
IBM z/OS Debugger
14.2.6

Customization Guide

IBM



 
Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 199.

Seventh Edition (December 2021)

This edition applies to IBM® z/OS® Debugger, Version 14.2.6 (Program Number 5724-T07 with the PTF for PH35865),
which supports the following compilers:

• AD/Cycle C/370 Version 1 Release 2 (Program Number 5688-216)
• C/C++ for MVS/ESA Version 3 (Program Number 5655-121)
• C/C++ feature of OS/390® (Program Number 5647-A01)
• C/C++ feature of z/OS Version 1 (Program Number 5694-A01)
• C/C++ feature of z/OS Version 2 (Program Number 5650-ZOS)
• OS/VS COBOL, Version 1 Release 2.4 (5740-CB1) - with limitations
• VS COBOL II Version 1 Release 3 and Version 1 Release 4 (Program Numbers 5668-958, 5688-023) - with limitations
• COBOL/370 Version 1 Release 1 (Program Number 5688-197)
• COBOL for MVS™ & VM Version 1 Release 2 (Program Number 5688-197)
• COBOL for OS/390 & VM Version 2 (Program Number 5648-A25)
• Enterprise COBOL for z/OS and OS/390 Version 3 (Program Number 5655-G53)
• Enterprise COBOL for z/OS Version 4 (Program Number 5655-S71)
• Enterprise COBOL for z/OS Version 5 (Program Number 5655-W32)
• Enterprise COBOL for z/OS Version 6 Release 1, Release 2, and Release 3 (Program Number 5655-EC6)
• High Level Assembler for MVS & VM & VSE Version 1 Release 4, Version 1 Release 5, Version 1 Release 6 (Program

Number 5696-234)
• OS PL/I Version 2 Release 1, Version 2 Release 2, Version 2 Release 3 (Program Numbers 5668-909, 5668-910) - with

limitations
• PL/I for MVS & VM Version 1 Release 1 (Program Number 5688-235)
• VisualAge® PL/I for OS/390 Version 2 Release 2 (Program Number 5655-B22)
• Enterprise PL/I for z/OS and OS/390 Version 3 (Program Number 5655-H31)
• Enterprise PL/I for z/OS Version 4 (Program Number 5655-W67)
• Enterprise PL/I for z/OS Version 5 Release 1, Release 2, and Release 3 (Program Number 5655-PL5)

This edition also applies to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters.

You can access publications online at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

You can find out more about IBM z/OS Debugger by visiting the following IBM Web sites:

• IBM Debug for z/OS: https://www.ibm.com/us-en/marketplace/debug-for-z-systems
• IBM Developer for z/OS: https://www.ibm.com/us-en/marketplace/developer-for-z-systems
• IBM Wazi Developer for Red Hat CodeReady Workspaces: https://www.ibm.com/products/wazi-for-red-hat-codeready-

workspaces
© Copyright International Business Machines Corporation 1992, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/us-en/marketplace/debug-for-z-systems
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/products/wazi-for-red-hat-codeready-workspaces
https://www.ibm.com/products/wazi-for-red-hat-codeready-workspaces


Contents

About this document...........................................................................................xiii
Who might use this document...................................................................................................................xiii
Accessing z/OS licensed documents on the Internet...............................................................................xiii
How this document is organized............................................................................................................... xiv
Terms used in this document.................................................................................................................... xiv
How to read syntax diagrams....................................................................................................................xvi

Symbols................................................................................................................................................ xvi
Syntax items.........................................................................................................................................xvi
Syntax examples................................................................................................................................. xvii

How to provide your comments.............................................................................................................. xviii

Summary of changes...........................................................................................xix

Overview of IBM z/OS Debugger........................................................................ xxiii

Chapter 1. Customizing z/OS Debugger: checklist...................................................1

Chapter 2. Product Registration............................................................................. 7
Registering z/OS Debugger.......................................................................................................................... 7
Removing old registrations.......................................................................................................................... 8

Chapter 3. Installing the z/OS Debugger SVCs........................................................ 9
Installing the SVCs without using a system IPL.......................................................................................... 9
Verifying the installation of the SVCs........................................................................................................ 10

Checking the level of the z/OS Debugger SVCs................................................................................... 10
Running the installation verification programs for SVCs.......................................................................... 10
Using the Authorized Debug facility for protected programs................................................................... 11

Chapter 4. Setting up the APF-authorized system link list data set (SEQABMOD)... 13

Chapter 5. Setting up the link list data set (SEQAMOD)..........................................15

Chapter 6. Enabling debugging in full-screen mode using the Terminal Interface
Manager.......................................................................................................... 17
How users start a full-screen mode debug session with the Terminal Interface Manager.....................17
Enabling full-screen mode using the Terminal Interface Manager.......................................................... 19

Defining the VTAM EQAMVnnn APPL definition statements............................................................... 19
Defining the Terminal Interface Manager APPL definition statements.............................................. 20
Starting the Terminal Interface Manager.............................................................................................21
Verifying the enablement of full-screen mode using the Terminal Interface Manager..................... 22

Example: Defining the VTAM EQAMVnnn and Terminal Interface Manager APPL definition
statements when z/OS Debugger runs on four LPARs.........................................................................23

Chapter 7. Adding support for remote debug users............................................... 25
Activating the TCP/IP Socket Interface for CICS...................................................................................... 25
Enabling communication with Debug Manager........................................................................................ 26

Debug Manager configuration..............................................................................................................26
Debug Manager configuration reference............................................................................................. 30

Adding support for Remote Debug Service...............................................................................................45

  iii



Installing Remote Debug Service.........................................................................................................45
Customizing with the sample job EQARMTSU.....................................................................................45
Customizing the system PROCLIB....................................................................................................... 46
Remote Debug Service security definitions.........................................................................................47
Updating PARMLIB to start Remote Debug Service during IPL.......................................................... 48
Starting and stopping Remote Debug Service dynamically................................................................ 48

Adding support for Debug Profile Service and APIs................................................................................. 48
Installing Debug Profile Service...........................................................................................................48
Customizing with the sample job EQAPRFSU......................................................................................49
Customizing the system PROCLIB....................................................................................................... 49
Debug Profile Service security definitions...........................................................................................50
Updating PARMLIB to start Debug Profile Service during IPL............................................................ 52
Starting and stopping Debug Profile Service dynamically.................................................................. 52

Adding support for the DTCN profiles APIs and views............................................................................. 53
Defining the CICS TCPIPSERVICE resource........................................................................................ 53
Establishing secure communication between the profile view and your z/OS system for CICS....... 55
Defining who can create, modify, or delete DTCN profiles..................................................................56

Adding support for the DTSP Profile, code coverage, and load module analyzer views..........................57
Installing the ADFz Common Components Server..............................................................................57
Installing and configuring the z/OS Debugger extensions for the Common Components Server..... 58
Running the Common Components Server......................................................................................... 58

Enabling secure communication between z/OS Debugger and the remote debugger for incoming
debug sessions..................................................................................................................................... 58

Chapter 8. Specifying the TEST runtime options through the Language
Environment user exit...................................................................................... 61
Editing the source code of CEEBXITA........................................................................................................62

Modifying the naming pattern..............................................................................................................62
Modifying the message display level................................................................................................... 63
Modifying the call back routine registration........................................................................................ 64
Activate the cross reference function and modifying the cross reference table data set name....... 64

Comparing the two methods of linking CEEBXITA....................................................................................64
Linking the CEEBXITA user exit into a private copy of a Language Environment runtime module......... 65
Creating and managing the TEST runtime options data set..................................................................... 65

Chapter 9. Installing the browse mode RACF facility.............................................67
Choose and install appropriate RACF facility............................................................................................67
Set up user access to facility..................................................................................................................... 68

Chapter 10. Customizing IBM z/OS Debugger Utilities...........................................69
Choosing a method to start IBM z/OS Debugger Utilities.........................................................................70
Customizing the data set names in EQASTART.........................................................................................71
Adding IBM z/OS Debugger Utilities to the ISPF menu............................................................................ 72
Customizing z/OS Debugger Setup Utility................................................................................................. 72
Customizing for JCL for Batch Debugging utility.......................................................................................72

Parameters you can set........................................................................................................................73
Customizing JCL for Batch Debugging for multiple systems.............................................................. 74

Customizing for Other IBM Application Delivery Foundation for z/OS tools............................................74
Parameters you can set........................................................................................................................75
Customizing Other IBM Application Delivery Foundation for z/OS tools for multiple systems......... 75

Customizing Program Preparation.............................................................................................................76
Parameters you can set........................................................................................................................76
Customizing Program Preparation for multiple systems.....................................................................78

Configuring for IMSplex users................................................................................................................... 78
Customizing debugging by using IMS message region templates........................................................... 79
Customizing z/OS Debugger User Exit Data Set........................................................................................80
Customizing IMS BTS Debugging.............................................................................................................. 81

iv  



Customizing Delay Debug Profile.............................................................................................................. 83
Customizing IMS Transaction and User ID Cross Reference Table ......................................................... 83
Customizing Non-CICS Debug Session Start and Stop Message Viewer ................................................ 84
Customizing z/OS Debugger Code Coverage.............................................................................................85
Installing and customizing z/OS Debugger JCL Wizard............................................................................ 86

Chapter 11. Preparing your environment to debug Db2 stored procedures.............89

Chapter 12. Adding support for debugging under CICS......................................... 91
Activating CICS non-Language Environment exits................................................................................... 95
Storing DTCN debug profiles in a VSAM file.............................................................................................. 96
Migrating a debug profiles VSAM file from an earlier release...................................................................96
Sharing DTCN debug profile repository among CICS systems................................................................. 96
Deleting or deactivating debug profiles stored in a VSAM data set......................................................... 99
Deleting DTCN profiles with the DTCN LINK service.............................................................................. 100
Requiring users to specify resource types..............................................................................................101
Direct QSAM access through a CICS task-related user exit................................................................... 101
Enabling the CADP transaction............................................................................................................... 101
Running multiple debuggers in a CICS region........................................................................................ 102
Running the installation verification programs in a CICS region............................................................102
Configuring z/OS Debugger to run in a CICSplex environment.............................................................. 103

Terminal connects to an AOR that runs the application................................................................... 103
Terminal connects to a TOR which routes the application to an AOR; debugging profiles

managed by CADP.........................................................................................................................104
Terminal connects to a TOR which routes the application to an AOR; debugging profiles

managed by DTCN.........................................................................................................................104
Terminal connects to an AOR that runs an application that does not use a terminal......................105
Screen control mode terminal connects to a TOR and application runs in an AOR......................... 106
Separate terminal mode terminal connects to a TOR and application runs in an AOR....................106

Authorizing DTST transaction to modify storage.................................................................................... 108
Authorizing DTCD and DTCI transactions to delete or deactivate debug profiles................................. 108

Chapter 13. Adding support for debugging under IMS......................................... 111
Scenario A: Running IMS and managing TEST runtime options with a user exit...................................112
Scenario B: Running IMS and managing TEST runtime options with CEEUOPT or CEEROPT...............113
Scenario C: Running assembler program without Language Environment in IMS TM and managing

TEST runtime options with EQASET...................................................................................................113
Scenario D: Running IMSplex environment............................................................................................ 113
Scenario E: Enabling users to launch private message regions and to assign transactions to

private message regions.................................................................................................................... 114
Scenario F: Enabling the Transaction Isolation Facility..........................................................................115

Sample customization of the IMS Transaction Isolation Facility......................................................118
Batch interface for the IMS Transaction Isolation Facility................................................................124
Installing and configuring the IMS transaction isolation extension for the ADFz Common

Components server.......................................................................................................................125

Chapter 14. Enabling the EQAUEDAT user exit.................................................... 127

Chapter 15. Using EQACUIDF to specify values for NATLANG, LOCALE, and
LINECOUNT................................................................................................... 129
Changing the default and allowable values in EQACUIDF......................................................................129
Enabling additional languages for some z/OS Debugger components through EQACUIDF..................130

Chapter 16. EQAOPTS commands.......................................................................131
Format of the EQAOPTS command......................................................................................................... 138
EQAOPTS commands that have equivalent z/OS Debugger commands............................................... 139

  v



Providing EQAOPTS commands at run time........................................................................................... 139
Creating EQAOPTS load module..............................................................................................................140
Descriptions of EQAOPTS commands.....................................................................................................140

ALTDISP..............................................................................................................................................140
BROWSE............................................................................................................................................. 141
CACHENUM........................................................................................................................................ 141
CCOUTPUTDSN.................................................................................................................................. 141
CCOUTPUTDSNALLOC........................................................................................................................142
CCPROGSELECTDSN.......................................................................................................................... 143
CEEREACTAFTERQDBG......................................................................................................................143
CODEPAGE..........................................................................................................................................144
COMMANDSDSN.................................................................................................................................146
DEFAULTVIEW.................................................................................................................................... 147
DISABLERLIM.....................................................................................................................................147
DLAYDBG............................................................................................................................................ 147
DOPTACBDSN.....................................................................................................................................150
DTCNDELETEDEADPROF................................................................................................................... 151
DTCNFORCExxxx................................................................................................................................ 151
DYNDEBUG.........................................................................................................................................152
EQAQPP.............................................................................................................................................. 152
EXPLICITDEBUG................................................................................................................................ 152
GPFDSN.............................................................................................................................................. 153
HOSTPORTS....................................................................................................................................... 154
IGNOREODOLIMIT.............................................................................................................................154
IMSISOORIGPSB................................................................................................................................155
LOGDSN.............................................................................................................................................. 155
LOGDSNALLOC................................................................................................................................... 156
MAXTRANUSER.................................................................................................................................. 157
MDBG..................................................................................................................................................158
MULTIPROCESS..................................................................................................................................158
NAMES................................................................................................................................................159
NODISPLAY........................................................................................................................................ 160
PREFERENCESDSN............................................................................................................................ 160
SAVEBPDSN, SAVESETDSN............................................................................................................... 161
SAVESETDSNALLOC, SAVEBPDSNALLOC..........................................................................................161
SESSIONTIMEOUT............................................................................................................................. 163
STARTSTOPMSG.................................................................................................................................164
SUBSYS...............................................................................................................................................165
SVCSCREEN........................................................................................................................................165
TCPIPDATADSN..................................................................................................................................168
THREADTERMCOND...........................................................................................................................169
TIMACB...............................................................................................................................................169
END.....................................................................................................................................................170

Appendix A. SMP/E USERMODs..........................................................................171

Appendix B. Enabling debugging in full-screen mode using a dedicated terminal.173
How z/OS Debugger uses full-screen mode using a dedicated terminal...............................................173
Enabling full-screen mode using a dedicated terminal..........................................................................174

Defining the VTAM EQAMVnnn APPL definition statements............................................................. 174
Defining terminal LUs used by z/OS Debugger..................................................................................176
Configuring the TN3270 Telnet Server to access the terminal LUs..................................................177

Example: Activating full-screen mode using a dedicated terminal when using TCP/IP TN3270
Telnet Server.......................................................................................................................................178
Defining z/OS Debugger to VTAM.......................................................................................................179
Defining the terminals used by z/OS Debugger.................................................................................179
Configuring the TN3270 Telnet Server..............................................................................................179

vi  



Verifying the customization of the facility to debug full-screen mode using a dedicated terminal......181
Using z/OS Debugger Terminal Interface Manager as a dedicated terminal......................................... 182

Example: a debugging session using the z/OS Debugger Terminal Interface Manager...................182
Enabling full-screen mode using a dedicated terminal with z/OS Debugger Terminal Interface

Manager.........................................................................................................................................183
Defining the Terminal Interface Manager APPL definition statements............................................ 184
Starting the z/OS Debugger Terminal Interface Manager as a dedicated terminal......................... 184
Configuring the TN3270 Telnet Server to access the Terminal Interface Manager.........................185
Example: Connecting a VTAM network with multiple LPARs with one Terminal Interface

Manager.........................................................................................................................................186
Running the Terminal Interface Manager on more than one LPAR on the same VTAM network.....186
Configuring Terminal Interface Manager as an IBM Session Manager application..........................187
Verifying the customization of the Terminal Interface Manager...................................................... 188

Appendix C. Applying maintenance.................................................................... 189
Applying Service APAR or PTF.................................................................................................................189

What you receive................................................................................................................................189
Checklist for applying an APAR or PTF.............................................................................................. 189

Appendix D. Support resources and problem solving information........................ 191
Searching knowledge bases....................................................................................................................191

Searching IBM Knowledge Center..................................................................................................... 191
Searching product support documents.............................................................................................191

Getting fixes............................................................................................................................................. 192
Subscribing to support updates.............................................................................................................. 192

RSS feeds and social media subscriptions........................................................................................192
My Notifications..................................................................................................................................193

Contacting IBM Support.......................................................................................................................... 193
Define the problem and determine the severity of the problem...................................................... 194
Gather diagnostic information........................................................................................................... 194
Submit the problem to IBM Support................................................................................................. 195

Appendix E. Accessibility...................................................................................197
Using assistive technologies................................................................................................................... 197
Keyboard navigation of the user interface.............................................................................................. 197
Accessibility of this document................................................................................................................ 197

Notices..............................................................................................................199
Trademarks and service marks............................................................................................................... 199

Glossary............................................................................................................ 201
Bibliography...................................................................................................... 205

IBM z/OS Debugger publications............................................................................................................ 205
High level language publications............................................................................................................ 205
Related publications................................................................................................................................207

Index................................................................................................................ 209

  vii



viii  



Programming interface information

This book is intended to help you debug application programs. This publication documents intended
Programming Interfaces that allow you to write programs to obtain the services of z/OS Debugger.

© Copyright IBM Corp. 1992, 2021 ix



x  IBM z/OS Debugger: Customization Guide



Copyright license

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or functions of these
programs.

© Copyright IBM Corp. 1992, 2021 xi



xii  IBM z/OS Debugger: Customization Guide



About this document

z/OS Debugger combines the richness of the z/OS environment with the power of Language Environment®

to provide a debugger for programmers to isolate and fix their program bugs and test their applications.
z/OS Debugger gives you the capability of testing programs in batch, using a nonprogrammable terminal
in full-screen mode, or using a workstation interface to remotely debug your programs.

This document describes the tasks you must do to customize z/OS Debugger. You can use Host
Configuration Assistant for Z Development (HCA) to generate a customized checklist for z/OS Debugger,
and then refer to this guide for more details. HCA is a cloud-based wizard that is designed to simplify
planning and configuring of Z development products. Besides z/OS Debugger, you can also find the
configuration information for other host components like z/OS Explorer and z/OS Source Code Analysis.

Who might use this document
This document is intended for system administrators who need to customize z/OS Debugger.

z/OS Debugger runs on the z/OS operating system and supports the following subsystems:

• CICS®

• Db2®

• IMS
• JES batch
• TSO
• UNIX System Services in remote debug mode or full-screen mode using the Terminal Interface Manager

only

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM Resource Link® Web
site at:

http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to these documents
requires an IBM Resource Link user ID and password, and a key code. With your z/OS order you received a
Memo to Licensees, (GI10-8928), that includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or IBM Resource Link to
print licensed documents.

© Copyright IBM Corp. 1992, 2021 xiii

https://ibm-host-configuration-assistant-for-z-development.au-syd.mybluemix.net/#/
https://ibm-host-configuration-assistant-for-z-development.au-syd.mybluemix.net/#/
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink


How this document is organized
Note: Chapter 4, 6, 10, 15, and Appendix B are not applicable to IBM Developer for z/OS (non-Enterprise
Edition), IBM Wazi Developer for Red Hat® CodeReady Workspaces.

This document is divided into areas of similar information for easy retrieval of appropriate information.

• Chapter 1. Customizing z/OS Debugger: checklist
• Chapter 2. Product Registration
• Chapter 3. Installing the z/OS Debugger SVCs
• Chapter 4. Setting up the APF-authorized system link list data set (SEQABMOD)
• Chapter 5. Setting up the link list data set (SEQAMOD)
• Chapter 6. Enabling debugging in full-screen mode using the Terminal Interface Manager
• Chapter 7. Adding support for remote debug users
• Chapter 8. Specifying the TEST runtime options through the Language Environment user exit
• Chapter 9. Installing the browse mode RACF® facility
• Chapter 10. Customizing IBM z/OS Debugger Utilities
• Chapter 11. Preparing your environment to debug Db2 stored procedures
• Chapter 12. Adding support for debugging under CICS
• Chapter 13. Adding support for debugging under IMS
• Chapter 14. Enabling the EQAUEDAT user exit
• Chapter 15. Using EQACUIDF to specify values for NATLANG, LOCALE, and LINECOUNT
• Chapter 16. EQAOPTS commands
• Appendix A. SMP/E USERMODs
• Appendix B. Enabling debugging in full-screen mode using a dedicated terminal
• Appendix C. Applying maintenance
• Appendix D. Support resources and problem solving information
• Appendix E. Accessibility

The last several topics list notices, bibliography, and glossary of terms.

Terms used in this document
Because of differing terminology among the various programming languages supported by z/OS
Debugger, as well as differing terminology between platforms, a group of common terms has been
established. The table below lists these terms and their equivalency in each language.

z/OS Debugger
term

C and C++
equivalent

COBOL or LangX
COBOL equivalent

PL/I equivalent assembler

Compile unit C and C++ source
file

Program • Program
• PL/I source file

for Enterprise
PL/I

• A package
statement or the
name of the main
procedure for
Enterprise PL/I1

CSECT

xiv  IBM z/OS Debugger: Customization Guide



z/OS Debugger
term

C and C++
equivalent

COBOL or LangX
COBOL equivalent

PL/I equivalent assembler

Block Function or
compound
statement

Program, nested
program, method
or PERFORM group
of statements

Block CSECT

Label Label Paragraph name or
section name

Label Label

Note:

1. The PL/I program must be compiled with and run in one of the following environments:

• Compiled with Enterprise PL/I for z/OS, Version 3.6 or later, and run with the following versions of
Language Environment:

– Language Environment Version 1.9, or later
– Language Environment Version 1.6, Version 1.7, or Version 1.8, with the PTF for APAR PK33738

applied
• Compiled with Enterprise PL/I for z/OS, Version 3.5, with the PTFs for APARs PK35230 and PK35489

applied and run with the following versions of Language Environment:

– Language Environment Version 1.9, or later
– Language Environment Version 1.6, Version 1.7, or Version 1.8, with the PTF for APAR PK33738

applied

z/OS Debugger provides facilities that apply only to programs compiled with specific levels of compilers.
Because of this, IBM z/OS Debugger Customization Guide uses the following terms:

assembler
Refers to assembler programs with debug information assembled by using the High Level Assembler
(HLASM).

COBOL
Refers to the all COBOL compilers supported by z/OS Debugger except the COBOL compilers
described in the term LangX COBOL.

disassembly or disassembled
Refers to high-level language programs compiled without debug information or assembler programs
without debug information. The debugging support z/OS Debugger provides for these programs is
through the disassembly view.

Enterprise PL/I
Refers to the Enterprise PL/I for z/OS and OS/390 and the VisualAge PL/I for OS/390 compilers.

LangX COBOL
Refers to any of the following COBOL programs supported through use of the EQALANGX (or
IDILANGX) debug file:

• Programs compiled using the IBM OS/VS COBOL compiler.
• Programs compiled using the VS COBOL II compiler with the NOTEST compiler option.
• Programs compiled using the Enterprise COBOL compiler with the NOTEST compiler option.

As you read through the information in this document, remember that OS/VS COBOL programs are
non-Language Environment programs, even though you might have used Language Environment
libraries to link and run your program.

VS COBOL II programs are non-Language Environment programs when you link them with the non-
Language Environment library. VS COBOL II programs are Language Environment programs when you
link them with the Language Environment library.

About this document  xv



Enterprise COBOL programs are always Language Environment programs. Note that COBOL DLL's
cannot be debugged as LangX COBOL programs.

Read the information regarding non-Language Environment programs for instructions on how to start
z/OS Debugger and debug non-Language Environment COBOL programs, unless information specific
to LangX COBOL is provided.

PL/I
Refers to all levels of PL/I compilers. Exceptions will be noted in the text that describe which specific
PL/I compiler is being referenced.

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that
may be contained within the diagrams (keywords, variables, delimiters, operators, fragment references,
operands) and provides syntax examples that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a
command statement. They are read from left to right and from top to bottom, following the main path of
the horizontal line.

Symbols
The following symbols may be displayed in syntax diagrams:
Symbol

Definition
►►───

Indicates the beginning of the syntax diagram.
───►

Indicates that the syntax diagram is continued to the next line.
►───

Indicates that the syntax is continued from the previous line.
───►◄

Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:

• Keywords - a command name or any other literal information.
• Variables - variables are italicized, appear in lowercase and represent the name of values you can

supply.
• Delimiters - delimiters indicate the start or end of keywords, variables, or operators. For example, a left

parenthesis is a delimiter.
• Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other

mathematical operations that may need to be performed.
• Fragment references - a part of a syntax diagram, separated from the diagram to show greater detail.
• Separators - a separator separates keywords, variables or operators. For example, a comma (,) is a

separator.

Keywords, variables, and operators may be displayed as required, optional, or default. Fragments,
separators, and delimiters may be displayed as required or optional.
Item type

Definition
Required

Required items are displayed on the main path of the horizontal line.

xvi  IBM z/OS Debugger: Customization Guide



Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

Syntax examples
The following table provides syntax examples.

Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the
horizontal line. You must specify these items.

KEYWORD required_item

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line.
You must choose one of the items in the stack.

KEYWORD required_choice1

required_choice2

Optional item.

Optional items appear below the main path of the
horizontal line.

KEYWORD

optional_item

Optional choice.

An optional choice (two or more items) appears in a
vertical stack below the main path of the horizontal
line. You may choose one of the items in the stack.

KEYWORD

optional_choice1

optional_choice2

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or
optional) appear on (required) or below (optional) the
main path of the horizontal line. The following example
displays a default with optional items.

KEYWORD

default_choice1

optional_choice2

optional_choice3

Variable.

Variables appear in lowercase italics. They represent
names or values.

KEYWORD variable

Repeatable item.

An arrow returning to the left above the main path
of the horizontal line indicates an item that can be
repeated.

A character within the arrow means you must separate
repeated items with that character.

An arrow returning to the left above a group of
repeatable items indicates that one of the items can
be selected, or a single item can be repeated.

KEYWORD repeatable_item

KEYWORD

,

repeatable_item

About this document  xvii



Table 1. Syntax examples (continued)

Item Syntax example

Fragment.

The ─┤ fragment ├─ symbol indicates that a labelled
group is described below the main syntax diagram.
Syntax is occasionally broken into fragments if the
inclusion of the fragment would overly complicate the
main syntax diagram.

KEYWORD fragment

fragment
, required_choice1

, required_choice2

, default_choice

, optional_choice

How to provide your comments
Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this document or any other z/OS Debugger documentation, you can leave a comment in
IBM Knowledge Center:

• IBM Developer for z/OS, IBM Debug for z/OS, and IBM Developer for z/OS Enterprise Edition: https://
www.ibm.com/support/knowledgecenter/SSQ2R2

• IBM Wazi Developer for Red Hat CodeReady Workspaces: https://www.ibm.com/support/
knowledgecenter/SSCH39

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

xviii  IBM z/OS Debugger: Customization Guide

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter/SSQ2R2
https://www.ibm.com/support/knowledgecenter/SSQ2R2
https://www.ibm.com/support/knowledgecenter/SSCH39
https://www.ibm.com/support/knowledgecenter/SSCH39


Summary of changes

14.2.6
• Debug Profile Service

– You now only need to expose one port to use Debug Profile Service. A new configuration switch is
added to eqaprof.env to select whether to use secure HTTP protocol. For more information, see
“Customizing with the sample job EQAPRFSU” on page 49.

14.2.5
• Debug Profile Service

– As an alternative of a keystore file, you can now use a RACF managed key ring to enable
secure communication with Debug Profile Service. For more information, see Enabling secure
communication with a RACF managed key ring.

– A new optional HOST attribute is added to the CICS region configuration. For more information, see
the instructions in the /etc/debug/dtcn.ports sample configuration file.

– The Debug Profile Service API now provides more detailed diagnostic messages when authentication
fails.

• IBM Z® Open Debug

– Log files can now be found in the user's home directory.

14.2.4
• Code coverage

– You can now also use Remote Debug Service to collect code coverage results similar to the
headless code coverage collector for IBM Wazi Developer for Red Hat CodeReady Workspaces or
IBM Developer for z/OS Enterprise Edition. For more information, see the "Generating code coverage
in headless mode using Remote Debug Service" topic in IBM Documentation.

• Host configuration

– Remote Debug Service can now be configured to collect headless code coverage. For more
information, see Adding support for Remote Debug Service.

14.2.3
• IBM Wazi for Red Hat CodeReady Workspaces

– z/OS Debugger is included as part of the new product IBM Wazi for Red Hat CodeReady Workspaces
and provides debug functions with the following clients:

- IBM Z Open Development Eclipse client
- Wazi Development, a set of Visual Studio Code extensions including IBM Z Open Debug

• IBM Developer for z/OS Enterprise Edition

– Starting from V14.2.3, IBM Developer for z/OS Enterprise Edition also offers Wazi Development, a set
of Visual Studio Code extensions including IBM Z Open Debug.

For a comparison of features provided in different products and clients, see Overview of IBM z/OS
Debugger.

The following updates are delivered with the Eclipse interface:

• z/OS Debugger Profiles view

© Copyright IBM Corp. 1992, 2021 xix

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/products/wazi-for-red-hat-codeready-workspaces
https://www.ibm.com/us-en/marketplace/developer-for-z-systems


– You can now export debug profiles in an export file, and import from a debug profile export file or a
workspace that was created with an older version of the product.

– A search field is added to display only the profiles that match your search text.
– More columns are now available. You can hide or display a column, modify the width of a column, and

reorder the columns.
– You can now return to the default order of the profiles by clicking the column header.
– You can now activate a non-CICS debug profile for code coverage.
– If Debug Manager is not available and the debug daemon is configured with a secured port, when you

activate a profile, the secured port is automatically detected.

For more information, see the "Managing debug profiles with the z/OS Debugger Profiles view" section
in IBM Documentation.

• z/OS batch applications launches

– You can now view the batch job in the Remote Systems view.
– You can now select more than one step in the existing JCL to be augmented with debug or code

coverage options.

For more information, see the "Launching a debug session for z/OS Batch applications" section in IBM
Documentation.

• Debug preferences

– IBM z/OS Debugger preferences: You can now specify to inactivate the remote profiles when the
Remote System Explorer connection associated with the profiles disconnects so that the debugger
will not be triggered accidentally when you run applications that match the active profiles.

– Debug Daemon preferences: Instructions are added to set up a secure daemon connection.

For more information, see the "Setting debug preferences" topic in IBM Documentation.

The following features are delivered with the z/OS Debugger host component:

• CICS support

– Support is added for CICS Transaction Server for z/OS Version 5 Release 6.
• Compiler support

– In Debug Tool compatibility mode, support is added for TEST(SEPARATE(DSNAME),SOURCE) in
Enterprise COBOL for z/OS Version 6 Release 2 with APAR PH04485 installed or later. Specify
TEST(SEPARATE(DSNAME),SOURCE) to store the separate debug file name, which is the SYSDEBUG
DD data set name, in the program object. You will not need to specify the separate debug file
location if it is not moved after compilation. For more information, see the "Choosing TEST or NOTEST
compiler suboptions for COBOL programs" topic in IBM z/OS Debugger User's Guide.

14.2.2
The following changes were added for IBM z/OS Debugger Version 14.2.2.

The following updates are delivered with the Eclipse interface:

• z/OS Debugger Profiles view

– The z/OS Debugger Profiles view is added to create and manage CICS and non-CICS debug profiles.
The following profiles and launch configurations are migrated to this new view:

- DTCN profiles from the DTCN Local Profile view. The DTCN profiles are now called CICS profiles in
the client.

- DTSP profiles from the DTSP Local Profile view. The DTSP profiles are now called non-CICS profiles
in the client.

- Remote CICS Application launch configurations
- Remote Db2 Application launch configurations

xx  IBM z/OS Debugger: Customization Guide

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter


- Remote IMS Application launch configurations

Edit the profiles to provide additional information that is required before you activate any profiles. For
more information, see the following topics in IBM Documentation: Working with the z/OS Debugger
Profiles view, Creating a debug profile for a CICS application, and Creating a debug profile for a
non-CICS application.

To use this view, system programmers need to configure the following services:

- Remote System Explorer from z/OS Explorer is required for z/OS connections.
- To enable all the features in the view for the best user experience, see “Adding support for Debug
Profile Service and APIs” on page 48. Use z/OS Explorer host V3.1.1.23 or later with Debug Profile
Service.

- For CICS users, also see “Adding support for the DTCN profiles APIs and views” on page 53.

– The DTCN and DTSP plug-ins are deprecated and will be removed in a future release.
• z/OS batch applications launches

– MVS Batch Application launch configurations are replaced with z/OS Batch Application using property
groups and z/OS Batch Application using existing JCL launch configurations to simplify debugging
and running code coverage on batch applications on IBM Z. Any MVS Batch Application launch
configurations are automatically migrated to the appropriate new configuration types. You can use
debug profiles with z/OS Batch Application using existing JCL launch configurations.

For more information, see the "Launching a debug session for z/OS Batch applications" topic in IBM
Documentation.

z/OS Batch Application launch configurations require the Remote System Explorer from z/OS
Explorer.

The following features are delivered with the z/OS Debugger host component:

• TEST runtime option

– A simple TEST runtime option now starts z/OS Debugger in delay debug mode under most conditions
for non-CICS tasks if the Debug Profile Service API is started. This option simplifies the debug setup
for batch jobs, IMS MPP regions, and WLM address spaces for Db2 stored procedures. For more
information, see the "Simple TEST options" topic in IBM z/OS Debugger User's Guide.

• Compiler support

– In Debug Tool compatibility mode, support is added for debugging COBOL programs that contain
dynamic length elementary items and compiled with Enterprise COBOL for z/OS Version 6 Release 3.
Dynamic length elementary items are not supported in standard mode.

• Documentation only updates

– Instructions are added for debugging non-Language Environment programs under IMS Batch
Terminal Simulator. For more information, see the "Debugging non-Language Environment IMS BTS
programs" topic in IBM z/OS Debugger User's Guide.

– Chapter 7, "Debug Manager (DBGMGR)" and Chapter 17, "Adding support for remote debug users"
are combined into Chapter 7, “Adding support for remote debug users,” on page 25 in IBM z/OS
Debugger Customization Guide.

14.2.1
The following changes were added for IBM z/OS Debugger Version 14.2.1.

• Compiler support

– In Debug Tool compatibility mode, support is added for debugging COBOL programs that contain
fixed-length UTF-8 data items and compiled with Enterprise COBOL for z/OS Version 6 Release 3.
UTF-8 data items are not supported in standard mode.

• Debug Manager

Summary of changes  xxi

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter


– Debug Manager and Remote System Explorer can use different chain certificates. If the different
certificates are of the same CA root, the Debug Manager certificate is regarded as trusted and
automatically accepted. Otherwise, the certificate is not regarded as trusted. In Debug Tool
compatibility mode, a window appears to ask you to import the certificate for Debug Manager.

• Terminal Interface Manager

– Terminal Interface Manager now supports MFA-generated tokens and password phrases.

14.2.0
The following changes were added for IBM z/OS Debugger Version 14.2.0.

• New support

– z/OS Version 2 Release 4
– Enterprise COBOL for z/OS Version 6 Release 3
– Enterprise PL/I for z/OS Version 5 Release 3

• Product renaming

– IBM Application Delivery Foundation for z Systems® is renamed as Application Delivery Foundation
for z/OS.

– IBM Developer for z Systems Enterprise Edition is renamed as IBM Developer for z/OS Enterprise
Edition.

– IBM Developer for z Systems is renamed as IBM Developer for z/OS.
– IBM Debug for Systems is renamed as IBM Debug for z/OS.

• IBM Debug for z/OS client installation

– In addition to using IBM Installation Manager, you can now install the IBM Debug for z/OS client with
Eclipse p2. For more information, see the "Installing the IBM Debug for z/OS client" topic in IBM
Documentation.

• Debug Profile Service

– Debug Profile Service is a REST API that uses the HTTP protocol to provide RESTful access to a set
of resources related to debug profiles. You can use this service to create, retrieve, update and delete
debug profiles.

For more information about host configuration, see Adding support for Debug Profile Service and
APIs.

For more details about the API, see the "z/OS Debug Profile Service API" documentation in IBM
Documentation.

• Section breakpoint support

– When you edit COBOL with the COBOL Editor or the z Systems LPEX Editor, a Toggle Section
Breakpoint action is available in the left ruler context menu of the editor and the context menu
for sections in the outline view. For more information, see the "Source entry breakpoints" topic in IBM
Documentation.

• IMS Transaction Isolation facility

– IMS Transaction Isolation facility no longer accesses IMS ACB libraries. It has a simplified setup and
is compatible with ACB management by IMS Catalog. The setting of IMSISOORIGPSB in EQAOPTS no
longer has any effect and the original PSB is always preserved. For more information, see Scenario F:
Enabling the Transaction Isolation Facility.

– Instructions for using the IMS PSTOP command are added to end the wait state of the IMS region
when PWFI is used, so that you can continue with the program. For more information, see the "Using
IMS pseudo wait-for-input (PWFI) with IMS Transaction Isolation" topic in IBM z/OS Debugger User's
Guide.

xxii  IBM z/OS Debugger: Customization Guide

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter


Overview of IBM z/OS Debugger

IBM z/OS Debugger is the next iteration of IBM debug technology on IBM Z and consolidates the IBM
Integrated Debugger and IBM Debug Tool engines into one unified technology. IBM z/OS Debugger is
progressing towards one remote debug mode based on Debug Tool compatibility mode. In support of this
direction, Debug Tool compatibility mode, when available in the user interface, is selected by default for
V14.1.2 or later.

IBM z/OS Debugger is a host component that supports various debug interfaces, like the Eclipse and
Visual Studio Code IDEs. z/OS Debugger and the supported debug interfaces are provided with the
following products:
IBM Developer for z/OS Enterprise Edition

This product is included in IBM Application Delivery Foundation for z/OS. IBM Developer for z/OS
Enterprise Edition provides all the debug features.
IBM Developer for z/OS Enterprise Edition currently provides debug functions in the following IDEs:

• IBM Developer for z/OS Eclipse
• Wazi Developer for VS Code, through IBM Z Open Debug

See Table 3 on page xxv for the debug features supported in different IDEs.
IBM Developer for z/OS

IBM Developer for z/OS is a subset of IBM Developer for z/OS Enterprise Edition. IBM Developer for
z/OS, previously known as IBM Developer for z Systems or IBM Rational® Developer for z Systems, is
an Eclipse-based integrated development environment for creating and maintaining z/OS applications
efficiently.
IBM Developer for z/OS includes all enhancements in IBM Developer for z/OS Enterprise Edition
except for the debug features noted in Table 2 on page xxiv.

IBM Debug for z/OS
IBM Debug for z/OS is a subset of IBM Developer for z/OS Enterprise Edition. IBM Debug for z/OS
focuses on debugging solutions for z/OS application developers. See Table 2 on page xxiv for the
debug features supported.
IBM Debug for z/OS does not provide advanced developer features that are available in IBM
Developer for z/OS Enterprise Edition.
For information about how to install the IBM Debug for z/OS Eclipse IDE, see Installation of
IBM Developer for z Systems and IBM Debug for z Systems (https://developer.ibm.com/mainframe/
2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/).

IBM Wazi Developer for Red Hat CodeReady Workspaces
IBM Wazi Developer for Red Hat CodeReady Workspaces is a single integrated solution, which delivers
a cloud-native developer experience for z/OS. It enables application developers to develop and
test z/OS application components in a virtual z/OS environment on an OpenShift-powered hybrid
multicloud platform, and to use an industry standard integrated development environment (IDE) of
their choice.
IBM Wazi Developer for Red Hat CodeReady Workspaces currently provides debug functions in the
following IDEs:

• Wazi Developer for Workspaces, through IBM Z Open Debug
• Wazi Developer for VS Code, through IBM Z Open Debug
• Wazi Developer for Eclipse

See Table 2 on page xxiv and Table 3 on page xxv for the debug features supported in the product
and different IDEs.

Table 2 on page xxiv maps out the features that differ in products. Not all the available features are listed.
To find the features available in different remote IDEs, see Table 3 on page xxv.

© Copyright IBM Corp. 1992, 2021 xxiii

https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/products/app-delivery-foundation-on-zsystems
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/us-en/marketplace/debug-for-z-systems
https://developer.ibm.com/mainframe/2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/
https://developer.ibm.com/mainframe/2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/
https://www.ibm.com/products/wazi-developer


Table 2. Debug feature comparison

IBM Debug for
z/OS

IBM Developer for
z/OS

IBM Developer for
z/OS Enterprise
Edition

IBM Wazi
Developer for Red
Hat CodeReady
Workspaces

Main features

3270 interface,
including z/OS
Debugger Utilities

√ √

Eclipse IDE, see
Table 3 on page
xxv for feature
details.1

√ √ √ √

IBM Z Open Debug
provided with the
Wazi Developer
for Workspaces
IDE, see Table 3
on page xxv for
feature details.

√

IBM Z Open Debug
provided with the
Wazi Developer for
VS Code IDE, see
Table 3 on page
xxv for feature
details.

√ √

Code Coverage features

Compiled
Language Code
Coverage

√ √ 2 √

Headless Code
Coverage

√ √

Java™ Code
Coverage

√ √

ZUnit Code
Coverage3

√ √

z/OS Debugger
Code Coverage
(3270 and remote
interfaces) 4

√ √

3270 features

z/OS Debugger full
screen, batch or
line mode

√ √

IMS Isolation
support

√ √

Compiler support features

xxiv  IBM z/OS Debugger: Customization Guide



Table 2. Debug feature comparison (continued)

IBM Debug for
z/OS

IBM Developer for
z/OS

IBM Developer for
z/OS Enterprise
Edition

IBM Wazi
Developer for Red
Hat CodeReady
Workspaces

Assembler
support: Create
EQALANGX files

√ √ √

Assembler
support:
Debugging 5

√ √ √6 √6

LANGX COBOL
support 7

√ √ √

Support for
Automatic Binary
Optimizer (ABO)

√ √ √

Load Module
Analyzer

√ √

Notes:

1. The following features are supported only in the standard mode of a remote Eclipse IDE:

• Support for 64 bit Enterprise PL/I for z/OS Version 5
• Support for 64 bit C/C++ feature of z/OS
• Source view for COBOL V6.2 and later

2. IBM Developer for z/OS includes z/OS Debugger remote debug and compiled code coverage Eclipse
interface, but does not include z/OS Debugger Code Coverage.

3. ZUnit Code Coverage is only supported in Debug Tool compatibility mode.
4. z/OS Debugger Code Coverage can only be enabled in the 3270 interface.
5. Debugging assembler requires that you have EQALANGX files that have been created via ADFz

Common Components or a product that ships the ADFz Common Components.
6. This feature is only available with the Eclipse IDE.
7. LANGX COBOL refers to any of the following programs:

• A program compiled with the IBM OS/VS COBOL compiler.
• A program compiled with the IBM VS COBOL II compiler with the NOTEST compiler option.
• A program compiled with the IBM Enterprise COBOL for z/OS Version 3 or Version 4 compiler with

the NOTEST compiler option.

Table 3. Remote IDE debug feature comparison

Feature Eclipse-based debug interface IBM Z Open Debug 1

Debug Tool compatibility mode2 √ √

Standard mode3 √4

Integration with Language
Editors

• COBOL Editor5

• PL/I Editor5

• Remote C/C++ Editor4,5

• System z LPEX Editor4,5

• Z Open Editor

Overview of IBM z/OS Debugger  xxv



Table 3. Remote IDE debug feature comparison (continued)

Feature Eclipse-based debug interface IBM Z Open Debug 1

Visual Debug √5

Debugging ZUnit tests √6

Debug profile management √4 √

IMS Isolation UI √7

Integration with CICS Explorer
views

√ 4,5

Integration with property groups √5

Team Debug support √45,

Integrated launch • z/OS UNIX Application launch
configuration

• z/OS Batch Application using
existing JCL

• z/OS Batch Application using a
property group5

Debug Tool Plug-ins √4, 8

Modules √

Memory √

Program navigation

Step over/Next √ √

Step into/Step in √ √

Step return/Step out √ √

Jump to location √

Run to location/Run to cursor √ √

Resume/Continue √ √

Terminate √ √

Animated step √

Playback √

Breakpoints

Line/statement breakpoints √ √

Entry breakpoints √

Source entry breakpoints √

Event breakpoint √

Address breakpoint √

Watch breakpoint √

Variables & Registers

Variables √ √

xxvi  IBM z/OS Debugger: Customization Guide



Table 3. Remote IDE debug feature comparison (continued)

Feature Eclipse-based debug interface IBM Z Open Debug 1

Registers √ √9

Modifying variable and register
values

√ √

Setting variable filter √

Changing variable representation √

Dereferencing variables √

Displaying in memory view √

Monitors

Displaying monitor √ √

Modifying monitor value √

Changing variable representation √

Dereferencing variables √

Debug Console

Evaluating variables and
expressions

√

z/OS Debugger commands √

Notes:

1. IBM Z Open Debug is provided with Wazi Developer for Workspaces and Wazi Developer for VS Code.
2. Debug Tool compatibility mode does not support 64-bit programs.
3. The following features are supported only in standard mode:

• Support for 64 bit Enterprise PL/I for z/OS Version 5
• Support for 64 bit C/C++ feature of z/OS
• Source view for COBOL V6.2 and later

4. This feature is not available in Wazi Developer for Eclipse.
5. This feature is not available in IBM Debug for z/OS.
6. Debugging ZUnit tests is only supported in Debug Tool compatibility mode.
7. This feature is only available in IBM Developer for z/OS Enterprise Edition.
8. IBM Developer for z/OS includes Debug Tool plug-ins, but does not include Load Module Analyzer and

z/OS Debugger Code Coverage 3270 interfaces.
9. Registers are available in the Variables view.

Overview of IBM z/OS Debugger  xxvii



xxviii  IBM z/OS Debugger: Customization Guide



Chapter 1. Customizing z/OS Debugger: checklist

Note: You can also use Host Configuration Assistant for Z Development (HCA) (https://ibm-host-
configuration-assistant-for-z-development.au-syd.mybluemix.net/#/) to generate a customized checklist
for z/OS Debugger. HCA is a free cloud-based wizard that is designed to simplify planning and configuring
of Z development products. Besides z/OS Debugger, you can also find the configuration information for
other host components like z/OS Explorer and z/OS Source Code Analysis.

This topic helps you identify which customization tasks you must do. Begin by reviewing the topic
"Planning your debug session" in the IBM z/OS Debugger User's Guide with your application programmers
and library system administrator. Reviewing that topic helps you gather the following information, which
you need to identify which customization tasks you must do:

• Which version of compilers you are using
• Whether you are debugging Db2, Db2 stored procedures, CICS, and IMS programs
• Whether you are using full-screen mode, full-screen mode using the Terminal Interface Manager, batch

mode, or remote debug mode
• How your programs will call z/OS Debugger
• Whether you will be using IBM z/OS Debugger Utilities, ADFz Common Components, or Application

Delivery Foundation for z/OS tools
• Whether you will need to modify some of the debugger's behavior

After you gather this information, review the following checklists. As you read each item on the checklist,
you use the information you gathered to determine if you need to do that customization task. If the task is
not applicable to your site, you can skip that task.

You must do all of the following compulsory customization tasks:

• Chapter 2, “Product Registration,” on page 7
• Chapter 3, “Installing the z/OS Debugger SVCs,” on page 9.
• Chapter 4, “Setting up the APF-authorized system link list data set (SEQABMOD),” on page 13
• Chapter 5, “Setting up the link list data set (SEQAMOD),” on page 15
• Chapter 6, “Enabling debugging in full-screen mode using the Terminal Interface Manager,” on page

17.
• If your application programmers debug in remote debug mode, review Chapter 7, “Adding support for

remote debug users,” on page 25.
• Read Chapter 8, “Specifying the TEST runtime options through the Language Environment user exit,” on

page 61 and review with your users to see if they need you to do this customization.

If you previously installed any of these Language Environment user exits: EQADDCXT, EQADICXT,
EQADBCXT, switch to the EQAD3CXT user exit.

If you previously installed the Language Environment user exit EQAD3CXT, rebuild this exit. z/OS
Debugger has updated the sample assembler user exits and the load modules.

• Read Chapter 9, “Installing the browse mode RACF facility,” on page 67 if you want to control which
users have access to z/OS Debugger, or control which users can access z/OS Debugger only through
browse mode.

Note: If you have defined a generic Facility class profile (for example, *.*), you might have to install the
browse mode RACF facilities, even if neither of the previous considerations applies. For example, if you
have a generic Facility class profile of *.* with UACC(NONE) and you do not install the browse mode
RACF facilities, no users would be allowed to use z/OS Debugger.

If you are using IBM z/OS Debugger Utilities, you must do the required customization tasks described in
the following topics:

© Copyright IBM Corp. 1992, 2021 1

https://ibm-host-configuration-assistant-for-z-development.au-syd.mybluemix.net/#/


• “Choosing a method to start IBM z/OS Debugger Utilities” on page 70.
• “Customizing the data set names in EQASTART” on page 71.
• “Adding IBM z/OS Debugger Utilities to the ISPF menu” on page 72.
• For the JCL for Batch Debugging utility, you must specify default values for the yb1dtmod and yb1dtbin

parameters. See “Customizing for JCL for Batch Debugging utility” on page 72.

If you are using any of the following utilities in IBM z/OS Debugger Utilities, you must do an additional
customization task:

• If you are using z/OS Debugger Setup Utility, see “Customizing z/OS Debugger Setup Utility” on page
72.

• If you are using other IBM Application Delivery Foundation for z/OS tools, such as File Manager for z/OS,
see “Customizing Other IBM Application Delivery Foundation for z/OS tools for multiple systems” on
page 75.

• If you are using Program Preparation, see “Customizing Program Preparation” on page 76.
• For the IMS BTS Debugging option, you must specify default values for yb2* parameters. See

“Customizing IMS BTS Debugging” on page 81.

If you are debugging Db2 stored procedures, CICS program, or IMS programs, you must do the following
required customization tasks:

• If your site debugs Db2 stored procedures, see Chapter 11, “Preparing your environment to debug Db2
stored procedures,” on page 89.

• If your site debugs CICS programs, see Chapter 12, “Adding support for debugging under CICS,” on
page 91.

• If your site debugs IMS programs, see Chapter 13, “Adding support for debugging under IMS,” on page
111 and implement scenario A.

• If your site debugs non-Language Environment IMS programs, see Chapter 13, “Adding support for
debugging under IMS,” on page 111 and implement scenario C.

In Debug Tool Version 13.1, the EQALANGP and EQALANGX modules were moved from Debug Tool's
EQAW.SEQAMOD library to Common Component's IPV.SIPVMODA library, where they will be aliases of
IPVLANGP and IPVLANGX respectively. This removes duplication between the two tools. If you have
library build processes or other tools that reference either of these routines, and IPV.SIPVMODA is not
in link list, then you will need to update your processes to point to the new location for these routines.
See Preparing a LANGX COBOL program and Preparing an assembler program in the IBM z/OS Debugger
Customization Guide for more information about EQALANGX.

Note: Debug Tool for z/OS is now named as z/OS Debugger, and Problem Determination Tools for z/OS
Common Component is now named IBM Application Delivery Foundation for z/OS Common Components.

As you review the rest of the checklist, if you need to do an item that requires that you specify an
EQAOPTS command, you can print a copy of Table 29 on page 134 and use it to record the commands
you need to specify and the values for any options. When you are done reviewing the checklist, you can
specify all the EQAOPTS commands at one time as described in “Creating EQAOPTS load module” on
page 140.

For any of the following situations, see “CODEPAGE” on page 144:

• Application programmers are debugging in remote debug mode and the source or compiler use a code
page other than 037. If your C/C++ source contains square brackets or other special characters, you
might need to specify an EQAOPTS CODEPAGE command to override the z/OS Debugger default code
page (037). Check the code page specified when you compiled your source. The C/C++ compiler uses a
default code page of 1047 if you do not explicitly specify one. If the code page used is 1047 or a code
page other than 037, you need to specify an EQAOPTS CODEPAGE command specifying that code page.

• Application programmers are debugging in full screen mode and encounter one of the following
situations:

– They use the STORAGE command to update COBOL NATIONAL variables.

2  IBM z/OS Debugger: Customization Guide



– The source is coded in a code page other than 037.
• Application programmers use the XML(CODEPAGE(ccsid)) parameter on a LIST CONTAINER or
LIST STORAGE command to specify an alternate code page.

Do the customization tasks in the following list only if your site needs the features described:

• These EQAOPTS commands enable certain z/OS Debugger functions:

– “ALTDISP” on page 140
You want z/OS Debugger to display the at sign (@) in the prefix area of a line to indicate that the line
contains a breakpoint, instead of using a colored line.

– “BROWSE” on page 141
You want to restrict access to z/OS Debugger or control which users1 must debug in browse mode.

– “CCOUTPUTDSN” on page 141
You want to use Code Coverage and need to specify the name of the Observation data set.

– “CCOUTPUTDSNALLOC” on page 142
You want to use Code Coverage and need to specify the allocation parameters for the Observation
data set.

– “CCPROGSELECTDSN” on page 143
You want to use Code Coverage and need to specify the name of the Options data set.

– “DLAYDBG” on page 147
You want to allow users to use the delay debug mode.

– “DOPTACBDSN” on page 150
You want to use the IMS Transaction Isolation Facility described in Chapter 13, “Adding support for
debugging under IMS,” on page 111.

– “EQAQPP” on page 152
Your site needs to debug Q++ programs.

– “IGNOREODOLIMIT” on page 154
You want to tell z/OS Debugger to display COBOL table items even when an ODO value is out of range.

– “LOGDSNALLOC” on page 156
You want z/OS Debugger to automatically create a LOG data set for each user.

– “MDBG” on page 158
Your site uses z/OS XL C/C++, Version 1.10, or later, and you want z/OS Debugger to retrieve source
and debug information from .mdbg files.

– “SAVESETDSNALLOC, SAVEBPDSNALLOC” on page 161
You want z/OS Debugger to automatically create either of the following data sets:

- A data set to save and restore settings
- A data set to save and restore breakpoints, monitor values and LOADDEBUGDATA (LDD)
specifications

– “STARTSTOPMSG” on page 164
You want z/OS Debugger to issue a message when each debugging session is initiated or terminated.

– “SUBSYS” on page 165
If your site uses a library system that uses the SUBSYS allocation parameter and your application
programmers debug C, C++, or Enterprise PL/I programs, review this command to determine if you
need to change the SUBSYS parameter.

– “SVCSCREEN” on page 165
You need to debug non-Language Environment programs that start under Language Environment,
Language Environment programs that use the MVS LINK, LOAD or DELETE services, LangX COBOL

1 If you want to enforce browse mode restrictions, you must use the RACF Facility Class Profile as described
in Chapter 9, “Installing the browse mode RACF facility,” on page 67. You can learn how the EQAOPTS
BROWSE command works with the RACF profiles by reviewing the table in the topic "Controlling browse
mode" of the IBM z/OS Debugger User's Guide.

Chapter 1. Customizing z/OS Debugger: checklist  3



programs, or your site has any host products that might use SVC screening when z/OS Debugger is
started.

• If your site uses any of the following functions in a Japanese or Korean environment, see “Enabling
additional languages for some z/OS Debugger components through EQACUIDF” on page 130:

– IBM z/OS Debugger Utilities ISPF panels
– z/OS Debugger Code Coverage
– EQANMDBG (non-CICS non-Language Environment support)

Do the customization tasks in the following list only if you want to modify the behavior described:

• These EQAOPTS commands modify the behavior of certain z/OS Debugger functions:

– “CACHENUM” on page 141
You want to reduce z/OS Debugger's CPU consumption in certain cases.

– “CEEREACTAFTERQDBG” on page 143
You want to restart z/OS Debugger with CEETEST after you use QUIT DEBUG.

– “COMMANDSDSN” on page 146
You want to change the default data set name for the user's commands file.

– “DEFAULTVIEW” on page 147
You want to change the default setting for SET DEFAULT VIEW so that assembler macro-generated
statements are not displayed in the Source window.

– “DLAYDBGCND” on page 148
You want to change the default delay debug setting for monitoring condition events.

– “DLAYDBGDSN” on page 148
You want to change the default name of the delay debug profile data set.

– “DLAYDBGTRC” on page 149
You want to change the default delay debug pattern match trace message level.

– “DLAYDBGXRF” on page 149
You want to instruct delay debug to use the cross reference file to find the user ID when it constructs
the delay debug profile data set name.

– “DTCNDELETEDEADPROF” on page 151
You want to change the default setting for controlling the deletion of dead DTCN profiles.

– “DTCNFORCExxxx” on page 151
You want to change the default DTCN behavior for certain resource types.

– “DYNDEBUG” on page 152
You want to change the initial or default value of SET DYNDEBUG.

– “GPFDSN” on page 153
Your site wants to control the appearance or settings, through z/OS Debugger commands, of all
debugging sessions, create a global preferences file. The global preferences file is a file that is
processed at the beginning of every debugging session and contains z/OS Debugger commands. See
this command for instructions on how to create a global preferences file.

– “HOSTPORTS” on page 154
Your users are using the remote debugger and you need to specify a host port or range of ports for a
TCP/IP connection from the host to the workstation.

– “LOGDSN” on page 155
You want to change the default data set name for the LOG data set.

– “MAXTRANUSER” on page 157
You want to use the IMS Transaction Isolation Facility described in Chapter 13, “Adding support for
debugging under IMS,” on page 111, and you need to set the maximum number of transactions that a
single user can debug to something less than 15.

– “MULTIPROCESS” on page 158
You want to change the default behavior of z/OS Debugger when a new POSIX process is created by a
fork() or exec() function.

4  IBM z/OS Debugger: Customization Guide



– “NAMES” on page 159
Your site needs to issue a NAMES command for the initial load module or any of its compile units.

– “NODISPLAY” on page 160
To modify the debugger's behavior when a full-screen mode using the Terminal Interface Manager or
a remote debugger is not available.

– “PREFERENCESDSN” on page 160
You want to change the default data set name for the user's preferences file.

– “SAVEBPDSN, SAVESETDSN” on page 161
Your site wants to change the default names, which are userid.DBGTOOL.SAVESETS and
userid.DBGTOOL.SAVEBPS, of the data sets that store settings, breakpoints, and monitor values.

– “SESSIONTIMEOUT” on page 163
You want to specify an idle session timeout for users who are using the Terminal Interface Manager.

– “STARTSTOPMSGDSN” on page 165
You want z/OS Debugger to write information to a log data set when each non-CICS debugging
session is initiated or terminated.

– “TCPIPDATADSN” on page 168
Your users are using the remote debugger and your host TCP/IP does not have a specification for
GLOBALTCPIPDATA.

– “THREADTERMCOND” on page 169
Your site wants z/OS Debugger to suppress the prompt that Language Environment displays
every time when the statements like STOP RUN, GOBACK, or EXEC CICS RETURN are run. These
statements can occur frequently in an application program, creating unnecessary interruptions for a
user trying to debug the application program.

– “TIMACB” on page 169
You want to change the default ACB name for the Terminal Interface Monitor.

• If your site is using the EQAUEDAT user exit to direct z/OS Debugger to the location of source, listing, or
separate debug files, see Chapter 14, “Enabling the EQAUEDAT user exit,” on page 127.

• If your site needs to change the defaults for NATLANG, LOCALE, or LINECOUNT, see “Changing the
default and allowable values in EQACUIDF” on page 129.

Chapter 1. Customizing z/OS Debugger: checklist  5



6  IBM z/OS Debugger: Customization Guide



Chapter 2. Product Registration
You must set up product registration for z/OS Debugger.

Registering z/OS Debugger
z/OS Debugger is available as a component of multiple products. Different functions of z/OS Debugger are
enabled according to the product you purchased.

• IBM Developer for z/OS Enterprise Edition V14.2.0, program number 5655-AC5 (Shopz orderable)
• IBM Debug for z/OS V14.2.0, program number 5655-Q50 (Shopz orderable)
• IBM Developer for z/OS V14.2.0, program number 5724-T07 (web download)
• IBM Wazi Developer for Red Hat CodeReady Workspaces V1.0.0, program number 5900-A8N (web

download)

In turn, IBM Developer for z/OS Enterprise Edition is a part of IBM Application Delivery Foundation for
z/OS V3.2, program number 5655-AC6 (Shopz orderable).

You must set up z/OS product registration for z/OS Debugger to enable its functions. Products to be
enabled on z/OS are defined in the IFAPRDxx parmlib member that is used for IPL.

If you already defined the product using FEATURENAME('*') for another component of the product, you
do not need to repeat the definition. Otherwise, you must specify one of the following IFAPRDxx entries,
depending on how you purchased z/OS Debugger:

• If you acquired z/OS Debugger as a part of IBM Application Delivery Foundation for z/OS (product code
5655-AC6), specify the following definition in IFAPRDxx. Sample member EQAWIFAA, which contains
the next statements, is provided in the SEQASAMP sample library.

PRODUCT OWNER('IBM CORP')
        NAME('IBM APP DLIV FND')
        ID(5655-AC6)
        VERSION(*) RELEASE(*) MOD(*)
        FEATURENAME(*)
        STATE(ENABLED)

• If you acquired z/OS Debugger as a part of IBM Developer for z/OS Enterprise Edition (product code
5655-AC5), specify the following definition in IFAPRDxx. Sample member EQAWIFAE, which contains
the next statements, is provided in the SEQASAMP sample library.

PRODUCT OWNER('IBM CORP')
        NAME('IBM IDz EE')
        ID(5655-AC5)
        VERSION(*) RELEASE(*) MOD(*)
        FEATURENAME(*)
        STATE(ENABLED)

• If you acquired z/OS Debugger as a part of IBM Debug for z/OS (product code 5655-Q50), specify the
following definition in IFAPRDxx. Sample member EQAWIFAD, which contains the next statements, is
provided in the SEQASAMP sample library.

PRODUCT OWNER('IBM CORP')
        NAME('IBM Debug for z')
        ID(5655-Q50)
        VERSION(*) RELEASE(*) MOD(*)
        FEATURENAME(*)
        STATE(ENABLED)

© Copyright IBM Corp. 1992, 2021 7



• If you acquired z/OS Debugger as a part of IBM Developer for z/OS (product code 5724-T07), specify
the following definition in IFAPRDxx. Sample member EQAWIFAZ, which contains the next statements,
is provided in the SEQASAMP sample library.

PRODUCT OWNER('IBM CORP')
        NAME('IBM IDz')
        ID(5724-T07)
        VERSION(*) RELEASE(*) MOD(*)
        FEATURENAME(*)
        STATE(ENABLED)

• If you acquired z/OS Debugger as a part of IBM Wazi Developer for Red Hat CodeReady Workspaces
(product code 5900-A8N), specify the following definition in IFAPRDxx. Sample member EQAWIFAW,
which contains the next statements, is provided in the SEQASAMP sample library.

PRODUCT OWNER('IBM CORP')
        NAME('IBM Wazi Code')
        ID(5900-A8N)
        VERSION(*) RELEASE(*) MOD(*)
        FEATURENAME(*)
        STATE(ENABLED)

Notes:

• These sample definitions enable all features of the selected product. To register each feature
individually, create a PRODUCT block for each feature and specify FEATURENAME('IDz-DEBUGGER')
to register the z/OS Debugger feature.

• If you do not register any of the listed products in the IFAPRDxx parmlib member, z/OS Debugger will
assume that you purchased IBM Developer for z/OS (product code 5724-T07) and enable only the
related functions.

After you update IFAPRDxx, issue the SET PROD=xx operator command to dynamically activate the
definitions. z/OS Debugger will then be enabled in your z/OS environment.

IBM advises against defining IFAPRDxx entries that have NAME(*) or ID(*) fields, as this will result in
all z/OS applications that utilize product registration to find a match on the first test, and adhere to the
related STATE() definition. For z/OS Debugger with STATE(ENABLED), this means that the application
will register as Application Delivery Foundation for z/OS (product code 5655-AC6).

If your site has coded a generic entry in IFAPRDxx, complete the following steps:

1. Code an entry for each item that you did not purchase STATE(NOTDEFINED).
2. Code an entry for the item you did purchase as shown in the previous text.
3. Issue a SET PROD=xx operator command.

Removing old registrations
Remove all old registration entries that belonged to z/OS Debugger. Older versions of z/OS Debugger were
known as Debug Tool, or Debug Tool Utilities and Advanced Functions.

To remove old registration entries, complete the following steps:

1. Change the STATE(ENABLED) parameter for the old entries in the IFAPRDxx parmlib member to
STATE(NOTDEFINED).

2. Issue a SET PROD=xx operator command to activate your changes.
3. Remove the old entries from IFAPRDxx. This update will become active at next IPL.

8  IBM z/OS Debugger: Customization Guide



Chapter 3. Installing the z/OS Debugger SVCs

z/OS Debugger requires the installation of the z/OS Debugger SVC programs EQA00SVC(IGC0014E) and
EQA01SVC(IGX00051):

• EQA00SVC is a type 3 SVC with a reserved number of 145 (x'91').
• EQA01SVC is a type 3 using SVC number 109 (X'6D') with function code 51.

The z/OS Debugger SVCs are compatible with z/OS Debugger Version 14 Release 1 (Program Number
5724-T07), z/OS Debugger Version 14 Release 0 (Program Number 5724-T07), Debug Tool Version 13
Release 1 (Program Number 5655-Q10), and Version 12 Release 1 (Program Number 5655-W70).

The z/OS Debugger SVCs support the Dynamic Debug facility and other necessary z/OS Debugger
functions.

