vertical bar character (|) beneath the string.

« The search in the Source window and in line mode can be limited to certain columns by choosing one of
the following methods:

— If you enter a pair of column numbers indicating the first and last columns to be searched, the string
is found if it is completely contained within the specified columns.

— If asingle column is specified, the string must start in the specified column.
— If the second column specified is larger than the record size, the record size is used.

— If the columns are not specified, the columns to be searched default to the columns defined by
the SET FIND BOUNDS command. If you have not entered the SET FIND BOUNDS command, the
columns defaultto 1 *

The column alignment of the source might not match the original source code. The leftcolumn and
rightcolumn specifications are related to the scale shown in the Source window, not the original source.

The full-screen FIND command is not logged; however, the FIND command is logged in line mode.

- If you are searching for strings with trigraphs in them when debugging C or C++ code, the trigraphs
or their equivalents can be used as input, and z/OS Debugger matches them to trigraphs or their
equivalents. An exception is that column specifications other than 1 * are not allowed in FIND or SET
FIND BOUNDS if you search source code and trigraphs are found.

- If you are searching in the monitor window and SET MONITOR WRAP OFF is in effect, z/OS Debugger
will search all of the scrolled data.

 You cannot use the FIND command in the Memory window.
Examples

« Indicate that you want to search the monitor window for the name myvar.
FIND myvar MONITOR;
- If you want to search the Source window for the next occurrence of varl, just enter:

FIND

You do not need to provide the variable name, because the z/OS Debugger remembers the string you
last searched for. Again, the Source window is scrolled forward, varl is highlighted, and the cursor
points to the variable.

« If you want to find a question mark (?) in the Source window and you are debugging a PL/I program,
enter the following command:

FIND '?' ;

- If you want to find the string User's in the Source window and you are debugging a PL/I program, enter
the following command:

FIND User''s ;

Chapter 5. z/OS Debugger commands 119

- If you want to find the string User ' s in the Source window and you are debugging a C program, enter
the following command:

FIND Usexr's ;

« If you want to find the string User's Guide in the Source window and you are debugging a PL/I
program, enter the following command:

FIND 'User''s Guide' ;

« If you want to find the string User's Guide in the Source window and you are debugging a C program,
enter the following command:

FIND "User's Guide" ;

« If you entered the command FIND xyz LAST; or FIND xyz PREV; and the cursoris on the found
string ("xyz"), then press the PF key assigned to the FIND command to repeat the search. z/0OS
Debugger runs the command FIND xyz PREV;.

- If you entered the command FIND xyz;, z/OS Debugger searches in the forward direction. To find the
string "xyz" in the backward direction, enter the command FIND %= PREV;.

- If you want to find a COBOL paragraph definition named pazraa that starts in column 8 in COBOL’s Area
A, enter the following command:

FIND paraa 8 ;

« If you want to find a reference to a COBOL paragraph named paraa in COBOL’s Area B, then enter one
of the following commands:

— FIND paraa 12 72;

— SET FIND BOUNDS 12 72;
FIND paraa;

FINDBP command

The FINDBP command provides full-screen search capability for line, statement and offset breakpoints in
the source object. The FINDBP keyword cannot be abbreviated.

»— FINDBP ;>
FIRST k ENABLED ﬂ
LAST DISABLED

NEXT
PREV

FIRST
Starts at the beginning of the source object and searches forward to find the first line, statement, or
offset breakpoint.

LAST
Starts at the end of the source object and searches backward to find the last line, statement, or offset
breakpoint.

NEXT
Starts at the next line after the current cursor location in the Source window and searches forward to
find the next line, statement, or offset breakpoint

PREV
Starts at the previous line before the current cursor location in the Source window and searches
backward to find the previous line, statement, or offset breakpoint

120 IBM z/OS Debugger: Reference and Messages

ENABLED

Restricts the searching to enabled breakpoints. The default is to list both enabled and disabled
breakpoints.

DISABLED

Restricts the searching to disabled breakpoints. The default is to list both enabled and disabled
breakpoints.

Usage notes

« If no operands are specified, a repeat FINDBP is performed. A repeat FINDBP behaves in the following
ways:

If the previous FINDBP command that you entered specified or implied the FIRST or NEXT
parameter, z/OS Debugger uses the NEXT parameter.

If the previous FINDBP command that you entered specified or implied the LAST or PREV parameter,
z/0S Debugger uses the PREV parameter.

If a repeat FINDBP immediately follows an unsuccessful FINDBP or repeat FINDBP, z/OS Debugger
continues searching, wrapping from the last line to the first line. If the original direction of the
FINDBP was backward to the beginning of the source object, z/OS Debugger wraps from the first line
to the last line.

If the previous FINDBP command that you entered specified or implied the ENABLED or DISABLED
parameter, z/OS Debugger uses the ENABLED or DISABLED parameter, respectively.

If you want to frequently use a repeat FINDBP, set a PF key (for example, PF17 or shift PF5) to
FINDBP. For instructions on assigning a command to a PF key, see “SET PFKEY command” on page
245,

 Searches show the following behavior:

If you specify FIRST, the search begins at the first line of the source object.
If you specify LAST, the search begins at the last line of the source object.

If you specify NEXT or the command defaults to NEXT and the cursor is on a source line or in its prefix
or suffix area, the search begins at the line after the line the cursor is on.

If you specify NEXT or the command defaults to NEXT and the cursor is not on a source line or in its
prefix or suffix area, the search begins at the first line in the Source window.

If you specify PREV or the command defaults to PREV and the cursor is on a source line or in its prefix
or suffix area, the search begins at the line before the line the cursor is on.

If you specify PREV or the command defaults to PREV and the cursor is not on a source line or in its
prefix or suffix area, the search begins at the line before the first line in the Source window. If the
first line of the source object is displayed, z/OS Debugger wraps to the end of the source object and
continues with the last source line.

If z/OS Debugger finds the breakpoint, z/OS Debugger scrolls the Source window so that you can see
the breakpoint. z/OS Debugger places the cursor at the beginning of the prefix area for the source line
that contains the breakpoint.

If z/OS Debugger does not find the breakpoint, the screen does not change and the cursor is not
moved. If you specified NEXT or PREV or the command defaults to NEXT or PREV and z/OS Debugger
searched only part of the source object, then z/OS Debugger displays the message "Bottom of data
reached" or "Top of data reached", as appropriate. If z/OS Debugger searched through the entire
source object, then it displays the message "No line, statement or offset breakpoints were found".

« If multiple line or statement breakpoints exist on the same source line, the FINDBP command finds only
one of them.

« The FINDBP command does not find AT STATEMENT * breakpoints.

- The FINDBP command searches only through the currently qualified compile unit, which is the compile
unit visible in the Source window.

- z/0OS Debugger does not log the FINDBP command.

Chapter 5. z/OS Debugger commands 121

- If you know the line number or statement number of the breakpoint you are looking for, the quickest
way to find it is to use the SCROLL TO nnnnn or POSITION nnnnn command, which scrolls the Source
window so that the line containing nnnnn in the prefix area is the first line in the Source window.

Examples

« Search for the next line in the Source window that contains a line, statement, or offset breakpoint.

FINDBP

« Search for the first line in the source object that contains a line, statement, or offset breakpoint. Then
search for the next two breakpoints.

FINDBP FIRST
FINDBP
FINDBP

Related references

Related references

“AT LINE command” on page 63

“AT OFFSET command (disassembly)” on page 68

“AT STATEMENT command” on page 70

“LIST AT command” on page 140, with the LINE, OFFSET, or STATEMENT options
“POSITION command” on page 189

“SCROLL command (full-screen mode)” on page 202, with the TO option

“SET PFKEY command” on page 245

for command (C and C++)

The for command provides iterative looping similar to the C and C++ for statement. It enables you to do
the following:

- Evaluate an expression before the first iteration of the command ("initialization").

« Specify an expression to determine whether the command should be performed again ("controlling
part").

« Evaluate an expression after each iteration of the command.
« Perform the command, or block, if the controlling part does not evaluate to false.

The for keyword must be lowercase and cannot be abbreviated.

T T T e U J - U J
expression expression expression

»— command — ; <
expression

A valid z/OS Debugger C and C++ expression.

command
A valid z/OS Debugger command.

z/OS Debugger evaluates the first expression only before the command is performed for the first time. You
can use this expression to initialize a variable. If you do not want to evaluate an expression before the first
iteration of the command, you can omit this expression.

z/OS Debugger evaluates the second expression before each execution of the command. If this expression
evaluates to false, the command does not run and control moves to the command following the for
command. Otherwise, the command is performed. If you omit the second expression, it is as if the
expression has been replaced by a nonzero constant and the for command is not terminated by failure of
this expression.

122 IBM z/OS Debugger: Reference and Messages

z/0OS Debugger evaluates the third expression after each execution of the command. You might use this
expression to increase, decrease, or reinitialize a variable. If you do not want to evaluate an expression
after each iteration of the command, you can omit this expression.

A break command can cause the execution of a for command to end, even when the second expression
does not evaluate to false. If you omit the second expression, you must use a break command to stop the
execution of the for command.

Usage notes

« The for command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

« The following for command lists the value of count 20 times. The for command initially sets the
value of count to 1. After each execution of the command, count is incremented.

for (count = 1; count <= 20; count++)
LIST TITLED count;

Alternatively, the preceding example can be written with the following sequence of commands to
accomplish the same task.

count = 1;

while (count <= 20) %
printf("count = %d\n", count);
count++;

3
 The following for command does not contain an initialization expression.

for (; index > 10; --index) £
varlist[index] = varl + var2;
printf("varlist[%d] = %d\n", index, varlist[index]);

FREE command

The FREE command frees a file that is currently allocated.

»— FREE — FILE — ddname — ; »«

ddname
Name of the file to free.

GO command

The GO command causes z/0OS Debugger to start or resume running your program.

; P
1-—-BYPASS ——I

»— GO

BYPASS
Bypasses the user or system action for the condition that caused the breakpoint. It is valid only when
z/0OS Debugger is entered for an:
AT CALL Breakpoint
HLL or Language Environment condition
Condition that is raised by an MVS or CICS ABEND when running without the Language
Environment run time

Usage notes

Chapter 5. z/OS Debugger commands 123

« For CICS only: The ABEND is reported whether BYPASS is or is not specified. When there is a HANDLE
ABEND, control is passed to the abend handler, and the GO BYPASS command is ignored.

« If GO is specified in a command list (for example, as the subject of an IF command or WHEN clause), all
subsequent commands in the list are ignored.

« If GO is specified within the body of a loop, it causes the execution of the loop to end.
 To suppress the logging of GO commands, use the SET ECHO command.

« GO with no operand specified does not actually resume the program if there are additional AT-
conditions that have not yet been processed.

« The GO command cannot be used while you replay recorded statements by using the PLAYBACK
commands by using the PLAYBACK command.

 You can use the GO command in remote debug mode only by entering it in the Action field, which is in
the Optional Parameters section of the Add a Breakpoint task.

« When a COBOL IGZ condition of severity 2 or higher occurs, GO BYPASS will bypass the condition.
When the IGZ condition is raised by a COBOL program (for example the subscript out of range message
IGZ0006S), GO BYPASS will bypass the condition and resume control back into the COBOL program.
However, be aware that control might not return to the next statement of the program that raised the
condition, since the compiler might have rearranged the statements.

Examples

« Resume execution.
GO;

« Resume execution and bypass user and system actions for the condition that caused the breakpoint.
GO BYPASS;

« Your application has abended with a protection exception, so an 0CCURRENCE breakpoint has been
triggered. Correct the results of the instruction that caused the exception and issue GO BYPASS; to
continue processing as if the abend had not occurred.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“AT command” on page 37

GOTO command

The GOTO command causes z/OS Debugger to resume program execution at the specified statement id.
The GOTO keyword cannot be abbreviated. If you want z/OS Debugger to return control to you at a target
location, make sure there is a breakpoint at that location.

T GOTO statement_id — ; >«
GO —TO

Usage notes

« For a COBOL program compiled without hooks being inserted by the compiler and with optimization,
if you compiled with the NOEJPD suboptions of the TEST compiler option, you can use the GOTO
command if the SET WARNING is set to OFF and the runtime level allows GOTO without compiler
enablement. The use of GOTO in this case might cause unpredictable behaviors, including abends,
when the GOTO command is executed or followed. You can get the best behavior of GOTO command in
programs that are compiled with OPT and TEST(NOEJPD) options in either of the following situations:

— When the target of the GOTO or JUMPTO command is a paragraph name or a section name (label).
— When the target of the GOTO or JUMPTO command is the first statement in the paragraph or section.

124 IBM z/OS Debugger: Reference and Messages

You can get the best behavior especially if the statements are targets of COBOL statements PERFORM
or GOTO in the COBOL program. See “SET WARNING command (C, C++, COBOL, and PL/I)” on page
261.

 You cannot use the GOTO command while you debug a disassembled program.

« If GOTO is specified in a command list (for example, as the subject of an IF command or WHEN clause),
all subsequent commands in the list are ignored.

- Statement GOTO's are not restricted if the program is compiled with minimum optimization.

« The GOTO command cannot be used while you replay recorded statements by using the PLAYBACK
command.

« For C, C++, and PL/I, statements can be removed by the compiler during optimization, specify a
reference or statement with the GOTO command that can be reached during program execution. You can
issue the LIST STATEMENT NUMBERS command to determine the reachable statements.

« PL/T allows GOTO in a command list on a call to PLITEST or CEETEST.
« In PL/I, out-of-block GOTOs are allowed. However, qualification might be needed.

« For COBOL, the GOTO command follows the COBOL language rules for the GOTO statement. You can use
the GOTO command in the following situations:

— A COBOL program compiled with hooks inserted by the compiler. If you are using Enterprise COBOL
for z/OS, Version 4, compile your program with the HOOK suboption of the TEST compiler option.
If you are using any of the following compilers, compile your program with either PATH or ALL
suboption and the SYM suboption of the TEST compiler option:

- Enterprise COBOL for z/OS and 0S/390, Version 3
- COBOL for 0S/390 & VM, Version 2

— A COBOL program compiled without hooks inserted by the compiler and without optimization. If you
are using Enterprise COBOL for z/OS, Version 4, compile your program with the NOHOOK suboption of
the TEST compiler option. If you are using any of the following compilers, compile your program with
the NONE suboption of the TEST compiler option:

- Enterprise COBOL for z/OS and 0S/390, Version 3 Release 2 or later

- Enterprise COBOL for z/OS and 0S/390, Version 3 Release 1, with APAR PQ63235 installed
- COBOL for 0S/390 & VM, Version 2 Release 2

- COBOL for 05/390 & VM, Version 2 Release 1, with APAR PQ63234 installed

— A COBOL program compiled without hooks inserted by the compiler and with optimization. You must
compile your program with Enterprise COBOL for z/OS, Version 4, and specify the EJPD and NOHOOK
suboption of the TEST compiler option. Specifying the EJPD suboption might cause some loss of
optimization.

— For Enterprise COBOL for z/OS Version 5, programs are always compiled without hooks inserted by
the compiler. If you are using the TEST compiler option in combination with any level of the OPT
compiler option, it is recommended to use the EJPD suboption of the TEST compiler option.

« This command cannot be used if you are stopped at an AT APPEARANCE breakpoint, an AT LOAD
breakpoint, or an AT DELETE breakpoint.

Examples

- Resume execution at statement 23, where statement 23 is in a currently active block.

GOTO 23;

If there's no breakpoint at statement 23, z/OS Debugger will run from statement 23 until a breakpoint is
hit.

- Resume execution at statement 45, where statement 45 is in a currently active block.

AT 45
GOTO 45

Chapter 5. z/OS Debugger commands 125

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

Related references
“statement_id” on page 16

GOTO LABEL command

The GOTO LABEL command causes z/OS Debugger to resume program execution at the specified
statement label. The specified label must be in the same block. If you want z/OS Debugger to return
control to you at the target location, make sure there is a breakpoint at that location.

T GOTO _J L J statement_label T ; >
GO —TO LABEL L ' — statement_label — '

statement_label
A valid statement label within the currently executing program or, in PL/I, a label variable.

Usage notes

« For COBOL, ifaGOTO LABEL command is issued and the specified label contains an EXIT statement,
the results might be unpredictable such as an ABEND because the EXIT statement might not be
specified with a return location.

« Fora COBOL program compiled without hooks being inserted by the compiler and with optimization,
if you compiled with the NOEJPD suboptions of the TEST compiler option, you can use the GOTO
command if the SET WARNING is set to OFF and the runtime level allows GOTO without compiler
enablement. The use of GOTO in this case might cause unpredictable behaviors, including abends, when
the GOTO command is executed or followed. You can get the best behavior of GOTO in programs that
are compiled with OPT and TEST(NOEJPD) options in either of the following situations:

— When the target of the GOTO or JUMPTO command is a paragraph name or a section name (label).
— When the target of the GOTO or JUMPTO command is the first statement in the paragraph or section.

You can get the best behavior especially if these statements are targets of COBOL statements PERFORM
or GOTO in the COBOL program. See “SET WARNING command (C, C++, COBOL, and PL/I)” on page
261.

« Use the syntax of statement_label enclosed in apostrophes (') only for LangX COBOL programs. It is not
supported in any other programming language.

« In PL/I, out-of-block GOTOs are allowed. However, qualification might be needed.

- The LABEL keyword is optional when either the target statement_label is nonnumeric or if it is qualified
(whether the actual label was nonnumeric or not).

« A COBOL statement_label can have either of the following forms:
— name

This form can be used in COBOL for reference to a section name or for a COBOL paragraph name that
is not within a section or is in only one section of the block.

— namel OF name2 or namel IN name2

This form must be used for any reference to a COBOL paragraph (namel) that is within a section
(name2), if the same name also exists in other sections in the same block. You can specify either OF
or IN, but z/OS Debugger always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load module qualifiers.

 For C, to be able to use the GOTO LABEL command, you must compile your program in one of the
following ways:

126 IBM z/OS Debugger: Reference and Messages

— With either the PATH or ALL suboption and the SYM suboption of the TEST compiler option.
— With either the PATH or ALL suboption and the SYM suboption of the DEBUG compiler option.
There are no restrictions on using labels with the GOTO LABEL command.

For C++, to be able to use the GOTO LABEL command, you must compile your program in one of the
following ways:

— With the TEST compiler option.
— With either the PATH or ALL suboption and the SYM suboption of the DEBUG compiler option.
There are no restrictions on using labels with the GOTO LABEL command.

For COBOL programs, you can use GOTO LABEL command if you compile your program with the
following suboptions and compilers:

— The HOOK suboption of the TEST compiler option with Enterprise COBOL for z/0S, Version 4

— The PATH or ALL suboption and the SYM suboption of the TEST compiler option with the following
compilers:

- Enterprise COBOL for z/OS and 0S/390, Version 3
- COBOL for 0S/390 & VM, Version 2

— For Enterprise COBOL for z/OS Version 5, programs are always compiled without hooks inserted by
the compiler. If you are using the TEST compiler option in combination with any level of the OPT
compiler option, it is recommended to use the EJPD suboption of the TEST compiler option.

The label can take one of the following forms:

— name, where name is a section name, or the name of a paragraph not within a section or in only one
section of the block.

— namel OF name2ornamel IN name2, where namel is duplicated by one or more other
paragraphs in one or more other sections in the block. You can use either OF or IN, but z/OS
Debugger always displays OF in the log.

For PL/I, you can use GOTO LABEL only if you compiled your program with either the PATH or ALL
suboption and the SYM suboption of the TEST compiler option. There are no restrictions on using labels
with GOTO LABEL and label variables are supported.

GOTO LABEL is not available while debugging Enterprise PL/I programs.

You cannot use the GOTO LABEL command while you are replaying recorded steps by using the
PLAYBACK commands.

You cannot use the GOTO LABEL command while you debug an optimized COBOL program.

This command cannot be used if you are stopped at an AT APPEARANCE breakpoint, an AT LOAD
breakpoint, or an AT DELETE breakpoint.

Examples

« Go to the label constant 1laba in block suba in program prog1l.

GOTO progl:>suba:>laba;

« Go to the label constant para OF sectl. The current programming language setting is COBOL.
GOTO LABEL para OF sectl;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

Related references
“statement_label” on page 17

Chapter 5. z/OS Debugger commands 127

%IF command (programming language neutral)

The %IF command lets you conditionally perform a command. You can optionally specify an ELSE clause
on the %$IF command. If the test expression evaluates to false and the ELSE clause exists, the command
associated with the ELSE clause is performed. The keywords cannot be abbreviated.

»— %IF — condition — THEN — command L _J ; P
ELSE — command

condition
A simple relation condition valid for all supported programming languages.

command
A valid z/OS Debugger command or a BEGIN-END group containing one or more valid z/OS Debugger
commands. The z/OS Debugger commands must be valid for all supported programming languages.

When %IF commands are nested and ELSE clauses are present, a given ELSE is associated with the
closest preceding %IF clause within the same block.

Usage notes

« The IF commands that are specific to a programming language might contain restrictions or usage
notes. Those restrictions and usage notes also apply to the %¥IF command.

« The variable names used in condition must be syntactically valid for all supported programming
languages.

- If you want to nest %IF commands, you cannot mix them with programming language-specific IF
commands.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“BEGIN command” on page 74

“IF command (assembler, disassembly, and LangX COBOL)” on page 128
“if command (C and C++)” on page 129

“IF command (COBOL)” on page 130

“IF command (PL/I)” on page 133

IF command (assembler, disassembly, and LangX COBOL)

The IF command lets you conditionally perform a command. You can optionally specify an ELSE clause
on the IF command. If the test expression evaluates to false and the ELSE clause exists, the command
associated with the ELSE clause is performed. The IF and ELSE keywords cannot be abbreviated.

»w— IF T condition THEN — command L J ; P
'— condition — 'j ELSE — command

condition
An assembler conditional expression.

'condition'
A LangX COBOL conditional expression enclosed in apostrophes (*).

command

A valid z/OS Debugger command or a DO group containing one or more valid z/OS Debugger
Commands.

When IF commands are nested and ELSE clauses are present, a given ELSE is associated with the closest
preceding IF clause within the same block.

Usage note

128 IBM z/0OS Debugger: Reference and Messages

You cannot use the IF command while you replay recorded statements by using the PLAYBACK
command.

Examples

- If the value of register 1 is 0, then assign 0 to variable XYZ by using the following command:
IF %R1 = O THEN STORAGE(XYZ)=0;

- If the value of variable XYZ is equal to 22, set a breakpoint at statement 52 by using the following
command:

IF XYZ=22 THEN AT 52;

- If the value of the LangX COBOL variable XYZ is 2, assign 0 to variable XYZ by using the following
command:

IF 'XYZ = 2' THEN 'XYZ' = '0';

if command (C and C++)

The if command lets you conditionally perform a command. You can optionally specify an else clause
on the if command. If the test expression evaluates to false and an else clause exists, the command
associated with the else clause is performed. The if and else keywords must be lowercase and cannot
be abbreviated.

»w— if — (— expression —) — command ; >
L else — command —J

expression
A valid z/OS Debugger C and C++ expression.

command
A valid z/OS Debugger command.

When if commands are nested and else clauses are present, a given else is associated with the closest
preceding if clause within the same block.

Usage notes

« An else clause should always be included if the 1f clause causes z/OS Debugger to get more input (for
example, an if containing USE or other commands that cause z/OS Debugger to be restarted because
an AT-condition occurs).

« The 1f command cannot be used while you replay recorded statements by using the PLAYBACK
commands by using the PLAYBACK command.

Examples

 The following example causes grade to receive the value "A" if the value of score is greater than or
equal to 90.

if (score >= 90)
grade = "A";

 The following example shows a nested if command.

if (paygrade == 7) {
if (level >= 0 && level <= 8)
salary %= 1.05;
else
salary %= 1.04;

else
salary %= 1.06;

Chapter 5. z/OS Debugger commands 129

IF command (COBOL)

The IF command lets you conditionally perform a command. You can optionally specify an ELSE clause
on the IF command. If the test expression evaluates to false and an ELSE clause exists, the command
associated with the ELSE clause is performed. The keywords cannot be abbreviated.

»— IF — condition command >
L THEN —J
ELSE command
»— END-IF — ; »«
condition

A simple relation condition with the following form: Item-1 operator Item-2.Item-1 and Item-2
can be a data-item or a literal. The operator can be one of the following operations:

. >
. <

* NOT <
* NOT >

command

A valid z/OS Debugger command.

When IF commands are nested and ELSE clauses are present, a given ELSE or END-IF is associated with
the closest preceding IF clause within the same block.

Unlike COBOL, z/0S Debugger requires terminating punctuation (;) after commands. The END-IF keyword
is required.

Usage notes

An ELSE clause should always be included if the IF clause causes z/OS Debugger to get more input (for
example, an IF containing USE or other commands that cause z/OS Debugger to be restarted because
an AT-condition occurs).

The COBOL NEXT SENTENCE phrase is not supported.
Comparison combinations with windowed date fields are not supported.
Comparisons between expanded date fields with different DATE FORMAT clauses are not supported.

If the DATA option of the PLAYBACK ENABLE command is in effect, the IF command can be used while
you replay recorded statements by using the PLAYBACK commands.

For optimized COBOL programs, the IF clause cannot reference any variables discarded by the
optimizer.

If a COBOL variable is defined as National and it is an operand in a relation condition with an alphabetic,
alphanumeric operand, or National numeric, the operand that is not National is converted to Unicode
before that comparison is done, except for Group items. See Enterprise COBOL for z/OS Language
Reference for more information about using COBOL variables in conditional expressions.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

130 IBM z/OS Debugger: Reference and Messages

“Allowable comparisons for the IF command (COBOL)” on page 131

Allowable comparisons for the IF command (COBOL)

The following table shows the allowable comparisons for the z/OS Debugger IF command. A description
of the codes follows the table.

For Enterprise COBOL for z/OS Version 5, z/OS Debugger supports all the same comparisons that are
supported in the COBOL language, so the following table does not apply. See the Enterprise COBOL for
z/0S Language Reference for more information.

OPERAND GR AL AN ED BI NE ANE | NDI NN ID IN IDI PTR | @ IF EF D1
DI

Group (GR) NN NN | NN NN NN NN NN (ISIN:L NN NN NN NN

Alphabetic (AL) NN NN NN

Alpha numeric NN NN NN

(AN)8

External Decimal NN NU

(ED)8

Binary NN NU NU4

Numeric Edited NN NN

(NE)

Alphanumeric NN NN NN

Edited (ANE)

FIGCON ZERO” NN NU NU NN NU NU NU

FIGCONZ,7 NN |NN [NN NN [NN | NU

National Data NNL | NN | NN NN | NN

Ttem (NDI) 0

National Numeric NN

Data Item (NNDI)

Numeric Literal? | NN NU [NU NN |NU | NU4 NU [NU

Alphanumeric NN NN | NN NN NN NN

Literal2,'7 3

Alphanumeric hex | NN NN | NN NN NN

literat11

Internal Decimal NN NU

(1D)8

Index Name (IN) | NN NU4 104 [NU

Index Data Item NN NU v

(IDI)

Pointer Data Item NUS | NUS

(PTR)

Address of (@) NUS [NUS

Floating Point X NU NU

Literal

Internal Floating NN NU | NU

Point (IF)

External Floating | NN NU | NU

Point (EF)

DBCS data item NN

(D1)

Chapter 5. z/OS Debugger commands 131

OPERAND

GR AL | AN ED BI NE ANE |NDI |yn |ID IN IDI |PTR | @ IF EF D1
DI

DBCS Literal” NN

Literal®

Address hex

NUS | NUS

National Literal NN NN

Literal

National Hex

NN NN
0

Notes:

1.
2.

o 01 AW

10.
11.

12.

FIGCON includes all figurative constants except ZERO and ALL.

A alphanumeric literal must be enclosed in quotation marks (") or apostrophes (*). A quotation mark
or apostrophe embedded in the string must be followed by another quotation mark or apostrophe
when it is used as the opening delimiter.

. Must contain only alphabetic characters.

. Index name converted to subscript value before compare.

. Only comparison for equal and not equal can be made.

. Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and

preceded by H.

. Constants and literals can also be compared against constants and literals of the same type.
. Comparisons using windowed date fields are not supported.
. The figurative constants HIGH-VALUES and LOW-VALUES are not allowed in comparisons with

national data items.
Conversion of internal format is not done before the comparison.

Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and
preceded by X.

Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and
preceded by NX.

Allowable comparisons are comparisons as described in IBM OS Full American National Standard COBOL
for the following:

NN

NU

I0

IV

X

Nonnumeric operands
Numeric operands
Two index names
Index data items

High potential for user error

Refer to the following topics for more information related to the material discussed in this topic.

Related references

IBM OS Full American National Standard COBOL

132 IBM z/OS Debugger: Reference and Messages

IF command (PL/I)

The IF command lets you conditionally perform a command. You can optionally specify an ELSE clause
on the IF command. If the test expression evaluates to false and an ELSE clause exists, the command
associated with the ELSE clause is performed. The keywords cannot be abbreviated.

»w— IF — expression — THEN — command L J ; P
ELSE — command

expression
A valid z/OS Debugger PL/I expression.

If necessary, the expression is converted to a BIT string.

command
A valid z/OS Debugger command.

When IF commands are nested and ELSE clauses are present, a given ELSE is associated with the closest
preceding IF clause within the same block.

Usage notes

« An ELSE clause should always be included if the IF clause causes z/OS Debugger to get more input (for
example, an IF containing USE or other commands that cause z/OS Debugger to be restarted because
an AT-condition occurs).

« The 1f command cannot be used while you replay recorded statements by using the LAYBACK
commands.

Examples

« If the value of arrayl is equal to the value of array?2, go to the statement with label constant
label_1. Execution of the user program continues at 1abel_1.If arrayl does not equal array?2, the
GOTO is not performed and control is passed to the user program.

IF arrayl = array2 THEN GOTO LABEL label_1; ELSE GO;

« Set a breakpoint at statement 23, which will test if variable j is equal to 10, display the names and
values of variables rmdr, totodd, and terms (7). If variable j is not equal to 10, continue program
execution.

AT 23 IF j = 10 THEN LIST TITLED (rmdr, totodd, terms(j)); ELSE GO;

IMMEDIATE command (full-screen mode)

The IMMEDIATE command causes a command within a command list to be performed immediately. It is
intended for use with commands assigned to a PF key.

IMMEDIATE can only be entered as an unnested command or within a compound command.
Prefix the PF key definitions for the FIND, FINDBP, RETRIEVE, SCROLL, and WINDOW commands with the
IMMEDIATE command so that these commands work when you enter a group of commands.

»— IMMEDIATE — command — ; »<«

command
One of the following z/OS Debugger commands:

« FIND

« FINDBP

« RETRIEVE

« SCROLL commands

Chapter 5. z/OS Debugger commands 133

BOTTOM
DOWN
LEFT
NEXT
RIGHT
TO

TOP

up

« WINDOW commands

CLOSE
OPEN
SIZE
Z00OM

Usage notes

e The IMMEDIATE command is not logged.

Examples

« Specify that the WINDOW OPEN LOG command be immediately effective.

IMMEDIATE WINDOW OPEN LOG;
« Specify that the SCROLL BOTTOM command be immediately effective.

IMMEDIATE SCROLL BOTTOM;

INPUT command (C, C++, and COBOL)

The INPUT command provides input for an intercepted read and is valid only when there is a read pending
for an intercepted file. The INPUT keyword cannot be abbreviated.

»w— INPUT — text — ; >«

text
Specifies text input to a pending read.

