
IBM Developer for z Systems
Version 14.1

Host Configuration Guide

IBM

SC27-8577-04

Note

Before using this information, be sure to read the general information under “Notices” on page 107.

Fifth edition (March 2019)

This edition applies to IBM® Developer for z Systems® Version 14.1 and to all subsequent releases and modifications until
otherwise indicated in new editions.

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation
Attn: Information Development Department 53NA
Building 501 P.O. Box 12195
Research Triangle Park NC 27709-2195
USA

You can fax your comments to: 1-800-227-5088 (US and Canada)

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2015, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. vii

Tables.. ix

About this document...xi
Who should use this document...xi

Part 1. Host Configuration Guide.. 1

Chapter 1. Planning..3
Migration considerations..3
Planning considerations... 3

Product overview.. 3
Skill requirements... 4
Time requirements..4

Preinstallation considerations..4
Installation user ID... 4
Requisite products.. 5
Required resources... 5

Preconfiguration considerations.. 7
Product selection.. 7
Workload management...7
Resource usage and system limits... 8
Required configuration of requisite products ..8
User ID considerations... 8
Server considerations... 9

Predeployment considerations.. 9
Client checklist... 10

Chapter 2. Basic customization...13
Requirements and checklist.. 13
Customization setup...13
PARMLIB changes.. 14

Set the z/OS UNIX definitions in BPXPRMxx..14
Product enablement in IFAPRDxx..15
LPA definitions in LPALSTxx..17
LINKLIST definitions in PROGxx...17
Requisite LINKLIST and LPA definitions ... 18
LINKLIST definitions for other products.. 19
SMF record collection in SMFPRMxx..19

PROCLIB changes...20
ELAXF* remote build procedures...20

Security definitions...22
idz.env, the environment configuration file... 22
Specific components..25
Installation verification.. 25

Chapter 3. Common Access Repository Manager (CARMA)... 27
Requirements and checklist.. 27

 iii

Select the server startup method and active RAM..28
CARMA server startup...28
Production RAMs.. 28
Sample RAMs.. 28
Preconfigured RAM and server startup combinations...29

CRASTART with CA Endevor® SCM RAM.. 29
Create the CARMA VSAM data sets..29
Customize CRASRV.properties... 29
Customize crastart.endevor.conf..30
(Optional) Additional CA Endevor® SCM RAM customization.. 31

CRASTART with sample RAMs... 31
Create the CARMA VSAM data sets..31
Customize CRASRV.properties... 31
Customize crastart.conf..32
(Optional) Additional custom RAM customization...32

Batch submit with CA Endevor® SCM RAM.. 32
Create the CARMA VSAM data sets..33
Customize CRASRV.properties... 33
Customize CRASUBCA.. 33
(Optional) Additional CA Endevor® SCM RAM customization.. 34

Batch submit with sample RAMs... 35
Create the VSAM data sets... 35
Customize CRASRV.properties... 35
Customize CRASUBMT..35
(Optional) Additional custom RAM customization...36

CARMA configuration details... 36
CRASRV.properties, the RSE interface to CARMA..36
crastart*.conf, the CRASTART server startup...39
CRASUB*, the batch submit server startup..42
CARMA VSAM data sets.. 43
CARMA Repository Access Managers (RAMs)..44
CRACFG, CRASCL, CRASHOW and CRATMAP, the CA Endevor® SCM RAM configuration files.....46
CRANDVRA and CRADYNDA, the CA Endevor® SCM RAM allocation execs.................................. 47
CA Endevor® SCM RAM batch actions.. 48
CRAALLOC, the custom RAM allocation exec.. 50
CARMA return codes...51

(Optional) Supporting multiple RAMs.. 51
Example.. 51

(Optional) Custom allocation exec...52
(Optional) CARMA user exit..53
(Optional) IRXJCL versus CRAXJCL... 55

Create CRAXJCL..56

Chapter 4. SCLM Developer Toolkit (deprecated)...57
Requirements and checklist.. 57
/etc/profile updates for SCLMDT...57
Prerequisites.. 58
ISPF.conf updates for SCLMDT.. 58
idz.env updates for SCLMDT.. 59
(Optional) Long/short name translation.. 59

Create LSTRANS.FILE, the long/short name translation VSAM.. 59
idz.env updates for long/short name translation...60

(Optional) Install and customize Ant... 61
SCLM updates for SCLMDT...62
Remove old files from WORKAREA and /tmp... 62

Chapter 5. Host-based code analysis..63
Requirements and checklist.. 63

iv

Code review.. 63
Modify code review processing.. 63

Code coverage.. 64
Single Code coverage invocation..64
Multiple Code coverage invocations...64
Code coverage output...64

Chapter 6. Other customization tasks...67
include.conf, Forced includes for C/C++ content assist... 67
z/OS UNIX subprojects...68

REXEC or SSH setup... 68
Include preprocessor support... 69
ISPF EDIT macro support.. 69
ISPF PACK support...69
xUnit support for Enterprise COBOL and PL/I... 70
xUnit support for CICS applications.. 71

Limitations...72
Enterprise Service Tools support...72
CICS bidirectional language support... 72
Diagnostic IRZ messages for Enterprise Service Tools...73

Chapter 7. Installation verification..75
Verify the services.. 75

IVP initialization.. 75
CARMA connection... 76
SCLMDT connection.. 76

Chapter 8. Security definitions.. 77
Requirements and checklist.. 77
Define the data set profiles.. 77
Verify the security settings...78

Chapter 9. Migration guide.. 79
Migration considerations..79

Backing up the previously configured files.. 79
Migrate from version 14.0 to version 14.1.. 79

IBM Developer for z Systems, FMID HHOPE10... 80
IBM Developer for z Systems Host Utilities, FMID HAKGE10... 83

Migrate from version 9.5.1 to version 14.0... 84
IBM Developer for z Systems, FMID HHOPE00... 84
IBM Developer for z Systems Host Utilities, FMID HAKGE00... 89

Migrate from version 9.5 to version 9.5.1..89
IBM Rational® Developer for z Systems, FMID HHOP951... 90
IBM Rational Developer for z Systems Host Utilities, FMID HAKG951...97

Migrate from version 9.1 to version 9.5...97
IBM Rational Developer for z Systems, FMID HHOP950...97
IBM Rational Developer for z Systems Host Utilities, FMID HAKG950.......................................105

Notices..107
Programming interface information..108
Trademarks.. 108
Terms and conditions for product documentation... 108

 v

vi

Figures

1. idz.env: environment configuration file.. 23

2. CRASRV.properties: CRASTART with CA Endevor® SCM RAM.. 30

3. crastart.endevor.conf: CRASTART with CA Endevor® SCM RAM.. 30

4. CRASRV.properties: CRASTART with sample RAMs...32

5. crastart.conf: CRASTART with sample RAMs... 32

6. CRASRV.properties: Batch submit with CA Endevor® SCM RAM..33

7. CRASUBCA: Batch submit with CA Endevor® SCM RAM...34

8. CRASRV.properties: Batch submit with sample RAMs...35

9. CRASUBMT: Batch submit with sample RAMs... 36

10. CRASRV.properties – CARMA configuration file...37

11. crastart*.conf: CARMA server startup using CRASTART.. 41

12. CRASUB*: CARMA startup using batch submit.. 43

13. CRACFG - CA Endevor® SCM RAM interaction with the SCM..46

14. CRASHOW - CA Endevor® SCM RAM default filters.. 47

15. CRATMAP: CA Endevor® SCM RAM default filters.. 47

16. CRABCFG: CA Endevor® SCM RAM batch-action configuration... 49

17. CRABATCA: CA Endevor® SCM RAM batch-action JCL...50

18. CRABJOBC: CA Endevor® SCM RAM batch-action JOB card..50

19. ISPF.conf updates for SCLMDT... 59

20. idz.env updates for SCLMDT... 59

21. FLM02LST: Long/short name translation setup JCL ... 60

22. include.conf - Forced includes for C/C++ content assist... 68

 vii

viii

Tables

1. Required resources... 5

2. Optional resources.. 5

3. Administrators needed for required tasks..6

4. Administrators needed for optional tasks.. 6

5. Client checklist: Mandatory parts... 10

6. Client checklist: Optional parts...10

7. Match load modules to functions... 17

8. Sample ELAXF* procedures.. 20

9. ELAXF* high-level qualifier checklist..21

10. ELAXF*...22

11. CARMA return codes... 51

12. SCLM administrator checklist... 62

13. IVPs for services..75

14. Security setup variables..77

15. Version 14.1 customizations.. 80

16. Version 14.1 customizations.. 84

17. Version 14.0 customizations.. 86

18. Version 14.0 customizations.. 89

19. Version 9.5.1 customizations... 92

20. Version 9.5.1 z/OS Explorer customizations.. 96

21. Host Utilities version 9.0 customizations...97

22. Version 9.5 customizations.. 100

23. Host Utilities version 9.0 customizations...105

 ix

x

About this document

You can use Host Configuration Assistant for Z Development (HCA) to generate customized checklists,
and then refer to this guide for more details. HCA is a cloud-based wizard that is designed to simplify
planning and configuring of Z development products.

This document discusses the configuration of IBM Developer for z Systems on your z/OS® host system.

The following names are used in this document:

• IBM Explorer for z/OS is called z/OS Explorer.
• IBM z/OS Debugger is called z/OS Debugger.
• IBM Developer for z Systems is called Developer for z Systems.
• IBM Developer for z Systems Interface for CA Endevor® SCM is called CA Endevor® SCM RAM.
• Common Access Repository Manager is abbreviated to CARMA.
• Software Configuration and Library Manager Developer Toolkit is called SCLM Developer Toolkit,

abbreviated to SCLMDT.
• IBM z/OS Automated Unit Testing Framework is called zUnit.
• z/OS UNIX System Services is called z/OS UNIX.
• Customer Information Control System Transaction Server is called CICSTS, abbreviated to CICS®.

This document is part of a set of documents that describe Developer for z Systems host system
configuration. Each of these documents has a specific target audience. To complete the Developer for z
Systems configuration, you are not required to read all documents.

• IBM Developer for z Systems Host Configuration Guide (this document) describes in detail all planning
tasks, configuration tasks, and options (including optional ones) and provides alternative scenarios.

• IBM Developer for z Systems Host Configuration Reference describes Developer for z Systems design and
gives background information for various configuration tasks of Developer for z Systems, z/OS
components, and other products (such as WLM) related to Developer for z Systems.

For the most up-to-date versions of this document, see the Developer for z Systems Knowledge Center
available at https://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html .

For the most up-to-date versions of the complete documentation, including installation instructions,
white papers, podcasts, and tutorials, see the library page of the IBM Developer for z Systems website
(http://www.ibm.com/support/docview.wss?uid=swg27048563).

Who should use this document
This document is intended for system programmers who are installing and configuring IBM Developer for
z Systems.

This document lists in detail the steps that are needed to do a full setup of the product, including some
non-default scenarios. Background information that can help you to plan and execute the configuration
can be found in the IBM Developer for z Systems Host Configuration Reference. To use this document, you
must be familiar with the z/OS UNIX System Services and MVS™ host systems.

© Copyright IBM Corp. 2015, 2019 xi

https://ibm-host-configuration-assistant-for-z-development.au-syd.mybluemix.net/#/
https://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27048563

xii IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Part 1. Host Configuration Guide

© Copyright IBM Corp. 2015, 2019 1

2 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Chapter 1. Planning

You can use Host Configuration Assistant for Z Development (HCA) to generate customized checklists,
and then refer to this guide for more details. HCA is a cloud-based wizard that is designed to simplify
planning and configuring of Z development products.

Use the information in this chapter to plan the installation and deployment of Developer for z Systems.
The following subjects are described:

• “Migration considerations” on page 3
• “Planning considerations” on page 3
• “Preinstallation considerations” on page 4
• “Preconfiguration considerations” on page 7
• “Predeployment considerations” on page 9
• “Client checklist” on page 10

For a complete list of the Developer for z Systems hardware and software requirements, including
prerequisites and corequisites, see the Software Product Compatibility Reports (SPCR) tool (https://
www.ibm.com/software/reports/compatibility/clarity/index.html).

Migration considerations
Chapter 9, “Migration guide,” on page 79 describes changes to the installation and configuration of this
release with respect to previous releases of the product. Use this information to plan your migration to the
current release of Developer for z Systems.

Planning considerations

Product overview
Developer for z Systems consists of a client, installed on the user's personal computer, and a server,
installed on one or more host systems. Both client and host are installed on top of IBM Explorer for z/OS.
This documentation contains information for a z/OS host system.

The client provides developers with an Eclipse-based development environment that facilitates a uniform
graphical interface to the host, and that, among other things, can offload work from the host to the client,
saving resources on the host.

The host portion consists of several permanently active tasks and tasks that are started ad hoc. These
tasks allow the client to work with the various components of your z/OS host system, such as MVS data
sets, TSO commands, z/OS UNIX files and commands, job submit, and job output. The host components
of Developer for z Systems are shared by multiple products offered by IBM.

Developer for z Systems enhances the basic access functionality provided by z/OS Explorer. Developer for
z Systems can, for example, interact with subsystems and other application software on the host system,
such as CICS, and Software Configuration Managers (SCMs), if Developer for z Systems is configured to do
so, and if these co-requisite products are available.

For information about Developer for z Systems itself, how it interacts with your system, and with the
prerequisite and co-requisite products, see the Developer for z Systems Host Configuration Reference. The
IBM Explorer for z/OS Host Configuration Reference gives similar information for z/OS Explorer, which is a
requisite for Developer for z Systems.

To learn more about the functionality that is offered by Developer for z Systems, see the Developer for z
Systems Knowledge Center or your local IBM representative.

© Copyright IBM Corp. 2015, 2019 3

https://ibm-host-configuration-assistant-for-z-development.au-syd.mybluemix.net/#/
https://www.ibm.com/software/reports/compatibility/clarity/index.html

Skill requirements
SMP/E skills are needed for a Developer for z Systems host installation.

The configuration of Developer for z Systems requires more than the typical system programming
permissions and expertise, so assistance from others might be needed. Table 3 on page 6 and Table 4
on page 6 list the administrators who are needed for the required and optional customization tasks.

Time requirements
The amount of time that is required to install and configure the Developer for z Systems host system
components depends on various factors such as these:

• The current z/OS UNIX and TCP/IP configuration
• The availability of prerequisite software and maintenance
• The availability of a user, who has successfully installed the client, to test the installation and report any

problems that might occur

Experience has shown that the installation and configuration process for the Developer for z Systems host
system requires from one to two days to complete. This time requirement does not include the
installation and configuration of IBM Explorer for z/OS, which is a required product, nor does it include the
installation and configuration of other FMIDs provided together with Developer for z Systems. This time
requirement is for a clean installation performed by an experienced system programmer. If problems are
encountered, or if the required skills are not available, the setup will take longer.

Preinstallation considerations
For detailed instructions on the SMP/E installation of the product, see Program Directory for IBM Developer
for z Systems.

The IBM Developer for z Systems FMIDs are shared by multiple IBM products, so it is possible you already
have installed one or more of the FMIDs. In this case you can reuse the existing installation and go
directly to the configuration tasks.

The Developer for z Systems servers are single-system minded, and are not SYSPLEX aware. If you are
using the servers in a SYSPLEX, you must ensure that the data requested by the end users (data sets, job
output, z/OS UNIX files) is available on the system Developer for z Systems is installed. See
“Predeployment considerations” on page 9 for cloning Developer for z Systems to other systems.

To run multiple instances of Developer for z Systems on a single host system, see "Running multiple
instances" in the IBM Explorer for z/OS Host Configuration Reference .

The file system in which Developer for z Systems is installed must be mounted with the SETUID
permission bit on (this is the system default). Mounting the file system with the NOSETUID parameter
prevents Developer for z Systems from creating the user's security environment, and rejects the
connection requests of the client. The same is true for the file systems hosting z/OS Explorer, Java™, and
z/OS UNIX binaries.

Installation user ID
The user ID that is used to install Developer for z Systems, or to install maintenance, must have at least
the following attributes:

• TSO access (with a normal region size).

Note: A large region size is required for the user ID that runs the Installation Verification Programs
(IVPs) because functions requiring a lot of memory (such as Java) are executed. You should set the
region size to 131072 kilobytes (128 megabytes) or higher.

• An OMVS segment defined to the security system (for example, RACF®), both for the user ID and its
default group.

4 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

– The HOME field must refer to a home directory that is allocated for the user, with READ, WRITE, and
EXECUTE access.

– The PROGRAM field in the OMVS segment should be /bin/sh or other valid z/OS UNIX shell, such
as /bin/tcsh.

– The user ID’s default group requires a GID.
• UID=0 or READ authorization to the BPX.SUPERUSER profile in the FACILITY class.
• If the BPX.FILEATTR.APF or BPX.FILEATTR.PROGCTL profiles are defined in the FACILITY class,

READ access to these profiles.
• READ, WRITE, and EXECUTE access to the /tmp directory (or a directory referenced in the TMPDIR

environment variable).

Requisite products
Developer for z Systems has a list of prerequisite software that must be installed and operational before
the product will work. There is also a list of corequisite software to support specific features of Developer
for z Systems. These requisites must be installed and operational at runtime for the corresponding
features to work as designed.

For a complete listing of the Developer for z Systems software requirements including prerequisites and
co-requisites, see the Software Product Compatibility Reports (SPCR) tool (https://www.ibm.com/
software/reports/compatibility/clarity/index.html).

Plan ahead to have these requisite products available, as it might take some time, depending on the
policies at your site. The key requisites for a basic setup are:

• z/OS 2.2 or higher
• IBM Explorer for z/OS 3.1
• Latest service release of Java 6.0 or higher (31 or 64 bit)

Required resources
Developer for z Systems requires the allocation of the systems resources listed in Table 1 on page 5.
The resources listed in Table 2 on page 5 are required for optional services. Plan to have these
resources available because, depending on the policies at your site, it might take some time to get them.

Table 1. Required resources

Resource Default value Information

MVS build procedures ELAXF* “PROCLIB changes” on page 20

Table 2. Optional resources

Resource Default value Information

LINKLIST data set FEL.SFELLOAD Chapter 4, “SCLM Developer
Toolkit (deprecated),” on page
57

LPA data set FEL.SFELLPA “LPA definitions in LPALSTxx” on
page 17

Chapter 1. Planning 5

https://www.ibm.com/software/reports/compatibility/clarity/index.html

Table 2. Optional resources (continued)

Resource Default value Information

port range for host-confined use any available port is used • Chapter 3, “Common Access
Repository Manager (CARMA),”
on page 27

• Chapter 5, “Host-based code
analysis,” on page 63

• “xUnit support for CICS
applications” on page 71

CICS JCL update FEL.SFELLOAD “CICS bidirectional language
support” on page 72

PROCLIB update • AZU*
• AKG*

• “xUnit support for Enterprise
COBOL and PL/I” on page 70

• Chapter 5, “Host-based code
analysis,” on page 63

CICS TS update none “xUnit support for CICS
applications” on page 71

The configuration of Developer for z Systems requires more than the typical system programming
permissions and expertise; therefore, assistance from others might be needed. Table 3 on page 6 and
Table 4 on page 6 list the administrators who are needed for the required and optional customization
tasks.

Table 3. Administrators needed for required tasks

Administrator Task Information

System Typical system programmer
actions are required for all
customization tasks

N/A

Table 4. Administrators needed for optional tasks

Administrator Task Information

Security Define data set profiles "Security considerations" in Host
Configuration Reference

TCP/IP Define new TCP/IP ports • “CRASRV.properties, the RSE
interface to CARMA” on page
36

• “Multiple Code coverage
invocations” on page 64

• “xUnit support for CICS
applications” on page 71

SCLM • Define SCLM language
translators for Java EE support

• Define SCLM types for Java EE
support

Chapter 4, “SCLM Developer
Toolkit (deprecated),” on page
57

6 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 4. Administrators needed for optional tasks (continued)

Administrator Task Information

CICS TS • Update CICS region JCL
• Update CICS region CSD
• Update CICS region SIP
• Define CICS resources

• “CICS bidirectional language
support” on page 72

• “xUnit support for CICS
applications” on page 71

WLM Assign goals to Developer for z
Systems tasks

"WLM considerations" in the Host
Configuration Reference

Preconfiguration considerations
For information about Developer for z Systems itself, how it interacts with your system, and with the
prerequisite and co-requisite products, see the Developer for z Systems Host Configuration Reference. The
IBM Explorer for z/OS Host Configuration Reference gives similar information for z/OS Explorer, which is a
requisite for Developer for z Systems. This information can assist you in creating a setup that supports
your current needs and future growth.

Before configuring Developer for z Systems, ensure you configured z/OS Explorer.

Product selection
The host components of Developer for z Systems are used by different products. When in doubt, contact
the person responsible for the purchase of Developer for z Systems, or possibly your local IBM
representative, to learn which product was purchased. With this information, you can select the correct
product registration method, as pricing and available features differ for each of the following products,
and the host components will register only as one of the possible products.
IBM Z Open Development (program number 5737-I22)

The Z Open Development client enhances the basic access functionality provided by z/OS Explorer.
Activation of client features is managed by the client.

IBM Z Open Unit Test (program number 5737-J31)
The Z Open Unit Test client enhances the functionality provided by Z Open Development. Activation of
client features is managed by the client.

IBM Developer for z Systems (program number 5724-T07)
The Developer for z Systems client enhances the functionality provided by Z Open Unit Test.
Activation of client features is managed by the client.

IBM Developer for z Systems Enterprise Edition (program number 5655-AC5)
The Developer for z Systems Enterprise Edition provides the same client functionality as Developer for
z Systems. However, activation of client features is managed by the host, and this product provides
additional debug related capabilities, such as a 3270 interface.

IBM Application Delivery Foundation for z Systems (program number 5655-AC6)
Application Delivery Foundation for z Systems provides Developer for z Systems Enterprise Edition,
which is described earlier, combined with other products useful for z/OS application development
activities.

Workload management
Unlike traditional z/OS applications, Developer for z Systems is not a monolithic application that can be
identified easily to Workload Manager (WLM). Developer for z Systems consists of several components
that interact to give the client access to the host system services and data. To plan your WLM
configuration, see "WLM considerations" in the Host Configuration Reference.

Note: Developer for z Systems consists of multiple tasks that communicate with each other and the client.
These tasks use various timers to detect communication loss with their partners. Timeout issues can arise

Chapter 1. Planning 7

(due to lack of CPU time during the timeout window) on systems with a heavy CPU load or incorrect
Workload Management (WLM) settings for Developer for z Systems.

Resource usage and system limits
Developer for z Systems uses a variable number of system resources such as address spaces, and z/OS
UNIX processes and threads. The availability of these resources is limited by various system definitions.
To estimate the usage of key resources so that you can plan your system configuration, see "Tuning
considerations" in the IBM Explorer for z/OS Host Configuration Reference. Developer for z Systems can
run in either 31-bit or 64-bit mode, changing the storage resource limitations drastically.

Required configuration of requisite products
Consult your MVS system programmer, security administrator, and TCP/IP administrator to verify if the
requisite products and software are installed, tested, and working. Some requisite customization tasks
that can be overlooked are listed here:

• All Developer for z Systems users must have READ and EXECUTE access to the Java directories.
• Ensure that at least the basic configuration of z/OS Explorer has completed, since Developer for z

Systems customization extends this setup.
• Remote (host-based) actions for z/OS UNIX subprojects require that z/OS UNIX version of REXEC or

SSH is active on the host system.

User ID considerations
The user ID of a Developer for z Systems user must have at least the following attributes:

• TSO access (with a normal region size).

Note: A large region size is required for the user ID that runs the Installation Verification Programs
(IVPs) because functions requiring a lot of memory (such as Java) are executed. You should set the
region size to 131072 kilobytes (128 megabytes) or higher.

• An OMVS segment defined to the security system (for example, RACF), both for the user ID and its
default group.

– The HOME field must refer to a home directory allocated for the user (with READ, WRITE and EXECUTE
access).

– The PROGRAM field in the OMVS segment should be /bin/sh or other valid z/OS UNIX shell, such
as /bin/tcsh.

– The ASSIZEMAX field should not be set, so that system defaults are used.
– The user ID does not require UID 0.

Example (command LISTUSER userid NORACF OMVS):

USER=userid

OMVS INFORMATION

UID= 0000003200
HOME= /u/userid
PROGRAM= /bin/sh
CPUTIMEMAX= NONE
ASSIZEMAX= NONE
FILEPROCMAX= NONE
PROCUSERMAX= NONE
THREADSMAX= NONE
MMAPAREAMAX= NONE

– The user ID’s default group requires a GID.

Example (command LISTGRP group NORACF OMVS):

GROUP group

8 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

OMVS INFORMATION

GID= 0000003243

• READ and EXECUTE access to the z/OS Explorer and Developer for z Systems installation and
configuration directories and files, default /usr/lpp/IBM/zexpl/*, /etc/zexpl/*, /var/
zexpl/*, /usr/lpp/IBM/idz/*, and /var/idz/*.

• READ, WRITE, and EXECUTE access to the z/OS Explorer WORKAREA directory, default /var/zexpl/
WORKAREA, and user log directory, default /var/zexpl/logs.

• READ access to the z/OS Explorer and Developer for z Systems installation data sets, default
FEK.SFEK* and FEL.SFEL*.

• READ, WRITE, and EXECUTE access to the /tmp directory or a directory referenced in the TMPDIR
environment variable.

Server considerations
z/OS Explorer and Developer for z Systems consists of multiple permanently active servers, which can be
started tasks or user jobs. These servers provide the requested services themselves or start other servers
(as z/OS UNIX threads or user jobs) to provide the service. There is no specific startup order.

The only requirement is that the servers are up and running before the first user tries to connect. The
security mechanisms used by z/OS Explorer and Developer for z Systems servers and services rely on the
data sets and file systems they reside in being secure. This implies that only trusted system
administrators should be able to update the program libraries and configuration files.

Predeployment considerations
Developer for z Systems supports the cloning of an installation to a different system, thus avoiding the
need for a SMP/E installation on each system.

The following data sets, directories, and files are mandatory for deployment to other systems. If you
copied a file to a different location, this file must replace its counterpart in the following lists.

Note: The following list does not cover the deployment needs of the prerequisite and co-requisite
software (including z/OS Explorer).

Developer for z Systems

• FEL.SFELLMOD(*)
• FEL.SFELLOAD(*)
• FEL.SFELLPA(*)
• FEL.SFELPROC(*)
• FEL.#CUST.CNTL(*)
• FEL.#CUST.PARMLIB(*)
• FEL.#CUST.PROCLIB(*)
• /usr/lpp/IBM/idz/*
• /var/idz/*
• /etc/zexpl/*
• definitions, data sets, files, and directories resulting from customization jobs in FEL.#CUST.JCL

Developer for z Systems Host Utilities

• AKG.SAKGPROC(*)
• /usr/lpp/IBM/idzutil/*

Notes:

Chapter 1. Planning 9

• FEL and /usr/lpp/IBM/idz are the high-level qualifier and path used during the installation of the
Developer for z Systems. FEL.#CUST, /etc/zexpl and /var/idz are the default locations used
during the customization of the product where /etc/zexpl is the z/OS Explorer configuration
directory.

• AKG and /usr/lpp/IBM/idzutil are the high-level qualifier and path used during the installation of
Developer for z Systems Host Utilities.

• You should install Developer for z Systems in a private file system, possibly combined with z/OS
Explorer, to ease the deploying of the z/OS UNIX parts of the product. If you cannot use a private file
system, use an archiving tool such as the z/OS UNIX tar command to transport the z/OS UNIX
directories from one system to another. This method is required for preserving the attributes (such as
program control) of the Developer for z Systems files and directories.

For more information about the following sample commands to archive and restore the Developer for z
Systems installation directory, see UNIX System Services Command Reference (SA22-7802).

– Archive: cd /SYS1/usr/lpp/IBM/idz; tar -cSf /u/userid/idz.tar
– Restore: cd /SYS2/usr/lpp/IBM/idz; tar -xSpf /u/userid/idz.tar

Client checklist
Users of the Developer for z Systems client must know the result of certain host system customizations,
such as TCP/IP port numbers, for the client to work properly. Use these checklists to gather the
information needed.

The checklist in Table 5 on page 10 lists the required results of mandatory customization steps. Table 6
on page 10 lists the required results of optional customization steps.

Table 5. Client checklist: Mandatory parts

Customization Value

(prerequisite) RSE daemon TCP/IP port number. The default is 4035.

This port is set during z/OS Explorer configuration.

Table 6. Client checklist: Optional parts

Customization Value

Location of the ELAXF* procedures if they are not in a system procedure library. The
default is FEL.#CUST.PROCLIB.

See the note on JCLLIB in “ELAXF* remote build procedures” on page 20.

Procedure or step names of the ELAXF* procedures if they were changed.

See the note on changing them in “ELAXF* remote build procedures” on page 20.

Location of the AKGCR procedure if it is not in a system procedure library. The default
is AKG.#CUST.PROCLIB.

See the note on JCLLIB in “Code review” on page 63.

Location of the AKGCC procedure if it is not in a system procedure library. The default
is AKG.#CUST.PROCLIB.

See the note on JCLLIB in “Code coverage” on page 64.

Location of the FEKRNPLI Include Preprocessor exec statement. The default is
FEL.#CUST.CNTL.

See “Include preprocessor support” on page 69.

10 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 6. Client checklist: Optional parts (continued)

Customization Value

Location of the FELEDTMC ISPF EDIT macro processor. The default is
FEL.#CUST.CNTL.

See ISPF EDIT macro support.

Location of the FELPACK pack/unpack program, if it is not in a system procedure
library. The default is FEL.SFELPROC.

See ISPF PACK support.

Location of the unit test load modules if not in LINKLIST or STEPLIB of idz.env. The
default is FEL.SFELLOAD.

See “xUnit support for Enterprise COBOL and PL/I” on page 70.

Location of the AZUZUNIT procedure if it is not in a system procedure library. The
default is FEL.#CUST.PROCLIB.

See the note on JCLLIB in “xUnit support for Enterprise COBOL and PL/I” on page
70.

Location of the sample *.xsd and *.xsl XML files used for unit test output
formatting. The defaults are /usr/lpp/IBM/idz/samples/zunit/xsd
and /usr/lpp/IBM/idz/samples/zunit/xsl.

See “xUnit support for Enterprise COBOL and PL/I” on page 70.

TCP/IP port number for unit test CICS recorder (recording service). There is no
default.

See “xUnit support for CICS applications” on page 71.

(co-requisite) TN3270 port number for Host Connect Emulator. The default is 23.

See "TCP/IP ports" in Host Configuration Reference.

(co-requisite) REXEC or SSH port number, which, by default are 512 or 22.

See “z/OS UNIX subprojects” on page 68.

Location of the SFELSAMP sample library for CARMA RAM samples. The default is
FEL.SFELSAMP.

See the CARMA Developer’s Guide (SC23-7660).

Location of the CRA#ASLM JCL for CARMA SCLM RAM data set allocations. The default
is FEL.#CUST.JCL.

See the note on CRA#ASLM in “SCLM RAM” on page 45.

Chapter 1. Planning 11

12 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Chapter 2. Basic customization

The following customization steps are common for the various Developer for z Systems services. See the
chapters about the specific components for their customization requirements.

Requirements and checklist
You need the assistance of a security administrator and a TCP/IP administrator to complete this
customization task, which requires the following resources and special customization tasks:

• LPA data set
• Various PARMLIB updates
• Various PROCLIB updates
• Various security software updates
• Various TCP/IP ports for internal and client-host communication

To verify the installation and to start using Developer for z Systems at your site, do the following tasks.
Unless otherwise indicated, all tasks are mandatory.

