<|lI!

IBM Toolkit for Switt on z/OS Community Edition

Documentation

Version 4.0

SC27-9267-00

<|lI!

IBM Toolkit for Switt on z/OS Community Edition

Documentation

Version 4.0

SC27-9267-00

Note
FBefore using this information and the product it supports, read the information in ['Notices” on page 35,

First edition (May 2018)

This edition applies to IBM Toolkit for Swift on z/OS (Program 5655-SFT) and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of
the product.

© Copyright IBM Corporation 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Overview of IBM Toolkit for

Swiftonz0S1
Chapter 2. Summary of changes 3
Chapter 3. Understanding IBM Toolkit

for Swiftonz/0S.5
Chapter 4. Hardware and software
requirements7
Chapter 5. Package listing. 9
Chapter 6. Installing IBM Toolkit for
SwiftonzO0S. 1N
Chapter 7. Building the examples . . . 13

Chapter 8. Complllng and running Swift
programs15

© Copyright IBM Corp. 2018

Chapter 9. Codepage considerations

Chapter 10. Interoperatlng with other
languages . .. e e

Chapter 11. Extra Swift modules.

Chapter 12. Building Swift applications
with Swift Package Manager

Chapter 13. Limitations.
Chapter 14. Troubleshooting .
Chapter 15. Support .

Notices
Trademarks .

Index

17

.21

. 25

. 27

. 29

. 31

. 33

. 35
.37

. 39

iii

iV IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 1. Overview of IBM Toolkit for Swift on z/0S

IBM® Toolkit for Swift on z/OS® is an implementation of Swift 4.0.1 that has been
extended to support the z/OS operating system.

Swift is a modern programming language that focuses on 4 key design principles:
safety, performance, modern software design, and language conciseness.

Swift is designed to make writing programs easier for developers by ensuring that
code is written in a safe manner. Swift prevents undefined behavior typically
exhibited at run time by catching such issues early at compile time. Type-safety
plays a major role in Swift.

Swift is a statically compiled language, akin to COBOL, C, and C++. It differs from
these languages in that memory is managed by the Swift run time. Its modern
features are what separate Swift from other statically compiled languages.

Swift has a large community of libraries and tools, which are a critical part of the
Swift ecosystem. The Swift Package Manager is a build management system that
can be used to leverage existing libraries from the Swift community and enhance
your applications.

IBM Toolkit for Swift on z/OS presents a safe and modern compiler that can be
used to extend or replace existing z/OS assets.

© Copyright IBM Corp. 2018 1

2 IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 2. Summary of changes

This section lists the updates to IBM Toolkit for Swift, V4.0 since it was first
released in May 2018.

July 2018 Update

© Copyright IBM Corp. 2018

Runtime performance is improved as the benchmarks are comparable or better
than x86.

To enhance EBCDIC codepage, EBCDIC 037 support is added.

To improve Swift Package Manager, informative diagnostic messages are
supported.

SwiftyJSON is added to shipped packages as JSON Parser and JSON Generator.

The example of IBM Kitura RESTful web service with backend calling z/OS
Connect is added.

SSL CA is now packaged with Swift on z/OS, enabling remote https swift
packages such as those on https://github.com.

Db2 package functional improvements are made.
The -g option support for DWARF Debug generation is added.
To improve the Foundation library functionality, RunLoop timer is improved.

4 IBM Toolkit for Swift on z/0S Community Edition: Documentation

Chapter 3. Understanding IBM Toolkit for Swift on z/OS

IBM Toolkit for Swift on z/OS ships with 6 core components.

Swift compiler
The Swift compiler (swiftc) is responsible for compiling Swift source code
into executable machine code. The Swift compiler generates 64-bit
executables using the XPLINK calling convention model. It also relies on
the GOFF object format.

Core libraries
The Core libraries include the following 4 components:

Libc A set of C Language Environment®™®

such as cos or malloc.

(LE) routines exposed to Swift

Foundation
A set of classes to complement the Swift standard library, including
classes for Collections such as Sets or HashTables, File I/0,
Units/Measurements, and more. Further details are available in the
[Foundation reference for Swift|

XCTest
A set of classes to create and run unit tests and performance tests.

libdispatch
A set of classes to execute code concurrently on multicore
hardware by submitting work to dispatch queues managed by the
system.

Swift standard library
The Swift standard library encompasses a number of basic data types such
as Int or Double, collections such as Array or Dictionary, protocols and
functions. It also consists of the Swift runtime environment which is
responsible for the dynamic features of the compiler and memory
management.

Swift Package Manager
Swift Package Manager is a tool for managing the distribution of Swift
code. It is integrated with the Swift build system to automate the process
of downloading, compiling, and linking dependencies.

zOSSwift
zOSSwift is an extra Swift library providing additional APIs and classes for
the z/OS operating system.