Usage notes

 The text consists of everything between the INPUT keyword and the semicolon (or end-of-line). Any
leading or trailing blanks are removed by z/OS Debugger.

« If a semicolon (;) is included as part of the text, the text must be surrounded in quotation marks (") or
apostrophes () and conform to the syntax rules for a character string constant enclosed in quotation
marks or apostrophes for the current programming language.

« If the text contains a quotation mark (") or apostrophe ('), the quotation mark or apostrophe must be
followed by a matching quotation mark or apostrophe.

« This command is not supported for CICS.
 To set interception to and from a file, use the SET INTERCEPT (C, C++, and COBOL) command.

« The INPUT command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Example

You have used SET INTERCEPT ON to make z/OS Debugger prompt you for input to a sequential file. The
prompt and the file's name appears in the Command Log.

134 IBM z/OS Debugger: Reference and Messages

To substitute the input that would have come from the DD name specified by the SET INTERCEPT ON
command with your desired input, enter:

INPUT text you want to input ;

Program input is recorded in your Log window.

A closing semicolon () is required for this command. Everything between the INPUT keyword and the
semicolon is considered input text. If you want to include a semicolon, you must enter your input as
a valid character string for your programming language. If you want to include a quotation mark (")

or apostrophe (') in your input, you must follow each quotation mark or apostrophe with a matching
guotation mark or apostrophe and enter the input as a valid character string for your programming
language.

Indicate that the phrase "quick brown fox" is input to a pending read. The phrase is written to the file.

INPUT quick brown fox;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET INTERCEPT command (C and C++)” on page 230
“SET INTERCEPT command (COBOL, full-screen mode, line mode, batch mode)” on page 231

JUMPTO command

The JUMPTO command moves the point at which the program resumes running to the specified statement
but does not resume running the program.

»t JUMPTO j— statement_id — ; >«
JUMP TO

Usage notes

« Fora COBOL program compiled without hooks being inserted by the compiler and with optimization, if
you compiled your program with the NOEJPD suboption of the TEST compiler option, you can use the
JUMPTO command if the SET WARNING is set to OFF and the runtime level allows JUMPTO without
compiler enablement. The use of JUMPTO in this case might cause unpredictable behaviors, including
abends, when the JUMPTO command is executed or followed. You can get the best behavior of JUMPTO
in programs that are compiled with OPT and TEST(NOEJPD) options in either of the following situations:

— When the target of the GOTO or JUMPTO command is a paragraph name or a section name (label).
— When the target of the GOTO or JUMPTO command is the first statement in the paragraph or section.

You can get the best behavior especially if these statements are targets of COBOL statements PERFORM
or GOTO in the COBOL program. See “SET WARNING command (C, C++, COBOL, and PL/I)” on page
261.

 You cannot use the JUMPTO command while you debug a disassembled program.

« If you specify the JUMPTO command in a command list (for example, as the subject of an IF command
or WHEN clause), all subsequent commands in the list are ignored.

« If the program is compiled with minimum optimization, the JUMPTO command is not restricted to
specific statements.

 You cannot use the JUMPTO command while you replay recorded statements by using the PLAYBACK
command.

« For C, C++, and PL/I programs, statements can be removed by the compiler during optimization. Specify
a reference or statement for the JUMPTO command that can be reached while the program is running.
You can use the LIST STATEMENT NUMBERS command to determine the statements that can be
reached.

Chapter 5. z/OS Debugger commands 135

« For PL/I programs, you can use JUMPTO in a command list on a call to PLITEST or CEETEST.

« For PL/I programs, you cannot specify a statement that is out of the currently active block. However, you
might have to qualify the statement.

« For COBOL programs, the JUMPTO command follows the COBOL language rules that apply to the GOTO
statement. You can use the JUMPTO command in the following situations:

— A COBOL program compiled with hooks inserted by the compiler. If you are using Enterprise COBOL
for z/0OS, Version 4, compile your program with the HOOK suboption of the TEST compiler option.
If you are using any of the following compilers, compile your program with either PATH or ALL
suboption and the SYM suboption of the TEST compiler option:

- Enterprise COBOL for z/OS and 0S/390, Version 3
- COBOL for 0S/390 & VM, Version 2

— A COBOL program compiled without hooks inserted by the compiler and without optimization. If you
are using Enterprise COBOL for z/OS, Version 4, compile your program with the NOHOOK suboption of
the TEST compiler option. If you are using any of the following compilers, compile your program with
the NONE suboption of the TEST compiler option:

- Enterprise COBOL for z/OS and 0S/390, Version 3 Release 2 or later

- Enterprise COBOL for z/OS and 0S/390, Version 3 Release 1, with APAR PQ63235 installed
- COBOL for 0S/390 & VM, Version 2 Release 2

- COBOL for 0S5/390 & VM, Version 2 Release 1, with APAR PQ63234 installed

— A COBOL program compiled without hooks inserted by the compiler and with optimization. You must
compile your program with Enterprise COBOL for z/OS, Version 4, and specify the EJPD and NOHOOK
suboption of the TEST compiler option. Specifying the EJPD suboption might cause some loss of
optimization.

— For Enterprise COBOL for z/OS Version 5, programs are always compiled without hooks inserted by
the compiler. If you are using the TEST compiler option in combination with any level of the OPT
compile option, it is recommended to use the EJPD suboption of the TEST compile option.

« You can use the JUMPTO command in remote debug mode only by entering it in the Action field, which
is in the Optional Parameters section of the Add a Breakpoint task.

« This command cannot be used if you are stopped at an AT APPEARANCE breakpoint, an AT LOAD
breakpoint, or an AT DELETE breakpoint.

Example

You want to jump to statement 24 and then stop there. Enter the following command:
JUMPTO 24;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0OS Debugger User's Guide

Related references
“statement_id” on page 16

JUMPTO LABEL command

The JUMPTO LABEL command moves the point at which the program resumes running to the specified
label but does not resume running the program.

»tJUMPTO _J L J statement_label T ; >
JUMPTO LABEL L ' — statement_label — '

136 IBM z/OS Debugger: Reference and Messages

statement_label
A valid statement label within the currently executing program or, in PL/I, a label variable.

Usage notes

« For COBOL, ifa JUMPTO LABEL command is issued and the specified label contains an EXIT statement,
the results might be unpredictable such as an ABEND because the EXIT statement might not be
specified with a return location.

« For a COBOL program compiled without hooks being inserted by the compiler and with optimization, if
you compiled your program with the NOEJPD suboption of the TEST compiler option, you can use the
JUMPTO command if the SET WARNING is set to OFF and the runtime level allows JUMPTO without
compiler enablement. The use of JUMPTO in this case might cause unpredictable behaviors, including
abends, when the JUMPTO command is executed or followed. You can get the best behavior of JUMPTO
in programs that are compiled with OPT and TEST(NOEJPD) options in either of the following situations:

— When the target of the GOTO or JUMPTO command is a paragraph name or a section name (label).
— When the target of the GOTO or JUMPTO command is the first statement in the paragraph or section.

You can get the best behavior especially if these statements are targets of COBOL statements PERFORM
or GOTO in the COBOL program. See “SET WARNING command (C, C++, COBOL, and PL/I)” on page
261.

« Use the syntax of statement_label enclosed in apostrophes (') only for LangX COBOL programs. It is not
supported in any other programming language.

« In PL/I, out-of-block JUMPTOs are allowed. However, qualification might be needed.

- The LABEL keyword is optional when either the target statement_label is nonnumeric or if it is qualified
(whether the actual label was nonnumeric or not). A COBOL statement_label can have either of the
following forms:

— hame

This form can be used in COBOL for reference to a section name or for a COBOL paragraph name that
is not within a section or is in only one section of the block.

— namel OF name2 or namel IN name2

This form must be used for any reference to a COBOL paragraph (namel) that is within a section
(name2), if the same name also exists in other sections in the same block. You can specify either OF
or IN, but z/OS Debugger always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load module qualifiers.

« For C, to be able to use the JUMPTO LABEL command, you must compile your program in one of the
following ways:

— With either the PATH or ALL suboption and the SYM suboption of the TEST compiler option.
— With either the PATH or ALL suboption and the SYM suboption of the DEBUG compiler option.

There are no restrictions on using labels with the JUMPTO LABEL command.

For C++, to be able to use the JUMPTO LABEL command, you must compile your program in one of the
following ways:

— With the TEST compiler option.
— With either the PATH or ALL suboption and the SYM suboption of the DEBUG compiler option.

There are no restrictions on using labels with the JUMPTO LABEL command.

For COBOL programs, you can use JUMPTO LABEL command if you compile your program with the
following suboptions and compilers:

— The HOOK suboption of the TEST compiler option with Enterprise COBOL for z/0S, Version 4

— The PATH or ALL suboption and the SYM suboption of the TEST compiler option with the following
compilers:

- Enterprise COBOL for z/OS and 0S/390, Version 3

Chapter 5. z/OS Debugger commands 137

- COBOL for 0S/390 & VM, Version 2

— For Enterprise COBOL for z/OS Version 5, programs are always compiled without hooks inserted by
the compiler. If you are using the TEST compiler option in combination with any level of the OPT
compiler option, it is recommended to use the EJPD suboption of the TEST compiler option.

The label can take one of the following forms:

— name, where name is a section name, or the name of a paragraph not within a section or in only one
section of the block.

— namel OF name2ornamel IN name2, where namel is duplicated by one or more other
paragraphs in one or more other sections in the block. You can use either OF or IN, but z/OS
Debugger always displays OF in the log.

 For PL/I, you can use JUMPTO LABEL only if you compiled your program with either the PATH or ALL
suboption and the SYM suboption of the TEST compiler option. There are no restrictions on using labels
with JUMPTO LABEL and label variables are supported.

« JUMPTO LABEL is not available while debugging Enterprise PL/I programs.

 You cannot use the JUMPTO LABEL command while you are replaying recorded steps by using the
PLAYBACK commands.

 You cannot use the JUMPTO LABEL command while you debug an optimized COBOL program.
Examples

- Jump to the label constant 1aba in block suba in program progl.
JUMPTO progl:>suba:>laba;

- Jump to the label constant para OF sectl. The current programming language setting is COBOL.
JUMPTO LABEL para OF sectil;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

Related references
“statement_label” on page 17

LIST command

The LIST command displays information about a program such as values of specified variables,
structures, arrays, registers, statement numbers, frequency information, and the flow of program
execution. The LIST command can be used to display information in any enclave. All information
displayed will be saved in the log file.

The following table summarizes the forms of the LIST command.

“LIST (blank) command” on page [Displays Source Identification panel
139

“LIST AT command” on page 140 |[Liststhe currently defined breakpoints.

“LIST CALLS command” on page Displays the dynamic chain of active blocks.
143

“LIST CC command” on page 143 |[Lists code coverage data.

“LIST CONTAINER command” on Displays the contents of a container.
page 145

138 IBM z/0OS Debugger: Reference and Messages

“LIST CURSOR command (full-
screen mode)” on page 146

Displays the variable pointed to by the cursor.

“LIST DTCN or CADP command” on
page 147

List the load modules, programs, and compile units that were
disabled by the DISABLE command.

“LIST expression command” on
page 147

Displays values of expressions.

“LIST FREQUENCY command” on
page 153

Lists statement execution counts.

“LIST LAST command” on page
153

Displays a list of recent entries in the history table.

“LIST LDD command” on page 154

Displays a list of LOADDEBUGDATA (LDD) commands known
to z/OS Debugger.

“LIST LINE NUMBERS command” on
page 155

Lists all line numbers that are valid locations for an AT LINE
breakpoint.

“LIST LINES command” on page
155

Lists one or more lines from the current listing or source file
displayed in the Source window.

“LIST MONITOR command” on page
155

Lists the current set of MONITOR commands.

“LIST NAMES command” on page
156

Lists the names of variables, programs, or z/OS Debugger
procedures.

“LIST ON (PL/I) command” on
page 158

Lists the action (if any) currently defined for the specified PL/I
conditions.

“LIST PROCEDURES command” on
page 158

Lists the commands contained in the specified z/OS Debugger
procedure.

“LIST REGISTERS command” on
page 159

Displays the current register contents.

“LIST STATEMENT NUMBERS
command” on page 160.

Lists all statement numbers that are valid locations for an AT
STATEMENT breakpoint.

“LIST STATEMENTS command” on
page 160

Lists one or more statements from the current listing or
source file displayed in the Source window.

“LIST STORAGE command” on page
161

Provides a dump-format display of storage.

“LIST TRACE LOAD command” on
page 163

LIST (blank) command

Lists the load modules or DLLs in the TRACE LOAD table.

Displays the Source Identification panel, where you associate compile units with the names of their
respective listing, source, or separate debug file. This association controls what z/OS Debugger displays in
the Source window. LIST is equivalent to PANEL LISTINGS and PANEL SOURCES

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“PANEL command (full-screen mode)” on page 181

Chapter 5. z/OS Debugger commands 139

LIST AT command

Lists the currently defined breakpoints, including the action taken when the specified breakpoint is
activated. If no action is defined, z/OS Debugger displays the NULL command.

»— LIST ;e

— AT
k ENABLED ﬂ
DISABLED

AT_command

ALLOCATE
APPEARANCE

CALL
CHANGE
DATE

DELETE

ENTRY
EXIT

— GLOBAL —~—— ALLOCATE ———
— APPEARANCE —
CALL

DATE
DELETE
ENTRY

EXIT

LABEL

LINE

LOAD

PATH

M— STATEMENT —

— SUSPENDED —~

LABEL

LINE
LOAD

f————— OCCURRENCE ——

—— OFFSET —

PATH

M————— STATEMENT —

M—— SUSPENDED ——

~——— TERMINATION ——~

AT_command

A valid AT command that includes at least one operand. The AT command must be complete except
that the every_clause and command are omitted.

ENABLED
Restricts the list to enabled breakpoints. The default is to list both enabled and disabled breakpoints.

DISABLED
Restricts the list to disabled breakpoints. The default is to list both enabled and disabled breakpoints.

140 IBM z/OS Debugger: Reference and Messages

ALLOCATE
Lists currently defined AT ALLOCATE breakpoints.

APPEARANCE
Lists currently defined AT APPEARANCE breakpoints.

CALL
Lists currently defined AT CALL breakpoints.

CHANGE
Lists currently defined AT CHANGE breakpoints. This displays the storage address and length for all
AT CHANGE subjects, and shows how they were specified (if other than by the %$STORAGE function).

DATE
Lists currently defined AT DATE breakpoints.

DELETE
Lists currently defined AT DELETE breakpoints.

ENTRY
Lists currently defined AT ENTRY breakpoints.

EXIT
Lists currently defined AT EXIT breakpoints.

GLOBAL
Lists currently defined AT GLOBAL breakpoints for the specified AT-condition.

LABEL
Lists currently defined AT LABEL breakpoints.

LINE
Lists currently defined AT LINE or AT STATEMENT breakpoints. LINE is equivalent to STATEMENT.

LOAD
Lists currently defined AT LOAD breakpoints.

OCCURRENCE
Lists currently defined AT OCCURRENCE breakpoints.

OFFSET
Lists currently defined AT OFFSET breakpoints.

PATH
Lists currently defined AT PATH breakpoints.

STATEMENT
Is equivalent to LINE.

SUSPENDED
Lists all suspended breakpoints.

TERMINATION
Lists currently defined AT TERMINATION breakpoint.

If the AT command type (for example, LOAD) is not specified, LIST AT lists all currently defined
breakpoints (both disabled and enabled).

Usage notes

« To display a global breakpoint, you can specify an asterisk (*) with the LIST AT command or you can
specifya LIST AT GLOBAL command. For example, if you want to display an AT ENTRY * breakpoint,
specify:

LIST AT ENTRY =*;

or
LIST AT GLOBAL ENTRY;

If you have only a global breakpoint set and you specify LIST AT ENTRY without the asterisk (*) or
GLOBAL keyword, you get a message saying there are no such breakpoints.

Chapter 5. z/OS Debugger commands 141

e The LIST AT command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

« Display information about enabled breakpoints defined at block entries.
LIST AT ENABLED ENTRY;

- Display information about global DATE breakpoint entries.
LIST AT DATE *;

- Display breakpoint information for all disabled AT CHANGE breakpoints within the currently executing
program.

LIST AT DISABLED CHANGE;
« The current programming language setting is C. Here are some assorted LIST AT commands.
LIST AT LINE 22;
or
LIST AT OCCURRENCE SIGSEGV;
or
LIST AT CHANGE structure.un.m;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“AT command” on page 37

LIST AT command (remote debug mode)
Lists the currently defined AT GLOBAL LABEL or AT LABEL breakpoints.

»— LIST — AT T GLOBAL — LABEL ; P
LABEL
GLOBAL
Lists whether the AT GLOBAL LABEL breakpoint is defined
LABEL

Lists the AT LABEL breakpoints that are defined.
Usage notes

« To display a global breakpoint, you can specify an asterisk (*) with the LIST AT LABEL command, or
you can specify a LIST AT GLOBAL command. For example, if you want to display an AT LABEL *
breakpoint, specify:

LIST AT LABEL =*;
or
LIST AT GLOBAL LABEL;

« If you have only a global breakpoint set and you specify LIST AT LABEL command without either an
asterisk (*) or GLOBAL keyword, you get a message that says such breakpoints do not exist.

142 IBM z/OS Debugger: Reference and Messages

LIST CALLS command

Displays the dynamic chain of active blocks. For languages without block structure, this is the CALL chain.
Under z/OS batch and TSO, LIST CALLS lists the call chain of the current active enclave in the process.

»— LIST — CALLS — ; >«

Usage notes

For Enterprise COBOL for z/OS Version 5, when a program contains nested programs and your current

execution point is inside one of these nested programs, the output of LIST CALLS command shows the

main program and the nested programs.
Example:
— At ENTRY in COBOL program
NEST3TS ::> MYMAIN :> EST1A :> NT2A :> ESA
— From LINE 62.1 in COBOL program
NEST3TS ::> MYMAIN :> MATI :> NEST1A :> NEST2A
— From LINE 42.1 in COBOL program

NEST3TS::> MYMAIN :> MYMN :> NT1A
— From LINE 19.1 in COBOL program

NEST3TS::> MYMAIN :> MYMAIN

NEST1A, NEST2A, and NEST3A are all nested programs.

For Enterprise COBOL for z/OS Version 5, if the actual execution of your program is in one of the
declarative sections, the output of the LIST CALLS command shows an extra entry for the declarative.

For programs containing interlanguage communication (ILC), routines from previous enclaves are only
listed if they are written in a language that is active in the current enclave.

If the enclave was created with the system() function, compile units in parent enclaves are not listed.

If you are debugging a program that does not follow the standard linkage conventions for R13, R14, and
R15, the output of the LIST CALLS command can be incorrect or incomplete.

If you are debugging a disassembled program and you encounter one of the following situations:
— The registers' save area has not been created.
— The registers are not chained to the other save areas.

Some of the programs or CSECTs in the call chain are not displayed.

The LIST CALLS command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Example

Display the current dynamic chain of active blocks.

LIST CALLS;

LIST CC command

Lists code coverage data.

»— LIST — CC

NOTEXECUTED NOSOURCE
[[1
M—— EXECUTED — L SOURCE —j

N ALL 4

Chapter 5. z/OS Debugger commands 143

NOTEXECUTED
Lists all unexecuted statements in all of the CUs in the scope of the CC START command.

EXECUTED
Lists all executed statements in all of the CUs in the scope of the CC START command.

ALL
Lists all statements in all of the CUs in the scope of the CC START command, indicating which have
been executed and which have not.

SOURCE
Displays the source statement.

NOSOURCE
Specifies that the source statement will not be displayed.

Usage notes

« LIST CC lists all captured code coverage data.

- Alowercase ‘X’ following the statement number indicates that the statement was executed. If the X’ is
not present, the statement was not executed.

« CC START must be in effect for code coverage data to exist.
« CC STOP causes all code coverage data to be deleted.

Examples

The following examples show the output displayed in the z/OS Debugger Log.
LIST CC;

In this example, the user enters CC START in IBTHO13.

0059 Code Coverage: not executed in IBTHO13

0060 76.1

0063 79.1

0069 Total Statements=50 Total Statements Executed=25 Percent
Executed=50

LIST CC Executed;
In this example, the user enters CC START in IBTHO013.

0059 Code Coverage: executed in IBTHO13

0061 77.1 x

0062 78.1 x

0063 80.1 x

0064 Total Statements=24 Total Statements Executed=10 Percent
Executed=42

LIST CC SOURCE;
In this example, the user enters CC START in IBTHO013 and has entry break points set in IBTHO13A and
IBTHO13B.

0059 Code Coverage: not executed in IBTHO13

0060 76.1

0061 76 DISPLAY "IBTH013 - COBOL MAIN BEGINNING".

0062 79.1

0063 79 MOVE SPACES TO WK-TEXT-128-G

0064 Total Statements=24 Total Statements Executed=10 Percent Executed=42
0065 Code Coverage: not executed in IBTHO13A

0066 45.1

0067 45 MOVE © TO WK-TIME.

0065 Total Statements=48 Total Statements Executed=20 Percent Executed=42
0066 Code Coverage: not executed in IBTHQ13B

0067 1103.1

0068 1103 MOVE SPACES TO WK-TEXT-128-G.

0069 Total Statements=72 Total Statements Executed=30 Percent

Executed=42

LIST CC ALL SOURCE;

144 IBM z/OS Debugger: Reference and Messages

In this example, the user enters CC START in IBTH013.

0059 Code Coverage: All in IBTHO13

0060 76.1

0061 76 DISPLAY "IBTHO13 - COBOL MAIN BEGINNING".
0062 77.1 x

0063 77 MOVE SPACES TO PROG.

0064 78.1 x

0065 78 MOVE SPACES TO ZED.

0066 79.1

0067 79 MOVE SPACES TO WK-TEXT-128-G.

0068 80.1 x

0069 80 END.

0069 Total Statements=50 Total Statements Executed=25 Percent
Executed=50

Related references
“CC command” on page 84

LIST CONTAINER command

Displays the contents of a container.

container_name —»
L channel_name —J

»
>

»— LIST — CONTAINER

\ 4

(— index —)

M— (— sub_string_start — :— sub_string_ end —) —

“— (— sub_string_start — ::— sub_string_length —) —°

LXML J a
L (———— EBCDIC —r—)J

M———ASCII] ——

A 4

— CODEPAGE — (— ccsid —) —

channel_name
The name of the channel that z/OS Debugger searches through to find a container. If you do not
provide a channel name, z/OS Debugger searches through the current channel.

container_name
The name of the container.

index
A decimal or hexadecimal value indicating the location of a single byte in the container to display.

sub_string_start
A decimal or hexadecimal value indicating the starting location of a series of bytes to display.

sub_string_end
A decimal or hexadecimal value indicating the ending location of a series of bytes to display.
sub_string_length
A decimal or hexadecimal value indicating the number of bytes to display.
XML
Indicates that the specified area contains a complete XML 1.0 or 1.1 document. The specified area is
passed to the z/OS XML parser for processing. If the parser detects any syntax errors, the error data
is shown in the z/OS Debugger log. Otherwise, z/OS Debugger displays a formatted version of the XML
document in the z/OS Debugger log.

EBCDIC
Indicates that the specified area contains EBCDIC characters.

Chapter 5. z/OS Debugger commands 145

ASCII
Indicates that the specified area contains ASCII characters.

CODEPAGE
Indicates that the specified area contains characters in the specified code page.

ccsid
Specifies the Coded Character Set Identifiers used to encode the XML. z/OS Debugger uses the z/0S
Unicode Services to convert the characters in the XML from this code page to the code page specified
by the EQAOPTS CODEPAGE command before the characters are displayed on the 3270 terminal. The
ccsid can be a decimal number in the range 1 to 65535.

Usage notes

« You can use the LIST CONTAINER command in remote debug mode, except for the XML option.

- For PL/I, COBOL, LangX COBOL, assembler, and disassembly, if the name is mixed case or case
sensitive, you must enclose the name in quotation marks (") or apostrophes (').

« For C and C++, the name is always treated as case sensitive, even if it is not enclosed in quotation marks
(II).
e XML is supported only when you run on z/OS Version 1.8 or later.

« If you specify XML but not EBCDIC, ASCITI, nor CODEPAGE, z/OS Debugger attempts to detect if the
encoding of the XML document is EBCDIC or ASCII.

« Some information in the XML document (for example, most of the DTD specification and some white
space) might not be listed because the z/OS XML parser does not return it to z/OS Debugger.

Examples

 For PL/I, COBOL, LangX COBOL, assembler, or disassembly, enter the following command to display two
bytes, starting at the first byte, of container CONNAME, which is in channel CHNAME:

LIST CONTAINER CHNAME CONNAME (1 :: 2);

 For PL/I, COBOL, LangX COBOL, assembler, or disassembly, enter the following command to display two
bytes, starting at the first byte, of container CONNAME, which is in channel chname:

LIST CONTAINER 'chname' CONNAME (1 :: 2);

« For C/C++, enter the following command to display the contents of container conName, which is in the
current channel:

LIST CONTAINER conName;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

"Displaying containers and channels" in the IBM z/0OS Debugger User's Guide

Related references

“DESCRIBE command” on page 101

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

LIST CURSOR command (full-screen mode)

Provides a cursor controlled method for displaying variables, structures, and arrays. It is most useful
when assigned to a PF key.

CURSOR
»— LIST [B ;e

’

Usage notes

146 IBM z/OS Debugger: Reference and Messages

« Cursor pointing can be used by typing the LIST CURSOR command on the command line and moving
the cursor to a variable in the Source window before pressing Enter, or by moving the cursor and
pressing a PF key with the LIST CURSOR command assigned to it.

« When you use the LIST CURSOR command for a variable that is located by the cursor position, the
variable's name nor its full qualification cannot be split across different lines of the source listing.

« If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, the
LIST CURSOR command can be used while you replay recorded statements by using the PLAYBACK
commands.

 For optimized COBOL programs, you cannot use the LIST CURSOR command to display the value of
variables discarded by the optimizer.

Examples

 Display the value of the variable at the current cursor position.
LIST CURSOR
- A COBOL program has a statement of the form:

MOVE a TO b
OF c

You cannot use the LIST CURSOR on the variable b because part of its qualification (OF c¢) is on the
next line.

LIST DTCN or CADP command

List the programs and compile units that were disabled by the DISABLE CADP or DISABLE DTCN
command.

CADP

DTCN
List the load modules and compile units that were disabled by the DISABLE DTCN command.

CADP
List the programs and compile units that were disabled by the DISABLE CADP command.

Usage note
You can use the LIST DTCNor LIST CADP command in remote debug mode.
Refer to the following topics for more information related to the material discussed in this topic.

Related references

“ENABLE command” on page 112

“DISABLE command” on page 106

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

LIST expression command

Displays values of expressions.

Chapter 5. z/OS Debugger commands 147

»— LIST

expression He o)
% TITLED ﬂ M——————"'— expression — ' ———
UNTITLED

M GROUP reference ———

— (expression

—_— express:on —_—

GROUP

reference

N TITLED 4

e—— %

— FS —

M WSS —

— LS —

— LOS —

Notes:
1 0Only for COBOL.

TITLED
Displays each expression in the list with its value. For PL/I, this is the default. For C and C++, this
is the default for expressions that are Ivalues. For COBOL, this is the default except for expressions
consisting of only a single constant. For assembler, disassembly, and LangX COBOL, this is the default
for expressions that are valid as receivers of a z/OS Debugger assembler assignment statement.

If you specify TITLED with no keyword, all variables in the currently qualified block are listed. If you
specify TITLED with an asterisk (*) and you are debugging a C, C++, or COBOL program, all variables
in the currently qualified compile unit are listed.

If you are debugging a COBOL program, the following additional options are available with TITLED:

FS
Lists all variables defined in the COBOL File Section in the currently qualified compile unit.
wss
Lists all variables defined in the COBOL Working-Storage Section in the currently qualified compile
unit.
LS
Lists all variables defined in the COBOL Linkage Section in the currently qualified compile unit.

LOS
List all variables defined in the COBOL Local-Storage Section in the currently qualified compile
unit.

*(C, C++, and COBOL)
Lists all variables in the currently qualified compile unit.

UNTITLED
Lists expression values without displaying the expressions themselves. For C and C++, this is the
default for expressions that are not lvalues. For COBOL, this is the default for expressions consisting
of only a single constant. For assembler, disassembly, and LangX COBOL, this is the default for
expressions that are not valid as receivers of a z/OS Debugger assembler assignment statement. For
the LIST command, an expression also includes character strings enclosed in either quotation marks
(") or apostrophes ('), depending on the current programming language.

In C and COBOL, expressions containing parentheses () must be enclosed in another set of
parentheses when used with the LIST command as in example LIST ((x + y) ./ z);.

148 IBM z/OS Debugger: Reference and Messages

GROUP (COBOL)

Displays a reference as an EBCDIC character string. If you specify GROUP on an elementary item, it
has no effect. The operand following the GROUP keyword must be a reference; for example, LIST
TITLED GROUP y;. You cannot specify expressions.

expression

An expression valid in the current programming language other than LangX COBOL.

'expression'

A valid LangX COBOL expression enclosed in apostrophes ().

Usage notes

 For Enterprise COBOL for z/OS Version 5, this command has the following usage notes:

When you use the LIST command to display a record or group, the levels of the record or group are
shown as they are declared in the program.

When you use the LIST command on an array (table), the output shows the value of each array
element, one per line. The output changes in the following ways:

- The subscripts for each array element are shown in parentheses after the name of the array. This
matches how array subscripts are specified in COBOL. Previously, each line of the output had the
word "SUB" at the beginning, and the subscripts were shown in parentheses after this word.

- If the array has subordinate data items, which means the elements are groups but not scalars, the
value of each subordinate data item is displayed for an array element before the values of the next
array element are displayed. In other words, array element n is displayed before array element
n+1. The output better reflects how the array is organized in memory.

When you use the LIST command to list a single member of an array, the output is the same as a
variable of the given type.

Examples:

Given these arrays:

5 ARR1 OCCURS 2 TIMES INDEXED BY IX1.
10 X PIC 99 USAGE BINARY.
10 Y PIC 99 USAGE BINARY.
5 ARR2 PIC 9 USAGE BINARY OCCURS 2 TIMES INDEXED BY IX2.

The output is as follows:

LIST ARRL (1) ;
10 X of 05 ARR1 = 00001
10 Y of 05 ARR1 = 00002

LIST ARR2 (1) ;
ARR2 (1) = 00000

The output of LIST %EPA when inside a declarative section shows the internal entry point of the
declarative but not the entry point of the program.
When you use the LIST TITLED *command, only those variables for active blocks are shown.

When you use the LIST expression command to display the value of an element of an array and
you do not specify an array subscript or index, the value of the first element is displayed. That is, it
defaults to Index = 1.

You cannot use index data items as an index name when you reference an array element. For
example, if you have the following declaration in your program, 77 IXDI1 USAGE IS INDEX, you
cannot use IXDI1 as index in LIST ARR(IXDI1).

The number of digits that are displayed after you use the LIST command for a numerical value is
consistent with what is specified in the Enterprise COBOL for z/OS Version 5 Programming Guide.

The result of displaying an expression with the LIST command shows the sign if either operand is
signed. In the following example, LIST SIGNED_ONE + TWO = +0003, the first operand is signed.

Chapter 5. z/OS Debugger commands 149

— When you use the LIST command to display a variable of National type, the output shows the N
prefix. Example: NAT= N'abcde'.

— You cannot display the values of variables in a Nested Program (block) if they are declared in the
Local or Linkage Section and the Nested Program (block) is not active.