1. Create customizable copies of samples and create the work environment for Developer for z Systems.
For details, see “Customization setup” on page 13.

2. Update SYS1.PARMLIB definitions. For details, see “PARMLIB changes” on page 14.
3. Create SYS1.PROCLIB procedures. For details, see “PROCLIB changes” on page 20.
4. Update security definitions. For details, see “Security definitions” on page 22.
5. Customize Developer for z Systems configuration files. For details, see “idz.env, the environment

configuration file” on page 22.

Customization setup
Developer for z Systems contains several sample configuration files and sample JCL. To avoid overwriting
your customizations when applying maintenance, copy all of these members and z/OS UNIX files to a
different location, and customize the copy.

The Developer for z Systems FMIDs are shared by multiple IBM products, so it is possible you see
configurable files, libraries, or directories that are not applicable to your setup. When in doubt, refer back
to this document, as it contains all information on the parts that do apply to your setup.

To create customizable copies of configuration files and configuration JCL, and to create required z/OS
UNIX directories, customize and submit the sample FELSETUP member in the FEL.SFELSAMP data set.
The required customization steps are described within the member.

This job performs the following tasks:

• Create FEL.#CUST.PARMLIB and populate it with sample configuration files.
• Create FEL.#CUST.PROCLIB and populate it with sample SYS1.PROCLIB members.
• Create FEL.#CUST.JCL and populate it with sample configuration JCL.
• Create FEL.#CUST.CNTL and populate it with sample server startup scripts.
• Create FEL.#CUST.ASM and populate it with sample assembler source code.
• Create FEL.#CUST.SQL and populate it with sample SQL command files.
• Populate the z/OS Explorer configuration directory, /etc/zexpl/* with sample configuration files.
• Create /var/idz/* as work directories for various Developer for z Systems functions, and populate it

with sample files.

© Copyright IBM Corp. 2015, 2019 13

Notes:

• The customization steps described here, including the FELSETUP tool, assume that the configuration of
z/OS Explorer has already been completed.

• The configuration steps in this publication use the member and file locations created by the FELSETUP
job, unless noted otherwise. The original samples, which should not be updated, are in FEL.SFELSAMP
and /usr/lpp/IBM/idz/samples/.

• For more details on which sample members are copied to which data set, and for more details on which
directories are created, their permission bitmask, and where the various sample files are copied to, see
the comments in FEL.SFELSAMP(FELSETUP).

• To aid in migrating an existing setup, the comments in FEL.SFELSAMP(FELSETUP) also document the
changes between different versions of Developer for z Systems.

PARMLIB changes
The following PARMLIB changes are documented in this section:

• “Set the z/OS UNIX definitions in BPXPRMxx” on page 14
• “Product enablement in IFAPRDxx” on page 15
• “LPA definitions in LPALSTxx” on page 17
• “LINKLIST definitions in PROGxx” on page 17
• “Requisite LINKLIST and LPA definitions ” on page 18
• “LINKLIST definitions for other products” on page 19
• “SMF record collection in SMFPRMxx” on page 19

For more information about the PARMLIB definitions listed in the next sections, see MVS Initialization and
Tuning Reference (SA22-7592). For more information about the sample console commands, see MVS
System Commands (SA22-7627).

Set the z/OS UNIX definitions in BPXPRMxx
SCLM Developer Toolkit starts multiple, user-owned, processes concurrently during certain user activities.

Define OMVS=xx in the IEASYSxx parmlib member to specify which BPXPRMxx parmlib member should
be used during IPL.

MAXPROCUSER specifies the maximum number of processes that a single z/OS UNIX user ID can have
concurrently active. Set MAXPROCUSER in SYS1.PARMLIB(BPXPRMxx) to 50 or higher. This setting is
intended to be a system-wide limit, because it should be active for each client that uses Developer for z
Systems.

These values can be checked and set dynamically (until the next IPL) with the following console
commands:

• DISPLAY OMVS,O
• SETOMVS MAXPROCUSER=50

Note:

• The MAXPROCUSER value suggested here is based upon users having a unique z/OS UNIX user ID (UID).
Increase this value if your users share the same UID.

• During the SMP/E install of Developer for z Systems, you were advised to place the code in a separate
file system (zFS of HFS) and update BPXPRMxx to mount this file system during system IPL. Included is
a repeat of the sample mount command in case this update still must be done:

MOUNT FILESYSTEM('#dsn')
 MOUNTPOINT('-PathPrefix-usr/lpp/IBM/idz')
 MODE(RDWR) /* can be MODE(READ) */

14 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

 TYPE(ZFS) PARM('AGGRGROW') /* zFS, with extents */
/* TYPE(HFS) */ /* HFS, auto. extent */

• During the SMP/E install of Developer for z Systems Host Utilities, you were advised to place the code in
a separate file system (zFS of HFS) and update BPXPRMxx to mount this file system during system IPL.
Included is a repeat of the sample mount command in case this update still must be done:

MOUNT FILESYSTEM('#dsn')
 MOUNTPOINT('-PathPrefix-usr/lpp/IBM/idzutil')
 MODE(RDWR) /* can be MODE(READ) */
 TYPE(ZFS) PARM('AGGRGROW') /* zFS, with extents */
/* TYPE(HFS) */ /* HFS, auto. extent */

Product enablement in IFAPRDxx
The host components of Developer for z Systems are used by different products. When in doubt, contact
the person responsible for the purchase of Developer for z Systems, or possibly your local IBM
representative, to learn which product was purchased. With this information, you can select the correct
product registration method, as pricing and available features differ for each of the following products,
and the host components will register only as one of the possible products.
IBM Z Open Development (program number 5737-I22)

The Z Open Development client enhances the basic access functionality provided by z/OS Explorer.
Activation of client features is managed by the client.

IBM Z Open Unit Test (program number 5737-J31)
The Z Open Unit Test client enhances the functionality provided by Z Open Development. Activation of
client features is managed by the client.

IBM Developer for z Systems (program number 5724-T07)
The Developer for z Systems client enhances the functionality provided by Z Open Unit Test.
Activation of client features is managed by the client.

IBM Developer for z Systems Enterprise Edition (program number 5655-AC5)
The Developer for z Systems Enterprise Edition provides the same client functionality as Developer for
z Systems. However, activation of client features is managed by the host, and this product provides
additional debug related capabilities, such as a 3270 interface.

IBM Application Delivery Foundation for z Systems (program number 5655-AC6)
Application Delivery Foundation for z Systems provides Developer for z Systems Enterprise Edition,
which is described earlier, combined with other products useful for z/OS application development
activities.

Products to be enabled on z/OS are defined in SYS1.PARMLIB(IFAPRDxx). Define PROD=xx in the
IEASYSxx parmlib member to specify which IFAPRDxx parmlib member should be used during IPL.

The Developer for z Systems host components will attempt to register using the following order of product
definitions. The process stops on the first successful registration.

Specify the following in IFAPRDxx to define IBM Application Delivery Foundation for z Systems (product
code 5655-AC6):

PRODUCT OWNER('IBM CORP')
 NAME('IBM APP DLIV FND')
 ID(5655-AC6)
 VERSION(*) RELEASE(*) MOD(*)
 FEATURENAME(*)
 STATE(ENABLED)

Specify the following in IFAPRDxx to define IBM Developer for z Systems Enterprise Edition (product code
5655-AC5):

PRODUCT OWNER('IBM CORP')
 NAME('IBM IDz EE')
 ID(5655-AC5)
 VERSION(*) RELEASE(*) MOD(*)

Chapter 2. Basic customization 15

 FEATURENAME(*)
 STATE(ENABLED)

Specify the following in IFAPRDxx to define IBM Developer for z Systems (product code 5724-T07):

PRODUCT OWNER('IBM CORP')
 NAME('IBM IDz')
 ID(5724-T07)
 VERSION(*) RELEASE(*) MOD(*)
 FEATURENAME(*)
 STATE(ENABLED)

Specify the following in IFAPRDxx to define IBM Z Open Unit Test (product code 5737-J31):

PRODUCT OWNER('IBM CORP')
 NAME('IBM Z Open Unit Test')
 ID(5737-J31)
 VERSION(*) RELEASE(*) MOD(*)
 FEATURENAME(*)
 STATE(ENABLED)

Specify the following in IFAPRDxx to define IBM Z Open Development (product code 5737-I22):

PRODUCT OWNER(’IBM CORP’)
 NAME(’IBM Z Open Dev’)
 ID(5737-I22)
 VERSION(*) RELEASE(*) MOD(*)
 FEATURENAME(*)
 STATE(ENABLED)

After the IFAPRDxx parmlib member is updated, it can be activated dynamically (until the next IPL) with
the following console command:

SET PROD=xx

Note: All product flavors of the host components register the following features:

• FEL-RSED (for RSE daemon in Developer for z Systems, FMID HHOPxxx)
• AKG-CC (for Code Coverage in Developer for z Systems Host Utilities, FMID HAKGxxx)
• AKG-CR (for Code Review in Developer for z Systems Host Utilities, FMID HAKGxxx)

A product that is not defined in IFAPRDxx, or defined with STATE(DISABLED) or STATE(NOTDEFINED)
will not be selected for registration. If none of the documented products is defined in IFAPRDxx,
Developer for z Systems will only provide basic services for clients with a valid activation token.

If you change how a product is purchased, for example, you upgrade from using a stand-alone version to
the IBM Application Delivery Foundation for z Systems product bundle, you must explicitly remove the
existing product definition from the in-storage tables kept by z/OS when activating the new definition.
Follow this scenario to do this dynamically (without IPL):

1. In IFAPRDxx, define the new product as described before, and update the old product with
STATE(DISABLED).

2. Activate the update with operator command SET PROD=xx.
3. Restart the RSED server to pick up the change.
4. You can now safely remove the old product definition from IFAPRDxx.

IBM advises against defining IFAPRDxx entries that have NAME(*) or ID(*) fields, because this will
result in ALL z/OS applications that utilize product registration to find a match on the first test, and adhere
to the related STATE() definition. For Developer for z Systems with STATE(ENABLED), this means that
the application will register as IBM Application Delivery Foundation for z Systems (product code 5655-
AC6).

16 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

LPA definitions in LPALSTxx
The optional Common Access Repository Manager (CARMA) service supports different server startup
methods for the CARMA server. The CRASTART startup method requires that the modules in the
FEL.SFELLPA load library are in the Link Pack Area (LPA).

LPA data sets are defined in SYS1.PARMLIB(LPALSTxx). Define LPA=xx in the IEASYSxx parmlib
member to specify which LPALSTxx parmlib member should be used during IPL.

LPA definitions can be set dynamically (until the next IPL) with the following console command:

• SETPROG LPA,ADD,DSN=FEL.SFELLPA,MASK=*

Note:

• Data sets listed in LPALSTxx must be cataloged in the master catalog or a user catalog identified in the
LPALSTxx member.

• Adding a new data set to LPALSTxx requires an IPL with CLPA (create LPA) to be activated.
• All libraries that are loaded into LPA are automatically considered to be APF-authorized and program

controlled. Ensure you have proper security controls in place for these libraries.
• If you choose to not place a library designed for LPA placement in LPA and you use LINKLIST or

STEPLIB instead, ensure that you define the APF authorization and program control status.

LINKLIST definitions in PROGxx
LINKLIST definitions for Developer for z Systems can be grouped in three categories:

• Developer for z Systems load libraries that are needed for Developer for z Systems functions. These
definitions are described in this section.

• Requisite load libraries that are needed for Developer for z Systems functions. These definitions are
described in “Requisite LINKLIST and LPA definitions ” on page 18.

• Developer for z Systems load libraries that are needed by other products. These definitions are
described in “LINKLIST definitions for other products” on page 19.

Table 7. Match load modules to functions. This table describes the functions of load modules and the
load libraries where they are located.

Load library Load modules Usage STEPLIB

FEL.SFELLMOD IRZ* and IIRZ* “Diagnostic IRZ messages for
Enterprise Service Tools” on
page 73

CICS, IMS, or MVS batch

FEL.SFELLOAD AZU* and IAZU* “xUnit support for Enterprise
COBOL and PL/I” on page 70

idz.env or MVS batch

BWB* Chapter 4, “SCLM Developer
Toolkit (deprecated),” on page
57

idz.env

CRA* Chapter 3, “Common Access
Repository Manager (CARMA),”
on page 27

CRASUB* or crastart*.conf

ELAX* “ELAXF* remote build
procedures” on page 20

(error feedback and include
preprocessor)

ELAXF* procedures

FEJB* “CICS bidirectional language
support” on page 72

CICS

Chapter 2. Basic customization 17

Table 7. Match load modules to functions. This table describes the functions of load modules and the
load libraries where they are located. (continued)

Load library Load modules Usage STEPLIB

FEL.SFELLPA CRA* Chapter 3, “Common Access
Repository Manager (CARMA),”
on page 27

CRASRV.properties

In order for the listed Developer for z Systems services to work, all modules documented in Table 7 on
page 17 that are related to the service must be made available either through STEPLIB or LINKLST (or
LPA). Note that the SFELLMOD library is not used by Developer for z Systems itself, but by code generated
by Developer for z Systems. See the STEPLIB column in Table 7 on page 17 if you choose to use STEPLIB
to learn where the STEPLIB (or DFHRPL for CICS) definition must be made. However, you should be aware
of the following things:

• Using STEPLIB in z/OS UNIX has a negative performance impact.
• If one STEPLIB library is APF-authorized, then all must be authorized. Libraries lose their APF

authorization when they are mixed with non-authorized libraries in STEPLIB.
• Libraries added to the STEPLIB DD in a JCL are not propagated to the z/OS UNIX processes started by

the JCL.

LINKLIST data sets are defined in SYS1.PARMLIB(PROGxx), if your site followed IBM recommendations.
Define PROG=xx in the IEASYSxx parmlib member to specify which PROGxx parmlib member should be
used during IPL.

The required definitions will look like the following, where listname is the name of the LINKLIST set that
will be activated, and volser is the volume on which the data set resides if it is not cataloged in the
master catalog:

• LNKLST ADD NAME(listname) DSNAME(FEL.SFELLMOD) VOLUME(volser)
• LNKLST ADD NAME(listname) DSNAME(FEL.SFELLOAD)

LINKLIST definitions can be created dynamically (until the next IPL) with the following actions:

1. Create a new PARMLIB member named PROGxx, for example PROGLL.
2. Place the following commands in your new PROGxx member, where volser is the volume on which

the data set resides if it is not cataloged in the master catalog:

• LNKLST DEFINE,NAME=LLTMP,COPYFROM=CURRENT
• LNKLST ADD NAME=LLTMP,DSN=FEL.SFELLMOD,VOL=volser
• LNKLST ADD NAME=LLTMP,DSN=FEL.SFELLOAD
• LNKLST ACTIVATE,NAME=LLTMP

3. Activate the new definitions by issuing the SET PROG=xx console command, where xx matches the
last 2 characters of your new PROGxx member name.

Requisite LINKLIST and LPA definitions
The following additional libraries must be made available, either through STEPLIB or LINKLIST/LPA, to
support the use of optional services. This list does not include data sets that are specific to a product that
Developer for z Systems interacts with, like z/OS Explorer:

• System load library

– SYS1.LINKLIB
• Language Environment® runtime

– CEE.SCEERUN
– CEE.SCEERUN2

18 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

• C++'s DLL class library

– CBC.SCLBDLL
• ISPF's TSO/ISPF Client Gateway (for SCLMDT)

– ISP.SISPLOAD
– ISP.SISPLPA

• REXX runtime library (for SCLMDT)

– REXX.*.SEAGLPA
• System load library (for Enterprise COBOL and PL/I unit test)

– SYS1.CSSLIB
– SYS1.SIXMLOD1

Note:

• When you use the Alternate Library for REXX product package, the default REXX runtime library name is
REXX.*.SEAGALT, instead of REXX.*.SEAGLPA as used in the preceding sample.

• All libraries that are loaded into LPA are automatically considered to be APF-authorized and program
controlled. Ensure you have proper security controls in place for these libraries.

• Libraries that are designed for LPA placement, such as REXX.*.SEAGLPA, might require additional
program control or APF authorizations if they are accessed through LINKLIST or STEPLIB.

• Some of the prerequisite and co-requisite products, such as z/OS Explorer, also require STEPLIB or
LINKLIST/LPA definitions. See the related product customization guides for more information.

LINKLIST data sets are defined in SYS1.PARMLIB(PROGxx) by default. LPA data sets are defined in
SYS1.PARMLIB(LPALSTxx).

If you opt to use STEPLIB, you must define the libraries not available through LINKLIST/LPA in the
STEPLIB directive of rse.env, the RSE configuration file. Be aware, however, of these things:

• Using STEPLIB in z/OS UNIX has a negative performance impact.
• If one STEPLIB library is APF-authorized, then all the other STEPLIB libraries must be authorized.

Libraries lose their APF authorization when they are mixed with non-authorized libraries in STEPLIB.
• Libraries added to the STEPLIB DD in a JCL are not propagated to the z/OS UNIX processes started by

the JCL.

LINKLIST definitions for other products
The Developer for z Systems client has a code generation component called Enterprise Service Tools. In
order for the generated code to issue diagnostic error messages, all IRZM* and IIRZ* modules in the
FEL.SFELLMOD load library must be made available either through STEPLIB or LINKLIST.

LINKLIST data sets are defined in SYS1.PARMLIB(PROGxx) by default.

If you opt to use STEPLIB, you must define the libraries that are not available through LINKLIST in the
STEPLIB directive of the task that executes the code (IMS or batch job). However, if one STEPLIB library is
APF-authorized, then all other STEPLIB libraries must be authorized. Libraries lose their APF authorization
when they are mixed with non-authorized libraries in STEPLIB.

SMF record collection in SMFPRMxx
System Management Facilities (SMF) uses SYS1.PARMLIB(SMFPRMxx) to determine which record types
and subtypes should be collected. Define SMF=xx in the IEASYSxx parmlib member to specify which
SMFPRMxx parmlib member should be used during IPL.

Developer for z Systems creates SMF records type 122, subtype 1. Collection of these records is required
if you want to use the Developer for z Systems Enterprise Edition host to activate all Developer for z
Systems client functions.

Chapter 2. Basic customization 19

Update the SYS(TYPE()) definition in SMFPRMxx to collect type 122 records.

Updated SMFPRMxx definitions can be activated dynamically (until the next IPL) with the following
console command:

SET SMF=xx

PROCLIB changes
The following PROCLIB changes are documented in this section:

• “ELAXF* remote build procedures” on page 20

The remote build procedures listed in the following sections must reside in a system procedure library
defined to your JES subsystem. In the instructions in the following sections, the IBM default procedure
library, SYS1.PROCLIB, is used.

ELAXF* remote build procedures
Developer for z Systems provides sample JCL procedures that can be used for the JCL generation, remote
project builds, and remote syntax check features of CICS BMS maps, IMS MFS screens, Assembler, C/C++,
COBOL and PL/I programs. These procedures allow installations to apply their own standards, and ensure
that developers use the same procedures with the same compiler options and compiler levels.

The sample procedures and their function are listed in Table 8 on page 20.

Table 8. Sample ELAXF* procedures

Member Purpose

ELAXF Include member that specifies variables used by the remote build procedures.

ELAXFADT Sample procedure for assembling and debugging High Level assembler programs.

ELAXFASM Sample procedure for assembling High Level assembler programs.

ELAXFBMS Sample procedure for creating CICS BMS object and corresponding copy, dsect, or
include member. (3)

ELAXFCOC Sample procedure for COBOL compiling and doing Integrated CICS translate and
integrated DB2® translate. (1)

ELAXFCOP Sample procedure for DB2 preprocessing of EXEC SQL statements embedded in
COBOL programs.

ELAXFCOT Sample procedure for CICS translation for EXEC CICS statements embedded in
COBOL programs.

ELAXFCPC Sample procedure for C compiling.

ELAXFCPP Sample procedure for C++ compiling.

ELAXFCP1 Sample procedure for COBOL compiling with SCM preprocessor statements (-INC
and ++INCLUDE). (1)

ELAXFDCL Sample procedure for running a program in TSO mode.

ELAXFGO Sample procedure for the GO step.

ELAXFLNK Sample procedure for linking C/C++, COBOL. PLI and High Level Assembler
programs. (1) (3)

ELAXFMFS Sample procedure for creating IMS MFS screens.

ELAXFPLP Sample procedure for DB2 preprocessing of EXEC SQL statements embedded in PLI
programs.

20 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 8. Sample ELAXF* procedures (continued)

Member Purpose

ELAXFPLT Sample procedure for doing CICS translation of EXEC CICS statements embedded in
PLI programs.

ELAXFPL1 Sample procedure for PL/I compiling, and integrated CICS translation and integrated
DB2 translation. (1)

ELAXFPP1 Sample procedure for PL/I compiling with SCM preprocessor statements (-INC and +
+INCLUDE). (1)

ELAXFSP Sample procedure to register a stored procedure to DB2. (2)

ELAXFSQL Sample procedure to invoke SQL. (2)

ELAXFTSO Sample procedure for running and debugging the generated DB2 code in TSO mode.

ELAXFUOP Sample procedure for generating the UOPT step when building programs that run in
CICS or IMS subsystems.

All remote build procedures rely on the ELAXF include member for the definition of common high-level
qualifiers. Customize the sample include member, FEL.#CUST.PROCLIB(ELAXF) as described within
the member. You can use Table 9 on page 21 and Table 10 on page 22 to assist with this customization.

Review the sample build procedure members, FEL#CUST.PROCLIB(ELAXF*), and customize them if
required. Some sample ELAXF* procedures in Table 8 on page 20 are marked with a footnote as they are
more likely to require customization:

1. These remote build procedures have commented out references to CICS and DB2 load libraries.
2. These remote build procedures have a reference to a customized input file with SQL commands.
3. These remote build procedures have miscellaneous customizable options.

The names of the procedures and the names of the steps in the procedures match the default properties
that are included with the Developer for z Systems client. If the name of a procedure or the name of a step
in a procedure is changed, the corresponding properties file on all of the clients must be updated. You
should not change the procedure and step names.

Table 9. ELAXF* high-level qualifier checklist

Product Default HLQ Value

Developer for z Systems FEL

Debugger EQAW

ADFz Common Components IPV

COBOL IGY.V5R2M0

PL/I PLI.V4R2M0

C/C++ CBC

LE CEE

XML Toolkit SYS1

CICS CICSTS52.CICS

DB2 DSNA11

IMS (site specific libraries) IMS

system LINKLIB SYS1

Chapter 2. Basic customization 21

Table 9. ELAXF* high-level qualifier checklist (continued)

Product Default HLQ Value

system MACLIB SYS1

system CSSLIB SYS1

Some ELAXF* procedures reference data set names that do not have fixed low-level qualifiers. An
example is the DB2 runtime library, which holds DB2 utilities that are compiled by your DB2 administrator.
Use Table 10 on page 22 to map the default data set names to the names used at your site.

Table 10. ELAXF*. fully qualified data set checklist

Product Default DSN Value

Developer for z Systems - SQL
samples

FEL.#CUST.SQL

DB2 runtime libraries DSNA11.RUNLIB.LOAD

Once the ELAXF* members are customized, copy them to SYS1.PROCLIB. Ensure that the ELAXF include
member remains with the ELAXF* build procedures. If the members cannot be copied into a system
procedure library, ask the Developer for z Systems users to add a JCLLIB card (right after the JOB card) to
the job properties on the client.

//MYJOB JOB <job parameters>
//PROCS JCLLIB ORDER=(FEL.#CUST.PROCLIB)

Security definitions
To create the security definitions for Developer for z Systems, customize and submit the sample FELRACF
member. The user submitting this job must have security administrator privileges, such as being RACF
SPECIAL.

FELRACF is located in FEL.#CUST.JCL, unless you specified a different location when you customized
and submitted the FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page
13.

The following list of security-related definitions for Developer for z Systems are discussed in detail in
Chapter 8, “Security definitions,” on page 77.

• Define data set profiles
• Verify the security settings

idz.env, the environment configuration file
The z/OS Explorer RSE server processes (RSE daemon, RSE thread pool, and RSE server) use the
definitions in idz.env to learn about Developer for z Systems environment variables.

idz.env is located in /etc/zexpl/, unless you specified a different location when you customized and
submitted the FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page 13.
You can edit the file with the TSO OEDIT command.

See the following sample idz.env file, which can be customized to match your system environment.
Default values are provided for all variables that are not explicitly specified. The syntax of the file follows
standard z/OS UNIX shell syntax rules. For example, comments start with a number sign (#) when using a
US code page, and spaces around the equal sign (=) are not supported.

Note: For your changes to take effect, the z/OS Explorer RSED started task must be restarted.

22 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

#IDZ_HOME=/usr/lpp/IBM/idz
#IDZ_HLQ=FEL

debug
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDISABLE_DBM_INTEGRATION=false"

C/C++
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dinclude.c=/etc/zexpl/include.conf"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dinclude.cpp=/etc/zexpl/include.conf"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DCPP_CLEANUP_INTERVAL=60000"

remote index search
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DRIS_BUFFER=8"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDISABLE_REMOTE_INDEX_SEARCH=true"

system
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDISABLE_DELETE_IN_SUBPROJECT=true"
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dsclm.check.enable=true"

zUnit unit test
#STEPLIB=$STEPLIB:$IDZ_HLQ.SFELLOAD
#STEPLIB=$STEPLIB:SYS1.CSSLIB:SYS1.SIXMLOD1

RTC user build
#IDZ_UBLD_DD=$CGI_ISPCONF/ISPF.conf
#IDZ_UBLD_STEPLIB=$STEPLIB

SCLM Developer Toolkit
#_SCLMDT_CONF_HOME=/var/idz/sclmdt
#STEPLIB=$STEPLIB:$IDZ_HLQ.SFELLOAD
#_SCLMDT_TRANTABLE=FEL.#CUST.LSTRANS.FILE
#ANT_HOME=/usr/lpp/Apache/Ant/apache-ant-1.7.1

Figure 1. idz.env: environment configuration file

The following definitions are optional. If omitted, default values are used.

IDZ_HOME
Developer for z Systems home directory. The default is /usr/lpp/IBM/idz. Uncomment and change
to match your Developer for z Systems installation.

IDZ_HLQ
The high-level qualifier used to install Developer for z Systems. The default is FEL. Uncomment and
change to match the location of your Developer for z Systems data sets.

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDISABLE_DBM_INTEGRATION=false"

Disable integration with Debug Manager, an optional started task of z/OS Debugger. The default is
false, which implies that the Debug Miner will attempt to connect at least once to the Debug Manager.
Uncomment and specify true to prevent any attempt to connect to the Debug Manager.

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dinclude.c=/etc/zexpl/include.conf"
This variable points to a fully qualified z/OS UNIX file containing a list of forced includes for content
assist on C code. A forced include consists of a file or directory, data set, or data set member which is
parsed when a content assist operation is performed, regardless of whether that file or member was
included in the source code using a pre-processor directive. To specify the name of the configuration
file, uncomment and customize.

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dinclude.cpp=/etc/zexpl/include.conf"
This variable points to a fully qualified z/OS UNIX file containing a list of forced includes for content
assist on C++ code. A forced include consists of a file or directory, data set, or data set member which

Chapter 2. Basic customization 23

is parsed when a content assist operation is performed, regardless of whether that file or member was
included in the source code using a pre-processor directive. To specify the name of the configuration
file, uncomment and customize.

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DCPP_CLEANUP_INTERVAL=60000"
Cleanup interval for unused C/C++ header files in milliseconds. The default is 60000, which means 1
minute. To change the cleanup interval, Uncomment and customize. Specifying a value of 0 prevents
caching of C/C++ header files, thereby reducing performance of remote content assist in the editor.

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DRIS_BUFFER=8"
Buffer size, in megabytes, used during remote index creation. The default is 8 MB. To change the
buffer size, uncomment and customize. Valid values are whole numbers between 1 and 2000 (both
inclusive). A bigger buffer speeds up index creation, but uses a bigger portion of the thread pool's Java
heap. The buffer is automatically flushed to the index if it is full before index creation ends.

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDISABLE_REMOTE_INDEX_SEARCH=true"
Disable the Remote Index Search menu item on the client. The default is false. To prevent users
from creating remote indexes for host system data sets, uncomment and specify true.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -DDISABLE_DELETE_IN_SUBPROJECT=true"
Disable the Delete menu item in the context menu of z/OS subprojects. The default is false. To
prevent users from using the Delete menu item in the context menu of z/OS subprojects, uncomment
and specify true.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dsclm.check.enable=true"
Enable a check to see if a data set or member is under SCLM control. The default is false. Uncomment
and specify true to prevent users from altering SCLM-managed data outside of SCLM.

STEPLIB
Access MVS data sets not in LINKLIST/LPA. The default is NONE.

You can bypass the need of having prerequisite libraries in LINKLIST/LPA by uncommenting and
customizing one or more of the following STEPLIB directives. For more information about the usage of
the libraries in the following list, see “PARMLIB changes” on page 14:

SCLM Developer Toolkit
STEPLIB=$STEPLIB:$IDZ_HLQ.SFELLOAD
zUnit, xUnit support for Enterprise COBOL and PL/I
STEPLIB=$STEPLIB:$IDZ_HLQ.SFELLOAD:SYS1.CSSLIB:SYS1.SIXMLOD1

Note:

• Using STEPLIB in z/OS UNIX has a negative performance impact.
• If one STEPLIB library is APF-authorized, then all the other STEPLIB libraries must be authorized.

Libraries lose their APF authorization when they are mixed with non-authorized libraries in STEPLIB.
• Libraries that are designed for LPA placement might require additional program control and APF

authorizations if they are accessed through LINKLIST or STEPLIB.
• Coding a STEPLIB DD statement in the server JCL does not set the requested STEPLIB

concatenation.

IDZ_UBLD_DD
Specifies the DD statements that will be used when generating JCL for IBM Rational Team Concert
user builds from a Developer for z Systems client that invoke TSO or ISPF commands. By default,
Developer for z Systems uses the definitions in ISPF.conf, which is referenced by CGI_ISPCONF in
idz.env. Uncomment and change to use the DD definitions in the specified file, which must follow
the syntax rules specified for ISPF.conf in IBM Explorer for z/OS Host Configuration Guide.

IDZ_UBLD_STEPLIB
Specifies the STEPLIB statement that will be used when generating JCL for IBM Rational Team
Concert user builds from a Developer for z Systems client that invoke TSO or ISPF commands. By
default, Developer for z Systems uses the STEPLIB definition in idz.env. Uncomment and change to
use the specified STEPLIB definition.

24 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

_SCLMDT_CONF_HOME
SCLM Developer Toolkit base configuration directory. The default is /var/idz/sclmdt. Change to
match the location of the CONFIG directory used by SCLMDT to store SCLM project information. This
directive is only used when SCLMDT is used.

Note: SCLMDT adds /CONFIG and /CONFIG/PROJECT to the path specified in SCLMDT_CNF_HOME.
Do not add it yourself.

STEPLIB
STEPLIB is described previously.

_SCLMDT_TRANTABLE
Name of the long/short name translation VSAM. The default is FEL.#CUST.LSTRANS.FILE.
Uncomment and change to match the name used in the ISP.SISPSAMP(FLM02LST) SCLM sample
job. This directive is only used if the long/short name translation in SCLM Developer Toolkit is used.

