
IBM Security Access Manager for Web
Version 7.0

Administration Java Classes Developer
Reference

SC23-6514-02

���

IBM Security Access Manager for Web
Version 7.0

Administration Java Classes Developer
Reference

SC23-6514-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 141.

Edition notice

Note: This edition applies to version 7, release 0, modification 0 of IBM Security Access Manager (product
number 5724-C87) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2002, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this publication ix
Intended audience ix
Access to publications and terminology ix

Related publications xii
Accessibility xiv
Technical training xiv
Support information xiv

Chapter 1. Introduction to the
administration API 1
Administration Java classes overview 1
Accessing the Javadoc HTML documentation . . . 2
Other ways to manipulate administration objects . . 2
Java administration API components 3
Application development kit 3
Building Java applications with the administration
API 4

Security Access Manager software requirements . 4
Configuration of the Java runtime component to a
particular Java runtime environment 5
Configuration of the Java administration classes . 5
Security requirements 5

Java administration API example program 6
Deployment of a Java administration API application 6
Gathering of problem determination information . . 7

Enabling tracing on the policy server 7
Enabling tracing on the authorization server . . . 7
Enabling tracing in the Java runtime component . 7
Gathering of message logs 8
Gathering of trace logs 8

Chapter 2. Using the administration API 9
Administration objects 9
Common classes 12
Initializing the administration API 12
Establishing a security context 12

User ID and password-based authentication . . 13
Certificate-based authentication. 14

Manipulating administration objects 15
Creating objects 16
Obtaining a local copy of an object 16
Reading object values 17
Setting object values 17
Listing objects 17
Deleting objects 18

Messages 18
Handling errors 19
Shutting down the administration API 19
Character-based data considerations 20
PDContext application design considerations . . . 20

Chapter 3. Administering users and
groups. 23
Administering users 23
Administering user information 24
Administering user account policies 25
Administering user password policies 27
Administering groups 29
Administering group information 29

Chapter 4. Administering protected
objects and protected object spaces . . 31
Administering protected object spaces 31
Administering protected objects 32
Administering extended attributes for a protected
object 34

Chapter 5. Administering access
control 37
Administering access control lists 37
Administering access control list entries 38
Administering access control list extended attributes 40
Administering action groups 40
Administering extended actions 41

Chapter 6. Administering protected
object policies 43
Administering protected object policy objects . . . 43

PDPop.IPAuthInfo object 44
Administering protected object policy settings . . . 45
Administering protected object policy extended
attributes 46

Chapter 7. Administering authorization
rules. 49

Chapter 8. Administering single
sign-on resources 51
Administering Web resources 51
Administering resource groups 52
Administering resource credentials 53

Chapter 9. Administering domains . . . 55

Chapter 10. Configuring application
servers 57
Configuring application servers. 57
Administering configuration information 58
Certificate maintenance 58

Chapter 11. Administering servers . . . 59
Getting and performing administration tasks . . . 59

© Copyright IBM Corp. 2002, 2012 iii

Notifying replica databases when the master
authorization database is updated 59

Notifying replica databases automatically . . . 60
Notifying replica databases manually 60
Setting the maximum number of notification
threads 60
Setting the notification wait time 60

Administering servers and database notification . . 61

Appendix A. Differences between the C
and Java administration API 63
Security context management differences 63
Response processing differences 63
Additional differences 64

Appendix B. Deprecated Java classes
and methods 65

Appendix C. Administration API
equivalents 67

Appendix D. Registry Direct Java API 83
Design 83
Security Access Manager Java API 83
Registry Direct Java API 84
Published API 85

com.tivoli.pd.rgy.RgyRegistry 85
com.tivoli.pd.rgy.RgyEntity 88
com.tivoli.pd.rgy.RgyUser 89
com.tivoli.pd.rgy.RgyGroup 90
com.tivoli.pd.rgy.RgyIterator. 91
com.tivoli.pd.rgy.ldap.RgyAttributes 92
com.tivoli.pd.rgy.ldap.LdapRgyRegistryFactory 93
com.tivoli.pd.rgy.ldap.AuthzRgyRegistryFactory 94
com.tivoli.pd.rgy.util.RgyConfig 95
com.tivoli.pd.jcfg.SvrSslCfg 95

Old and new API errors 96
Authenticate and changePassword. 96
Administration 97

Attributes 100
Error and trace logging 108

Basic JRE example output 108
Auditing 109

Java logger behavior 109

Authorization 112
Authorization permission checks 112
Residual effects of delegated administration on
admin results 114

API Specifications 115
Installation and configuration 115

Upgrade 115
Installation and packaging 115
Configuration 116
Configuration options 118

Example usage 122
Creating an instance of RgyRegistry 122
Ending use of RgyRegistry 123

Groups 123
Creating a group 123
Showing group details 123
Deleting a group 124
Importing a native group 124
Listing group members 125
Add or remove group members 126
Modifying group attribute 126
Users and per-user policy 127
Showing user details 128
Deleting a user 128
Importing a native user 129
Listing a user's group memberships 129
Modifying user attributes 130
Resetting the user password 131
Changing the user password 131
Authenticating the user Password 132

Appendix E. User registry differences 133
General concerns 133
LDAP concerns 133

Sun Java System Directory Server concerns . . 134
Microsoft Active Directory Lightweight
Directory Service (AD LDS) concerns 134

URAF concerns. 135
Microsoft Active Directory Server concerns . . 135

Length of names 137

Notices 141

Index 145

iv IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Figures

1. Granting Java permission to applications . . . 6
2. Creating a security context using user ID and

password-based authentication 14
3. Creating a security context using

certificate-based authentication 14

4. Getting a local copy of a PDUser object . . . 16
5. Security Access Manager Java API 84
6. Registry Direct Java API 84

© Copyright IBM Corp. 2002, 2012 v

vi IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Tables

1. Administration API application development kit
files 3

2. Methods used to list objects 18
3. Administering users 24
4. Administering user information 24
5. Administering user account policies 26
6. Administering user password policies. . . . 28
7. Administering groups 29
8. Administering group attributes 30
9. Administering protected object spaces. . . . 32

10. Administering protected objects 32
11. Administering protected object attributes 34
12. Administering access control lists 38
13. Administering access control list entries 39
14. Administering access control list extended

attributes 40
15. Administering action groups 41
16. Administering extended actions 41
17. Administering protected object policy objects 43
18. Administering protected object policy settings 46
19. Administering protected object policy

extended attributes 46
20. Administering authorization rules 49

21. Administering Web resources 52
22. Administering resource groups 52
23. Administering credentials 53
24. Administering domains 55
25. Configuring application servers 57
26. Administering configuration information 58
27. Certificate maintenance 58
28. Administering servers and database

notification. 61
29. Mapping of the administration C API to the

Java methods, the pdadmin interface, and Web
Portal Manager 67

30. Authentication API error information 96
31. Exceptions and the error codes. 97
32. API attribute details 100
33. Java logger namespace 112
34. Authorization permissions for groups 112
35. List of operations and permissions to be

checked 114
36. Configuration options 118
37. Maximum lengths for names by user registry

and the optimal length across user registries . 137

© Copyright IBM Corp. 2002, 2012 vii

viii IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

About this publication

IBM Security Access Manager for Web, formerly called IBM Tivoli Access Manager
for e-business, is a user authentication, authorization, and web single sign-on
solution for enforcing security policies over a wide range of web and application
resources.

This reference contains information about how to use Security Access Manager
administration Java™ classes and methods to enable an application to
programmatically perform Security Access Manager administration tasks. This
document describes the Java implementation of the Security Access Manager
administration API. See the IBM Security Access Manager for Web: Administration C
API Developer Reference for information regarding the C implementation of these
APIs.

Information about the pdadmin command-line interface (CLI) can be found in the
IBM Security Access Manager for Web: Command Reference.

Intended audience
This reference is for application programmers writing programs in and Java
programming language to administer the users and objects associated with the
Security Access Manager product.

Readers must be familiar with:
v Microsoft Windows and UNIX operating systems
v Database architecture and concepts
v Security management
v Internet protocols, including HTTP, TCP/IP, File Transfer Protocol (FTP), and

Telnet
v The user registry that Security Access Manager is configured to use
v Lightweight Directory Access Protocol (LDAP) and directory services, if used by

your user registry
v Authentication and authorization

To enable Secure Sockets Layer (SSL) communication, you must be familiar with
SSL protocol, key exchange (public and private), digital signatures, cryptographic
algorithms, and certificate authorities.

Access to publications and terminology
This section provides:
v A list of publications in the “IBM Security Access Manager for Web library” on

page x.
v Links to “Online publications” on page xi.
v A link to the “IBM Terminology website” on page xii.

© Copyright IBM Corp. 2002, 2012 ix

IBM Security Access Manager for Web library

The following documents are in the IBM Security Access Manager for Web library:
v IBM Security Access Manager for Web Quick Start Guide, GI11-9333-01

Provides steps that summarize major installation and configuration tasks.
v IBM Security Web Gateway Appliance Quick Start Guide – Hardware Offering

Guides users through the process of connecting and completing the initial
configuration of the WebSEAL Hardware Appliance, SC22-5434-00

v IBM Security Web Gateway Appliance Quick Start Guide – Virtual Offering
Guides users through the process of connecting and completing the initial
configuration of the WebSEAL Virtual Appliance.

v IBM Security Access Manager for Web Installation Guide, GC23-6502-02
Explains how to install and configure Security Access Manager.

v IBM Security Access Manager for Web Upgrade Guide, SC23-6503-02
Provides information for users to upgrade from version 6.0, or 6.1.x to version
7.0.

v IBM Security Access Manager for Web Administration Guide, SC23-6504-02
Describes the concepts and procedures for using Security Access Manager.
Provides instructions for performing tasks from the Web Portal Manager
interface and by using the pdadmin utility.

v IBM Security Access Manager for Web WebSEAL Administration Guide, SC23-6505-02
Provides background material, administrative procedures, and reference
information for using WebSEAL to manage the resources of your secure Web
domain.

v IBM Security Access Manager for Web Plug-in for Web Servers Administration Guide,
SC23-6507-02
Provides procedures and reference information for securing your Web domain
by using a Web server plug-in.

v IBM Security Access Manager for Web Shared Session Management Administration
Guide, SC23-6509-02
Provides administrative considerations and operational instructions for the
session management server.

v IBM Security Access Manager for Web Shared Session Management Deployment Guide,
SC22-5431-00
Provides deployment considerations for the session management server.

v IBM Security Web Gateway Appliance Administration Guide, SC22-5432-00
Provides administrative procedures and technical reference information for the
WebSEAL Appliance.

v IBM Security Web Gateway Appliance Configuration Guide for Web Reverse Proxy,
SC22-5433-00
Provides configuration procedures and technical reference information for the
WebSEAL Appliance.

v IBM Security Web Gateway Appliance Web Reverse Proxy Stanza Reference,
SC27-4442-00
Provides a complete stanza reference for the IBM® Security Web Gateway
Appliance Web Reverse Proxy.

v IBM Security Access Manager for Web WebSEAL Configuration Stanza Reference,
SC27-4443-00
Provides a complete stanza reference for WebSEAL.

x IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

v IBM Global Security Kit: CapiCmd Users Guide, SC22-5459-00
Provides instructions on creating key databases, public-private key pairs, and
certificate requests.

v IBM Security Access Manager for Web Auditing Guide, SC23-6511-02
Provides information about configuring and managing audit events by using the
native Security Access Manager approach and the Common Auditing and
Reporting Service. You can also find information about installing and
configuring the Common Auditing and Reporting Service. Use this service for
generating and viewing operational reports.

v IBM Security Access Manager for Web Command Reference, SC23-6512-02
Provides reference information about the commands, utilities, and scripts that
are provided with Security Access Manager.

v IBM Security Access Manager for Web Administration C API Developer Reference,
SC23-6513-02
Provides reference information about using the C language implementation of
the administration API to enable an application to perform Security Access
Manager administration tasks.

v IBM Security Access Manager for Web Administration Java Classes Developer
Reference, SC23-6514-02
Provides reference information about using the Java language implementation of
the administration API to enable an application to perform Security Access
Manager administration tasks.

v IBM Security Access Manager for Web Authorization C API Developer Reference,
SC23-6515-02
Provides reference information about using the C language implementation of
the authorization API to enable an application to use Security Access Manager
security.

v IBM Security Access Manager for Web Authorization Java Classes Developer Reference,
SC23-6516-02
Provides reference information about using the Java language implementation of
the authorization API to enable an application to use Security Access Manager
security.

v IBM Security Access Manager for Web Web Security Developer Reference,
SC23-6517-02
Provides programming and reference information for developing authentication
modules.

v IBM Security Access Manager for Web Error Message Reference, GI11-8157-02
Provides explanations and corrective actions for the messages and return code.

v IBM Security Access Manager for Web Troubleshooting Guide, GC27-2717-01
Provides problem determination information.

v IBM Security Access Manager for Web Performance Tuning Guide, SC23-6518-02
Provides performance tuning information for an environment that consists of
Security Access Manager with the IBM Tivoli Directory Server as the user
registry.

Online publications

IBM posts product publications when the product is released and when the
publications are updated at the following locations:

About this publication xi

IBM Security Access Manager for Web Information Center
The http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.isam.doc_70/welcome.html site displays the information center
welcome page for this product.

IBM Publications Center
The http://www-05.ibm.com/e-business/linkweb/publications/servlet/
pbi.wss site offers customized search functions to help you find all the IBM
publications that you need.

IBM Terminology website

The IBM Terminology website consolidates terminology for product libraries in one
location. You can access the Terminology website at http://www.ibm.com/
software/globalization/terminology.

Related publications
This section lists the IBM products that are related to and included with the
Security Access Manager solution.

Note: The following middleware products are not packaged with IBM Security
Web Gateway Appliance.

IBM Global Security Kit

Security Access Manager provides data encryption by using Global Security Kit
(GSKit) version 8.0.x. GSKit is included on the IBM Security Access Manager for Web
Version 7.0 product image or DVD for your particular platform.

GSKit version 8 includes the command-line tool for key management,
GSKCapiCmd (gsk8capicmd_64).

GSKit version 8 no longer includes the key management utility, iKeyman
(gskikm.jar). iKeyman is packaged with IBM Java version 6 or later and is now a
pure Java application with no dependency on the native GSKit runtime. Do not
move or remove the bundled java/jre/lib/gskikm.jar library.

The IBM Developer Kit and Runtime Environment, Java Technology Edition, Version 6
and 7, iKeyman User's Guide for version 8.0 is available on the Security Access
Manager Information Center. You can also find this document directly at:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/
60/iKeyman.8.User.Guide.pdf

Note:

GSKit version 8 includes important changes made to the implementation of
Transport Layer Security required to remediate security issues.

The GSKit version 8 changes comply with the Internet Engineering Task Force
(IETF) Request for Comments (RFC) requirements. However, it is not compatible
with earlier versions of GSKit. Any component that communicates with Security
Access Manager that uses GSKit must be upgraded to use GSKit version 7.0.4.42,
or 8.0.14.26 or later. Otherwise, communication problems might occur.

xii IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/60/iKeyman.8.User.Guide.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/60/iKeyman.8.User.Guide.pdf

IBM Tivoli Directory Server

IBM Tivoli Directory Server version 6.3 FP17 (6.3.0.17-ISS-ITDS-FP0017) is included
on the IBM Security Access Manager for Web Version 7.0 product image or DVD for
your particular platform.

You can find more information about Tivoli Directory Server at:

http://www.ibm.com/software/tivoli/products/directory-server/

IBM Tivoli Directory Integrator

IBM Tivoli Directory Integrator version 7.1.1 is included on the IBM Tivoli Directory
Integrator Identity Edition V 7.1.1 for Multiplatform product image or DVD for your
particular platform.

You can find more information about IBM Tivoli Directory Integrator at:

http://www.ibm.com/software/tivoli/products/directory-integrator/

IBM DB2 Universal Database™

IBM DB2 Universal Database Enterprise Server Edition, version 9.7 FP4 is provided
on the IBM Security Access Manager for Web Version 7.0 product image or DVD for
your particular platform. You can install DB2® with the Tivoli Directory Server
software, or as a stand-alone product. DB2 is required when you use Tivoli
Directory Server or z/OS® LDAP servers as the user registry for Security Access
Manager. For z/OS LDAP servers, you must separately purchase DB2.

You can find more information about DB2 at:

http://www.ibm.com/software/data/db2

IBM WebSphere® products

The installation packages for WebSphere Application Server Network Deployment,
version 8.0, and WebSphere eXtreme Scale, version 8.5.0.1, are included with
Security Access Manager version 7.0. WebSphere eXtreme Scale is required only
when you use the Session Management Server (SMS) component.

WebSphere Application Server enables the support of the following applications:
v Web Portal Manager interface, which administers Security Access Manager.
v Web Administration Tool, which administers Tivoli Directory Server.
v Common Auditing and Reporting Service, which processes and reports on audit

events.
v Session Management Server, which manages shared session in a Web security

server environment.
v Attribute Retrieval Service.

You can find more information about WebSphere Application Server at:

http://www.ibm.com/software/webservers/appserv/was/library/

About this publication xiii

http://www.ibm.com/software/tivoli/products/directory-server
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/data/db2
http://www.ibm.com/software/webservers/appserv/was/library/

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

Visit the IBM Accessibility Center for more information about IBM's commitment
to accessibility.

Technical training
For technical training information, see the following IBM Education website at
http://www.ibm.com/software/tivoli/education.

Support information
IBM Support provides assistance with code-related problems and routine, short
duration installation or usage questions. You can directly access the IBM Software
Support site at http://www.ibm.com/software/support/probsub.html.

The IBM Security Access Manager for Web Troubleshooting Guide provides details
about:
v What information to collect before you contact IBM Support.
v The various methods for contacting IBM Support.
v How to use IBM Support Assistant.
v Instructions and problem-determination resources to isolate and fix the problem

yourself.

Note: The Community and Support tab on the product information center can
provide more support resources.

xiv IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

http://www-03.ibm.com/able/
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html

Chapter 1. Introduction to the administration API

The Security Access Manager Java runtime component includes the Java language
version of the Security Access Manager administration API. The Security Access
Manager Java runtime component provides a set of Java classes and methods for
the administration of selected Security Access Manager administration objects.
These classes and methods provide a way for applications to administer users,
groups, protected objects, and access control lists.

You can use the Security Access Manager application developer kit (ADK) to
enable your application to programmatically administer Security Access Manager
administration objects.

This chapter contains the following topics:
v “Administration Java classes overview”
v “Accessing the Javadoc HTML documentation” on page 2
v “Java administration API components” on page 3
v “Building Java applications with the administration API” on page 4
v “Java administration API example program” on page 6
v “Deployment of a Java administration API application” on page 6
v “Gathering of problem determination information” on page 7

Note: If you are familiar with the C language interface to the Security Access
Manager administration API, see Appendix A, “Differences between the C and Java
administration API,” on page 63 for a general overview of differences. A mapping
of C APIs to Java classes and methods can be found in Appendix C,
“Administration API equivalents,” on page 67.

Administration Java classes overview
A set of Java classes is provided for creating, modifying, examining, listing, and
deleting each of the preceding object types. The classes include the methods
necessary for manipulating each of these administration objects. These
administration Java classes are packaged in the PD.jar file that is installed as part
of the Security Access Manager Java runtime environment component.
Applications which use the Java runtime environment that is provided with
Security Access Manager automatically have access to these classes and methods.

The administration Java classes can be used to administer the following types of
objects:
v Policies
v Users
v Groups
v Access control lists (ACLs)
v Extended ACL actions
v Protected object policies (POPs)
v Protected objects
v Protected object spaces
v Authorization rules
v Domains
v Web, or single signon (SSO), resources

© Copyright IBM Corp. 2002, 2012 1

v Web resource groups
v Resource credentials

The administration API Java classes communicate directly with the Security Access
Manager policy server component. The API establishes an authenticated, Secure
Socket Layer (SSL) session with the Security Access Manager policy server process.
After the SSL session is established, the classes can send administration requests to
the policy server.

The Security Access Manager policy server component services these requests in
the same manner that it would service any other incoming requests.

System administrators also can use the pdadmin command-line interface to
accomplish Security Access Manager administration tasks. The Java administration
classes and methods map closely to these commands. Appendix C, “Administration
API equivalents,” on page 67 describes the commands that match Java
administration API methods. Some Java methods do not have a pdadmin
command-line equivalent.

Note: Do not use the svrsslcfg command-line interface with the Java applications.
Use the SvrSslCfg Java class to provide this feature.

Accessing the Javadoc HTML documentation
This section explains where to access the Javadoc HTML documentation so you can
add authorization and security services to Java application.

To add IBM Security Access Manager for Web authorization and security services
to new or existing Java applications, use the Javadoc information provided with
the Security Access Manager application developer kit (ADK) along with this book.

Consult the Javadoc HTML documentation for deprecated Java APIs before you
update existing IBM Security Access Manager for Web application.

Copy the Javadoc HTML information stored in the entire AM_BASE/nls/javadocs
directory tree, to another location on your development system. Then, uninstall the
Security Access Manager ADK and runtime components. Only the IBM Security
Access Manager Runtime for Java component is necessary for running Java
applications. See Table 1 on page 3 for the Javadoc installation location.

Other ways to manipulate administration objects
You can use the Java administration APIs to manipulate administration objects.
Other than that, you also can use the pdadmin command-line interface,
Administration C API, and Registry Direct Java API to manipulate administration
objects.

pdadmin command-line interface (CLI)
The pdadmin command-line interface is explained in the IBM Security Access
Manager for Web: Command Reference.

Administration C API
The administration C API provides support for these administration
objects. Refer to the IBM Security Access Manager for Web: Administration C
API Developer Reference for details.

2 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Registry Direct Java API
The Registry Direct API directly accesses the underlying Security Access
Manager registry rather than through Authorization servers or Policy
Server. The API also provides access to most of the underlying registry
user attributes and the attributes available through the traditional Security
Access Manager Java API. See the “Registry Direct Java API” on page 84
section for details.

Java administration API components

The administration API consists of the following components:
v The administration Java classes
v Javadoc information for the associated Java classes and methods
v A demonstration application

The administration API Java classes are distributed in the Security Access Manager
Java runtime component for each platform. The remaining administration API
components are distributed in the Security Access Manager Application Developer
Kit component.

Application development kit
The Javadoc information associated with the administration Java classes, methods,
and examples are in the Security Access Manager application developer kit (ADK)
component package.

Table 1 lists the files that are installed as part of the Security Access Manager ADK
component. The PD.jar file, even though it is installed as part of the Security
Access Manager Java runtime component, is listed in the table for completeness.

Table 1. Administration API application development kit files

Directory Files File description

AM_BASE/nls/javadocs
/pdjrte/index.html

index.html

(and many others)

Javadoc HTML documentation for the Java
classes and methods provided with the Security
Access Manager Java runtime component.

JAVA_HOME/lib/ext PD.jar The Java Archive (JAR) file which contains the
classes and methods associated with the
administration APIs.
Note: When you use the pdjrtecfg
command-line interface to configure the Security
Access Manager Java runtime component to a
particular JRE, this archive file is copied to
JAVA_HOME/lib/ext. You do not have to modify
the CLASSPATH in your environment to access
the classes and methods defined in this archive
file.

For WebSphere 8 JRE, PD.jar is copied in
WAS_HOME/tivoli/tam. If you use the WebSphere
8 JRE stand-alone, or outside of running server
profile JVM, manually add it to your
CLASSPATH.

Chapter 1. Introduction to the administration API 3

Table 1. Administration API application development kit files (continued)

Directory Files File description

AM_BASE/example/
pdadminapi_demo/java

README.PDAdminDemo
PDAdminDemo.java
PDAdminDemo.class
PDAdminDemo$ConsoleEraser.class

A demonstration program is provided to
illustrate the use of the administration Java
APIs. Copy the demonstration program to any
other directory. The readme file explains how to
run and recompile the demonstration program.

AM_BASE/example/
authz_demo/java

PDCallbackHandler.class
PDDemoSetup.class
PDDemoSetup.java
PDJaasDemo$1.class
PDJaasDemo.class
PDJaasDemo.java
PDListObjectsDemo.class
PDListObjectsDemo.java
PDPermissionDemo.class
PDPermissionDemo.java
README.JaznDemo

These files consist of various demonstrations
which illustrate the use of Security Access
Manager's Java authorization APIs. See the
README.JaznDemo for a description on how to run
the various demonstrations.

AM_BASE/example/
local_remote_demo/java

PDLRAuthzDemo1.class
PDLRAuthzDemo1.java
PDLRAuthzDemo2$1.class
PDLRAuthzDemo2$2.class
PDLRAuthzDemo2.class
PDLRAuthzDemo2.java
PDLRExerciseDialog$1.class
PDLRExerciseDialog$2.class
PDLRExerciseDialog$3.class
PDLRExerciseDialog$4.class
PDLRExerciseDialog.class
PDLRExerciseDialog.java
PDLRTestDemo.class
PDLRTestDemo.java
PDtamdemoException.class
PDtamdemoException.java
PDTimer.class
PDTimer.java
README.PDLocalRemoteDemo

These files consist of a demonstration that
illustrates the use of both the local and remote
modes of administration and authorization APIs.
The demonstration provides a graphical user
interface for defining the various setup
parameters. See the README.PDlocalRemoteDemo
for a description on how to generate the
documentation for the demonstration classes.

Building Java applications with the administration API

To develop Java applications that use the Security Access Manager administration
API, you must install and configure the required software.

Security Access Manager software requirements
You must install and configure a secure domain. If you do not have secure domain
installed, install one before beginning application development.

A minimum installation consists of a single system with the following Security
Access Manager components installed:
v Security Access Manager runtime environment (see the note about the

installation prerequisite)
v Security Access Manager Java runtime component
v Security Access Manager policy server
v Security Access Manager ADK

4 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

If you already have a Security Access Manager secure domain installed and want
to add a development system to the domain, the minimum Security Access
Manager installation consists of the following components:
v Security Access Manager runtime environment (see the note about the

installation prerequisite)
v Security Access Manager Java runtime component
v Security Access Manager ADK

For Security Access Manager installation instructions, see the corresponding section
in the IBM Security Access Manager for Web: Installation Guide for your operating
system platform.

Note: The installation of Security Access Manager requires the installation of the
Security Access Manager runtime component. This runtime component is not
required for developing or deploying Java applications. In this specific situation,
you can reclaim the disk space that is used by the Security Access Manager ADK
and runtime components while saving the Javadoc HTML information and the
example files from the ADK component.

To reclaim this disk space, copy the Javadoc information, consisting of the entire
AM_BASE/nls/javadocs directory tree, and copy the sample Java program, in the
AM_BASE/example directory tree, to another location on your development system
and then uninstall the Security Access Manager ADK and runtime components.

Configuration of the Java runtime component to a particular
Java runtime environment

Configure the IBM Security Access Manager Runtime for Java component to use
the proper JRE on the system by using the pdjrtecfg command. The Security
Access Manager Java runtime component can be configured to several different
JREs on the same system, if required. See the IBM Security Access Manager for Web:
Installation Guide for details.

Configuration of the Java administration classes

The com.tivoli.pd.jcfg.SvrSslCfg Java class must be used to configure the
administration Java APIs. See the IBM Security Access Manager for Web:
Authorization Java Classes Developer Reference for details on the SvrSslCfg utility.

Note:

1. Do not use the svrsslcfg command-line interface to create configuration files
that are to be used with Java applications.

2. The com.tivoli.mts.SvrSslCfg class provided in previous versions of Security
Access Manager and IBM SecureWay Policy Director has been deprecated. Use
the new com.tivoli.pd.jcfg.SvrSslCfg class instead.

Security requirements

To run a Java application in the context of a Java security manager, the application
must have proper Java permissions to use the administration Java APIs. If the
application is not installed as a Java extension in the JAVA_HOME/lib/ext directory,
an entry must be added to the JAVA_HOME/lib/security/java.policy file.

Chapter 1. Introduction to the administration API 5

To grant the necessary permission to the Java applications located in the
/sb/pdsb/export/classes directory, and all its subdirectories, the necessary Java
permissions to use authorization Java classes and methods, add a statement like
the following to the java.policy file:

Invoke administration Java classes and methods from a privileged block,
doPrivileged(), to alleviate the need for the application callers to have this Java
permission as well.

The PD.jar file is signed, but verification of the signing of JAR files is not
supported in this version of Security Access Manager.

Java administration API example program

The Security Access Manager ADK includes the complete Java source code for an
example program that demonstrates the use of the administration Java classes.

The example program demonstrates how to perform the following tasks:
v Initialize an administration API security context
v Display an error message
v Create a new Security Access Manager user
v Set a user account to be valid
v Create a new group
v Add the new user to the group
v Delete a group
v Delete a user

Deployment of a Java administration API application
Java applications that have been developed using the Security Access Manager
administration API must be run on systems that are configured as part of a
Security Access Manager secure domain.

To run an administration Java application, you must have installed the Security
Access Manager Java runtime component.

Note: Information about installing the Security Access Manager Java runtime
component can be found in the IBM Security Access Manager for Web: Installation
Guide.

// Give applications in /sb/pdsb/export/classes and
// its subdirectories access to the Access Manager
// Administration APIs
grant codeBase "file:/sb/pdsb/export/classes/-" {
permission javax.security.auth.AuthPermission "PDAdmin";
};

Figure 1. Granting Java permission to applications

6 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Gathering of problem determination information

Security Access Manager components can be configured to log information to one
or more trace files. You can enable tracing for the policy server, the authorization
server, the Java runtime component, or any system using the Security Access
Manager runtime environment.

Enabling tracing on the policy server

Procedure
1. Edit the /etc/pdmgrd_routing file, located in the installation directory for the

Security Access Manager policy server.
2. Uncomment the last line.
3. Shut down and restart the policy server daemon pdmgrd.

Enabling tracing on the authorization server
Edit the /etc/pdacld_routing file to enable tracing on the authorization server

Procedure
1. Open the /etc/pdacld_routing file, in the installation directory for the Security

Access Manager authorization server.

Note: pdacld_routing applies to the default authorization server. If multiple
instances of the authorization server exist, each routing file is prefixed with the
instance name. For example, if an authorization server instance name is
instance1, the routing file becomes instance1-pdacld_routing.

2. Uncomment the last line.
3. Shut down and restart the authorization server daemon, pdacld.

Enabling tracing in the Java runtime component
Enable tracing in the Java runtime component by editing the properties file settings
that the com.tivoli.pd.jcfg.SvrSslCfg command creates.

About this task

Tracing for the Security Access Manager Java runtime component is controlled by
the properties file settings the com.tivoli.pd.jcfg.SvrSslCfg command create.

Procedure
1. Edit the properties file created.
2. Update the line associated with the required application-server-name to set

isLogging to true:
baseGroup.PDJapplication-server-nameTraceLogger.isLogging=true

Each Java application can be configured to use a different properties file, and
the properties file can have any name and be located in any directory.
The PDJLog.properties file, located in the PolicyDirector subdirectory of the
associated JRE, is installed by the Security Access Manager Java runtime
environment component. This properties file is associated with, and can be
used to enable tracing in, the pdjrtecfg command as well as the
com.tivoli.pd.jcfg.SvrSslCfg command.

Chapter 1. Introduction to the administration API 7

Gathering of message logs
Message logs associated with applications that are configured bu using the
com.tivoli.pd.jcfg.SvrSslCfg command are, by default, which is written to a set
of three files: msg__application_name1.log, msg__application_name2.log, and
msg__application_name3.log, where application_name is the name that is specified
with the appSvr parameter of SvrSslCfg.

Each file is 512 KB in size, and the msg__application_name1.log file always
contains the latest messages.

The number, size, and base name of these files can be configured by using the
options in the configuration file.

Note: There are two underscore characters (_) following the characters msg in the
default file names.

The PDJLog.properties file controls the message logging for Java programs that
are not configured with the com.tivoli.pd.jcfg.SvrSslCfg command. This
properties file specifies different file names for each class of Security Access
Manager messages: FATAL, ERROR, WARNING, NOTICE, or NOTICEVERBOSE.
Each class of message is written to a set of three files, with names of the following
form:
msg__amj_fatalN.log
msg__amj_errorN.log
msg__amj_warningN.log
msg__amj_noticeN.log
msg__amj_noticeverboseN.log

For more information about message logging, see the IBM Security Access Manager
for Web: Troubleshooting Guide.

Gathering of trace logs
Trace logs associated with applications that are configured by using the
com.tivoli.pd.jcfg.SvrSslCfg command are, by default, which is written to a set
of three files: trace__application_name1.log, trace__application_name2.log, and
trace__application_name3.log, where application_name is the name that is specified
with the appSvr parameter of SvrSslCfg.

Each file is 512 KB in size, and the trace__application_name1.log file always
contains the latest trace entries.

The number, size, and base name of these files can be configured by using the
options in the configuration file.

Note: There are two underscore characters (_) following the characters trace in the
default file names.

The PDJLog.properties file controls the trace logging for Java programs that are
not configured with the com.tivoli.pd.jcfg.SvrSslCfg command. By default, this
trace output is directed to a set of three files that are called trace__amj1.log,
trace__amj2.log, and trace__amj3.log. The number, size, and base name of these
files can be configured by using the options in the PDJLog.properties file.

For more information, see the IBM Security Access Manager for Web: Troubleshooting
Guide.

8 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Chapter 2. Using the administration API

Each Java application that uses the administration API must perform certain tasks
necessary for API initialization, shut down, and error handling. The administration
API provides methods for each of these tasks.

The following sections in this chapter describe the supported functions:
v “Administration objects”
v “Initializing the administration API” on page 12
v “Establishing a security context” on page 12
v “Manipulating administration objects” on page 15
v “Messages” on page 18
v “PDContext application design considerations” on page 20
v “Handling errors” on page 19
v “Shutting down the administration API” on page 19
v “Character-based data considerations” on page 20

Note: If you are familiar with the administration C API described in the IBM
Security Access Manager for Web: Administration C API Developer Reference, see
Appendix A, “Differences between the C and Java administration API,” on page 63.

Administration objects
Each Security Access Manager administration object that can be manipulated
directly from a Java application is represented by a corresponding Java class. This
section describes the administration objects.

The following objects are supported in this version of Security Access Manager:

PDAdmin
This class is used to initialize and shut down the operations associated
with using the Security Access Manager administration classes and
methods. The methods in this class are applicable to all administration
objects.

PDAuthzRule
This class represents a Security Access Manager authorization rule.

PDContext
This class encapsulates the information needed to establish a
communication session between the Java application and the Security
Access Manager policy server. Both user ID and password-based and
certificate-based authentication are supported by this class. Multiple
PDContext objects can be created and used within the same Java virtual
machine (JVM).

PDContext creation is a resource exhaustive operation. Although there is no
upper limit to creating multiple PDContext objects, system resource
limitation eventually determines how many can be successfully created
and used. Create and pool only few PDContext objects in the application
environment. Reuse the small number of created PDContext objects
whenever possible within the same application.

© Copyright IBM Corp. 2002, 2012 9

Because each user application needs are different, pooling PDContext
objects is not mandatory. Pool PDContext objects if you have a server
application that makes numerous calls. If you have an application that
makes only an occasional call, or if you have various stand-alone
applications which make calls, pooling is not necessary.

PDDomain
This class represents a Security Access Manager policy server domain.

PDUser
This class represents a user in the Security Access Manager policy server.

PDGroup
This class represents a group in the Security Access Manager policy server.

PDPolicy
This class represents the policy information that is associated with a
particular Security Access Manager user or, in the case of the global policy,
that is associated with all users. The PDPolicy class is used to set and
retrieve account policy information from the user registry on a global or
per-user basis.

PDAcl This class represents an access control list (ACL), which in turn consists of
a list of ACL entries.

PDAclEntry
This class represents an entry in an ACL.

PDAclEntryUser
This class represents a user ACL entry and controls access for a particular
user.

PDAclEntryGroup
This class represents a group ACL entry and controls access for all
members in a group.

PDAclEntryAnyOther
This class represents the any-other, or any-other authenticated, entry in an
ACL. This ACL entry applies to any user who is authenticated into the
Security Access Manager secure domain but is not included in a separate
user or group ACL entry.

PDAclEntryUnAuth
This class represents the unauthenticated user ACL entry. This ACL entry
is applied to any user who was not authenticated by Security Access
Manager.

PDProtObject
This class represents a protected object. A protected object represents a
resource that is to be protected, and it has an ACL associated with it. Each
protected object is uniquely identified by an ID.

PDProtObjectSpace
This class represents the protected object space object. An object space is a
logical grouping of protected objects which represents a set of related
resources to be protected. Each object space is uniquely identified by an ID.

PDPop
This class represents a protected object policy, or POP, which can be
attached to a PDProtObject object.

10 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

PDAdmSvcPobj
This class represents the value of a Security Access Manager administration
service protected object.