— When you use the LIST TITLED command, the output that displays the value of a variable that has
unprintable character is shown as dots. It shows HEX values only if you use %HEX.

— For an object-oriented program, if a variable name is a part of both the Object name and the Method
name, and you use the LIST command with this variable, you can get an error message to indicate
that it is ambiguous.

— The DBCS string is prefixed with a G, for example, V_-DBCS = G'DBCS string'.

« If you want to use the LIST TITLED with the parameters FS, WSS, LS or LOS, the PTF for Language
Environment APAR PK12834 must be installed on z/OS Version 1 Release 6 and Version 1 Release 7.

« For COBOL programs, if you want to use the LIST TITLED command with a variable that is named FS,
WSS, LS, or LOS, you must enclose the name of the variable in parenthesis. For example, the command
LIST TITLED (FS) liststhe variable FS; the command LIST TITLED FS lists the variables in the
File Section.

« z/OS Debugger allows you to abbreviate many commands. This might result in unexpected results when
you use the LIST command with a single-letter expression. For example, LIST A can be interpreted as
the LIST AT command, which lists all breakpoints. However, if you wanted to display the value of a
variable labeled A in your program, you need to use parenthesis: LIST (A).

« If LIST TITLED = is specified and your compile unit is large, slow performance might result.

« For COBOL, if LIST TITLED = is specified and your compile unit is large, you might receive an out of
storage error message.

« For COBOL, the LIST command can reference a condition name, a file name, or an expression.

« For optimized COBOL programs, the LIST command cannot reference a variable that was discarded by
the optimizer.

« When using LIST TITLED with no parameters within the PL/I compile unit, only the first element of
any array will be listed. If the entire array needs to be listed, use LIST and specify the array name (i.e.,
LIST array where array is the name of an array).

- If a character variable contains character data that cannot be displayed in its declared data type, z/0OS
Debugger displays the data with a special character. The topic "How z/OS Debugger handles characters
that can't be displayed in their declared data type" in the IBM z/0S Debugger User's Guide describes
what z/OS Debugger does in this situation. If you display the data in hexadecimal, it will require twice as
many bytes. The maximum number of bytes that can be displayed is 65,535.

« If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit,
the LIST expression command can be used while you replay recorded statements by using the
PLAYBACK commands.

- If you are trying to display a scalar item, the maximum length that LIST can display is 65,535 bytes.

 You can enter the L prefix command by using the Source window prefix area to display the value of
the variables on that line. For the list of supported compile units, see “L prefix command (full-screen
mode)” on page 151.

 For Enterprise PL/I programs, to change the display format so that z/OS Debugger displays arrays and
elements as they are stored in memory, enter the SET LIST BY SUBSCRIPT ON command.

« If the Log window is not visible, z/OS Debugger displays the result of the LIST expression command
in the List pop-up window.

Examples

« Display the values for variables size and r and the expression ¢ + 1, with their respective names.

LIST TITLED (size, r, ¢ + 1);

150 IBM z/OS Debugger: Reference and Messages

Display the COBOL references as if they were elementary items. The current programming language
setting is COBOL.

LIST (GROUP x OF z(1,2), GROUP a, w);

Display the value of the z/OS Debugger variable %ADDRESS.
LIST %ADDRESS;

« In the disassembly view, display the value of register 1 (R1), which is the value of z/OS Debugger
variable %R1.

LIST R1 ;

In COBOL, display the names and values of variables defined in the File Section.

LIST TITLED FS;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“expression” on page 14

“SET LIST TABULAR command” on page 237

“L prefix command (full-screen mode)” on page 151

L prefix command (full-screen mode)

The L prefix command, which you enter through the prefix area of the Source window, displays the value
of an operand or operands on that line in the Log window.

»— L ; e
L integer J

\Imteg:rl/

“— integer — - — integer —/

integer
Identifies specific operands to be listed. If you do not specify an integer, z/OS Debugger lists all
operands. If you use a single number or the form 1,2,3, z/OS Debugger lists the specified operand or
operands. If you use the form 1-4, z/OS Debugger lists operands 1 through 4.

For programs other than assembler and disassembly, integer identifies the position of a variable on

a line, beginning from the left. The first variable on the line is position 1, the second variable on the
line is position 2, and this pattern repeats until there are no more variables. If a variable is on the line
more than once, only the first instance of the variable is assigned a position number.

For assembler and disassembly programs, integer identifies operands of the machine instruction.
z/0OS Debugger numbers them from left to right with the first operand numbered operand 1, the
second operand numbered operand 2, and repeating the pattern until there are no more operands.
If you do not specify an integer, z/OS Debugger lists all operands referenced explicitly or implicitly
by the instruction. If you specify any form of integer, z/OS Debugger lists only the operands explicitly
referenced by the specified operand or operands.

Usage notes

« For C/C++, integer values cannot be specified.

« The L prefix command can be entered only on lines that have valid executable statements.
 You can enter the L prefix command on multiple lines.

« The L prefix command works only for the following compile units:

Chapter 5. z/OS Debugger commands 151

Assembler or disassembly compile units

Enterprise COBOL compile units

Enterprise PL/I compile units compiled with Enterprise PL/I for z/OS, Version 3.6 or 3.7 with the PTF
for APAR PK70606 applied, or later

C/C++ compile units compiled with the z/OS 2.1 XL C/C++ compiler or later, with
DEBUG(FORMAT(DWARF)) option.

« You cannot use the L prefix command on a line that is in a block that is not currently active.

« The following notes apply when you use the L prefix command in an assembler or disassembly program:

— When you specify integer, it applies to an entire machine instruction operand, not to a single
symbol. For example, in the following instruction, operand 1 is the storage referenced by “SYM1-
SYM2(LEN,R8)” and operand 2 is the storage referenced by SOURCE:

MVC SYM1-SYM2(LEN,R8),SOURCE

— z/0OS Debugger uses the current values in a register to evaluate any registers referenced by an
instruction. When you reference an instruction that is not the instruction where the program is
suspended, the current values in a register might differ from what the values would be if z/OS
Debugger stopped the program at the instruction you referenced.

— The L prefix command cannot access mask fields, immediate data fields, and any other constants
imbedded in the machine instructions. However, z/OS Debugger does number these fields when it
numbers the operands.

— For instructions that might be coded using extended mnemonics (BC, BCR, and BRC), z/OS Debugger
cannot determine whether the base form or the extended mnemonic was used. Therefore, you can
use both 1 and 2 to refer to the operand representing the branch target.

Examples

The following set of examples use the following lines of code:

293 move O to c; move O to b; move © to IND; move b to a;
319 ifa+b<b+c

320 then move ind to c;

321 end-if;

« To display the value of IND on line 293, enter the L3 command in the prefix area of line 293.

« To display the value of c on line 319, enter the L3 command in the prefix area of line 319. The position
of c is not 4 because b is counted only once, the first time it is encountered, which is to the left of the <
operator. The second b, which is to the right of the < operator, is not assigned a position number.

« To display the value of all variables on line 293, enter the L command in the prefix area of 293.

The next set of examples use the following lines of assembler source code:

200 L R6,=X'31BA4038'
201 STM R1,R4,0(R6)
202 ™ X'01',FLAGS

203

« Enter L on line 201. z/OS Debugger lists the following registers and memory locations: R1, R2, R3, R4,
R6, and the sixteen bytes of storage at location X'31BA4038".

e Enter L1-2 on line 201. z/OS Debugger lists R1 and R4.

- Enter L1 on line 202. z/OS Debugger displays an error message because the L prefix command cannot
access mask and immediate fields.

Refer to the following topics for more information related to the material discussed in this topic.

152 IBM z/OS Debugger: Reference and Messages

Related references
“LIST expression command” on page 147

LIST FREQUENCY command

Lists statement execution counts.

»w— LIST — FREQUENCY statement_id_range ; >

LINES ,<
\— STATEMENTS — £
(statement_id_range)

*

*
Lists frequency for all statements in the currently qualified compile unit. If currently executing at the
AT TERMINATION breakpoint where there is no qualification available, it will list frequency for all
statements in all the compile units in the terminating enclave where frequency data exists.

LINES
Displays the source line after the frequency count.

STATEMENT

Equivalent to LINES.
Usage notes

« Inthe disassembly view, LIST FREQUENCY and LIST FREQUENCY =% are not supported.

« When you replay recorded statements by using the PLAYBACK commands, the frequency count is not
updated.

Examples

- List frequency for statements 1-20.
LIST FREQUENCY 1 - 20;
- List frequency and statement for statements 18 - 19:
LIST FREQUENCY LINES 18-19;
« List frequency for all statements in the currently qualified compile unit.
LIST FREQUENCY =*;
- List frequency for all statements in all compile units.
AT TERMINATION LIST FREQUENCY *;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“statement_id_range and stmt_id_spec” on page 16
“SET FREQUENCY command” on page 228

LIST LAST command

Displays a list of recent entries in the history table.

Chapter 5. z/OS Debugger commands 153

»— LIST HISTORY ———— ; >«
1 f_ LAST T J LINES
integer PATHS
\— STATEMENTS —
integer
Specifies the number of most recently processed breakpoints and conditions displayed.
HISTORY
Displays all processed breakpoints and conditions.
LINES
Displays processed statement or line breakpoints. LINES is equivalent to STATEMENTS.
PATHS
Displays processed path breakpoints.
STATEMENTS

Is equivalent to LINES.
Usage notes

« The LAST keyword is provided to make the LIST command readable. It does not perform any function.
« Inthe disassembly view, LIST LAST is not supported.

Examples

« Display all processed path breakpoints in the history table.
LIST PATHS;

« Display all program breakpoints and conditions for the last five times z/OS Debugger gained control.
LIST LAST 5 HISTORY;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET HISTORY command” on page 229

LIST LDD command

Displays the list of LDD commands known to z/OS Debugger.
»— LIST — LDD — ; >«

Usage notes

e Use the LIST LDD command if you want to see a list of LDD commands that z/OS Debugger knows
about.

« The output of the LIST LDD command is sorted alphabetically by compile unit name.

« When debugging C/C++ applications in EXPLICITDEBUG mode, the LIST LDD command might display
just one LDD entry that matches one of the several LDD commands containing main as the compile unit
name.

« You can use the LIST LDD command in remote debug mode.
Examples

« To display the LDD commands known to z/OS Debugger, specify:
LIST LDD;

You might get results similar to the following output:

154 IBM z/OS Debugger: Reference and Messages

1. LDD TBNDGG3::>TBNDOO3A;
2. LDD MYPROG;

 To display the LDD commands known to z/OS Debugger, specify:
LIST LDD;
You might get results similar to the following output:

There are no LDD commands.

Related references
“CLEAR command” on page 85

LIST LINE NUMBERS command
Equivalent to LIST STATEMENT NUMBERS.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“LIST STATEMENT NUMBERS command” on page 160

LIST LINES command
Equivalent to LIST STATEMENTS.
Refer to the following topics for more information related to the material discussed in this topic.

Related references
“LIST STATEMENTS command” on page 160

LIST MONITOR command

Lists all or selected members of the current set of MONITOR commands and any suspended MONITOR
LOCAL commands.

»— LIST — MONITOR

;>
L integer J
1—— -——-muger——[

integer
An unsigned integer identifying a MONITOR command. If two integers are specified, the first must not
be greater than or equal to the second. If omitted, all MONITOR commands are displayed.

Usage notes

« You can enter LIST in the prefix area of the monitor window to list the monitor command of the
selected line.

« When the current programming language setting is COBOL, blanks are required around the hyphen (-).
Blanks are optional for C.

- If integer is not specified, both the active monitors and any suspended local monitors are listed.
Example

List the fifth through the seventh commands currently being monitored.

LIST MONITOR 5 - 7;

Chapter 5. z/OS Debugger commands 155

LIST NAMES command

Lists the names of variables, programs, or z/OS Debugger procedures. If LIST NAMES is issued with no

keyword specified, the names of all program and session variables that can be referenced in the current
programming language and that are visible to the currently qualified block are displayed. A subset of the
names can be specified by supplying a pattern to be matched.

L pattern J]

»— LIST — NAMES

;

M BLOCK block_spec

M cuspec ———————

— (Lzblock_specj—l)—
cu_spec
CuUs

LABELS
PROCEDURES
PROGRAMS
- TEST 4

pattern
The pattern searched for, conforming to the current programming language syntax for a character
string constant. The pattern length cannot exceed 128 bytes, excluding the quotation marks (") or
apostrophes ().

If the DBCS setting is ON, the pattern can contain DBCS characters. DBCS shift codes are not
considered significant characters in the pattern. Within the pattern, an SBCS or DBCS asterisk
represents a string of zero or more insignificant SBCS or DBCS characters. As many as eight asterisks
can be included in the pattern, but adjacent asterisks are equivalent to a single asterisk.

Some examples of possible strings follow:

C Assembler, COBOL, and LangX PL1
COBOL

IIABCII IIA5II IMYI
|A5|

Pattern matching is not case-sensitive outside of DBCS. Both the pattern and potential names outside
of shift codes are effectively uppercased, except when the current programming language setting is C.
Letters in the pattern must be the correct case when the current programming language setting is C.

BLOCK

Displays variable names that are defined within one or more specified blocks.
Ccus

Displays the compile unit names. CUS is equivalent to PROGRAMS.
LABELS

Displays the names of all section and paragraph names in a COBOL or LangX COBOL program, and the
names of all instruction labels in an assembler program. Supported only for COBOL and assembler.

156 IBM z/OS Debugger: Reference and Messages

PROCEDURES

Displays the z/OS Debugger procedure names.

PROGRAMS

Is equivalent to CUS.

TEST

Displays the z/OS Debugger session variable names.

Usage notes

For Enterprise COBOL for z/OS Version 5, the output of the command LIST NAMES shows only level O
and 77 data items and index names. Subordinate data items within records are not displayed.

For Enterprise COBOL for z/OS Version 5, when you issue LIST NAMES CUS and a load module is
linked with more than one Enterprise COBOL for z/OS Version 5 compilation unit, the output includes all
Enterprise COBOL for z/OS Version 5 compilation units in the load module.

For Enterprise COBOL for z/OS Version 5, when you issue the LIST NAMES command for a program
with nested programs, the output for each block or nested program includes only the variables declared
in the block.

For Enterprise COBOL for z/OS Version 5, when you issue the LIST NAMES LABEL command fora
program with nested blocks or programs, only the labels in the current block are displayed.

LIST NAMES CUS applies to compile unit names.

LIST NAMES TEST shows only those session variable names that can be referenced in the current
programming language.

The output of LIST NAMES without any options depends on both the current qualification and

the current programming language setting. If the current programming language differs from the
programming language of the current qualification, the output of the command shows only those
session variable names that can be referenced in the current programming language.

For structures, the pattern is tested against the complete name, hence "B" is not satisfied by "C OF B
OF A" (COBOL).

If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, you
can use the LIST NAMES command while you replay recorded statements by using the PLAYBACK
commands.

For optimized COBOL programs, the LIST NAMES command does not display variables discarded by the
optimizer.

For LangX COBOL, if you specify the EQALANGX file as the source of debug information, when you
enter the LIST NAMES LABELS command, z/OS Debugger might not display all of the labels because
EQALANGX did not identify them with the LABEL attribute.

Examples

Display all compile unit names that begin with the letters "MY" and end with "5". The current
programming language setting is either C or COBOL.

LIST NAMES "MY%5" PROGRAMS;
Display the names of all the z/OS Debugger procedures that can be called.
LIST NAMES PROCEDURES;

Display the names of variables whose names begin with 'R' and are in the mainprog block. The current
programming language setting is COBOL.

LIST NAMES 'Rx' BLOCK (mainpzrog);

Display all section and paragraph names that begin with the letters "LAB". The currently qualified
program is COBOL.

LIST NAMES "LAB*" LABELS;

Chapter 5. z/OS Debugger commands 157

Refer to the following topics for more information related to the material discussed in this topic.
Related references
“block_spec” on page 12
“cu_spec” on page 13

LIST NAMES LABELS command (remote debug mode)

Displays the names of all sections and paragraphs in a COBOL program, and the names of all instruction
labels in an assembler program.

»— LIST — NAMES — LABELS — ; »«

Usage Notes®

« Use the Debug Console Command line to enter this command.
« This command displays the labels in the current executing program.

- For Enterprise COBOL for z/OS Version 5, if you specify the LIST NAMES LABEL command for a
program with nested blocks or multiple programs, only the labels in the current block are displayed.

Examples

If you want to display the names of all sections and paragraphs in the current program in COBOL, specify
the following commands:

LIST NAMES LABELS;

EQA4837I The following LABELS are known in IBCD590
PARA-IBCD590

L100

L101

LIST ON (PL/I) command

Lists the action (if any) currently defined for the specified PL/I conditions.

»— LIST — ON L J ;e
pli_condition

pli_condition
A valid PL/I condition specification. If omitted, all currently defined ON command actions are listed.

Usage notes

» You cannot use the LIST ON command while you replay recorded statements by using the PLAYBACK
commands.

Example
List the action for the ON ZERODIVIDE command.

LIST ON ZERODIVIDE;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“ON command (PL/I)” on page 179

LIST PROCEDURES command
Lists the commands contained in the specified z/OS Debugger PROCEDURE definitions.

158 IBM z/OS Debugger: Reference and Messages

»— LIST — PROCEDURES

| name I
O

A valid z/OS Debugger procedure name. If no procedure name is specified, the commands contained
in the currently running procedure are displayed. If no procedure is currently running, an error
message is issued.

Usage note
Examples

« Display the commands in the z/OS Debugger procedure p2.
LIST PROC p2;
« List the procedures abc and proc?7.

LIST PROCEDURES (abc, proc7);

LIST REGISTERS command

Displays the current register contents.

32BIT 7
»— LIST REGISTERS Heo

L 64BIT J

LONG
f_ j FLOATING
L SHORT J L REGISTERS J

REGISTERS
Displays the General Purpose Registers. When this command is issued when you are qualified to an
Assembler or Disassembly CU other than the CU where execution was suspended, it also displays the
values of the %Rn symbols.

32BIT
Displays the 32-bit General Purpose Registers (%GPRn and %GPRHn).

64BIT
Displays the 64-bit General Purpose Registers (%GPRGn).

LONG
Displays the value of the long-precision floating-point registers.

SHORT
Displays the value of the short-precision floating-point registers.

FLOATING
Displays the floating-point registers.

Usage note

If your program is running on hardware that does not support 64-bit instructions or your program
is suspended at a point where the 64-bit general-purpose registers are not available, z/OS Debugger
displays only the sixteen, base 32-bit general-purpose registers.

Examples

« Display the General Purpose Registers at the point of a program interruption:

Chapter 5. z/OS Debugger commands 159

LIST REGISTERS;
- Display the floating-point registers.

LIST FLOATING REGISTERS;

LIST STATEMENT NUMBERS command
Lists all statement or line numbers that are valid locations for an AT LINE or AT STATEMENT breakpoint.

»— LIST LINE NUMBERS He ol
L STATEMENT —J M block_spec ———

M——— cu_spec ———

— statement_id_range —

NUMBERS
Displays the statement numbers that can be used to set STATEMENT breakpoints, assuming the
compile options used to generate statement hooks were specified at compile time. The list can also
be used for the GOTO command, however, you might not be able to GOTO all of the statement numbers
listed.

block_spec
A valid block specification. This operand lists all statement or line numbers in the specified block.

cu_spec
A valid compile unit specification. For C programs, cu_spec can be used to list the statement numbers
that are defined within the specified compile unit before the first function definition.

statement_id_range
A valid range of statement ids, separated by a hyphen (-).

Usage notes
« Inthe disassembly view, LIST STATEMENT NUMBERS is not supported.
Examples

« List the statement or line numbers in the currently qualified block.
LIST STATEMENT NUMBERS;

« Display the statement or line number of every statement in block earnings.
LIST STATEMENT NUMBERS earnings;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“block_spec” on page 12

“cu_spec” on page 13

“statement_id_range and stmt_id_spec” on page 16

LIST STATEMENTS command

Lists one or more statements or lines from a file. It is primarily intended for viewing portions of the source
listing or source file in line mode, but can also be used in full-screen mode to copy a portion of a source
listing or source file to the log.

»— LIST LINES statement_id_range — ; »<
L STATEMENTS —J

160 IBM z/OS Debugger: Reference and Messages

Usage notes

« The specified lines are displayed in the same format as they would appear in the full-screen Source
window, except that wide lines are truncated.

« You might need to specify a range of line numbers to ensure that continued statements are completely
displayed.

« This command is not to be confused with the LIST LAST STATEMENTS command.
« Inthe disassembly view, LIST STATEMENTS is not supported.

« LIST LINES or LIST STATEMENTS without a statement_id_range are not valid to list one or more
lines, or statements, from a file. However, they are accepted commands, because they are valid in the
context of the LIST LAST command.

Examples

« List lines 25 through 30 in the source file associated with the currently qualified compile unit.
LIST LINES 25 - 30;

- List statement 100 from the current program listing file.

LIST STATEMENT 100;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“statement_id_range and stmt_id_spec” on page 16
“LIST LAST command” on page 153

LIST STORAGE command
Displays the contents of storage at a particular address in hexadecimal or XML format.
»— LIST — STORAGE — (— address 1 J >
M reference ——— ,— length
. . L , — oOffset —J
— '— reference — '—

) ;>
LXML J
L (—§————— EBCDIC —r—)J

M————ASCII] ——

— CODEPAGE — (— ccsid —) —

address
The starting address of storage to be listed.

reference
A variable whose storage location is to be listed.

In assembler or disassembly, this operand might be specified as any assembler expression that
represents a storage location. If the assembler expression does not have an implied length (for
example, R3->+10), you must specify the number of bytes to display by using the integer operand.

'reference’
A LangX COBOL variable whose storage location is to be listed. A LangX COBOL reference must be
enclosed in apostrophes (').

Chapter 5. z/OS Debugger commands 161

offset
The decimal or hexadecimal number of bytes indicating the starting offset from the memory location
pointed to by the reference's address or the address provided by the user. offset can be a negative
number. If offset is a hex constant, you must follow the same syntax rules for address. The default is 0.

length
The decimal number of bytes of storage displayed. The default is 16 bytes. The length must be an
integer number.

XML
Indicates that the specified area contains a complete XML 1.0 or 1.1 document. The specified area is
passed to the z/OS XML parser for processing. If the parser detects any syntax errors, the error data
is shown in the z/OS Debugger log. Otherwise, z/OS Debugger displays a formatted version of the XML
document in the z/OS Debugger log file.

EBCDIC
Indicates that the specified area contains EBCDIC characters.

ASCII
Indicates that the specified area contains ASCII characters.

CODEPAGE
Indicates that the specified area contains characters in the specified code page.

ccsid
Specifies the Coded Character Set Identifiers used to encode the XML. z/OS Debugger uses the z/0S
Unicode Services to convert the characters in the XML from this code page to the code page specified
by the EQAOPTS CODEPAGE command before the characters are displayed on the 3270 terminal. The
ccsid can be a decimal number in the range 1 to 65535.

Usage notes
- For C and C++, if reference is a pointer, z/OS Debugger displays the contents at the address given by that
pointer.

« Using z/OS Debugger, cursor pointing can be used by typing the LIST STORAGE command on the
command line and moving the cursor to a variable in the Source window before pressing Enter, or by
moving the cursor and pressing a PF key with the LIST STORAGE command assigned to it.

e When using the LIST STORAGE command in z/OS Debugger for a variable that is located by the cursor
position, the variable's name cannot be split across different lines of the source listing.

« If the referenced variable is a General Purpose Register (GPR) such as %GPR1, the result depends on
the programming language that is in effect:

— For all languages except assembler and disassembly, z/OS Debugger displays the storage at the
address contained in the referenced GPR.

— For assembler and disassembly, you must use the indirection notation (%GPR1->) to instruct z/OS
Debugger to display the storage at the address contained in the referenced register.

« If no operand is specified with LIST STORAGE, the command is cursor-sensitive.

- If you are replaying recorded statements by using PLAYBACK commands, the LIST STORAGE
command displays the contents of storage at the point where you entered the PLAYBACK START
command.

 For optimized COBOL programs, LIST STORAGE cannot display variables that were discarded by the
optimizer.

« XML is supported only when you run on z/OS Version 1.8 or later.

« If you specify XML but not EBCDIC, ASCII, nor CODEPAGE, z/OS Debugger attempts to detect if the
encoding of the XML document is EBCDIC or ASCII.

« Some information in the XML document (for example, most of the DTD specification and some white
space) might not be listed because the z/OS XML parser does not return it to z/OS Debugger.

162 IBM z/OS Debugger: Reference and Messages

- If you specify address with more than 8 significant digits or if reference references 64-bit addressable
storage, z/OS Debugger assumes that the storage location is 64-bit addressable storage. Otherwise,
z/0S Debugger assumes that the storage location is 31-bit addressable storage.

Examples

- Display the first 64 bytes of storage beginning at the address of variable table.
LIST STORAGE (table, 64);

« Display 16 bytes of storage at the address given by pointer table(1).
LIST STORAGE (table(1));

- Display the 16 bytes contained at locations 20CD0-20CDF. The current programming language setting is
COBOL.

LIST STORAGE (H'20CDO');

- Display the 16 bytes contained at locations 20CD0-20CDF. The current programming language setting is
PL/I.

LIST STORAGE ('20CDO'PX);

« In the disassembly view, display the storage at the address given by register R13.
LIST STORAGE (R13->);

« Display 10 characters starting at offset 2 for variable MYVAR. MYVAR is declared as CHAR (20).
LIST STORAGE (MYVAR, 2, 10);

- Display 20 bytes starting at offset 10 from address '’20ACDO'PX. The current programming language
setting is PL/I.

LIST STORAGE ('20ACDO'PX, 10, 20);

- Display 10 bytes starting at offset -5 from address '20ACDO'PX. The current programming language
setting is PL/I.

LIST STORAGE ('20ACDO'PX, -5, 10);

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“address” on page 11
“references” on page 15

LIST TRACE LOAD command

Displays the entries in the TRACE LOAD table that were created since the TRACE LOAD START command
was issued.

The syntax of this command is as follows:
»— LIST — TRACE — LOAD — ; >«

Usage notes

« Use the LIST TRACE LOAD command if you want to see a list of the load modules or DLLs loaded since
the TRACE LOAD START command was issued.

Examples

To display the entries in the TRACE LOAD table, enter the following command:

Chapter 5. z/OS Debugger commands 163

LIST TRACE LOAD;

You might get results similar to the following output:

The following were loaded:
IBCD0O10 loaded from TSFANAY.TEST.LOAD
IBCDO10A loaded from TSFANAY.TEST.LOAD

Related references
“TRACE command” on page 274.

LOAD command

Specifies that the named module should be loaded for debugging purposes. The LOAD command enables
you to debug preloaded load modules.

If you are running in Language Environment, the enclave-level load service is used to load the load
module or modules. The load module or modules remain active until the current enclave terminates or
you enter the CLEAR LOAD command for those load modules.

If you are not running in Language Environment, the load module or modules remain active until the
debugging task terminates or you enter the CLEAR LOAD command for those load modules. If you are
debugging CICS programs, the load is done by EXEC CICS LOAD. For all other programs, the load is done
by MVS LOAD services.

»— LOAD module_name ; >
, LE
{ \— NONLE —
(module_name)
module_name
The name of one or more load modules to be loaded by z/OS Debugger.

LE
Use the Language Environment enclave-level load service to load the load module or modules. The
load module or modules remain active until the current enclave terminates or you enter a CLEAR
LOAD command for the load module or modules.

NONLE
Use non-Language Environment services to load the load module or modules. The load module or
modules remain active until the debugging task terminates or you enter a CLEAR LOAD command for
the load module or modules. For CICS programs, the load module or modules are loaded by using
EXEC CICS LOAD. For all other programs, the load module or modules are loaded by using the MVS
LOAD services.

Usage notes

« You can use this command in remote debug mode.

« You can enter the SET QUALIFY CUcommand fora program or CSECT in the load module or load
modules that you just loaded unless the program is COBOL.

- If you set breakpoints in the programs or CSECTS in the module and then the same load module is
loaded again, the breakpoints might not work because location of the load module has changed.

« If the module to be debugged is RESIDENT or was loaded before z/OS Debugger was started, you can
use the LOAD command to make the module known to Language Environment.

 You cannot use this command to load a DLL.
Refer to the following topics for more information related to the material discussed in this topic.

Related references
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

164 IBM z/OS Debugger: Reference and Messages

LOADDEBUGDATA command

z/0S Debugger automatically loads the debug information for a compile unit (CU) when all of the following
conditions apply:

« The compile unit was written in a Language Environment-enabled, high-level language.

« The compile unit was compiled with the TEST or DEBUG compiler option.

- Explicit debug mode is not active.

In the following situations, you must use the LOADDEBUGDATA (LDD) command to request that z/OS
Debugger load the debug data:

- The compile unit was written in assembler or LangX COBOL.

 Explicit debug mode is active and the compile unit was written in a Language Environment-enabled,
high-level language and compiled with the TEST or DEBUG compiler option.

Using LDD for assembler or LangX COBOL compile units

When you use the LDD command for assembler or LangX COBOL compile units, the LDD command
indicates that the compile unit (CU) is an assembler or LangX COBOL CU and z/0S Debugger loads debug
data from the default data set name, userid.EQALANGX (cu_name). If the debug data is stored in

a different data set, specify that data set name by using the SET SOURCE command, SET DEFAULT
LISTINGS command, or the EQADEBUG DD statement. In remote debug mode, specify the data set name
by using the SET DEFAULT LISTINGS command, the EQADEBUG DD statement, or providing the data
set name when the remote debugger prompts you for it.

Generate the required debug information by using the EQALANGX program or, if you are debugging an
assembler program, by assembling your program through IBM z/0S Debugger Utilities, as described in
IBM z/0S Debugger User's Guide.

»T LOADDEBUGDATA Tb
LDD

L J cu_name ;P
load_module_name — ::> %CU

Y

~— %PROGRAM —

cu_name _,_L)—

%CU

A

A

L load_module_name — ::> J

“— %PROGRAM —

load_module_name
The name of the load module containing the specified compile unit (cu_name). If the corresponding
load module is known to z/OS Debugger, the specified compile unit must be a disassembly compile
unit within the specified load module. If the load module is not known to z/OS Debugger, z/0S
Debugger defers the LOADDEBUGDATA command until a load module by the specified name and
containing the specified compile unit is loaded. load_module_name is folded to upper case, unless it
is enclosed in double-quotation marks or the current environment is UNIX System Services.

If you do not specify load_module_name, z/OS Debugger applies the LOADDEBUGDATA command to
all compile units by the specified name found in any load module.

cu_name
The name of the assembler or LangX COBOL compile unit for which the debug data is to be loaded. If
the compile unit is not currently known to z/OS Debugger, z/OS Debugger defers the LOADDEBUGDATA
command until a compile unit by the specified name becomes known to z/OS Debugger.

Chapter 5. z/OS Debugger commands 165

Usage notes (assembler and LangX COBOL form of LDD)

« When you use the SET SAVE command to save breakpoints or monitor specifications or you use the
RESTORE command to restore breakpoints or monitor specifications, all LDD settings including the data
set name of the data set from which the debug data was loaded is saved and restored.

« For CICS only: When a DTCN profile is active for a full screen mode debugging session, z/OS Debugger
preserves all LDD settings, including the data set name of the data set from which the debug data was
loaded, until the DTCN profile is deleted or the terminal session is terminated.

« You can use this command for assembler compile units in remote debug mode.

- After z/OS Debugger successfully processes a LOADDEBUGDATA command for a CU, if the CU is deleted
and then appears later, an implicit LDD command is run for the CU using the same EQALANGX data set
that was used initially.