ANT_HOME
Home directory for your Ant installation. The default is /usr/lpp/Apache/Ant/apache-
ant-1.7.1. Change to match your Ant installation. This directive is only used when the Java EE build
support is used with SCLM Developer Toolkit.

Specific components
Developer for z Systems consists of various unrelated features, each with their own customization tasks.
Follow the instructions in the appropriate section to configure the required service.

Customizations to Developer for z Systems stand-alone components:

• Chapter 3, “Common Access Repository Manager (CARMA),” on page 27
• Chapter 4, “SCLM Developer Toolkit (deprecated),” on page 57
• Chapter 5, “Host-based code analysis,” on page 63

Customizations to Developer for z Systems configuration files:

• “include.conf, Forced includes for C/C++ content assist” on page 67

Developer for z Systems related customizations to or for other products:

• “z/OS UNIX subprojects” on page 68
• “Include preprocessor support” on page 69
• “xUnit support for Enterprise COBOL and PL/I” on page 70
• “Enterprise Service Tools support” on page 72
• “CICS bidirectional language support” on page 72
• “Diagnostic IRZ messages for Enterprise Service Tools” on page 73
• “xUnit support for CICS applications” on page 71

Installation verification
The detailed description of the various installation verification programs (IVPs) is located in Chapter 7,
“Installation verification,” on page 75.

Chapter 2. Basic customization 25

26 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Chapter 3. Common Access Repository Manager
(CARMA)

Common Access Repository Manager (CARMA) is a server platform for Repository Access Managers
(RAMs). A RAM is an Application Programming Interface (API) for a z/OS based Software Configuration
Manager (SCM). By wrapping the SCM functionality in a RAM, a single API is available for a client to access
any supported SCM.

Developer for z Systems provides multiple pre-built RAMs and source code examples for creating your
own RAM.

SCMs that are based on host systems need single-user address spaces to access their services, which
requires CARMA to start a CARMA server for each user. It is not possible to create a single server
supporting multiple users.

Requirements and checklist
You need the assistance of a security administrator and a TCP/IP administrator to complete this
customization task, which requires the following resources or special customization tasks:

• (Optional) TCP/IP port range for internal communication
• (Optional) Security rule to allow developers update capability to CARMA VSAM files
• (Optional) Security rule to allow users to submit CRA* jobs
• (Optional) LPA update

To start using CARMA at your site, do the following tasks. Unless otherwise indicated, all tasks are
mandatory.

1. Choose a method to start CARMA and choose which RAMs should be activated. Several combinations
of RAMs and server startup methods are available as a preconfigured setup. For details, see “Select
the server startup method and active RAM” on page 28.

2. Create CARMA VSAM data sets. For details, see “CARMA VSAM data sets” on page 43 and “CARMA
Repository Access Managers (RAMs)” on page 44.

3. Initial customization of the RSE configuration files to interface with CARMA. The complete
customization is dependent on the method chosen to start CARMA. For details, see
“CRASRV.properties, the RSE interface to CARMA” on page 36.

4. Depending on the chosen CARMA startup method and the chosen RAMs, do the required
customization of the related configuration files. For details see:

• “crastart*.conf, the CRASTART server startup” on page 39
• “CRASUB*, the batch submit server startup” on page 42

5. Optionally, customize the CA Endevor® SCM-specific configuration members. For details see “CRACFG,
CRASCL, CRASHOW and CRATMAP, the CA Endevor® SCM RAM configuration files” on page 46 and
“CA Endevor® SCM RAM batch actions” on page 48.

6. Optionally, update the data set allocation exec. For details, see “CRANDVRA, the CA Endevor® SCM
RAM initial allocation exec” on page 47, “CRAALLOC, the custom RAM allocation exec” on page 50,
and “(Optional) Custom allocation exec” on page 52.

7. Optionally, create a startup user exit. For details, see (Optional) CARMA user exit.
8. Optionally, create CRAXJCL as replacement for IRXJCL. For details, see “(Optional) IRXJCL versus

CRAXJCL” on page 55.

© Copyright IBM Corp. 2015, 2019 27

Note: The sample members referenced in this chapter are located in FEL.#CUST.* and /etc/zexpl,
unless you specified a different location when you customized and submitted the
FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page 13.

Select the server startup method and active RAM
Developer for z Systems supports multiple methods to start a CARMA server. Developer for z Systems also
provides multiple Repository Access Managers (RAMs), which can be divided into two groups, production
RAMs and sample RAMs. This publication describes several possible combinations of RAMs and server
startup methods. Each of the described configuration scenarios is available as a preconfigured setup.

CARMA server startup
Developer for z Systems supports multiple methods to start a CARMA server. Each method has benefits
and drawbacks.

CRASTART
The "CRASTART" method starts the CARMA server as a subtask within RSE. This method provides a very
flexible setup by using a separate configuration file that defines data set allocations and program
invocations that are needed to start a CARMA server. This method provides the best performance and
uses the fewest resources, but requires that the CRASTART module be located in LPA.

Batch submit
The "batch submit" method starts the CARMA server by submitting a job. This is the default method that
is used in the provided sample configuration files. The benefit of this method is that the CARMA logs are
easily accessible in the job output. It also allows the use of custom server JCL for each developer, which is
maintained by the developer himself. However, this method uses one JES initiator for each developer who
starts a CARMA server.

Production RAMs
Production type RAMs are fully functional, pre-built RAMs that can be used to access an SCM in a
production environment.

CA Endevor® SCM RAM
The IBM Developer for z Systems Interface for CA Endevor® Software Configuration Manager gives
Developer for z Systems clients direct access to CA Endevor® SCM.

CA Endevor® SCM packages RAM
The CA Endevor® SCM packages RAM gives Developer for z Systems clients direct access to CA Endevor®

SCM packages.

Sample RAMs
Sample RAMs are provided for the purpose of testing the configuration of your CARMA environment and
as examples for developing your own RAMs. Source code is included.

Attention: Do not use the provided sample RAMs in a production environment.

PDS RAM
The PDS RAM gives a data set list similar to MVS Files -> My Data Sets in the Remote Systems view.

28 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Skeleton RAM
The skeleton RAM gives a functional framework that can be used as starting point to develop your own
RAM.

SCLM RAM
The SCLM RAM gives a basic entry into SCLM, ISPF's Software Configuration Manager. The SCLM RAM is
not enabled by default.

Preconfigured RAM and server startup combinations
Several combinations of RAMs and server startup methods are available as a preconfigured setup. The
listed scenarios need only minor customization to fit your environment.

• “CRASTART with CA Endevor® SCM RAM” on page 29
• “CRASTART with sample RAMs” on page 31
• “Batch submit with CA Endevor® SCM RAM” on page 32
• “Batch submit with sample RAMs” on page 35

Detailed information on the different steps of each scenario can be found in “CARMA configuration
details” on page 36.

It is possible to add a RAM to any CARMA setup, now or somewhere in the future. See “(Optional)
Supporting multiple RAMs” on page 51 for more information on adding a RAM to an existing setup.

CRASTART with CA Endevor® SCM RAM
The information in this section describes how to set up CARMA with the following specifications:

• Server startup: CRASTART method. This method requires that CRASTART is in LPA.
• RAM: CA Endevor® SCM RAM.

This customization step can be omitted if you want to use one of the other scenarios with different
specifications.

Create the CARMA VSAM data sets
To define and populate the CARMA-related VSAM data sets, customize and submit the following JCL jobs.
For customization instructions, see the documentation within the member. Existing VSAM data sets are
replaced.

For more details on this step, see “CARMA VSAM data sets” on page 43.

• FEL.#CUST.JCL(CRA$VCAD)
• FEL.#CUST.JCL(CRA$VCAS)
• FEL.#CUST.JCL(CRA$VMSG)

Customize CRASRV.properties
RSE server uses the settings in /etc/zexpl/CRASRV.properties to start and connect to a CARMA
server. You can edit the file with the TSO OEDIT command. For the changes to take effect, restart the
RSED started task.

When you use the default file locations, the only required changes are changing the value of the
clist.dsname directive to *CRASTART and changing the value of crastart.configuration.file to
crastart.endevor.conf. For more information about the different directives, see
“CRASRV.properties, the RSE interface to CARMA” on page 36.

Chapter 3. Common Access Repository Manager (CARMA) 29

clist.dsname=*CRASTART
crastart.configuration.file=crastart.endevor.conf

Figure 2. CRASRV.properties: CRASTART with CA Endevor® SCM RAM

Customize crastart.endevor.conf
CRASTART uses the definitions in /etc/zexpl/crastart.endevor.conf to create a valid TSO/ISPF
environment to start a CARMA server. You can edit the file with the TSO OEDIT command. Changes are in
effect for all CARMA servers that are started after the update.

For customization instructions, see the documentation within the file. For more information about the
CRASTART startup method, see “crastart*.conf, the CRASTART server startup” on page 39.

Note: Due to page width limitations, some lines in the following sample wrapped onto the next line. All
lines that start with an indentation should be added to the end of the previous line.

* DD used by RAM
TYPEMAP = FEL.#CUST.PARMLIB(CRATMAP)
SHOWVIEW= FEL.#CUST.PARMLIB(CRASHOW)
CRACFG = FEL.#CUST.PARMLIB(CRACFG)
* uncomment CRABCFG and CRABSKEL to use batch actions
*CRABCFG = FEL.#CUST.PARMLIB(CRABCFG)
*CRABSKEL= FEL.#CUST.CNTL
* uncomment and provide correct DSN to use Package Ship
*APIHJC = #shiphjc
CONLIB = CA.NDVR.CSIQLOAD
-COMMAND=ALLOC FI(JCLOUT) SYSOUT(A) WRITER(INTRDR) RECFM(F) LRECL(80)
 BLKSIZE(80)
-COMMAND=ALLOC FI(EXT1ELM) NEW DELETE DSORG(PS) RECFM(V,B) LRECL(4096)
 BLKSIZE(27998) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(EXT2ELM) NEW DELETE DSORG(PS) RECFM(V,B) LRECL(4096)
 BLKSIZE(27998) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(EXT1DEP) NEW DELETE DSORG(PS) RECFM(V,B) LRECL(4096)
 BLKSIZE(27998) SPACE(5,5) TRACKS UNIT(SYSALLDA)
C1EXMSGS= SYSOUT(H)
C1MSGS1 = SYSOUT(H)
MSG3FILE= DUMMY

* DD used by CARMA server (CRASERV)
* pay attention to APF authorizations when using TASKLIB
TASKLIB = FEL.SFELLOAD,CA.NDVR.CSIQAUTH,CA.NDVR.CSIQAUTU
CRADEF = FEL.#CUST.CRADEF
CRAMSG = FEL.#CUST.CRAMSG
CRASTRS = FEL.#CUST.CRASTRS
CARMALOG= SYSOUT(H)
SYSPRINT= SYSOUT(H)

* DD used by ISPF (via NDVRC1)
-COMMAND=ALLOC FI(ISPCTL0) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(80)
 BLKSIZE(32720) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(ISPCTL1) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(80)
 BLKSIZE(32720) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(ISPPROF) NEW DELETE DSORG(PO) RECFM(F,B) LRECL(80)
 BLKSIZE(32720) SPACE(5,5) TRACKS UNIT(SYSALLDA) DIR(5)
ISPTABL = -ISPPROF
ISPTLIB = -ISPPROF,ISP.SISPTENU
ISPMLIB = ISP.SISPMENU
ISPPLIB = ISP.SISPPENU
ISPSLIB = ISP.SISPSENU

* DD used by TSO (IKJEFT01)
SYSPROC = FEL.SFELPROC * CRANDVRA
SYSTSIN = DUMMY
SYSTSPRT= SYSOUT(H)

PROGRAM=IKJEFT01 %CRANDVRA NDVRC1 PGM(CRASERV) PARM(&CRAPRM1.
 &CRAPRM2. &CRAPRM3. &CRAPRM4. &CRAPRM5. &CRAPRM6. &CRAPRM7.
 &CRAPRM8.)

Figure 3. crastart.endevor.conf: CRASTART with CA Endevor® SCM RAM

30 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

(Optional) Additional CA Endevor® SCM RAM customization
The CA Endevor® SCM RAM has additional components that can be customized if needed.

• CARMA startup processing has an optional user exit. For more information see (Optional) CARMA user
exit.

• The CA Endevor® SCM RAM has multiple configuration files FEL.#CUST.PARMLIB(CRA*) that can be
customized. For more information, see “CRACFG, CRASCL, CRASHOW and CRATMAP, the CA Endevor®

SCM RAM configuration files” on page 46.
• The CA Endevor® SCM RAM has an allocation exec, FEL.SFELPROC(CRANDVRA), that can be

customized. For more information, see “CRANDVRA, the CA Endevor® SCM RAM initial allocation exec”
on page 47.

• The CA Endevor® SCM RAM supports doing CA Endevor® SCM actions in batch mode. Batch-actions
requires a configuration file, FEL.#CUST.PARMLIB(CRABCFG), and a skeleton JCL,
FEL.#CUST.CNTL(CRABATCA), that must be customized. For more information, see “CA Endevor®

SCM RAM batch actions” on page 48.

CRASTART with sample RAMs
The information in this section describes how to set up CARMA with the following specifications:

• Server startup: CRASTART method. This method requires that CRASTART is in LPA.
• RAM: sample RAMs, which are not to be used for production purposes.

This customization step can be bypassed if you want to use one of the other scenarios with different
specifications.

Create the CARMA VSAM data sets
Customize and submit the following JCL jobs to define and populate the CARMA-related VSAM data sets.
For customization instructions, see the documentation within the member. Existing VSAM data sets are
replaced.

For more details on this step, see “CARMA VSAM data sets” on page 43 and “CARMA Repository Access
Managers (RAMs)” on page 44.

CARMA
• FEL.#CUST.JCL(CRA$VDEF)
• FEL.#CUST.JCL(CRA$VMSG)
• FEL.#CUST.JCL(CRA$VSTR)

Sample RAMs
• FEL.#CUST.JCL(CRA#VPDS)

Customize CRASRV.properties
RSE server uses the settings in /etc/zexpl/CRASRV.properties to start and connect to a CARMA
server. You can edit the file with the TSO OEDIT command. For the changes to take effect, the RSED
started task must be restarted.

When using the default file locations, the only required change is changing the value of the
clist.dsname directive to *CRASTART. For more information about the different directives, see
“CRASRV.properties, the RSE interface to CARMA” on page 36.

Chapter 3. Common Access Repository Manager (CARMA) 31

clist.dsname=*CRASTART
crastart.configuration.file=crastart.conf

Figure 4. CRASRV.properties: CRASTART with sample RAMs

Customize crastart.conf
CRASTART uses the definitions in /etc/zexpl/crastart.conf to create a valid TSO/ISPF environment
to start a CARMA server. You can edit the file with the TSO OEDIT command. Changes are in effect for all
CARMA servers that are started after the update.

For customization instructions, see the documentation within the file. For more information about the
CRASTART startup method, see “crastart*.conf, the CRASTART server startup” on page 39.

* DD used by RAM
CRARAM1 = FEL.#CUST.CRARAM1 * PDS RAM
* DD used by CARMA server (CRASERV)
TASKLIB = FEL.SFELLOAD
CRADEF = FEL.#CUST.CRADEF
CRAMSG = FEL.#CUST.CRAMSG
CRASTRS = FEL.#CUST.CRASTRS
CARMALOG= SYSOUT(H)
SYSPRINT= SYSOUT(H)

* DD used by ISPF (ISPSTART)
-COMMAND=ALLOC FI(ISPCTL0) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(80)
 BLKSIZE(32720) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(ISPCTL1) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(80)
 BLKSIZE(32720) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(ISPPROF) NEW DELETE DSORG(PO) RECFM(F,B) LRECL(80)
 BLKSIZE(32720) SPACE(5,5) TRACKS UNIT(SYSALLDA) DIR(5)
ISPTABL = -ISPPROF
ISPTLIB = -ISPPROF,ISP.SISPTENU
ISPMLIB = ISP.SISPMENU
ISPPLIB = ISP.SISPPENU
ISPSLIB = ISP.SISPSENU

* DD used by TSO (IKJEFT01)
SYSPROC = #hlq.SFELPROC * CRAALLOC
SYSTSIN = DUMMY
SYSTSPRT= SYSOUT(H)

PROGRAM=IKJEFT01 %CRAALLOC ISPSTART PGM(CRASERV) PARM(&CRAPRM1.
 &CRAPRM2. &CRAPRM3. &CRAPRM4. &CRAPRM5. &CRAPRM6. &CRAPRM7.
 &CRAPRM8.)

Figure 5. crastart.conf: CRASTART with sample RAMs

Note: Due to page width limitations, some lines in the sample wrapped onto the next line. All lines that
start with an indentation should be added to the end of the previous line.

(Optional) Additional custom RAM customization
The custom RAMs have additional components that can be customized if needed.

• CARMA startup processing has an optional user exit. For more information see (Optional) CARMA user
exit.

• Custom RAM startup has an allocation exec, FEL.SFELPROC(CRAALLOC), that can be customized. For
more information, see CRAALLOC, the custom RAM allocation exec.

Batch submit with CA Endevor® SCM RAM
The information in this section describes how to set up CARMA with the following specifications:

• Server startup: batch submit method. This method requires JES initiators.
• RAM: CA Endevor® SCM RAM.

32 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

This customization step can be omitted if you want to use one of the other scenarios with different
specifications.

Create the CARMA VSAM data sets
Customize and submit the following JCLs to define and populate the CARMA-related VSAM data sets. For
customization instructions, see the documentation within the member. Existing VSAM data sets are
replaced.

For more details on this step, see “CARMA VSAM data sets” on page 43.

• FEL.#CUST.JCL(CRA$VCAD)
• FEL.#CUST.JCL(CRA$VCAS)
• FEL.#CUST.JCL(CRA$VMSG)

Customize CRASRV.properties
RSE server uses the settings in /etc/zexpl/CRASRV.properties to start and connect to a CARMA
server. You can edit the file with the TSO OEDIT command. For the changes to take effect, the RSED
started task must be restarted.

When using default file locations, the only required change is changing the value of the clist.dsname
directive to FEL.#CUST.CNTL(CRASUBCA). For more information about the different directives, see
“CRASRV.properties, the RSE interface to CARMA” on page 36.

clist.dsname='FEL.#CUST.CNTL(CRASUBCA)'

Figure 6. CRASRV.properties: Batch submit with CA Endevor® SCM RAM

Customize CRASUBCA
The FEL.#CUST.CNTL(CRASUBCA) CLIST and embedded JCL submits a CARMA server. Changes are in
effect for all CARMA servers that are started after the update.

For customization instructions, see the documentation within the member. For more information about
the batch submit startup method, see “CRASUB*, the batch submit server startup” on page 42.

Chapter 3. Common Access Repository Manager (CARMA) 33

PROC 8 CRAPRM1 CRAPRM2 CRAPRM3 CRAPRM4 CRAPRM5 CRAPRM6 CRAPRM7 CRAPRM8
SUBMIT * END($$)
//CRA&PORT JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
//*
//RUN EXEC PGM=IKJEFT01,DYNAMNBR=125,REGION=0M,TIME=NOLIMIT
//*
//* DD used by RAM
//TYPEMAP DD DISP=SHR,DSN=FEL.#CUST.PARMLIB(CRATMAP)
//SHOWVIEW DD DISP=SHR,DSN=FEL.#CUST.PARMLIB(CRASHOW)
//CRACFG DD DISP=SHR,DSN=FEL.#CUST.PARMLIB(CRACFG)
//* uncomment CRABCFG and CRABSKEL to use batch actions
//*CRABCFG DD DISP=SHR,DSN=FEL.#CUST.PARMLIB(CRABCFG)
//*CRABSKEL DD DISP=SHR,DSN=FEL.#CUST.CNTL
//* uncomment and provide correct DSN to use Package Ship
//*APIHJC DD DISP=SHR,DSN=#shiphjc
//CONLIB DD DISP=SHR,DSN=CA.NDVR.CSIQLOAD
//JCLOUT DD SYSOUT=(A,INTRDR),DCB=(LRECL=80,RECFM=F,BLKSIZE=80)
//EXT1ELM DD DISP=(NEW,DELETE),UNIT=SYSALLDA,
// RECFM=VB,LRECL=4096,BLKSIZE=27998,SPACE=(TRK,(5,5))
//EXT2ELM DD DISP=(NEW,DELETE),UNIT=SYSALLDA,
// RECFM=VB,LRECL=4096,BLKSIZE=27998,SPACE=(TRK,(5,5))
//EXT1DEP DD DISP=(NEW,DELETE),UNIT=SYSALLDA,
// RECFM=VB,LRECL=4096,BLKSIZE=27998,SPACE=(TRK,(5,5))
//C1MSGS1 DD SYSOUT(H)
//C1EXMSGS DD SYSOUT(H)
//MSG3FILE DD DUMMY
//*
//* DD used by CARMA server (CRASERV)
//* pay attention to APF authorizations when using STEPLIB
//STEPLIB DD DISP=SHR,DSN=FEL.SFELLOAD
// DD DISP=SHR,DSN=CA.NDVR.CSIQAUTH
// DD DISP=SHR,DSN=CA.NDVR.CSIQAUTU
//CRADEF DD DISP=SHR,DSN=FEL.#CUST.CRADEF
//CRAMSG DD DISP=SHR,DSN=FEL.#CUST.CRAMSG
//CRASTRS DD DISP=SHR,DSN=FEL.#CUST.CRASTRS
//CARMALOG DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*
//* DD used by ISPF (via NDVRC1)
//ISPPROF DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// LRECL=80,RECFM=FB,SPACE=(TRK,(1,1,5))
//ISPCTL0 DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// LRECL=80,RECFM=FB,SPACE=(TRK,(5,5))
//ISPCTL1 DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// LRECL=80,RECFM=FB,SPACE=(TRK,(5,5))
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU
//ISPTLIB DD DISP=SHR,DSN=ISP.SISPTENU
//*
//* DD used by TSO (IKJEFT01)
//SYSPROC DD DISP=SHR,DSN=FEL.SFELPROC * CRANDVRA
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
%CRANDVRA NDVRC1 PGM(CRASERV) PARM(&CRAPRM1 &CRAPRM2 &STR(+)
&CRAPRM3 &STR(+)
&CRAPRM4 &STR(+)
&CRAPRM5 &STR(+)
&CRAPRM6 &STR(+)
&CRAPRM7 &STR(+)
&CRAPRM8 &STR(+))
$$
EXIT CODE(0)

Figure 7. CRASUBCA: Batch submit with CA Endevor® SCM RAM

(Optional) Additional CA Endevor® SCM RAM customization
The CA Endevor® SCM RAM has additional components that can be customized if needed.

• CARMA startup processing has an optional user exit. For more information see “(Optional) CARMA user
exit” on page 53.

• The CA Endevor® SCM RAM has multiple configuration files, FEL.#CUST.PARMLIB(CRACFG),
FEL.#CUST.PARMLIB(CRASHOW) and FEL.#CUST.PARMLIB(CRATMAP), that can be customized. For
more information, see “CRACFG, CRASCL, CRASHOW and CRATMAP, the CA Endevor® SCM RAM
configuration files” on page 46.

34 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

• The CA Endevor® SCM RAM has an allocation exec, FEL.SFELPROC(CRANDVRA), that can be
customized. For more information, see “CRANDVRA, the CA Endevor® SCM RAM initial allocation exec”
on page 47.

• The CA Endevor® SCM RAM supports doing CA Endevor® SCM actions in batch mode. Batch-actions
requires a configuration file, FEL.#CUST.PARMLIB(CRABCFG), a skeleton JCL,
FEL.#CUST.CNTL(CRABATCA), and an optional default job card, FEL.#CUST.CNTL(CRABJOBC), that
must be customized. For more information, see “CA Endevor® SCM RAM batch actions” on page 48.

Batch submit with sample RAMs
The information in this section describes how to set up CARMA with the following specifications:

• Server startup: batch submit method, which requires JES initiators
• RAM: sample RAMs, which are not to be used for production purposes

This customization step can be omitted if you want to use one of the other scenarios with different
specifications.

Create the VSAM data sets
Customize and submit the following JCL jobs to define and populate the CARMA-related VSAM data sets.
For customization instructions, see the documentation within the member. Existing VSAM data sets are
replaced.

For more details on this step, see “CARMA VSAM data sets” on page 43 and “CARMA Repository Access
Managers (RAMs)” on page 44.

CARMA
• FEL.#CUST.JCL(CRA$VDEF)
• FEL.#CUST.JCL(CRA$VMSG)
• FEL.#CUST.JCL(CRA$VSTR)

Sample RAMs
• FEL.#CUST.JCL(CRA#VPDS)

Customize CRASRV.properties
RSE server uses the settings in /etc/zexpl/CRASRV.properties to start and connect to a CARMA
server. You can edit the file with the TSO OEDIT command. For the changes to take effect, the RSED
started task must be restarted.

When using default file locations, the only required change is changing the value of the clist.dsname
directive to FEL.#CUST.CNTL(CRASUBMT). For more information about the different directives, see
“CRASRV.properties, the RSE interface to CARMA” on page 36.

clist.dsname='FEL.#CUST.CNTL(CRASUBMT)'

Figure 8. CRASRV.properties: Batch submit with sample RAMs

Customize CRASUBMT
The FEL.#CUST.CNTL(CRASUBMT) CLIST and embedded JCL submits a CARMA server. Changes are in
effect for all CARMA servers that are started after the update.

For customization instructions, see the documentation within the member. For more information about
the batch submit startup method, see “CRASUB*, the batch submit server startup” on page 42.

Chapter 3. Common Access Repository Manager (CARMA) 35

PROC 8 CRAPRM1 CRAPRM2 CRAPRM3 CRAPRM4 CRAPRM5 CRAPRM6 CRAPRM7 CRAPRM8
SUBMIT * END($$)
//CRA&PORT JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
//*
//RUN EXEC PGM=IKJEFT01,DYNAMNBR=125,REGION=0M,TIME=NOLIMIT
//*
//* DD used by RAM
//CRARAM1 DD DISP=SHR,DSN=FEL.#CUST.CRARAM1 * PDS RAM
//*
//* DD used by CARMA server (CRASERV)
//STEPLIB DD DISP=SHR,DSN=FEL.SFELLOAD
//CRADEF DD DISP=SHR,DSN=FEL.#CUST.CRADEF
//CRAMSG DD DISP=SHR,DSN=FEL.#CUST.CRAMSG
//CRASTRS DD DISP=SHR,DSN=FEL.#CUST.CRASTRS
//CARMALOG DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*
//* DD used by ISPF (ISPSTART)
//ISPPROF DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// LRECL=80,RECFM=FB,SPACE=(TRK,(1,1,5))
//ISPCTL0 DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// LRECL=80,RECFM=FB,SPACE=(TRK,(5,5))
//ISPCTL1 DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// LRECL=80,RECFM=FB,SPACE=(TRK,(5,5))
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU
//ISPTLIB DD DISP=SHR,DSN=ISP.SISPTENU
//*
//* DD used by TSO (IKJEFT01)
//SYSPROC DD DISP=SHR,DSN=#hlq.SFELPROC * CRAALLOC
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
%CRAALLOC ISPSTART PGM(CRASERV) PARM(&CRAPRM1 &CRAPRM2 &STR(+)
&CRAPRM3 &STR(+)
&CRAPRM4 &STR(+)
&CRAPRM5 &STR(+)
&CRAPRM6 &STR(+)
&CRAPRM7 &STR(+)
&CRAPRM8 &STR(+)
)
$$
EXIT CODE(0)

Figure 9. CRASUBMT: Batch submit with sample RAMs

(Optional) Additional custom RAM customization
The custom RAMs have additional components that can be customized if needed.

• CARMA startup processing has an optional user exit. For more information see (Optional) CARMA user
exit.

• Custom RAM startup has an allocation exec, FEL.SFELPROC(CRAALLOC), that can be customized. For
more information, see CRAALLOC, the custom RAM allocation exec.

CARMA configuration details
The different configuration scenarios that are documented in this publication share many of the CARMA
configuration files. The details of these configuration files are documented here, and they are referenced
from within the various scenarios.

CRASRV.properties, the RSE interface to CARMA
The Common Access Repository Manager (CARMA) server provides a standard API for other products that
use host systems to access one or more Software Configuration Managers (SCMs). However, it does not
provide methods for direct communication with a client computer. For this communication, it relies on
other products, such as the Remote System Explorer (RSE) server. The RSE server uses the settings in
CRASRV.properties to start and connect to a CARMA server.

36 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

CRASRV.properties is located in /etc/zexpl/, unless you specified a different location when
customizing and submitting the FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization
setup” on page 13. You can edit the file with the TSO OEDIT command.

Note: For the changes to take effect, the Remote System Explorer Daemon (RSED) started task must be
restarted.

CRASRV.properties - CARMA configuration options
#
clist.dsname=''
crastart.configuration.file=crastart.conf
#connect.timeout=60
#port.start=0
#port.range=100
#system.exit='/usr/lpp/IBM/idz/samples/craexit.rex'
#user.exit='FEL.SFELSAMP(CRAEXIT)'
#startup.script.name=carma.startup.rex
#crastart.stub=CRASTART
#crastart.syslog=Partial
#crastart.timeout=420
#crastart.steplib=FEL.SFELLPA
#crastart.tasklib=TASKLIB

Figure 10. CRASRV.properties – CARMA configuration file

clist.dsname
Defines the startup method for the CARMA server. For more details about the different startup
methods, see “Select the server startup method and active RAM” on page 28.

• *CRASTART indicates that the CARMA server should be started as a subtask within RSE using
CRASTART. If you specify *CRASTART, you must also specify the crastart.* directives, or use
their default values.

• Any other value defines the location of the CRASUBMT CLIST, using TSO-like naming conventions.
With single quotation marks (') the data set name is an absolute reference, without the single
quotation marks (') the data set name is prefixed with the client's user ID, not the TSO prefix. The
latter requires that all CARMA users must maintain their own CRASUBMT CLIST.

The default is a null string, to indicate that CARMA is not configured.

crastart.configuration.file
Specifies the name of the CRASTART configuration file. The default is crastart.conf. This file
specifies the data set allocations and program invocations that are needed to start a CARMA server.
This directive is used only if the clist.dsname directive has *CRASTART as value. The file name can
be specified in several ways:

• Null string, which means that the variable is not specified. The default value is used.
• Only a file name, which is the default method. CARMA searches your configuration directory (/etc/
zexpl by default) to find the file.

• Relative path, which is the directory and file name, without a leading forward slash (/). CARMA adds
your configuration directory (/etc/zexpl/ by default) to the provided path to make it an absolute
path.

• Absolute path, which is the directory and file name, with a leading forward slash (/). CARMA uses
the specified file location.

#connect.timeout
Specifies (in seconds) how long CARMA miner (active in RSE) waits for CARMA server (load module
CRASERV) to start up and connect to the port on which CARMA miner is listening. The default is 60
seconds. Uncomment and customize to change the wait time.

#port.start
When the value of port.start is 0 (zero), CARMA uses an ephemeral port for communication
between CARMA and the RSE server. In this scenario, TCP/IP assigns a random free port number.
When the value of port.start is non-zero, it is interpreted as the starting point of a port range used
for communication between CARMA and the RSE server, in which case the port.range variable must

Chapter 3. Common Access Repository Manager (CARMA) 37

also be defined. The default port is 0. To specify the start of the port range, uncomment and
customize. Communication on this port is confined to your host system.