To install the SVCs, do the following steps on each of the LPARs that z/OS Debugger will be used on:

1. Select one or both of the following alternatives:

• Install the SVCs through a system IPL. The SMP/E APPLY operation, which you run when you
install z/OS Debugger or apply a PTF, updates the library hlq.SEQALPA with the SVCs. To place
hlq.SEQALPA in the LPA list, add it to an LPALSTxx member of parmlib that is used for IPL. If you
have earlier releases of z/OS Debugger installed at your site, remove any other SEQALPA data sets.
The next time you IPL your system, the SVCs are automatically installed.

Check SYS1.LPALIB for the following members and, if you find them, remove them:

– EQA00SVC
– EQA01SVC
– IGC0014E (ALIAS of EQA00SVC)
– IGX00051 (ALIAS of EQA01SVC)

These members might have been placed there by previous installations of z/OS Debugger. Because
SYS1.LPALIB is always searched before the data sets in LPALSTxx, these older members would be
found before the newer members in LPALSTxx.

• Install the SVCs without a system IPL. The SMP/E APPLY operation, which you run when you install
z/OS Debugger or apply a PTF, updates the library hlq.SEQAAUTH with the SVCs and the dynamic
SVC installer. See “Installing the SVCs without using a system IPL” on page 9 for information
about how to immediately install or update the SVCs.

2. Follow the instructions in “Using the Authorized Debug facility for protected programs” on page 11.

Installing the SVCs without using a system IPL
To install the SVCs without using a system IPL (referred to as a dynamic installation), perform the
following steps:

1. Mark the hlq.SEQAAUTH data set as APF-authorized2. This data set contains SVC installation
programs; therefore, access to it must be limited to system programmers.

2. Update both places in the SVC dynamic install job EQAWISVC (shipped as a member of the data
set hlq.SEQASAMP) with the fully qualified name for the z/OS Debugger hlq.SEQAAUTH data set.
Eye-catchers (<<<<<) in the job highlight the statements that require changing. You might also need to
update the job card.

2 To APF-authorize a data set, add an APF ADD statement for the data set to a PROGxx member of parmlib
that is used for IPL. To immediately APF-authorize the data set, use the SETPROG APF MVS command.

© Copyright IBM Corp. 1992, 2021 9



3. Submit the job. The job installs both SVCs. After the job is completed, verify that the return code is 00
(RC=00).

4. Any CICS or IMS regions that are running when these SVCs are installed, and that may have had z/OS
Debugger sessions, should be stopped and restarted.

Verifying the installation of the SVCs
To verify the installation of the SVCs, you need to check the level of the z/OS Debugger SVCs, then run the
installation verification programs.

Checking the level of the z/OS Debugger SVCs
Display the level of the z/OS Debugger SVCs installed by entering the following command:

EXEC 'hlq.SEQAEXEC(EQADTSVC)'

Information about EQA00SVC that is similar to the following is displayed. Verify that the version and
compile date that are displayed are the same or higher than what is shown here.

Note: The string Debug Tool in the output of EQADTSVC is expected. The string was preserved for
downward compatibility with Debug Tool. The 5724-T07 denotes that the SVC is from z/OS Debugger.

...EQA00SVC 2021.295Licensed Materials - Property of IBM 5724-T07 Debug Tool Version 05
EQA00SVC-82684Copyright Copyright IBM Corp. US Government Users
***> EQA00SVC is Version 05 with compile date 22 Oct 2021   

Information about EQA01SVC that is similar to the following is displayed. Verify that the version and
compile date that are displayed are the same or higher than what is shown here.

...EQA01SVC 2021.295Licensed Materials - Property of IBM 5724-T07 Debug Tool Version 19
EQA01SVC-r84160Copyright Copyright IBM Corp. US Government Users
***> EQA01SVC is Version 19 with compile date 22 Oct 2021

...EQA01SV2 2021.295Licensed Materials - Property of IBM 5724-T07 Debug Tool Version 05
EQA01SV2-R87185Copyright Copyright IBM Corp. US Government Users
***> EQA01SV2 is Version 05 with compile date 22 Oct 2021

...EQA01TSR 2021.295Licensed Materials - Property of IBM 5724-T07 Debug Tool Version 00
EQA01TSR-f8730eCopyright Copyright IBM Corp. US Government Users
***> EQA01TSR is Version 00 with compile date 22 Oct 2021

Running the installation verification programs for SVCs
To help you verify the installation of the z/OS Debugger SVCs (that the SVCs are installed and working
correctly), the hlq.SEQASAMP data set contains installation verification programs (IVPs) in the following
members. Run the IVPs that are appropriate for the tasks that your users will be performing. Before you
run any IVP, customize it for your installation as described in the member.

Table 4. Name of the installation verification program and the programming language corresponding to
that installation verification program.

IVP Task

EQAWIVP4 COBOL TEST(NONE,SYM) or TEST(NOHOOK)

EQAWIVPF PL/I TEST(ALL,SYM,NOHOOK)

EQAWIVPI Enterprise PL/I TEST(ALL,SYM,NOHOOK,SEPARATE)

EQAWIVPJ LangX Enterprise COBOL

EQAWIVPP COBOL TEST(NONE,SYM,SEPARATE) or TEST(NOHOOK,SEPARATE)

10  IBM z/OS Debugger: Customization Guide



Table 4. Name of the installation verification program and the programming language corresponding to
that installation verification program. (continued)

IVP Task

EQAWIVPT Enterprise COBOL for z/OS Version 5 TEST

EQAWIVPS disassembly

EQAWIVPA Language Environment assembler

EQAWIVPB3 Language Environment assembler - interactive

EQAWIVPC non-Language Environment assembler

EQAWIVPV OS/VS COBOL

EQAWIVPX non-Language Environment VS COBOL II

Table 5. Name of the installation verification program for standard mode and the programming language
corresponding to that installation verification program.

IVP Task

EQAZIVPF Language Environment High Level Assembler Version 1 Release 6 ADATA

EQAZIVPI Enterprise PL/I for z/OS Version 4 or Version 5 31-bit
TEST(NOHOOK,SEPARATE)

EQAZIVPP Enterprise PL/I for z/OS Version 5 64-bit TEST

EQAZIVPT Enterprise COBOL for z/OS Version 5 or Version 6 TEST

EQAZIVP5 Enterprise COBOL for z/OS Version 3 Release 4 or Version 4 NOTEST

EQAZIVP6 z/OS XL C DEBUG(FORMAT(DWARF),NOHOOK)

Notes:

• For more information about standard mode, see "Remote debug mode" in "Chapter 1: z/OS Debugger:
overview" in the IBM z/OS Debugger User's Guide.

• There are no installation verification programs for SVCs written specifically for IBM Wazi Developer
for Red Hat CodeReady Workspaces. You can though, modify EQAWIVP4, EQAWIVPF, EQAWIVPI,
EQAWIVPP or EQAWIVPT to run interactively with the workstation GUI for IBM Wazi Developer for
Red Hat CodeReady Workspaces.

Using the Authorized Debug facility for protected programs
If your users need to use the Dynamic Debug facility to debug programs that are loaded into protected
storage (located in subpool 251 or 252), your security administrator must authorize those users to use
the Authorized Debug facility. Examples of reentrant programs that are loaded into protected storage are:

• Re-entrant programs loaded from an APF authorized library by MVS
• Programs loaded by CICS into RDSA or ERDSA because RENTPGM=PROTECT

Important: Before you do this task, you must have installed and verified the SVCs.

To authorize users to use the Authorized Debug facility:

3 This IVP is provided for customers that purchased z/OS Debugger via IBM Developer for z/OS - non-
Enterprise Edition. In this case, z/OS Debugger only runs with the IBM Developer for z/OS remote debugger.
This IVP has instructions that describe how to run the IVP with the IBM Developer for z/OS remote
debugger in Debug Tool compatibility mode. The other IVPs in this table do not.

Chapter 3. Installing the z/OS Debugger SVCs  11



1. Establish a profile for the Authorized Debug Facility in the FACILITY class by entering the RDEFINE
command:

RDEFINE FACILITY EQADTOOL.AUTHDEBUG UACC(NONE)

2. Verify that generic profile checking is in effect for the class FACILITY by entering the following
command:

SETROPTS GENERIC(FACILITY)

3. Give a user permission to use the Authorized Debug Facility by entering the following command, where
DUSER1 is the name of a RACF-defined user or group profile:

PERMIT EQADTOOL.AUTHDEBUG CLASS(FACILITY) ID(DUSER1) ACCESS(READ)

Instead of connecting individual users, the security administrator can specify DUSER1 to be a RACF
group profile and then connect authorized users to the group.

In CICS, z/OS Debugger checks that the region user ID is authorized instead of an individual CICS user
ID.

4. If the FACILITY class is not active, activate the class by entering the SETROPTS command:

SETROPTS CLASSACT(FACILITY)

Issue the SETROPTS LIST command to verify that FACILITY class is active.
5. Refresh the FACILITY class by issuing the SETROPTS RACLIST command:

SETROPTS RACLIST(FACILITY) REFRESH

12  IBM z/OS Debugger: Customization Guide



Chapter 4. Setting up the APF-authorized system link
list data set (SEQABMOD)

Note: This chapter is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

You must make certain z/OS Debugger load modules available in an APF-authorized data set that is in the
system link list concatenation. You can do this in one of the following ways, depending on your site policy:

• Mark and add the load modules by doing the following steps: 

1. Mark the hlq.SEQABMOD data set as APF-authorized.2

2. Add the data set to the system link list concatenation.4

3. If you have earlier releases of z/OS Debugger installed, remove any other SEQABMOD data sets.
4. Do an LLA refresh to make the members in hlq.SEQABMOD available to z/OS Debugger.

• Copy the load modules and refresh the members by doing the following steps:

1. Copy5 all the members of the hlq.SEQABMOD data set into an existing APF-authorized system link
list data set.

2. Do an LLA refresh to make these members available to z/OS Debugger.

4 To add a data set to the link list, add a LNKLST ADD statement for the data set to a PROGxx member of
parmlib that is used for IPL. To immediately add a data set to the link list, use the SETPROG LNKLST MVS
command. Then, if the link list data set is managed by LLA, enter a F LLA,REFRESH MVS command to
refresh the Library Lookaside Directories.

5 If you do this copy, you must repeat this copy after you apply any service to z/OS Debugger. SMP/E does not
do this copy for you.

© Copyright IBM Corp. 1992, 2021 13



14  IBM z/OS Debugger: Customization Guide



Chapter 5. Setting up the link list data set
(SEQAMOD)

The hlq.SEQAMOD data set must be in the load module search path whenever you debug a program with
z/OS Debugger. Except for two cases, it will be convenient for your users if you put hlq.SEQAMOD in the
system link list concatenation. The exceptions are:

• CICS, where hlq.SEQAMOD must be placed in the DFHRPL concatenation. See Chapter 12, “Adding
support for debugging under CICS,” on page 91.

• When the z/OS Debugger Setup Utility component of the IBM z/OS Debugger Utilities ISPF function is
used to start the debugging session (where DTSU accesses hlq.SEQAMOD for you).

In all other cases, unless you put hlq.SEQAMOD in the system link list concatenation, the user will have
to alter the execution environment of any program being debugged so that hlq.SEQAMOD is in the load
module search path (such as placing it in JOBLIB, STEPLIB, ISPLLIB or via use of TSOLIB). Therefore, it
is recommended that you add the hlq.SEQAMOD data set to the system link list concatenation4. For CICS,
you also need to mark hlq.SEQAMOD as APF-authorized2.

hlq.SEQAMOD must be placed before any other library in the load module search path that contains
CEEEVDBG for z/OS Debugger to get control of a debug session.

© Copyright IBM Corp. 1992, 2021 15



16  IBM z/OS Debugger: Customization Guide



Chapter 6. Enabling debugging in full-screen mode
using the Terminal Interface Manager

Note: This chapter is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

To enable users to debug the following types of programs while using a 3270-type terminal, you need to
enable full-screen mode using the Terminal Interface Manager:

• Batch programs
• TSO programs (using a separate terminal for debugging)
• Programs running under UNIX System Services
• Db2 stored procedures
• IMS programs

This topic focuses on setting up the Terminal Interface Manager to enable a terminal session that can be
used to debug these types of programs in full-screen mode. To set up a dedicated terminal without using
Terminal Interface Manager, see Appendix B, “Enabling debugging in full-screen mode using a dedicated
terminal,” on page 173.

To understand how a user and z/OS Debugger interact with the Terminal Interface Manager, see “How
users start a full-screen mode debug session with the Terminal Interface Manager” on page 17.

To enable debugging in full-screen mode using the Terminal Interface Manager, see “Enabling full-screen
mode using the Terminal Interface Manager” on page 19. If you are running the Terminal Interface
Manager on a VTAM® network with multiple LPARs, see “Example: Defining the VTAM EQAMVnnn and
Terminal Interface Manager APPL definition statements when z/OS Debugger runs on four LPARs” on
page 23 for variations on the instructions.

How users start a full-screen mode debug session with the
Terminal Interface Manager

The following steps describe how a user would start a full-screen mode debugging session for a batch
job with the Terminal Interface Manager. Study these steps to understand how z/OS Debugger uses the
Terminal Interface Manager to display a full-screen mode debugging session and to understand why you
need to do the configuration steps described in “Enabling full-screen mode using the Terminal Interface
Manager” on page 19.

1. Start two terminal sessions. These sessions can be either of the following situations:

• Two separate terminal emulator sessions.
• If you use a session manager, two sessions selected from the session manager menu.

In either situation, ensure that the second session connects to the Terminal Interface Manager.
2. On the first terminal session, log on to TSO.
3. On the second terminal session, provide your login credentials to the Terminal Interface Manager

and press Enter. The login credentials can be your TSO user ID and password, PassTicket, password
phrase, or MFA token.

Notes:

a. You are not logging on TSO. You are indicating that you want your user ID associated with this
terminal LU.

b. When the number of characters entered into the password field, including blanks, exceeds 8, the
input is passed to the security system as a password phrase.

© Copyright IBM Corp. 1992, 2021 17



c. To use PassTickets with Terminal Interface Manager, define the PTKTDATA profile by following the
rules for MVS batch jobs. For more information, see Defining profiles in the PTKTDATA class in the
z/OS documentation.

A panel similar to the following panel is then displayed on the second terminal session:

                     z/OS Debugger Terminal Interface
Manager

EQAY001I Terminal TRMLU001 connected for user USER1
EQAY001I Ready for z/OS Debugger

               PF3=EXIT  PF10=Edit LE options data set  
PF12=LOGOFF                              

The terminal is now ready to receive a full-screen mode debugging session.
4. Edit the PARM string of your batch job so that you specify the TEST runtime parameter as follows:

TEST(,,,VTAM%userid:*)

5. Submit the batch job. The following tasks are done:

a. z/OS Debugger allocates a VTAM ACB (EQAMVnnn) for its end of a VTAM session.
b. z/OS Debugger communicates with the Terminal Interface Manager to request a session with the

terminal LU on which it is running.
c. The Terminal Interface Manager releases the terminal LU and passes control of it to z/OS Debugger.

6. On the second terminal session, a full-screen mode debugging session is displayed. Interact with it the
same way you would with any other full-screen mode debugging session.

7. After you exit z/OS Debugger, the second terminal session displays the panel and messages you saw in
step “3” on page 17. This indicates that z/OS Debugger can use this session again. (This happens each
time you exit z/OS Debugger.)

8. If you want to start another debugging session, return to step “5” on page 18. If you are finished
debugging, you can do one of the following tasks:

• Close the second terminal session.
• Exit the Terminal Interface Manager by choosing one of the following options:

– Press PF12 to display the Terminal Interface Manager logon panel. You can log in with the same
ID or a different user ID.

– Press PF3 to exit the Terminal Interface Manager.

This technique requires you to define and configure a number of items in the z/OS Communications
Server. Section “Enabling full-screen mode using the Terminal Interface Manager” on page 19 describes
these definitions and configuration.

18  IBM z/OS Debugger: Customization Guide

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.icha700/ptktapp.htm


Enabling full-screen mode using the Terminal Interface Manager
To enable full-screen mode using the Terminal Interface Manager, do the following steps:

1. Define the VTAM APPL definition statements that z/OS Debugger uses for its end of the session, as
described in “Defining the VTAM EQAMVnnn APPL definition statements” on page 19.

2. Define the VTAM APPL definition statements that the Terminal Interface Manager uses, as described in
“Defining the Terminal Interface Manager APPL definition statements” on page 20.

3. Start the Terminal Interface Manager, as described in “Starting the Terminal Interface Manager” on
page 21.

4. Verify that full-screen mode using the Terminal Interface Manager is enabled, as described in
“Verifying the enablement of full-screen mode using the Terminal Interface Manager” on page 22.

Defining the VTAM EQAMVnnn APPL definition statements
You must define the APPL definition statements that z/OS Debugger uses for its end of the VTAM session
with the terminal LU. You can define up to 999 APPLs for z/OS Debugger. You can define an APPL by using
one of the following naming conventions:

• Define each APPL with the following naming convention: the first five characters of the APPL name must
be EQAMV and the last three characters must be consecutive three digit numbers, starting with 001. Do
not code an ACBNAME operand on the APPL definition statements for this method.

• Define each APPL name with the naming convention you use at your site. Code an ACBNAME operand
on the APPL definition statement that uses EQAMV as the first five characters, and three numeric digits
(starting with 001) as the last three characters.

The number of APPL names you define must be sufficient to allow for the maximum number of concurrent
z/OS Debugger full-screen mode using the Terminal Interface Manager sessions. (z/OS Debugger uses
one of these APPL names for its end of each VTAM session that is initiated with a terminal LU.)

The descriptions and examples used in this book assume you defined APPL names by using the
EQAMVnnn naming convention. z/OS Debugger uses the EQAMVnnn names for internal processing.

The EQAWAPPL member in the hlq.SEQASAMP data set predefines 50 APPL names, EQAMV001 to
EQAMV050. You can do one of the following tasks to add this member to the VTAM definitions library
(VTAMLST).

• Copy EQAWAPPL into a new member:

1. Create a new member in the VTAM definitions library (VTAMLST). The VTAM definitions library is
often stored in the data set SYS1.VTAMLST.

2. Copy the contents of the EQAWAPPL member into the new member.
3. Add the new member's name to the VTAM start options configuration file, ATCCONxx, so that VTAM

activates the z/OS Debugger APPL definitions at initialization.
• Copy EQAWAPPL into an existing member that is already defined in VTAMLST:

1. Select a member in the VTAM definitions library (VTAMLST) that contains the major node definitions.
2. Copy the APPL definition statements for z/OS Debugger from the EQAWAPPL member into the

selected member.

Tip: The existing member has the VBUILD TYPE=APPL statement, so do not copy this statement
from EQAWAPPL.

If you are running VTAM in a multi-domain environment and you require the ability to debug full-screen
mode using the Terminal Interface Manager on more than one host, edit the copy of EQAWAPPL on each
system to make the names for z/OS Debugger major and minor nodes unique for each system.

For example, if you have hosts SYSA, SYSB, and SYSC, and need to provide definitions for up to 50
concurrent users debugging programs in full-screen mode using the Terminal Interface Manager on each
system, you can code the following entries:

Chapter 6. Enabling debugging in full-screen mode using the Terminal Interface Manager  19



• SYSA VTAMLST EQAWAPPL entry:

EQAAPPLA VBUILD TYPE=APPL
EQAMV001 APPL  AUTH=(PASS,ACQ),PARSESS=NO
EQAMV002 APPL  AUTH=(PASS,ACQ),PARSESS=NO
...
EQAMV050 APPL  AUTH=(PASS,ACQ),PARSESS=NO

• SYSB VTAMLST EQAWAPPL entry:

EQAAPPLB VBUILD TYPE=APPL
EQAMV051 APPL  AUTH=(PASS,ACQ),PARSESS=NO
EQAMV052 APPL  AUTH=(PASS,ACQ),PARSESS=NO
...
EQAMV100 APPL  AUTH=(PASS,ACQ),PARSESS=NO

• SYSC VTAMLST EQAWAPPL entry:

EQAAPPLC VBUILD TYPE=APPL
EQAMV101 APPL  AUTH=(PASS,ACQ),PARSESS=NO
EQAMV102 APPL  AUTH=(PASS,ACQ),PARSESS=NO
...
EQAMV150 APPL  AUTH=(PASS,ACQ),PARSESS=NO

You can have up to 999 unique APPL names for full-screen mode using the Terminal Interface Manager
spread across your network. For an example on how to configure many APPL names in a network with
multiple LPARs, see “Example: Defining the VTAM EQAMVnnn and Terminal Interface Manager APPL
definition statements when z/OS Debugger runs on four LPARs” on page 23.

As an alternative to coding each minor node name, you can use the Model Application Names function.
With this function, VTAM dynamically creates the minor nodes. Use one of the following ways (alter
these examples, if needed, to maintain unique names per system as discussed in “Defining the VTAM
EQAMVnnn APPL definition statements” on page 19):

• EQAMV??? APPL AUTH=(PASS,ACQ),PARSESS=NO

• ABCDE??? APPL AUTH=(PASS,ACQ),PARSESS=NO,ACBNAME=EQAMV???

Activating the VTAM EQAMVnnn APPLs
Activate the VTAM APPLs by entering the following command from the console, where member-name is
the member name in the VTAM library (VTAMLST):

VARY NET,ACT,ID=member-name

Defining the Terminal Interface Manager APPL definition statements
You must define the APPL definition statements that the Terminal Interface Manager will use for its
sessions. To define the APPL definition statements, do the following steps:

1. Define the APPL definition statements as shown in the EQAWSESS member in the hlq.SEQASAMP
data set by doing one of the following tasks:

• Copy EQAWSESS into a new member:

a. Create a new member in the VTAM definitions library (VTAMLST). The VTAM definitions library is
often stored in the data set SYS1.VTAMLST.

b. Copy the contents of the EQAWSESS member into the new member.
c. Add the new member's name to the VTAM start options configuration file, ATCCONxx.

• Copy EQAWSESS into an existing member:

a. Select a member in the VTAM definitions library (VTAMLST) that contains the major node
definitions.

20  IBM z/OS Debugger: Customization Guide



b. Copy the APPL definition statements for z/OS Debugger from the EQAWSESS member into the
selected member.

To activate the new definitions, enter the following command from the console:

VARY NET,ACT,ID=member-name

member-name is the member name in the VTAM definitions library.

Starting the Terminal Interface Manager
The Terminal Interface Manager is a VTAM application that must be started (following the start of VTAM
itself) before users can access it. Follow these steps to start it:

1. Copy the EQAYSESM member of the data set hlq.SEQASAMP to the SYS1.PROCLIB data set, making
any changes required by your installation.

2. Make sure that the Terminal Interface Manager load modules, EQAYSESM and EQAYTRMM, reside in an
APF authorized library (these module can be found in the hlq.SEQAAUTH data set). This is required to
allow access to functions to validate users by login credentials.

3. Start the Terminal Interface Manager using the START command from the console. The START
command can be added to the COMMNDxx member of SYS1.PARMLIB to start the Terminal Interface
Manager when the system is IPLed.

The user ID associated with the STARTED class entry in RACF for the Terminal Interface Manager
started task must have an OMVS segment defined. This enables the started task to use the POSIX
thread functions.

The Terminal Interface Manager load module accepts six parameters, which you can provide by using the
OPTS substitution variable on the START command or in the EQAYSESM PROC definition. You can code the
parameters in any sequence and all of them are optional. The following list describes the parameters:
-a acbname

Specifies an alternate VTAM ACB name for the Terminal Interface Manager to open. For more
information about this parameter, see “Example: Defining the VTAM EQAMVnnn and Terminal
Interface Manager APPL definition statements when z/OS Debugger runs on four LPARs” on page
23.

-m
Instructs the Terminal Interface Manager not to fold passwords to upper case. If your security product
is set up to use mixed-case passwords, and Terminal Interface Manager does not accept them, code
this parameter.

-p pattern-string
Specifies a naming pattern for the TEST runtime options data set. You can use this parameter
to override the default naming pattern. pattern-string must contain the string &USERID for
substitution purposes. Otherwise, an error will be recognized and the default naming pattern
&USERID.DBGTOOL.EQAUOPTS will be used.

-s
Instructs the Terminal Interface Manager to provide an entry field on each Terminal Interface
Manager panel, in which the user can enter a session manager escape sequence.

+T
Display detailed trace messages for the Terminal Interface Manager. Do not use this parameter unless
instructed by IBM support personnel.

-r
Start Terminal Interface Manager in repository mode. This enables users to register to debug IMS
transactions or DB/2 stored procedures that are started by a generic user ID.

See “DLAYDBGXRF” on page 149 for additional customization required when using this option.

Chapter 6. Enabling debugging in full-screen mode using the Terminal Interface Manager  21



The following example starts the Terminal Interface Manager for alternate ACB EQASESS2 and instructs it
to provide an extra entry field for use with a session manager:

START EQAYSESM,OPTS='-a EQASESS2 -s'

Using the MODIFY operator command to display a list of Terminal Interface Manager
users
Console operators can list the users who are currently logged on to the Terminal Interface Manager by
using the z/OS MVS system MODIFY command. The list of users contains the user ID, the terminal LU that
each user requests, and the job information if the user is currently in a z/OS Debugger session.

The syntax of the MODIFY command is:

MODIFY tim-stc-name , APPL=LIST ALL

SESS

IMS

The following list describes the parameters of the MODIFY APPL=LIST command:

tim-stc-name
Is the name of the started task or job that is running the Terminal Interface Manager.

ALL
Lists all users who are logged on to the Terminal Interface Manager.

SESS
Only lists users who are logged on to the Terminal Interface Manager and are currently in a z/OS
Debugger session.

IMS
Only lists users who are logged on to the Terminal Interface Manager and are currently in a z/OS
Debugger session for an IMS message processing program.

Example

MODIFY EQAYSESM,APPL=LIST ALL

Example output

EQA9896I z/OS Debugger TIM USERS                        
  USER ID    FLAGS    TERMINAL   JOBNAME
  --------   ------   --------   --------
  USRT002    I        TRMLU006   MPRCI10X
  USRT001    B        T1302      USRT001A
  USRT003    L        TRMLU004   **NONE**
-----------------------------------------
L=LOGGED ON, NOT IN SESSION
I=IN SESSION; IMS JOB
B=IN SESSION; BATCH OR DB/2 JOB

Verifying the enablement of full-screen mode using the Terminal Interface
Manager

To help you verify the enablement of full-screen mode using the Terminal Interface Manager, do the
following steps:

1. Select which of the following installation verification jobs you want to run:

• EQAWIVP5 (COBOL)
• EQAWIVP6 (C)
• EQAWIVP7 (PL/I)

22  IBM z/OS Debugger: Customization Guide



• EQAWIVP9 (Enterprise PL/I)
• EQAWIVPB (Language Environment assembler)
• EQAWIVPD (non-Language Environment assembler)
• EQAWIVPK (LangX Enterprise COBOL)
• EQAWIVPW (OS/VS COBOL)
• EQAWIVPY (non-Language Environment VS COBOL II)

2. Copy the job from the hlq.SEQASAMP data set to your own private data set and customize it for your
installation as described in the sample.

3. Connect a terminal session to the Terminal Interface Manager and log on to the Terminal Interface
Manager with your TSO user ID.

4. Run the customized installation verification jobs.

Example: Defining the VTAM EQAMVnnn and Terminal Interface
Manager APPL definition statements when z/OS Debugger runs on
four LPARs

The instructions in Chapter 6, “Enabling debugging in full-screen mode using the Terminal Interface
Manager,” on page 17 assume that you create all the definitions and start the Terminal Interface Manager
on one LPAR. This example describes the connections that need to be made in a VTAM network that has
four LPARs that run z/OS Debugger jobs with one of the LPARs managing the terminals.

• LPAR 1 runs a TN3270E server and the Terminal Interface Manager with the default ACB name. Its
VTAM also owns all the terminal LUs. Users connect their TN3270E emulator to this LPAR for the
Terminal Interface Manager session. Users use the Terminal Interface Manager to create the connection
between z/OS Debugger and the terminal LU used for their full-screen mode using the Terminal
Interface Manager debugging session.

• VTAM on LPAR 1 defines the terminal LU APPL definition statements and the EQASESSM APPL definition
statement for the Terminal Interface Manager.

• VTAM on LPAR 1 needs visibility to the EQAMVnnn APPL definition statements on LPARs 2, 3 and 4. This
enables communication between the Terminal Interface Manager and z/OS Debugger.

• Each VTAM on LPAR 1, 2, 3 and 4 has a unique set of EQAMVnnn APPL definition statements. For
example, LPAR 1 has APPL definition statements 001-050, LPAR 2 has APPL definition statements
051-100, LPAR 3 has APPL definition statements 101-150, and LPAR 4 has APPL definition statements
151-200.

• Each VTAM on LPAR 2, 3 and 4 needs visibility to the EQASESSM APPL definition statement on LPAR 1.
This enables communication between z/OS Debugger and the Terminal Interface Manager.

• Each VTAM on LPAR 2, 3 and 4 needs visibility to the terminal LU APPL definition statements on LPAR 1.

Chapter 6. Enabling debugging in full-screen mode using the Terminal Interface Manager  23



24  IBM z/OS Debugger: Customization Guide



Chapter 7. Adding support for remote debug users

If you have users running z/OS Debugger in remote debug mode, review the following list and complete
the applicable tasks:

• If your TCP/IP stack name is not TCPIP, you can use the TCPIPDATADSN EQAOPTS command to instruct
z/OS Debugger to dynamically allocate the correct SYSTCPD DD.

• If the source or compiler uses a code page other than 037, see “CODEPAGE” on page 144.
• If you want z/OS Debugger to switch to full-screen mode or batch mode if the remote debugger is not

available, see “NODISPLAY” on page 160.
• For your CICS users, see “Activating the TCP/IP Socket Interface for CICS” on page 25.
• With Debug Manager, remote Eclipse users do not need to open an outgoing port for the debug daemon

on the z/OS system, or supply an IP address and port for debugging. For the differences between using
Debug Manager and Debug Daemon port 8001, see “TCP/IP ports” on page 38. For more information,
see “Enabling communication with Debug Manager” on page 26 and “Understanding Debug Manager”
on page 30.

• To enable interactive debugging in IBM Z Open Debug, see “Adding support for Remote Debug Service”
on page 45.

• If your users create and manage debug profiles in the z/OS Debugger Profiles view with Eclipse or Z
Open Debug Profiles view with IBM Z Open Debug, see “Adding support for the DTCN profiles APIs and
views” on page 53 for your CICS users and “Adding support for Debug Profile Service and APIs” on
page 48 to enable all the features in this view for best user experience.

• For users that install the Debug Tool DTCN and DTSP Profile Manager plug-ins to the remote Eclipse
debugger, do the following tasks:

– If users want to use the DTCN Profiles view, see “Adding support for the DTCN profiles APIs and
views” on page 53.

– If users want to use the DTSP Profiles, code coverage, and load module analyzer views, see “Adding
support for the DTSP Profile, code coverage, and load module analyzer views” on page 57.

Notes:

– Review the introduction to "Appendix K. Using the IBM Debug Tool plug-ins" in the IBM z/OS
Debugger User's Guide before you do any customization for the Debug Tool plug-ins. The same
functionality, in general, is now available in the remote IDE with other methods. The Debug Tool
plug-ins are not available in IBM Wazi Developer for Red Hat CodeReady Workspaces.

– All the Debug Tool plug-ins are deprecated and will be removed in a future release.

- The DTCN and DTSP views are replaced by the z/OS Debugger Profiles view.
- The Debug Tool Code Coverage views are replaced by the Code Coverage Results view.

• To enable secure communication for incoming debug and code coverage sessions in the remote
Eclipse IDE, see “Enabling secure communication between z/OS Debugger and the remote debugger
for incoming debug sessions” on page 58.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
"Remote debug mode" in the IBM z/OS Debugger User's Guide

Activating the TCP/IP Socket Interface for CICS
You need to activate the appropriate TCP/IP socket interface to manage communication between your
CICS region and the remote debugger. z/OS Debugger supports only the TCP/IP Socket Interface for CICS.

Activate the TCP/IP Socket Interface for CICS to enable the following functions:

© Copyright IBM Corp. 1992, 2021 25



• Communication between your CICS region and the remote debugger.
• Use of the IPv6 protocol in remote debug mode.

For instructions on activating the TCP/IP Socket Interface for CICS, see the z/OS Communications Server
IP CICS Sockets Guide.

Enabling communication with Debug Manager
Debug Manager (DBGMGR) provides communication-related services to z/OS Debugger and the remote
Eclipse client.

To use Debug Manager, apart from the host debugger, you also need to install the following components
or products:

• IBM z/OS Explorer host.
• An Eclipse client of the following products:

– IBM Debug for z/OS
– IBM Developer for z/OS
– IBM Wazi Developer for Red Hat CodeReady Workspaces

Specifically, if the DBM or DBMDT TEST runtime parameters are used, Debug Manager is used with
z/OS Explorer’s Remote System Explorer daemon (RSED) to allow z/OS Debugger to resolve the client’s
workstation address.

This chapter describes how to set up the Debug Manager’s started task, encryption, and security
definitions.

To learn more about Debug Manager, see “Understanding Debug Manager” on page 30. For the
differences between using Debug Manager and Debug Daemon port 8001, see “TCP/IP ports” on page
38.

Debug Manager configuration

PARMLIB changes

Adding the started task to COMMNDxx
Add a start command for the Debug Manager server to SYS1.PARMLIB(COMMNDxx) to start it
automatically at the next system IPL. Define CMD=xx in the IEASYSxx parmlib member to specify the
COMMNDxx parmlib member that is used during IPL.

After the server is defined and configured, it can be started dynamically (until the next IPL) with the
following console command:

S DBGMGR

Note: There is no specific startup order for the server. The only requirement is that the server is up and
running before the first user tries to connect. Note that the Debug Manager server depends on the z/OS
Explorer’s Remote System Explorer daemon server (RSED) to also be running.

APF authorization in PROGxx
For Debug Manager to work, the modules in the EQAW.SEQAAUTH load library must be APF-authorized.

APF authorizations are defined in SYS1.PARMLIB(PROGxx) by default. Define PROG=xx in the
IEASYSxx parmlib member to specify the PROGxx parmlib member that is used during IPL.

APF authorization can be set dynamically (until the next IPL) with the following console command, where
volser is the volume on which the data set resides if it is not SMS-managed:

26  IBM z/OS Debugger: Customization Guide



• SETPROG APF,ADD,DSN=EQAW.SEQAAUTH,SMS
• SETPROG APF,ADD,DSN=EQAW.SEQAAUTH,VOL=volser

Note: Some of the prerequisite and co-requisite products, such as z/OS Explorer, also require APF
authorization. For more information, see the related product customization guides.

Adding the Debug Manager started task to the system PROCLIB

Customize the EQAW.SEQASAMP(EQAZPCM) sample started task member, as described within the
member, and copy it to SYS1.PROCLIB as member DBGMGR. As shown in the following code sample,
provide the following information:

• The time-zone offset, default EST5DST
• The port used for external (client-host) communication, default 5335
• The port used for internal (host-confined) communication, default 5336
• The high-level qualifier of the load library, default EQAW

//*
//* z/OS Debugger Debug Manager
//*
//DBGMGR   PROC PRM=,                  * PRM=DEBUG TO START TRACING
//            LEPRM='RPTOPTS(ON)', 
//            TZ='EST5EDT',
//            CLIENT=5335,
//            HOST=5336,
//            HLQ=EQAW
//*
//DBGMGR   EXEC PGM=EQAZPCM,REGION=0M,TIME=NOLIMIT,
//            PARM=('&LEPRM ENVAR("TZ=&TZ")/&HOST &CLIENT &PRM')
//STEPLIB  DD DISP=SHR,DSN=&HLQ..SEQAAUTH 
//SYSPRINT DD SYSOUT=*
//SYSOUT   DD SYSOUT=*
//         PEND
//*

Figure 1. DBGMGR: Debug Manager started task

Note:

• This is an optional started task. It is used by z/OS Debugger if the DBM or DBMDT TEST runtime parm is
used.

• For the recommended Workload Manager (WLM) goals for this task, see “WLM considerations” on page
40.

Network configuration

Debug Manager TCP/IP updates
The Debug Manager uses 2 TCP/IP ports.

• Port for client-host communication (default 5335). Communication on this port can be encrypted.
• Port for host-confined communication (default 5336).

Encrypted communication
If the debug client uses encryption to communicate with the Remote System Explorer (RSE) daemon, by
default, the client also uses encryption to communicate with the host-based Debug Manager.

The following table shows whether a debug session can be started successfully with encrypted
communication disabled or enabled for RSE and Debug Manager.

Chapter 7. Adding support for remote debug users  27



Table 6. Encrypted communication combinations for RSE and Debug Manager

DBGMGR encrypted
communication enabled1

DBGMGR encrypted
communication disabled

RSE encrypted communication
enabled

The debug session starts in
secured mode.2

Ask the user to confirm
unsecured connection and then
proceed as normal.

RSE encrypted communication
disabled

The debug session cannot be
started.

The debug session starts in
unsecured mode.

Notes:

1. Unlike RSE daemon, Debug Manager does not have native support for encrypted communication. To
enable encryption, create an AT-TLS policy for the port used by Debug Manager.

2. Users can starts debug sessions without prompts only when the same certificates as RSE, or different
chained certificates of the same CA root are used for Debug Manager. Certificates of different CA roots
are considered as untrusted, and users need to take actions before they establish debug connection.

Creating an AT-TLS policy for the port used by Debug Manager
The Debug Manager relies on a TCP/IP service called Application Transparent Transport Layer Security
(AT-TLS) for encrypted communication. For a step-by-step setup guide, see “Setting up AT-TLS” on page
31.

To enable encryption, create an AT-TLS policy for the port used by Debug Manager for external
communication, by default 5335. See the following sample policy.

TTLSRule                      zOS_Debugger_Debug_Manager
{
 LocalPortRange           5335
 Direction                Inbound
 TTLSGroupActionRef       grp_Production
 TTLSEnvironmentActionRef act_zOS_Debugger_Debug_Manager
}
TTLSEnvironmentAction         act_zOS_Debugger_Debug_Manager
{
 HandshakeRole Server
 TTLSKeyRingParms
 {
  Keyring dbgmgr.racf     # Keyring must be owned by the Debug Manager
 }
}
TTLSGroupAction               grp_Production
{
 TTLSEnabled              On
 Trace                    2
}

Debug Manager security definitions

The following list is an overview of the actions that are required to complete the basic security setup of
Debug Manager. As documented in the following sections, different methods can be used to fulfill these
requirements, depending on the required security level.

For more information about the sample RACF commands, see RACF Command Language Reference
(SA22-7687).

Activating the security settings and classes
Debug Manager uses a variety of security mechanisms to ensure a secure and controlled host system
environment for the client. To do so, several classes and security settings must be active, as shown with
the following sample RACF commands:

• Display current settings

28  IBM z/OS Debugger: Customization Guide



– SETROPTS LIST
• Activate facility class for Debug Manager

– SETROPTS GENERIC(FACILITY)
– SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)

• Activate started task definitions for Debug Manager

– SETROPTS GENERIC(STARTED)
– RDEFINE STARTED ** STDATA(USER(=MEMBER) GROUP(STCGROUP) TRACE(YES))
– SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

Defining the Debug Manager started task
The following sample RACF commands create the DBGMGR started task, with protected user ID (STCDBM)
and the STCGROUP group assigned to it.

• ADDGROUP STCGROUP OMVS(AUTOGID)
DATA('GROUP WITH OMVS SEGMENT FOR STARTED TASKS')

• ADDUSER STCDBM DFLTGRP(STCGROUP) NOPASSWORD NAME('DEBUG MANAGER')
OMVS(AUTOUID HOME(/tmp) PROGRAM(/bin/sh) )
DATA('IBM z/OS Debugger')

• RDEFINE STARTED DBGMGR.* DATA('DEBUG MANAGER')
STDATA(USER(STCDBM) GROUP(STCGROUP) TRUSTED(NO))

• SETROPTS RACLIST(STARTED) REFRESH

Note:

• Ensure that the started task user ID is protected by specifying the NOPASSWORD keyword.
• The Debug Manager started task (DBGMGR) is used only by z/OS Debugger when the DBM or DBMDT
TEST runtime parm is used.

Defining Debug Manager as a secure z/OS UNIX server
Debug Manager requires UPDATE access to the BPX.SERVER profile to create or delete the security
environment for the debug thread.

Note: Using UID(0) to bypass this requirement is not supported.

This permit is required only when the Debug Manager feature is used.

• RDEFINE FACILITY BPX.SERVER UACC(NONE)
• PERMIT BPX.SERVER CLASS(FACILITY) ACCESS(UPDATE) ID(STCDBM)
• SETROPTS RACLIST(FACILITY) REFRESH

Attention: Defining the BPX.SERVER profile makes z/OS UNIX as a whole switch from UNIX
level security to z/OS UNIX level security, which is more secure. This switch might impact other
z/OS UNIX applications and operations. Test the security before activating it on a production
system. For more information about the different security levels, see UNIX System Services
Planning (GA22-7800).

Defining the MVS program controlled libraries for Debug Manager
Servers with authority to BPX.SERVER must run in a clean, program-controlled environment. This
requirement implies that all programs called by Debug Manager must also be program controlled. For
MVS load libraries, program control is managed by your security software.

Chapter 7. Adding support for remote debug users  29



Debug Manager uses system libraries, Language Environment’s runtime, and the z/OS Debugger
(EQAW.SEQAAUTH) load library.

• RALTER PROGRAM ** UACC(READ) ADDMEM('SYS1.LINKLIB'//NOPADCHK)
• RALTER PROGRAM ** UACC(READ) ADDMEM('SYS1.CSSLIB'//NOPADCHK)
• RALTER PROGRAM ** UACC(READ) ADDMEM('CEE.SCEERUN'//NOPADCHK)
• RALTER PROGRAM ** UACC(READ) ADDMEM('CEE.SCEERUN2'//NOPADCHK)
• RALTER PROGRAM ** UACC(READ) ADDMEM('EQAW.SEQAAUTH'//NOPADCHK)
• SETROPTS WHEN(PROGRAM) REFRESH

Note: Do not use the ** profile if you already have a * profile in the PROGRAM class. The profile obscures
and complicates the search path used by your security software. In this case, you must merge the
existing * and the new ** definitions. Use the ** profile, as documented in Security Server RACF Security
Administrator's Guide (SA22-7683).

Verifying the security settings
• Security setting and classes

– SETROPTS LIST
• Started tasks

– LISTGRP STCGROUP OMVS
– LISTUSER STCDBM OMVS
– RLIST STARTED DBGMGR.* ALL STDATA

• Debug Manager as a secure z/OS UNIX server

– RLIST FACILITY BPX.SERVER ALL

• MVS program controlled libraries for Debug Manager

– RLIST PROGRAM ** ALL

Verifying the DBGMGR started task
Start the DBGMGR started task or user job. The server issues the following console message upon
successful startup, where clientport is the number of the port used for external (client-host)
communication, and hostport is the port number used for internal (host-confined) communication.

EQACM001I Debug Manager startup complete (clientport/hostport)

If the job ends with return code 66, then EQAW.SEQAAUTH is not APF-authorized.

Running the installation verification programs for Debug Manager

The following installation verification programs are available for Debug Manager:

• Batch. For more information, see “Running the installation verification programs for SVCs” on page 10.
• CICS. For more information, see “Running the installation verification programs in a CICS region” on

page 102.

Debug Manager configuration reference

Understanding Debug Manager
Debug Manager provides communication-related services to z/OS Debugger and the remote Eclipse IDE.
It circumvents the need to open outbound ports from z/OS and for users to track their IP address. For

30  IBM z/OS Debugger: Customization Guide



differences between usages with and without Debug Manager, see the figures in “TCP/IP ports” on page
38.

Figure 2 on page 31 shows a schematic overview of how an Eclipse client uses Debug Manager when you
debug an application.

Figure 2. Debug Manager

1. The client connects to the host by using a z/OS connection in the Remote Systems view.
2. As part of the logon, Debug Miner registers the user with Debug Manager, which is active within the

DBGMGR started task.
3. When the program to be debugged starts, z/OS Debugger sends the debug request to Debug Manager.
4. Debug Manager checks whether the debug session user is registered. If the user is not registered at

this moment, the debug session goes dormant. z/OS Debugger will wait up to 300 seconds in standard
mode, and up to two times of $VALUE in Debug Tool compatibility mode. If the user still has not signed
on to the z/OS connection in the Remote Systems view and is not registered with Debug Manager, the
debug session will time out.

5. If the user is registered, Debug Manager routes the initial debug request back to the Eclipse client
using Debug Manager. The remote debug session is then started in the Eclipse client.

For more information about TCPIP/DIRECT and DBM/DBMDT options and the user_id option for DBM/
DBMDT, see "Syntax of the TEST runtime option" in IBM z/OS Debugger Reference and Messages.

Setting up AT-TLS
This section is provided to assist you with some common problems that you might encounter when
setting up Application Transparent Transport Layer Security (AT-TLS), or during checking or modifying an
existing setup.

The Transport Layer Security (TLS) protocol defined in RFC 2246 provides communications privacy over
the internet. Similar to its predecessor Secure Socket Layer (SSL), the protocol enables client and server
applications to communicate in a way that is designed to prevent eavesdropping, tampering, and message
forgery. Application Transparent Transport Layer Security (AT-TLS) consolidates TLS implementation
for z/OS-based applications in one location, allowing all applications to support TLS-based encryption
without knowledge of the TLS protocol. For more information on AT-TLS, See Communications Server IP
Configuration Guide (SC31-8775).

The information in this section shows how to set up the TCP/IP Policy Agent that manages AT-TLS and
define a policy for usage by DBGMGR on a z/OS 1.13 system, with support for TLS v1.2.

1. “Setting up syslogd” on page 32
2. “AT-TLS configuration in PROFILE.TCPIP” on page 32
3. “Policy Agent started task” on page 33
4. “Policy Agent configuration” on page 33

Chapter 7. Adding support for remote debug users  31



5. “AT-TLS policy” on page 33
6. “AT-TLS security updates” on page 35
7. “AT-TLS policy activation” on page 37

Throughout this section, a uniform naming convention is used:

• Debug Manager port for external communication: 5335
• Debug Manager user ID: stcdbm
• Policy agent user ID: pagent
• Certificate: dbgmgr
• Key and certificate storage: dbgmgr.racf

Some tasks described in the following sections expect you to be active in z/OS UNIX. This can be done
by issuing the TSO command OMVS. Use the oedit command to edit files in z/OS UNIX. Use the exit
command to return to TSO.

Setting up syslogd
The TCP/IP documentation recommends writing Policy Agent messages to the z/OS UNIX syslog instead
of using the default log file. AT-TLS always writes messages to the z/OS UNIX syslog.

In order to do so, the z/OS UNIX syslog daemon, syslogd, must be configured and active. You also need
a mechanism to control the size of the log files created by syslogd.

The following sample configuration file updates can be used to configure and start syslogd, with a
simple log file management mechanism (erase existing logs when z/OS UNIX starts and create new ones
upon syslogd startup).

• /etc/services

syslog          514/udp

• /etc/syslog.conf

# /etc/syslog.conf - control output of syslogd
# 1. all files with will be printed to /tmp/syslog.auth.log
auth.*           /tmp/syslog.auth.log
# 2. all error messages printed to /tmp/syslog.error.log
*.err            /tmp/syslog.error.log
# 3. all debug and above messages printed to /tmp/syslog.debug.log
*.debug          /tmp/syslog.debug.log
# The files named must exist before the syslog daemon is started,
# unless -c startup option is used

• /etc/rc

# Start the SYSLOGD daemon for logging
# (clean up old logs)
sed -n '/^#/!s/.* \(.*\)/\1/p' /etc/syslog.conf | xargs -i rm {}
# (create new logs and add userid of message sender)
_BPX_JOBNAME='SYSLOGD' /usr/sbin/syslogd -cuf /etc/syslog.conf &
sleep 5

AT-TLS configuration in PROFILE.TCPIP
AT-TLS support is activated by the TTLS parameter on the TCPCONFIG statement in the PROFILE.TCPIP
data set. AT-TLS is managed by the Policy Agent, which must be active to be able to enforce the
AT-TLS policy. Since the Policy Agent must wait for TCP/IP to be active, the AUTOSTART statement in
PROFILE.TCPIP is a good place to trigger startup of this server.

These requirements result in the following changes to PROFILE.TCPIP, often named
TCPIP.TCPPARMS(TCPPROF).

TCPCONFIG TTLS         ; Required for AT-TLS
AUTOLOG

32  IBM z/OS Debugger: Customization Guide



  PAGENT               ; POLICY AGENT, required for AT-TLS
ENDAUTOLOG

Policy Agent started task
As mentioned in the previous text, AT-TLS is managed by the Policy Agent, which can be started as a
started task. Use the following JCL to create SYS1.PROCLIB(PAGENT), using the default configuration
file and the recommended log location (SYSLOGD). The necessary definitions in your security software are
covered later.

//PAGENT   PROC PRM='-L SYSLOGD'                     * '' or '-L SYSLOGD'
//*
//* TCP/IP POLICY AGENT
//*                                        (PARM) (envar)
//* default cfg file: /etc/pagent.conf     (-C)   (PAGENT_CONFIG_FILE)
//* default log file: /tmp/pagent.log      (-L)   (PAGENT_LOG_FILE)
//* default log size: 300,3 (3x 300KB files) (PAGENT_LOG_FILE_CONTROL)
//*
//PAGENT   EXEC PGM=PAGENT,REGION=0M,TIME=NOLIMIT,
//            PARM='ENVAR("TZ=EST5DST")/&PRM' 
//SYSPRINT DD SYSOUT=* 
//SYSOUT   DD SYSOUT=* 
//*

Policy Agent configuration
The Policy Agent enforces TCP/IP related policies created by the TCP/IP administrator. It manages
policies for AT-TLS, called TTLS, but also for other services such as IPSec. The Policy Agent uses a
configuration file to know which policies must be enforced, and where they can be found. The default
configuration file is /etc/pagent.conf, but a different location can be specified in the Policy Agent
started task JCL.

#
# TCP/IP Policy Agent configuration information.
#
TTLSConfig /etc/pagent.ttls.conf
# Specifies the path of a TTLS policy file holding stack specific
# statements.
#
#TcpImage TCPIP /etc/pagent.conf
# If no TcpImage statement is specified, all policies will be installed
# to the default TCP/IP stack.
#
#LogLevel 31
# The sum of the following values that represent log levels:
#  LOGL_SYSERR     1
#  LOGL_OBJERR     2
#  LOGL_PROTERR    4
#  LOGL_WARNING    8
#  LOGL_EVENT     16
#  LOGL_ACTION    32
#  LOGL_INFO      64
#  LOGL_ACNTING  128
#  LOGL_TRACE    256
# Log Level 31 is the default log loglevel.
#
#Codepage IBM-1047
# Specify the EBCDIC code page to be used for reading all configuration
# files and policy definition files. IBM-1047 is the default code page.

This sample configuration file specifies where the Policy Agent can find the TTLS policy. It uses Policy
Agent default values for other statements.

AT-TLS policy
A TTLS policy describes the desired AT-TLS rules. As defined in the Policy Agent configuration file, the
TTLS policy is located in /etc/pagent.ttls.conf. The necessary definitions in your security software
are covered later.

This example shows a fairly simple, two-rule policy that disables SSL v3 and enables TLS v1, TLS v1.1,
and TLS v1.2 support for both communication paths supported by the z/OS RSE connection, Debug

Chapter 7. Adding support for remote debug users  33



Manager, and Probe-Client. As defined in the Policy Agent configuration file, the TTLS policy is located
in /etc/pagent.ttls.conf.

##
## TCP/IP Policy Agent AT-TLS configuration information.
##
##-----------------------------
TTLSRule                      zOS_Debugger_Debug_Manager
{
 LocalPortRange           5335
 Direction                Inbound
 TTLSGroupActionRef       grp_Production
 TTLSEnvironmentActionRef act_zOS_Debugger_Debug_Manager
}
##-----------------------------
TTLSEnvironmentAction         act_zOS_Debugger_Debug_Manager
{
 HandshakeRole Server
 TTLSKeyRingParms
 {
  Keyring dbgmgr.racf      # Keyring must be owned by the Debug Manager
 }
 TTLSEnvironmentAdvancedParms
 {
  ApplicationControlled Off  
## TLSV1.2 only for z/OS 2.1 and higher
# TLSV1.2 On               # TLSv1 & TLSv1.1 are on by default
  SSLV3 Off                # disable SSLv3
}
##-----------------------------
TTLSGroupAction               grp_Production
{
 TTLSEnabled               On
## TLSv1.2zOS1.13 only for z/OS 1.13
 TTLSGroupAdvancedParmsRef TLSv1.2zOS1.13
 Trace                     3     # Log Errors to syslogd & IP joblog
#Trace                     254   # Log everything to syslogd
}
##-----------------------------
TTLSGroupAdvancedParms        TLSv1.2zOS1.13
{
 Envfile /etc/pagent.ttls.TLS1.2zOS1.13.env
}

A TTLS policy allows for a wide range of filters to specify when a rule applies.

Debug Manager is a server that listens on port 5335 for incoming connections from Debug Engine. This
information is captured in the zOS_Debugger_Debug_Manager rule.

Since encrypted communication requires the usage of a server certificate, you specify that the Policy
Manager must use the certificates on the dbgmgr.racf key ring, which is owned by the Debug Manager
started task user ID. By default, TLS v1.2 support is disabled, so this policy explicitly enables it. SSLv3.0 is
explicitly disabled due to known vulnerabilities in this protocol.

With the host being a TCP/IP client, the Policy Manager will need a way to validate the server certificate
presented by the Debug UI. Instead of using a uniformly named key ring for all users that might require
an encrypted debug session, we are using RACF’s CERTAUTH virtual key ring (*AUTH*/*). This virtual key
ring holds the public certificates of Certificate Authorities (CAs), and can be used if the Debug UI presents
a server certificate that is signed by one of the trusted CAs.

Note: For more complex policies, you should use the IBM Configuration Assistant for z/OS
Communications Server. This is a GUI-based tool that provides a guided interface for configuring TCP/IP
policy-based networking functions and is available as a task in IBM z/OS Management Facility (z/OSMF),
and as a stand-alone workstation application.

TLS v1.2 considerations

TLS v1.2 support became available in z/OS 2.1, and is disabled by default. This policy shows the
command (TLSV1.2 On) to explicitly enable it, but has it commented out as the target system is using
z/OS 1.13.

By applying the following two APARs, TLS v1.2 support is added to z/OS 1.13:

34  IBM z/OS Debugger: Customization Guide



• System SSL APAR OA39422
• Communications Server (AT-TLS) APAR PM62905

z/OS 1.13 System SSL, which is used by AT-TLS to implement TLS encrypted communication, requires
some additional parameters for TLS v1.2 support. These are supplied through the AT-TLS policy using a
file with System SSL environment variables, /etc/pagent.ttls.TLS1.2zOS1.13.env.

#
# Add TLSv1.2 support to AT-TLS
# requires z/OS 1.13 with OA39422 and PM62905
#
 GSK_RENEGOTIATION=ALL
 GSK_PROTOCOL_TLSV1_2=ON

AT-TLS security updates
There are several updates required to your security setup for AT-TLS to work properly. This section has
sample RACF commands to do the required setup.

As mentioned in “Policy Agent started task” on page 33, you use a started task to run the Policy Agent.
This requires the definition of a started task user ID and a profile in the STARTED class.

#  define started task user ID
#  BPX.DAEMON permit is required for non-zero UID
 ADDUSER PAGENT DFLTGRP(SYS1) OMVS(UID(0) SHARED HOME('/')) +
   NAME('TCP/IP POLICY AGENT') NOPASSWORD

#  define started task
 RDEFINE STARTED PAGENT.* STDATA(USER(PAGENT) GROUP(SYS1)) +
   DATA('TCP/IP POLICY AGENT')

#  refresh to make the changes visible
 SETROPTS RACLIST(STARTED) REFRESH

Define a profile named MVS.SERVMGR.PAGENT in the OPERCMDS class and give user ID PAGENT
CONTROL access to it. The profile restricts who can start the Policy Agent. If the profile is not defined, and
access to it is prevented through a generic profile, PAGENT will not be able to start the Policy Agent, which
will prevent TCP/IP stack initialization.

#  restrict startup of policy agent
 RDEFINE OPERCMDS MVS.SERVMGR.PAGENT UACC(NONE) +
   DATA('restrict startup of policy agent')
 PERMIT MVS.SERVMGR.PAGENT CLASS(OPERCMDS) ACCESS(CONTROL) ID(PAGENT)

#  refresh to make the changes visible 
SETROPTS RACLIST(OPERCMDS) REFRESH 

As mentioned in “AT-TLS configuration in PROFILE.TCPIP” on page 32, the Policy Agent is started after
TCP/IP is initialized. This means there is a (small) window where applications can use the TCP/IP
stack without the TTLS policy being enforced. Define the EZB.INITSTACK.** profile in the SERVAUTH
class to prevent access to the stack during this time window, except for applications with READ
access to the profile. You must permit a limited set of administrative applications to the profile to
ensure full initialization of the stack, as documented in “TCP/IP stack initialization access control” in
Communications Server IP Configuration Guide (SC31-8775).

Note: The Policy Agent issues message EZD1586I when all policies are active.

#  block stack access between stack and AT-TLS availability
# SETROPTS GENERIC(SERVAUTH)
# SETROPTS CLASSACT(SERVAUTH) RACLIST(SERVAUTH)
 RDEFINE SERVAUTH EZB.INITSTACK.** UACC(NONE)
#  Policy Agent
 PERMIT EZB.INITSTACK.** CLASS(SERVAUTH) ACCESS(READ) ID(PAGENT)
#  OMPROUTE daemon
 PERMIT EZB.INITSTACK.** CLASS(SERVAUTH) ACCESS(READ) ID(OMPROUTE)
#  SNMP agent and subagents
 PERMIT EZB.INITSTACK.** CLASS(SERVAUTH) ACCESS(READ) ID(OSNMPD)
 PERMIT EZB.INITSTACK.** CLASS(SERVAUTH) ACCESS(READ) ID(IOBSNMP)
#  NAME daemon
 PERMIT EZB.INITSTACK.** CLASS(SERVAUTH) ACCESS(READ) ID(NAMED)

Chapter 7. Adding support for remote debug users  35



#  refresh to make the changes visible
 SETROPTS RACLIST(SERVAUTH) REFRESH

(Optional) The z/OS UNIX pasearch command displays active policy definitions. Define profile
EZB.PAGENT.** in the SERVAUTH class to restrict access to the pasearch command.

#  restrict access to pasearch command
# RDEFINE SERVAUTH EZB.PAGENT.** UACC(NONE) + 
#   DATA('restrict access to pasearch command')
# PERMIT EZB.PAGENT.** CLASS(SERVAUTH) ACCESS(READ) ID(tcpadmin)

#  refresh to make the changes visible
# SETROPTS RACLIST(SERVAUTH) REFRESH

As mentioned in “AT-TLS policy” on page 33, Debug Manger needs a certificate so that AT-TLS can set up
encrypted communication on Debug Manager’s behalf. These sample commands create a new certificate
labeled dbgmgr, which is stored in a RACF key ring named dbgmgr.racf. Both the certificate and the key
ring are owned by STCDBM, the Debug Manager started task user ID.

#  permit Debug Manager to access certificates
#RDEFINE FACILITY IRR.DIGTCERT.LIST     UACC(NONE)
#RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
 PERMIT IRR.DIGTCERT.LIST     CLASS(FACILITY) ACCESS(READ) ID(stcdbm)
 PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ACCESS(READ) ID(stcdbm)

#  refresh to make the changes visible
 SETROPTS RACLIST(FACILITY) REFRESH

#  create self-signed certificate
 RACDCERT ID(stcdbm) GENCERT SUBJECTSDN(CN('Debug Manager') +
   OU('RTP labs') O('IBM') L('Raleigh') SP('NC') C('US')) +
   NOTAFTER(DATE(2015-12-31)) KEYUSAGE(HANDSHAKE) WITHLABEL('dbgmgr')

## (optional) additional steps required to use a signed certificate
## 1. create a signing request for the self-signed certificate
##    The signing request will be placed in 'dsn'.
##    Do NOT delete the self-signed certificate before replacing it.
##    If you do, you lose the private key that goes with the 
##    certificate, which makes the certificate useless.
# RACDCERT ID(stcdbm) GENREQ (LABEL('dbgmgr')) DSN(dsn)
## 2. send the signing request to your CA of choice
## 3. check if the CA credentials (also a certificate) are already known
# RACDCERT CERTAUTH LIST
## 4. mark the CA certificate used to sign your certificate as trusted
# RACDCERT CERTAUTH ALTER(LABEL('CA cert')) TRUST
##    or add the CA certificate used to sign yours to the database
# RACDCERT CERTAUTH ADD(dsn) WITHLABEL('CA cert') TRUST
## 5. add the signed certificate to the database;
##    this will replace the self-signed one
# RACDCERT ID(stcdbm) ADD(dsn) WITHLABEL('dbgmgr') TRUST
## 6. add the CA certificate to the key ring
# RACDCERT ID(stcdbm) CONNECT(CERTAUTH LABEL('CA cert') +
#  RING(dbgmgr.racf))

#  refresh to make the changes visible
 SETROPTS RACLIST(DIGTCERT) REFRESH

AT-TLS policy also documents the use of the CERTAUTH virtual key ring for validation of the server
certificate presented by the Debug UI in the Probe-Client scenario. This implies that the CA certificate
used by the Debug UI is trusted by your z/OS host.

#  check if the CA credentials (also a certificate) are already known
 RACDCERT CERTAUTH LIST
#  mark the CA certificate as trusted
 RACDCERT CERTAUTH ALTER(LABEL('CA cert')) TRUST
#  or add the CA certificate to the database
 RACDCERT CERTAUTH ADD(dsn) WITHLABEL('CA cert') TRUST

#  refresh to make the changes visible
 SETROPTS RACLIST(DIGTCERT) REFRESH

Use the following commands to verify your setup:

36  IBM z/OS Debugger: Customization Guide



#  verify started task setup
 LISTGRP SYS1 OMVS
 LISTUSER PAGENT OMVS
 RLIST STARTED PAGENT.* ALL STDATA

#  verify Policy Agent startup permission
 RLIST OPERCMDS MVS.SERVMGR.PAGENT ALL

#  verify initstack protection
 RLIST SERVAUTH EZB.INITSTACK.** ALL

#  verify pasearch protection
 RLIST SERVAUTH EZB.PAGENT.** ALL

#  verify certificate setup
 RACDCERT CERTAUTH   LIST(LABEL('CA cert'))
 RACDCERT ID(stcdbm) LIST(LABEL('dbgmgr'))
 RACDCERT ID(stcdbm) LISTRING(dbgmgr.racf)

AT-TLS policy activation
AT-TLS setup is now complete, and the policy will be activated at next IPL of the system. Follow these
steps to start using the policy without an IPL:

1. Activate AT-TLS support in the TCP/IP stack.

• Create a TCP/IP obey file, for example, TCPIP.TCPPARMS(OBEY), with the following content:

TCPCONFIG TTLS

• Activate it with this operator command:

V TCPIP,,OBEY,TCPIP.TCPPARMS(OBEY)

• Verify the result by checking for this console message:

EZZ4249I stackname INSTALLED TTLS POLICY HAS NO RULES

2. Start the Policy Agent.

• Issue operator command:

S PAGENT

• Verify the result by checking for console message:

EZD1586I PAGENT HAS INSTALLED ALL LOCAL POLICIES FOR stackname

3. Restart Debug Manager.

• Issue operator commands:

P DBGMGR
S DBBMGR

Note: Restarting Debug Manager interrupts all active debug sessions that are in pass-thru mode.

Debug Manager authentication
Client authentication is done by RSE daemon as part of the client's connection request. After the user is
authenticated, self-generated PassTickets are used for all future authentication requests, including the
automatic logon to Debug Manager.

In order for Debug Manager to validate the user ID and PassTicket presented by RSE, Debug Manager
must be allowed to evaluate the PassTicket. This implies that load module EQAZPCM, by default located in
load library EQAW.SEQAAUTH, must be APF-authorized.

When a client-based Debug Engine connects to the Debug Manager, it must present a valid security token
for authentication.

Chapter 7. Adding support for remote debug users  37



TCP/IP considerations

TCP/IP ports
Figure 3 on page 38 shows the TCP/IP ports that can be used by z/OS Explorer, z/OS Debugger and if
installed, IBM Developer for z/OS. The arrows show the party that does the bind (arrowhead side) and the
one that connects.

Figure 3. TCP/IP ports for the usage of z/OS Debugger with Debug Manager

Figure 4 on page 39 shows how the TCP/IP port works without Debug Manager.

38  IBM z/OS Debugger: Customization Guide



Figure 4. TCP/IP port for the usage of z/OS Debugger without Debug Manager

For more information on RSE ports, see the "External Communication" topic in the IBM Developer for z/OS
Host Configuration Reference.

External communication

Define the following ports to your firewall that protect the z/OS host, as they are used for client-host
communication (using the tcp protocol):

• Debug manager services, default port 5335. The port can be set in the DBGMGR started task JCL.
Communication on this port can be encrypted.

• When z/OS Debugger is started with Language Environment (LE) option
TEST(,,,TCPIP&&ipaddress%8001:*) or TEST(,,,DIRECT&&ipaddress%8001:*), it is instructed
not to use Debug Manager but contact the Eclipse client directly at port 8001. This implies, from a
TCP/IP perspective, that z/OS Debugger is a client that contacts a server (the Debug UI) in the Eclipse
IDE.

Internal communication

Several z/OS Debugger host services run in separate threads or address spaces and are using TCP/IP
sockets as communication mechanism, using your system’s loopback address, making their data stream
confined to the host only. For some services any available port will be used, for others the system
programmer can choose the port or port range that will be used:

• (Optional) Debug Manager for debug related services, default port 5336. The port can be set in the
DBGMGR started task JCL.