Examples
The examples shipped with IBM Toolkit for Swift on z/OS are as follows:
* REST API
* JSON Parsing
* IBM Kitura Web Server
* Swift and Db2® integration
* Swift to PL/I interlanguage calls
* Swift to ASM (31-bit/24-bit) calls

© Copyright IBM Corp. 2018 5

https://developer.apple.com/documentation/foundation

6 IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 4. Hardware and software requirements

IBM Toolkit for Swift on z/OS runs on the following IBM Z servers:
c z14

« 713"

* z13s

* zEnterprise® EC12

* zEnterprise BC12

IBM Toolkit for Swift on z/OS requires z/OS V2R1 or later. It is recommended that
[APAR OA53548|is applied as this APAR provides a major link time performance
boost.

© Copyright IBM Corp. 2018 7

http://www-01.ibm.com/support/docview.wss?uid=isg1OA53548

8 IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 5. Package listing

The installed directory contains the extracted contents of the tar file you obtain.
The installed directory is shown as follows:

© Copyright IBM Corp. 2018

-swift-v*
---setup.sh
---README
---LICENSE/

---bin

---etc

---include
---examples

---1ib

————— swift/CoreFoundation
----- swift/Tibc
————— swift/bsd
----- swift/ebcdic_unicode
————— swift/dispatch
----- swift/os

----- swift/pm

————— swift/shims
----- swift/zos/
——————— HSZCORE
------- HSZLIBC
——————— HSZFNDTN
------- HSZDSPTC
------- HSZXCTST
——————— HSZONONE

_______ 1ibFoundation.a
------- 1ibXCTest.a
------- libdispatch.a
_______ libswiftCore.a
------- libswiftDeps.a
_______ libswiftLibc.a

------- libswiftZInit.a
_____ swift/zos/s390x/
------- Dispatch.swiftdoc

_______ Libc.swiftdoc
_______ Libc.swiftmodule
------- Swift.swiftdoc
------- Swift.swiftmodule

------- XCTest.swiftdoc
------- XCTest.swiftmodule
------- 1ibc.modulemap
---usr

---extras

(Extracted installation of Swift)

(Setup etc/profile script containing environment variables)
(Instructions on how to install and use Swift)

(Contains License text files)

(Location of all binaries, including swiftc and swift)
(Example .profile to set up environment variables for Swift)
(Include headers, used by Swift)

(A11 Swift Examples, including Db2, Foundation, REST APIs)
(A11 static and dynamic libraries, used by Swift)
(Foundation C headers/module map)

(Libc C LE headers)

(Libc C Tibrary extension headers)

(Libc C ASCII extension headers)

(Libdispatch C headers/module map)

(Libdispatch C headers)

(Swift Package swiftmodules)

(Swift C runtime headers/module map)

(Swift
(Swift
(Swift
(Swift

Core DLL)

Libc DLL)

Foundation DLL)

Dispatch DLL)

(Swift XCTest DLL)

(Swift Onone DLL)

(Libbsd DLL)

(Curl DLL)

(Cyrpto DLL)

(SSL DLL)

(UUID DLL)

(ZLIB DLL)

(Libxm12 DLL)

(C Blocks DLL)

(ICU DLLs)

(Swift Foundation archive (contains DLL sidedecks))
(Swift XCTest archive (contains DLL sidedecks))
(Swift Dispatch archive (contains DLL sidedecks))
(Swift Swift Core archive (contains DLL sidedecks))
(Swift Dependencies archive (contains DLL sidedecks))
(Swift Libc archive (contains DLL sidedecks))

——————— TibswiftSwiftOnoneSupport.a (Swift SwiftOnone archive (contains DLL sidedecks))

(Swift ZInit static archive)

(Libdispatch interface in binary form)

------- Dispatch.swiftmodule(Libdispatch Swift Module (used in import Dispatch))
——————— Foundation.swiftdoc (Foundation interface in binary form)
------- Foundation.swiftmodule (Foundation Swift Module (used in import Foundation))

(Libc interface in binary form)

(Libc Swift Module (used in import Libc))

(Swift Standard Library interface in binary form)
(Swift Swift Module (used in import Swift (implicit))

------- SwiftOnoneSupport.swiftdoc (SwiftOnoneSupport interface in binary form)
——————— SwiftOnoneSupport.swiftmodule (SwiftOnoneSupport Swift Module /
(used in import SwiftOnoneSupport - implicit))

(XCTest interface in binary form)

(XCTest Swift Module (used in import XCTest))
(Libc module map (used in Import Libc))
(Manpages, timezone files, used by Swift)
(Extra z0S swift libraries, including z0SSwift)

------- 1ibz0SSwift.d11 (z0S Swift DLL)

------- 1ibz0SSwift.a (z0S Swift Library archive (contains DLL sidedeck))

------- z0SSwift.swiftdoc (z/0S Swift library swiftdoc binary documentation)

------- z0SSwift.swiftmodule (z/0S Swift library swiftmodule binary, /
describing the module's interface)

10 IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 6. Installing IBM Toolkit for Swift on z/0S

To download the latest version of IBM Toolkit for Swift on z/OS, go to IBM Toolkitfj
[for Swift on z/0S|in Developer Centers. Follow these instructions to install IBM
Toolkit for Swift on z/OS.