PDAction
This class represents a permission.

PDActionGroup
This class represents a collection of PDAction objects.

PDRgyGroupName
This class represents the name of a Security Access Manager group in the
underlying user registry.

PDRgyUserName
This class represents the name of a Security Access Manager user in the
underlying user registry.

PDRgyName
This class represents the name of a Security Access Manager object in the
underlying user registry. This object is either a Security Access Manager
user name or group name.

PDAppSvrSpecLocal
This class represents configuration information for a local Java application
server.

PDAppSvrSpecRemote
This class represents configuration information for a remote Java
application server.

PDSvrInfo
This class represents a Security Access Manager policy server or
authorization server and is used when creating or changing the
configuration for a Java application server.

PDAppSvrInfo
This class represents a read-only view of a Java application server
configuration information.

PDServer
This class represents a Security Access Manager policy server, authorization
server, or other application server.

PDSSOResource
This class represents a single sign-on (SSO) resource.

PDSSOResourceGroup
This class represents a single sign-on (SSO) resource group.

PDSSOCred.CredID
This class represents the credential identification information for each
member of the list returned by the PDSSOCred.listSSOCreds method.

PDSSOCred.CredInfo
This class represents the credential information for each member of the list
returned by the PDSSOCred.listAndShowSSOCreds method.

PDException
This class creates an exception to reflect that an error or other exceptional
condition occurred.

Chapter 2. Using the administration API 11

PDMessage
This class represents a single Security Access Manager message and
includes the message code, severity, and the localized message text.

PDMessages
This class represents a list of one or more Security Access Manager
messages.

The methods associated with these classes are threadsafe.

Common classes
This section describes class used for both administration and authorization
methods.

PDAttrs
This class represents a list of Security Access Manager attributes.

PDAttrValue
This class represents the value of a Security Access Manager attribute.

PDAttrValues
This class represents a collection of values for a particular attribute that is
unordered and that does not allow duplicates.

PDAttrValueList
This class represents a collection of values for a particular attribute that is
ordered and allows duplicates.

Initializing the administration API
Before using the administration API in a Java application, you must initialize the
PDAdmin object.

This initialization is accomplished by calling the PDAdmin.initialize() method, by
passing the name of the application and a PDMessages object. Messages are
described in more detail in “Messages” on page 18.

See the following sample administration API initialization:
PDMessages messages = new PDMessages();

PDAdmin.initialize("myApplicationName", messages);

Establishing a security context
After initializing the administration API, you must create an SSL connection
between the Java application and the Security Access Manager policy server.

This connection is referred to as a security context by the administration API. The
security context provides for the secure transfer of administrative requests and
data between the Java application and the policy server.

A security context can be established using either user ID and password-based
authentication or certificate-based authentication. In either case, the security
context is represented by the PDContext object. Multiple PDContext objects can be
created and used within the same JVM.

12 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

PDContext creation is a resource exhaustive operation. Although there is no upper
limit to creating multiple PDContext objects, system resource limitation eventually
determines how many can be successfully created and used. Create and pool only
a few PDContext objects in the application environment.

For more Information about Java authentication classes and methods, see the IBM
Security Access Manager for Web: Authorization Java Classes Developer Reference.

User ID and password-based authentication
This section describes the information you need to establish a security context with
user ID and password authentication.

To establish a security context using user ID and password-based authentication,
you need the following information:

admin user ID
A Security Access Manager user ID with the appropriate administrative
authority, such as sec_master.

admin password
The password associated with the administrator user ID.

locale The locale that is to be used for returning message data to the application.
When this value is not supplied as a key parameter, the PDContext
constructor uses the default locale.

domain
The Security Access Manager policy server domain to which the user is
authenticated. When this value is not supplied, the domain is obtained
from the configuration file URL. When the configuration file URL does not
contain domain information, the local domain associated with the Java
Runtime Environment is used.

configuration file URL
The uniform resource locator (URL) to the configuration file created by the
Java SvrSslCfg class. The URL must use the file:/// format.

Note: Do not use the svrsslcfg command-line interface to create a
configuration file that is to be used by a Java application.

To create the security context, create a PDContext object as shown in Figure 2 on
page 14.

Chapter 2. Using the administration API 13

The contents of the configuration file created by the Java SvrSslCfg class is not
externalized and is subject to change without notice. Users must not use the
information in the configuration file directly.

Certificate-based authentication
This section describes the information you need to establish a security context with
certificate-based authentication.

To establish a security context using certificate-based authentication, you need the
following information:

locale The locale that is to be used for returning message data to the application.

configuration file URL
The URL to the configuration file created by the Java SvrSslCfg class. The
URL must use the file:/// format.

Note: Do not use the svrsslcfg command-line interface to create a
configuration file that is to be used by a Java application.

To create the security context, create a PDContext object as shown in Figure 3.

The contents of the configuration file created by the Java SvrSslCfg class is not
externalized and is subject to change without notice. Users must not use the
information in the configuration file directly.

// Create locale for US English

Locale myLocale = new Locale("ENGLISH", "US");

/*
Create a security context using our locale. Need to supply a user ID with
administrative privileges in Access Manager (like sec_master) along with
its password and a URL of the form file:/// to the configuration file created
by the SvrSslCfg class.
*/

PDContext myContext = new PDContext(myLocale,
adminName,
adminPassword,
domain,
configFileURL);

Figure 2. Creating a security context using user ID and password-based authentication

// Create locale for US English

Locale myLocale = new Locale("ENGLISH", "US");

/*
Create a security context using certificate-based authentication.
The URL to the configuration file must use the file:/// format. The
configuration file is created by the SvrSslCfg class.
*/

PDContext myContext = new PDContext(myLocale,
configFileURL);

Figure 3. Creating a security context using certificate-based authentication

14 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Manipulating administration objects
Each Java class, which represents an administration object, provides static methods
to create, list, modify, and delete objects stored on the Security Access Manager
policy server.

Changes to administration objects on the policy server are immediately available to
other applications.

The constructor of each class can be used to obtain a local copy of a specific
administration object. You can use the class instance methods for the following
purposes:
v To retrieve data from the local object.
v To modify both the local copy of the object and the object stored on the policy

server.

Use static methods for command-line and batch-oriented applications by using the
administration API. For interactive applications, use instance methods.

Creating objects
You can use the administration API to create Security Access Manager objects
necessary to complete administrative tasks.

Before you create an object, you must initialize the administration API and
establish a security context.

To create an object, use the static creation method associated with the
administration object. For example, to create a Security Access Manager user, you
would use the PDUser.createUser() static method. This method results in the
Security Access Manager user being created immediately on the policy server. See
the following static method sample, Creating a user.

Chapter 2. Using the administration API 15

Creating a user

/*--
* Create a user, using the PDUser.createUser() static method, and
* assign the user to a specific group. This method sends a
* request to the policy server to create the user.
*--
*/

// Set up all of the user’s attributes
String name = "Stephanie Luser";
String firstName = "Stephanie";
String lastName = "Luser";
String password = "herpassword";
String description = "Descriptive text for Stephanie Luser";
String rgyName = "cn=" + name + "," + rgySuffix;
PDRgyUserName pdRgyUserName =
new PDRgyUserName(rgyName, firstName, lastName);
boolean ssoUser = false;
boolean pwdPolicy = true;
ArrayList groupList = new ArrayList();
groupList.add(groupAdministrativeAssistants);
messages.clear();

PDUser.createUser(mySecurityContext,
name,
pdRgyUserName,
description,
password.toCharArray(),
groupList,
ssoUser,
pwdPolicy,
messages);

Obtaining a local copy of an object
To obtain a local copy of an administration object, use the constructor for the Java
class that represents the administration object.

For example, to get a copy of the PDUser object representing a particular Security
Access Manager user, you would use the PDUser constructor as shown in Figure 4.

After obtaining a local copy of the administration object, use the instance methods
on the object to retrieve or set data associated with the object.

/*--
* Obtain a user using the PDUser constructor.
*--
*/

// Set up all of the user’s attributes
String name = "Zachary Wommbat";
String firstName = "Zachary";
String lastName = "Wommbat";
String rgyName = "cn=" + name + "," + rgySuffix;
PDRgyUserName pdRgyUserName =
new PDRgyUserName(rgyName, firstName, lastName);
messages.clear()

PDUser user = new PDUser(mySecurityContext,
pdRgyUserName,
messages);

Figure 4. Getting a local copy of a PDUser object

16 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Note: You can obtain the local copy of the administration object and use
command-line interface, the administration C API or Java class methods to change
the object on the policy server. A few instance methods can detect inconsistencies
between data in the local object and data in the policy server, but other instances
lack this capability. Ensure that changes made to administration objects are
consistent and predictable while using the instance methods.

Reading object values
You can view administration object data by using the instance methods associated
with the administration object.

To use the instance methods, first obtain a local copy of the object, as outlined in
“Obtaining a local copy of an object” on page 16. After obtaining the object,
retrieve information about the object by using the instance methods. For example,
to get the description associated with a Security Access Manager user from a local
copy of the PDUser object:
userDescription = user.getDescription();

Setting object values
You can change administration object data with the instance methods associated
with the administration object. You can also change administration object data with
the static methods associated with the Java class representing the administration
object.

Before using the instance methods, you must obtain a local copy of the object, as
outlined in “Obtaining a local copy of an object” on page 16. After obtaining the
object, you can change information about the object using the instance methods.
For example, to disable the account associated with a Security Access Manager
user from a local copy of the PDUser object, use:
user.setAccountValid(mySecurityContext,

false, // Disable the account
messages);

The instance method changes both local copy of the administration object as well
as the object stored on the policy server.

To update the PDUser object on the policy server, use the static method:
PDUser.setAccountValid(mySecurityContext,

name,
false, // Disable the account
messages);

Listing objects
Some administrative tasks require the Java application to obtain a list of objects.
This section describes the method for listing objects based on their Java class.

For example, an administrator must review the list of existing users to decide
whether a new user must be created.

Table 2 on page 18 lists the appropriate method to use to list objects based on the
Java class that represents an administration object.

Chapter 2. Using the administration API 17

Table 2. Methods used to list objects

Object Method to list objects

PDAcl PDAcl.listAcls

PDGroup PDGroup.listGroups

PDProtObject
PDProtObject.listProtObjects
PDProtObject.listProtObjectsByAcl

PDProtObjectSpace PDProtObjectSpace.listProtObjectSpaces

PDUser PDUser.listUsers

PDDomain PDDomain.listDomains

PDAuthzRule PDAuthzRule.listAuthzRules

Deleting objects
To delete an object, use the static deletion method associated with the
administration object.

For example, to delete a Security Access Manager user, use the
PDUser.deleteUser() static method. This method deletes the Security Access
Manager user from the policy server immediately. See the following sample static
method, Deleting a user.

Deleting a user

/*--
* Delete a user
*--
*/

// Set up all of the user’s attributes
String name = "Leah Allen";
messages.clear();

PDUser.deleteUser(mySecurityContext,
name,
true,
messages);

Messages
All constructors, static methods, and instance methods have an output parameter
consisting of a PDMessages object. This section describes the attributes of a
PDMessages object.

In addition, exceptions generated by Security Access Manager contain a PDMessages
object.

A PDMessages object can be empty or contain one or more PDMessages objects. Each
PDMessages object represents a single message and consists of the following
attributes:

Message code
A hexadecimal number that uniquely identifies the message.

Message text
The localized text of the message.

18 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Severity
An indication of the severity of the message:
v Informational
v Warning
v Error

The message text is localized based on the PDContext object used when the method
is invoked except in the case of read-only instance method on a local
administration object.

When a method completes successfully, check the PDMessages object for any
informational or warning messages associated with the action performed. If an
error is encountered during processing, a PDException exception is thrown, which
might have messages associated with it.

The same PDMessages object can be used on multiple method invocations. Use the
clear() method to clear the contents of the PDMessages object between method
invocations.

The IBM Security Access Manager for Web: Error Message Reference contains a list of
the messages issued by Security Access Manager along with an explanation of the
message and the suggested corrective action. Messages are indexed by hexadecimal
and decimal message number, as well as by message identifier.

Handling errors
All constructors, instance methods, and static methods generate a PDException
exception when an error or unexpected event occurs. This exception contains a
PDMessages object that contains one or more PDMessages objects.

For more information about messages and message handling, see “Messages” on
page 18.

A PDException object also might contain a wrapped exception thrown by another
Java component. Information about this wrapped exception can be obtained using
the methods of the PDException object.

The IBM Security Access Manager for Web: Error Message Reference contains a list of
the messages issued by Security Access Manager along with an explanation of the
message and the suggested corrective action.

Shutting down the administration API
After using the administration API, you must shut down the PDAdmin object.

This shutdown is accomplished by calling the PDAdmin.shutdown() method as
shown in the following example:

Shutting down the administration API

PDAdmin.shutdown(messages);

Chapter 2. Using the administration API 19

Character-based data considerations
Character-based data, such as user IDs and passwords, are stored and manipulated
as strings of Unicode characters by the Java classes and methods.

This character data is converted from Unicode into UTF-8 (Universal Character Set
Transformation Format-8) before being sent to the Security Access Manager policy
server and stored in the user registry. Similarly, data from the user registry and the
policy server is received in UTF-8 and converted into Unicode. Unicode and UTF-8
both allow any character in any locale to be uniquely represented.

PDContext application design considerations
This section explains some aspects of PDContext application design to consider.

Note:

For detailed information about PDContext pooling class, see the Javadoc HTML
documentation. For details in accessing the Javadoc HTML, see the Table 1 on page
3 section.

There are a few points to consider before you use the PDContext class to design
applications, such as:
v How many applications use PDContext concurrently?
v How many users per application use PDContext?
v Will the application initiate administrative requests to the Policy Server? If yes,

is it handled by a single user or many users?

The most important concept to remember when you design an application that
uses the PDContext class is that PDContext objects must be reused whenever
possible. Do not create a PDContext object for every operation. Doing so quickly
exhaust the sessions available on the server.

For every PDContext object created by your application, a session is created and
maintained on the Policy Server. The validity of the session is controlled by the
ssl-v3-timeout parameter in the pd.conf file. The default value for
ssl-v3-timeout in thepd.conf file is 7200 seconds (2 hours).

Each PDContext object can manage several connections. However, only one
connection is active per context at a time. Other connections are queued up and
blocked until the current connection is completed, allowing the next connection to
complete. By default each PDContext object supports 10 connections. The
connection support is advantageous in multithreaded applications which allow
multiple threads to easily share a PDContext. This approach is best for application
with few threads and only occasional requests to the policy server.

The number of PDContext objects that are created represents the number of
concurrent requests that are handled by your application. For applications that
require many threads and frequent requests to the policy server, the PDContext
objects must be maintained in a pool where PDContext objects are checked out as
needed and returned when the operation completes. Depending on the number of
threads and the number PDContext objects in the pool, the approach yields good
performance results.

20 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Application requirements vary considerably depending on the goal. As a result, we
can provide only general guidelines on a PDContext Pool design. Basic
requirements include:
v Maintain the pool as a private class variable.
v All methods that access the pool must be synchronized.
v Start with a pool size of 10 PDContext objects and adjust as needed to improve

performance.
v Creating PDContext objects can take a lot of time. Avoid the use of large pool

sizes.
v To improve overall performance, do not create PDContext objects immediately.

Initialize the pool when the application starts, instead.

Chapter 2. Using the administration API 21

22 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Chapter 3. Administering users and groups

The administration API provides a collection of classes and methods for
administering Security Access Manager users and groups. This section describes
the tasks that those classes and methods accomplish.

Information about Security Access Manager users and groups is stored in the user
registry. You can use the administration API to both modify and access user and
group settings in the user registry. In addition, the administration API provides
classes and methods to administer password and account policy settings both on a
per user and global basis.

Security Access Manager provides the pdadmin command-line interface (CLI) that
accomplishes many of the same user, group, and policy administration tasks.
Application developers who have previously used the pdadmin command to
manage a Security Access Manager secure domain finds the administration API
functions straightforward to implement.

This chapter contains the following topics:
v “Administering users”
v “Administering user information” on page 24
v “Administering user account policies” on page 25
v “Administering user password policies” on page 27
v “Administering groups” on page 29
v “Administering group information” on page 29

Administering users
The administration API provides classes and methods for creating, accessing,
listing, and deleting Security Access Manager user information within the user
registry.

The name of a user is not case-sensitive. The following user names all refer to the
same Security Access Manager user:
v user

v USER

v User

v UsEr

The PDUser.createUser method creates a user in the user registry that is used by
the Security Access Manager policy server.

Note: When a user definition exists in the user registry, use the
PDUser.importUser method instead.

The PDUser.importUser method imports an existing user definition from your user
registry into Security Access Manager and allows the user definition to be
managed by Security Access Manager.

Use the PDUser.deleteUser method to delete a user from Security Access Manager.

© Copyright IBM Corp. 2002, 2012 23

Table 3 lists the user administration functions.

User registry difference: Leading and trailing blank spaces in a user name do not
make the name unique when using an LDAP or Active Directory user registry.
However, leading and trailing blanks do make the user name unique when using a
Domino server as a user registry. To keep name processing consistent regardless of
what user registry is being used, do not define user names with leading or trailing
blanks.

Table 3. Administering users

Method Description

PDUser.createUser Creates the specified user.

PDUser.importUser Creates a Security Access
Manager user by importing an
existing user from your user
registry.

PDUser.deleteUser Deletes the specified user.

PDUser.listUsers Lists Security Access Manager
users.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering user information
The administration API allows you to administer the information associated with a
Security Access Manager user.

When a user account has been created in the user registry, you can set and get
various information about the user. You must create a security context between the
calling application and the Security Access Manager policy server before you can
access the user registry. You can obtain the user registry information for a user
object by specifying either the Security Access Manager user name or the user
registry name.

Table 4 lists the methods available for administering user information.

Table 4. Administering user information

Methods Description

PDUser constructor Instantiates a user object for
the specified Security Access
Manager or user registry
name.

PDUser object.getDescription Returns the user description.

PDUser object.getRgyName Returns the user registry
name for the user.

PDUser object.getId Returns the name of the
object.

PDUser object.getFirstName Returns the first-name
attribute for the user.

24 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 4. Administering user information (continued)

Methods Description

PDUser object.getLastName Returns the last-name
attribute for the user.

PDUSer object.getLastLogin Returns the last login time.

PDUser object.getPolicy Returns the password and
account policy settings
associated with the user.

PDUser object.getGroups Lists the groups in which
the user is a member.

PDUser object.isAccountValid Returns the account-valid
indicator for the user.

PDUser object.isPDUser Returns an indicator
whether the user is a
Security Access Manager
user.

PDUser object.isSSOUser Returns an indicator
whether the user has single
sign-on capabilities.

PDUser.setDescription
PDUser object.set Description

Sets a user description.

PDUser.setAccountValid
PDUser object.setAccountValid

Enables or disables a user
account.

PDUser.setSSOUser
PDUser object.setSSOUser

Enables or disables the
single signon capabilities of
a user.

PDUser object.isPasswordValid Returns the enabled
indicator for the user
password.

PDUser.setPassword
PDUser object.setPassword

Sets a user password.

PDUser.setPasswordValid
PDUser object.setPasswordValid

Enables or disables a user
password.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering user account policies
You can manage user access by setting account policies. You can specify policies
that apply either only to a single user or for all users.

When a user account policy attribute is set to a value and enforced, the value
always takes precedence over a value that is set for the general policy. This is true
even if the value that is set for the general policy is more restrictive.

Chapter 3. Administering users and groups 25

If an account policy attribute for a user is not enforced, then the value is set for the
general policy. If that value is set and enforced, then the value is applied for the
user.

Table 5 describes the administration API methods that are used to modify or access
account policies.

Table 5. Administering user account policies

Method Description

PDUser.getUserRgy Determines which type of user
registry is configured for the
Security Access Manager policy
server.

PDPolicy constructor Instantiates a policy object for a
user, or for all users in the case of
the global policy.

PDPolicy object.acctDisableTimeEnforced Returns an indicator whether the
account disable time interval
policy is enforced.

PDPolicy object.acctDisableTimeUnlimited Returns an indicator whether the
account disable time interval
policy is unlimited.

PDPolicy object.acctExpDateEnforced Returns an indicator whether the
account expiration date policy is
enforced.

PDPolicy object.acctExpDateUnlimited Returns an indicator whether the
account expiration date policy is
unlimited.

PDPolicy object.getAcctExpDate Returns the account expiration
date for user accounts.

PDPolicy object.getAcctDisableTimeInterval Returns the amount of time to
disable a user account when the
maximum number of login
failures is exceeded.

PDPolicy object.PDPolicy.getMaxConcurrentWebSessions Returns the maximum concurrent
web sessions that are allowed.

PDPolicy object.getMaxFailedLogins Returns the maximum number of
failed logins that are allowed for
user accounts.

PDPolicy object.getAccessibleDays
PDPolicy object.getAccessStartTime
PDPolicy object.getAccessEndTime
PDPolicy object.getAccessTimezone

Returns the time of day access
policy for user accounts.

PDPolicy.maxConcurrentWebSessionsDisplaced Returns an indicator whether the
maximum concurrent web
sessions policy is displaced.

PDPolicy.maxConcurrentWebSessionsEnforced Returns an indicator whether the
maximum concurrent web
sessions policy is enforced.

PDPolicy.maxConcurrentWebSessionsUnlimited Returns an indicator whether the
maximum concurrent web
sessions policy is unlimited.

26 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 5. Administering user account policies (continued)

Method Description

PDPolicy object.maxFailedLoginsEnforced Returns an indicator whether the
maximum failed login policy is
enforced.

PDPolicy.setAcctExpDate
PDPolicy object.setAcctExpDate

Sets the account expiration date
for user accounts.

PDPolicy.setAcctDisableTime
PDPolicy object.setAcctDisableTime

Sets the amount of time to
disable a user account when the
maximum number of login
failure is exceeded.

PDPolicy.setMaxConcurrentWebSessions
PDPolicy object.PDPolicy.setMaxConcurrentWebSessions

Sets the maximum concurrent
Web sessions that are allowed.

PDPolicy.setMaxFailedLogins
PDPolicy object.setMaxFailedLogins

Sets the maximum number of
failed logins allowed for user
accounts.

PDPolicy.setTodAccess
PDPolicy object.setTodAccess

Sets the time of day access for the
account for user accounts.
Note: When setting a password
policy, you provide a list of days,
start time, and end time. The
start time and end time apply to
each day on the list. If the
specified start time is later than
the specified end time, then the
access is allowed until the
specified end time is reached the
next day.

PDPolicy object.todAccessEnforced Returns an indicator whether the
time-of-day access policy is
enforced.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering user password policies
You can manage user access by setting password attributes. You can specify
policies that apply either only to a single user or for all users.

When a user password policy attribute is set to a value and enforced, the value
always takes precedence over the value that is set for the general policy. This is
true regardless of which value is more restrictive. If a password policy attribute for
a user is not enforced, then the value is set for the general policy, if that value is
set and enforced, is in effect for the user.

Table 6 on page 28 describes the administration API methods that you can use to
modify or access password policies.

Chapter 3. Administering users and groups 27

Table 6. Administering user password policies

Method Description

PDPolicy constructor Instantiates a policy object for a user, or
for all users in the case of the global
policy.

PDPolicy object.getMaxPwdAge Returns the password expiration date.

PDPolicy object.getMaxPwdRepChars Returns the maximum number of
repeated characters that are allowed in
the password.

PDPolicy object.getMinPwdAlphas Returns the minimum number of
alphabetic characters that are allowed in
the password.

PDPolicy object.getMinPwdLen Returns the minimum password length.

PDPolicy object.getMinPwdNonAlphas Returns the minimum number of
nonalphabetic characters that are
allowed in a password.

PDPolicy object.maxPwdAgeEnforced Returns an indicator whether the
maximum password age policy is
enforced.

PDPolicy object.maxPwdRepCharsEnforced Returns an indicator whether the
password maximum repeated characters
policy is enforced.

PDPolicy object.minPwdAlphasEnforced Returns an indicator whether the
password minimum alphabetic
characters required policy is enforced.

PDPolicy object.minPwdLenEnforced Returns an indicator whether the
minimum password length policy is
enforced.

PDPolicy object.minPwdNonAlphasEnforced Returns an indicator whether the
password minimum non-alphabetic
characters policy is enforced.

PDPolicy object.pwdSpacesAllowed Returns an indicator whether spaces are
allowed in a password.

PDPolicy.setMaxPwdAge
PDPolicy object.setMaxPwdAge

Sets the password expiration date.

PDPolicy.setMaxPwdRepChars
PDPolicy object.setMaxPwdRepChars

Sets the maximum number of repeated
characters that are allowed in a
password.

PDPolicy.setMinPwdAlphas
PDPolicy object.setMinPwdAlphas

Sets the minimum number of alphabetic
characters that are allowed in a
password.

PDPolicy.setMinPwdLen
PDPolicy object.setMinPwdLen

Sets the minimum password length.

PDPolicy.setMinPwdNonAlphas
PDPolicy object.setMinPwdNonAlphas

Sets the minimum number of
non-alphabetic characters that are
allowed in a password.

PDPolicy.setPwdSpacesAllowed
PDPolicy object.setPwdSpacesAllowed

Sets policy for whether spaces are
allowed in a password.

28 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering groups
The administration API provides methods for creating, accessing, listing, and
deleting Security Access Manager group information from the user registry.

The name of a group is not case-sensitive. The following group names all pertain
to the same Security Access Manager group:
v group

v GROUP

v Group

v GrOuP

The PDGroup.createGroup method creates a group in the user registry that is used
by the Security Access Manager policy server.

Note: When a group definition exists in the user registry, use the
PDGroup.importGroup method instead.

The PDGroup.importGroup method imports an existing group definition from the
user registry into Security Access Manager and allows the group definition to be
managed by Security Access Manager.

Table 7 lists the group administration functions.

Table 7. Administering groups

Method Description

PDGroup.createGroup Creates the specified group.

PDGroup.importGroup Creates a Security Access Manager group by
importing an existing group from the user
registry.

PDGroup.deleteGroup Deletes the specified group.

PDGroup.listGroups Lists Security Access Manager groups.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering group information
You can manage information that is associated with a group by using the
administration API.

When a group is created in the user registry, you can set and get different pieces of
information about the group. You must create a security context between the
calling application and the Security Access Manager policy server before you can
access the user registry. You can obtain the user registry information for a group
object by specifying either the Security Access Manager group name or the user
registry group name.

Chapter 3. Administering users and groups 29

Table 8 lists the group information administration functions.

Table 8. Administering group attributes

Method Description

PDGroup constructor Instantiates a group object for the specified
Security Access Manager or user registry
name.

PDGroup object.getDescription Returns the group description.

PDGroup object.getRgyName Returns the user registry name for the group.

PDGroup object.getId Returns the Security Access Manager name
for the group.

PDGroup object.isPDGroup Returns an indicator whether the object is a
Security Access Manager group.

PDGroup.setDescription
PDGroup object.setDescription

Sets a group description.

PDGroup object.getMembers Lists the members of a group.

PDGroup.addMembers
PDGroup object.addMembers

Adds users to a group.

PDGroup.removeMembers
PDGroup object.removeMembers

Removes users from a group.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

30 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Chapter 4. Administering protected objects and protected
object spaces

You can use the administration API to create, modify, examine, list, and delete
Security Access Manager protected objects.

These protected objects represent resources that must be secured to enforce your
security policy. You can specify the security policy by applying access control lists
(ACLs), protected object policies (POPs), and authorization rules to the protected
objects.

Security Access Manager protected objects exist within a virtual hierarchy known
as a protected object space. Security Access Manager provides several protected object
spaces by default. You can use the administration API to define new regions of the
protected object space and to define and secure resources that are specific to a
third-party application.

This chapter describes the administration API functions that you can use to
administer protected object spaces and protected objects.

You must be familiar with protected objects before using the administration API.
For an introduction to protected objects, see the chapter about managing protected
objects in the IBM Security Access Manager for Web: Administration Guide.

For an introduction to the use of ACLs, POPs, and authorization rules to secure
protected objects, see the chapters about using access control policies, protected
object policies, and authorization rules in the IBM Security Access Manager for Web:
Administration Guide.

This chapter contains the following topics:
v “Administering protected object spaces”
v “Administering protected objects” on page 32
v “Administering extended attributes for a protected object” on page 34

Administering protected object spaces
You can use the administration API to create and administer a user-defined
protected object space.

You can use this protected object space to define a resource hierarchy that is
specific to a third-party application that uses Security Access Manager
authorization services to enforce a security policy.

User-defined object spaces that are created with the administration API are
dynamic because they can be updated while Security Access Manager is running.

Table 9 on page 32 lists the methods available for administering protected object
spaces.

Note: For an introduction to the creation of protected object spaces, see the
protected object space information in the IBM Security Access Manager for Web:
Administration Guide.

© Copyright IBM Corp. 2002, 2012 31

Table 9. Administering protected object spaces

Methods Description

PDProtObjectSpace.createProtObjectSpace Creates a Security Access Manager protected object space.

PDProtObjectSpace.deleteProtObjectSpace Deletes the specified Security Access Manager protected
object space.

PDProtObjectSpace.listProtObjectSpaces Lists the Security Access Manager protected object spaces.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering protected objects
Define protected objects that reflect the resources that your security policy protects.

The name of a protected object can be of any length and contain any character. The
forward slash (/) character is interpreted to be part of the object hierarchy, which
allows ACLs to be attached at the various points that are indicated by the forward
slash character.

After you create a protected object, you can specify a security policy for it by
defining and attaching ACLs, POPs, authorization rules, or any combination of
these entities.

For more information about the Security Access Manager security concepts, see the
IBM Security Access Manager for Web: Administration Guide.

When you implement protected objects programmatically, use caution. In many
cases, the protected object hierarchy is manually designed, built, and tested by a
security expert. Carefully review the hierarchy to ensure that the security policy is
correctly enforced. If you choose to build protected object hierarchies
programmatically, be sure to test and review the settings for each object before you
deploy the security environment.

Table 10 lists the methods available to administer protected objects.

Table 10. Administering protected objects

Methods Description

PDProtObject.attachAcl
PDProtObject object.attachACL

Attaches the specified access control list to the specified
protected object.

PDProtObject.attachPop
PDProtObject object.attachPop

Attaches a POP to the specified protected object.

PDProtObject.attachAuthzRule
PDProtObj object.attachAuthzRule

Attaches an authorization rule to the specified protected
object.

PDProtObject.createProtObject Creates a Security Access Manager protected object.

PDProtObject.deleteProtObject Deletes the specified Security Access Manager protected
object.

32 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 10. Administering protected objects (continued)

Methods Description

PDProtObject.detachAcl
PDProtObject object.detachAcl

Detaches the access control list from the specified protected
object.

PDProtObject.detachPop
PDProtObject object.detachPop

Detaches a POP from the specified protected object.

PDProtObject.detachAuthzRule
PDProtObj object.detachAuthzRule

Detaches an authorization rule from the specified protected
object.

PDProtObject constructor Instantiates the specified protected object. If the protected
object name specified does not exist, default values are
shown. To determine that a protected object exists, use
PDProtObject.exists.

PDProtObject object.getAclId Gets the name of the ACL attached to the specified
protected object.

PDProtObject object.getEffectiveAclId Gets the name of the ACL in effect for the specified
protected object.

PDProtObject object.getPopId
Gets the name of the POP attached to the specified
protected object.

PDProtObject object.getEffectivePopId
Gets the name of the POP in effect for the specified
protected object.

PDProtObj object.getAuthzRuleId
Gets the name of the authorization rule object that is
attached to the specified protected object.

PDProtObj object.getEffectiveAuthzRuleId
Gets the name of the authorization rule object that is in
effect for the specified protected object.

PDProtObject object.getDescription Gets the description of the specified protected object.

PDProtObject object.getId Gets the name of the specified protected object.

PDProtObject object.isPolicyAttachable Indicates whether a protected object policy or access control
list can be attached to the specified protected object.

PDProtObject object.exists Indicates whether a protected object exists.

PDProtObject object.access Indicates whether a specific action to a specific object is
permitted.

PDProtObject object.multiAccess Indicates whether the specified actions to the specified
objects are permitted.

PDProtObject.listProtObjectsByPop Returns a list of protected objects that have the specified
protected object policy (POP) attached.

PDProtObject.listProtObjects Returns the protected objects contained under the specified
directory.

PDProtObject.listProtObjectsByAcl Returns a list of protected objects that have the specified
access control list attached.

PDProtObject.setDescription
PDProtObject object.setDescription

Sets the description field of the specified protected object.

PDProtObject.setPolicyAttachable
PDProtObject object.setPolicyAttachable

Sets whether a protected object policy or access control list
can be attached to the specified protected object.

Chapter 4. Administering protected objects and protected object spaces 33

Table 10. Administering protected objects (continued)

Methods Description

PDProtObj.listProtObjectsByAuthzRule
Lists the protected objects that have the specified
authorization rule attached.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering extended attributes for a protected object
The extended attributes for a protected object can be created, set, queried, and
deleted.

Protected objects without explicitly defined extended attributes inherit the first
found set of extended attributes, which are defined at the parent object within the
inheritance chain. The found set of extended attributes replaces the empty set of
defined attributes. These inherited attributes are called effective extended attributes.

Table 11 describes the methods for administering extended attributes and effective
extended attributes for a protected object.

Table 11. Administering protected object attributes

Methods Description

PDProtObject.deleteAttribute
PDProtObject object.deleteAttribute

Deletes the specified extended attribute (name
and values) from the specified protected
object.

PDProtObject.deleteAttributeValue
PDProtObject object.deleteAttributeValue

Deletes the specified value from the specified
extended attribute key in the specified
protected object.

PDProtObject.getEffectiveAttributeValues
Displays a list of the values for the effective
extended attribute that is associated with the
specified protected object.

PDProtObject.getEffectiveAttributeNames
Displays a list of all the effective extended
attributes that are associated with the specified
protected object.

PDProtObject.getEffectiveAttributeObjectId Displays the name of the protected object that
has the extended attributes defined. When no
extended attributes are defined, NULL is
returned.

PDProtObject object.getAttributeValues Returns the values that are associated with the
specified extended attribute for the specified
protected object.

PDProtObject object.getAttributeNames Lists all the extended attributes that are
associated with the specified protected object.

PDProtObject.setAttributeValue
PDProtObject object.setAttributeValue

Creates an extended attribute with the
specified name and value, if it does not exist,
and adds the attribute to the specified
protected object. If the attribute specified
exists, the specified value is added to the
existing attribute.

34 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Chapter 4. Administering protected objects and protected object spaces 35

36 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Chapter 5. Administering access control

You can use the administration API to create, modify, examine, list, and delete
Security Access Manager access control lists (ACLs).

Use the administration API to attach ACLs to Security Access Manager protected
objects, and to detach ACLs from protected objects.

Each ACL might contain entries for specific users and groups. You can use the
administration API to set ACL entries for users and groups that exist in the
Security Access Manager secure domain. You can also use the administration API
to set ACL entries for the default user categories any-other and unauthenticated.

ACL entries consist of one or more permissions. These permissions specify actions
that the owner of the entry is allowed to perform. Security Access Manager
provides a number of default permissions. You can use the administration API to
define additional extended actions. You also can use the administration API to
group the extended actions into action groups.

Understand the construction and use of ACLs before using the administration API
ACL functions. The proper use of ACLs is key to successfully implementing a
security policy. For more information, see the chapter about using access control
lists in the IBM Security Access Manager for Web: Administration Guide.

This chapter contains the following topics:
v “Administering access control lists”
v “Administering access control list entries” on page 38
v “Administering access control list extended attributes” on page 40
v “Administering extended actions” on page 41
v “Administering action groups” on page 40

Administering access control lists
You can allow or restrict specific users and groups from accessing protected
resources by using access control lists (ACLs).

You can do the following tasks with the administration API:
v Create and delete ACLs
v Retrieve or change information that is associated with an ACL
v List the user, group, any-other, and unauthenticated entries that are included in

the ACL
v List all defined ACLs

The name of an ACL can be of any length. The following characters are allowed in
an ACL name:
v Alphanumeric characters that are defined in the locale
v The underscore (_) character
v The hyphen (-) character

You can specify the following items:

© Copyright IBM Corp. 2002, 2012 37

v User entries that belong in each ACL
v Permissions or actions that each user is allowed to perform
v Permissions or actions that are based on group membership, rather than

individual user identity, to expedite administration tasks

The administration API defines the PDAcl object to contain a retrieved ACL. You
can use administration API , classes, and methods to extract information from the
ivadmin_aclPDAcl object.

Be sure that you understand how to define an ACL policy before you use the
administration API ACL methods . For more information, see the section about
ACL entry syntax in the IBM Security Access Manager for Web: Administration Guide.

Table 12 describes the methods for administering ACLs.