TCP/IP port reservation

If you use the PORT or PORTRANGE statement in PROFILE.TCPIP to reserve the ports used by z/OS
Explorer, z/OS Debugger, and optionally IBM Developer for z/OS, note that many binds are done by
threads active in an RSE thread pool. The job name of the RSE thread pool is RSEDx, where RSED is the
name of the RSE started task, and x is a random single digit number, so wildcards are required in the
definition.

PORT      5335     TCP DBGMGR ; z/OS Debugger – debug manager
PORT      5336     TCP DBGMGR ; z/OS Debugger – debug manager

Chapter 7. Adding support for remote debug users  39



loopback localhost
IBM Developer for z/OS and z/OS Debugger use the TCP/IP loopback and TCP/IP localhost definitions.
Communication will fail if these definitions are set up using different TCP/IP addresses. To avoid address
resolution issues, define one of the following lines in the local host table, as described in section
"Configuring the local host table" of the Communications Server: IP Configuration Guide (SC31-8775).

• 127.0.0.1 loopback localhost # for IPv4 only
• ::1 loopback localhost # for IPv6 only

Note: Ensure that the definition is valid for both the MVS and z/OS UNIX search orders.

Refer to Communications Server: IP Configuration Guide (SC31-8775) and Communications Server: IP
Configuration Reference (SC31-8776) for additional information on TCP/IP configuration. The IBM Explorer
for z/OS Host Reference Guide (SC27-8438) also provides related information in the "Setting up TCP/IP"
chapter.

Multi-stack (CINET)
z/OS Communication Server allows you to have multiple TCP/IP stacks concurrently active on a single
system. This is referred to as a CINET setup.

When multiple TCP/IP stacks are active on a host system, it is important that Debug Manager and Debug
Probe are using the same TCP/IP stack in order for them to communicate. Debug Engine (on the client)
must also be able to communicate with Debug Manager. By default, Debug Manager binds to every stack
available on the host to simplify matching Debug Probe and Debug Client setup.

If this is not desired, then stack affinity can be used to instruct Debug Manager to bind to a single
specified TCP/IP stack. Stack affinity is set with the _BPXK_SETIBMOPT_TRANSPORT environment
variable, which must be passed on to Language Environment. You can set stack affinity by adjusting
the startup command in the started task JCL:

//DBGMGR   PROC PRM=,
//*           LEPRM='RPTOPTS(ON)',
//            LEPRM='RPTOPTS(ON) ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIP")',
//            TZ='EST5EDT',
//            CLIENT=5335,
//            HOST=5336,
//            HLQ=EQAW

Notes:

• BPXK_SETIBMOPT_TRANSPORT specifies the name of the TCP/IP stack to be used, as defined in the
TCPIPJOBNAME statement in the related TCPIP.DATA.

• Coding a SYSTCPD DD statement does not set the requested stack affinity.

WLM considerations

Setting goals
z/OS Explorer, z/OS Debugger, and IBM Developer for z/OS create different types of workloads on your
system. These different tasks communicate with each other, which implies that the actual elapse time
becomes important to avoid time-out issues for the connections between the tasks. As a result, these
tasks should be placed in high-performance service classes, or in moderate-performance service classes
with a high priority.

A revision, and possibly an update, of your current WLM goals is therefore advised. This is especially true
for traditional MVS shops new to time-critical OMVS workloads.

Note:

• The goal information in this section is deliberately kept at a descriptive level, because actual
performance goals are very site-specific.

40  IBM z/OS Debugger: Customization Guide



• To help understand the impact of a specific task on your system, terms like minimal, moderate, and
substantial resource usage are used. These are all relative to the total resource usage of IBM Developer
for z/OS or z/OS Debugger, not the whole system.

All z/OS Debugger started tasks are servicing real-time client requests.

Table 7. WLM workloads - STC

Description Task name Workload

Debug Manager DBGMGR STC

• Debug Manager

Debug Manager provides services to connect programs being debugged to clients debugging them.
You should specify a high-performance, one-period velocity goal, because the task does not report
individual transactions to WLM. Resource usage depends heavily on user actions, and will therefore
fluctuate, but is expected to be minimal.

Tuning considerations

Debug Manager resource usage
Use the information in this section to estimate the normal and maximum resource usage by Debug
Manager, so you can plan your system configuration accordingly.

• “Overview” on page 41
• “Address space count” on page 41
• “Process count” on page 42
• “Thread count” on page 42

For more information about resource usage, see the topic about resource usage in IBM Explorer for z/OS
Host Configuration Reference Guide (SC27-8438).

Overview
Table 8 on page 41 gives an overview of the number of address spaces, processes, and threads used by
DBGMGR.

Table 8. Common resource usage

Started task Address spaces Processes Threads

DBGMGR 1 1 4

For more information about the number of address spaces, processes, and threads used by z/OS Explorer,
see the overview topic in IBM Explorer for z/OS Host Configuration Reference Guide (SC27-8438).

Address space count
Table 9 on page 41 lists the address spaces that are used by Debug Manager.

Table 9. Address space count

Count Description Task name Shared Ends after

1 Debug Manager DBGMGR Yes Never

For more information about the address spaces that are used by z/OS Explorer, see the topic about
address space count in IBM Explorer for z/OS Host Configuration Reference Guide (SC27-8438).

Chapter 7. Adding support for remote debug users  41



Process count
Table 10 on page 42 lists the number of processes per address space that is used by Debug Manager.

Table 10. Process count

Processes Address spaces Description User ID

1 1 Debug Manager STCDBM

For more information about the number of processes per address space that is used by z/OS Explorer, see
the topic about process count in IBM Explorer for z/OS Host Configuration Reference Guide (SC27-8438).

Thread count
Table 11 on page 42 lists the number of threads used by Debug Manager. The thread count is listed per
process, as limits are set at this level.

• RSEDx: These threads are created in the RSE thread pool, which is shared by multiple clients. All
threads ending up in the same thread pool must be added together to get the total count.

• Active: These threads are part of the process that actually does the requested function. Each process is
a stand-alone unit, so there is no need to sum the thread counts, even if they are assigned to same user
ID, unless noted otherwise.

• Bootstrap: Bootstrap processes are needed to start the actual process. Each has 1 thread, and there
can be multiple consecutive bootstraps. There is no need to sum the thread counts.

Table 11. Thread count

              Threads User ID Description

RSEDx Active Bootstrap

- 4 - STCDBM Debug Manager

For more information about the number of threads, see IBM Explorer for z/OS Host Configuration Reference
Guide (SC27-8438).

Running multiple instances
• The Debug Manager started task is backwards compatible, and thus the most recent version can be

shared across releases.
• Only one Debug Manager (DBM) is allowed on a given LPAR.

Troubleshooting configuration problems

Debug Manager logging
• SYSPRINT DD

Trace logging and logging of normal operations. The default value in the sample JCL
EQAW.SEQASAMP(EQAZPCM) is SYSOUT=*.

Debug Manager tracing
Debug Manager tracing is controlled by the system operator, as described in “Operator commands” on
page 43.

• Starting the DBGMGR started task with the PRM=DEBUG parameter activates tracing.
• The modify loglevel operator command let you select the desired detail level for log messages.

42  IBM z/OS Debugger: Customization Guide



SYSPLEX
IBM Developer for z/OS, z/OS Explorer, and z/OS Debugger are not SYSPLEX aware, and therefore requires
that user-specific components that are started as JCL and are active on the same system the z/OS
Debugger client UI is connected to.

Operator commands
The following operator or console commands are available for Debug Manager.

Start (S)
Use the START command to dynamically start a started task (STC). The abbreviated version of the
command is the letter S.

START DBGMGR operator command
START

S

procname

,HLQ EQAW

install_hlq

,TZ EST5DST

time_zone

,CLIENT 5335

port_number

,HOST 5336

port_number

,PRM=DEBUG

procname
The name of the member in a procedure library that is used to start the server. The default name used
during the host system configuration is DBGMGR.

HLQ=install_hlq
High-level qualifier used to install z/OS Debugger. The default is EQAW.

TZ=time_zone
Time zone offset. The default is EST5DST.

CLIENT=port_number
The port used for external (client-host) communication, default 5335.

HOST=port_number
The port used for internal (host-confined) communication, default 5336.

PRM=DEBUG
Enable verbose (trace) mode. Tracing will cause performance degradations and should only be done
under the direction of the IBM support center.

Chapter 7. Adding support for remote debug users  43



Modify (F)
The MODIFY command can be used to dynamically query and change the characteristics of an active task.
The abbreviated version of the command is the letter F.

MODIFY DBGMGR operator command
MODIFY

F

procname ,APPL=DBM, D, U

LL, E

I

D

V

T, $VALUE

Note: The comma is the only delimiter. There is no space before or after a comma.

procname
The name of the member in a procedure library that is used to start the server. The default name used
during the host system configuration is DBGMGR.

D, U
Display the active users with a single, multi-line, EQACM104I console message. Message EQACM103I
is issued if there are no active users. The user list shows the state of that user in the server.

EQACM104I
User:IBMUSER  RegisterSocket(2) 
User:IBMUSR2 18354752 ProbeSocket(3) waits for register connection
User:IBMUSR3 25387329 ProbeSocket(5) waits for engine connection
User:IBMUSR4 24113603 Engine(4) connected to Probe(8)
Module(EQATST)
EQACM103I There is no active user

The first message (for IBMUSER) indicates that the user is registered, but there is no debug activity.
The second message (for IBMUSR2) indicates that a debug session is waiting for the user to register.
The third message (for IBMUSR3) indicates that a debug session is being set up. The fourth message
(for IBMUSR4) shows an active debug session for module EQATST.

LL,{E | I | D | V}
Control the detail level of the Debug Manager message log (DD SYSPRINT). The default is E. A
message "LOGLEVEL command processed normally" is written to the console with message ID
EQACM101I.

E Error messages only (default)

I Error and informational messages

D Error, informational, and debug/dump messages

V Debug level and hex value of all packets of interest

Detailed tracing will cause performance degradations and should only be done under the direction of
the IBM support center.

T,$VALUE
The DBM check cycle value. The observed timeout is between $VALUE and 2 times of $VALUE. The
value can be in the range 15 - 150 seconds and is integer only. The default value is 15.
This setting applies to pending debugging requests only. Established sessions that are already shown
on the UI are not affected.

44  IBM z/OS Debugger: Customization Guide



Stop (P)
Use the STOP command to stop an active task. The abbreviated version of the command is the letter P.
STOP operator command

STOP

P

procname

procname
The name of the member in a procedure library that was used to start the server. The default name
used during the host system configuration is DBGMGR for Debug Manager.

Adding support for Remote Debug Service
Remote Debug Service acts as a proxy between the Debug Engine and Debug Adapter Protocol (DAP)
clients, like the Visual Studio Code (VS Code) extensions. Remote Debug Service enables interactive
debugging of COBOL and PL/I applications in these remote debuggers. Remote Debug Service can also be
configured to collect headless code coverage.

Installing Remote Debug Service
Remote Debug Service is an Eclipse Rich Client Platform (RCP) application. The files are installed as z/OS
UNIX files in the default location /usr/lpp/IBM/debug by using SMP/E during product installation. You
can change the installation location to a directory of your choice.

Note: The user ID used for the SMP/E installation must have at least READ access to the
BPX.FILEATTR.PROGCTL resource in the FACILITY class to preserve the extended attributes in the
extracted z/OS UNIX files.

Customizing with the sample job EQARMTSU
You need to create directories in z/OS® UNIX and copy sample configuration files from the installation
directory to these directories for customization. The sample job EQAW.SEQASAMP(EQARMTSU) is
provided to help you complete these tasks.

Follow the instructions within the EQARMTSU member and submit the job to customize your installation.
The job performs the following tasks:

• Create /etc/debug/* and populate it with sample configuration files.
• Create /var/debug/* as work directories required to run the service.
• Set the proper z/OS UNIX file permissions on the files and directories.

The following sample files are copied to /etc/debug by the sample job:
eqarmtd.env

Environment variables that control, for example:

• Which internal and external ports to use for the service.
• Where to locate the security keystore file for SSL encryption. You can use the sample keystore file

from Debug Profile Service located in the /etc/debug directory.
• Whether to allow headless code coverage collection.

eqahcc.env
Properties that control headless code coverage collection, for example:

• Where code coverage results are stored. By default, the results are output to $HOME/CC/user_ID,
where $HOME is the home directory of the user running Remote Debug Service. You can specify a
different root location than $HOME/CC/. Ensure that the code coverage users know the path to this
directory to access results and have the following authority:

Chapter 7. Adding support for remote debug users  45



– A minimum of read access to the parent directory to read their user ID subdirectory
root_location/user_ID. The subdirectory and the results within inherit the permissions of
the parent directory. You can add users access through group or public permission.

– Enough authority to change the ownership of z/OS UNIX files. Remote Debug Service changes
the owner of both the subdirectory and code coverage results to the user ID. When users do not
have authority, results can still be created, but users can only manage any results based on file
permissions.

• Whether to support only connections from the local host.

For more details on headless code coverage options, see the "Starting and stopping the headless code
coverage daemon" topic in IBM Knowledge Center..

Edit the files /etc/debug/eqarmtd.env and /etc/debug/eqahcc.env, and customize them to
match your system environment.

You can run the sample job EQARMTSU more than once. If a file exists in the configuration directory, a
backup is created for the existing file before a new one is copied over.

Customizing the system PROCLIB
Customize the EQAW.SEQASAMP(EQARMTD) sample started task member, as described within the
member, and copy it to SYS1.PROCLIB.

As shown in the code sample, provide the following information:

• The home directory where Remote Debug Service is installed. The default directory is /usr/lpp/IBM/
debug.

• The location of the configuration files. The default location is /etc/debug.
• The name of the environment configuration file. The default name is eqarmtd.env.

Figure 5. Remote Debug Service started task

//*********************************************************************
//* Licensed Materials - Property of IBM                              *
//*                                                                   *
//* 5724-T07: IBM z/OS Debugger                                       *
//* Copyright IBM Corp. 2020, 2020 All Rights Reserved                *
//*                                                                   *
//* US Government Users Restricted Rights - Use, duplication or       *
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
//*                                                                   *
//* This JCL procedure is used to start the Remote Debug Service.     *
//*                                                                   *
//* You will have to make the following modifications:                *
//*                                                                   *
//* 1) If you installed the product in a different directory than     *
//*    the default /usr/lpp/IBM/debug, change SVRPATH to refer to     *
//*    the correct directory.                                         *
//*                                                                   *
//* 2) If you customized the configuration files in a different       *
//*    directory than the default /etc/debug, change CFGDIR to        *
//*    refer to the correct directory.                                *
//*                                                                   *
//* 3) If you want the server to use a different work directory       *
//*    then the default /var/debug, change WRKDIR to refer to the     *
//*    desired directory.                                             *
//*                                                                   *
//* 4) If you customized the environment variables file in CFGDIR     *
//*    to a different file name than the default eqarmtd.env, change  *
//*    ENVFILE to refer to the correct name.                          *
//*                                                                   *
//* Note(s):                                                          *
//*                                                                   *
//* 1. This procedure contains case sensitive path statements.        *
//*                                                                   *
//* 2. Add a job card on line 1 and '//EQARMTD EXEC EQARMTD' at the   *
//*    bottom to submit this procedure as a user job.                 *
//*                                                                   *
//*********************************************************************
//*

46  IBM z/OS Debugger: Customization Guide

https://www.ibm.com/support/knowledgecenter


//* Remote Debug Service
//*
//EQARMTD  PROC SVRPATH='/usr/lpp/IBM/debug',
//         CFGDIR='/etc/debug',
//         WRKDIR='/var/debug',
//         ENVFILE='eqarmtd.env'
//         SET QUOTE=''''
//EXPORTS  EXPORT SYMLIST=*
//         SET SVRPATH=&QUOTE&SVRPATH&QUOTE
//         SET CFGDIR=&QUOTE&CFGDIR&QUOTE
//         SET WRKDIR=&QUOTE&WRKDIR&QUOTE
//         SET ENVFILE=&QUOTE&ENVFILE&QUOTE
//*---------------------------------------------------------
//* Start the Remote Debug Service
//*---------------------------------------------------------
//EQARMTD EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,
//  PARM='PGM /bin/sh &SVRPATH/remote-debug-service/eqarmtd.sh'
//STDOUT   DD SYSOUT=*
//STDERR   DD SYSOUT=*
//STDENV   DD *,SYMBOLS=JCLONLY
EQARMTD_CFG_DIR=&CFGDIR
EQARMTD_WRK_DIR=&WRKDIR
EQARMTD_ENVFILE=&CFGDIR/&ENVFILE
EQARMTD_BASE=&SVRPATH/remote-debug-service
_BPXK_AUTOCVT=ON
/*
//        PEND
//*

Remote Debug Service security definitions
Perform the following tasks to complete the basic security setup to run Remote Debug Service.

Defining the Remote Debug Service started task
The following sample RACF commands create the EQARMTD started task, with protected user ID
(STCEQA2) and the STCGROUP group assigned to it:

1.  ADDGROUP STCGROUP OMVS(AUTOGID) - 
 DATA(‘GROUP WITH OMVS SEGMENT FOR STARTED TASKS’)

2.  ADDUSER STCEQA2 DFLTGRP(STCGROUP) NOPASSWORD - 
 NAME(‘REMOTE DEBUG SERVICE’) - 
 OMVS(AUTOUID HOME('/tmp') PROGRAM('/bin/sh')) 
 - DATA('IBM z/OS Debugger')`

3.  RDEFINE STARTED EQARMTD.* - 
 STDATA(USER(STCEQA2) GROUP(STCGROUP) TRUSTED(NO)) - 
 DATA(‘REMOTE DEBUG SERVICE’)

4.  SETROPTS RACLIST(STARTED) REFRESH

Note: Ensure that the started task user ID is protected by specifying the NOPASSWORD keyword.

Enabling secure communication
You can enable Remote Debug Service to communicate via Secure Sockets Layer (SSL) with a private key
and self-signed certificate stored in a keystore file.

1. Create a JKS keystore file by using the Java runtime utility keytool:

 keytool -genkey -alias rmtd -keyalg RSA -storetype JKS -keystore keystore.jks

2. Edit /etc/debug/eqarmtd.env and update the keystore variables to use the new keystore file.
3. To ensure that the keystore file is only readable by the protected user ID STCEQA2, change the owner

and permission of the file with:

 chown STCEQA2:STCGROUP keystore.jks
 chmod 640 keystore.jks

Chapter 7. Adding support for remote debug users  47



4. Export the SSL certificate with:

 keytool -export -keystore keystore.jks -alias rmtd -storetype JKS -file rmtd.cer -rfc

The SSL certificate can be distributed to remote users to be imported into the client keystore.

Updating PARMLIB to start Remote Debug Service during IPL
Add a start command for Remote Debug Service to SYS1.PARMLIB(COMMNDxx) to start it automatically
at the next system IPL. Define CMD=xx in the IEASYSxx parmlib member to specify the COMMNDxx
parmlib member that is used during IPL.

Starting and stopping Remote Debug Service dynamically
To start the service, use the following console command:

S EQARMTD

To stop the server, use the following console command:

P EQARMTD

Adding support for Debug Profile Service and APIs
Debug Profile Service is a REST API that uses the HTTP protocol to provide RESTful access to a set of
resources related to debug profiles. It provides POST/GET/ PUT/DELETE methods to handle the creation,
retrieval, updating, and deleting of debug profiles.

To enable all the features in the z/OS Debugger Profiles view with Eclipse, you need to install, configure
and start z/OS Explorer V3.1.1.23 or later and Debug Profile Service.

For CICS, also see the instructions in “Activating the TCP/IP Socket Interface for CICS” on page 25 and
“Adding support for the DTCN profiles APIs and views” on page 53.

The Debug Profile Service API is similar to the DTCN API, except that it also handles batch, IMS, and Db2
stored procedure profiles stored in EQAUOPTS data sets.

The Debug Profile Service API handles accessing profiles differently between CICS and non-CICS.

For CICS, user debug profiles are stored in a repository that is owned by the region. The repository can
either be a CICS temporary storage queue (TSQ), or a VSAM data set allocated to DD:EQADPFMB. In either
case, the Debug Profile Service API acts as a client, relaying the HTTP request to the DTCN API to handle.

For non-CICS, debug profiles are stored in EQAUOPTS data sets. The Debug Profile Service API
manipulates the data sets directly, and therefore needs to be running on the z/OS host. Also, proper
RACF setup is required during the API installation to allow for authentication and data set authorization
that use SAF/RACF.

For the API details, see the "z/OS Debug Profile Service API" documentation in IBM Documentation.

Installing Debug Profile Service
Debug Profile Service uses Apache Tomcat on z/OS as the web server. The files are installed as z/OS UNIX
files in the default location /usr/lpp/IBM/debug by using SMP/E during product installation. You can
change the installation location to a directory of your choice.

Note: The user ID used for the SMP/E installation must have at least READ access to the
BPX.FILEATTR.PROGCTL resource in the FACILITY class to preserve the extended attributes in the
extracted z/OS UNIX files.

48  IBM z/OS Debugger: Customization Guide

https://www.ibm.com/support/knowledgecenter


Customizing with the sample job EQAPRFSU
You need to create directories in z/OS UNIX and copy sample configuration files from the installation
directory to these directories for customization. The sample job EQAW.SEQASAMP(EQAPRFSU) is
provided to help you complete these tasks.

Follow the instructions within the EQAPRFSU member and submit the job to customize your installation.
The job performs the following tasks:

• Create /etc/debug/* and populate it with sample configuration files.
• Create /var/debug/* as work directories required to run the service.
• Set the proper z/OS UNIX file permissions on the files and directories.

The following sample files are copied to /etc/debug by the sample job:
eqaprof.env

Environment variables that control, for example:

• Which port to use for the service.
• Where to locate the security keystore file for SSL encryption.
• The default data set name to be used for EQAUOPTS data set.

dtcn.ports
A list of CICS region names, and their associated TCPIPSERVICE ports that run the DTCN API.
For more information on how to set up the CICS TCPIPSERVICE resource for the DTCN API, see
“Defining the CICS TCPIPSERVICE resource” on page 53. The resource must be defined with
SSL(NO).

keystore.p12
A sample keystore file that contains a self-signed SSL certificate

Edit the files /etc/debug/eqaprof.env and /etc/debug/dtcn.ports, and customize them to
match your system environment.

You can run the sample job EQAPRFSU more than once. If a file exists in the configuration directory, a
backup is created for the existing file before a new one is copied over.

Customizing the system PROCLIB
Customize the EQAW.SEQASAMP(EQAPROF) sample started task member, as described within the
member, and copy it to SYS1.PROCLIB.

As shown in the code sample, provide the following information:

• The home directory where Debug Profile Service is installed. The default directory is /usr/lpp/IBM/
debug.

• The location of the configuration files. The default location is /etc/debug.
• The name of the environment configuration file. The default name is eqaprof.env.

Figure 6. Debug Profile Service started task

//*
//* Debug Profile Service
//*
//EQAPROF  PROC SVRPATH='/usr/lpp/IBM/debug',
//         CFGDIR='/etc/debug',
//         WRKDIR='/var/debug',
//         ENVFILE='eqaprof.env',
//         TZ='EST5EDT'
//         SET QUOTE=''''
//EXPORTS  EXPORT SYMLIST=*
//         SET SVRPATH=&QUOTE&SVRPATH&QUOTE
//         SET CFGDIR=&QUOTE&CFGDIR&QUOTE
//         SET WRKDIR=&QUOTE&WRKDIR&QUOTE
//         SET ENVFILE=&QUOTE&ENVFILE&QUOTE
//         SET TZ=&QUOTE&TZ&QUOTE

Chapter 7. Adding support for remote debug users  49



//*---------------------------------------------------------
//* Start the Debug Profile Service
//*---------------------------------------------------------
//EQAPROF EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,
//  PARM='PGM /bin/sh &SVRPATH/eqaProfile/bin/start.sh'
//STDOUT   DD SYSOUT=*
//STDERR   DD SYSOUT=*
//STDENV   DD *,SYMBOLS=JCLONLY
TZ=&TZ
EQAPROF_CFG_DIR=&CFGDIR
EQAPROF_WRK_DIR=&WRKDIR
EQAPROF_ENVFILE=&CFGDIR/&ENVFILE
CATALINA_BASE=&SVRPATH/eqaProfile
_BPXK_AUTOCVT=ON
/*
//        PEND
//*

Debug Profile Service security definitions
Perform the following tasks to complete the basic security setup to run Debug Profile Service.

For more information about the sample RACF commands, see RACF Command Language Reference
(SA22-7687).

Activating the security settings and classes
Debug Profile Service uses various security mechanisms to ensure a secure and controlled host system
environment for the client. To do so, several classes and security settings must be active, as shown in the
following sample RACF commands:

1. Display current settings:

a. SETROPTS LIST
2. Activate facility class:

a. SETROPTS GENERIC(FACILITY)
b. SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)

3. Activate started task definitions:

a. SETROPTS GENERIC(STARTED)
b. RDEFINE STARTED ** STDATA(USER(=MEMBER) GROUP(STCGROUP) TRACE(YES))
c. SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

Defining the Debug Profile Service started task
The following sample RACF commands create the EQAPROF started task, with protected user ID (STCEQA)
and the STCGROUP group assigned to it:

1. ADDGROUP STCGROUP OMVS(AUTOGID) - 
DATA(‘GROUP WITH OMVS SEGMENT FOR STARTED TASKS’)

2. ADDUSER STCEQA DFLTGRP(STCGROUP) NOPASSWORD - 
NAME(‘DEBUG PROFILE SERVER’) - 
OMVS(AUTOUID HOME('/tmp') PROGRAM('/bin/sh')) 
- DATA('IBM z/OS Debugger')

3. RDEFINE STARTED EQAPROF.* - 
STDATA(USER(STCEQA) GROUP(STCGROUP) TRUSTED(NO)) - 
DATA(‘DEBUG PROFILE SERVICE’)

4. SETROPTS RACLIST(STARTED) REFRESH

Note: Ensure that the started task user ID is protected by specifying the NOPASSWORD keyword.

50  IBM z/OS Debugger: Customization Guide



Enabling secure communication
You can enable Debug Profile Service to communicate via a Secure Sockets Layer (SSL) certificate with a
private key and self-signed certificate stored in a keystore file or via a Certificate Authority (CA) certificate
with a RACF managed key ring.

Enabling secure communication with a keystore file
You can use the sample keystore file installed in /etc/debug/keystore.p12, or create a new one with
the following steps:

1. Create a keystore file by using the Java runtime utility keytool:

keytool -genkey -alias tomcat -keyalg RSA -storetype PKCS12 -keystore keystore.p12

2. Edit /etc/debug/eqaprof.env and update the keystore variables to use the new keystore file.
3. To ensure that the keystore file is only readable by the protected user ID STCEQA, change the owner

and permission of the file with:

  chown STCEQA:STCGROUP keystore.p12
  chmod 640 keystore.p12

4. Export the SSL certificate with:

keytool -export -keystore keystore.p12 -alias tomcat -storetype PKCS12 -file tomcat.cer -rfc

The SSL certificate can be distributed to remote users to be imported into the client keystore.

For Eclipse users, manually importing the certificate for z/OS Debugger Profiles view users is not
required because users will be prompted to accept the certificate if it is not already in the keystore the
first time the view connects to Debug Profile Service.

Z Open Debug users still need to manually import the self-signed certificate.

Enabling secure communication with a RACF managed key ring
Instead of a keystore file, you can use a RACF managed key ring to enable secure communication with
Debug Profile Service. To create a RACF key ring and certificates, you must have authorization to issue
RACDCERT commands. For more information about the RACDCERT commands and authorizations that are
required, see "RACDCERT (Manage RACF digital certificates)" in the z/OS Security Server RACF Command
Language Reference.

1. Create a RACF key ring for Debug Profile Service to use as its keystore:

RACDCERT ADDRING(EQAPROF.Keyring) ID(STCEQA)

2. Create a CA certificate and add it to the key ring:

RACDCERT GENCERT CERTAUTH SUBJECTSDN(CN('CA for Debugger Services') O('IBM') OU('IBM z/OS 
Debugger') C('US')) SIZE(2048) WITHLABEL('zosDebuggerCA') NOTAFTER(DATE(2030-12-31))
RACDCERT CONNECT(CERTAUTH RING(EQAPROF.Keyring) LABEL('zosDebuggerCA')) ID(STCEQA)

3. Create a signed personal certificate and add to the key ring:

RACDCERT GENCERT SUBJECTSDN(CN('Debug Profile Service') O('IBM') OU('IBM z/OS Debugger') 
C('US')) SIZE(2048) SIGNWITH(CERTAUTH LABEL('zosDebuggerCA')) WITHLABEL('EQAPROF') 
NOTAFTER(DATE(2030-12-31)) ID(STCEQA)
RACDCERT CONNECT(RING(EQAPROF.Keyring) LABEL('EQAPROF')) ID(STCEQA)

4. Confirm that the key ring and certificates were created correctly:

RACDCERT LISTRING(EQAPROF.Keyring) ID(STCEQA)
RACDCERT CERTAUTH LIST(LABEL('zosDebuggerCA'))
RACDCERT LIST(LABEL('EQAPROF')) ID(STCEQA)

5. Enable the protected user ID STCEQA authority to access the key ring:

Chapter 7. Adding support for remote debug users  51



PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(STCEQA) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(STCEQA) ACC(READ)
SETROPTS RACLIST(FACILITY) REFRESH

6. Edit /etc/debug/eqaprof.env and update the keystore variables to use the key ring:

keystoreFile="safkeyring://STCEQA/EQAPROF.Keyring"
keystorePass="password"
keystoreType="JCERACFKS"

7. Export the CA certificate that contains the public key to a z/OS sequential file:

RACDCERT CERTAUTH EXPORT(LABEL('zosDebuggerCA')) DSN('<sequential data set>') FORMAT(CERTDER)

The CA certificate can be distributed to remote users to be imported into the client keystore manually
if necessary.

For Eclipse users, manually importing the certificate for z/OS Debugger Profiles view users is not
required because users will be prompted to accept the certificate if it is not already in the keystore the
first time the view connects to Debug Profile Service.

Z Open Debug users still need to manually import the self-signed certificate.

Defining Debug Profile Service as a secure z/OS UNIX server
Debug Profile Service requires UPDATE access to the BPX.SERVER resource in the FACILITY class to
create or delete the security environment for the client thread:

1. RDEFINE FACILITY BPX.SERVER UACC(NONE)
2. PERMIT BPX.SERVER CLASS(FACILITY) ID(STCEQA) ACCESS(UPDATE)
3. SETROPTS RACLIST(FACILITY) REFRESH

Attention: Defining the BPX.SERVER resource makes z/OS UNIX as a whole switch from UNIX
level security to z/OS UNIX level security, which is more secure. This switch might impact other
z/OS UNIX applications and operations. Test the security before activating it on a production
system. For more information about the different security levels, see UNIX System Services
Planning (GA22-7800).

Enabling Debug Profile Service to switch user context
Debug Profile Service must be able to switch to the client user ID to perform I/O operations on EQAUOPTS
data sets. Define specific BPX.SRV profiles in the SURROGAT class in RACF, or specify a general profile to
allow the API to switch to any user ID:

1. RDEFINE SURROGAT BPX.SRV.** UACC(NONE)
2. PERMIT BPX.SRV.** CLASS(SURROGAT) ID(STCEQA) ACCESS(READ)
3. SETROPTS RACLIST(SURROGAT) REFRESH

Note: Ensure that the started task user ID is protected by specifying the NOPASSWORD keyword.

Updating PARMLIB to start Debug Profile Service during IPL
Add a start command for Debug Profile Service to SYS1.PARMLIB(COMMNDxx) to start it automatically at
the next system IPL. Define CMD=xx in the IEASYSxx parmlib member to specify the COMMNDxx parmlib
member that is used during IPL.

Starting and stopping Debug Profile Service dynamically
To start the server, use the following console command:

S EQAPROF

52  IBM z/OS Debugger: Customization Guide



To stop the server, use the following console command:

P EQAPROF

Adding support for the DTCN profiles APIs and views
In a DTCN profile, or a CICS profile, users can specify, for example, the program they want to debug on
CICS. Remote users can create, delete, or modify a profile in the following ways:

• Use the z/OS Debugger Profiles view to create and manage CICS profiles.
• Add the Debug Tool DTCN Profile Manager plug-in to IBM Developer for z/OS or IBM Debug for z/OS and

use its DTCN Profiles view.

Note: The DTCN Profiles view is replaced by the z/OS Debugger Profiles view. The DTCN plug-in is
deprecated and will be removed in a future release.

• Write their own application that uses the APIs described in IBM z/OS Debugger API User's Guide and
Reference.

• Use the DTCN transaction in a 3270 session.

For the first three cases, you need to enable TCP/IP communication between the remote application
and an HTTP server running in a CICS region on the z/OS system, as described in “Defining the CICS
TCPIPSERVICE resource” on page 53. Then inform your users that you have enabled this support.

For the first case, to enable all the features in the z/OS Debugger Profiles view, configure Debug Profile
Service for best user experience. For more information, see “Adding support for Debug Profile Service and
APIs” on page 48.

For the second case, your users can find instructions for installing the Debug Tool DTCN Profile Manager
plug-in in "Appendix K: Using the IBM Debug Tool plug-ins" in the IBM z/OS Debugger User's Guide. The
Debug Tool plug-ins are not available in IBM Wazi Developer for Red Hat CodeReady Workspaces.

For all cases, if you want users other than the profile owners to modify or delete DTCN profiles, see
“Defining who can create, modify, or delete DTCN profiles” on page 56.

Defining the CICS TCPIPSERVICE resource
Before your users can use the profile view or develop applications that use the APIs, you must define the
CICS TCPIPSERVICE resource for every CICS region that users access.

For every region that users access, do these steps:

1. Define the TCP/IP address and host name for the z/OS system. By default, they are defined in the
PROFILE.TCPIP and TCPIP.DATA data sets.

2. Add a TCP/IP listener to CICS. Use the following CEDA command to define a TCPIPSERVICE in a group:

CEDA DEF TCPIPSERVICE(service-name) GROUP(group-name)

Ensure that the group in which you define the service is in the startup GRPLIST, so that the listener
starts when CICS starts. The following list explains what values to use for some of the key fields:
TCpipservice(service-name)

Create a name that is eight characters or less.
GROup(group-name)

Create a name that is eight characters or less.
Urm

Specify EQADCAN0.
POrtnumber

Specify an unused port number that the DTCN Profile Manager plug-in uses for the API's
communication.

Chapter 7. Adding support for remote debug users  53



STatus
Specify Open.

PROtocol
Specify Http.

TRansaction
Specify CWXN.

Backlog
The number of TCP/IP requests that are queued before TCP/IP starts to reject incoming requests.
For example, 30.

SOcketclose
Specify No.

Maxdatalen
Specify the maximum size, in bytes, of the body (the XML document) of the HTTP request or
response. For example, 032768 represents 32K bytes.

SSl
Specify Yes if you are using SSL encryption with the HTTPS protocol.

AUthenticate
Specify Basic.

GRPcritical
Specify No.

3. Add a URIMAP definition to match the URLs of the incoming HTTP requests:

CEDA DEF URIMAP(map-name) GROUP(group-name)

The following list explains what values to use for the key fields:
URIMAP(map-name)

Create a name that is eight characters or less.
GROUP(group-name)

Specify the same group-name as used in the TCPIPSERVICE resource definition.
STATUS

Specify Enabled.
USAGE

Specify Server.
SCHEME

Specify HTTP.
HOST

Specify *.
PATH

Specify /dtcn/*.
ANALYZER

Specify Yes.
4. Enter the following commands to install the TCPIPSERVICE and URIMAP definitions:

CEDA INS TCPIPSERVICE(service-name) GROUP(group-name)

CEDA INS URIMAP(map-name) GROUP(group-name)

5. If you encounter problems with the connection from the workstation to the HTTP server in the CICS
region, issue the command CEMT INQUIRE TCPIPSERVICE(service-name) on the server region
to verify if your settings are correct. Your settings must be as follows:

• Port(nnnn), where nnnn is the port that the workstation connects to.
• Authentication(Basic)

54  IBM z/OS Debugger: Customization Guide



• Maxdatalen(032000)
• Urm(EQADCAN0)

6. Ask your system administrator to provide access to transactions CWBA and CWXN because they are
used in the HTTP request processing.

Establishing secure communication between the profile view and your z/OS
system for CICS

These steps help you enable secure communication via Secure Sockets Layer (SSL) between the view and
your z/OS system. The communication between the client and server uses the HTTP protocol.

Server-side setup
To enable SSL communication, do the following tasks for the server side:

• Generate key pair and self-signed certificate.

1. Use the RACF GENCERT command to create a key entry for the CICS region owner. The key entry
contains the key pair and self-signed certificate.

Note: The following example shows the RACF commands as they would be coded in a REXX exec.
This is recommended because of the length of the commands.

Example (Create a key entry for user USERID with label: USERID-DTCNPLG-CERT):

/* generate key entry */ 
"RACDCERT ID(USERID) GENCERT", 
" SUBJECTSDN(CN('your_host_name.com' )", 
"T ('USERID-DTCNPLG-CERT' ) ", 
"OU('IBM' ) ", 
"O ('IBM' ) ", 
"L ('San Jose' ) ", 
"SP('CA' ) ", 
"C ('US' ))", 
" NOTBEFORE(DATE(2011-02-28) TIME(20:00:00) )", 
" NOTAFTER (DATE(2031-12-31) TIME(19:59:59) )", 
" WITHLABEL(‘USERID-DTCNPLG-CERT’ )", 
" SIZE (1024 )" 

The common name of the subject DSN must be the host name of the server that the client uses to
connect to host.

2. Connect the key entry to a key ring that belongs to the CICS region owner ID.

Example (Connect it to a key ring named USERID):

/* connect key entry to key ring */ 
"RACDCERT ID(USERID )”, 
“CONNECT( RING(USERID ) ", 
" LABEL(‘USERID-DTCNPLG-CERT’ ))"

3. Export the certificate and store it in a data set using the printable encoding format defined by the
internet RFC 1421 standard.

Example (Export the certificate to a data set: USERID.DTCNPLG.CERT):

/* export certificate to a data set */ 
"RACDCERT EXPORT(LABEL(‘USERID-DTCNPLG-CERT’ ) ", 
" ID(USERID ) ", 
" DSN('USERID.DTCNPLG.CERT' ) ", 
" FORMAT(CERTB64 ) " 

• Update system initialization parameters in CICS region.

1. Add a KEYRING system initialization parameter to the CICS region job and point it to the key ring
created for the region owner ID.

Chapter 7. Adding support for remote debug users  55



2. The following example adds KEYRING to the CICS region's system initialization parameters:

SIT=6$,               
START=INITIAL,        
RENTPGM=PROTECT,      
...
TRANISO=YES,   
KEYRING=key-ring-name,
EDSALIM=132M,           
        ...

• Modify the TCPIPSERVICE you defined above to set these two attributes:

– SSl : Yes Yes | No | Clientauth
– CErtificate : USERID-DTCNPLG-CERT

Client-side setup
To enable SSL communication, do the following tasks for the client side. For the z/OS Debugger Profiles
view users, the following tasks are not required because users will be prompted to accept or decline any
certificates that are not installed when using the view.

• Install client certificate.

Because the server certificate generated is not from an authorized CA, you need to install the certificate
into the keystore that IBM Developer for z/OS uses.

1. Get a client certificate by downloading a copy of the exported server certificate (using text mode)
that is created in step 3 of Server-side setup above to your workstation.

2. Import the client certificate into the keystore. The following is an example how to import the
certificate into keystore using keytool provided by Java.

For Java version 1.7: keytool –importcert –alias myprivateroot –keystore

C:\YOUR_WORKSPACE_DIRECTORY\.metadata\.plugins\com.ibm.cics.core.comm\explo
rer_keystore.jks –file dtcnplg.cer

dtcnplg.cer is the client certificate. The initial password for the keystore is changeit.

Notes:

– For Java version 1.7, the default keystore is:
C:\YOUR_WORKSPACE_DIRECTORY\.metadata\.plugins\com.ibm.cics.core.comm\explo
rer_keystore.jks

– For IBM Developer for z/OS, the keytool utility can be found in this Java installation bin directory,
C:\DEVELOPER_FOR_Z_SYSTEMS\jdk\jre\bin.

Defining who can create, modify, or delete DTCN profiles
Profile owners can always create, modify or delete their own profiles. However, you can define, through
RACF profiles, other users that can modify or delete any profiles. This might be useful, for example, if you
want a system administrator to delete unused or obsolete profiles owned by a user that no longer has
access to those profiles.

Only the security administrator of the z/OS system can add or remove IDs to the RACF profiles. After you
identify the IDs of the users you want to have this access, do these steps:

1. Establish the profile in the FACILITY class by entering the following RDEFINE command:

RDEFINE FACILITY EQADTOOL.DTCNCHNGEANY UACC(NONE)

2. Verify that generic profile checking is in effect for the class FACILITY by entering the following
command:

SETROPTS GENERIC(FACILITY)

56  IBM z/OS Debugger: Customization Guide



3. Give a user (for example, user DUSER1) permission to modify another user's profiles by entering the
following command:

PERMIT EQADTOOL.DTCNCHNGEANY CLASS(FACILITY) ID(DUSER1) ACCESS(UPDATE)

Instead of connecting individual users, you can specify that DUSER1 be a RACF group profile and then
connect authorized users to that group.

4. If the FACILITY class is not active, activate the class by entering the following command:

SETROPTS CLASSACT(FACILITY)

Enter the SETROPTS LIST command to verify that the FACILITY class is active.
5. Refresh the FACILITY class by entering the following command:

SETROPTS RACLIST(FACILITY) REFRESH

Adding support for the DTSP Profile, code coverage, and load
module analyzer views

Notes:

• This section is not applicable to IBM Wazi Developer for Red Hat CodeReady Workspaces.
• The DTSP plug-in is deprecated and will be removed in a future release. The DTSP views are replaced

by the z/OS Debugger Profiles view. To enable all the features in the z/OS Debugger Profiles view, see
“Adding support for Debug Profile Service and APIs” on page 48 instead.

Your users can add these 3 views to the Debug perspective of IBM Developer for z/OS and IBM Debug for
z/OS.

• The DTSP Profile view helps users update the TEST runtime options data set from the remote debugger.
• The code coverage view helps users generate code coverage reports.
• The load module analyzer view helps users analyze the contents of a load module.

Before your users can use these views, you must do the following tasks:

• Install the ADFz Common Components Server.
• Install and configure the z/OS Debugger extensions for the ADFz Common Components.
• Run the ADFz Common Components Server.
• Inform your users that you have installed this software and now they can use these views. They can
find instructions for installing it in "Appendix K: Installing the IBM Debug Tool plug-ins" in the IBM z/OS
Debugger User's Guide.

Before you begin, verify that you have the following software installed:

• UNIX System Services
• ADFz Common Components, as described throughout Program Directory for IBM Application Delivery

Foundation for z/OS Common Components and IBM Application Delivery Foundation for z/OS Common
Components Customization Guide and User Guide.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Creating and managing the TEST runtime options data set” on page 65

Installing the ADFz Common Components Server
IBM ADFz Common Components Server is referred to as ADFz Common Components server in this
document.

Chapter 7. Adding support for remote debug users  57



You can find step-by-step procedures to run the Common Components Server in the IBM Application
Delivery Foundation for z/OS Common Components Customization Guide and User Guide.

Installing and configuring the z/OS Debugger extensions for the Common
Components Server

You must create a configuration file for the z/OS Debugger extensions for the Common Components
Server, and then specify the location of the configuration file to the server to enable communication
between the views and your z/OS system.

To configure the z/OS Debugger extensions for the Common Components Server, do the following steps:

1. Create a sequential MVS data set (FB, LRECL 80) that contains the following records. Replace
the z/OS Debugger SEQAMOD data set name in SPAWN_STEPLIB=EQAW.SEQAMOD statement with the
installed z/OS Debugger SEQAMOD data set name.

Note: Do not change other statements.

* DTSP profile view
CONFIG=DT
SPAWN_PROGRAM=EQACMINT
SPAWN_STEPLIB=EQAW.SEQAMOD
SPAWN_PARMS_SECTION
* code coverage view
CONFIG=CC
SPAWN_PROGRAM=EQACCINT
SPAWN_STEPLIB=EQAW.SEQAMOD
SPAWN_PARMS_SECTION
* load module analyzer view 
CONFIG=LM
SPAWN_PROGRAM=EQALMINT
SPAWN_STEPLIB=EQAW.SEQAMOD
SPAWN_PARMS_SECTION                        
SPAWN_DD=EQASYSPF=EQAW.SEQATLIB(EQALMPFX)
SPAWN_DD=EQAPGMNM=EQAW.SEQATLIB(EQALMPGM)

A sample job that creates and updates the configuration data set is provided in the
hlq.SEQASAMP(EQAWCCFG) data set.

2. Modify the Common Components Server started proc IPVSRV1.

a. Add the configuration data set to the CONFIG DD statement concatenation.
b. Set the region size parameter to 200M or 0M. For example, //RUN EXEC
PGM=IPVSRV,REGION=200M.

c. Stop and restart the Common Components Server.
3. When adding a host connection for ADFz Common Components Server, consult with your host

administrator and choose an encoding of character set that matches what your host system uses.

Running the Common Components Server
You can find step-by-step procedures to run the Common Components Server in the IBM Application
Delivery Foundation for z/OS Common Components Customization Guide and User Guide.

Enabling secure communication between z/OS Debugger and the
remote debugger for incoming debug sessions

This section assists you in setting up a secure communication by using the z/OS Communications Server:
IP Application Transparent – Transport Layer Security (AT-TLS) service when you use the TCPIP or
DIRECT suboption in the TEST runtime option. By exploiting the Secure Sockets Layer (SSL) functions of
AT-TLS, z/OS Debugger provides a secure (encrypted) communication with the remote Eclipse debugger.

The setup assumes that the remote debugger is the TCP/IP server and z/OS Debugger is the TCP/IP client.

Carry out the following steps:

58  IBM z/OS Debugger: Customization Guide



• Add a client certificate.

Export a copy of a client certificate from the keystore that the remote debugger uses. This client
certificate is used by AT-TLS to authenticate the TCP/IP server (remote debugger) during SSL
handshaking. If the remote debugger does not have a certificate, you can use the following Java runtime
utility to create a keystore and certificate and to export a client certificate.
Create a keystore and certificate

keytool -genkeypair
Export a client certificate

keytool -exportcert
Each Eclipse client user must configure the debug daemon to start on a secured port with the location
and password of the keystore created previously. These settings can be found on Preferences > Run/
Debug > Debug Daemon preference page. For more information about the Debug Daemon preference
page, see the "Setting debug preferences" topic in IBM Knowledge Center.

Upload the certificate to z/OS in binary mode and store it as a SITE or CERTAUTH certificate in RACF
or other equivalent security facility. The following examples use the RACDCERT command to add a
certificate:

RACDCERT SITE
ADD(’USERID1.DTPDT.CERT1’) WITHLABEL(’DTPDT-CERT1’) TRUST

RACDCERT CERTAUTH
ADD(’USERID1.DTPDT.CERT1’) WITHLABEL(’DTPDT-CERT1’) TRUST  

where USERID1.DTPDT.CERT1 is a file that contains the uploaded certificate and DTPDT-CERT1 is a
label of the certificate in RACF.

The following information is used in the previous examples:
USERID1.DTPDT.CERT1

A file that contains the uploaded certificate.
DTPDT-CERT1

A label of the certificate in RACF.

Note: Both SITE and CERTAUTH certificates work with the key ring *SITE*/* parameter in
TTLSKeyRingParms definition below. If you use a CERTAUTH certificate, also define the *AUTH*/*
parameter.

• Add an AT-TLS rule.

The rule allows AT-TLS to enable SSL when z/OS Debugger connects to the remote debugger on a
specified port. The following example shows that the remote debugger listens to the secure port 9101.
In your development environment, you must determine which secure port the remote debugger listens
to and use it in the RemotePortRange statement.

 TTLSRule DTPDTRL1                            
{                                            
 RemotePortRange 9101                       <=== secure port                        
 Direction Outbound                         <=== outbound direction    
 TTLSGroupActionRef DTPDTRL1GrpAct             
 TTLSEnvironmentActionRef DTPDTRL1EnvAct       
}                                            
TTLSGroupAction DTPDTRL1GrpAct                 
{                                            
 TTLSEnabled On                             <=== enable rule 
 Trace 30                                    
}                                            
TTLSEnvironmentAction DTPDTRL1EnvAct           
{                                            
 TTLSKeyRingParms                            
 {                                           
  Keyring *SITE*/*                          <=== virtual key ring 
 }                                           
 HandShakeRole Client                        
}                                            

Chapter 7. Adding support for remote debug users  59

https://www.ibm.com/support/knowledgecenter


AT-TLS currency

A TLS v1.2 protocol is available that uses more secured algorithms during SSL handshake operations. To
use the protocol, take the following steps.

For z/OS Version 1 Release 13

1. Two APARs OA39422 and PM62905 are required to enable TLS v1.2 in z/OS v1.13.
2. AT-TLS rule update. The following code is an example for secure port 9102:

TTLSRule DTPDTRL2                              
{                                              
 RemotePortRange 9102                          
 Direction Outbound                            
 TTLSGroupActionRef DTPDT2GrpAct               
 TTLSEnvironmentActionRef DTPDT2EnvAct         
}                                              
TTLSGroupAction DTPDT2GrpAct                   
{                                              
 TTLSEnabled On                                
 Trace 30                                      
 TTLSGroupAdvancedParms                        
 {                                             
  Envfile /etc/pagent/DTPDT2grp.env <== DTPDT2grp.env contains 
GSK_PROTOCOL_TLSV1_2=ON
 }                                  <== system SSL environment variable.
}                                              
TTLSEnvironmentAction DTPDT2EnvAct             
{                                              
 TTLSKeyRingParms                              
 {                                             
  Keyring *SITE*/*                             
 }                                             
 HandShakeRole Client
}     

For z/OS Version 2 Release 1

1. TLS v1.2 support is included in z/OS v2.1 base.
2. AT-TLS rule update. The following code is an example for secure port 9102:

TTLSRule DTPDTRL2                              
{                                              
 RemotePortRange 9102                          
 Direction Outbound                            
 TTLSGroupActionRef DTPDT2GrpAct               
 TTLSEnvironmentActionRef DTPDT2EnvAct         
}                                              
TTLSGroupAction DTPDT2GrpAct                   
{                                              
 TTLSEnabled On                                
 Trace 30                                      
}                                              
TTLSEnvironmentAction DTPDT2EnvAct             
{                                              
 TTLSKeyRingParms                              
 {                                             
  Keyring *SITE*/*                             
 }                                             
 HandShakeRole Client
 TTLSEnvironmentAdvancedParms
 {
  TLSv1.2 On 
 }
}       

60  IBM z/OS Debugger: Customization Guide



Chapter 8. Specifying the TEST runtime options
through the Language Environment user exit

z/OS Debugger provides a customized version of the Language Environment user exit (CEEBXITA). The
user exit returns a TEST runtime option when called by the Language Environment initialization logic. z/OS
Debugger provides a user exit that supports three different environments. This topic is also described in
IBM z/OS Debugger User's Guide with information specific to application programmers.

The user exit extracts the TEST runtime option from a user controlled data set with a name that is
constructed from a naming pattern. The naming pattern can include the following tokens:

&USERID
z/OS Debugger replaces the &USERID token with the user ID of the current user. Each user can
specify an individual TEST runtime option when debugging an application. This token is optional.

&PGMNAME
z/OS Debugger replaces the &PGMNAME token with the name of the main program (load module). Each
program can have its own TEST runtime options. This token is optional.

z/OS Debugger provides the user exit in two forms:

• A load module. The load modules for the three environments are in the hlq.SEQAMOD data set. Use this
load module if you want the default naming patterns and message display level. The default naming
pattern is &USERID.DBGTOOL.EQAUOPTS and the default message display level is X'00'.

• Sample assembler user exit that you can edit. The assembler user exits for the three environments are
in the hlq.SEQASAMP data set. You can also merge this source with an existing version of CEEBXITA.
Use this source code if you want naming patterns or message display levels that are different than the
default values.

z/OS Debugger provides a customized version of the Language Environment user exit named EQAD3CXT.
The following table shows the environments in which this user exit can be used. The EQAD3CXT user exit
determines the runtime environment internally and can be used in multiple environments.

Table 12. Language Environment user exits for various environments

Environment User exit name

The following types of Db2 stored procedures that run in WLM-
established address spaces:

• type MAIN1

• type SUB2

EQAD3CXT

IMS TM3 and BTS4 EQAD3CXT

Batch EQAD3CXT

Note:

1. EQAD3CXT is supported for DB2 version 7 or later. If Db2 RUNOPTS is specified, EQAD3CXT takes
precedence over Db2 RUNOPTS.

2. If you have installed the PTF for APAR PM15192 for Language Environment Version 1.10 to Version
1.12, or have Language Environment Version 1.13 or higher, the type SUB stored procedure is invoked
by the call_sub function and EQAD3CXT is not needed.

3. For IMS TM, if you do not sign on to the IMS terminal, you might need to run the EQASET transaction
with the TSOID option. For instructions on how to run the EQASET transaction, see "Debugging
Language Environment IMS MPPs without issuing /SIGN ON" in the IBM z/OS Debugger User's Guide.

© Copyright IBM Corp. 1992, 2021 61



4. For BTS, you need to specify Environment command (./E) with the user ID of the IO PCB. For example,
if the user ID is ECSVT2, then the Environment command is ./E USERID=ECSVT2.

Your users can use the user exit in the following ways:

• The user can link the user exit into his application program.
• The user can link the user exit into a private copy of a Language Environment module (CEEBINIT,

CEEPIPI, or both), and then, only for the modules the user might debug, place the SCEERUN data set
containing this module in front of the system Language Environment modules in CEE.SCEERUN in the
load module search path.

To learn about the advantages and disadvantages of each method, see “Comparing the two methods of
linking CEEBXITA” on page 64.

To prepare your site to use the Language Environment user exit, do the following tasks:

1. “Editing the source code of CEEBXITA” on page 62.
2. “Linking the CEEBXITA user exit into a private copy of a Language Environment runtime module” on

page 65.

To do the instructions in “Customizing for JCL for Batch Debugging utility” on page 72, you need the
following information:

• If you change the naming pattern of the TEST runtime options data set, you need the new naming
pattern you set in “Modifying the naming pattern” on page 62.

• The name of the hlq.BATCH.SCEERUN data set you create when you do the instructions in “Linking the
CEEBXITA user exit into a private copy of a Language Environment runtime module” on page 65.

To do the instructions in “Customizing z/OS Debugger User Exit Data Set” on page 80, you need the
following information:

• If you change the naming pattern of the TEST runtime options data set, you need the new naming
pattern you set in “Modifying the naming pattern” on page 62.

To do the instructions in “Customizing IMS Transaction and User ID Cross Reference Table ” on page 83,
you need the following information:

• If you change the name of the cross reference table data set, you need the data set name you set in
“Activate the cross reference function and modifying the cross reference table data set name” on page
64.

Editing the source code of CEEBXITA
You can edit the sample assembler user exit that is provided in hlq.SEQASAMP to customize the naming
patterns or message display level by doing one of the following tasks:

• Use SMP/E USERMOD EQAUMODK to update the copy of the exit in the hlq.SEQAMOD data set. The
USERMOD is in hlq.SEQASAMP.

• Create a private load module for the customized exit. Copy the assembler user exit that has the same
name as the user exit from hlq.SEQASAMP to a local data set. Edit the patterns or message display
level. Customize and run the JCL to generate a load module.

Modifying the naming pattern
The naming pattern of the data set that has the TEST runtime option is in the form of a sequential data set
name. You can optionally specify a &USERID token, which z/OS Debugger substitutes with the user ID of
the current user. You can also add a &PGMNAME token, which z/OS Debugger substitutes with the name of
the main program (load module). However, if users create and manage the TEST runtime option data set
with the DTSP Profile view in the remote debugger, do not specify the &PGMNAME token because the view
does not support that token.

In some cases, the first character of a user ID is not valid for a name qualifier. A character can be
concatenated before the &USERID token to serve as the prefix character for the user ID. For example, you

62  IBM z/OS Debugger: Customization Guide



can prefix the token with the character "P" to form P&USERID, which is a valid name qualifier after the
current user ID is substituted for &USERID. For IMS, &USERID token might be substituted with one of the
following values:

• IMS user ID, if users sign on to IMS.
• TSO user ID, if users do not sign on to IMS.

The default naming pattern is &USERID.DBGTOOL.EQAUOPTS. This is the pattern that is in the load
module provided in hlq.SEQAMOD.

The following table shows examples of naming patterns and the corresponding data set names after z/OS
Debugger substitutes the token with a value.

Table 13. Data set naming patterns, values for tokens, and resulting data set names

Naming pattern User ID Program name Name after user ID substitution

&USERID.DBGTOOL.EQAUOPTS JOHNDOE JOHNDOE.DBGTOOL.EQAUOPTS

P&USERID.EQAUOPTS 123456 P123456.EQAUOPTS

DT.&USERID.TSTOPT TESTID DT.TESTID.TSTOPT

DT.&USERID.&PGMNAME.TSTOPT TESTID IVP1 DT.TESTID.IVP1.TSTOPT

To customize the naming pattern of the data set that has TEST runtime option, change the value of the
DSNT DC statement in the sample user exit. For example:

* Modify the value in DSNT DC field below.
*
* Note: &USERID below has one additional '&', which is an escape
*       character.
*
DSNT_LN         DC  A(DSNT_SIZE)  Length field of naming pattern
DSNT            DC  C'&&USERID.DBGTOOL.EQAUOPTS'
DSNT_SIZE       EQU *-DSNT        Size of data set naming pattern
*

Modifying the message display level
You can modify the message display level for CEEBXITA. The following values set WTO message display
level:

X'00'
Do not display any messages.

X'01'
Display error and warning messages.

X'02'
Display error, warning, and diagnostic messages.

The default value, which is in the load module in hlq.SEQAMOD, is X'00'.

To customize the message display level, change the value of the MSGS_SW DC statement in the sample
user exit. For example:

* The following switch is to control WTO message display level.
*
*   x'00' - no messages
*   x'01' - error and warning messages
*   x'02' - error, warning, and diagnostic messages
*
MSGS_SW         DC  X'00'         message level
*

Chapter 8. Specifying the TEST runtime options through the Language Environment user exit  63



Modifying the call back routine registration
You can register a call back routine to the Language Environment. The Language Environment invokes the
call back routine prior to calling a type SUB program using CALL_SUB API in the CEEPIPI environment.
The call back routine performs a pattern match to determine if the type SUB program is to be debugged.

To customize the registration, change the value of the RRTN_SW DC statement.
x'00'

No registration of the call back routine.
x'01'

Registration of the call back routine.

Activate the cross reference function and modifying the cross reference
table data set name

You can activate the cross reference function of the IMS Transaction and User ID Cross Reference Table
and provide a cross reference table data set name. When an IMS transaction is initiated from the web
or MQ gateway, it runs with a generic ID. If a user wants to debug the transaction, the cross reference
function provides a way to associate the transaction with his or her user ID.

To customize the activation, change the value of the XRDSN_SW DC statement.
x'00'

Cross reference function is not activated.
x'01'

Cross reference function is activated.

To customize the cross reference table data set name, change the value of the XRDSN DC statement. You
must provide a fully qualified MVS sequential data set name.

Comparing the two methods of linking CEEBXITA
You can link in the user exit CEEBXITA in the following ways:

• Link it into the application program.
Advantage

The user exit affects only the application program being debugged. This means you can control
when z/OS Debugger is started for the application program. You might also not need to make any
changes to your JCL to start z/OS Debugger.

Disadvantage
You must remember to remove the user exit for production or, if it isn't part of your normal build
process, you must remember to relink it to the application program.

• Link it into a private copy of a Language Environment runtime load module (CEEBINIT, CEEPIPI, or both)
Advantage

You do not have to change your application program to use the user exit. In addition, you do not
have to link edit extra modules into your application program.

Disadvantage
You need to take extra steps in preparing and maintaining your runtime environment:

– Make a private copy of one or more Language Environment runtime routines
– Only for the modules you might debug, customize your runtime environment to place the private

copies in front of the system Language Environment modules in CEE.SCEERUN in the load module
search path

– When you apply maintenance to Language Environment, you might need to relink the routines.
– When you upgrade to a new version of Language Environment, you must relink the routines.

64  IBM z/OS Debugger: Customization Guide



If you link the user exit into the application program and into a private copy of a Language Environment
runtime load module, which is in the load module search path of your application execution, the copy of
the user exit in the application load module is used.

Linking the CEEBXITA user exit into a private copy of a Language
Environment runtime module

The following table shows the Language Environment runtime load module and the user exit needed for
each environment.

Table 14. Language Environment runtime module and user exit required for various environments

Environment User exit name CEE load module

The following types of Db2 stored procedures that run in WLM-
established address spaces:

• type MAIN
• type SUB1

EQAD3CXT CEEPIPI

IMS TM and BTS EQAD3CXT CEEBINIT

Batch EQAD3CXT CEEBINIT

Note:

1. If you have installed the PTF for APAR PM15192 for Language Environment Version 1.10 to Version
1.12, or have Language Environment Version 1.13 or higher, the type SUB stored procedure is invoked
by the call_sub function and EQAD3CXT is not needed.

Edit and run sample hlq.SEQASAMP(EQAWLCE3) to create these updated Language Environment runtime
modules. The sample creates the following load module data sets:

• hlq.DB2SP.SCEERUN(CEEPIPI)
• hlq.IMSTM.SCEERUN(CEEBINIT)
• hlq.BATCH.SCEERUN(CEEBINIT)

Inform your users that you created these data sets. When you apply service to Language Environment
that affects either of these modules (CEEPIPI or CEEBINIT) or you move to a new level of Language
Environment, you need to rebuild your private copy of these modules by running the sample again.

Creating and managing the TEST runtime options data set
The TEST runtime options data set is an MVS data set that contains the Language Environment runtime
options. The z/OS Debugger Language Environment user exit EQAD3CXT constructs the name of this data
set based on a naming pattern described in “Modifying the naming pattern” on page 62"Modifying the
naming pattern" in the IBM z/OS Debugger Customization Guide.

If your site does not allow your users to create data sets, you must create the data sets manually with the
following requirements:

• Sequential data set (DSORG=PS)
• Record format and length requirements:

– RECFM(F) or RECFM(FB) and LRECL >=80
– RECFM(V) or RECFM(VB) and LRECL >=84

• Not an HFS or zFS file
• Name the data set so it follows the naming pattern defined in “Modifying the naming pattern” on page

62.

Chapter 8. Specifying the TEST runtime options through the Language Environment user exit  65



Your users can then use any of the following ways to create the data set:

• By using Terminal Interface Manager (TIM), as described in "Creating and managing the TEST runtime
options data set by using Terminal Interface Manager (TIM) " in the IBM z/OS Debugger User's Guide.

• By using IBM z/OS Debugger Utilities option 6, "z/OS Debugger User Exit Data Set", as described in
"Creating and managing the TEST runtime options data set by using z/OS Debugger Utilities" in the IBM
z/OS Debugger User's Guide.

• By using the z/OS Debugger Profiles view. For more information, see the "Working with the z/OS
Debugger Profiles view" topic in IBM Documentation.

• By specifying a non-CICS profile in the z/OS Batch Application with existing JCL launch configuration.
For more information, see the "Launching a debug session using existing JCL" topic in IBM
Documentation.

• By configuring the Remote Profile tab from Remote IMS Application with Isolation debug
configurations.

66  IBM z/OS Debugger: Customization Guide

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter


Chapter 9. Installing the browse mode RACF facility

z/OS Debugger browse mode can be controlled by either the browse mode RACF facility, through the
EQAOPTS BROWSE command, or both. For an overview of browse mode and how to control it, see
"Debugging in browse mode" in the IBM z/OS Debugger User's Guide.

If you want to use RACF to enforce one of the following situations, you must install the browse mode
RACF facility:

• Debug programs in a production environment (or some other environment) where you want to control
whether z/OS Debugger users can modify the contents of storage or alter program flow

• Restrict the use of z/OS Debugger to certain users

Note: If you have defined a generic Facility class profile (for example, *.*), you might have to install the
browse mode RACF facilities described below, even if neither of the previous considerations apply. For
example, if you have a generic Facility class profile of *.* with UACC(NONE) and you do not install the
browse mode RACF facilities described below, no users would be allowed to use z/OS Debugger.

To install the browse mode RACF facility, your security administrator must do the following tasks:

1. Choose one or both RACF facilities associated with the browse mode facility to install, then install the
chosen facilities.

2. Set up the default user access to the facility.
3. Authorize those users that need access other than the default access.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“BROWSE” on page 141

Choose and install appropriate RACF facility
The following RACF facilities are associated with the browse mode facility:

• EQADTOOL.BROWSE.MVS
• EQADTOOL.BROWSE.CICS

You can install either or both facilities. The first facility controls browse mode for non-CICS MVS jobs. The
second controls browse mode access in CICS regions.

In most cases, if you install the browse mode RACF facility, then specify UACC(READ). However, assigning
fac_uacc any of the following values creates the corresponding result:
NONE

Only users specifically authorized to the facility (through usr_acc of READ or higher) can use z/OS
Debugger in any way.

READ
Only users specifically authorized to the facility (through usr_acc of UPDATE or higher) can use z/OS
Debugger in the normal (non-browse mode) way.

UPDATE
Users specifically authorized to the facility can be limited to using z/OS Debugger in browse mode
but all other users can use z/OS Debugger in either the normal (non-browse mode) way or in browse
mode, depending on the option specified for the EQAOPTS BROWSE command.

The following instructions use EQADTOOL.BROWSE.xxx to represent either or both of facilities. If you
choose to install both, you need to run the steps twice, once with each name.