Note: Before selecting a port, verify that the port is available on your system by using the NETSTAT
and NETSTAT PORTL commands. For more information, see "Reserved TCP/IP ports" in the Host
Configuration Reference (SC27-8578) .

#port.range
Range of ports, starting at port.start, which is used for CARMA communication if port.start is
non-zero. The default is 100. To specify the size of the port range, uncomment and customize. For
example, when port.start is 5227 and port.range is 100, port 5227 until 5326 (both inclusive)
can be used by CARMA. Each CARMA connection uses a port exclusively, so specifying a port range
limits the maximum number of concurrent CARMA sessions.

#system.exit
Defines user-specified code to be executed before creation of the CARMA server address space. The
user-specified code is also executed after termination of the CARMA server address space to allow for
cleanup actions. Uncomment and specify the (z/OS UNIX) file name of the code to be executed. The
file name can be specified in several ways:

• Only a file name. CARMA searches the directories in the PATH environment variable to find the file.
• Relative path, which is the directory and file name, without a leading forward slash (/). CARMA adds

your configuration directory (/etc/zexpl/ by default) to the provided path to make it an absolute
path.

• Absolute path, which is the directory and file name, with a leading forward slash (/). CARMA uses
the specified file location.

A sample user exit is provided as /usr/lpp/IBM/idz/samples/craexit.rex. This sample also
documents the startup arguments passed to the user exit. For more information see (Optional)
CARMA user exit.

#user.exit
Defines user-specified code to be executed after the creation of the CARMA server address space, just
before the CARMA server is started. The user-specified code is also executed after the CARMA server
ends, before address space termination, to allow for cleanup actions.. Uncomment and specify the
data set name of the code to be executed.

With quotes (') the data set name is an absolute reference, without quotes (') the data set name is
prefixed with the client's user ID, not the TSO prefix. The latter requires that all CARMA users must
maintain their own exit code.

A sample user exit is provided as FEL.SFELSAMP(CRAEXIT). This sample also documents the
startup arguments passed to the user exit. For more information see (Optional) CARMA user exit.

startup.script.name
Defines the CARMA startup script. The default is carma.startup.rex. This REXX exec triggers the
startup of a CARMA server. The file name can be specified in several ways:

• Null string, which means that the variable is not specified. In this case, the default value is used.
• Only a file name, which is the default method. CARMA searches the directories in the PATH

environment variable to find the file. The directory holding Developer for z Systems executables
(/usr/lpp/IBM/idz/bin by default) is automatically added to the PATH environment variable.

• Relative path, which is the directory and file name, without a leading forward slash (/). CARMA adds
your configuration directory (/etc/zexpl/ by default) to the provided path to make it an absolute
path.

• Absolute path, which is the directory and file name, with a leading forward slash (/). CARMA uses
the specified file location.

#crastart.stub
z/OS UNIX stub for calling CRASTART. The default is CRASTART. This stub makes the MVS based
CRASTART load module available to z/OS UNIX processes. To specify a specific path, uncomment and

38 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

customize. This directive is used only if the clist.dsname directive has *CRASTART as value. The
file name can be specified in several ways:

• Null string, which means that the variable is not specified. The default value is used.
• Only a file name, which is the default method. CARMA searches the directories in the PATH

environment variable to find the file. The directory holding Developer for z Systems executables
(/usr/lpp/IBM/idz/bin by default) is automatically added to the PATH environment variable.

• Relative path, which is the directory and file name, without a leading forward slash (/). CARMA adds
your configuration directory (/etc/zexpl/ by default) to the provided path to make it an absolute
path.

• Absolute path, which is the directory and file name, with a leading forward slash (/). CARMA uses
the specified file location.

#crastart.syslog
Specifies how much information is written to the system log while CRASTART starts a CARMA server.
The default is Partial. Valid values are listed in the following table.

A (All) All tracing information is printed to SYSLOG

P (Partial) Only connect, disconnect, and error information is printed to SYSLOG

anything else Only error conditions are printed to SYSLOG

To specify the required detail level for system log messages, uncomment and customize. This
directive is used only if the clist.dsname directive has *CRASTART as value.

#crastart.timeout
The length of time, in seconds, before a CARMA server ends due to lack of activity. The default is 420
(7 minutes). To specify the required timeout value, uncomment and customize. This directive is used
only if the clist.dsname directive has *CRASTART as value.

Note: System abend 522 for module CRASERV will occur if the JWT parameter in the SMFPRMxx
parmlib member is set to a value lower than the crastart.timeout value in CRASRV.properties.
This occurrence does not impact CARMA operations because the server is restarted automatically if
needed.

#crastart.steplib
The location of the CRASTART module when accessed through the STEPLIB directive in rdz.env. The
default is FEL.SFELLPA. If the CRASTART module cannot be part of LPA or LINKLIST, uncomment
and customize this directive. Program control and APF issues might arise if the CRASTART module is
not in LPA. This directive is used only if the clist.dsname directive has *CRASTART as value.

#crastart.tasklib
Alternate name for the TASKLIB DD name in crastart.conf. The default is TASKLIB. If the DD
name TASKLIB has a special meaning for your SCM or RAM and cannot be used as STEPLIB
replacement, uncomment and customize this directive. This directive is used only if the
clist.dsname directive has *CRASTART as value.

crastart*.conf, the CRASTART server startup
RSE starts the CRASTART load module, which uses the definitions in crastart*.conf to create a valid
environment to execute batch TSO and ISPF commands. Developer for z Systems uses this environment
to run the CARMA server, CRASERV.

crastart*.conf is located in /etc/zexpl/, unless you specified a different location when you
customized and submitted job FEL.SFELSAMP(FELSETUP). For more details, see “Customization setup”
on page 13. You can edit the file with the TSO OEDIT command.

Note: Changes are in effect for all CARMA servers that are started after the update.

Developer for z Systems provides multiple crastart*.conf configuration files. Each of these sample
files is preconfigured for a specific customization scenario:

Chapter 3. Common Access Repository Manager (CARMA) 39

• crastart.endevor.conf is configured for CRASTART startup with CA Endevor® SCM RAM.
• crastart.conf is configured for CRASTART startup with sample RAMs.

The function of the crastart*.conf file is similar in concept to a JCL job stream, but is more restrictive.

• The following samples show valid line formats:

– * comment
– ddname=dsn1,dsn2,dsn3 * comment
– ddname=SYSOUT(c) * comment
– ddname=DUMMY * comment
– -COMMAND=<any bpxwdyn command> * comment
– PROGRAM = progname parms * comment

Note: The BPXWDYN command is documented in Using REXX and z/OS UNIX System Services
(SA22-7806) and allows complex allocation constructs.

• All input is changed to uppercase.
• Line continuations are not supported.
• There is no limitation on line length.
• One or more blank spaces are allowed around the equal sign (=).
• DD allocations must precede the related PROGRAM statement.
• DD names allocated here are freed at the end of program execution. They do not accumulate.
• DD names allocated by the called programs are not freed.
• Multiple data sets can be concatenated to a DD name. The data set names must be separated by a

comma (,), and the concatenation is searched in the listed order.
• All data set allocations are done with DISP=SHR, except for allocations done using -COMMAND.
• Inline data is not supported. All data must be in cataloged files.
• Variables can be used only on the right side of the equal sign (=).
• The following variables are supported:

&CRAUSER. Client user ID

&CRADATE. Current® date in Dyyyyddd format (7 char Julian)

&CRATIME. Current time in Thhmmss format (hour min sec)

&CRAPRM1. Port number

&CRAPRM8. Site-specific value set by the user exit referenced by the system.exit
directive in CRASRV.properties.

System symbol Any SYS1.PARMLIB(IEASYMxx) system symbol

-<ddname> A hyphen (-) followed by a previously defined DD name acts like a
*.ddname backward reference in JCL. The original DD must be allocated
using the –COMMAND statement.

Note: There is no variable for the TSO prefix because TSO is not active when the configuration file is
interpreted. If you have a need for the TSO prefix or other variable that is not available, see “(Optional)
Custom allocation exec” on page 52.

Figure 11 on page 41 shows a basic crastart*.conf skeleton that includes ISPF services.

40 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

* DD used by RAM

* DD used by CARMA server (CRASERV)
TASKLIB = FEL.SFELLOAD
CRADEF = FEL.#CUST.CRADEF
CRAMSG = FEL.#CUST.CRAMSG
CRASTRS = FEL.#CUST.CRASTRS
CARMALOG= SYSOUT(H)
SYSPRINT= SYSOUT(H)

* DD used by ISPF (ISPSTART)
-COMMAND=ALLOC FI(ISPCTL0) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(80)
 BLKSIZE(32720) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(ISPCTL1) NEW DELETE DSORG(PS) RECFM(F,B) LRECL(80)
 BLKSIZE(32720) SPACE(5,5) TRACKS UNIT(SYSALLDA)
-COMMAND=ALLOC FI(ISPPROF) NEW DELETE DSORG(PO) RECFM(F,B) LRECL(80)
 BLKSIZE(32720) SPACE(5,5) TRACKS UNIT(SYSALLDA) DIR(5)
ISPTABL = -ISPPROF
ISPTLIB = -ISPPROF,ISP.SISPTENU
ISPMLIB = ISP.SISPMENU
ISPPLIB = ISP.SISPPENU
ISPSLIB = ISP.SISPSENU

* DD used by TSO (IKJEFT01)
SYSPROC = #hlq.SFELPROC * CRAALLOC
SYSTSIN = DUMMY
SYSTSPRT= SYSOUT(H)

PROGRAM=IKJEFT01 %CRAALLOC ISPSTART PGM(CRASERV) PARM(&CRAPRM1.
 &CRAPRM2. &CRAPRM3. &CRAPRM4. &CRAPRM5. &CRAPRM6. &CRAPRM7.
 &CRAPRM8.)

Figure 11. crastart*.conf: CARMA server startup using CRASTART

Note:

• Due to page width limitations, some lines in the sample wrapped onto the next line. All lines that start
with an indentation should be added to the end of the previous line.

• If you alter the PROGRAM line, ensure that there is at least one blank before the closing round bracket
(“)”) of the PARM() statement to simplify processing of the string.

• You can add your own DD statements and data set concatenations to customize the CARMA TSO
environment, thus mimicking a TSO logon procedure.

• The DD name TASKLIB acts like STEPLIB in JCL. Its DD name must match the value specified for
crastart.tasklib in CRASRV.properties, which is described in “CRASRV.properties, the RSE
interface to CARMA” on page 36.

• Regular APF rules apply for TASKLIB allocations. Libraries lose their APF authorization when a non-APF
authorized library is part of the concatenation.

• System abend 522 for module CRASERV occurs if the JWT parameter in the SMFPRMxx parmlib member
is set to a value lower than the crastart.timeout value in CRASRV.properties. The system abend
does not impact CARMA operations because the server is restarted automatically if needed.

• Details of the CARMA server startup are shown in rsecomm.log when the server ends. For more
information on setting the detail level of rsecomm.log, see the IBM Explorer for z/OS Host
Configuration Guide (SC27-8437).

Collecting the CRASTART log files
CRASTART creates a TSO environment as a child process of RSE, which runs in a separate address space.
Non-trivial actions might be needed to keep the CARMA output sent to SYSOUT(*), which complicates
the collecting of log files. This difficulty can be resolved by writing the log files to a user-specific data set,
as shown in the following sample allocation:

-COMMAND=ALLOC FI(CARMALOG) MOD CATALOG DSORG(PS) RECFM(F,B) LRECL(133)
 BLKSIZE(27930) SPACE(5,5) TRACKS UNIT(SYSALLDA)
 DA(&CRAUSER..&SYSNAME..CRA.CARMALOG)

Note:

Chapter 3. Common Access Repository Manager (CARMA) 41

• Due to page width limitations, some lines in the sample wrapped onto the next line. All lines that start
with an indentation should be added to the end of the previous line.

• To be able to create user-specific log files, this log file must be allocated using the -COMMAND
statement.

• You can also allocate the log data sets in an allocation exec if you need more flexibility; for example,
only send the log to a data set for specific users. For more information about allocation execs, see
“(Optional) Custom allocation exec” on page 52.

If you are writing log files to SYSOUT, remember that SYSOUT allocated by z/OS UNIX processes is treated
as special output in JES. This is similar to SYSOUT allocated by APPC transactions.

• While the CARMA server is still active, the output can be seen using the DA command in SDSF. The job
will have the user's user ID followed by a random one-digit number as job name and an STC job ID. The
user is the job owner.

• If the output was written to a HOLD output class, when the CARMA server ends, due to inactivity or the
user ending the connection, the output can be seen using the APPC ON and H ALL commands in SDSF.
The job name, job ID, and job owner remain the same. Each DD shows up as a separate spool file,
without any indication which DD it is.

• JES Job Monitor can also show the output if SEARCHALL=ON is active in FEJJCNFG and the output
resides on the spool in a HOLD output class. For more information about the SEARCHALL directive, see
the IBM Explorer for z/OS Host Configuration Guide (SC27-8437)..

CRASUB*, the batch submit server startup
RSE starts CLIST CRASUB*, which in turn submits an embedded JCL to create a valid environment to
execute batch TSO and ISPF commands. Developer for z Systems uses this environment to run the
CARMA server, CRASERV.

CRASUB* is located in FEL.#CUST.CNTL, unless you specified a different location when you customized
and submitted the FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page
13.

Note: Changes are in effect for all CARMA servers that are started after the update.

Developer for z Systems provides multiple CRASUB* JCL jobs. Each of these sample files is pre-configured
for a specific customization scenario:

• CRASUBCA is configured for batch startup with CA Endevor® SCM RAM.
• CRASUBMT is configured for batch startup with sample RAMs.

Figure 12 on page 43 shows a basic CRASUB* skeleton that includes ISPF services.

42 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

PROC 8 CRAPRM1 CRAPRM2 CRAPRM3 CRAPRM4 CRAPRM5 CRAPRM6 CRAPRM7 CRAPRM8
/* SET CRAPRM2=420
SUBMIT * END($$)
//CRA&CRAPRM1 JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
//*
//RUN EXEC PGM=IKJEFT01,DYNAMNBR=125,REGION=0M,TIME=NOLIMIT
//*
//* DD used by RAM
//*
//* DD used by CARMA server (CRASERV)
//STEPLIB DD DISP=SHR,DSN=FEL.SFELLOAD
//CRADEF DD DISP=SHR,DSN=FEL.#CUST.CRADEF
//CRAMSG DD DISP=SHR,DSN=FEL.#CUST.CRAMSG
//CRASTRS DD DISP=SHR,DSN=FEL.#CUST.CRASTRS
//CARMALOG DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*
//* DD used by ISPF (ISPSTART)
//ISPPROF DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// LRECL=80,RECFM=FB,SPACE=(TRK,(1,1,5))
//ISPCTL0 DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// LRECL=80,RECFM=FB,SPACE=(TRK,(5,5))
//ISPCTL1 DD DISP=(NEW,DELETE,DELETE),UNIT=SYSALLDA,
// LRECL=80,RECFM=FB,SPACE=(TRK,(5,5))
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU
//ISPTLIB DD DISP=SHR,DSN=ISP.SISPTENU
//*
//* DD used by TSO (IKJEFT01)
//SYSPROC DD DISP=SHR,DSN=#FEL.SFELPROC * CRAALLOC
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
%CRAALLOC ISPSTART PGM(CRASERV) PARM(&CRAPRM1 &CRAPRM2 &STR(+)
&CRAPRM3 &STR(+)
&CRAPRM4 &STR(+)
&CRAPRM5 &STR(+)
&CRAPRM6 &STR(+)
&CRAPRM7 &STR(+)
&CRAPRM8 &STR(+)
)
$$
EXIT CODE(0)

Figure 12. CRASUB*: CARMA startup using batch submit

Note:

• If you alter the SYSTSIN data, ensure that there is at least one blank before the closing round bracket
(“)”) of the PARM() statement to simplify processing of the string.

• You can add your own DD statements and data set concatenations to customize the CARMA TSO
environment, thus mimicking a TSO logon procedure.

• You can use the CRAPRM* variables in the CLIST and JCL definitions.

– &CRAPRM1.: Port number.
– &CRAPRM8.: Site-specific value set by the user exit referenced by the system.exit directive in
CRASRV.properties.

• Optionally, you can change CARMA's timeout value by uncommenting and modifying the SET
CRAPRM2=420 line in the CRASUB* CLIST. The timeout value is the number of seconds that CARMA
waits for the next command from the client. Setting a value of 0 results in the default timeout value,
currently 420 seconds (7 minutes).

• Details of the CARMA startup process are shown in rsecomm.log when the server ends. For more
information on setting the detail level of rsecomm.log, see the IBM Explorer for z/OS Host
Configuration Guide (SC27-8437)..

CARMA VSAM data sets
The CARMA server requires READ access to three VSAM data sets. The sample members to create and
populate these VSAM data sets are located in FEL.#CUST.JCL, unless you specified a different location

Chapter 3. Common Access Repository Manager (CARMA) 43

when you customized and submitted the FEL.SFELSAMP(FELSETUP) job. For more details, see
“Customization setup” on page 13.

Note:

• If you need to merge the definitions for a (custom) RAM into an existing VSAM configuration, see the
FEL.#CUST.JCL(CRA#UADD) sample job. This job must be customized and submitted for each CARMA
VSAM file that changes. For more information about the record structure used by the different CARMA
VSAM files, see the Common Access Repository Manager Developer's Guide (SC23-7660).

• Use the FEL.#CUST.JCL(CRA#UQRY) sample job to extract the active definitions from a VSAM to a
sequential data set.

CRADEF, the configuration data set
This VSAM data set describes the functions that are supported by the defined RAMs. RAM developers
require UPDATE access to this data set. The data set can be created by one of these sample jobs:

• CRA$VCAD populates the data set with CA Endevor® SCM RAM data.
• CRA$VDEF populates the data set with sample RAM data.

The mentioned sample jobs can be used to disable a defined RAM during VSAM creation. Doing so
enables you to create a customized CARMA setup by using a single master input file, which can be one
provided by IBM or customized by your RAM developers.

CRAMSG, the message data set
This VSAM data set holds messages issued by the CARMA server itself. The data set can be created by
one of these sample jobs:

• CRA$VMSG populates the data set with generic server data.

CRASTRS, the custom string data set
This VSAM data set holds the messages that are issued by the defined RAMs. RAM developers require
UPDATE access to this data set. The data set can be created by one of these sample jobs:

• CRA$VCAS populates the data set with CA Endevor® SCM RAM data.
• CRA$VSTR populates the data set with sample RAM data.

CARMA Repository Access Managers (RAMs)
A Repository Access Manager (RAM) is an Application Programming Interface (API) for a z/OS based
Software Configuration Manager (SCM). In turn, Developer for z Systems or user-written applications can
start a CARMA server, which loads the RAMs and provides a standard interface to access any supported
SCM.

The CARMA server must be able to find the RAM load modules, either through LINKLIST or STEPLIB/
TASKLIB.

The CRAR* RAM load modules that are provided by Developer for z Systems are located in
FEL.SFELLOAD, and the sample source code and compile jobs are located in FEL.SFELSAMP, unless you
used a different high level qualifier during the SMP/E install of Developer for z Systems.

The following sections have customization notes for the RAMs that are available with Developer for z
Systems. The referenced sample members are located in FEL.#CUST.*, unless you specified a different
location when you customized and submitted the FEL.SFELSAMP(FELSETUP) sample job. For more
details, see “Customization setup” on page 13.

For in-depth knowledge of CARMA and for more information on the sample RAMs and sample source code
provided, see Common Access Repository Manager Developer's Guide (SC23-7660).

44 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

CA Endevor® SCM RAM
• The CA Endevor® SCM RAM is a production-type RAM.
• The CA Endevor® SCM RAM gives Developer for z Systems clients direct access to CA Endevor® SCM

elements.
• The load module name is CRARNDVR.
• The CA Endevor® SCM RAM has many additional settings compared to a conventional CARMA setup. Use

one of the preconfigured setups that support the CA Endevor® SCM RAM as starting point, and
customize it to fit your needs.

• The CA Endevor® SCM RAM has multiple configuration files that can be customized. For more
information, see “CRACFG, CRASCL, CRASHOW and CRATMAP, the CA Endevor® SCM RAM configuration
files” on page 46.

• The CA Endevor® SCM RAM has an allocation exec, FEL.SFELPROC(CRANDVRA), that can be
customized. See “CRANDVRA, the CA Endevor® SCM RAM initial allocation exec” on page 47 for more
information.

• The CA Endevor® SCM RAM supports doing CA Endevor® SCM actions in batch mode, in the background.
For more information, see “CA Endevor® SCM RAM batch actions” on page 48.

CA Endevor® SCM packages RAM
• The CA Endevor® SCM packages RAM is a production-type RAM.
• The CA Endevor® SCM packages RAM gives Developer for z Systems clients direct access to CA Endevor®

SCM packages.
• The load module name is CRARPKGS.
• The CA Endevor® SCM packages RAM does not have customizable settings, and must be used in

combination with the CA Endevor® SCM RAM.

PDS RAM
• The PDS RAM is a sample RAM. Do not use in a production environment.
• The PDS RAM gives a data set list similar to MVS Files -> My Data Sets in the Remote Systems view.
• The load module name is CRARPDS.
• The PDS RAM requires that ISPF services be available.
• The PDS RAM requires an additional VSAM data set to be allocated to DD CRARAM1. This VSAM data set

can be allocated and primed with the FEL.#CUST.JCL(CRA#VPDS) sample job. For customization
instructions, see the documentation within the member.

• Source code and compile jobs are available in FEL.SFELSAMP. For more information, see Common
Access Repository Manager Developer's Guide (SC23-7660).

Skeleton RAM
• The skeleton RAM is a sample RAM. Do not use in a production environment.
• The skeleton RAM gives a functional framework that can be used as starting point to develop your own

RAM.
• The load module name is CRARTEST.
• Source code and compile jobs are available in FEL.SFELSAMP. For more information, see Common

Access Repository Manager Developer's Guide (SC23-7660).

SCLM RAM
• The SCLM RAM is a sample RAM. Do not use in a production environment.
• The SCLM RAM gives a basic entry into SCLM, ISPF's Software Configuration Manager. This RAM is not

enabled by default.

Chapter 3. Common Access Repository Manager (CARMA) 45

• The load module name is CRARSCLM.
• The SCLM RAM needs the ISPF services to be available.
• The SCLM RAM requires an additional VSAM data set to be allocated to DD CRARAM2. This VSAM data

set can be allocated and primed with the FEL.#CUST.JCL(CRA#VSLM) sample job. For customization
instructions, see the documentation within the member.

• The SCLM RAM requires the various user-specific data sets to exist. Customize
FEL.#CUST.JCL(CRA#ASLM) to allocate these data sets. For customization instructions, see the
documentation within the member. Each user must submit CRA#ASLM once before using CARMA with
the SCLM RAM. Failing to do so will result in an allocation error.

• The SCLM RAM is not enabled by default. To enable the RAM, it must be defined in the CARMA VSAM
data sets referenced by DD CRADEF and CRASTRS. Use the FEL.#CUST.JCL(CRA#UADD) sample job
to merge FEL.SFELVSM2(CRA0SLMD) into CRADEF and FEL.SFELVSM2(CRA0SLMS) into CRASTRS.
For customization instructions, see the documentation within the member.

• Source code and compile jobs are available in FEL.SFELSAMP. For more information, see Common
Access Repository Manager Developer's Guide (SC23-7660).

CRACFG, CRASCL, CRASHOW and CRATMAP, the CA Endevor® SCM RAM
configuration files

The following CA Endevor® SCM RAM-specific CARMA components can be customized, regardless of the
chosen server startup method. The sample members referenced below are located in
FEL.#CUST.PARMLIB, unless you specified a different location when you customized and submitted the
FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page 13.

CRACFG, CA Endevor® SCM RAM interaction with the SCM
CRACFG specifies how the CA Endevor® SCM RAM interacts with CA Endevor® SCM. Refer to the
documentation within the member for customization instructions if you want to change the defaults.

ENTRY-STAGE-COPY-MODE = RETRIEVE-ADD
ALTERNATIVE-ALLOC = YES
PACKAGE-EDITING-OPTION = READONLY
PACKAGE-EDITING-OPTION = DISABLED
SCL-REQUIRED = YES
SCL-DATASET-TEMPLATE = FEL.#CUST.PARMLIB(CRASCL)
DYNAMIC-VB-DATASET-ALLOC = YES
DYNAMIC-FB-DATASET-ALLOC = YES
DATASET-ALLOC-OVERRIDE = SPACE(5,30) TRACK UNIT(SYSALLDA)
BYPASS-RESOURCE-LOCKING = YES

Figure 13. CRACFG - CA Endevor® SCM RAM interaction with the SCM

CRASCL, CA Endevor® SCM RAM template SCL
CRASCL is a template SCL (Software Control Language) that can limit which actions and options are
allowed when CA Endevor® SCM Packages are processed.

When used, only actions and options explicitly listed in the template SCL are allowed to be specified in the
Developer for z Systems Packages Editor. Refer to the documentation within the member for
customization instructions if you want to change the defaults.

CRASHOW, CA Endevor® SCM RAM default filters
CRASHOW defines default filters for CA Endevor® SCM environments, systems, and so forth. Refer to the
documentation within the member for customization instructions if you want to change the defaults.

46 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

ENV=*
TOENV=
STGID=*
TOSTGID=
SYS=*
SUBSYS=*
ELEM=*
TOELEM=
TYPE=*
#FILTER-DEP=YES

Figure 14. CRASHOW - CA Endevor® SCM RAM default filters

Note: FILTER-DEP is not a common CA Endevor® SCM variable, but a Developer for z Systems specific
variable that controls dependency scans for elements with footprint references to other CA Endevor® SCM
repository locations.

CRATMAP, the CA Endevor® SCM RAM file extension mappings
CRATMAP overrides the CA Endevor® SCM type to file extension mappings. If you want to change the
defaults, see the customization instructions in the documentation within the member.

* = cbl
COBOL = cbl
COPY = cpy
ASM = asm
MACRO = asm
PROCESS = jcl

Figure 15. CRATMAP: CA Endevor® SCM RAM default filters

CRANDVRA and CRADYNDA, the CA Endevor® SCM RAM allocation execs
The following CA Endevor® SCM RAM-specific CARMA components can be customized, regardless of the
chosen server startup method.

You can customize a copy of these allocation REXX execs if certain defaults, such as the data set name, do
not match your site standards. The execs are located in FEL.SFELPROC, unless you used a different high-
level qualifier during the SMP/E install of Developer for z Systems.

For customization instructions, see the documentation within the member. For more information about
allocation execs, see “(Optional) Custom allocation exec” on page 52.

Note: You should copy the sample allocation REXX to a new data set and customize this copy to avoid
overwriting it when applying maintenance. When you do this, you must update the reference to SFELPROC
in the SYSEXEC DD of your chosen CARMA startup method to match your new data set name.

CRANDVRA, the CA Endevor® SCM RAM initial allocation exec
Both the batch submit and the CRASTART startup method call the CRANDVRA REXX exec to allocate user-
specific data sets used by CA Endevor® SCM RAM. The allocations are done in a separate exec, because an
exec allows more flexibility than what is possible within the batch submit CRASUBCA JCL and the
CRASTART crastart.endevor.conf configuration file. The allocation exec is also responsible for
calling the optional user exit.

DD Data set name Type

DEPEND &SYSPREF..&SYSUID..&SYSNAME..CRA$NDVR.DEPEND Permanent

BROWSE &SYSPREF..&SYSUID..&SYSNAME..CRA$NDVR.BROWSE Temporary

BROWSEV &SYSPREF..&SYSUID..&SYSNAME..CRA$NDVR.BROWSEV Temporary

ENHCEDIT &SYSPREF..&SYSUID..&SYSNAME..CRA$NDVR.ENHCEDIT Temporary

ENHCEDITV &SYSPREF..&SYSUID..&SYSNAME..CRA$NDVR.ENHCEDITV Temporary

Chapter 3. Common Access Repository Manager (CARMA) 47

DD Data set name Type

C1PRINT &SYSPREF..&SYSUID..&SYSNAME..CRA$NDVR.LISTING Temporary

SPCLLIST &SYSPREF..&SYSUID..&SYSNAME..CRA$NDVR.SPCLLIST Temporary

PKGSCLS &SYSPREF..&SYSUID..&SYSNAME..CRA$NDVR.PKGSCLS Temporary

CRABJCLO &SYSPREF..&SYSUID..&SYSNAME..CRA$NDVR.CRABJCLO Temporary

CRAPARM &SYSPREF..&SYSUID..&SYSNAME..CRA$NDVR.CRAPARM Temporary

CRADYNDA, the CA Endevor® SCM RAM reallocation exec
CA Endevor® SCM can work with variable blocked data sets with various record lengths, and requires that
Developer for z Systems uses identical allocations for certain actions. Both the batch submit and the
CRASTART startup method call the CRADYNDA REXX exec to allocate a work data set with the correct
attributes.

CA Endevor® SCM RAM batch actions
Normally, CA Endevor® SCM actions such as “Generate Element” are executed “online”, in the CARMA
server address space. This behavior causes problems if your CA Endevor® SCM procedures call TSO,
because TSO is already active and that means that the required DDs such as SYSTSIN and SYSTSPRT are
in use.

To resolve this problem, the CA Endevor® SCM RAM supports “batch actions”. When batch-actions is
enabled, the CA Endevor® SCM RAM submits a customizable batch job to perform actions like “Generate
Element”. Using a batch job results in the allocation of DDs such as SYSTSIN and SYSTSPRT by your CA
Endevor® SCM procedures, because the submitted JCL does not require TSO to be active.

CA Endevor® SCM RAM batch-actions are the Developer for z Systems equivalent of background CA
Endevor® SCM actions.

When a request is issued to execute an action that is supported by batch-actions, the CA Endevor® SCM
RAM checks for the existence of the CRABCFG DD, in CRASUBCA or crastart.endevor.conf, and
checks that the setup behind this DD is valid. If CRABCFG exists and the setup is valid, the action is
performed in batch. If CRABCFG does not exist, the action is performed online. Developer for z Systems
clients have the facility to override this behavior.

For example:

//* uncomment CRABCFG and CRABSKEL to use batch actions
//*CRABCFG DD DISP=SHR,DSN=FEL.#CUST.PARMLIB(CRABCFG)
//*CRABSKEL DD DISP=SHR,DSN=FEL.#CUST.CNTL

Note:

• The TSO-free environment is available only for selected CA Endevor® SCM actions. Batch-actions does
not support a TSO-free environment outside this scope.

• The CRABCFG configuration file documents which CA Endevor® SCM actions are supported.
• A functional sample job, FEL.#CUST.CNTL(CRABATCA), is provided to execute the batch actions, but

the intent of batch-actions is that this sample is customized to start your current CA Endevor® SCM
procedures.

• Ensure that there are sufficient JES initiators available in the class used to submit the batch-action
JCLs.

• When using JES in a SYSPLEX environment, ensure that the job runs on the current system, or that the
completion information is routed back to the system hosting Developer for z Systems, so that the CA
Endevor® SCM RAM can check the status.

• The Developer for z Systems client can provide a customized JOB card and additional JCL statements to
the batch-action JCL before submission.

48 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

• The batch-action JCL has access to the CRAPRM* variables through generated SET statements. This
includes CRAPRM8, the variable reserved for site-specific data, which can be altered by the user exit
referenced by the system.exit directive in CRASRV.properties.

CRABCFG, the CA Endevor® SCM RAM batch-action configuration
CRABCFG defines the configuration variables related to CA Endevor® SCM RAM batch-actions.