 You cannot enter the LDD command for the same compile unit more than once.
A deferred LDD creates an implicit NAMES INCLUDE for the target of the deferred LDD.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“CLEAR command” on page 85

“LIST LDD command” on page 154

“SET LDD command” on page 233

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

Using LDD for high-level language compile units in explicit debug mode

When explicit debug mode is active, z/OS Debugger loads debug data only for compile units that you want
to debug. For an assembler compile unit, use the LDD command as described in “Using LDD for assembler
or LangX COBOL compile units” on page 165. The remainder of this topic describes how to use the LDD
command to load debug data for a compile unit written in a high-level language.

You can indicate that you want to debug a compile unit in this mode by using the LDD command. You must
write the compile unit in a Language Environment-enabled high-level language and compile it with the
TEST or DEBUG compiler option.

»T LOADDEBUGDATA T»
LDD

load_module_name — ::> — hidden_cu_name ; P

(L load_module_name — ::> — hidden_cu_name l)

load_module_name
The name of the load module containing the specified compile unit (hidden_cu_name). If z/OS
Debugger does not know the load module, z/OS Debugger defers the LOADDEBUGDATA command
until a load module by the specified name and containing the specified compile unit is loaded.
load_module_name is folded to upper case, unless it is enclosed in double-quotation marks or the
current environment is UNIX System Services.

hidden_cu_name
The name of the hidden compile unit for which the debug data is to be loaded. If this compile unit is
not currently known to z/OS Debugger, z/OS Debugger defers the LOADDEBUGDATA command until a
compile unit by the specified name becomes known to z/OS Debugger.

The following table describes how hidden_cu_name corresponds to the compile unit name, depending
on the programming language:

166 IBM z/OS Debugger: Reference and Messages

Programming language Hidden CU name Same as CU name?
COBOL First program name in the source file Yes
PL/I External procedure name Yes
Enterprise PL/I External procedure name No
C First external function name in the source No
file
Assembler CSECT name Yes

If the load module is currently loaded, enter the DESCRIBE LOAD command and review the output

to determine the value for hidden_cu_name. If the load module is not currently loaded, enter the AT
LOAD command. After z/OS Debugger gains control because of AT LOAD, you can run the DESCRIBE
LOAD command and review the output to determine the value for hidden_cu_name.

When explicit debug mode is active, z/OS Debugger automatically loads debug data for compile units
without using an LDD command in each of the following situations:

« You specified both a load module nhame and a compile unit name that is not a source file name enclosed
in quotes in a deferred AT ENTRY command and the compile unit name was the same name that would
have been used as the hidden_CU_name on the LDD command.

« The compile unit name is the entry point of the initial load module of an enclave, or a load module for
which an AT LOAD command was entered.

« The NAMES INCLUDE command either explicitly or implicitly included both the load module and
compile unit name. In the case of a compile unit name, it must be the same name that would have
been used as the hidden_CU_name on the LDD command (not a source file name enclosed in quotes).

Usage notes (high-level language form of LDD)

 You can use this command in remote debug mode.

« When you use the SET SAVE command to save breakpoints or monitor specifications or you use the
RESTORE command to restore breakpoints or monitor specifications, z/OS Debugger saves and restores
all LDD settings.

« For CICS only: When a DTCN profile is active for a full screen mode debugging session, z/OS Debugger
preserves all LDD settings until the DTCN profile is deleted or the terminal session is terminated.

- After z/OS Debugger successfully processes a LOADDEBUGDATA command for a compile unit, if the
compile unit is deleted and then appears later, z/OS Debugger runs an implicit LDD command for the
compile unit.

 You cannot enter the LDD command for the same compile unit more than once.
- A deferred LDD creates an implicit NAMES INCLUDE for the target of the deferred LDD.

 You cannot load debug data for a high-level language compile unit that is currently active. For example,
if compile unit A calls compile unit B, you cannot stop in compile unit B, then run an LDD command on
compile unit A.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“CLEAR command” on page 85

“LIST LDD command” on page 154

“SET EXPLICITDEBUG command” on page 226

“SET LDD command” on page 233

Appendix A, “z/0OS Debugger commands supported in remote debug mode,” on page 511

MEMORY command

Specifies an address to use as the starting address for the memory displayed in the Memory window.

Chapter 5. z/OS Debugger commands 167

If the address you specify is invalid, z/OS Debugger displays an error message.

The MEMORY command cannot be saved and restored.

»— MEMORY — address

— ;>4

M——— reference ———

M '— reference — '—

— simple_expression —

address
The address to use as the starting address for the memory displayed in the Memory window.

reference
A variable whose location in memory is used as the starting address of the memory displayed in the
Memory window.

'reference’
A LangX COBOL variable whose location in memory is used as the starting address of the memory
displayed in the Memory window.

simple_expression
The address with a positive or negative hexadecimal or integer displacement. The resulting value is
the starting address of the memory displayed in the Memory window.

Usage notes

« For COBOL, if you specify a variable with reference modification, then the storage location of that
variable is used as a base address, not the location of the specified reference.

- If you specify address with more than 8 significant digits or if reference references 64-bit addressable
storage, z/OS Debugger assumes that the storage location is 64-bit addressable storage. Otherwise,
z/0S Debugger assumes that the storage location is 31-bit addressable storage.

« For C and C++, if reference is a pointer, z/OS Debugger displays the contents at the address given by that
pointer.

Examples

« Display memory starting at X'2503D008"' by entering the following command:

MEMORY X'2503D008';

This address becomes the base address.

- Display memory starting at the storage location of variable Employee_name by entering the following
command:

MEMORY Employee_name;

The address of Employee_name becomes the base address.
« Display memory starting 100 hex bytes after X'0045CB0Q' by entering the following command:

MEMORY x'0045CB0O' + x'100'

The base address is X'0045CC00Q".
Refer to the following sections for more information related to the material discussed in this section.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

"z/0S Debugger session panel" in the IBM z/0OS Debugger User's Guide

"Switching between the Memory window and Log window" in the IBM z/0OS Debugger User's Guide
"Displaying the Memory window" in the IBM z/0S Debugger User's Guide

168 IBM z/0OS Debugger: Reference and Messages

Related references
“address” on page 11

MONITOR command

The MONITOR command defines or redefines a command and then displays the output in the monitor
window (full-screen mode) or log file (batch mode). The following commands are the only commands you
can use with the MONITOR command:

- DESCRIBE
« LIST

e Null

« QUERY

z/0OS Debugger maintains a list of your most recently entered MONITOR commands. Each command
entered is assigned a number between 1 and 99 or you can assign it a number. Use these numbers to
indicate to z/OS Debugger which MONITOR command you want to redefine.

»— MONITOR —

GLOBAL DEFAULT T

f_

command

L LOCAL J L integer —J L HEX —j
L cu_spec J

A 4

v

L integer HEX J
L DEFAULT —J

— ; >«

GLOBAL
Specifies that the monitor definition is global. That is, it is not associated with a particular compile
unit.
LOCAL
Specifies that the monitor definition is local to a specific compile unit. Using z/OS Debugger, the
specified output is displayed only when the current qualification is within the associated compile unit.
cu_spec
A valid compile unit specification. This specifies the compile unit associated with the monitor
definition.
integer
An integer in the range 1 to 99, indicating what command in the list is replaced with the specified
command and the order that the monitored commands are evaluated. If omitted, the next monitor
integer is assigned. An error message is displayed if the maximum number of monitoring commands
already exists.
command
A DESCRIBE, LIST, Null, or QUERY command whose output is displayed in the monitor window or
log file.
HEX
Specifies that the value of the variable be displayed in hexadecimal format. You can specify the HEX

parameter only with a MONITOR LIST expression command or the MONITOR ncommand where n
is the nth command in the MONITOR list and it must be a LIST expression command.

Chapter 5. z/OS Debugger commands 169

DEFAULT

Specifies that the value of the variable be displayed in its declared data type. You can specify the DEF
parameter only with a MONITOR LIST expression command or the MONITOR ncommand where n
is the nth command in the MONITOR list and it must be a LIST expression command.

Usage notes

You can enter HEX or DEF in the prefix area of the monitor window to display the selected line in
hexadecimal or the default representation, respectively.

The HEX and DEF prefix commands operate only on an individual structure element or array element
when you enter them in the prefix area associated with that element.

A monitor number identifies a global monitor command, a local monitor command, or neither.
Using z/OS Debugger, monitor output is presented in monitor number sequence.

If a number is provided and a command omitted, a Null command is inserted on the line corresponding
to the number in the monitor window. This reserves the monitor number.

You can only specify a monitor number that is at most one greater than the highest existing monitor
number.

To clear a command from the monitor, use the CLEAR MONITOR command.
Replacement only occurs if the command identified by the monitor number already exists.

When SET AUTOMONITOR ONis in effect, z/OS Debugger adds an entry that is not visible after the last
active entry in the monitor list. If you specify a number and it is either equal to or one more than the last
active entry, z/OS Debugger inserts the new MONITOR command in the last active entry and uses the
next higher entry for SET AUTOMONITOR ON.

Note: The SET AUTOMONITOR ON command occupies 1 (for CURRENT or PREVIOUS) or 2 (for BOTH)
entries in the monitor list. These entries are not included in the list of Monitor commands from the LIST
MONITOR command.

The MONITOR LIST command does not allow the POPUP, TITLED, and UNTITLED options, except
TITLED WSS. For more information about the TITLED WSS option, see “LIST expression command”
on page 147. If the Working-Storage Section contains large amounts of data, monitoring it can add a
substantial amount of overhead and might produce unpredictable results.

When using the MONITOR LIST command, simple references (or C 1values) display identifying
information with the values, whereas expressions and literals do not.

The GLOBAL and LOCAL keywords also affect the default qualification for evaluation of an expression.
GLOBAL indicates that the default qualification is the currently executing point in the program. LOCAL
indicates that the default qualification is to the compile unit specified.

LOCAL monitors are suspended when the enclave containing the compile unit terminates or when the
load module containing the compile unit is deleted. If the associated compile unit reappears later in
the same debugging session, the LOCAL monitors are restored. However, because the original monitor
number might be in use at that time, they will not always be restored with the same monitor number.

If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, you can
use the MONITOR command while you replay recorded statements by using the PLAYBACK commands.

AMONITOR LISTcommand can be evaluated only when the programming language currently in effect
is the same as it was when the MONITOR LIST command was issued. Therefore, if the programming
language is changed by one of the following actions, the evaluation of the MONITOR LIST command
fails, and a message is displayed:

Suspending execution in a compile unit written in a language different from the programming
language that was in effect when the original MONITOR command was entered.

Entering the SET PROGRAMMING LANGUAGE command.
Entering the SET QUALIFY command.
Entering the LOADDEBUGDATA command.

170 IBM z/OS Debugger: Reference and Messages

 You can enter the M prefix command by using the Source window prefix area to add the variables on that
line to the Monitor window. For the list of supported compile units, see “M prefix (full-screen mode)” on

page 171.

- If one or more variables in the Monitor Local List expression is not defined in the specified compile unit,
z/0S Debugger displays an error message and does not establish a MONITOR.

« If a duplicate MONITOR command is entered, z/OS Debugger ighores the command and issues a
message that a duplicate command has been entered. If the commands are the same when LIST
MONITOR is entered, they are considered to be duplicates; likewise, if they are different when LIST
MONITOR is entered, they are considered unique.

Examples

« Replace the 10th command in the monitor list with QUERY LOCATION. This is a global definition;
therefore, it is always present in the monitor output.

MONITOR 10 QUERY LOCATION;

« Add a monitor command that displays the variable abc and is local to compile unit myprog. The monitor
number is the next available number.

MONITOR LOCAL myprog LIST abc;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“cu_spec” on page 13

“CLEAR command” on page 85
“DESCRIBE command” on page 101
“LIST command” on page 138

“M prefix (full-screen mode)” on page 171
“QUERY command” on page 192

“SET MONITOR command” on page 241

M prefix (full-screen mode)

The M prefix command, which you enter through the prefix area of the Source window, adds an operand or
operands on that line to the Monitor window.

»— M L J ; P
integer
\Imteg‘erl/

— integer — - — integer —

integer

Identifies specific operands to be monitored. If you do not specify an integer, z/OS Debugger monitors
all operands. If you enter a single number or the form 1,2, 3, z/OS Debugger monitors the specified
operand or operands. If you use the form 1-4, z/OS Debugger monitors operands 1 through 4.

For programs other than assembler and disassembly, integer identifies the position of a variable on

a line, beginning from the left. The first variable on the line is position 1, the second variable on the
line is position 2, and this pattern repeats until there are no more variables. If a variable is on the line
more than once, only the first instance of the variable is assigned a position number. If no integer is
specified, all the variables on the line are added to the Monitor window.

For assembler and disassembly programs, integer identifies operands of the machine instruction. z/OS
Debugger numbers them from left to right with the first operand numbered operand 1, the second

Chapter 5. z/OS Debugger commands 171

operand numbered operand 2, and repeating the pattern until there are no more operands. If you
do not specify an integer, z/OS Debugger adds all operands referenced explicitly or implicitly by the
instruction to the Monitor window. If you specify any form of integer, z/OS Debugger adds only the
operands explicitly referenced by the specified operand or operands to the Monitor window.

Usage notes

« For C/C++, integer values cannot be specified.

« The M prefix command can be entered only on lines that have valid executable statements.
 You can enter the M prefix command on multiple lines.

« The M prefix command works only for the following compile units:

Assembler or disassembly compile units

Enterprise COBOL compile units

Enterprise PL/I compile units compiled with Enterprise PL/I for z/OS, Version 3.6 or 3.7 with the PTF
for APAR PK70606 applied, or later

C/C++ compile units, compiled with the z/OS 2.1 XL C/C++ compiler or later, with
DEBUG(FORMAT(DWARF)) option.

« You cannot use the M prefix command on a line that is in a block that is not currently active.

« The following notes apply when you use the M prefix command in an assembler or disassembly program:

— When you specify integer, it applies to an entire machine instruction operand, not to a single
symbol. For example, in the following instruction, operand 1 is the storage referenced by “SYM1-
SYM2(LEN,R8)” and operand 2 is the storage referenced by SOURCE:

MVC SYM1-SYM2(LEN,R8),SOURCE

— z/0S Debugger uses the current values in a register to evaluate any registers referenced by an
instruction. When you reference an instruction that is not the instruction where the program is
suspended, the current values in a register might differ from what the values would be if z/OS
Debugger stopped the program at the instruction you referenced.

— When you specify an explicit base or index register in an operand, z/OS Debugger computes the
effective address of the storage location when you enter the M prefix command. z/OS Debugger does
not recompute the effective address while it monitors the operand.

— When you specify a single symbol as a machine instruction operand, z/OS Debugger uses the current
value of any base register and the currently active USING as z/OS Debugger monitors the operand.

— The M prefix command cannot access mask fields, immediate data fields, and any other constants
imbedded in the machine instructions. However, z/OS Debugger does number these fields when it
numbers the operands.

— For instructions that might be coded using extended mnemonics (BC, BCR, and BRC), z/OS Debugger
cannot determine whether the base form or the extended mnemonic was used. Therefore, you can
use both 1 and 2 to refer to the operand representing the branch target.

Example

The following example uses the following lines of code:

293 move O to c; move O to b; move © to IND; move b to a;
319 ifa+b<b+c

320 then move ind to c;

321 end-if;

To add the variable c on line 293 to the Monitor window, enter the M1 command in the prefix area of line
293.

The next set of examples use the following lines of assembler source code:

172 IBM z/OS Debugger: Reference and Messages

200 L R6,=X'31BA4038'

201 STM R1,R4,0(R6)
202 ™ X'01',FLAGS

203
« Enter Mon line 201. z/OS Debugger adds the following registers and memory locations to the Monitor
window: R1, R2, R3, R4, R6, and the sixteen bytes of storage at location X'31BA4038".

- Enter M1-2 on line 201. z/OS Debugger adds R1 and R4 to the Monitor window.

« Enter M1 on line 202. z/OS Debugger displays an error message because the M prefix command cannot
access mask and immediate fields.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“MONITOR command” on page 169

MOVE command (COBOL)

The MOVE command transfers data from one area of storage to another. The keywords cannot be
abbreviated.

»— MOVE teferencej— TO — reference — ; »«
literal

reference
A valid z/OS Debugger COBOL reference.

literal
A valid COBOL literal.

Usage notes

« For Enterprise COBOL for z/OS Version 5, you can use the MOVE command to update the following
special registers:

JNIENVPTR

SHIFT-IN

SHIFT-OUT
LINAGE-COUNTER of <FD>

« For Enterprise COBOL for z/OS Version 5, you can use the MOVE command to update a numerical type
with a non-numerical character. For example: "Move "-999999909" to Znumed" where Znumed is
defined as "01 Znumed pic -9,999.909"

« If z/OS Debugger was started because of a computational condition or an attention interrupt, using an
assignment to set a variable might not give expected results. This is due to the uncertainty of variable
values within statements as opposed to their values at statement boundaries.

« MOVE assigns a value only to a single receiver; unlike COBOL, multiple receiver variables are not
supported.

« The COBOL CORRESPONDING phrase is not supported.

« MOVE does not support date windowing. Therefore, you cannot use the MOVE command to assign the
value of a windowed date field to an expanded date field or to a nondate field.

 You cannot use the MOVE command to assign the value of one expanded date field to another expanded
date field with a different DATE FORMAT clause, or to assign the value of one windowed date field to
another windowed date field with a different DATE FORMAT clause.

Enterprise COBOL for z/OS Version 5 compiler does not support the DATE FORMAT clause. Additional
information on the DATE FORMAT clause and other clauses no longer available can be found in
Enterprise COBOL for z/OS Migration Guide Version 5 Release 1.

Chapter 5. z/OS Debugger commands 173

« If the DATA parameter of the PLAYBACK ENABLE command is in effect for the current compile unit, the
MOVE command can be used while you replay recorded statements by using the PLAYBACK commands.
The target of the MOVE command must be a session variable, not a program variable.

- If you are debugging an optimized COBOL program, you can use the MOVE command to assign a value to
a program variable only if you first enter the SET WARNING OFF command.

- If you are debugging a COBOL program that was compiled with the OPTIMIZE compiler option, neither
operand of the MOVE command can be a variable that was discarded by the optimizer.

 If a COBOL variable defined as National is used as the receiving field in a MOVE command with an
alphabetic or alphanumeric operand, the operand that is not National is converted to Unicode before
that move is done, except for Group items.

« If a COBOL variable defined as UTF-8 is used as the receiving field in a MOVE command with an
alphabetic or alphanumeric operand, the operand that is not UTF-8 is converted to UTF-8 before that
move is done, except for Group items.

See Enterprise COBOL for z/OS Language Reference for more information about using COBOL variables
with the MOVE statement.

« Literals with an N or NX prefix are always treated as National data and can be moved only to other
National or UTF-8 Data Items or Group items.

« Literals with an U or UX prefix are always treated as UTF-8 data and can be moved only to other UTF-8
or National Data Items or Group items.

Examples

« Move the string constant "Hi There" to the variable field.
MOVE "Hi There" TO field;

« Move the value of session variable temp to the variable b.
MOVE temp TO b;

- To assign a new value to a DBCS variable when the current programming language is COBOL, enter the
following command in the Command/Log window.

MOVE G'DBCS VALUE"

- Assign to the program variable c, found in structure d, the value of the program variable a, found in
structure b.

MOVE a OF b TO ¢ OF d;

Note the qualification used in this example.
« Assign the value of 123 to the first table element of itm-2.

MOVE 123 TO itm-2(1,1);

= You can also use reference modification to assign values to variables as shown in the following two
examples.

MOVE aa(2:3) TO bb;
and
MOVE aa TO bb(1:4);

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Enterprise COBOL for z/OS Programming Guide

174 IBM z/OS Debugger: Reference and Messages

Related references
“Allowable moves for the MOVE command (COBOL)” on page 175
“SET WARNING command (C, C++, COBOL, and PL/I)” on page 261

Allowable moves for the MOVE command (COBOL)

The following table shows the allowable moves for the z/OS Debugger MOVE command.

Source field Receiving field
GR | AL | AN | ED BI NE | ANE | NDI |NNDI| ID IF EF | D1 | UT
GROUP (GR) Y Y Y & \& & & & Yl & Y1 Yl
ALPHABETIC (AL) Y Y Y Y
ALPHANUMERIC
(AN)%S5 Y Y Y Y
EXTERNAL y1 v
DECIMAL (ED)*>
BINARY (BI) \& Y
NUMERIC EDITED v
(NE)
ALPHANUMERIC
EDITED (ANE) Y Y Y Y
FIGCON ZERO Y Y Y2 Y2 Y NU Y2 Y Y
FIGCON ZERO, v v
SPACE, or QUOTE
SPACES (AL) Y Y Y Y
HIGH-VALUE,
LOW-VALUE, Y Y Y
QUOTES
NATIONAL DATA 1
ITEM (NDI) Y \ Y
NATIONAL
NUMERIC DATA NN
ITEM (NNDI)
NUMERIC LITERAL | Y? Y Y NN Y Y Y
ALPHANUMERIC 1
LITERAL Y Y Y Y Y Y Y
ALPHANUMERIC
HEX LITERAL® Y Y Y Y Y Y Y Y Y Y
INTERNAL y1 v
DECIMAL (ID)4°
FLOATING POINT 1
LITERAL Y Y Y
INTERNAL
FLOATING POINT \& Y Y

(IF)

Chapter 5. z/OS Debugger commands 175

Source field Receiving field
GR | AL | AN | ED BI NE | ANE | NDI |NNDI| ID IF EF D1 | UT
EXTERNAL
FLOATING POINT \& Y \&
(EF)
DBCS DATA ITEM v
(D1)
DBCS LITERAL Y
NATIONAL
LITERAL (NL) Y Y Y
NATIONAL HEX 1
LITERAL (NHL)? Y Y Y
UTF-8 (UT) vl Y Y
UTF-8 LITERAL Y
UTF-8 HEX 1
LITERAL® Y Y Y
Notes:
1
Move without conversion (like AN to AN)
2
Numeric move
3
Decimal-aligned and truncated, if necessary
4
MOVE does not support date windowing. For example, the MOVE statement cannot be used to move a
windowed date field to an expanded date field, or to a nondate field.
5
The MOVE command cannot be used to move one windowed date field to another windowed date field
with a different DATE FORMAT clause, or to move one expanded date field to another expanded date
field with a different DATE FORMAT clause.
6
Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and
preceded by X.
7
Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and
preceded by NX.
8

Must be hexadecimal characters only, delimited by either quotation marks (") or apostrophes (') and
preceded by UX.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
Enterprise COBOL for z/OS Programming Guide

Related references
“MOVE command (COBOL)” on page 173

176 IBM z/OS Debugger: Reference and Messages

NAMES command

Use the NAMES command only as instructed in "Debugging user programs that use system prefixed
names" in the IBM z/OS Debugger User's Guide.

NAMES DISPLAY command

Use the NAMES DISPLAY command to indicate that you want a list of all the load modules or compile
units that are currently excluded or included. If you do not specify the ALL parameter, only the names
excluded by user commands appear in the list that is displayed. Names that z/OS Debugger excludes by
default are not included in the list that is displayed.

r USER T
»— NAMES — DISPLAY EXCLUDED LOADMODSj—>
L ALL —j cus

INCLUDED

*

pattern ; >
(patz‘e:n1)
USER

Indicates that you want a list of load modules or compile units that are currently excluded at your
request (by using NAMES EXCLUDE command).

ALL
Indicates that you want a list of all load modules or compile units that are currently excluded,
including those that z/OS Debugger excludes by default.

LOADMODS
Indicates that you want a list of load module names.

Cus
Indicates that you want a list of compile unit names.

pattern
Specifies the name of the load module or compile unit, or a string surrounded by quotation marks (")
or apostrophes (') that contains a partial load module or compile unit name followed by an asterisk to
indicate that you want a list of all load modules or compile units beginning with the specified string.

Usage note
You can use this command in remote debug mode.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

"Debugging user programs that use system prefixed names" in the IBM z/OS Debugger User's Guide
Related references

Appendix A, “z/0OS Debugger commands supported in remote debug mode,” on page 511

NAMES EXCLUDE command

The NAMES EXCLUDE command enables you to indicate to z/OS Debugger the names of load modules
or compile units that you do not need to debug. If these are data-only modules, z/OS Debugger does
not process them. If they contain executable code, z/OS Debugger might process them in some cases.
See "Optimizing the debugging of large applications" in the IBM z/0OS Debugger User's Guide for more
information about these situations.

Chapter 5. z/OS Debugger commands 177

»— NAMES — EXCLUDE LOADMOD pattern

—lead]

CU — NOTEST

LOADMOD
Indicates that you do not want to debug the specified load module.

cu
Indicates that you do not want to debug the specified compile unit.

NOTEST
Indicates that you do not want to debug any compile units that were not compiled with debug data.

pattern
Specifies the name of the load module or compile unit, or a string surrounded by quotation marks (")
or apostrophes (') that contains a partial load module or compile unit name followed by an asterisk to
indicate that you do not want to debug all load modules or compile units beginning with the specified
string.

Usage notes

 You can use this command in remote debug mode.

« You cannot use the NAMES EXCLUDE command on load modules or compile units that are already
known to z/OS Debugger.

If you specify the name of a currently known load module or compile unit, it is added to the exclude
list so that if the name becomes unknown, it is excluded in subsequent appearances. However, the
currently known load module or compile unit remains known.

« You cannot use the NAMES EXCLUDE command to indicate to z/OS Debugger that you want to exclude
the initial load module or the compile units contained in the initial load module. If you want to do
this, you must specify the EQAOPTS NAMES command, as described in "Using the EQAOPTS NAMES
command to include or exclude the initial load module" in the IBM z/0S Debugger User's Guide.

- For C and C++ programs, the pattern parameter is case sensitive. For all other languages, the pattern is
not case sensitive.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Debugging user programs that use system prefixed names" in the IBM z/0OS Debugger User's Guide
"Debugging programs containing data-only modules" in the IBM z/0S Debugger User's Guide

Related references
Appendix A, “z/0OS Debugger commands supported in remote debug mode,” on page 511

NAMES INCLUDE command

Use the NAMES INCLUDE command to indicate to z/OS Debugger that your program is a user load module
or compile unit, not a system program. See "Debugging user programs that use system prefix names" in
the IBM z/0S Debugger User's Guide for more information.

»— NAMES — INCLUDE 1LOADMOD name J ;e

- L e
(name)
LOADMOD

Indicates that you want to debug the specified load module.

178 IBM z/OS Debugger: Reference and Messages

cu
Indicates that you want to debug the specified compile unit.

name
Specifies the name of the load module or compile unit.

Usage notes

« You can use this command in remote debug mode.

« You cannot use the NAMES INCLUDE command on load modules or compile units that are already
known to z/OS Debugger.

« You cannot use the NAMES INCLUDE command to indicate to z/OS Debugger that you want to debug
the initial load module or the compile units contained in the initial load module. If you want to do
this, you must specify the EQAOPTS NAMES command, as described in "Using the EQAOPTS NAMES
command to include or exclude the initial load module" in the IBM z/0S Debugger User's Guide.

« Do not use the NAMES INCLUDE command to debug system components (for example, z/OS Debugger,
Language Environment, CICS, IMS, or compiler run-time modules). If you attempt to debug these
system components, you might experience unpredictable failures. Only use this command to debug user
programs that are named with prefixes that z/OS Debugger recognizes as system components.

- z/OS Debugger generates implicit NAMES INCLUDE commands for the following situations:
The target of a deferred AT ENTRY command

The target of an AT LOAD command

The target of a LOADDEBUGDATA command

In CICS, the programs specified in DTCN and CADP, unless they contain an asterisk (*)

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Debugging user programs that use system prefixed names" in the IBM z/0S Debugger User's Guide

Related references
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

Null command

The Null command is a semicolon written where a command is expected. It is used for such things as an
IF command with no action in its THEN clause.

»— ;>
Example
Do nothing if array[x] > 0;otherwise, set a to 1. The current programming language setting is C.

if (array[x] > 0); else a = 1;

ON command (PL/I)

The ON command establishes the actions to be executed when the specified PL/I condition is raised. This
command is equivalent to AT OCCURRENCE.

Chapter 5. z/OS Debugger commands 179

»— ON — CONDITION — (— condition_name —) —— command — ; >«
ENDFILE —— (— file_reference —) —
M——— ENDPAGE ——
KEY
NAME
M——— PENDING —
M———-RECORD ——
M—— TRANSMIT —
“— UNDEFINEDFILE —/
AREA
ATTENTION
CONVERSION
ERROR
FINISH
5 FIXEDOVERFLOW /
OVERFLOW
SIZE
STRINGRANGE
STRINGSIZE
SUBSCRIPTRANGE
UNDERFLOW
- ZERODIVIDE J

condition_name
A valid PL/I CONDITION condition name.

file_reference
A valid PL/I file constant, file variable (can be qualified), or an asterisk (*). If you use an asterisk
(*), the breakpoint is activated for all file references associated with the condition used in the ON
command.

command
A valid z/OS Debugger command.

Usage notes

« You must abide by the PL/I restrictions for the particular condition.

An ON action for a specified PL/I condition remains established until:

— Another ON command establishes a new action for the same condition. In other words, the
breakpoint is replaced.

— A CLEAR command removes the ON definition.

For Enterprise PL/I, you cannot use file variables in the file_reference field.

The ON command occurs before any existing ON-unit in your application program. The ON-unit is
processed after z/OS Debugger returns control to the language.

The following are accepted PL/I abbreviations for the PL/I condition constants:

ATTENTION or ATTN
FIXEDOVERFLOW or FOFL
OVERFLOW or OFL
STRINGRANGE or STRG

180 IBM z/OS Debugger: Reference and Messages

STRINGSIZE or STRZ

SUBSCRIPTRANGE or SUBRG

UNDEFINEDFILE([file reference]) orUNDF([file reference])
UNDERFLOW or UFL

ZERODIVIDE or ZDIV

« The preferred form of the ON command is AT OCCURRENCE. For compatibility with PLITEST and
INSPECT, however, it is recognized and processed. ON should be considered a synonym of AT
OCCURRENCE. Any ON commands entered are logged as AT OCCURRENCE commands.

« The ON command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

« Display a message if a division by zero is detected.

ON ZERODIVIDE BEGIN;
LIST 'A zero divide has been detected';
END;

- Display and patch the error character when converting character data to numeric.

Given a PL/I program that contains the following statements:

DECLARE i FIXED BINARY(31,0);

i ;-'153';

The following z/OS Debugger command would display and patch the error character when converting
the character data to numeric:

ON CONVERSION

BEGIN;
LIST (%STATEMENT, ONCHAR);
ONCHAR = '0';
GO;

END;

'1s3' cannot be converted to a binary number so CONVERSION is raised. The ON CONVERSION
command lists the offending statement number and the offending character: 's'. The data will be
patched by replacing the 's' with a character zero, 0, and processing will continue.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“AT OCCURRENCE command” on page 65
Enterprise PL/I for z/0OS Language Reference

PANEL command (full-screen mode)

The PANEL command displays special panels. The PANEL keyword is optional.

The PANEL command cannot be used in a command list, any conditional command, or any multiway
command.

Chapter 5. z/OS Debugger commands 181

»»- COLORS — — ; »«
L PANEL J M LAYOUT
L RESET J

M———— LISTINGS ——

M——— PROFILE ———

~——— SOURCES —M8M8™—~

COLORS
Displays the Color Selection panel that allows the selection of color, highlighting, and intensity of the
fields of the z/OS Debugger session panel.