Table 12. Administering access control lists

Methods Description

PDAcl.createAcl Creates new ACL.

PDAcl.deleteAcl Deletes the specified ACL.

PDAcl constructor Instantiates the specified ACL.

PDAcl object.getDescription Returns the description of the specified ACL.

PDAcl object.getId Returns the name of the specified ACL.

PDAcl.listAcls Returns the names of all the defined ACLs.

PDAcl.setDescription
PDAcl object.setDescription

Sets or modifies the description for the
specified ACL.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering access control list entries
You must create an ACL object before you can administer ACL entries for the
object.

The administration API can be used to specify entries for each of the following
ACL entry types:
v Users
v Groups
v User any-other (also known as any-authenticated)
v User unauthenticated

PDAclEntryUser
An ACL entry that applies to a particular user.

PDAclEntryGroup
An ACL entry that applies to all members of a particular group.

PDAclEntryAnyOther
The ACL entry that applies to any other authenticated users. Any user that
is already authenticated into the Security Access Manager secure domain,

38 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

but is not covered by a separate user or group entry in the access control
list, is allowed the permissions that are specified by this ACL entry.

PDAclEntryUnAuth
The ACL entry that applies to unauthenticated users. Any user that is not
already authenticated is allowed the permissions that are specified by this
ACL entry.

Be sure that you understand ACL entry syntax, ACL entry types, and ACL
permission (action) attributes before you use the administration API methods in
this section.

Security Access Manager supports 18 default actions. For a list of the default
Security Access Manager actions, see the section about default Security Access
Manager permissions for actions in the IBM Security Access Manager for Web:
Administration Guide.

For more information, see the section about ACL entry syntax in the IBM Security
Access Manager for Web: Administration Guide.

Table 13 lists the methods for administering ACL entries.

Table 13. Administering access control list entries

Methods Description

PDAcl object.getPDAclEntryAnyOther Returns the PDAclEntryAnyOther object that is associated
with the ACL.

PDAcl object.getPDAclEntryUnAuth Returns the PDAclEntryUnAuth object that is associated with
the ACL.

PDAcl object.getPDAclEntriesUser Returns a Java HashMap of the PDAclEntryUser objects that
are associated with the ACL.

PDAcl object.getPDAclEntriesGroup Returns a Java HashMap of the PDAclEntryGroup objects that
are associated with the ACL.

PDAcl.removePDAclEntryAnyOther
PDAcl object.removePDAclEntryAnyOther

Removes the ACL entry for the any-other user from the
specified ACL.

PDAcl.removePDAclEntryGroup
PDAcl object.removePDAclEntryGroup

Removes the ACL entry for the specified group from the
specified ACL.

PDAcl.removePDAclEntryUnAuth
PDAcl object.removePDAclEntryUnAuth

Removes the ACL entry for the unauthenticated user from
the specified ACL.

PDAcl.removePDAclEntryUser
PDAcl object.removePDAclEntryUser

Removes the ACL entry for the specified user from the
specified ACL.

PDAcl.setPDAclEntryAnyOther
PDAcl object.setPDAclEntryAnyOther

Sets or modifies the ACL entry for the any-other user in
the ACL.

Call this function to specify permissions for all
authenticated users who do not have a separate user or
group entry in the specified ACL.

PDAcl.setPDAclEntryGroup
PDAcl object.setPDAclEntryGroup

Sets or modifies the ACL entry for the specified group in
the specified ACL.

Chapter 5. Administering access control 39

Table 13. Administering access control list entries (continued)

Methods Description

PDAcl.setPDAclEntryUnAuth
PDAcl object.setPDAclEntryUnAuth

Sets the ACL entry for the unauthenticated user in the
specified ACL.

Call this function to specify permissions for those users
that are not already authenticated.

PDAcl.setPDAclEntryUser
PDAcl object.setPDAclEntryUser

Sets the entry for the specified user in the specified ACL.
Use this function to specify the actions that a user is
permitted to perform.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering access control list extended attributes
Extended attributes for an ACL can be obtained, set, and deleted.

Table 14 lists the methods available for administering ACL extended attributes.

Table 14. Administering access control list extended attributes

Methods Description

PDAcl.deleteAttribute
PDAcl object.deleteAttribute

Deletes the specified extended attribute key
from the specified ACL.

PDAcl.deleteAttributeValue
PDAcl object.deleteAttributeValue

Deletes the specified value from the specified
extended attribute key in the specified ACL.

PDAcl object.getAttributeValues Gets the extended attribute values for the
specified extended attribute key from the
specified ACL.

PDAcl object.getAttributeNames Lists the extended attribute keys associated
with the specified ACL.

PDAcl.setAttributeValue
PDAcl object.setAttributeValue

Creates an extended attribute with the
specified name and value, if it does not exist,
and adds the attribute to the specified ACL. If
the attribute specified exists, the specified
value is added to the existing values for the
attribute.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering action groups
You can use the administration API to create, examine, and delete new action
groups.

40 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Each action group can contain up to 32 actions. The default action group, referred
to as the primary action group, contains the 18 predefined Security Access
Manager actions, which means you can create up to 14 new actions to the primary
group.

When you need to create more than 32 actions, you can use the administration API
to define a new action group. Security Access Manager supports up to 32 action
groups.

For more information about action groups, see the section about creating extended
ACL actions and action groups in the IBM Security Access Manager for Web:
Administration Guide. Table 15 lists the methods for administering action groups.

Table 15. Administering action groups

Methods Description

PDActionGroup.createActionGroup
Creates new action group with the specified
name.

PDActionGroup.deleteActionGroup
Deletes the specified action group and all the
actions that belong to the specified group.

PDActionGroup.listActionGroups
Lists all the defined action group names.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering extended actions

Security Access Manager provides a default set of actions (permissions) that belong
to the primary action group that can be granted to users or groups. You can use
the administration API to define new, extended actions that supplement the set of
default actions. Each of the extended actions can belong to the primary action
group or to a custom action group.

Extended actions are typically defined to support actions that are specific to a
third-party application. For more information about extended actions, see the
section about creating extended ACL actions and action groups in the IBM Security
Access Manager for Web: Administration Guide.

Table 16 lists the methods for administering extended actions.

Table 16. Administering extended actions

Methods Description

PDAction.createAction Defines a new action (permission) in the
specified action group.

PDAction.deleteAction Deletes an action (permission) from the
specified action group.

PDAction constructor Gets the specified PDAction object.

PDAction object.getDescription Returns the description for the specified
action.

PDAction object.getId Returns the name for the specified action.

Chapter 5. Administering access control 41

Table 16. Administering extended actions (continued)

Methods Description

PDAction object.getType Returns the type for the specified action.

PDAction.listActions Lists all the defined actions (permissions) for
the specified action group.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

42 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Chapter 6. Administering protected object policies

Use the administration API to create, modify, examine, and delete Security Access
Manager protected object policies (POPs).

You can also use the Administration API to attach or detach POPs from protected
objects.

You can use POPs to impose more conditions on operations that are included in
the access control list (ACL) policy. These additional conditions are enforced
regardless of the user or group identities that are specified in the ACL entries.

See the following examples of the conditions:
v Specifying the quality of protection
v Writing a report record to the auditing service
v Requiring an authentication strength level
v Restricting access to a specific time period
v Enabling or disabling the warning mode, which allows an administrator to

validate security policy

You must understand the Security Access Manager POP concepts before you use
the administration API to administer POPs. For more information, see the chapter
about using POPs in the IBM Security Access Manager for Web: Administration Guide.

See the details in the following topics:
v “Administering protected object policy objects”
v “Administering protected object policy settings” on page 45
v “Administering protected object policy extended attributes” on page 46

Administering protected object policy objects

POP objects are administered in a similar way to ACL policies. You can create and
configure a POP, and then attach the POP to objects in the protected object space.

Table 17 lists the methods for administering protected object policy objects.

Table 17. Administering protected object policy objects

Method Description

PDPop.createPop Creates a POP object with the default values.

PDPop.deletePop Deletes the specified POP.

PDPop object.getDescription Returns the description of the specified POP.

PDPop object.getId Returns the name of the specified POP.

PDProtObject.listProtObjectsByPop Finds and lists all protected objects that have
the specified POP attached.

PDPop constructor
PDProtObject object.getPop

Returns the specified POP object.

PDPop.listPops Lists all POP objects.

© Copyright IBM Corp. 2002, 2012 43

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

PDPop.IPAuthInfo object
An array of PDPop.IPAuthInfo objects is passed as input to the
PDPop.setIPAuthInfo and PDPop.removeIPAuthInfo methods.

Each PDPop.IPAuthInfo object contains the following information:
v The IP address that is associated with the credentials that are being checked.
v The netmask that is associated with the credentials that are being checked.
v The IP authentication level of the credentials for the specified IP address and

netmask that are used when accessing the protected object to which this POP is
attached. All integer values except 1000 are supported for specifying a level
index. Use the constant IPAUTH_LEVEL_FORBIDDEN_ALL_NETWORKS to deny access
from all networks.

The IP address and netmask can be specified in either of the following formats:

IPv4 The primary format of an IPv4 IP address is x.x.x.x, which is a 32-bit
numeric address that is written as four numbers that are separated by
periods. A value of 0.0.0.0 indicates that this setting is for any other
network for which this policy is not set explicitly.

IPv6

One of the primary formats of an IPv6 IP address is x:x:x:x:x:x:x:x,
which is a 128-bit numeric address that is written as eight numbers that
are separated by colons. The contiguous fields that contain only the digits
zero can be collapsed (for example:
0009:0000:0000:0000:0000:0008:0007:0006 can be represented as
9::8:7:6).

A zero network and netmask value indicates that this setting is for any
other network for which this policy is not set explicitly. See the standard
RFC 2373 to determine what constitutes a valid representation of an IPv6
address. Security Access Manager does not support prefix notation.

Note: When you specify the IP address or netmask, be aware of the following
restrictions:
v IPv4 clients must provide addresses in IPv4 format to IPv4 servers.
v IPv4 clients can provide addresses in IPv4 or IPv6 format to IPv6 servers.

For an IPv6 address to be accepted, the server must be IPv6. You cannot provide
an IPv6 address to an IPv4 server.

See the IBM Security Access Manager for Web: Administration Guide for more
information about the IP authentication POP policy. See the Javadoc information
for the PDPop.IPAuthInfo object and its associated methods for more information.

44 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Administering protected object policy settings
You can use the administration API to set, modify, or remove attributes in a POP.

You must create the POP object before you specify POP settings.

You can use administration API functions to specify the following POP attributes:
v Authentication levels
v Quality of Protection (QOP) requirements
v Auditing levels
v Time of day access restrictions
v Warning mode settings

Authentication levels specify whether more or alternative authentication is
required to access a protected object. The additional authentication is also called
step-up authentication. This means that an additional authentication step is
required to access resources that require more restrictive access policies. When you
use step-up authentication, you can filter users according to their IP addresses, or
you can specify step-up authentication for all users, regardless of IP address.

For more information about the use of the authentication level by WebSEAL, see
the section about authentication strength POP policy (step-up) in the IBM Security
Access Manager for Web: Web Security Developer Reference.

The quality of protection (QOP) level is not enforced internally by Security Access
Manager. Applications that set the quality of protection can enforce it.

Audit levels specify what operations generate an audit record. This value is used
internally by Security Access Manager and also can be used by applications to
generate their audit records.

The time of day access setting is used to control access to a protected object based
on the time when the access occurs.

Note: When you modify a protected object policy, you must provide a list of days,
start time, and end time. The start time and end time apply to each day on the list.
If the specified start time is greater than the specified end time, then the access is
allowed until the specified end time of the next day.

The warning mode enables a security administrator to troubleshoot the
authorization policy set on the protected object space.

When you set the warning attribute to yes, any action is possible by any user on
the object where the POP is attached. Any object can be accessed even if the ACL
policy attached to the object is set to deny this access.

Audit records are generated that capture the results of all ACL policies with
warning mode set throughout the object space. The audit log shows the outcome
of an authorization decision as it is made if the warning attribute is set to no.

Table 18 on page 46 lists the methods for administering protected object policy
settings.

Chapter 6. Administering protected object policies 45

Table 18. Administering protected object policy settings

Methods Description

PDPop object.getIPAuthInfo
Returns the IP authentication level information from the
specified POP.

PDPop object.getAuditLevel
Returns the audit level for the specified POP.

PDPop object.getQOP
Returns the quality of protection (QOP) level for the
specified POP.

PDPop object.getTodAccessInfo
Returns the time of day range for the specified POP.

PDPop object.getWarningMode
Returns the warning mode value from the specified POP.

PDPop.removeIPAuthInfo
PDPop object.removeIPAuthInfo

Removes the specified IP authentication level information
from the specified POP.

PDPop.setIPAuthInfo
PDPop object.setIPAuthInfo

Sets the IP authentication level information for the specified
POP.

PDPop.setAuditLevel
PDPop object.setAuditLevel

Sets the audit level for the specified POP.

PDPop.setDescription
PDPop object.setDescription

Sets the description of the specified POP.

PDPop.setQOP
PDPop object.setQOP

Sets the quality of protection level for the specified POP.

PDPop.setTodAccessInfo
PDPop object.setTodAccessInfo

Sets the time of day range for the specified POP.

PDPop.setWarningMode
PDPop object.setWarningMode

Sets the warning mode for the specified POP.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering protected object policy extended attributes

Table 19 lists the methods for administering protected object policy extended
attributes.

Table 19. Administering protected object policy extended attributes

Methods Description

PDPop.deleteAttribute
PDPop object.deleteAttribute

Deletes the specified extended attribute from
the specified POP.

PDPop.deleteAttributeValue
PDPop object.deleteAttributeValue

Deletes the specified value from the specified
extended attribute key in the specified POP.

46 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 19. Administering protected object policy extended attributes (continued)

Methods Description

PDPop object.getAttributeValues Gets the values for the specified extended
attribute from the specified POP.

PDPop object.getAttributeNames Lists the extended attributes associated with
the specified POP.

PDPop.setAttributeValue
PDPop object.setAttributeValue

Sets the value for the specified extended
attribute in the specified POP.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Chapter 6. Administering protected object policies 47

48 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Chapter 7. Administering authorization rules

Authorization rules are conditions or standards that are contained in an
authorization policy that are used to make access decisions that are based on
attributes such as user, application, and environment context. Authorization rules
are defined to specify conditions that must be met before access to a protected
object is permitted. A rule is created by using Boolean conditions that are based on
data that is supplied to the authorization engine within the user credential, from
the resource manager application or from the encompassing business environment.

A Security Access Manager authorization rule is a policy type like an access control
list (ACL) or a protected object policy (POP). The rule is stored as a text rule
within a rule policy object and is attached to a protected object in the same way
and with the same constraints as ACLs and POPs.

The Security Access Manager administration Java classes provide methods to
create, delete, modify, list, and get authorization rules.

For more information about authorization rules, see the IBM Security Access
Manager for Web: Administration Guide.

Use the methods shown in Table 20 to administer authorization rule objects.

Table 20. Administering authorization rules

Method Description

PDAuthzRule.createAuthzRule Creates the specified authorization rule object.

PDAuthzRule.deleteAuthzRule Deletes the specified authorization rule object.

PDAuthzRule constructor
Instantiates the specified authorization rule object.

PDAuthzRule object.getId Returns the ID for the specified authorization rule.

PDAuthzRule object.getDescription Returns the description for the specified authorization rule.

PDAuthzRule object.getFailReason Returns the fail reason, if any, for the specified
authorization rule.

PDAuthzRule object.getRuleText Returns the rule text for the specified authorization rule.

PDAuthzRule.listAuthzRules Lists all the registered authorization rules.

PDAuthzRule.setDescription
PDAuthzRule object.setDescription

Sets the description for the specified authorization rule.

PDAuthzRule.setRuleText
PDAuthzRule object.setRuleText

Sets the authorization rule text.

PDAuthzRule.setFailReason
PDAuthzRule object.setFailReason

Sets the authorization rule fail reason.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

© Copyright IBM Corp. 2002, 2012 49

50 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Chapter 8. Administering single sign-on resources

You can use the administration API to administer resources that enable a Security
Access Manager user to obtain single sign-on (SSO) capability across more than
one web server.

This capability requires the use of Security Access Manager WebSEAL junctions.

You can use the administration API to create, modify, examine, and delete the
following types of resources:
v Administering web resources
v Administering resource groups
v Administering resource credentials

Be sure that you understand Security Access Manager single sign-on support
before you use the administration API to administer single sign-on resources.

For more information about administering single sign-on capability across
junctioned web server resources, see the section about user registry resource
management commands in the IBM Security Access Manager for Web: Administration
Guide and the section about using global sign-on (GSO) in the IBM Security Access
Manager for Web: Web Security Developer Reference.

This chapter contains the following topics:
v “Administering Web resources”
v “Administering resource groups” on page 52
v “Administering resource credentials” on page 53

Administering Web resources

A Web resource is a Web server that serves as the backend of a Security Access
Manager WebSEAL junction. An application on the joined Web server can require
users to authenticate specifically to the application.

The authentication information, such as user name and password, often differs
from the authentication information used by Security Access Manager. Because of
this difference, the junctioned Web server requires an authenticated Security Access
Manager user to log in again, using the user name and password specific to the
application on the joined Web server.

You can use the administration API to configure Security Access Manager so that
Security Access Manager users must authenticate only one time. You must define a
Web resource (server) and then define a user-specific resource credential that
contains user-specific authentication information for the Web resource.

This section describes how to create, modify, and delete Web resources.
Administration of resource credentials is described in “Administering resource
credentials” on page 53.

© Copyright IBM Corp. 2002, 2012 51

Note: The administration API does not perform all WebSEAL junction
configuration tasks through the API. Use the pdadmin commands to modify the
junction definitions. For more information, see the IBM Security Access Manager for
Web: WebSEAL Administration Guide.

Table 21 lists the methods for administering Web resources.

Table 21. Administering Web resources

Methods Description

PDSSOResource.createSSOResource Creates a single sign-on Web resource.

PDSSOResource.deleteSSOResource Deletes the specified single sign-on Web
resource.

PDSSOResource constructor Instantiates the specified single sign-on Web
resource.

PDSSOResource object.getDescription Returns the description of the specified single
sign-on Web resource.

PDSSOResource object.getId Returns the name (identifier) of the specified
single sign-on Web resource.

PDSSOResource.listSSOResources Returns a list of all the single sign-on Web
resource names.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering resource groups
A resource group is a group of web servers that are connected to a Security Access
Manager WebSEAL server and that use the same set of user IDs and passwords.

You can use the administration API to create resource groups. You can then create
a single resource credential for all the resources in the resource group. A single
resource credential lets you simplify the management of web resources by
grouping similar web resources into resource groups.

You can also use the administration API to add more web resources, when
necessary, to an existing resource group.

Table 22 lists the methods for administering resource groups.

Table 22. Administering resource groups

Methods Description

PDSSOResourceGroup.addSSOResource
PDSSOResourceGroup object.addSSOResource

Adds a single sign-on resource to a
single sign-on resource group.

PDSSOResourceGroup.createSSOResourceGroup Creates a single sign-on group
resource.

PDSSOResourceGroup.deleteSSOResourceGroup Deletes a single sign-on group
resource.

PDSSOResourceGroup constructor the specified single sign-on group
resource.

PDSSOResourceGroup object.getDescription Returns the description of the single
sign-on group resource.

52 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 22. Administering resource groups (continued)

Methods Description

PDSSOResourceGroup object.getId Returns the name of the single
sign-on group resource.

PDSSOResourceGroup object.getSSOResources Returns a list of the member single
sign-on resource names for the
specified single sign-on group.

PDSSOResourceGroup.listSSOResourceGroups Returns a list of all single sign-on
group resource names.

PDSSOResourceGroup.removeSSOResource
PDSSOResourceGroup object.removeSSOResource

Removes a single sign-on resource
from the specified single sign-on
resource group.

Depending on the LDAP server in your environment, any attempt to remove a
non-existing resource from a group, might generate an error.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Administering resource credentials

A resource credential provides a user ID and password for a single sign-on
user-specific resource, such as a Web server or a group of Web servers. The Web
resource or group of Web resources must exist before you can apply resource
credentials to it.

Resource credential information is stored in the Security Access Manager entry in
the user registry.

You can use the administration API to create, modify, examine, and delete resource
credentials.

Table 23 lists the methods for administering credentials.

Table 23. Administering credentials

Methods Description

PDSSOCred.createSSOCred Creates a single sign-on credential.

PDSSOCred.deleteSSOCred Deletes a single sign-on credential.

PDSSOCred constructor the specified single sign-on credential.

PDSSOCred object.getResourceName Returns the name of the single sign-on
resource associated with this credential.

PDSSOCred object.getResourcePassword Returns the password associated with this
single sign-on credential.

PDSSOCred object.getResourceUser Returns the name of the resource user
associated with the specified single sign-on
credential.

PDSSOCred object.getResourceType Returns the type of the single sign-on resource
associated with the specified single sign-on
credential.

Chapter 8. Administering single sign-on resources 53

Table 23. Administering credentials (continued)

Methods Description

PDSSOCred object.getUser Returns the name of the Security Access
Manager user associated with this single
sign-on credential.

PDSSOCred.listAndShowSSOCreds Returns the list of single sign-on credentials
for the specified user.

PDSSOCred.listSSOCreds Returns the IDs (user, resource, and type) of
the single sign-on credentials for the specified
user. This information is a subset of that
returned by the listAndShowSSOCreds method.

PDSSOCred.setSSOCred
PDSSOCred object.setSSOCred

Modifies a single sign-on credential.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

54 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Chapter 9. Administering domains

A Security Access Manager domain consists of all the physical resources that
require protection along with the associated security policy used to protect those
resources.

The initial domain is the management domain and is created when the Policy
Server is configured. Multiple domains can exist simultaneously within a Security
Access Manager environment.

Data is securely partitioned between domains. A user or process must authenticate
to a specific domain to access data contained within it.

Each Security Access Manager environment contains a single management domain.
A user must be authenticated to the management domain to create, delete, list, or
modify additional domains.

To specify the management domain in methods that take a domain argument, use
the PDDomain.getMgmtDomainName method.

Each Java Runtime Environment (JRE) can optionally be configured to use a
specific domain. This domain is called the local domain. To specify the local
domain in methods that take a domain argument, use the
PDDomain.getLocalDomainName method. If a JRE is not configured to use a specific
domain, the local domain defaults to the management domain.

The Java classes provide methods that can be used to manage domains.

For more information about the management of domains, see the IBM Security
Access Manager for Web: Administration Guide. Table 24 lists the methods for
administering domains.

Table 24. Administering domains

Methods Description

PDDomain.createDomain Creates new Security Access Manager domain.

PDDomain.deleteDomain Deletes the specified Security Access Manager domain.

PDDomain constructor Instantiates the specified domain object.

PDDomain object.getDescription Gets the description for the specified Security Access
Manager domain.

PDDomain object.getId Gets the name of the specified Security Access Manager
domain.

PDDomain.listDomains Lists the names of all the Security Access Manager domains,
except for the management domain.

PDDomain.getLocalDomainName Gets the name of the local domain.

PDDomain.getMgmtDomainName Gets the name of the management domain.

PDDomain.setDescription
PDDomain object.setDescription

Changes the description for the specified Security Access
Manager domain.

© Copyright IBM Corp. 2002, 2012 55

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

56 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Chapter 10. Configuring application servers

You can use the administration API to configure and unconfigure authorization
and administration servers, modify configuration parameters, administer replicas,
and perform certificate maintenance.

The com.tivoli.pd.jcfg.SvrSslCfg class is used to perform the necessary
configuration steps that allow an application to use a secure sockets layer (SSL)
connection for communicating with the policy server or the authorization server.

It is not intended to do all the configuration that might be required to ensure a
correctly functioning application. For more information about the
com.tivoli.pd.jcfg.SvrSslCfg class, see the IBM Security Access Manager for Web:
Authorization Java Classes Developer Reference.

This chapter contains the following topics:
v “Configuring application servers”
v “Administering configuration information” on page 58
v “Certificate maintenance” on page 58

Configuring application servers

Use the configuration commands to enable an application server (an application
that uses the authorization or administration API) to communicate with the policy
server or the authorization server. An administrative user identity (for example,
sec_master) and password must be specified for connecting to the policy server.

Table 25. Configuring application servers

Methods Description

PDAppSvrConfig.configureAppSvr Configures an application server by updating
the configuration file and creating the
keystore file.

PDAppSvrConfig.setAppSvrListening Sets or resets the enable-listening parameter in
the configuration file.

PDAppSvrConfig.setAppSvrDbDir Sets the local policy database directory in the
configuration file.

PDAppSvrConfig.setAppSvrDbRefresh Sets the local policy database refresh interval
in the configuration file

PDAppSvrConfig.setAppSvrPort Changes the listening port number of the
application in the configuration file.

PDAppSvrConfig.unconfigureAppSvr Unconfigures an application server.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

© Copyright IBM Corp. 2002, 2012 57

Administering configuration information

Use the configuration commands to add, change, or delete replica entries in the
configuration file as well as return other configuration information.

Table 26. Administering configuration information

Methods Description

PDAppSvrConfig.addPDServer
Adds a replica entry to the configuration file.

PDAppSvrConfig.changePDServer
Changes parameters of a replica entry in the
configuration file.

PDAppSvrConfig.removePDServer
Removes a replica entry from the
configuration file.

PDAppSvrConfig.getPDAppSvrInfo Returns a PDAppSvrInfo object containing
information stored in the configuration file.

PDAppSvrConfig.getKeystoreURL Returns the URL of the keystore file that is
associated with the configuration file.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Certificate maintenance

Only use ivadmin_cfg_renewservercert() the replaceAppSvrCert method when the
certificate has been compromised.

Table 27. Certificate maintenance

Methods Description

PDAppSvrConfig.replaceAppSvrCert
and replaces the server SSL certificate.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

58 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Chapter 11. Administering servers

You can use the administration API to get a list of tasks from the server, send a
specific task to an authorization server, and notify replica databases, either
automatically or manually, when the master authorization database is updated.

This chapter contains the following topics:
v “Getting and performing administration tasks”
v “Notifying replica databases when the master authorization database is

updated”
– “Notifying replica databases automatically” on page 60
– “Notifying replica databases manually” on page 60
– “Setting the maximum number of notification threads” on page 60
– “Setting the notification wait time” on page 60

Getting and performing administration tasks

You can send an administration task to a server. You also can request a list of all
supported administration tasks from a server. The caller must have credentials
with sufficient permission to perform the task. For more information, see the IBM
Security Access Manager for Web: Authorization C API Developer Reference.

Notifying replica databases when the master authorization database is
updated

When an administrator makes security policy changes, the policy server adjusts to
the master authorization database to reflect these changes.

To ensure that these changes also are dispersed to any authorization servers with
replica databases, you can do one or more of the following:
v Configure a Security Access Manager application server, such as WebSEAL, to

poll the master authorization database at regular intervals for updates. By
default, polling is disabled. For more information about polling the master
authorization database, see the cache-refresh-interval option described in the
IBM Security Access Manager for Web: Authorization C API Developer Reference.

v Enable the policy server to notify authorization servers each time that the master
authorization database is updated. This automatic process is recommended for
environments where database changes are infrequent. For more information, see
“Notifying replica databases automatically” on page 60.

v Notify authorization servers, on demand, after you make updates to the master
authorization database. This manual process is recommended for environments
where database changes are frequent and involve substantial changes. For
instructions, see “Notifying replica databases manually” on page 60.

After you select the method that you want to use to update replica databases
(automatic, manual, or both), you can fine-tune settings in the ivmgrd.conf file on
the policy server. For more information, see “Setting the maximum number of
notification threads” on page 60 and “Setting the notification wait time” on page
60.

© Copyright IBM Corp. 2002, 2012 59

Notifying replica databases automatically
You can enable the policy server to send notifications to authorization servers each
time that the master authorization database is updated. In turn, the authorization
servers automatically request a database update from the policy server.

To enable automatic database updates, edit the ivmgrd.conf file on the policy
server and add the following attribute=value stanza entry pair:
[ivmgrd]
auto-database-update-notify = yes

Restart the policy server for changes to take effect. Use the setting for
environments where the master database is not changed frequently. To turn off
automatic notification, specify no.

Notifying replica databases manually
When the master authorization database is updated, you can use the
PDServer.replicateServer method to send notifications to application servers that
are configured to receive database update notifications.

You can indicate that a specific server receive update notifications, or specify
NULL, which notifies all configured authorization servers in the secure domain.

If you specify a server name, you are notified whether the server was replicated
successfully or if a failure occurred. If you do not specify a server name, return
codes indicate whether the policy server started notifying authorization servers in
your secure domain.

Unless you specify the server-name option, you are not notified when an
authorization server database was replicated successfully.

Setting the maximum number of notification threads

When the master authorization database is updated, this update is announced to
replica databases through the use of notification threads. Each replica then has the
responsibility of downloading the new data from the master authorization
database.

You can edit the ivmgrd.conf file to set a value for the maximum number of
notification threads. This number is calculated based on the number of replica
databases in your secure domain. For example, if you have 10 replica databases
and want to notify them of master database changes simultaneously, specify a
value of 10 for the max-notifier-threads stanza entry as shown:
[ivmgrd]
max-notifier-threads = 10

The default value is 10 threads.

Setting the notification wait time
There is a time delay between when the policy server updates the master
authorization database and when notification is sent to database replicas.

If you added the auto-database-update-notify = yes stanza entry to the
ivmgrd.conf file as described in “Notifying replica databases automatically,” you
can set this period.

60 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

To do so, edit the notifier-wait-time stanza entry value in the ivmgrd.conf file.
For example, if you are making batch changes to the master authorization
database, wait until all changes are finished before policy changes are sent to
database replicas. As a result, you might decide to increase the default value from
15 seconds to 25 seconds as shown:
[ivmgrd]
notifier-wait-time = 25

By editing the value for this attribute, the policy server is prevented from sending
individual replica notifications for each of a series of database changes.

Administering servers and database notification
Table 28. Administering servers and database notification

Methods Description

PDServer constructor Instantiates a server object.

PDServer object.getAdminServices Returns the list of Administration Services
registered by this server.

PDServer object.getDescription Returns the description of this server.

PDServer object.getHostName Returns the host name of this server.

PDServer object.getId Returns the identifier of this server.

PDServer object.getPort Returns the port of this server.

PDServer object.getTaskList Returns a list of tasks from the server.

PDServer object.getUserId Returns the user identifier of this server.

PDServer.listServers Lists all the registered servers.

PDServer.performTask Sends a command to an authorization server.

PDServer.replicateServer Notifies authorization servers to receive
database updates.

For detailed reference information about these methods, see the Javadoc HTML
documentation. For information about accessing this documentation, see Table 1 on
page 3.

Chapter 11. Administering servers 61

62 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Appendix A. Differences between the C and Java
administration API

If you are familiar with the administration C API, you must be aware of several
notable differences between them and the administration Java classes and methods
that are described in this document.

In particular, the handling of security context management and response
processing are different between the two implementations. In addition, there are
other subtle differences outlined in this appendix.

For more information about the administration C API, see IBM Security Access
Manager for Web: Administration C API Developer Reference.

Security context management differences
The ivadmin_context_create3() function in the C language administration API
creates a communication connection to the Security Access Manager policy server.

The context object that is returned by this function is tightly coupled to an actual
Secure Sockets Layer (SSL) session. When the SSL session times out, the user must
delete the context and create a new one to reestablish communication with the
policy server.

You must delete the contexts which are not needed on a timely basis with
ivadmin_context_delete() to free SSL resources. As a result, the programmer has
the responsibility to manage SSL sessions by using context objects and the
ivadmin_context_* APIs.

The Java implementation of the context, which uses the PDContext object, hides the
management of the actual SSL sessions from the user. The PDContext object
contains only the information that is needed to establish communication with the
server: the server location, authentication information of the client, and the locale
to be used for message translation.

The PDContext objects are not tied to a particular SSL session. Instead, an SSL
session is obtained when a PDContext object is used in a Java method invocation.
Security Access Manager manages all aspects of the SSL sessions itself, including
creating them, pooling them, reusing them, and eventually deleting them, without
any explicit context management from the programmer.

Response processing differences

Most of the C language administration API functions return a value that indicates
the overall success or failure of the requested operation. They also return an
ivadmin_response object as an output parameter. This response object contains
optional messages that can be after processed using the ivadmin_response_*
functions.

The Java language administration API methods throw a PDException exception on
failure. Most methods provide a PDMessages output as an output parameter. This

© Copyright IBM Corp. 2002, 2012 63

object contains optional messages that can be after processed using the accessor
methods provided in the PDMessages object class.

Additional differences
The following additional differences exist between the C language and Java
language implementations of the Security Access Manager administration API:
v The method names in the PDUser and PDGroup classes are user-registry neutral.

The function names provided in the administration C APIs are specific to
Lightweight Directory Access Protocol (LDAP) specific. This difference arises
from the continuing support of a wider range of user registries in Security
Access Manager.

v The user and group names that appear in the methods associated with the
PDUser and PDGroup classes are structured to allow for the possible future
addition of other user registries.

v The type field is not supported in the PDProtObject and PDProtObjectSpace
classes. Use extended attributes to provide equivalent function. This difference
arises from the confusion caused by the type field on the administration C APIs
not being used internally in earlier Security Access Manager versions.

v The administration Java classes and methods provide both certificate-based and
user ID and password-based authentication. The administration C API provides
only user ID and password-based authentication.

v The svrsslcfg command-line interface (CLI) can be used only for applications
written using the administration C API. For Java applications, use the
com.tivoli.pd.jcfg.SvrSslCfg Java class instead.

v Policy information, such as maximum password age, is encapsulated in a
PDPolicy class instead of being defined in the user and context objects as it is in
the administration C API. The function provided is the same whether using the
Java classes or the C API.

v When using the administration C APIs, the user must renegotiate the security
context when a session time-out occurs. The PDContext class handles this
processing automatically.

64 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Appendix B. Deprecated Java classes and methods

For information about the deprecated Java classes and methods, see the Javadoc
HTML documentation.

For details about accessing this HTML documentation, see Table 1 on page 3.

Existing Java applications must be changed to use the indicated replacement class
or method.

© Copyright IBM Corp. 2002, 2012 65

66 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Appendix C. Administration API equivalents

This appendix shows the mapping that exists between the administration C API
functions, the administration Java classes and methods, the pdadmin commands,
and Web Portal Manager.

In some cases, an operation can be performed in different ways. In some cases two
or more method calls might be necessary to achieve the same effect as a single C
API function.

For more information, see the following books.
v Information about the administration C API can be found in the IBM Security

Access Manager for Web: Administration C API Developer Reference.
v Additional information about the administration Java classes and methods can

be found in the Javadoc information.
v Information about the pdadmin commands can be found in the IBM Security

Access Manager for Web: Command Reference.
v Information about Web Portal Manager can be found in its online help and in

the IBM Security Access Manager for Web: Administration Guide.