About this task

You must install the product under IBM UNIX System Services. All installed files
are in the form of HFS files.

Procedure
1. Upon downloading the distributed tar file, unpack it as follows:
tar -xvfo swift-vx.tar

Then you get the installed directory that contains the extracted contents.

Note: IBM Toolkit for Swift on z/OS requires approximately 2.5 GB of storage
space. To estimate the total uncompressed size of the tar file, use the following
command:

/bin/tar -vtf swift-vx.tar 2>/dev/null | /bin/awk '{i+=$5+512}
END{ printf "%d MB\n", (i+999999)/1000000 }'

2. After extracting the contents of the tar file, use the convenience script setup.sh
to set up environment variables, such as LIBPATH:

./setup.sh
What to do next

After installation, source the profile file generated during the installation with the
dot command as follows:

. {INSTALL_DIR}/etc/profile

This will adjust your environment so that you can compile and run Swift
programs.

To compile and link a sample program, use the following command:
swiftc program.swift

Use the -v flag to see each stage of compilation.

It is also recommended that you set the following environment variables to enable
z/0S Enhanced ASCII support:

export _BPXK_AUTOCVT=0N
export _CEE_RUNOPTS="FILETAG(AUTOCVT,AUTOTAG)"

These environment variables automatically convert ASCII tagged files to EBCDIC
on read.

For more details, see '[Setting up Enhanced ASCIIl' in the IBM z/0S V2R3
Knowledge Center.

© Copyright IBM Corp. 2018 11

https://developer.ibm.com/mainframe/products/ibm-toolkit-swift-z-os/
https://developer.ibm.com/mainframe/products/ibm-toolkit-swift-z-os/
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/setupa.htm?view=kc

12 IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 7. Building the examples

Several examples are available under the examples directory. You can use
/bin/make to build the majority of examples. To build the core examples, run the
following command:

make

To execute the generated executables, run them as you would any other UNIX
executable:

./args grapes peanuts
This runs the examples Swift args program with 2 arguments, grapes and peanuts.

Swift executables rely on the LIBPATH environment variable. More information
about this environment variable is available in |[Compiling and running Swift|

[programs

© Copyright IBM Corp. 2018 13

14 1BM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 8. Compiling and running Swift programs

IBM Toolkit for Swift on z/OS is designed to run under IBM UNIX System
Services only. Swift compilation and execution are dependent on the presence of
the C Language Environment. The C Language Environment is installed by default
on z/0S and therefore it does not require additional setup.

Compiling Swift programs

The IBM Toolkit for Swift on z/OS swiftc program compiles swift source files into
program objects. IBM Toolkit for Swift on z/OS uses /bin/cxx as the linker. The
linker takes input object files in the GOFF object format. The output of the linker is
a program object.

You can specify the following supported options in the swiftc invocation:

-I<search path>
Includes the search path, which is typically for module maps.

-c Specifies compilation phase only.

-0 Specifies the output file. If -c is specified, the output file is the object file.
-v Enables verbose display.

-D<value>

Marks a conditional compilation flag as true.
-Xce Specifies the options to the C-based module-map headers.

-emit-assembly
Specifies to emit assembly output.

-Xlinker<arg>
Specifies the additional link arguments passed down to /bin/cxx.

-L<search path>
Specifies the link search path.

-I<library>
Specifies the library to link to.

-o<outputfile>
Specifies the output name.

-use-ld=<value>
Specifies an alternative linker to /bin/cxx.

-emit-executable
Builds executables. By default, this option is enabled.

-emit-library
Builds DLLs.

-0 Specifies to optimize code during compilation. By default, this option is
disabled

-Onone
Specifies not to optimize code during compilation. By default, this option
is enabled.

© Copyright IBM Corp. 2018 15

16

-[noJunicode-output
-unicode-output displays compiler output as Unicode. -nounicode-output
displays output as IBM-1047. By default, -nounicode-output is enabled.

-g Emits debug information.

When the -emit-library option is specified, the linker option -W1,dll is
automatically added. This causes an exports file (.x) to be produced for the user
DLL. You must specify the .x file when dynamic binding against your program
that is referencing the DLL.

The swiftc compiler accepts the following inputs:

* Path to swift source files with the extension .swift
» Path to static libraries with the extension .a

* Path to DLL sidedecks with the extension .x

* Path to GOFF objects with the extension .0

Typical invocations are as follows:

swiftc -c -v -0 a.o a.swift
Generates an object file a.0 and displays verbose output.

swiftc -emit-assembly -0 a.s a.swift
Generates a psuedy assembly file a.s.

swiftc -o a.exe -L/usr/1ib -Tmylib a.o
Links a.o0 and 1ibmylib.a into a.exe.

swiftc -v a.swift
Generates compile and link a.swift and generates an executable a,
showing verbose output.