LAYOUT
Displays the Window Layout Selection panel that controls the configuration of the windows on the
z/0S Debugger session panel.

RESET
Restores the relative sizes of windows for the current configuration, without displaying the
window layout panel. For configurations 1 and 4, the three windows are evenly divided. For other
configurations, the point where the three windows meet is approximately the center of the screen.

LISTINGS

Displays the Source Identification panel, where you associate compile units with the names of their
respective listing, source, or separate debug file. LISTINGS is equivalent to SOURCES.

z/0S Debugger provides the Source Identification panel to maintain a record of compile units
associated with your program, as well as their associated source, listing, or separate debug files.

You can also make source or listings available to z/OS Debugger by entering their names on the
Source Identification panel.

The Source Identification panel associates compile units with the names of their respective listing,

source, separate debug file and controls what appears in the Source window. To explicitly name the
compile units being displayed in the Source window, access the Source Identification panel (shown
below) by entering the PANEL LISTINGS or PANEL SOURCES command.

Source Identification Panel

Command ===>
Compile Unit Listings,/Source File Display
DBKP515 TS64081.TEST.LISTING(IBME73) Y
Enter QUIT to return with current settings saved.

CANCEL to return without current settings saved.

UP,’DOWN to scroll up and down.

Compile Unit
Is the name of a valid compile unit currently known to z/OS Debugger. New compile units are
added to the list as they become known.

Listing/Source File
Is the name of the listing, source, EQALANGX, or separate debug file containing the compilation
unit to be displayed in the Source window. If the file is a listing, only source program
statements are shown. The minimum required is the compile unit name. The default file
specification is pgmname LISTING = (COBOL and PL/I), where pgmname is the name of
your program. For TSO, the default file specification is userid.pgmname.C (C and C++),
userid.pgmname.list (COBOL), or userid.pgmname.list (PL/I) for sequential data sets
and userid.dsname.C(membername) (C and C++), userid.dsname.Listing(membername)
(COoBOL), oruserid.dsname.List (membername) (PL/I) for partitioned data sets. For
assembler and LangX COBOL the default is userid.EQALANGX (membername).

182 IBM z/0OS Debugger: Reference and Messages

Display
Is a flag that specifies whether the listing or source is to be displayed in the Source window.

To display a listing view, take the following steps:
« Compile the program with the proper option to generate a source or source listing file.
- Make sure the file is available and accessible on your host operating system.

« Set the Display field on the Source Identification panel to Y for the compile unit. To save time and
avoid displaying listings or source you do not want to see, specify N.

If any of these conditions are not satisfied, the Source window remains empty until control reaches a
compile unit where the conditions are satisfied.

You can change the listing, source, or separate debug file associated with a compile unit by entering
the new name over the listing, source, or separate debug file displayed in the LISTING/SOURCE FILE
field.

Note: The new name must be followed by at least one blank.

After you modify the panel, return to the z/OS Debugger session panel either by issuing the QUIT
command, or by pressing the QUIT PF key.

PROFILE
Displays the Profile Settings panel, where parameters of a full-screen z/OS Debugger session can be
set.

SOURCES
Is equivalent to LISTINGS.

Usage notes

« For an Enterprise COBOL for z/OS Version 5 program, the contents that are displayed with PANEL
SOURCE and PANEL LISTING show the location of the load module.

« Allinformation about the panels displayed by the PANEL command is saved when QUIT is used to leave
them. Saving the changes to the specified panels in this manner returns you to your z/OS Debugger
session with the current settings in effect. In addition, CANCEL can be used to leave the panels without
saving the changes.

« The PANEL command is not logged.
Examples

« Display the color and attribute panel.
PANEL COLORS;

- Reset the relative sizes of the windows for the current layout configuration.
PANEL LAYOUT RESET;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“SET SCREEN command (full-screen mode)” on page 256
"Customizing your full-screen session" in the IBM z/0S Debugger User's Guide

PERFORM command (COBOL)

The PERFORM command transfers control explicitly to one or more statements and implicitly returns
control to the next executable statement after execution of the specified statements is completed. The
keywords cannot be abbreviated.

Simple:

Chapter 5. z/OS Debugger commands 183

»— PERFORM gﬂ:}md1 END-PERFORM — ; >«

command
A valid z/OS Debugger command.

Repeating:

»
»

»— PERFORM 1

o I_ BEFORE 7 J
|

L WITH J AFTER —j

UNTIL —

»
»

L VARYING — reference — FROM — reference — BY — reference J

»— condition gn:and1 END-PERFORM — ; »«

reference
A valid z/OS Debugger COBOL reference.

condition
A simple relation condition.

command
A valid z/OS Debugger command.
Usage notes

« A constant as a reference is allowed only on the right side of the FROM and BY keywords.
« Index-names and floating point variables cannot be used as the VARYING references.
« Index-names are not supported in the BY phrase.

« Only inline PERFORMs are supported (but the performed command can be a z/OS Debugger procedure
invocation).

« The COBOL AFTER phrase is not supported.

« Windowed date fields cannot be used as the VARYING reference, the FROM reference, or the BY
reference.

 See Enterprise COBOL for z/0S Language Reference for an explanation of the following COBOL keywords:

AFTER
BEFORE
BY

FROM
TEST
UNTIL
VARYING
WITH

 For optimized COBOL programs, the PERFORM command cannot reference any variable that was
discarded by the optimizer.

 For optimized COBOL programs, if the VARYING phrase is specified, the first reference can only refer to
a session variable.

184 IBM z/OS Debugger: Reference and Messages

« If the you entered the PLAYBACK ENABLED with the DATA parameter and the compile unit supports the
DATA parameter, the PERFORM command can reference a program variable and the VARYING operand (if
specified) must reference a session variable. For example:

PERFORM VARYING session-var-1 FROM program-var-1 BY program-var-2
UNTIL program-var-3 = program-var-4

Examples

« Set a breakpoint at statement number 10 to move the value of variable a to the variable b and then list
the value of x.

AT 10 PERFORM
MOVE a TO b;
LIST (x);

END-PERFORM;

- List the value of height for each even value between 2 and 30, including 2 and 30.

PERFORM WITH TEST AFTER
VARYING height FROM 2 BY 2
UNTIL height = 30
LIST height;
END-PERFORM;

- Position the cursor at the start of a COBOL performed paragraph and press PF5.
Refer to the following topics for more information related to the material discussed in this topic.

Related references
Enterprise COBOL for z/OS Language Reference

PLAYBACK commands

The PLAYBACK commands help you record and replay:

« Statements that you have run.

« Information about your program. For example, the value of variables and registers and the status of
files.

The following table summarizes the forms of the PLAYBACK commands.

“PLAYBACK ENABLE
command” on page 186

“PLAYBACK START
command” on page 187

"“PLAYBACK FORWARD

Informs z/OS Debugger to record all subsequent statements that you
run and other information about your program.

Informs z/OS Debugger to suspend normal debugging and to prepare to
replay recorded statements.

Informs z/0OS Debugger to replay recorded statements in forward

command” on page 188

direction.

“PLAYBACK BACKWARD
command” on page 188

Informs z/OS Debugger to replay recorded statements in backward
direction.

“PLAYBACK STOP
command” on page 188

Informs z/OS Debugger to stop replaying statements, resume normal
debugging, and continue recording the statements that you run and
other information about your program.

“PLAYBACK DISABLE
command” on page 189

Usage notes

Informs z/OS Debugger to stop recording the statements that you run
and discard the information about your program that it recorded.

- In remote debugging, you can enable playback by using the Playback toolbar in the Debug view.
Playback is recording and replaying statements. Changes made to variables are also recorded and
available to replay. However, you cannot modify variables and registers during playback.

Chapter 5. z/OS Debugger commands 185

PLAYBACK ENABLE command

The PLAYBACK ENABLE command informs z/OS Debugger to begin recording the statements that you run
and information about your program. If z/OS Debugger is already recording the statements that you run,
you can use the PLAYBACK ENABLE command to inform z/OS Debugger to record the statements that
you run in other compile units or to change the effect of the DATA option.

*

»— PLAYBACK — ENABLE e

options
DATA j J
cuname

f__
,41 J L integer J L NODATA J
b—£:j;;ame)
cuname

Name of the compile unit or compile units where z/OS Debugger is to record the statements that you
run. You can specify only the names of the compile units currently known.

*
Specifies that z/OS Debugger is to record the statements that you run in all compile units. This is the
default.

integer

Specifies the maximum amount of memory to use to store data that is collected. The integer value
specifies a unit of K (1024) bytes. For example, an integer value of 2000 indicates 2,048,000 bytes.
The default value is 8000.

DATA
Specifies that z/OS Debugger is to save information about your program, such as the value of variables
and registers. z/OS Debugger saves this information for the compile units that you specify in the
cuname parameter or, if you specified the x parameter, for all compile units. The DATA parameter is
effective only for compile units compiled with the following compilers:

« Enterprise COBOL for z/0S, Version 6

« Enterprise COBOL for z/OS, Version 5

« Enterprise COBOL for z/0S, Version 4

- With the following compilers, you must also specify the SYM suboption of the TEST compiler option:
Enterprise COBOL for z/0S, Version 3.3 and Version 3.4

Enterprise COBOL for z/OS and 0S/390, Version 3 Release 2

Enterprise COBOL for z/OS and 0S/390, Version 3 Release 1, with APAR PQ63235

COBOL for 0S/390 & VM, Version 2, with APAR PQ63234

DATA is the default.

NODATA
Specifies that z/OS Debugger does not save information about your program.

Usage notes

« For COBOL only: If you enter the PLAYBACK ENABLE DATA command, and a compile unit supports the
DATA parameter, the following information is recorded:

— FILE SECTION
— WORKING-STORAGE SECTION
— LOCAL-STORAGE SECTION

186 IBM z/OS Debugger: Reference and Messages

— LINKAGE SECTION

— All special registers except for: ADDRESS OF, LENGTH OF, and WHEN-COMPILED

PLAYBACK START command

The PLAYBACK START command suspends normal debugging and informs z/OS Debugger to prepare to
replay the statements it recorded. When normal debugging is suspended, all breakpoints are disabled
and many commands are unavailable. Use the STEP and RUNTO commands to navigate through recorded
statements in a forward or backward direction. Backward is the initial direction of the navigation.

»— PLAYBACK — START — ; >«

Usage notes

The following commands are available while you replay recorded statements:

“ALLOCATE command” on page

“FIND command” on page 116

“QQUIT command” on page 198

31

“CALL procedure command” on

“FREE command” on page 123

“RETRIEVE command (full-

page 84

screen mode)” on page 200

CLEAR EQUATE

“IMMEDIATE command (full-

“RUNTO command” on page 201

screen mode)” on page 133

CLEAR LOG

null

“SCROLL command (full-screen
mode)” on page 202

CLEAR MONITOR

“PANEL command (full-screen
mode)” on page 181

SET (most forms)

CLEAR PROCEDURE

“PERFORM command (COBOL)”

“STEP command” on page 267

on page 1831

“COMMENT command” on page

“PLAYBACK commands” on page

“SYSTEM command (z/0S)” on

92

185

page 273

“CURSOR command (full-screen

“Prefix commands (full-screen

“TSO command (z/0S)” on page

mode)” on page 94

mode)” on page 190

278

“Declarations (COBOL)” on page

“PROCEDURE command” on

“USE command” on page 278

98

page 191

DESCRIBE CUS

“QUERY command” on page 192

“WINDOW command (full-screen

mode)” on page 280

DESCRIBE PROGRAMS

“QUIT command” on page 197

1Refer to “PERFORM command (COBOL)” on page 183 for restrictions.

If the DATA option is in effect and the compile unit supports the DATA option, the following commands are

available:

“COMPUTE command (COBOL)” on page 92

LIST

DESCRIBE ATTRIBUTES

“MOVE command (COBOL)” on page 173 2

DESCRIBE CURSOR

MONITOR

“EVALUATE command (COBOL)” on page 113

“SET command (COBOL)” on page 264 2

“IF command (COBOL)” on page 130

“SET AUTOMONITOR command” on page 210

2 The target must be session variable.

Chapter 5. z/OS Debugger commands 187

The following commands are not available while you replay recorded statements:

“ANALYZE command (PL/I)” on

“Declarations (C and C++)” on

“if command (C and C++)” on

page 32

page 95

page 129

“Assignment command
(assembler and disassembly)” on

“DECLARE command (PL/I)” on

“IF command (PL/I)” on page

page 100

page 33

133

“Assignment command (PL/I)”

on page 36

DESCRIBE ENVIRONMENT

“INPUT command (C, C++, and
COBOL)” on page 134

“AT command” on page 37

“DISABLE command” on page

“ON command (PL/I)” on page

106

179

“break command (C and C++)”

“do/while command (C and C++)”

“RUN command” on page 201

on page 75

on page 109

“CALL %DUMP command” on

“D0O command (PL/I)” on page

“SELECT command (PL/I)” on

page 77

109

page 205

“CALL entry_name command
(COBOL)” on page 83

“ENABLE command” on page 112

SET INTERCEPT

CLEAR AT

“Expression command (C and C+

“switch command (C and C++)”

+)” on page 115

on page 271

CLEAR DECLARE

“for command (C and C++)” on

“TRIGGER command” on page

page 122

274

CLEAR ON “GO command” on page 123 “while command (C and C++)” on
page 279
CLEAR VARIABLES “GOTO command” on page 124

PLAYBACK FORWARD command

The PLAYBACK FORWARD command informs z/OS Debugger to perform STEP and RUNTO commands
forward, starting from the current statement and going to the next statement.

»— PLAYBACK — FORWARD — ; >«

PLAYBACK BACKWARD command

The PLAYBACK BACKWARD command informs z/OS Debugger to perform STEP and RUNTO commands
backward, starting from the current statement and going to previous statements. Backward is the initial
direction when you enter the PLAYBACK START command.

»— PLAYBACK — BACKWARD — ; »«

PLAYBACK STOP command

The PLAYBACK STOP command resumes normal debugging at the statement where you entered the
PLAYBACK START command. All suspended breakpoints are enabled and all commands are available.
z/0S Debugger continues to record the statements you run and, if you specified the DATA option,

information about your program.

»— PLAYBACK — STOP — ; >«

188 IBM z/OS Debugger: Reference and Messages

PLAYBACK DISABLE command

The PLAYBACK DISABLE command informs z/OS Debugger to stop recording the statements that you
run and, if you specified the DATA option, information about your program. The information about the
program that z/OS Debugger collected while recording is discarded. You can instruct z/OS Debugger to
stop recording for one or more compile units. If you stop recording for one compile unit and continue
recording for other compile units, the information that you collected for the one compile unit is discarded.

*

»— PLAYBACK — DISABLE ; >
cuname

— (Z cuname :)y—-
cuname

Indicates to z/OS Debugger to stop recording for the compile unit or compile units specified. Only the
names of currently known compile units can be specified.

)
p—

Indicates to z/OS Debugger to stop recording for all compile units. This is the default.

POPUP command

Displays the Command pop-up window, where you can type in multiline commands.

; >
L integer —J

»— POPUP

integer
The number of lines for the window.

If you do not specify an integer, z/OS Debugger opens the window with the number of lines specified by
the SET POPUP command.

Related references
“SET POPUP command” on page 246

POSITION command

Positions the cursor to a specific line in the specified window. This command does not work in the
disassembly view.

CURSOR
[|

»»— POSITION — integer ; >
LOG

M MONITOR —

— SOURCE —

integer
Specifies that z/OS Debugger scroll the specified window to line number integer. z/OS Debugger
matches integer to the line number in the prefix area of the specified window. z/OS Debugger can
scroll either up or down. The maximum value you can specify is 999999.

Chapter 5. z/OS Debugger commands 189

Prefix commands (full-screen mode)

The prefix commands apply to source listing lines and monitor lines. Prefix commands are commands that
are typed into the prefix area of the Source window or Monitor window, including the automonitor section.
For more information about the commands, see the section corresponding to the command name.

The following tables summarize the forms of the prefix commands.

Table 8. Source window prefix commands

“AT Prefix command
(full-screen mode)” on

page 69

Defines a statement breakpoint through the Source window prefix area.

“CLEAR prefix (full-
screen mode)” on page
91

Clears a breakpoint through the Source window prefix area.

“DISABLE prefix (full-
screen mode)” on page
108

Disables a breakpoint through the Source window prefix area.

“ENABLE prefix (full-
screen mode)” on page
113

Enables a disabled breakpoint through the Source window prefix area.

“L prefix command
(full-screen mode)” on
page 151

Displays the values of the variables on that line.

“M prefix (full-screen
mode)"” on page 171

Adds the variables on that line to the Monitor window.

“QUERY prefix (full-
screen mode)” on page
197

Queries what statements have breakpoints through the Source window
prefix area.

“RUNTO prefix command
(full-screen mode)” on

page 202

Runs the program to the location that the cursor or statement identifier
indicate in the Source window prefix area.

“SHOW prefix command
(full-screen mode)” on
page 267

Specifies what relative statement or verb within the line is to have its
frequency count shown in the suffix area.

Table 9. Monitor window prefix commands

CC...CC “CLEAR command” on

page 85

Clears selected block of multiple items of the current set from the
MONITOR window.

CL (CLEAR MONITOR n)
“CLEAR command” on page
85

Clears selected member of the current set of MONITOR commands.

DEF (MONITOR
n DEFAULT)“MONITOR
command” on page 169

Displays selected member of the current set of MONITOR commands in
default representation.

HEX (MONITOR n HEX)
“MONITOR command” on
page 169

Displays selected member of the current set of MONITOR commands in
hexadecimal representation.

190 IBM z/OS Debugger: Reference and Messages

Table 9. Monitor window prefix commands (continued)

LIST (LIST MONITOR n) Lists selected member of the current set of MONITOR commands.
“LIST MONITOR command”
on page 155

PROCEDURE command

The PROCEDURE command allows the definition of a group of commands that can be accessed by using
the CALL procedure command. The CALL command is the only way to perform the commands within the
PROCEDURE. PROCEDURE definitions remain in effect for the entire debug session.

The PROCEDURE keyword can be abbreviated only as PROC. PROCEDURE definitions can be subcommands
of other PROCEDURE definitions. The name of a nested procedure has the scope of only the containing
procedure. Session variables cannot be declared within a PROCEDURE definition.

In addition, a procedure must be defined before it is called on a CALL statement.

»— name — :— PROCEDURE — ;gﬁ;nd1 END — ; >«

name
A valid z/OS Debugger procedure name. It must be a valid identifier in the current programming
language. The maximum length is 31 characters.

command
A valid z/OS Debugger command other than a declaration or PANEL command.

Usage notes

« Because the z/OS Debugger procedure names are always uppercase, the procedure names are
converted to uppercase even for programming languages that have mixed-case symbols.

« If a GO or STEP command is issued within a procedure or a nested procedure, any statements following
the GO or STEP in that procedure and the containing procedure are ignored. If control returns to z/0OS
Debugger, it returns to the statement following the CALL of the containing PROCEDURE.

« Itis recommended that procedure names be chosen so that they are valid for all possible programming
language settings throughout the entire z/OS Debugger debug session.

Examples

« When procedure proci is called, the values of variables x, y, and z are displayed.
procl: PROCEDURE; LIST (x, y, z); END;

« Define a procedure named setat34 that sets a breakpoint at statement 34. Procedure setat34
contains a nested procedure 1ister that lists current statement breakpoints. Procedure 1istexr can
be called only from within setat34.

setat34: PROCEDURE;
AT 34;
lister: PROCEDURE;
LIST AT STATEMENT;
END;
CALL lister;
END;

QUALIFY RESET command

The QUALIFY RESET command is equivalent to the SET QUALIFY RESET command.

Chapter 5. z/OS Debugger commands 191

QUERY command

The QUERY command displays the current value of the specified z/OS Debugger setting, the current
setting of all the z/OS Debugger settings, or the current location in the suspended program.

For an explanation of the z/OS Debugger settings, see the SET command.

»— QUERY Attributes A through I ; >

Attributes J through P

Attributes Q through Z

Attributes A through I
»—~— ASSEMBLER ———— b«

AUTOMONITOR

BROWSE MODE 1
CHANGE
COLORS

COUNTRY

1
—— CURRENT — VIEW ——
DBCS

1
—— DEFAULT — DBG ——
1
— DEFAULT — LISTINGS —

—— DEFAULT — MDBG L
—— DEFAULT — SCROLL —

1
—— DEFAULT — VIEW ——
M DEFAULT — WINDOW —

DISASSEMBLY
—— DYNDEBUG ———
ECHO

1
M———— EQAOPTS ——
M————— EQUATES ——

M———— EXECUTE ——

1
M—— EXPLICITDEBUG ———
M——FIND BOUNDS —

M——- FREQUENCY ———

M——-—— HISTORY ——

1
M——- IGNORELINK ———

 InTercepT 1
Attributes J through P

192 IBM z/OS Debugger: Reference and Messages

KEYS >«

¥

LDD

12
— LIST — BY — SUBSCRIPT ——

—— LIST — BY — SUBSCRIPT 3—/

——— LIST — TABULAR
LOCATION
LOG

———— LOG — NUMBERS
LONGCUNAME
MDBG

M— MONITOR —~—— COLUMN

M DATATYPE —

M LIMIT —

M— NUMBERS —

—— WRAP —~

MSGID ———

L NATIONAL J

PACE

LANGUAGE —

PFKEYS ——
M————— PLAYBACK ——
M———PLAYBACK — LOCATION —

- POPUP ——

M— PROGRAMMING — LANGUAGE —

~— PROMPT ———

Attributes Q through Z
B QUALIFY —— <

— REFRESH —

RESTORE

REWRITE !
SAVE

M————— SCREEN ———
M SCROLL — DISPLAY —

4
M——— SEQUENCE ——

SETS

M——-— SOURCE ———

M——-— SUFFIX ——

TEST

M———— WARNING —

~— WINDOW — SIZES —

Notes:

Chapter 5. z/OS Debugger commands 193

1You can use this command in remote debug mode.
2 0nly for COBOL.

3 Only for Enterprise PL/I.

4 Only for PL/I.

ASSEMBLER
Displays the current ASSEMBLER setting.

AUTOMONITOR
Displays the current AUTOMONITOR setting.

BROWSE MODE
Displays the current browse mode setting.

CHANGE
Displays the current CHANGE setting.

COLORS (full-screen mode)
Displays the current COLOR setting.

COUNTRY
Displays the current COUNTRY setting.

CURRENT VIEW
Displays the name of the view being used for the currently qualified CU.

DBCS
Displays the current DBCS setting.

DEFAULT DBG
Displays the current DEFAULT DBG setting.

DEFAULT LISTINGS
Displays the current DEFAULT LISTINGS setting.

DEFAULT MDBG
Displays the current DEFAULT MDBG setting.

DEFAULT SCROLL (full-screen mode)
Displays the current DEFAULT SCROLL setting.

DEFAULT VIEW
Displays the name of the view that will be used as the initial view when you enter the
LOADDEBUGDATA command for an assembler CU.

DEFAULT WINDOW (full-screen mode)
Displays the current DEFAULT WINDOW setting.

DISASSEMBLY
Displays the current DISASSEMBLY setting.

DYNDEBUG
Displays the current DYNDEBUG setting.

ECHO
Displays the current ECHO setting.

EQAOPTS
Displays the EQAOPTS commands in effect and any errors detected while processing EQAOPTS
commands.

EQUATES

Displays the current EQUATE definitions.
EXECUTE

Displays the current EXECUTE setting.

EXPLICITDEBUG
Displays whether explicit debug mode is active.

FIND BOUNDS
Displays the current FIND BOUNDS setting.

194 IBM z/OS Debugger: Reference and Messages

FREQUENCY
Displays the current FREQUENCY setting.

HISTORY
Displays the current HISTORY setting and size.

IGNORELINK
Displays the current IGNORELINK setting.

INTERCEPT
Displays the current INTERCEPT setting.

KEYS (full-screen mode)
Displays the current KEYS setting.

LDD
Displays the current LDD setting.

LIST BY SUBSCRIPT
Displays the current LIST BY SUBSCRIPT setting.

LIST TABULAR
Displays the current LIST TABULAR setting.

LOCATION
Displays the statement identifier where execution is suspended. The current statement identified
by QUERY LOCATION has not yet executed. If suspended at a breakpoint, the description of the
breakpoint is also displayed.

For an AT CHANGE breakpoint, if you set the breakpoint by providing a reference, z/OS Debugger
displays the reference. If the reference is a Level 88 variable, z/OS Debugger displays the current
setting of true or false.

For an AT CHANGE breakpoint, z/OS Debugger displays the old and new values in hexadecimal format.

LOG
Displays the current LOG setting.

LOG NUMBERS (full-screen mode)
Displays the current LOG NUMBERS setting.

LONGCUNAME
Displays the current LONGCUNAME setting.

MDBG
Displays the current MDBG setting.

MONITOR COLUMN
Displays the current MONITOR COLUMN setting. SET MONITOR COLUMN is accepted in batch mode,
but has no effect.

MONITOR DATATYPE
Displays the current MONITOR DATATYPE setting.

MONITOR LIMIT (full-screen mode)
Displays the current MONITOR LIMIT setting.

MONITOR NUMBERS (full-screen mode)
Displays the current MONITOR NUMBERS setting.

MONITOR WRAP
Displays the current MONITOR WRAP setting. SET MONITOR WRAP is accepted in batch mode, but has
no effect.

MSGID
Displays the current MSGID setting.

NATIONAL LANGUAGE
Displays the current NATIONAL LANGUAGE setting.

PACE
Displays the current PACE setting. This setting is not supported in batch mode.

Chapter 5. z/OS Debugger commands 195

PFKEYS
Displays the current PFKEY definitions. This setting is not supported in batch mode.

PLAYBACK
Displays the current status of PLAYBACK.

PLAYBACK LOCATION
Displays the statement identifier of the statement being replayed.

POPUP
Displays the current POPUP setting.

PROGRAMMING LANGUAGE
Displays the current PROGRAMMING LANGUAGE setting. z/OS Debugger does not differentiate
between C and C++, use this option for C++ as well a C programs.

PROMPT (full-screen mode)
Displays the current PROMPT setting.

QUALIFY
Displays the current QUALIFY BLOCK setting.

REFRESH (full-screen mode)
Displays the current REFRESH setting.

RESTORE
Displays the current RESTORE setting.

REWRITE
Displays the current REWRITE setting. This setting is not supported in batch mode.

SAVE
Displays the current SAVE setting.

SCREEN (full-screen mode)
Displays the current SCREEN setting.

SCROLL DISPLAY (full-screen mode)

Displays the current SCROLL DISPLAY setting.
SEQUENCE (PL/I)

Displays current SEQUENCE setting.

SETS
Displays all settings that are controlled by the SET command.

SOURCE
Displays the current SOURCE setting.

SUFFIX (full-screen mode)
Displays the current SUFFIX setting.

TEST
Displays the current TEST setting.

WARNING (C)
Displays the current WARNING setting.

WINDOW SIZES
Displays the current WINDOW SIZE values and WINDOW CLOSE information. The window sizes are
the values that apply when all windows are open.

Usage note

« For Enterprise COBOL for z/OS Version 5, the output for QUERY SOURCE is the location of the load
module.

« You can use the QUERY ASSEMBLER, QUERY AUTOMONITOR, QUERY CURRENT VIEW, QUERY
DEFAULT LISTINGS, QUERY DEFAULT VIEW, QUERY DISASSEMBLY, QUERY DYNDEBUG, QUERY
EQAOPTS, QUERY EXPLICITDEBUG, QUERY IGNORELINK, QUERY INTERCEPT, QUERY LDD, QUERY
LOCATION, QUERY LOG, QUERY QUALIFY, QUERY REWRITE, and QUERY WARNING commandsin
remote debug mode.

196 IBM z/OS Debugger: Reference and Messages

Examples

« Display the current ECHO setting.
QUERY ECHO;

- Display all current settings.
QUERY SETS;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“QUERY prefix (full-screen mode)” on page 197
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

QUERY prefix (full-screen mode)

Queries what statements on a particular line have statement breakpoints when you issue this command
through the Source window prefix area.

»— QUERY — ; >«

Usage notes

« When the QUERY prefix command is issued, a sequence of characters corresponding to the
statements is displayed in the prefix area of the Source window. If the statement contains a breakpoint,

Hkn nn

is used, or ".", if it does not. If there are more than eight statements or verbs on the line, and one or
more past the eighth statement have breakpoints, the eighth character of the map is replaced by a "+".

For example, a display of "..*" indicates that four statements or verbs begin on the line and the third one
has a breakpoint defined.

e The QUERY prefix command is not logged.

Refer to the following topics for more information related to the material discussed in this topic.
- Related references

« “LIST command” on page 138

QUIT command

The QUIT command ends a z/OS Debugger session and, if an expression is specified, sets the return code.
In full-screen mode, it also displays a prompt panel that asks if you really want to quit the debug session.
In line, batch, and remote debug mode, the QUIT command ends the session without prompting.

»— QUIT - paq

M (— expression —) —

ABEND

LTASK J J

— DEBUG

expression
A valid z/OS Debugger expression in the current programming language.

If expression is specified, this value is used as the application return code value. The actual return
code for the run is determined by the execution environment.

You cannot use expression in remote debug mode.

ABEND
If you specify ABEND, z/OS Debugger raises a CEE2F1 exception to terminate each active enclave.

Chapter 5. z/OS Debugger commands 197

DEBUG
If you specify DEBUG, z/OS Debugger ends and your program keeps running. Any calls to restart z/OS
Debugger are ignored. By default, when running under CICS, a pseudo-conversational application will
run until the end of the conversation (until EXEC CICS RETURN without TRANSID is issued to return to
CICS).

TASK
TASK applies to CICS pseudo-conversational applications. If you specify TASK, z/OS Debugger
processing will be terminated until the end of the current CICS pseudo-conversational task (EXEC
CICS RETURN TRANSID). When a new task is started in the pseudo-conversation, z/OS Debugger
debugging will resume.

Usage notes

« z/OS Debugger will only resume in a new pseudo-conversational task if CADP or DTCN successfully
match on a pattern.

e QUIT is always logged in a comment line except where it appears in a command list. This enables you to
reuse the log file as a primary commands file.

- If QUIT is entered from a z/OS Debugger commands file, no prompt is displayed. This behavior applies
to the z/OS Debugger preferences files, primary commands files, and USE files.

« For PL/I, the expression will be converted to FIXED BINARY (31,0), if necessary. In addition, if an
expression is specified, it is used as if your program called the PLIRETC built-in subroutine.

« For PL/I, the value of the expression must be nonnegative and less than 1000.

- If you enter the QUIT DEBUG command and then want to restart z/OS Debugger, you must first restart
your program.

« If you enter the QUIT or QQUIT command while you are debugging a non-Language Environment
assembler or LangX COBOL program running under CICS, z/OS Debugger behaves the same as if you
entered a QUIT ABEND command and a U4038 abend occurs.

« In remote debug mode, if any form of the QUIT command is found in a preferences or commands file,
the remote debugger displays the message "Connection with debug engine was lost."

Examples

« End a z/OS Debugger session.
QUIT;

- End a z/OS Debugger session and use the value in variable x as the application return code.
QUIT (x);

- End a z/OS Debugger session without ending the program.
QUIT DEBUG;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“expression” on page 14
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

QQUIT command

The QQUIT command ends a z/OS Debugger session without further prompting.

»— QQUIT — ; »«

Usage notes

198 IBM z/0OS Debugger: Reference and Messages

« In full-screen mode, the QQUIT command does not display a prompt panel to verify that you want to
quit the debug session.