Do the following steps to install the browse mode facility:

© Copyright IBM Corp. 1992, 2021 67



1. Establish a profile for the browse mode facility in the FACILITY class by entering the following
RDEFINE command:

RDEFINE FACILITY EQADTOOL.BROWSE.xxx UACC(fac_uacc)

2. Verify that generic profile checking is in effect for the class FACILITY by entering the following
command:

SETROPTS GENERIC(FACILITY)

Set up user access to facility
When you assign usr_acc any of the following values to grant access to a specific user, you create the
corresponding result:
NONE

The user cannot use z/OS Debugger in any way.
READ

The user can use z/OS Debugger only in browse mode.
UPDATE (or higher)

The user can use z/OS Debugger in the normal (non-browse) mode by default. He can also specify the
EQAOPTS BROWSE command to specify that he wants the current invocation of z/OS Debugger to be in
browse mode or normal mode.

Do the following steps to give individual users or user groups specific access to the browse mode facility:

1. Give a user permission to use the browse mode facility by entering the following command, where
DUSER1 is the name of a RACF-defined user or group profile:

PERMIT EQADTOOL.BROWSE.xxx CLASS(FACILITY) ID(DUSER1) ACCESS(usr_acc)

Instead of connecting individual users, the security administrator can specify DUSER1 to be a RACF
group profile and then connect authorized users to the group.

2. If the FACILITY class is not active, activate the class by entering the SETROPTS command:

SETROPTS CLASSACT(FACILITY)

Issue the SETROPTS LIST command to verify that FACILITY class is active.
3. Refresh the FACILITY class by issuing the SETROPTS RACLIST command:

SETROPTS RACLIST(FACILITY) REFRESH

68  IBM z/OS Debugger: Customization Guide



Chapter 10. Customizing IBM z/OS Debugger Utilities

Note: This chapter is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

IBM z/OS Debugger Utilities is a group of ISPF applications that provide the following tools and functions:

• Program Preparation to help application programmers precompile, compile, and link their programs
and then start z/OS Debugger. This includes using COBOL and CICS Command Level Conversion Aid
(CCCA) to help application programmers convert older COBOL programs to Enterprise COBOL programs.

• z/OS Debugger Setup File, which manages setup files. Setup files help application programmers
prepare programs to debug them interactively or in batch mode.

• IMS TM Debugging to help users edit the TEST runtime options that IMS programs use and to create
private message regions for testing.

The functions include the IMS Transaction Isolation facility, which allows users to select IMS
transactions to debug in a private message-processing region.

These functions also allow users to manage IMS message region templates. Message region templates
are superseded by the IMS Transaction Isolation facility, and will be removed in a future release of z/OS
Debugger.

• Load Module Analyzer to help users analyze load modules to determine the language translator that
was used to compile or assemble each CSECT in the load module.

• z/OS Debugger User Exit Data Set to create and edit a data set that Language Environment user exits
read to obtain the TEST runtime options string.

• Other IBM Application Delivery Foundation for z/OS tools to help users start IBM File Manager for
z/OS.

• JCL for Batch Debugging to help users start a debug session when they run their application in a batch
job.

• IMS BTS Debugging to help users start a debug session when they run their IMS BTS applications.
• Delay Debug Profile to create a delay debug profile data set that the z/OS Debugger delay debug

pattern matching uses to start a debug session.
• IMS Transaction and User ID Cross Reference Table to create a cross reference table entry that z/OS

Debugger uses to associate a user ID to an IMS transaction.
• Non-CICS Debug Session Start and Stop Message Viewer to browse debug session start and stop

messages.
• z/OS Debugger Code Coverage to specify code coverage options, observation selections, and do

viewing and reporting.
• z/OS Debugger Deferred Breakpoints to create and view a list of breakpoints prior to starting the

debug session. It reduces the time spent on the debugging session and also the system resource usage.
• z/OS Debugger JCL Wizard is an ISPF edit macro (EQAJCL) that allows you to modify a JCL or

procedure member and create statements to invoke z/OS Debugger in various environments.

The instructions in this section describe the following customization tasks:

• Choose a method to start IBM z/OS Debugger Utilities
• Customize the data set names in EQASTART.
• Add IBM z/OS Debugger Utilities to an ISPF menu so that your users can start IBM z/OS Debugger

Utilities from an ISPF menu.
• Modify z/OS Debugger Setup Utility so that your users can access procedure libraries.
• Customize the JCL for Batch Debugging interface.
• Customize the Other IBM Application Delivery Foundation for z/OS tools interface.

© Copyright IBM Corp. 1992, 2021 69



• Customize Program Preparation so that users access the proper compilers and development utilities.
• If your users use the IMS TM Setup - Manage LE Runtime Options function in IBM z/OS Debugger

Utilities, make changes so that users can access this function in an IMSplex environment.
• If your users use IMS message region templates to dynamically swap transaction class and debug in a

private message region, customize the IMS message region templates.
• Customize IMS BTS Debugging with default values for the TEST runtime option and data set names for

the z/OS Debugger load module, user exit module, debug information files, IMS subsystem IDs, and
base JCLs.

• Customize the z/OS Debugger User Exit Data Set utility.
• Customize the Delay Debug Profile utility.
• Customize the IMS Transaction and User ID Cross Reference Table utility.
• Customize the Non-CICS Debug Session Start and Stop Message Viewer utility.
• Customize z/OS Debugger Code Coverage.
• Install and customize z/OS Debugger JCL Wizard.

Choosing a method to start IBM z/OS Debugger Utilities
Your users can start IBM z/OS Debugger Utilities by doing one of the following methods:

Method 1: Enter the EXEC 'hlq.SEQAEXEC(EQASTART)' command. This is the default method.

Method 2: Enter the EQASTART command. To use this method, you must do the following steps, which are
described in this section:

1. Include or copy the IBM z/OS Debugger Utilities and Common Components data sets to your system's
TSO logon data sets. To add the data sets, do one of the following alternatives:

• Include the data sets listed in Table 15 on page 70, Table 16 on page 71, or Table 17 on page 71
into the DD concatenations specified in the tables.

• Copy5 the members of the data sets listed in Table 15 on page 70, Table 16 on page 71, or Table
17 on page 71 to a data set allocated to the DD concatenation specified in the table.

For either alternative, the data sets you include into the DD concatenations must match the national
language you chose in “Changing the default and allowable values in EQACUIDF” on page 129.

2. Edit the EQASTART6 member of the hlq.SEQAEXEC data set and set the Inst_NATLANG_commonlib
variable to ENU, UEN, JPN, or KOR depending on the national language you chose in “Changing the
default and allowable values in EQACUIDF” on page 129.

3. Inform your users how to specify a language other than the one selected in step “2” on page 70. If
your users need to start z/OS Debugger in a language other than the default, they need to add the
NATLANG(xxx) parameter to the EQASTART command.

Table 15. For English, data sets that need to be included or copied into the specified DD concatenations

DD concatenation Data set names

SYSEXEC or SYSPROC hlq.SEQAEXEC

ISPMLIB hlq.SEQAMENU and hlq.SIPVMENU

ISPLLIB hlq.SEQAMOD and hlq.SIPVMODA

ISPPLIB hlq.SEQAPENU and hlq.SIPVPENU

ISPSLIB hlq.SEQASENU

ISPTLIB hlq.SEQATLIB and hlq.SIPVTENU

6 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

70  IBM z/OS Debugger: Customization Guide



Table 16. For uppercase English, data sets that need to be included or copied into the specified DD
concatenations

DD concatenation Data set names

SYSEXEC or SYSPROC hlq.SEQAEXEC

ISPMLIB hlq.SEQAMENP and hlq.SIPVMENU

ISPLLIB hlq.SEQAMOD and hlq.SIPVMODA

ISPPLIB hlq.SEQAPENP and hlq.SIPVPENU

ISPSLIB hlq.SEQASENP

ISPTLIB hlq.SEQATLIBand hlq.SIPVTENU

Note: ADFz Common Components does not have an upper English set of ISPF data sets.

Table 17. For Japanese, data sets that need to be included or copied into the specified DD concatenations

DD concatenation Data set names

SYSEXEC or SYSPROC hlq.SEQAEXEC

ISPMLIB hlq.SEQAMJPN and hlq.SIPVMJPN

ISPLLIB hlq.SEQAMOD and hlq.SIPVMODA

ISPPLIB hlq.SEQAPJPN and hlq.SIPVPJPN

ISPSLIB hlq.SEQASJPN

ISPTLIB hlq.SEQATLIB and hlq.SIPVTJPN

Table 18. For Korean, data sets that need to be included or copied into the specified DD concatenations

DD concatenation Data set names

SYSEXEC or SYSPROC hlq.SEQAEXEC

ISPMLIB hlq.SEQAMKOR and hlq.SIPVMKOR

ISPLLIB hlq.SEQAMOD and hlq.SIPVMODA

ISPPLIB hlq.SEQAPKOR and hlq.SIPVPKOR

ISPSLIB hlq.SEQASKOR

ISPTLIB hlq.SEQATLIB and hlq.SIPVTKOR

Customizing the data set names in EQASTART
You must modify member EQASTART of the hlq.SEQAEXEC data set to specify the data set names that
you chose at installation time. Edit the EQASTART7 member and follow the directions in the member's
prologue for site customization of data set names.

7 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

Chapter 10. Customizing IBM z/OS Debugger Utilities  71



Adding IBM z/OS Debugger Utilities to the ISPF menu
To add IBM z/OS Debugger Utilities to an ISPF panel, add code that calls EQASTART to an existing panel.
For example, to add IBM z/OS Debugger Utilities to the ISPF Primary Option Menu panel (ISR@PRIM),
insert the additional lines ( ←New ) as shown below:

…
)BODY CMD(ZCMD)
…
9 IBM Products IBM program development products
10 SCLM SW Configuration Library Manager
11 Workplace ISPF Object/Action Workplace
F File Manager File Manager for z/OS
D z/OS Debugger JCL
Wizard - z/OS Debugger JCL
Wizard Utility functions  ←New 
…
)PROC
…
&ZSEL; = TRANS( TRUNC (&ZCMD;,'.')
…
9,'PANEL(ISRDIIS) ADDPOP'
10,'PGM(ISRSCLM) SCRNAME(SCLM) NOCHECK'
11,'PGM(ISRUDA) PARM(ISRWORK) SCRNAME(WORK)'
F,'PANEL(FMNSTASK) SCRNAME(FILEMGR) NEWAPPL(FMN)' /* File Manager */
D,'CMD(EXEC ''hlq.SEQAEXEC(EQASTART)'')' /* z/OS Debugger JCL
Wizard Utilities */  ←1 
…

If you copied IBM z/OS Debugger Utilities to system data sets or concatenated them to existing DD names
(as described in Method 2 in “Choosing a method to start IBM z/OS Debugger Utilities” on page 70), then
change line   1  to the following:

            D,'CMD(%EQASTART)' /* z/OS Debugger JCL
Wizard Utilities */

For more information about configuring your ISPF Primary Option Menu panel, see z/OS ISPF Planning
and Customizing.

Customizing z/OS Debugger Setup Utility
z/OS Debugger Setup Utility provides a command called COPY, which copies a JCL stream into a setup file.
The EQAZPROC member of the hlq.SEQATLIB data set includes a list of JCL procedure libraries that z/OS
Debugger Setup Utility uses as a source for the COPY command. You can add your own procedure libraries
to the list by editing EQAZPROC and adding the procedure library names, one name per line and without
trailing commas, beginning on column 1. The order in which you list procedure libraries in EQAZPROC
must match the order in which you list procedure libraries in the PROCLIB concatenation.

For example, to add the LOCAL.PROCLIB procedure library name, do the following steps:

1. Edit the EQAZPROC8 member of the hlq.SEQATLIB data set.
2. Add the LOCAL.PROCLIB procedure library name. The result looks like the following:

LOCAL.PROCLIB
SYS1.PROCLIB

3. Save and close the file.

Customizing for JCL for Batch Debugging utility
The JCL for Batch Debugging utility helps your users prepare JCL and start a debug session. You can
supply your users with a number of default values.

8 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

72  IBM z/OS Debugger: Customization Guide



To set the defaults, do the following steps:

1. Edit the EQAZDFLT9 member of the hlq.SEQATLIB data set.
2. Modify the parameter values to match what you use at your site.
3. Add parameters required by your site. You can add parameters by doing one of the following

alternatives:

• Use the INCLUDE 'any.data.set.name'; statement to include statements from a data set that
you created.

• Use the INCLUDE membername; statement to include parameters from other members in the data
set hlq.SEQATLIB.

See the EQAZDSYS member of the hlq.SEQATLIB data set for the complete list of parameters and the
syntax convention for these parameters.

If your users use terminals that cannot display mixed-case English text, enter all parameters in uppercase
English.

Parameters you can set
The first 3 characters of each parameter are "yb1". The last five characters correspond to the parameter:

yb1dtmod
z/OS Debugger load module data set (SEQAMOD).

yb1dtflg
Flag to include z/OS Debugger load module data set in STEPLIB. Y for Yes, N for No.

If it is No, the installer must ensure that SEQAMOD can be found in the load module search path.

yb1dtdev
Debug session type: MFI, TIM, or GUI.
MFI

dedicated terminal identified by network and LU names.
TIM

terminal identified by user id.
GUI

Remote debugger identified by IP address.
yb1dtmtd

z/OS Debugger invocation method: C, E or A.
C

CEEOPTS DD statement. This requires z/OS Version 1.7 or later.
E

User exit module EQAD3CXT in Language Environment CEEBINIT module. For instructions on how
to implement this method, see Chapter 8, “Specifying the TEST runtime options through the
Language Environment user exit,” on page 61.

A
User exit module EQAD3CXT in application module.

yb1dtprf
Data set that contains a z/OS Debugger preferences file.

yb1dtcmd
Data set that contains a z/OS Debugger commands file.

9 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

Chapter 10. Customizing IBM z/OS Debugger Utilities  73



yb1dtbin
The name of the Language Environment SCEERUN(CEEBINIT) load module data set that contains the
z/OS Debugger user exit module EQAD3CXT. To make sure you provide the correct name, see Chapter
8, “Specifying the TEST runtime options through the Language Environment user exit,” on page 61.

yb1dtnmp
Naming pattern that identifies the z/OS Debugger user's data set which contains the TEST runtime
options and pattern matching information. The naming pattern must be the same as the one coded in
the z/OS Debugger user exit module EQAD3CXT. To make sure you provide the correct naming pattern,
see Chapter 8, “Specifying the TEST runtime options through the Language Environment user exit,” on
page 61.

yb1dtdfl
Debug information file. It contains a list of data sets of debug information, source, and listing files.

Customizing JCL for Batch Debugging for multiple systems
You can customize JCL for Batch Debugging utility for multiple systems by doing one of the following
alternatives:

• Modify EQASTART10 to use a fully qualified data set name or member name other than EQAZDFLT to
start IBM z/OS Debugger Utilities.

• Instruct your users to enter one of the following commands, depending on the customization they want
to use:

– EXEC 'hlq.SEQAEXEC(EQASTART)' 'PUMEMBER(''data.set.name'')'
– EXEC 'hlq.SEQAEXEC(EQASTART)' 'PUMEMBER(membername)'

Customizing for Other IBM Application Delivery Foundation for
z/OS tools

Other IBM Application Delivery Foundation for z/OS tools allows your users to access other Application
Delivery Foundation for z/OS tools. You can supply your users with parameter values needed for accessing
the tools.

To give users access to the proper tools:

1. Edit the EQAZDFLT11 member of the hlq.SEQATLIB data set.
2. Modify the data set names to match what you use at your site.
3. Add parameters required by your site. You can add parameters by doing one of the following

alternatives:

• Use the INCLUDE 'any.data.set.name'; statement to include statements from a data set that
you created.

• Use the INCLUDE membername; statement to include parameters from other members in the data
set hlq.SEQATLIB.

See the EQAZDSYS and EQAZDUSR members of the hlq.SEQATLIB data set for the complete list of
parameters and the syntax convention for these parameters.

If your users use terminals that cannot display mixed-case English text, enter all parameters in
uppercase English.

10 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

11 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

74  IBM z/OS Debugger: Customization Guide



Parameters you can set
The first two characters of each parameter are always 'pt'. The third character corresponds to the tool:

1
IBM File Manager parameters

The last five characters correspond to the parameter:

flg1
Base function availability flag: Yes or No.

flg2
Db2 function availability flag: Yes or No.

flg3
IMS function availability flag: Yes or No.

ttl
Title for the tool.

elib
ISPF EXEC library data set.

mlib
ISPF message library data set.

plib
ISPF panel library data set.

slib
ISPF skeleton library data set.

tlib
ISPF table library data set.

pnl1
ISPF panel name for the base function.

pnl2
ISPF panel name for the Db2 function.

pnl3
ISPF panel name for the IMS function.

Customizing Other IBM Application Delivery Foundation for z/OS tools for
multiple systems

You can customize Other IBM Application Delivery Foundation for z/OS tools for multiple systems by
doing one of the following alternatives:

• Modify EQASTART12 to use a fully qualified data set name or member name other than EQAZDFLT to
start IBM z/OS Debugger Utilities.

• Instruct your users to enter one of the following commands, depending on the customization they want
to use:

– EXEC 'hlq.SEQAEXEC(EQASTART)' 'PUMEMBER(''data.set.name'')'

– EXEC 'hlq.SEQAEXEC(EQASTART)' 'PUMEMBER(membername)'

12 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

Chapter 10. Customizing IBM z/OS Debugger Utilities  75



Customizing Program Preparation
Program Preparation helps your users access the proper compilers and development utilities that are
installed at your site. You can supply your users with default values for data set naming patterns, data set
allocation parameters, and compiler and utility option strings.

To give users access to the proper compilers and development utilities, do the following steps:

1. Edit the EQAZDFLT13 member of the hlq.SEQATLIB data set.
2. Modify the data set names to match what you use at your site.
3. Add parameters required by your site. You can add parameters by doing one of the following

alternatives:

• Use the INCLUDE 'any.data.set.name'; statement to include statements from a data set that
you created.

• Use the INCLUDE membername; statement to include parameters from other members in the data
set hlq.SEQATLIB.

See the EQAZDSYS and EQAZDUSR members of the hlq.SEQATLIB data set for the complete list of
parameters and the syntax convention for these parameters.

If your users use terminals that cannot display mixed-case English text, you must enter all parameters
in uppercase English.

If your site uses CCCA and requires that you use the VOLUMES parameter when you define private data
sets (for example, a cluster is not managed by SMS), you must include the VOLUMES parameter when
you define private data sets. Modify the following variables to include the VOLUMES parameter:

• yccctla1
• ycclcpa1
• yccchga1
• yccwrka1
• ycctkna1

The following example illustrates how the variable yccctla1 is modified to include the parameter
VOLUMES(SYS166):

yccctla1 =           !  CONTROL FILE KSDS
                    RECORDS(10000 1000)
                    FREESPACE(30 30)
                    INDEXED
                    SPEED
                    CISZ(4096)
                    UNIQUE
                    KEYS(15 0)
                    VOLUMES(SYS166)
                    RECORDSIZE(188 188);

Parameters you can set
The first two characters of each parameter are always 'yc'. The third character corresponds to the
compiler or development utility parameters:

1
COBOL compiler parameters

3
PL/I compiler parameters

13 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

76  IBM z/OS Debugger: Customization Guide



4
C and C++ compiler parameters

5
Assembler parameters

6
Enterprise COBOL for z/OS Version 5 compiler parameters

L
Link Edit parameters

c
CCCA parameters

F
Fault Analyzer parameters

G
Fault Analyzer listing create parameters

Db2 and CICS parameters
The Db2 precompiler and CICS translator are listed by the compiler you use. You can specify a
different Db2 precompiler or CICS translator for each compiler.

The last five characters correspond to the parameter:

ciclb
LINKLIST or load module data set name for CICS translator.

cicmd
Load module name for CICS translator.

cicps
CICS translator options.

clib
LINKLIST or load module data set name for the compiler.

cmod
Load module name for the compiler or utility.

cobv
Enterprise COBOL for z/OS Version 5 or later.

ctovr
TEST compiler option override flag. Use this flag to allow or disallow the TEST or DEBUG compiler
option specified in the ctst, ctst1, ctst2, ctst3, ctst4, or ctst5 parameters to be overridden by the
settings in the user profile. This parameter is valid for the COBOL compiler, PL/I compiler, and C and
C++ compiler.

ctst
Use TEST, NOTEST, DEBUG, or NODEBUG as the main compiler debugging option. This parameter is
valid for the COBOL compiler, PL/I compiler, and C and C++ compiler.

ctst1, ctst2, ctst3, ctst4, ctst5
TEST or DEBUG suboptions. These parameters are valid for the COBOL compiler, PL/I compiler, and C
and C++ compiler.

cttl
Title for the compiler.

db2lb
LINKLIST or load module data set name for the Db2 precompiler.

db2md
Load module name for Db2 precompiler.

db2ps
Db2 precompiler options.

Chapter 10. Customizing IBM z/OS Debugger Utilities  77



flg
Enable or disable the compiler or development utility.

lsta1
Parameters of the TSO ALLOCATE command to use when data sets for compiler listings are allocated.

lstat
Data set type for the compiler listing. The type can be one of these values: PDSE, PDS, or SEQ.

lstxx
Pattern to use to create a name for the compiler listing data set. The name is created by using the
characters in the pattern. The special characters, which start with a slash (/), are replaced by the
following values:
/1, /2, ..., /n

The nth qualifier of the fully qualified data set name that was used as input to the compiler.
/B

The second to (n-1) qualifier of the fully qualified data set name that was used as input to the
compiler.

/L
The right-most qualifier of the fully qualified data set name that was used as input to the compiler.

/M
The member name of the data set name that was used as input to the compiler.

/U
Current TSO user ID.

/P
Current TSO profile prefix.

sds1
Shared data set prefix for CCCA.

svs1
Shared VSAM data set prefix for CCCA.

tmpa1
Parameters of the TSO ALLOCATE command to use when temporary data sets are allocated.

Customizing Program Preparation for multiple systems
You can customize Program Preparation for multiple systems by doing one of the following alternatives:

• Modify EQASTART14 to use a fully qualified data set name or member name other than EQAZDFLT to
start IBM z/OS Debugger Utilities.

• Instruct your users to enter one of the following commands, depending on the customization they want
to use:

– EXEC 'hlq.SEQAEXEC(EQASTART)' 'PUMEMBER(''any.data.set.name'')'

– EXEC 'hlq.SEQAEXEC(EQASTART)' 'PUMEMBER(membername)'

Configuring for IMSplex users
To determine if you need to do the steps described in this topic, read "Preparing IMS programs" in the IBM
z/OS Debugger User's Guide. If your users use the IMS TM Setup - Manage LE Runtime Options function
in z/OS Debugger Utilities, you must do the following tasks:

1. Install and configure IMS Version 8 or later as an IMSplex. See IMS Version 8: Administration Guide:
System for information about configuring an IMSplex.

14 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

78  IBM z/OS Debugger: Customization Guide



2. Include the IMS RESLIB load library, which is located in the hlq.SDFSRESL data set, in the standard
search path for load modules used by your users. hlq is the high level qualifier of IMS installed on your
system.

If you do not include the IMS load library in the search path, your users will see one or both of the
following messages and they will not be able to use the IMS TM Setup - Manage LE Runtime Options
function in IBM z/OS Debugger Utilities:

• EQAZ60E REXX IMS SPOC environment is not available. Return Code = nnn
• IKJ56500I COMMAND CSLULXSB NOT FOUND

Customizing debugging by using IMS message region templates
To determine whether you need to complete the steps described in this topic, read Using IMS message
region templates to dynamically swap transaction class and debug in a private message region in the
IBM z/OS Debugger User's Guide. If you use the IMS TM Setup - Swap IMS Transaction Class and Run
Transaction function in IBM z/OS Debugger Utilities, you must complete the following tasks:

1. Edit the EQAZDFLT15 member of the hlq.SEQATLIB data set.
2. Specify a default data set name to store IMS message region templates by setting the imstmpds

parameter value. If the data set does not exist, allocate it with the following attributes:

• Data set type LIBRARY (PDSE).
• RECFM=VB, LRECL=1280, and BLKSIZE=27998.
• Not an HFS or zFS file.

3. Specify default job names for the three jobs that the Dynamically Swap IMS Transaction Class and
Run Transaction function will start, by setting the following parameter values. The string &&user&& is
replaced with up to the first 7 characters of the IBM z/OS Debugger Utilities user's TSO ID.
mprdebug

Job name for the private message region that is started to debug the user's transaction. The
default value for this parameter is @&&user&&.

mprnodbg
Job name for the private message region that is started with the debug private message region
with the NOTEST parameter. This region processes all messages for the selected transaction that
are scheduled, when the initial message to the transaction is being debugged at the same time.
This enables users to interrupt debugging to continue running the transaction.

The default value for this parameter is #&&user&&.

mprbmp
Job name for the batch job that is submitted to run the EQANBSWT Batch Message Processing
(BMP) program. The default value for this parameter is $&&user&&.

4. Customize the data sets that the EQANBSWT program will use by setting the appropriate parameters.
For a list of all of the parameters that you can specify, see section Option 4: IMS TM Debugging in the
EQAZDSYS member of hlq.SEQATLIB. You can set the following parameters:
us5imrsl

Specify the IMS RESLIB load library when you start EQANBSWT. This is the first data set
in the STEPLIB concatenation for the BMP. This parameter is required. The default value is
IMS.SDFSRESL.

us5dtmod
Specify the z/OS Debugger SEQAMOD load library when you start EQANBSWT. This is in the
STEPLIB concatenation for the BMP. This parameter is optional.

15 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

Chapter 10. Customizing IBM z/OS Debugger Utilities  79



us5dtce1
Specify the Language Environment SCEERUN load library when you start EQANBSWT. This is the
STEPLIB concatenation for the BMP. This parameter is optional.

us5slbnn
Add DD cards to the STEPLIB concatenation for the EQANBSWT BMP job. The cards must be
complete lines of JCL and will be displayed in the STEPLIB after the IMS RESLIB specification and
before the z/OS Debugger load library and Language Environment load library, if specified.

nn is a number in the range 01 - 09.
5. Complete the steps for “Scenario E: Enabling users to launch private message regions and to assign

transactions to private message regions” on page 114.

Customizing z/OS Debugger User Exit Data Set
The z/OS Debugger User Exit Data Set utility creates a user exit data set that is used by the z/OS Debugger
Language Environment user exit to start a debug session. You can set the default value of the data set
naming pattern for the users by taking the following steps:

1. Review the parameter described in Table 19 on page 80. Verify that you have all the information to
specify the value for the parameter. See the EQAZDSYS member of the hlq.SEQATLIB data set for the
parameter and the syntax convention.

2. Edit the EQAZDSYS16 member of the hlq.SEQATLIB data set. Modify the parameter required by your
site. You can add parameters by doing one of the following alternatives:

• Use the INCLUDE ‘any.data.set.name’; statement to include statements from a data set that
you created.

• Use the INCLUDE membername; statement to include parameters from other members in the
hlq.SEQATLIB data set.

If your application programmers use terminals that cannot display text in mixed-case English, enter
parameters and their values in uppercase English.

See Chapter 8, “Specifying the TEST runtime options through the Language Environment user exit,” on
page 61 for how the user exit data set is used.

Table 19. Parameter for the z/OS Debugger User Exit Data Set option of IBM z/OS Debugger Utilities

Name of parameter Description

uepnmp The naming pattern of the user exit data set.

The utility builds a data set name by using the
naming pattern that is used when the option is
selected for the first time. The data set name and
modification (if user modifies it) are consistent
across the IBM z/OS Debugger Utilities sessions.

The following list describes the rules of using the
token:

• The &USERID token is replaced with the value
from the SYSPREF or SYSUID system variable.

• The &PGMNAME token is not supported.
• If the parameter does not exist, the default

naming pattern is used:

&USERID.DBGTOOL.EQAUOPTS

16 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

80  IBM z/OS Debugger: Customization Guide



Customizing IMS BTS Debugging
The IMS BTS Debugging utility of IBM z/OS Debugger Utilities helps your users prepare a BTS JCL and
start a debug session in the foreground or in batch. You can supply your users with default values for the
TEST runtime option and data set names for the z/OS Debugger load module, user exit module, debug
information files, IMS subsystem IDs and base JCLs.

To set the defaults, do the following steps:

1. Review the parameters described in Table 20 on page 81. Verify that you have all the information you
need to specify values for each parameter. You can also view a complete list of parameters and the
syntax convention for these parameters in the EQAZDSYS member of the hlq.SEQATLIB data set.

2. Edit the EQAZDSYS17 member of the hlq.SEQATLIB data set. Modify the parameters required by your
site. You can add parameters by doing one of the following alternatives:

• Use the INCLUDE 'any.data.set.name'; statement to include statements from a data set that
you created.

• Use the INCLUDE membername; statement to include parameters from other members in the data
set hlq.SEQATLIB.

If your application programmers use terminals that cannot display text in mixed-case English, enter all
parameters and their values in uppercase English.

Table 20. Parameters you can define for the IMS BTS Debugging option of IBM z/OS Debugger Utilities.

Name of
parameter Description

yb2dtmod The name of the data set that contains the z/OS Debugger load modules, SEQAMOD.

yb2dtce1 The name of the data set that contains Language Environment runtime library, SCEERUN1.

yb2dtce2 The name of the data set that contains Language Environment runtime library, SCEERUN2.

yb2dtbin The name of the data set that contains the CEEBINIT load module.

yb2dtnmp The naming pattern you stored in EQAD3CXT when you completed the instructions in
“Modifying the naming pattern” on page 62. If you modify the naming pattern stored in
EQAD3CXT, you must modify this parameter to match.

yb2dtdev The interface type that application programmers should use to debug IMS BTS programs.
You can specify one of the following values:
MFI

Interact with z/OS Debugger in full-screen mode or full-screen mode using a dedicated
terminal without Terminal Interface Manager (TIM). If application programmers are
using full-screen mode using a dedicated terminal without Terminal Interface Manager,
they identify the terminal by network and LU names, as described in Appendix B,
“Enabling debugging in full-screen mode using a dedicated terminal,” on page 173.

TIM
Interact with z/OS Debugger in full-screen mode or full-screen mode using the
Terminal Interface Manager (TIM). The application programmer identifies the terminal
by user ID, as described in “How users start a full-screen mode debug session with the
Terminal Interface Manager” on page 17. Make sure you complete the instructions in
“Enabling full-screen mode using the Terminal Interface Manager” on page 19.

GUI
Interact with z/OS Debugger in remote debug mode, where the application
programmer identifies the remote debugger by IP address.

17 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

Chapter 10. Customizing IBM z/OS Debugger Utilities  81



Table 20. Parameters you can define for the IMS BTS Debugging option of IBM z/OS Debugger Utilities.
(continued)

Name of
parameter Description

yb2dtmtd The method that application programmers should use to start z/OS Debugger. You can
specify one of the following values:
C

The application programmer specifies the CEEOPTS DD statement. You must run z/OS,
Version 1.7, or later to use this option.

E
The application programmer specifies the EQAD3CXT user exit.

yb2dtprf The name of the data set that contains the preferences file. If your site does not use a
preferences files, you can leave this field blank.

yb2dtcmd The name of the data set that contains the commands file. If your site does not use a
commands files, you can leave this field blank.

yb2dtufl The name of a data set containing a list of data set names to be allocated by EQADEBUG
DD statements.

yb2dtued The name of a data set containing the EQAUEDAT load module.

yb2imsnm The number of IMS subsystems that the application programmers can use to run or debug
IMS applications. The maximum value is 12.

yb2iidn For each IMS subsystem, create a copy of this parameter and assign n a unique number
between 1 and 12. For example, if your site has two IMS subsystems, you create yb2iid1
and yb2iid2 and assign each parameter a unique IMS system name.

yb2bmpn For each IMS subsystem, create a copy of this parameter and assign n a unique number
between 1 and 12 and specify the member name of a JCL that your site uses as a base
or template JCL for batch message processing (BMP) programs. Edit the EQABMPSM1

member of hlq.SEQATLIB, then copy it to a new name (for example, BMPJCL1). For
example, if your site has two IMS subsystems, you create yb2bmp1 and yb2bmp2 and
assign each parameter the member name.

yb2dbbn For each IMS subsystem, create a copy of this parameter and assign n a unique number
between 1 and 12 and the member name of a JCL that your site uses as a base or
template JCL for Data Language/I (DL/I) programs. Edit the EQADBBSM1 member of
hlq.SEQATLIB, then copy it to a new name (for example, DBBJCL1). For example, if
your site has two IMS subsystems, you create yb2dbb1 and yb2dbb2 and assign each
parameter the member name.

yb2dlin For each IMS subsystem, create a copy of this parameter and assign n a unique number
between 1 and 12 and the member name of a JCL that your site uses as a base or template
JCL for Data Language/I (DL/I) programs. Edit the EQADLISM1 member of hlq.SEQATLIB,
then copy it to a new name (for example, DLIJCL1). For example, if your site has two IMS
subsystems, you create yb2dli1 and yb2dli2 and assign each parameter the member
name.

Note:

1. See "SMP/E USERMODs" for an SMP/E USERMOD for this customization.

82  IBM z/OS Debugger: Customization Guide



Customizing Delay Debug Profile
The Delay Debug Profile utility creates a delay debug profile data set that is used by the z/OS Debugger
delay debug pattern matching to start a debug session. You can set the default value of the data set
naming pattern for the users by taking the following steps:

1. Review the parameter described in Table 21 on page 83. Verify that you have all the information to
specify the value for the parameter. See the EQAZDSYS member of the hlq.SEQATLIB data set for the
parameter and the syntax convention.

2. Edit the EQAZDSYS18 member of the hlq.SEQATLIB data set. Modify the parameter required by your
site. You can add parameters by doing one of the following alternatives:

• Use the INCLUDE ‘any.data.set.name’; statement to include statements from a data set that
you created.

• Use the INCLUDE membername; statement to include parameters from other members in the
hlq.SEQATLIB data set.

If your application programmers use terminals that cannot display text in mixed-case English, enter
parameters and their values in uppercase English.

See "Using delay debug mode to delay starting of a debug session" in the IBM z/OS Debugger User's Guide
for how to use the delay debug function.

Table 21. Parameter for the Delay Debug Profile Data Set option of IBM z/OS Debugger Utilities

Name of parameter Description

ddpnmp The naming pattern of the delay debug profile data
set.

The utility builds a data set name by using the
naming pattern that is used when the option is
selected for the first time. The data set name and
modification (if user modifies it) are consistent
across IBM z/OS Debugger Utilities sessions.

The following list describes the rules of using the
token:

• The &USERID token is replaced with the value
from the SYSPREF or SYSUID system variable.

• The &PGMNAME token is not supported.
• If the parameter does not exist, the default

naming pattern is used:

&USERID.DLAYDBG.EQAUOPTS

Customizing IMS Transaction and User ID Cross Reference Table
The IMS transaction and user ID cross reference table contains the cross reference information between
IMS transactions and user IDs. A web or MQ gateway initiated IMS transaction is run with a generic ID.
When a user wants to debug such a transaction, he needs to add an entry in the cross reference table that
contains the transaction name and his user ID. z/OS Debugger then uses the table to find the user ID of
the user who wants to debug the transaction and to construct the name of the user's debug profile data
set. You can set the values of parameters for the users by taking the following steps:

18 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

Chapter 10. Customizing IBM z/OS Debugger Utilities  83



1. Review the parameters described in Table 22 on page 84. Verify that you have all the information to
specify the value for the parameters. See the EQAZDSYS member of the hlq.SEQATLIB data set for the
parameter and the syntax convention.

2. Edit the EQAZDSYS19 member of the hlq.SEQATLIB data set. Modify the parameters that are required
by your site. You can add parameters by doing one of the following alternatives:

• Use the INCLUDE 'any.data.set.name'; statement to include statements from a data set that
you created.

• Use the INCLUDE membername; statement to include parameters from other members in the
hlq.SEQATLIB data set.

If your application programmers use terminals that cannot display text in mixed-case English, enter
parameters and their values in uppercase English.

See Chapter 8, “Specifying the TEST runtime options through the Language Environment user exit,” on
page 61 for information on how to set this data set name in the exit.

See “DLAYDBGXRF” on page 149 for information on how to specify this data set name for IMS users who
are using delay debug mode.

Table 22. Parameters for the IMS Transaction and User ID Cross Reference Table of IBM z/OS Debugger
Utilities

Name of
parameter Description

TUXRFDSN The data set name for the cross reference table in ISPF format. No default is
provided. The data set is an MVS sequential data set with FB LRECL 80. It must be
pre-allocated and accessible to the users using the utility.

TUGNRCID One or more generic IDs separated by a blank. No default is provided. A generic ID
is an ID that is used to run IMS transactions started using the MQ or web gateway.
z/OS Debugger uses the cross reference table to identify the user who wants to
debug the transaction.

TUACTPRD Number of days that a cross reference table entry is retained from the last update
date. The default is 30 days.

TUGIDMAX Maximum number of generic IDs. The default value is 20.

TUENTMAX Maximum number of cross reference table entries. The default value is 200.

Customizing Non-CICS Debug Session Start and Stop Message
Viewer

The Non-CICS Debug Session Start and Stop Messages Viewer utility allows users to browse debug
session start and stop messages. It helps you track debug sessions. You can set the value of parameters
for the users by taking the following steps:

1. Review the parameters that are described in Table 23 on page 85. Verify that you have all the
information to specify the value for the parameters. See the EQAZDSYS member of the hlq.SEQATLIB
data set for the parameter and the syntax convention.

2. Edit the EQAZDSYS20 member of the hlq.SEQATLIB data set. Modify the parameters that are required
by your site. You can add parameters by doing one of the following alternatives:

19 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

20 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

84  IBM z/OS Debugger: Customization Guide



• Use the INCLUDE 'any.data.set.name'; statement to include statements from a data set that
you created.

• Use the INCLUDE membername; statement to include parameters from other members in the
hlq.SEQATLIB data set.

If your application programmers use terminals that cannot display text in mixed-case English, enter
parameters and their values in uppercase English.

See “STARTSTOPMSGDSN” on page 165 for information on how to specify this data set name for
debugger sessions.

Table 23. Parameters for the Non-CICS Debug Session Start and Stop Message Viewer of z/OS Debugger
utilities

Name of
parameter Description

SSMSGDSN The data set name for the debug session start and stop messages. No default is
provided. The data set is an MVS sequential data set with FB LRECL 80. It must be
pre-allocated and accessible to the users using the utility.

Customizing z/OS Debugger Code Coverage
z/OS Debugger Code Coverage provides the following functions:

1. Observation viewer - browse code coverage observation data set.
2. z/OS Debugger options - create or modify the z/OS Debugger code coverage options data set.
3. Observation selection criteria - create or modify the observation selection criteria and source markers

data set.
4. Observation extraction - extract code coverage observations by using selection criteria.
5. Report generation - create reports.

You can set the default values for the data set naming pattern for the first three functions for the users by
taking the following steps:

1. Review the parameter described in the following table. Verify that you have all the information to
specify the value for the parameter. See the EQAZDSYS member of the hlq.SEQATLIB data set for the
parameter and the syntax convention.

2. Edit the EQAZDSYS21 member of the hlq.SEQATLIB data set. Modify the parameter required by your
site. You can add parameters by doing one of the following alternatives:

• Use the INCLUDE 'any.data.set.name'; statement to include statements from a data set that you
created.

• Use the INCLUDE membername; statement to include parameters from other members in the
hlq.SEQATLIB data set.

If your application programmers use terminals that cannot display text in mixed-case English, enter
parameters and their values in uppercase English.

See "z/OS Debugger Code Coverage" in the IBM z/OS Debugger User's Guide for how to use the z/OS
Debugger code coverage function.

21 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

Chapter 10. Customizing IBM z/OS Debugger Utilities  85



Table 24. Parameters for z/OS Debugger Code Coverage

Name of
parameter Description

cconmp The naming pattern of the code coverage options data set.

The utility builds a data set name by using the naming pattern that is used when
the option is selected for the first time. The data set name and modification (if user
modifies it) are persistent across IBM z/OS Debugger Utilities sessions.

The following list describes the rules of using the token:

• The &USERID token is replaced with the value from the SYSPREF or SYSUID system
variable.

• If the parameter does not exist, the default naming pattern is used:
&USERID.DBGTOOL.CCPRGSEL.

ccsnmp The naming pattern of the code coverage observation selection criteria data set.

The utility builds a data set name by using the naming pattern that is used when
the option is selected for the first time. The data set name and modification (if user
modifies it) are persistent across IBM z/OS Debugger Utilities sessions.

The following list describes the rules of using the token:

• The &USERID token is replaced with the value from the SYSPREF or SYSUID system
variable.

• If the parameter does not exist, the default naming pattern is used:
&USERID.DBGTOOL.CCOBSSEL.

ccxnmp The naming pattern of the code coverage observations data set.

The utility builds a data set name by using the naming pattern that is used when
the option is selected for the first time. The data set name and modification (if user
modifies it) are persistent across IBM z/OS Debugger Utilities sessions.

The following list describes the rules of using the token:

• The &USERID token is replaced with the value from the SYSPREF or SYSUID system
variable.

• If the parameter does not exist, the default naming pattern is used:
&USERID.DBGTOOL.CCOUTPUT.

Installing and customizing z/OS Debugger JCL Wizard
The z/OS Debugger JCL Wizard is an ISPF edit macro, EQAJCL, that can be used by a user to modify a JCL
or procedure member to create statements that will invoke z/OS Debugger in various environments.

Prerequisites

The z/OS Debugger library hlq.SEQAMOD is assumed to be in the z/OS link list where the batch job will
run. If it is not in the link list, do one of the following actions:

• Add the library hlq.SEQAMOD to the link list of z/OS LPARs where the modified JCL or procedure will be
run.

• Add the library hlq.SEQAMOD to the //STEPLIB or //JOBLIB statement of the step or job that will be
debugged.

86  IBM z/OS Debugger: Customization Guide



Installation of the EQAJCL ISPF macro and its ISPF panels
The z/OS Debugger JCL Wizard contains an ISPF edit macro and a set of ISPF panels.

Use one of the following methods to install the z/OS Debugger JCL Wizard :

• Installation to libraries allocated to the TSO Logon procedure.

Use one of these two methods:

– Use Method 2 in “Choosing a method to start IBM z/OS Debugger Utilities” on page 70.
– Use a subset of Method 2 in “Choosing a method to start IBM z/OS Debugger Utilities” on page 70

where you only include or copy hlq.SEQAEXEC into the SYSPROC or SYSEXEC DD.
• Installation by using a local REXX exec to point to the z/OS Debugger libraries.

Select a command name that you do not currently use (for example, DEBUG), and install a REXX exec by
that name into an existing data set in your TSO Logon procedure's SYSEXEC or SYSPROC DDs. The REXX
exec should look like this (with hlq being changed to the high level qualifier that you use for the z/OS
Debugger libraries):

/* This REXX exec will invoke the z/OS Debugger EQAJCL ISPF macro */
"EXEC 'hlq.SEQAEXEC(EQAJCL)'"
EXIT

Customizing the data set names and other values in EQAJCL
You must modify member EQAJCL of the hlq.SEQAEXEC data set to specify the data set names that you
chose at installation time. Edit the EQAJCL member and follow the directions in the member's prologue
for site customization of data set names. 22

Enabling Code Coverage
z/OS Debugger Code Coverage measures test case code coverage in application programs that are
written in COBOL, PL/I and C and compiled with certain compilers and compiler options. You must
define the code coverage libraries xxxx.xxxx.CCPRGSEL and xxxx.xxxx.CCOUTPUT in the EQAOPTS
member residing in hlq.SEQAMOD, or dynamically using an EQAOPTS DD statement. If the variable
CODE_COVERAGE_SETUP is set to YES, the z/OS Debugger JCL Wizard automatically adds these
statements to your JCL. Therefore, system programmers do not need to change the EQAOPTS member in
hlq.SEQAMOD.

If the variable CODE_COVERAGE_SETUP is set to YES, the following statements are generated:

//EQAOPTS   DD *
         EQAXOPT CCOUTPUTDSN,'&&USERID.DBGTOOL.CCOUTPUT'
         EQAXOPT CCOUTPUTDSNALLOC,'MGMTCLAS(STANDARD)             + 
               STORCLAS(DEFAULT) LRECL(255) BLKSIZE(0) RECFM(V,B) + 
               DSORG(PS) SPACE(2,2) CYL'
         EQAXOPT  CCPROGSELECTDSN,'&&USERID.DBGTOOL.CCPRGSEL'
         EQAXOPT END

For more information about the compilation requirements for Code Coverage, refer to the IBM z/OS
Debugger User's Guide.

The z/OS Debugger JCL Wizard creates Code Coverage commands to run either with or without an
interactive debug session.

22 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

Chapter 10. Customizing IBM z/OS Debugger Utilities  87



88  IBM z/OS Debugger: Customization Guide



Chapter 11. Preparing your environment to debug
Db2 stored procedures

The Db2 administrator must define the address space where the stored procedure runs. This can be a Db2
address space or a workload management (WLM) address space. This address space is assigned a name
which is used to define the stored procedure to Db2. In the JCL for the Db2 or WLM address space, verify
that the following data sets are defined in the STEPLIB concatenation and have the appropriate RACF
Read authorization for programs to access them:

• LOADLIB for the stored procedure
• SEQAMOD23 for z/OS Debugger
• SCEERUN24 for Language Environment

After updating the JCL, the Db2 administrator must refresh the Db2 or WLM address space so that these
updates take effect.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
DB2® UDB for z/OS Application Programming and SQL Guide

23 Add hlq.SEQAMOD to STEPLIB only if it is not already in the system search path (for example, link list).
If you create a custom EQAOPTS (as described in Chapter 16, “EQAOPTS commands,” on page 131) that
is not stored in hlq.SEQAMOD, then place the data set containing it in STEPLIB (ahead of hlq.SEQAMOD
if it is in STEPLIB). hlq.SEQAMOD must be placed before any other library in the STEPLIB that contains
CEEEVDBG for z/OS Debugger to get control of a debug session.

24 Add CEE.SCEERUN to STEPLIB only if it is not already in the system search path (for example, link
list). If you create a private copy of the z/OS Debugger Language Environment user exit for Db2 that
is linked into CEEPIPI (as described in Chapter 8, “Specifying the TEST runtime options through the
Language Environment user exit,” on page 61), then place the data set containing it in STEPLIB (ahead of
CEE.SCEERUN if it is in STEPLIB).

© Copyright IBM Corp. 1992, 2021 89



90  IBM z/OS Debugger: Customization Guide



Chapter 12. Adding support for debugging under
CICS

To debug applications that run in CICS, z/OS Debugger requires the following:

• Language Environment. Refer to the Language Environment installation and customization information
for more information.

• Do the steps described in this chapter.

Note: You can use DTCN or CADP to add support for debugging, depending on the version of CICS:

• CICS version 2.2 or earlier: you must use DTCN.
• CICS version 2.3 or later: either DTCN or CADP. If you choose to use CADP, read the following topics for

information on additional installation and setup tasks:

– "The application debugging profile manager" in Supplied Transaction
– "Preparing to use debuggers with CICS applications" in Application Programming Guide
– "Setting up the debugging profiles data sets" in System Definition Guide

To add z/OS Debugger support for CICS applications:

1. Verify that the current z/OS Debugger resources are defined in the CICS CSD and installed in the CICS
region. The CICS definitions are in the EQACCSD and EQACDCT members of the hlq.SEQASAMP data
set.

a. If your site policy is to define the Transient Data queues by using DCT macro definitions, add the
definitions in the EQACDCT member to your DCT and reassemble it.

If your site uses COBOL or PL/I separate debug files, follow the instructions in EQACDCT to define
the appropriate queues to CICS.

b. Add the z/OS Debugger definitions to the CICS CSD. The following two members are provided in
the hlq.SEQASAMP data set:

• EQACCSD, which contains the resource definitions for the group EQA.
• EQAWCCSD, which contains JCL to apply the definitions which are in EQACCSD.

Review the instructions in both members and run the batch job to add the definitions to your CICS
CSD.

2. Update the JCL that starts CICS:

a. Update the DFHRPL concatenation in the CICS region startup JCL to include the following libraries:

Table 25. Libraries to be included in DFHRPL

Library Description

hlq.SEQAMOD z/OS Debugger library

In the DFHRPL concatenation, hlq.SEQAMOD
must be placed before any other library that
also contains CEEEVDBG for z/OS Debugger to
get control of a debug session.

Defining the hlq.SEQAMOD data set as a CICS
LIBRARY resource is not supported. It must be
included in the DFHRPL concatenation.

SCEECICS z/OS Language Environment runtime library

© Copyright IBM Corp. 1992, 2021 91



Table 25. Libraries to be included in DFHRPL (continued)

Library Description

SCEERUN z/OS Language Environment runtime library

SCEERUN2 z/OS Language Environment runtime library

Specify this library if it is required by your
application.

MIGLIB
SIEAMIGE

z/OS system libraries

These libraries are needed to debug routines
compiled with Enterprise COBOL V5 and V6.1
TEST and Enterprise COBOL V6.2 (and later)
TEST or TEST(NOSEPARATE).

b. Remove any data sets from the concatenation that refer to old releases of z/OS Debugger.
c. Include EQA00DYN and EQA00HFS from the debugger's hlq.SEQAMOD data set in the STEPLIB

concatenation by either of the following ways:

• Use the Authorized Program Facility (APF) to authorize2 the hlq.SEQAMOD data set and add the
data set to the STEPLIB concatenation.

• Copy5 the EQA00DYN and EQA00HFS modules from the hlq.SEQAMOD data set to a library that
is already in the STEPLIB concatenation.

• Place hlq.SEQAMOD in the system link list and use the Authorized Program Facility (APF) to
authorize it2. For more information, see Chapter 5, “Setting up the link list data set (SEQAMOD),”
on page 15.

d. Ensure that the JCL does not include DD statements for CINSPIN, CINSPLS, CINSPOT,
IBMDBGIN, or IGZDBGIN.

e. See “Storing DTCN debug profiles in a VSAM file” on page 96 to determine if you want to store
DTCN debugging profiles in a VSAM data set. If you do, follow the instructions in that topic to add
the EQADPFMB DD statement that refers to the VSAM data set.

3. For any terminal that z/OS Debugger uses to display a debugging session, do the following tasks:

• Verify that the CICS TYPETERM definition specifies a minimum value of 4096 for the RECEIVESIZE
attribute and sets the BUILDCHAIN attribute to YES.

• Enable either color or highlighting. For best usability, enable both and the ability to query the
screen size. To enable these three functions, verify that the CICS TYPETERM definition specifies
EXTENDEDDS. For more information, refer to the CICS Transaction Server for z/OS Resource
Definition Guide.

• Under CICS, z/OS Debugger can use a screen as large as 10922 characters (for example, 68x160
can be used, but not 69x160), and provides automatic switching from the application's screen
size to the physical screen size. Larger screens can enhance user productivity. CICS selects the
TYPETERM to use from the BIND information given to it from VTAM. Ask your systems programmer
to ensure that VTAM passes the screen sizes through to CICS.

4. Verify that users can run the CDT# transaction without receiving any errors.

If the CDT# transaction runs successfully, no messages are displayed. You might see X-SYSTEM after
you press Enter. This disappears when the transaction finishes and the keyboard unlocks.

5. If you are running your CICS programs in a multi-region CICS environment:

a. Define the DTCN transaction name the same across all local and remote systems. If the DTCN
transaction name is changed, or if a DTCN transaction is duplicated and given a different name,
change the name on all systems.

92  IBM z/OS Debugger: Customization Guide



b. If a debugging session might run in a region that is different from the one where DTCN or CADP
was used to save the debugging profile, use the PLTPI program EQA0CPLT with the CICS start up
parameter INITPARM=(EQA0CPLT='NWP').

c. If you are using DTCN, ensure that the region shares the debug profile repository. See “Sharing
DTCN debug profile repository among CICS systems” on page 96 for more information about
defining the region that owns the debug profile repository. The most common multi-region
debugging scenario is where the debug profile repository is shared and DTCN runs in the TOR
while the application to be debugged is transaction routed to an AOR.

One of two methods must be used in this case to start the debugger's new program support in the
AOR. Either use EQA0CPLT to enable this support when the region starts (see step “9” on page
94 for information about EQA0CPLT), or use the z/OS Debugger DTCP transaction to start or stop
this support as needed. In the AOR, enter DTCPO on a clear CICS screen to activate this support
and enter DTCPF to deactivate it. You can activate and deactivate this support multiple times.

d. If you are using CADP for debugging profiles, set the startup parameter DEBUGTOOL=YES for any
region where a z/OS Debugger session might start. This parameter activates the z/OS Debugger
new program support.

6. If users need to debug Enterprise PL/I for z/OS, Version 3 Release 4 (or later), applications under
CICS:

a. Install the following corequisite:

• If you are running z/OS Version 1 Release 6, you need to apply the PTF for Language
Environment APAR PK03093.

• If you are compiling with Enterprise PL/I for z/OS, Version 3 Release 4, apply the PTF for APAR
PK03264.

Users can begin a debug session by using DTCN or CADP at either of the following points:

• The entry to programs invoked by EXEC CICS LINK or XCTL.
• The entry to any program, even if it is a nested program within a composite load module,

invoked as a static or dynamic CALL.
b. To enable users to start debug sessions with CADP, use PLTPI program EQA0CPLT with the CICS

start up parameter INITPARM=(EQA0CPLT='NWP'). See step “9” on page 94 for information
about EQA0CPLT.

7. If you are planning to debug command-level assembler application programs that do not run under or
use Language Environment services, activate the CICS non-Language Environment exits as described
in “Activating CICS non-Language Environment exits” on page 95.

8. If your CICS region is started with the SEC parameter set to YES and the XCMD parameter is set to
YES to activate command security, review the access settings for the following resources:
EXITPROGRAM

Do one of the following options:

• Verify that z/OS Debugger users have UPDATE authority to the EXITPROGRAM resource so that
they can run EXEC CICS ENABLE PROGRAM EXIT, DISABLE PROGRAM EXIT, and EXTRACT
EXIT.

• Activate the debugger's single-terminal mode screen stacking user exits during CICS start up by
doing the following:

a. Verify that the user ID that runs the CICS region has UPDATE access to the EXITPROGRAM
resource.

b. Add the program EQA0CPLT to your Program List Table (PLTPI).
c. Add INITPARM=(EQA0CPLT='STK') to your CICS startup parameters.

See step “9” on page 94 for instructions on using EQA0CPLT.

Chapter 12. Adding support for debugging under CICS  93



TDQUEUE
Verify that all users have UPDATE authority to the TDQUEUE resource, so that they can run EXEC
CICS INQUIRE and EXEC CICS SET TDQUEUE.

PROGRAM
Verify that all users have READ authority to the PROGRAM resource, so that they can run EXEC
CICS INQUIRE PROGRAM.

For more information about the CICS security features, see CICS RACF Security Guide.
9. (Optional) Set up the CICS PLTPI program called EQA0CPLT:

a. Add the program EQA0CPLT to your Program List Table (PLTPI). EQA0CPLT initializes parts
of z/OS Debugger during CICS startup as indicated by a CICS INITPARM system initialization
parameter. Run EQA0CPLT as a Stage 2 or Stage 3 PLTPI program. IBM recommends that you
place EQA0CPLT after other PLT programs. The following sample PLT includes EQA0CPLT:

   TITLE 'DFHPLTXX - IBM
z/OS Debugger CICS Sample PLT'
   DFHPLT TYPE=INITIAL,SUFFIX=XX
   *
   DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
   DFHPLT TYPE=ENTRY,PROGRAM=EQA0CPLT
   *
   DFHPLT TYPE=FINAL  END DFHPLTBA

b. Add the INITPARM keyword to the CICS startup parameters. Multiple parameters can be passed
to EQA0CPLT in the same INITPARM. The following common parameters can be used:
NLE

Non-Language Environment support. See “Activating CICS non-Language Environment exits”
on page 95.

STK
Screen stack exits. This parameter is required if you are using command security.

NWP
New program support. This parameter is required if you are using multi-regions or Enterprise
PL/I Version 3 Release 4 (or later) with CADP.

STG
This parameter enables the protection of storage that was GETMAINed in the current task by a
program that is not the active program. This protection is only provided when the user is using
the remote debugger.

For example, to activate the non-Language Environment support, screen stack exits, and new
program support (multi-region and Enterprise PL/I Version 3 Release 4 with CADP) in a single
INITPARM, add the following to your CICS startup parameters:

INITPARM=(EQA0CPLT='NLE,STK,NWP')

Any combination of these four can be coded on the same INITPARM.
10. If the users use COBOL or PL/I separate debug files, verify that the users specify the following

attributes for the PDS or PDSE that contains the separate debug files:

• RECFM=FB
• LRECL=1024
• BLKSIZE set so that the system determines the optimal size

Important: Users must allocate files with the correct attributes to optimize the performance of z/OS
Debugger.

11. (Optional) Increase the DSALIM and EDSALIM sizes in your CICS region so that z/OS Debugger
functions properly with multiple concurrent users. The amount of increase is based on the current
workload in the CICS region.

94  IBM z/OS Debugger: Customization Guide



Recommendation: Increase the sizes of DSALIM and EDSALIM in increments of 5% or 10%. Monitor
the storage in the region as z/OS Debugger users are debugging for the highest amount of storage
that is used at any one point.

12. To enable users to start debug sessions for Enterprise COBOL or Enterprise PL/I application with
DTCN, use one of the following methods:

• Use PLTPI program EQA0CPLT with the CICS start up parameter INITPARM=(EQA0CPLT='NWP').
For more information about EQA0PLT, see Step “9” on page 94.

• Save a DTCN profile.
• Run DTCPO transaction after the region starts up.

See the IBM z/OS Debugger User's Guide for information about how to debug CICS programs.

Activating CICS non-Language Environment exits
To debug non-Language Environment assembler programs or non-Language Environment COBOL
programs that run under CICS, you must start the required z/OS Debugger global user exits before
you start the programs. z/OS Debugger provides the following global user exits to help you debug non-
Language Environment applications: XPCFTCH, XEIIN, XEIOUT, XPCTA, and XPCHAIR. The exits can be
started by using either the DTCX transaction (provided by z/OS Debugger), or using a PLTPI program that
runs during CICS region startup

DTCX: You can turn the exits on and off by using the transaction DTCX. To activate all of the exits,
from a clear CICS terminal screen enter DTCXXO. To deactivate all of the exits, enter DTCXXF. You need
to activate the exits only once. If you deactivate the exits and then want to debug a non-Language
Environment program, you need to enter DTCXXO from a clear CICS terminal screen to activate the exits.

After you enter DTCXXO, a series of messages are displayed on your screen. If all exits are activated
successfully, the following messages are displayed:

EQA9972I - DT XPCFTCH CICS exit now ON.
EQA9972I - DT XEIIN exit now ON.
EQA9972I - DT XEIOUT exit now ON.
EQA9972I - DT XPCTA exit now ON.
EQA9972I - DT XPCHAIR exit now ON.
EQA9970I - CICS exit activation successful.

When you enter DTCXXF, the following messages are displayed:

EQA9973I - DT XPCFTCH CICS exit now OFF.
EQA9973I - DT XEIIN exit now OFF.
EQA9973I - DT XEIOUT exit now OFF.
EQA9973I - DT XPCTA exit now OFF.
EQA9973I - DT XPCHAIR exit now OFF.
EQA9971I - CICS exit deactivation successful.

If there is a problem starting or activating one of the exits, an error message like the following is
displayed:

EQA9974I Error enabling XPCFTCH - EQANCFTC

If you see this error message, verify that the CICS CSD is properly updated to include the latest
z/OS Debugger resource definitions, and that the z/OS Debugger SEQAMOD data is in the DFHRPL DD
concatenation for the CICS region.

You can start the exits during region initialization by using a sequential terminal or any other mechanism
that runs transactions during CICS startup. You are not required to shut down the exits before or during a
region shutdown.

PLT: The non-Language Environment exits can also be activated during CICS region initialization
by using the CICS Program List Table (PLTPI) program EQA0CPLT (supplied by z/OS Debugger). In
addition to adding EQA0CPLT to your CICS region PLT, you must specify the CICS startup parameter
INITPARM=(EQA0CPLT='NLE'). EQA0CPLT supersedes the function provided earlier by PLTPI program

Chapter 12. Adding support for debugging under CICS  95



EQANCPLT. See step “9” on page 94 for instructions on using EQA0CPLT. For more information about PLT
processing, see the CICS Resource Definition Guide.

Storing DTCN debug profiles in a VSAM file
By default, the CICS DTCN transaction stores its debugging profiles into a CICS temporary storage queue
(TSQ) called EQADTCN2. Because CICS destroys temporary storage queues at region termination, any
profiles stored in EQADTCN2 are deleted when a region is stopped. To save debugging profiles across
region termination and restart or after the owning terminal is disconnected, store the profiles into a VSAM
data set.

Do the following steps to instruct DTCN to store its debugging profiles in a VSAM data set:

1. Create the VSAM data set by following the instructions in the EQAWCRVS member of the
hlq.SEQASAMP data set.

2. Modify the CICS region startup JCL so that the EQADPFMB DD statement identifies the VSAM data set
you created in step 1.

3. Define the VSAM file to the CICS region by following the instructions in the EQACCSD member of the
hlq.SEQASAMP data set. “Sharing DTCN debug profile repository among CICS systems” on page 96
also describes examples of CICS resource definitions.

Migrating a debug profiles VSAM file from an earlier release
z/OS Debugger Version 12 increased the record size, and changes the format of the DTCN profile records.

If you are migrating from an earlier release of z/OS Debugger, and you use an EQADPFMB VSAM file to
store your profiles, you need to create a new file using the JCL sample in member EQAWCRVS in the
hlq.SEQASAMP data set.

If you want to upgrade the records from an old DTCN VSAM file to the new record format, see the JCL
sample in member EQADPCNV in the hlq.SEQASAMP data set.

Sharing DTCN debug profile repository among CICS systems
The DTCN debug profile repository is either a CICS temporary storage queue called EQADTCN2 or a VSAM
data set identified through the EQADPFMB DD statement. If you want to share the repository among CICS
systems (for example, MRO), do one of the following options:

• If you are using a temporary storage queue, do the following steps:

1. Designate a single CICS region as the queue-owning region and note the SYSID of that region. In
Figure 7 on page 97, the SYSID of the queue-owning region is P6.

2. For all other regions that need to access the queue-owning region, create a TSMODEL resource
definition and verify that you define the following attributes:

– For the REMOTESystem attribute, specify the SYSID of the queue-owning region.
– For PRefix and REMOTEPrefix attribute, specify EQADTCN2.
– To optimize the performance of z/OS Debugger, define the Location attribute as MAIN.

96  IBM z/OS Debugger: Customization Guide



CEDA View TSmodel( DTCN1 )
TSmodel      ==> DTCN1
Group        ==> DTCNREM
Description  ==> TEST DTCN TSQ REMOTE
PRefix       ==> EQADTCN2
XPrefix      ==>
Location     ==> Main                Auxiliary | Main
RECOVERY ATTRIBUTES
RECovery     ==> No                  No | Yes
SECURITY ATTRIBUTES
Security     ==> No                  No | Yes
SHARED ATTRIBUTES
POolname     ==>
REMOTE ATTRIBUTES
REMOTESystem ==> P6
REMOTEPrefix ==> EQADTCN2
XRemotepfx   ==>
Group        ==>

Figure 7. A sample TSMODEL resource definition that gives a region access to the queue-owning region
called P6.

For instructions on how to create a TSMODEL resource definition, see CICS Resource Definition Guide.
• If you are using a VSAM data set and want to function-ship file operations to a file-owning region (FOR),

do the following steps:

1. Designate a single FOR.
2. Define the EQADPFMB file as REMOTE in the CICS FILE definition on regions that need to access it

remotely. To learn how to define a FILE resource, see CICS Resource Definition Guide. Figure 8 on
page 98 shows how to define the EQADPFMB file in a region that uses it remotely.

3. For the region which owns the VSAM data set, omit the REMOTESYSTEM and REMOTENAME values
in the EQADPFMB CICS FILE definition.

4. Start the FOR before starting any AOR that needs to read the EQADPFMB file.

Chapter 12. Adding support for debugging under CICS  97



CEDA  View File( EQADPFMB )
 File           : EQADPFMB
 Group          : DTCNREM
 DEScription    : DTCN PROFILE DATASET REMOTE
VSAM PARAMETERS
 DSNAme         :
 Password       :                    PASSWORD NOT SPECIFIED
 RLsaccess      : No                 Yes | No
 LSrpoolid      : 1                  1-8 | None
 READInteg      : Uncommitted        Uncommitted | Consistent | Repeatable
 DSNSharing     : Allreqs            Allreqs | Modifyreqs
 STRings        : 001                1-255
 Nsrgroup       :
REMOTE ATTRIBUTES
 REMOTESystem   : P6
 REMOTEName     : EQADPFMB
REMOTE AND CFDATATABLE PARAMETERS
 RECORDSize     :                    1-32767
 Keylength      :                    1-255 (1-16 For CF Datatable)
INITIAL STATUS
 STAtus         : Enabled            Enabled | Disabled | Unenabled
 Opentime       : Firstref           Firstref | Startup
 DIsposition    : Share              Share | Old
BUFFERS
 DAtabuffers    : 00002              2-32767
 Indexbuffers   : 00001              1-32767
DATATABLE PARAMETERS
 TABLE          : No                 No | CIcs | User | CF
 Maxnumrecs     : Nolimit            Nolimit | 1-99999999
CFDATATABLE PARAMETERS
 Cfdtpool       :
 TABLEName      :
 UPDATEModel    : Locking            Contention | Locking
 LOad           : No                 No | Yes
DATA FORMAT
 RECORDFormat   : V                  V | F
OPERATIONS 
 Add          ==> No                 No | Yes
 BRowse       ==> No                 No | Yes
 DELete       ==> No                 No | Yes
 READ         ==> Yes                Yes | No
 UPDATE       ==> No                 No | Yes
AUTO JOURNALLING
 JOurnal      ==> No                 No | 1-99
 JNLRead      ==> None               None | Updateonly | Readonly | All
 JNLSYNCRead  ==> No                 No | Yes
 JNLUpdate    ==> No                 No | Yes
 JNLAdd       ==> None               None | Before | AFter | ALl
 JNLSYNCWrite ==> Yes                Yes | No
RECOVERY PARAMETERS
 RECOVery     ==> None               None | Backoutonly | All
 Fwdrecovlog  ==> No                 No | 1-99
 BAckuptype   ==> Static             Static | Dynamic
SECURITY
 RESsecnum      : 00                 0-24 | Public

Figure 8. An example of how to define the EQADPFMB file as REMOTE in a CICS FILE definition.
• If you are using a VSAM data set and prefer to define the file locally to all CICS regions that use it, define

the file on all such regions using record-level sharing (RLS). The following sample resource definition
shows how to define the z/OS Debugger EQADPFMB file using RLS.

CEDA  View File( EQADPFMB )
 File           : EQADPFMB
 Group          : DTCNRLS
 DEScription    : DTCN PROFILE DATASET
VSAM PARAMETERS
 DSNAme         :
 Password       :                    PASSWORD NOT SPECIFIED
 RLsaccess      : Yes                Yes | No
 LSrpoolid      : 1                  1-8 | None
 READInteg      : Uncommitted        Uncommitted | Consistent | Repeatable
 DSNSharing     : Allreqs            Allreqs | Modifyreqs
 STRings        : 010                1-255
 Nsrgroup       :
REMOTE ATTRIBUTES
 REMOTESystem   :
 REMOTEName     :
REMOTE AND CFDATATABLE PARAMETERS

98  IBM z/OS Debugger: Customization Guide



 RECORDSize     :                    1-32767
 Keylength      :                    1-255 (1-16 For CF Datatable)
INITIAL STATUS
 STAtus         : Enabled            Enabled | Disabled | Unenabled
 Opentime       : Firstref           Firstref | Startup
 DIsposition    : Share              Share | Old
BUFFERS
 DAtabuffers    : 00011              2-32767
 Indexbuffers   : 00010              1-32767
DATATABLE PARAMETERS
 TABLE          : No                 No | CIcs | User | CF
 Maxnumrecs     : Nolimit            Nolimit | 1-99999999
CFDATATABLE PARAMETERS
 Cfdtpool       :
 TABLEName      :
 UPDATEModel    : Locking            Contention | Locking
 LOad           : No                 No | Yes
DATA FORMAT
 RECORDFormat   : V                  V | F
OPERATIONS
 Add            : Yes                No | Yes
 BRowse         : Yes                No | Yes
 DELete         : Yes                No | Yes
 READ           : Yes                Yes | No
 UPDATE         : Yes                No | Yes
AUTO JOURNALLING
 JOurnal        : No                 No | 1-99
 JNLRead        : None               None | Updateonly | Readonly | All
 JNLSYNCRead    : No                 No | Yes
 JNLUpdate      : No                 No | Yes
 JNLAdd         : None               None | Before | AFter | ALl
 JNLSYNCWrite   : No                 Yes | No
RECOVERY PARAMETERS
 RECOVery       : None               None | Backoutonly | All
 Fwdrecovlog    : No                 No | 1-99
 BAckuptype     : Static             Static | Dynamic
SECURITY
 RESsecnum      : 00                 0-24 | Public

For details on defining a FILE resource, see CICS Resource Definition Guide.

Deleting or deactivating debug profiles stored in a VSAM data set
If you are storing debug profiles in a VSAM data set, as described in “Storing DTCN debug profiles in a
VSAM file” on page 96, the number of profiles no longer in use might become large, because the debug
profiles persist across region restarts and after the terminal from which a profile was created has been
disconnected. z/OS Debugger provides two transactions, DTCD and DTCI, to delete or deactivate debug
profiles stored in a region's VSAM data set.

To delete debug profiles in the VSAM data set identified by the EQADPFMB DD statement on your region,
use the DTCD transaction. The following diagram describes the syntax of the DTCD transaction:

DTCD userid

*

userid
Delete the debug profile associated with a specific CICS user ID.

*
Deletes debug profiles from the VSAM data set. This option requires specific RACF authority;
therefore, reserve it for CICS administrators.

To deactivate all debugging profiles in the VSAM data set, use the DTCI transaction. The following diagram
describes the syntax of the DTCI transaction:

DTCI userid

*

The following list describes the parameters:

Chapter 12. Adding support for debugging under CICS  99



userid
Deactivate the debug profile associated with a specific CICS user ID.

*
Deactivate debug profiles from the VSAM data set. This option requires specific RACF authority;
therefore, reserve it for CICS administrators.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Authorizing DTCD and DTCI transactions to delete or deactivate debug profiles” on page 108

Deleting DTCN profiles with the DTCN LINK service
z/OS Debugger provides a service that deletes unowned profiles from the DTCN repository.

If the DTCN repository is stored in CICS Temporary Storage (EQADTCN2), profiles are owned by the
terminal that created them. The service scans the repository, looking for profiles that were created in the
region running the service. If the service finds a profile owned by a terminal that is no longer defined and
active in the region, the service deletes the profile.

If the DTCN repository is stored in VSAM (EQADPFMB), profiles are owned by the user ID that created
them. The service scans the repository, looking for profiles that were created in the region running the
service. If the service finds a profile owned by a user ID that is no longer active in the region, the service
deletes the profile.

Invoke the service with the following command:

EXEC CICS LINK PROGRAM('EQADCDEL')

The service does not expect a commarea.

Invoke this service during DELETE processing in the program that controls autoinstall of terminals;
however, you can invoke it from any EXEC-capable program. Figure 9 on page 100 and Figure 10 on
page 100 show how to invoke the service in DFHZATDX, the supplied, user-replaceable autoinstall control
program for terminals.

***********************************************************************
* *                D E L E T E    P R O C E S S I N G               * *
* *                ----------------------------------               * *
* *                                                                 * *
***********************************************************************
DELETE_TERMINAL DS    0H                                              
         USING DELETE_EXIT_COMMAREA,R2 Address delete commarea    
* ==> PUT DELETE CODE HERE                                          
*
         EXEC CICS LINK PROGRAM('EQADCDEL')    
*  
         B     RETURN              EXIT PROGRAM    

Figure 9. Example of invoking service in DFHZATDX

***********************************************************************
* Function 8 and 10 - Common delete processing for shipped definitions*
***********************************************************************
DELETE_SHIPPED_TERMINAL DS 0H                                      @D2A
         USING DELETE_SHIPPED_COMMAREA,R2 Address commarea         @D2A
* ==> PUT DELETE CODE HERE                                         @D2A       
*                                                                        
         EXEC CICS LINK PROGRAM('EQADCDEL') NOHANDLE                    
*
         B     RETURN              EXIT PROGRAM                    @D2A
         DFHEJECT                                                  @D2A

Figure 10. Example of invoking service in DFHZATDX

Note: To use the the DTCN LINK service, ensure that the DTCNDELETEDEADPROF EQAOPTS command is
set to YES.

100  IBM z/OS Debugger: Customization Guide



See “DTCNDELETEDEADPROF” on page 151 for more information.

Requiring users to specify resource types
If your users use DTCN to specify debugging profiles, you can customize z/OS Debugger to require that
your users specify some or all resource types. For example, if your users are debugging a heavily used
CICS program, you can require that they specify a Terminal ID and a Transaction ID to avoid having z/OS
Debugger started every time that CICS program is run. You can enforce these requirements by specifying
the corresponding EQAOPTS DTCNFORCExxxx command, as described in “DTCNFORCExxxx” on page
151.

Direct QSAM access through a CICS task-related user exit
z/OS Debugger can use two methods to access the following types of files:

• Enterprise COBOL and Enterprise PL/I separate debug files (SYSDEBUG)
• C/C++ separate debug files (.dbg and .mdbg)
• assembler and LangX COBOL EQALANGX files
• listing and source files
• command and preference files
• save settings and save breakpoints and monitor specification files
• log files

The following list describes both access methods:

• CICS Extrapartition Transient Data (default method)
• Direct QSAM access through a CICS task-related user exit

If you want the access method to avoid using CICS SPI and API to access these files, enable the QSAM
access method.

To enable the QSAM access method, use the following INITPARM in your CICS start up parameters:

INITPARM=(DFHLETRU='USEQSAM')

You also need to apply the following PTFs to the appropriate products:

• For CICS Transaction Server for z/OS, Version 3.1, apply the PTF for PK67329
• For CICS Transaction Server for z/OS, Version 3.2, apply the PTF for PK68401
• For Enterprise COBOL compilers, apply the PTF for PK71852 to Language Environment, Version 1.8

through 1.10
• For Enterprise PL/I compilers, apply the PTF for PK93564 to Language Environment, Version 1.8

through 1.11

Enabling the CADP transaction
Beginning with CICS Transaction Server for z/OS Version 2 Release 3, you can use the debugging profiles
created by the application debugging profile manager (CADP transaction) with z/OS Debugger. Set the
DEBUGTOOL system initialization parameter to YES to indicate that z/OS Debugger must use debugging
profiles created by the CADP transaction. With the DEBUGTOOL system initialization parameter set to
YES, you cannot use DTCN to define debugging profiles.

The default setting of DEBUGTOOL=NO indicates that z/OS Debugger will not use CADP profiles and will
use DTCN-defined profiles. With DEBUGTOOL=NO, you can use CADP to update or add debugging profiles,
but these profiles will not be used by z/OS Debugger.

Chapter 12. Adding support for debugging under CICS  101



You can dynamically switch between the CADP and DTCN debug profiles that are used by z/OS Debugger.
After the CICS region is started, enter CEMT SET DEBUG to have CADP profiles used and CEMT SET
NODEBUG to have DTCN profiles used.

Running multiple debuggers in a CICS region
Coexistence with other debuggers cannot be guaranteed since situations can occur where multiple
debuggers might contend for use of storage, facilities and interfaces which are intended for only one
requester.

It is suggested that if you must have multiple debuggers installed in a CICS region, then only one
should be active at any given time. When another debugger is used, ensure that the z/OS Debugger CICS
non-Language Environment user exits are deactivated and that there are no active CADP or DTCN profiles
in the region. The user exits can be deactivated by issuing the DTCXXF transaction. To deactivate other
debuggers, consult the documentation provided by the vendor of the other debuggers.

Running the installation verification programs in a CICS region
To help you verify that your CICS region has been customized properly for z/OS Debugger, the
hlq.SEQASAMP data set contains installation verification programs (IVPs) in the following members. Run
the IVPs that are appropriate for the tasks that your users will be performing.

Table 26. Full-screen mode

IVP Task

EQAWIVCI Dynamic Debug facility and Enterprise PL/I
TEST(ALL,SYM,NOHOOK,SEPARATE)

EQAWIVCP Dynamic Debug facility and COBOL TEST(NONE,SYM,SEPARATE) or
TEST(NOHOOK,SEPARATE)

EQAWIVCT Dynamic Debug facility and Enterprise COBOL for z/OS Version 5 TEST

EQAWIVC2 C TEST(ALL)

EQAWIVCG C DEBUG(FORMAT(DWARF),HOOK(LINE,NOBLOCK,PATH),SYMBOL)

EQAWIVC8 Enterprise PL/I TEST(ALL)

EQAWIVCC Non-Language Environment Assembler

EQAWIVCJ LangX Enterprise COBOL

Table 27. Standard mode

IVP Task

EQAZIZCG z/OS XL C DEBUG(FORMAT(DWARF),NOHOOK)

EQAZIZCI Enterprise PL/I for z/OS Version 4 or Version 5 31-bit
TEST(NOHOOK,SEPARATE)

EQAZIZCT Enterprise COBOL for z/OS Version 5 or Version 6 TEST

EQAZIZC4 Enterprise COBOL for z/OS Version 3 Release 4 or Version 4 NOTEST

Note: For more information about standard mode, see Remote debug mode in "Chapter 1: z/OS Debugger:
overview" in IBM z/OS Debugger User's Guide.

102  IBM z/OS Debugger: Customization Guide



Configuring z/OS Debugger to run in a CICSplex environment
In a CICSplex, the application-owning regions (AORs), terminal-owning regions (TORs), queue-owning
regions (QORs), repositories, and terminals can be organized in an infinite number of ways. In the
following topics, we explore a finite number of scenarios and let you know what you need to do to
configure z/OS Debugger to work in each scenario. For all of these scenarios, we assume you are working
in full screen mode.

• “Terminal connects to an AOR that runs the application” on page 103
• “Terminal connects to a TOR which routes the application to an AOR; debugging profiles managed by

CADP” on page 104
• “Terminal connects to a TOR which routes the application to an AOR; debugging profiles managed by

DTCN” on page 104
• “Terminal connects to an AOR that runs an application that does not use a terminal” on page 105
• “Screen control mode terminal connects to a TOR and application runs in an AOR” on page 106
• “Separate terminal mode terminal connects to a TOR and application runs in an AOR” on page 106

Terminal connects to an AOR that runs the application
In this scenario, your terminal (TRMC) connects to an AOR (CICSAOR2) that runs the application you
want to debug. The debugging profiles can be managed by either CADP or DTCN and they are directly
accessible by the AOR.
.---------------.     .---------------.      .---------------.
| 3270 terminal |     | 3270 terminal |      | 3270 terminal |
|               |     |               |      |               |
|    TRMA       |     |     TRMB      |      |     TRMC      |
'------,--------'     '--------,------'      '-,-------------'
       |                       |               |
       |                       |               |
       '-----------------,     |               |
                         |     |               |
                         |     |               |
                     .---'-----'-----.         |
                     |               |         |
                     |      TOR      |         |
                     |               |         |
                     '---.-----.-----'         |
                         |     |               |
                         |     |               |
                   ,-----'     '-------,       |
                   |                   |       |
           .-------'-------.      .----'-------'--.
           |      AOR      |      |      AOR      |
           |               |      |               |
           |   CICSAOR1    |      |   CICSAOR2    |
           |               |      |               |
           '-------,-------'      '-------,-------'
                   |                      |
                   |                      |
           .-------'-------.      .-------'-------.
           |               |      |               |
           | Debug profile |      | Debug profile |
           |  repository   |      |  repository   |
           |               |      |               |
           '---------------'      '---------------'

For this scenario to work, the CICS system administrator must complete the following tasks for the region
CICSAOR2:

• Define z/OS Debugger resources in the CICS CSD and install them in the CICS region, as described in
Chapter 12, “Adding support for debugging under CICS,” on page 91, step 1.

• Provide access to these resources, as described in Chapter 12, “Adding support for debugging under
CICS,” on page 91, step “2.a” on page 91.

If you want to debug an application that runs in another AOR region, like CICSAOR1, you must log on to
that region and verify that the system administrator completed the above tasks for that region.

Chapter 12. Adding support for debugging under CICS  103



Terminal connects to a TOR which routes the application to an AOR;
debugging profiles managed by CADP

In this scenario, your terminal (TRMC) connects to a TOR, which uses a CICS transaction to route the
application you want to debug to an AOR. The debugging profiles can be managed by either CADP or DTCN
and they are directly accessible by the AOR. The CADP repository is a VSAM data set which is shared
between all of the regions. You can run the CADP transaction in any of the regions.
.---------------.     .---------------.      .---------------.
| 3270 terminal |     | 3270 terminal |      | 3270 terminal |
|               |     |               |      |               |
|    TRMA       |     |     TRMB      |      |     TRMC      |
'------,--------'     '-------,-------'      '-,-------------'
       |                      |                |
       |                      |                |
       '-----------------,    |   ,-----------'
                         |    |   |
                         |    |   |
                     .---'----'---'--.
                     |               |
                     |      TOR      |
                     |               |
                     '---.---,---.---'
                         |   |   |
                         |   |   |
                  ,------'   |   '------,
                  |          |          |
          .-------'-------.  |   .------'--------.
          |      AOR      |  |   |      AOR      |
          |               |  |   |               |
          |   CICSAOR1    |  |   |   CICSAOR2    |
          |               |  |   |               |
          '---------------'  |   '---------------'
                  |          |           |
                  |          |           |
                  '------,   |    ,------'
                         |   |    |
                     .---'---'----'----.
                     | CADP repository |
                     |     (VSAM)      |
                     '-----------------'

For this scenario to work, the CICS system administrator must complete the following tasks for both
AORs:

• Define z/OS Debugger resources in the CICS CSD and install them in the CICS region, as described in
Chapter 12, “Adding support for debugging under CICS,” on page 91, step 1.

• Provide access to these resources, as described in Chapter 12, “Adding support for debugging under
CICS,” on page 91, step “2.a” on page 91.

• Run the correct programs and use the correct CICS start up parameters for each type of profile, as
described in the following steps:
CADP

Chapter 12, “Adding support for debugging under CICS,” on page 91, step “5.d” on page 93, “6.b”
on page 93, “9.b” on page 94, and “Enabling the CADP transaction” on page 101.

DTCN
Chapter 12, “Adding support for debugging under CICS,” on page 91, step “5.a” on page 92 and
“9.b” on page 94.

Terminal connects to a TOR which routes the application to an AOR;
debugging profiles managed by DTCN

In this scenario, your terminal (TRMC) connects to a TOR, which uses a CICS transaction to route the
application you want to debug to an AOR. The debugging profiles are managed by DTCN and are stored in
a temporary storage queue (EQADTCN2) located in a queue-owning region (QOR). You can run the DTCN
transaction in any of the regions.
.---------------.     .---------------.      .---------------.
| 3270 terminal |     | 3270 terminal |      | 3270 terminal |

104  IBM z/OS Debugger: Customization Guide



|               |     |               |      |               |
|    TRMA       |     |     TRMB      |      |     TRMC      |
'------,--------'     '-------,-------'      '-,-------------'
       |                      |                |
       |                      |                |
       '-----------------,    |   ,-----------'
                         |    |   |
                         |    |   |
                     .---'----'---'--.
                     |               |
                     |      TOR      |
                     |               |
                     '---.---,---.---'
                         |   |   |
                         |   |   |
                  ,------'   |   '------,
                  |          |          |
          .-------'-------.  |   .------'--------.
          |      AOR      |  |   |      AOR      |
          |               |  |   |               |
          |   CICSAOR1    |  |   |   CICSAOR2    |
          |               |  |   |               |
          '---------------'  |   '---------------'
                  |          |           |
                  |          |           |
                  '------,   |    ,------'
                         |   |    |
                     .---'---'----'----.
                     |      QOR        |
                     |   EQADTCN2      |
                     '-----------------'

For this scenario to work, the CICS system administrator must complete the following tasks for both AORs
and the TOR:

• Define z/OS Debugger resources in the CICS CSD and install them in the CICS region, as described in
Chapter 12, “Adding support for debugging under CICS,” on page 91, step 1.

• Provide access to these resources, as described in Chapter 12, “Adding support for debugging under
CICS,” on page 91, step “2.a” on page 91.

• Designate a single CICS region as the QOR and define the queue accessible remotely, as described in
“Sharing DTCN debug profile repository among CICS systems” on page 96.

Variation on this scenario: The temporary storage queue (EQADTCN2) does not need to be located in
a QOR. It can be located in the TOR, any of the AORs, or in the coupling facility. Wherever you put the
temporary storage queue, keep the following considerations in mind:

• Place the queue where it can be accessed efficiently when the application programs begin, since it is
referenced at that point to determine whether the program should be debugged.

• The temporary storage queue is accessed by Function Shipping, so allocate a sufficient number of
connections between the regions to handle READQ requests.

Terminal connects to an AOR that runs an application that does not use a
terminal

In this scenario, your terminal (TRMC) connects to an AOR, which you use to set up a debugging profile
using either CADP or DTCN. When the application starts, z/OS Debugger is started and issues and EXEC
CICS START of its display transaction (CDT#) on your terminal (TRMC). Your terminal must be connected
directly to the AOR. You cannot connect through CRTE because CICS does not support issuing an EXEC
CICS START to a terminal connected through CRTE.
                                 .---------------.
                                 | 3270 terminal |
                                 |               |
                                 |     TRMC      |
                                 '------,--------'
                                        |
                                        |
    .-----------------------------------+-----------------------------—-.
    |  AOR                              |                               |
    |                                   '---------------------,         |
    |                                                         |         |

Chapter 12. Adding support for debugging under CICS  105



    |  ,---------------------------------------------,     ,------,     |
    |  | Application runs, then z/OS Debugger issues }-----{ CDT# |     |
    |  | EXEC CICS START TRANS(CDT#) TERM(TRMC)      |     '------'     |
    |  '---------------------------------------------'                  |
    |                                                                   |
    '-------------------------------------------------------------------'
                                        |
                                        |
                                .-------'-----------.
                                | Debugging profile |
                                |     repository    |
                                '-------------------'

For this scenario to work, the CICS system administrator must complete the following tasks for the AOR:

• Define z/OS Debugger resources in the CICS CSD and install them in the CICS region, as described in
Chapter 12, “Adding support for debugging under CICS,” on page 91, step “1” on page 91.

• Provide access to these resources, as described in Chapter 12, “Adding support for debugging under
CICS,” on page 91, step “2.a” on page 91.

• If you are using CADP to manage debugging profiles, then run the correct programs and use the correct
CICS start up parameters, as described in Chapter 12, “Adding support for debugging under CICS,” on
page 91, Chapter 12, “Adding support for debugging under CICS,” on page 91, step “5.d” on page 93,
“6.b” on page 93, “9.b” on page 94, and “Enabling the CADP transaction” on page 101.

Screen control mode terminal connects to a TOR and application runs in an
AOR

In this scenario, the user starts the DTSC transaction on the display terminal to display the debug session.
DTSC must run in the same region as the application, but could run in any of the following situations:

• As a Transaction-Routed transaction
• On a CRTE terminal session which was started on the AOR
                                 .---------------.
                                 | 3270 terminal |
                                 |               |
                                 |     TRMC      |
                                 '------,--------'
                                        |
                                        |
    .-----------------------------------+-----------------------------—-.
    |  TOR                              |                               |
    |                                   '---------------------,         |
    |                                                         |         |
    '---------------------------------------------------------+---------'
                                                              |
                                                              |
                                .-------------------.         |
                                | Debugging profile |         |
                                |     repository    |         |
                                '-------,-----------'         |
    .-----------------------------------'---------------------+---------.
    |  AOR                                                    |         |
    |                                                         |         |
    |                                                         |         |
    |  ,---------------------------------------------,     ,------,     |
    |  | Application runs, then z/OS Debugger connects}-----{ CDT# |     |
    |  | to the DTSC transaction that the user has   |     '------'     |
    |  | started on the display terminal.            |                  |
    |  '---------------------------------------------'                  |
    |                                                                   |
    '-------------------------------------------------------------------'

Separate terminal mode terminal connects to a TOR and application runs in
an AOR

In this scenario, your terminal (TRMC) connects to a TOR and the following sequence of events occurs:

1. You store a debugging profile into a repository using either DTCN or CADP.
2. The application starts. The profile matches the application so z/OS Debugger is started.

106  IBM z/OS Debugger: Customization Guide



3. z/OS Debugger issues EXEC CICS START of its display transaction (CDT#) on your terminal (TRMC).
However, your terminal is not found. XICTENF/XALTENF identifies the TOR as the owner of your
terminal (TRMC).

4. CICS routes the START task to the TOR identified by XICTENF/XALTENF.
5. Interval Control in the TOR associates the START task with your terminal (TRMC) and then routes the

START task back to the AOR.
6. CDT# establishes the communication between your terminal and the application through the TOR.
                                 .---------------.
                                 | 3270 terminal |
                                 |               |
                                 |     TRMC      |
                                 '------,--------'
                                        |
                                        |
    .-----------------------------------+-----------------------------—-.
    |  TOR                              |                               |
    |                                   '---------------------,         |
    |                                                         |         |
    '---------------------------------------------------------+---------'
                                                              |
                                                              |
                                .-------------------.         |
                                | Debugging profile |         |
                                |     repository    |         |
                                '-------,-----------'         |
    .-----------------------------------'---------------------+---------.
    |  AOR                                                    |         |
    |                                                         |         |
    |                                                         |         |
    |  ,---------------------------------------------,     ,------,     |
    |  | Application runs, then z/OS Debugger issues }-----{ CDT# |     |
    |  | EXEC CICS START TRANS(CDT#) TERM(TRMC)      |     '------'     |
    |  '---------------------------------------------'                  |
    |                                                                   |
    '-------------------------------------------------------------------'

For this scenario to work, the CICS system administrator must complete the following tasks for the TOR:

• If you are using DTCN to manage debugging profiles, do the following tasks:

– Define z/OS Debugger resources in the CICS CSD and install them in the CICS region, as described in
Chapter 12, “Adding support for debugging under CICS,” on page 91, step “1” on page 91.

– Provide access to these resources, as described in Chapter 12, “Adding support for debugging under
CICS,” on page 91, step “2.a” on page 91.

• If you are using CADP to manage debugging profiles, then run the correct programs and use the correct
CICS start up parameters, as described in Chapter 12, “Adding support for debugging under CICS,” on
page 91, Chapter 12, “Adding support for debugging under CICS,” on page 91, step “5.d” on page 93,
“6.b” on page 93, “9.b” on page 94, and “Enabling the CADP transaction” on page 101.

• Enable routing of the terminal traffic to the correct terminal by configuring the z/OS Debugger
transaction CDT# as DYNAMIC(YES).

• If your CICS region has a Temporary Storage Model (TSMODEL) that can make queues with a prefix of
"CDT#" recoverable, you must create a TSMODEL that specifies PREFIX(CDT#) and RECOVERY(NO).

For this scenario to work, the CICS system administrator must complete the following tasks for the AOR:

• If you are using DTCN to manage debugging profiles, do the following tasks:

– Define z/OS Debugger resources in the CICS CSD and install them in the CICS region, as described in
Chapter 12, “Adding support for debugging under CICS,” on page 91, step “1” on page 91.

– Provide access to these resources, as described in Chapter 12, “Adding support for debugging under
CICS,” on page 91, step “2.a” on page 91.

• If you are using CADP to manage debugging profiles, then run the correct programs and use the correct
CICS start up parameters, as described in Chapter 12, “Adding support for debugging under CICS,” on
page 91, Chapter 12, “Adding support for debugging under CICS,” on page 91, step “5.d” on page 93,
“6.b” on page 93, “9.b” on page 94, and “Enabling the CADP transaction” on page 101.

Chapter 12. Adding support for debugging under CICS  107



• To locate the terminal, do the following steps:

– Code the CICS exits XICTENF and XALTENF so that the TOR is identified as the owner of the display
terminal. The CICS Transaction Server for z/OS Customization Guide describes these exits.

– Run a PLT program that enables the CICS exits XICTENF and XALTENF. The CICS Transaction Server
for z/OS Customization Guide describes how to write and run a PLT.

– Enable routing of the terminal traffic to the correct terminal by configuring the z/OS Debugger
transaction CDT# as DYNAMIC(YES).

– If your CICS region has a Temporary Storage Model (TSMODEL) that can make queues with a prefix of
"CDT#" recoverable, you must create a TSMODEL that specifies PREFIX(CDT#) and RECOVERY(NO).

Authorizing DTST transaction to modify storage
Note: This section is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

This topic describes the steps you must take to authorize the DTST transaction to modify either USER-key
storage, CICS-key storage, or both. DTST does not allow users to modify Key-0 storage.

The following resources control DTST authorizations:

• EQADTOOL.DTSTMODUSERK, which controls the ability to modify USER-key storage.
• EQADTOOL.DTSTMODCICSK, which controls the ability to modify CICS-key storage.

1. Establish profiles in the FACILITY class by entering the following RDEFINE commands:

RDEFINE FACILITY EQADTOOL.DTSTMODUSERK UACC(NONE)
RDEFINE FACILITY EQADTOOL.DTSTMODCICSK UACC(NONE)

2. Verify that generic profile checking is in effect for the class FACILITY by entering the following
command:

SETROPTS GENERIC(FACILITY)

3. Give a user permission to modify USER-key, CICS-key storage, or both by entering one or both of the
following commands, where DUSER1 is the name of a RACF-defined user or group profile:

PERMIT EQADTOOL.DTSTMODUSERK CLASS(FACILITY) ID(DUSER1) ACCESS(UPDATE)
PERMIT EQADTOOL.DTSTMODCICSK CLASS(FACILITY) ID(DUSER1) ACCESS(UPDATE)

Instead of connecting individual users, the security administrator can specify DUSER1 to be a RACF
group profile and then connect authorized users to the group.

4. If the FACILITY class is not active, activate the class by entering the following SETROPTS command:

SETROPTS CLASSACT(FACILITY)

Enter the SETROPTS LIST command to verify that FACILITY class is active.
5. Refresh the FACILITY class by entering the following SETROPTS RACLIST command:

SETROPTS RACLIST(FACILITY) REFRESH

Authorizing DTCD and DTCI transactions to delete or deactivate
debug profiles

This topic describes the steps you must take to authorize the DTCD and DTCI transactions to delete or
deactivate debug profiles stored in a VSAM data set.

The EQADTOOL.DTCDDELETEALL resource controls DTCD authorizations.

The EQADTOOL.DTCIINACTALL resource controls DTCI authorizations.

108  IBM z/OS Debugger: Customization Guide



To authorize DTCD and DTCI users so they can delete or deactivate debug profiles stored in a VSAM data
set, do the following steps:

1. Establish profiles in the FACILITY class by entering the following RDEFINE commands:

RDEFINE FACILITY EQADTOOL.DTCDDELETEALL UACC(NONE)
RDEFINE FACILITY EQADTOOL.DTCIINACTALL UACC(NONE)

2. Verify that generic profile checking is in effect for the class FACILITY by entering the following
command:

SETROPTS GENERIC(FACILITY)

3. Give a user permission to delete or deactivate debug profiles stored in a VSAM data set by entering the
following commands, where DUSER1 is the name of a RACF-defined user or group profile:

PERMIT EQADTOOL.DTCDDELETEALL CLASS(FACILITY) ID(DUSER1) ACCESS(UPDATE)
PERMIT EQADTOOL.DTCIINACTALL CLASS(FACILITY) ID(DUSER1) ACCESS(UPDATE)

Instead of connecting individual users, the security administrator can specify DUSER1 to be a RACF
group profile and then connect authorized users to the group.

4. If the FACILITY class is not active, activate the class by entering the following SETROPTS command:

SETROPTS CLASSACT(FACILITY)

Enter the SETROPTS LIST command to verify that FACILITY class is active.
5. Refresh the FACILITY class by entering the following SETROPTS RACLIST command:

SETROPTS RACLIST(FACILITY) REFRESH

Chapter 12. Adding support for debugging under CICS  109



110  IBM z/OS Debugger: Customization Guide



Chapter 13. Adding support for debugging under IMS

To add support for debugging applications that run in IMS, you need to do the following steps:

1. Choose one of the following methods for specifying TEST runtime options:

• Specifying the TEST runtime options in a data set, created by the application programmers, which is
then extracted by a customized version of the Language Environment user exit routine CEEBXITA.

• Specifying the TEST runtime options in one of the following assembler modules:

– CEEUOPT, which is an assembler module that uses the CEEXOPT macro to set application level
defaults, and is link-edited into an application program.

– CEEROPT, which is an assembler module that uses the CEEXOPT macro to set region level
defaults.

• Specifying the TEST runtime options through the EQASET transaction. The transaction allows
application programmers to specify a limited set of TEST runtime options.

• Specifying the TEST runtime options in a private message region, created by the application
programmer using IBM z/OS Debugger Utilities option 4.3, "Swap IMS Transaction Class and Run
Transaction".

• Specifying the TEST runtime options in a private message region, created by the application
programmer using IBM z/OS Debugger Utilities option 4.5, "IMS Transaction Isolation Facility".

2. Choose from the following scenarios that best matches your site's environment:
Scenario A

You run programs in IMS Transaction Manager, BTS, or DB and are managing TEST runtime options
with a user exit. Do the steps described in “Scenario A: Running IMS and managing TEST runtime
options with a user exit” on page 112 to enable this scenario.

Scenario B
You run programs in IMS Transaction Manager, BTS, or DB and are managing TEST runtime options
with CEEUOPT or CEEROPT. Do the steps described in“Scenario B: Running IMS and managing
TEST runtime options with CEEUOPT or CEEROPT” on page 113 to enable this scenario.

Scenario C
You run assembler programs without Language Environment in IMS Transaction Manager and
you specify some TEST runtime options with the EQASET transaction. Do the steps described in
“Scenario C: Running assembler program without Language Environment in IMS TM and managing
TEST runtime options with EQASET” on page 113 to enable this scenario.

Scenario D
You run programs in an IMSplex environment and are managing TEST runtime options with either
a user exit, CEEUOPT, or CEEROPT. Do the steps described in “Scenario D: Running IMSplex
environment” on page 113 to enable this scenario.

Scenario E
You run Message Processing Programs (MPPs) in IMS Transaction Manager, running in Message
Processing Regions (MPRs). You want to isolate application program debugging and to avoid
scheduling delays or conflicts with programs which are not being debugged. Do the steps
described in “Scenario E: Enabling users to launch private message regions and to assign
transactions to private message regions” on page 114 to enable this scenario.

Scenario F
You run Message Processing Programs (MPPs) in IMS Transaction Manager, running in Message
Processing Regions (MPRs). You want to isolate application program debugging and to avoid
scheduling delays or conflicts with programs which are not being debugged. Do the steps
described in “Scenario F: Enabling the Transaction Isolation Facility” on page 115 to enable this
scenario. The IMS Transaction Isolation Facility is not available in IBM Wazi Developer for Red Hat
CodeReady Workspaces.

© Copyright IBM Corp. 1992, 2021 111



You can select more than one scenario. If you select more than one scenario, some steps are repeated.
Perform those steps only once.

3. After you have selected the method that your site will use to manage TEST runtime options, notify your
application programmers of the chosen method. Ensure that the application programmers follow the
directions described in "Preparing an IMS program" in the IBM z/OS Debugger User's Guide and choose
the correct method for specifying TEST runtime options. If your application programmers are using the
EQASET transaction to specify TEST runtime options, ensure that they follow the directions described
in "Running the EQASET transaction" in the IBM z/OS Debugger User's Guide .

Scenario A: Running IMS and managing TEST runtime options with
a user exit

Do the following steps to enable this scenario:

1. Include the z/OS Debugger hlq.SEQAMOD25 data set and the Language Environment CEE.SCEERUN26

runtime library in the STEPLIB concatenation of your IMS region.
2. To give IMS users enough time to run and debug their applications, increase the time-out limit in the

message-processing region (MPR) region to 1440.
3. If you need to change the naming pattern of the data set containing the user's TEST runtime options,

see the following topics for details:

• Chapter 8, “Specifying the TEST runtime options through the Language Environment user exit,” on
page 61

• “Customizing z/OS Debugger User Exit Data Set” on page 80

The user will use DTU option 'z/OS Debugger User Exit Data Set' to set the TEST runtime options they
want.

4. If the IMS transaction is initiated from the web or MQ gateway, it is run with a generic ID. z/OS
Debugger supports a cross reference table to tie such a transaction to a user's ID. To set the name of
that cross reference table, see the following topics for details:

• Chapter 8, “Specifying the TEST runtime options through the Language Environment user exit,” on
page 61

• “Customizing IMS Transaction and User ID Cross Reference Table ” on page 83

The user will use DTU option 'IMS Transaction and User ID Cross Reference Table' to specify the
transaction name to user ID cross reference.

5. See Chapter 8, “Specifying the TEST runtime options through the Language Environment user exit,”
on page 61 and “Customizing z/OS Debugger User Exit Data Set” on page 80 for information about
customizing the user exit (if needed).

6. If the IMS transaction is initiated from the web or MQ gateway, it is run with a generic ID. If your site
has this situation, see “Activate the cross reference function and modifying the cross reference table
data set name” on page 64 for information about customizing the user exit to enable a cross reference
table and “Customizing IMS Transaction and User ID Cross Reference Table ” on page 83 for setting up
IBM z/OS Debugger Utilities so that the user can access the table.

25 Add hlq.SEQAMOD to STEPLIB only if it is not already in the system search path (for example, link list).
If you create a custom EQAOPTS (as described in Chapter 16, “EQAOPTS commands,” on page 131) that
is not stored in hlq.SEQAMOD, then place the data set containing it in STEPLIB (ahead of hlq.SEQAMOD
if it is in STEPLIB). hlq.SEQAMOD must be placed before any other library in the STEPLIB that contains
CEEEVDBG for z/OS Debugger to get control of a debug session.

26 Add CEE.SCEERUN to STEPLIB only if it is not already in the system search path (for example, link
list). If you create a private copy of the z/OS Debugger Language Environment user exit for IMS that
is linked into CEEBINIT (as described in Chapter 8, “Specifying the TEST runtime options through the
Language Environment user exit,” on page 61), then place the data set containing it in STEPLIB (ahead of
CEE.SCEERUN if it is in STEPLIB).

112  IBM z/OS Debugger: Customization Guide



Scenario B: Running IMS and managing TEST runtime options with
CEEUOPT or CEEROPT

Do the following steps to enable this scenario:

1. Include the z/OS Debugger hlq.SEQAMOD27 data set and the Language Environment CEE.SCEERUN
runtime library in the STEPLIB concatenation of the IMS MPR or MPP region running your program.

2. To give IMS users enough time to run and debug their applications, increase the time-out limit in the
message-processing region (MPR) region to 1440.

Scenario C: Running assembler program without Language
Environment in IMS TM and managing TEST runtime options with
EQASET

Do the following steps to enable this scenario:

1. Copy the load modules EQANIAFE and EQANISET from the hlq.SEQAMOD data set into the
IMS.PGMLIB data set.

2. Define the following IMS transaction:

APPLCTN GPSB=EQANISET,PGMTYPE=TP,LANG=ASSEM   HIDAM/OSAM       
TRANSACT CODE=EQASET,MODE=SNGL,                                      X
         DCLWA=NO,EDIT=UC,INQ=(YES,NORECOV),                         X
MSGTYPE=(SNGLSEG,NONRESPONSE,1) 

3. Add the application front end parameter APPLFE=EQANIAFE to the MPR start up job.
4. Assign the EQASET transaction to a class served by the MPR that is started with the

APPLFE=EQANIAFE parameter.
5. Include the z/OS Debugger hlq.SEQAMOD28 data set in the STEPLIB concatenation of the IMS MPR or

MPP region running your program.
6. To give IMS users enough time to run and debug their applications, increase the time-out limit in the

message-processing region (MPR) region to 1440.

Scenario D: Running IMSplex environment
Do the following steps to enable this scenario:

1. Include the z/OS Debugger hlq.SEQAMOD29 data set and the Language Environment CEE.SCEERUN
runtime library in the STEPLIB concatenation of the IMS MPR or MPP region running your program.

27 Add hlq.SEQAMOD to STEPLIB only if it is not already in the system search path (for example, link list).
If you create a custom EQAOPTS (as described in Chapter 16, “EQAOPTS commands,” on page 131) that
is not stored in hlq.SEQAMOD, then place the data set containing it in STEPLIB (ahead of hlq.SEQAMOD
if it is in STEPLIB). hlq.SEQAMOD must be placed before any other library in the STEPLIB that contains
CEEEVDBG for z/OS Debugger to get control of a debug session.

28 Add hlq.SEQAMOD to STEPLIB only if it is not already in the system search path (for example, link list).
If you create a custom EQAOPTS (as described in Chapter 16, “EQAOPTS commands,” on page 131) that
is not stored in hlq.SEQAMOD, then place the data set containing it in STEPLIB (ahead of hlq.SEQAMOD
if it is in STEPLIB). hlq.SEQAMOD must be placed before any other library in the STEPLIB that contains
CEEEVDBG for z/OS Debugger to get control of a debug session.

29 Add hlq.SEQAMOD to STEPLIB only if it is not already in the system search path (for example, link list).
If you create a custom EQAOPTS (as described in Chapter 16, “EQAOPTS commands,” on page 131) that
is not stored in hlq.SEQAMOD, then place the data set containing it in STEPLIB (ahead of hlq.SEQAMOD
if it is in STEPLIB). hlq.SEQAMOD must be placed before any other library in the STEPLIB that contains
CEEEVDBG for z/OS Debugger to get control of a debug session.

Chapter 13. Adding support for debugging under IMS  113



2. To give IMS users enough time to run and debug their applications, increase the time-out limit in the
message-processing region (MPR) region to 1440.

3. If you are using a user exit and you need to change the naming pattern of the data set containing the
user's TEST runtime options, see the following topics for details:

• Chapter 8, “Specifying the TEST runtime options through the Language Environment user exit,” on
page 61

• “Customizing z/OS Debugger User Exit Data Set” on page 80

The user can use DTU option 'z/OS Debugger User Exit Data Set' to set the TEST runtime options they
want.

Scenario E: Enabling users to launch private message regions and
to assign transactions to private message regions

Do the following steps to enable this scenario:

1. Define the following IMS batch message program:

APPLCTN GPSB=EQANBSWT,LANG=ASSEM,PGMTYPE=(BATCH),               X
        SCHDTYP=PARALLEL
TRANSACT CODE=(EQANBSWT),AOI=TRAN,                              X
        MSGTYPE=(SNGLSEG,NONRESPONSE)

2. Define the user EQANBSWT to RACF, and permit it READ access to the ASSIGN, DISPLAY, START and
STOP IMS commands:

ADDUSER EQANBSWT NOPASSWORD DFLTGRP(SYS1)
PE ASS CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
PE DIS CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
PE STA CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
PE STO CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
SETROPTS RACLIST(CIMS) REFRESH

3. Enable users to create private message region templates. Users that are authorized for this function
use IBM z/OS Debugger Utilities option 4.4, "Manage IMS Transaction Templates" to create and edit
the templates. The templates are stored in one or more z/OS Debugger Setup Utility data sets.

To control access to the Manage IMS Transaction Templates panel, create RACF FACILITY
EQADTOOL.IMSTEMPCREATE with UACC(NONE). Then, PERMIT users who might access the panel
ACC(READ) to the FACILITY.

An alternative approach is to grant UACC(READ) for EQADTOOL.IMSTEMPCREATE FACILITY. Then,
access to the common IMS message region template data sets can be controlled by using RACF data
set security.

4. Customize the IBM z/OS Debugger Utilities ISPF interface for IMS TM Debugging. See “Customizing
debugging by using IMS message region templates” on page 79 for more information about this task.

After the above steps are completed, users who are authorized to EQADTOOL.IMSTEMPCREATE FACILITY
can create one or more z/OS Debugger Setup Utility data sets that contain IMS message region templates.
Application programmers use the message region templates to schedule individual transactions in private
message regions. See section "Using IMS message region templates to dynamically swap transaction
class and debug in a private message region" in the IBM z/OS Debugger User's Guide for more information
about how application programmers use the message region templates.

To create message region templates, complete the following steps:

1. Start IBM z/OS Debugger Utilities. See "Starting IBM z/OS Debugger Utilities" in the IBM z/OS
Debugger User's Guide for detailed information.

2. In the IBM z/OS Debugger Utilities panel (EQA@PRIM), type 4 in the Option line and press Enter.
3. In the Manage IMS Programs panel (EQAPRIS), type 4 in the Option line and press Enter.

114  IBM z/OS Debugger: Customization Guide



4. In the Create IMS MPR Templates panel (EQAPMPXS), type the name of the z/OS Debugger Setup
Utility data set that you want to use in the Template Data Set field. Then, type an I in the Sel column
of the table at the bottom of the panel, and press Enter.

5. In the Manage Message Regions - Edit Setup File panel (EQAPFORA), the Data Set Name is pre-filled
from the data set name that was entered on the EQAPMPXS panel. Complete the data set name by
entering a member name in parentheses, and press Enter.

6. In the Edit Setup File panel (EQAPMPRX), enter a description of the template in the Comment field.
Then, type COPY on the command line and press Enter.

7. In the z/OS Debugger Foreground - Copy from Setup File or JCL panel (EQAPCPY), type the name of a
data set that contains one of the following information:

• Job Control Language (JCL) decks for IMS Message Processing Regions
• z/OS Debugger Setup Utility (DTSU) files

If you do not specify a member for a PDS, you can select from a member list on the ISRUDSM panel.
8. If you selected to copy from a JCL data set, the z/OS Debugger Foreground - Copy from JCL Dataset

panel (EQAPCJ) is displayed. Select the job cards that you want to copy into the message region
template, and press Enter.

9. After the JCL has been imported to your message region template, type a forward slash (/) beside
Enter / to modify parameters, and press Enter.

10. In the Parameters for IMS Procedures panel (EQAPRIP1), change the Classes fields to specify a class
that is reserved for application programmers by using z/OS Debugger. Then press PF3 to exit.

11. Adjust the data set list as needed and then press PF3 to exit. The message region template is saved.

Scenario F: Enabling the Transaction Isolation Facility
Note: The IMS Transaction Isolation Facility is not available in IBM Wazi Developer for Red Hat
CodeReady Workspaces.

The IMS Transaction Isolation Facility of z/OS Debugger allows users to register to debug transactions
in any IMS subsystem that is enabled for the facility. Each user may also launch a private message-
processing region in which the selected message processing programs will run. The actions in this section
will guide you through the setup of this facility.

The IMS Transaction Isolation Facility requires that the following resources be created or reserved for
z/OS Debugger users:

1. A set of IMS message classes reserved for the private message-processing regions.
2. For each reserved message class, a set of IMS program resources with the name EQATcccn, where

ccc is the three-digit class number, and n is an ordinal number from 1 to the maximum number of
transactions a single user can register to debug.

Also, for each reserved message class, a set of IMS transaction resources must be defined. A set of
non-conversational transactions with the names EQATcccn and a set of conversational transactions
with the names EQACcccn must be defined, where ccc is the three-digit class number, and n is an
ordinal number from 1 to the maximum number of transactions a single user can register to debug.

Do the following steps to enable this scenario:

1. Customize and run the EQAWTIVS sample member. A VSAM data set is created to be used as a
repository to store the IMS Transaction Isolation information when the IMS system is stopped.

2. Customize and run the EQAWTIMS sample member to link-edit the z/OS Debugger exits into an IMS
system control region load library data set. Note that this library must be a PDS, not a PDSE. z/OS
Debugger implements the following exits for the IMS Transaction Isolation Facility:

• DFSMSCE0 - TM and MSC Message Routing and Control User exit routine, as an alias of EQATIEXT
• EQATIEDT - Transaction Code (Input) edit routine for EQA*cccn transactions

3. Customize the EQAOPTS sample and create the EQAOPTS load module.

Chapter 13. Adding support for debugging under IMS  115



The EQAOPTS sample builds a set of EQAOPTS commands into a data-only load module. For more
information about the EQAOPTS commands, see Chapter 16, “EQAOPTS commands,” on page 131.

The following EQAOPTS command applies to the IMS Transaction Isolation Facility:
MAXTRANUSER

This command specifies the maximum number of transactions that a single user can register to
debug. The default value is 15.

4. Modify the IMS system by performing the following actions:

a. Ensure that the following load libraries are in the search path for the IMS system control region:

• The load library with the z/OS Debugger IMS exits link-edited in step 2
• The library that contains the EQAOPTS load module generated in step 3

b. Add the VSAM data set created in step 1 to the IMS system control region by using DD name
EQATIVSM.

c. If your IMS system uses the DFSMSCE0 exit to route transaction messages, perform the following
actions:

i) Remove the load library that contains your DFSMSCE0 exit from the STEPLIB or JOBLIB
concatenation of the IMS control region.

If you cannot remove the load library, ensure that the load library with the z/OS Debugger
version of DFSMSCE0 appears before your DFSMSCE0 exit in the search path.

ii) Identify your DFSMSCE0 exit location to z/OS Debugger by adding the load library that contains
your DFSMSCE0 exit to the IMS system control region by using DD name EQAIMEXT.

After you complete the actions, start or restart the IMS system.
5. Define the user EQANBSWT to RACF, and permit it READ access to the ASSIGN, DISPLAY, START, and

STOP IMS commands:

ADDUSER EQANBSWT NOPASSWORD DFLTGRP(SYS1)
PE ASS CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
PE DIS CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
PE STA CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
PE STO CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
SETROPTS RACLIST(CIMS) REFRESH

6. Give the user ID for each IMS control region authority to modify the VSAM data set created in step 1.
7. Enable administrative users to configure the IMS Transaction Isolation Facility. Users that are

authorized for this function use IBM z/OS Debugger Utilities option 4, suboption 6 "Administer IMS
Transaction Isolation Environment", to reserve message classes for z/OS Debugger usage, and to
generate other artifacts for the IMS Transaction Isolation Facility.

To control access to the Administer IMS Transaction Isolation Environment panel, create RACF
FACILITY EQADTOOL.IMSTRANISOADMIN with UACC(NONE). Permit users who might access the
panel ACC(READ) to the FACILITY.

8. Use IBM z/OS Debugger Utilities option 4, suboption 6 "Administer IMS Transaction Isolation
Environment" to reserve message classes for use by the IMS Transaction Isolation Facility. Ensure
that these classes are not in use for other dependent regions in your IMS system.

When multiple versions of IMS subsystems are installed on your system, you can use suboption 6 to
provide a specific RESLIB used by this IMS subsystem. If no RESLIB is specified on suboption 6, the
one from us5imrsl in EQAZDFLT is used as the default.

9. Customize the hlq.SEQASAMP(EQAWICRT) sample job and submit the job to generate one or both
of the following resource definitions:

• Stage-1 IMS system definition macros to create the necessary IMS resources for the classes you
have selected. The macros are generated to the data set with the DD name EQARESDS.

• Type-2 IMS commands to create the necessary IMS resources for the classes you have selected.
The commands are generated to the data set with the DD name EQATY2DS.

116  IBM z/OS Debugger: Customization Guide



10. Use the resource definitions from step 9 to update the IMS system definition, preferably by using the
Type 2 commands to update the system dynamically, if you are using Dynamic Resource Definition
(DRD). Otherwise, add the Type 1 commands to the stage 1 input to your system definition process,
and regenerate the IMS system definition. Restart the IMS system, if necessary, to pick up the
changes.

11. Add any important IMS PROCLIBs to EQAZPROC in hlq.SEQATLIB. This action allows IBM z/OS
Debugger Utilities to expand any IMS PROCs that are discovered when the execution environment of
the selected transaction is cloned.

12. Additional customization parameters are available in member EQAZDFLT of hlq.SEQATLIB library.
To set the value for any of these parameters, remove the preceding comment character (!) and
specify the value, followed by a semicolon (;).

!*
! Default job name for dynamic IMS MPR creation
!*
! Up to 7 characters of the user's TSO user ID will be substituted
! for the string &&user&&. 
!* 
mprdebug =                         ! Job name for debugging
     @&&user&& ;             1        ! IMS MPR 
!*
! Specify the name of the main IMS RESLIB. This will be the first 
! data set in the STEPLIB for the batch job that runs the EQANBSWT 
! BMP program. 
!* 
!us5imrsl = ;                2  
!us5dtmod = ;                3  
!us5dtce1 = ;                4 
 
!us5trnft = ;                5  
!us5trnmx = ;                6 
 
!us5adspc = ;                7         ! Override for JOB parm ADDRSPC 
!us5bytes = ;                          ! Override for JOB parm BYTES 
!us5cards = ;                          ! Override for JOB parm CARDS 
!us5ccsid = ;                          ! Override for JOB parm CCSID 
!us5class = ;                          ! Override for JOB parm CLASS 
!us5cond = ;                           ! Override for JOB parm COND 
!us5group = ;                          ! Override for JOB parm GROUP 
!us5jeslg = ;                          ! Override for JOB parm JESLOG 
!us5lines = ;                          ! Override for JOB parm LINES 
!us5melim = ;                          ! Override for JOB parm MEMLIMIT 
!us5msgcl = ;                          ! Override for JOB parm MSGCLASS 
!us5msglv = ;                          ! Override for JOB parm MSGLEVEL 
!us5notfy = ;                          ! Override for JOB parm NOTIFY 
!us5pages = ;                          ! Override for JOB parm PAGES 
!us5paswd = ;                          ! Override for JOB parm PASSWORD 
!us5perf = ;                           ! Override for JOB parm PERFORM 
!us5prty = ;                           ! Override for JOB parm PRTY 
!us5rd = ;                             ! Override for JOB parm RD 
!us5regn = ;                           ! Override for JOB parm REGION 
!us5rstrt = ;                          ! Override for JOB parm RESTART 
!us5seclb = ;                          ! Override for JOB parm SECLABEL 
!us5schen = ;                          ! Override for JOB parm SCHENV 
!us5time = ;                           ! Override for JOB parm TIME 
!us5typrn = ;                          ! Override for JOB parm TYPRUN 
!us5user = ;                           ! Override for JOB parm USER

 1  mprdebug
Establishes the pattern that is used to create the job name for any private message regions
started by users of the IMS Transaction Isolation Facility. The user's TSO ID is substituted in the
string where &&user&& appears.

 2  us5imsrsl
Identifies the IMS RESLIB to use when tasks are performed for the IMS Transaction Isolation
Facility. This parameter is necessary only when the proper IMS RESLIB is not in the link list
concatenation.

Chapter 13. Adding support for debugging under IMS  117



This setting applies to IMS subsystems where the RESLIB is not specified with IBM z/OS
Debugger Utilities option 4.6. If the client needs to use a specific RESLIB for a particular IMS
subsystem, specify the RESLIB with option 4.6.

 3  us5dtmod
Identifies the z/OS Debugger SEQAMOD library to use when tasks are performed for the IMS
Transaction Isolation Facility. This parameter is necessary only when the proper z/OS Debugger
SEQAMOD library is not in the link list concatenation.

 4  us5dtce1
Identifies the z/OS MVS Language Environment runtime library (CEERUN) to use when tasks are
performed for the IMS Transaction Isolation Facility. This parameter is necessary only when the
proper Language Environment library is not in the link list concatenation.

 5  us5trnft
Defines the default transaction name filter when a new user accesses the EQAPMPSL panel for
the first time.

 6  us5trnmx
Defines the default maximum number of transactions that is returned to the user on the
EQAPMPSL panel. A value of 0 returns the entire list of transactions, which can have a significant
performance impact if your IMS system has defined many transactions.

 7  JOB parameter overrides
Use these parameters to specify or override any parameters on the JOB statement that is created
based on the JOB statement of the “cloned” message region.

For more information about how application programmers use the IMS Transaction Isolation Facility, see
the section "Using IMS Transaction Isolation to create a private message-processing region and select
transactions to debug" in the IBM z/OS Debugger User's Guide.

Sample customization of the IMS Transaction Isolation Facility
Here is an example of the customization of IMS Transaction Isolation Facility at a typical client location. In
this example, the system has the following features:

• The IMS sub system name is IMSA.
• The IMS product high-level qualifier is PROD.IMSV14.
• Dynamic Resource Definition (DRD) is active.
• The maximum number of transactions, which is defined by the MAXCLAS parameter of the IMSCTRL

system definition macro, is 200.
• Dependent regions currently defined in the system serve classes in the range 21 - 100.
• The IBM z/OS Debugger data sets are installed under the high-level qualifier ZDEBUG.

The IMS administrator decides that 10 region classes are reserved for IMS Isolation users, which means
that 10 users can debug in private message regions simultaneously.

As the class range 21 - 100 is used for normal development and test activity, the IMS Isolation classes
must be in the range 1 - 20 and 101 - 200. The IMS administrator chooses classes 131-140 to reserve for
IMS Isolation users.

Next, the IMS administrator performs the following steps to prepare the IMS control region to run with
IMS Isolation:

1. Edit the ZDEBUG.SEQASAMP(EQAWTIVS) member and SUBMIT it to create the VSAM data set
PROD.ZDEBUG.EQATITBL.

118  IBM z/OS Debugger: Customization Guide



//EQAWTIVS JOB
//*********************************************************************
//*        DELETE THE EXISTING FILE                                   *
//*********************************************************************
//DELETE    EXEC PGM=IDCAMS,REGION=1M
//SYSPRINT DD SYSOUT=*
//SYSIN    DD *
 DELETE PROD.ZDEBUG.EQATITBL
 SET MAXCC=0
/*
//*********************************************************************
//*        DEFINE A NEW VSAM DEBUGGING PROFILE DATASET                *
//*********************************************************************
//DEFINE    EXEC PGM=IDCAMS,REGION=1M
//SYSPRINT DD SYSOUT=*
//SYSIN    DD *
/*                         */
/* DEFINE IMS ISOLATION    */
/* TABLE INDEX AND PATH    */
/* DATA SETS               */
/*                         */
   DEFINE CLUSTER (RECORDS(999) -
    NAME (PROD.ZDEBUG.EQATITBL) -
    SHAREOPTIONS(2 3) -
    LOG(NONE) -
    INDEXED)         -
   DATA -
    (RECSZ(200,200) -
    NAME (PROD.ZDEBUG.EQATITBL.DATA) -
    KEYS(11 0) -
    FREESPACE(10 10) -
    BUFFERSPACE (20000)) -
  INDEX -
    (NAME(PROD.ZDEBUG.EQATITBL.INDX))
/*

2. Edit the ZDEBUG.SEQASAMP(EQAWTIMS) member and submit it to link-edit the IMS Isolation exits
by using the current level of IMS. The exits are placed in PROD.ZDEBUG.IMSISO.LOADLIB.

Chapter 13. Adding support for debugging under IMS  119



//EQAWTIMS JOB
// SET DTHLQ=ZDEBUG
// SET IMSHLQ=PROD.IMSV14
//*********************************************************************
//* Link-edit the EQATIEDT user exit (transaction message edit)       *
//*********************************************************************
//LINK1  EXEC  PGM=IEWL,COND=(4,LE),REGION=17M,
// PARM=('OPTIONS=OPTIONS')
//SYSUT1   DD UNIT=SYSVIO,SPACE=(TRK,(10,80))
//SYSPRINT DD SYSOUT=*
//SYSLMOD  DD DSN=PROD.ZDEBUG.IMSISO.LOADLIB,DISP=SHR
//SYSLIB   DD DSN=&DTHLQ..SEQAMOD,DISP=SHR 
//         DD DSN=&IMSHLQ..SDFSRESL,DISP=SHR 
//OPTIONS  DD * 
 LIST,XREF,LET,MAP 
//SYSLIN   DD *
  MODE AMODE(31),RMODE(ANY)
  INCLUDE  SYSLIB(DFSCSI00) 
  REPLACE  DFSCSII0
  INCLUDE  SYSLIB(EQATIEDT) 
  ENTRY    EQATIEDT 
  NAME     EQATIEDT(R) 
/* 
//********************************************************************* 
//* Link-edit the DFSMSCE0 user exit (transaction routing)            * 
//********************************************************************* 
//LINK2  EXEC  PGM=IEWL,COND=(4,LE),REGION=17M, 
// PARM=('OPTIONS=OPTIONS') 
//SYSUT1   DD  UNIT=SYSVIO,SPACE=(TRK,(10,80)) 
//SYSPRINT DD  SYSOUT=* 
//SYSLMOD  DD DSN=PROD.ZDEBUG.IMSISO.LOADLIB,DISP=SHR 
//SYSLIB   DD DSN=&DTHLQ..SEQAMOD,DISP=SHR 
//         DD DSN=&IMSHLQ..SDFSRESL,DISP=SHR 
//OPTIONS  DD  *
 LIST,XREF,LET,MAP 
//SYSLIN   DD  *
  MODE AMODE(31),RMODE(ANY)
  INCLUDE  SYSLIB(DFSCSI00)
  REPLACE  DFSCSIF0
  INCLUDE  SYSLIB(EQATIEXT)
  ENTRY    EQATIEXT 
  ALIAS    DFSMSCE0 
  NAME     EQATIEXT(R) 
/*

3. Edit the ZDEBUG.SEQASAMP(EQAOPTS) member and submit it to create the EQAOPTS load module:

a. Use Delay Debug in the private IMS message processing regions, with the naming pattern
'USR.userid.DLAYDBG.EQAUOPTS'.

b. Limit each IMS Isolation user to registering for four transactions.

//EQAOPTS JOB 5724-T07,MSGLEVEL=(1,1),MSGCLASS=A
//*PROC JCLLIB ORDER=(ASM.SASMSAM1)
// SET GPFMLIB=ZDEBUG.SEQASAMP
// SET GPFLMOD=PROD.ZDEBUG.IMSISO.LOADLIB
//*
//ASMGL EXEC ASMACL,REGION=6M,PARM.L='MAP,LET,LIST,XREF,RENT'
//C.SYSLIB  DD DSN=&GPFMLIB.,DISP=SHR 
//          DD DSN=SYS1.MACLIB,DISP=SHR 
//C.SYSIN   DD * 
EQAOPTS  CSECT , 
EQAOPTS  AMODE 31 
EQAOPTS  RMODE ANY 
         EQAXOPT DLAYDBGDSN,'USR.&&USERID.DLAYDBG.EQAUOPTS'   a 
         EQAXOPT MAXTRANUSER,4                                c  
         EQAXOPT END 
         END , 
//L.SYSLMOD DD DISP=SHR,DSN=&GPFLMOD.
//L.SYSIN DD *
   NAME EQAOPTS(R)
/*

4. Place the new data sets in the IMS control region JCL. The following customizations are required:

120  IBM z/OS Debugger: Customization Guide



a. APF-authorize the customized IMS exit and EQAOPTS load library
(PROD.ZDEBUG.IMSISO.LOADLIB).

b. Add the EQAOPTS load library to the STEPLIB concatenation. Ensure that the library is in the
search path before the ZDEBUG.SEQAMOD data set.

c. Add a new DD card called EQATIVSM for the VSAM data set created in Step 1
(PROD.ZDEBUG.EQATITBL).

//IMSACTAM PROC SOUT=A,DPTY='(14,15)',RGN=0M
//IEFPROC EXEC PGM=DFSMVRC0,DPRTY=&DPTY,REGION=&RGN,
// PARM='&CTL,&RGSUF,&PARM1,&PARM2' 
...
//STEPLIB  DD  DSN=PROD.ZDEBUG.IMSISO.LOADLIB,DISP=SHR  b  
//         DD  DSN=PROD.ZDEBUG.SEQAMOD,DISP=SHR
//         DD  DSN=PROD.IMS.LOADLIB,DISP=SHR
//         DD  DSN=PROD.IMSEXIT.LOADLIB,DISP=SHR        c  
... 
//QBLKS    DD  DSN=PROD.IMS01.QBLKS,DISP=OLD 
//SHMSG    DD  DSN=PROD.IMS01.SHMSG,DISP=OLD 
//LGMSG    DD  DSN=PROD.IMS01.LGMSG,DISP=OLD 
... 
//************* FAST PATH DD CARDS **************** 
//* 
//MSDBCP1  DD DSN=PROD.IMS01.MSDBCP1,DISP=SHR 
//MSDBCP2  DD DSN=PROD.IMS01.MSDBCP2,DISP=SHR 
//MSDBDUMP DD DSN=PROD.IMS01.MSDBDMP,DISP=SHR 
//MSDBINIT DD DSN=PROD.IMS01.MSDBINIT,DISP=SHR 
//* 

5. As the client uses the DFSMSCE0 IMS exit in the development and test environment, one other
customization is required to ensure that DFSMSCE0 of IBMz/OS Debugger takes the processing of the
client exit into account. The client's DFSMSCE0 is in PROD.IMSEXIT.LOADLIB.

a. Ensure that PROD.IMSEXIT.LOADLIB does not appear in STEPLIB or JOBLIB or that it appears in
the search path after the data set containing IBM z/OS Debugger's DFSMSCE0 exit, for example,
PROD.ZDEBUG.IMSISO.LOADLIB.

b. Add a new DD card called EQAIMEXT to identify the client DFSMSCE0 exit to IBM z/OS Debugger.

//IMSACTAM PROC SOUT=A,DPTY='(14,15)',RGN=0M
//IEFPROC EXEC PGM=DFSMVRC0,DPRTY=&DPTY,REGION=&RGN, 
// PARM='&CTL,&RGSUF,&PARM1,&PARM2' 
...
//*************** MFS DD CARDS ******************** 
//* 
//FORMATA  DD DSN=PROD.MFS.FORMAT,DISP=SHR 
//FORMATB  DD DSN=PROD.MFS.FORMAT,DISP=SHR 
//IMSTFMTA DD DSN=PROD.IMSQA.FMT1,DISP=SHR 
//IMSTFMTB DD DSN=PROD.IMSQA.FMT1,DISP=SHR 
...
//EQATIVSM DD DSN=PROD.ZDEBUG.EQATITBL,DISP=SHR        a  
//EQAIMEXT DD DSN=PROD.IMSEXIT.LOADLIB,DISP=SHR        b  
//*

6. Start the IMS control region by using the normal process.
7. A RACF administrator uses the following commands to create a new facility for administering IMS

Isolation, and gives the IMS administrator, whose ID is ADMINA, READ access:

RDEFINE FACILITY EQADTOOL.IMSTRANISOADMIN UACC(NONE)
PERMIT EQADTOOL.IMSTRANISOADMIN CLASS(FACILITY) ID(ADMINA) ACC(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Then, the RACF administrator uses the following commands to authorize the EQANBSWT Batch
Messaging Program (BMP) to execute the ASSIGN, DISPLAY, START, and STOP IMS commands:

Chapter 13. Adding support for debugging under IMS  121



ADDUSER EQANBSWT NOPASSWORD DFLTGRP(SYS1)
PERMIT ASS CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
PERMIT DIS CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
PERMIT STA CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
PERMIT STO CLASS(CIMS) ID(EQANBSWT) ACC(UPDATE)
SETROPTS RACLIST(CIMS) REFRESH

8. When the control region is started, the IMS administrator needs to access ISPF panel EQAPMPDF by
using z/OS Debugger Utilities option 4.6. On this panel, the IMS administrator selects the classes to
be reserved for debugging, 131 - 140:

+--------------------------------------------------------------------------------+
| IMS debugging preferences                                Row 126 to 150 of 200 |
| Command ===>                                   Scroll ===> PAGE                |
|                                                                                |
| IMS system . . . . . . IMSA                                                    |
|                                                                                |
|  Place a / next to the message classes that you would like to                  |
|  reserve for the isolation of debug users in your IMS system.                  |
|                                                                                |
|  Data set name for program stubs:                                              |
|  ________________________________________________________                      |
|  Data set name for stage-1 resource definitions:                               |
|  ________________________________________________________                      |
|  Data set name for type-2 commands:                                            |
|  ________________________________________________________                      |
|  Data set name for the IMS RESLIB:                                             |
|  ________________________________________________________                      |
|                                                                                |
| Sel Class number                                                               |
|  _  126                                                                        |
|  _  127                                                                        |
|  _  128                                                                        |
|  _  129                                                                        |
|  _  130                                                                        |
|  /  131                                                                        |
|  /  132                                                                        |
|  /  133                                                                        |
|  /  134                                                                        |
|  /  135                                                                        |
|  /  136                                                                        |
|  /  137                                                                        |
|  /  138                                                                        |
|  /  139                                                                        |
|  /  140                                                                        |
|  _  141                                                                        |
|  _  142                                                                        |
|  _  143                                                                        |
|  _  144                                                                        |
|  _  145                                                                        |
|  _  146                                                                        |
|  _  147                                                                        |
|  _  148                                                                        |
|  _  149                                                                        |
|  _  150                                                                        |
|                                                                                |
|  F1=Help    F3=Exit    F4=IMSIDLst   F7=Backward   F8=Forward   F12=Cancel     |
+--------------------------------------------------------------------------------+

9. After selecting the classes for debug, the IMS administrator customizes
ZDEBUG.SEQASAMP(EQAWICRT) and uses it to generate a data set that contains type-2 commands.
These commands can be used to define resources for IMS Isolation.