Running Swift programs

By default, when the swiftc compiler generates an executable, it dynamically links
to the Swift core component DLL sidedecks. In order to execute the Swift compiler
and the resulting Swift executables, you must set the LIBPATH environment
variable to the location of the installed DLL libraries. The location is typically set to
${INSTALL_DIR}/1ib/swift/zos, where INSTALL_DIR is the location of your Swift
installation. This setting is already handled by the profile script generated by the
installer.

IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 9. Codepage considerations

IBM Toolkit for Swift on z/OS is a Unicode-compliant compiler. It supports
Unicode strings, characters, and identifier names. Internally, the Swift compiler
considers all strings, characters, and variables as Unicode (ASCII/UTF-8/16/32).

Compile time codepage considerations

The IBM Toolkit for Swift on z/OS swiftc compiler supports Swift source files in
the following codepages:

» EBCDIC IBM-1047 or IBM-037
» ASCII/UTE-8/16/32

To support EBCDIC, Swift performs an automatic conversion on data read from
EBCDIC IBM-1047 or IBM-037 to ISO8859-1 at compile time and run time.

If you are using the EBCDIC IBM-1047 or IBM-037 codepage for Swift source files,

the following limitations apply:

* EBCDIC IBM-1047 or IBM-037 Swift source files cannot have Unicode strings,
characters, or identifiers, which will result in a compiler error. If you do want to
use special Unicode symbols, you can convert the file from EBCDIC to UTF-8
using iconv.

* As of the current release, EBCDIC codepages other than IBM-1047 or IBM-037
are not supported and will result in a compile time error. To workaround the
restriction, it is recommended that you convert such files to UTF-8 using iconv:

iconv -f <ebcdiccodepage> -t UTF-8 file.swift > newfile.swift
How Swift determines when to convert data to Unicode

Both the Swift compiler and Swift runtime have mechanisms for detecting when to
convert IBM-1047 or IBM-037 text to ISO8859-1. The Swift compiler and Swift
runtime only convert IBM-1047 or IBM-037 data to ISO8859-1 in any of the
following conditions:

* A file is read and tagged as EBCDIC IBM-1047 or IBM-037 with txtflag=0N.

* Afile is read and not tagged, and that file is determined as IBM-1047 or IBM-037
when the first 4096 or the maximum bytes of data is in the encoding of
IBM-1047 or IBM-037 text.

* A pipe is read for more than 10 bytes and the data is in the encoding of
IBM-1047 or IBM-037 text.

Once the determination is made that the file is EBCDIC IBM-1047 or IBM-037, it is
cached, and subsequent reads to the same file descriptor result into a conversion
from IBM-1047 or IBM-037 to ISO8859-1.

Encoding of Swift compiler messages

The swiftc compiler can emit compiler warnings, error messages, or verbose
messages. By default, such messages are emitted as IBM-1047 or IBM-037. This
behavior does present some limitations; for example Swift source files that contain
Unicode symbols will not be converted properly to EBCDIC. If you have a
Unicode-aware z/OS with a Unicode-aware shell, you can use the -unicode-output

© Copyright IBM Corp. 2018 17

18

option. With the -unicode-output option set, stdout and stderr messages are no
longer converted from the internal Unicode format to EBCDIC IBM-1047 or
IBM-037 if redirected to a file.

Runtime codepage considerations

There are several encoding considerations to consider when you write applications
with IBM Toolkit for Swift on z/OS.

Writing to stderr or stdout and reading from stdin

When you write Swift applications, it is important to remember that all strings are
represented as Unicode in Swift. When writing text or data to stderr or stdout, it is
written verbatim and no conversion is performed except in the following cases:

* When writing is performed to a z/OS EBCDIC terminal via stdout or stderr, the
data is automatically converted from the internal Swift codepage of Unicode to
EBCDIC IBM-1047 or IBM-037.

You can control this behaviour by specifying an additional to: parameter to the
Swift print(_:separator:terminator:to:) function. The to: parameter accepts an
inout Target. The zOSSwift library located in the extras directory of the installed
directory consists of the following IBM-1047 and IBM-037 Target struct definitions:

* ebcdic037_stdout for stdout
¢ ebcdic037_stderr for stderr

* ebcdic1047_stdout for stdout
* ebcdic1047_stderr for stderr

The following examples illustrates how to print Swift String data to stdout and
how to print Swift String data to stderr in IBM-1047 or IBM-037 using the
zOSSwift library.

import zO0SSwift
import Foundation

// Print IBM-037 to stdout
var stdout = ebcdic037_stdout()
print("Printing to Stdout", to: &stdout)

// Print IBM-037 to stderr
var stderr = ebcdic037_stderr()
print("Printing to Stderr", to: &stderr)

// Print IBM-1047 to stdout
var stdout = ebcdicl047_stdout()
print("Printing to Stdout", to: &stdout)

// Print IBM-1047 to stderr
var stderr = ebcdicl047_stderr()
print("Printing to Stderr", to: &stderr)

// Print to stdout without additional to: parameter
print("Hello World") // If stdout is a terminal, it will convert \
String to IBM-1047 or IBM-037, otherwise it will print in UTF-8