« If you enter the QQUIT command while you are debugging a non-Language Environment assembler or
LangX COBOL program running under CICS, z/OS Debugger behaves the same as if you had entered the
QUIT ABEND command and a U4038 abend occurs.

« In remote debug mode, if any form of the QQUIT command is found in a preferences or commands file,
the remote debugger displays the message "Connection with debug engine was lost."

Example

End a z/OS Debugger session.

QQUIT;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“QUIT command” on page 197

RESTORE command

The RESTORE command enables you to explicitly restore the settings, breakpoints, and monitor
specifications that were previously saved by the SET SAVE AUTO command when z/OS Debugger
terminated.

»— RESTORE — SETTINGS

BPS

— b

M——-"MONITORS ——
M BPS — MONITORS —

— MONITORS — BPS —

SETTINGS
Indicates that all SET values except the following values are to be restored:

« SET DBCS

« SET FREQUENCY

« SET NATIONAL LANGUAGE

« SET PROGRAMMING LANGUAGE

« FILE operand of SET RESTORE SETTINGS
« SET QUALIFY

« SET SOURCE

« SET TEST

BPS
Indicates that breakpoints and LOADDEBUGDATA (LDD) specifications are to be restored. The following
breakpoints are restored:

« APPEARANCE breakpoints

e CALL breakpoints

« DELETE breakpoints

« ENTRY breakpoints

« EXIT breakpoints

« GLOBAL APPEARANCE breakpoints
e GLOBALCALL breakpoints

Chapter 5. z/OS Debugger commands 199

« GLOBAL DELETE breakpoints

« GLOBAL ENTRY breakpoints

e GLOBAL EXIT breakpoints

« GLOBAL LABEL breakpoints

« GLOBAL LOAD breakpoints

e GLOBAL STATEMENT and GLOBAL LINE breakpoints
« LABEL breakpoints

» LOAD breakpoints

« OCCURRENCE breakpoints

« STATEMENT and LINE breakpoints
« TERMINATION breakpoint

If a deferred AT ENTRY breakpoint has not been encountered, it is not saved nor restored.

MONITORS
Indicates that monitor and LOADDEBUGDATA (LDD) specifications are to be restored.

Usage notes

« The data restored by this command is retrieved from the default data set or the data set specified by the
SET RESTORE SETTINGS, SET RESTORE BPS, or SET RESTORE MONITORS commands.

« The member name used to restore the breakpoints or monitor specifications is the name of the initial
load module for the current enclave.

« Do not precede the RESTORE command with any other z/OS Debugger command except SET SAVE or
another RESTORE command.

Example
 Restore the settings:
RESTORE SETTINGS;
» Restore the breakpoints and monitor specifications:

RESTORE BPS MONITORS;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

Related references
“SET RESTORE command” on page 251
“SET SAVE command” on page 253

RETRIEVE command (full-screen mode)

The RETRIEVE command displays the last command entered on the command line. For long commands
this might be only the last line of the command.

COMMAND
»— RETRIEVE r T ; >

’

COMMAND
Retrieves commands. Any command retrieved to the command line can be performed by pressing
Enter. The retrieved command can also be modified before it is performed. Successive RETRIEVE
commands continue to display up to 12 commands previously entered on the command line. This
operand is most useful when assigned to a PF key.

200 IBM z/OS Debugger: Reference and Messages

Usage notes
« The RETRIEVE command is not logged.
Example

Retrieve the last line so that it can be reissued or modified.

RETRIEVE COMMAND;

RUN command

The RUN command is synonymous to the GO command.
Refer to the following topics for more information related to the material discussed in this topic.

Related references
“GO command” on page 123

RUNTO command

The RUNTO command runs your program to a valid executable statement without setting a breakpoint.
You can indicate at which statement to stop by specifying the statement id or by positioning the cursor on
a statement.

L J ; >
statement_id

statement_id
A valid statement identifier. If you are debugging a disassembled program, specify the statement
identifier as an offset in hexadecimal form (X'offset').

»— RUNTO

Usage notes

- If you indicate a statement by positioning the cursor on the statement, the cursor must be in the Source
window and positioned on a line where an executable statement begins.

- If you indicate a statement by positioning the cursor on the statement and there are multiple
statements on the same line, the target of the RUNTO command is the first relative statement on the
line. For optimized COBOL programs, the target of the command is the first executable command which
was not discarded by the optimizer.

- If you indicate a statement by providing a statement id, the statement id must be an executable
statement.

« Execution continues until one of the following conditions occurs:

— The location indicated by the cursor position or the statement id is reached.
— A previously set breakpoint is encountered.
— The end of the job is reached.

- For optimized COBOL programs, the RUNTO command remains in effect until the statement you
indicated is reached. For example, if your program encounters a breakpoint and then you enter the
GO or RUN command, the program runs until the next breakpoint is encountered or the statement you
indicated is reached.

 You can use the RUNTO command in remote debug mode only by entering it in the Action field, which is
in the Optional Parameters section of the Add a Breakpoint task.

Examples

« Run to statement 67, where statement 67 is in a currently active block.

RUNTO 67;

Chapter 5. z/OS Debugger commands 201

« Run to the statement 11 in the block IPLI11A, where IPLI11A is known in the current enclave.
RUNTO IPLI11A :> 11

« Run to statement 36, where statement 36 is located in the Source window.

1. Type RUNTO in the command line.
2. Place the cursor on statement 36.
3. Press Enter.
« Run to the statement 74, using a PF key.

1. Define a PF key to run to the cursor position.
SET PF13 = RUNTO;
2. Place the cursor at the statement 74 and hit shift+PF1 key.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“RUN command” on page 201

RUNTO prefix command (full-screen mode)
Runs to the statement when you issue this command through the Source window prefix area.
Usage notes

« For RUNTO prefix, no space is needed as a delimiter between the keyword and the integer; RUNTO 67 is
equivalent to RUNT067.

« For optimized COBOL programs, if there are multiple statements on a line, the RUNTO prefix runs to the
first executable statement which was not discarded by the optimizer.

Example
Run to the statement 67, where statement 67 is located in the Source window.

« Type RUNTO in the prefix area of statement 67, then press Enter.

SCROLL command (full-screen mode)

The SCROLL command provides horizontal and vertical scrolling in full-screen mode. Scroll commands
can be made immediately effective with the IMMEDIATE command. The SCROLL keyword is optional.

The Log, Monitor, Memory, or Source window will not wrap around when scrolled.

CURSOR
[|

» DOWN ;P
L SCROLL J LEFT M—— CSR — LOG
NEXT M—— DATA — M— MEMORY —
RIGHT M—— HALF — M MONITOR —
UP M integer — ~— SOURCE —~

M— MAX —

— PAGE —

M————BOTTOM ——

M——— TO — integer ———

- TOP /

202 IBM z/0OS Debugger: Reference and Messages

DOWN
Scrolls the specified number of lines in a window toward the top margin of that window. DOWN is
equivalent to NEXT.

LEFT
Scrolls the specified number of columns in a window toward the right margin of that window. If
SET MONITOR WRAP OFF isin effect, using LEFT allows you to scroll toward the right the specified
number of characters in the monitor value area so data that is not visible to the left becomes visible.

NEXT
Is equivalent to DOWN.

RIGHT
Scrolls the specified number of columns in a window toward the left margin of that window. If SET
MONITOR WRAP OFF is in effect, using RIGHT allows you to scroll toward the left the specified
number of characters in the monitor value area so data that is not visible to the right becomes visible.
up
Scrolls the specified number of lines in a window toward the bottom margin of that window.

CSR
Specifies scrolling based on the current position of the cursor in a selected window. The window
scrolls up, down, left, or right of the cursor position until the character where the cursor is positioned
reaches the edge of the window. If the cursor is not in a window or if it is already positioned at the
edge of a window, a full-page scroll occurs. If the cursor is in the monitor value area then the monitor
value area is scrolled left or right to the position of the cursor.

DATA
Scrolls by one line less than the window size or by one character less than the window size (if moving
left or right). If the cursor is in the monitor value area then the monitor value area scrolls left or right
by one character less than the monitor value area width.

HALF
Scrolls by half the window size or by half the monitor value area.

integer
Scrolls the specified number of lines (up or down) or the specified number of characters (left or right).
Maximum value is 9999.

MAX
Scrolls in the specified direction until the limit of the data is reached. To scroll the maximum amount,
you must use the MAX keyword. You cannot scroll the maximum amount by filling in the scroll amount
field. If the cursor is placed in the monitor value area then the monitor value area is scrolled left or
right until the limit of the data is reached.

PAGE
Scrolls by the window size or by the monitor value area size.

BOTTOM
Scrolls to the bottom of the data.

TO integer
Specifies that the selected window is to scroll to the given line (as indicated in the prefix area of the
selected window). This can be in either the UP or DOWN direction (for example, if you are line 30 and
issue TO 20, it will return to line 20). Maximum value is 999999.

TOP

Scrolls to the top of the data.
CURSOR

Selects the window where the cursor is currently positioned.
LOG

Selects the session log window.

MEMORY
Selects the Memory window.

Chapter 5. z/OS Debugger commands 203

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

Usage notes
 You cannot use the following commands in the Memory window:

SCROLL TOP
SCROLL BOTTOM
SCROLL TO
SCROLL LEFT
SCROLL RIGHT
SCROLL MAX

« If you do not specify an operand with the DOWN, LEFT, NEXT, RIGHT, or UP keywords, and the cursor
is outside the window areas, the window scrolled is determined by the current default window setting
(if the window is open) and the scroll amount is determined by the current default scroll setting, shown
in the SCROLL field on the z/OS Debugger session panel. Default scroll and default window settings are
controlled by SET DEFAULT SCROLL and SET DEFAULT WINDOW commands.

« When the SCROLL field on the z/OS Debugger session panel is typed over with a new value, the
equivalent SET DEFAULT SCROLL command is issued just as if you had typed the command into the
command line (that is, it is logged and retrievable).

« The SCROLL command is not logged.

« To scroll the monitor value area left or right, SET MONITOR WRAP OFF must be in effect and the cursor
must be in the monitor value area.

« When the List pop-up window displays the result of a LIST expression command and you enter
a SCROLL DOWN or SCROLL UP command without specifying a window (LOG, MEMORY, MONITOR, or
SOURCE), z/0OS Debugger applies the command to the List pop-up window. The scrolling amount is
always PAGE, regardless of the SET DEFAULT SCROLL setting.

Examples

- Scroll one page down in the window containing the cursor.
SCROLL DOWN PAGE CURSOR;

« Scroll the monitor window 12 columns to the left.
SCROLL LEFT 12 MONITOR;

« Scroll the monitor value window 15 columns to the right.
SET MONITOR WRAP OFF;SCROLL RIGHT 15;

(Do not press Enter.) Place cursor in the monitor value area. Press Enter.
« Scroll the Source window to a line breakpoint.

LIST AT STATEMENT;
The STATEMENT COBO19 ::> COBO1A9 :> 56.1 breakpoint action is:

SCROLL TO 56;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET DEFAULT SCROLL command (full-screen mode)” on page 220

204 IBM z/OS Debugger: Reference and Messages

SELECT command (PL/I)

The SELECT command chooses one of a set of alternate commands.

If the reference can be satisfied by more than one of the WHEN clauses, only the first one is performed. If
there is no reference, the first WHEN clause containing an expression that is true is executed. If none of the
WHEN clauses are satisfied, the command specified on the OTHERWISE clause, if present, is performed. If
the OTHERWISE clause should be executed and it is not present, a z/OS Debugger message is issued.

;—>
L (— reference —) —J

»— SELECT

A 4
v

<

WHEN — (fexpres:ion1) — command

L _J END — ; »«
OTHERWISE — command

reference
A valid z/OS Debugger PL/I scalar reference. An aggregate (array or structure) cannot be used as a
reference.

WHEN
Specifies that an expression or a group of expressions be evaluated and either compared with the

reference immediately following the SELECT keyword, or evaluated to true or false (if reference is
omitted).

Y

expression
A valid z/OS Debugger PL/I expression.

command
A valid z/OS Debugger command.

OTHERWISE
Specifies the command to be executed when every test of the preceding WHEN statements fails.

Usage notes

« You cannot use the SELECT command while you replay recorded statements by using the PLAYBACK
commands.

Example

When sum is equal to the value of c+ev, display a message. When sum is equal to either v or 0, display
a message. If sumis not equal to the value of either c+ev, fv, or 0, a z/OS Debugger error message is
issued.

SELECT (sum);
WHEN (c + ev) LIST ('Match on when group number 1');
WHEN (fv, ©) LIST ('Match on when group number 2');
END;

SET command

The SET command sets various switches that affect the operation of z/OS Debugger. Except where
otherwise specified, settings remain in effect for the entire debug session.

The following table summarizes the forms of the SET command.

Chapter 5. z/OS Debugger commands 205

“SET ASSEMBLER ON/OFF command”
on page 208

Controls the enablement of assembler debugging.

“SET ASSEMBLER STEPOVER
command” on page 209

Controls the behavior of the STEP OVER command while
debugging assembler compile units.

“SET AUTOMONITOR command” on
page 210

Controls the addition of data items to the Monitor window.

“SET CHANGE command” on page
212

Controls the frequency of checking the AT CHANGE
breakpoints.

“SET COLOR command (full-
screen and line mode)” on page
213

Provides control of the color, highlighting, and intensity
attributes.

“SET COUNTRY command” on page
216

Changes the current national country setting

“SET DBCS command” on page 216

Controls whether DBCS shift-in and shift-out codes are
recognized.

“SET DEFAULT DBG command” on
page 217

Defines a default partitioned data set DD name or DS name
that z/OS Debugger searches through to locate the .dbg files

“SET DEFAULT
on page 218

LISTINGS command”

Defines a default partitioned data set (PDS) ddname or
dsname searched for program source listings or source files.

“SET DEFAULT
page 219

MDBG command” on

Defines a default partitioned data set DD name or DS name
that z/OS Debugger searches through to locate the .mdbg
files.

“SET DEFAULT
(full-screen
220

SCROLL command
mode)” on page

Sets the default scroll amount.

“SET DEFAULT
page 221

VIEW command” on

Controls the default view for assembler compile units.

“SET DEFAULT
(full-screen

WINDOW command
mode)"” on page

Sets the window that is affected by a window referencing
command.

222

“SET DISASSEMBLY command” on Controls whether the disassembly view is displayed in the

page 222 Source window.

“SET DYNDEBUG command” on page [Controls whether the Dynamic Debug facility is activated.

223

“SET ECHO command” on page 224 |Controls whether GO and STEP commands are recorded in the
log window.

“SET EQUATE command” on page Equates a symbol to a string of characters.

225

“SET EXECUTE command” on page [Controls whether commands are performed or just syntax

226 checked.

“SET EXPLICITDEBUG command” on [Controls whether explicit debug mode is active.

page 226

“SET FIND BOUNDS command” on Controls the columns searched in the Source window and in

page 227 line mode.

206 IBM z/OS Debugger: Reference and Messages

“SET FREQUENCY command” on
page 228

Controls whether statement executions are counted.

“SET HISTORY command” on page
229

Specifies whether entries to z/OS Debugger are recorded in
the history table.

“SET IGNORELINK command” on
page 229

Specifies whether to ignore any new LINK level (nested
enclave).

“SET INTERCEPT command (C and
C++)"” on page 230

Intercepts input to and output from specified files. Output
and prompts for input are displayed in the log.

“SET INTERCEPT command (COBOL,
full-screen mode, line mode,
batch mode)” on page 231

Intercepts input to and output from the CONSOLE. Output and
prompts for input are displayed in the log.

“SET INTERCEPT command (COBOL,
remote debug mode)” on page
232

Intercepts output from COBOL DISPLAY statements. Output is
displayed in the Debug Console.

“SET KEYS command (full-screen
mode)"” on page 232

Controls whether PF key definitions are displayed.

“SET LDD command” on page 233

Controls how debug data is loaded for assemblies containing
multiple CSECTs.

“SET LIST BY SUBSCRIPT command
(COBOL)" on page 234

Controls whether z/OS Debugger displays elements in an
array as they are stored in memory.

“SET LIST BY SUBSCRIPT command
(Enterprise PL/I, full-screen
mode only)” on page 236

Controls whether z/OS Debugger displays elements in an
array as they are stored in memory.

“SET LIST TABULAR command” on
page 237

Controls the formatting of the output of the LIST command.

“SET LOG command” on page 237

Controls the logging of output and assignment to the log file.

“SET LOG NUMBERS command
(full-screen mode)” on page
239

Controls whether line numbers are shown in the log window.

“SET LONGCUNAME command” on
page 239

Controls whether a long or a short CU name is shown.

“SET MDBG command” on page 240

Associates a .mdbg files to one load module or DLL.

“SET MONITOR command” on page
241

Controls the format and layout of variable names and values
displayed in the Monitor window.

“SET MSGID command” on page
243

Controls whether message identifiers are shown.

“SET NATIONAL LANGUAGE
command” on page 243

Switches your application to a different run-time national
language.

“SET PACE command” on page 244

Specifies the maximum pace of animated execution.

“SET PFKEY command” on page
245

Associates a z/OS Debugger command with a PF key.

“SET POPUP command” on page
246

Controls the number of lines displayed in the Command pop-
up window.

“SET PROGRAMMING LANGUAGE
command” on page 246

Sets the current programming language.

Chapter 5. z/OS Debugger commands 207

“SET PROMPT command (full-
screen mode)"” on page 247

Controls the display of the current program location.

“SET QUALIFY command” on page
248

Simplifies the identification of references and statement
numbers by resetting the point of view.

“SET REFRESH command (full-
screen mode)” on page 250

Controls screen refreshing when the SCREEN setting is ON.

“SET RESTORE command” on page
251

Controls the automatic and manual restoring of settings,
breakpoints, and monitor specifications.

“SET REWRITE command (full-
screen mode)” on page 252

Forces a periodic screen rewrite.

“SET SAVE command” on page 253

Controls the automatic saving of settings, breakpoints, and
monitor specifications.

“SET SCREEN command (full-
screen mode)"” on page 256

Controls how information is displayed on the screen.

“SET SCROLL DISPLAY command
(full-screen mode)” on page
257

Controls whether the scroll field is displayed.

“SET SEQUENCE command (PL/I)"
on page 257

Controls whether z/OS Debugger interprets data after column
72 as a sequence number.

“SET SOURCE command” on page
257

Associates a source listing or source file with one or more
compile units.

“SET SUFFIX command (full-
screen mode)” on page 259

Controls the display of the Source window suffix area.

“SET TEST command” on page 260

Overrides the initial TEST run-time options specified at
invocation.

“SET WARNING command (C, C++,
COBOL, and PL/I)" on page 261

Controls display of the z/OS Debugger warning messages and
whether exceptions are reflected to the application program.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“SET command (COBOL)” on page 264

SET ASSEMBLER ON/OFF command

A disassembled compilation unit is a CU that was not compiled with the TEST compiler option and has not
been used as the operand of a LOADDEBUGDATA command. The SET ASSEMBLER ON command enables
a subset of the functions enabled by the SET DISASSEMBLY ON command. The following behavior is
enabled for disassembled compilation units by the SET ASSEMBLER ON command

 You can stop in a disassembly CU by using the commands:
— AT APPEARANCE =%
— AT APPEARANCE name
« You can display the names of disassembled CUs by using the following commands:
DESCRIBE CUS
LIST
LIST NAMES CUS
QUERY SOURCE

208 IBM z/0OS Debugger: Reference and Messages

ON
»— SET — ASSEMBLER [1 ;>
L OFF J

OFF
Disables the display of data that is useful while you debug an assembler program.

ON
Enables the display of data that is useful while you debug an assembler program.

Usage notes

» You can also use the SET DISASSEMBLY ON to control the display of information that is useful while
you debug an assembler program.

« You can use this command in remote debug mode.
Example

To include disassembly compile units in the list of compile units displayed by the LIST NAMES CUS and
DESCRIBE CUS commands, enter the following command:

SET ASSEMBLER ON ;

The next time you enter the LIST NAMES CUS or DESCRIBE CUS command, the disassembly compile
units are displayed in the list of compile units.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET DISASSEMBLY command” on page 222
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

SET ASSEMBLER STEPOVER command

Specifies how z/0S Debugger processes STEP OVER commands in assembler compile units. When
EXTONLY is in effect, z/OS Debugger only steps over calls to external subroutines. When EXTINT is in
effect, z/OS Debugger steps over calls to external and internal subroutines. External subroutines are
subroutines that are outside the current compile unit; internal subroutines are subroutines that are inside
the current compile unit.

z/0OS Debugger returns control to you the next time it runs any instruction in the current compile unit
(CSECT) when either of the following situations occur:

« EXTONLY is in effect
- EXTINT is in effect and the assembler program calls an external subroutine

z/0OS Debugger assumes that the subroutine you want to step over returns to the instruction that follows
the call to that subroutine when all of the following situations occur:

« EXTINT is in effect
« The function is an internal subroutine

« The address that immediately follows the instruction where you are currently stopped contains an
executable instruction (not data)

z/0S Debugger assumes that you use one of the following instructions to call internal subroutines:
- BAL

- BAS

« BRAS

« BALR

BASR

Chapter 5. z/OS Debugger commands 209

+ BASSM
« BRASL

r EXTONLY j
»— SET — ASSEMBLER — STEPOVER [Hea)

L EXTINT

EXTONLY
Specifies that z/OS Debugger steps over external subroutines and steps through internal subroutines.

EXTINT
Specifies that z/OS Debugger steps over external and internal subroutines.

Usage notes

« If EXTINT is in effect and an internal subroutine does not return to the instruction that immediately
follows the call to that subroutine, one of the following situations might occur:

z/0S Debugger might not regain control

z/0S Debugger might regain control only when another breakpoint is run

z/0S Debugger might regain control only when an external event occurs

z/0S Debugger might not regain control and the program runs until it terminates
« You can use this command in remote debug mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“SET ASSEMBLER ON/OFF command” on page 208

“STEP command” on page 267

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

SET AUTOMONITOR command

Controls the monitoring of data items for the statement that z/OS Debugger will run next, the most recent
statement that z/OS Debugger ran, or both. The initial setting is OFF.

AUTOMONITOR works only for the following compile units:

« COBOL or PL/I compile units compiled with the SYM suboption of the TEST compiler option. COBOL
programs compiled with Enterprise COBOL for z/OS, Version 4.1 or later, or PL/I programs compiled
with Enterprise PL/I Version 4.4 or later do not need the SYM suboption of the TEST compiler option.

- assembler, disassembly, or LangX COBOL compile units

« C/C++ compile units compiled with the z/OS 2.1 XL C/C++ compiler or later, with the
DEBUG(FORMAT(DWARF)) compiler option.

The SET AUTOMONITOR command does not work for compile units written in any other language.
In addition, the compile unit must be compiled or assembled with one of the following compilers or
assemblers:

« Enterprise COBOL for z/0S, Version 4

« Enterprise COBOL for z/OS and 0S/390, Version 3 Release 2 or later

« Enterprise COBOL for z/OS and 0S/390, Version 3 Release 1, with APAR PQ63235 installed
« COBOL for 0S/390 & VM, Version 2, with APAR PQ63234 installed

- OS/VS COBOL, Version 1 Release 2.4

« Enterprise PL/I for z/OS and 0S/390, Version 3 Release 2 or later

« High Level Assembler for MVS & VM & VSE, Version 1 Release 4 or later

« Any compiler used to generate an EQALANGX file for LangX COBOL

210 IBM z/OS Debugger: Reference and Messages

« 7/0S 2.1 XL C/C++ compiler or later

NOLOG CURRENT
oL L [I
LLOG—j tREVIOUﬂ
BOTH

;>
OFF J

»— SET — AUTOMONITOR l

ON
Enables monitoring of data items for the statement that z/OS Debugger will run next, the most recent
statement that z/OS Debugger ran, or both. Specify the LOG suboption to save information in the log
file.

OFF

Disables monitoring of all data items. Information is not saved in the log file.
LOG

Saves information in the log file.
NOLOG

Does not save information in the log file.
CURRENT

Monitor data items on the statement that z/OS Debugger will run next. This is the default.
PREVIOUS

Monitor data items on the most recent statement that z/OS Debugger ran.
BOTH

Monitor data items for the statement that z/OS Debugger will run next and the most recent statement
that z/OS Debugger ran.

Usage notes

» For Enterprise COBOL for z/OS Version 5, if a statement uses LENGTH OF <reference>,itisthe
length of the reference that is shown in the automonitor output, not the value of <reference>.

« You can use this command in remote debug mode.

« If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, you
can use the SET AUTOMONITOR command while you replay recorded statements with the PLAYBACK
commands. However, you cannot use the BOTH or PREVIOUS parameters.

« If you enter the SET AUTOMONITOR ON LOG command for a compile unit that was compiled with
a compiler that does not support automonitoring, then z/OS Debugger writes the breakpoint location
into the log. This provides a record of the breakpoints encountered (breakpoint trace). No variable
information is displayed.

« To record the breakpoints encountered (breakpoint trace) in the log file, enter the following commands:
SET AUTOMONITOR ON LOG; AT % GO;.For compile units compiled with a compiler that supports
automonitoring, the statement location, the variable names, and the value of the variables are saved
into the log. For other compile units, the statement location is saved into the log.

« If you are debugging programs compiled with a PL/I compiler earlier than Enterprise PL/I for z/OS
Version 3 Release 5, target variables are not listed. For example, in the following PL/I statement only J
and its value is displayed:

I=J+1

« For assembler and disassembly, z/OS Debugger displays only 32-bit general registers, floating-point
registers, and storage operands. z/OS Debugger displays them in the following manner:

— Register operands are displayed in numeric order.
— Storage operands are displayed in the order S1, S2, and S4.

Chapter 5. z/OS Debugger commands 211

— When the storage operand is a single symbol, the symbol name is displayed in the
automonitor section of the Monitor window. Otherwise, the specified operand is displayed as
a comment and the _STORAGE function is used to display the storage contents. For example,
_STORAGE (X'1F3C8'::4)) is used to display a four-byte storage operand at address X'1F3C8'.

« In an assembler compile unit, the SET AUTOMONITOR command provides information about a single
machine instruction only. Even in the NOMACGEN view, SET AUTOMONITOR provides information about
only one machine instruction and not all operands of the current macro invocation.

« For LangX COBOL, array references are not included in the AUTOMONITOR output. In addition, when a
statement is continued to subsequent lines, operands coded on continuation lines will not be displayed
for VS COBOL II and Enterprise COBOL.

- To disable monitoring of all data items, you can enter the SET AUTOMONITOR OFF or CLEAR MONITOR
n commands, where n is the monitor number of an automonitor entry. You can also use CL prefix
command on an entry in Monitor window.

« In the AUTOMONITOR section of the Monitor window, z/OS Debugger displays the values of the
variables in their declared data type. You can change this behavior in the following ways:

— To display the value in hexadecimal format for one time, enter the HEX command in the prefix area
of that item. When you step through your program, z/OS Debugger reverts the display to the declared
data type.

— To continuously display the value in hexadecimal format, enter one of the following commands:

- MONITOR HEX n, where nis the monitor number of an entry in the AUTOMONITOR section. When
you step through your program, z/OS Debugger displays the value of the variable in hexadecimal
format until you enter the MONITOR DEF n command, where nis the same number you used for
the MONITOR HEX command.

- HEX in the prefix area of the AUTOMONITOR line ("********** AUTOMONITQR **********! \When
you step through your program, z/OS Debugger displays the value of all the variables in the
AUTOMONITOR section in hexadecimal format until you enter the DEF command in the prefix area
of the AUTOMONITOR line.

Use the PREVIOUS and BOTH options while you step (by using the STEP command) through a program
to see the values of a variables before and after a statement is run.

If you use The PREVIOUS or BOTH options and run through your program with the GO command, z/0S
Debugger displays the value of a variable on the line that z/OS Debugger ran most recently, which might
not be the line that you see in the Source window immediately before the current line.

- When control is transferred between enclaves and any of the following settings are in effect, z/OS
Debugger cannot determine the data from the previous enclave:

— SET AUTOMONITOR ON LOG with PREVIOUS or BOTH
— SET AUTOMONITOR ON NOLOG with PREVIOUS or BOTH

z/0S Debugger displays a message.

You can list a single element of an array only for programs compiled with Enterprise PL/I for z/OS,
Version 4 or later.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

SET CHANGE command
Controls the frequency of checking the AT CHANGE breakpoints. The initial setting is STATEMENT/LINE.

212 IBM z/OS Debugger: Reference and Messages

r— STATEMENT j
»— SET — CHANGE ; >
ALL
BLOCK
LINE
. PATH J
STATEMENT
Specifies that the AT CHANGE breakpoints are checked at all statements. STATEMENT is equivalent to
LINE.
ALL
Specifies that the AT CHANGE breakpoints are checked at all statements, block entry and exits, and
path points.
BLOCK

Specifies that the AT CHANGE breakpoints are checked at all block entry and exits, except for C and
C++ nested blocks.

LINE
Is equivalent to STATEMENT.

PATH
Specifies that the AT CHANGE breakpoints are checked at all path points.

Examples

« Specify that AT CHANGE breakpoints are checked at all statements.
SET CHANGE;
« Specify that AT CHANGE breakpoints are checked at all path points.

SET CHANGE PATH;

SET COLOR command (full-screen and line mode)

Provides control of the color, highlighting, and intensity attributes when the SCREEN setting is ON. The
color, highlighting, and intensity keywords can be specified in any order.

»— SET — COLOR —| color_attributes |—| UI_elements |— e

color_attributes

j CYCLE 1
1 BLUE BLINK W HIGH (J
GREEN NONE LOW
PINK M— REVERSE —
RED ~— UNDERLINE —

M TURQUOISE —
WHITE

~—— YELLOW —~

UI_elements

Chapter 5. z/OS Debugger commands 213

CURSOR

»d
L)

COMMAND — LINE

s
1f—d

LOG — LINES
M MEMORY ADDRESS

M—— CHARACTER —
M HEXADECIMAL —
M INFORMATION —

—— OFFSET ——

M——— MONITOR AREA

L LINES —J

M——-— PROGRAM — OUTPUT ——

M— SOURCE AREA

M BREAKPOINTS —
M—— CURRENT —
PREFIX
N SUFFIX o

L FIELD

TEST INPUT

J
OUTPUT —J

M———TITLE L FIELDS _J
HEADERS

L MARKER

WINDOW — HEADERS ——~

M——— TARGET

—— TOFEOF

CYCLE
Causes the color to change to the next one in the sequence of colors. The sequence follows the order
shown in the syntax diagram.

BLINK

Causes the characters to blink (if supported by the terminal).
NONE

Causes the characters to appear in normal type.
REVERSE

Transforms the characters to reverse video (if supported by the terminal).
UNDERLINE

Causes the characters to be underlined (if supported by the terminal).
HIGH

Causes screen colors to be high intensity (if supported by the terminal).
LOW

Causes screen colors to be low intensity (if supported by the terminal).
CURSOR

Specifies that cursor pointing is used to select the field. Optionally, you can type in the field name (for
example, COMMAND LINE) as shown in the syntax diagram.

214 IBM z/0OS Debugger: Reference and Messages

COMMAND LINE
Selects the command input line (preceded by ===>).

LOG LINES
Selects the line number portion of the log window.

MEMORY ADDRESS
Selects the address column of the memory dump area.

MEMORY BASE ADDRESS
Selects the history lines and the base address of the information area.

MEMORY CHARACTER
Selects the character column of the memory dump area.

MEMORY HEXADECIMAL
Selects the hexadecimal column of the memory dump area.