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal Manager
C API Java class and method pdadmin command

equivalent
Web Portal Manager

equivalent

ivadmin_acl_attrdelkey() PDAcl.deleteAttribute
PDAcl object.deleteAttribute

pdadmin acl modify
acl_name delete attribute
attribute_name

ACL → List ACL → click ACL
name → Extended Attribute
tab → select attributes →
Delete

ivadmin_acl_attrdelval() PDAcl.deleteAttributeValue
PDAcl object.deleteAttributeValue

pdadmin acl modify
acl_name delete attribute
attribute_name
attribute_value

Not supported

ivadmin_acl_attrget() PDAcl object.getAttributeValues pdadmin acl show acl_name
attribute attribute_name

ACL → List ACL → click ACL
name → Extended Attribute
tab

ivadmin_acl_attrlist() PDAcl object.getAttributeNames pdadmin acl list acl_name
attribute

ACL → List ACL → click ACL
name → Extended Attribute
tab

ivadmin_acl_attrput() PDAcl.setAttributeValue
PDAcl object.setAttributeValue

pdadmin acl modify
acl_name set attribute
attribute_name
attribute_value

ACL → List ACL → click ACL
name → Extended Attribute
tab → Create → fill in form →
Apply

ivadmin_acl_create() PDAcl.createAcl pdadmin acl create
acl_name

ACL → Create ACL → fill in
form → Create

ivadmin_acl_delete() PDAcl.deleteAcl pdadmin acl delete
acl_name

ACL → List ACL → select ACL
names → Delete

ivadmin_acl_get() PDAcl constructor pdadmin acl show acl_name ACL → List ACL → click ACL
name

ivadmin_acl_getanyother() PDAcl object.getPDAclEntryAnyOther pdadmin acl show
any-other

ACL → List ACL → click
Any-other

ivadmin_acl_ getdescription() PDAcl object.getDescription pdadmin acl show acl_name ACL → List ACL → click ACL
name

ivadmin_acl_getgroup() PDAcl object.getPDAclEntriesGroup pdadmin acl show acl_name ACL → List ACL → click ACL
name

ivadmin_acl_getid() PDAcl object.getId pdadmin acl show acl_name ACL → List ACL → click ACL
name

ivadmin_acl_getunauth() PDAcl object.getPDAclEntryUnAuth pdadmin acl show acl_name ACL → List ACL → click ACL
name

© Copyright IBM Corp. 2002, 2012 67

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_acl_getuser() PDAcl object.getPDAclEntriesUser pdadmin acl show acl_name ACL → List ACL → click ACL
name

ivadmin_acl_list() PDAcl.listAcls pdadmin acl list ACL → List ACL

ivadmin_acl_listgroups() PDAcl object.getPDAclEntriesGroup pdadmin acl show acl_name ACL → List ACL → click ACL
name

ivadmin_acl_listusers() PDAcl object.getPDAclEntriesUser pdadmin acl show acl_name ACL → List ACL → click ACL
name

ivadmin_acl_removeanyother() PDAcl.removePDAclEntryAnyOther
PDAcl object.removePDAclEntry AnyOther

pdadmin acl modify
acl_name remove any-other

ACL → List ACL → click ACL
name → select Any-other →
Delete

ivadmin_acl_removegroup() PDAcl.removePDAclEntryGroup
PDAcl object.removePDAclEntryGroup

pdadmin acl modify
acl_name remove group
group_name

ACL → List ACL → click ACL
name → select group name →
Delete

ivadmin_acl_removeunauth() PDAcl.removePDAclEntryUnAuth
PDAcl object.removePDAclEntry UnAuth

pdadmin acl modify
acl_name remove
unauthenticated

ACL → List ACL → click ACL
name → select
Unauthenticated → Delete

ivadmin_acl_removeuser() PDAcl.removePDAclEntryUser
PDAcl object.removePDAclEntryUser

pdadmin acl modify
acl_name remove user
user_name

ACL → List ACL → click ACL
name → select user name →
Delete

ivadmin_acl_setanyother() PDAcl.setPDAclEntryAnyOther
PDAcl object.setPDAclEntryAnyOther

pdadmin acl modify
acl_name set any-other
permissions

ACL → List ACL → click ACL
name → select Any-other →
Create → select permissions →
Apply

ivadmin_acl_ setdescription() PDAcl.setDescription
PDAcl object.setDescription

pdadmin acl modify
acl_name description
description

ACL → List ACL → click ACL
name → modify description →
Set

ivadmin_acl_setgroup() PDAcl.setPDAclEntryGroup
PDAcl object.setPDAclEntryGroup

pdadmin acl modify
acl_name set group
group_name permissions

ACL → List ACL → click ACL
name → Create → select
Group→ specify group name →
select permissions → Apply

ivadmin_acl_setunauth() PDAcl.setPDAclEntryUnAuth
PDAcl object.setPDAclEntryUnAuth

pdadmin acl modify
acl_name set
unauthenticated
permissions

ACL → List ACL → click ACL
name → Create → select
Unauthenticated → select
permissions → Apply

ivadmin_acl_setuser() PDAcl.setPDAclEntryUser
PDAcl object.setPDAclEntryUser

pdadmin acl modify
acl_name set user
user_name permissions

ACL → List ACL → click ACL
name → Create → select User →
specify user name → select
permissions → Apply

ivadmin_action_create() PDAction.createAction pdadmin action create
name description
action_type

ACL → List Action Groups →
click primary action group →
Create → fill in form → Create

ivadmin_action_create_in_group() PDAction.createAction pdadmin action create
name description
action_type
action_group_name

ACL → List Action Groups →
click action group → Create →
fill in form → Create

ivadmin_action_delete() PDAction.deleteAction pdadmin action delete
name

ACL → List Action Groups →
select primary action group →
select actions → Delete

ivadmin_action_delete_from _group() PDAction.deleteAction pdadmin action delete
name action_group_name

ACL → List Action Groups →
select action group → select
actions → Delete

ivadmin_action_getdescription() PDAction object.getDescription pdadmin action list ACL → List Action Groups →
click primary action group

ivadmin_action_getid() PDAction object.getId pdadmin action list ACL → List Action Groups →
click primary action group

ivadmin_protobj_gettype() PDAction object.getType pdadmin action list ACL → List Action Groups →
click primary action group

ivadmin_action_gettype() PDActionGroup.createActionGroup pdadmin action group
create action_group_name

ACL → Create Action Group
→ type group name → Create

ivadmin_action_group_create() PDActionGroup.deleteActionGroup pdadmin action group
delete action_group_name

ACL → List Action Groups →
select action groups → Delete

68 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_action_group_delete() PDActionGroup.listActionGroups pdadmin action group list ACL → List Action Groups

ivadmin_action_list() PDAction.listActions pdadmin action list ACL → List Action Groups →
click primary action group

ivadmin_action_list_in_group() PDAction.listActions pdadmin action list
action_group_name

ACL → List Action Groups →
click action group

ivadmin_authzrule_create() PDAuthzRule.createAuthzRule pdadmin authzrule create
ruleid–rulefile {filename
| ruletext} [–desc
description] [–failreason
failreason]

AuthzRule → Create
AuthzRule → fill in form →
Create

ivadmin_authzrule_delete() PDAuthzRule.deleteAuthzRule pdadmin authzrule delete
ruleid

AuthzRule → List AuthzRule
→ select authorization rule
name → Delete

ivadmin_authzrule_get() PDAuthzRule constructor pdadmin authzrule show
ruleid

AuthzRule → List AuthzRule
→ click authorization rule
name

ivadmin_authzrule_getdescription() PDAuthzRule object.getDescription pdadmin authzrule show
ruleid

AuthzRule → List AuthzRule
→ click authorization rule
name

ivadmin_authzrule_ getfailreason() PDAuthzRule object.getFailReason pdadmin authzrule show
ruleid

AuthzRule → List AuthzRule
→ click authorization rule
name

ivadmin_authzrule_getid() PDAuthzRule object.getId pdadmin authzrule show
ruleid

AuthzRule → List AuthzRule
→ click authorization rule
name

ivadmin_authzrule_getruletext() PDAuthzRule object.getRuleText pdadmin authzrule show
ruleid

AuthzRule → List AuthzRule
→ click authorization rule
name

ivadmin_authzrule_list() PDAuthzRule.listAuthzRules pdadmin authzrule list AuthzRule → List AuthzRule

ivadmin_authzrule_ setdescription() PDAuthzRule.setDescription
PDAuthzRule object.setDescription

pdadmin authzrule modify
ruleid description
description

AuthzRule → List AuthzRule
→ click authorization rule
name → General tab → modify
fields → Apply

ivadmin_authzrule_ setfailreason() PDAuthzRule.setFailReason
PDAuthzRule object.setFailReason

pdadmin authzrule modify
ruleid failreason
failreason

AuthzRule → List AuthzRule
→ click authorization rule
name → General tab → modify
fields → Apply

ivadmin_authzrule_setruletext() PDAuthzRule.setRuleText
PDAuthzRule object.setRuleText

pdadmin authzrule modify
ruleid –rulefile
{filename | ruletext}

AuthzRule → List AuthzRule
→ click authorization rule
name → modify fields →
Apply

ivadmin_cfg_addreplica2() PDAppSvrConfig.addPDServer svrsslcfg -add_replica -f
cfg_file -h host_name [-p
port] [-k rank]

Not supported.

ivadmin_cfg_chgreplica2() PDAppSvrConfig.changePDServer svrsslcfg -chg_replica -f
cfg_file -h host_name [-p
port] [-k rank]

Not supported.

ivadmin_cfg_configureserver3() PDAppSvrConfig.configureAppSvr svrsslcfg -config -f
cfg_file -d kdb_dir_name
-n server_name ...

Not supported.

ivadmin_cfg_getvalue() Not supported. pdadmin config show
config_file stanza key

Not supported.

ivadmin_cfg_removevalue() Not supported. pdadmin config modify
keyvalue remove config_file
stanza key [value]

Not supported.

ivadmin_cfg_renewservercert() PDAppSvrConfig.replaceAppSvrCert svrsslcfg -chgcert -f
cfg_file -n server_name
[-A admin_ID] -P
admin_pwd

Not supported.

ivadmin_cfg_rmvreplica2() PDAppSvrConfig.removePDServer svrsslcfg -rmv_replica -f
cfg_file -h host_name [-p
port] [-k rank]

Not supported.

Appendix C. Administration API equivalents 69

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_cfg_ setapplicationcert2() Not supported. svrsslcfg -modify -f
cfg_file [-t timeout] [-C
cert_file] [-l
listening_mode]

Not supported.

ivadmin_cfg_setkeyringpwd2() Not applicable. svrsslcfg -chgpwd -f
cfg_file -n server_name
[-A admin_ID] [-P
admin_pwd]

Not supported.

ivadmin_cfg_setlistening2() PDAppSvrConfig.setAppSvrListening svrsslcfg -f cfg_file
-modify -l yes

Not supported.

ivadmin_cfg_setport2() PDAppSvrConfig.setAppSvrPort svrsslcfg -config -f
cfg_file -d kdb_dir_name
-n server_name ...

Not supported.

ivadmin_cfg_setssltimeout2() Not supported. svrsslcfg -modify -f
cfg_file -t timeout [-C
cert_file] [-l
listening_mode]

Not supported.

ivadmin_cfg_setsvrpwd() Not supported. pdadmin config modify
svrpassword config_file
password

Not supported.

ivadmin_cfg_setvalue() Not supported. pdadmin config modify
keyvalue { set | append }[
–obfuscate] config_file
stanza key [value]

Not supported.

ivadmin_cfg_unconfigureserver() PDAppSvrConfig.unconfigureAppSvr svrsslcfg -unconfig -f
cfg_file -n server_name
[-A admin_ID] -P
admin_pwd

Not supported.

ivadmin_context_cleardelcred() PDContext object.clearDelegatedCred Not applicable. Not applicable.

ivadmin_context_create3() PDContext constructor Not applicable. Not applicable.

ivadmin_context_createdefault2() PDContext constructor Not applicable. Not applicable.

ivadmin_context_createlocal() Not supported. Not applicable. Not applicable.

ivadmin_context_delete() PDContext object.close Not applicable. Not applicable.

ivadmin_context_
domainismanagement()

PDContext object.domainIsManagement pdadmin context show Not supported.

ivadmin_context_getaccexpdate() PDPolicy object.getAcctExpDate pdadmin policy get
account-expiry-date

User → Show Global User
Policy → view Account
Expiration Date section

ivadmin_context_getcodeset() PDContext object.getLocale Not applicable. Not applicable.

ivadmin_context_getdisabletimeint() PDPolicy object.getAcctDisableTimeInterval pdadmin policy get
disable-time-interval

User → Show Global User
Policy → view Disable Time
Interval section

ivadmin_context_getdomainid() PDContext object.getDomainid pdadmin context show Not supported.

Not supported. Not supported. pdadmin errtext
error_number

Not supported.

Not supported. Not supported. pdadmin exit Not supported.

ivadmin_context_
getmaxconcurwebsess()

PDPolicy.getMaxconcurrentWebSessions
PDPolicy object
.getMaxconcurrentWebSessions

pdadmin policy get
max-concurrent-web-
sessions

User → Show Global User
Policy → view Max Concurrent
Web Sessions section

ivadmin_context_getmaxlgnfails() PDPolicy object.getMaxFailedLogins pdadmin policy get
max-login-failures

User → Show Global User
Policy → view Max Login
Failures section

ivadmin_context_getmaxpwdage() PDPolicy object.getMaxPwdAge pdadmin policy get
max-password-age

User → Show Global User
Policy → view Max Password
Age section

ivadmin_context_ getmaxpwdrepchars() PDPolicy object.getMaxPwdRepChars pdadmin policy get
max-password-repeated-
chars

User → Show Global User
Policy → view Max Password
Repeated Characters section

ivadmin_context_ getmgmtdomainid() PDDomain.getMgmtDomainName pdadmin login —m Initial login.

ivadmin_context_getmgmtsvrhost() Not supported. Not supported. Not available.

70 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_context_getmgmtsvrport() Not supported. Not supported. Not available.

ivadmin_context_getminpwdalphas() PDPolicy object.getMinPwdAlphas pdadmin policy get
min-password-alphas

User → Show Global User
Policy → view Minimum
Password Alphas section

ivadmin_context_getminpwdlen() PDPolicy object.getMinPwdLen pdadmin policy get
min-password-length

User → Show Global User
Policy → view Minimum
Password Length section

ivadmin_context_
getminpwdnonalphas()

PDPolicy object.getMinPwdNonAlphas pdadmin policy get
min-password-non-alphas

User → Show Global User
Policy → view Minimum
Password Non-Alphas section

ivadmin_context_getpwdspaces() PDPolicy object.pwdSpacesAllowed pdadmin policy get
password-spaces

User → Show Global User
Policy → view Password
Spaces Allowed section

ivadmin_context_gettodaccess() PDPolicy object.getAccessibleDays
PDPolicy object.getAccessStartTime
PDPolicy object.getAccessEndTime
PDPolicy object.getAccessTimezone

pdadmin policy get
tod-access

User → Show Global User
Policy → view Time of Day
Access section

ivadmin_context_getuserid() PDContext object.getUserid pdadmin context show Not supported.

ivadmin_context_getuserreg() PDUser.getUserRgy pdadmin admin show
configuration

Not supported.

ivadmin_context_hasdelcred() PDContext object.hasDelegatedCred Not applicable. Not applicable.

ivadmin_context_setaccexpdate() PDPolicy.setAcctExpDate
PDPolicy object.setAcctExpDate

pdadmin policy set
account-expiry-date
{unlimited |
absolute_time | unset}

User → Show Global User
Policy → set Account
Expiration Date → Apply

ivadmin_context_setdelcred() PDContext object.setDelegatedCred Not applicable. Not applicable.

ivadmin_context_ setdisabletimeint() PDPolicy.setAcctDisableTime
PDPolicy object.setAcctDisableTime

pdadmin policy set
disable-time-interval
{number | unset |
disable}

User → Show Global User
Policy → set Account Disable
Time Interval → Apply

ivadmin_context_
setmaxconcurwebsess()

PDPolicy.setMaxconcurrent WebSessions
PDPolicy object
.setMaxconcurrent WebSessions

pdadmin policy set
max-concurrent-web-
sessions {number| displace
| unlimited | unset} -user
user_name

User → Show Global User
Policy → set Max Concurrent
Web Sessions → Apply

ivadmin_context_setmaxlgnfails() PDPolicy.setMaxFailedLogins
PDPolicy object.setMaxFailedLogins

pdadmin policy set
max-login-failures
{number | unset}

User → Show Global User
Policy → set Max Login
Failures → Apply

ivadmin_context_setmaxpwdage() PDPolicy.setMaxPwdAge
PDPolicy object.setMaxPwdAge

pdadmin policy set
max-password-age
{relative_time | unset}

User → Show Global User
Policy → set Max Password Age
→ Apply

ivadmin_context_setmaxpwdrepchars() PDPolicy.setMaxPwdRepChars
PDPolicy object.setMaxPwdRepChars

pdadmin policy set
max-password-repeated-
chars [number | unset]

User → Show Global User
Policy → set Max Password
Repeated Characters → Apply

ivadmin_context_ setminpwdalphas() PDPolicy.setMinPwdAlphas
PDPolicy object.setMinPwdAlphas

pdadmin policy set
min-password-alphas
{number | unset}

User → Show Global User
Policy → set Minimum Password
Alphas → Apply

ivadmin_context_ setminpwdlen() PDPolicy.setMinPwdLen
PDPolicy object.setMinPwdLen

pdadmin policy set
min-password-length
{number | unset}

User → Show Global User
Policy → set Minimum Password
Length → Apply

ivadmin_context_setminpwd
nonalphas()

PDPolicy.setMinPwdNonAlphas
PDPolicy object.setMinPwdNonAlphas

pdadmin policy set
max-password-non-alphas
{number | unset}

User → Show Global User
Policy → set Minimum Password
Non-Alphas → Apply

ivadmin_context_setpwdspaces() PDPolicy.setPwdSpacesAllowed
PDPolicy object.setPwdSpacesAllowed

pdadmin policy set
password-spaces {yes | no
| unset}

User → Show Global User
Policy → set Password Spaces
Allowed → Apply

ivadmin_context_settodaccess() PDPolicy.setTodAccess
PDPolicy object.setTodAccess

pdadmin policy set
tod-access
todaccess_value

User → Show Global User
Policy → set Time of Day
Access → Apply

Appendix C. Administration API equivalents 71

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_domain_create() PDDomain.createDomain pdadmin domain create
domain domain_admin_id
domain_admin_password
[—desc description]

Secure Domain → Create
Secure Domain → fill in form
→ Create

ivadmin_domain_delete() PDDomain.deleteDomain pdadmin domain delete
domain [–registry]

Secure Domain → List Secure
Domain → select secure
domain names → Delete

ivadmin_domain_get() PDDomain constructor pdadmin domain show
domain

Secure Domain → List Secure
Domain → click secure
domain name

ivadmin_domain_getdescription() PDDomain object.getDescription pdadmin domain show
domain

Secure Domain → List Secure
Domain → click secure
domain name

ivadmin_domain_getid() PDDomain object.getId pdadmin domain show
domain

Secure Domain → List Secure
Domain → click secure
domain name

ivadmin_domain_list() PDDomain.listDomains pdadmin domain list Secure Domain → List Secure
Domain

ivadmin_domain_setdescription() PDDomain.setDescription
PDDomain object.setDescription

pdadmin domain modify
domain description
description

Secure Domain → List Secure
Domain → click secure
domain name → modify
description → Apply

ivadmin_free() Not applicable. Not applicable. Not applicable.

ivadmin_group_addmembers() PDGroup.addMembers
PDGroup object.addMembers pdadmin group modify

group_name add user

pdadmin group modify
group_name add (user_1
user_2 [... user_n])

Group → Search Groups →
type pattern and maximum
results → Search → click group
name → Members tab → select
users → Add

ivadmin_group_create2() PDGroup.createGroup pdadmin group create
group_name dn cn
[group_container]

Group → Create Group → fill
in form → Create

ivadmin_group_delete2() PDGroup.deleteGroup pdadmin group delete
[-registry] group_name

Group → Search Groups →
type pattern and maximum
results → Search → select
group names → Delete

ivadmin_group_get() PDGroup constructor pdadmin group show
group_name

Group → Search Groups →
type pattern and maximum
results → Search → click group
name

ivadmin_group_getbydn() PDGroup constructor pdadmin group show-dn dn Not supported.

ivadmin_group_getcn() Not supported. pdadmin group show
group_name

Group → Search Groups →
type pattern and maximum
results → Search → click group
name

ivadmin_group_getdescription() PDGroup object.getDescription pdadmin group show
group_name

Group → Search Groups →
type pattern and maximum
results → Search → click group
name

ivadmin_group_getdn() PDGroup object.getRgyName pdadmin group show
group_name

Group → Search Groups →
type pattern and maximum
results → Search → click group
name

ivadmin_group_getid() PDGroup object.getId pdadmin group show
group_name

Group → Search Groups →
type pattern and maximum
results → Search → click group
name

ivadmin_group_getmembers() PDGroup object.getMembers pdadmin group
show-members group_name

Group → Search Groups →
type pattern and maximum
results → Search → click group
name → Members tab

72 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_group_import2() PDGroup object.importGroup pdadmin group import
group_name dn
[group_container]

Group → Import Group → fill
in form → Import

ivadmin_group_list() PDGroup.listGroups pdadmin group list
pattern max_return

Group → Search Groups →
type pattern and maximum
results → Search

ivadmin_group_listbydn() PDGroup.listGroups pdadmin group list-dn
pattern max_return

Not supported.

ivadmin_group_removemembers() PDGroup.removeMembers
PDGroup object.removeMembers pdadmin group modify

group_name remove user

pdadmin group modify
group_name remove (user_1
user_2 [... user_n])

Group → Search Groups →
type pattern and maximum
results → Search → click group
name → Members tab → select
user names → Remove

ivadmin_group_setdescription() PDGroup.setDescription
PDGroup object.setDescription

pdadmin group modify
group_name description
description

Group → Search Groups →
type pattern and maximum
results → Search → click group
name → type description →
Apply

Not supported Not supported pdadmin help {topic |
command}

Not supported

Not supported Not supported pdadmin login –a admin_id
–p password [–d domain |
–m]

Not supported

Not supported Not supported pdadmin login –l Not supported

Not supported Not supported pdadmin logout Not supported

ivadmin_objectspace_create() PDProtObjectSpace.create ProtObjectSpace pdadmin objectspace
create objectspace_name

Object Space → Create Object
Space → fill in form → Create

ivadmin_objectspace_delete() PDProtObjectSpace.delete ProtObjectSpace pdadmin objectspace
delete objectspace_name

Object Space → Browse
Object Space → click object
space name → Delete

ivadmin_objectspace_list() PDProtObjectSpace.list ProtObjectSpaces pdadmin objectspace list Object Space → Browse
Object Space

ivadmin_pop_attach() PDProtObject.attachPop
PDProtObject object.attachPop

pdadmin pop attach
object_name pop_name

POP → List POPss → click
POP name → Attach tab →
Attach → type protected object
path → Attach

ivadmin_pop_attrdelkey() PDPop.deleteAttribute
PDPop object.deleteAttribute

pdadmin pop modify
pop_name delete attribute
attribute_name

POP → List POPs → click POP
name → Extended Attributes
tab → select attributes →
Delete

ivadmin_pop_attrdelval() PDPop.deleteAttributeValue
PDPop object.deleteAttributeValue

pdadmin pop modify
pop_name delete attribute
attribute_name
attribute_value

Not supported

ivadmin_pop_attrget() PDPop object.getAttributeValues pdadmin pop show pop_name
attribute

POP → List POPs → click POP
name → Extended Attributes
tab

ivadmin_pop_attrlist() PDPop object.getAttributeNames pdadmin pop list pop_name
attribute

POP → List POPs → click POP
name → Extended Attributes
tab

ivadmin_pop_attrput() PDPop.setAttributeValuePDPop
object.setAttributeValue

pdadmin pop modify
pop_name set attribute
attribute_name
attribute_value

POP → List POPs → click POP
name → Extended Attributes
tab → Create → fill in form →
Apply

ivadmin_pop_create() PDPop.createPop pdadmin pop create
pop_name

POP → Create POP → fill in
form → Create

ivadmin_pop_delete() PDPop.deletePop pdadmin pop delete
pop_name

POP → List POPs → select
POP names → Delete

Appendix C. Administration API equivalents 73

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_pop_detach() PDProtObject.detachPop
PDProtObjectobject.attachPop

pdadmin pop detach
object_name

POP → List POPs → click POP
name → Attach tab → select
object → Detach

ivadmin_pop_find() PDProtObject.listProtObjectsByPop pdadmin pop find pop_name POP → List POPs → click POP
name → Attach tab

ivadmin_pop_get() PDPop constructor pdadmin pop show pop_name POP → List POPs → click POP
name

ivadmin_pop_getanyothernw2() PDPop object.getIPAuthInfo pdadmin pop show pop_name POP → List POPs → click POP
name

ivadmin_pop_getauditlevel() PDPop object.getAuditLevel pdadmin pop show pop_name POP → List POPs → click POP
name

ivadmin_pop_getdescription() PDPop object.getDescription pdadmin pop show pop_name POP → List POPs → click POP
name

ivadmin_pop_getid() PDPop object.getId pdadmin pop show pop_name POP → List POPs → click POP
name

ivadmin_pop_getipauth2() PDPop object.getIPAuthInfo pdadmin pop show pop_name POP → List POPs → click POP
name

ivadmin_pop_getqop() PDPop object.getQOP pdadmin pop show pop_name POP → List POPs → click POP
name

ivadmin_pop_gettod() PDPop object.getTodAccessInfo pdadmin pop show pop_name POP → List POPs → click POP
name

ivadmin_pop_getwarnmode() PDPop object.getWarningMode pdadmin pop show pop_name POP → List POPs → click POP
name

ivadmin_pop_list() PDPop.listPops pdadmin pop list POP → List POPs

ivadmin_pop_list() PDPop.listPops pdadmin pop list pop_name POP → List POPs → click POP
name

ivadmin_pop_removeipauth2()

PDPop.removeIPAuthInfo
PDPop object.removeIPAuthInfo

pdadmin pop modify
pop_name set ipauth
remove network netmask

POP → List POPs → click POP
name → IP Auth tab → select
IP authorization entries →
Delete

ivadmin_pop_setanyothernw2() PDPop.setIPAuthInfo pdadmin pop modify
pop_name set ipauth
anyothernw
authentication_level

POP → List POPs → click POP
name → IP Auth tab → Create
→ select Any Other Network
check box. and type the
authentication level → Create

ivadmin_pop_setanyothernw_
forbidden2()

PDPop.setIPAuthInfo pdadmin pop modify
pop_name set ipauth
anyothernw forbidden

POP → List POPs → click POP
name → IP Auth tab → Create
→ select Any Other Network
and Forbidden check boxes →
Create

ivadmin_pop_setauditlevel() PDPop.setAuditLevelPDPop object
.setAuditLevel

pdadmin pop modify
pop_name set audit-level
{all | none |
audit_level_list}

POP → List POPs → click POP
name → select or clear
appropriate check boxes →
Apply

ivadmin_pop_setdescription() PDPop.setDescription
PDPop object.setDescription

pdadmin pop modify
pop_name set description
description

POP → List POPs → click POP
name → modify description →
Apply

ivadmin_pop_setipauth2() PDPop.setIPAuthInfo
PDPop object.setIPAuthInfo

pdadmin pop modify
pop_name set ipauth add
network netmask
authentication_level

POP → List POPs → click POP
name → IP Auth tab → Create
→ type the network, net mask,
and authentication level →
Create

ivadmin_pop_setipauth_forbidden2() PDPop.setIPAuthInfo
PDPop object.setIPAuthInfo

pdadmin pop modify
pop_name set ipauth add
network netmask forbidden

POP → List POPs → click POP
name → IP Auth tab → Create
→ type network and net mask
and select Forbidden check
box → Apply

ivadmin_pop_setqop() PDPop.setQOPPDPop object.setQOP pdadmin pop modify
pop_name set qop {none |
integrity | privacy}

POP → List POPs → click POP
name → select appropriate
quality of protection → Apply

74 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_pop_settod() PDPop.setTodAccessInfo
PDPop object.setTodAccessInfo

pdadmin pop modify
pop_name set tod-access
{anyday | weekday |
day_list}:{anytime |
time_spec-time_spec}
[:utc | local]

POP → List POPs → click POP
name → define time of day
access → Apply

ivadmin_pop_setwarnmode() PDPop.setWarningMode
PDPop object.setWarningMode

pdadmin pop modify
pop_name set warning {yes
| no]

POP → List POPs → click POP
name → select or clear Warn
Only On Policy Violation
check box → Apply

Not supported Not supported pdadmin quit Not supported

ivadmin_protobj_access() PDProtObject.access pdadmin object access
object_name permissions

Not supported.

ivadmin_protobj_attachacl() PDProtObject.attachAcl
PDProtObject object.attachAcl

pdadmin acl attach
object_name acl_name

ACL → List ACL → click ACL
name → Attach tab → Attach →
type protected object path →
Attach

ivadmin_protobj_attachauthzrule() PDProtObject.attachAuthzRul
PDProtObject object.attachAuthzRule

pdadmin authzrule attach
object_name ruleid

AuthzRule → List AuthzRule
→ click authorization rule
name → Attach tab → Attach →
type protected object path →
Attach

ivadmin_protobj_attrdelkey() PDProtObject.deleteAttribute
PDProtObject object.deleteAttribute

pdadmin object modify
object_name delete
attribute_name

Object Space → Browse
Object Space → expand and
click object name → Extended
Attributes tab → select
attribute → Delete

ivadmin_protobj_attrdelval() PDProtObject.deleteAttributeValue
PDProtObject object.deleteAttributeValue

pdadmin object modify
object_name delete
attribute_name
attribute_value

Not supported

ivadmin_protobj_attrget() PDProtObject object.getAttributeValues pdadmin object show
object_name attribute
attribute_name

Object Space → Browse
Object Space → expand and
click object name → Extended
Attributes tab

PDProtObject.listProtObjects pdadmin object list Object Space → Browse
Object Space

ivadmin_protobj_attrlist() PDProtObject object.getAttributeNames pdadmin object list
object_name attribute

Object Space → Browse
Object Space → expand and
click object name → Extended
Attributes tab

pdadmin object
listandshow object_name

Not supported

ivadmin_protobj_attrput() PDProtObject.setAttributeValue
PDProtObject object.setAttributeValue

pdadmin object modify
object_name set attribute
attribute_name
attribute_value

Object Space → Browse
Object Space → expand and
click object name → Extended
Attributes tab → Create → fill
in form → Apply

ivadmin_protobj_create() PDProtObject.createProtObject pdadmin object create
object_name description
type ispolicyattachable
{yes|no}

Object Space → Create Object
→ fill in form → Create

The type field is not
supported.

You can select the Can Policy
be attached to this object
check box on the Protected
Object Properties page.

ivadmin_protobj_delete() PDProtObject.deleteProtObject pdadmin object delete
object_name

Object Space → Browse
Object Space → expand and
click object name → Delete

ivadmin_protobj_detachacl() PDProtObject.detachAcl
PDProtObject object.detachAcl

pdadmin acl detach
object_name

ACL → List ACL → click ACL
name → Attach tab → select
protected object → Detach

Appendix C. Administration API equivalents 75

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_protobj_detachauthzrule() PDProtObject.detachAuthzRule
PDProtObject object.detachAuthzRule

pdadmin authzrule detach
object_name

AuthzRule → List AuthzRule
→ click authorization rule
name → Attach tab → select
object names → Detach

ivadmin_protobj_exists() PDProtObject.exists pdadmin object exists
object_name

Not supported.

ivadmin_protobj_get3() PDProtObject constructor
Note: If the protected object name specified
does not exist, default values are shown. To
determine that a protected object exists, use
the PDProtObject.exists command.

pdadmin object show
object_name

Object Space → Browse
Object Space → expand and
click object name

ivadmin_protobj_getaclid() PDProtObject object.getAcl pdadmin object show
object_name

Object Space → Browse
Object Space → expand and
click object name

ivadmin_protobj_getauthzruleid() PDProtObject object.getAuthzRule pdadmin object show
object_name

Object Space → Browse
Object Space → expand and
click object name

ivadmin_protobj_getdesc() PDProtObject object.getDescription pdadmin object show
object_name

Object Space → Browse
Object Space → expand and
click object name

ivadmin_protobj_geteffaclid() PDProtObject object.getEffectuveAclId pdadmin object show
object_name

Object Space → Browse
Object Space → expand and
click object name

ivadmin_protobj_geteffauthzruleid() PDProtObject object
.getEffectuveAuthzRuleId

pdadmin object show
object_name

Object Space → Browse
Object Space → expand and
click object name

ivadmin_protobj_geteffpopid() PDProtObject object.getEffectuvePopId pdadmin object show
object_name

Object Space → Browse
Object Space → expand and
click object name

ivadmin_protobj_getid() PDProtObject object.getId pdadmin object show
object_name

Object Space → Browse
Object Space → expand and
click object name

ivadmin_protobj_getpolicyattachable() PDProtObject object.isPolicyAttachable pdadmin object show
object_name

Object Space → Browse
Object Space → expand and
click object name

ivadmin_protobj_getpopid() PDProtObject object.getPopId pdadmin object show
object_name

Object Space → Browse
Object Space → expand and
click object name

Not supported pdadmin object show
object_name

Object Space → Browse
Object Space → expand and
click object name

ivadmin_protobj_list3() PDProtObject.listProtObjects
Note: Before using this information and the
product it supports, read the information in
“Notices” on page 141.

pdadmin object list
directory_name

Object Space → Browse
Object Space → expand and
click object name

ivadmin_protobj_listbyacl() PDProtObject.listProtObjectsByAcl pdadmin acl find acl_name ACL → List ACL → click ACL
name → Attach tab

ivadmin_protobj_listbyauthzrule() PDProtObject.listProtObjectsByAuthzRule pdadmin authzrule find
ruleid

AuthzRule → List AuthzRule
→ click authorization rule
name → Attach tab

ivadmin_protobj_multiaccess() PDProtObject.multiAccess pdadmin object access
object_name permissions

Not supported.

ivadmin_protobj_setdesc() PDProtObject.setDescription
PDProtObject object.setDescription

pdadmin object modify
object_name set
description description

Object Space → Browse
Object Space → expand and
click object name → modify
description → Apply

ivadmin_protobj_setname() Not supported pdadmin object modify
object_name name name
conflict_resolution
resolution_modifier

Not supported

76 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_protobj_
setpolicyattachable()

PDProtObject.setPolicyAttachable
PDProtObject object.setPolicyAttachable

pdadmin object modify
object_name
isPolicyAttachable
{yes|no}

Object Space → Browse
Object Space → expand and
click object name → select or
clear check box→ Apply

ivadmin_protobj_settype() Not supported. pdadmin object modify
object_name type type

Not supported.

ivadmin_response_getcode() Not applicable. Not applicable. Not applicable.

ivadmin_response_getcount() Not applicable. Not applicable. Not applicable.

ivadmin_response_getmessage() Not applicable. Not applicable. Not applicable.

ivadmin_response_getmodifier() Not applicable. Not applicable. Not applicable.

ivadmin_response_getok() Not applicable. Not applicable. Not applicable.

Not supported. Not supported. pdadmin server list Not supported.

ivadmin_server_gettasklist() PDServer.getTaskList pdadmin server listtasks
server_name

Not supported.

Not supported Not supported pdadmin server show
server_name

Not supported.

ivadmin_server_performtask() PDServer.performTask pdadmin server task
server_name server_task

Not supported.

For more information about
the WebSEAL server tasks
and junction points, see the
IBM Security Access Manager
for Web: WebSEAL
Administration Guide.

pdadmin server task
server_name {help | stats
| trace}

Not supported.

ivadmin_server_replicate() PDServer.serverReplicate pdadmin server replicate
server_name

Not supported.

ivadmin_ssocred_create() PDSSOCred.createSSOCred pdadmin rsrccred create
resource_name rsrcuser
resource_userid rsrcpwd
resource_pwd rsrctype
{web | group} user
user_name

User → Search Users → Search
→ click user name → GSO
Credentials tab → Create → fill
in form → Create

ivadmin_ssocred_create() PDSSOCred.createSSOCred pdadmin rsrccred create
resource_group_name
rsrcuser resource_userid
rsrcpwd resource_pwd
rsrctype {web | group}
user user_name

User → Search Groups →
Search → click user name →
GSO Credentials tab →
Create → fill in form → Create

ivadmin_ssocred_delete() PDSSOCred.deleteSSOCred pdadmin rsrccred delete
resource_name rsrctype
{web | group} user
user_name

User → Search Users → Search
→ click user name → GSO
Credentials tab → select
credentials → Delete

ivadmin_ssocred_delete() PDSSOCred.deleteSSOCred pdadmin rsrccred delete
resource_group_name
rsrctype {web | group}
user user_name

User → Search Groups →
Search → click user name →
GSO Credentials tab → select
credentials → Delete

ivadmin_ssocred_get() PDSSOCred constructor pdadmin rsrccred show
resource_name rsrctype
{web | group} user
user_name

User → Search Users → Search
→ click user name → GSO
Credentials tab

ivadmin_ssocred_getid() PDSSOCred object.getResourceName pdadmin rsrccred show
resource_name rsrctype
{web | group} user
user_name

User → Search Users → Search
→ click user name → GSO
Credentials tab

ivadmin_ssocred_getssopassword() PDSSOCred object.getResourcePassword Not applicable. Not applicable.

ivadmin_ssocred_getssouser() PDSSOCred object.getResourceUser Not applicable. Not applicable.