For stdin, IBM Toolkit for Swift on z/OS exposes the Swift standard library
readLine function and the zOSSwift extras library zOSSwift.readLine function.
The Swift standard library readLine function performs the heuristic (described
above) to determine if the data is in IBM-1047, IBM-037, or UTF-8, and converts to
UTE-8 only if input data is in IBM-1047 or IBM-037. On the other hand, you can

IBM Toolkit for Swift on z/OS Community Edition: Documentation

avoid this heuristic and be explicit in the conversion by using the
zOSSwift.readLine function, which accepts an encodingFrom: parameter. This
parameter specifies that input data will be converted from the specified encoding
to the UTF-8 Internal swift encoding. The following example demonstrates how to
read IBM-1047 or IBM-037 EBCDIC data and convert it to the internal UTF-8 Swift
String representation:

import zOSSwift

import Foundation

// Read from stdin ebcdicl047

var x = z0SSwift.readLine(encodingFrom: String.Encoding.ebcdicl047.rawValue) \

// String.Encoding.ebcdic1047.rawValue found in Foundation library
print(x, to: &stdout)

Writing or reading text data to a file

IBM Toolkit for Swift on z/OS ships with a set of classes under the Foundation
library that aids in File I/O.

The following example demonstrates how to write a text file using the Foundation
FileManager extensions. The text is written in the ebcdic037 encoding. If you
inspect the resulting file ebcdic.txt, it is written in ebcdic037. To read the file, you
must create a new instance of a string with the path as a parameter to the
constructor.

// ebcdic.swift
import Foundation

let writeString = "Text written as EBCDIC"

let fileName = "ebcdic.txt"
do {
// Write to the file ebcdic.txt, specifying encoding to be .ebcdic037 \
// (exposed on Foundation Tibrary)
try writeString.write(toFile: fileName, atomically: true, encoding: .ebcdic037)

} catch let error as NSError {
print("Failed writing to file: " + error.localizedDescription)
}

// Read text data back
do {
let file = URL(fileURLWithPath: fileName);

// Convert string back to Swift internal represenation of UTF-8
let readString = try String(contentsOf: file, encoding: .utf8)
print("Reading string: \(readString)")

} catch let error as NSError {
print("Failed reading file: " + error.localizedDescription)

If you compile with swiftc ebcdic.swift and run ./ebcdic, you get the following
output:

Reading string: Text written as EBCDIC

Writing or reading binary data using Foundation Data class

The Foundation Data class is recommended to handle raw bytes in memory, and to
read and write binary data in Swift. This approach is recommended if you do not

read textual data and to prevent a loss of information from possible conversion of
data to UTF-8.

Chapter 9. Codepage considerations 19

20

The following example illustrates how to write binary data using an array of bytes.
It then reads the created binary file and converts it into a Data object. The example
concludes by iterating through each byte and printing the hexadecimal value:

//bin.swift
import Foundation

let path = "bin.txt"

// File needs to be created first
FileManager.default.createFile(atPath: path, contents: nil)

// Files are represented as URLs in Swift
Tet purl = URL(fileURLWithPath: path);

// Binary data
var d = Data(bytes: [0xF1, OxF1]);
d.append(contentsOf: [0xF2, 0xF2]);

print("Writing data to file: \(path)");
print("Data written: \(d)");

// Open file handle and write data

let fh = try! FileHandle(forWritingTo: purl)
fh.write(d)

fh.closeFile()

// Read from file
print("Reading binary data from file: \(path)");
let data = try! Data(contentsOf: purl)

print("Iterating and printing out each byte")
data.forEach { byte in
let hex = String(format:"%2X", byte)
print (hex)
}

If you compile with swiftc bin.swift and run ./bin, you get the following
output:

Writing data to file: bin.txt

Data written: 4 bytes

Reading binary data from file: bin.txt
Iterating and printing out each byte

Tagging files

To aid in reading ASCII or UTE-8 files, make use of the z/OS Enhanced ASCII
support, including the chtag commmand. This command tags a file with the
appropriate codepage. Once tagged, a file can be read by virtually any command,
such as cat or vi.

chtag -tc I1S08859-1 <filename>

To verify that a file is tagged as an ASCII text file, use the following command:
1s -T <path/to/ascii/text/file>

You get the following output:
t 1S08859-1 T=on path/to/ascii/text/file

IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 10. Interoperating with other languages

With IBM Toolkit for Swift on z/OS, you can interoperate with existing z/OS
libraries written in ASM, PL/I, and C/C++ as long as they are compiled with
XPLINK 64-bit. If you need to communicate to 31/24-bit libraries via Swift, the
recommended approach is to communicate via z/OS Connect. More information
about z/0OS Connect is available at [z/OS Connect Enterprise Edition on IBM|

Marketplace

Using Libc to call extended C runtime routines or wrap C LE
routines with ASCIll-aware routines

IBM Toolkit for Swift on z/OS ships the Libc Swift module as part of its main
components. You can call extended C runtime routines using Libc, as this module
exposes the z/OS C runtime library, as well as newly implemented POSIX
routines. To use the Libc module, simple import it and call one of the routines as
follows:

import Libc
var x = cos(5.0) // Call C double cos(double x)

print(x)

In addition to exposing z/OS C runtime libraries, the Libc module wraps C LE
routines with ASCII-aware routines. These routines convert ASCII strings (passed
from Swift) into EBCDIC 1047 strings, which are subsequently passed into the C
LE routine.