122  IBM z/OS Debugger: Customization Guide



//EQAWICRT JOB
//*
// SET DTHLQ=ZDEBUG
// SET IMSHLQ=PROD.IMSV14
//DELETE    EXEC PGM=IDCAMS,REGION=1M
//SYSPRINT DD SYSOUT=*
//SYSIN    DD *
 DELETE ADMINA.IMSISO.TYPE2
 SET MAXCC=0
/*
//CREATE EXEC PGM=EQANICRT,REGION=0M,
// PARM=('READMASK IMSA')
//EQATY2DS DD DSN=ADMINA.IMSISO.TYPE2,
//            DISP=(NEW,CATLG,DELETE),
//            SPACE=(TRK,(20,20,0),RLSE),
//            DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)
//EQATISPT DD SYSOUT=*
//RESLIB   DD DSN=&IMSHLQ..SDFSRESL,DISP=SHR 

10. Define the following IMS batch message program:

APPLCTN GPSB=EQANBSWT,LANG=ASSEM,PGMTYPE=(BATCH),               X
        SCHDTYP=PARALLEL
TRANSACT CODE=(EQANBSWT),AOI=TRAN,                              X
        MSGTYPE=(SNGLSEG,NONRESPONSE)

11. The IMS administrator creates a JCL deck to run the batch IMS SPOC utility (CSLUSPOC) to create the
resources needed by IMS Isolation.

//SPOCBCH  JOB
//BATCH    EXEC PGM=CSLUSPOC,PARM='IMSPLEX=PLEX2,F=BYCOL'
//STEPLIB  DD DSN=PROD.IMSV14.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD DSN=ADMINA.IMSISO.TYPE2,DISP=SHR

12. The IMS administrator then makes the following ISPF customizations:

• The client keeps all PROCs that are used to create dependent IMS regions in a PROCEDURE library
named PROD.IMSV14.PROCLIB. To allow the IMS Isolation Facility to access this library to generate
private message regions, the IMS administrator updates ZDEBUG.SEQATLIB(EQAZPROC) to add
PROD.IMSV14.PROCLIB:

PROD.IMSV14.PROCLIB
SYS1.PROCLIB

• The MVS system where IMSA executes has certain rules for jobs submitted to JES. To ensure that
private message regions started by IMS Isolation conform to these rules, the IMS administrator
updates PROD.ZDEBUG(EQAZDFLT) to specify overrides for various JOB parameters:

Chapter 13. Adding support for debugging under IMS  123



File  Edit  Edit_Settings  Menu  Utilities Compilers  Test Help
------------------------------------------------------------------------------
EDIT                         PROD.ZDEBUG(EQAZDFLT)      - 01.06    Columns 000
Command ===>                                                          Scroll =
000205 !us5adspc = ;                          ! Override for JOB parm ADDRSPC
000206 !us5bytes = ;                          ! Override for JOB parm BYTES
000207 !us5cards = ;                          ! Override for JOB parm CARDS
000208 !us5ccsid = ;                          ! Override for JOB parm CCSID
000209 !us5class = ;                          ! Override for JOB parm CLASS
000210 !us5cond = ;                           ! Override for JOB parm COND
000211 !us5group = ;                          ! Override for JOB parm GROUP
000212 !us5jeslg = ;                          ! Override for JOB parm JESLOG
000213 !us5lines = ;                          ! Override for JOB parm LINES
000214 !us5melim = ;                          ! Override for JOB parm MEMLIMIT
000215 us5msgcl = A ;                         ! Override for JOB parm MSGCLASS
000216 !us5msglv = ;                          ! Override for JOB parm MSGLEVEL
000217 us5notfy = &SYSUID. ;                  ! Override for JOB parm NOTIFY 
000218 !us5pages = ;                          ! Override for JOB parm PAGES 
000219 !us5paswd = ;                          ! Override for JOB parm PASSWORD 
000220 !us5perf = ;                           ! Override for JOB parm PERFORM 
000221 !us5prty = ;                           ! Override for JOB parm PRTY 
000222 !us5rd = ;                             ! Override for JOB parm RD 
000223 !us5regn = ;                           ! Override for JOB parm REGION 
000224 !us5rstrt = ;                          ! Override for JOB parm RESTART 
000225 !us5seclb = ;                          ! Override for JOB parm SECLABEL 
000226 !us5schen = ;                          ! Override for JOB parm SCHENV 
000227 us5time = 1440 ;                       ! Override for JOB parm TIME 
000228 !us5typrn = ;                          ! Override for JOB parm TYPRUN 
000229 !us5user = ;                           ! Override for JOB parm USER 
000230 
000231 
**********************************************************************

Batch interface for the IMS Transaction Isolation Facility
There is also a batch interface that can be used to perform IMS Transaction Isolation functions. A sample
of the batch interface is provided in hlq.SEQASAMP(EQAWTBCH).

The batch interface invokes the program EQANIPSB and passes parameters in the PARM= string on the
EXEC JCL statement. The syntax and description of each request is as follows:
REGISTER

Registers a user for a given transaction.
REGISTER tran-name psb-name ims-system userid

DEREGISTER
Deregisters a user for a given transaction. This request can also be used to deregister all transactions
for the given user ID.

DEREGISTER tran-name ims-system userid

ALL ims-system userid

*

Note: The asterisk (*) is a wild card that matches any user ID. The transactions for all the users are
deregistered if the asterisk (*) is used.

START
Starts a private message region for the specified user. The message region is cloned from a message
region that is designated to run the specified transaction.

START tran-name psb-name ims-system userid

STOP
Stops a private message region for the specified user. This request can also be used to stop all private
message regions for the specified IMS system.

124  IBM z/OS Debugger: Customization Guide



STOP region-name ims-system userid

ALL ims-system

FORCE
Stops a private message region for the specified user, even if the region is busy debugging a
transaction. The region is marked as stopped in the IMS Isolation table, and is also set to “not busy”.

FORCE region-name ims-system userid

QUERY
Dumps the contents of the in-memory IMS Transaction Isolation table. The classes reserved for IMS
Transaction Isolation, the users that are assigned each class, and the transactions the users have
registered for each class are displayed.

QUERY ims-system

TRACE
Dumps the contents of the in-memory IMS Transaction Isolation trace.

TRACE ims-system

Installing and configuring the IMS transaction isolation extension for the
ADFz Common Components server

About this task
Note: This task is required if your Eclipse IDE users want to use IMS Application with isolation debug
configurations. The IMS transaction isolation extension is only available in IBM Developer for z/OS
Enterprise Edition.

You must create a configuration file for the IMS transaction isolation extensions for the ADFz Common
Components server, and then specify the location of the configuration file to the server.

Procedure
To configure the IMS transaction isolation extension for the ADFz Common Components server, complete
the following steps:
1. Create a sequential MVS data set (FB, LRECL 80) that contains the following records:

a) Replace the z/OS Debugger data set names, SEQAMOD, SEQAEXEC, and SEQATLIB with the
installed z/OS Debugger data set names.

b) Replace the ISPF data set name SISPLOAD with the installed ISPF data set name.
c) Replace the IMS data set name SDFSRESL with the installed IMS data set name.

Note: Do not change other statements.

* IMS transaction isolation view
CONFIG=II
SPAWN_PROGRAM=EQAIIINT
SPAWN_STEPLIB=EQAW.SEQAMOD:
CEE.SCEERUN:
ISP.SISPLOAD:
IMS.SDFSRESL
SPAWN_PARMS_SECTION
SPAWN_DD=EQATIPSB=EQAW.SEQAMOD:               
IMS.SDFSRESL:                                     
CEE.SCEERUN                                             
SPAWN_DD=SYSLIB=SYS1.MACLIB                                  
SPAWN_DD=SYSPROC=EQAW.SEQAEXEC                         
SPAWN_DD=JCLLIB=EQAW.SEQATLIB(EQAZPROC)   

Chapter 13. Adding support for debugging under IMS  125



2. Modify the ADFz Common Components server started proc IPVSRV1.
a) Add the configuration data set to the CONFIG DD statement concatenation.
b) Set the region size parameter to 200M or 0M. For example, //RUN EXEC
PGM=IPVSRV,REGION=200M.

c) Stop and restart the ADFz Common Components server.
3. Ensure the user ID (ownerID) that owns and starts the proc IPVSRV1 has the following capabilities:

• An OMVS segment. You can use the following command to create the segment:

 altuser ownerID omvs(home(/u/ownerID) program(/bin/sh))

• Read access to BPX.SERVER. You can use the following command to add permission:

PE BPX.SERVER CL(FACILITY) ID(ownerID) ACC(READ)

4. Inform your users of remote IMS Application with Isolation launch configuration of the following
information:

• They need to create a sequential MVS data set (FB, LRECL 80) with the name userID.EQATIOUT.
The data set is used by the IMS transaction isolation extension as a working data set.

• They need to choose the same encoding scheme as the character encoding scheme of your host
system when they add a host connection to IMS transaction isolation extension.

126  IBM z/OS Debugger: Customization Guide



Chapter 14. Enabling the EQAUEDAT user exit

The EQAUEDAT user exit enables the library administrator or system programmer to direct z/OS Debugger
to the location where source, listing, or separate debug files are stored. If your site policy is to control
the location of these files, this user exit supports this policy by allowing your application programmers to
debug their programs without knowing where these files are located.

The provided samples are designed to operate only under Language Environment. If you require an exit
to run at any time in a non-Language Environment environment, you must write the exit in assembler
and replace the CEEENTRY and CEETERM macro invocations with the proper prologue and epilogue code
for your environments. If z/OS Debugger detects a Language Environment-enabled EQAUEDAT when
Language Environment is not active, the exit will not be started.

z/OS Debugger provides two samples: EQAUEDAT, which is written in Language Environment-enabled
assembler, and EQAUEDAC, which is written in Enterprise COBOL for z/OS and OS/390. Both samples
generate a load module named EQAUEDAT.

To enable this user exit, do the following steps:

1. Copy either the EQAUEDAT30 or EQAUEDAC31 member from the hlq.SEQASAMP library to a private
library.

2. Edit the copy, as instructed in the member. Write the logic required to implement your site policy.

The address of the load library data set name and the length of the load library data set name cannot
be provided as input to the EQAUEDAT user exit when the loading service (provider) that loaded the
module is LPA, LLA, AOS loader, or an unknown provider because this information is not available
when using these loading services.

3. Submit the JCL.
4. Add the private library where the generated EQAUEDAT load module is located to the load module

search path for the application that you are debugging and for which you want this site policy enabled,
in front of hlq.SEQAMOD.

30 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

31 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

© Copyright IBM Corp. 1992, 2021 127



128  IBM z/OS Debugger: Customization Guide



Chapter 15. Using EQACUIDF to specify values for
NATLANG, LOCALE, and LINECOUNT

Note: This chapter is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

The EQACUIDF member of hlq.SEQABMOD contains the default and allowable values for the parameters
NATLANG, LOCALE, and LINECOUNT. These values are used by the following z/OS Debugger components:

• IBM z/OS Debugger Utilities ISPF dialogs: NATLANG
• EQANMDBG (non-CICS non-Language Environment support): NATLANG
• z/OS Debugger Code Coverage: NATLANG, LOCALE, and LINECOUNT

This topic describes the allowable values for these parameters, how to change the default values, and
how to enable additional languages for some z/OS Debugger components.

Changing the default and allowable values in EQACUIDF
The default and allowable values for NATLANG, LOCALE, and LINECOUNT are as follows:

• NATLANG. The national language, which can be one of the following:

– Mixed-case English (ENU)
– Uppercase English (UEN)
– Japanese (JPN)
– Korean (KOR)

See “Enabling additional languages for some z/OS Debugger components through EQACUIDF” on page
130 for more information about changing the language for these z/OS Debugger components.

• LOCALE. The format of date, time, and numeric values. You can also create date, time, and numeric
formats. The default values are as follows:

– Date format: MM/DD/YYYY
– Time format: HH:MM:SS
– Numeric format: 1,234,567.89

• LINECOUNT. The number of lines (including headings) that print on a page. The default is 66 lines.

If the default values for these parameters are the values that you want to use, you can skip this section.

To change the default values:

1. Copy the EQACUIDF32 member in the hlq.SEQASAMP data set into another data set.
2. Follow the instructions that are in the comment sections of the code to modify the copy that you made.
3. Assemble the modified copy by using the IBM High Level Assembler and specifying hlq.SEQASAMP as

a SYSLIB.
4. Link edit the resulting object into the private.SEQABMOD data set.
5. Copy the output load module to hlq.SEQABMOD.

Sample JCL is provided in the EQACUIID member of the hlq.SEQASAMP data set to perform steps “3” on
page 129 and “4” on page 129.

32 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

© Copyright IBM Corp. 1992, 2021 129



The SEQABMOD from this version of z/OS Debugger is compatible with earlier versions of z/OS Debugger.
If you have multiple versions of z/OS Debugger installed on your system, you need only the SEQABMOD
from this version installed in your system link list concatenation.

Enabling additional languages for some z/OS Debugger
components through EQACUIDF

If you use these components, and have installed either of the additional language features (Japanese or
Korean), you must do the following steps to enable the user to specify the additional language feature
with the NATLANG parameter.

To change the language to Japanese or Korean:

1. Create a private SEQASAMP data set like hlq.SEQASAMP.
2. Create a private SEQABMOD data set like hlq.SEQABMOD.
3. Copy members EQACUIDF33, EQACUIDM34, and EQACUIID from hlq.SEQASAMP to your private

SEQASAMP. Any edits that are described in this section are to be done in the private SEQASAMP
copies of these members.

4. Edit the EQACUIDM member and add each additional installed language feature to the line starting
with &ValLang(1), using JPN for Japanese, and KOR for Korean. For example, adding Japanese would
be done as follows:

&ValLang(1) SetC 'ENU','UEN','JPN' Set valid languages

5. Edit the EQACUIDF member and add each additional installed language feature after the following line:

UEN Language UEN

For example:

UEN Language UEN
JPN Language JPN

6. If you want to change the default value for NATLANG, edit the EQACUIDF member and change the
DfltLang value. For example, making JPN the default for NATLANG would be as follows:

EQACUIDF InstDflt DfltLang=JPN,                                        + 

7. Assemble and link a new copy of EQACUIDF into the private SEQABMOD by editing and submitting the
JCL that is supplied in member EQACUIID.

8. Copy the EQACUIDF member from the private SEQABMOD into hlq.SEQABMOD.

For more information, see “Changing the default and allowable values in EQACUIDF” on page 129.

33 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

34 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

130  IBM z/OS Debugger: Customization Guide



Chapter 16. EQAOPTS commands

EQAOPTS commands are commands that alter some of the basic behavior of z/OS Debugger. These
commands must be processed before normal z/OS Debugger command processing is available. You can
specify most EQAOPTS commands in the following ways:

• Add dynamically at run time, as described in “Providing EQAOPTS commands at run time” on page 139,
a text data set that contains the commands.

• Add to the search sequence, before the copy of EQAOPTS distributed by z/OS Debugger, a customized
version of the EQAOPTS load module.

If you want the commands to apply to only a few debugging sessions, it might be easier to supply the
EQAOPTS command dynamically at run time. If you want the commands to apply to a group of debugging
sessions, it might be better to supply the EQAOPTS commands through the EQAOPTS load module.

Except for commands that can be validly specified more than once (for example, the NAMES commands),
if z/OS Debugger finds a command more than once, it uses the first specification of the command.
z/OS Debugger processes EQAOPTS commands specified at run time before those specified through the
EQAOPTS load module. This means that commands specified at run time override duplicate commands
specified in the EQAOPTS load module.

Any or all of the following people can create EQAOPTS specifications:

• The system programmer that installs z/OS Debugger.
• Specific groups in the organization.
• An individual user.

If you are the system programmer or you are creating EQAOPTS specifications for specific groups, you
might change the EQAOPTS specifications less frequently, so specifying them by generating a new
EQAOPTS load module might be more efficient. If you are an individual user, you might change the
EQAOPTS specifications more frequently, so specifying them dynamically at run time might be more
efficient.

Table 28 on page 131 summarizes the available EQAOPTS commands and indicates whether a system
programmer (S), a specific group (G), or an individual user (U) most commonly uses a command.

Table 28. A brief description of each EQAOPTS command and the type of user most likely to use that command

Command Description
Commonl
y used by

ALTDISP Controls whether to add a character indicator to the MFI screen to
indicate a breakpoint, the current line, or the line with found text.

S, U

BROWSE Allows users with the authority to use z/OS Debugger in normal
mode to restrict their access to Browse Mode.

U

CACHENUM Controls the size of the z/OS Debugger cache to minimize rereading
the debug information.

U, G

CCOUTPUTDSN Specifies the default naming pattern that z/OS Debugger uses to
name the Code Coverage Observation file.

U, G, S

CCOUTPUTDSNALLOC Specifies the allocation parameters that z/OS Debugger uses when
it creates the Code Coverage Observation file.

U, G, S

CCPROGSELECTDSN Specifies the default naming pattern that z/OS Debugger uses to
name the Code Coverage Options file.

U, G, S

© Copyright IBM Corp. 1992, 2021 131



Table 28. A brief description of each EQAOPTS command and the type of user most likely to use that command
(continued)

Command Description
Commonl
y used by

CEEREACTAFTERQDBG Restarts z/OS Debugger if a CEETEST call is encountered after you
use QUIT DEBUG to end a debug session.

S

CODEPAGE Controls the codepage used by z/OS Debugger. U, G, S

COMMANDSDSN Specifies the default naming pattern that z/OS Debugger uses to
name the user's commands file.

U, G, S

DEFAULTVIEW Controls the default view of assembler programs. U, G

DISABLERLIM Disables Omegamon resource limiting (RLIM) during debug
sessions.

S

DLAYDBG Allows users to use delay debug mode. U, G, S

DLAYDBGCND Specifies monitoring condition events in the delay debug mode. U, G, S

DLAYDBGDSN Specifies delay debug profile data set naming pattern. U, G, S

DLAYDBGTRC Specifies delay debug pattern match trace message level. U, G, S

DLAYDBGXRF Specifies that z/OS Debugger uses a cross reference to find the user
ID when z/OS Debugger constructs the delay debug profile data set
name.

This is used when an IMS transaction or DB/2 stored procedure is
initiated from the web or MQ gateway, and thus the transaction is
run with a generic ID.

z/OS Debugger uses either the cross reference file or the Terminal
Interface Manager repository to find the ID of the user who wants
to debug the transaction or stored procedure.

U, G, S

DOPTACBDSN Specifies the data set which will contain DOPT PSBs generated by
the IMS Transaction Isolation Facility.

S

DTCNDELETEDEADPROF Controls the deletion of dead DTCN profiles. S

DTCNFORCExxxx Controls whether to require certain fields in DTCN. S

DYNDEBUG Controls the initial (default) value of SET DYNDEBUG. U, G, S

EQAQPP Enables z/OS Debugger to debug MasterCraft Q++ programs. U, G, S

EXPLICITDEBUG Enables explicit debug mode. U

GPFDSN Specifies that z/OS Debugger process a global preferences file. U, G, S

HOSTPORTS Specifies a host port or range of ports to use for a TCP/IP
connection to the workstation for the remote debugger.

S

IGNOREODOLIMIT Specifies that z/OS Debugger can display COBOL table data items
even when an ODO value is out of range.

U, G, S

LOGDSN Specifies the default naming pattern that z/OS Debugger uses to
name the user's log file.

U, G, S

LOGDSNALLOC Specifies the allocation parameters that z/OS Debugger uses when
it creates the log file.

U, G, S

132  IBM z/OS Debugger: Customization Guide



Table 28. A brief description of each EQAOPTS command and the type of user most likely to use that command
(continued)

Command Description
Commonl
y used by

MAXTRANUSER Specifies the maximum number of IMS transactions that a single
user may register to debug using the IMS Transaction Isolation
Facility.

S

MDBG Allows users of programs compiled with z/OS XL C/C++ Version
1.10, or later, to indicate whether z/OS Debugger searches
for .mdbg files.

U, G

MULTIPROCESS Controls the behavior of z/OS Debugger when a new POSIX process
is created by fork() or exec().

U, G, S

NAMES Controls whether z/OS Debugger processes or ignores certain load
module or compile unit names.

U, G

NODISPLAY Controls the z/OS Debugger behavior when the display requested
by the z/OS Debugger user is not available.

U, G, S

PREFERENCESDSN Specifies the default naming pattern that z/OS Debugger uses to
name the preferences file.

U, G, S

SAVEBPDSN, SAVESETDSN Specifies the default naming pattern for the data sets used to
save and restore the breakpoints and monitors (SAVEBPS) and the
settings (SAVESETS).

U, G, S

SAVEBPDSNALLOC,
SAVESETDSNALLOC

Specifies the allocation parameters that z/OS Debugger uses when
it creates the SAVEBPS and SAVESETS data sets.

U, G, S

SESSIONTIMEOUT Establishes a timeout for idle z/OS Debugger sessions that use the
Terminal Interface Manager. Timed out sessions are canceled after
a specified period of no user activity.

S

STARTSTOPMSG Controls whether to issue a message when each debugging session
is initiated or terminated.

S

STARTSTOPMSGDSN Specifies a message file for start and stop debug session messages. S

SUBSYS Specifies a subsystem used by certain library systems. G, S

SVCSCREEN Controls whether and how z/OS Debugger uses SVC screening
to intercept LOAD and LINK SVC’s. This is necessary for
debugging non-Language Environment assembler and LangX
COBOL programs.

S

TCPIPDATADSN Instructs z/OS Debugger to dynamically allocate the specified file-
name to the DDNAME SYSTCPD for the TCP/IP connection to the
workstation for the remote debugger.

S

THREADTERMCOND Controls whether z/OS Debugger prompts the user when it
encounters a FINISH, enclave termination, or thread termination
condition.

U, G

TIMACB Specifies that the z/OS Debugger Terminal Interface Manager (TIM)
use a name other than EQASESSM.

S

END Specifies the end of a list of EQAOPTS commands. You must specify
END.

U, G, S

Use the following list to help you record the commands and value you want to implement: 

Chapter 16. EQAOPTS commands  133



Table 29. Checklist you can print to record which EQAOPTS commands you selected and the values to use for
each command.

• EQAXOPT ALTDISP, then select one of the following options:

ON
OFF

• EQAXOPT BROWSE, then select one of the following options:

RACF
ON
OFF

• EQAXOPT CACHENUM,number:_____________________________________

• EQAXOPT CCOUTPUTDSN,'file_name_pattern:_______________________'

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing done
by this command.

• EQAXOPT CCOUTPUTDSNALLOC,allocation_parameters:_______________________

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing done
by this command.

• EQAXOPT CCPROGSELECTDSN,'file_name_pattern:_______________________'

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing done
by this command.

• EQAOPTS CEEREACTAFTERQDBG, then select one of the following options:

YES
NO

• EQAXOPT CODEPAGE,code_page_number:___________________________
• EQAXOPT COMMANDSDSN,'file_name_pattern:_______________________'

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing done
by this command.

• EQAXOPT DEFAULTVIEW, then select one of the following options:

STANDARD
NOMACGEN

• EQAXOPT DISABLERLIM, then select one of the following options:

YES
NO

• EQAXOPT DLAYDBG, then select one of the following options:

YES
NO

• EQAXOPT DLAYDBGCND, then select one of the following options:

YES
NO

134  IBM z/OS Debugger: Customization Guide



Table 29. Checklist you can print to record which EQAOPTS commands you selected and the values to use for
each command. (continued)

• EQAXOPT DLAYDBGDSN,'file_name_pattern:_____________________________'

• EQAXOPT DLAYDBGTRC,pattern_match_trace_level:__________________

• EQAXOPT DLAYDBGXRF, then select one of the following options:

DSN,'file_name:_____________'
REPOSITORY

• EQAXOPT DOPTACBDSN,'file_name:_____________'

• EQAXOPT DTCNDELETEDEADPROF, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCECUID, then select one of the following options:

YES
NO

This option performs the same function as DTCNFORCEPROGID. If you select YES for DTCNFORCEPROGID,
you do not need to specify this option.

• EQAXOPT DTCNFORCEIP, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCELOADMODID, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCENETNAME, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCEPROGID, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCETERMID, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCETRANID, then select one of the following options:

YES
NO

• EQAXOPT DTCNFORCEUSERID, then select one of the following options:

YES
NO

Chapter 16. EQAOPTS commands  135



Table 29. Checklist you can print to record which EQAOPTS commands you selected and the values to use for
each command. (continued)

• EQAXOPT DYNDEBUG, then select one of the following options:

ON
OFF

• EQAXOPT EQAQPP, then select one of the following options:

ON
OFF

• EQAXOPT EXPLICITDEBUG, then select one of the following options:

ON
OFF

• EQAXOPT GPFDSN,'file_name:_______________________________________'
• EQAXOPT HOSTPORTS,range_of_ports:_____
• EQAXOPT IGNOREODOLIMIT, then select one of the following options:

YES
NO

• EQAXOPT LOGDSN,'file_name_pattern:_______________________'

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing done
by this command.

• EQAXOPT LOGDSNALLOC,allocation_parameters:_______________________

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing done
by this command.

• EQAXOPT MAXTRANUSER,number:_____________

• EQAXOPT MDBG, then select one of the following options:

YES
NO

• EQAXOPT MULTIPROCESS, then select one of the following options:

PARENT
CHILD
PROMPT

Select one of the following options to indicate what you want z/OS Debugger to do with a process that
executes itself:

EXEC=ANY
EXEC=NONE

• EQAXOPT NAMES, then select one of the following options:

EXCLUDE,LOADMOD,pattern:____________________________________
EXCLUDE,CU,pattern:_________________________________________
INCLUDE,LOADMOD,name:_______________________________________
INCLUDE,CU,name:____________________________________________

136  IBM z/OS Debugger: Customization Guide



Table 29. Checklist you can print to record which EQAOPTS commands you selected and the values to use for
each command. (continued)

• EQAXOPT NODISPLAY, then select one of the following options:

DEFAULT
QUITDEBUG

• EQAXOPT PREFERENCESDSN,'file_name_pattern:_______________________'

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing done
by this command.

• EQAXOPT SAVEBPDSN,'file_name_pattern:____________________________________'
• EQAXOPT SAVESETDSN,'file_name_pattern:____________________________________'

• EQAXOPT SAVEBPDSNALLOC,allocation_parameters:_______________________

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing done
by this command.

• EQAXOPT SAVESETDSNALLOC,allocation_parameters:_______________________

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing done
by this command.

• EQAXOPT SESSIONTIMEOUT, then select one of the following options:

NEVER
QUITDEBUG,hhmmssnn
QUIT,hhmmssnn

• EQAXOPT STARTSTOPMSG, then select one of the following options:

NONE
ALL
CICS
TSO
BATCHTSO
IMS
OTHER
or any of CICS, TSO, BATCHTSO, IMS, and OTHER, or all of them enclosed in parenthesis and separated by
commas.

Append ,WTO if you want z/OS Debugger to display the messages via WTO.

• EQAXOPT STARTSTOPMSGDSN,'file_name:_______________'

Append ,LOUD if you want z/OS Debugger to display WTO messages, which helps you debug processing done
by this command.

• EQAXOPT SUBSYS,subsystem_name:____________________________

Chapter 16. EQAOPTS commands  137



Table 29. Checklist you can print to record which EQAOPTS commands you selected and the values to use for
each command. (continued)

• EQAXOPT SVCSCREEN, then select one of the following options:

ON
OFF
(OFF,QUIET)

Select one of the following options to indicate what you want z/OS Debugger to do if there is an existing SVC
screening environment:

CONFLICT=OVERRIDE
CONFLICT=NOOVERIDE

Select one of the following options to indicate whether you want z/OS Debugger to temporarily replace the
existing SVC screening environment:

NOMERGE
MERGE=(COPE)

• TCPIPDATADSN,'file_name: _____'

• EQAXOPT THREADTERMCOND, then select one of the following options:

PROMPT
NOPROMPT

EQAXOPT TIMACB,ACB_name:_________________________________________
EQAXOPT END Always specify this command.

After you have made all of you selections, define the options as described in “Creating EQAOPTS load
module” on page 140.

Format of the EQAOPTS command
When you specify EQAOPTS commands through the EQAOPTS load module, you create them as
assembler macro invocations and you must subsequently assemble and link-edit them into the EQAOPTS
load module. To provide a consistent format for all forms of EQAOPTS commands, when you specify the
EQAOPTS commands at run time, you must use the assembler macro invocation format. The following
format rules apply to all EQAOPTS commands:

• EQAOPTS commands must be contained in fixed-length, eighty-byte records.
• The commands must be contained between columns one and seventy-one, with column seventy-two

reserved for a continuation indicator. z/OS Debugger ignores columns seventy-three through eighty.
• Specify an asterisk (*) in column one to indicate a comment. z/OS Debugger ignores comments. Column

one must be blank for all non-comment statements.
• The op-code for each EQAOPTS statement must be EQAXOPT and must begin in or after column two

and followed by at least one blank.
• A list of one or more operands must follow the EQAXOPT op-code. Separate these operands by a

comma and do not embed blanks.
• If a command exceeds the length of one line, you can continue the command in one of the following

ways:

– You can end at the comma following an operand and place a non-blank character in column seventy-
two.

– You can use all of the columns through column seventy-one and place a non-blank character in
column seventy-two.

138  IBM z/OS Debugger: Customization Guide



In either case, the statement that follows must be blank in columns one through fifteen and begin in
column sixteen.

EQAOPTS commands that have equivalent z/OS Debugger
commands

Some EQAOPTS commands have equivalent z/OS Debugger commands. Table 30 on page 139 shows a
few examples.

Table 30. Examples of EQAOPTS commands and their equivalent z/OS Debugger commands

EQAOPTS command z/OS Debugger command

DEFAULTVIEW SET DEFAULTVIEW

DYNDEBUG SET DYNDEBUG

EXPLICITDEBUG SET EXPLICITDEBUG

NAMES NAMES

For these commands, specifying them as EQAOPTS commands or z/OS Debugger commands produces
the same action. The timing (when these commands take effect) differs between EQAOPTS commands
and z/OS Debugger commands.

z/OS Debugger processes z/OS Debugger commands after it processes the initial load module and creates
the compile units contained in the initial load modules. z/OS Debugger processes EQAOPTS commands
during z/OS Debugger initialization, prior to processing the initial load module. This means that when z/OS
Debugger processes the initial load module, z/OS Debugger commands like NAMES are not in effect but
the corresponding EQAOPTS commands are in effect and are applied to the initial load module.

EQAOPTS commands like DEFAULTVIEW provide a way of specifying a site- or group-wide default for the
corresponding z/OS Debugger command. However, a better way to specify a site- or group-wide default
for these types of commands is by putting the z/OS Debugger command in a global preferences file.

Providing EQAOPTS commands at run time
You can provide EQAOPTS commands to z/OS Debugger at run time. You must save the commands in a
data set with 80-byte, fixed-length records. The following list describes the methods of specifying this
data set to z/OS Debugger:

• In CICS, include the EQAOPTS commands through DTCN.
• In UNIX System Services, specify the name of the data set containing the EQAOPTS commands through

the EQA_OPTS_DSN environment variable.
• In IMS and Db2, specify the name of the data set containing the EQAOPTS commands in the Language

Environment user exit or debug profile by using DTU option 6 or B, Terminal Interface Manager, or the
z/OS Debugger Profiles view.

• In other environments, specify the name of the data set containing the commands through the
EQAOPTS DD statement.

The following example shows what the data set might contain:

EQAXOPT MDBG,YES
EQAXOPT NODISPLAY,QUITDEBUG
EQAXOPT NAMES,EXCLUDE,LOADMOD,USERMOD1
EQAXOPT NAMES,EXCLUDE,LOADMOD,USERMOD7
EQAXOPT END

The instructions in “Creating EQAOPTS load module” on page 140 contain examples with specifications
for CSECT, AMODE, RMODE, and END (without EQAXOPTS) statements. Do not include these
specifications if you provide EQAOPTS command at run time.

Chapter 16. EQAOPTS commands  139



Creating EQAOPTS load module
If you have chosen to use the EQAOPTS load module to specify your EQAOPTS commands, do the
following steps:

1. Copy the EQAOPTS35 member from the hlq.SEQASAMP library to a private library.
2. Edit this copy of EQAOPTS and code the EQAOPTS command or commands you want. To this minimum

source, add each EQAXOPT option you want to include. The following example describes the minimum
assembler source required to generate the EQAOPTS load module:

EQAOPTS  CSECT ,
EQAOPTS  AMODE 31
EQAOPTS  RMODE ANY
         Add your customized EQAXOPT statements here.  For example:
         EQAXOPT MDBG,YES
         EQAXOPT NODISPLAY,QUITDEBUG
         EQAXOPT NAMES,EXCLUDE,LOADMOD,USERMOD1
         EQAXOPT NAMES,EXCLUDE,LOADMOD,USERMOD7
         EQAXOPT END
         END ,

3. Follow the directions in the EQAOPTS sample to generate a new EQAOPTS load module. These
directions describe how to assemble the source and link-edit the generated object into a load module
named EQAOPTS.

4. Place the EQAOPTS load module in a private data set that is in the load module search path and
appears before hlq.SEQAMOD.

Descriptions of EQAOPTS commands
To learn how EQAOPTS commands work and how to specify them, see Chapter 16, “EQAOPTS
commands,” on page 131.

ALTDISP
You can use the EQAOPTS ALTDISP command to add a character indicator to the MFI screen to indicate
a breakpoint, the current line, or the line with found text. By default, z/OS Debugger uses coloring to
indicate these situations.

Use this command only if your 3270 color configuration and attributes make it difficult to detect the
coloring in the line. It is valid only when you are using interactive MFI mode.

The following diagram describes the syntax of the ALTDISP command:

EQAXOPT ALTDISP , ON

OFF

The following list describes the parameters of the EQAOPTS ALTDISP command:

ON
Indicates to add a character indicator to indicate a breakpoint, the current line, or the line with found
text.

OFF
Indicates not to add a character indicator to indicate a breakpoint, the current line, or the line with
found text. This is the default value.

Example

EQAXOPT ALTDISP,ON

35 See "SMP/E USERMODs" in the IBM z/OS Debugger Customization Guide for an SMP/E USERMOD for this
customization.

140  IBM z/OS Debugger: Customization Guide



BROWSE
z/OS Debugger browse mode can be controlled by either the browse mode RACF facility, through the
EQAOPTS BROWSE command, or both. For a description of how to control browse mode through RACF, see
"Debugging in browse mode" in the IBM z/OS Debugger User's Guide.

Users who have sufficient RACF authority can specify the EQAOPTS BROWSE command to indicate that the
current invocation of z/OS Debugger be in browse mode.

The following diagram describes the syntax of the BROWSE command:

EQAXOPT BROWSE , RACF

ON

OFF

The following list describes the parameters of the EQAOPTS BROWSE command:

RACF
Indicates that you want z/OS Debugger to use the browse mode access as determined by the current
user’s RACF access to the applicable RACF profile. If you do not specify the BROWSE command, z/OS
Debugger defaults to RACF.

ON
Indicates that unless the user’s RACF access is NONE, set BROWSE MODE to ON.

OFF
Indicates that if no RACF profile exists or if the user has UPDATE access or higher, set BROWSE MODE
to OFF.

Examples

EQAXOPT BROWSE,ON
EQAXOPT BROWSE,RACF

CACHENUM
To reduce CPU consumption, z/OS Debugger stores information about the application programs being
debugged in a cache. By default, for each debug session, z/OS Debugger stores the information for a
maximum of 10 programs. Application programs that do a LINK, LOAD, or XCTL to more than 10 programs
can degrade the debugger's CPU performance. You can enhance the debugger's CPU performance for
these application programs by specifying an increased CACHENUM value in EQAOPTS. An increased value
causes z/OS Debugger to use more storage for each debugging session.

The following diagram describes the syntax of the CACHENUM command:

EQAXOPT CACHENUM , cache_value

cache_value
Specifies the size of the z/OS Debugger cache. It must be no smaller than 10 and no larger then 999.

Example

EQAXOPT CACHENUM,40

CCOUTPUTDSN
This option provides the data set name to be used for the Code Coverage Observation file. Specify
NULLFILE if no Observation file is to be written to.

This data set must be preallocated as a sequential data set if CCOUTPUTDSNALLOC is not specified.
RECFM=VB, LRECL=255 is suggested.

Chapter 16. EQAOPTS commands  141



The following diagram describes the syntax of the CCOUTPUTDSN command:

EQAXOPT CCOUTPUTDSN , ' file_name_pattern '

, LOUD

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains this file. Follow
these guidelines when you create the naming pattern:

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

• Specify NULLFILE to indicate that you do not want z/OS Debugger to process this file.

LOUD
Specifies that z/OS Debugger displays WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages if it does not find the data set. If
you are trying to determine why z/OS Debugger is not processing this file, specify LOUD to see if it
displays a message that it can not find the data set.

CCOUTPUTDSNALLOC
This option is used to create the CCOUTPUTDSN data set for a new user and provides the allocation
parameters (in BPXWDYN format).

The following diagram describes the syntax of the CCOUTPUTDSNALLOC command:

EQAXOPT CCOUTPUTDSNALLOC , ' allocation_parms '

, LOUD

allocation_parms
Specifies the allocation parameters you want z/OS Debugger to use when it creates the data set. You
can specify only the keys in the following list:

• BLKSIZE
• BLOCK
• CYL
• DATACLAS
• DSNTYPE
• DSORG
• LRECL
• MGMTCLAS
• RECFM
• SPACE
• STORCLAS
• TRACKS
• UNIT
• VOL

Separate the keys by one or more blanks. z/OS Debugger does not provide defaults for any of the keys.

For information about the format of the keys, see the chapter "BPXWDYN: a text interface to dynamic
allocation and dynamic output" in the z/OS Using REXX and z/OS UNIX System Services manual.
Specify that the data set be sequential. To learn about other formatting rules for the log file, see "Data
sets used by z/OS Debugger" of the IBM z/OS Debugger User's Guide.

142  IBM z/OS Debugger: Customization Guide



LOUD
Specifies that z/OS Debugger displays WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages when it creates this data set. If
you are trying to determine why this file was not created, specify LOUD to view any messages.

CCPROGSELECTDSN
This option provides the data set name that contains the Code Coverage Options file (which specifies the
Group IDs and the PROGRAM IDs of the COBOL routines that are to be processed). Specify NULLFILE if
no Code Coverage Options file is to be read.

This dataset must be preallocated as a sequential dataset. RECFM=VB, LRECL=255 is suggested.

The following diagram describes the syntax of the CCPROGSELECTDSN command:

EQAXOPT CCPROGSELECTDSN , ' file_name_pattern '

, LOUD

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains this file. Follow
these guidelines when you create the naming pattern:

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

• Specify NULLFILE to indicate you do not want z/OS Debugger to process this file.

LOUD
Specifies that z/OS Debugger displays WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages if it does not find the data set or
data set member. If you are trying to determine why z/OS Debugger is not processing this file, specify
LOUD to see if it displays a message that it can not find the data set.

CEEREACTAFTERQDBG
You can specify this command to restart z/OS Debugger with CEETEST after you use QUIT DEBUG to end
a debug session. You can specify this command only in an EQAOPTS load module.

Note: You cannot use this command in standard mode for remote debugging.

The following diagram describes the syntax of the CEEREACTAFTERQDBG command:

EQAXOPT CEEREACTAFTERQDBG , NO

YES

The following list describes the parameters of the EQAOPTS CEEREACTAFTERQDBG command:
NO

Indicates that you do not want to restart z/OS Debugger if a CEETEST call is encountered after you
use QUIT DEBUG to end a debug session. This parameter is the default setting.

YES
Indicates that you want to restart z/OS Debugger if a CEETEST call is encountered after you use QUIT
DEBUG to end a debug session.

Example

EQAXOPT CEEREACTAFTERQDBG,NO

EQAXOPT CEEREACTAFTERQDBG,YES

Chapter 16. EQAOPTS commands  143



CODEPAGE
The default code page used by z/OS Debugger and the remote debuggers is 037. For any of the following
situations, you need to use a different code page:

• Application programmers are debugging in remote debug mode and the source or compiler use a code
page other than 037.

If your C/C++ source contains square brackets or other special characters, you might need to specify an
EQAOPTS CODEPAGE command to override the z/OS Debugger default code page (037). Check the code
page specified when you compiled your source. The C/C++ compiler uses a default code page of 1047 if
you do not explicitly specify one. If the code page used is 1047 or a code page other than 037, you need
to specify an EQAOPTS CODEPAGE command specifying that code page.

• Application programmers are debugging in full screen mode and encounter one of the following
situations:

– They use the STORAGE command to update COBOL NATIONAL variables.
– The source is coded in a code page other than 037.

• Application programmers use the XML(CODEPAGE(ccsid)) parameter on a LIST CONTAINER or
LIST STORAGE command to specify an alternate code page.

z/OS Debugger uses the z/OS Unicode Services to process characters that need code page conversion.

The following diagram describes the syntax of the CODEPAGE command:

EQAXOPT CODEPAGE , nnnn

nnnn
A positive integer indicating the code page to use.

After implementing the EQAOPTS CODEPAGE command, if application programmers using full-screen
mode still cannot display some characters correctly, have them verify that their emulator's code page
matches the code page of the characters they need to display.

You might need to create your own conversion images as described in “Creating a conversion image for
z/OS Debugger” on page 144.

Example

EQAXOPT CODEPAGE,121

Creating a conversion image for z/OS Debugger
You might need to create a conversion image so that z/OS Debugger can properly transmit characters in
a code page other than 037 between the remote debugger and the host. A conversion image contains the
following information:

• The conversion table that specifies the source CCSID (Coded Character Set Identifiers) and target
CCSID. For z/OS Debugger, specify a pair of conversion images between the host code page and
Unicode code page (UTF-8). You can specify the host code page in the VADSCPnnnnn suboption of
TEST runtime option or with the CODEPAGE command in the EQAOPTS data set. If you specify both
the VADSCPnnnnn suboption and the CODEPAGE command, z/OS Debugger uses only the CODEPAGE
command. The following table shows the images required for CCSIDs 930, 939 (Japanese EBCDIC),
933 (Korean EBCDIC), 1141 (Germany EBCDIC), and 1047 (Latin 1/Open Systems, EBCDIC). See IBM
z/OS Debugger Reference and Messages for a detailed description of the suboption VADSCPnnnnn.

144  IBM z/OS Debugger: Customization Guide



Table 31. Source and target CCSID to specify, depending on the code page command used

VADSCPnnnn suboption or
CODEPAGE command

Source CCSID Target CCSID

VADSCP930 or CODEPAGE,930 13901 1208 (UTF-8)

1208 13901

VADSCP939 or CODEPAGE,939 13991 1208 (UTF-8)

1208 13991

VADSCP933 or CODEPAGE,933 933 1208 (UTF-8)

1208 933

VADSCP1141 or
CODEPAGE,1141

1141 1208 (UTF-8)

1208 1141

VADSCP1047 or
CODEPAGE,1047

1047 1208 (UTF-8)

1208 1047

Note:

1. For compatibility with earlier versions, 1390 and 1399 are used.

For each suboption, a pair of conversion images are needed for bidirectional conversion.
• The conversion technique, also called the technique search order. z/OS Debugger uses the technique

search order RECLM, which means roundtrip, enforced subset, customized, Language Environment-
behavior, and modified language. RECLM is the default technique search order, so you do not have to
specify the technique search order in the JCL.

You might need to create a conversion image so that users debugging COBOL programs in full screen or
batch mode can modify NATIONAL or UTF-8 variables with the STORAGE command or to properly display
C/C++ variables that contain characters in a code page other than 037. To create the conversion image,
you need to do the following steps:

1. Ask your system programmer for the host's CCSID.
2. Submit a JCL job that specifies the conversion image between the host CCSID, which you obtained in

step “1” on page 145, and CCSID 1200 (UTF-16).

“Example: JCL for generating conversion images” on page 145 describes how one JCL creates the
conversion images for both situations.

Example: JCL for generating conversion images
The following JCL generates the conversions images required for z/OS Debugger.

This JCL is a variation of the JCL located at hlq.SCUNJCL(CUNJIUTL), which is provided by the Unicode
conversion services package.

//CUNMIUTL EXEC PGM=CUNMIUTL
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIMG DD DSN=UNI.IMAGES(CUNIMG01),DISP=SHR
//TABIN DD DSN=UNI.SCUNTBL,DISP=SHR
//SYSIN DD *
  /********************************************************************/
  /* Conversion image input for z/OS Debugger in Remote               */
  /* debug mode                                                       */
  /********************************************************************/  
  CONVERSION 1390,1208;   /* IBM-930 to UTF-8,RECLM */
  CONVERSION 1208,1390;   /* UTF-8 to IBM-930,RECLM */
  CONVERSION 1399,1208;   /* IBM-939 to UTF-8,RECLM */
  CONVERSION 1208,1399;   /* UTF-8 to IBM-939,RECLM */

Chapter 16. EQAOPTS commands  145



  CONVERSION  933,1208;   /* IBM-933 to UTF-8,RECLM */
  CONVERSION 1208,933;    /* UTF-8 to IBM-933,RECLM */
  CONVERSION 1141,1208;   /* IBM-1141 to UTF-8,RECLM */
  CONVERSION 1208,1141;   /* UTF-8 to IBM-1141,RECLM */
  CONVERSION 1047,1208;   /* IBM-1047 to UTF-8,RECLM */
  CONVERSION 1208,1141;   /* UTF-8 to IBM-1141,RECLM */
  /********************************************************************/
  /* Conversion image input for z/OS Debugger to modify COBOL NATIONAL*/
  /* variables with the STORAGE command while in full screen mode     */
  /********************************************************************/  
  CONVERSION 0037,1200;   /*IBM-37 to UTF-16,RECLM */
/*

z/OS Debugger uses the character conversion services but not the case conversion or the normalization
services of Unicode conversion services. You do not need to include CASE or NORMALIZE control
statements unless other applications require them.

COMMANDSDSN
Indicates that you want z/OS Debugger to read a user's commands file (with the name of the data set
containing the commands file determined by the specified naming pattern) each time it starts. This works
in the following situation:

• You do not specify a data set name or DD name for the user's commands file using any other method;
for example, the TEST runtime option.

• You or your site specifies the EQAOPTS COMMANDSDSN command.
• The data set specified by the EQAOPTS COMMANDSDSN command exists and contains a member whose

name matches the initial load module name in the first enclave.

The following diagram describes the syntax of the COMMANDSDSN command:

EQAXOPT COMMANDSDSN , ' file_name_pattern '

, LOUD

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains the user's
commands file. Follow these guidelines when you create the naming pattern:

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

• Specify NULLFILE to indicate you do not want z/OS Debugger to process a commands file.

LOUD
Specifies that z/OS Debugger display WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages if it does not find the data set
or data set member. If you are trying to determine why z/OS Debugger is not processing a user's
commands file, specify LOUD to see if it displays a message that it cannot find the data set or the
member.

If you choose to implement this option, users who want to use this function must create the commands
file as a PDS or PDSE with the allocation parameters that are described in "Data sets used by z/OS
Debugger" in the IBM z/OS Debugger User's Guide. Then, users create a member for each program that
they want to debug, with the name of the member matching the initial load module name in the first
enclave.

Example

EQAXOPT  COMMANDSDSN,'&&USERID.DBGTOOL.COMMANDS'

If you log in with user ID jsmith, z/OS Debugger determines the name of the data set to be
JSMITH.DBGTOOL.COMMMANDS.

146  IBM z/OS Debugger: Customization Guide



DEFAULTVIEW
A user can control whether to display the statements of an assembler macro in the Source window
by entering the SET DEFAULT VIEW command. Every time a LOADDEBUGDATA command is run for an
assembler compile unit, z/OS Debugger uses the setting of this command to determine whether to display
the macro-generated statements. You can control the initial default for this setting by using the EQAOPTS
DEFAULTVIEW command.

The following diagram describes the syntax of the DEFAULTVIEW command:

EQAXOPT DEFAULTVIEW , STANDARD

NOMACGEN

Each of these fields corresponds to the similar field in the SET DEFAULT VIEW command. If you do not
code the EQAOPTS DEFAULTVIEW command, the initial setting for DEFAULTVIEW is STANDARD.

Example

EQAXOPT DEFAULTVIEW,NOMACGEN

DISABLERLIM
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

You can specify this command to control whether or not z/OS Debugger disables Omegamon Resource
Limiting (RLIM) during debug sessions in a CICS region.

The following diagram describes the syntax of the DLAYDBG command:
EQAXOPT DISABLERLIM YES

NO

The following list describes the parameters of the DISABLERLIM command:
YES

Indicates that you want z/OS Debugger to disable RLIM processing during debug sessions; this is the
default value.

NO
Indicates that you do not want z/OS Debugger to disable RLIM processing.

Example

EQAXOPT DISABLERLIM,YES
EQAXOPT DISABLERLIM,NO

DLAYDBG
You can specify this command only in the EQAOPTS load module. The only exception to this rule is a
transaction executing in a private message region under the IMS Transaction Isolation Facility, which
accepts this command in EQAOPTS DD as well.

You can specify this command to enable z/OS Debugger to delay the starting of a debug session until z/OS
Debugger recognizes a certain program name or C function name (compile unit) (along with an optional
load module name).

This command can be used only in the non-CICS environments.

The following diagram describes the syntax of the DLAYDBG command:

EQAXOPT DLAYDBG , NO

YES

Chapter 16. EQAOPTS commands  147



The following list describes the parameters of the DLAYDBG command:
NO

Indicates that you do not want delay debug enabled; this is the default value.
YES

Indicates that you want delay debug enabled.

If you choose to implement this option, users who want to use this option must create the delay debug
profile as a physical sequential data set by using the option B of the IBM z/OS Debugger Utilities: Delay
Debug Profile.

Example

EQAXOPT DLAYDBG,NO
EQAXOPT DLAYDBG,YES

DLAYDBGCND
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

You can use this command to indicate whether you want z/OS Debugger to monitor condition events in
the delay debug mode.

This command can be used only in the non-CICS environments.

The following diagram describes the syntax of the DLAYDBGCND command:

EQAXOPT DLAYDBGCND ,

ALL

NONE

The following list describes the parameters of the DLAYDBGCND command:
ALL

Indicates that you want z/OS Debugger to monitor all condition events. This is the default option.
NONE

Indicates that you do not want z/OS Debugger to monitor condition events.

Example

EQAXOPT DLAYDBGCND,NONE

DLAYDBGDSN
You can specify this command only in the EQAOPTS load module. The only exception to this rule is a
transaction executing in a private message region under the IMS Transaction Isolation Facility, which
accepts this command in EQAOPTS DD as well.

You can specify this command to indicate that you want z/OS Debugger to use the specified naming
pattern when it constructs the delay debug profile data set name.

This command can be used only in the non-CICS environments.

The following diagram describes the syntax of the DLAYDBGDSN command:

EQAXOPT DLAYDBGDSN , ' file_name_pattern '

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains the delay debug
profile. Follow this guideline when you create the naming pattern:

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

148  IBM z/OS Debugger: Customization Guide



The default naming pattern is &&USERID.DLAYDBG.EQAUOPTS.

Example

EQAXOPT DLAYDBGDSN,'&&USERID.DLAYDBG.EQAUOPTS';

DLAYDBGTRC
You can specify this command only in the EQAOPTS load module. The only exception to this rule is a
transaction executing in a private message region under the IMS Transaction Isolation Facility, which
accepts this command in EQAOPTS DD as well.

You can specify this command to indicate that you want z/OS Debugger to generate trace during the
pattern match process in the delay debug mode. z/OS Debugger uses the WTO (write to operator)
command to output the trace.

This command can be used only in the non-CICS environments.

The following diagram describes the syntax of the DLAYDBGTRC command:

EQAXOPT DLAYDBGTRC , trace_level

trace_level
Specifies a trace level that determines the level of traces that z/OS Debugger generates. Valid levels
are:

• 0 - no trace message; this is the default value.
• 1 - error and warning messages
• 2 - error, warning, and diagnostic messages
• 3 - error, warning, diagnostic, and internal diagnostic messages

Example

EQAXOPT DLAYDBGTRC,2

DLAYDBGXRF
You can specify this command only in the EQAOPTS load module. The only exception to this rule is a
transaction executing in a private message region under the IMS Transaction Isolation Facility, which
accepts this command in EQAOPTS DD as well.

In this section, the term generic ID refers to a user ID that executes a task but is not the ID that debugs
the task. Common examples include the user ID associated with a WebSphere® MQ for z/OS trigger
monitor, or the user ID that runs a web services-initiated program.

You can use the DLAYDBGXRF command to map a generic ID to a user ID that is obtained from one of the
following sources:

• The Delay Debug cross reference file
• Users logged on to Terminal Interface Manager

The user ID that is obtained by this method is used in place of the current user ID when the delay debug
profile data set name is constructed.

The generic ID-to-user ID mapping can occur in the following environments:

• In the IMS environment when an IMS transaction is started with a generic ID.
• In the DB/2 stored procedures environment. This environment is supported by the REPOSITORY and

CLIENTID options.

The following diagram describes the syntax of the DLAYDBGXRF command:

Chapter 16. EQAOPTS commands  149



EQAXOPT DLAYDBGXRF , DSN , 'file_name'

REPOSITORY

CLIENTID

DSN
Specifies that the generic ID cross reference file 'file_name' should be used to map the generic ID to
the user ID of the z/OS Debugger user.

REPOSITORY
Specifies that z/OS Debugger communicates with Terminal Interface Manager (TIM) to determine
whether a user has logged on to TIM and requested to debug the current IMS transaction or DB/2
stored procedure.

The REPOSITORY option requires that the debugging user ID be granted RACF authority to debug
tasks initiated by the generic ID. This is done via the EQADTOOL.GENERICID.generic_user_ID facility.
To set this up, use the following RACF commands:

RDEFINE EQADTOOL.GENERICID.generic_user_ID CLASS(FACILITY) UACC(NONE)
PERMIT EQADTOOL.GENERICID.generic_user_ID ID(user) ACC(READ)

The generic_user_ID can be a pattern.

The REPOSITORY option also requires that you start the Terminal Interface Manager started task with
the REPOSITORY option. See “Starting the Terminal Interface Manager” for more information.

CLIENTID
Specifies that z/OS Debugger uses the DB/2 client user ID for a stored procedure call to determine
whether a remote debug user has requested to debug DB/2 stored procedures that execute with that
client user ID. If such a user exists, their user ID will be used to locate the delay debug profile data
set.

'file_name'
Specifies an MVS sequential data set with FB LRECL 80 characteristics.

Example

EQAXOPT DLAYDBGXRF,DSN,'EQAW.TRNUSRID.XREF'
EQAXOPT DLAYDBGXRF,REPOSITORY

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Debugging tasks running under a generic user ID in the IBM z/OS Debugger User's Guide

DOPTACBDSN
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

The DOPTACBDSN command identifies the data set that will contain DOPT PSBs that are created by z/OS
Debugger for the IMS Transaction Isolation Facility. This data set will be used to store ACBs generated for
the EQATcccn DOPT PSBs.

There is no default value for this command. If your site will use the IMS Transaction Isolation Facility, this
command must be specified.

The following diagram describes the syntax of the DOPTACBDSN command:

EQAXOPT DOPTACBDSN , 'data_set_name'

'data_set_name'
Fully-qualified name of the data set that will contain the EQATcccn DOPT PSBs.

150  IBM z/OS Debugger: Customization Guide



DTCNDELETEDEADPROF
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

This command controls the deletion of DTCN profiles. A dead profile is a profile whose owner has logged
off or disconnected from the CICS region.

DTCN scans its repository for dead profiles from time to time, and on demand when EQADCDEL is called.
When a dead profile is found, it deactivates the profile by default. You can specify DTCNDELETEDEADPROF
to delete the profile instead. The dead profile is deactivated or deleted by the INACTIVATE or DELETE
DTCN function.

The following diagram describes the syntax of the DTCNDELETEDEADPROF command:

EQAXOPT DTCNDELETEDEADPROF ,

NO

YES

NO
Indicates that you want DTCN not to delete the profile. NO is the default option.

YES
Indicates that you want DTCN to delete the profile.

Example

EQAXOPT DTCNDELETEDEADPROF,YES

DTCNFORCExxxx
You can specify these commands only in the EQAOPTS load module. You cannot specify them at run time.

If your users create debugging profiles with DTCN, you can use the DTCNFORCExxxx commands to
require that certain DTCN fields are not left blank. The following list describes each resource type you can
require each user to specify:

• DTCNFORCECUID or DTCNFORCEPROGID, which requires the user to specify the name of a compile unit
or compile units.

• DTCNFORCEIP, which requires the user to specify the IP name or address.
• DTCNFORCELOADMODID, which requires the user to specify the name of a load module or load

modules.
• DTCNFORCENETNAME, which requires the user to specify the four character name of a CICS terminal or

a CICS system.
• DTCNFORCETERMID, which requires the user to specify the CICS terminal.
• DTCNFORCETRANID, which requires the user to specify a transaction ID.
• DTCNFORCEUSERID, which requires the user to specify a user ID.

If any of the statements are not included, the statement defaults to NO.

The following diagram describes the syntax of the DTCNFORCExxxx command:

EQAXOPT DTCNFORCECUID ,

DTCNFORCEIP ,

DTCNFORCELOADMODID ,

DTCNFORCENETNAME ,

DTCNFORCETERMID ,

DTCNFORCETRANID ,

DTCNFORCEUSERID ,

YES

NO

Chapter 16. EQAOPTS commands  151



YES
Indicates that the specified field is required.

NO
Indicates that the specified field is not required.

Examples

EQAXOPT DTCNFORCEUSERID,YES
EQAXOPT DTCNFORCETRANID,NO

DYNDEBUG
z/OS Debugger Reference and Messages describes how you use the SET DYNDEBUG command to enable
or disable dynamic debug mode in z/OS Debugger.

The initial default setting is DYNDEBUG ON. If you want to change the initial default setting, use the
EQAOPTS DYNDEBUG command.

The following diagram describes the syntax of the DYNDEBUG command:

EQAXOPT DYNDEBUG , ON

OFF

ON
Sets the initial default to DYNDEBUG ON.

OFF
Sets the initial default to DYNDEBUG OFF.

Example

EQAXOPT DYNDEBUG,OFF

EQAQPP
You must specify this command to enable z/OS Debugger to debug MasterCraft Q++ programs, provided
by Tata Consultancy Services Ltd. For more information about how to enable z/OS Debugger to support
MasterCraft Q++, contact Tata Consultancy Services Ltd.

The following diagram describes the syntax of the EQAQPP command:

EQAXOPT EQAQPP , ON

OFF

ON
Indicates z/OS Debugger supports Q++ debugging.

OFF
Indicates z/OS Debugger does not support Q++ debugging. If you do not specify the EQAQPP
command, OFF is the default.

Example

EQAXOPT EQAQPP,ON

EXPLICITDEBUG
The IBM z/OS Debugger Reference and Messages describes how you use the SET EXPLICITDEBUG
command to enable explicit debug mode in z/OS Debugger. However, before you can enter the SET
EXPLICITDEBUG command, z/OS Debugger has already processed the initial load module and loaded the

152  IBM z/OS Debugger: Customization Guide



debug data for the compile units it contains. If you want to enable explicit debug mode prior to processing
the initial load module, use the EQAOPTS EXPLICITDEBUG command.

The following diagram describes the syntax of the EXPLICITDEBUG command:

EQAXOPT EXPLICITDEBUG , ON

OFF

ON
Enables explicit debug mode.

OFF
Disables explicit debug mode. This is the default.

Example

EQAXOPT EXPLICITDEBUG,ON

GPFDSN
You can create a global preferences file that runs a set of z/OS Debugger commands at the start of all
z/OS Debugger sessions. For example, a global preferences file can have a command that sets PF keys
to specific values. If your site uses the PF6 key as the program exit key, you can specify the SET PF6
"EXIT" = QUIT; command, which assigns the z/OS Debugger QUIT command to the PF6 key, in the
global preferences file. (See "Customizing your full-screen session" in the IBM z/OS Debugger User's Guide
for a description of the interface features you can change.)

Whenever a user starts z/OS Debugger, z/OS Debugger processes the commands in the global
preferences file first. The user can also create his or her own preferences file and a commands file.
In this situation, z/OS Debugger processes the files in the following order:

1. Global preferences file
2. User preferences file
3. Commands file

To create a global preferences file, do the following steps:

1. Create a preferences file that is stored as a sequential file or a PDS member. Refer to IBM z/OS
Debugger User's Guide for a description of preferences files.

The rules for the preferences file are dependant on the programming language of the first program
z/OS Debugger encounters. Because you might not know what programming language z/OS Debugger
will encounter first, use the following rules when you create the preferences file:

• Put the commands in columns 8 - 72.
• Do not put line numbers in the file.
• Use COMMENT or /* */ to delimit comments.

2. Specify the GPFDSN command to indicate the name of the global preferences file.

For 'file_name', specify the name of the data set where the global preferences file will be stored.

The following diagram describes the syntax of the GPFDSN command:

EQAXOPT GPFDSN

, ' file_name '

'file_name'
The name of the data set where you stored the global preferences file.

Chapter 16. EQAOPTS commands  153



Examples

EQAXOPT GPFDSN,’GROUP1.COMMON.DTOOL.PREFS’
EQAXOPT GPFDSN

HOSTPORTS
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time. To
use this command in the CICS environment, you must be using the TCP/IP Socket Interface for CICS. For
instructions on activating the TCP/IP Socket Interface for CICS, see the z/OS Communications Server IP
CICS Sockets Guide.

You can use this command to specify a host port or range of ports for a TCP/IP connection from the host
to a workstation when using remote debug mode.

The following diagram describes the syntax of the HOSTPORTS command:
EQAXOPT HOSTPORTS

, port_number

, port_number_range

, (

,

port_number

port_number_range

)

port_number
A positive integer (1-32767) identifying a TCP/IP port number.

port_number_range
The first and last port_number identifying a range of port numbers, separated by a hyphen (-).

Examples

EQAXOPT  HOSTPORTS,29500-30499
EQAXOPT  HOSTPORTS,(29500-30499,31500-32499)

IGNOREODOLIMIT
This command tells z/OS Debugger to display COBOL table data items even when an ODO value is out of
range, and to suppress the following messages:
MFI and batch:

EQA1471E Incorrect value for ODO variable data item
Remote:

EQA2377E Invalid data.

The following diagram describes the syntax of the IGNOREODOLIMIT command:

EQAXOPT IGNOREODOLIMIT , YES

NO

YES
Indicates that z/OS Debugger should display the requested table data item even when an ODO value
is out of range, and to suppress issuing EQA1471E or EQA2377E.

NO
Indicates that z/OS Debugger should not display the requested table data item when an ODO value is
out of range, and to issue EQA1471E or EQA2377E.

154  IBM z/OS Debugger: Customization Guide



Examples

EQAXOPT IGNOREODOLIMIT,YES
EQAXOPT IGNOREODOLIMIT,NO

Notes:

• The default setting is NO.
• IGNOREODOLIMIT only affects the behaviour of z/OS Debugger if the compilation unit was compiled

with one of the following compilers:

– COBOL for OS/390 & VM Version 2 (5648-A25)
– Enterprise COBOL for z/OS and OS/390 Version 3 (5655-G53)
– Enterprise COBOL for z/OS Version 4 (5655-S71)

• IGNOREODOLIMIT is ignored for LangX COBOL.

IMSISOORIGPSB
Note: This command is deprecated. It is accepted for compatibility but has no effect. The original PSB is
always preserved.

You can specify this command only in the EQAOPTS load module. It cannot be specified at run time. For
the command to take effect, the EQAOPTS load module that contains it must be in the search path of the
IMS control region.

This command instructs the IMS Transaction Isolation Facility to preserve the original PSB of the
transaction when a message is routed to a private message processing region.

For example, if you register to debug conversational transaction IVTCB, and the private message class
121 is assigned to you, a message routed to your private message processing region will be sent to
transaction EQAC1211. Ordinarily, the PSB name for EQAC1211 is EQAT1211. With IMSISOORIGPSB in
effect, EQAC1211 is changed to associate the PSB name with IVTCB, DFSIVP34.

The following diagram describes the syntax of the IMSISOORIGPSB command:

EQAXOPT IMSISOORIGPSB , YES

NO

YES
Indicates that you want IMS Isolation to preserve the original PSB of the transaction when a message
is routed to a private message. IMS Transaction Isolation bypasses its normal operations for bringing
up the transaction under the control of the debugger. Therefore, the debugger starts only for Language
Environment-enabled programs.

NO
Indicates that you want IMS Isolation not to preserve the original PSB of the transaction when a
message is routed to a private message. NO is the default setting.

LOGDSN
By default, z/OS Debugger handles the log file data set in one of the following ways:

• In a non-CICS environment, when z/OS Debugger starts in batch mode or full-screen mode, and you
allocate the INSPLOG DD name, z/OS Debugger runs the command SET LOG ON FILE INSPLOG OLD
and starts writing the log to INSPLOG.

• In a CICS environment, when z/OS Debugger starts in full-screen mode, it runs the command SET
LOG OFF. If you want a log file, you run the command SET LONG ON FILE fileid OLD and z/OS
Debugger starts writing the log to fileid.

LOGDSN allows a site or a user to specify the default data set name for the log file. If you specify the
LOGDSN command, z/OS Debugger handles the log file in the following way:

Chapter 16. EQAOPTS commands  155



• In a non-CICS environment, when z/OS Debugger starts in batch mode or full-screen mode, and you
allocate the INSPLOG DD name, z/OS Debugger runs the command SET LOG ON FILE INSPLOG OLD
and starts writing the log to INSPLOG . This behavior remains the same.

• In a non-CICS environment, when z/OS Debugger starts in full-screen mode, if you do not allocate the
INSPLOG DD name, z/OS Debugger runs the command SET LOG ON FILE fileid OLD and starts
writing the log to the data set specified in the LOGDSN command.

• In CICS, when z/OS Debugger starts in full-screen mode, it runs the command SET LOG ON FILE
fileid OLD and starts writing the log to the data set specified in the LOGDSN command.

This allows a user to always write the log file to a data set, whether in CICS or not, and without having to
pre-allocate the log file data set.

For instructions on how to specify the allocation parameters for automatically creating the data set, see
“LOGDSNALLOC” on page 156. Use the EQAOPTS LOGDSN and LOGDSNALLOC commands to help a new
z/OS Debugger user automatically create and write to the log file.

If you are an existing z/OS Debugger user that uses a SAVESETS data set, and you or your site specify
the EQAOPTS commands LOGDSN and LOGDSNALLOC, then the SAVESETS data set contains a SET LOG
command that overrides the EQAOPTS command LOGDSN.

The following diagram describes the syntax of the LOGDSN command:

EQAXOPT LOGDSN , ' file_name_pattern '

, LOUD

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains the log file. Follow
these guidelines when you create the naming pattern:

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

• Specify NULLFILE to indicate you do not want z/OS Debugger to write to a log file.

LOUD
Specifies that z/OS Debugger display WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages if it does not find the data set. If
you are trying to determine why z/OS Debugger is not writing to this log file, specify LOUD to see if it
displays any messages.

If you choose to implement this option, users who want to use the EQAOPTS LOGDSN command must
create a log file in one of the following ways:

• Instruct z/OS Debugger to create the log file by specifying the EQAOPTS LOGDSNALLOC command, as
described in “LOGDSNALLOC” on page 156.

• Create the log file manually with the allocation parameters that are described in "Data sets used by
z/OS Debugger" in the IBM z/OS Debugger User's Guide .

Example

EQAXOPT  LOGDSN,'&&USERID.DBGTOOL.LOG'

If you log in with user ID jsmith, z/OS Debugger determines the name of the data set to be
JSMITH.DBGTOOL.LOG.

LOGDSNALLOC
Indicates that you want z/OS Debugger to create the log file data set specified by EQAOPTS LOGDSN
command if it does not exist. You specify the EQAOPTS LOGDSNALLOC command with the corresponding
allocation parameters for the data set, which z/OS Debugger uses when it creates the data set.

156  IBM z/OS Debugger: Customization Guide



The following diagram describes the syntax of the LOGDSNALLOC command:

EQAXOPT LOGDSNALLOC , ' allocation_parms '

, LOUD

allocation_parms
Specifies the allocation parameters you want z/OS Debugger to use when it creates the data set. You
can specify only the keys in the following list:

• BLKSIZE
• BLOCK
• CYL
• DATACLAS
• DIR
• DSNTYPE
• DSORG
• LRECL
• MGMTCLAS
• RECFM
• SPACE
• STORCLAS
• TRACKS
• UNIT
• VOL

Separate the keys by one or more blanks. z/OS Debugger does not provide defaults for any of the keys.

For information on the format of the keys, see the chapter "BPXWDYN: a text interface to dynamic
allocation and dynamic output" in the z/OS Using REXX and z/OS UNIX System Services manual.
Specify that the data set be sequential. To learn about other formatting rules for the log file, see "Data
sets used by z/OS Debugger" of the IBM z/OS Debugger User's Guide.

LOUD
Specifies that z/OS Debugger display WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages when it creates this data set. If
you are trying to determine why the log file was not created, specify LOUD to view any messages.

Example

EQAXOPT  LOGDSNALLOC,'MGMTCLAS(STANDARD) STORCLAS(DEFAULT)    +
         LRECL(72) BLKSIZE(0) RECFM(F,B) DSORG(PS) SPACE(2,2) +
         
CYL'                                                                                             

MAXTRANUSER
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

The MAXTRANUSER command defines the maximum number of IMS transactions that a single user can
register to debug using the IBM Transaction Isolation Facility. If this command is not specified, the default
value of 15 will be used.

The following diagram describes the syntax of the MAXTRANUSER command:

EQAXOPT MAXTRANUSER , max_trans

Chapter 16. EQAOPTS commands  157



max_trans
An integer value between 1 and 15 to designate the maximum number of transactions a user can
register to debug.

MDBG
If you are using z/OS XL C/C++, Version 1.10 or later, you can indicate that z/OS Debugger always
searches for .mdbg files to retrieve the source and debug information by using the MDBG command.

The following diagram describes the syntax of the MDBG command:

EQAXOPT MDBG , YES

NO

YES
Indicates that z/OS Debugger searches for .mdbg files.

NO
Indicates that z/OS Debugger does not search for .mdbg files.

When you set MDBG to YES, z/OS Debugger retrieves the debug information from an .mdbg file and does
not try to find the debug information from the following sources, even if they exist:

• a .dbg file
• if the program was compiled with the ISD compiler option, the object

If you do not specify MDBG or set it to NO, z/OS Debugger retrieves the debug information from either
the .dbg file or, if the program was compiled with the ISD compiler option, the object.

Example

EQAXOPT MDBG,YES

MULTIPROCESS
Controls the behavior of z/OS Debugger when a new POSIX process is created by a fork() or exec()
function in the application.

With the MULTIPROCESS command, you can instruct z/OS Debugger to perform any of the following tasks
when a new POSIX process is created:

• Continue debugging the current process. The current process is also referred to as the PARENT process.
• Stop debugging the current process and start debugging the newly created process. The newly created

process is also referred to as the CHILD process.
• Prompt you to decide whether to follow the PARENT or CHILD process.

Note: The MULTIPROCESS command applies only to remote debug mode.

The following diagram describes the syntax of the MULTIPROCESS command:

EQAXOPT MULTIPROCESS ,

PARENT

CHILD

PROMPT

, EXEC=

NONE

ANY

The following list describes the parameters of the MULTIPROCESS command:
PARENT

Indicates that z/OS Debugger continues with the current debug session; that is, z/OS Debugger
follows the PARENT process.

158  IBM z/OS Debugger: Customization Guide



CHILD
Indicates that z/OS Debugger stops debugging the current process and starts debugging the newly
created process; that is, z/OS Debugger follows the CHILD process.

PROMPT
Indicates that the remote debug GUI prompts you to decide whether to follow the PARENT or CHILD
process.

EXEC=ANY
Indicates that z/OS Debugger debugs any process that is reinitialized by the exec() function.

EXEC=NONE
Indicates that z/OS Debugger does not debug a process that is reinitialized by the exec() function. If
you do not specify the EXEC option, the default setting is EXEC=NONE.

Examples

• Specify that z/OS Debugger follows the PARENT process and debugs the new process that is created by
the exec() function.

EQAXOPT MULTIPROCESS,PARENT,EXEC=ANY

• Specify that z/OS Debugger follows the CHILD process and does not debug the new process that is
created by the exec() function.

EQAXOPT MULTIPROCESS,CHILD,EXEC=NONE

• Specify that you are prompted to choose whether to follow the PARENT or CHILD process and z/OS
Debugger does not debug the new process that is created by the exec() function.

EQAXOPT MULTIPROCESS,PROMPT

NAMES
The topic "Solving Problems in Complex Applications" in the IBM z/OS Debugger User's Guide in the
describes how the NAMES command can be used to perform several specific functions dealing with load
module and compile unit names recognized by z/OS Debugger. However, the NAMES command cannot be
used to alter the behavior of load module or compile unit names that have already been seen by z/OS
Debugger at the time the NAMES command is processed.

If it becomes necessary to perform these functions on the initial load module processed by z/OS
Debugger or on any of the compile units contained in that load module, you must provide the information
(that would otherwise have been specified using the NAMES command) through the EQAOPTS NAMES
command.

One or more invocations of the EQAOPTS NAMES command can be used for this purpose.

The following diagram describes the syntax of the NAMES command:

EQAXOPT NAMES , EXCLUDE , LOADMOD

CU

, pattern

INCLUDE , LOADMOD

CU

, name

Each of these fields corresponds to the similar parameter in the z/OS Debugger NAMES command. If you
use an asterisk (*) in pattern to indicate a wildcard, you must enclose pattern in apostrophes.

Examples

EQAXOPT NAMES,EXCLUDE,LOADMOD,’ABC1*’
EQAXOPT NAMES,EXCLUDE,CU,MYCU22
EQAXOPT NAMES,EXCLUDE,CU,’MYCU*’
EQAXOPT NAMES,INCLUDE,LOADMOD,CEEMYMOD
EQAXOPT NAMES,INCLUDE,CU,EQATESTP

Chapter 16. EQAOPTS commands  159



NODISPLAY
In the following two situations, in which a user can request a specific user interface, that interface might
not be available:

• Full-screen mode using the Terminal Interface Manager. If the terminal is not available, the program
being debugged terminates with a U4038 abend.

• Remote debugger. If the remote debugger is not available, z/OS Debugger will use full-screen mode if
the user is running under TSO. If the user is not running under TSO, z/OS Debugger will use batch mode.

In both cases, Write To Operator (WTO) messages also appear.

You can modify these behaviors by specifying the EQAOPTS NODISPLAY command so that z/OS Debugger
continues processing as if the user immediately entered a QUIT DEBUG command. This modification
prevents any forced abend or prevents the debugger from starting.

The following diagram describes the syntax of the NODISPLAY command:

EQAXOPT NODISPLAY , QUITDEBUG

DEFAULT

DEFAULT
z/OS Debugger follows the default behavior.

QUITDEBUG
z/OS Debugger displays a message that indicates that z/OS Debugger will quit, and that the user
interface could not be used. z/OS Debugger processing continues as if the user entered a QUIT
DEBUG command.

Example

EQAXOPT NODISPLAY,QUITDEBUG

PREFERENCESDSN
Indicates that you want z/OS Debugger to read a user's preferences file (with the name of the data set
containing the preferences file determined by the specified naming pattern) each time it starts. This works
in the following situation:

• You do not specify a data set name or DD name for the user's preferences file using any other method;
for example, the TEST runtime option.

• In a non-CICS environment, you do not allocate ISPPPREF DD.
• You or your site specifies the PREFERENCESDSN command.
• The data set specified by the PREFERENCESDSN command exists.

The following diagram describes the syntax of the PREFERENCESDSN command:

EQAXOPT PREFERENCESDSN , ' file_name_pattern '

, LOUD

file_name_pattern
Specifies a naming pattern that determines the name of the data set that contains the preferences
file. Follow these guidelines when you create the naming pattern:

• Create a data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger
substitutes the user ID of the current user for this qualifier when it determines the name of the
data set.

• Specify NULLFILE to indicate you do not want z/OS Debugger to process a preferences file.

160  IBM z/OS Debugger: Customization Guide



LOUD
Specifies that z/OS Debugger display WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages if it does not find the data set. If
you are trying to determine why z/OS Debugger is not processing your preferences file, specify LOUD
to see if it displays any messages about not finding the data set.

If you choose to implement this option, users who want to use this function must create the preferences
file as a sequential data set with the allocation parameters that are described in "Data sets used by z/OS
Debugger" in the IBM z/OS Debugger User's Guide.

Example

EQAXOPT  PREFERENCESDSN,'&&USERID.DBGTOOL.PREFS'

If you log in with user ID jsmith, z/OS Debugger determines the name of the data set to be
JSMITH.DBGTOOL.PREFS.

SAVEBPDSN, SAVESETDSN
You can modify the default names of the data sets used to save and restore settings and breakpoints,
monitor values, and LOADDEBUGDATA (LDD) specifications. The following list describes the initial default
names:

• For settings: userid.DBGTOOL.SAVESETS
• For breakpoints, monitor values, and LOADDEBUGDATA (LDD) specifications:
userid.DBGTOOL.SAVEBPS

To change the default name for either or both of these data sets, you need to specify the EQAOPTS
SAVESETDSN and SAVEBPDSN commands, along with a corresponding naming pattern for the data set.

The following diagram describes the syntax of the SAVESETDSN and SAVEBPDSN commands:

EQAXOPT SAVEBPDSN

SAVESETDSN

, ' file_name_pattern '

file_name_pattern
Specifies a naming pattern for the data set that stores this information.

In most environments, you should choose one of the following rules for the naming pattern:

• Any data set name that includes &&USERID. as one of the qualifiers. z/OS Debugger substitutes the
user ID of the current user for this qualifier when it creates the data set.

• A DD name (Reminder: DD names are not supported under CICS)
• The string NULLFILE to indicate that saving and restoring this information is not supported

Examples

EQAXOPT SAVESETDSN,'CICS.DTDATA.&&USERID.SAVSET'
EQAXOPT SAVEBPDSN,'&&USERID.USERDATA.DTOOL.SAVBPMON';

SAVESETDSNALLOC, SAVEBPDSNALLOC
Indicates that you want z/OS Debugger to create the data sets for SAVESETS, SAVEBPS, or both (specified
by EQAOPTS SAVESETDSN or SAVEBPDSN commands) if they do not exist. You specify the EQAOPTS
SAVESETDSNALLOC and SAVEBPDSNALLOC commands with the corresponding allocation parameters for
the data sets, which z/OS Debugger uses when it creates the data sets. After creating each data set, z/OS
Debugger runs commands that save the information (settings, breakpoints, monitors, preferences, and
LDD specifications) in the corresponding data set.

The following diagram describes the syntax of the SAVEBPDSNALLOC and SAVESETDSNALLOC
commands:

Chapter 16. EQAOPTS commands  161



EQAXOPT SAVEBPDSNALLOC

SAVESETDSNALLOC

, ' allocation_parms '

, LOUD

allocation_parms
Specifies the allocation parameters you want z/OS Debugger to use when it creates the data set. You
can specify only the keys in the following list:

• BLKSIZE
• BLOCK
• CYL
• DATACLAS
• DIR
• DSNTYPE
• DSORG
• LRECL
• MGMTCLAS
• RECFM
• SPACE
• STORCLAS
• TRACKS
• UNIT
• VOL

Separate the keys by one or more blanks. z/OS Debugger does not provide defaults for any of the keys.

For information on the format of the keys, see the chapter "BPXWDYN: a text interface to dynamic
allocation and dynamic output" in the z/OS Using REXX and z/OS UNIX System Services manual.
Specify that the data set be sequential for SAVESETS; a PDS or PDSE for SAVEBPS. To learn about
other formatting rules for these files, see "Data sets used by z/OS Debugger" of the IBM z/OS
Debugger User's Guide.

LOUD
Specifies that z/OS Debugger display WTO messages, which helps you debug processing done by this
command. z/OS Debugger normally does not display any messages when it creates these data sets. If
you are trying to determine why the data sets were not created, specify LOUD to view any messages.

z/OS Debugger does the following tasks when you specify these commands:

1. If you specified the SAVESETDSNALLOC command, it creates the SAVESETS data set.
2. If it creates the SAVESETS data set successfully, it runs the following commands:

SET SAVE SETTINGS AUTO;
SET RESTORES SETTINGS AUTO;

If it did not create the SAVESETS data set successfully, it skips the rest of these steps and does the
next processing task.

3. If you specified the SAVEBPDSNALLOC command, it creates the SAVEBPS data set.
4. If it creates the SAVEBPS data set successfully, it runs the following commands:

SET SAVE BPS AUTO;
SET SAVE MONITORS AUTO;
SET RESTORE BPS AUTO;
SET RESTORE MONITORS AUTO;

In a CICS environment, review the performance implications discussed in the "Performance
considerations in multi-enclave environments" section of the "Using full-screen mode: overview" topic

162  IBM z/OS Debugger: Customization Guide



in the IBM z/OS Debugger User's Guide before choosing to implement the SAVEBPDSNALLOC command.
If you think the performance implications might adversely affect your site, do not implement the
SAVEBPDSNALLOC command in the EQAOPTS for CICS.

Example

      EQAXOPT  SAVESETDSNALLOC,'MGMTCLAS(STANDARD) STORCLAS(DEFAULT)  +
               LRECL(3204) BLKSIZE(0) RECFM(V,B) DSORG(PS) SPACE(2,2) +
               TRACKS'
      EQAXOPT  SAVEBPDSNALLOC,'MGMTCLAS(STANDARD) STORCLAS(DEFAULT)   +
               LRECL(3204) BLKSIZE(0) RECFM(V,B) DSORG(PO)            +
               DSNTYPE(LIBRARY) SPACE(1,3) CYL'

SESSIONTIMEOUT
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

You can establish a timeout for idle z/OS Debugger sessions that use the Terminal Interface Manager.
Timed out sessions are canceled after a specified period of no user activity.

The following diagram describes the syntax of the SESSIONTIMEOUT command:
EQAXOPT SESSIONTIMEOUT , NEVER

QUITDEBUG , hhmmssnn

QUIT , hhmmssnn

NEVER
No timeout is enforced. Unattended sessions will not be canceled.

QUITDEBUG,hhmmssnn
Sessions left unattended for the specified time interval will be canceled, and the process being
debugged will proceed as though the QUIT DEBUG command had been entered.

The time interval is expressed as hhmmssnn, where

• hh is the number of hours,
• mm is the number of minutes,
• ss is the number of seconds,
• nn is the number of hundredths of seconds.

QUIT,hhmmssnn
Sessions left unattended for the specified time interval will be canceled, and the process being
debugged will be terminated with a U4038 abend, as though the QUIT ABEND command had been
entered.

The time interval is expressed as hhmmssnn, where

• hh is the number of hours,
• mm is the number of minutes,
• ss is the number of seconds,
• nn is the number of hundredths of seconds.

If the command is not specified in the EQAOPTS load module, the default behavior is "NEVER", which
means that any full-screen mode session using Terminal Interface Manager left unattended will not be
canceled.

Example

To specify a timeout interval of 1 hour and allow the debugged process to proceed after the debug session
is canceled, enter the following EQAOPTS command:

EQAXOPT SESSIONTIMEOUT,QUITDEBUG,01000000

Chapter 16. EQAOPTS commands  163



STARTSTOPMSG
This command controls whether to issue a message when each debugging session is initiated or
terminated. By default, these messages are not issued.

The following diagram describes the syntax of the STARTSTOPMSG command:
EQAXOPT STARTSTOPMSG , ALL

NONE

CICS

TSO

BATCHTSO

IMS

OTHER

(

,

CICS

TSO

BATCHTSO

IMS

OTHER

)

, WTO

The following list describes the parameters of the STARTSTOPMSG command:
ALL

Indicates that the start/stop messages should be written in all environments.
NONE

Indicates that no start/stop messages should be written. If you do not specify EQAOPTS
STARTSTOPMSG, the default option is NONE.

CICS
Indicates that the start/stop messages should be written in the CICS environment.

TSO
Indicates that the start/stop messages should be written in the TSO environment.

BATCHTSO
Indicates that the start/stop messages should be written in the BATCH TSO environment.

IMS
Indicates that the start/stop messages should be written when running under IMS. In addition, an
informational message that contains the IMS system ID, region ID, and transaction ID is written.

OTHER
Indicates that the start/stop messages should be written in all other environments, such as MVS
batch.

WTO
Indicates that the start/stop messages should be written to the system log using a WTO.

Examples

EQAXOPT STARTSTOPMSG,ALL,WTO
EQAXOPT STARTSTOPMSG,(TSO,OTHER),WTO

164  IBM z/OS Debugger: Customization Guide



STARTSTOPMSGDSN
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

You can use this command to indicate that you want z/OS Debugger to write a message in the message
file when the debug session is started and stopped.

The following diagram describes the syntax of the STARTSTOPMSGDSN command:
EQAXOPT STARTSTOPMSGDSN , 'file_name'

, LOUD

'file_name'
Specifies an MVS sequential data set with FB LRECL 80 characteristics. It is recommended that
you allocate sufficient space for the file and perform regular maintenance by removing outdated
messages. In a CICS environment, the region owner must have the update authority to the data set.

LOUD
Specifies that z/OS Debugger displays WTO messages, which help you debug processing done by this
command. z/OS Debugger normally does not display any messages when it operates on the data set.
If you try to determine problems related to the data set, specify LOUD to view any related messages.

Example

EQAXOPT STARTSTOPMSGDSN,'EQAW.SSMSG.LOG'

SUBSYS
If both of the following conditions apply at your site, you need to use the EQAOPTS SUBSYS command:

• The source code is managed by a library system that requires that you specify the
SUBSYS=library_subsystem_name allocation parameter when you allocate a data set.

• Your users are debugging C or C++ programs without using the EQAOPTS MDBG command or debugging
Enterprise PL/I programs compiled without the SEPARATE suboption of the TEST compiler option.

In this case, you must run z/OS Debugger and the specified subsystem on the same system.

You cannot use SUBSYS to debug programs that run under CICS.

The following diagram describes the syntax of the SUBSYS command:

EQAXOPT SUBSYS

, ' four_character_name '

four_character_name
Specifies the subsystem name to be used.

Examples

EQAXOPT SUBSYS
EQAXOPT SUBSYS,’SBSX’

SVCSCREEN
In a non-CICS environment, z/OS Debugger requires SVC screening for the following situations:

• Invoking z/OS Debugger by using EQANMDBG to debug programs that start outside Language
Environment including non-Language Environment COBOL programs.

• Debugging programs that do not run in Language Environment and are started by programs that begin in
Language Environment.

• Debugging LangX COBOL programs.
• Detecting services such as MVS LINK, LOAD, DELETE and ATTACH.

Chapter 16. EQAOPTS commands  165



If you need to run z/OS Debugger in any of the following situations, you must specify the actions that z/OS
Debugger must take regarding SVC screening:

• Start z/OS Debugger by using EQANMDBG in an environment that already uses SVC screening.
• Run z/OS Debugger when debugging programs that do not run in Language Environment and are started

by programs that begin in Language Environment.
• Run z/OS Debugger when debugging LangX COBOL programs.
• Run z/OS Debugger when you need to detect services such as MVS LINK, LOAD and DELETE.
• Run z/OS Debugger when you debug subtasks within a multi-tasked application, where subtasks are

started by using the ATTACH assembler macro.
• Run z/OS Debugger in a situation that requires SVC screening and SVC screening is already in use

by a program with which z/OS Debugger supports MERGE SVC screening as described by the MERGE
operand that follows.

The following diagram describes the syntax of the SVCSCREEN command:

EQAXOPT SVCSCREEN , ON

OFF

( OFF , QUIET )

, CONFLICT =

OVERRIDE

NOOVERRIDE

,

NOMERGE

MERGE

= ( COPE )

ON
Indicates that you want z/OS Debugger to use SVC screening in order to support MVS LOAD, DELETE,
and LINK SVCs.

OFF
Indicates that you want z/OS Debugger to not use SVC screening. z/OS Debugger will not know about
programs started through MVS LOAD, DELETE, and LINK SVCs. If you start z/OS Debugger by using the
EQANMDBG program, the OFF setting is ignored.

QUIET
Suppresses message EQA2458I, which is written to the z/OS Debugger log when SVC screening is
disabled by default.

CONFLICT=
Specifies what you want z/OS Debugger to do when ON is specified or defaulted and SVC screening is
already used by another program.

OVERRIDE
Indicates that you want z/OS Debugger to override the current SVC screening and take control of SVC
screening.

NOOVERRIDE
Indicates that if SVC screening is already in use, z/OS Debugger does not initiate SVC screening and
proceeds as if OFF were specified.

NOMERGE
Indicates that SVC screening is not to be merged with SVC screening used by any other product.
NOMERGE is the default.

MERGE
Indicates that when SVC screening is already being used by another program when z/OS Debugger
starts, z/OS Debugger saves the current SVC screening environment, then enables SVC screening for
both z/OS Debugger and the other program. When z/OS Debugger terminates, it restores the original
SVC screening environment.

166  IBM z/OS Debugger: Customization Guide



Currently, z/OS Debugger supports the MERGE command with only one other program: COPE.

If you specify the MERGE command and z/OS Debugger does not recognize the program that is using
the SVC screening, the MERGE command is ignored and z/OS Debugger starts based on the value of
the CONFLICT option.

MERGE=(COPE)
If COPE is active, z/OS Debugger saves the current SVC screening environment, then enables SVC
screening for both z/OS Debugger and COPE. When z/OS Debugger terminates, it restores COPE's SVC
screening environment.

If COPE is not active, z/OS Debugger starts based on the value of the CONFLICT option.

The default parameters for the EQAOPTS SVCSCREEN command is one of the following situations:

• If z/OS Debugger is started by using the EQANMDBG program:
SVCSCREEN,ON,CONFLICT=NOOVERRIDE,NOMERGE

• If z/OS Debugger is started by any other method:
SVCSCREEN,OFF,CONFLICT=NOOVERRIDE,NOMERGE

Use Table 32 on page 167 as a guide to select the appropriate suboptions.

Examples

EQAXOPT SVCSCREEN,ON,CONFLICT=OVERRIDE,NOMERGE
EQAXOPT SVCSCREEN,OFF,CONFLICT=NOOVERRIDE,NOMERGE

Combinations of suboptions for the EQAOPTS SVCSCREEN command
The following table shows examples of combinations of suboptions for the EQAOPTS SVCSCREEN
command:

Table 32. Combination of SVSCREEN options and their effects

SVCSCREEN options Type of z/OS Debugger session Action

OFF,CONFLICT=NOOVERRIDE
(default)

z/OS Debugger started by using
EQANMDBG

Same as for
ON,CONFLICT=NOOVERRIDE.

z/OS Debugger started by any other
method

• z/OS Debugger does not enable
its SVC screening.

• You cannot debug programs
that do not run in Language
Environment which were started
by programs that do run in
Language Environment.

• z/OS Debugger does not detect
the MVS services LINK, LOAD and
DELETE.

• The CONFLICT setting is ignored
when the OFF setting is specified.

OFF,CONFLICT=OVERRIDE z/OS Debugger started by using
EQANMDBG

Same as for
ON,CONFLICT=OVERRIDE.

z/OS Debugger started by any other
method

Same as for
OFF,CONFLICT=NOOVERRIDE.

The CONFLICT setting is ignored
when the OFF setting is specified.

Chapter 16. EQAOPTS commands  167



Table 32. Combination of SVSCREEN options and their effects (continued)

SVCSCREEN options Type of z/OS Debugger session Action

ON,CONFLICT=NOOVERRIDE z/OS Debugger started by using
EQANMDBG

If SVC screening is active,
z/OS Debugger terminates. If
SVC screening is not active,
z/OS Debugger enables its SVC
screening, runs the debugging
session, and disables its SVC
screening after the debugging
session ends.

z/OS Debugger started by any other
method

If SVC screening is active, z/OS
Debugger does not enable its
SVC screening. You cannot debug
programs that do not run in
Language Environment which were
started by programs that do run
in Language Environment. z/OS
Debugger does not detect the MVS
services LINK, LOAD and DELETE.

If SVC screening is not active,
z/OS Debugger enables its SVC
screening, runs the debugging
session, and disables its SVC
screening after the debugging
session ends.

ON,CONFLICT=OVERRIDE z/OS Debugger started by using
EQANMDBG

If any SVC screening is active
and the NOMERGE option is in
effect, z/OS Debugger overrides
the existing SVC screening. This
is also the default behavior.
z/OS Debugger enables its SVC
screening, runs the debugging
session, and disables its SVC
screening after the debugging
session ends. If any SVC screening
was active, z/OS Debugger restores
the previous SVC screening. If you
specify the MERGE option, see the
following information about MERGE.

z/OS Debugger started by any other
method

TCPIPDATADSN
You can specify this command only in the EQAOPTS load module. It cannot be specified at run time.

You can use this command to instruct z/OS Debugger to dynamically allocate the specified 'file_name' to
DDNAME SYSTCPD (if SYSTCPD is not already allocated). This provides the data set name for TCPIP.DATA
when no GLOBALTCPIPDATA statement is configured in the system TCP/IP options.

The following diagram describes the syntax of the TCPIPDATADSN command:
EQAXOPT TCPIPDATADSN

, 'file_name'

Examples

168  IBM z/OS Debugger: Customization Guide



EQAXOPT TCPIPDATADSN,'SYS2.TCPIP.DATA'

EQAXOPT TCPIPDATADSN,'SYS2.TCPIP.PARMLIB(TCPDATA)'

If you want to use an alternative TCP/IP stack, you can add an entry to the specified TCPIP.DATA dataset
with a TCPIPJOBNAME statement.

system_name:

TCPIPJOBNAME TCPIP

TCPIPJOBNAME tcpip_proc

Example

To specify TCPIPA as the name of the procedure that was used to start the TCP/IP address space, add the
following code to the specified TCPIP.DATA dataset:

TCPIPJOBNAME TCPIPA

THREADTERMCOND
You can indicate that z/OS Debugger should not prompt the user when a FINISH, CEE066, or CEE067
thread termination condition is raised by Language Environment, regardless of the suboptions used in the
TEST runtime option. These conditions are raised by statements like STOP RUN, GOBACK, or EXEC CICS
RETURN, which can occur frequently in an application program. Suppressing the display of these prompts
can reduce the number of times your users are interrupted by this prompt during a debugging session.

The following diagram describes the syntax of the THREADTERMCOND command:

EQAXOPT THREADTERMCOND , NOPROMPT

PROMPT

NOPROMPT
Suppress the display of termination prompts.

PROMPT
Prompts the user at termination. If you do nto specify the THREADTERMCOND command, the default
PROMPT is used.

Example

EQAXOPT THREADTERMCOND,NOPROMPT

TIMACB
You can include this command only in the EQAOPTS load module. You cannot specify it at run time.

TIMACB identifies the name of an ACB, other than EQASESSM, that z/OS Debugger uses to make full-
screen mode using the Terminal Interface Manager work in an environment where you want to run the
Terminal Interface Manager on more than one LPAR in the same VTAM network. You specify TIMACB as
the last step in "Example: Defining the VTAM EQAMVnnn and Terminal Interface Manager APPL definition
statements when z/OS Debugger runs on four LPARs" in the IBM z/OS Debugger Customization Guide.

The following diagram describes the syntax of the TIMACB command:

EQAXOPT TIMACB , ACB_name

ACB_name
The new ACB name you want used. The default name is EQASESSM.

Chapter 16. EQAOPTS commands  169



Example

EQAXOPT TIMACB,EQASESS2

END
The END command identifies the last EQAOPTS command. You must always specify it and it must be the
last command in the input stream.

The following diagram describes the syntax of the END command:

EQAXOPT END

Example

EQAXOPT END

170  IBM z/OS Debugger: Customization Guide



Appendix A. SMP/E USERMODs

SMP/E USERMODs are available for a number of the customizations listed in the IBM z/OS Debugger
Customization Guide and IBM z/OS Debugger User's Guide. The following table shows the available
USERMODs and the associated names.

hlq.SEQAEXEC hlq.SEQATLIB hlq.SEQASAMP hlq.SEQAMOD
SMP/E USERMOD
in hlq.SEQASAMP

EQASTART EQAUMOD2

EQALMPFX EQAUMOD3

EQALMPGM EQAUMOD4

EQAZDFLT EQAUMOD5

EQAZDSYS EQAUMOD6

EQAZDUSR EQAUMOD7

EQAZPROC EQAUMOD8

EQACUIDF1 EQACUIDF2 EQAUMOD9

EQACUIDM EQAUMODA

EQAOPTS1 EQAOPTS2 EQAUMODE

EQAUEDAT1 EQAUEDAT2 EQAUMODF

EQABMPSM EQAUMODG

EQADBBSM EQAUMODH

EQADLISM EQAUMODI

EQAUEDAC1 EQAUEDAT2 EQAUMODJ

EQAD3CXT1,3 EQAD3CXT2 EQAUMODK

EQAJCL EQAUMODL

Note:

1. The source for these parts is in hlq.SEQASAMP. The executable (the part updated by the USERMOD) is
in SEQAMOD.

2. The IBM z/OS Debugger User's Guide and IBM z/OS Debugger Customization Guide discussion of
these parts typically shows generating a private copy of these load modules. If you want to update
hlq.SEQAMOD so that all users see these customizations, you should use the SMP/E USERMOD
method.

3. z/OS Debugger SMP/E USERMODs for these parts are only available if you choose the method that
updates hlq.SEQAMOD. They are not available if you choose to update CEE.SCEERUN.

© Copyright IBM Corp. 1992, 2021 171



172  IBM z/OS Debugger: Customization Guide



Appendix B. Enabling debugging in full-screen mode
using a dedicated terminal

Note: This chapter is not applicable to IBM Developer for z/OS (non-Enterprise Edition) or IBM Wazi
Developer for Red Hat CodeReady Workspaces.

This is a copy of Chapter 6 from the Debug Tool V10.1 Customization Guide. It documents the setup for
'full-screen mode using a dedicated terminal without/with Terminal Interface Manager' (indicated via the
TEST runtime sub-options %MFI and %VTAM). It should be used

• by sites that want to continue to use the TEST %MFI option to specify a dedicated terminal
• as a reference for sites that are moving from an older release of Debug Tool to Debug Tool V11 (or later).

To enable users to debug the following types of programs while using a 3270-type terminal, you need to
enable full-screen mode using a dedicated terminal:

• Batch programs
• TSO programs (using a separate terminal for debugging)
• Programs running under UNIX System Services
• Db2 stored procedures
• IMS programs

A dedicated terminal has specific set up requirements so that it can interact with z/OS Debugger in these
environments. Thus, the terminal is dedicated for use by z/OS Debugger. Users do not typically use it to
access other services.

How z/OS Debugger uses full-screen mode using a dedicated
terminal

The following steps describe how a user would start a debugging session for a batch job using full-screen
mode using a dedicated terminal. Study these steps to understand how z/OS Debugger uses full-screen
mode using a dedicated terminal and to understand why you need to do the configuration steps described
in “ Enabling full-screen mode using a dedicated terminal” on page 174.

1. Start two terminal emulator sessions. Connect the second session to a terminal LU that can handle a
full-screen mode using a dedicated terminal.

2. On the first terminal emulator session, log on to TSO.
3. Note the LU name (LU_name) to which the second terminal emulator session is connected.
4. Make following changes to the PARM string in the batch job that starts your debugging session:

• Specify the TEST runtime option in the following format:

TEST(,,,MFI%LU_name:*)

LU_name is the LU name you noted in step “3” on page 173.

If your site requires that you specify the VTAM network identifier (NETID), specify the TEST runtime
option in the following format:

TEST(,,,MFI%NETID.LU_name:*)

NETID identifies the network in which the second terminal emulator resides. For example, in the
string NETA.LU001, NETA is the NETID.

5. Submit the batch job. z/OS Debugger completes the following tasks:

© Copyright IBM Corp. 1992, 2021 173



a. z/OS Debugger allocates a VTAM ACB (EQAMVnnn) for its end of a VTAM session.
b. z/OS Debugger uses VTAM to initiate a session with the terminal LU to which the second terminal

emulator is connected.
c. A VTAM session is then conducted between z/OS Debugger and the terminal LU.

The user does not log on to any host application through the second terminal emulator. z/OS
Debugger initiates the connection between itself and that second terminal LU.

6. On the second terminal emulator, the emulator displays a full-screen mode debugging session.
Interact with it in the same way you would with any other full-screen mode debugging session.

This technique requires you to define and configure a number of items in the z/OS Communications
Server. Section “ Enabling full-screen mode using a dedicated terminal” on page 174 describes these
definitions and configuration.

Enabling full-screen mode using a dedicated terminal
To enable full-screen mode using a dedicated terminal, do the following steps:

1. Define the VTAM APPL definition statements that z/OS Debugger uses for its end of the session, as
described in “Defining the VTAM EQAMVnnn APPL definition statements” on page 174.

2. Define the terminal LUs used by z/OS Debugger, as described in “Defining terminal LUs used by z/OS
Debugger” on page 176.

3. If your terminals are connected through a SNA network, you are done. If your terminals are connected
through a TN3270 network, you must continue.

4. If a TN3270 server manages the terminal, configure the TN3270 Telnet Server, as described in
“Configuring the TN3270 Telnet Server to access the terminal LUs” on page 177.

5. Verify the installation of the facility to debug programs in full-screen mode using a dedicated terminal,
as described in “Verifying the customization of the facility to debug full-screen mode using a dedicated
terminal” on page 181.

Defining the VTAM EQAMVnnn APPL definition statements
You must define the APPL definition statements that z/OS Debugger uses for its end of the VTAM session
with the terminal LU. You can define up to 999 APPLs for z/OS Debugger. You can define an APPL by using
one of the following naming conventions:

• Define each APPL with the following naming convention: the first five characters of the APPL name must
be EQAMV and the last three characters must be consecutive three digit numbers, starting with 001. Do
not code an ACBNAME operand on the APPL definition statements for this method.

• Define each APPL name with the naming convention you use at your site. Code an ACBNAME operand
on the APPL definition statement that uses EQAMV as the first five characters, and three numeric digits
(starting with 001) as the last three characters.

Tip: The EQAMVnnn names are used internally by z/OS Debugger. Do not confuse these names with the
terminal LU names. The user needs to know only the terminal LU name, which he specifies with the MFI%
suboption of the TEST runtime option.

The number of APPL names you define must be sufficient to allow for the maximum number of concurrent
z/OS Debugger full-screen mode using a dedicated terminal sessions. (z/OS Debugger uses one of these
APPL names for its end of each VTAM session that is initiated with a terminal LU.)

The descriptions and examples used in this book assume you defined APPL names by using the
EQAMVnnn naming convention. z/OS Debugger uses the EQAMVnnn names for internal processing.

The EQAWAPPL member in the hlq.SEQASAMP data set predefines 50 APPL names, EQAMV001 to
EQAMV050. You can do one of the following tasks to add this member to the VTAM definitions library
(VTAMLST).

• Copy EQAWAPPL into a new member:

174  IBM z/OS Debugger: Customization Guide



1. Create a new member in the VTAM definitions library (VTAMLST). The VTAM definitions library is
often stored in the data set SYS1.VTAMLST.

2. Copy the contents of the EQAWAPPL member into the new member.
3. Add the new member's name to the VTAM start options configuration file, ATCCONxx, so that VTAM

activates the z/OS Debugger APPL definitions at initialization.
• Copy EQAWAPPL into an existing member that is already defined in VTAMLST:

1. Select a member in the VTAM definitions library (VTAMLST) that contains the major node definitions.
2. Copy the APPL definition statements for z/OS Debugger from the EQAWAPPL member into the

selected member.

Tip: The existing member has the VBUILD TYPE=APPL statement, so do not copy this statement
from EQAWAPPL.

If you are running VTAM in a multi-domain environment and you require the ability to debug full-screen
mode using a dedicated terminal on more than one host, edit the copy of EQAWAPPL on each system to
make the names for z/OS Debugger major and minor nodes unique for each system.

For example, if you have hosts SYSA, SYSB, and SYSC, and need to provide definitions for up to 50
concurrent users debugging programs in full-screen mode using a dedicated terminal on each system, you
can code the following entries:

• SYSA VTAMLST EQAWAPPL entry:

EQAAPPLA VBUILD TYPE=APPL
EQAMV001 APPL  AUTH=(PASS,ACQ),PARSESS=NO
EQAMV002 APPL  AUTH=(PASS,ACQ),PARSESS=NO
...
EQAMV050 APPL  AUTH=(PASS,ACQ),PARSESS=NO

• SYSB VTAMLST EQAWAPPL entry:

EQAAPPLB VBUILD TYPE=APPL
EQAMV051 APPL  AUTH=(PASS,ACQ),PARSESS=NO
EQAMV052 APPL  AUTH=(PASS,ACQ),PARSESS=NO
...
EQAMV100 APPL  AUTH=(PASS,ACQ),PARSESS=NO

• SYSC VTAMLST EQAWAPPL entry:

EQAAPPLC VBUILD TYPE=APPL
EQAMV101 APPL  AUTH=(PASS,ACQ),PARSESS=NO
EQAMV102 APPL  AUTH=(PASS,ACQ),PARSESS=NO
...
EQAMV150 APPL  AUTH=(PASS,ACQ),PARSESS=NO

You can have up to 999 unique APPL names for full-screen mode using a dedicated terminal spread
across your network.

As an alternative to coding each minor node name, you can use the Model Application Names function.
With this function, VTAM dynamically creates the minor nodes. Use one of the following ways (alter
these examples, if needed, to maintain unique names per system as discussed in “Defining the VTAM
EQAMVnnn APPL definition statements” on page 174):

• EQAMV??? APPL AUTH=(PASS,ACQ),PARSESS=NO

• ABCDE??? APPL AUTH=(PASS,ACQ),PARSESS=NO,ACBNAME=EQAMV???

Activating the VTAM EQAMVnnn APPLs
Activate the VTAM APPLs by entering the following command from the console, where member-name is
the member name in the VTAM library (VTAMLST):

VARY NET,ACT,ID=member-name

Appendix B. Enabling debugging in full-screen mode using a dedicated terminal  175



Defining terminal LUs used by z/OS Debugger
The terminal LUs used by z/OS Debugger in full-screen mode using a dedicated terminal must meet the
requirements specified in the following sections:

“Terminal LU specifications” on page 176
“Terminal LU state requirements” on page 176

Terminal LU specifications
All terminal LUs that are used to debug programs in full-screen mode using a dedicated terminal must
have a default log mode specified in the corresponding VTAM definitions. This log mode must match the
characteristics of the terminal emulator session that is attached to this terminal LU. Use the DLOGMOD=
operand on the APPL definition for the terminal logical unit (LU) to specify the default log mode.

To support the widest range of terminal characteristics, we recommend you use a DLOGMOD specification
of D4C32XX3, in the IBM supplied MODETAB of ISTINCLM. If you use a DLOGMOD specification
of D4C32XX3, you must use a TN3270E emulator that responds to a VTAM query with terminal
characteristics, such as size, color, and extended graphics.

If your terminal emulator session cannot provide this information, select a log mode that matches your
terminal emulator session characteristics. For example, if you have a TN3270 emulator that does not
respond to a query, select one of the following log modes that matches the terminal size that the user will
be using:

• D4C32782 24x80
• D4C32783 32x80
• D4C32784 43x80
• D4C32785 27x132

When you specify these types of log modes, the user must select a terminal size that matches your
DLOGMOD specification.

An example of a set of terminal LU definitions for the terminal side of the VTAM session is
hlq.SEQASAMP(EQAWTRML). See the log mode definitions in the IBM Communications Server SNA
Resource Definition Reference for further information about log modes. The MODETAB log mode table
load module that contains the DLOGMOD default log mode specification must be available to VTAM via the
VTAMLIB DD statement.

You need to VARY on these new terminal LU definitions, similar to the way it was done in “Activating the
VTAM EQAMVnnn APPLs” on page 175.

Terminal LU state requirements
When z/OS Debugger accesses the terminal LU, the terminal LU must be in the following state:

• It must be known to the z/OS Communications Server on the system which z/OS Debugger runs.
• It must be marked secondary logical unit (SLU) enabled.
• It must not be in session with any application.

You can determine whether a particular terminal LU meets these criteria by using the DISPLAY VTAM
operator command:

1. Access the desired LU using your terminal emulator, and exit any session manager.
2. On your system console, enter the following command, where name is the LU name:

DISPLAY NET,ID=name,SCOPE=ALL

3. Inspect the output of the command for the following information:

• The IST486I message indicates STATUS=ACTIV and DESIRED STATE=ACTIV, and an IST172I NO
SESSIONS EXIST message is displayed.

176  IBM z/OS Debugger: Customization Guide



• The IST597I message indicates SLU ENABLED.
• The IST934I message indicates that a DLOGMOD was specified.

Configuring the TN3270 Telnet Server to access the terminal LUs
If you use the IBM Communications Server for z/OS TN3270 Telnet Server to manage your terminals, you
must configure TN3270 Telnet Server to support terminals with the following characters:

• Terminal LUs that have a proper DLOGMOD specified must be accessed.
• The LUMAP KEEPOPEN statement needs to be specified, so that VTAM allocates the ACB for the

terminal LU when a terminal emulator session is connected to it, rather than only when an application is
started.

• The terminal LU name must be available to the user of the terminal emulator session.

One way to enable this support is to set up a new TN3270 telnet port. The following instructions guide
you through setting up a new port and the changes you must make to the PROFILE.TCPIP data set. The
examples in “Configuring the TN3270 Telnet Server” on page 179 show several variations of this support.

1. Select an unused port, such as 2023. If you have a firewall installed, ensure that this port is allowed
through the firewall.

2. Do one of the following steps:

• If you are running the TN3270 Telnet Server in a separate address space (optional on z/OS
Communications Server Version 1.6 through 1.8, required on Version 1.9 or later), specify a PORT
num TCP jobname NOAUTOLOG statement to reserve the new port for the TN3270 Telnet Server.

• If you are running the TN3270 Telnet Server in the TCP/IP address space, specify a PORT num TCP
INTCLIEN statement to reserve the new port for the TN3270 Telnet Server.

3. Create a new set of TELNETPARMS and BEGINVTAM blocks for the new port by copying the existing
TELNETPARMS and BEGINVTAM blocks for port 23.

4. Customize the new TELNETPARMS and BEGINVTAM blocks to use this new port number. Ensure that
the previous TELNETPARMS and BEGINVTAM blocks also specify a port number (typically 23).

5. Make the following changes to your new BEGINVTAM block:

a. If you intend to use this new port for only z/OS Debugger in full-screen mode using a dedicated
terminal, you can remove all the statements from the BEGINVTAM block that you created in step 3,
except the PORT statement. Go to step 5c.

b. Remove any copied DEFAULTLUS, DEFAULTLUSSPEC, DEFAULTAPPL and LUMAP statements.
c. Specify a new LUGROUP specification that indicates which terminal LUs that will be used as

dedicated terminals for debugging in full-screen mode using a dedicated terminal. These terminal
LUs must have a DLOGMOD specification in their APPL definition statement.

d. Specify some client_identification statements (such as HNGROUP and IPGROUP).
e. Specify a new LUMAP statement with KEEPOPEN (along with the proper LU group operand and

client_identification operand).

The KEEPOPEN operand forces the TN3270 Telnet Server to keep the access control block (ACB)
for the LU open at all times (for those LUs affected by this LUMAP statement). With the ACB open,
z/OS Debugger can acquire the LU if the LU is connected to a client terminal emulator session but is
not in session.

f. Specify a new ALLOWAPPL EQAMV* statement (or ALLOWAPPL * if site policies allow it) in the
BEGINVTAM block to let z/OS Debugger start a session with the terminal LU.

If you defined the name that z/OS Debugger uses for its side of the VTAM session with a name
other than EQAMVnnn, then you should specify that name on the ALLOWAPPL statement, rather
than EQAMVnnn. (Or just use * if your site policies allow it.)

g. Specify whether the terminal is to display a session manager panel, a USSMSG10 panel, or a Telnet
Solicitor Logon panel.

Appendix B. Enabling debugging in full-screen mode using a dedicated terminal  177



The user must know what terminal LU they have acquired when they connect their terminal
emulator session to this new port. If you normally use a session manager that displays the terminal
LU, then you can continue to use that method. Otherwise, use one of the following panels:

• A modified USSMSG10 panel that displays the terminal LU name
• The Telnet Solicitor Logon panel, if the terminal emulator itself shows the terminal LU name

To specify which panel is to be displayed, do the following steps:

i) To display a session manager panel, specify the FIRSTONLY operand on a DEFAULTAPPL
statement that defines the session manager to run. To use the LU to debug a program in
full-screen mode using a dedicated terminal, the user must first exit the session manager panel
and return to the Telnet Solicitor Logon panel.

ii) To display a USSMSG10 panel, specify a USSTCP statement. If your terminal emulator session
supports the TN3270E protocol, the USSMSG10 panel can be customized to display the terminal
LU name. See the IBM Communication Server IP Configuration Reference manual for information
about how to create a new USS table load module that contains a USSMSG10 panel which
includes the @@LUNAME parameter.

iii) To display a Telnet Solicitor Logon panel, code no additional statements.

If you want to restrict access for a terminal connected to this new port so that no one can use it to start
any application and that no application other than z/OS Debugger can acquire it, then do the following
steps:

1. Remove any statements from the port's BEGINVTAM block other than those recommended above.
2. Write only one ALLOWAPPL statement, specifying EQAMVnnn or, if you didn't use EQAMVnnn, the minor

node name that z/OS Debugger uses for its side of the VTAM session.
3. Use the USSMSG10 panel or Telnet Solicitor Logon Panel display method.

After you make these changes to the TCP/IP configuration data set, you must instruct TCP/IP to use this
updated definition and start the new port. The Telnet server uses the VARY command to change Telnet
functions. One of the following commands can help you change Telnet functions:

VARY TCPIP,,OBEYFILE
To start, restart or change a port by updating the Telnet profile. If you are running a TN3270 Telnet
Server in a separate address space, you need to include the TN3270 Telnet Server jobname in the
command. For example, VARY TCPIP,jobname,OBEYFILE.

VARY TCPIP,,TELNET,STOP and VARY TCPIP,,OBEYFILE
To stop a Telnet port, and then restart that port or a new port without stopping the TCP/IP stack.

See IBM Communication Server IP Configuration Reference for more information about the VARY TCPIP
command.

After making these changes, your users can set up a unique terminal emulator session that connects to
this new port, and debug programs that require the use of full-screen mode using a dedicated terminal.

Example: Activating full-screen mode using a dedicated terminal
when using TCP/IP TN3270 Telnet Server

The examples below describe how to define the z/OS Debugger minor node names, define the terminal
LUs for use by z/OS Debugger, and three ways to define Telnet ports that the TN3270 Telnet server can
use.

After you code these definitions, you need activate these changes by using the VARY NET and VARY
TCPIP commands as described previously.

178  IBM z/OS Debugger: Customization Guide



Defining z/OS Debugger to VTAM
These are the z/OS Debugger minor node names defined to VTAM through VTAMLST:

EQAAPPL  VBUILD TYPE=APPL
EQAMV001 APPL  AUTH=(PASS,ACQ),PARSESS=NO
EQAMV002 APPL  AUTH=(PASS,ACQ),PARSESS=NO
EQAMV003 APPL  AUTH=(PASS,ACQ),PARSESS=NO
EQAMV004 APPL  AUTH=(PASS,ACQ),PARSESS=NO
EQAMV005 APPL  AUTH=(PASS,ACQ),PARSESS=NO
…
EQAMV050 APPL  AUTH=(PASS,ACQ),PARSESS=NO

See hlq.SEQASAMP(EQAWAPPL) for a sample of these definitions.

Defining the terminals used by z/OS Debugger
These are the terminal LUs defined to VTAM through VTAMLST:

EQATRML  VBUILD TYPE=APPL
TRMLU001 APPL AUTH=NVPACE,EAS=1,PARSESS=NO,MODETAB=ISTINCLM,           *
                SESSLIM=YES,DLOGMOD=D4C32XX3
TRMLU002 APPL AUTH=NVPACE,EAS=1,PARSESS=NO,MODETAB=ISTINCLM,           *
                SESSLIM=YES,DLOGMOD=D4C32XX3
TRMLU003 APPL AUTH=NVPACE,EAS=1,PARSESS=NO,MODETAB=ISTINCLM,           *
                SESSLIM=YES,DLOGMOD=D4C32XX3
TRMLU004 APPL AUTH=NVPACE,EAS=1,PARSESS=NO,MODETAB=ISTINCLM,           *
                SESSLIM=YES,DLOGMOD=D4C32XX3
TRMLU005 APPL AUTH=NVPACE,EAS=1,PARSESS=NO,MODETAB=ISTINCLM,           *
                SESSLIM=YES,DLOGMOD=D4C32XX3
…

TRMLU050 APPL AUTH=NVPACE,EAS=1,PARSESS=NO,MODETAB=ISTINCLM,           *
                SESSLIM=YES,DLOGMOD=D4C32XX3

See hlq.SEQASAMP(EQAWTRML) for a sample of these definitions.

Note that the DLOGMOD operand is specified. Change the TRMLUnnn names on the terminal LU APPL
definition statements to names that meet your site convention for terminal LU names. These names must
match the entries in the LUGROUP statements in the BEGINVTAM blocks shown in “Example 1” on page
179, “Example 2” on page 180, and “Example 3” on page 180.

Configuring the TN3270 Telnet Server
The examples below highlight the changes made to the TCP/IP TN3270 server's configuration file.

Example 1
The example defines a new port (2023). When a user connects a terminal emulator session to this port,
the Netview Access Services (NVAS) menu appears when the LU is created. The user copies the LU name
that appears on the NVAS screen and specifies it as the value for the MFI%LU_name suboption of the
TEST run-time option. After the user copies the LU name, the user exits NVAS and returns to the Telnet
Solicitor Logon panel to make the terminal LU available to z/OS Debugger.

Each change is highlighted with a number in  reverse highlighting . This number corresponds to the step
number in the list of instructions in “Configuring the TN3270 Telnet Server to access the terminal LUs” on
page 177.

PORT
   ...
 2   2023 TCP jobname NOAUTOLOG           ; Telnet Server - z/OS Debugger
   ...

;
; Define Telnet pool for z/OS Debugger
;
TELNETPARMS
 4   PORT 2023
   ... the rest of this should be a copy of port 23

Appendix B. Enabling debugging in full-screen mode using a dedicated terminal  179



ENDTELNETPARMS

BEGINVTAM
 4    PORT 2023

   LUGROUP DBGTOOL
 5c       TRMLU001..TRMLU050
   ENDLUGROUP

   IPGROUP EVERYONE
 5d       0.0.0.0:0.0.0.0
   ENDIPGROUP

 5g1 DEFAULTAPPL NVAS FIRSTONLY
 5e LUMAP DBGTOOL EVERYONE KEEPOPEN
 5f ALLOWAPPL   EQAMV*
ENDVTAM

See hlq.SEQASAMP(EQAWTTS1) for a sample of these definitions.

Example 2
The example defines a new port (2023). When a user connects a terminal emulator session to this port,
a USSMSG10 panel is displayed. The USSTCP statement is coded to point to a customized USSMSG10
panel that you defined that displays the LU name. The user copies this LU name and assigns it to
the MFI%LU_name suboption of the TEST runtime option. When the USSMSG10 panel is displayed, the
terminal LU is available to z/OS Debugger.

Each change is highlighted with a number in  reverse highlighting . This number corresponds to the step
number in the list of instructions in “Configuring the TN3270 Telnet Server to access the terminal LUs” on
page 177.

PORT
   ...
 2   2023 TCP jobname NOAUTOLOG           ; Telnet Server - z/OS Debugger
   ...

;
; Define Telnet pool for z/OS Debugger
;
TELNETPARMS
 4   PORT 2023
   ... the rest of this should be a copy of port 23
ENDTELNETPARMS

BEGINVTAM
 4    PORT 2023

   LUGROUP DBGTOOL
 5c       TRMLU001..TRMLU050
   ENDLUGROUP

   IPGROUP EVERYONE
 5d       0.0.0.0:0.0.0.0
   ENDIPGROUP

 5g2 USSTCP USS$EQAW EVERYONE
 5e LUMAP DBGTOOL EVERYONE KEEPOPEN
 5f ALLOWAPPL   EQAMV*
ENDVTAM

See hlq.SEQASAMP(EQAWTTS2) for a sample of these definitions.

Example 3
The example defines a new port (2023). When the user connects a terminal emulator session to this
port, the Telnet Solicitor Logon panel is displayed, and the terminal LU is available to z/OS Debugger.
The user copies the LU name from the terminal emulator session's information area and assigns it to the
MFI%LU_name suboption of the TEST runtime option.

180  IBM z/OS Debugger: Customization Guide



Each change is highlighted with a number in  reverse highlighting . This number corresponds to the step
number in the list of instructions in “Configuring the TN3270 Telnet Server to access the terminal LUs” on
page 177.

PORT
   ...
 2   2023 TCP jobname NOAUTOLOG           ; Telnet Server - z/OS Debugger
   ...

;
; Define Telnet pool for z/OS Debugger
;
TELNETPARMS
 4   PORT 2023
   ... the rest of this should be a copy of port 23
ENDTELNETPARMS

BEGINVTAM
 4    PORT 2023

   LUGROUP DBGTOOL
 5c       TRMLU001..TRMLU050
   ENDLUGROUP

   IPGROUP EVERYONE
 5d       0.0.0.0:0.0.0.0
   ENDIPGROUP

 5e LUMAP DBGTOOL EVERYONE KEEPOPEN
 5f ALLOWAPPL   EQAMV*
ENDVTAM

See hlq.SEQASAMP(EQAWTTS3) for a sample of these definitions.

Verifying the customization of the facility to debug full-screen
mode using a dedicated terminal

Connect a terminal emulator session to one of the terminal LUs setup as described previously in this
chapter. Issue the DISPLAY command from your system console as shown in “Terminal LU state
requirements” on page 176. Verify that the output of the DISPLAY command is correct. If the output
of the DISPLAY command is not correct, you must review every step in “ Enabling full-screen mode using
a dedicated terminal” on page 174 and verify that you completed each step correctly. Then run one of the
install verification jobs described below.

To help you verify the installation of the facility to debug full-screen mode using a dedicated terminal, the
hlq.SEQASAMP data set contains the following installation verification program (IVP) jobs:

• EQAWIVP5 (COBOL)
• EQAWIVP6 (C)
• EQAWIVP7 (PL/I)
• EQAWIVP9 (Enterprise PL/I)
• EQAWIVPB (Language Environment assembler)
• EQAWIVPD (non-Language Environment assembler)
• EQAWIVPW (OS/VS COBOL)
• EQAWIVPY (non-Language Environment VS COBOL II)

Before you run a sample, customize it for your installation as described in the sample.

Appendix B. Enabling debugging in full-screen mode using a dedicated terminal  181



Using z/OS Debugger Terminal Interface Manager as a dedicated
terminal

The z/OS Debugger Terminal Interface Manager enables a user to debug in full-screen mode using a
dedicated terminal without having to know the LU name of the dedicated terminal. Use the z/OS Debugger
Terminal Interface Manager because it makes it easier for users to identify the terminals to use for their
debugging sessions

Complete the steps in “ Enabling full-screen mode using a dedicated terminal” on page 174 before you
do the instructions in this section to ensure that the basic full-screen mode using a dedicated terminal
function works at your site.

Example: a debugging session using the z/OS Debugger Terminal Interface
Manager

Compare the following steps with the steps shown in “How z/OS Debugger uses full-screen mode using
a dedicated terminal” on page 173 to understand how using the Terminal Interface Manager affects the
flow of work.

1. Start two terminal emulator sessions. These sessions can be either of the following situations:

• Two separate terminal emulator sessions.
• If you use IBM Session Manager, two sessions selected from the IBM Session Manager menu.

In either situation, ensure that the second session connects to a terminal that can handle a full-
screen mode debugging session through a dedicated terminal and that starts z/OS Debugger Terminal
Interface Manager.

2. On the first terminal emulator session, log on to TSO.
3. On the second terminal emulator session, provide your login credentials to the Terminal Interface

Manager and press Enter. The login credentials can be your TSO user ID and password, PassTicket,
password phrase, or MFA token.

Notes:

a. You are not logging on TSO. You are indicating that you want your user ID associated with this
terminal LU.

b. When the number of characters entered into the password field, including blanks, exceeds 8, the
input is passed to the security system as a password phrase.

c. To use PassTickets with Terminal Interface Manager, define the PTKTDATA profile by following the
rules for MVS batch jobs. For more information, see Defining profiles in the PTKTDATA class in the
z/OS documentation.

A panel similar to the following panel is then displayed on the second terminal emulator session:

182  IBM z/OS Debugger: Customization Guide

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.icha700/ptktapp.htm


                     z/OS Debugger TERMINAL INTERFACE MANAGER

EQAY001I Terminal TRMLU001 connected for user USER1
EQAY001I Ready for z/OS Debugger

               PF3=EXIT  PF10=Edit LE options data set  
PF12=LOGOFF                              

The terminal is now ready to receive a z/OS Debugger full-screen mode using a dedicated terminal
session.

4. Edit the PARM string of your batch job so that you specify the TEST runtime parameter as follows:

TEST(,,,VTAM%userid:*)

5. Submit the batch job.

The tasks completed are similar to the tasks described in step “5” on page 173 except that first the
batch job communicates with the Terminal Interface Manager to correlate the user ID to the terminal
LU of the second terminal emulator session. The remaining steps are the same as described in step
“5” on page 173.

6. On the second terminal emulator session, a full-screen mode debugging session is displayed. Interact
with it the same way you would with any other full-screen mode debugging session.

7. After you exit z/OS Debugger, the second terminal emulator session displays the panel and messages
you saw in step “3” on page 182. This indicates that z/OS Debugger can use this session again. (this
will happen each time you exit from z/OS Debugger).

8. If you want to start another debugging session, return to step “5” on page 183. If you are finished
debugging, you can do one of the following tasks:

• Close the second terminal emulator session.
• Exit the Terminal Interface Manager by choosing one of the following options:

– Press PF12 to display the Terminal Interface Manager logon panel. You can log in with the same
ID or a different user ID.

– Press PF3 to exit the Terminal Interface Manager.

Enabling full-screen mode using a dedicated terminal with z/OS Debugger
Terminal Interface Manager

To enable full-screen mode using a dedicated terminal with z/OS Debugger Terminal Interface Manager,
do the following steps:

1. Define the VTAM APPL definition statements as described in “Defining the Terminal Interface Manager
APPL definition statements” on page 184.

2. Start the z/OS Debugger Terminal Interface Manager as described in “Starting the z/OS Debugger
Terminal Interface Manager as a dedicated terminal” on page 184.

Appendix B. Enabling debugging in full-screen mode using a dedicated terminal  183



3. Configure the Telnet Server as described in “ Configuring the TN3270 Telnet Server to access the
Terminal Interface Manager” on page 185.

4. Verify that the customizations are completed correctly by following the steps in “Verifying the
customization of the Terminal Interface Manager” on page 188.

Defining the Terminal Interface Manager APPL definition statements
You must define the APPL definition statements that the Terminal Interface Manager will use for its
sessions. To define the APPL definition statements, do the following steps:

1. Define the APPL definition statements as shown in the EQAWSESS member in the hlq.SEQASAMP
data set by doing one of the following tasks:

• Copy EQAWSESS into a new member:

a. Create a new member in the VTAM definitions library (VTAMLST). The VTAM definitions library is
often stored in the data set SYS1.VTAMLST.

b. Copy the contents of the EQAWSESS member into the new member.
c. Add the new member's name to the VTAM start options configuration file, ATCCONxx.

• Copy EQAWSESS into an existing member:

a. Select a member in the VTAM definitions library (VTAMLST) that contains the major node
definitions.

b. Copy the APPL definition statements for z/OS Debugger from the EQAWSESS member into the
selected member.

To activate the new definitions, enter the following command from the console:

VARY NET,ACT,ID=member-name

member-name is the member name in the VTAM definitions library.

Starting the z/OS Debugger Terminal Interface Manager as a dedicated
terminal

The z/OS Debugger Terminal Interface Manager is a VTAM application that must be started (following the
start of VTAM itself) before users can access it. Follow these steps to start it:

1. Copy the EQAYSESM member of the data set hlq.SEQASAMP to the SYS1.PROCLIB data set, making
any changes required by your installation.

2. Make sure that the z/OS Debugger Terminal Interface Manager load modules, EQAYSESM and
EQAYTRMM, resides in an APF authorized library (this module can be found in the hlq.SEQAAUTH
data set). This is required to allow access to functions to validate users by login credentials.

3. Start the z/OS Debugger Terminal Interface Manager using the START command from the console.
The START command can be added to the COMMNDxx member of SYS1.PARMLIB to start the z/OS
Debugger Terminal Interface Manager when the system is IPLed.

The z/OS Debugger Terminal Interface Manager load module accepts three parameters, which you can
provide by using the OPTS substitution variable on the START command or in the EQAYSESM PROC
definition. You can code the parameters in any sequence and all of them are optional. The following list
describes the parameters:
-a acbname

Specifies an alternate VTAM ACB name for Terminal Interface Manager to open. For more
information about this parameter, see “Running the Terminal Interface Manager on more than
one LPAR on the same VTAM network” on page 186.

-s
Instructs Terminal Interface Manager to supply an additional entry field on each Terminal Interface
Manager panel, in which the user can enter an IBM Session Manager escape sequence. For more

184  IBM z/OS Debugger: Customization Guide



information about this parameter, see “ Configuring Terminal Interface Manager as an IBM Session
Manager application” on page 187.

+T
Turns on internal tracing for Terminal Interface Manager. Do not use this parameter unless
instructed by IBM support personnel.