Appendix C. Administration API equivalents 77

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_ssocred_gettype() PDSSOCred object.getResourceType pdadmin rsrccred show
resource_name rsrctype
{web | group} user
user_name

User → Search Users → Search
→ click user name → GSO
Credentials tab

ivadmin_ssocred_getuser() PDSSOCred object.getUser pdadmin rsrccred show
resource_name rsrctype
{web | group} user
user_name

User → Search Users → Search
→ click user name → GSO
Credentials tab

ivadmin_ssocred_get() PDSSOCred constructor pdadmin rsrccred show
resource_group_name
rsrctype {web | group}
user user_name

User → Search Groups →
Search → click user name →
GSO Credentials tab

ivadmin_ssocred_list() PDSSOCred object.listAndShow SSOCreds
PDSSOCred object.listSSOCreds

pdadmin rsrccred list
user user_name

User → Search Users → Search
→ click user name → GSO
Credentials tab

ivadmin_ssocred_set() PDSSOCred.setSSOCred
PDSSOCred object.setSSOCred

pdadmin rsrccred modify
resource_name rsrctype
{web | group} [-rsrcuser
resource_userid]
[-rsrcpwd resource_pwd]
user user_name

User → Search Users → Search
→ click user name → GSO
Credentials tab → Create →
modify form → Create

ivadmin_ssocred_set() PDSSOCred.setSSOCred
PDSSOCred object.setSSOCred

pdadmin rsrccred modify
resource_group_name
rsrctype {web | group}
[-rsrcuser
resource_userid]
[-rsrcpwd resource_pwd]
user user_name

User → Search Groups →
Search → click user name →
GSO Credentials tab →
Create → modify form →
Create

ivadmin_ssogroup_addres() PDSSOResourceGroup.
addSSOResource
PDSSOResourceGroup object
addSSOResource

pdadmin rsrcgroup modify
resource_group_name add
rsrcname resource_name

GSO Resource → List GSO
Groups → select resource
group → select members →
Add

ivadmin_ssogroup_create() PDSSOResourceGroup.
createSSOResourceGroup

pdadmin rsrcgroup create
resource_group_name

GSO Resource → Create GSO
Group → fill in form → Create

ivadmin_ssogroup_create() PDSSOResourceGroup.
createSSOResourceGroup

pdadmin rsrcgroup create
resource_group_name -desc
description

GSO Resource → Create GSO
Group → fill in form and
modify the description →
Create

ivadmin_ssogroup_delete() PDSSOResourceGroup.
deleteSSOResourceGroup

pdadmin rsrcgroup delete
resource_group_name

GSO Resource → List GSO
Groups → select resource
groups → Delete

ivadmin_ssogroup_get() PDSSOResourceGroup constructor pdadmin rsrcgroup show
resource_group_name

GSO Resource → List GSO
Groups → select resource
group

ivadmin_ssogroup_getdescription() PDSSOResourceGroup object.getDescription pdadmin rsrcgroup show
resource_group_name

GSO Resource → List GSO
Groups → select resource
group

ivadmin_ssogroup_getid() PDSSOResourceGroup object.getId pdadmin rsrcgroup show
resource_group_name

GSO Resource → List GSO
Groups → select resource
group

ivadmin_ssogroup_getresources() PDSSOResourceGroup object.getSSOResources pdadmin rsrcgroup show
resource_group_name

GSO Resource → List GSO
Groups → select resource
group

ivadmin_ssogroup_list() PDSSOResourceGroup.
listSSOResourceGroups

pdadmin rsrcgroup list GSO Resource → List GSO
Groups

ivadmin_ssogroup_removeres() PDSSOResourceGroup.
removeSSOResource
PDSSOResourceGroup object
.removeSSOResource.

pdadmin rsrcgroup modify
resource_group_name
remove rsrcname
resource_name

GSO Resource → List GSO
Groups → select resource
group → select members →
Remove

ivadmin_ssoweb_create() PDSSOResource.createSSOResource pdadmin rsrc create
resource_name

GSO Resource → Create GSO
→ fill in form → Create

ivadmin_ssoweb_create() PDSSOResource.createSSOResource pdadmin rsrc create
resource_name -desc
description

GSO Resource → Create GSO
→ fill in form and modify the
description → Create

78 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_ssoweb_delete() PDSSOResource.deleteSSOResource pdadmin rsrc delete
resource_name

GSO Resource → List GSO →
select resources → Delete

ivadmin_ssoweb_get() PDSSOResource constructor pdadmin rsrc show
resource_name

GSO Resource → List GSO →
click resource

ivadmin_ssoweb_getdescription() PDSSOResource object.getDescription pdadmin rsrc show
resource_name

GSO Resource → List GSO →
click resource

ivadmin_ssoweb_getid() PDSSOResource object.getId pdadmin rsrc show
resource_name

GSO Resource → List GSO →
click resource

ivadmin_ssoweb_list() PDSSOResource.listSSOResources pdadmin rsrc list GSO Resource → List GSO

ivadmin_user_create3() PDUser.createUser pdadmin user create
[-gsouser]
[-no-password-policy]
user_name dn cn sn
password [group1 [group2
...]]

User → Create User → fill in
form → Create

ivadmin_user_delete2() PDUser.deleteUser pdadmin user delete
[-registry] user_name

User → Search Users → type
pattern and maximum results
→ Search → select user names
→ Delete

ivadmin_user_get() PDUser constructor pdadmin user show
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name

ivadmin_user_getaccexpdate() PDPolicy object.getAcctExpDate pdadmin user get
account-expiry-date -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab

ivadmin_user_getaccountvalid() PDUser object.isAccountValid pdadmin user show
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name

ivadmin_user_getbydn() PDUser constructor pdadmin user show-dn dn Not supported

ivadmin_user_getcn() PDUser object.getFirstName pdadmin user show
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name

ivadmin_user_getdescription() PDUser object.getDescription pdadmin user show
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name

ivadmin_user_getdisabletimeint() PDPolicy object.getAcctDisableTimeInterval pdadmin policy get
disable-time-interval
-user user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab

ivadmin_user_getdn() PDUser object.getRgyName pdadmin user show
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name

ivadmin_user_getid() PDUser object.getId pdadmin user show
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name

ivadmin_user_getmaxconcurwebsess() PDPolicy object
.getMaxconcurrentWebSessions

pdadmin policy get
max-concurrent-web-
sessions -user user_name

User → Show Global User
Policy → view Max Concurrent
Web Sessions

ivadmin_user_getmaxlgnfails() PDPolicy object.getMaxFailedLogins pdadmin policy get
max-login-failures -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab

ivadmin_user_getmaxpwdage() PDPolicy object.getMaxPwdAge pdadmin policy get
max-password-age -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab

ivadmin_user_getmaxpwdrepchars() PDPolicy object.getMaxPwdRepChars pdadmin policy get
max-password-repeated-
chars -user user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab

Appendix C. Administration API equivalents 79

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_user_getmemberships() PDUser object.getGroups pdadmin user show-groups
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Groups tab

ivadmin_user_getminpwdalphas() PDPolicy object.getMinPwdAlphas pdadmin policy get
min-password-alphas -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab

ivadmin_user_getminpwdlen() PDPolicy object.getMinPwdLen pdadmin policy get
min-password-length -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab

ivadmin_user_getminpwdnonalphas() PDPolicy object.getMinPwdNonAlphas pdadmin policy get
min-password-non-alphas
-user user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab

ivadmin_user_getpasswordvalid() PDUser object.isPasswordValid pdadmin user show
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name

ivadmin_user_getpwdspaces() PDPolicy object.pwdSpacesAllowed pdadmin policy get
password-spaces -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab

ivadmin_user_getsn() PDUser object.getLastName pdadmin user show
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name

Not applicable PDUser object.isPDUser pdadmin user show
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name

ivadmin_user_getssouser() PDUser object.isSSOUsert_memory_error pdadmin user show
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name

ivadmin_user_gettodaccess() PDPolicy object.getAccessibleDays
PDPolicy object.getAccessStartTime
PDPolicy object.getAccessEndTime

pdadmin policy get
tod-access -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab

ivadmin_user_import2() PDUser.importUser pdadmin user import
[-gsouser] user_name dn
[group_name]

User → Import User → fill in
form → Create

ivadmin_user_list() PDUser.listUsers pdadmin user list pattern
max_return

User → Search Users → type
pattern and maximum results
→ Search

ivadmin_user_listbydn() PDUser.listUsers pdadmin user list-dn
pattern max_return

Not supported.

ivadmin_user_setaccexpdate() PDPolicy.setAcctExpDate
PDPolicy object.setAcctExpDate

pdadmin policy set
account-expiry-date
{unlimited |
absolute_time | unset}
-user user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab → modify value →
Apply

ivadmin_user_setaccountvalid() PDUser.setAccountValid
PDUser object.setAccountValid

pdadmin user modify
user_name account-valid
{yes|no}

User → Search Users → type
pattern and maximum results
→ Search → click user name →
select or clear check box →
Apply

ivadmin_user_setdescription() PDUser.setDescription
PDUser object.setDescription

pdadmin user modify
user_name description
description

User → Search Users → type
pattern and maximum results
→ Search → click user name →
modify description → Apply

ivadmin_user_setdisabletimeint() PDPolicy.setAcctDisableTime
PDPolicy object.setAcctDisableTime

pdadmin policy set
disable-time-interval
{number | unset |
disable} -user user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab → modify value →
Apply

80 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 29. Mapping of the administration C API to the Java methods, the pdadmin interface, and Web Portal
Manager (continued)

C API Java class and method pdadmin command
equivalent

Web Portal Manager
equivalent

ivadmin_user_setmaxconcurwebsess() PDPolicy.MaxConcurrentWebSessions
Displaced
PDPolicy.MaxConcurrentWebSessions
Unlimited
PDPolicy.MaxConcurrentWebSessions
Enforced
PDPolicy.setMaxconcurrent
WebSessions
PDPolicy object.setMaxconcurrent
WebSessions

pdadmin policy set
max-concurrent-web-
sessions {number |
displace | unlimited |
unset} -user user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab → modify value →
Apply

ivadmin_user_setmaxlgnfails() PDPolicy.setMaxFailedLogins
PDPolicy object.setMaxFailedLogins

pdadmin policy set
max-login-failures
{number | unset} -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab → modify value →
Apply

ivadmin_user_setmaxpwdage() PDPolicy.setMaxPwdAge
PDPolicy object.setMaxPwdAge

pdadmin policy set
max-password-age {unset |
relative_time} -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab → modify value →
Apply

ivadmin_user_setmaxpwdrepchars() PDPolicy.setMaxPwdRepChars
PDPolicy object.setMaxPwdRepChars

pdadmin policy set
max-password-repeated-
chars {number | unset}
-user user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab → modify value →
Apply

ivadmin_user_setminpwdalphas() PDPolicy.setMinPwdAlphas
PDPolicy object.setMinPwdAlphas

pdadmin policy set
min-password-alphas
{number | unset} -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab → modify value →
Apply

ivadmin_user_setminpwdlen() PDPolicy.setMinPwdLen
PDPolicy object.setMinPwdLen

pdadmin policy set
min-password-length
{number | unset} -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab → modify value →
Apply

ivadmin_user_setminpwdnonalphas() PDPolicy.setMinPwdNonAlphas
PDPolicy object.setMinPwdNonAlphas

pdadmin policy set
min-password-non-alphas
{number | unset} -user
user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab → modify value →
Apply tab

ivadmin_user_setpassword() PDUser.setPassword
PDUser object.setPassword

pdadmin user modify
user_name password
password

User → Search Users → type
pattern and maximum results
→ Search → click user name →
modify password → Apply

ivadmin_user_setpasswordvalid() PDUser.setPasswordValid
PDUser object.setPasswordValid

pdadmin user modify
user_name password-valid
{yes|no}

User → Search Users → type
pattern and maximum results
→ Search → click user name →
select or clear check box →
Apply

ivadmin_user_setpwdspaces() PDPolicy.setPwdSpacesAllowed
PDPolicy object.setPwdSpacesAllowed

pdadmin policy set
password-spaces {yes | no
| unset} -user user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab → modify value →
Apply

ivadmin_user_setssouser() PDUser.setSSOUser
PDUser object.setSSOUser

pdadmin user modify
user_name gsouser
{yes|no}

User → Search Users → type
pattern and maximum results
→ Search → click user name →
select or clear check box →
Apply

ivadmin_user_settodaccess() PDPolicy.setTodAccess
PDPolicy object.setTodAccess

pdadmin policy set
tod-access tod_value
-user user_name

User → Search Users → type
pattern and maximum results
→ Search → click user name →
Policy tab → modify value →
Apply

Appendix C. Administration API equivalents 81

82 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Appendix D. Registry Direct Java API

The Registry Direct API directly accesses the underlying Security Access Manager
registry rather than through Authorization servers or Policy Server.

This API also provides access to most of the underlying registry user attributes and
the attributes available through the traditional Security Access Manager Java API.

The advantages of this API are as follows:
v Removes the dependency on the Policy Server, a single point of failure.
v Provides more attribute access for developers.
v Improves performance and scalability.

This API provides attribute read-only Global Sign On (Single Sign On resource
credential) support. It does not create, enable, disable, or delete the users that are
enabled for Global Sign On.

Design
The Registry Direct API is a set of Java interfaces that provide the required
administration and authentication methods. This design supports only IBM Tivoli®

Directory Manager registry types.

The factory class generates an instance that implements the primary interface for
specific registry.

Use the provided utility class to configure the API configuration in the stand-alone
mode. The Security Access Manager Java API configuration class is for both the
Security Access Manager Java API and Registry Direct Java API. If authorization is
enabled in the Registry Direct Java API, the Registry Direct API uses the existing
Java API to authorize access to API methods.

Security Access Manager Java API
This section illustrates how the API works.

The Security Access Manager Java API uses the Policy Server for user, group, and
policy administration. The API uses the Authorization Server for authentication.

The following diagram illustrates the Security Access Manager Java API.

© Copyright IBM Corp. 2002, 2012 83

Registry Direct Java API
If authorization is enabled, the Security Access Manager Java API requires the
Authorization Server. To reduce this dependency, run the Security Access Manager
Java API in local mode.

In local mode, the Registry Direct API authorizes decisions internally instead of
using the Authorization server. The Authorization Server generates a credential for
the administrator user who was authorized when this API starts.

The following diagram illustrates the Registry Direct Java API.

Java Runtime

ISAM Java Authorization and Administration API

ISAM Client App

ISAM Authzn API Classes

ISAM Authzn Client

ISAM Admin API Classes

ISAM Admin Client

ISAM Admin Server

Auditing

Authorization

Registry Selector

URAF (AD, Domino) LDAP Admin

ISAM Policy Server

Policy DB

Policy DB
Replica

LDAP
Server

ISAM Authzn Server

Registry Selector

LDAP Authn URAF (AD, Domino)

ISAM Authorization Server

Figure 5. Security Access Manager Java API

Auditing

Java Runtime

ISAM Registry Direct Java API

New ISAM Client App

ISAM Authzn API Classes

ISAM Authzn Client

Old Java API

Authorization

ISAM Authorization
Server

LDAP
Server

LDAP Authn

LDAP Admin

Figure 6. Registry Direct Java API

84 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Published API
The API published to users consists of Java Interfaces and Factory classes to
generate instances of the primary interface.

See detailed information about each class in the Javadoc included with the
product. The following sections describe the Java interfaces and methods of the
API.

com.tivoli.pd.rgy.RgyRegistry

The primary interface RgyRegistry consists of the following methods:
v getUser(), getNativeUser(), getGroup(), and getNativeGroup()
v createUser() and createGroup()
v newRgyAttributes()
v deleteUser() and deleteGroup()
v listUsers(), listNativeUsers(), listGroups, and listNativeGroups()
v setRgyThreadLocale() and getRgyThreadLocale()
v toRegistryDate() and fromRegistryDate()
v condenseResourceCredential() and expandResourceCredential()
v close()

getUser(), getNativeUser(), getGroup(), and getNativeGroup()

Fetch Security Access Manager and native user or group attributes. They
create corresponding RgyUser or RgyGroup instances to hold these attributes
and allow operations on the entity.

For getNativeUser() or getNativeGroup(), the native user or group uses
the native ID (a DN for LDAP native registries), and the attributes of the
user or group are fetched.

If the native user or group is also a Security Access Manager entity, the
corresponding Security Access Manager attributes are also fetched.

When you import the native entity, the API uses the Security Access
Manager domain that is passed through the getNativeUser() or
getNativeGroup()

An RgyUser or RgyGroup instance does not need to be a Security Access
Manager entity and might contain only the native entity attributes. You can
examine the virtual attribute isSecEntity to determine whether the entity
exists. If the value of isSecEntity is true, the Security Access Manager
entity exists.

Prototype:
RgyUser getUser(String domain, String userId) throws RgyException;
RgyUser getNativeUser(String domain, String userNativeId) throws
RgyException;
RgyGroup getGroup(String domain, String groupId) throws RgyException;
RgyGroup getNativeGroup(String domain, String groupNativeId) throws
RgyException;

createUser() and createGroup()

Appendix D. Registry Direct Java API 85

Create a Security Access Manager user or group along with the underlying
native entity. If the underlying native entity exists, use getNativeUser() or
getNativeGroup() with the RgyUser or RgyGroup import() method.

Supply the required attributes like cn and sn.

Optionally, specify the following attributes during method creation:
v Native entity attributes such as description.
v Security Access Manager user attributes like secAcctValid.
v Security Access Manager user policy attributes such as

passwordMinLength.

Prototype:
RgyUser createUser(String domain, String userId,
String userNativeId, char[] password,
boolean bypassPasswordPolicy,
RgyAttributes rgyAttributes,
Set <string> groupIds)throws RgyException;
RgyGroup createGroup(String domain, String groupId,
String groupNativeId,
RgyAttributes rgyAttributes)throws RgyException;

newRgyAttributes()

Creates an empty instance of RgyAttributes. This method populates and
supplies the empty instance to createUser(), createGroup(),
RgyUser.import(), and RgyGroup.import() methods.

Prototype:
RgyAttributes newRgyAttributes();

deleteUser() and deleteGroup()

Deletes Security Access Manager user and group, and optionally deletes
the native entity.

This API does not update the GSO data of the user. You cannot delete GSO
enabled users. You can use the virtual attribute isGSOUser to confirm if an
RgyUser is GSO enabled.

The WarningNativeEntityInUseRgyException error is generated if other
applications create entries under the native entry. Despite this error, the
API deletes this Security Access Managerentity. You can ignore the error if
the method permits.

Prototype:

void deleteUser(String domain, String userId, boolean
deleteNativeUser) throws RgyException;

void deleteGroup(String domain, String groupId, boolean
deleteNativeGroup) throws RgyException;

listUsers(), listNativeUsers(), listGroups, and listNativeGroups()

listUsers() lists Security Access Manager users

listNativeUsers() lists the native users

listgroups() lists the Security Access Manager groups

listNativegroup() lists the native groups.

The native lists return native IDs. For LDAP, the native id is a DN. Each
native entity, the ID refers contains an attribute that matches the supplied
attribute pattern. The non-native list methods returns Security Access

86 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Manager IDs that match the supplied pattern. All methods return an
RgyIterator instance to iterate the result set.

The PageSize parameter is optional and it can be ignored by the API.

Prototype:
RgyIterator listUsers(String domain, String userIdPattern,
int maxResults,int pageSize)throws RgyException;
RgyIterator listNativeUsers(String
searchAttributeName, String searchAttributePattern, int maxResults,
int pageSize) throws RgyException;
RgyIterator listGroups(String domain, String groupIdPattern,
int maxResults,int pageSize)throws RgyException;
RgyIterator listNativeGroups(String searchAttributeName, String
searchAttributePattern,int maxResults, int pageSize)
throws RgyException;

setRgyThreadLocale() and getRgyThreadLocale()

Set and fetch the locale that is used when generating messages for
RgyExceptions. You can set locale independently for each thread. If the set
method is not invoked for a thread, the default locale for that thread is
Java Runtime default locale. The log messages use the Java Runtime
default locale and are not affected by setRgyThreadLocale() method.

Prototype:
void setRgyThreadLocale(Locale locale);
Locale getRgyThreadLocale();

toRegistryDate() and fromRegistryDate()

toRegistryDate() converts a Java date instance into a string format. You
can supply this string format to the API for Security Access Manager
attributes that require an absolute date, such as secAcctExpires.

fromRegistryDate() to interpret the date that is provided in Security
Access Manager attributes such as secPwdLastChanged and secPwdLastUsed.

Prototype:
String toRegistryDate(Date javaDate) throws RgyException;
Date fromRegistryDate(String registryDate) throws RgyException;

condenseResourceCredential() and expandResourceCredential()

The expandResourceCredential method extracts the four component values
from condensed form into an array of strings. The components are indexed
as follows:
public final int RESOURCE_CRED_NAME_INDEX = 0;
public final int RESOURCE_CRED_TYPE_INDEX = 1;
public final int RESOURCE_CRED_USER_INDEX = 2;
public final int RESOURCE_CRED_PASSWORD_INDEX = 3;
public final int RESOURCE_CRED_LENGTH = 4;

CondenseResourceCredential() reverses the processes.

Each value of the attribute resourceCredentials is returned from the
registry for users in condensed form.

The component value that is indexed by RESOURCE_CRED_TYPE_INDEX is one
of the following:
public static final String RESOURCE_TYPE_WEB_VALUE = "Web Resource";
public static final String RESOURCE_TYPE_GROUP_VALUE = "Resource Group";

close()

Appendix D. Registry Direct Java API 87

Releases any used resources, such as open connections to LDAP. The
RgyRegistry methods and any instances of RgyUser, RgyGroup, or
RgyIterator generated by the RgyRegistry instance must not be used after
the instance is closed.

Prototype:

void close();

com.tivoli.pd.rgy.RgyEntity
RgyEntity provides methods common to RgyUser and RgyGroup interfaces.

This section explains the following methods:
v getId() and getNativeId()
v attributeNameIterator(), getOneAttributeValue(), and getAttributeValues()
v attributeDelete(), attributeReplace(), and attributeAdd()
v getDomain() and getRgyRegistry()

getId() and getNativeId()

Provide the Security Access Manager ID for the user or group with
getId() and the native registry ID with getNativeId(). This product
supports only LDAP registries. The registry native ID is an LDAP
Distinguished Name. The value of Security Access Manager ID is null if
the LDAP account does not have any associated Security Access Manager
identity.

Example :

v getId() returns a string similar to sec_master.
v getNativeId() returns a string similar to

cn=SecurityMaster,secAuthority=Default.

Prototype:
String getId();
String getNativeId();

attributeNameIterator(), getOneAttributeValue(), and getAttributeValues()

You can obtain available attribute names using the
attributeNameIterator() method.

getOneAttributeValue() is a convenience method you can use when you
are sure that the attribute has only one value.

The getAttributeValues() Security Access Manager returns the attribute
values as an array of objects.

All the value objects in the array are in the same class as a string or byte
array. The cached values in the RgyEntity for the attributes are never read
again from the registry. You must fetch a new instance of the entity using
the RgyRegistry to ensure that the attribute values are the latest.

Prototype:
Iterator <String> attributeNameIterator();
Object getOneAttributeValue(String name);
Object[] getAttributeValues(String name);

attributeDelete(), attributeReplace(), and attributeAdd()

Modify the attributes of entities with these methods. Attribute values are
either a string or byte. If an attribute has multiple values, you can supply

88 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

all the values as objects. All objects in the array can represent the same
class. The API updates the values of both RgyEntity and the attributes
from the cache to the registry.

Prototype: void attributeDelete(String name) throws RgyException; void
attributeDelete(String name, Object value) throws RgyException; void
attributeDelete(String name, Object[] values) throws RgyException; void
attributeReplace(String name, Object value) throws RgyException; void
attributeReplace(String name, Object[] values) throws RgyException; void
attributeAdd(String name, Object value) throws RgyException; void
attributeAdd(String name, Object[] values) throws RgyException;

Note: The Delete, Replace, or Add method of the RgyEntity updates the
cached values only for the instance on which the method is invoked.

getDomain() and getRgyRegistry()

getDomain() returns a specific domain when RgyRegistry fetches the entity.

getRgyRegistry() returns the RgyRegistry instance that instantiated the
RgyEntity instance.

com.tivoli.pd.rgy.RgyUser
RgyUser extends RgyEntity to provide user-specific methods.

The following section explains the methods in the RgyUser interface:
v authenticate()
v changePassword()
v setPassword()
v listGroups() and listNativeGroups()
v importNativeUser()

authenticate()

Fetch the policy and account state attribute values from RgyUser to ensure
that the values used during authentication are the latest cached values in
the RgyUser instance. This method does not generate a Security Access
Manager credential.

If the authentication is successful, no error is generated. Otherwise, an
error which indicates the reason for the failure is generated. Failure might
be caused by a wrong password or any other factors, such as an
unavailable account.

The Security Access Manager password validation policy is based on
policies and account states. The Registry Direct Java API password
validation process is compatible with the Security Access Manager
password validation process.

Prototype:
void authenticate(char[] password) throws RgyException;

Note: Authentication takes the time of day access restriction into account.
When setting a password policy, the user might provide a list of days, start
time, and end time. The start time and end time apply to each day on the
list. If the specified start time is greater than the specified end time, then
the access is allowed until the specified end time of the next day.

changePassword()

Appendix D. Registry Direct Java API 89

Authenticates the current password and, if successful, sets the password to
the new value.

If the authentication of the current password succeeds, the API sets the
new password value. If the configuration property ldap.enhanced-pwd-
policy is enabled, the password is updated by using the users credential.
This method supports the native LDAP policy, which requires users to
change the password after the administrator resets the password. Use the
setPassword() method to reset the administrative password.

Prototype:

void changePassword(char[] currentPassword, char[] newPassword)
throws RgyException;

setPassword()

Sets the account password to the new value.

This method updates the user password by using the administrative
account credentials of the Registry Direct API. If a specific native LDAP
policy is enabled for the account, this method resets the native registry
account state.

Note: Use this method when the administrator resets the user password,
or the user password is reset by using the user-self-care password recovery
process.

Prototype:

void setPassword(char[] newPassword) throws RgyException;

listGroups() and listNativeGroups()

listGroups() lists the groups to which the user belongs.

listNativeGroups() method returns a list of the native IDs of the groups.
The list might include groups that are not Security Access Manager
enabled. The group list is not cached in the RgyUser instance, and each
invocation of the methods searches the registry to determine the
membership.

Prototype:
Set <string> listGroups() throws RgyException;
Set <string> listNativeGroups() throws RgyException;

importNativeUser()

Converts the LDAP native user account into a Security Access Manager
entity.

Prototype:
void importNativeUser(String userId, RgyAttributes rgyAttributes,
String groupId) throws RgyException;

com.tivoli.pd.rgy.RgyGroup
RgyGroup extends RgyEntity to provide group-specific methods.

This section describes the following methods in the RgyGroup interface:
v listMemberIds() and listMemberNativeIds()
v addMembers() and removeMembers()
v importNativeGroup()

90 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

listMemberIds() and listMemberNativeIds()

Returns a list of members who belong to the group.

When you call these methods, they fetch the member list directly from the
registry such as LDAP. The member list is not cached in the RgyGroup
instance.

ListMemberNativeIds() returns a list of native IDs (DNs for LDAP). The
returned membership list can include native IDs of users who are not
Security Access Manager enabled.

Prototype:
Set <string> listMemberIds() throws RgyException;
Set <string> listMemberNativeIds() throws RgyException;

addMembers() and removeMembers()

Adds and removes Security Access Manager users from the group
membership list.

This method does not provide any option to manage the membership of
dynamic or nested groups. These methods fail if the membership list is
determined by dynamic methods or from nested group membership.

Prototype:
void addMembers(List <String> memberIds) throws RgyException;
void removeMembers(List <String> memberIds) throws RgyException;

importNativeGroup()

Converts the LDAP native group into a Security Access Manager entity.

Prototype:
void importNativeGroup(String groupId, RgyAttributes rgyAttributes)
throws RgyException;

com.tivoli.pd.rgy.RgyIterator
This interface provides an iterator for lists of user and group IDs.

Depending on the RgyRegistry method that returns the RgyIterator instance, the
group IDs are either Security Access Manager IDs or native IDs.

This section explains the following methods in the RgyIterator interface:
v hasNext()
v next()
v close()

hasNext()

Returns the Boolean value true if another ID is available.

This method generates SizeLimitExceededRgyException if more results are
available than those specified in maxResults when the RgyIterator was
constructed, or the Registry Server is configured to allow. This exception
occurs on the call after returning the last available ID.

Prototype:
boolean hasNext() throws RgyException;

next()

Returns the next available ID.

Appendix D. Registry Direct Java API 91

Prototype:
String next() throws RgyException;

close()

Stops the iteration.

If RgyIterator does not throw an exception or hasNext() does not return
false and the caller has finished using the RgyIterator instance, call
close() immediately to release any used resource. Each open RgyIterator
instance opens a connection to the native registry.

The Registry Direct Java API limits the number of open RgyIterator to
restrict the number of simultaneous connections. When the maximum limit
is reached, instantiating new RgyIterator is not possible until at least one
of the existing connections is closed.

Prototype:
void close();

com.tivoli.pd.rgy.ldap.RgyAttributes
RgyAttributes creates a collection of attributes for creating or importing a user or
group.

This section explains the following methods available in the RgyAttributes
interface:
v putAttribute()
v addAttribute()
v removeAttribute()
v putAttributesInto()
v getOneAttributeValue() and getAttributeValues()
v nameIterator()

putAttribute()
Replaces any existing attribute value with the specified values. If the
specified attribute does not exist in the RgyAttribute instance, it is created
by using the values that are passed through this method.

addAttribute()
Adds one or more values to the existing values for the specified attribute.
If the specified attribute does not exist, it is created by using the values
that are passed through this method.

removeAttribute()
Removes the specified values from the attribute that is passed through the
RgyAttributes instance.

If the specified attribute is not present in the RgyAttributes instance, it is
ignored.

If the attribute does not have any associated values, the attribute is
removed after the attributes values are removed.

If only the attribute name is specified, this method removes the attribute
completely.

putAttributesInto()
All attributes available in theRgyAttribute are added to the specified
RgyAttribute instance. This method replaces the attributes that contain the
same name.

92 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

getOneAttributeValue() and getAttributeValues()
Fetches the values of the named attribute. If the attribute named by
getOneAttributeValue() contains more than one value, any one attribute
value is returned. There is no specific pattern that is based on which the
method selects the value.

nameIterator()
Returns an Iterator<String> that provides the names of all the attributes
currently stored in the RgyAttributes instance.

com.tivoli.pd.rgy.ldap.LdapRgyRegistryFactory
This factory creates instances of the API interfaces that manipulate Security Access
Manager entities in LDAP registries.

When configured correctly, the factory authorizes and audits the API methods. This
section explains the following methods available in the LdapRgyRegistryFactory
interface:
v getRgyRegistryInstance()
v getLdapRgyRegistryInstance()

getRgyRegistryInstance()

The primary method obtains RgyRegistry instance for LDAP registries.

Consider the other methods only if it requires authorization and the caller
provides PDAuthorizationContext instance this API uses for authorization
checks. This instance is required if PDAuthorizationContext is shared for
other purposes because only one PDAuthorizationContext must be
instantiated per configuration file that is created by the
com.tivoli.pd.jcfg.SvrSslCfg tool.

Prototype:
public class LdapRgyRegistryFactory {
public static RgyRegistry getLdapRgyRegistryInstance
(Properties properties, Map enhancements) throws RgyException;
}

If you use getRgyRegistryInstance() method that requires authorization,
then propertiesUrl is referred in the configuration properties file. This
propertiesUrl must include both PDAuthorizationContext and
RgyRegistry configurations.

Typically, the API uses the com.tivoli.pd.jcfg.SvrSslCfg tool to create
and manage this combined configuration file. The PD.jar file must be
accessible by this API and be using the class path.

If API method authorization is not required, specify the RgyRegistry
configuration properties in the file. The PD.jar file is not required when
com.tivoli.pd.rgy.util.RgyConfig uses this method to create and manage
this registry instance.

This method uses authz.enable-authorization configuration property to
determine whether PDAuthorizationContext must be used to create and
authorize the API methods.

getLdapRgyRegistryInstance()

Creates an instance of RgyRegistry that manipulates LDAP registries. It
does not automatically enable authorization or auditing.

Appendix D. Registry Direct Java API 93

If you pass the registry instance to the appropriate registry, you can
perform authorization and auditing operations.

These methods are used when the caller wants to provide their own
PDAuthorizationContext instance for the RgyRegistry API to authorize its
methods.

LdapRgyRegistryFactory.getLdapRgyRegistryInstance(URL propertiesUrl,
Map enhancements) closely emulates the
LdapRgyRegistry.getRgyRegistryInstance() when combined with
v AuthzRgyRegistryFactory.getRgyRegistryInstance(URL propertiesUrl

v Map enhancements

v RgyRegistry wrappedRgyRegistry

v PDAuthorizationContext pdAuthzContext

v String adminUserId)

Instead of authz.enable-authorization configuration property enabling
authorization of the API, supplying a non-null PDAuthorizationContext
enables it.

The Administrator user in the authorization of this API is provided as an
argument rather than specifying it in the configuration properties file.

Prototype:
public class LdapRgyRegistryFactory {
public static RgyRegistry getLdapRgyRegistryInstance
(URL propertiesUrl, Map enhancements) throws RgyException;
public static RgyRegistry getRgyRegistryInstance
(URL propertiesUrl, Map enhancements)throws RgyException;
}

com.tivoli.pd.rgy.ldap.AuthzRgyRegistryFactory
This factory creates instances of the RgyRegistry API interface that authorizes and
audits other RgyRegistry API instances.

This section explains the following methods in the RgyIterator interface:
v getRgyRegistryInstance()
v getRgyRegistryInstance()
v updateAdminId()
v getPdAuthzContext()

getRgyRegistryInstance()

If authz.enable-authorization is enabled, this version of
getRgyRegistryInstance() creates the required PDAuthorizationContext.

The getRgyRegistryInstance() uses authz.pdauthorizatoncontext-user as
the administrative user for authorization decisions when it grants access to
methods.

The
com.tivoli.pd.rgy.ldap.RgyRegistryFactory.getRgyRegistryInstance()
instance uses this method for authorization and auditing. The
wrappedRgyRegistry is owned by this method, and the instance is
automatically closed when appropriate. The caller or calling method must
not use or close the instance.

Prototype:

94 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

public static RgyRegistry getRgyRegistryInstance(URL propertiesUrl,
Map enhancements, RgyRegistry wrappedRgyRegistry) throws RgyException;

getRgyRegistryInstance()

Supplies PDAuthorizationContext context, rather than creating it. These
methods ignore authz.enable-authorization and
authz.pdauthorizatoncontext-user configuration settings and use
PDAuthorizationContext and adminUserId. If the PDAuthorizationContext
is null, it enables auditing and disables authorization.

Prototype:
public static RgyRegistry getRgyRegistryInstance
(Properties properties, Map enhancements, RgyRegistry wrappedRgyRegistry,
PDAuthorizationContext pdAuthzContext, String adminUserId)
throws RgyException;
public static RgyRegistry getRgyRegistryInstance
(URL propertiesUrl, Map enhancements, RgyRegistry wrappedRgyRegistry,
PDAuthorizationContext pdAuthzContext, String adminUserId)
throws RgyException;

updateAdminId()

Updates the administrative user ID used in authorization decisions.

If the specified rgyRegistry instance is not an instance of
AuthzRgyRegistry, the method does not perform any action. If
authorization is not enabled for AuthzRgyRegistry instance, this method
does not perform any action.

Prototype:
public static void updateAdminId(RgyRegistry rgyRegistry,
String adminUserId) throws ConfigurationErrorRgyException;

getPdAuthzContext()

Returns the PDAuthorizationContext used by the AuthzRgyRegistry
instance.

This method returns a null value if:
v The specified rgyRegistry instance is not an instance of

AuthzRgyRegistry.
v Authorization is not enabled for the AuthzRgyRegistry instance.

Prototype:
public static PDAuthorizationContext getPdAuthzContext
(RgyRegistry rgyRegistry);

com.tivoli.pd.rgy.util.RgyConfig

Use com.tivoli.pd.rgy.util.RgyConfig to create and maintain the configuration
properties file. You can ignore the PD.jar file or the Security Access Manager
Runtime and use this configuration properties file for Registry Direct Java API.

Do not use com.tivoli.pd.rgy.util.RgyConfig to authorize new API methods.
Instructions for using this tool are available in the configuration section.

com.tivoli.pd.jcfg.SvrSslCfg
The com.tivoli.pd.jcfg.SvrSslCfg tool supports the combined configuration
properties file for PDAuthorizationContext and RgyRegistry.

Appendix D. Registry Direct Java API 95

This tool allows combined use of the Security Access Manager Java API and
Registry Direct Java API.

Instructions for using the enhancements to this tool are available in the
configuration section.

Old and new API errors

The Registry Direct Java API user, group, and policy administration methods
generate errors that closely match the existing user and group administration API
errors. This section lists the error codes and explains the errors generated by the
API.

Authenticate and changePassword
For the RgyUser.authenticate() and RgyUser.changePassword(), the Registry
Direct Java API generates errors that closely match the existing
azn_util_password_authenticate and azn_util_password_change AZN API errors.

The following table maps the error codes and the API errors:

Table 30. Authentication API error information
RgyException AZN API Error AZN status code AZN API Message

InvalidCredentialsRgy Exception AZN_S_U_URAF_AUTHEN_FAILED, 0 ivacl_s_azn_s_u_uraf_authen_ failed HPDAC1373E aznAPI User registry
authentication failed.

ServerDownRgyException AZN_S_FAILURE,
ivacl_s_registry_server_down

ivacl_s_registry_server_down HPDAC0779E The LDAP registry
server is down.