CRABCFG is located in FEL.#CUST.PARMLIB, unless you specified a different location when you
customized and submitted the FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization
setup” on page 13.

See the following CRABCFG sample file, which must be customized to match your system environment.
Comment lines start with a number sign (#) when using a US code page. Comments behind a directive and
its assigned value are supported. Spaces around the equal sign (=) are supported. Line continuations are
not supported.

Note: Changes are in effect for all CARMA servers that are started after the update.

Location of batch action JCL
SKELETON-DD = CRABSKEL
#
batch action JCL members within SKELETON-DD
DEFAULT-JOBCARD = CRABJOBC
ADD-ELEMENT = CRABATCA
DELETE-ELEMENT = CRABATCA
GENERATE-ELEMENT = CRABATCA
MOVE-ELEMENT = CRABATCA
RETRIEVE-ELEMENT = CRABATCA
PRINT-ELEMENT = CRABATCA
PRINT-MEMBER = CRABATCA
SIGNIN-ELEMENT = CRABATCA
TRANSFER-ELEMENT = CRABATCA
#
Command substitution key within batch action JCL
BSTIPT01-KEY = <CRA_BSTIPT01>

Figure 16. CRABCFG: CA Endevor® SCM RAM batch-action configuration

SKELETON-DD
Name of the DD statement that references one or more PDS(E) data sets that hold the batch-action
skeleton JCLs. The sample value is CRABSKEL. Can be changed if needed. This DD must be defined to
the CARMA server in CRASUBCA or crastart.endevor.conf.

DEFAULT-JOBCARD
Name of the member holding a default JOB card. If not overruled by a user-specific JOB card stored
on the Developer for z Systems client, this default JOB card is used to substitute the <JOBCARD> key
in a skeleton JCL. Can be changed if needed.

GENERATE-ELEMENT and other CA Endevor® SCM actions
The key names represent the CA Endevor® SCM actions that are supported by batch-action and cannot
be changed. The value assigned to each key is the member name of the related skeleton JCL. The
sample value is CRABATCA for all keys. Can be changed if needed.

BSTIPT01-KEY
Substitution key for the actual CA Endevor® SCM command string. The sample value is
<CRA_BSTIPT01>. Can be changed if needed. The first occurrence, but not in a comment, of this
substitution key within the skeleton JCL is replaced by the command string that instructs CA Endevor®

SCM to do the requested action against the requested element.

CRABATCA, the CA Endevor® SCM RAM batch action JCL
CRABATCA is a sample skeleton JCL used for batch-actions. To change the defaults, see the customization
instructions in the documentation within the member.

Chapter 3. Common Access Repository Manager (CARMA) 49

CRABATCA is located in FEL.#CUST.CNTL, unless you specified a different location when you customized
and submitted the FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page
13.

Changes are active for all new invocations. No server restart is needed.

//<JOBCARD>
/*JOBPARM SYSAFF=*
//*
//<SET_CRAPRM>
//*
//CRABATCA EXEC PGM=NDVRC1,DYNAMNBR=1500,REGION=4096K,PARM='C1BM3000'
//STEPLIB DD DISP=SHR,DSN=CA.NDVR.CSIQAUTU
// DD DISP=SHR,DSN=CA.NDVR.CSIQAUTH
//CONLIB DD DISP=SHR,DSN=CA.NDVR.CSIQLOAD
//C1MSGS1 DD SYSOUT=*
//C1MSGS2 DD SYSOUT=*
//C1PRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133)
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYMDUMP DD DUMMY
//SYSIN DD DUMMY
//BSTIPT01 DD *
SET STOPRC 16 .
<CRA_BSTIPT01>
//*

Figure 17. CRABATCA: CA Endevor® SCM RAM batch-action JCL

CRABJOBC, the CA Endevor® SCM RAM batch action JOB card
CRABJOBC is a sample default JOB card used for batch-action skeleton JCL that specifies the <JOBCARD>
key. To change the defaults, see customization instructions in the documentation within the member.

CRABJOBC is located in FEL.#CUST.CNTL, unless you specified a different location when you customized
and submitted the FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page
13.

Changes are active for all new invocations. No server restart is needed.

//<USERID>B JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1)
//*PROCS JCLLIB ORDER=(COBOL.V5R1M0.SIGYPROC,CBC.SCCNPRC)

Figure 18. CRABJOBC: CA Endevor® SCM RAM batch-action JOB card

CRAALLOC, the custom RAM allocation exec
Both the batch submit and the CRASTART startup method call the CRAALLOC REXX exec to allocate user-
specific data sets that can be used by a user-written RAM. The allocations are done in a separate exec,
because an exec allows more flexibility than what is possible within the batch submit CRASUBMT JCL and
the CRASTART crastart.conf configuration file. The allocation exec is also responsible for calling the
optional user exit.

DD Data set name Type

CRAPARM &SYSPREF..&SYSUID..&SYSNAME..CRA$CUST.CRAPARM Temporary

You can customize a copy of this allocation REXX exec if certain defaults, such as the data set name, do
not match your site standards. CRAALLOC is located in FEL.SFELPROC, unless you used a different high-
level qualifier during the SMP/E install of Developer for z Systems.

For customization instructions, see the documentation within the member. For more information about
allocation execs, see (Optional) Custom allocation exec.

Note: You should copy the sample allocation REXX to a new data set and customize this copy to avoid
overwriting it when applying maintenance. When you do this, you must update the reference to SFELPROC
in the SYSEXEC DD of your chosen CARMA startup method to match your new data set name.

50 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

CARMA return codes
CARMA can report various error codes to the client or in the host system logs. The details that are
provided with the error, and the information in Table 11 on page 51, can help you locate the error and
work towards a resolution.

Table 11. CARMA return codes

Error range Error type

4-99 Generic CARMA errors

100-199 Generic RAM errors

200-399 CRASERV (CARMA server) errors

400-499 RSE (CARMA miner) errors

500-899 RAM-specific errors

900-999 TSO and TCP/IP errors

Some common return codes are these:

• 220: CARMA server ends due to inactivity timeout. This is not an error.
• 990: CARMA server is unable to connect to the port on which CARMA miner is listening.

(Optional) Supporting multiple RAMs
CARMA has the facility for defining multiple RAMs and running them concurrently. However, because
there is only one CARMA server active for a user, even when there are multiple RAMs, some configuration
changes might be required to make this setup work.

RAMs are defined by a RAM developer in the CARMA configuration VSAM data set, CRADEF. During
startup, the CARMA server, CRASERV, identifies all of the defined RAMs and sends the information to the
CARMA client. The user can then select one or more RAMs, which is loaded into the CARMA server.

Because RAMs are active as plug-ins of the CARMA server, ensure that all prerequisites, such as data set
allocations, for each of the RAMs are available in the address space of the CARMA server. This
requirement might need changes to the CARMA configuration samples, such as CRASUBMT or
crastart.conf, which are included with Developer for z Systems.

Example
In the following example, you start from an existing setup with the CA Endevor® SCM RAM, using the
CRASTART startup method, and add the sample PDS RAM.

Definitions for the CA Endevor® SCM RAM:

• FEL.SFELVSM2(CRA0VCAD): CRADEF definitions
• FEL.SFELVSM2(CRA0VCAS): CRASTRS definitions
• /etc/zexpl/crastart.endevor.conf: CRASTART configuration file

Definitions for the PDS RAM:

• FEL.SFELVSM2(CRA0VDEF): CRADEF definitions
• FEL.SFELVSM2(CRA0VSTR): CRASTRS definitions
• FEL.#CUST.CRARAM1: CRARAM1 definitions

The process starts with a RAM developer gathering the data and information needed by the system
programmer to complete the setup.

Chapter 3. Common Access Repository Manager (CARMA) 51

1. Extract the data that is specific for the PDS RAM from the SFELVSM2 members. These members hold
definitions for all sample RAMs, not just the PDS RAM.

2. Merge this data with the CA Endevor® SCM RAM SFELVSM2 members.
3. Create a list of PDS RAM-specific prerequisites:

• DD CRARAM1, linked to FEL.#CUST.CRARAM1
• TSO environment

The system programmer then uses this data to create the updated CARMA VSAM data sets and uses the
prerequisite information to create a CRASTART configuration file that is capable of supporting both RAMs.

1. Use the combined data as input for the CRA$VDEF and CRA$VSTR jobs to create the updated CARMA
configuration and custom information VSAM data sets, CRADEF and CRASTRS. The CRAMSG VSAM is
specific for the CARMA server, and thus identical for both RAMs.

2. Add a CRARAM1 definition to crastart.endevor.conf:

CRARAM1 = FEL.#CUST.CRARAM1

3. Verify the PROGRAM statement in crastart.endevor.conf to ensure that it is capable of providing
the environment needed by both RAMs.

4. PROGRAM=IKJEFT01 %CRANDVRA NDVRC1 PGM(CRASERV)
 PARM(&CRAPRM1. &CRAPRM2.)

• IKJEFT01: TSO, used to allow certain authorized calls in a non-authorized environment, and used as
environment to run the CA Endevor® SCM RAM pre-allocation exec.

• %CRANDVRA: CA Endevor® SCM RAM pre-allocation exec, located in FEL.SFELPROC, that allocates
temporary user-specific working data sets.

• NDVRC1: CA Endevor® back end, which has a built-in mechanism to execute TSO and ISPF
commands.

• PGM(CRASERV): Command to start a CARMA server, in ISPF command format.
• PARM(&CRAPRM1. &CRAPRM2.): Parameters for CRASERV, in ISPF command format. &CRAPRM1 is

the port to be used and &CRAPRM2 is the timeout value.

The CA Endevor® SCM RAM is active in an ISPF environment, which implies that the TSO environment
required by the PDS RAM is also available.

(Optional) Custom allocation exec
All CARMA server startup methods have limitations regarding data set allocation. For example, TSO prefix
substitution is not available in JCL or CRASTART.

However, by creating an exec that is called after TSO or ISPF starts, and before CARMA is started, you can
use the whole range of variables and services available in TSO or ISPF to do the required allocations.

Developer for z Systems uses an allocation exec in each of the pre-configured setups described earlier in
this chapter. FEL.SFELPROC(CRANDVRA), the allocation exec for CA Endevor® SCM RAM and
FEL.SFELPROC(CRAALLOC), the allocation exec for custom RAMs, The exec allocates cataloged
temporary data sets that have the user’s TSO prefix as high-level qualifier. The allocation exec is also
responsible for calling the optional user exit.

Customization instructions are documented within the exec. Changing the allocation exec is supported,
but not advised, as customizations must be redone when PTF service updates the exec. If possible, use
the CARMA user exit instead, which is described in “(Optional) CARMA user exit” on page 53.

Note:

• When updating an allocation exec, ensure you do not destroy allocations done earlier in the CARMA
startup process by CRASTART or your startup JCL.

• Output generated by the allocation exec is shown in DD SYSTSPRT of the CARMA server.

52 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

When updating an allocation exec, ensure you do not destroy allocations done earlier in the CARMA
startup process by CRASTART or your startup JCL.

The following samples show how to start an allocation exec that requires only TSO.

crastart*.conf

SYSPROC = my.exec.library
PROGRAM = IKJEFT01 %myexec ISPSTART PGM(CRASERV) PARM(&CRAPRM1. &CRAPRM2.)

CRASUB*

//SYSPROC DD DISP=SHR,DSN=my.exec.library
//SYSTSIN DD *
%myexec ISPSTART PGM(CRASERV) PARM(&CRAPRM1. &CRAPRM2.)
//*

(Optional) CARMA user exit
CARMA supports the invocation of a user exit to allow for specialized initialization during startup and
specialized cleanup during shutdown of the CARMA server. The usage of a user exit allows you to provide
site-specific values to CARMA, and reduces the need to alter the allocation exec, which is maintained by
PTF service.

CARMA allows you to specify two user exits. Each of these user exits are invoked twice: once just before a
major resource allocation in CARMA server startup, like address space creation, and once right after the
allocated resources are released, like address space termination.

User exits are activated with the *.exit directives in CRASRV.properties. CRASRV.properties is
located in /etc/zexpl/, unless you specified a different location when you customized and submitted
FEL.SFELSAMP(FELSETUP) job. For more details, see Customization setup.

Note: CARMA executes the provided user exit code without question. To maintain a secure environment, it
is important that you limit update access to the user exit code.

system.exit – exit points for address space creation and termination
This z/OS UNIX-based user exit is invoked just before the address space is created in which TSO, and
eventually the CARMA server, is started. The exit is able to alter most variables that influence the startup
of the CARMA server. This includes the ability to provide a site-specific value in variable CRAPRM8, which
can be used during address space creation, CARMA server startup, and throughout the active life of the
CARMA server. The same user exit is invoked again after the address space is terminated. If the first
invocation ends with return code 99 or higher, CARMA server startup is halted at that point.

This exit can alter CRAPRM8 before it is used in crastart*.conf and CRASUB* during address space
creation, which allows you to define a customized STEPLIB definition. For example, based on the
connection name provided by the client, you can select a different release of your SCM.

A sample user exit is provided as /usr/lpp/IBM/idz/samples/craexit.rex. Unless you used a
different path during the SMP/E install of Developer for z Systems.

• craexit.rex: A sample exit that alters CRAPRM8 based on the client connection name to allow for
different STEPLIB definitions, and thus different CA Endevor® SCM instances to be selected without the
usage of CA’s ENUXSITE program.

The sample user exit documents in detail the startup arguments passed to the user exit:

Startup argument Description

(STARTUP) | (ENDING) Indicator whether the exit invocation is before or
after CARMA server invocation.

Chapter 3. Common Access Repository Manager (CARMA) 53

Startup argument Description

EXIT_RC=rc Return code of the previous invocation of the exit.

rc Is always 0 during (STARTUP) invocation.

CARMA_RC=rc Return code of the invocation of CARMA server.

rc Is always 0 during (STARTUP) invocation.

(CLIST) | (CRASTART) CARMA server startup method indicator.

… Variables used for CARMA server address space
creation. These are dependent on the startup
method.

• CLIST: For example,

STARTUP=FEL.#CUST.CNTL(CRASUBCA)

CRASTART: For example,

STARTUP=/usr/lpp/IBM/idz/bin/CRASTART
FILE=/etc/zexpl/crastart.endevor.conf
SYSLOG=P TASKLIB=TASKLIB BACKGROUND=0

-!- Divider between address space and startup
variables.

… CARMA server startup variables. These variables
are known as CRAPRM1 to CRAPRM8. For example,
1312 420 NOEXIT
CLIENT=14.0.3.idz14003O-I20161120_1440
CONNECTION=Endevor18 . . .

The user exit can, besides a return code, return a string holding new values for most of the variables it
received as startup argument:

Startup argument Description

CRAEXIT_RETURN Keyword marking the string as return data.

… Variables used for CARMA server address space
creation. These are dependent on the startup
method.

• CLIST: For example,

STARTUP=FEL.#CUST.CNTL(CRASUBCA)

• CRASTART: For example:

STARTUP=/usr/lpp/IBM/idz/bin/CRASTART
FILE=/etc/zexpl/crastart.endevor.conf
SYSLOG=P TASKLIB=TASKLIB BACKGROUND=0

-!- Divider between address space and startup
variables.

54 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Startup argument Description

… CARMA server startup variables. These variables
are known as CRAPRM1 to CRAPRM8. For example,
1312 420 NOEXIT
CLIENT=14.0.3.idz14003O-I20161120_1440
CONNECTION=Endevor18 . .
CAI.NDVR18.REGIONH

Output generated by the user exit is visible in rsecomm.log, when debug level 2 is active for
rsecomm.log.

user.exit – exit points for server startup and shutdown
This MVS based user exit is invoked by the allocation exec, and is executed twice. The initialization
invocation is after the allocation of the temporary data sets and before the CARMA server is invoked. The
cleanup invocation is after the CARMA server ended and before the temporary files are removed. If the
first invocation ends with return code 99 or higher, CARMA startup is interrupted. This implies that neither
CARMA server nor the second invocation of this user exit is executed.

Sample user exits are provided as FEL.SFELSAMP(CRAEXIT*), unless you used a different high-level
qualifier during the SMP/E install of Developer for z Systems.

• CRAEXIT: A sample exit that allocates different CARMA VSAM data sets based on the client version.
• CRAEXIT2: A sample exit that invokes different CA Endevor® SCMs based on the client connection name.

The sample user exits document in detail the startup arguments passed to the user exit:

Startup argument Description

(STARTUP) | (ENDING) Indicator whether the exit invocation is before or
after CARMA server invocation.

EXIT_RC=rc Return code of the previous invocation of the exit.

rc Is always 0 during (STARTUP) invocation.

CARMA_RC=rc Return code of the invocation of CARMA server.

rc is always 0 during (STARTUP) invocation.

… CARMA server startup command and startup
arguments. For example, ISPSTART
PGM(CRASERV) PARM(1312 420
EXIT=FEL.#CUST(CRAEXIT)
CLIENT=14.0.3.idz14003O-I20161120_1440
CONNECTION=Endevor18 . . .)

Output generated by the user exit is shown in DD SYSTSPRT of the CARMA server.

(Optional) IRXJCL versus CRAXJCL
If the CARMA server is started using TSO (IKJEFTxx), problems might occur if your RAMs call services
which in turn call the IRXJCL REXX batch interface. The problem can occur when the processors called by
the RAM previously ran either without TSO, or only in online TSO, and dynamically allocates DD SYSTSIN
or SYSTSPRT. A sample program, CRAXJCL, is provided to work around this problem.

Your processor might fail if it attempts to allocate SYSTSIN or SYSTSPRT, which is required for IRXJCL,
because batch TSO required for CARMA already has those DD names allocated and open. The CRAXJCL
replacement module attempts to allocate SYSTSIN and SYSTSPRT to DUMMY but ignores the errors which
occur if the allocations fail. It then calls IRXJCL to do the actual work.

Chapter 3. Common Access Repository Manager (CARMA) 55

This means that when your processors run in a CARMA environment started by TSO, the allocations to
SYSTSIN and SYSTSPRT are the same as those used by CARMA. When the processors are run outside of
TSO/CARMA, the SYSTSIN and SYSTSPRINT allocations are created by CRAXJCL. Therefore, your
processors must not rely on the contents of the data set allocated to SYSTSIN.

It is assumed that calls to IRXJCL use the PARM field to pass the REXX name and startup parameters, as
documented in TSO/E REXX Reference (SA22-7790). This means that SYSTSIN can safely be used by
CARMA. Any output sent to SYSTSPRT by IRXJCL is written in CARMA’s log.

Processors that call the CRAXJCL replacement module should not attempt to allocate DD SYSTSIN or
SYSTSPRT before calling CRAXJCL.

Create CRAXJCL
The CRAXJCL replacement module is provided in source format because you must customize it to specify
the specific allocations to use for SYSTSPRT. The allocation for SYSTSIN should usually be to a dummy
data set.

Sample assembler source code and a sample compile/bind job are available as
FEL.#CUST.ASM(CRAXJCL) and FEL.#CUST.JCL(CRA#CIRX), unless you specified a different
location when you customized and submitted FEL.SFELSAMP(FELSETUP) job. For more details, see
“Customization setup” on page 13.

Customize the CRAXJCL assembler source code as needed, using the documentation within the member.
Afterward, customize and submit the CRA#CIRX JCL to create the CRAXJCL load module. For
customization instructions, see the documentation within the member.

If needed, you can rename IRXJCL to something else. Adjust the CRAXJCL source to call this new name
for IRXJCL and compile it, and then rename the CRAXJCL load module to IRXJCL. This setup might be
easier than changing all your calls to IRXJCL.

56 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Chapter 4. SCLM Developer Toolkit (deprecated)

Note: SCLM Developer Toolkit has been marked as deprecated. Although it is still supported, this function
will no longer be enhanced.

SCLM Developer Toolkit provides the tools that are needed to extend the capabilities of SCLM to the
client. SCLM itself is a host system-based source code manager that is included as part of ISPF.

The SCLM Developer Toolkit has an Eclipse-based plug-in that interfaces to SCLM and provides for access
to all SCLM processes for heritage code development and support for full Java and Java EE development
on the workstation with synchronization to SCLM on the mainframe including building, assembling, and
deployment of the Java EE code from the mainframe.

Requirements and checklist
You need assistance of an SCLM administrator and, optionally, a security administrator to complete this
customization task, which requires the following resources and special customization tasks:

• LINKLIST updates
• /etc/profile update
• Define SCLM language translators for Java EE support
• Define SCLM types for Java EE support
• (Optional) Security rule to allow users update to an SCLM VSAM
• (Optional) Installation of Ant

To start using SCLM Developer Toolkit at your site, you must perform the following tasks. Unless
otherwise indicated, all tasks are mandatory.

1. Verify and adjust the prerequisites and PARMLIB updates. For details, see “Prerequisites” on page
58.

2. Customize z/OS UNIX log on scripts, such as /etc/profile. For details, see “/etc/profile updates for
SCLMDT” on page 57.

3. Customize z/OS Explorer and Developer for z Systems configuration files. For details see:

• “ISPF.conf updates for SCLMDT” on page 58
• “idz.env updates for SCLMDT” on page 59

4. Optionally define long/short name translation support. For details, see “(Optional) Long/short name
translation” on page 59.

5. Optionally install and customize Ant to use the Java EE build support. For details, see “(Optional)
Install and customize Ant” on page 61.

6. Update SCLM to define SCLMDT-specific parts. For details, see “SCLM updates for SCLMDT” on page
62.

7. Optionally set up automation to periodically clean up the SCLMDT work area. For details, see “Remove
old files from WORKAREA and /tmp” on page 62.

/etc/profile updates for SCLMDT
SCLM Developer Toolkit uses the legacy ISPF Gateway to interact with SCLM. The legacy ISPF Gateway is
started in a "logon shell" to allow logon scripts like /etc/profile and ~/.profile to customize the
environment as needed for your site.

However, by default /etc/profile assumes it is the first script that runs in a new shell, and it initializes
critical variables like PATH. This behavior erases the value set for PATH by SCLMDT, and causes SCLMDT
to fail during initialization.

© Copyright IBM Corp. 2015, 2019 57

To avoid the above situation, you need to update /etc/profile and any other logon script that resets
PATH to preserve the existing value if there is any. A simple way to do this is to instruct z/OS UNIX to
prime PATH only if it does not have a value. The following example will preserve PATH if it has a value, and
set it to /bin if PATH is a null string.

PATH=${PATH:-/bin}

You can edit /etc/profile with the TSO OEDIT command.

Prerequisites
For a complete listing of the Developer for z Systems software requirements including prerequisites and
co-requisites, see IBM Developer for z Systems detailed system requirements and Developer for z
Systems product page (http://www-03.ibm.com/software/products/en/developerforsystemz/) that also
documents the Ant specifications needed for Java EE builds in SCLM Developer Toolkit.

Attention: SCLM Developer Toolkit uses Legacy ISPF Gateway, which implies that z/OS 1.8 or
later is required. It also implies that if Interactive ISPF Gateway is used for the TSO Commands
service, both the Legacy and the Interactive ISPF Gateway must be configured.

As described in “PARMLIB changes” on page 14, SCLM Developer Toolkit requires additional
customization of system settings. These changes include the following items:

• (BPXPRMxx) Increase the maximum number of processes per z/OS UNIX user ID.
• (PROGxx/LPALSTxx) Place ISP.SISPLPA, ISP.SISPLOAD, SYS1.LINKLIB and the REXX runtime in

LINKLIST/LPA.

Also, SCLM Developer Toolkit uses SDSF or the TSO OUTPUT command to retrieve job completion status
and job output. Both methods require additional attention:

• SDSF must be ordered, installed, and configured separately.
• The default settings for the TSO OUTPUT command enable a user to retrieve only those job outputs that

begin with that specific user ID. To use the OUTPUT facility fully, the sample TSO/E exit IKJEFF53 might
need to be modified so that a user can retrieve the job output the user owns, but that does not begin
that user's user ID. For more information about this exit, see TSO/E Customization (SA22-7783).

Users require READ, WRITE, and EXECUTE permission to the z/OS UNIX directories /tmp/ and /var/
zexpl/WORKAREA/. Directory WORKAREA/ is located in /var/zexpl/, unless you specified a different
location when you customized IBM Explorer for z/OS.

ISPF.conf updates for SCLMDT
SCLM Developer Toolkit uses the standard ISPF/SCLM skeletons, so ensure that the ISP.SISPSLIB
skeleton library is allocated to the ISPSLIB concatenation in ISPF.conf. Using the ISP.SISPSENU data
set is optional.

ISPF.conf is located in /etc/zexpl/, unless you specified a different location when you customized
IBM Explorer for z/OS. You can edit the file with the TSO OEDIT command.

Note: Changes are in effect for all clients that connect to the host system after the update.

The following sample code shows the ISPF.conf file, which must be customized to match your system
environment. Comment lines start with an asterisk (*). Add data sets to the concatenation on the same
line and separate the names with a comma (,). .

58 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

http://www-01.ibm.com/support/docview.wss?uid=swg27050090
http://www-03.ibm.com/software/products/en/developerforsystemz/
http://www-03.ibm.com/software/products/en/developerforsystemz/

* REQUIRED:
sysproc=ISP.SISPCLIB,FEK.SFEKPROC,FEL.SFELPROC
ispmlib=ISP.SISPMENU
isptlib=ISP.SISPTENU
ispplib=ISP.SISPPENU
ispslib=ISP.SISPSLIB
ispllib=ISP.SISPLOAD

* OPTIONAL:
*allocjob = ISP.SISPSAMP(ISPZISP2)
*ISPF_timeout = 900

Figure 19. ISPF.conf updates for SCLMDT

Notes:

• You can add your own DD-like statements and data set concatenations to customize the TSO
environment, thus mimicking a TSO logon procedure. For more details, see "Customizing the TSO
environment" in the IBM Explorer for z/OS Host Configuration Reference (SC27-8438).

• When you are doing batch builds, ensure that the customized version of the FLMLIBS skeleton is
concatenated before the ISPF/SCLM skeleton library.

ispslib=hlq.USERSKEL,ISP.SISPSLIB

idz.env updates for SCLMDT
SCLM Developer Toolkit uses some directives set in idz.env to locate data sets and directories.

idz.env is located in /etc/zexpl/, unless you specified a different location when you customized and
submitted the FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page 13.
You can edit the file with the TSO OEDIT command.

Note: For the changes to take effect, restart the IBM Explorer for z/OS RSED started task.

The following code sample shows the SCLMDT directives in idz.env, which must be customized to
match your system environment. For more details on customizing idz.env, see “idz.env, the
environment configuration file” on page 22.

_SCLMDT_CONF_HOME=/var/idz/sclmdt
#STEPLIB=$STEPLIB:$IDZ_HLQ.SFELLOAD
#_SCLMDT_TRANTABLE=FEL.#CUST.LSTRANS.FILE
#ANT_HOME=/usr/lpp/Apache/Ant/apache-ant-1.7.1

Figure 20. idz.env updates for SCLMDT

(Optional) Long/short name translation
SCLM Developer Toolkit provides the ability to store long name files into SCLM. Long file names are files
with names that have more than 8 characters or are in mixed case. Storing of long file names is achieved
through the use of a VSAM file that contains the mapping of the long file name to the 8-character member
name used in SCLM.

Notes:

• For versions previous to z/OS 1.8, this facility is provided through a base ISPF/SCLM PTF that addresses
APAR OA11426.

• The long/short name translation is also used by other SCLM-related products, such as IBM SCLM
Administrator Toolkit.

Create LSTRANS.FILE, the long/short name translation VSAM
To create the long/short name translation VSAM, customize and submit the sample FLM02LST member in
the ISP.SISPSAMP ISPF sample library. The configuration steps in this publication require the VSAM to
be named FEL.#CUST.LSTRANS.FILE, as shown in the following sample setup JCL.

Chapter 4. SCLM Developer Toolkit (deprecated) 59

//FLM02LST JOB <job parameters>
//*
//* CAUTION: This is neither a JCL procedure nor a complete job.
//* Before using this sample, you will have to make the following
//* modifications:
//* 1. Change the job parameters to meet your system requirements.
//* 2. Change ****** to the volume that will hold the VSAM.
//* 3. Change all references of FEL.#CUST.LSTRANS.FILE to
//* match your naming convention for the SCLM translate VSAM.
//*
//CREATE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE FEL.#CUST.LSTRANS.FILE
 SET MAXCC=0
 DEFINE CLUSTER(NAME(FEL.#CUST.LSTRANS.FILE) -
 VOLUMES(******) -
 RECORDSIZE(58 2048) -
 SHAREOPTIONS(3 3) -
 CYLINDERS(1 1) -
 KEYS(8 0) -
 INDEXED) -
 DATA (NAME(FEL.#CUST.LSTRANS.FILE.DATA)) -
 INDEX (NAME(FEL.#CUST.LSTRANS.FILE.INDEX))

 /* DEFINE ALTERNATE INDEX WITH NONUNIQUE KEYS -> ESDS */

 DEFINE ALTERNATEINDEX(-
 NAME(FEL.#CUST.LSTRANS.FILE.AIX) -
 RELATE(FEL.#CUST.LSTRANS.FILE) -
 RECORDSIZE(58 2048) -
 VOLUMES(******) -
 CYLINDERS(1 1) -
 KEYS(50 8) -
 UPGRADE -
 NONUNIQUEKEY) -
 DATA (NAME(FEL.#CUST.LSTRANS.FILE.AIX.DATA)) -
 INDEX (NAME(FEL.#CUST.LSTRANS.FILE.AIX.INDEX))
/*
//*
//PRIME EXEC PGM=IDCAMS,COND=(0,LT)
//SYSPRINT DD SYSOUT=*
//INITREC DD *
INITREC1
/*
//SYSIN DD *
 REPRO INFILE(INITREC) -
 OUTDATASET(FEL.#CUST.LSTRANS.FILE)
 IF LASTCC = 4 THEN SET MAXCC=0

 BLDINDEX IDS(FEL.#CUST.LSTRANS.FILE) -
 ODS(FEL.#CUST.LSTRANS.FILE.AIX)

 IF LASTCC = 0 THEN -
 DEFINE PATH (NAME(FEL.#CUST.LSTRANS.FILE.PATH) -
 PATHENTRY (FEL.#CUST.LSTRANS.FILE.AIX))
/*

Figure 21. FLM02LST: Long/short name translation setup JCL

Note: Users need UPDATE authority to this VSAM data set.

idz.env updates for long/short name translation
Before using the long/short name translation, uncomment and set the idz.env environment variable
_SCLMDT_TRANTABLE to match the name of the long/short name translation VSAM.

idz.env is located in /etc/zexpl/, unless you specified a different location when you customized and
submitted the FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page 13.
You can edit the file with the TSO OEDIT command.

Note: For the changes to take effect, restart the RSED started task.

60 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

(Optional) Install and customize Ant
This step is required only if you plan to use the Java EE build support in SCLM.

Apache Ant is an open source Java build tool and can be downloaded from http://ant.apache.org/.
Ant consists of text files and scripts, which are distributed in ASCII format and thus require an ASCII/
EBCDIC translation to run in z/OS UNIX.

Perform the following steps to implement Ant on z/OS, and to define it to Developer for z Systems:

• Download, in binary format, the latest Ant compressed file into the z/OS UNIX file system. Download
the .zip version of ANT.

• Open a z/OS UNIX command-line session to continue the installation, for example with the TSO OMVS
command.

• Make a home directory for the Ant installation by using the mkdir -p /home-dir command and make
it your current directory with the cd /home-dir command.