For example, a call to fputs from Swift does not mean it is a call to the C LE fputs
routine, but a call to a wrapper routine __fputs_u in the Libc module. fputs is
mapped to __fputs_u in a header file. The header files that define the mappings
are located in the /1ib/swift/ebcdic_unicode/ installed directory.

If you wish to expose the original EBCDIC 1047 C LE routines, you can create a C
module map to do so.

Using a module map to expose a C header to Swift

IBM Toolkit for Swift on z/OS also provides a module map mechanism for
interlanguage calls between Swift and the desired language. Interlanguage calls are
made possible via a module map file which exposes the location to a C header
interface to Swift containing the set of routines. Since Swift is a natively compiled
language, it can directly link to existing libraries. On z/OS, these libraries must be
compiled with 64-bit and XPLINK and must be in the GOFF object format.

The module map format requires a C header. Note that a C header interface can be
provided for routines written in C++, ASM, and PL/L

C interoperability

In this case, the header myheader.h provides the interface (function declarations) to
Swift via the module named MyModule.

© Copyright IBM Corp. 2018 21

https://www.ibm.com/ca-en/marketplace/connect-enterprise-edition
https://www.ibm.com/ca-en/marketplace/connect-enterprise-edition

22

Assuming myheader.h contains the following function declaration:
int sum(int a, int b);

The corresponding myheader.c implementation is provided below:
int sum(int a, int b) { return a + b; }

In Swift, in order to make use of the module MyModule, you must specify the
following import statement at the top of the source file:

//main.swift
import MyModule

let x = sum(5, 5)
print(x)

The C function can then be called directly in the Swift source file. Swift has
mappings of C data types to Swift data types. More information is available at
[[nteracting with C APIs]

In order to build this example, you must first compile the C source file using the
IBM XL C compiler with the -q64 option into an object, static library (.a) or
dynamic library (DLL). Then you must compile and link the Swift source file with
the corresponding library, making sure that you are indicating the path to the
module map using the -I option.

xlc -q64 -0 myheader.o myheader.c
swiftc -I/Tocation/to/module.map -o main main.swift myheader.o

PL/I interoperability

In order to expose routines from non-C languages, you must use a C header file as
the bridge. In the case of PL/I, you must create a function declaration for every
given PL/I function that you wish to expose to Swift.

For example, given the following PL/I routine:

*process display(std);
write: proc(k,v) ext("writepair")
returns(fixed bin(63) byvalue);
dcl k pointer byvalue;
dcl v pointer byvalue;
dc1 akey char(16) varz based(k);
dcl avalue char(32) varz based(v);
dcl key char(16);
dcl value char(32) varz;
display("In PLI program");
call pliebcdic(addr(key),addr(akey),length(akey));
call pliebcdic(addr(value),addr(avalue),length(avalue));
display(key);
display(value);
return(0);
end;

This routine can be exposed via the C header myheader. h:
int writepair(const char *,const char *);

You can then call the writepair PL/I routine in Swift as follows:
let rc = writepair("stuff","of value")

IBM Toolkit for Swift on z/OS Community Edition: Documentation

https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithCAPIs.html

The same mechanism can be applied to ASM and C++. Interlanguage calls with
COBOL are currently not directly possible as the COBOL compiler can only
produce 31-bit objects. IBM Toolkit for Swift on z/OS produces 64-bit modules at
this time.

Swift is a Unicode language. Keep this in mind when making interlanguage calls

and when passing in strings. Strings are almost always passed in as ASCII strings
and must be converted or handled appropriately.

Chapter 10. Interoperating with other languages 23

24 IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 11. Extra Swift modules

IBM Toolkit for Swift on z/OS ships with extra modules, located in the extras
directory of the installed directory. The extras directory is always searched during
your Swift compilation. It contains swiftmodules, DLLs, and archives containing
DLL sidedecks. Compiling modules in the extras directory is automatically
handled by the swiftc compiler as long as you have import ModuleName in your
source file. Here is an example:

import zOSSwift

Note that currently zOSSwift is the only extra library available. In order to run
applications compiled with the extra modules, your LIBPATH setting must also
point to the extras directory in the installed directory. Here is an example:

export LIBPATH="${INSTALL DIR}/extras":$LIBPATH

An example is provided in the examples/z0SSwift-1ibrary/ path of the installed
directory. Here's the zOSSwift Library Interface:

/// TextOutput Target for EBCDIC 037 Stderr

/// Supply as input parameter to print(to:)

struct ebcdic037_stderr : TextOutputStream {
init()

mutating func _Tock()

mutating func _unlock()

mutating func write(_ string: String)

}

/// TextOutput Target for EBCDIC 037 Stdout

/// Supply as input parameter to print(to:)

struct ebcdic037_stdout : TextOutputStream {
init()

mutating func _Tock()

mutating func _unlock()

mutating func write(_ string: String)

}

/// TextOutput Target for EBCDIC 1047 Stderr
/// Supply as input parameter to print(to:)
struct ebcdicl@47_stderr : TextOutputStream {
init()

mutating func _Tock()

mutating func _unlock()

mutating func write(_ string: String)

}

/// TextOutput Target for EBCDIC 1047 Stdout
/// Supply as input parameter to print(to:)
struct ebcdicl047_stdout : TextOutputStream {
init()

mutating func _Tock()

mutating func _unlock()

mutating func write(_ string: String)

}

/// Returns a string read from standard input through the end of the current
/// Tine or until EOF is reached.

11/

/// Standard input is interpreted as Encoding specified and converted to UTF-8.
/// Invalid bytes are replaced by Unicode [replacement characters][rc].

111

© Copyright IBM Corp. 2018 25

/// - Parameter strippingNewline: If “true”, newline characters and character

/// combinations are stripped from the result; otherwise, newline characters

/// or character combinations are preserved. The default is “true’.

/// - Parameter encoding: Specifies the encoding to convert from.

/// - Returns: The string of characters read from standard input. If EOF has

/// already been reached when “readlLine()~ is called, the result is “nil~.

func readLine(strippingNewline: Bool = default, encodingFrom enc: UInt) -> String?

26 IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 12. Building Swift applications with Swift Package

Manager

The Swift Package Manager can be used to build Swift packages as either libraries

or executables. The Swift Package Manager documentation is available at
[https:/ /swift.org / package-manager/|

An example package is provided under examples/swift-package-example/.

To build a package, you can run the following command:
swift build

To build and run a package (if an executable target exists), you can run the
following command:

swift run

In order to build remote Swift Packages from you must set up Git.
IBM Toolkit for Swift on z/OS ships with a version of Git which can be used to

clone packages from and subsequently build them via the Swift
Package Manager.

You can find more information on the Swift Package Manager from
[https:/ /swift.org / package-manager /|

© Copyright IBM Corp. 2018

27

https://swift.org/package-manager/
https://www.ibm.com/support/knowledgecenter/SSMEGX_4.0.0/com.ibm.swift.zos.v4.doc/github.com?view=kc
https://www.ibm.com/support/knowledgecenter/SSMEGX_4.0.0/com.ibm.swift.zos.v4.doc/github.com?view=kc
https://swift.org/package-manager/

28 IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 13. Limitations

Limitations for IBM Toolkit for Swift on z/OS are listed as follows.

Compile time and link time limitations
* The -g option does not generate DWARF information.
* You cannot statically link Swift objects with non-Swift 32-bit objects.

* Swift interpreter/REPL mode is not supported. For example, you must use
swiftc <sourcefile> instead of swift <sourcefile>.

Run time limitations
* The CICS®, MVS™ Batch, and IMS™ subsystems are not supported.

At this time, Swift does not support binary compatibility between applications
and libraries compiled with different versions (including updates) of Swift.
Run-time problems might result when either of the following conditions is met:

— You mix applications and libraries compiled using different versions.

— You run applications and libraries compiled from one version using a Swift
runtime from another version.

© Copyright IBM Corp. 2018 29

30 IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 14. Troubleshooting

Troubleshooting compile time problems

If you are experiencing encoding related issues, note that only EBCDIC 1047 and
ASCII/UTF-8 are supported. You might encounter unrecognized character errors if
another codepage is used.

Specify -v on the swiftc command line to emit more information about the
compilation steps. Diagnose by running each generated command manually one by
one.

Troubleshooting run time problems

If the Swift application abends, you have the following options for debugging:

* Using Thread.callStackSymbols from Foundation to get stack trace in Swift.
More details are available at |callStackSymbols}

* Inserting fatalError() calls in the Swift source code. These calls generate a
CEEDUMP, which includes a traceback.

* Using dbx for instruction level debugging and generating a psuedo-assembly via
the -emit-assembly option in the swiftc compiler.

When you specify both the -g and -emit-assembly options, the compiler inserts
Joc annotations into the resulting assembly output. These annotations are of the
form .loc <file> <line> <column> <optional flag> as defined in the DWARF
standard. Below is a code example:

let PI=3.14159;

let rad=2.0;
var area=PIx(rad*rad);

Below is the resulting assembly output. From the .loc 1 5 18 is_stmnt 0 line,
you can see that the <optional flag> is is_stmnt 0.

.loc 11 10 prologue_end #test.swift:1:10
1g %rl, 0(%r5)

11ihf &r0, 1074340345

oilf &r0, 4028335726

stg &ro, 0(%rl)

.Toc 1311 #test.swift:3:11
1g %r3, 8(%r5)

111hh %r0, 16384

stg %rd, 0(%r3)

.Toc 1512 #test.swift:5:12
1d %f0, 0(%rl)

.loc 1518 is_stmt 0 #test.swift:5:18
1d %f1, 0(%r3)

.loc 1522 #test.swift:5:22
mdbr %f1, %fl

.Toc 1515 #test.swift:5:15
mdbr %f0, %fl

1g %rl, 16(%r5)

std %f0, 0(%rl)

1ghi %r3, 0

.loc 100 #test.swift:0:0

© Copyright IBM Corp. 2018 31

https://developer.apple.com/documentation/foundation/nsthread/1414836-callstacksymbols

stg %r2, 2176(%r4) #8-byte Folded Spill

1g %r7, 2072(%r4)
aghi &rd, 160

b 2 %r]

Tip:

To improve the experience when you work with Unicode source files and data,
you can set the export _BPXK_AUTOCVT and export
_CEE_RUNOPTS="FILETAG(AUTOCVT,AUTOTAG) " environment variables. These
environment variables perform an auto conversion from ASCII to EBCDIC on read
and vice versa on write only if the file is tagged.

32 IBM Toolkit for Swift on z/OS Community Edition: Documentation

Chapter 15. Support

Contacting IBM

Read [already-posted Swift on z/OS Github Issues|to check if your question has
already been answered. If not, [open a new Swift on z/OS issue on Githubl| for us.
Include your version number in the post.

To establish what version of IBM Toolkit for Swift on z/OS is in use, run the
following command:

swiftc --version

Other information
« [IBM Toolkit for Swift on z/OS|in Developer Centers
+ [Swift Documentation|

* [Swift programming language GitHub|

+ '[Interacting with C APIs|' in the Swift Documentation

© Copyright IBM Corp. 2018 33

https://github.com/IBM-Swift/IBM-Swift-zOS/issues?utf8=%E2%9C%93&q=is%3Aissue
https://github.com/IBM-Swift/IBM-Swift-zOS/issues/new
https://developer.ibm.com/mainframe/products/ibm-toolkit-swift-z-os/
http://www.swift.org
https://github.com/apple/swift
https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithCAPIs.html

34 IBM Toolkit for Swift on z/OS Community Edition: Documentation

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM Toolkit for Swift on z/OS.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2018 35

36

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept.
IBM Corporation

5 Technology Park Drive
Westford, MA 01886
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

IBM Toolkit for Swift on z/OS Community Edition: Documentation

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 2018.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at jhttp:/ /www.ibm.com/privacy| and
IBM's Online Privacy Statement at jhttp://www.ibm.com/privacy/details|in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at

[http:/ /www.ibm.com /software /info /product-privacyl

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available at [‘Copyright and trademark]

information”

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 37

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

38 IBM Toolkit for Swift on z/0OS Community Edition: Documentation

Index

B listing 9
binary data 17
building the examples 13 M

more information 33

C

C runtime routines 21 O

changes 3

codepage 17 options

configuration 11 -[noJunicode-output 15
converting data 17 -c 15

Core libraries 5 -D<value> 15

-emit-assembly 15
-emit-executable 15

D -emit-library 15
. L. -I<search path> 15
design principles 1 A<library> 15
DLL -L<search path> 15
libraries 15 o 15
sidedecks 15 O 15
-o<outputfile> 15
-Onone 15
E -use-ld=<value> 15
EBCDIC 17 -v 15
encoding 17 -Xce 15
examples 5 -Xlinker<arg> 15
extended implementation 1 overview 1

extra modules 25

P

F package directory 9
Foundation data class 17 profile script 15

G S

Github issues 33 software 7

stderr 17

stdout 17
H Swift compiler 5

Swift Package Manager 5, 27
hardware 7 Swift standard library 5

| T
IBM-1047 17
inputs 15
installation 11
installed directory 9

tagging files 17

troubleshooting
compile time 31
run time 31

interoperating -
C 7 type-safety 1
PL/T 21
invocations 15 U
1SO8859-1 17
Unicode 17
updates 3

L

limitations
compile time and link time 29
run time 29

© Copyright IBM Corp. 2018

40 1BM Toolkit for Swift on z/OS Community Edition: Documentation

Printed in USA

SC27-9267-00

	Contents
	Chapter 1. Overview of IBM Toolkit for Swift on z/OS
	Chapter 2. Summary of changes
	Chapter 3. Understanding IBM Toolkit for Swift on z/OS
	Chapter 4. Hardware and software requirements
	Chapter 5. Package listing
	Chapter 6. Installing IBM Toolkit for Swift on z/OS
	Chapter 7. Building the examples
	Chapter 8. Compiling and running Swift programs
	Chapter 9. Codepage considerations
	Chapter 10. Interoperating with other languages
	Chapter 11. Extra Swift modules
	Chapter 12. Building Swift applications with Swift Package Manager
	Chapter 13. Limitations
	Chapter 14. Troubleshooting
	Chapter 15. Support
	Notices
	Trademarks

	Index
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	S
	T
	U