N/A AZN_S_FAILURE, ivacl_s_registry_
client_memory_error

ivacl_s_registry_client_memory_error HPDAC0777E LDAP Registry client
returned a memory error.

MultipleDnFoundRgyException
InvalidParametersRgyException

AZN_S_FAILURE,
ivacl_s_registry_client_
bad_ldap_dn

ivacl_s_registry_client_bad_ldap_dn HPDAC0772E The LDAP user
registry client returned an error
status for the specified DN.

N/A AZN_S_FAILURE,
ivacl_s_registry_client_
unavailable

ivacl_s_registry_client_unavailable HPDAC0771E The user registry
client is unavailable.

(null returned) AZN_S_FAILURE,
ivauthn_invalid_username

vauthn_invalid_username HPDIA0202W An unknown user
name was provided to Access
Manager.

PasswordSetInvalidRgy Exception AZN_S_U_PASSWORD_EXPIRED, 0 ivacl_s_azn_s_u_password_expired HPDAC1354E aznAPI User
password expired.

AccountSetInvalidRgy Exception AZN_S_U_ACCOUNT_DISABLED, 0 ivacl_s_azn_s_u_account_disabled HPDAC1364E aznAPI Account
Login is disabled.

ErrPolicyTodAccessDenied
RgyException

AZN_S_U_TOD_ACCESS_DENIED,
ivauthn_tod_denied

ivauthn_tod_denied HPDIA0218W Authentication by
user denied at this time of the day.

ErrPolicyAcctLockedOutRgy
Exception

AZN_S_U_ACCOUNT_LOCKEDOUT, 0 ivacl_s_azn_s_u_account_ lockedout HPDAC1366E aznAPI The user
account is locked out.

ErrPolicyPwdTooShortRgy
Exception

AZN_S_U_PASSWORD_TOO_SHORT, 0 ivacl_s_azn_s_u_password_too_short HPDAC1367E aznAPI New
password is too short.

ErrPolicyPwdHasSpaces
RgyException

AZN_S_U_PASSWORD_HAS_SPACES, 0 ivacl_s_azn_s_u_password_has_spaces HPDAC1368E aznAPI New
password has illegal spaces.

ErrPolicyPwdTooManyRepeated
RgyException

AZN_S_U_PASSWORD_TOO
_MANY_REPEATED, 0

ivacl_s_azn_s_u_password_too_
many_repeated

HPDAC1369E aznAPI New
password has too many repeated
characters.

ErrPolicyPwdTooFewAlphaRgy
Exception

AZN_S_U_PASSWORD_TOO _FEW_ALPHA,
0

ivacl_s_azn_s_u_password_
too_few_alpha

HPDAC1370E aznAPI New
password has too few alphabetic
characters.

ErrPolicyPwdTooFewNonalpha
RgyException

AZN_S_U_PASSWORD_TOO
_FEW_NONALPHA, 0

ivacl_s_azn_s_u_password_too_few_
non_alpha

HPDAC1371E aznAPI New
password has too few
non-alphabetic characters.

96 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 30. Authentication API error information (continued)
RgyException AZN API Error AZN status code AZN API Message

InsufficientAccessRgy Exception AZN_S_U_INSUFFICIENT _ACCESS, 0 ivacl_s_azn_s_u_insufficient_access HPDAC1372E aznAPI Caller does
not have the permission to perform
requested operation.

ErrPolicyAcctDisabledRgy
Exception

AZN_S_U_PASSWORD_ACCT _DISABLED,
0

ivacl_s_azn_s_u_password_tacct_
disabled

HPDAC1374W aznAPI This account
is disabled due to too many failed
login attempts.

ErrPolicyAcctLockedOutRgy
Exception

AZN_S_U_AUTHEN_FAILED
_ACCT_LOCKEDOUT, 0

ivacl_s_azn_s_u_authen_failed_
acct_lockedout

HPDAC1376E aznAPI User registry
authentication failed; the user
account has been locked due to too
many failed login attempts.

ErrPolicyInvalidAcctDisabled
RgyException

AZN_S_U_AUTHEN_FAILED
_ACCT_DISABLED, 0

ivacl_s_azn_s_u_authen_failed_
acct_disabled

HPDAC1377E aznAPI User registry
authentication failed; the user
account has been disabled due to
too many failed login attempts.

N/A AZN_S_FAILURE,
rgy_s_ira_server_in_config_only_
mode

rgy_s_ira_server_in_config_
only_mode

HPDRG0207W The LDAP server is
an IBM Tivoli Directory Server in
configuration only mode. Access
Manager cannot operate normally
with the LDAP server in this mode.

NativePasswordExpiredRgy
Exception (when
ldap.enhanced-pwd-policy=true)

AZN_S_FAILURE,
ivauthn_ldap_password_expired
(when [ldap] enhanced-pwd-policy
= yes)

ivauthn_ldap_password_expired HPDIA0237W Authentication failed.
The account cannot be logged in
because the password expired.

NativePasswordNoModRgyException
(when ldap.enhanced-pwd-policy=true)

AZN_S_FAILURE,
ivauthn_ldap_password_no_mod
(when [ldap] enhanced-pwd-policy
= yes)

ivauthn_ldap_password_no_mod HPDIA0318W The user does not
have permission to modify their
password.

NativePassword
TooYoungRgyException (when
ldap.enhanced-pwd-policy=true)

AZN_S_FAILURE,
ivauthn_ldap_password_ too_young
(when [ldap] enhanced-pwd-policy
= yes)

ivauthn_ldap_password_too_young HPDIA0320W The user cannot
change their password until time
period elapses after the previous
change.

NativePassword
InHistoryRgyException (when
ldap.enhanced-pwd-policy=true)

AZN_S_FAILURE,
ivauthn_ldap_password_
in_history (when [ldap]
enhanced-pwd-policy = yes)

ivauthn_ldap_password_in_history HPDIA0322W The user is not
permitted to use the new password
as it was used recently.

NativeAccountLocked RgyException
(when ldap.enhanced-pwd-
policy=true)

AZN_S_FAILURE,
ivauthn_ldap_account_locked

ivauthn_ldap_account_locked HPDIA0239W Authentication failed.
The account is locked.

NativeAccountInactivated
RgyException (when
ldap.enhanced-pwd-policy=true)

AZN_S_FAILURE,
ivauthn_ldap_account_inactivated
(when [ldap] enhanced-pwd-policy
= yes)

ivauthn_ldap_account_inactivated HPDIA0241W Authentication failed.
The account is deactivated.

UnhandledRgyException and other
RgyExceptions

AZN_S_AZN_S_FAILURE,
ivacl_s_registry_client_error

ivacl_s_registry_client_error HPDAC0773E The LDAP user
registry client returned an
unexpected failure status.

WarningPassword ExpiresSoonRgy
Exception (when
ldap.enhanced-pwd-policy=true)

N/A N/A N/A

Administration
The Registry Direct Java API user, group, and policy administration methods
generate errors that closely match the existing user and group administration API
errors.

The following table maps this relationship:

Table 31. Exceptions and the error codes.

RgyException Error code Error text

TimeLimitExceededRgyException ivmgrd_s_ira2_timelimit_exceeded HPDMG0765W The request made to the
LDAP server exceeded the time limit
configured in the server.

Appendix D. Registry Direct Java API 97

Table 31. Exceptions and the error codes. (continued)

RgyException Error code Error text

SizeLimitExceededRgyException
UnhandledRgyException

ivmgrd_s_ira2_sizelimit_exceeded HPDMG0766W The search request
exceeded the maximum number of entries
the LDAP server can return.

InvalidDnSyntaxRgyException ivmgrd_s_ira2_invalid_dn_syntax HPDMG0767E The Distinguished Name
(DN) has an invalid syntax.

InvalidCredentialsRgyException ivmgrd_s_ira2_invalid_credentials HPDMG0768E Unable to log in.

InsufficientAccessRgyException ivmgrd_s_ira2_insufficient_access HPDMG0769E There were insufficient
LDAP access privileges for Security
Access Manager to create and delete
entries in the registry.

ObjectClassViolationRgyException ivmgrd_s_ira2_object_class_violation HPDMG0770E The settings defined for the
entry are invalid (object class violation).

ContextNotEmptyRgyException ivmgrd_s_ira2_not_allowed_on_nonleaf HPDMG0771E The settings cannot delete
the entry completely because it has
unexpected subentries in the LDAP
registry. Typically this happens when the
deleted user or group is a member of
another domain.

AlreadyExistsRgyException ivmgrd_s_ira2_already_exists HPDMG0772W The entry exists.

ServerDownRgyException ivmgrd_s_ira2_server_down HPDMG0773E The request failed because
the LDAP server is down.

N/A ivmgrd_s_ira2_filter_error HPDMG1052E A registry memory
allocation failed.

N/A ivmgrd_s_uraf_no_memory HPDMG0774E Illegal characters were
specified in the LDAP search filter.

N/A ivmgrd_s_uraf_no_memory HPDMG1052E A registry memory
allocation failed.

N/A ivmgrd_s_ira2_connect_error HPDMG0776E An error connecting to the
LDAP server occurred.

N/A ivmgrd_s_ira2_referral_limit_exceeded HPDMG0777W The LDAP referral limit
was exceeded.

N/A ivmgrd_s_ira2_ssl_initialize_failed HPDMG0778E The SSL initialization failed
for connection to the LDAP server.

N/A ivmgrd_s_ira2_ssl_param_error HPDMG0779E SSL parameter error
occurred when connecting to the LDAP
server.

N/A ivmgrd_s_ira2_ssl_handshake_failed HPDMG0780E The SSL handshake failed
when connecting to the LDAP server.

N/A ivmgrd_s_ira2_ssl_get_cipher_failed HPDMG0781E SSL failed to establish the
requested encryption cipher level when
connecting to the LDAP server.

N/A ivmgrd_s_ira2_ssl_not_available HPDMG0782E SSL was not available for
connection to the LDAP server

N/A ivmgrd_s_ira2_ssl_keyring_not_found HPDMG0783E The SSL Key Database file
was not found for connection to the
LDAP server.

N/A ivmgrd_s_ira2_ssl_password_not_specified HPDMG0784E The SSL password was not
specified for connection to the LDAP
server.

N/A ivmgrd_s_uraf_no_memory HPDMG1052E A registry memory
allocation failed.

MultipleDnFoundRgyException ivmgrd_s_ira2_multiple_dn_found HPDMG0752E More than one matching
Distinguished Name (DN) was found.

98 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 31. Exceptions and the error codes. (continued)

RgyException Error code Error text

N/A ivmgrd_s_ira2_bad_sec_login_format HPDMG0753E An invalid format of the
authorization mechanism attribute was
found in the user entry.

NoSuchAttributeRgyException
NoSuchObjectRgyException (null
returned)

ivmgrd_s_ira2_no_entry_found HPDMG0754W The entry was not found.
If creating a user or a group, ensure that
the Distinguished Name (DN) specified
has the correct syntax and is valid.

N/A ivmgrd_s_uraf_group_invalid HPDMG1068E An invalid group
identification or Distinguished Name
(DN) was specified.

NoSuchAttributeRgyException ivmgrd_s_uraf_member_invalid HPDMG1064E The group member was
not found.

InvalidOldPasswordRgyException ivmgrd_s_ira2_invalid_old_password HPDMG0759W The user name exists in
the registry.

IdAlreadyExistsRgyException ivmgrd_s_ira2_uid_already_exists HPDMG0756W Incorrect current
password.

IdAlreadyExistsRgyException ivmgrd_s_ira2_gid_already_exists HPDMG0760W The group name exists in
the registry.

N/A ivmgrd_s_ira2_not_a_user_dn HPDMG0761W The entry referred to by
the Distinguished Name (DN) must be a
person entry.

N/A ivmgrd_s_ira2_not_a_group_dn HPDMG0762W The entry referred to by
the Distinguished Name (DN) must be a
group entry.

N/A ivmgrd_s_ira2_ldap_not_supported HPDMG0763E LDAP is not configured as
a registry of users and groups.

AlreadyImportedRgyException ivmgrd_s_ira2_entry_already_secuser HPDMG0757W The Distinguished Name
(DN) is already configured as a user.

AlreadyImportedRgyException ivmgrd_s_ira2_entry_already_secgroup HPDMG0758W The Distinguished Name
(DN) is already configured as a group.

NativeIdAlreadyExistsRgyException ivmgrd_s_ira2_user_already_exists HPDMG0789W The user Distinguished
Name (DN) cannot be created because it
exists.

NativeIdAlreadyExistsRgyException ivmgrd_s_ira2_group_already_exists HPDMG0790W The group Distinguished
Name (DN) cannot be created because it
exists.

ErrInvalidPasswordCharsRgyException ivauthn_passwd_policy_violation HPDIA0300W Password rejected due to
policy violation.

ErrPolicyPwdTooShortRgyException ivauthn_passwd_too_short HPDIA0301W Password rejected due to
minimum length policy.

ErrPolicyPwdTooFewAlphaRgyException ivauthn_passwd_too_few_alphas HPDIA0304W Password rejected due to
the minimum alphabetic characters policy.

ErrPolicyPwdTooFewNonalphaRgy
Exception

ivauthn_passwd_too_few_nonalphas HPDIA0305W Password rejected due to
the minimum non-alphabetic characters
policy.

ErrPolicyPwdTooManyRepeatedRgy
Exception

ivauthn_passwd_too_many_repeated HPDIA0303W Password rejected due to
the maximum repeated characters policy.

ErrPolicyPwdHasSpacesRgyException ivauthn_passwd_has_spaces HPDIA0302W Password rejected due to
the spaces policy.

NamingViolationRgyException ivmgrd_s_ira2_invalid_dn_syntax HPDMG0767E The Distinguished Name
(DN) has an invalid syntax.

TypeOrValueExistsRgyException ivmgrd_s_uraf_duplicate_domain_name HPDMG0793E Duplicate member
assignment was attempted. No members
have been added.

N/A ivmgrd_s_uraf_duplicate_domain_name HPDMG1083W The domain name exists.

Appendix D. Registry Direct Java API 99

Table 31. Exceptions and the error codes. (continued)

RgyException Error code Error text

DomainNotFoundRgyException ivmgrd_s_uraf_no_such_domain_name HPDMG1084W The domain name is
unknown.

N/A ivmgrd_s_uraf_no_such_domain_name HPDMG1085E The location specified for
creating the management domain does
not exist.

N/A ivmgrd_s_uraf_no_such_domain_suffix HPDMG1086W The domain has been
created again successfully.

AccountSetInvalidRgyException ivmgrd_s_uraf_domain_recreated HPDIA0205W The user account has
expired.

PasswordSetInvalidRgyException ivauthn_account_expiredivauthn_password_
expired

HPDIA0204W The user password has
expired.

N/A ivmgrd_s_uraf_domain_name_invalid HPDMG1087E The domain name specified
is invalid.

ErrPolicyAcctDisabledRgyException ivauthn_passwd_acct_disabled HPDIA0309W This account is disabled.

CantChangeDynamicGroupRgyException rgy_s_ira_cant_change_dynamic_group HPDRG0200E The specified group is a
dynamic group and cannot be modified.

N/A rgy_s_ira_server_in_config_only_mode HPDRG0207W The LDAP server is an
IBM Tivoli Directory Server running in
configuration only mode. Security Access
Manager does not operate with the LDAP
server in this mode.

UnhandledRgyException and other
RgyExceptions

ivmgrd_s_ira2_internal_error HPDMG0764E An internal error occurred.

Attributes
The API provides access to the Security Access Manager user attributes and group
attributes.

The new API provides access to:
v Security Access Manager user attributes, and the native user attributes.
v Security Access Manager group attributes, the description, and cn attributes of

the native group.

The following table describes the API attribute details:

Table 32. API attribute details

API Constant Name Entry Operation Description

MIN_PASSWORD_LENGTH _NAME passwordMinLength Security Access
Manager User
Policy

v Read

v Add

v Delete

v Replace

v Create

v Import

Minimum length of a
password.Multibyte characters are
treated as a single character. The
value must be a decimal integer.
If you do not set this attribute,
the API uses the global value.

100 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 32. API attribute details (continued)

API Constant Name Entry Operation Description

PASSWORD_SPACES _NAME secPwdSpaces Security Access
Manager User
Policy

v Read

v Add

v Delete

v Replace

v Create

v Import

Specifies whether to permit space
and tabs in passwords.

You have 2 choices:

v True permits space and tab
characters.

v False does not permit these
characters.

If you do not set this attribute,
the API uses the global value.

MAX_PASSWORD_REPEATED
_CHARS_NAME

passwordMaxRepeatedCharsSecurity Access
Manager User
Policy

v Read

v Add

v Delete

v Replace

v Create

v Import

Specifies the maximum number of
times a character can be repeated
consecutively in a password.

The value must be a decimal
integer.

The value -1 indicates that there
is no limit on the number of
times a character can be repeated
consecutively.

If you do not set this attribute,
the API uses the global value.

MIN_PASSWORD_ALPHAS _NAME passwordMinAlphaChars Security Access
Manager User
Policy

v Read

v Add

v Delete

v Replace

v Create

v Import

Specifies the minimum number of
alphabetic characters for the
password.

This set consists of these
characters:

v UPPERCASE_LETTER: General
category Lu in the Unicode
specification.

v LOWERCASE_LETTER:
General category Ll in the
Unicode specification.

v TITLECASE_LETTER: General
category Lt in the Unicode
specification.

v MODIFIER_LETTER: General
category Lm in the Unicode
specification.

v OTHER_LETTER: General
category Lo in the Unicode
specification.

Use only decimal integer values.
If you do not set this attribute,
the API uses the global value.

MIN_PASSWORD_NON_ALPHAS
_NAME

passwordMinOtherChars Security Access
Manager User
Policy

v Read

v Add

v Delete

v Replace

v Create

v Import

Specifies the minimum number of
non-alphabetic characters in the
password.

This set complements
MIN_PASSWORD_ALPHAS_NAME.
Use only decimal integer values.
If you do not set this attribute,
the API uses the global value.

Appendix D. Registry Direct Java API 101

Table 32. API attribute details (continued)

API Constant Name Entry Operation Description

MAX_PASSWORD_AGE _NAME passwordMaxAge Security Access
Manager User
Policy

v Read

v Add

v Delete

v Replace

v Create

v Import

Specifies the number of seconds
after the last password change
time for which the password is
valid.

A value 0 (zero) indicates that
there is no limit on the maximum
number of seconds. If you do not
set this attribute, the API uses the
global value.

ACCOUNT_EXPIRY_ DATE_NAME secAcctExpires Security Access
Manager User
Policy

v Read

v Add

v Delete

v Replace

v Create

v Import

Specifies time at which the LDAP
account expires in Greenwich
Median Time. The format is
YYYYMMDDhhmmss.tZ where:

v YYYY = year (for example,
2009)

v MM = month (where January =
01)

v DD = day of the month
(beginning with 01)

v hh = hour (00 -> 23)

v mm = minute (00 -> 59)

v ss = second (00 -> 59)

v . = period character

v t = one tenth of the second (0
-> 9). This is ignored and
should be set to 0

v Z = this is the 'Z' character. It
indicates the time zone is GMT.

API recognizes only this format.

A special value unlimited is
accepted and is converted into a
value suitable for storage in the
underlying registry.
Note: Upon reading this value, it
is not converted into unlimited,
instead it is the value it was
converted to. If you do not set
this attribute, the API uses the
global value.

DISABLE_TIME
_INTERVAL_NAME

timeExpireLockout Security Access
Manager User
Policy

v Read

v Add

v Delete

v Replace

v Create

v Import

Specifies the duration in seconds
for which the account is locked
after
MAX_LOGIN_FAILURES_NAME
login failures have occurred.

A value of 0 (zero) disables the
account. The value must be a
decimal integer >= 0 (zero).

If you do not set this attribute,
the API uses the global value.

102 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 32. API attribute details (continued)

API Constant Name Entry Operation Description

MAX_LOGIN _FAILURES_NAME Security Access
Manager User
Policy

v Read

v Add

v Delete

v Replace

v Create

v Import

Specifies the number of login
failures that can occur before the
software lock or disables the
account.

Disabling or the time period for
the lock out depends on
DISABLE_TIME_INTERVAL_NAME.

The value must be a decimal
integer >=0 (zero). See the
ldap.login-failure-persistent
and ldap.late-lockout-
notification configuration
options.

If you do not set this attribute,
the API uses the global value.

Appendix D. Registry Direct Java API 103

Table 32. API attribute details (continued)

API Constant Name Entry Operation Description

TOD_ACCESS_NAME maxFailedLogins Security Access
Manager User
Policy

v Read

v Add

v Delete

v Replace

v Create

v Import

Limits authentication to particular
days of the week and a specific
range of time during the day. The
format of the policy is
days:start:end:zone where:

v days - a decimal integer that
represents a bit mask of days of
the week.

– SUNDAY=1

– MONDAY=2

– TUESDAY=4

– WEDNESDAY=8

– THURSDAY=16

– FRIDAY=32

– SATURDAY=64

v start - the decimal integer that
represents the starting minute
of the day of allowed access.

v end - a decimal integer that
represents the ending minute of
the day of allowed access.

v zone - a decimal integer that,
when set to 1, indicates that
GMT must be used to
determine the current time of
day and the day of the week
against which to evaluate this
policy. If you set any other
value, the local default time
zone is used.

If you do not set this attribute,
the API uses the global value.
Note:

When you set a password policy,
you provide a list of days, start
time, and end time.

The start time and end time apply
to each day on the list.

If the specified start time is later
than the specified end time, then
the access is allowed until the
specified end time is reached the
next day.

104 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 32. API attribute details (continued)

API Constant Name Entry Operation Description

MAX_CONCURRENT
_WEB_SESSIONS_NAME

secTODAccessF Security Access
Manager User
Policy

v Read

v Add

v Delete

v Replace

v Create

v Import

The maximum number of
concurrent web login for the user.
This API does not use this value
directly, but other applications
use this value. The value must be
a valid decimal integer. There are
special negative values, which
are:

v -3 When set, a new login
displaces (logout) other login
sessions of the same user.

v -4 When set, the number of
concurrent logins are not
limited.

If you do not set this attribute,
the API uses the global value.

SEC_ACCT_VALID_NAME secAcctValid Security Access
Manager User

v Read

v Replace

v Create

v Import

Indicates the account validity
status.The permitted values are
true and false. When set to false,
you cannot log in to an account.

SEC_PWD_VALID_NAME secPwdValid Security Access
Manager User

v Read

v Replace

v Create

v Import

Indicates the password validity
setting.This attribute can be set
only to true and false. When set to
false, the user must change the
password at next logon.

SEC_DN_NAME secDN Security Access
Manager User

v Read Internal use only. Use
getNativeId() instead of
SEC_DN_NAME.

SEC_UUID_NAME secUUID Security Access
Manager User

v Read

v Create

v Import

Specifies the Universally Unique
ID.

This attribute is normally
generated by the API for the user.
It is mostly used by the
Authorization API when verifying
ACLs.

You can supply this value when
you create or import a user.

You cannot modify this value
after you set it.

Do not specify any value for this
parameter except when you
recover accounts that were
accidentally deleted.

SEC_LOGIN_TYPE _NAME secLoginType Security Access
Manager User

v Read Internal use only.

SEC_CERT_DN_NAME secCertDN Security Access
Manager User

v Read Internal use only.

SEC_CERT_SERIAL
_NUMBER_NAME

secCertSerialNumber Security Access
Manager User

v Read Internal use only.

SEC_HAS_POLICY_NAME secHasPolicy Security Access
Manager User

v Read Internal use only.

SEC_AUTHORITY_NAME secAuthority Security Access
Manager User

v Read Internal use only.

Appendix D. Registry Direct Java API 105

Table 32. API attribute details (continued)

API Constant Name Entry Operation Description

PRINCIPAL_NAME_NAME principalName Security Access
Manager User

v Read Internal use only. Use getId()
instead of this attribute.

SEC_PWD_FAILURES_NAME secPwdFailures Security Access
Manager User
Policy State

v Read Internal use only.

Specifies the number of
consecutive authentication failures
because of wrong password.

This policy is a mechanism to
enforce the
MAX_LOGIN_FAILURES_NAME policy
only if the ldap.login-failures-
persistent option is enabled.

SEC_PWD_LAST_CHANGED _NAME secPwdLastChanged Security Access
Manager User
Policy State

v Read Specifies the time when the
password was last changed.

This policy is a mechanism to
enforce the
MAX_PASSWORD_AGE_NAME policy.

The value is updated to the
current date when
SEC_PWD_VALID_NAME is set to true.

SEC_PWD_LAST_USED _NAME secPwdLastUsed Security Access
Manager User
Policy State

v Read Specifies the last time the that
user logged in.

This value is updated every time
Security Access Manager
successfully authenticates a user.

This value is updated only for
password-based authentication.

The option ldap.enable-last-login is
set to true.

SEC_DOMAIN_ID_NAME secDomainId Security Access
Manager User

v Read Internal use only.

SEC_PWD_LAST_FAILED _NAME secPwdLastFailed Security Access
Manager User
Policy State

v Read Internal use only.

Records the time of the last failed
login to authenticate with the
correct password.

This value is a part of the
mechanism to enforce the
DISABLE_TIME_INTERVAL_NAME
policy.
Note: Some operations might be
restricted by the LDAP.

SEC_PWD_UNLOCK_TIME _NAME secPwdUnlockTime Security Access
Manager User
Policy State

v Read Internal use only. Records the
duration for which the account is
locked. This value is a part of the
mechanism to enforce the
DISABLE_TIME_INTERVAL_NAME
policy.

COMMON_NAME_NAME cn Native User and
Native Group

v Read

v Add

v Delete

v Replace

v Create

v Import

Required when you create users
or groups.
Note: LDAP server might restrict
some operations.

106 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 32. API attribute details (continued)

API Constant Name Entry Operation Description

SURNAME_NAME sn Native User
v Read

v Add

v Delete

v Replace

v Create

v Import

Required when you create users.
Note: LDAP server might restrict
some operations.

UID_NAME uid Native User
v Read

v Add

v Delete

v Replace

v Create

v Import

Specifies the LDAP Unique ID
attribute name.

This attribute is an optional
attribute when you create a
RgyUser.

If you do not specify a value, this
parameter is set to the userId or
uid value in the leading RDN® of
the userNativeId.
Note: LDAP server might restrict
some operations.

OBJECT_CLASS_NAME objectClass Native User and
Native Group

v Read

v Create

Internal use only.

Indicates the LDAP object class
attribute name.

This attribute contains the native
LDAP objectClass values for the
native entry.

DESCRIPTION_NAME description Native User and
Native Group

v Read

v Add

v Delete

v Replace

v Create

v Import

Indicates the LDAP description
attribute name.

Optional attribute when creating
a new RgyUser or RgyGroup.
Note: LDAP server might restrict
some operations.

IS_SEC_ENTITY_NAME isSecEntity Security Access
Manager User
and Security
Access Manager
Group

v Read Set to true if the account is a
Security Access Manager enabled
account. This attribute is virtual,
and is dynamically determines
instead of being stored in the
LDAP registry.

IS_GSO_USER_NAME isGSOUser Security Access
Manager User

v Read Set to true if the account is a
Global Sign-On (web SSO)
enabled account. This attribute is
virtual, and is dynamically
determines instead of being
stored in the LDAP registry.

* * Native User
v Read

v Add

v Delete

v Replace

v Create

v Import

Indicates a native user entry that
might have additional attributes
for the user. If the LDAP server
permits, the values are updated
or deleted.
Note: LDAP servers might
restrict some operations.

Appendix D. Registry Direct Java API 107

Table 32. API attribute details (continued)

API Constant Name Entry Operation Description

RESOURCE_CREDENTIALS_NAME resourceCredentials Security Access
Manager User

v Read If the account is a global sign
on-enabled and has resource
credentials created for it, then this
attribute will contain the resource
credentials of the user.

This is a virtual attribute that is
not stored directly in the LDAP
registry. Rather, it is dynamically
determined from multiple entry
attributes in LDAP.

Each value for the attribute
represents one resource credential
and has the resources credential
values condensed into one string.

The API provide methods to
expand these resource credential
values into separate strings.

Error and trace logging

Error and trace logging use the Java logging mechanism. The Java logger names
are: com.tivoli.pd.rgy.authz and com.tivoli.pd.rgy.ldap. For basic Java Runtime
installation, the configuration of the logger output is in the lib/
logging.properties file. Graphic user interfaces (GUI) are available for
environments such as WebSphere to configure and enable various log levels. The
trace level CONFIG is also available for tracing configuration options.

Basic JRE example output

If the lib/logging.properties file is set to use java.util.logging.XMLFormatter
for debug logging, the output appears as follows:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd">
<log>
<record>
<date>2009-11-16T16:28:35</date>
<millis>1258417715058</millis>
<sequence>0</sequence>
<logger>com.tivoli.pd.rgy.ldap</logger>
<level>FINER</level>
<class>com.tivoli.pd.rgy.ldap.LdapRgyRegistry</class>
<method>LdapRgyRegistry</method>
<thread>10</thread>
<message>RETURN</message>
</record>
<record>
<date>2009-11-16T16:28:35</date>
<millis>1258417715136</millis>
<sequence>1</sequence>
<logger>com.tivoli.pd.rgy.ldap</logger>
<level>FINER</level>
<class>com.tivoli.pd.rgy.ldap.LdapRgyRegistry</class>
<method>configure</method>
<thread>10</thread>
<message>ENTRY</message>
</record>

108 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Auditing
The Registry Direct API provides a set of Java interfaces. The code used for
manipulating the LDAP (the equivalent of the Security Access Manager IRA C
code) implements these interfaces.

The auditing feature does not support Common Audit and Reporting Services
(CARS). The auditing feature supports Security Access Manager XML file auditing.

Java logger behavior
This section describes how the auditing feature behaves.

The auditing feature uses a Java logger framework, but directs the output to a
configurable file. The name of the audit Java logger is visible on the Java logger
interfaces.

You can enable or disable the output to the logger and adjust the level of log
output by varying the log level in the Java run time.

The audit code uses a custom formatter. This means that the output format is the
Security Access Manager XML audit file format. The Java logger namespace for
auditing has a configurable component that allows each Java API exploiter to have
a separate audit file and namespace.

The following are the loggers for authentication and management auditing:
com.tivoli.pd.rgy.audit.{blade}.authn - Authentication audit logging
com.tivoli.pd.rgy.audit.{blade}.mgmt - Management audit logging

where {blade} is the value of the configuration property appsvr-servername.

Note: If there are two separate instances of RgyRegistry in the same JVM, that use
the same appsvr-servername value, the instance shares one audit log file. The
instance that was created first defines the audit log file to be used. The second
instance continues to use any existing logger of the same name.

File format
The Policy Server output is emulated by the Registry Direct Java API.

Information that is unavailable is either hardcoded to a pre-set value or is
excluded.

Start and stop events:

The two audit components mgmt and authn mimic the output of the audit
components of the same name in the Security Access Manager Policy Server.

These components generate:
v an audit start event when the RgyRegistry instance is generated.
v an audit stop event when the RgyRegistry instance is closed.

Sample start event for mgmt component is as follows:
<event rev="1.2">
<date>2009-11-19-10:34:45.380-08:00I-----</date>
<outcome status="0">0</outcome>
<originator blade="testapp-tam611">
<component rev="1.1">mgmt</component>

Appendix D. Registry Direct Java API 109

<event_id>117</event_id>
<action>0</action>
<location>localhost</location>
</originator>
<target resource="5">
<object></object>
</target>
<data>
<audit event="Start"/>
</data>
</event>

Sample start event for authn component is as follows:
<event rev="1.2">
<date>2009-11-19-10:34:45.492-08:00I-----</date>
<outcome status="0">0</outcome>
<originator blade="testapp-tam611">
<component rev="1.1">authn</component>
<event_id>117</event_id>
<action>0</action>
<location>localhost</location>
</originator>
<target resource="7">
<object></object>
</target>
<data>
<audit event="Start"/>
</data>
</event>

Management events:

This section provides a sample output of a management operation.

A sample output of a management operation such as RgyRegistry.authenticate()
is:
<event rev="1.2">
<date>2009-11-19-10:34:45.580-08:00I-----</date>
<outcome status="0">0</outcome>
<originator blade="testapp-tam611">
<component rev="1.1">mgmt</component>
<event_id>13401</event_id>
<action>13401</action>
<location>tam611.ibm.com</location>
</originator>
<accessor name="">
<principal auth="IV_UNAUTH_V3.0" domain="Default">unauthenticated</principal>
</accessor>
<target resource="5">
<object></object>
</target>
<mgmtinfo>
<command>USER CREATE</command>
<objname>testuser0</objname>
<objtype>user</objtype>
<objname_rgy>cn=testuser0,o=ibm,c=us</objname_rgy
<parm><name>gsouser</name><value>false</value></parm>
<parm><name>nopwdpolicy</name><value>false</value></parm>
<parm><name>dn</name><value>cn=testuser0,o=ibm,c=us</value></parm>
<parm><name>loginid</name><value>testuser0</value></parm>
<parm><name>accountvalid</name><value>TRUE</value></parm>
<parm><name>maxloginfailures</name><value>2</value></parm>
<parm><name>cn</name><value>testuser0</value></parm>
<parm><name>minpasswordlength</name><value>8</value></parm>
<parm><name>accountexpirydate</name><value>20091119193445.0Z</value></parm>

110 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

<parm><name>sn</name><value>user0</value></parm>
<parm><name>disabletimeinterval</name><value>0</value></parm>
</mgmtinfo>
<data></data>
</event>

The preceding sample demonstrates how to provide additional attributes to the
existing API. The attribute names are mapped, wherever possible, to existing API
audit attribute names.

You can create this output using createUser():
registry = LdapRgyRegistryFactory.getRgyRegistryInstance(propertiesUrl, null);
String sn = "user0”;
String id = "test"+sn;
String nativeId = "cn="+id+",o=ibm,c=us”;
RgyAttributes rgyAttributes = registry.newRgyAttributes();
rgyAttributes.putAttribute(RgyAttributes.COMMON_NAME_NAME, id);
rgyAttributes.putAttribute(RgyAttributes.SURNAME_NAME, sn);
rgyAttributes.putAttribute(RgyAttributes.MIN_PASSWORD_LENGTH_NAME, "8");
rgyAttributes.putAttribute(RgyAttributes.MAX_LOGIN_FAILURES_NAME, "2");
rgyAttributes.putAttribute(RgyAttributes.DISABLE_TIME_INTERVAL_NAME, "0");
Date currentTime = new Date();
currentTime.setTime(currentTime.getTime() + (3600 * 1000L));
String registryDate = null;
registryDate = registry.toRegistryDate(currentTime);
rgyAttributes.putAttribute(RgyAttributes.ACCOUNT_EXPIRY_DATE_NAME, registryDate);
rgyAttributes.putAttribute(RgyAttributes.SEC_ACCT_VALID_NAME,
RgyAttributes.BOOL_TRUE_VALUE);
RgyUser user = registry.createUser(null, id, nativeId,
"passw0rd".toCharArray(), false, rgyAttributes, null);

Authentication events:

This section provides a sample output of an authentication operation.

Authentication methods such as RgyUser.authenticate() produces output as
follows:
<event rev="1.2">
<date>2009-11-19-10:34:49.175-08:00I-----</date>
<outcome status="1" exception="com.tivoli.pd.rgy.exception.

InvalidCredentialsRgyException">1</outcome>
<originator blade="testapp-tam611">
<component rev="1.1">authn</component>
<event_id>101</event_id>
<action>0</action>
<location>tam611.ibm.com</location>
</originator>
<accessor name="">
<principal auth="IV_LDAP_V3.0" domain="Default">testuser0</principal>
<name_in_rgy>cn=testuser0,o=ibm,c=us</name_in_rgy>
</accessor>
<target resource="7">
<object></object>
</target>
<authntype>formsPassword</authntype>
<data>Password Failure: testuser0</data>
</event>

The preceding example is generated using the authenticate() method as shown in
the following sample code:
testuser = registry.getUser(null, "testuser0");
testuser.authenticate("passw1rd".toCharArray());

Appendix D. Registry Direct Java API 111

Java logger namespace:

This section describes the Java logger namespace.

The Java logger namespaces and their descriptions are provided in the following
table:

Table 33. Java logger namespace

Package Description

com.tivoli.pd.rgy.ldap LDAP LdapRgyRegistry trace and logging

com.tivoli.pd.rgy.authz Authorization and audit AuthzRgyRegistry
trace and logging

com.tivoli.pd.rgy.audit.{blade}.authn Authentication audit logging

com.tivoli.pd.rgy.audit.{blade}.mgmt Management audit logging

Authorization
This section describes the API authorization configuration.

The API authorization cannot fully emulate the authorization performed by the
Policy Server (pdmgrd). The group and user delegation cannot be emulated and
the API assumes that the functionality is not being used.