• Use the JAR extract command, jar -xf apache-ant-1.7.1.zip, to extract the file to the current
directory. A Java bin directory must exist in your local z/OS UNIX PATH to use the jar command.
Otherwise, fully qualify the command with the Java bin location (for example, /usr/lpp/java/
J6.0/bin/jar -xf apache-ant-1.7.1.zip).

• Convert all Ant text files to EBCDIC by optionally customizing and executing the /usr/lpp/IBM/idz/
samples/BWBTRANT sample script.

Note: Execute this script only once. Multiple runs will corrupt your Ant install.
• To check for successful translation, locate and open a text file within the ANT directory, such as
apache-ant-1.7.1/README. If the file is readable, the translation was successful.

• Use the chmod –R 755 * command to enable all users to read and execute files in the ANT directory.
• Before using Ant, set the environment variables JAVA_HOME and ANT_HOME.

– JAVA_HOME (in rse.env) is required to point to the Java home directory, for example:

JAVA_HOME=/usr/lpp/java/IBM/J6.0

– ANT_HOME (in idz.env) is required to point to the Ant home directory, for example:

ANT_HOME=/usr/lpp/Apache/Ant/apache-ant-1.7.1

For example:

• TSO OMVS
• mkdir –p /usr/lpp/Apache/Ant
• cd /usr/lpp/Apache/Ant
• jar –xf /u/userid/apache-ant-1.7.1
• /usr/lpp/IBM/idz/samples/BWBTRANT
• cat ./apache-ant-1.7.1/README
• chmod -R 755 *
• oedit /etc/idz.env

To test that the Ant initialization has been successful:

• Add the Ant and Java bin directories to the environment variable PATH.

Example:

export PATH=/usr/lpp/Apache/Ant/apache-ant-1.7.1/bin:$PATH
export PATH=/usr/lpp/java/J6.0/bin:$PATH

• To display the version, if successfully installed, execute ant -version.

Chapter 4. SCLM Developer Toolkit (deprecated) 61

Example:

ant -version

Note: Setting the PATH statement in this way is necessary for testing only, not for operational use.

SCLM updates for SCLMDT
SCLM itself also requires customization to work with SCLM Developer Toolkit. For more information about
the required customization tasks, see IBM Developer for z Systems SCLM Developer Toolkit Administrator's
Guide (SC23-9801):

• Define language translators for Java EE support
• Define SCLM types for Java EE support

To complete the customization and project definition tasks, the SCLM administrator must know several
Developer for z Systems customizable values, as described in Table 12 on page 62.

Table 12. SCLM administrator checklist

Description

• Default value
• Where to find the answer Value

Developer for z Systems sample
library

• FEL.SFELSAMV
• SMP/E installation

Developer for z Systems sample
directory

• /usr/lpp/IBM/idz/samples
• SMP/E installation

Java bin directory • /usr/lpp/java/J6.0/bin
• rse.env - $JAVA_HOME/bin

Ant bin directory • /usr/lpp/Apache/Ant/apache-
ant-1.7.1/bin

• idz.env - $ANT_HOME/bin

WORKAREA home directory • /var/zexpl
• rse.env - $CGI_ISPWORK

SCLMDT project configuration home
directory

• /var/idz/sclmdt
• idz.env - $_SCLMDT_CONF_HOME

Long/short name translation VSAM • FEL.#CUST.LSTRANS.FILE
• idz.env - $_SCLMDT_TRANTABLE

Remove old files from WORKAREA and /tmp
SCLM Developer Toolkit and Legacy ISPF Gateway share the same WORKAREA and /tmp directory, both
of which might need a periodic cleanup. z/OS UNIX provides a shell script, skulker, that deletes files
based on the directory they are in and their age. Combined with the z/OS UNIX cron daemon, which runs
commands at specified dates and times, you can set up an automated tool that periodically cleans out
targeted directories. Refer to UNIX System Services Command Reference (SA22-7802) for more
information about the skulker script and the cron daemon.

62 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Chapter 5. Host-based code analysis

Similar to the Developer for z Systems client, the Developer for z Systems host supports running code
analysis tools, which are provided as a separate product, IBM Developer for z Systems Host Utilities. A
benefit of doing code analysis on the host is that it can be integrated in your daily batch processing.

The following code analysis tools are available on the host:

• Code review: Using rules with different severity levels, code review scans source code and reports rule
violations.

• Code coverage: Analyze a running program and generate a report of lines that are executed, compared
to the total number of executable lines.

Requirements and checklist
You do not need assistance of other administrators to start using host-based code analysis tools at your
site, but you must perform the following tasks. Unless otherwise indicated, all tasks are mandatory.

1. Install IBM Developer for z Systems Host Utilities, as documented in Program Directory for IBM
Developer for z Systems Host Utilities (GI13-2864). When using the provided defaults, the product is
installed using high-level qualifier AKG and z/OS UNIX path /usr/lpp/IBM/idzutil.

2. Create customizable copies of the provided samples by customizing and submitting
AKG.SAKGSAMP(AKGSETUP). This job performs the following tasks:

• Create AKG.#CUST.PROCLIB and populate it with sample SYS1.PROCLIB members.
• Create AKG.#CUST.JCL and populate it with sample configuration JCL.

Note: IBM z/OS Debugger is a prerequisite for the Code coverage component. The IBM z/OS Debugger
FMID is provided together with the IBM Developer for z Systems FMIDs.

Code review
Code review scans source code and reports rule violations, using rules with different severity levels. The
tool comes with rule providers for COBOL and PL/I, but other rule providers can be added.

Developer for z Systems Host Utilities provides a sample procedure, AKGCR, to simplify the calling of code
review services in batch mode. AKGCR is found in AKG.#CUST.PROCLIB, unless you specified a different
location when you customized and submitted the AKG.SAKGSAMP(AKGSETUP) job.

Customize the sample procedure, AKG.#CUST.PROCLIB(AKGCR), as described within the member, and
copy it to SYS1.PROCLIB.

If the AKGCR procedure cannot be copied into a system procedure library, ask the Developer for z Systems
users to add a JCLLIB card right after the JOB card to their calling job.

//MYJOB JOB <job parameters>
//PROCS JCLLIB ORDER=(AKG.#CUST.PROCLIB)

Modify code review processing
Developer for z Systems Code Review allows for third-party code to be part of the review process. For
example, you can provide a rule provider to analyze C/C++ code, or you can enhance the Cobol rule
provider to recognize site-specific coding conventions.

Host-based code review is an Eclipse process, just like the Developer for z Systems client. Therefore, the
enhancements done by your development support team for code review on the client can be reused on
the host.

© Copyright IBM Corp. 2015, 2019 63

The enhancements will consist of Eclipse plugins or Eclipse features. In order to activate them, you must
make them available to the existing code, as documented in the AKGCRADD configuration job. AKGCRADD
is in AKG.#CUST.JCL, unless you specified a different location when you customized and submitted the
AKG.SAKGSAMP(AKGSETUP) job.

Code coverage
Code coverage analyzes a running program and generates a report of lines that are executed, compared to
the total number of executable lines. Note that Code coverage sets up a TCP/IP connection, using an
ephemeral port, with IBM z/OS Debugger, or with the Debug Engine of a Developer for z Systems client.

Developer for z Systems Host Utilities provides two ways to invoke Code coverage in batch mode, A
sample JCL procedure, to process a single program run, and a set of scripts to start and stop a
permanently active Code coverage collector that can process multiple program runs.

Single Code coverage invocation
The AKGCC sample procedure provides a method to start a Code coverage collector, have it analyze a
single program run, stop the collector and archive the results for later usage.

AKGCC is in AKG.#CUST.PROCLIB, unless you specified a different location when you customized and
submitted the AKG.SAKGSAMP(AKGSETUP) job.

Customize the sample procedure, AKG.#CUST.PROCLIB(AKGCC), as described within the member, and
copy it to SYS1.PROCLIB.

If the AKGCC procedure cannot be copied into a system procedure library, ask the Developer for z Systems
users to add a JCLLIB card right after the JOB card to their calling job.

//MYJOB JOB <job parameters>
//PROCS JCLLIB ORDER=(AKG.#CUST.PROCLIB)

Multiple Code coverage invocations
Depending on how your software development process is set up, the convenience of having the AKGCC
procedure take care of everything might not outweigh the resource and time usage to start a Code
coverage collector for each program analysis.

Developer for z Systems Host Utilities provides the ccstart script to start a Code coverage collector
which remains active. This collector can then be used in multiple Code coverage invocations. The ccstop
script can be used to stop the collector.

These scripts (ccstart, ccstop, and codecov) are located in /usr/lpp/IBM/idzutil/bin/ if you
installed Developer for z Systems Host Utilities in the default location. For usage of these scripts, see
Running code coverage in headless mode by using a daemon in the IBM Developer for z Systems
Knowledge Center.

The following is a generic usage scenario:

1. Invoke ccstart with option to use a fixed port number and option to redirect the output to a known
location.

2. Invoke, as often as needed, programs to be analyzed with startup
option.TEST(,,,TCPIP&<hostip>:<port>).

3. Invoke ccstop.
4. Direct the Developer for z Systems client to the output location to see the reports.

Code coverage output
The output of code coverage is intended to be imported into a Developer for z Systems client, and is
therefore written to a z/OS UNIX file. Code coverage is also able to use the results of a previous run and

64 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

combine them with the results of the current run, resulting in a single report that covers multiple code
paths.

For these reasons, Developer for z Systems Host Utilities does not attempt to remove the output of a code
coverage run, and the output will thus accumulate over time.

z/OS UNIX provides a shell script, skulker, that deletes files based on the directory they are in and their
age. Combined with the z/OS UNIX cron daemon, which runs commands at specified dates and times,
you can set up an automated tool that periodically cleans out targeted directories. Refer to UNIX System
Services Command Reference (SA22-7802) for more information about the skulker script and the cron
daemon.

Chapter 5. Host-based code analysis 65

66 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Chapter 6. Other customization tasks

This section combines various optional customization tasks. To configure the required service, follow the
instructions in the appropriate section.

Customizations to Developer for z Systems configuration files:

• “include.conf, Forced includes for C/C++ content assist” on page 67

Developer for z Systems related customizations to or for other products:

• “z/OS UNIX subprojects” on page 68
• “Include preprocessor support” on page 69
• “ISPF EDIT macro support” on page 69
• “ISPF PACK support” on page 69
• “xUnit support for Enterprise COBOL and PL/I” on page 70
• “xUnit support for CICS applications” on page 71
• “Enterprise Service Tools support” on page 72
• “CICS bidirectional language support” on page 72
• “Diagnostic IRZ messages for Enterprise Service Tools” on page 73

include.conf, Forced includes for C/C++ content assist
This customization task does not require assistance, special resources, or special customization tasks.

Content assist for C/C++ can use the definitions in include.conf to do forced includes of specified files
or members. A forced include consists of a file or directory, data set, or data set member which will be
parsed when a content assist operation is performed, regardless of whether that file or member was
included in the source code using a pre-processor directive.

The file must be referenced in idz.env by the include.c or include.cpp variables before it is used.
This reference in idz.env implies that you can specify a different file for usage by C and C++. The
variables in idz.env are disabled by default.

The sample include.conf is located in /etc/zexpl/, unless you specified a different location when
you customized and submitted job FEL.SFELSAMP(FELSETUP). See “Customization setup” on page 13
for more details. You can edit the file with the TSO OEDIT command.

Definitions must start in column 1. Comment lines start with a pound sign (#) when using a US code page.
Data lines can only have the name of a directory, file, data set or member. Comments are not allowed on
the same line. Line continuations are not supported.

© Copyright IBM Corp. 2015, 2019 67

To include the stdio.h file from the /usr/include directory, input:
/usr/include/stdio.h
#
To include all files of the /usr/include directory and all of it's
sub-directories, input:
/usr/include
#
Uncomment and customize variable FILETYPES to limit the z/OS UNIX
wildcard include to selected (case sensitive) file types:
The file types are specified in a comma-delimited list (no blanks)
FILETYPES=H,h,hpp,C,c,cpp,cxx

To include all members of the CBC.SCLBH.H data set, input:
//CBC.SCLBH.H
#
To include the STDIOSTR member of the CBC.SCLBH.H data set, input:
//CBC.SCLBH.H(STDIOSTR)
The sample list contains some commonly used C standard library files
/usr/include/assert.h
/usr/include/ctype.h
/usr/include/errno.h
/usr/include/float.h
/usr/include/limits.h
/usr/include/locale.h
/usr/include/math.h
/usr/include/setjmp.h
/usr/include/signal.h
/usr/include/stdarg.h
/usr/include/stddef.h
/usr/include/stdio.h
/usr/include/stdlib.h
/usr/include/string.h
/usr/include/time.h

Figure 22. include.conf - Forced includes for C/C++ content assist

z/OS UNIX subprojects
This customization task does not require assistance, special resources, or special customization tasks.

REXEC (Remote Execution) is a TCP/IP service that enables clients to execute a command on the host
system. SSH (Secure Shell) is a similar service, but all communication is encrypted. Developer for z
Systems uses either service for doing remote (host-based) actions in z/OS UNIX subprojects.

Notes:

• Developer for z Systems uses the z/OS UNIX version of REXEC, not the TSO version.
• If REXEC/SSH is not configured to use the default port, the Developer for z Systems client must define

the correct port for use by z/OS UNIX subprojects. This configuration can be done by selecting Window
(on Windows) or IBM Developer for z Systems (on macOS) > Preferences > z/OS Solutions > USS
Subprojects > Remote Action Options preference page. To know which port is used, see “REXEC or
SSH setup” on page 68.

REXEC or SSH setup
REXEC and SSH rely on services provided by INETD (Internet Daemon), which is another TCP/IP service.
Communications Server IP Configuration Guide (SC31-8775) describes the steps required to set up
INETD, REXEC, and SSH.

A common port used by REXEC is 512. To verify the port being used, check /etc/inetd.conf
and /etc/services.

• Find the service name (1st word, exec in this example) of the rexecd server (7th word) in /etc/
inetd.conf.

exec stream tcp nowait OMVSKERN /usr/sbin/orexecd rexecd –LV

68 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

• Find the port (2nd word, 512 in this example) attached to this service name (1st word) in /etc/
services.

exec 512/tcp #REXEC Command Server

The same principle applies to SSH. Its common port is 22, and the server name is sshd.

Include preprocessor support
This customization task does not require assistance, special resources, or special customization tasks.

Developer for z Systems supports the interpreting and expanding COBOL and PL/I include statements,
including select third-party include statements. Developer for z Systems also provides a sample REXX
exec, FEKRNPLI, that can be called by the Developer for z Systems client to expand PL/I source by
invoking the PL/I compiler.

FEKRNPLI is located in FEL.#CUST.CNTL, unless you specified a different location when you customized
and submitted the FEL.SFELSAMP(FELSETUP) job. For more details, see Chapter 2, “Basic
customization,” on page 13.

Customize the sample FEL.#CUST.CNTL(FEKRNPLI) exec, as described within the member. You must
provide the following information:

• compiler_hlq: The high-level qualifier for the PL/I compiler

The Developer for z Systems client uses the TSO Command Service to execute the exec. This implies that
if the FEKRNPLI exec is placed in the SYSPROC or SYSEXEC concatenation for the TSO Command Service,
the user does not need to know the exact location of the exec. The user only needs to know the name.
When using the Legacy ISPF Gateway, the SYSPROC or SYSEXEC concatenation is defined in ISPF.conf.
Customization of this file is documented in IBM Explorer for z/OS Host Configuration Guide.

ISPF EDIT macro support
This customization task does not require assistance, special resources, or special customization tasks.

Developer for z Systems supports executing ISPF EDIT macros against data sets and members, even
when they are open in the Developer for z Systems editor. Developer for z Systems provides a sample
REXX exec, FELEDTMC, that can be called by the Developer for z Systems client to invoke ISPF EDIT and
execute a macro.

FELEDTMC is located in FEL.#CUST.CNTL, unless you specified a different location when you customized
and submitted the FEL.SFELSAMP(FELSETUP) job. For more details, see Chapter 2, “Basic
customization,” on page 13.

The sample FELEDTMC exec is fully functional, but it might need site specific adjustments.

ISPF PACK support
This customization task does not require assistance, special resources, or special customization tasks.

When using the ISPF EDIT command PACK ON | OFF, ISPF uses a proprietary format to pack the data,
and it does not provide a way to detect packed data without opening the member or data set first. This
results in garbled data showing in the Developer for z Systems editor when a packed member or data set
is opened. Developer for z Systems provides a REXX exec, FELPACK, that can be called by the client, for
example in a Menu Manager action, to unpack or pack a member or data set.

FELPACK is located in FEL.SFELPROC, if you installed Developer for z Systems in the default location.

The Developer for z Systems client uses the TSO Command Service to execute the exec. This implies that
if the FELPACK exec is placed in the SYSPROC or SYSEXEC concatenation for the TSO Command Service,

Chapter 6. Other customization tasks 69

the user does not need to know the exact location of the exec. The user only needs to know the name.
When using the Legacy ISPF Gateway, the SYSPROC or SYSEXEC concatenation is defined in ISPF.conf.
Customization of this file is documented in the IBM® Explorer for z/OS® Host Configuration Guide.

xUnit support for Enterprise COBOL and PL/I
This customization task does not require assistance, but does require the following resources or special
customization tasks:

• PROCLIB update
• LINKLIST update

Frameworks that assist developers in writing code to perform repeatable, self-checking unit tests are
collectively known as xUnit. Developer for z Systems provides such a framework for unit testing of
Enterprise COBOL and PL/I code, called zUnit.

To use the zUnit framework, developers need access to the AZU* and IAZU* load modules in the
FEL.SFELLOAD load library, either through STEPLIB or LINKLIST. The zUnit test runner, AZUTSTRN, in
turn needs access to various system libraries, either through STEPLIB or LINKLIST:

• CEE.SCEERUN and CEE.SCEERUN2 (LE runtime)
• SYS1.CSSLIB (callable system services)
• SYS1.SIXMLOD1 (XML toolkit)

The zUnit test runner also needs access to a load library that holds the different test cases. This library is
likely to be unique to a developer.

The zUnit test runner, AZUTSTRN, can be called by the Developer for z Systems client in batch mode, from
the TSO command line, and from the z/OS UNIX command line. When called in batch mode, the zUnit test
runner can be used to unit test programs that interact with DB2.

• Developer for z Systems provides sample procedures, AZUZUNIT and AZUZUDB2, to simplify the calling
of the zUnit test runner in batch mode. The sample procedures are located in FEL.#CUST.PROCLIB,
unless you specified a different location when you customized and submitted the
FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page 13.

Customize the sample procedures, as described within the member, and copy them to SYS1.PROCLIB.

The name of the procedure and the names of the steps in the procedure match the default properties
that are included with the Developer for z Systems client. If the name of a procedure or the name of a
step in a procedure is changed, the corresponding properties file on all of the clients must be updated.
You should not change the procedure and step names.

If the procedures cannot be copied into a system procedure library, ask the Developer for z Systems
users to add a JCLLIB card right after the JOB card to their calling job.

//MYJOB JOB <job parameters>
//PROCS JCLLIB ORDER=(FEL.#CUST.PROCLIB)

• For calling the zUnit test runner from z/OS UNIX (using the /usr/lpp/IBM/idz/bin/zunit script),
you can specify the required non-LINKLIST data sets in the STEPLIB directive of idz.env, thus
simplifying the setup for the developer.

idz.env is located in /etc/zexpl/, unless you specified a different location when you customized
and submitted FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page
13. You can edit the file with the TSO OEDIT command.

The zunit script allows the user to specify data sets that will be added to the STEPLIB directive used by
the script.

• For calling the zUnit test runner from the TSO command line by using the FEL.SFELPROC(FEKZUNIT)
exec, the system libraries must exist in LINKLIST. If they do not, developers must specify the system

70 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

data set names on every call instance of the zUnit test runner. You can also write a wrapper exec that
does the TSOLIB allocations of these data sets for them. You can use FEKZUNIT itself as an example of
how to code this wrapper exec.

• To start a debugger session at the test target source, EQAOPTS load module should be built and located
in system search path like STEPLIB.

Note: EQAOPTS load module data set needs to be put before the DT SEQAMOD data set in the search
path. It should contain the following macro so that zUnit would specify the name of target source:

EQAXOPT DLAYDBG,YES
EQAXOPT DLAYDBGDSN,'&&USERID.ZUNIT.DLAYDBG.EQAUOPTS

The zUnit test runner allows for automatic reformatting of test reports. Developer for z Systems provides
sample conversions (for example, conversion to Ant or jUnit format), which are located
in /usr/lpp/IBM/idz/samples/zunit/xsd and /usr/lpp/IBM/idz/samples/zunit/xsl, if you
installed Developer for z Systems in the default /usr/lpp/IBM/idz location.

xUnit support for CICS applications
You need the assistance of a CICS and TCP/IP administrator to complete this customization task, which
requires specific resources or special customization tasks.

• Update CICS region JCL
• Define resources to CICS
• Reserve a TCP/IP port

Frameworks that assist developers in writing code to perform repeatable, self-checking unit tests are
collectively known as xUnit. IBM Developer for z Systems provides such a framework for unit testing of
Enterprise COBOL and PL/I code, called z/OS Automated Unit Testing Framework (zUnit). This
customization task extends zUnit to support testing CICS applications through recording of the
parameters used in EXEC CICS calls.

To record a CICS application, zUnit requires the following CICS updates:

• CICS system initialization (SIT) parameter updates

– Specify TCPIP=YES.
– Specify USSHOME=/usr/lpp/cicsts/cicsts54, where /usr/lpp/cicsts/cicsts54 is the

path where CICS is installed.
• CICS JCL updates:

– Specify REGION=0M on the EXEC statement to provide sufficient room to buffer the recording.
– Define the FEL.SFELLOAD load library in the region’s DFHRPL DD statement, where FEL is the high

level qualifier used during the SMP/E install of Developer for z Systems.
• CICS CSD updates:

Define zUnit to your CICS region, as documented in the AZUCSD sample CSD update job. AZUCSD is
located in FEL.#CUST.JCL, unless you specified a different location when you customized and submitted
job FEL.SFELSAMP(FELSETUP). For more information. see “Customization setup” on page 13.

The zUnit CICS recording service uses a CICS PIPELINE to communicate with the zUnit client. This CICS
service requires that a TCP/IP port be defined in the CSD. The developers who use this service need to
know the host system name and the port on which the service is listening.

The zUnit CICS recording service uses auxiliary TS queue spaces to store log data and temporarily cache
the recorded data. The log data is written to queues named _AZU_LOG_ and _AZU_LOGRS_. You can
browse the log data with the CICS command CEBR. When the log data is too big to reserve auxiliary TS
queue spaces for other programs, purge it manually in the CEBR command screen. Abend AIER
(resp-18 NOSPACE) occurs when an auxiliary TS queue runs out of space.

Chapter 6. Other customization tasks 71

You can run the AZUM transaction from a CICS terminal to manage logging. When the log level is set to a
larger value, more data is output to the log files. The syntax of the AZUM transaction is:

AZUM { GETLOGLEVEL | SETLOGLEVEL0 | SETLOGLEVEL1 | SETLOGLEVEL2 }

GETLOGLEVEL
Show the current log level

SETLOGLEVEL0
Set the current log level to 0 (error only).

SETLOGLEVEL1
Set the current log level to 1 (error and warning)

SETLOGLEVEL2
Set the current log level to 2 (error, warning and information)

Limitations
The zUnit CICS recording service has the following limitations.

• Only 31-bit load modules are supported.
• Only one concurrent recording session is allowed in one CICS region.
• The maximum supported length of one parameter in a CICS command is 262032 bytes. If it goes

beyond 262032 bytes, only the first 262032 bytes are recorded.
• The maximum supported number of EXEC-CICS statement in a test target source file is 500. If the

number exceeds 500, the recording service fails.

Enterprise Service Tools support
This customization task does not require assistance, special resources, or special customization tasks.

The Developer for z Systems client has a code generation component called Enterprise Service Tools.
Depending on the type of code being generated, this code relies on functions provided by the Developer
for z Systems host system installation. Making these host system functions available is described in the
following sections:

• “CICS bidirectional language support” on page 72
• “Diagnostic IRZ messages for Enterprise Service Tools” on page 73

Note: Enterprise Service Tools encompasses multiple tools, such as the Service Flow Modeler (SFM) and
XML Services for the Enterprise.

CICS bidirectional language support
You need the assistance of a CICS administrator to complete this customization task, which requires the
following resources or special customization tasks:

• Update CICS region JCL
• Define a program to CICS

The Developer for z Systems Enterprise Service Tools component supports different formats of Arabic and
Hebrew interface messages, and bidirectional data presentation and editing in all editors and views. In
terminal applications, both left-to-right and right-to-left screens are supported, and numeric fields and
fields with opposite-to-screen orientation.

Additional bidirectional features and functionality include the following:

• The Enterprise Service Tools service requestor dynamically specifies bidirectional attributes of interface
messages.

72 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

• Bidirectional data processing in service flows is based on bidirectional attributes such as text type, text
orientation, numeric swapping, and symmetric swapping. These attributes can be specified in different
stages of flow creation for both interface and terminal flows.

• Enterprise Service Tools-generated runtime code includes conversion of data between fields in
messages that have different bidirectional attributes.

Additionally, Enterprise Service Tools-generated code can support bidi transformation in environments
other than CICS SFR (Service Flow Runtime). One example is batch applications. You can make the
Enterprise Service Tools generators to include calls to the bidirectional conversion routines by specifying
the appropriate bidi transformation options in the Enterprise Service Tools generation wizards and linking
the generated programs with the appropriate bidirectional conversion library, FEL.SFELLOAD.

To activate CICS Bidirectional language support, perform the following tasks:

1. Place the FEL.SFELLOAD load modules FEJBDCMP and FEJBDTRX in the CICS RPL concatenation (DD
statement DFHRPL). You should do this by adding the installation data set to the concatenation so that
applied maintenance is automatically available to CICS.

Important: If you do not concatenate the installation data set but copy the modules into a new or
existing data set, keep in mind that those modules are DLLs and must reside in a PDSE library.

2. Define FEJBDCMP and FEJBDTRX as programs to CICS by using the appropriate CEDA command.

 CEDA DEF PROG(FEJBDCMP) LANG(LE) G(xxx)
 CEDA DEF PROG(FEJBDTRX) LANG(LE) G(xxx)

Diagnostic IRZ messages for Enterprise Service Tools
This customization task does not require assistance, but does require the following resources or special
customization tasks:

• LINKLIST update
• CICS region JCL update
• CICS region CSD update

The Developer for z Systems client has a code generation component called Enterprise Service Tools. For
the code generated by Enterprise Service Tools to issue diagnostic error messages, all IRZM* and IIRZ*
modules in the FEL.SFELLMOD load library must be made available to the generated code. Enterprise
Service Tools can generate code for the following environments:

• CICS
• IMS
• MVS batch

Use the following instructions when the generated code is executed in a CICS transaction.

• Add all IRZM* and IIRZ* modules in FEL.SFELLMOD to the DFHRPL DD of the CICS region. You should
do this by adding the installation data set to the concatenation so that applied maintenance is
automatically available.

• Customize and submit the IRZCSD job to update the CICS System Definition (CSD) for the CICS region.
For customization instructions, see the documentation within the member. IRZCSD is located in
FEL.#CUST.JCL, unless you specified a different location when you customized and submitted the
FEL.SFELSAMP(FELSETUP) job. For more details, see “Customization setup” on page 13.

In all other situations, make all IRZM* and IIRZ* modules in FEL.SFELLMOD available either through
STEPLIB or LINKLIST. You should do this by adding the installation data set to the concatenation so that
applied maintenance is automatically available.

If you use STEPLIB, define the modules not available through LINKLIST in the STEPLIB directive of the
task that executes the code.

Chapter 6. Other customization tasks 73

If the load modules are not available and the generated code encounters an error, the following message
is issued:

IRZ9999S Failed to retrieve the text of a Language Environment runtime
message. Check that the Language Environment runtime message module for
facility IRZ is installed in DFHRPL or STEPLIB.

Note:

• Module FEL.SFELLMOD(IRZPWSIO) is statically linked during top-down IMS MPP code generation.
Therefore, the module must not be available during run time of the generated code. It should be
available only during compile time.

• In version 9.0.1, FEL.SFELLMOD(IRZPWSIO) and the related FEL.SFELSAMP(IRZPWSH) sample PL/I
include member moved from Developer for z Systems to IMS Version 12. The parts are renamed to
IMS.SDFSRESL(DFSPWSIO) and IMS.SDFSSMPL(DFSPWSH) respectively.

74 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Chapter 7. Installation verification

After completing the product customization, you can use the Installation Verification Programs (IVPs)
described in this chapter to verify the successful setup of key product components.

Verify the services
The Developer for z Systems installation provides several Installation Verification Programs (IVP) for the
basic and optional services. The IVP scripts are located in the installation directory which, by default,
is /usr/lpp/IBM/idz/bin/.

Table 13. IVPs for services

felfivpc “CARMA connection” on page 76

felfivps “SCLMDT connection” on page 76

The tasks described in the following sections require you to be active in z/OS UNIX. This can be done by
issuing the OMVS TSO command. To return to TSO, use the exit command.

A large region size is required for the user ID that executes the IVPs because functions such as Java,
which require a lot of memory, are executed. You should set the region size to 131072 kilobytes (128
megabytes) or more.

The following sample error is a clear indication of an insufficient region size, but other errors can occur,
too. For example, Java might fail to start.

CEE5213S The signal SIGPIPE was received.
%z/OS UNIX command%: command was killed by signal number 13
 %line-number% *-* %REXX command%
 +++ RC(137) +++

Note: The z/OS Explorer and Developer for z Systems started tasks must be active before starting the IVP
test.

IVP initialization
All sample commands in this section require certain environment variables to be set. This way, the IVP
scripts are available through the PATH statement and the location of the customized configuration files is
known. Use the pwd and cd commands to verify and change your current directory to the directory with
the customized configuration files. The ivpinit shell script can then be used to set the RSE environment
variables, such as in the following sample, where $ is the z/OS UNIX prompt:

$ pwd
/u/userid
$ cd /etc/zexpl
$. ./ivpinit
-- RSE_CFG set to /etc/zexpl -- based on current location
-- RSE_HOME set to /usr/lpp/IBM/zexpl -- defined in $RSE_CFG/rse.env
-- added product $PATH to PATH
-- PATH=/etc/zexpl:/bin:/usr/lpp/java/J6.0/bin:/usr/lpp/IBM/zexpl/bin:/usr/lpp/i
spf/bin:/bin:/usr/lpp/IBM/idz/bin:/bin

The first period (.) in . ./ivpinit is a z/OS UNIX command to run the shell in the current environment,
so that the environment variables set in the shell are effective even after exiting the shell. The second
period (.) is referring to the current directory.

Note:

© Copyright IBM Corp. 2015, 2019 75

• If . ./ivpinit is not executed before the felfivp* scripts, the path to these scripts must be
specified when calling them, as in the following sample:

/usr/lpp/IBM/idz/bin/felfivpc

Also, if . ./ivpinit is not executed first, all felfivp* scripts ask for the location of the directory
holding the customized configuration files

CARMA connection
Verify the connection to CARMA by executing the following command:

felfivpc

The command should return a success message.:

Note: If the IVP fails, verify the content of /tmp/felfivpc.log. This log documents the communication
between RSE and CARMA and might contain information that helps to find the root cause of the failure.

felfivpc has the following optional, non-positional, parameters:
-noram

By default, felfivpc starts the first RAM that is defined in the CRADEF VSAM data set. There might
be instances when you do not want to test the RAM; for example, a third-party RAM is listed first, and
it requires unexpected input. In such cases, you can use the –noram startup argument to omit the
RAM-specific steps of the IVP test.