The following example starts the z/OS Debugger Terminal Interface Manager for alternate ACB
EQASESS2 and instructs it to provide an extra entry field for use with IBM Session Manager:

START EQAYSESM,OPTS='-a EQASESS2 -s'

Configuring the TN3270 Telnet Server to access the Terminal Interface
Manager

Select an additional unused port (for example, 2024) and then implement “Example 1” on page 179 with
the following changes:

• Specify port 2024 instead of 2023 (3 times)
• Specify the following value for the DEFAULTAPPL statement:

DEFAULTAPPL EQASESSM FIRSTONLY

• Make the following change on the ALLOWAPPL statement:

ALLOWAPPL EQA*

Example 4

The example below shows the modified “Example 1” on page 179, with the changes highlighted with an
asterisk ( * ).

PORT
 ...
 *   2024 TCP jobname NOAUTOLOG            ; Telnet Server - z/OS Debugger
 ...

; Add a TELNETPARMS block for the new port

TELNETPARMS
 *   PORT 2024                     ; z/OS Debugger
  ... the rest of this should be a copy of the existing Port 23
ENDTELNETPARMS

; Add a BEGINVTAM block for the new port

BEGINVTAM
 *   PORT 2024

  ; Define the VTAM terminal LUs to use for this port (see EQAWTRML)

  LUGROUP DBGTOOL
      TRMLU001..TRMLU050
  ENDLUGROUP

  ; Allow anyone with access to this system to use the LUs above

  IPGROUP EVERYONE
      0.0.0.0:0.0.0.0
  ENDIPGROUP

  ; The z/OS Debugger Terminal Interface
Manager will be displayed
  ; when an emulator connects

 *   DEFAULTAPPL EQASESSM FIRSTONLY

  ; Indicate that the ACBs always be allocated

  LUMAP DBGTOOL EVERYONE KEEPOPEN

  ; Allow only z/OS Debugger to use this port

Appendix B. Enabling debugging in full-screen mode using a dedicated terminal  185



 *   ALLOWAPPL   EQA*

ENDVTAM

See hlq.SEQASAMP(EQAWTTS4) for a sample of these definitions.

Instruct TCP/IP to use this additional definition, as described on page “Configuring the TN3270 Telnet
Server to access the terminal LUs” on page 177.

After you make these changes, your users can set up a unique terminal emulator session that connects
to this new port, and debug programs that require the use of full-screen mode using a dedicated terminal
with the z/OS Debugger Terminal Interface Manager. The user does the following steps:

1. Starts a terminal emulator session that connects to this new port. The z/OS Debugger Terminal
Interface Manager is displayed.

2. The user enters his user ID and password and then presses Enter. The terminal is now ready to receive
a z/OS Debugger full-screen mode using a dedicated terminal session.

3. On another terminal emulator session, the user starts his program with the TEST run-time option
and specifies the VTAM%userid suboption. The terminal emulator session connected to this new port
displays a full-screen mode using a dedicated terminal session.

Example: Connecting a VTAM network with multiple LPARs with one
Terminal Interface Manager

This example describes the connections that need to be made in a VTAM network that has four LPARs that
run z/OS Debugger jobs with one of the LPARs managing the terminals.

• LPAR 1 runs a TN3270E server and the Terminal Interface Manager with the default ACB name. Its
VTAM also owns all the terminal LUs. Users connect their TN3270E emulator to this LPAR for the
Terminal Interface Manager session. Users use the Terminal Interface Manager to create the connection
between z/OS Debugger and the terminal LU used for their full-screen mode using a dedicated terminal
debugging session.

• VTAM on LPAR1 defines the terminal LU APPL definition statements and the EQASESSM APPL definition
statement for the Terminal Interface Manager.

• VTAM on LPAR 1 needs visibility to the EQAMVnnn APPL definition statements on LPARs 2, 3 and 4. This
enables communication between the Terminal Interface Manager and z/OS Debugger.

• Each VTAM on LPAR 1, 2, 3 and 4 has a unique set of EQAMVnnn APPL definition statements. For
example, LPAR 1 has APPL definition statements 001-050, LPAR 2 has APPL definition statements
051-100, LPAR 3 has APPL definition statements 101-150, and LPAR 4 has APPL definition statements
151-200.

• Each VTAM on LPAR 2, 3 and 4 needs visibility to the EQASESSM APPL definition statement on LPAR 1.
This enables communication between z/OS Debugger and the Terminal Interface Manager.

• Each VTAM on LPAR 2, 3 and 4 needs visibility to the terminal LU APPL definition statements on LPAR 1.

Running the Terminal Interface Manager on more than one LPAR on the same
VTAM network

This topic describes the modifications you need to make to the steps described in “Defining the Terminal
Interface Manager APPL definition statements” on page 184, “Starting the z/OS Debugger Terminal
Interface Manager as a dedicated terminal” on page 184, and “ Configuring the TN3270 Telnet Server to
access the Terminal Interface Manager” on page 185 in order to make full-screen mode using a dedicated
terminal with Terminal Interface Manager work in an environment where you want to run the Terminal
Interface Manager on more than one LPAR in the same VTAM network.

Do the following steps for each additional instance of the Terminal Interface Manager:

186  IBM z/OS Debugger: Customization Guide



1. In “Defining the Terminal Interface Manager APPL definition statements” on page 184, after you have
copied EQAWSESS into a new or existing member, modify it so that you specify an ACB name other
than the default EQASESSM.

By default, z/OS Debugger assumes you work in an environment where you use only one instance of
Terminal Interface Manager and the default ACB name used by this instance of Terminal Interface
Manager and z/OS Debugger is EQASESSM. By specifying the ACB name used by the Terminal
Interface Manager (instead of using the default name), you can create a unique ACB name for each
instance of the Terminal Interface Manager.

2. In “Starting the z/OS Debugger Terminal Interface Manager as a dedicated terminal” on page 184,
after you copy the EQAYSESM member to the SYS1.PROCLIB data set, modify it to specify the new ACB
name you created in step “1” on page 187 by specifying OPTS='-a XXXXXXXX', where XXXXXXXX is
the new ACB name.

3. In “ Configuring the TN3270 Telnet Server to access the Terminal Interface Manager” on page 185,
when you modify the TCP/IP TN3270 server's configuration file, modify the DEFAULTAPPL statement
to specify the ACB name you created in step “1” on page 187, instead of EQASESSM.

4. Specify the EQAOPTS TIMACB command, as described in “TIMACB” on page 169, using the new ACB
name you created in step “1” on page 187 for ACB-name.

Configuring Terminal Interface Manager as an IBM Session Manager
application

To define z/OS Debugger Terminal Interface Manager as an application within IBM Session Manager, do
the following steps:

1. Define a TN3270 port and a group of terminal LUs which start Terminal Interface Manager as
described in “ Configuring the TN3270 Telnet Server to access the Terminal Interface Manager” on
page 185.

2. Enable the IBM Session Manager TCP/IP support, as described in IBM Session Manager for z/OS:
Installation and Getting Started.

3. Define Terminal Interface Manager to IBM Session Manager as a TCP/IP application. To do this, create
an APPL statement in the IBM Session Manager configuration, similar to the following statement:

APPL applname    APPLID TCP_1
                 DESC 'description'
                 DATA 'protocol://host-addr:port'

The following list describes the variables used in this statement:
applname

Your choice for the application name. This is the name used when referring to the application in
other IBM Session Manager definitions.

description
The descriptive text you want displayed on any session menus.

protocol
One of the following values: TELNET, TN3270 or TN3270E. For a description of these protocols,
see “Session Manager and TCP/IP” in IBM Session Manager: Facilities Reference.

host-addr
The hostname or IP address of the server that hosts Terminal Interface Manager.

port
The port number that was configured for Terminal Interface Manager in step “1” on page 187.

For a complete description of the IBM Session Manager APPL configuration statement, see IBM
Session Manager: Technical Reference.

The following example shows an APPL statement:

APPL DTTIM
     APPLID TCP_1

Appendix B. Enabling debugging in full-screen mode using a dedicated terminal  187



     DESC 'z/OS Debugger Terminal Interface
Manager'
     DATA 'TN3270E://mvsa.ibm.com:2024'

4. Start the Terminal Interface Manager started task with the -s parameter. This causes the Terminal
Interface Manager panels to display an extra field where you can enter the IBM Session Manager
escape key.

Verifying the customization of the Terminal Interface Manager
Do the following steps to verify the installation and customization:

1. Start a terminal emulator session that starts the Terminal Interface Manager. Enter your user ID and
password and then press Enter.

2. On your other terminal emulator session, select the same IVP as you used above, change the run time
parameter string fromMFI%VTAM_LU_id:* to VTAM%userid:*, submit the job and then follow the
rest of the instructions in the IVP.

3. On your other terminal emulator session, select the same IVP as you used above, change the runtime
parameter string from MFI%LU_name:* to VTAM%userid:*, submit the job and then follow the rest of
the instructions in the IVP.

188  IBM z/OS Debugger: Customization Guide



Appendix C. Applying maintenance

Support resources and problem solving information describes all the resources available to obtain
technical support information. Follow the steps in this section to apply a service APAR or PTF.

Applying Service APAR or PTF
This chapter describes how to apply service updates to z/OS Debugger. To use the maintenance
procedures effectively, you must install the product or products by using SMP/E before doing the
maintenance procedures below.

What you receive
If you report a problem with z/OS Debugger to your IBM Support Center, you may receive a tape
containing one or more Authorized Program Analysis Reports (APARs) or Program Temporary Fixes (PTFs)
that were created to solve your problem.

You may also receive a list of prerequisite APARs or PTFs, which you must apply to your system before
applying the current APAR. These prerequisite APARs or PTFs might relate to z/OS Debugger or any other
licensed product you have installed, including z/OS.

Checklist for applying an APAR or PTF
The following checklist describes the steps and associated SMP/E commands to install the APAR or PTF:

1. Prepare to install the APAR or PTF.
2. Receive the APAR or PTF. (SMP/E RECEIVE)
3. Review the HOLDDATA.
4. Accept previously applied APARs or PTFs (optional). (SMP/E ACCEPT)
5. Apply APAR or PTF. (SMP/E APPLY)
6. Run REPORT CROSSZONE and apply any missing requisites.
7. Test APAR or PTF.
8. Accept APAR or PTF. (SMP/E ACCEPT)

Step 1. Prepare to install APAR or PTF
Before you start to install an APAR or PTF, do the following:

1. Create a backup copy of the current z/OS Debugger libraries. Save this copy of z/OS Debugger until you
have completed installing the APAR or PTF, and you are confident that the service runs correctly.

2. Research each service tape through the IBM Support Center for any errors or additional information.
Note all errors on the tape that were reported by APARs or PTFs and apply the relevant fixes. You
should also review the current Preventive Service Planning (PSP) information.

Step 2. Receive the APAR or PTF
Receive the service using the SMP/E RECEIVE command from either the SMP/E dialogs in ISPF, or using a
batch job similar to EQAWRECV in hlq.SEQASAMP.

Step 3. Review the HOLDDATA
Review the HOLDDATA summary reports for the APAR or PTF. Follow any instructions described in the
summary reports.

© Copyright IBM Corp. 1992, 2021 189



Step 4. Accept previously applied APAR or PTF (optional)
If there is any APAR or PTF which you applied earlier but did not accept, and the earlier APAR or PTF is not
causing problems in your installation, accept the applied service from either the SMP/E dialogs in ISPF, or
using a batch job similar to EQAWACPT in hlq.SEQASAMP.

Accepting the earlier service allows you to use the SMP/E RESTORE command to return to your current
level if you encounter a problem with the service you are currently applying. You can do this either from
the SMP/E dialogs in ISPF, or using a batch job.

Step 5. Apply the APAR or PTF
We recommend you first use the SMP/E APPLY command with the CHECK operand. Check the output; if
it shows no conflict, rerun the APPLY command without the CHECK operand. This can be done from the
SMP/E dialogs in ISPF or using a batch job similar to EQAWAPLY in hlq.SEQASAMP.

Step 6. Run REPORT CROSSZONE and apply any missing requisites
Run an SMP/E REPORT CROSSZONE by using the SMP/E dialogs or by using a batch job similar to
EQAWRPXZ in hlq.SEQASAMP. Apply any missing requisites found by SMP/E.

Step 7. Test the APAR or PTF
Thoroughly test your updated z/OS Debugger. Do not accept an APAR or PTF until you are confident that it
runs correctly.

Step 8. Accept the APAR or PTF
We recommend you first use the SMP/E ACCEPT command with the CHECK operand. Check the output; if
it shows no conflict, rerun the ACCEPT command without the CHECK operand. You can do this either from
the SMP/E dialogs in ISPF, or using a batch job similar to EQAWACPT in hlq.SEQASAMP.

190  IBM z/OS Debugger: Customization Guide



Appendix D. Support resources and problem solving
information

This section shows you how to quickly locate information to help answer your questions and solve your
problems. If you have to call IBM support, this section provides information that you need to provide to
the IBM service representative to help diagnose and resolve the problem.

• “Searching knowledge bases” on page 191
• “Getting fixes” on page 192
• “Subscribing to support updates” on page 192
• “Contacting IBM Support” on page 193

Searching knowledge bases
You can search the available knowledge bases to determine whether your problem was already
encountered and is already documented.

• “Searching IBM Knowledge Center” on page 191
• “Searching product support documents” on page 191

Searching IBM Knowledge Center
You can find this publication and documentation for many other products in IBM Knowledge Center at
https://www.ibm.com/support/knowledgecenter.

Searching product support documents
If you need to look beyond the information center to answer your question or resolve your problem, you
can use one or more of the following approaches:

• Find the content that you need by using the IBM Support Portal at www.ibm.com/software/support or
directly at www.ibm.com/support/entry/portal.

The IBM Support Portal is a unified, centralized view of all technical support tools and information for
all IBM systems, software, and services. The IBM Support Portal lets you access the IBM electronic
support portfolio from one place. You can tailor the pages to focus on the information and resources
that you need for problem prevention and faster problem resolution.

Access a specific IBM Software Support site:

– Application Performance Analyzer for z/OS Support
– z/OS Debugger support
– Enterprise COBOL for z/OS Support
– Enterprise PL/I for z/OS Support
– Fault Analyzer for z/OS Support
– File Export for z/OS Support
– File Manager for z/OS Support
– WebSphere Studio Asset Analyzer for Multiplatforms Support
– Workload Simulator for z/OS and OS/390 Support

• Search for content by using the IBM masthead search. You can use the IBM masthead search by typing
your search string into the Search field at the top of any ibm.com® page.

© Copyright IBM Corp. 1992, 2021 191

https://www.ibm.com/support/knowledgecenter
http://www.ibm.com/software/support
http://www.ibm.com/support/entry/portal
http://www.ibm.com/software/awdtools/apa/support/
https://www.ibm.com/support/home/product/O129329T18362G58/IBM_Debug_for_z_Systems
https://www.ibm.com/us-en/marketplace/ibm-cobol-compiler-family
http://www.ibm.com/software/awdtools/pli/plizos/support/
http://www.ibm.com/software/awdtools/faultanalyzer/support/
http://www.ibm.com/software/awdtools/fileexport/support/
http://www.ibm.com/software/awdtools/filemanager/support/
http://www.ibm.com/software/awdtools/wsaa/support/
http://www.ibm.com/software/awdtools/workloadsimulator/support/


• Search for content by using any external search engine, such as Google, Yahoo, or Bing. If you use an
external search engine, your results are more likely to include information that is outside the ibm.com
domain. However, sometimes you can find useful problem-solving information about IBM products in
newsgroups, forums, and blogs that are not on ibm.com. Include "IBM" and the name of the product in
your search if you are looking for information about an IBM product.

• The IBM Support Assistant (also referred to as ISA) is a free local software serviceability workbench
that helps you resolve questions and problems with IBM software products. It provides quick access to
support-related information. You can use the IBM Support Assistant to help you in the following ways:

– Search through IBM and non-IBM knowledge and information sources across multiple IBM products
to answer a question or solve a problem.

– Find additional information through product and support pages, customer news groups and forums,
skills and training resources and information about troubleshooting and commonly asked questions.

In addition, you can use the built in Updater facility in IBM Support Assistant to obtain IBM Support
Assistant upgrades and new features to add support for additional software products and capabilities as
they become available.

General information about the IBM Support Assistant can be found on the IBM Support Assistant home
page at http://www.ibm.com/software/support/isa.

Getting fixes
A product fix might be available to resolve your problem. To determine what fixes and other updates are
available, select a link from the following list:

• Latest PTFs for Application Performance Analyzer for z/OS
• Latest PTFs for Fault Analyzer for z/OS
• Latest PTFs for File Manager for z/OS
• Latest PTFs for z/OS Debugger
• Latest PTFs for IBM Developer for z/OS Enterprise Edition
• Latest PTFs for ADFz Common Components

When you find a fix that you are interested in, click the name of the fix to read its description and to
optionally download the fix.

Subscribe to receive e-mail notifications about fixes and other IBM Support information as described in
Subscribing to Support updates..

Subscribing to support updates
To stay informed of important information about the IBM products that you use, you can subscribe to
updates. By subscribing to receive updates, you can receive important technical information and updates
for specific Support tools and resources. You can subscribe to updates by using the following:

• RSS feeds and social media subscriptions
• My Notifications

RSS feeds and social media subscriptions
For general information about RSS, including steps for getting started and a list of RSS-enabled IBM
web pages, visit the IBM Software Support RSS feeds site at http://www.ibm.com/software/support/rss/
other/index.html. For information about the RSS feed for the IBM System z® Enterprise Development
Tools & Compilers information center, refer to the Subscribe to information center updates topic in the
information center at https://www.ibm.com/support/knowledgecenter.

192  IBM z/OS Debugger: Customization Guide

http://www.ibm.com/software/support/isa
http://www-01.ibm.com/support/docview.wss?uid=swg21213431
http://www-01.ibm.com/support/docview.wss?uid=swg21171963
http://www-01.ibm.com/support/docview.wss?uid=swg21170609
http://www.ibm.com/support/docview.wss?uid=swg27049405
http://www.ibm.com/support/docview.wss?uid=swg27048755
http://www.ibm.com/support/docview.wss?uid=swg21612547
http://www.ibm.com/software/support/rss/other/index.html
http://www.ibm.com/software/support/rss/other/index.html
https://www.ibm.com/support/knowledgecenter


My Notifications
With My Notifications, you can subscribe to Support updates for any IBM product. You can specify that
you want to receive daily or weekly email announcements. You can specify what type of information you
want to receive (such as publications, hints and tips, product flashes (also known as alerts), downloads,
and drivers). My Notifications enables you to customize and categorize the products about which you
want to be informed and the delivery methods that best suit your needs.

To subscribe to Support updates, follow the steps below.

1. Click My notifications to get started. Click Subscribe now! on the page.
2. Sign in My notifications with your IBM ID. If you do not have an IBM ID, create one ID by following the

instructions.
3. After you sign in My notifications, enter the name of the product that you want to subscribe in the

Product lookup field. The look-ahead feature lists products matching what you typed. If the product
does not appear, use the Browse for a product link.

4. Next to the product, click the Subscribe link. A green check mark is shown to indicate the subscription
is created. The subscription is listed under Product subscriptions.

5. To indicate the type of notices for which you want to receive notifications, click the Edit link. To save
your changes, click the Submit at the bottom of the page.

6. To indicate the frequency and format of the email message you receive, click Delivery preferences.
Then, click Submit.

7. Optionally, you can click the RSS/Atom feed by clicking Links. Then, copy and paste the link into your
feeder.

8. To see any notifications that were sent to you, click View.

Contacting IBM Support
IBM Support provides assistance with product defects, answering FAQs, and performing rediscovery.

After trying to find your answer or solution by using other self-help options such as technotes, you
can contact IBM Support. Before contacting IBM Support, your company must have an active IBM
maintenance contract, and you must be authorized to submit problems to IBM. For information about
the types of available support, see the information below or refer to the Support portfolio topic
in the Software Support Handbook at http://www14.software.ibm.com/webapp/set2/sas/f/handbook/
offerings.html.

• For IBM distributed software products (including, but not limited to, Tivoli®, Lotus®, and Rational
products, as well as Db2 and WebSphere products that run on Windows, or UNIX operating systems),
enroll in Passport Advantage® in one of the following ways:
Online

Go to the Passport Advantage Web site at https://www-01.ibm.com/software/passportadvantage/
and click How to Enroll.

By phone
For the phone number to call in your country, go to the Contacts page of the IBM Software
Support Handbook on the Web at http://www14.software.ibm.com/webapp/set2/sas/f/handbook/
contacts.html and click the name of your geographic region.

• For customers with Subscription and Support (S & S) contracts, go to the Software Service Request Web
site at http://www.ibm.com/support/servicerequest.

• For IBM eServer™ software products (including, but not limited to, Db2 and WebSphere products
that run in zSeries, pSeries, and iSeries environments), you can purchase a software maintenance
agreement by working directly with an IBM sales representative or an IBM Business Partner. For more
information about support for eServer software products, go to the IBM Technical Support Advantage
Web site at http://www.ibm.com/servers/eserver/techsupport.html.

Appendix D. Support resources and problem solving information  193

http://www-01.ibm.com/software/support/einfo.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/offerings.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/offerings.html
https://www-01.ibm.com/software/passportadvantage/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www.ibm.com/support/servicerequest
http://www.ibm.com/servers/eserver/techsupport.html


If you are not sure what type of software maintenance contract you need, call 1-800-IBMSERV
(1-800-426-7378) in the United States. From other countries, go to the Contacts page of the
IBM Software Support Handbook on the Web at http://www14.software.ibm.com/webapp/set2/sas/f/
handbook/contacts.html and click the name of your geographic region for phone numbers of people who
provide support for your location.

Complete the following steps to contact IBM Support with a problem:

1. “Define the problem and determine the severity of the problem” on page 194
2. “Gather diagnostic information” on page 194
3. “Submit the problem to IBM Support” on page 195

To contact IBM Software support, follow these steps:

Define the problem and determine the severity of the problem
Define the problem and determine severity of the problem When describing a problem to IBM, be as
specific as possible. Include all relevant background information so that IBM Support can help you solve
the problem efficiently.

IBM Support needs you to supply a severity level. Therefore, you need to understand and assess the
business impact of the problem that you are reporting. Use the following criteria:
Severity 1

The problem has a critical business impact. You are unable to use the program, resulting in a critical
impact on operations. This condition requires an immediate solution.

Severity 2
The problem has a significant business impact. The program is usable, but it is severely limited.

Severity 3
The problem has some business impact. The program is usable, but less significant features (not
critical to operations) are unavailable.

Severity 4
The problem has minimal business impact. The problem causes little impact on operations, or a
reasonable circumvention to the problem was implemented.

For more information, see the Getting IBM support topic in the Software Support Handbook at http://
www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html.

Gather diagnostic information
To save time, if there is a Mustgather document available for the product, refer to the Mustgather
document and gather the information specified. Mustgather documents contain specific instructions
for submitting your problem to IBM and gathering information needed by the IBM support team to
resolve your problem. To determine if there is a Mustgather document for this product, go to the product
support page and search on the term Mustgather. At the time of this publication, the following Mustgather
documents are available:

• Mustgather: Read first for problems encountered with Application Performance Analyzer for z/OS:
http://www-01.ibm.com/support/docview.wss?uid=swg21265542

• Mustgather: Read first for problems encountered with z/OS Debugger: http://www-01.ibm.com/
support/docview.wss?uid=swg21254711

• Mustgather: Read first for problems encountered with Fault Analyzer for z/OS:http://www-01.ibm.com/
support/docview.wss?uid=swg21255056

• Mustgather: Read first for problems encountered with File Manager for z/OS: http://www-01.ibm.com/
support/docview.wss?uid=swg21255514

• Mustgather: Read first for problems encountered with Enterprise COBOL for z/OS: http://
www-01.ibm.com/support/docview.wss?uid=swg21249990

194  IBM z/OS Debugger: Customization Guide

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www-01.ibm.com/support/docview.wss?uid=swg21265542
http://www-01.ibm.com/support/docview.wss?uid=swg21254711
http://www-01.ibm.com/support/docview.wss?uid=swg21254711
http://www-01.ibm.com/support/docview.wss?uid=swg21255056
http://www-01.ibm.com/support/docview.wss?uid=swg21255056
http://www-01.ibm.com/support/docview.wss?uid=swg21255514
http://www-01.ibm.com/support/docview.wss?uid=swg21255514
http://www-01.ibm.com/support/docview.wss?uid=swg21249990
http://www-01.ibm.com/support/docview.wss?uid=swg21249990


• Mustgather: Read first for problems encountered with Enterprise PL/I for z/OS: http://
www-01.ibm.com/support/docview.wss?uid=swg21260496

If the product does not have a Mustgather document, please provide answers to the following questions:

• What software versions were you running when the problem occurred?
• Do you have logs, traces, and messages that are related to the problem symptoms? IBM Software

Support is likely to ask for this information.
• Can you re-create the problem? If so, what steps were performed to re-create the problem?
• Did you make any changes to the system? For example, did you make changes to the hardware,

operating system, networking software, and so on.
• Are you currently using a workaround for the problem? If so, be prepared to explain the workaround

when you report the problem.

Submit the problem to IBM Support
You can submit your problem to IBM Support in one of three ways:
Online using the IBM Support Portal

Click Service request on the IBM Software Support site at http://www.ibm.com/software/support. On
the right side of the Service request page, expand the Product related links section. Click Software
support (general) and select ServiceLink/IBMLink to open an Electronic Technical Response (ETR).
Enter your information into the appropriate problem submission form.

Online using the Service Request tool
The Service Request tool can be found at http://www.ibm.com/software/support/servicerequest.

By phone
Call 1-800-IBMSERV (1-800-426-7378) in the United States or, from other countries, go to the
Contacts page of the IBM Software Support Handbook at http://www14.software.ibm.com/webapp/
set2/sas/f/handbook/contacts.html and click the name of your geographic region.

If the problem you submit is for a software defect or for missing or inaccurate documentation, IBM
Support creates an Authorized Program Analysis Report (APAR). The APAR describes the problem in
detail. Whenever possible, IBM Support provides a workaround that you can implement until the APAR is
resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Support website daily, so that
other users who experience the same problem can benefit from the same resolution.

After a Problem Management Record (PMR) is open, you can submit diagnostic MustGather data to IBM
using one of the following methods:

• FTP diagnostic data to IBM. For more information, refer to http://www-01.ibm.com/support/
docview.wss?uid=swg21154524.

• If FTP is not possible, e-mail diagnostic data to techsupport@mainz.ibm.com. You must add PMR xxxxx
bbb ccc in the subject line of your e-mail. xxxxx is your PMR number, bbb is your branch office, and
ccc is your IBM country code. Go to http://itcenter.mainz.de.ibm.com/ecurep/mail/subject.html for more
details.

Always update your PMR to indicate that data has been sent. You can update your PMR online or by phone
as described above.

Appendix D. Support resources and problem solving information  195

http://www-01.ibm.com/support/docview.wss?uid=swg21260496
http://www-01.ibm.com/support/docview.wss?uid=swg21260496
http://www.ibm.com/software/support
http://www.ibm.com/support/servicerequest
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html
http://www-01.ibm.com/support/docview.wss?uid=swg21154524
http://www-01.ibm.com/support/docview.wss?uid=swg21154524
http://itcenter.mainz.de.ibm.com/ecurep/mail/subject.html


196  IBM z/OS Debugger: Customization Guide



Appendix E. Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use software products successfully. The accessibility features in z/OS provide accessibility for
z/OS Debugger.

The major accessibility features in z/OS enable users to:

• Use assistive technology products such as screen readers and screen magnifier software
• Operate specific or equivalent features by using only the keyboard
• Customize display attributes such as color, contrast, and font size

The IBM System z Enterprise Development Tools & Compilers Information Center, and its related
publications, are accessibility-enabled. The accessibility features of the information center are described
at https://www.ibm.com/support/knowledgecenter.

Using assistive technologies
Assistive technology products work with the user interfaces that are found in z/OS. For specific guidance
information, consult the documentation for the assistive technology product that you use to access z/OS
interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces by using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E
User’s Guide, and z/OS ISPF User’s Guide Volume 1 for information about accessing TSO/E and ISPF
interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts
or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Accessibility of this document
Information in the following format of this document is accessible to visually impaired individuals who use
a screen reader:

• HTML format when viewed from the IBM System z Enterprise Development Tools & Compilers
Information Center

Syntax diagrams start with the word Format or the word Fragments. Each diagram is preceded by two
images. For the first image, the screen reader will say "Read syntax diagram". The associated link leads to
an accessible text diagram. When you return to the document at the second image, the screen reader will
say "Skip visual syntax diagram" and has a link to skip around the visible diagram.

© Copyright IBM Corp. 1992, 2021 197



198  IBM z/OS Debugger: Customization Guide



Notices

This information was developed for products and services offered in the U.S.A. IBM might not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with the local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore,
this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

MasterCraft is a trademark of Tata Consultancy Services Ltd.

© Copyright IBM Corp. 1992, 2021 199



200  IBM z/OS Debugger: Customization Guide



Glossary

This glossary defines technical terms and abbreviations used in IBM z/OS Debugger Customization Guide
documentation. If you do not find the term you are looking for, refer to the IBM Glossary of Computing
Terms, located at the IBM Terminology web site:

http://www.ibm.com/ibm/terminology

B
batch

Pertaining to a predefined series of actions performed with little or no interaction between the user
and the system. Contrast with interactive.

batch job
A job submitted for batch processing. See batch. Contrast with interactive.

C
CADP

A CICS-supplied transaction used for managing debugging profiles from a 3270 terminal.
compile

To translate a program written in a high level language into a machine-language program.
compile unit

A sequence of HLL statements that make a portion of a program complete enough to compile
correctly. Each HLL product has different rules for what comprises a compile unit.

compiler
A program that translates instructions written in a high level programming language into machine
language.

D
data set

The major unit of data storage and retrieval, consisting of a collection of data in one of several
prescribed arrangements and described by control information to which the system has access.

debug
To detect, diagnose, and eliminate errors in programs.

DTCN
z/OS Debugger Control utility, a CICS transaction that enables the user to identify which CICS
programs to debug.

debugging profile
Data that specifies a set of application programs which are to be debugged together.

E
eXtra Performance LINKage (XPLINK)

A new call linkage between functions that has the potential for a significant performance increase
when used in an environment of frequent calls between small functions. XPLINK makes subroutine
calls more efficient by removing nonessential instructions from the main path. When all functions are
compiled with the XPLINK option, pointers can be used without restriction, which makes it easier to
port new applications to z/OS.

© Copyright IBM Corp. 1992, 2021 201



F
full-screen mode

An interface mode for use with a nonprogrammable terminal that displays a variety of information
about the program you are debugging.

H
hook

An instruction inserted into a program by a compiler when you specify the TEST compile option. Using
a hook, you can set breakpoints to instruct z/OS Debugger to gain control of the program at selected
points during its execution.

I
index

A computer storage position or register, the contents of which identify a particular element in a table.

L
link-edit

To create a loadable computer program using a linkage editor.
load module

A program in a form suitable for loading into main storage for execution. In this document this term is
also used to refer to a Dynamic Load Library (DLL).

logical window
A group of related debugging information (for example, variables) that is formatted so that it can be
displayed in a physical window.

LU
See logical unit.

logical unit
A type of network accessible unit that enables users to gain access to network resources and
communicate with each other.
A name used by VTAM to identify a terminal or other resource.

M
minor node

In VTAM, a uniquely defined resource within a major node.
multitasking

A mode of operation that provides for concurrent performance, or interleaved execution of two or
more tasks.

N
network identifier

In TCP/IP, that part of the IP address that defines a network. The length of the network ID depends on
the type of network class (A, B, or C).

node name
The name assigned to a node during network definition. The format for the node name is
netid.cpname.

O
offset

The number of measuring units from an arbitrary starting point to some other point.

202  IBM z/OS Debugger: Customization Guide



P
parameter

Data passed between programs or procedures.
partitioned data set (PDS)

A data set in direct access storage that is divided into partitions, called members, each of which can
contain a program, part of a program, or data.

PDS
See partitioned data set.

physical window
A section of the screen dedicated to the display of one of the four logical windows: Monitor window,
Source window, Log window, or Memory window.

PLU
See primary logical unit.

primary logical unit
In SNA, the logical unit that contains the primary half-session for a particular logical unit-to-logical
unit (LU-to-LU) session.
In SNA, the logical unit (LU) that sends the BIND to activate a session with its partner LU.

profile
A group of customizable settings that govern how the user's session appears and operates.

program
A sequence of instructions suitable for processing by a computer. Processing can include the use of an
assembler, a compiler, an interpreter, or a translator to prepare the program for execution, as well as
to execute it.

S
secondary logical unit

In SNA, the logical unit (LU) that contains the secondary half-session for a particular LU-LU session.
An LU may contain secondary and primary half-sessions for different active LU-LU sessions.
A VTAM Secondary Logical Unit (i.e., terminal).

session
The events that take place between the time the user starts an application and the time the user exits
the application.

SIMLOGON
A VTAM macro instruction that initiates a session in which the application program acts as the PLU.

Single Point of Control
The control interface that sends commands to one or more members of an IMSplex and receives
command responses.

SLU
See secondary logical unit.

SPOC
See Single Point of Control.

statement
An instruction in a program or procedure.
In programming languages, a language construct that represents a step in a sequence of actions or a
set of declarations.

U
utility

A computer program in general support of computer processes; for example, a diagnostic program, a
trace program, or a sort program.

Glossary  203



V
VTAM

See Virtual Telecommunications Access Method.
Virtual Telecommunications Access Method (VTAM)

IBM software that controls communication and the flow of data in an SNA network by providing the
SNA application programming interfaces and SNA networking functions. An SNA network includes
subarea networking, Advanced Peer-to-Peer Networking (APPN), and High-Performance Routing
(HPR). Beginning with Release 5 of the OS/390 operating system, the VTAM for MVS/ESA function
was included in Communications Server for OS/390; this function is called Communications Server for
OS/390 - SNA Services.
An access method commonly used by MVS to communicate with terminals and other communications
devices.

X
XPLINK

See eXtra Performance LINKage (XPLINK).

204  IBM z/OS Debugger: Customization Guide



Bibliography

IBM z/OS Debugger publications
Using CODE/370 wih VS COBOL II and OS PL/I, SC09-1862

IBM z/OS Debugger
You can access the IBM z/OS Debugger publications by visiting the following library pages:

• IBM Debug for z/OS library page: http://www-01.ibm.com/support/docview.wss?uid=swg27050482
• IBM Developer for z/OS library page: http://www.ibm.com/support/docview.wss?uid=swg27048563

IBM z/OS Debugger User's Guide, SC27-9580
IBM z/OS Debugger Reference and Messages, SC27-9582
IBM z/OS Debugger Reference Summary , SC27-9581
IBM z/OS Debugger API User's Guide and Reference, SC27-9584
IBM z/OS Debugger Customization Guide, SC27-9583
Program Directory for IBM z/OS Debugger, GI13-4540
COBOL and CICS Command Level Conversion Aid for OS/390 & MVS & VM: User's Guide, SC26-9400
Program Directory for IBM COBOL and CICS Command Level Conversion Aid for OS/390 & MVS & VM,
GI10-5080
Japanese Program Directory for IBM COBOL and CICS Command Level Conversion Aid for OS/390 &
MVS & VM, GI10-6976
Program Directory for IBM Application Delivery Foundation for z/OS Common Components, GI10-8969
IBM Application Delivery Foundation for z/OS Common Components Customization Guide and User
Guide, SC27-9050

High level language publications

z/OS C and C++
Compiler and Run-Time Migration Guide, GC09-4913
Curses, SA22-7820
Language Reference, SC09-4815
Programming Guide, SC09-4765
Run-Time Library Reference, SA22-7821
User's Guide, SC09-4767

Enterprise COBOL for z/OS, Version 6
Customization Guide, SC27-8712
Language Reference, SC27-8713
Programming Guide, SC27-8714
Migration Guide, GC27-8715
Program directory, GI11-9180
Licensed Program Specifications, GI13-4532

Enterprise COBOL for z/OS, Version 5
Customization Guide, SC14-7380
Language Reference, SC14-7381

© Copyright IBM Corp. 1992, 2021 205

http://www-01.ibm.com/support/docview.wss?uid=swg27050482
http://www-01.ibm.com/support/docview.wss?uid=swg27048563


Programming Guide, SC14-7382
Migration Guide, GC14-7383
Program directory, GI11-9180
Licensed Program Specifications, GI11-9181

Enterprise COBOL for z/OS, Version 4
Compiler and Runtime Migration Guide, GC23-8527
Customization Guide, SC23-8526
Licensed Program Specifications, GI11-7871
Language Reference, SC23-8528
Programming Guide, SC23-8529

Enterprise COBOL for z/OS and OS/390, Version 3
Migration Guide, GC27-1409
Customization, GC27-1410
Licensed Program Specifications, GC27-1411
Language Reference, SC27-1408
Programming Guide, SC27-1412

COBOL for OS/390 & VM
Compiler and Run-Time Migration Guide, GC26-4764
Customization under OS/390, GC26-9045
Language Reference, SC26-9046
Programming Guide, SC26-9049

Enterprise PL/I for z/OS, Version 5
Language Reference, SC27-8940
Licensed Program Specifications, GC27-4621
Messages and Codes, GC27-8950
Compiler and Run-Time Migration Guide, GC27-8930
Programming Guide, GI13-4536

Enterprise PL/I for z/OS, Version 4
Language Reference, SC14-7285
Licensed Program Specifications, GC14-7283
Messages and Codes, GC14-7286
Compiler and Run-Time Migration Guide, GC14-7284
Programming Guide, GI11-9145

Enterprise PL/I for z/OS and OS/390, Version 3
Diagnosis, SC27-1459
Language Reference, SC27-1460
Licensed Program Specifications, GC27-1456
Messages and Codes, SC27-1461
Migration Guide, GC27-1458
Programming Guide, SC27-1457

206  IBM z/OS Debugger: Customization Guide



VisualAge PL/I for OS/390
Compiler and Run-Time Migration Guide, SC26-9474
Diagnosis Guide, SC26-9475
Language Reference, SC26-9476
Licensed Program Specifications, GC26-9471
Messages and Codes, SC26-9478
Programming Guide, SC26-9473

PL/I for MVS & PM
Compile-Time Messages and Codes, SC26-3229
Compiler and Run-Time Migration Guide, SC26-3118
Diagnosis Guide, SC26-3149
Installation and Customization under MVS, SC26-3119
Language Reference, SC26-3114
Licensed Program Specifications, GC26-3116
Programming Guide, SC26-3113
Reference summary, SX26-3821

Related publications

CICS
Application Programming Guide, SC34-6231
Application Programming Primer, SC34-0674
Application Programming Reference, SC34-6232

DB2 Universal Database for z/OS
Administration Guide, SC18-7413
Application Programming and SQL Guide, SC18-7415
Command Reference, SC18-7416
Data Sharing: Planning and Administration, SC18-7417
Installation Guide, GC18-7418
Messages and Codes, GC18-7422
Reference for Remote RDRA* Requesters and Servers, SC18-7424
Release Planning Guide, SC18-7425
SQL Reference, SC18-7426
Utility Guide and Reference, SC18-7427

IMS
IMS Application Programming: Database Manager, SC27-1286
IMS Application Programming: EXEC DLI Commands for CICS & IMS, SC27-1288
IMS Application Programming: Transaction Manager, SC27-1289

TSO/E
Command Reference, SA22-7782
Programming Guide, SA22-7788
System Programming Command Reference, SA22-7793
User's Guide, SA22-7794

Bibliography  207



z/OS
MVS JCL Reference, SA22-7597
MVS JCL User's Guide, SA22-7598
MVS System commands, SA22-7627

z/OS Language Environment
Concepts Guide, SA22-7567
Customization, SA22-7564
Debugging Guide, GA22-7560
Programming Guide, SA22-7561
Programming Reference, SA22-7562
Run-Time Migration Guide, GA22-7565
Vendor Interfaces, SA22-7568
Writing Interlanguage Communication Applications, SA22-7563

208  IBM z/OS Debugger: Customization Guide



Index

Special Characters
./E, BTS Environment command 62
&PGMNAME 61
&USERID 61

A
accessing

another language by using NATLANG 70
activating

SVCs without using a system IPL 9
z/OS Debugger definitions to VTAM 20,
175

Address space count 41
ALLOWAPPL EQAMV*

specifying, statement 177
AOR example 103
AOR example, application does not use terminal 105
APPL definition statements 19, 174
assembler, definition of xv
assigning

values to NATLANG, LOCALE, and LINECOUNT 129
AT-TLS configuration, PROFILE.TCPIP 32
AT-TLS policy 33
AT-TLS policy activation 37
AT-TLS security updates 35
AT-TLS setup 31
authentication, Debug Manager 37
authorizing

Dynamic Debug facility to access programs in protected
storage 11

B
browse mode

controlled by EQAOPTS 140, 141
controlled by RACF 67
setting up facility access 67
setting up user access 68

BTS Environment command (./E), when to use 62

C
CCSID 144
CEEBXITA

description of how it works 61
CEEBXITA, comparing two methods of linking 64
CEEBXITA, specifying message display level in 63
CEEBXITA, specifying naming pattern in 62
CEEREACTAFTERQDBG command

syntax of EQAXOPT macro for 143
CEETEST 143
checklist 1
CICS

adding support for 91

CICS (continued)
AOR example 103
AOR example, application does not use terminal 105
CSD 91
DFHRPL 91
EQA0CPLT 94
EQACCSD 91
EQACDCT 91
INITPARM 94
IVPs 102
JCL, updating 91
SEQAMOD 91
SEQAMOD must be APF-authorized 15
Terminal to TOR then routes to AOR example, with CADP
104
Terminal to TOR then routes to AOR example, with DTCN
104
Terminal to TOR, application on AOR example 106

CICS translator
specifying a different 77

CICS, changes to make to 53
code pages

creating conversion images for 144
command

syntax diagrams xvi
commands, Start (S) 43
commands, Stop (P) 45
COMMANDSDSN command

syntax of EQAXOPT macro for 141–143, 146
COMMNDxx, add started tasks 26
communication, External 39
communication, Internal 39
controlled libraries for RSE, Define MVS 29
copying

data sets to specified DD concatenation 70
CSD 91
customer support 193
customizing

Delay Debug Profile 83
IBM z/OS Debugger Utilities 72
IMS Transaction and User ID Cross Reference Table 83
Non-CICS Debug Session Start and Stop Message
Viewer 84, 85
Other IBM Application Delivery Foundation for z/OS
tools 74
Program Preparation 76
z/OS Debugger User Exit Data Set 80

D
data sets

copying into DD concatenation 70
Db2 precompiler

specifying a different 77
DBGMGR 27
DBGMGR, debug manager 30
debug manager 27, 30

Index  209



Debug Manager authentication 37
Debug Manager logging 42
Debug Manager started tasks, Define 29
debug manager, DBGMGR 30
Debug Profile Service 48–52
Debug Tool DTCN and DTSP Profile Manager 53, 57
debugger, manager 30
DEFAULTVIEW command

syntax of EQAXOPT macro for 147
Define MVS program controlled libraries for RSE 29
Define RSE server as a secure z/OS UNIX 29
defining

DTCN transaction name 92
names 19, 174
TCP/IP terminals 177

defining Transient Data queues 91
DELETE, detecting 165
deleting debug profiles from VSAM or temporary storage
queue 100
DFHLETRU 101
DLAYDBG command

description of 147
syntax of EQAXOPT macro for 147

DLAYDBGDSN command
syntax of EQAXOPT macro for 148

DLAYDBGTRC command
syntax of EQAXOPT macro for 149

DLOGMOD operand, specifying 176
documents, licensed xiii
DSALIM 94
DTCX transaction 95
Dynamic Debug

accessing programs in unprotected storage 11

E
editing

EQAZPROC to add other procedure libraries 72
EDSALIM 94
Enterprise PL/I, definition of xv
EQA00SVC

checking level of 10
description of 9

EQA01SVC
checking level of 10
description of 9

EQA0CPLT
INITPARM

example 94
parameters 94

PLT, adding 94
set up 94

EQA9974I 95
EQACCSD 91
EQACDCT 91
EQAD3CXT

comparing Db2 RUNOPTS to 61
EQADCDEL 100
EQADTCN2, where to define 96
EQADTOOL.BROWSE.CICS 67
EQADTOOL.BROWSE.MVS 67
EQADTOOL.DTCDDELETEALL 109
EQADTOOL.DTCIINACTALL 109
EQADTOOL.DTCNCHNGEANY 56

EQADTOOL.DTSTMODCICSK 108
EQADTOOL.DTSTMODUSERK 108
EQANCPLT 95
EQAOPTS, using to set global preferences 153
EQAOPTS, using to set SVC screening option 166
EQAPRFSU 49
EQARMTSU 45
EQASET

when to run 61
EQASTART

modifying, to customize data set names 71
EQAUEDAT 127
EQAWAPPL

modifying 19, 174
EQAYSESM PROC definition 21, 184
EQAZDFLT

example of, showing parameters to set 74, 76
EQAZDSYS 81
EQAZPCM 37
EQAZPROC 72
example

activating z/OS Debugger definitions to VTAM 178
full-screen mode using a dedicated terminal 173
full-screen mode using the Terminal Interface Manager
17
JCL that generates conversion images 145
VTAM in a sysplex environment 19, 175

External communication 39

F
FEJJCNFG 39
FIRSTONLY operand

specifying, to display a session manager panel 178
fixes, getting 192
full-screen mode using a dedicated terminal with z/OS

Debugger Terminal Interface Manager,
overview of steps to enable 183

full-screen mode using a dedicated terminal,
overview of steps to enable 174

full-screen mode using a dedicated terminal, how users start
173
full-screen mode using the Terminal Interface Manager,

overview of steps to enable 19

G
global preferences file 153
goals, setting in WLM 40

H
HOSTPORTS 154

I
IBM Knowledge Center, searching for problem resolution
191
IBM Support Assistant, searching for problem resolution 191
IGNOREODOLIMIT 154
IMS

adding support for 111
program that do not run in Language Environment 113

210  IBM z/OS Debugger: Customization Guide



IMSISOORIGPSB 155
IMSplex

configuring for 78, 79
initial default data set names

LDD specifications file 161
saved breakpoints file 161
saved monitor values file 161
saved settings file 161

INITPARM
example 94
NLE 94
NWP 94
STK 94

installation verification programs
CICS 102

Internal communication 39
Internet

searching for problem resolution 191
IPL

to install z/OS Debugger SVC
9

IVP
running for z/OS Debugger facility
10

IVPs 102

J
Japanese

adding data sets to DD concatenation 70
Customizing z/OS Debugger 130
data sets 71

JES Job Monitor tracing 42

K
knowledge bases, searching for problem resolution 191
Korean

data sets 71

L
Language Environment

user exit, link, into private copy of Language
Environment runtime module 65
user exits, methods to modify sample assembler 62

Language Environment user exit, create and manage data set
used by 65
Language Environment user exit, requirements for data set
used by 65
libraries for RSE , Define MVS 29
licensed documents xiii
LINK, detecting 165
LOAD, detecting 165
log mode 176
LOGDSN command

syntax of EQAXOPT macro for 155, 156
logging, Debug Manager 42
LPAR, multiple, with multiple Terminal Interface Manager (on
same VTAM network) 186
LPAR, multiple, with one Terminal Interface Manager 23, 186

M
managing debugging profiles 101
message display level, how to specify, in Language
Environment user exit 63
MFI VTAM 17, 173
Model Application Names 20, 175
modifying

EQASTART 71
EQAWAPPL 19, 174

moving to new level of Language Environment 65
multi-domain environment

modifying EQAWAPPL 19, 175
multiple instances, Running 42
multiple systems, customizing Preparation Utilities for 75, 78
MULTIPROCESS

MULTIPROCESS CHILD 158
MULTIPROCESS PARENT 158
MULTIPROCESS PROMPT 158

MVS program controlled libraries for RSE , Define 29

N
NAMES command

description of 159
naming pattern, how to specify, in Language Environment
user exit 63
NATLANG 70
NLE 94
NWP 94

O
optimizing z/OS Debugger's performance 94
order in which commands and preferences files are
processed 153

P
parameters

setting, using EQAZDFLT example 74, 76
specifying, for Db2 and CICS 77

PARMLIB 48, 52
performance

optimizing for CICS 94
PL/I, definition of xvi
plug-ins 53, 57
Policy Agent configuration 33
Policy Agent started task 33
port reservation, TCP/IP 39
ports, TCP/IP 38
preferences file, setting global 153
PREFERENCESDSN command

syntax of EQAXOPT macro for 160
preparing

to customize z/OS Debugger
1

problem determination
describing problems 194
determining business impact 194
submitting problems 195

Process count 41
PROCLIB 46, 49

Index  211



PROCLIB changes 27
PROFILE.TCPIP data set 177
PROFILE.TCPIP, AT-TLS configuration 32
PROGxx, APF authorizations 26

R
RACF profiles

as option for BROWSE 141
Authorizing DTCD and DTCI transactions to delete or
deactivate debug profiles 109
Authorizing DTST transaction to modify storage 108
browse mode 67
data sets that require READ authorization, Db2 stored
procedures 89
reserve for CICS administrator 99
reserve for CICS administrators 100

remote debug mode 53, 57
Remote Debug Service 45–48
reservation, TCPIP port 39
resource usage, overview 41
resource usage, tuning 41
RSE , Define MVS program controlled libraries for 29
RSE daemon 39
RSE server 39
RSE, Define as a secure z/OS UNIX server 29
Running multiple instances 42
RUNOPTS (Db2)

comparing EQAD3CXT to 61

S
SAVEBPDSN command

syntax of EQAXOPT macro for 161
SAVESETDSN command

syntax of EQAXOPT macro for 161
screen control mode 106
screening, setting SVC 165
secure communication 47, 51
secure z/OS UNIX server, Define RSE as a 29
security definitions 47
security settings and classes, Activate 28
security settings, verify 30
separate debug file, attributes to use for 94
separate terminal mode 106
SEQABMOD 13
SEQAEXEC

modifying 71
SEQATLIB 70, 71, 74, 76
service, when you apply to Language Environment 65
session manager panel

displaying 178
SESSIONTIMEOUT 163
SET DEFAULT VIEW command

description of 147
setting global preferences file 153
setting goals, WLM 40
settings and classes, Activate security 28
SIT 101
Software Support

contacting 193
describing problems 194
determining business impact 194

Software Support (continued)
receiving updates 192
submitting problems 195

Start (S) command 43
started task 47, 50
started task, Policy Agent 33
started tasks, Define for Debug Manager

JMON started tasks 29
RSED started tasks 29

started tasks, verifying 30
starting

IBM z/OS Debugger Utilities from an ISPF panel
72

STARTSTOPMSG 164
STK 94
Stop (P) command 45
SVC

installing, without using a system IPL 9
setting screening option 165

SVC screening 165
syntax diagrams

how to read xvi
syslogd setup 32
sysplex

modifying EQAWAPPL 19, 175
SYSPLEX

z/OS Debugger
43

system initialization parameter
DEBUGTOOL 101

T
TCP/IP

defining terminals to TN3270 177
VARY NET command 20, 175
VARY TCPIP command 178

TCP/IP port reservation 39
TCP/IP ports 38
TCP/IP ports, graphical representation 38
TCP/IP updates 27
TCP/IP, using with CICS 25
TCPIPDATADSN 168
temporary storage queue

setting up to share among CICS systems 96
Terminal Interface Manager

as IBM Session Manager application 187
Configuring telnet server for 185
description of 182
example of use 182
how to start 21, 184
multiple LPARs on same VTAM network 186
multiple LPARs with one Terminal Interface Manager 23,
186
Verifying customization of 188

Terminal to TOR then routes to AOR example, with CADP 104
Terminal to TOR then routes to AOR example, with DTCN 104
Terminal to TOR, application on AOR example 106
terminology, z/OS Debugger xiv
Thread count 41
TIM 187
TLS v1.2 considerations 34
TOR 104, 106
tracing, JES Job Monitor 42

212  IBM z/OS Debugger: Customization Guide



TSQ 100
tuning considerations 41

U
UNIX server, Define RSE as 29
USEQSAM 101
user exit

EQAUEDAT 127
XEIIN 95
XEIOUT 95
XPCFTCH 95
XPCHAIR 95
XPCTA 95

USSMSG10 panel
displaying 178

V
Verify security settings 30
verifying

installation of z/OS Debugger SVCs
10

Visual Studio Code 45
VS Code 45
VSAM

defining file locally to all CICS regions 98
deleting or deactivating debug profiles 99
migrating debug profiles from a previous release 96
setting up to function-ship file operations to a FOR 97
setting up to share among CICS systems 96
setting up, to store DTCN profiles 96

VTAM
activating z/OS Debugger definitions to, example 178
allowing users to debug using 17, 173
DLOGMOD operand 176
in a multi-domain environment 19, 175
in a sysplex environment 19, 175
LU characteristics 176
verifying installation of the z/OS Debugger definitions to
22, 181

VTAM definitions library 19, 174
VTAM minor node

defining for Terminal Interface Manager 184
defining for the Terminal Interface Manager 20

VTAMLST 19, 174

Y
yb2* parameters 81, 82

Z
z/OS Debugger

parameters
assigning values to 129

SYSPLEX 43
terminology xiv

z/OS Debugger SVCs
Dynamic Debug Facility 9

z/OS UNIX server, Define RSE as 29

Index  213



214  IBM z/OS Debugger: Customization Guide





IBM®

Product Number: 5724-T07


	Contents
	About this document
	Who might use this document
	Accessing z/OS licensed documents on the Internet
	How this document is organized
	Terms used in this document
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	How to provide your comments

	Summary of changes
	Overview of IBM z/OS Debugger
	Chapter 1.  Customizing z/OS Debugger: checklist
	Chapter 2.  Product Registration
	Registering z/OS Debugger
	Removing old registrations

	Chapter 3.  Installing the z/OS Debugger SVCs
	Installing the SVCs without using a system IPL
	Verifying the installation of the SVCs
	Checking the level of the z/OS Debugger SVCs

	Running the installation verification programs for SVCs
	Using the Authorized Debug facility for protected programs

	Chapter 4.  Setting up the APF-authorized system link list data set (SEQABMOD)
	Chapter 5.  Setting up the link list data set (SEQAMOD)
	Chapter 6.  Enabling debugging in full-screen mode using the Terminal Interface Manager
	How users start a full-screen mode debug session with the Terminal Interface Manager
	Enabling full-screen mode using the Terminal Interface Manager
	Defining the VTAM EQAMVnnn APPL definition statements
	Activating the VTAM EQAMVnnn APPLs

	Defining the Terminal Interface Manager APPL definition statements
	Starting the Terminal Interface Manager
	Verifying the enablement of full-screen mode using the Terminal Interface Manager

	Example: Defining the VTAM EQAMVnnn and Terminal Interface Manager APPL definition statements when z/OS Debugger runs on four LPARs

	Chapter 7.  Adding support for remote debug users
	Activating the TCP/IP Socket Interface for CICS
	Enabling communication with Debug Manager
	Debug Manager configuration
	PARMLIB changes
	Adding the started task to COMMNDxx
	APF authorization in PROGxx

	Adding the Debug Manager started task to the system PROCLIB
	Network configuration
	Debug Manager TCP/IP updates
	Encrypted communication

	Debug Manager security definitions
	Activating the security settings and classes
	Defining the Debug Manager started task
	Defining Debug Manager as a secure z/OS UNIX server
	Defining the MVS program controlled libraries for Debug Manager
	Verifying the security settings

	Verifying the DBGMGR started task
	Running the installation verification programs for Debug Manager

	Debug Manager configuration reference
	Understanding Debug Manager
	Setting up AT-TLS
	Setting up syslogd
	AT-TLS configuration in PROFILE.TCPIP
	Policy Agent started task
	Policy Agent configuration
	AT-TLS policy
	TLS v1.2 considerations

	AT-TLS security updates
	AT-TLS policy activation

	Debug Manager authentication
	TCP/IP considerations
	TCP/IP ports
	External communication
	Internal communication
	TCP/IP port reservation

	loopback localhost
	Multi-stack (CINET)

	WLM considerations
	Setting goals

	Tuning considerations
	Debug Manager resource usage
	Running multiple instances

	Troubleshooting configuration problems
	Debug Manager logging
	Debug Manager tracing
	SYSPLEX

	Operator commands
	Start (S)
	Modify (F)
	Stop (P)



	Adding support for Remote Debug Service
	Installing Remote Debug Service
	Customizing with the sample job EQARMTSU
	Customizing the system PROCLIB
	Remote Debug Service security definitions
	Defining the Remote Debug Service started task
	Enabling secure communication

	Updating PARMLIB to start Remote Debug Service during IPL
	Starting and stopping Remote Debug Service dynamically

	Adding support for Debug Profile Service and APIs
	Installing Debug Profile Service
	Customizing with the sample job EQAPRFSU
	Customizing the system PROCLIB
	Debug Profile Service security definitions
	Activating the security settings and classes
	Defining the Debug Profile Service started task
	Enabling secure communication
	Defining Debug Profile Service as a secure z/OS UNIX server
	Enabling Debug Profile Service to switch user context

	Updating PARMLIB to start Debug Profile Service during IPL
	Starting and stopping Debug Profile Service dynamically

	Adding support for the DTCN profiles APIs and views
	Defining the CICS TCPIPSERVICE resource
	Establishing secure communication between the profile view and your z/OS system for CICS
	Defining who can create, modify, or delete DTCN profiles

	Adding support for the DTSP Profile, code coverage, and load module analyzer views
	Installing the ADFz Common Components Server
	Installing and configuring the z/OS Debugger extensions for the Common Components Server
	Running the Common Components Server

	Enabling secure communication between z/OS Debugger and the remote debugger for incoming debug sessions

	Chapter 8.  Specifying the TEST runtime options through the Language Environment user exit
	Editing the source code of CEEBXITA
	Modifying the naming pattern
	Modifying the message display level
	Modifying the call back routine registration
	Activate the cross reference function and modifying the cross reference table data set name

	Comparing the two methods of linking CEEBXITA
	Linking the CEEBXITA user exit into a private copy of a Language Environment runtime module
	Creating and managing the TEST runtime options data set

	Chapter 9.  Installing the browse mode RACF facility
	Choose and install appropriate RACF facility
	Set up user access to facility

	Chapter 10.  Customizing IBM z/OS Debugger Utilities
	Choosing a method to start IBM z/OS Debugger Utilities
	Customizing the data set names in EQASTART
	Adding IBM z/OS Debugger Utilities to the ISPF menu
	Customizing z/OS Debugger Setup Utility
	Customizing for JCL for Batch Debugging utility
	Parameters you can set
	Customizing JCL for Batch Debugging for multiple systems

	Customizing for Other IBM Application Delivery Foundation for z/OS tools
	Parameters you can set
	Customizing Other IBM Application Delivery Foundation for z/OS tools for multiple systems

	Customizing Program Preparation
	Parameters you can set
	Customizing Program Preparation for multiple systems

	Configuring for IMSplex users
	Customizing debugging by using IMS message region templates
	Customizing z/OS Debugger User Exit Data Set
	Customizing IMS BTS Debugging
	Customizing Delay Debug Profile
	Customizing IMS Transaction and User ID Cross Reference Table
	Customizing Non-CICS Debug Session Start and Stop Message Viewer
	Customizing z/OS Debugger Code Coverage
	Installing and customizing z/OS Debugger JCL Wizard

	Chapter 11.  Preparing your environment to debug Db2 stored procedures
	Chapter 12.  Adding support for debugging under CICS
	Activating CICS non-Language Environment exits
	Storing DTCN debug profiles in a VSAM file
	Migrating a debug profiles VSAM file from an earlier release
	Sharing DTCN debug profile repository among CICS systems
	Deleting or deactivating debug profiles stored in a VSAM data set
	Deleting DTCN profiles with the DTCN LINK service
	Requiring users to specify resource types
	Direct QSAM access through a CICS task-related user exit
	Enabling the CADP transaction
	Running multiple debuggers in a CICS region
	Running the installation verification programs in a CICS region
	Configuring z/OS Debugger to run in a CICSplex environment
	Terminal connects to an AOR that runs the application
	Terminal connects to a TOR which routes the application to an AOR; debugging profiles managed by CADP
	Terminal connects to a TOR which routes the application to an AOR; debugging profiles managed by DTCN
	Terminal connects to an AOR that runs an application that does not use a terminal
	Screen control mode terminal connects to a TOR and application runs in an AOR
	Separate terminal mode terminal connects to a TOR and application runs in an AOR

	Authorizing DTST transaction to modify storage
	Authorizing DTCD and DTCI transactions to delete or deactivate debug profiles

	Chapter 13.  Adding support for debugging under IMS
	Scenario A: Running IMS and managing TEST runtime options with a user exit
	Scenario B: Running IMS and managing TEST runtime options with CEEUOPT or CEEROPT
	Scenario C: Running assembler program without Language Environment in IMS TM and managing TEST runtime options with EQASET
	Scenario D: Running IMSplex environment
	Scenario E: Enabling users to launch private message regions and to assign transactions to private message regions
	Scenario F: Enabling the Transaction Isolation Facility
	Sample customization of the IMS Transaction Isolation Facility
	Batch interface for the IMS Transaction Isolation Facility
	Installing and configuring the IMS transaction isolation extension for the ADFz Common Components server


	Chapter 14.  Enabling the EQAUEDAT user exit
	Chapter 15.  Using EQACUIDF to specify values for NATLANG, LOCALE, and LINECOUNT
	Changing the default and allowable values in EQACUIDF
	Enabling additional languages for some z/OS Debugger components through EQACUIDF

	Chapter 16.  EQAOPTS commands
	Format of the EQAOPTS command
	EQAOPTS commands that have equivalent z/OS Debugger commands
	Providing EQAOPTS commands at run time
	Creating EQAOPTS load module
	Descriptions of EQAOPTS commands
	ALTDISP
	BROWSE
	CACHENUM
	CCOUTPUTDSN
	CCOUTPUTDSNALLOC
	CCPROGSELECTDSN
	CEEREACTAFTERQDBG
	CODEPAGE
	Creating a conversion image for z/OS Debugger
	Example: JCL for generating conversion images

	COMMANDSDSN
	DEFAULTVIEW
	DISABLERLIM
	DLAYDBG
	DLAYDBGCND
	DLAYDBGDSN
	DLAYDBGTRC
	DLAYDBGXRF

	DOPTACBDSN
	DTCNDELETEDEADPROF
	DTCNFORCExxxx
	DYNDEBUG
	EQAQPP
	EXPLICITDEBUG
	GPFDSN
	HOSTPORTS
	IGNOREODOLIMIT
	IMSISOORIGPSB
	LOGDSN
	LOGDSNALLOC
	MAXTRANUSER
	MDBG
	MULTIPROCESS
	NAMES
	NODISPLAY
	PREFERENCESDSN
	SAVEBPDSN, SAVESETDSN
	SAVESETDSNALLOC, SAVEBPDSNALLOC
	SESSIONTIMEOUT
	STARTSTOPMSG
	STARTSTOPMSGDSN

	SUBSYS
	SVCSCREEN
	Combinations of suboptions for the EQAOPTS SVCSCREEN command

	TCPIPDATADSN
	THREADTERMCOND
	TIMACB
	END


	Appendix A.  SMP/E USERMODs
	Appendix B.  Enabling debugging in full-screen mode using a dedicated terminal
	How z/OS Debugger uses full-screen mode using a dedicated terminal
	Enabling full-screen mode using a dedicated terminal
	Defining the VTAM EQAMVnnn APPL definition statements
	Activating the VTAM EQAMVnnn APPLs

	Defining terminal LUs used by z/OS Debugger
	Terminal LU specifications
	Terminal LU state requirements

	Configuring the TN3270 Telnet Server to access the terminal LUs

	Example: Activating full-screen mode using a dedicated terminal when using TCP/IP TN3270 Telnet Server
	Defining z/OS Debugger to VTAM
	Defining the terminals used by z/OS Debugger
	Configuring the TN3270 Telnet Server
	Example 1
	Example 2
	Example 3


	Verifying the customization of the facility to debug full-screen mode using a dedicated terminal
	Using z/OS Debugger Terminal Interface Manager as a dedicated terminal
	Example: a debugging session using the z/OS Debugger Terminal Interface Manager
	Enabling full-screen mode using a dedicated terminal with z/OS Debugger Terminal Interface Manager
	Defining the Terminal Interface Manager APPL definition statements
	Starting the z/OS Debugger Terminal Interface Manager as a dedicated terminal
	Configuring the TN3270 Telnet Server to access the Terminal Interface Manager
	Example: Connecting a VTAM network with multiple LPARs with one Terminal Interface Manager
	Running the Terminal Interface Manager on more than one LPAR on the same VTAM network
	Configuring Terminal Interface Manager as an IBM Session Manager application
	Verifying the customization of the Terminal Interface Manager


	Appendix C.  Applying maintenance
	Applying Service APAR or PTF
	What you receive
	Checklist for applying an APAR or PTF
	Step 1. Prepare to install APAR or PTF
	Step 2. Receive the APAR or PTF
	Step 3. Review the HOLDDATA
	Step 4. Accept previously applied APAR or PTF (optional)
	Step 5. Apply the APAR or PTF
	Step 6. Run REPORT CROSSZONE and apply any missing requisites
	Step 7. Test the APAR or PTF
	Step 8. Accept the APAR or PTF



	Appendix D.  Support resources and problem solving information
	Searching knowledge bases
	Searching IBM Knowledge Center
	Searching product support documents

	Getting fixes
	Subscribing to support updates
	RSS feeds and social media subscriptions
	My Notifications

	Contacting IBM Support
	Define the problem and determine the severity of the problem
	Gather diagnostic information
	Submit the problem to IBM Support


	Appendix E.  Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	Accessibility of this document

	Notices
	Trademarks and service marks

	Glossary
	Bibliography
	IBM z/OS Debugger publications
	High level language publications
	Related publications

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	Y
	Z