You can configure the Registry Direct Java API to not support delegated user and
group administration. By default, the API does not support ACLs placed on child
objects of /Management/Groups. Unlike the Security Access Manager Java API, the
Registry Direct Java API does not create and delete protected objects under
/Management/Groups. But the registry API affects authorization operations.

No ACLs are placed on child objects of /Management/Groups.

Authorization permission checks
The table in this section describes administrative operations and corresponding
authorization permissions.

The information in the table assumes that:
v No ACLs are added on delegation protected objects under /Management/Groups

without taking advantage of delegated user and group management.
v All delegation protected objects under /Management/Groups inherit the same ACL

that /Management/Groups uses.
You do not have to verify whether each group has protected objects that are
associated with it. Verifying /Management/Groups is sufficient.

v adminid as the account that is requesting administration operation.

Table 34. Authorization permissions for groups

Administrative operations Permission Verification of permissions

RgyRegistry.createUser({groups}) “N” If no group exists, check permission on
/Management/Users. Otherwise, check permission
on /Management/Groups.

RgyUser.importNativeUser({group}) “N” If the specified group {group} does not exist
check the permission on /Management/Users.
Otherwise, check the permission on
/Management/Groups.

112 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 34. Authorization permissions for groups (continued)

Administrative operations Permission Verification of permissions

RgyUser.attributeAdd()
RgyUser.attributeDelete()

RgyUser.AttributeReplace() for user
{userid} for all attributes except:
secAcctValid secPwdValid all policy
attributes.

“m” Check permission on /Management/Groups if not
permitted. If the user does not have group
membership, deny access and check permission
on /Management/Groups.

RgyUser.attributeAdd()
RgyUser.attributeDelete()

RgyUser.AttributeReplace() for user
{userid} for attributes:
secAcctValid secPwdValid

“m” If the {userid} is the same as {adminid} deny
access. Otherwise, check permission on
/Management/Users. If {userid} has no group
membership, deny access. Otherwise, check
permission on /Management/Groups.

RgyUser.setPassword() for user {userid} “W” If the {userid} is the same as {adminid} permit
access. Otherwise, check permissions on
/Management/Users. If {userid} has no group
membership, deny access. Otherwise, check
permission on /Management/Groups.

RgyRegistry.deleteUser({userid}) “d” If the {userid} is the same as {adminid} deny
access. Otherwise, check permissions on
/Management/Users. If {userid} has no group
membership, deny access. otherwise, check
permission on /Management/Groups.

RgyUser.listGroups()
RgyUser.listNativeGroups()

The permission check that is performed for
RgyRegistry.getUser() was sufficient. Permit
access.

RgyRegistry.getUser({userid}) “v” If the {userid} is the same as {adminid} permit
access. Otherwise, check permission on
/Management/Users. If {userid} does not belong
to a group, deny permission. Otherwise, check
permission on /Management/Users.

RgyRegistry.getNativeUser({dn}) “v” Map the distinguished name {dn} to the group
{groupid}. If mapping does not exists, permit. If
a mapping exists, then check permission on
/Management/Users. If {userid} does not have
any group, check permission on the
/Management/Users.

RgyUser.getAttributeValues()
RgyUser.getOneAttributeValue() for all
non-policy attributes.

The permission check done for
RgyRegistry.getUser() was sufficient. Permit
access.

RgyRegistry.listUsers()
RgyRegistry.listNativeUsers()

There are delegation effects on the operation
results in the follow-up table.

RgyRegistry.createGroup() “N” Check permission on /Management/Groups.

RgyRegistry.deleteGroup() “d” Check permission on /Management/Groups.

RgyGroup.importNativeGroup() “N” Check permission on /Management/Groups.

RgyRegistry.listGroups()
RgyRegistry.listNativeGroups()

Permit (there are delegation effects on the
operation results in the follow-up table).

RgyGroup.addMembers() “A” Check permission on /Management/Groups.

group modify {groupid} description “m” Check permission on /Management/Groups.

RgyGroup.removeMembers() “A” Check permission on /Management/Groups.

RgyRegistry.getGroup() “v” Check permission on /Management/Groups.

RgyRegistry.getNativeGroup({dn}) “v” Map the distinguished name {dn} to the group
{groupid}.

If no mapping exists, permit.

Otherwise, check permission on
/Management/Groups.

Appendix D. Registry Direct Java API 113

Table 34. Authorization permissions for groups (continued)

Administrative operations Permission Verification of permissions

RgyGroup.listMemberIds()

RgyGroup.listMemberNativeIds()

“v” Check permission on /Management/Groups.

RgyUser.getAttributeValues()

RgyUser.getOneAttributeValue() for all
policy attributes.

This differs from the permission check
performed by the regular Security Access
Manager API.

The regular Security Access Manager API checks
for the permission IVACTION_VIEW “v” on
/Management/Policy.

This API does not perform any additional
permission checks. It completes permission
check when fetching the user using
RgyRegistry.getUser() method.

RgyUser.attributeAdd()RgyUser.
attributeDelete()

RgyUser.AttributeReplace() for all policy
attributes.

“m” Check permission on /Management/Groups.

Unlike pdadmin or the Security Access Manager Java management API, when you
use the Registry Direct Java API, you must fetch the user before you modify the
user. Assign view permission (v) and modify permission (m) for the administrator
to modify either a user or a group.

Residual effects of delegated administration on admin results
If operations are permitted, additional permissions can be verified by the API to
determine if a different subset of result must be returned. The permission check in
this case does not permit or deny the whole operation. It affects only the result set
returned, instead.

The following table shows the additional effects of delegated administration on the
result set. It also assumes that no ACLs are added on delegation protected objects
under /Management/Groups. This assumption reduces many of the delegated
administration complexities into simpler behavior.

Table 35. List of operations and permissions to be checked

Operation Permission to be checked

RgyUser.listGroups() RgyUser.listNativeGroups() Check permission DELADMIN_VIEW(“v”) on "/Management/Users". If
permitted return group listelse check permission DELADMIN_VIEW on
"/Management/Groups". If permitted return group list else return an
empty list.

RgyRegistry.listUsers({pattern}) Check permission DELADMIN_VIEW(“v”)on "/Management/Users".

If permitted, return list of users matching {pattern}else check
permission DELADMIN_VIEW(“v”) on "/Management/Groups".

If permitted, return list of users matching thepattern. In this case,
the current API returns only users that are a member of at least one
Security Access Manager group, this API will not enforce this
restriction else return an empty list.

114 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 35. List of operations and permissions to be checked (continued)

Operation Permission to be checked

RgyRegistry.listNativeUsers({pattern}) Check permission DELADMIN_VIEW(“v”) on "/Management/Users".

If permitted, return list of users dns with attribute matching pattern
(both Security Access Manager and non-Security Access Manager
user dn) else check permission DELADMIN_VIEW(“v”) on
"/Management/Groups".

If permitted, return list of user dn with attribute matching pattern. In
this case, the current API only returns dn where the actual dn
matches the pattern and only dn of Security Access Manager users,
that are a member of at least one Security Access Manager group
else return empty list.

RgyRegistry.createGroup() New code is unable to create group delegation protected object.

RgyGroup.importNativeGroup() New code is unable to create group delegation protected object.

RgyRegistry.deleteGroup() New code is unable to delete group delegation protected object, if it
exists.

RgyRegistry.listGroups({pattern}) List all groups with Security Access Manager ID matching pattern.
Check configuration option "[delegated-admin]authorize-group-
list = yes/no" if authorize-group-listreturn groupList.

Otherwise, check perm DELADMIN_VIEW(“v”) on "/Management/
Groups".

If permitted, return the groupList. Otherwise, return empty list.

RgyRegistry.listNativeGroups({pattern}) groupList = list all group DNs with attribute matching
{pattern} check config option
"[delegated-admin] authorize-group-list = yes/no"
if !authorize-group-list: return groupList
else
check permisson DELADMIN_VIEW(“v”) on "/Management/Groups"
if permitted: return groupList else return empty list

API Specifications
See the Javadoc for packages under com.tivoli.pd.rgy in the product DVD.

Installation and configuration
You can install, configure, and upgrade the Registry Direct API by following these
instructions.

Upgrade

Use the PD.jar available with the Registry Direct Java API Reference to configure
the features. The WebSphere Application Server installation program includes
PD.jar in the JRE class path. Update the class path manually or avoid references to
this PD.jar when configuring the Registry Direct API along with the Security
Access Manager Java API. After configuration, you can use the Registry Direct API
along with the earlier versions of PD.jar.

Installation and packaging
The Registry Direct API PD.jar package includes the PDjrte package, which is
installed during the API installation.

The exploiter of the API must include the Registry Direct API PD.jar JAR file in
their application class path.

Appendix D. Registry Direct Java API 115

The Registry Direct API JAR file is com.tivoli.pd.rgy.jar. This file is installed in
the PolicyDirector/java/export/rgy directory.

Configuration
There are two configuration options for configuring the Registry Direct API and
the Security Access Manager Java API.

Two configuration options are available:
v Standalone usage - the configuration permits stand-alone usage of the Registry

Direct API.
v Combined usage - the configuration allows convenient and combined use of

both Security Access Manager Java API and the Registry Direct API.

Using both Security Access Manager Java API and the Registry
Direct API
This section describes how to use SvrSslCfg to configure the Security Access
Manager Java API and the Registry Direct API at the same time.

The SvrSslCfg that is provided in PD.jar is enhanced to permit simultaneous
configuration of the current Java API and Registry Direct Java API.

Both configurations share the same LDAP identity and configuration properties
file. This feature is useful if authorization is enabled in the new API, which
requires the current API to provide the identity and configuration properties file.

If SvrSslCfg has –ldap_mgmt set to true, it creates a Security Access Manager
identity for the application, the identity is also added to the Security Access
Manager group, SecurityGroup. This group membership gives the underlying LDAP
identity the required privileges to administer user and groups in LDAP.SvrSslCfg
generates a random password, if a password is not supplied, for the identity. It
obfuscates and stores the password in the configuration file. The underlying LDAP
identity and password that are stored in the configuration file is used by the
Registry Direct API to bind to LDAP to perform administration and authentication.

Stand-alone configuration
This section describes the stand-alone configuration.

To use the authz.enable-authorization option in the Registry Direct API, a
PDAuthorizationContext instance from the Security Access Manager Java API must
be used. In such a case, it is better to use SvrSslCfg.

In stand-alone configuration, the LDAP identity that is used to access LDAP and
perform the administration updates must be manually created. A simple method is
to use access manager to create the LDAP identity. For example:
pdadmin sec_master> user create -no-password-policy
testapi cn=testapi,o=ibm,c=us testapi api passw0rd
(SecurityGroup ivacld-servers remote-acl-users)

After you create the Security Access Manager identity, you do not need the
Security Access Manager identity. If required, you can delete the Security Access
Manager identity by using the following command:
pdadmin sec_master> user delete testapi

The -registry option is not specified. As a result, the underlying LDAP account is
left along with its group memberships. You do not need to remove the Security

116 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Access Manager identity from the LDAP account. Leaving the Security Access
Manager identity associated with the LDAP account makes it easier to manage the
account.

Note: If native LDAP password policy (not Security Access Manager Policy) is
enabled and affects this LDAP account (for example, Global policy), it must not
reset the account, or account password or set them to expire state. To avoid this
apply native LDAP policy.

The configuration tool RgyConfig is provided in the JAR file along with the new
API. The usage is as follows:

Usage:
java com.tivoli.pd.rgy.util.RgyConfig <file> <command> [options]
<file> configuration properties file path name
<command> is one of:

create <mgmt_domain> <local_domain> <ldap.svrs>
<ldap.bind_dn> <ldap.bind_pwd> [<ldap.ssl_truststore>
<ldap.ssl_truststore_pwd>
load <input properties file>

set <name> <value>
remove <name>
get <name>
list

The usage for a non-SSL example is:
java com.tivoli.pd.rgy.util.RgyConfig /tmp/testapi.properties create Default Default
"ldaphostname:389:readwrite:5" "cn=testapi,o=ibm,c=us" passw0rd

After you create the properties file, you can manipulate the additional properties.
The example to set ldap.enable-last-login property is as follows:
java com.tivoli.pd.rgy.util.RgyConfig /tmp/testapi.properties set ldap.
enable-last-login true

When you use the RgyConfig tool, you must manually create the server identity.
Ensure that the Security Access Manager subdomains include the server identity in
the remote-acl-users group of Security Access Manager management domain. If
Security Access Manager domain is not the default domain, the following
additional steps are needed.
1. Create a file groupmodify.ldif with the following contents:

dn: cn=remote-acl-users,cn=SecurityGroups,secAuthority=Default
changetype: modify
add: member
member: cn=testapp/tam611,cn=SecurityDaemons,secAuthority=testdom,
cn=Subdomains,secAuthority=Default

Where member is the LDAP DN of your application. This value is provided as
ldap.bind_dnargument to java com.tivoli.pd.rgy.util.RgyConfig. Alternately,
you can determine this value from ldap.bind-dn stored in the generated
properties file.

2. Update LDAP by using ldapmodify command.
ldapmodify -p 389 -h localhost -D "cn=root" -w passw0rd -f groupmodify.ldif

Replace localhost and passw0rd with values appropriate for your setup.

Note: You do not have to install or configure Security Access Manager to use the
new API in stand-alone mode.

Appendix D. Registry Direct Java API 117

Configuration options
The following table describes the configuration options for the Security Access
Manager Java API and the Registry Direct API.

Table 36. Configuration options

Java Option Name

Existing
Comparable
Option

Existence in
current Java
Config Default Valid Range Description

ldap.mgmt [ldap] enabled New,
Optional

false true, false Set this option true to enable LDAP
management.

mgmt_domain [manager]
management-
domain

Already
Present,
Required

valid domain
string

Security Access Manager Management Domain
name. Required to determine the location of
subdomain in the registry. Sub domains are
located relative to the Management Domain
LDAP location.

local_domain [ssl]
ssl-local-
domain

Already
Present,
Optional

valid domain
string

The name of the default domain that is used
when the Management API does not provide a
domain name. If you do not provide a value, the
value from mgmt_domain configuration option is
used.

ldap.dynamic-groups-
enabled

[ldap]
dynamic-groups-
enabled

New,
Optional

false true, false Enables support of dynamic groups for some
LDAP server types by using the memberURL
attribute. Security Access Manager supports
dynamic groups with Tivoli Directory Server
regardless of this setting. This stanza entry is
supported for Oracle System Directory Server.

ldap.enable-last-login [ldap]enable-
last-login

New,
Optional

true, false Sets an option to store the last login date in
LDAP each login.

ldap.mgmt-domain-suffix [ldap]
secauthority-
suffix

New,
Optional

Will be
automatic-
ally located.

valid LDAP suffix
string

Specify the valid LDAP suffix string for the
Domain Management of the Security Access
Manager.

ldap.ignore-suffix [ldap]
ignore-suffix

New,
Optional

Empty list list of valid LDAP
suffix strings

Ignore LDAP server suffix when searching for
user and group information.

Suffixes cn=localhost , cn=pwdpolicy,
cn=configuration, and the suffixes that are
specified in the subschemasubentry and
changelog values are always ignored.

SvrSslCfg accepts multiple values by using ",,"
(double comma) separator. The configuration file
uses ";" (semicolons) internally as a separator.

ldap.max-server-
connections

[ldap]
max-server-
connections

New,
Optional

16 2 -> 4096 Indicates the maximum number of connections
that can exist to the LDAP server.

ldap.user-objectclass [ldap]
user-
objectclass

New,
Optional

Defaults vary
depending on
LDAP server type

When provided to the configuration tool, it
contains a list of comma-separated object class
names to set when creating a native user entry in
LDAP.

For example: top,person, organizationalPerson,
inetOrgPerson,ePerson.

SvrSslCfg that modifies the list to be ";"
(semicolon) separated when it places it in the
configuration properties file.

ldap.static-group-
objectclass

[ldap]
static-group-
objectclass

New,
Optional

Defaults vary
depending on
LDAP server type

When provided to the configuration tool, it
contains a list of comma-separated objectClass
names to set when creating a native group entry
in LDAP.

Only non-dynamic groups are created by
Security Access Manager. For example,
top,groupOfNames.

SvrSslCfg modifies the list to be ‘;' (semicolon)
separated when it places it in the configuration
properties file.

118 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Table 36. Configuration options (continued)

Java Option Name

Existing
Comparable
Option

Existence in
current Java
Config Default Valid Range Description

ldap.user-search-filter [ldap]
user-search-
filter

New,
Optional

Defaults vary
depending
on LDAP
server type.

valid LDAP search
filter string

An LDAP search filter that selects any native
user entry. For example: (|(objectclass=ePerson)
(objectclass=Person)).

ldap.group-search-filter [ldap]
group-search-
filter

New,
Optional

Defaults vary
depending
on LDAP
server type.

valid LDAP search
filter string

An LDAP search filter that selects any native
group entry. For example:

(|(objectclass=accessGroup)
(objectclass=groupOfNames)
(objectclass=groupOfUniqueNames)
(objectclass=groupOfURLs))

ldap.svrs [ldap] host,
port, ssl-port,
and replica

New,
Required

valid host string,
port 1 -> 65535,
type readwrite or
readonly, pref 0 ->
10

A comma-separated list of LDAP server details.
Each server detail is a colon separated set of
attributes of the form:

host:port:type:rank[,host2:
port2:type2:rank2[,...]]

where type is either readwrite or readonly and
rank is a value from 0 to 10. For example:
ldaphost:389:readwrite:5 is modified to a list of
LDAP server details that are separated by ';'s.

ldap.ssl-enable [ldap]
ssl-enable

New,
Optional

False true, false Set this option to true to enable SSL to the LDAP
server.

ldap.fips [ssl]
ssl-enable-fips

New,
Optional

False true, false Deprecated: replaced by ldap.compliance.

Use ldap.compliance=fips for ldap.fips=true.

Use ldap.compliance=none for ldap.fips=false.

Set this option to true to use FIPS mode with the
TLS connections to the LDAP server.

ldap.compliance [ssl]
ssl-compliance

New,
Optional

none, fips,
sp800-131-
transition,
sp800-131-strict,
suite-b-128,
suite-b-192

Sets the compliance level for SSL and TLS
connections to the LDAP server.

This value is not used when running within a
WebSphere JVM because the compliance level is
automatically determined based on how
WebSphere is configured.

ldap.ssl-v3-enable [ssl]
ssl-v3-enable

New,
Optional

True true, false Enables or disables the use of SSL version 3 to
the LDAP server.

For some ssl.compliance values, this parameter
is always disabled.

This parameter is always disabled for compliance
levels sp800-131-strict, suite-b-128, and
suite-b-192.

ldap.tls-v10-enable [ssl]
tls-v10-enable

New,
Optional

True true, false Enables or disables the use of TLS version 1.0 to
the LDAP server.

For some ssl.compliance values, this parameter
is always disabled.

This parameter is always disabled for compliance
levels sp800-131-strict, suite-b-128, and
suite-b-192.

ldap.tls-v11-enable [ssl]
tls-v11-enable

New,
Optional

True true, false Enables or disables the use of TLS version 1.1 to
the LDAP server.

For some ssl.compliance values, this parameter
is always disabled.

This parameter is always disabled for compliance
levels sp800-131-strict, suite-b-128, and
suite-b-192.

Appendix D. Registry Direct Java API 119

Table 36. Configuration options (continued)

Java Option Name

Existing
Comparable
Option

Existence in
current Java
Config Default Valid Range Description

ldap.tls-v12-enable [ssl]
tls-v12-enable

New,
Optional

True true, false Enables or disables the use of TLS version 1.2 to
the LDAP server.

For some ssl.compliance values, this parameter
is always disabled.

This parameter is always enabled for
sp800-131-strict, suite-b-128, and suite-b-192.

ldap.cipher-suites [ssl]
ssl-v3-cipher-
specs, [ssl]
tls-v10-cipher-
specs,[ssl]
tls-v11-cipher-
specs,[ssl]
tls-v12-cipher-
specs

New,
Optional

Java defaults [semicolon list of
Java cipher names]

Specifies which cipher suites to use for all SSL
and TLS protocols.

Example:
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA;
SSL_DHE_DSS_WITH_AES_128_CBC_SHA;
SSL_DHE_DSS_WITH_AES_128_CBC_SHA256

For information about the cipher suite names, see
http://publib.boulder.ibm.com/infocenter/
java7sdk/v7r0/index.jsp?topic=
%2Fcom.ibm.java.security.component.doc
%2Fsecurity-component%2Fjsse2Docs
%2Fciphersuites.html.

ldap.ssl-truststore New,
Optional

Filename string The file name of a Java JCEKS keystore that
contains the trusted CA signers for the LDAP
server Certificate.

The API converts the value that is placed in the
configuration file into URL format.

The API supports only file: protocol. If you do
not provide Filename string in the URL, specify
java.naming.ldap.factory.socket, if you
enabled ldap.ssl-enable.

ldap.ssl-truststore-pwd New,
Required only
if
ldap.ssl-
truststore is
specified

Password string The password for the ldap.ssl-truststore. This
password is obfuscated by SvrSslCfg and
RgyConfig when set. Provide the password if
ldap.ssl-trustsore is set.

ldap.login-failures-
persistent

[ldap]
login-failures-
persistent

New,
Optional

False true, false Login failures are used with the three-strikes
policy. If you set this option to false, each
process by using this API stores the number of
login failures in memory. If multiple servers are
involved, the total number of login failures to
trigger a strike-out might vary.

If you set this option to true, the strike count is
stored in LDAP and shared across all servers. An
accurate count can be kept in a multiserver
environment.

ldap.auth-using-compare [ldap]
auth-using-
compare

New,
Optional

Defaults vary
depending
on LDAP
server type.

true, false Set this option to false to validate every
dn/password by using a new connection to LDAP,
and a simple bind. Set this option to true to
compare the LDAP against the password
attribute to validate the password. Some LDAP
servers do not support this setting and ignores it.

ldap.bind-dn [ldap] bind-dn New, Required valid LDAP DN
string

The DN to simple bind to LDAP for all
management LDAP operations.

ldap.bind-pwd [ldap] bind-pwd New, Required valid password
string

The LDAP bind-dn account password. SvrSslCfg
and RgyConfig obfuscates this value in the
configuration file.

120 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp?topic=%2Fcom.ibm.java.security.component.doc%2Fsecurity-component%2Fjsse2Docs%2Fciphersuites.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp?topic=%2Fcom.ibm.java.security.component.doc%2Fsecurity-component%2Fjsse2Docs%2Fciphersuites.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp?topic=%2Fcom.ibm.java.security.component.doc%2Fsecurity-component%2Fjsse2Docs%2Fciphersuites.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp?topic=%2Fcom.ibm.java.security.component.doc%2Fsecurity-component%2Fjsse2Docs%2Fciphersuites.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp?topic=%2Fcom.ibm.java.security.component.doc%2Fsecurity-component%2Fjsse2Docs%2Fciphersuites.html

Table 36. Configuration options (continued)

Java Option Name

Existing
Comparable
Option

Existence in
current Java
Config Default Valid Range Description

ldap.return-registry-id [ldap]
cache-return-
registry-id

New, Optional False true, false If set to true, RgyUser.RgyEntity.getId() returns
the Security Access Manager user ID for the
specific user that is stored in the LDAP registry.

If set to false, RgyUser.RgyEntity.getId() returns
the Security Access Manager user ID for the user
that was passed into the RgyRegistry.getUser()
method.

Security Access Manager IDs are not
case-sensitive. The user ID returned differs if the
case of the ID passed to RgyRegistry.getUser()
is different from the case of the value that is
stored in LDAP.

ldap.user-self-care-
objectclass

New, Optional Empty valid LDAP
objectClass string

The name of an AUXILLARY objectClass to
ensure what user entries have so that self-care
attributes can be added to existing and new
native user LDAP entries.

ldap.default-policy-
override-support

[ldap]
default-policy-
override-
support

New, Optional False true, false If set to true, the Security Access Manager
per-user policy is not used. Instead, the global
policy takes effect.

java.naming.ldap.
factory.
socket

New, Optional name of class Makes it possible for the caller to provide their
own SSL socket factory to use with JNDI to the
LDAP servers.

ldap.cache-policy-expire-
time

[ldap]
cache-policy-
expire-time

New, Optional 600 (seconds) 0 -> 86400 The duration in seconds for which the global
policy is cached in the memory before being read
again from LDAP.

ldap.max-auth-connections [ldap]
max-auth-
connections

New, Optional 0 0 -> 32768 Non-zero value that sets the number of
simultaneous LDAP connections that are used to
authenticate users (when auth-using-compare =
false)

ldap.group-map-size 1024 0 -> Maximum
Integer

The number of entries in a map that is used to
convert group native names (DNs) into Security
Access Manager IDs. An LRU algorithm to
enables creation of new entries.

ldap.group-map-lifespan 60 0 -> 86400 Duration in seconds for which the entry stays in
the map, used to convert group native names
(DNs) into Security Access Manager IDs.

ldap.late-lockout-
notification

False true, false Notifies the user when the account is locked due
to several password login attempts during the
n+1th login rather than the nth. Here, n is the
value of maxFailedLogins policy attribute in effect
for the user.

authz.enable-
authorization

New, Optional False true, false When LdapRgyRegistryFactory.
getRgyRegistryInstance(URL propertiesUrl, Map
enhancements) is used, it recognizes the option
and enables the authorization of the API
operations. Provide authz.pdauthorizatoncontext-
user, used as admin user and authorizes each
access.

authz.pdauthorization
context-user

New, Optional

(conditional)

Security Access
Manager user ID

When authz.enable-authorization is set, this user ID
is authorized in API operations. If
authz.pdauthorizatoncontext-pwd is also specified,
then the Security Access Manager user account
has an additional purpose.

The user account is passed with the password to
the construction of the PDAuthorizationContext
constructed by the API.

If required, you can override the joint usage by
calling AuthzRgyRegistryFactory.
updateAdminId(RgyRegistry rgyRegistry, String
adminUserId). Doing so changes the Security
Access Manager ID used in the authorization
decision.

Appendix D. Registry Direct Java API 121

Table 36. Configuration options (continued)

Java Option Name

Existing
Comparable
Option

Existence in
current Java
Config Default Valid Range Description

authz.pdauthorization
context-pwd

New, Optional Security Access
Manager user
password

If you specify authz.pdauthorizatoncontext-pwd
along with authz.pdauthorizatoncontext-user, the
Security Access Manager user and password are
passed to the construction of the
PDAuthorizationContext.This is constructed by the
API used to provide authorization decision
outcomes for API operations.

authz.initialize-pdadmin New, Optional False true,false When this option is set to true, the API calls
PDAdmin.initialize() before creating the
PDAuthorizationContext. It also calls
PDAdmin.shutdown() when the API calls
RgyRegistry.close().

authz.enable-audit New, Optional False true,false When you use LdapRgyRegistryFactory.
getRgyRegistryInstance(URL propertiesUrl, Map
enhancements), it recognizes this option, and
enable the API operation auditing. If you do not
enable authz.enable-authorization option, the user
who does this operation is an unauthenticated
user.

authz.audit-file-pattern New, Optional

(conditional)

File name pattern Enables authz.enable-audit. Pass this attribute to
the Javajava.util.logging.FileHandler constructor to
provide appropriate description for the
documentation.

authz.audit-file-limit New, Optional 0 0 ->
MAXINTEGER

Passed to the Java java.util.logging.FileHandler
constructor so that documentation has the
appropriate description.

authz.audit-file-count New, Optional 1 1,8192 Passed to the Java java.util.logging.FileHandler
constructor to ensure that the documentation has
the appropriate description.

appsvr-servername Already
present,
Optional

(conditional)

string Set this option if authz.enable-audit is enabled.

Use this option to segregate the application by
using the new Registry Direct Java API in Java
Logger name space for audit logging.

For example, The audit names are
com.tivoli.pd.rgy.authz. testapp-tam611.mgmt and
com.tivoli.pd.rgy.authz.testapp-tam611.authn.
testapp-tam611 is the string passed.
Note: Although the audit logger is listed in the
Java Logger name space, it outputs the records
into its own file. You can enable or disable the
output to the audit log file by increasing or
decreasing the Java logging level for the audit
logger names.

authz.authorize-group-
list

[delegated-
admin]
authorize-
group-list

New, Optional False true, false Indicates whether the API must check the
authorization on the listGroup() and
listNativeGroups(). This option matches the
behavior options of the Policy Server. For
example, the pdadmin group list and group list-dn
commands.

Example usage

Creating an instance of RgyRegistry

After creating the configuration file, use this API with the corresponding LDAP
account on the existing Security Access Manager registry. If the configuration file is
located at /opt/testapp/testapp.properties, then the sample configuration file is
as follows:
URL propertiesUrl = null;
try {
propertiesUrl = new URL("file:///opt/testapp/testapp.properties");

122 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

}
catch (MalformedURLException e) {
e.printStackTrace();
System.exit(1);
}

RgyRegistry rgyRegistry = null;
try {
rgyRegistry = LdapRgyRegistryFactory.getRgyRegistryInstance
(propertiesUrl, null);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}

Ending use of RgyRegistry

Close the RgyRegistry instance when your application does not use the instance
anymore. The sample usage is as follows:
rgyRegistry.close();

Groups

Creating a group

The following sample demonstrates how to create a Security Access Manager
group called testgroup with LDAP DN cn=testgroup,o=ibm,c=us.

Example:
String groupId = "testgroup";
String groupCn = “testgroup”;
String groupNativeId = "cn=testgroup,o=ibm,c=us”;
RgyAttributes rgyAttributes = rgyRegistry.newRgyAttributes();
rgyAttributes.putAttribute(RgyAttributes.COMMON_NAME_NAME, groupCn);
rgyAttributes.putAttribute(RgyAttributes.DESCRIPTION_NAME,
"This is a test Group");
RgyGroup rgyGroup = null;
try {
rgyGroup = rgyRegistry.createGroup(“Default”, groupId, groupNativeId,
rgyAttributes);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}

This example obtains a RgyAttributes instance to create the group and set the
group attributes, assuming that the Security Access Manager domain is default and
that it contains a suffix o=ibm,c=us in LDAP.

Showing group details

The following sample displays the information about the group. This function is
equivalent of pdadmin group show testgroup:
// Fetch the group
String groupId = “testgroup”;
RgyGroup rgyGroup = null;
try {

Appendix D. Registry Direct Java API 123

rgyGroup = rgyRegistry.getGroup(“Default”, groupId);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Ensure the group was found
if (rgyGroup == null) {
System.out.println(“Group does not exist”);
System.exit(1);
}
System.out.println(“Group ID: “+rgyGroup.getId());
System.out.println(“LDAP DN: “+rgyGroup.getNativeId());
String description =
String) rgyGroup. getOneAttributeValue(RgyAttributes.DESCRIPTION_NAME);
if (description == null) {
description = “”;
}
System.out.println(“Description: “+description);
System.out.println
(“LDAP CN: “+rgyGroup. getOneAttributeValue(RgyAttributes.COMMON_NAME_NAME);
String isSecEntity =
String) rgyGroup.getOneAttributeValue(RgyAttributes. IS_SEC_ENTITY_NAME);
if (isSecEntity.equalsCaseIgnore(RgyAttributes. BOOL_TRUE_VALUE)) {
isSecEntity = “Yes”;
}
else {
isSecEntity = “No”;
}
System.out.println(“Is SecGroup: “+isSecEntity);

Deleting a group
The following sample code displays the steps to delete the Security Access
Manager group testgroup from the Security Access Manager domain Default and
remove the native LDAP entry.

The last parameter of deleteGroup() is set to true.

If the native LDAP entry is also a member of another Security Access Manager
domain, or another application places child entries, the removal of the native
LDAP entry fails. Despite this error, the Security Access Manager component is still
removed.
String groupId = “testgroup”;
try {
rgyRegistry.deleteGroup(“Default”, groupId, true);
}
catch (WarningNativeEntityInUseRgyException e) {
System.out.println(“Warning: unable to remove native LDAP entry”);
// Ignore
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}

Importing a native group

Existing native LDAP groups can be imported as Security Access Manager groups.
Obtain the native LDAP group information as aRgyGroup instance, then invoke the
RgyGroup.importNativeGroup() method.

124 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

The following sample shows the sample code to import the native group as
Security Access Manager group:
// First fetch the Native Entity
String groupNativeId = "cn=testgroup,o=ibm,c=us”;
RgyGroup rgyGroup = null;
try {
rgyGroup = rgyRegistry.getNativeGroup(“Default”, groupNativeId);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Ensure the group was found
if (rgyGroup == null) {
System.out.println(“Group does not exist”);
System.exit(1);
}
// Only import, if not already a TAM group (isSecEntity=FALSE)
String isSecEntity = (String) rgyGroup.getOneAttributeValue
(RgyAttributes. IS_SEC_ENTITY_NAME);
if (isSecEntity.equalsIgnoreCase(RgyAttributes. BOOL_FALSE_VALUE)) {
String groupId = "testgroup";
RgyAttributes rgyAttributes = rgyRegistry.newRgyAttributes();
try {
rgyGroup.importNativeGroup(groupId, rgyAttributes);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
}

Listing group members

The following sample displays the sample code to list the members belonging to a
specific group. Ensure that you fetch the group before you list its members. The
members are returned as a set of string values.
// Fetch the group
String groupId = “testgroup”;
RgyGroup rgyGroup = null;
try {
rgyGroup = rgyRegistry.getGroup(“Default”, groupId);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Ensure the group was found
if (rgyGroup == null) {
System.out.println(“Group does not exist”);
System.exit(1);
}
// Get Set of group’s member IDs
Set userIds = null;
try {
userIds = rgyGroup.listMemberIds();
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Display the member IDs
System.out.print("Members=");
Iterator iter = userIds.iterator();

Appendix D. Registry Direct Java API 125

while (iter.hasNext()) {
String userId = (String) iter.next();
System.out.print(userId+", ");
}
System.out.println();

A list of the groups members as native user IDs can be obtained using
rgyGroup.listMemberNativeIds(). The native ID Set includes non-TAM users.

Add or remove group members

The following example displays the code to add or remove the group members.
Before modifying, ensure that you fetch the user.
// Fetch the group
String groupId = “testgroup”;
RgyGroup rgyGroup = null;
try {
rgyGroup = rgyRegistry.getGroup(“Default”, groupId);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Ensure the group was found
if (rgyGroup == null) {
System.out.println(“Group does not exist”);
System.exit(1);
}
// Create a List of user IDs and add to group
List userIds = new ArrayList();
userIds.add(“testuser”);
try {
rgyGroup.addMembers(userIds);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Remove List of user IDs from the group
try {
rgyGroup.removeMembers(userIds);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}

Modifying group attribute
The following example demonstrates how to modify the groups description
attribute.

Before you modify a group, you must fetch the group.