SCLMDT connection
Verify the connection to SCLM Developer Toolkit by executing the following command:

felfivps

The command should return a success message.

felfivps has the following optional, non-positional, parameters:

-file
felfivps can produce large amounts of output, running into hundreds of lines. The -file
parameter sends this output to a file, $TMPDIR/felfivps.log, where $TMPDIR is the value of the
TEMPDIR directive in rse.env, which, by default, is /tmp.

-debug
The -debug parameter creates detailed test output. Do not use this option unless directed by the IBM
support center.

76 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Chapter 8. Security definitions

Customize and submit the sample FELRACF job, which has sample RACF commands to create the basic
security definitions for Developer for z Systems.

FELRACF is located in FEL.#CUST.JCL, unless you specified a different location when you customized
and submitted the FEL.SFELSAMP(FELSETUP) job.

See the RACF Command Language Reference (SA22–7687) for more information about RACF commands.

Requirements and checklist
To complete the security setup, the security administrator must know the values that are listed in Table
14 on page 77. These values were defined during previous steps of the installation and customization of
Developer for z Systems.

Table 14. Security setup variables

Description

• Default value
• Where to find the answer Value

Developer for z Systems product
high-level qualifier

• FEL
• SMP/E installation

Developer for z Systems
customization high-level qualifier

• FEL.#CUST
• FEL.SFELSAMP(FELSETUP),

as described in “Customization
setup” on page 13.

The following list is an overview of the actions that are required to complete the basic security setup of
Developer for z Systems. As documented in the following sections, different methods can be used to fulfill
these requirements, depending on the required security level.

• “Define the data set profiles” on page 77
• “Verify the security settings” on page 78

Define the data set profiles
READ access for users and ALTER for system programmers is sufficient for most Developer for z Systems
data sets. Replace the #sysprog placeholder with valid user IDs or RACF group names. Also, ask the
system programmer who installed and configured the product for the correct data set names. FEL is the
default high-level qualifier used during installation and FEL.#CUST is the default high-level qualifier for
data sets created during the customization process.

• ADDGROUP (FEL) OWNER(IBMUSER) SUPGROUP(SYS1)
DATA('IBM Developer for z Systems - HLQ STUB')

• ADDSD 'FEL.*.**' UACC(READ)
DATA('IBM Developer for z Systems')

• PERMIT 'FEL.*.**' CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)

• SETROPTS GENERIC(DATASET) REFRESH

© Copyright IBM Corp. 2015, 2019 77

Notes:

• Protect FEL.SFELLPA against updates because this data set is loaded into LPA, which is APF
authorized by default.

• The sample commands in this publication and in the FELRACF job assume that Enhanced Generic
Naming (EGN) is active. When EGN is active, the ** qualifier can be used to represent any number of
qualifiers in the DATASET class. Substitute ** with * if EGN is not active on your system. For more
information about EGN, see Security Server RACF Security Administrator's Guide (SA22-7683).

Some of the Developer for z Systems components require additional security data set profiles. Replace
the #sysprog and #ram-developer placeholders with valid user ID’s or RACF group names:

• If SCLM Developer Toolkit’s long/short name translation is used, users require UPDATE access to the
mapping VSAM, FEL.#CUST.LSTRANS.FILE.

– ADDSD 'FEL.#CUST.LSTRANS.*.**' UACC(UPDATE)
 DATA('IBM Developer for z Systems - SCLMDT')

– PERMIT 'FEL.#CUST.LSTRANS.*.**' CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)

– SETROPTS GENERIC(DATASET) REFRESH

• CARMA RAM (Repository Access Manager) developers require UPDATE access to the CARMA VSAMs,
FEL.#CUST.CRA*.

– ADDSD 'FEL.#CUST.CRA*.**' UACC(READ)
DATA('IBM Developer for z Systems - CARMA')

– PERMIT 'FEL.#CUST.CRA*.**' CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)

– PERMIT 'FEL.#CUST.CRA*.**' CLASS(DATASET) ACCESS(UPDATE) ID(#ram-developer)

– SETROPTS GENERIC(DATASET) REFRESH

Verify the security settings
Use the following sample commands to display the results of your security-related customizations.

• Data set profiles

– LISTGRP FEL
– LISTDSD PREFIX(FEL) ALL

78 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Chapter 9. Migration guide

Migration considerations
This section highlights installation and configuration changes compared to previous releases of the
product. It also gives some general guidelines to migrate to this release. For more information, see the
related sections in this manual.

• If you are a previous user of IBM Developer for z Systems, save the related customized files before
upgrading to this version of IBM Developer for z Systems.

• If you plan on running multiple instances of Developer for z Systems, read "Running multiple instances"
in the IBM Explorer for z/OS Host Configuration Reference.

• If your migration scenario spans more than two releases, you should do the customizations again, as if
there is no older release present.

Backing up the previously configured files
If you are a previous user of Developer for z Systems, save the related customized files before installing
this version of IBM Developer for z Systems.

Customizable Developer for z Systems files can be found at the following locations:

• Older versions up to version 9.5.0

– FEK.SFEKSAMP, some members are copied to FEK.#CUST.* by the FEKSETUP sample job, where *
equals PARMLIB, PROCLIB, JCL, CNTL, ASM and COBOL

– FEK.SFEKSAMV
– /usr/lpp/rdz/samples/, some files are copied to /etc/rdz/ and /var/zexpl/sclmdt/* by

the FEKSETUP sample job, where * equals CONFIG/, CONFIG/PROJECT/ and CONFIG/script/
• Version 9.5.1

– FEL.SFELSAMP, some members are copied to FEL.#CUST.* by the FELSETUP sample job, where *
equals PARMLIB, PROCLIB, JCL, CNTL, ASM and SQL

– FEL.SFELSAMV
– /usr/lpp/IBM/rdz/samples/, some files are copied to /etc/zexpl/ and /var/rdz/sclmdt/*

by the FELSETUP sample job, where * equals CONFIG/, CONFIG/PROJECT/ and CONFIG/script/
• Version 14.0 and later

– FEL.SFELSAMP, some members are copied to FEL.#CUST.* by the FELSETUP sample job, where *
equals PARMLIB, PROCLIB, JCL, CNTL, ASM and SQL

– FEL.SFELSAMV
– /usr/lpp/IBM/idz/samples/, some files are copied to /etc/zexpl/ and /var/idz/sclmdt/*

by the FELSETUP sample job, where * equals CONFIG/, CONFIG/PROJECT/ and CONFIG/script/

Migrate from version 14.0 to version 14.1
These notes are for a migration from a base version 14.0 to version 14.1. It includes changes that are
already documented as part of version 14.0 maintenance. The changes that are part of the maintenance
stream, and thus possibly already implemented, are marked with the release where they were introduced.

© Copyright IBM Corp. 2015, 2019 79

IBM Developer for z Systems, FMID HHOPE10
• The default SMP/E install location for MVS and z/OS UNIX components did not change and remain
FEL.* and /user/lpp/IBM/idz/*.

• Customization: The FELSETUP JCL now processes the new members:

– JCL(AZUALLOC)
– JCL(FELCMPLY)
– CNTL(FELEDTMC)

• New customizable members have been added:

– FELEDTMC: execute ISPF EDIT macros
• Since version 14.0.0.5

– CARMA: Customizable files have been updated:

- CRASRV.properties: add variable connect.timeout
• Since version 14.0.0.4

– Reporting: Customizable members have been added:

- JCL(FELCMPLY): verify VU-license compliance
– Reporting: Customizable members have been updated:

- JCL(FELSMF)
– CARMA: Customizable files have been updated:

- CRADYNDA: add RECFM support
• Since version 14.0.0.1

– zUnit: Customizable members have been updated:

- AZUALLOC: COBOL listing data set now allocated as FBA133

Configurable files

Table 15 on page 80 shows an overview of Developer for z Systems files that are customized in version
14.1. The Developer for z Systems sample libraries, FEL.SFELSAMP, FEL.SFELSAMV
and /usr/lpp/IBM/idz/samples/, contain more customizable members than listed here, such as
sample CARMA source code and jobs to compile them.

Note: Sample job FELSETUP copies all listed members to different data sets and directories, default
FEL.#CUST.* and /etc/zexpl/*.

Table 15. Version 14.1 customizations

Member/File Default location Purpose Migration notes

FELSETUP FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create data
sets and
directories, and
populate them
with customizable
files

Updated to add
actoins for new
files

ELAXF* FEL.SFELSAMP
[FEL.#CUST.PROCLIB]

JCL for remote
project builds, and
so on

None

FELRACF FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL for security
definitions

None

80 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 15. Version 14.1 customizations (continued)

Member/File Default location Purpose Migration notes

FELCMPLY
FEL.SFELSAMP[
FEL.#CUST.JCL]

JCL for license
compliance
validation

New,
customization is
optional

FELSMF
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL for SMF
reporting

New,
customization is
optional

CRA$VMSG
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA message
VSAM

None

CRA$VDEF
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA
configuration
VSAM

None

CRA$VSTR FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA custom
information VSAM

None

CRA$VCAD FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA
configuration
VSAM for CA
Endevor® SCM
RAM

None

CRA$VCAS FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA custom
information VSAM
for CA Endevor®

SCM RAM

None

CRASUBMT FEL.SFELSAMP
[FEL.#CUST.CNTL]

CARMA batch
startup CLIST

None

CRASUBCA FEL.SFELSAMP
[FEL.#CUST.CNTL]

CARMA batch
startup CLIST for
CA Endevor® SCM
RAM

None

CRACFG FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA
interaction
configuration for
CA Endevor® SCM
RAM

None

CRABCFG FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA batch
actions
configuration for
CA Endevor® SCM
RAM

None

CRABATCA FEL.SFELSAMP
[FEL.#CUST.CNTL]

CARMA batch
action JCL for CA
Endevor® SCM
RAM

None

Chapter 9. Migration guide 81

Table 15. Version 14.1 customizations (continued)

Member/File Default location Purpose Migration notes

CRASCL
FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

Template SCL for
CA Endevor® SCM

None

CRASHOW
FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA
configuration for
CA Endevor® SCM
RAM

None

CRATMAP
FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA
configuration for
CA Endevor® SCM
RAM

None

CRANDVRA
FEL.SFELPROC

CARMA allocation
REXX for CA
Endevor® SCM
RAM

None

CRADYNDA FEL.SFELPROC CARMA allocation
REXX for CA
Endevor® SCM
RAM

Add RECFM
support

CRAALLOC FEL.SFELPROC CARMA allocation
REXX

None

CRA#VSLM FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
SCLM RAM's
message VSAM

None

CRA#ASLM FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
SCLM RAM's data
sets

None

CRA#VPDS FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
PDS RAM's
message VSAM

None

CRA#UADD
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to merge RAM
definitions

None

CRA#UQRY FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to extract
RAM definitions

None

CRAXJCL
FEL.SFELSAMP
[FEL.#CUST.ASM]

Sample source
code for IRXJCL
replacement

None

CRA#CIRX
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to compile
CRAXJCL

None

FELTEP2 FEL.SFELSAMP
[FEL.#CUST.SQL]

SQL command
input used by
ELAXF*

None

82 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 15. Version 14.1 customizations (continued)

Member/File Default location Purpose Migration notes

FELTIAD
FEL.SFELSAMP
[FEL.#CUST.SQL]

SQL command
input used by
ELAXF*

None

AZUALLOC
FEL.SEFLSAMP
[FEL.#CUST.JCL]

JCL for zUnit
dataset allocation

COBOL LISTING
definition updated

AZUZUDB2
FEL.SFELSAMP
[FEL.#CUST.PROCLIB]

JCL procedure for
zUnit

None

AZUZUNIT
FEL.SFELSAMP
[FEL.#CUST.PROCLIB]

JCL procedure for
zUnit

None

FEKRNPLI
FEL.SFELSAMP
[FEL.#CUST.CNTL]

REXX to call the
PL/I compiler
from within the
preprocessor
framework

None

IRZCSD FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to define
Enterprise Service
Tools to CICS

None

idz.env /usr/lpp/IBM/idz/samples/
[/etc/zexpl/]

RSE environment
variables

None

CRASRV.properties /usr/lpp/IBM/idz/samples/
[/etc/zexpl/]

CARMA
configuration file

Add variable
connect.timeout

crastart.conf /usr/lpp/IBM/idz/samples/
[/etc/zexpl/]

CARMA
configuration file
for CRASTART
usage

None

crastart.endevor.con
f /usr/lpp/IBM/idz/samples/

[/etc/zexpl/]

CARMA
configuration file
for CRASTART
usage for CA
Endevor® SCM
RAM

None

include.conf /usr/lpp/IBM/idz/samples/
[/etc/zexpl/]

Forced includes
for C/C++ content
assist

None

IBM Developer for z Systems Host Utilities, FMID HAKGE10
• The default SMP/E install location for MVS and z/OS components did not change and remain AKG.*

and /usr/lpp/IBM/idzutil/*.
• Code Review: Customizable files have been updated:

– PROCLIB(AKGCR): Java version updated to Java v8.0

Chapter 9. Migration guide 83

Configurable files
Table 16 on page 84 shows an overview of files that are customized in version 14.1. The Developer for z
Systems Host Utilities sample libraries, AKG.SAKGSAMP and /usr/lpp/IBM/idzutil/samples,
contain more customizable members than listed here, such as sample code review post-processing script.

Note: Sample job AKGSETUP copies all listed members to different data sets, default AKG.#CUST.*.

Table 16. Version 14.1 customizations

Member or File Default location Purpose Migration notes

AKGSETUP
AKG.SAKGSAMP
[AKG.#CUST.JCL]

JCL to create data sets,
and populate them with
customizable files

None

AKGCC
AKG.SAKGSAMP
[AKG.#CUST.PROCLIB]

JCL for code coverage None

AKGCR
AKG.SAKGSAMP
[AKG.#CUST.PROCLIB]

JCL for code review Update Java version to
J8.0

AKGCRADD AKG.SAKGSAMP
[AKG.#CUST.JCL]

JCL to add third-party
code to code review

None

Migrate from version 9.5.1 to version 14.0
These notes are for a migration from a base version 9.5.1 to version 14.0. It includes changes that are
already documented as part of version 9.5.1 maintenance. The changes that are part of the maintenance
stream, and thus possibly already implemented, are marked with the release where they were introduced.

IBM Developer for z Systems, FMID HHOPE00
• The default SMP/E install location for MVS components did not change and remains FEL.*.
• The default SMP/E install location for z/OS UNIX components changed from /usr/lpp/IBM/rdz/*

to /usr/lpp/IBM/idz/*.
• The default location for SCLMDT definitions changed from /var/zexpl/sclmdt to /var/idz/
sclmdt.

• Customization: The FELSETUP JCL now processes the new members:

– PROCLIB(AZUZUDB2)
– JCL(FELSMF)

• Customization: The FELSETUP JCL no longer processes these members:

– PROCLIB(AQEJCL) (DBGMGR)
– JCL(AQECSD)
– JCL(AQED3CEE)
– JCL(AQED3CXT)
– JCL(AQERACF)

• Integrated Debugger: all functions are removed from Developer for z Systems and merged in IBM z/OS
Debugger:

– SVC (AQESVC03) replaced by IBM z/OS Debugger SVC
– SFELAUTH in LINKLIST replaced by IBM z/OS Debugger LINKLIST library
– APF authorized SFELAUTH library replaced by IBM z/OS Debugger authorized library

84 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

– Debug Manager started task (DBGMGR) replaced by IBM z/OS Debugger started task
– Debug Manager started task (DBGMGR) security profiles replaced by IBM z/OS Debugger security

profiles
– Debug Manager started task (DBGMGR) TCP/IP ports replaced by IBM z/OS Debugger ports
– AQE.** security profiles replaced by IBM z/OS Debugger security profiles
– CICS CSD updates replaced by IBM z/OS Debugger CICS CSD updates
– CICS JCL updates replaced by IBM z/OS Debugger CICS JCL updates
– IMS JCL updates replaced by IBM z/OS Debugger IMS JCL updates
– DB2 JCL updates replaced by IBM z/OS Debugger DB2 JCL updates
– Language Environment (LE) user exit replaced by IBM z/OS Debugger LE user exit
– Debug miner options in idz.env REMAIN in idz.env
– AZUZUNIT & ELAXFGO updated to reference IBM z/OS Debugger library

• Remote build procedures: The following customizable members have changed:

– ELAXFGO: replace SFELAUTH with SEQAMOD in STEPLIB for IBM z/OS Debugger
• Reporting: new tool to report license usage:

– JCL(FELSMF)
• SYS1.PARMLIB: Removed configuration requirements:

– COMMNDxx: no more customization required (DBGMGR removed)
– IEASVCxx: no more customization required (AQESVC03 removed)

• SYS1.PARMLIB: Updated configuration requirements:

– IFAPRDxx: updated product registration information
– PROGxx: no more APF authorization definitions required

• SYS1.PARMLIB: New configuration requirements:

– SMFPRMxx: new collection of SMF122 records
• SYS1.PROCLIB: Removed configuration requirements:

– DBGMGR: replaced by IBM z/OS Debugger started task
• zUnit: New customizable members have been added:

– AZUALLOC: allocate user work data sets
– AZUZUDB2: new procedure to unit test DB2 programs

• zUnit: Customizable members have been updated:

– AZUZUNIT: replace SFELAUTH with SEQAMOD in STEPLIB for IBM z/OS Debugger
• Since v9.5.1.1:

– CARMA: The following customizable members have changed:

- CRACFG defines new option, DYNAMIC-FB-DATASET-ALLOC

Configurable files

Table 17 on page 86 shows an overview of Developer for z Systems files that are customized in version
14.0. The Developer for z Systems sample libraries, FEL.SFELSAMP, FEL.SFELSAMV
and /usr/lpp/IBM/idz/samples/, contain more customizable members than listed here, such as
sample CARMA source code and jobs to compile them.

Note: Sample job FELSETUP copies all listed members to different data sets and directories, default
FEL.#CUST.* and /etc/zexpl/*.

Chapter 9. Migration guide 85

Table 17. Version 14.0 customizations

Member/File Default location Purpose Migration notes

FELSETUP
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create data
sets and
directories, and
populate them
with customizable
files

Updated to use
new directories,
remove actions for
files that are no
longer used and
add actions for
new files

ELAXF*
FEL.SFELSAMP
[FEL.#CUST.PROCLIB]

JCL for remote
project builds, and
so on

ELAXFGO using
IBM z/OS
Debugger data set

FELRACF
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL for security
definitions

None

FELSMF
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL for SMF
reporting

New,
customization is
optional

CRA$VMSG FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA message
VSAM

None

CRA$VDEF FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA
configuration
VSAM

None

CRA$VSTR FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA custom
information VSAM

None

CRA$VCAD FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA
configuration
VSAM for CA
Endevor® SCM
RAM

None

CRA$VCAS FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA custom
information VSAM
for CA Endevor®

SCM RAM

None

CRASUBMT FEL.SFELSAMP
[FEL.#CUST.CNTL]

CARMA batch
startup CLIST

None

CRASUBCA
FEL.SFELSAMP
[FEL.#CUST.CNTL]

CARMA batch
startup CLIST for
CA Endevor® SCM
RAM

None

86 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 17. Version 14.0 customizations (continued)

Member/File Default location Purpose Migration notes

CRACFG
FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA
interaction
configuration for
CA Endevor® SCM
RAM

Optional
directives added

CRABCFG
FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA batch
actions
configuration for
CA Endevor® SCM
RAM

None

CRABATCA
FEL.SFELSAMP
[FEL.#CUST.CNTL]

CARMA batch
action JCL for CA
Endevor® SCM
RAM

None

CRASCL FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

Template SCL for
CA Endevor® SCM

None

CRASHOW FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA
configuration for
CA Endevor® SCM
RAM

None

CRATMAP FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA
configuration for
CA Endevor® SCM
RAM

None

CRANDVRA FEL.SFELPROC CARMA allocation
REXX for CA
Endevor® SCM
RAM

None

CRADYNDA FEL.SFELPROC CARMA allocation
REXX for CA
Endevor® SCM
RAM

None

CRAALLOC FEL.SFELPROC CARMA allocation
REXX

None

CRA#VSLM
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
SCLM RAM's
message VSAM

None

CRA#ASLM
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
SCLM RAM's data
sets

None

CRA#VPDS
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
PDS RAM's
message VSAM

None

CRA#UADD
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to merge RAM
definitions

None

Chapter 9. Migration guide 87

Table 17. Version 14.0 customizations (continued)

Member/File Default location Purpose Migration notes

CRA#UQRY
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to extract
RAM definitions

None

CRAXJCL
FEL.SFELSAMP
[FEL.#CUST.ASM]

Sample source
code for IRXJCL
replacement

None

CRA#CIRX
FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to compile
CRAXJCL

None

FELTEP2
FEL.SFELSAMP
[FEL.#CUST.SQL]

SQL command
input used by
ELAXF*

None

FELTIAD
FEL.SFELSAMP
[FEL.#CUST.SQL]

SQL command
input used by
ELAXF*

None

AZUZUDB2 FEL.SFELSAMP
[FEL.#CUST.PROCLIB]

JCL procedure for
zUnit

New,
customization is
optional

AZUZUNIT FEL.SFELSAMP
[FEL.#CUST.PROCLIB]

JCL procedure for
zUnit

Using IBM z/OS
Debugger data set

FEKRNPLI FEL.SFELSAMP
[FEL.#CUST.CNTL]

REXX to call the
PL/I compiler
from within the
preprocessor
framework

None

IRZCSD FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to define
Enterprise Service
Tools to CICS

None

idz.env /usr/lpp/IBM/idz/samples/
[/etc/zexpl/]

RSE environment
variables

Older copies must
be replaced by
this one and the
customizations
done again.

CRASRV.properties /usr/lpp/IBM/idz/samples/
[/etc/zexpl/]

CARMA
configuration file

None

crastart.conf
/usr/lpp/IBM/idz/samples/
[/etc/zexpl/]

CARMA
configuration file
for CRASTART
usage

None

crastart.endevor.con
f /usr/lpp/IBM/idz/samples/

[/etc/zexpl/]

CARMA
configuration file
for CRASTART
usage for CA
Endevor® SCM
RAM

None

88 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 17. Version 14.0 customizations (continued)

Member/File Default location Purpose Migration notes

include.conf
/usr/lpp/IBM/idz/samples/
[/etc/zexpl/]

Forced includes
for C/C++ content
assist

None

IBM Developer for z Systems Host Utilities, FMID HAKGE00
• The default SMP/E install location for MVS components did not change and remains AKG.*.
• The default SMP/E install location for z/OS UNIX components changed from /usr/lpp/rdzutil/*

to /usr/lpp/IBM/idzutil/*.

Configurable files
Table 18 on page 89 shows an overview of files that are customized in version 14.0. The Developer for z
Systems Host Utilities sample libraries, AKG.SAKGSAMP and /usr/lpp/IBM/idzutil/samples,
contain more customizable members than listed here, such as sample code review post-processing script.

Note: Sample job AKGSETUP copies all listed members to different data sets, default AKG.#CUST.*.

Table 18. Version 14.0 customizations

Member or File Default location Purpose Migration notes

AKGSETUP AKG.SAKGSAMP
[AKG.#CUST.JCL]

JCL to create data sets,
and populate them with
customizable files

use /usr/lpp/IBM/
idzutil

AKGCC AKG.SAKGSAMP
[AKG.#CUST.PROCLIB]

JCL for code coverage use /usr/lpp/IBM/
idzutil

AKGCR AKG.SAKGSAMP
[AKG.#CUST.PROCLIB]

JCL for code review use /usr/lpp/IBM/
idzutil

AKGCRADD AKG.SAKGSAMP
[AKG.#CUST.JCL]

JCL to add third-party
code to code review

use /usr/lpp/IBM/
idzutil

Migrate from version 9.5 to version 9.5.1
In version 9.5.1, the RSE and JES Job Monitor related functions moved from IBM Rational Developer for z
Systems to another product, IBM Explorer for z/OS. IBM Explorer for z/OS is now a prerequisite for IBM
Rational Developer for z Systems.

IBM strongly advises you to redo all customizations using the new z/OS Explorer and Developer for z
Systems samples to ensure you are using the new MVS data set names and z/OS UNIX paths.

SMP/E data sets:

• z/OS Explorer is a SMP/E prerequisite for Developer for z Systems. This implies that z/OS Explorer and
Developer for z Systems must be installed in the same CSI.

• There are no SMP/E-related changes for Developer for z Systems Host Utilities.

MVS data sets:

• z/OS Explorer uses the FEK high level qualifier and SFEK* data set names. No migration action is
required here.

Chapter 9. Migration guide 89

• Developer for z Systems uses a new high level qualifier, FEL, and new SFEL* data set names. Verify your
current references to FEK data sets and update them to use FEL instead where needed.

– Security definitions in the DATASET and PROGRAM classes
– PROCLIB for started tasks, remote build procedures, and zUnit
– Configuration to start CARMA
– JCL to process CARMA VSAMs
– JCL to process LE user exit

• Developer for z Systems Host Utilities uses the AKG high level qualifier and SAKG* data set names. No
migration action is required.

z/OS UNIX paths:

• IBM Explorer for z/OS uses new z/OS UNIX paths, /usr/lpp/IBM/zexpl, /etc/zexpl, and /var/
zexpl. Verify your current references to the old paths (/usr/lpp/rdz, /etc/rdz, and /var/zexpl)
and update them to use the new ones where needed.

– PROCLIB for started tasks
– JCL references to /etc/rdz
– Note that /etc/rdz/rsed.envvars is replaced by /etc/zexpl/rse.env
– Note that logs, push-to-client, and ISPF WORKAREA moved to /var/zexpl

• Developer for z Systems uses new z/OS UNIX paths, /usr/lpp/IBM/rdz, and /etc/zexpl. It still
uses the /var/zexpl path. Verify your current references to the old paths (/usr/lpp/rdz, /etc/
rdz) and update them to use the new ones where needed.

– JCL to utilize sample zUnit output converters
– Note that /etc/rdz/rsed.envvars is replaced by /etc/zexpl/rdz.env
– Note that SCLMDT remains in /var/zexpl/sclmdt

• Developer for z Systems Host Utilities uses the /usr/lpp/rdzutil path. No migration action is
required.

IBM Rational® Developer for z Systems, FMID HHOP951
• The default SMP/E install location for MVS and z/OS UNIX components changed from FEK.SFEK*

and /usr/lpp/rdz/* to FEL.SFEL* and /usr/lpp/IBM/rdz/*. The FEK high level qualifier is now
used by IBM Explorer for z/OS.

• The default customization location for MVS and z/OS UNIX components changed from /etc/rdz
to /etc/zexpl.

• Functions that moved to IBM Explorer for z/OS

– Host Configuration Utility moved to IBM Explorer for z/OS

- Setup activities for RSE, JES Job Monitor, and Legacy ISPF Gateway remain
- Setup activities for CARMA, Integrated Debugger, and SCLMDT are removed

– JES Job Monitor moved to IBM Explorer for z/OS

- CNTL(FEJTSO)
- PROCLIB(JMON)
- SAMPLIB(FEJJCNFG)

– Push-to-client moved to IBM Explorer for z/OS

- /etc/rdz/pushtoclient.properties moves to /etc/zexpl/pushtoclient.properties
- /etc/zexpl/pushtoclient.properties changes /var/zexpl -> /var/zexpl

– RSE moved to IBM Explorer for z/OS

90 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

- PROCLIB(RSED)
- /etc/rdz/rsed.envvars moves to /etc/zexpl/rse.env (renamed)
- /etc/rdz/ISPF.conf moves to /etc/zexpl/ISPF.conf
- /etc/rdz/rsecomm.properties moves to /etc/zexpl/rsecomm.properties
- /etc/rdz/ssl.properties moves to /etc/zexpl/ssl.properties
- /etc/zexpl/rse.env only holds customization definitions for z/OS Explorer functions

– System tools moved to IBM Explorer for z/OS

- JCL(FEKRACF) only holds security definitions for z/OS Explorer functions
- JCL(FEKSETUP) only holds customization definitions for z/OS Explorer functions
- JCL(FEKSETUP) changes usr/lpp/rdz -> /usr/lpp/IBM/zexpl, /etc/rdz -> /etc/
zexpl, /var/zexpl -> /var/zexpl

• Functions that stayed with IBM Developer for z Systems

– C/C++ content assist

- /etc/rdz/include.conf moves to /etc/zexpl/include.conf
– CARMA

- CNTL(CRASUBCA) changes FEK.* -> FEL.*, SFEK* -> SFEL*
- CNTL(CRASUBMT) changes FEK.* -> FEL.*, SFEK* -> SFEL*
- JCL(CRA$VCAD) changes FEK.* -> FEL.*, SFEK* -> SFEL*
- JCL(CRA$VCAS) changes FEK.* -> FEL.*, SFEK* -> SFEL*
- JCL(CRA$VDEF) changes FEK.* -> FEL.*, SFEK* -> SFEL*
- JCL(CRA$VMSG) changes FEK.* -> FEL.*, SFEK* -> SFEL*
- JCL(CRA$VSTR) changes FEK.* -> FEL.*, SFEK* -> SFEL*
- JCL(CRA#CIRX) changes FEK.* -> FEL.*
- JCL(CRA#UADD) changes FEK.* -> FEL.*
- JCL(CRA#UQRY) changes FEK.* -> FEL.*
- JCL(CRA#VPDS) changes FEK.* -> FEL.*
- JCL(CRA#VSLM) changes FEK.* -> FEL.*
- /etc/rdz/CRASRV.properties moves to /etc/zexpl/CRASRV.properties
- /etc/rdz/crastart.conf moves to /etc/zexpl/crastart.conf
- /etc/rdz/crastart.endevor.conf moves to /etc/zexpl/crastart.endevor.conf
- /etc/zexpl/crastart.conf changes FEK.* -> FEL.*, SFEK* -> SFEL*
- /etc/zexpl/crastart.endevor.conf changes FEK.* -> FEL.*, SFEK* -> SFEL*

– Integrated Debugger

- JCL(AQED3CEE) changes FEK.* -> FEL.*

this updates the default location where the LE user exit is stored, so users might need to update
their LE user exit usage

- JCL(AQED3CXT) changes FEK.* -> FEL.*
- JCL(AQERACF) changes FEK.SFEK* -> FEL.SFEL*
- PROCLIB(DBGMGR) changes FEK.SFEK* -> FEL.SFEL*

– Remote build procedures

- PROCLIB(ELAXFADT) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFASM) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFCOC) changes FEK -> FEL (LODPRFX & STEPLIB)

Chapter 9. Migration guide 91

- PROCLIB(ELAXFCOP) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFCOT) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFCP1) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFDCL) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFGO) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFLNK) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFPLP) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFPLT) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFPL1) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFPP1) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFTSO) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFUOP) changes FEK -> FEL (LODPRFX & STEPLIB)
- PROCLIB(ELAXFSP) changes FEK.* -> FEL.*
- PROCLIB(ELAXFSQL) changes FEK.* -> FEL.*
- SQL(FEKTEP2) moved to SQL(FELTEP2)
- SQL(FEKTIAD) moved to SQL(FELTIAD)

– System tools

- (new) JCL(FELRACF) holds security definitions for Developer for z Systems functions
- (new) JCL(FELSETUP) holds customization definitions for Developer for z Systems functions
- (new) /etc/zexpl/rdz.env holds customization definitions for Developer for z Systems

functions previously located in /etc/rdz/rsed.envvars
– zUnit

- PROCLIB(AZUZUNIT) changes FEK -> FEL (LODPRFX & STEPLIB)

users might need to update their procedure invocation to use the new Developer for z Systems
path, /usr/lpp/IBM/rdz/samples/zunit/*

Configurable files

Table 19 on page 92 shows an overview of Developer for z Systems files that are customized in version
9.5.1. The Developer for z Systems sample libraries, FEL.SFELSAMP, FEL.SFELSAMV
and /usr/lpp/IBM/rdz/samples/, contain more customizable members than listed here, such as
sample CARMA source code and jobs to compile them.