MEMORY INFORMATION
Selects the history lines of the information area.

MEMORY OFFSET
Selects the offset column of the memory dump area.

MONITOR AREA
Selects the primary area of the monitor window.

MONITOR LINES
Selects the line number portion of the monitor window.

PROGRAM OUTPUT
Selects the application program output displayed in the log window.
SOURCE AREA
Selects the primary area of the Source window.
SOURCE BREAKPOINTS
Selects the source prefix fields next to statements where breakpoints are set.

SOURCE CURRENT
Selects the line containing the source statement that is about to be performed.

SOURCE PREFIX
Selects the statement identifier column at the left of the Source window.

SOURCE SUFFIX
Selects the frequency column at the right of the Source window.

TARGET FIELD
Selects the target of a FIND command in full-screen mode, if found.

TEST INPUT

Selects the z/OS Debugger input displayed in the log window.
TEST OUTPUT

Selects the z/OS Debugger output displayed in the log window.

TITLE FIELDS
Selects the information fields in the top line of the screen, such as current programming language
setting or the current location within the program.

TITLE HEADERS
Selects the descriptive headers in the top line of the screen, such as location.

TOFEOF MARKER
Selects the top-of-file and end-of-file lines in the session panel windows.

WINDOW HEADERS
Selects the header lines for the windows in the main session panel.

Examples

« Set the Source window display area to yellow reverse video.

Chapter 5. z/OS Debugger commands 215

SET COLOR YELLOW REVERSE SOURCE AREA;
« Set the monitor window display area to high intensity green.

SET COLOR HIGH GREEN MONITOR AREA;

SET COUNTRY command

Changes the current national country setting for the application program. It is available only where
supported by Language Environment or when running without the Language Environment run time. The
IBM-supplied initial country code is US.

»— SET — COUNTRY — country code — ; >«

country_code
A valid two-letter set that identifies the country code used. The country code can have one of the
following values:

United States: US
Japanese: JP

Country codes cannot be truncated.
Usage notes

« This setting affects both your application and z/OS Debugger.

- At the beginning of an enclave, the settings are those provided by Language Environment, your
operating system, or the z/OS Debugger run-time options. For nested enclaves, the parent's settings
are restored upon return from a child enclave.

Example

Change the current country code to correspond to Japan.

SET COUNTRY JP;

SET DBCS command

Controls whether shift-in and shift-out codes are interpreted on input and supplied on DBCS output. SET
DBCS is valid for all programming languages. The initial setting is OFF.

ON
»— SET — DBCS [1 ;>
LOFFJ

ON
Interprets shift-in and shift-out codes. If you debugging in full-screen mode and your terminal is not
capable of displaying DBCS characters, this option is not available.

OFF
Ignores shift-in and shift-out codes.

Usage notes

« If you enter the commands SET NATIONAL LANGUAGE ENU andthen SET DBCS ON, z/OS Debugger
resets the national language to UEN to remain compatible with DBCS characters.

« If NATIONAL LANGUAGE is setto JPN or KOR and you are using full-screen mode, enter the SET DBCS
ON command so that z/OS Debugger displays messages correctly.

Example

Specify that shift-in and shift-out codes are interpreted.

216 IBM z/OS Debugger: Reference and Messages

SET DBCS ON;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET NATIONAL LANGUAGE command” on page 243

SET DEFAULT DBG command

Defines a default partitioned data set DD name or DS name that z/OS Debugger searches through to
locate the .dbg files. The .dbg files are generated by the z/OS XL C/C++ compiler when you select the
FORMAT (DWARF) suboption of the DEBUG compiler option. The compiler assigns a hame to the file based
on what you specified in the FILE suboption of the DEBUG compiler option.

»— SET — DEFAULT — DBG He o

ddname

dsn
ddname

Specifies a valid z/OS DD name. If the operand is less than nine characters long and does not contain
a period, z/OS Debugger interprets it as a DD name.

dsn
Specifies a valid, fully-qualified z/OS partitioned data set name.

(dsn, dsn, ...)
Specifies a list of valid z/OS partitioned data set names.

Usage notes

« You can use this command in remote debug mode.
« If you do not specify a ddname or dsn, z/OS Debugger clears any previous default dbg setting.
- If the data set name is too long to be typed on one line, suffix it with a trailing hyphen.

- If you are debugging in a CICS or UNIX System Services environment, you cannot use the ddname
parameter.

Examples
- Indicate that the default .dbg file is allocated to DS name SVTRSAMP .TS99992 . MYDBG.

SET DEFAULT DBG SVTRSAMP.TS99992.MYDBG;

- The .dbg file for the program MYPROG is in SVTRSAMP . TS99992 . MYDBG, which was allocated by using
the following command:

ALLOC DDNAME (ITEM1) DSNAME ('SVTRSAMP.TS99992.MYDBG') SHR
To specify the location, enter the following command:
SET DEFAULT DBG ITEM1;

« The .dbg file for the program MYPROG is in JSMITH.CPGMS. DBG, which was allocated by using the
following command:

ALLOC FI(DBGLIST) DAT('MJONES.OTHER.DBG' 'JSMITH.CPGMS.DBG')

To specify the location, enter the following command:

Chapter 5. z/OS Debugger commands 217

SET DEFAULT DBG DBGLIST;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

IBM z/0S Debugger User's Guide

“SET SOURCE command” on page 257

“SET DEFAULT MDBG command” on page 219

“SET MDBG command” on page 240

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511
“Specifying the location of source, listing, or separate debug file in remote debug mode by using
environment variables” on page 516

"How does z/OS Debugger locate source, listing, or separate debug files?" in the IBM z/0OS Debugger
User's Guide

SET DEFAULT LISTINGS command

Defines a default partitioned data set DD name or DS name whose members are searched for program
source, listings, or separate debug files.

»— SET — DEFAULT — LISTINGS e

M———ddname ———

dsn
ddname

Specifies a valid z/OS DD name. If the operand is less than nine characters long and does not contain
a period, it is interpreted as a DD name.

The ddname form cannot be used if the data set allocated to it is C, C++ or Enterprise PL/I source and
you specify the EQAOPTS SUBSYS command to enable access to the source file in a library system.

dsn
Specifies a valid, fully-qualified z/OS partitioned data set name.

(dsn, dsn,)
Specifies a list of valid z/OS partitioned data set names.

Usage notes

« You can use this command in remote debug mode.

« The LISTINGS keyword cannot be abbreviated.

« If you do not specify a ddname or dsn, any previous default listing setting is cleared.

- If the data set name is too long to be typed on one line, suffix it with a trailing hyphen.

« The SET SOURCE ON command has a higher precedence than the SET DEFAULT LISTINGS
command.

« The SET DEFAULT LISTINGS command has no effect on a disassembly compile unit. However, it is
saved and it might apply later if the compile unit is specified as the operand of the LOADDEBUGDATA
command.

- If you are debugging in a CICS environment, you cannot use the ddname parameter.

« If you compiled your C or C++ program with the FORMAT (DWARF) suboption of the DEBUG compiler
option, you cannot use the SET DEFAULT LISTINGS command to specify the new location of the .dbg
file nor the .mdbg file.

Examples

218 IBM z/0OS Debugger: Reference and Messages

- Indicate that the default listings file is allocated to DS name SVTRSAMP .TS99992 .MYLIST.
SET DEFAULT LISTINGS SVTRSAMP.TS99992.MYLIST;

 The listing for the program MYPROG is in SVTRSAMP.TS99992 .MYLIST, which was allocated by using
the following command:

ALLOC DDNAME (ITEM1) DSNAME ('SVTRSAMP.TS99992.MYLIST') SHR
To specify the location, enter the following command:
SET DEFAULT LISTINGS ITEM1;

« The listing for the program MYPROG is in JSMITH.COBPGMS.LISTING, which was allocated by using
the following command:

ALLOC FI(CBLIST) DAT('MJONES.OTHER.LISTING' 'JSMITH.COBPGMS.LISTING')
To specify the location, enter the following command:
SET DEFAULT LISTINGS CBLIST

« The listing for the program AVER is in myid.source.listing (AVERLIST). If you enter the command
SET DEFAULT LISTINGS myid.souzrce.listing, z/OS Debugger looks for a member named AVER
inthe PDS myid.source.listing. Because the member is called AVERLIST, the listing is not found.
To specify the location, enter the following command:

SET SOURCE ON (AVER) myid.source.listing(AVERLIST);

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

IBM z/0S Debugger User's Guide

“SET SOURCE command” on page 257

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

"How does z/OS Debugger locate source, listing, or separate debug files?" in the IBM z/0OS Debugger
User's Guide

SET DEFAULT MDBG command

Defines a default partitioned data set DD name or DS name that z/OS Debugger searches through to
locate the .mdbg files. You create .mdbg files with the dbgld command or the CDADBGLD utility.

»— SET — DEFAULT — MDBG ; P

M———— ddname ———

dsn
ddname

Specifies a valid z/OS DD name. If the operand is less than nine characters long and does not contain
a period, z/OS Debugger interprets it as a DD name.

dsn
Specifies a valid, fully-qualified z/OS partitioned data set name.

(dsn, dsn, ...)
Specifies a list of valid z/OS partitioned data set names.

Usage notes

Chapter 5. z/OS Debugger commands 219

« Before you can use this command, you or your site must specify YES for the EQAOPTS MDBG command,
as described in Chapter 6, “EQAOPTS commands,” on page 285. In environments that support
environment variables, you can use the EQA_USE_MDBG environment variable to override this option
for a specific debugging session.

« You can use this command in remote debug mode.

« If you do not specify a ddname or dsn, z/OS Debugger clears any previous default mdbg setting.
- If the data set name is too long to be typed on one line, suffix it with a trailing hyphen.

« The SET MDBG command has a higher precedence than the SET DEFAULT MDBG command.

- If you are debugging in a CICS or UNIX System Services environment, you cannot use the ddname
parameter.

Examples
- Indicate that the default .mdbg file is allocated to DS name SVTRSAMP.TS99992 . MYMDBG.

SET DEFAULT MDBG SVTRSAMP.TS99992.MYMDBG;

- The .mdbg file for the DLL MYPROG is in SVTRSAMP.TS99992 . MYMDBG, which was allocated by using
the following command:

ALLOC DDNAME (ITEM1) DSNAME ('SVTRSAMP.TS99992.MYMDBG') SHR
To specify the location, enter the following command:
SET DEFAULT MDBG ITEMZ;

« The .mdbg file for load module MYLOAD is in JSMITH.CPGMS.MDBG, which was allocated by using the
following command:

ALLOC FI(CMDBG) DAT('MJONES.OTHER.MDBG' 'JSMITH.CPGMS.MDBG')
To specify the location, enter the following command:

SET DEFAULT MDBG CMDBG;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks

“SET SOURCE command” on page 257

“SET DEFAULT DBG command” on page 217

“SET MDBG command” on page 240

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511
“Specifying the location of source, listing, or separate debug file in remote debug mode by using
environment variables” on page 516

"How does z/0OS Debugger locate source, listing, or separate debug files?" in the IBM z/OS Debugger
User's Guide.

"Specifying whether z/OS Debugger searches for .mdbg files" in the IBM z/0S Debugger Customization
Guide

SET DEFAULT SCROLL command (full-screen mode)

Sets the default scroll amount that is used when a SCROLL command is issued without the amount
specified. The initial setting is PAGE.

220 IBM z/0OS Debugger: Reference and Messages

»— SET — DEFAULT — SCROLL CSR ; >

M— DATA —
M—— HALF —
M integer —

M— MAX —

— PAGE —
CSR
Scrolls in the specified direction until the character where the cursor is positioned reaches the edge of
the window.
DATA

Scrolls by one line less than the window size or by one character less than the window size (if moving
left or right).

HALF
Scrolls by half the window size.

integer
Scrolls the specified number of lines (up or down) or the specified number of characters (left or right).
Maximum value is 9999.

MAX
Scrolls in the specified direction until the limit of the data is reached.

PAGE
Scrolls by the window size.

Example

Set the default amount to half the size of the window.

SET DEFAULT SCROLL HALF;

SET DEFAULT VIEW command

Controls the default view for assembler compile units.

»— SET — DEFAULT — VIEW T STANDARD j_ ; P
NOMACGEN

STANDARD
Indicates that whenever a LOADDEBUGDATA (LDD) command is issued for an assembler CU, the initial
view is to contain all source statements.

NOMACGEN
Indicates that whenever a LOADDEBUGDATA (LDD) command is issued for an assembler CU, the initial
view is to contain only source statements that were not generated via macro expansion (similar to the
assembler listing when PRINT NOGEN is in effect).

Usage notes

« SET DEFAULT VIEW applies only to assembler compile units.
 You can use this command in remote debug mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

Chapter 5. z/OS Debugger commands 221

SET DEFAULT WINDOW command (full-screen mode)

Specifies which physical window is selected when a window referencing command (for example, FIND,
SCROLL, or WINDOW) is issued without explicit window identification and the cursor is outside the physical
window areas. The initial setting is SOURCE.

»— SET — DEFAULT — WINDOW LOG ;>
MEMORY
MONITOR
SOURCE
LOG
Selects the session log window.
MEMORY
Selects the Memory window.
MONITOR
Selects the monitor window.
SOURCE

Selects the source listing window.
Example

Set the default to the monitor window for use with scrolling commands.

SET DEFAULT WINDOW MONITOR;

SET DISASSEMBLY command

A disassembled compilation unit is a CU that was not compiled with the TEST compiler option and has
not been used as the operand of a LOADDEBUGDATA command. The SET DISASSEMBLY ON command
enables the following behavior for disassembled compilation units:

« A disassembly view appears in the Source window whenever you qualify a disassembled compilation
unit. You can set breakpoints in the CU using the AT OFFSET command and you can step within the CU
using the STEP command.

 You can stop in a disassembly CU by using the following commands:
— AT APPEARANCE =%
— AT APPEARANCE name
— AT ENTRY =%
— STEP INTO
« You can display the names of disassembled CUs by using the following commands:

— DESCRIBE CUS
- LIST

— LIST NAMES CUS
— QUERY SOURCE

ON
»— SET — DISASSEMBLY OFFT ;b
ON
Specifies that the disassembly view is displayed in the Source window.
OFF

Turns off the disassembly view. This is the default setting.

222 IBM z/0OS Debugger: Reference and Messages

Usage notes

« The disassembly view is provided only for disassembled programs or programs written in supported
languages that do not have debug information.

« SET DISASSEMBLY ON is not supported in explicit debug mode. When explicit debug mode is active,
z/0S Debugger forces SET DISASSEMBLY OFF.

« You can use this command in remote debug mode.
Refer to the following topics for more information related to the material discussed in this topic.

- Related references
« Appendix A, “z/0OS Debugger commands supported in remote debug mode,” on page 511

SET DYNDEBUG command

Controls the activation or deactivation of the Dynamic Debug facility.
The Dynamic Debug facility must be activated in order to debug the following types of programs:

« COBOL programs compiled with the Enterprise COBOL for z/OS Version 4 compiler (and earlier)
compiled with the NONE or NOHOOK suboptions of the TEST compiler option.

« COBOL programs compiled with the Enterprise COBOL for z/OS Version 5 compiler compiled with the
TEST compiler option.

« PL/I programs compiled with Enterprise PL/I for z/OS, Version 3 Release 4 or later, and the NOHOOK
suboption of the TEST compiler option

- assembler programs

« disassembled programs (using the disassembly view)

« LangX COBOL programs?

« programs that run without the Language Environment run time?l

You can use the Dynamic Debug facility to improve the performance of programs with compiled-in hooks
(compiled with COBOL, C/C++, and PL/I compilers) while you debug them.

The initial setting of DYNDEBUG can be controlled by the EQAOPTS DYNDEBUG command. If no EQAOPTS
DYNDEBUG command is used, the initial setting in ON.

ON
»— SET — DYNDEBUG f_ T ; >

LOFFJ ,

ON
Activates the Dynamic Debug facility.

OFF
Deactivates the Dynamic Debug facility.

Usage notes

 After a dynamic debug hook has been inserted, either explicitly or implicitly, into any program during a
debugging session, you cannot use the SET DYNDEBUG OFF command.

« You can use this command in remote debug mode.

 You can debug COBOL programs compiled with the NOHOOK suboption of the TEST compiler option of
Enterprise COBOL for z/0S, Version 4, with the Dynamic Debug facility.

1 In non-CICS environments, SVC screening must be enabled to debug LangX COBOL programs, programs
that run without the Language Environment runtime, or programs that are loaded by using the MVS LOAD
and LINK macros. See IBM z/0S Debugger Customization Guide for instructions on how to manage SVC
screening.

Chapter 5. z/OS Debugger commands 223

« To debug COBOL programs compiled with the TEST (NONE) compiler option and use the Dynamic
Debug facility, you must compile with one of the following compilers:

— Enterprise COBOL for z/OS and 0S/390, Version 3
— COBOL for 0S/390 & VM, Version 2 Release 2
— COBOL for 0S/390 & VM, Version 2 Release 1, with APAR PQ40298

- The Dynamic Debug facility does not support attention interrupts for assembler, disassembly, or LangX
COBOL programs or for programs compiled using the following suboptions of the compilers:

— NOHOOK suboption of the TEST compiler option for the following compilers:

- Enterprise COBOL for z/OS, Version 4
- Enterprise PL/I for z/OS, Version 3.4 or later
— NONE suboption of the TEST compiler option for the following compilers:

- Enterprise COBOL for z/OS and 0S/390, Version 3
- COBOL for 0S/390 & VM, Version 2
« When the following compilers are used with the suboption of the TEST compiler option that adds
compiled-in hooks, the Dynamic Debug facility can be used to add hooks at run time, which z/OS

Debugger uses instead of the compiled-in hooks. This can improve the performance of the program
while running under the control of z/OS Debugger.

— Any COBOL compiler supported by z/OS Debugger
— Any C/C++ compiler supported by z/OS Debugger
— Any PL/I compiler supported by z/OS Debugger

« Refer to your system administrator to determine if the Dynamic Debug facility is installed on your
system.

« The same program compiled with different TEST options may halt execution at different locations or
the same scenarios. For instance, if you compile a program with TEST (ALL, . ..) and step through
the first three lines, execution is halted on line four. However, if you compile the same program with
TEST (NONE, SYM, .. .) and step through the first three lines, execution is halted on line five. The
difference is due to optimization techniques used by the compiler.

A small arrowhead indicates where a z/OS Debugger would stop if the same program were compiled in
two different ways.

Program compiled with TEST(ALL) Program compiled with TEST(NONE)
000001 MOVE... 000001 MOVE...

000002 ADD... 000002 ADD...

»000003 LABEL: ... 000003 LABEL:

000004 MOVE... »000004 MOVE...

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

SET ECHO command

Controls whether GO and STEP commands are recorded in the log window when they are not
subcommands. The presence of long sequences of GO and STEP commands clutters the log window
and provides little additional information. SET ECHO makes it possible to suppress the display of these
commands. The contents of the log file are unaffected. The initial setting is ON.

224 IBM z/0OS Debugger: Reference and Messages

*
»— SET — ECHO ON) | ; >
L OFF _J L keyword J

ON
Shows given commands in the log window.

OFF
Suppresses given commands in the log window.

keyword
Can be GO (with no operand) or STEP.

*
Specifies that the command is applied to the GO and STEP commands. This is the default.

Examples

« Specify that the display of GO and STEP commands is suppressed.
SET ECHO OFF;

» Specify that GO and STEP commands are displayed.

SET ECHO ON *;

SET EQUATE command

Equates a symbol to a string of characters. The equated symbol can be used anywhere a keyword,
identifier, or punctuation is used in a z/OS Debugger command. When an equated symbol is found in a
z/0S Debugger command (other than the identifier operand in SET EQUATE and CLEAR EQUATE), the
equated symbol is replaced by the specified string before parsing continues.

»— SET — EQUATE — identifier — =— string — ; >«

identifier
An identifier that is valid in the current programming language. The maximum length of the identifier
is:

« For C, 32 SBCS characters
« For COBOL and LangX COBOL, 30 SBCS characters
« For PL/I, 31 SBCS characters

The identifier can contain DBCS characters.

string
A string constant in the current programming language. The maximum length of the replacement
string is 255 SBCS characters.

Usage notes

« Operands of the following commands are for environments other than the standard z/OS Debugger
environment (that is, TSO DS name, and so forth) and are not scanned for EQUATEd symbol substitution:

COMMENT

INPUT

SET DEFAULT LISTINGS

SET INTERCEPT ON/OFF FILE
SET LOG ON FILE

SET SOURCE (cu_spec)
SYSTEM/SYS

TSO

Chapter 5. z/OS Debugger commands 225

USE
« To remove an EQUATE definition, use the CLEAR EQUATE command.

« To remain accessible when the current programming language setting is changed, symbols that are
equated when the current programming language setting is C must be entered in uppercase and must
be valid in the other programming languages.

- If an EQUATE identifier coincides with an existing keyword or keyword abbreviation, EQUATE takes
precedence. If the EQUATE identifier is already defined, the new definition replaces the old.

« The equate string is not scanned for, or substituted with, symbols previously set with a SET EQUATE
command.

Examples

« Specify that the symbol INFO is equated to "ABC, DEF (H+1)". The current programming language
setting is either C or COBOL.

SET EQUATE INFO = "ABC, DEF (H+1)";

« Specify that the symbol tstlen is equated to the equivalent of a #define for structure pointing.
The current programming language setting is C. If the programming language changes, this lowercase
symbol might not be accessible.

SET EQUATE tstlen = "structl->member.b->c.len";
« Specify that the symbol VARVALUE is equated to the command LIST x.

SET EQUATE VARVALUE = "LIST x";

SET EXECUTE command

Controls whether commands from all input sources are performed or just syntax checked (primarily for
checking USE files). The initial setting is ON.

ON
»— SET — EXECUTE [;e
L OFF J

ON
Specifies that commands are accepted and performed.

OFF
Specifies that commands are accepted and parsed; however, only the following commands are
performed: END, GO, SET EXECUTE ON, QUIT, and USE.

Example

Specify that all commands are accepted and performed.

SET EXECUTE ON;

SET EXPLICITDEBUG command

Controls whether explicit debug mode is active.

When explicit debug mode is not active, z/OS Debugger automatically loads debug data for all high-level
language compile units compiled with the TEST or DEBUG compiler option unless you excluded the
compile unit or its containing load module by using the NAMES EXCLUDE statement.

When explicit debug mode is active, z/OS Debugger loads debug data only in the following cases:

226 IBM z/0OS Debugger: Reference and Messages

 z/OS Debugger always loads debug data for the compile unit which is active when z/OS Debugger first
becomes active, and the first compile unit of each enclave. In most cases, this is the entry compile unit
for the initial load module.

« When a compile unit appears, z/OS Debugger loads debug data whenever you previously entered a
LOADDEBUGDATA (LDD) command for the load module and compile unit.

« When a compile unit appears, z/OS Debugger loads debug data for a compile unit that you previously
specified on a NAMES INCLUDE CU statementand z/OS Debugger processed the containing load
module for any of the following reasons:

It is the initial load module.

It is a load module that was previously specified on an LDD command.

It is a load module that was previously specified on a NAMES INCLUDE LOADMOD statement.
It is a load module for which an implicit NAMES INCLUDE LOADMOD has been generated.

« z/OS Debugger loads debug data for the target of a deferred AT ENTRY command.

« z/OS Debugger loads debug data for the entry point compile unit for a load module processed by an AT
LOAD command.

« In CICS, when a matching DTCN or CADP profile is found, z/OS Debugger loads debug data for the
LoadMod and CU specified in DTCN or the Program and Compile Unit specified in CADP, unless the
specified name(s) contain a wildcard character (* or ?).

(— ON j
»— SET — EXPLICITDEBUG He o

LOFFJ

ON
Activate explicit debug mode.

OFF
Deactivate explicit debug mode. Explicit debug mode is initially not active.
Usage notes

« You can use this command in remote debug mode.

« The SET EXPLICITDEBUG ON command takes effect when you enter the command. By the time
you enter the command, z/OS Debugger has already processed the initial load module. To enable
explicit debug mode before z/OS Debugger processes the initial load module, use the EQAOPTS
EXPLICITDEBUG command.

« z/0OS Debugger does not support the SET DISASSEMBLY ON command in explicit debug mode. z/OS
Debugger forces it to OFF when you enable explicit debug mode.

- Use explicit debug mode to improve the performance of z/OS Debugger while debugging extremely
large or complex programs.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“LOADDEBUGDATA command” on page 165

SET FIND BOUNDS command

Specifies the default left and right columns for a FIND command in the Source window and in line mode
that does not specify any columns information. It is ignored in the Log and Monitor windows.

L ; >
*

Chapter 5. z/OS Debugger commands 227

»— SET — FIND — BOUNDS

leftcolumn
A positive integer that specifies the leftmost column for the search. This is supported only in the
Source window and in line mode. It is ignored in the Log and Monitor windows.

rightcolumn
A positive integer that specifies the rightmost column for the search. This is supported only in the
Source window and in line mode. It is ignored in the Log and Monitor windows.

Specifies that the length of each source record is used as the right column for the search. This is
supported only in the Source window and in line mode. It is ignored in the Log and Monitor windows.

Usage notes
« IfSET FIND BOUNDS has not been set, the default is 1 for leftcolumn and * for rightcolumn.

« If youenter SET FIND BOUNDS without operands, the result is 1 for leftcolumn and * for rightcolumn.

« If you do not specify column boundaries in a FIND command for the Source window or in line mode, the
boundaries set by the SET FIND BOUNdS command are used for the FIND command.

Example

If you want to find two different strings (paraa and variable-b) in COBOL’s Area B, first enter the
following command to set the boundaries of the search:

SET FIND BOUNDS 12 72;
Then enter the following FIND commands to search for the two strings:

FIND paraa;
FIND variable-b;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“FIND command” on page 116
“QUERY command” on page 192

SET FREQUENCY command
Controls whether statement executions are counted. The initial setting is OFF.
"
»— SET — FREQUENCY ; >

L OFF J M———cu spec ——
ON

Specifies that statement executions are counted.

OFF
Specifies that statement executions are not counted.

cu_spec
A valid compile unit specification. If omitted, all compile units with statement information are
processed.

Usage notes
« In the disassembly view, SET FREQUENCY is not supported.

228 IBM z/0OS Debugger: Reference and Messages

« Because the collection of frequency data can add a substantial amount of overhead, set the SET
FREQUENCY command to ON only when you intend to make use of this data. Do not routinely set the SET
FREQUENCY command to ON in debug sessions in which you do not intend to make use of this data.

« If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, you
can use the SET FREQUENCY command while you replay recorded statements by using the PLAYBACK
commands.

Example

Specify that statement executions are counted in compile units main and subx1.

SET FREQUENCY ON (main, subrl);

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“cu_spec” on page 13

“LIST FREQUENCY command” on page 153

“SET SUFFIX command (full-screen mode)” on page 259

SET HISTORY command

Specifies whether entries to z/OS Debugger are recorded in the history table and optionally adjusts the
size of the table. The history table contains information about the most recently processed breakpoints
and conditions. The initial setting is ON; the initial size is 100.

ON
»— SET — HISTORY J_ T ; >
L OFF J L integer J
ON
Maintains the history of invocations.
OFF

Suppresses the history of invocations.

integer
The number of entries kept in the history table.

Usage notes
« History is not collected for disassembly compile units.
Examples

« Adjust the history table size to 50 lines.
SET HISTORY 50;

 Turn off history recording.
SET HISTORY OFF;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“LIST LAST command” on page 153

SET IGNORELINK command

Specifies that any new LINK level (nested enclave) is ignored while the setting is ON. z/OS Debugger does
not gather information or stop at the programs in this newly created enclave. The initial setting is OFF.

Chapter 5. z/OS Debugger commands 229

ON
»— SET — IGNORELINK [=
L OFF J

ON
Programs in new enclaves (links) are ignored. z/OS Debugger does not stop at programs in new
enclaves.

OFF
Programs in new enclaves (links) are not ignored. z/OS Debugger stops at any breakpoint for a
program in new enclaves.

Usage notes

- A new enclave is created by language constructs like EXEC LINK or EXEC XCTL, which invoke a new
main program.

« This command is valid only in CICS programs.
 You can use this command in remote debug mode.
« DTCN or CADP profiles override the setting of SET IGNORELINK.

« You can use the STEP INTO command to step into a new enclave, which overrides the SET
IGNORELINK setting. However, this does not change the setting of SET IGNORELINK.

« If you use the STEP RETURN command, you can only return to the parent enclave if it was not ignored
by z/OS Debugger because at the time it was created, the setting of SET IGNORELINK was OFF.
Otherwise, z/OS Debugger runs to the next breakpoint in a previous enclave that was not ignored by
z/0S Debugger or it runs to the end of the application.

- The DISABLE DTCN, ENABLE DTCN, DISABLE CADP, and ENABLE CADP commands override the
setting of SET IGNORELINK. This allows you to debug the new enclave, but does not change the setting
of SET IGNORELINK.

« Breakpoints are not restored for a compile unit in a new enclave when the SET IGNORELINK settingis
ON.

« z/OS Debugger does not stop for any deferred entry breakpoints for a compile unit in a new enclave
when the SET IGNORELINK setting is ON.

 z/OS Debugger does not stop for any breakpoint in the new enclave when the SET IGNORELINK setting
is ON.

« Conditions raised in the application are reported regardless of the setting of SET IGNORELINK.

« You can use this command in a preferences, commands, or global preferences file so that it is run at the
beginning of every new debugging session.

« When both SET IGNORELINK ONand SET EXPLICITDEBUG ON are in effect, and you have run an
LDD, AT ENTRY, or NAMES INCLUDE for the initial load module and compile unit for the LINK target,
z/0S Debugger ignores the SET IGNORELINK for that specific LINK. However, this does not change the
setting of SET IGNORELINK.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“DISABLE command” on page 106
“ENABLE command” on page 112
“QUERY command” on page 192
“STEP command” on page 267

SET INTERCEPT command (C and C++)

Intercepts input to and output from specified files. Output and prompts for input are displayed in the log.

Only sequential I/O can be intercepted. I/0 intercepts remain in effect for the entire debug session,
unless you terminate them by entering SET INTERCEPT OFF command. The initial setting is OFF.

230 IBM z/OS Debugger: Reference and Messages

(— ON j
»— SET — INTERCEPT FILE — file_spec — ; >«

LOFFJ

ON
Turns on I/O interception for the specified file. Output appears in the log, preceded by the file specifier
for identification. Input causes a prompt entry in the log, with the file specifier identified. You can then
enter input for the specified file on the command line by using the INPUT command.

OFF
Turns off I/O interception for the specified file.

FILE file_spec
Avalid fopen () file specifier including stdin, stdout, or stderzx. The FILE keyword cannot be
abbreviated.

Usage notes

« For Enterprise COBOL for z/OS Version 5, ACCEPT is not supported.

- Intercepted streams or files cannot be part of any C I/O redirection during the execution of a nested
enclave.

 You cannot use the SET INTERCEPT command while you replay recorded statements by using the
PLAYBACK commands.

Examples

Turn on the I/0O interception for the fopen () file specifier dd:mydd. The current programming language
setting is C.

SET INTERCEPT ON FILE dd:mydd;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“INPUT command (C, C++, and COBOL)” on page 134
“SET REFRESH command (full-screen mode)” on page 250

SET INTERCEPT command (COBOL, full-screen mode, line mode, batch
mode)
Intercepts input to and output from the console. Output and prompts for input are displayed in the log.

Console I/O intercepts remain in effect for the entire debug session, unless you terminate them by
entering SET INTERCEPT OFF command. The initial setting is OFF.

(— ON j
»— SET — INTERCEPT CONSOLE — ; »«

LOFFJ

ON
Turns on console I/0 interception. z/OS Debugger displays output in the log, preceded by the
CONSOLE keyword to identify the output. Input causes a prompt entry in the log, with the CONSOLE
identified. You can then enter input for the console on the command line by using the INPUT
command.

OFF
Turns off console I/0 interception.

CONSOLE
Turns I/0O interception on or off for the console.

This consists of:

Chapter 5. z/0S Debugger commands 231

« Job log output from DISPLAY UPON CONSOLE
« Screen output (and confirming input) from STOP 'literal'
e Terminal input for ACCEPT FROM CONSOLE or ACCEPT FROM SYSIN.

Usage notes

« For CICS, SET INTERCEPT is not supported.

 You cannot use the SET INTERCEPT command while you replay recorded statements by using the
PLAYBACK commands.

Examples

Turn on the I/0 interception for the console. The current programming language setting is COBOL.

SET INTERCEPT CONSOLE;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“INPUT command (C, C++, and COBOL)” on page 134
“SET REFRESH command (full-screen mode)” on page 250

SET INTERCEPT command (COBOL, remote debug mode)

Intercepts output from COBOL DISPLAY statements. Output is displayed in the Debug Console. Output
intercepts remain in effect for the entire debug session, unless you terminate them by entering the SET
INTERCEPT OFF command. The initial setting is OFF.

ON
»— SET — INTERCEPT f_ T ;>

LOFFJ

ON
Turns on output interception. Output appears in the Debug Console.

OFF
Turns off output interception.

Examples

Turn on the output interception for the console.
SET INTERCEPT ON;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET REWRITE command (full-screen mode)” on page 252

SET KEYS command (full-screen mode)
Controls whether PF key definitions are displayed when the SCREEN setting is ON. The initial setting is ON.

»— SET — KEYS J_ONT rlzj ; e
WS) U

ON
Displays PF key definitions.

OFF
Suppresses the display of the PF key definitions.

232 IBM z/OS Debugger: Reference and Messages

12
Shows PF1-PF12 on the screen bottom.

24
Shows PF13-PF24 on the screen bottom.

Example

Specify that the display of the PF key definitions is suppressed.

SET KEYS OFF;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET PFKEY command” on page 245

SET LDD command

Controls how debug data is loaded for assemblies containing multiple CSECTs. The initial setting is
SINGLE.

»— SET — LDD tSINGLEj— Hea)
ALL

SINGLE
Indicates that subsequent LOADDEBUGDATA (LDD) commands that load debug data for a CU that was
assembled with other CSECTs are to load the debug data for the specified CU only.

ALL
Indicates that subsequent LOADDEBUGDATA (LDD) commands that load debug data for a CU that was
assembled with other CSECTs are to load the debug data for all CUs in the assembly.

Usage notes

« This command affects both deferred and non-deferred LDD commands.
« Ifthe target of the LDD is a LangX COBOL CU, the command has no effect.

« IfSET LDD ALL isin effect and you do the following tasks, you must enter a separate SET SOURCE
command for each CU in the assembly for which you previously entered an LDD command:

— You enter an LDD command for more than one CU in the same assembly.

— The debug data could not be found for these CUs.

— Subsequently, you enter a SET SOURCE command for one of these CUs.
« You can use this command in remote debug mode.

Examples
» Load debug data for all CSECTs in an assembly that contains CSECTs CS1, CS2, and CS3:

SET LDD ALL;
LDD CS1;

 Load debug data for CSECT’s CS1 and CS3 in an assembly that contains CSECTs CS1, CS2, and CS3:

SET LDD SINGLE;
LDD (CS1,CS3);

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

Related references

Chapter 5. z/OS Debugger commands 233

“LOADDEBUGDATA command” on page 165
Appendix A, “z/0OS Debugger commands supported in remote debug mode,” on page 511

SET LIST BY SUBSCRIPT command (COBOL)

Controls whether z/OS Debugger displays elements in an array as they are stored in memory.
The default setting is OFF.

r_-ON__W
»— SET — LIST — BY — SUBSCRIPT ; >

LOFFJ ’

ON

Indicates that z/OS Debugger displays elements of a COBOL array as they are stored in memory.
OFF

Indicates that z/OS Debugger displays elements of a COBOL array ordered by element.

Usage Notes

 For Enterprise COBOL for z/OS Version 5, the SET LIST BY SUBSCRIPT setting is ignored. The elements
of a COBOL array are always displayed as they are stored in memory.

 You can use this command in remote debug mode.

« For the remote debugger, you cannot change the setting of SET LIST BY SUBSCRIPT while
monitoring expressions. If you want to change the setting of SET LIST BY SUBSCRIPT, remove the
monitored expressions from the Monitor and Variables Views.

Examples

« Assume you declare the following structure in your program:

01 TEAM.
05 MyTeam OCCURS 3 TIMES.
10 Name.
15 LastName PIC X(20).
15 FirstName PIC X(15).
10 Phone PIC X(12).
10 IBMLab PIC X(20)

If you monitor TEAM by using SET LIST BY SUBSCRIPT OFF (the default setting), z/OS Debugger
displays the following output in the monitor window for the remote debugger, when you expand all

values:
TEAM
MYTEAM
NAME
LASTNAME
SUB(1) = 'Smith !
SUB(2) = 'Johnson !
SUB(3) = 'Williams !
FIRSTNAME
SUB(1) = 'Eva !
SUB(2) = 'Francisco !
SUB(3) = 'Randy !
PHONE
SUB(1) '408-463-1111"

SUB(2) = '408-463-2222'

SUB(3) '408-463-3333"'
IBMLAB
SUB(1) 'Silicon Valley Lab '

SUB(2) = 'Silicon Valley Lab '
= 'Lexington, Ky !

234 IBM z/0OS Debugger: Reference and Messages

If you monitor TEAM after running the SET LIST BY SUBSCRIPT ONcommand, z/OS Debugger
displays the following output in the monitor window for the remote debugger:

TEAM
MYTEAM
MYTEAM (1)
NAME
LASTNAME = 'Smith !
FIRSTNAME = 'Eva !
PHONE = '408-463-1111'
IBMLAB = 'Silicon Valley Lab '
MYTEAM(2)
NAME
LASTNAME = 'Johnson !
FIRSTNAME = 'Francisco !
PHONE = '408-463-2222'
IBMLAB = 'Silicon Valley Lab '
MYTEAM(3)

NAME
LASTNAME = 'Williams !
FIRSTNAME = 'Randy '
PHONE = '408-463-3333'
IBMLAB = 'Lexington, Ky !

« Assume you declare the same structure as in the above example:

01 TEAM.
05 MyTeam OCCURS 3 TIMES.
10 Name.
15 LastName PIC X(20).
15 FirstName PIC X(15).
10 Phone PIC X(12).
10 IBMLab PIC X(20).

If youissue MONITOR LIST (TEAM) with SET LIST BY SUBSCRIPT OFF (the default setting), z/OS
Debugger displays the following output in the Monitor window in MFI:

MONITOR -+----1----4----2----4----3----4----4----+----5----4+----6 LINE: 1 OF 19

Kkokkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx TOP OF MONITOR *kkkkkkkkkkkkkkkkkkkkkhkrkkkkkrk
R e e e G E R EE T Ry EEE

0001 1 01 TEAM

0002 02 MYTEAM

0003 03 NAME

0004 04 LASTNAME

0005 SUB (1) 'Smith !
0006 SUB(2) 'Johnson !
0007 SUB(3) 'Williams !
0008 04 FIRSTNAME

0009 SUB (1) 'Eva !

0010 SUB(2) 'Francisco !

0011 SUB(3) 'Randy !

0012 03 PHONE

0013 SUB(1) '408-463-1111"

0014 SUB(2) '408-463-2222"'

0015 SUB(3) '408-463-3333"

0016 03 IBMLAB

0017 SUB(1) 'Silicon Valley Lab '
0018 SUB(2) 'Silicon Valley Lab '
0019 SUB(3) 'Lexington, Ky

Kk kkkkkkkkkkkkkkkkkkkrkxxkkkkxx BOTTOM OF MONITOR **kkkkkkkkkkhkhkhkkkkhhkhkkkkhkkkx

If you issue MONITOR LIST (TEAM) with SET LIST BY SUBSCRIPT ON, z/OS Debugger displays
the following output in the Monitor window in MFI:

MONITOR -+----1----4-=-==2---cg-e--3ece-fo--cl-m--t----Goooy----6 LINE: 1 OF 20

Kk kkkkkhkkkkkkkkkkkkkkkkkkkkkkxx TOP OF MONITOR **kkkkkkkhkkkkkkkhkkkkkkkhkkkkkkkkkx
e e e e L e

0001 1 01 TEAM

0002 02 MYTEAM

0003 02 MYTEAM(1)

0004 03 NAME

0005 04 LASTNAME 'Smith

0006 04 FIRSTNAME 'Eva

0007 03 PHONE '408-463-1111"

0008 03 IBMLAB 'Silicon Valley Lab '

0009 02 MYTEAM(2)

Chapter 5. z/OS Debugger commands 235

0010 03 NAME

0011 04 LASTNAME 'Johnson

0012 04 FIRSTNAME 'Francisco

0013 03 PHONE '408-463-2222"

0014 03 IBMLAB 'Silicon Valley Lab '

0015 02 MYTEAM(3)
0016 03 NAME

0017 04 LASTNAME 'Williams

0018 04 FIRSTNAME 'Randy

0019 03 PHONE '408-463-3333"
0020 03 IBMLAB 'Lexington, Ky

*hkkkkkkkkkkkkkkkkkkkkkkkkkkkkxx BOTTOM OF MONITOR *kkkkkkhkkkkkkkhkkkkkkkhkkkkkkkkk

SET LIST BY SUBSCRIPT command (Enterprise PL/I, full-screen mode only)

Controls whether z/OS Debugger displays elements in an array as they are stored in memory.

The default setting is OFF.

r_-ON__W
»— SET — LIST — BY — SUBSCRIPT ; >

LOFFJ ,

ON
Indicates that z/OS Debugger displays elements of a PL/I array as they are stored in memory.

OFF
Indicates that z/OS Debugger displays elements of a PL/I array ordered by element.

Examples

Assume you declare the following array in your program:

DCL 01 STRUCA(3),
05 FIELD1 CHAR(9),
05 FIELD2 CHAR(9);

If you run the command LIST STRUCA, with SET LIST BY SUBSCRIPT OFF (the default setting), z/OS
Debugger displays the following results:

LIST STRUCA ;

STRUCA.FIELD1(1) = 'MYFIELDB1'
STRUCA.FIELD1(2) = 'MYFIELDB2'
STRUCA.FIELD1(3) = 'MYFIELDB3'
STRUCA.FIELD2(1) = 'MYFIELDB1'
STRUCA.FIELD2(2) = 'MYFIELDB2'
STRUCA.FIELD2(3) = 'MYFIELDB3'

If you run the command LIST STRUCA after running the command SET LIST BY SUBSCRIPT ON, z/OS
Debugger displays the following results:

LIST STRUCA ;

STRUCA.FIELD1(1) = 'MYFIELDB1'
STRUCA.FIELD2(1) = 'MYFIELDB1'
STRUCA.FIELD1(2) = 'MYFIELDB2'
STRUCA.FIELD2(2) = 'MYFIELDB2'
STRUCA.FIELD1(3) = 'MYFIELDB3'
STRUCA.FIELD2(3) = 'MYFIELDB3'

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

Related references
“LIST expression command” on page 147

236 IBM z/0OS Debugger: Reference and Messages

SET LIST TABULAR command

Controls whether to format the output of the LIST command in a tabular format. The default setting is

OFF.
OFF
»— SET — LIST — TABULAR ON ; >
ON
Display the output of the LIST command in tabular format.
OFF

Display the output of the LIST command in linear format. This is the default setting.

SET LOG command

Controls whether z/OS Debugger writes each performed command and the resulting output to the log file
and defines (or redefines) the name of the log file.

ON

»— SET — LOG [1 —
oLD

\— ON — FILE — fileid [

L MOD J

OFF

~——— KEEP — count —8@8™—~

ON
Specifies that commands and output are written to the log file.
FILE fileid
Identifies the log file used. The FILE keyword cannot be abbreviated.

In non-CICS, fileid is a DD name or a fully-qualified data set name. Partitioned data sets cannot be
used.

In CICS, fileid is a fully-qualified data set name. The CICS region must have update authorization to
the log file.

If fileid has the form of a DD name, z/OS Debugger checks to see if the file is allocated.
In full-screen mode, the log file should not be allocated to the 3270 terminal device.

OoLD
Specifies that the new information is to replace any existing information in the specified file. This
operand is ignored if fileid specifies a DD name.

MOD
Specifies that the new information is appended after any existing information in the specified file. This
operand is ignored if fileid specifies a DD name.

KEEP count
Specifies the number of lines of log output retained for display. The initial setting is 1000; count
cannot equal zero (0).

OFF
Specifies that commands and output are not written to a log file.

Usage notes

« The following list describes how z/OS Debugger determines the initial setting for SET LOG:

Chapter 5. z/OS Debugger commands 237

— If a default user log file was not specified through the EQAOPTS LOGDSN command, the following
rules apply:

- Ina non-CICS environment, if you do not allocate INSPLOG DD, the initial setting is OFF.

- Ina non-CICS environment, if you do allocate INSPLOG DD, the initial setting is ON FILE
INSPLOG.

- In a CICS environment, the initial setting is OFF.
— If a default user log file was specified through the EQAOPTS LOGDSN command, the following rules
apply:
- In batch mode, if you do not allocate INSPLOG DD, the initial setting is OFF.
- In batch mode, if you do allocate INSPLOG DD, the initial setting is ON FILE INSPLOG.

- In full screen mode and a non-CICS environment, if you do not allocate INSPLOG DD, the initial
settingis ON FILE fileid. Specify fileid through the EQAOPTS LOGDSN command.

- Infull screen mode and a non-CICS environment, if you do allocate INSPLOG DD, the initial setting
isON FILE INSPLOG.

- In a CICS environment, the initial settingis ON FILE fileid. Specify fileid through the EQAOPTS
LOGDSN command.

« If the EQAOPTS LOGDSN command was specified, then the EQAOPTS LOGDSNALLOC command can be
specified to indicate that, if the log file data set does not exist, z/OS Debugger creates it. This can be
used to create the file for new z/OS Debugger users.

For existing z/OS Debugger users, if you use a SAVESETS data set, then the file contains a SET LOG
command. If a specification for the EQAOPTS LOGDSN command is created after you have saved
settings into your SAVESETS file, z/OS Debugger does not change your saved SET LOG command and
does not create a new log file data set.

To learn how to specify the EQAOPTS commands LOGDSN and LOGDSNALLOC, see Chapter 6, “EQAOPTS
commands,” on page 285.

FILE LOGDSN is used forthe SET LOG ON command when both of the following conditions are true:

— A SET LOG ON without a FILE fileid is issued when LOG is OFF.
— ON FILE LOGDSN was used as the initial setting of SET LOG via the EQAOPTS LOGDSN command.

For CICS, if you are not logged in or are logged in under the default user ID, z/OS Debugger does not
create or use the file specified for fileid.

For Db2 stored procedures, do not set up z/OS Debugger to create or use the file specified for fileid.
Since multiple users share the same default data set, multiple users can attempt to write to the data set
at the same time. In this environment, if LOGDSN is specified, specify NULLFILE for file-name-pattern.

« The log output lines retained for display are always the last (that is, the most recent) lines.
 Setting LOG OFF does not suppress the log display.

- If you are debugging in full-screen mode and the log file is allocated to the terminal, issue a SET LOG
OFF command before issuing a QUIT command. If you do not issue the SET LOG OFF command, the
QUIT command fails.

« Ensure that you allocate a log file big enough to hold all the log output from a debug session, because
the log file is truncated after it becomes full. (A warning message is not issued before the log is
truncated.)

« For remote debug mode, you can only use the SET LOG ONand SET LOG OFF commands. The SET
LOG ON command displays messages that explain why it stopped at the current location. The SET LOG
ON command does not save the contents of the log to a permanent location. When the setting for SET
LOG is OFF, messages related to breakpoints are not displayed. For example, the message "Program
was stopped due to line/statement breakpoint at statement 232." is not displayed.

If you enter SET AUTOMONITOR ON LOG command, the SET LOG ONand SET LOG OFF commands
are ignored. All messages are displayed.

238 IBM z/0OS Debugger: Reference and Messages

Examples

« Specify that commands and output are written to the log file named mainpzrog.
SET LOG ON FILE mainprog;
Another example using the data set name thing.
SET LOG ON FILE userid.thing.log
« Indicate that 500 lines of log output are retained for display.
SET LOG KEEP 500;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0OS Debugger User's Guide

Related references
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

SET LOG NUMBERS command (full-screen mode)

Controls whether line numbers are shown in the log window. The initial setting is ON.

ON
»— SET — LOG — NUMBERS J_ T He o)

o J

ON
Shows line numbers in the log window.

OFF
Suppresses line numbers in the log window.

Example

Specify that log line numbers are not shown.

SET LOG NUMBERS OFF;

SET LONGCUNAME command

Controls whether a short or long CU name is displayed.

ON
»— SET — LONGCUNAME J_ 1

LOFFJ ™

ON
Specifies that a long CU name is displayed.

OFF
Specifies that a short CU name is displayed. The short CU name is displayed in the session panel
header, source window header area, and the Source Identification Panel.

Usage notes

» You can enter the SET LONGCUNAME at any time, but it applies only to C, C++, and Enterprise PL/I
programs. If you compiled your program with one of the following compilers and it is running in the
following environment, this command has no effect.

Chapter 5. z/OS Debugger commands 239

— Enterprise PL/I for z/OS, Version 3.6 or later

— Enterprise PL/I for z/OS, Version 3.5, compiler with the PTFs for APARs PK35230 and PK35489
applied

— Language Environment Version 1.6 through 1.8 with the PTF for APAR PK33738 applied, or later

« The CU name for programs compiled with C, C++, or Enterprise PL/I (before Enterprise PL/I for z/OS,
Version 3.6) compilers can have one of the following forms:

— Fully qualified partitioned data set name and member name
— Asequential file name
— An HFS or zFS path and file name

These forms can result in long CU names that are truncated in the session panel header, which makes it
difficult for you to identify the CU.

For these forms of compile unit names, z/OS Debugger displays short names in one of the following
manners:

— For PDS file names, the short name is only the member name
— For sequential file names, the short name is the lowest level qualifier (hame segment)
— For HFS or zFS file names, the short name is the file name, without path name

- z/0OS Debugger commands affected by the LONGCUNAME setting: QUERY LOCATION, SET SOURCE, and
AT ENTRY. All the other commands continue to require the long form of the CU name. For example, if
you use the short name with the AT command (AT ARRAY3 ::> 'ARRAY3' :> 10),z/0S Debugger
displays an error message and does not set the breakpoint. However, if you enter the command AT
ENTRY ARRAY3 ::> "ARRAY3' :>ARRAY3,z/0S Debugger sets the breakpoint or defers setting the
breakpoint until the entry point is known to z/OS Debugger.

 You cannot use the SET LONGCUNAME command in remote debug mode.
Examples

o If the CU name is SMITH.TEST.SRC (ARRAY3), the short name is ARRAY3.
« If the CU name is SMITH.TEST.SOURCE.ABCD, the short name is ABCD.

« Ifthe CU nameis /testenvir/applications/cicsprograms/projectl/prog2.cpp, the short
name is prog2.cpp.

SET MDBG command

Associates a .mdbg file to one load module or DLL.
»— SET — MDBG — (/m_spec) — fileid — ; >«

Im_spec
The name of a valid load module or DLL.
fileid
Identifies the .mdbg file that contains the debug information for the load module or DLL.

In z/0S, fileid is a DD name, a fully qualified partitioned data set and member name, a sequential file,
or an HFS or zFS path and file name.

In CICS, fileid is a fully-qualified data set name or an HFS or zFS path and file name.

If fileid is less than nine characters in length and does not contain a period, z/OS Debugger assumes it
is a DD name. z/OS Debugger checks to see if it is allocated. If it is not allocated, then z/OS Debugger
assumes fileid is a data set name.

Usage notes

« Before you can use this command, you or your site must specify YES for the EQAOPTS MDBG command,
as described in Chapter 6, “EQAOPTS commands,” on page 285. In environments that support

240 IBM z/OS Debugger: Reference and Messages

environment variables, you can use the EQA_USE_MDBG environment variable to override this option
for a specific debugging session.

 You can use this command if you created a .mdbg file that contains debug information, including
captured source.

« You can create .mdbg files that contain debug information, including captured source, only if you
compile your program with z/OS XL C/C++, Version 1.10, or later.

- z/OS Debugger does not search for the .mdbg file specified in fileid until the application loads that
load module or DLL. The following list provides some examples of when z/OS Debugger searches for
the .mdbg file:

— If you enter the SET MDBG command and you specify the currently running load module or DLL in
Im_spec, z/OS Debugger immediately searches for the .mdbg file specified in fileid. If z/OS Debugger
cannot find the file, it displays an error message.

— You specify the SET MDBG command in your commands file. When your application calls a function
in that load module or DLL, then z/OS Debugger searches for the .mdbg file. If z/OS Debugger cannot
find the file, it displays an error message.

— You enter the SET MDBG command, then you set an AT LOAD breakpoint for that load module or
DLL. When z/0OS Debugger encounters that breakpoint, then it searches for the .mdbg file. If z/OS
Debugger cannot find the file, it displays an error message.

Examples

« Specify that FANAYA.MYLOAD . MDBG is the location of the .mdbg file for load module MYLOAD. z/0S
Debugger searches for this file when it needs to retrieve debug information for load module MYLOAD.

SET MDBG (MYLOAD) FANAYA.MYLOAD.MDBG;

« Indicate that the .mdbg file for DLL /u/userid/code/mydll is located in HFS or zFS under the path and file
name /u/userid/code/mydll.mdbg:

SET MDBG ("/u/userid/code/mydll") /u/userid/code/mydll.mdbg;

Refer to the following topics for more information related to the material discussed in this topic.

Related concepts

"How does z/0OS Debugger locate source, listing, or separate debug files?" in the IBM z/0S Debugger
User's Guide

Related tasks

“Specifying the location of source, listing, or separate debug file in remote debug mode by using
environment variables” on page 516

"Specifying whether z/OS Debugger searches for .mdbg files" in the IBM z/0OS Debugger Customization
Guide

Related references

“SET SOURCE command” on page 257

“SET DEFAULT DBG command” on page 217

“SET DEFAULT MDBG command” on page 219

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 511

SET MONITOR command

Controls the format and layout of variable names and values displayed in the Monitor window.

Chapter 5. z/OS Debugger commands 241

»— SET — MONITOR COLUMN ;e
DATATYPE h ON ﬂ
NUMBERS OFF

WRAP
LIMIT — integer

COLUMN
Controls whether to display the output in the Monitor window in column format. The initial setting is
SET MONITOR COLUMN ON.SET MONITOR COLUMN is accepted in batch mode, but has no effect.

DATATYPE
Controls whether to display the data type of the variable in the Monitor window. The initial setting is
SET MONITOR DATATYPE OFF.

LIMIT integer
Controls the number of scrollable lines that z/OS Debugger displays in the Monitor window. The
default value for integer is 1000. If you specify a new value, it must be greater than or equal to 1000,
but less than or equal to 30000.

NUMBERS (full-screen mode)
Controls whether to display line numbers in the Monitor window. The initial setting is SET MONITOR
NUMBERS ON.

WRAP
Controls whether to wrap the output in the Monitor window. The initial setting is SET MONITOR WRAP
ON. SET MONITOR WRAP is accepted in batch mode, but has no effect.

ON
Sets the corresponding switch to the following values:
COLUMN
Display the Monitor window output in column-aligned format.
DATATYPE
Display the data type attribute for variables in the Monitor window.
NUMBERS
Display line numbers in the Monitor window.
WRAP
Wraps the monitor value area variable in the monitor window.
OFF
Sets the corresponding switch to the following values:
COLUMN
Display the Monitor window output in non-column-aligned format.
DATATYPE
Do not display the data type attribute for variables in the Monitor window.
NUMBERS
Do not display line numbers in the Monitor window.
WRAP

Display the variable name and value on the same line in the monitor window. If any values are too
long to display in the Monitor window, then the area becomes scrollable.

Usage notes

If you enter the SET MONITOR WRAP OFF command while the SET MONITOR COLUMN switch is set to
OFF, the command is rejected because z/OS Debugger can only display values in one scrollable line when
the setting of MONITOR COLUMN is ON. You must first enter the SET MONITOR COLUMN ON command.

242 IBM z/0OS Debugger: Reference and Messages

If you enter the SET MONITOR COLUMN OFF command while the SET MONITOR WRAP switch is set to
OFF, the command is rejected. The Monitor window must be in columnar format to be able to display
values in one scrollable line. You must first enter the SET MONITOR WRAP ON command.

Monitoring large amounts of data might require large amounts of storage; this might cause a problem at
some sites. Verify that there is enough storage to monitor large data items or data items that contain a
large number of elements.

Example

« Enter the following command to specify that you do not want line numbers displayed in the Monitor
window:

SET MONITOR NUMBERS OFF;
« Enter the following command to specify that you do not want variable values to wrap to the next line:

SET MONITOR WRAP OFF;

SET MSGID command

Controls whether the z/OS Debugger messages are displayed with the message prefix identifiers. The
initial setting is OFF.

ON
»— SET — MSGID [1 .
L OFF J

ON
Displays message identifiers. The first 7 characters of the message contain the EQAnnnn message
prefix identifier, then a blank, then the original message text, such as: 'EQA2222 Program does not
exist.

OFF
Displays only the message text.

Example

Specify that message identifiers are suppressed.

SET MSGID OFF;

SET NATIONAL LANGUAGE command

Switches your application to a different run-time national language that determines what translation is
used when a message is displayed. The switch is effective for the entire run-time environment; it is not
restricted to z/OS Debugger activity only. The initial setting is supplied by Language Environment or the
NATLANG z/0OS Debugger run-time option, according to the setting in the current enclave.

f_ NATIONAL T
»— SET LANGUAGE — language_code — ; >«

language_code
A valid three-letter set that identifies the language used or (for compatibility) one of the two-letter
language codes that was accepted in the previous release of INSPECT for C/370 and PL/IL. The
language code can have one of the following values:

United States English: ENU

United States English (Uppercase): UEN
Japanese: JPN

Korean: KOR

Chapter 5. z/OS Debugger commands 243

If you enter the SET DBCS ON command and then you set the national language to ENU, z/0S
Debugger resets the national language to UEN to remain compatible with DBCS characters.

For compatibility with the previous release of INSPECT for C/370 and PL/I:

EN or ENGLISH is mapped to ENU
UE or UENGLISH is mapped to UEN
JA, JAPANESE, NI, or NIHONGO is mapped to JPN

Usage notes

« In order to display DBCS characters correctly in full-screen mode, the 3270 terminal emulator must be
capable of displaying DBCS characters, and the VTAM LOGMODE MODEENT macroinstruction used for
the terminal session must contain the following specification(s):

1. For CICS, full-screen mode using the Terminal Interface Manager and TSO, the LOGMODE MODEENT
macroinstruction must contain a PSERVIC parameter value that indicates that the terminal has
extended data stream capability and that the terminal is to be queried for alternate screen size.

2. For TSO, in addition, the LOGMODE MODEENT macroinstruction must contain a LANG parameter
value where BIT 0 is 1 (ON). TSO/VTAM uses this bit to indicate that devices with extended data
stream capability are queried for language information (DBCS capability).

You can query this bit in ISPF in the following way:

— In ISPF, select option 0 (Settings). Press Enter.
— On the command line, enter: environ. Press Enter.

— Tab to the section Terminal Status (TERMSTAT). In the Enable field, enter 2 (Query terminal
information). Press Enter.

— Several pages of statistics appear. In the section GTTERM Information, note the value of the
highest bit in the second byte of the ATTRIBUTE BYTE (the Language Field). The value of this
bit must be 1 (ON). For example, if the value of the ATTRIBUTE BYTE is x008000C9, then
DBCS characters display correctly because the second byte is x80. However, if the value of the
ATTRIBUTE BYTE is x000000C9, DBCS characters are not displayed properly.

« The language you select by using the SET NATIONAL LANGUAGE command affects both your
application and z/OS Debugger.

« At the beginning of an enclave, the settings are those provided by Language Environment, your
operating system, or the NATLANG z/OS Debugger run-time option. For nested enclaves, the parent's
settings are restored upon return from a child enclave.

- If NATIONAL LANGUAGE is setto JPN or KOR and you are using full-screen mode, enter the SET DBCS
ON command so that z/OS Debugger displays messages correctly.

Examples

« Set the current national language to Japanese.

SET NATIONAL LANGUAGE JPN;
SET DBCS ON;

- Set the current national language to United States English.
SET LANGUAGE ENU;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET DBCS command” on page 216

SET PACE command

Specifies the maximum pace of animated execution, in steps per second. The initial setting is two steps
per second. This setting is not supported in batch mode.

244 1BM z/0OS Debugger: Reference and Messages

»— SET — PACE — number — ; >«

number
A decimal number between 0 and 9999; it must be a multiple of 0.5.

Usage notes

« If you are debugging a CICS program, choose your pace carefully. After animated execution begins, you
might not be able to stop it. See the IBM z/0S Debugger User's Guide for information about requesting
an attention interrupt during interactive sessions.

« Associated with the SET PACE command is the STEP command. Animated execution is achieved by
defining a PACE and then issuing a STEP n command where n is the number of steps to be seen in
animated mode. STEP * can be used to see all steps to the next breakpoint in animated mode.

« When PACE is set to 0, no animation occurs.
Example

Set the animated execution pace to 1.5 steps per second.

SET PACE 1.5;

SET PFKEY command

Associates a z/0OS Debugger command with a Program Function key (PF key). This setting is not supported
in batch mode.

»— SET — PFn = He o)
L string J L command —J

PFn
A valid program function key specification (PF1 - PF24).

string
The label shown in the PF key display (if the KEYS setting is ON) that is entered as a string constant.
The string is truncated if longer than eight characters. If the string is omitted, the first eight characters
of the command are displayed. For C and C++, the string must be surrounded by quotation marks ().
For COBOL, LangX COBOL, PL/I, assembler, and disassembly, the string can be surrounded by either
quotation marks (") or apostrophes (').

command
A valid z/OS Debugger command, partial command, or multiple commands.

If you specify multiple commands, you must surround them with string delimiters. For C and C++,
you must surround them with quotation marks ("). For COBOL, LangX COBOL, PL/I, assembler, and
disassembly, you can surround them with either quotation marks (") or apostrophes (').

Usage notes

« If you specify the ? as the command, the ? is understood to be the command, not a request for syntax
help.

« In z/OS Debugger, if there is any text on the command line at the time the PF key is pressed, that text is
appended to the PF key string, with an intervening blank, for execution.

« The initial settings for PF keys 13-24 are equivalent to PF keys 1-12, respectively.

If you change the setting for a PF key in the 1-12 range, the equivalent key in the 13-24 range remains
the same.

Example
Define the PF5 key to scroll the cursor-selected window forward.

- If the programming language setting is COBOL:

Chapter 5. z/OS Debugger commands 245

SET PF5 "Down" = IMMEDIATE SCROLL DOWN;
- If the programming language setting is PL/I:

SET PF5 'Down' = IMMEDIATE SCROLL DOWN;
- If the programming language setting is C++:

SET PF5 "Dow