Groups do not have many attributes that can be modified.
// Fetch the group
String groupId = “testgroup”;
RgyGroup rgyGroup = null;
try {
rgyGroup = rgyRegistry.getGroup(“Default”, groupId);
}
catch (RgyException e) {
e.printStackTrace();

126 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

System.exit(1);
}
// Ensure the group was found
if (rgyGroup == null) {
System.out.println(“Group does not exist”);
System.exit(1);
}
// Replace the current attribute
try {
rgyGroup.attributeReplace(RgyAttributes.DESCRIPTION_NAME,
“Replacement Description”);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Remove the description attribute
try {
rgyGroup.attributeDelete(RgyAttributes.DESCRIPTION_NAME);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}

Users and per-user policy

Assuming that the Security Access Manager domain is Default and that there is a
suffix o=ibm,c=us in LDAP, the following code creates a Security Access Manager
user called testuser. This testuser has the LDAP DN cn=testuser,o=ibm,c=us.
First, obtain an RgyAttributes instance to set the users attributes and then create
the user. A few optional attributes set for the user during the time of creation
include account and password policy and account state.
// Setup the required attributes
RgyAttributes rgyAttributes = registry.newRgyAttributes();
rgyAttributes.putAttribute(RgyAttributes.COMMON_NAME_NAME,“testuser”);
rgyAttributes.putAttribute(RgyAttributes.SURNAME_NAME, “user”);
// Setup some optional attributes
rgyAttributes.putAttribute(RgyAttributes.MIN_PASSWORD_LENGTH_NAME, "8");
rgyAttributes.putAttribute(RgyAttributes.MAX_LOGIN_FAILURES_NAME, "2");
rgyAttributes.putAttribute(RgyAttributes.DISABLE_TIME_INTERVAL_NAME, "0");
Date currentTime = new Date();
currentTime.setTime(currentTime.getTime() + (3600 * 1000L));
String registryDate = null;
try {
registryDate = registry.toRegistryDate(currentTime);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
rgyAttributes.putAttribute(RgyAttributes.ACCOUNT_EXPIRY_DATE_NAME,
registryDate);
rgyAttributes.putAttribute(RgyAttributes.SEC_ACCT_VALID_NAME,
RgyAttributes.BOOL_TRUE_VALUE);
// Create the user
String userId = "testuser”;
String userNativeId = "cn=testuser,o=ibm,c=us”;
RgyUser rgyUser = null;
try {
user = registry.createUser(“Default”, userId, userNativeId, "passw0rd".
toCharArray(), true, rgyAttributes, null);
}
catch (RgyException e) {

Appendix D. Registry Direct Java API 127

e.printStackTrace();
System.out.println("FAILED: Unable to create user: "+id);
System.exit(1);
}

Showing user details

This is the equivalent of pdadmin user show testuser command. The following
example displays the user details such as User ID, Native ID, Common name,
Surname, and descriptive name.
RgyUser rgyUser = null;
try {
rgyUser = registry.getUser(null, userId);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
if (rgyUser == null) {
System.out.println(“User not found”);
System.exit(1);
}
System.out.println(“Login ID: “+rgyUser.getId());
System.out.println(“LDAP DN: “+rgyUser.getNativeId());
System.out.println(“LDAP CN: “+rgyUer.getOneAttributeValue
(RgyAttributes.COMMON_NAME_NAME);
System.out.println(“LDAP SN: “+rgyUser.getOneAttributeValue
(RgyAttributes.SURNAME_NAME);
String description = (String) rgyUser.getOneAttributeValue
(RgyAttributes.DESCRIPTION_NAME);
if (description == null) {
description = “”;
}
System.out.println(“Description: “+description);
System.out.println(“Is SecUser: “+yesNo
(rgyUser, RgyAttributes. IS_SEC_ENTITY_NAME);
System.out.println(“Is GSO user: “+yesNo
(rgyUser, RgyAttributes. IS_GSO_USER_NAME));
System.out.println(“Account valid: “+yesNo
(rgyUser, RgyAttributes. SEC_ACCT_VALID_NAME));
System.out.println(“Password valid: “+yesNo
(rgyUser, RgyAttributes. SEC_PWD_VALID_NAME));

//-----

String yesNo(RgyEntity rgyEntity, String attributeName)
{
String value = (String) rgyGroup.getOneAttributeValue(attributeName);
if (value.equalsCaseIgnore(RgyAttributes. BOOL_TRUE_VALUE)) {
value = “Yes”;
}
else {
value = “No”;
}
return value;
}

Deleting a user
If the native LDAP entry is a member of another Security Access Manager domain,
or another application has placed child entries beneath it, the removal of the native
LDAP entry fails. An exception is thrown from the API but the Security Access
Manager component is still removed.

128 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

The following example deletes the Security Access Manager user testuser from the
Default Security Access Manager domain and removes the native LDAP entry. Last
parameter of deleteUser() is set to true.
String userId = “testuser”;
try {
rgyRegistry.deleteUser(“Default”, userId, true);
}
catch (WarningNativeEntityInUseRgyException e) {
System.out.println(“Warning: unable to remove native LDAP entry”);
// Ignore
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}

Importing a native user

You can import the existing native LDAP users as Security Access Manager users.
The native LDAP user information must be obtained as an RgyUser instance, then
the RgyUser.importNativeGroup() method can be invoked. The following example
imports a Default native user as a Security Access Manager user testuser from
the native LDAP entry. Last parameter of deleteUser() is set to true.
/ First fetch the Native Entity
String userNativeId = "cn=testuser,o=ibm,c=us”;
RgyUser rgyUser = null;
try {
rgyUser = rgyRegistry.getNativeUser(“Default”, userNativeId);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Ensure the Native user was found
if (rgyUser == null) {
System.out.println(“Group does not exist”);
System.exit(1);
}
// Only import, if not already a TAM user (isSecEntity=FALSE)
String isSecEntity = (String) rgyUser.getOneAttributeValue
(RgyAttributes. IS_SEC_ENTITY_NAME);
if (isSecEntity.equalsIgnoreCase(RgyAttributes. BOOL_FALSE_VALUE)) {
String userId = "testuser";
RgyAttributes rgyAttributes = rgyRegistry.newRgyAttributes();
// Setup an optional attribute
rgyAttributes.putAttribute(RgyAttributes.SEC_ACCT_VALID_NAME,
RgyAttributes.BOOL_TRUE_VALUE);
try {
rgyUser.importNativeUser(userId, rgyAttributes, null);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
}

Listing a user's group memberships

Fetch the user before listing its group memberships. Returns the groups the user
belongs to as a set of string:

Appendix D. Registry Direct Java API 129

// Fetch the user
String userId = “testuser”;
RgyUser rgyUser = null;
try {
rgyUser = rgyRegistry.getUser(“Default”, userId);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Ensure the user was found
if (rgyUser == null) {
System.out.println(“Group does not exist”);
System.exit(1);
}
// Get Set of group IDs the user is a memberof
Set groupIds = null;
try {
groupIds = rgyUser.listGroups();
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Display the group IDs
System.out.print("Groups=");
Iterator iter = GroupIds.iterator();
while (iter.hasNext()) {
String groupId = (String) iter.next();
System.out.print(groupId+", ");
}
System.out.println();

A list of the user group memberships as group native ID can also be obtained
using rgyUser.listNativeGroups () instead. The native ID set can include groups
that are not Security Access Manager groups.

Modifying user attributes
The following example shows the equivalent of the pdadmin commands user
modify testuser password-valid yes, policy set max-login-failures unset
-user testuser, and policy set min-password-length 7 -user testuser.

Ensure that you fetch the user before you modify the user attributes.
// Fetch the user
String userId = “testuser”;
RgyUser rgyUser = null;
try {
rgyUser = rgyRegistry.getUser(“Default”, userId);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Ensure the user was found
if (rgyUser == null) {
System.out.println(“Group does not exist”);
System.exit(1);
}
// Set the password-valid
try {
rgyUser.attributeReplace(RgyAttributes.SEC_PWD_VALID_NAME,
RgyAttributes.BOOL_TRUE_VALUE);
}
catch (RgyException e) {

130 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

e.printStackTrace();
System.exit(1);
}
// Unset the max-login-failures policy
try {
rgyUser.attributeDelete(RgyAttributes. MAX_LOGIN_FAILURES_NAME);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Set the min-password-length policy to 7
try {
rgyUser.attributeReplace(RgyAttributes.MIN_PASSWORD_LENGTH_NAME, “7”);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}

Resetting the user password
This action is the equivalent to pdamin command user modify testuser password
changeme.

The following example shows how to perform an administrative reset of the user
password:
// Fetch the user
String userId = testuser;
RgyUser rgyUser = null;
try {
rgyUser = rgyRegistry.getUser(Default, userId);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Ensure the user was found
if (rgyUser == null) {
System.out.println(Group does not exist);
System.exit(1);
}
try {
rgyUser = rgyUser.setPassword(changeme.toCharArray());
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}

Changing the user password
To change the user password, authenticate the old password and request to set a
new password.

This operation is similar to a pkmspasswd of WebSEAL. The following example
shows the sample code for changing the oldpassword to newpassword for a user
testuser:
// Fetch the user
String userId = “testuser”;
RgyUser rgyUser = null;
try {
rgyUser = rgyRegistry.getUser(“Default”, userId);
}

Appendix D. Registry Direct Java API 131

catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Ensure the user was found
if (rgyUser == null) {
System.out.println(“Group does not exist”);
System.exit(1);
}
try {
rgyUser = rgyUser.changePassword(“oldpassword”.toCharArray(),
“newpassword”.toCharArray());
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}

Authenticating the user Password
This section provides an example showing the authentication script.

The following example shows about authentication the default user password
passw0rd .
// Fetch the user
String userId = “testuser”;
RgyUser rgyUser = null;
try {
rgyUser = rgyRegistry.getUser(“Default”, userId);
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}
// Ensure the user was found
if (rgyUser == null) {
System.out.println(“Group does not exist”);
System.exit(1);
}
try {
rgyUser = rgyUser.authenticate(“passw0rd”.toCharArray());
}
catch (RgyException e) {
e.printStackTrace();
System.exit(1);
}

132 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Appendix E. User registry differences

Each user registry presents unique concerns when integrated with Security Access
Manager. This release of Security Access Manager supports LDAP and URAF user
registries.

Security Access Manager supports the following LDAP user registries:
v Tivoli Directory Server
v IBM z/OS Security Server LDAP Server
v Microsoft Active Directory Lightweight Directory Services (AD LDS) (Windows

2008)
v Novell eDirectory Server
v Sun Java System Directory Server, version 7.0

Security Access Manager supports the following URAF user registries:
v Microsoft Active Directory Server

General concerns

The following concerns are specific to all the supported user registries:
v Avoid using the forward slash (/) character when defining the names for users

and groups when that name is defined using distinguished names strings. Each
user registry treats this character differently.

v Avoid using leading and trailing blanks in user and group names. Each user
registry treats blanks in a different manner.

LDAP concerns

The following concerns are specific to all the supported LDAP user registries:
v There are no configuration steps required for Security Access Manager to

support the Password Policy of LDAP. Security Access Manager does not assume
the existence or non-existence of the Password Policy of the LDAP at all.
Security Access Manager enforces its own Password Policy first. Security Access
Manager attempts to update password in LDAP only when the provided
password passes Password Policy check of Security Access Manager.
After that, Security Access Manager tries to accommodate the Password Policy
of LDAP to the best of its ability using the return code that it gets from LDAP
during a password-related update.
If Security Access Manager can map the return code without any ambiguity with
the corresponding Security Access Manager error code, it does so and returns a
proper error message.

v To take advantage of the multi-domain support in Security Access Manager, you
must use an LDAP user registry. When using a URAF user registry, only a single
Security Access Manager domain is supported.

v When using an LDAP user registry, the capability to own global sign-on
credentials must be explicitly granted to a user. After this capability is granted, it
can be removed. Conversely, users that are created in a URAF user registry are
automatically given this capability. This capability cannot be removed.

© Copyright IBM Corp. 2002, 2012 133

v Leading and trailing blanks in user names and group names are ignored when
using an LDAP user registry in a Security Access Manager secure domain. To
ensure consistent processing regardless of the user registry, define user names
and group names without leading or trailing blanks.

v Attempting to add a single duplicate user to a group does not produce an error
when using an LDAP user registry.

v The Security Access Manager authorization API provides a credential attribute
entitlements service. This service retrieves user attributes from a user registry.
When this service is used with an LDAP user registry, the retrieved attributes
can be string data or binary data. However, when used with a URAF user
registry, the retrieved attributes can be string data, binary data, or integer data.

Sun Java System Directory Server concerns
The following task describes how to modify the default value for the look-through
limit on the directory server.

About this task

The following concerns are specific to Sun Java System Directory Server:

If the user registry contains more entries than the defined look-through limit, the
directory server might return the following status that Security Access Manager
treats as an error:
LDAP_ADMINLIMIT_EXCEEDED

When the directory server is installed, the default value is 5000. To modify this
value, perform the following steps from the Sun Java System Directory Server
Console:

Procedure
1. Select the Configuration tab.
2. Expand the Data entry.
3. Select Database Settings.
4. Select the LDBM Plug-in Settings tab.
5. In the Look-through Limit field, type the maximum number of entries that you

want the server to check in response to the search, or type -1 to define no
maximum limit.
If you bind the directory as the Directory Manager, the look-through limit is
unlimited and overrides any settings specified in this field.

Microsoft Active Directory Lightweight Directory Service (AD
LDS) concerns

This section describes concerns specific to Microsoft Active Directory Lightweight
Directory Service (AD LDS).

The following concerns are specific to AD LDS.
v Policy Server configuration allows you to select between a standard or minimal

data model for the user registry. Because AD LDS allows only a single naming
attribute to be used when creating LDAP objects, AD LDS requires the minimal
data model. Regardless of which data model is chosen during Policy Server
configuration, Security Access Manager will always use the minimal data model
when AD LDS is selected as the user registry.

134 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

v Because the common name (cn) value in AD LDS must be single valued, the
value specified for the cn attribute must be the same value used for the
distinguished name (dn) when a user or group is created and cn is used as the
naming attribute in the dn; for example, the following command to create a user
would NOT be allowed:
pdadmin user create user1 cn=user1,o=ibm,c=us fred user1 password1

In the example, the cn value, fred, is different from the cn naming attribute in
the dn, user1.

URAF concerns
The following concerns are specific to all the supported URAF user registries:
v When you use a URAF user registry, only a single Security Access Manager

domain is supported. To take advantage of the Security Access Manager
multi-domain support, use an LDAP user registry.

v Users that are created in a URAF user registry are automatically given the
capability to own global sign-on credentials. This capability cannot be removed.
When you use an LDAP user registry, this capability must be explicitly granted.
After this capability is granted, it can later be removed.

v The Security Access Manager authorization API provides credentials attribute
entitlements service. This service is used to retrieve user attributes from a user
registry. When this service is used with a URAF user registry, the retrieved
attributes can be string data, binary data, or integer data. However, when used
with an LDAP user registry, the retrieved attributes can be only string data or
binary data.

Microsoft Active Directory Server concerns
In addition to the general URAF concerns, the following concerns are specific to
Microsoft Active Directory Server:
v Users that are created in Active Directory might have an associated primary

group. The Active Directory default primary group is Domain Users.
However, the Active Directory does not add the primary group information to
the user memberOf or the group member attribute. When Security Access Manager
queries for a list of group members, the result does not include any members
who belong to the primary group. When Security Access Manager queries for all
the groups where the user belongs, the result does not display the primary
group of the user.
For this reason, do not use a Security Access Manager group as the Active
Directory primary group for Security Access Manager users.

v Security Access Manager does not support cross domain group membership or
universal groups. Security Access Manager does not support importing these
types of groups.

v When Security Access Manager imports a dynamic group, the ivacld-servers
and remote-acl-users groups apply read permission on each authorization store
to which the dynamic group belongs.
The read permission enables Security Access Manager blade servers, such as
WebSEAL, to read permission to the registry authorization store. Thus, the blade
server reads dynamic group data, such as group membership for building
Security Access Manager credentials.
Manually removing the read permission while Security Access Manager is
configured to the Active Directory registry results in adverse behavior, such as
inaccurate group membership.

Appendix E. User registry differences 135

v If the option to change the user password by using LDAP APIs is enabled in an
environment where:
– Security Access Manager is configured to use the Active Directory user

registry, and
– Security Access Manager blade servers use LDAP APIs to communicate with

the Active Directory server

then Security Access Manager must be configured with Secure Socket Layer
(SSL) to allow connections between the LDAP client and the Active Directory
server. The Active Directory environment must also be enabled to accept LDAP
connections over Secure Socket Layer (SSL).

v When you use an Active Directory user registry in a Security Access Manager
configuration with blade servers that use LDAP APIs to communicate with the
Active Directory server, Security Access Manager supports user password
change requests by using either the Policy Server or LDAP APIs. Change user
password requests by using the LDAP APIs do not require the Policy Server to
run.
The use of LDAP APIs to communicate with the Active Directory Server for
blade servers is a multiplatform support that allows blade servers to be installed
on systems that are not clients of the same domain as the policy server. In this
configuration, the policy server must be installed and configured on a Windows
operating system.

v When you use an Active Directory user registry, each user name and each group
name in a domain must be unique. User and group short name values that are
stored in the sAMAccountName attribute of Active Directory user objects and group
objects. Active Directory user objects and group objects both have the
sAMAccountName attribute as one of their attributes. Microsoft requires that the
sAMAccountName attributes be unique within an Active Directory domain.

v When you use a multi-domain Active Directory user registry, multiple users and
groups can be defined with the same short name if they are in different
domains. However, the full name of the user or group, including the domain
suffix, must always be specified to Security Access Manager.

v The following items are ignored when you use Microsoft Active Directory Server
as the user registry in a Security Access Manager secure domain:
– Leading and trailing blanks in user names
– Group names

To ensure consistent processing regardless of the user registry, define user names
and group names without leading or trailing blanks.

v Security Access Manager supports the use of an email address or other formats
of the userPrincipalName attribute of the Active Directory registry user object as
a Security Access Manager user identity. When the option is enabled, both the
default and the email address or another userPrincipalName format can co-exist
in the Security Access Manager environment.
The default format of the userPrincipalName registry attribute is
user_id@domain_suffix, where domain_suffix is the Active Directory domain
where the user identity is created.
For example, johndoe@example.com is the value of the userPrincipalName;
example.com is the Active Directory domain where the user identity is created.
The Security Access Manager user identity corresponding to the registry user in
this example is eitherjohndoe@example.com or johndoe. It depends on whether
Security Access Manager is configured to use Active Directory with multiple
domains or a single domain.

136 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

The alternative format of the userPrincipalName attribute is user_id@any_suffix.
any_suffix can be any domain (Active Directory or non-Active Directory) other
than the Active Directory domain in which the user identity is created.
For example, if the registry user johndoe@other_domain.com is created in Active
Directory example.com, and the registry user johndoe@example.com is created in
Active Directory domain child_domain.example.com. Both users can be Security
Access Manager users, and their user identities are johndoe@other_domain.com
and johndoe@example.com.
Enable the alternative user principal name (UPN) support in all Security Access
Manager runtime environments. Doing so ensures that Security Access Manager
user identities work properly with alternative UPNs.
When the use of alternative UPN format as user identity is enabled, it cannot be
reversed without breaking Security Access Manager functions.

v Although users and groups can be created with names that use a distinguished
name string, subsequent operations on the object might fail. A distinguished
name string contains a forward slash (/) character. Some Active Directory
functions interpret the forward slash character as a separator between the object
name and the host name. To avoid the problem, do not use a forward slash
character to define the user.

Length of names
The maximum lengths of various names that are associated with Security Access
Manager vary depending on the user registry that is being used.

See the Table 37 section for a comparison of the maximum lengths that are allowed
and the maximum length to use to ensure compatibility with all the user registries
that are supported by Security Access Manager.

Table 37. Maximum lengths for names by user registry and the optimal length across user registries

Name IBM Tivoli
Directory

Server

IBM z/OS
Security
Server

Novell
eDirectory

Server

Sun Java
System

Directory
Server

Microsoft
Active

Directory
Server

Active
Directory

Lightweight
Directory

Server (AD
LDS)

Optimal
length

First name
(LDAP CN)

256 256 64 256 64 64 64

Middle name 128 128 128 128 64 64 64

Last name
(surname)

128 128 128 128 64 64 64

Registry uid
(LDAP DN)

1024 1024 1024 1024 2048 1024 255

Security
Access
Manager user
identity

256 256 256 256 64 64 64

User
password

unlimited unlimited unlimited unlimited 256 128 256

User
description

1024 1024 1024

Group name 256 256 256 256 64 64 64

Appendix E. User registry differences 137

Table 37. Maximum lengths for names by user registry and the optimal length across user registries (continued)

Name IBM Tivoli
Directory

Server

IBM z/OS
Security
Server

Novell
eDirectory

Server

Sun Java
System

Directory
Server

Microsoft
Active

Directory
Server

Active
Directory

Lightweight
Directory

Server (AD
LDS)

Optimal
length

Group
description

1024 1024 1024

Single sign-on
resource
name

240 240 240 240 60 240 60

Single sign-on
resource
description

1024 1024 1024

Single sign-on
user ID

240 240 240 240 60 240 60

Single sign-on
password

unlimited unlimited unlimited unlimited 256 unlimited 256

Single sign-on
group name

240 240 240 240 60 240 60

Single sign-on
group
description

1024 1024 1024

Action name 1 1 1

Action
description,
action type

unlimited unlimited unlimited

Object name,
object
description

unlimited unlimited unlimited

Object space
name, object
space
description

unlimited unlimited unlimited

ACL name,
ACL
descriptions

unlimited unlimited unlimited

POP name,
POP
description

unlimited unlimited unlimited

Although, the maximum length of an Active Directory distinguished name
(registry uid) is 2048, the maximum length of each relative distinguished name
(RDN) is 64.

If you configure Security Access Manager to use multiple Active Directory
domains, the maximum length of the user identity and group name does not
include the domain suffix.

When you use multiple domains, the format of a user identity is
user_id@domain_suffix.

138 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

The maximum length of 64 characters applies only to the user_id portion. If you
use an email address or other format for the Security Access Manager user identity
in the Active Directory, the maximum name length remains the same, but includes
the suffix.

Although the lengths of some names can be unlimited, excessive lengths might
result in a policy that is difficult to manage. A policy that is difficult to manage
might result in poor system performance. Choose maximum values that are logical
for your environment.

Appendix E. User registry differences 139

140 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law :

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2002, 2012 141

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

142 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer
Entertainment, Inc., in the United States, other countries, or both and is used under
license therefrom.

Notices 143

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

144 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

Index

A
access control 38

administration 37
definition 37
list entries

any-authenticated user 38
any-other user 38

lists
entry types 38
table of methods 38

accessibility xiv
accounts administration 24, 25
action group 41

methods, table 41
overview 41

ADK
installation directories 3

ADK installation
requirements 4

admin C API
difference between admin Java

API 63
administration objects

listing 17
manipulating 15

API
See also com.tivoli.pd.rgy
authorization 112
equivalents

Java class and method 67
pdadmin command 67
Web Portal Manager 67

error codes 96
initialization 12
overview 1
published 85

Factory classes 85
Java Interfaces 85

shutting down 19
specifications

See com.tivoli.pd.rgy 115
using 9

application development kit
overview 3

application servers
configuring 57
methods, table 57
overview 57
SSL

configuration 57
applications, building 4
attributes 100

group modification 126
protected object policy settings 46
user modification 130

audit
components 109
start event 109
stop event 109

audit log
protected object policy settings 45

audit records
protected object policy settings 45

authentication
certificate-based 14
events 111
level, IP

PDPop.IPAuthInfo object 44
password 132
PDPop.IPAuthInfo object 44
user ID and password-based 13

authorization
permissions 112
rules

administering 49
methods table 49

server, enable tracing 7
auto-database-update-notify stanza entry

notifying replica databases 60

C
certificate

maintenance 58
com.tivoli.pd.jcfg.SvrSslCfg 5, 96
com.tivoli.pd.jcfg.SvrSslCfg class 57
com.tivoli.pd.rgy.ldap.AuthzRgyRegistryFactory 94
com.tivoli.pd.rgy.ldap.LdapRgyRegistryFactory 93
com.tivoli.pd.rgy.ldap.RgyAttributes 92
com.tivoli.pd.rgy.RgyEntity 88
com.tivoli.pd.rgy.RgyGroup 90
com.tivoli.pd.rgy.RgyIterator 91
com.tivoli.pd.rgy.RgyRegistry 85
com.tivoli.pd.rgy.RgyUser 89
com.tivoli.pd.rgy.util.RgyConfig 95
commands

pdadmin 1
pdjrtecfg 5
svrsslcfg 1

createGroup method 29
createUser method 23
credential, resource 53

D
database notification 61
DB2 xii
deprecated classes and methods 2
development systems, adding 4
domain

management 55
domains

ADK requirement 4
administration 55
management 55
methods, table 55

E
education xiv
equivalents of API 67

error codes 96
example program, Java administration

API 6
exception errors 19
extended actions 41
extended attributes 46
extended attributes methods, table 40

F
files

ADK-related files 3

G
getLocalDomainName 55
getMgmtDomainName 55
group 123

access control list entry type 38
attributes

table 30
create 123
details

display 123
functions

table 29
members

add 126
list 125
remove 126

native
import 124

overview 23
resource 52

groups
attributes 100

gskcapicmd xii
gskikm.jar xii
GSKit

documentation xii

I
IBM

Software Support xiv
Support Assistant xiv

IBM Security Access Manager Runtime
for Java configuration 5

iKeyman xii
initializing API 12
installation directories, ADK 3
IP

addresses 44
authentication levels 44

J
Java

class and method equivalents 67

© Copyright IBM Corp. 2002, 2012 145

Java (continued)
logger

output file 108
logger name

com.tivoli.pd.rgy.authz 108
com.tivoli.pd.rgy.ldap 108

logging 108
error and trace 108

Java administration API
application

deployment 6
components 3
demonstration program 6
deployment 6
equivalents 2
example 6

Java classes
administration

configure 5
objects administered 1
overview 1
trace logs 8

Java logger
authentication auditing logger 109
behavior 109
framework 109
management auditing logger 109
namespaces 112

com.tivoli.pd.rgy.audit.{blade}.authn 112
com.tivoli.pd.rgy.audit.{blade}.mgmt 112
com.tivoli.pd.rgy.authz 112
com.tivoli.pd.rgy.ldap 112

Java runtime
configure

component 5
environment 5

Javadoc
documentation 2

Javadoc information
ADK 3

JRE
sample output

basic 108

K
key xii

L
LDAP server

on z/OS xii
LDAP_ADMINLIMIT_EXCEEDED 134
local domain

administration 55
log files

tracing files 8
logging

message files 8
PDJTracelogger 7

look-through limit 134

M
management events 110

max-notifier-threads stanza entry
setting maximum number 60

message logging
gathering logs 8

messages object 18
methods

PDAcl.listAcls 18
PDAdmin.initialize 12
PDAdmin.shutdown 19
PDAuthzRule.listAuthzRules 18
PDDomain.listDomains 18
PDGroup.createGroup 29
PDGroup.importGroup 29
PDGroup.listGroups 18
PDPolicy.acctDisableTimeEnforced 26
PDPolicy.acctDisableTimeUnlimited 26
PDPolicy.acctExpDateEnforced 26
PDPolicy.acctExpDateUnlimited 26
PDPolicy.getAccessEndTime 26
PDPolicy.getAccessibleDays 26
PDPolicy.getAccessStartTime 26
PDPolicy.getAccessTimezone 26
PDPolicy.getAcctDisableTimeInterval 26
PDPolicy.getAcctExpDate 26
PDPolicy.getMaxConcurrentWebSessions 26
PDPolicy.getMaxFailedLogins 26
PDPolicy.maxConcurrentWebSessionsDisplaced 26
PDPolicy.maxConcurrentWebSessionsEnforced 26
PDPolicy.maxFailedLoginsEnforced 27
PDPolicy.setAcctDisableTime 27
PDPolicy.setAcctExpDate 27
PDPolicy.setMaxConcurrentWebSessions 27
PDPolicy.setMaxFailedLogins 27
PDPolicy.setTodAccess 27
PDPolicy.todAccessEnforced 27
PDProtObject.listProtObjects 18
PDProtObject.listProtObjectsByAcl 18
PDProtObjectSpace.listProtObjectSpaces 18
PDUser.createUser 15, 23, 24
PDUser.deleteUser 18, 23
PDUser.getDescription 17, 24
PDUser.getFirstName 24
PDUser.getGroups 25
PDUser.getId 24
PDUser.getLastLogin 25
PDUser.getLastName 25
PDUser.getPolicy 25
PDUser.getRgyName 24
PDUser.getUserRgy 26
PDUser.importUser 23, 24
PDUser.isAccountValid 25
PDUser.isPDUser 25
PDUser.isSSOUser 25
PDUser.listUsers 18, 24
PDUser.setAccountValid 17, 25
PDUser.setDescription 25
PDUser.setPassword 25
PDUser.setPasswordValid 25
PDUser.setSSOUser 25
PDUser.User 24

Microsoft Active Directory Lightweight
Directory Service (AD LDS) 134

N
netmask

PDPop.IDAuthInfo object 44

notification
manual 60
threads

setting maximum number 60
wait time

setting 60
notification, automatic

automatic 60
notifier-wait-time stanza entry

setting notification wait time 60

O
object values

reading 17
setting 17

objects
administration

obtaining local copy 16
common classes 12
manipulating 15
PDAcl 10, 37, 38
PDAclEntry 10, 38
PDAclEntryAnyOther 10, 38
PDAclEntryGroup 10, 38
PDAclEntryUnAuth 10, 38
PDAclEntryUser 10, 38
PDAction 11
PDActionGroup 11
PDAdmin 9
PDAdmSvcPobj 11
PDAppSvrInfo 11
PDAppSvrSpecLocal 11
PDAppSvrSpecRemote 11
PDAttrs 12
PDAttrValue 12
PDAttrValueList 12
PDAttrValues 12
PDAuthzRule 9, 49
PDContext 9, 63
PDDomain 10
PDException 11, 63
PDGroup 10, 29
PDMessage 12, 18
PDMessages 12, 18, 63
PDPolicy 10, 25
PDPop 10, 43
PDProtObject 10, 32, 43
PDProtObjectSpace 10, 31
PDRgyGroupName 11
PDRgyName 11
PDRgyUserName 11
PDServer 11, 61
PDSSOCred.CredID 11
PDSSOCred.CredInfo 11
PDSSOResource 11
PDSSOResourceGroup 11
PDSvrInfo 11
PDUser 10, 23

objects, administration
create 15
delete 18
list 9

online
publications ix
terminology ix

146 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

options
PDAppSvrConfig 57
PDDomain 55

P
password

administration
user account policies 25
user password policies 27

functions, table
administering, policies 28

policy
LDAP 133

user 132
change 131
reset 131

PD.jar file
ADK 3
administration Java classes 1

pdacld server
tracing 7

pdadmin
command

equivalents 67
command line utility

administration Java classes 1
PDAppSvrConfig option

application servers
configuration 57

PDAuthzRule objects
authorization rules

administration 49
PDContext

design considerations 20
object 63

PDDomain
object

domain administration 55
PDException object 63
PDGroup

group information
administration 29

groups
administration 29

PDJlog.properties
message logs

collection 8
trace logs

collection 8
pdjrtecfg command

Java runtime component
configuration 5

PDJTraceLogger
enable tracing 7

PDMessages object 63
pdmgrd server

enable tracing 7
PDPop objects

administration 43
PDProtObject object

administration 32
PDProtObject objects

administration 43
PDServer

server
administration 59

PDServer object
servers

administration 59
PDServer objects

servers
administration 61

PDServer.replicateServer
notifying replica databases 60

PDUser
users

administration 23
PDUser.deleteUser method

users
administration 23

policy
administration method errors 97
per-user 127

policy server
domains

administration 55
enabling tracing 7

POP
administration 31

problem determination
gathering information 7

problem-determination xiv
protected object policy

settings 45
protected object policy settings, table

administering 46
protected objects 32, 43

extended attributes 34
functions, table 32
management 32
overview 31
policy

extended attributes 46
managing 43
methods, table 43, 46
objects 43
overview 31

spaces
management 31
methods, table 32
overview 31

publications
accessing online ix
list of for this product ix

R
Registry Direct API

audit 109
configuration options

combined usage 116
stand-alone usage 116

design 83
installation 115
packaging 115

Registry Direct Java API 83
administration API errors 97
authenticate 96
changePassword 96
file format 109
local mode 84

replica databases
automatic notification 60

replica databases (continued)
configuration commands 58
manual notification 60
notification of updates 59
notification threads 60
notification wait time 60

requirements, ADK installation 4
resource

credential
methods table 53

group
methods table 52

Web
methods table 52

response processing 63
RgyRegistry

close 123
instance 122

creating 122

S
secure domain

requirements 4
security

requirements 5
Security Access Manager

configuration
options 118
stand-alone 116

delegated administration effects 114
Java API illustration 83
name length 137

security context
context 63
overview 12

server
administration tasks

overview 59
methods table 61
Microsoft Active Directory 135

concerns 135
ignored items 135

overview 59
single sign-on (SSO) capability

administering 51
software requirements 4
SSL

session 1
Sun Java System Directory Server

LDAP_ADMINLIMIT_EXCEEDED 134
look-through limit 134

svrsslcfg
command line utility 1, 57

SvrSslCfg 116

T
terminology ix
threads, notification 60
Tivoli Directory Integrator xii
Tivoli Directory Server xii
training xiv
troubleshooting xiv

Index 147

U
unauthenticated user 38
Unicode 20
URAF

user registry 135
concerns 135

user
account functions, table 26
accounts

administration 24
administration 23
administration, authenticated

users 38
administration, other users 38
administration, unauthenticated

users 38
delete 129
details

display 128
functions, table 24
group administration 23
group membership

list 129
native

import 129
password

functions, table 28
policies 27

passwords
account policies 25

registry differences 133
supported registries

concerns 133
user registry

maximum values 137
users

attributes 100
UTF-8 20

W
wait time, notification 60
warning attribute 45
Web Portal Manager

equivalents 67
Web resources 51
WebSphere Application Server Network

Deployment xii
WebSphere eXtreme Scale xii

148 IBM Security Access Manager for Web Version 7.0: Administration Java Classes Developer Reference

����

Printed in USA

SC23-6514-02

	Contents
	Figures
	Tables
	About this publication
	Intended audience
	Access to publications and terminology
	Related publications

	Accessibility
	Technical training
	Support information

	Chapter 1. Introduction to the administration API
	Administration Java classes overview
	Accessing the Javadoc HTML documentation
	Other ways to manipulate administration objects
	Java administration API components
	Application development kit
	Building Java applications with the administration API
	Security Access Manager software requirements
	Configuration of the Java runtime component to a particular Java runtime environment
	Configuration of the Java administration classes
	Security requirements

	Java administration API example program
	Deployment of a Java administration API application
	Gathering of problem determination information
	Enabling tracing on the policy server
	Enabling tracing on the authorization server
	Enabling tracing in the Java runtime component
	Gathering of message logs
	Gathering of trace logs

	Chapter 2. Using the administration API
	Administration objects
	Common classes
	Initializing the administration API
	Establishing a security context
	User ID and password-based authentication
	Certificate-based authentication

	Manipulating administration objects
	Creating objects
	Obtaining a local copy of an object
	Reading object values
	Setting object values
	Listing objects
	Deleting objects

	Messages
	Handling errors
	Shutting down the administration API
	Character-based data considerations
	PDContext application design considerations

	Chapter 3. Administering users and groups
	Administering users
	Administering user information
	Administering user account policies
	Administering user password policies
	Administering groups
	Administering group information

	Chapter 4. Administering protected objects and protected object spaces
	Administering protected object spaces
	Administering protected objects
	Administering extended attributes for a protected object

	Chapter 5. Administering access control
	Administering access control lists
	Administering access control list entries
	Administering access control list extended attributes
	Administering action groups
	Administering extended actions

	Chapter 6. Administering protected object policies
	Administering protected object policy objects
	PDPop.IPAuthInfo object

	Administering protected object policy settings
	Administering protected object policy extended attributes

	Chapter 7. Administering authorization rules
	Chapter 8. Administering single sign-on resources
	Administering Web resources
	Administering resource groups
	Administering resource credentials

	Chapter 9. Administering domains
	Chapter 10. Configuring application servers
	Configuring application servers
	Administering configuration information
	Certificate maintenance

	Chapter 11. Administering servers
	Getting and performing administration tasks
	Notifying replica databases when the master authorization database is updated
	Notifying replica databases automatically
	Notifying replica databases manually
	Setting the maximum number of notification threads
	Setting the notification wait time

	Administering servers and database notification

	Appendix A. Differences between the C and Java administration API
	Security context management differences
	Response processing differences
	Additional differences

	Appendix B. Deprecated Java classes and methods
	Appendix C. Administration API equivalents
	Appendix D. Registry Direct Java API
	Design
	Security Access Manager Java API
	Registry Direct Java API
	Published API
	com.tivoli.pd.rgy.RgyRegistry
	com.tivoli.pd.rgy.RgyEntity
	com.tivoli.pd.rgy.RgyUser
	com.tivoli.pd.rgy.RgyGroup
	com.tivoli.pd.rgy.RgyIterator
	com.tivoli.pd.rgy.ldap.RgyAttributes
	com.tivoli.pd.rgy.ldap.LdapRgyRegistryFactory
	com.tivoli.pd.rgy.ldap.AuthzRgyRegistryFactory
	com.tivoli.pd.rgy.util.RgyConfig
	com.tivoli.pd.jcfg.SvrSslCfg

	Old and new API errors
	Authenticate and changePassword
	Administration

	Attributes
	Error and trace logging
	Basic JRE example output

	Auditing
	Java logger behavior

	Authorization
	Authorization permission checks
	Residual effects of delegated administration on admin results

	API Specifications
	Installation and configuration
	Upgrade
	Installation and packaging
	Configuration
	Configuration options

	Example usage
	Creating an instance of RgyRegistry
	Ending use of RgyRegistry

	Groups
	Creating a group
	Showing group details
	Deleting a group
	Importing a native group
	Listing group members
	Add or remove group members
	Modifying group attribute
	Users and per-user policy
	Showing user details
	Deleting a user
	Importing a native user
	Listing a user's group memberships
	Modifying user attributes
	Resetting the user password
	Changing the user password
	Authenticating the user Password

	Appendix E. User registry differences
	General concerns
	LDAP concerns
	Sun Java System Directory Server concerns
	Microsoft Active Directory Lightweight Directory Service (AD LDS) concerns

	URAF concerns
	Microsoft Active Directory Server concerns

	Length of names

	Notices
	Index
	A
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