Note: Sample job FELSETUP copies all listed members to different data sets and directories, default
FEL.#CUST.* and /etc/zexpl/*.

Table 19. Version 9.5.1 customizations

Member/File Default location Purpose Migration notes

FELSETUP FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create data
sets and
directories, and
populate them
with customizable
files

New, configuration
is required

DBGMGR FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL for Debug
Manager

Using new data
set/path names

AQEJCL FEL.SFELSAMP
[FEL.#CUST.PROCLIB(DBGMGR)
]

Name for
DBGMGR member

See DBGMBR
member

92 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 19. Version 9.5.1 customizations (continued)

Member/File Default location Purpose Migration notes

ELAXF* FEL.SFELSAMP
[FEL.#CUST.PROCLIB]

JCL for remote
project builds, and
so on

Using new data
set/path names

FELRACF FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL for security
definitions

New, configuration
is required

AQERACF FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL for Debug
Manager

Using new data
set/path names

CRA$VMSG FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA message
VSAM

Using new data
set/path names

CRA$VDEF FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA
configuration
VSAM

Using new data
set/path names

CRA$VSTR FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA custom
information VSAM

Using new data
set/path names

CRA$VCAD FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA
configuration
VSAM for CA
Endevor® SCM
RAM

Using new data
set/path names

CRA$VCAS FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
CARMA custom
information VSAM
for CA Endevor®

SCM RAM

Using new data
set/path names

CRASUBMT FEL.SFELSAMP
[FEL.#CUST.CNTL]

CARMA batch
startup CLIST

Using new data
set/path names

CRASUBCA FEL.SFELSAMP
[FEL.#CUST.CNTL]

CARMA batch
startup CLIST for
CA Endevor® SCM
RAM

Using new data
set/path names

CRACFG FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA
interaction
configuration for
CA Endevor® SCM
RAM

None

CRABCFG FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA batch
actions
configuration for
CA Endevor® SCM
RAM

None

Chapter 9. Migration guide 93

Table 19. Version 9.5.1 customizations (continued)

Member/File Default location Purpose Migration notes

CRABATCA FEL.SFELSAMP
[FEL.#CUST.CNTL]

CARMA batch
action JCL for CA
Endevor® SCM
RAM

None

CRASCL FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

Template SCL for
CA Endevor® SCM

None

CRASHOW FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA
configuration for
CA Endevor® SCM
RAM

None

CRATMAP FEL.SFELSAMP
[FEL.#CUST.PARMLIB]

CARMA
configuration for
CA Endevor® SCM
RAM

None

CRANDVRA FEL.SFELPROC CARMA allocation
REXX for CA
Endevor® SCM
RAM

None

CRADYNDA FEL.SFELPROC CARMA allocation
REXX for CA
Endevor® SCM
RAM

None

CRAALLOC FEL.SFELPROC CARMA allocation
REXX

None

CRA#VSLM FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
SCLM RAM's
message VSAM

Using new data
set/path names

CRA#ASLM FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
SCLM RAM's data
sets

Using new data
set/path names

CRA#VPDS FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create the
PDS RAM's
message VSAM

Using new data
set/path names

CRA#UADD FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to merge RAM
definitions

Using new data
set/path names

CRA#UQRY FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to extract
RAM definitions

Using new data
set/path names

CRAXJCL FEL.SFELSAMP
[FEL.#CUST.ASM]

Sample source
code for IRXJCL
replacement

None

CRA#CIRX FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to compile
CRAXJCL

Using new data
set/path names

AQECSD FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to define
Integrated
Debugger to CICS
regions

None

94 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 19. Version 9.5.1 customizations (continued)

Member/File Default location Purpose Migration notes

AQED3CEE FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create
customized LE
runtime modules

Using new data
set/path names

AQED3CXT FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to create LE
user exit

Using new data
set/path names

FEKTEP2 FEL.SFELSAMP
[FEL.#CUST.SQL]

SQL command
input used by
ELAXF*

None

FEKTIAD FEL.SFELSAMP
[FEL.#CUST.JCL]

SQL command
input used by
ELAXF*

None

AZUZUNIT FEL.SFELSAMP
[FEL.#CUST.PROCLIB]

JCL procedure for
zUnit

Using new data
set/path names

FEKRNPLI FEL.SFELSAMP
[FEL.#CUST.CNTL]

REXX to call the
PL/I compiler
from within the
preprocessor
framework

None

IRZCSD FEL.SFELSAMP
[FEL.#CUST.JCL]

JCL to define
Enterprise Service
Tools to CICS

None

rdz.env /usr/lpp/IBM/rdz/samples/
[/etc/zexpl/]

RSE environment
variables

Older copies must
be replaced by
this one and the
customizations
done again.

CRASRV.properties /usr/lpp/IBM/rdz/samples/
[/etc/zexpl/]

CARMA
configuration file

None

crastart.conf /usr/lpp/IBM/rdz/samples/
[/etc/zexpl/]

CARMA
configuration file
for CRASTART
usage

Using new data
set/path names

crastart.endevor.con
f

/usr/lpp/IBM/rdz/samples/
[/etc/zexpl/]

CARMA
configuration file
for CRASTART
usage for CA
Endevor® SCM
RAM

Using new data
set/path names

include.conf /usr/lpp/IBM/rdz/samples/
[/etc/zexpl/]

Forced includes
for C/C++ content
assist

None

Table 20 on page 96 shows an overview of customizable files that moved to z/OS Explorer in version
9.5.1.

Note: Sample job FEKSETUP copies all listed members to different data sets and directories, default
FEK.#CUST.* and /etc/zexpl/*.

Chapter 9. Migration guide 95

Table 20. Version 9.5.1 z/OS Explorer customizations

Member/File Default location Purpose Migration notes

FEKSETUP FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
data sets and
directories, and
populate them
with
customizable
files

Updated to
remove actions
for files that are
no longer used
and add actions
for new files

JMON FEK.SFEKSAMP(FEJJJCL)
[FEK.#CUST.PROCLIB]

JCL for JES Job
Monitor

None

FEJJJCL FEK.SFEKSAMP
[FEK.#CUST.PROCLIB(JMON)]

Name for JMON
member

See JMON
member

RSED FEK.SFEKSAMP(FEKRSED)
[FEK.#CUST.PROCLIB]

JCL for RSE
daemon

None

FEKRSED FEK.SFEKSAMP
[FEK.#CUST.PROCLIB(RSED)]

Name for RSED
member

See RSED
member

FEKRACF FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL for security
definitions

Removed
Developer for z
Systems specific
data

FEJJCNFG FEK.SFEKSAMP
[FEK.#CUST.PARMLIB]

JES Job Monitor
configuration file

None

FEJTSO FEK.SFEKSAMP
[FEK.#CUST.CNTL]

JCL for TSO
submits

None

FEKLOGS FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to collect log
files

Using new data
set/path names

Removed
Developer for z
Systems specific
data

rse.env /usr/lpp/IBM/zexpl/
samples/ [/etc/zexpl/]

RSE environment
variables

Older copies of
rsed.envvars
must be replaced
by this one and
the
customizations
done again.

ISPF.conf /usr/lpp/IBM/zexpl/
samples/ [/etc/zexpl/]

ISPF Gateway
configuration file

Using new data
set/path names

ssl.properties /usr/lpp/IBM/zexpl/
samples/ [/etc/zexpl/]

RSE encrypted
communication
configuration file

None

rsecomm.properties /usr/lpp/IBM/zexpl/
samples/ [/etc/zexpl/]

RSE trace
configuration file

None

96 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 20. Version 9.5.1 z/OS Explorer customizations (continued)

Member/File Default location Purpose Migration notes

pushtoclient.propertie
s

/usr/lpp/IBM/zexpl/
samples/ [/etc/zexpl/]

Push information
to the client
configuration file

Using new data
set/path names

IBM Rational Developer for z Systems Host Utilities, FMID HAKG951
• The default SMP/E install location for MVS and z/OS UNIX components did not change and thus remain
AKG.* and /usr/lpp/rdzutil/*.

Configurable files
Table 21 on page 97 shows an overview of files that are customized in version 9.5.1. The Developer for z
Systems Host Utilities sample libraries, AKG.SAKGSAMP and /usr/lpp/rdzutil/samples, contain
more customizable members than listed here, such as sample code review post-processing script.

Note: Sample job AKGSETUP copies all listed members to different data sets, default AKG.#CUST.*.

Table 21. Host Utilities version 9.0 customizations

Member or File Default location Purpose Migration notes

AKGSETUP AKG.SAKGSAMP
[AKG.#CUST.JCL]

JCL to create data sets,
and populate them with
customizable files

None

AKGCC AKG.SAKGSAMP
[AKG.#CUST.PROCLIB]

JCL for code coverage None

AKGCR AKG.SAKGSAMP
[AKG.#CUST.PROCLIB]

JCL for code review None

AKGCRADD AKG.SAKGSAMP
[AKG.#CUST.JCL]

JCL to add third-party
code to code review

None

Migrate from version 9.1 to version 9.5
These notes are for a migration from a base version 9.1 to version 9.5. It includes changes that are
already documented as part of version 9.1 maintenance. The changes that are part of the maintenance
stream, and thus possibly already implemented, are marked with the release where they were introduced.

It is advised to replace an existing rsed.envvars (by default in /etc/rdz) with the newly provided
sample (by default in /usr/lpp/rdz/samples) and redo the customizations.

IBM Rational Developer for z Systems, FMID HHOP950
• The default SMP/E install location for MVS and z/OS UNIX components did not change and remain
FEK.* and /usr/lpp/rdz/*.

• Since version 9.5

– Application Deployment Manager is removed from the product. The following definitions have been
removed:

- SFEKLOAD(ADN*)
- FEK.#CUST.JCL(ADN*)

Chapter 9. Migration guide 97

- FEK.#CUST.COBOL(ADN*)
- FEK.#CUST.ADNREPF0 [VSAM created by ADNVCRD]
- FEK.#CUST.ADNMANF0 [VSAM created by ADNVMFST]
- FEK.#CUST.ADN* dataset security profiles [done by FEKRACF]
- CICS CSD definitions [done by ADNCSDAR, ADNCSDRS, ADNCSDTX, ADNCSDWS, ADNVMFST,

AQECSD]
- usr/lpp/rdz/cicsts

– CARMA: The following customizable members have changed:

- CRACFG defines new option, DYNAMIC-VB-DATASET-ALLOC
- CRACFG defines new option, DATASET-ALLOC-OVERRIDE

– Enterprise Service Tools: new customizable members

- IRZCSD: CICS region CSD update
– Integrated Debugger: Debugging CICS transactions now requires IP CICS Sockets.
– PL/I: new customizable members

- FEKRNPLI: PL/I preprocessor REXX
– Remote build procedures: The following customizable members have changed:

- ELAXFDCL: add SFEKAUTH to STEPLIB for Integrated Debugger
- ELAXFTSO: add SFEKAUTH to STEPLIB for Integrated Debugger

– RSE: New operator commands have been added:

- F rsed,APPL=SEND ‘message’[,USER={ userid | (userid,userid,…)}]
- F rsed,APPL=SEND ‘message’[,PID={ pid | (pid,pid,…)}]
- F rsed,APPL=SEND CLEARALL

– RSE: Optional directives have been added to rsed.envvars:

- CGI_CEATSO
- CGI_CEATSO_KEEPALIVE
- GSK_PROTOCOL_SSLV3
- GSK_V3_CIPHER_SPECS

– RSE: Optional directives have been removed from rsed.envvars:

- DSTORE_SSL_ALGORITHM
– RSE: Required directives have been marked uneditable in rsed.envvars:

- _RSE_HOST_CODEPAGE
– RSE: Added support for sending messages to clients using an operator command, z/OS UNIX

command, or TSO SEND
– RSE: Added support for Interactive ISPF Gateway
– zUnit: The following customizable members have changed:

- AZUZUNIT: added Code Coverage support
• Since version 9.1.1.1

– Error Feedback: FEK.SFEKPROC(FEKFERRF) moved to /usr/lpp/rdz/bin/fekferrf.rex
– CARMA: New customizable members have been added:

- CRASCL: Sample CARMA template SCL for CA Endevor® SCM.
– CARMA: The following customizable members have changed:

- CRACFG defines new option, PACKAGE-EDITING-OPTION

98 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

- CRACFG defines new option, SCL-REQUIRED
- CRACFG defines new option, SCL-DATASET-TEMPLATE

– Integrated Debugger: The following customizable members have changed:

- AQED3CXT new debug level for LE user exit
- AQED3CEE ensure correct user exit is added to LE runtime

– RSE: optional LPA module becoming required

- FEKDSI must now be available via LPA/LINKLIST/STEPLIB
– RSE: New operator commands have been added:

- F rsed,APPL=DEBUG {PROCESS | P},{STORAGE | STOR}[,PID=pid]
- F rsed,APPL=DEBUG {DAEMON | D},{STORAGE | STOR}

– RSE: product registration required when purchased as part of product code 5697-CDT, IBM
Enterprise COBOL Suite for z/OS

– SYS1.PARMLIB: Updating a new PARMLIB member:

- IFAPRDxx: product registration
• Since version 9.1.1.0

– CARMA: The CRADEF and CRASTRS VSAM files for the CA Endevor® SCM RAM have been updated.
– CARMA: The following customizable members have changed:

- CRACFG defines new option, ALTERNATIVE-ALLOC
- CRABCFG defines new action, TRANSFER-ELEMENT
- CRASUBCA added APIHJC
- crastart.endevor.conf added APIHJC

– Integrated Debugger: Coexistence support for IBM Debug Tool for z/OS
– Integrated Debugger: The following customizable members have changed:

- AQECSD (CICS CSD update) defines new resources
- AQERACF defines new AQE.** profiles
- FEKRACF defines new AQE.** profiles
- Integrated Debugger: Required CICS CSD definitions have been added

• AQEM and AQED transient data queues
• Program AQEW3Z3, AQEW3Z6, AQEL3Z3, AQEL3Z6, AQEL6Z3, AQEL6Z6

- Integrated Debugger: Some CICS CSD definitions have been removed

• CIGZ and CIBM transient data queues
• Program AQEEV006

– Integrated Debugger: The following customizable members have changed:

- AQESTC [DBGMGR] started task now has SFEKLPA in STEPLIB
– Integrated Debugger: Required SVC has been added

- IEASVCxx parmlib change for AQESVC03 (can be loaded dynamically)
– Integrated Debugger: Optional SVC has been removed

- IEASVCxx parmlib change for AQESVC01
– Integrated Debugger: Required RACF profiles have been added

- AQE.AUTHDEBUG.STDPGM
- AQE.AUTHDEBUG.AUTHPGM

– Integrated Debugger: Optional RACF profiles have been removed

Chapter 9. Migration guide 99

- AQE.AUTHDEBUG.WRITEBUFFER
– Log collection: Clients can collect host logs
– RSE: Added passphrase support
– RSE: Optional directives have been added to rsed.envvars:

- search.server.limit.scanned_objects
- search,server.limit.errcount

– RSE: Optional directives have been removed from rsed.envvars:

- enable.saf.check
- RSE_DSICALL
- search.server.limit.datasets

Configurable files
Table 22 on page 100 shows an overview of files that are customized in version 9.5. The Developer for z
Systems sample libraries, FEK.SFEKSAMP, FEK.SFEKSAMV and /usr/lpp/rdz/samples/, contain
more customizable members than listed here, such as sample CARMA source code and jobs to compile
them.

Note: Sample job FEKSETUP copies all listed members to different data sets and directories, default
FEK.#CUST.* and /etc/rdz/*.

Table 22. Version 9.5 customizations

Member/File Default location Purpose Migration notes

FEKSETUP FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
data sets and
directories, and
populate them
with
customizable
files

Updated to remove
actions for files
that are no longer
used and add
actions for new
files

JMON FEK.SFEKSAMP(FEJJJCL)
[FEK.#CUST.PROCLIB]

JCL for JES Job
Monitor

None

FEJJJCL FEK.SFEKSAMP
[FEK.#CUST.PROCLIB(JMON)]

Name for
JMON member

See JMON
member

RSED FEK.SFEKSAMP(FEKRSED)
[FEK.#CUST.PROCLIB]

JCL for RSE
daemon

None

FEKRSED FEK.SFEKSAMP
[FEK.#CUST.PROCLIB(RSED)]

Name for RSED
member

See RSED member

DBGMGR FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL for Debug
Manager

SFEKLPA added to
STEPLIB

AQEJCL FEK.SFEKSAMP
[FEK.#CUST.PROCLIB(DBGMGR
)]

Name for
DBGMGR
member

See DBGMBR
member

ELAXF* FEK.SFEKSAMP
[FEK.#CUST.PROCLIB]

JCL for remote
project builds,
and so on

SFEKAUTH added
to STEPLIB

FEKRACF FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL for security
definitions

New AQE.**
profiles

100 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 22. Version 9.5 customizations (continued)

Member/File Default location Purpose Migration notes

AQERACF FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL for Debug
Manager

New AQE.**
profiles

FEKPBITS FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to alter
access permits
for log files

None

FEJJCNFG FEK.SFEKSAMP
[FEK.#CUST.PARMLIB]

JES Job
Monitor
configuration
file

None

FEJTSO FEK.SFEKSAMP
[FEK.#CUST.CNTL]

JCL for TSO
submits

None

CRA$VMSG FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
the CARMA
message VSAM

None

CRA$VDEF FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
the CARMA
configuration
VSAM

None

CRA$VSTR FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
the CARMA
custom
information
VSAM

None

CRA$VCAD FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
the CARMA
configuration
VSAM for CA
Endevor® SCM
RAM

VSAM input has
changed

CRA$VCAS FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
the CARMA
custom
information
VSAM for CA
Endevor® SCM
RAM

VSAM input has
changed

CRASUBMT FEK.SFEKSAMP
[FEK.#CUST.CNTL]

CARMA batch
startup CLIST

None

CRASUBCA FEK.SFEKSAMP
[FEK.#CUST.CNTL]

CARMA batch
startup CLIST
for CA
Endevor® SCM
RAM

Added DD APIHJC
and new DD’s

Chapter 9. Migration guide 101

Table 22. Version 9.5 customizations (continued)

Member/File Default location Purpose Migration notes

CRACFG FEK.SFEKSAMP
[FEK.#CUST.PARMLIB]

CARMA
interaction
configuration
for CA
Endevor® SCM
RAM

Optional directives
added

CRABCFG FEK.SFEKSAMP
[FEK.#CUST.PARMLIB]

CARMA batch
actions
configuration
for CA
Endevor® SCM
RAM

Optional directives
added

CRABATCA FEK.SFEKSAMP
[FEK.#CUST.CNTL]

CARMA batch
action JCL for
CA Endevor®

SCM RAM

None

CRASCL FEK.SFEKSAMP
[FEK.#CUST.PARMLIB]

Template SCL
for CA
Endevor® SCM

New, configuration
is optional

CRASHOW FEK.SFEKSAMP
[FEK.#CUST.PARMLIB]

CARMA
configuration
for CA
Endevor® SCM
RAM

None

CRATMAP FEK.SFEKSAMP
[FEK.#CUST.PARMLIB]

CARMA
configuration
for CA
Endevor® SCM
RAM

None

CRANDVRA FEK.SFEKPROC CARMA
allocation
REXX for CA
Endevor® SCM
RAM

Allocate new DD

CRADYNDA FEK.SFEKPROC CARMA
allocation
REXX for CA
Endevor® SCM
RAM

New, configuration
is optional

CRAALLOC FEK.SFEKPROC CARMA
allocation
REXX

None

CRA#VSLM FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
the SCLM
RAM's
message VSAM

None

102 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Table 22. Version 9.5 customizations (continued)

Member/File Default location Purpose Migration notes

CRA#ASLM FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
the SCLM
RAM's data
sets

None

CRA#VPDS FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
the PDS RAM's
message VSAM

None

CRA#UADD FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to merge
RAM
definitions

None

CRA#UQRY FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to extract
RAM
definitions

None

CRAXJCL FEK.SFEKSAMP
[FEK.#CUST.ASM]

Sample source
code for
IRXJCL
replacement

None

CRA#CIRX FEK.SFEKSAMP
[FEK.#CUST.JCL

JCL to compile
CRAXJCL

None

AQECSD FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to define
Integrated
Debugger to
CICS regions

Define new
resources

AQED3CEE FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
customized LE
runtime
modules

Updated to ensure
correct LE exit is
used

AQED3CXT FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to create
LE user exit

New debug level
for LE exit

FEKTEP2 FEK.SFEKSAMP
[FEK.#CUST.SQL]

SQL command
input used by
ELAXF*

None

FEKTIAD FEK.SFEKSAMP
[FEK.#CUST.JCL]

SQL command
input used by
ELAXF*

None

AZUZUNIT FEK.SFEKSAMP
[FEK.#CUST.PROCLIB]

JCL procedure
for zUnit

SFEKAUTH added
to STEPLIB

FEKRNPLI FEK.SFEKSAMP
[FEK.#CUST.CNTL]

REXX to call
the PL/I
compiler from
within the
preprocessor
framework

None

Chapter 9. Migration guide 103

Table 22. Version 9.5 customizations (continued)

Member/File Default location Purpose Migration notes

IRZCSD FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to define
Enterprise
Service Tools
to CICS

New, configuration
is optional

FEKLOGS FEK.SFEKSAMP
[FEK.#CUST.JCL]

JCL to collect
log files

None

rsed.envvars /usr/lpp/rdz/samples/
[/etc/rdz/]

RSE
environment
variables

Older copies must
be replaced by this
one and the
customizations
done again.

ISPF.conf /usr/lpp/rdz/samples/
[/etc/rdz/]

TSO/ISPF
Client Gateway
configuration
file

None

CRASRV.properties /usr/lpp/rdz/samples/
[/etc/rdz/]

CARMA
configuration
file

None

crastart.conf /usr/lpp/rdz/samples/
[/etc/rdz/]

CARMA
configuration
file for
CRASTART
usage

None

crastart.endevor.conf /usr/lpp/rdz/samples/
[/etc/rdz/]

CARMA
configuration
file for
CRASTART
usage for CA
Endevor® SCM
RAM

Added DD APIHJC
and new DD’s

include.conf /usr/lpp/rdz/samples/
[/etc/rdz/]

Forced
includes for
C/C++ content
assist

None

ssl.properties /usr/lpp/rdz/samples/
[/etc/rdz/]

RSE encrypted
communication
configuration
file

None

rsecomm.properties /usr/lpp/rdz/samples/
[/etc/rdz/]

RSE trace
configuration
file

None

pushtoclient.propertie
s

/usr/lpp/rdz/samples/
[/etc/rdz/]

Push
information to
the client
configuration
file

None

104 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

IBM Rational Developer for z Systems Host Utilities, FMID HAKG950
• The default SMP/E install location for MVS and z/OS UNIX components did not change and thus remain
AKG.* and /usr/lpp/rdzutil/*.

• Since version 9.1.1.1

– Code Coverage: product registration required when purchased as part of product code 5697-CDT,
IBM Enterprise COBOL Suite for z/OS

– Code Review: product registration required when purchased as part of product code 5697-CDT, IBM
Enterprise COBOL Suite for z/OS

• Since version 9.1.1.0

– Code Review: New options for the AKGCR procedure

- SYSLIB: replaces PROPERTY which required data imported from client
- LIST: list of datasets/members and their file type (replaces PDS, MEMBERS and EXTMAP)
- JUNIT: new output format

Configurable files
Table 23 on page 105 shows an overview of files that are customized in version 9.5. The Developer for z
Systems Host Utilities sample libraries, AKG.SAKGSAMP and /usr/lpp/rdzutil/samples, contain
more customizable members than listed here, such as sample code review post-processing script.

Note: Sample job AKGSETUP copies all listed members to different data sets, default AKG.#CUST.*.

Table 23. Host Utilities version 9.0 customizations

Member or File Default location Purpose Migration notes

AKGSETUP AKG.SAKGSAMP
[AKG.#CUST.JCL]

JCL to create data sets,
and populate them with
customizable files

None

AKGCC AKG.SAKGSAMP
[AKG.#CUST.PROCLIB]

JCL for code coverage None

AKGCR AKG.SAKGSAMP
[AKG.#CUST.PROCLIB]

JCL for code review New DDs SYSLIB, LIST,
and JUNIT

AKGCRADD
AKG.SAKGSAMP
[AKG.#CUST.JCL]

JCL to add third-party
code to code review

None

Chapter 9. Migration guide 105

106 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2015, 2019 107

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

108 Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 109

110 IBM Developer for z SystemsVersion 14.1: Host Configuration Guide

IBM®

SC27-8577-04

	Contents
	Figures
	Tables
	About this document
	Who should use this document

	Part 1. Host Configuration Guide
	Chapter 1. Planning
	Migration considerations
	Planning considerations
	Product overview
	Skill requirements
	Time requirements

	Preinstallation considerations
	Installation user ID
	Requisite products
	Required resources

	Preconfiguration considerations
	Product selection
	Workload management
	Resource usage and system limits
	Required configuration of requisite products
	User ID considerations
	Server considerations

	Predeployment considerations
	Client checklist

	Chapter 2. Basic customization
	Requirements and checklist
	Customization setup
	PARMLIB changes
	Set the z/OS UNIX definitions in BPXPRMxx
	Product enablement in IFAPRDxx
	LPA definitions in LPALSTxx
	LINKLIST definitions in PROGxx
	Requisite LINKLIST and LPA definitions
	LINKLIST definitions for other products
	SMF record collection in SMFPRMxx

	PROCLIB changes
	ELAXF* remote build procedures

	Security definitions
	idz.env, the environment configuration file
	Specific components
	Installation verification

	Chapter 3. Common Access Repository Manager (CARMA)
	Requirements and checklist
	Select the server startup method and active RAM
	CARMA server startup
	CRASTART
	Batch submit

	Production RAMs
	CA Endevor® SCM RAM
	CA Endevor® SCM packages RAM

	Sample RAMs
	PDS RAM
	Skeleton RAM
	SCLM RAM

	Preconfigured RAM and server startup combinations

	CRASTART with CA Endevor® SCM RAM
	Create the CARMA VSAM data sets
	Customize CRASRV.properties
	Customize crastart.endevor.conf
	(Optional) Additional CA Endevor® SCM RAM customization

	CRASTART with sample RAMs
	Create the CARMA VSAM data sets
	CARMA
	Sample RAMs

	Customize CRASRV.properties
	Customize crastart.conf
	(Optional) Additional custom RAM customization

	Batch submit with CA Endevor® SCM RAM
	Create the CARMA VSAM data sets
	Customize CRASRV.properties
	Customize CRASUBCA
	(Optional) Additional CA Endevor® SCM RAM customization

	Batch submit with sample RAMs
	Create the VSAM data sets
	CARMA
	Sample RAMs

	Customize CRASRV.properties
	Customize CRASUBMT
	(Optional) Additional custom RAM customization

	CARMA configuration details
	CRASRV.properties, the RSE interface to CARMA
	crastart*.conf, the CRASTART server startup
	Collecting the CRASTART log files

	CRASUB*, the batch submit server startup
	CARMA VSAM data sets
	CRADEF, the configuration data set
	CRAMSG, the message data set
	CRASTRS, the custom string data set

	CARMA Repository Access Managers (RAMs)
	CA Endevor® SCM RAM
	CA Endevor® SCM packages RAM
	PDS RAM
	Skeleton RAM
	SCLM RAM

	CRACFG, CRASCL, CRASHOW and CRATMAP, the CA Endevor® SCM RAM configuration files
	CRACFG, CA Endevor® SCM RAM interaction with the SCM
	CRASCL, CA Endevor® SCM RAM template SCL
	CRASHOW, CA Endevor® SCM RAM default filters
	CRATMAP, the CA Endevor® SCM RAM file extension mappings

	CRANDVRA and CRADYNDA, the CA Endevor® SCM RAM allocation execs
	CRANDVRA, the CA Endevor® SCM RAM initial allocation exec
	CRADYNDA, the CA Endevor® SCM RAM reallocation exec

	CA Endevor® SCM RAM batch actions
	CRABCFG, the CA Endevor® SCM RAM batch-action configuration
	CRABATCA, the CA Endevor® SCM RAM batch action JCL
	CRABJOBC, the CA Endevor® SCM RAM batch action JOB card

	CRAALLOC, the custom RAM allocation exec
	CARMA return codes

	(Optional) Supporting multiple RAMs
	Example

	(Optional) Custom allocation exec
	(Optional) CARMA user exit
	(Optional) IRXJCL versus CRAXJCL
	Create CRAXJCL

	Chapter 4. SCLM Developer Toolkit (deprecated)
	Requirements and checklist
	/etc/profile updates for SCLMDT
	Prerequisites
	ISPF.conf updates for SCLMDT
	idz.env updates for SCLMDT
	(Optional) Long/short name translation
	Create LSTRANS.FILE, the long/short name translation VSAM
	idz.env updates for long/short name translation

	(Optional) Install and customize Ant
	SCLM updates for SCLMDT
	Remove old files from WORKAREA and /tmp

	Chapter 5. Host-based code analysis
	Requirements and checklist
	Code review
	Modify code review processing

	Code coverage
	Single Code coverage invocation
	Multiple Code coverage invocations
	Code coverage output

	Chapter 6. Other customization tasks
	include.conf, Forced includes for C/C++ content assist
	z/OS UNIX subprojects
	REXEC or SSH setup

	Include preprocessor support
	ISPF EDIT macro support
	ISPF PACK support
	xUnit support for Enterprise COBOL and PL/I
	xUnit support for CICS applications
	Limitations

	Enterprise Service Tools support
	CICS bidirectional language support
	Diagnostic IRZ messages for Enterprise Service Tools

	Chapter 7. Installation verification
	Verify the services
	IVP initialization
	CARMA connection
	SCLMDT connection

	Chapter 8. Security definitions
	Requirements and checklist
	Define the data set profiles
	Verify the security settings

	Chapter 9. Migration guide
	Migration considerations
	Backing up the previously configured files

	Migrate from version 14.0 to version 14.1
	IBM Developer for z Systems, FMID HHOPE10
	IBM Developer for z Systems Host Utilities, FMID HAKGE10
	Configurable files

	Migrate from version 9.5.1 to version 14.0
	IBM Developer for z Systems, FMID HHOPE00
	IBM Developer for z Systems Host Utilities, FMID HAKGE00
	Configurable files

	Migrate from version 9.5 to version 9.5.1
	IBM Rational® Developer for z Systems, FMID HHOP951
	IBM Rational Developer for z Systems Host Utilities, FMID HAKG951
	Configurable files

	Migrate from version 9.1 to version 9.5
	IBM Rational Developer for z Systems, FMID HHOP950
	Configurable files

	IBM Rational Developer for z Systems Host Utilities, FMID HAKG950
	Configurable files

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation

