
z/OS
3.1

DFSORT: Getting Started

IBM

SC23-6880-60

Note

Before using this information and the product it supports, read the information in “Notices” on page
181.

This edition applies to IBM® z/OS® 3.1 (5655-ZOS) and to all subsequent releases and modifications until otherwise
indicated in new editions.

Last updated: 2024-01-20
© Copyright International Business Machines Corporation 1983, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xi

About this document..xv
How to use this document..xv
Required product knowledge... xv

How to provide feedback to IBM... xvii

Summary of changes...xix
Summary of changes for z/OS 3.1...xix

Part 1. Introduction... 1

Chapter 1. What is DFSORT?..3
DFSORT on the World Wide Web..3
Data sets, records and fields..3
Sorting data sets...4
Merging data sets... 4
Copying data sets... 5
Joining data sets...5
What else can you do with DFSORT?... 5
Creating and running DFSORT jobs.. 6

Writing jobs... 6
Summary of DFSORT control statements.. 6
Running jobs..7

Creating and using the sample data sets...7

Part 2. Learning to write JCL and DFSORT control statements................................. 9

Chapter 2. Sorting, merging, and copying data sets... 11
Sorting data sets...11

Sorting by multiple fields..13
FIELDS...15
Example: Sorting Character data and ASCII Unsigned free format numeric data15
Example: Merging ASCII Signed free format numeric data ..15
Continuing a statement.. 15
Comment statements... 15
JCL for sorting data sets directly..16

Merging data sets... 17
Writing the MERGE control statement... 18
JCL for merging data sets directly..19
FIELDS...20
FORMAT...20

VB data set considerations.. 20
Starting positions..20
Short control fields... 20

Copying data sets... 21

 iii

Specifying COPY on the SORT, MERGE, or OPTION statement... 21
JCL for copying data sets directly...21

Chapter 3. Including or omitting records.. 23
Writing the INCLUDE statement.. 23
Writing the OMIT statement...26
Allowable comparisons for INCLUDE and OMIT... 26
Writing constants..28

Character strings...28
Hexadecimal strings... 28
Decimal numbers..28

Numeric tests for INCLUDE and OMIT...29
Alphanumeric Tests for INCLUDE and OMIT... 29
Substring search for INCLUDE and OMIT.. 30
Regular expressions... 30
Unicode comparisons...31
VB data set considerations.. 32

Starting positions..32
Short control fields... 32

Summary.. 32

Chapter 4. Summing records...33
Writing the SUM statement.. 33
Suppressing records with duplicate control fields.. 35
Handling overflow.. 36
VB data set considerations.. 36

Starting positions..36
Short summary fields..36

Chapter 5. Reformatting records with fixed fields.. 37
Reformatting records after sorting with BUILD or FIELDS..38
Reordering fields to reserve space.. 39
Inserting binary zeros.. 39
Inserting blanks..40
Inserting strings... 41

Character strings...41
Hexadecimal strings... 42
Setting up a basic report...42

Translating uppercase to lowercase, EBCDIC to ASCII, and more...43
Converting numeric fields to different formats... 44
Editing numeric fields...45
Displaying data in hexadecimal... 48
Displaying data as bits... 48
Performing arithmetic with numeric fields and constants..48
Converting date fields.. 49
Performing arithmetic with date fields.. 50
Doing lookup and change...51
Left-justifying and right-justifying data..52
Left-squeezing and right-squeezing data.. 54
Reformatting records with OVERLAY... 58
Extending records with OVERLAY.. 59
Reformatting records with FINDREP... 60
Reformatting records with IFTHEN..61
Reformatting records before sorting... 65
Using other statements with INREC.. 65
Preventing overflow when summing values.. 66
Inserting sequence numbers... 67
VB data set considerations.. 69

iv

RDW...69
Starting positions and columns..70
Variable data... 70

Summary.. 71

Chapter 6. Reformatting records with variable fields... 73
Using %nnn, %nn and %n Parsed Fields with BUILD and OVERLAY..73
Using %nnn, %nn and %n Parsed Fields with IFTHEN...74
Where You Can Use %nnn, %nn and %n Fields in BUILD and OVERLAY... 75
PARSE parameters... 76

Chapter 7. Creating multiple output data sets and reports..79
Creating multiple identical copies... 79
Selecting and sampling by relative record number...80
Including, omitting, and saving discards...82
Reformatting...84
Repeating..85
Splitting...86
Creating reports: OUTFIL vs ICETOOL...88
Creating reports with OUTFIL.. 88

Data... 88
Headers... 89
Trailers and statistics..91
No data or carriage control characters...93
VB data set considerations for headers and trailers..93
Sections...94

Updating counts and totals in trailer with OUTFIL.. 96
Converting FB to VB... 98
Converting VB to FB... 99

Chapter 8. Joining records.. 101

Chapter 9. Calling DFSORT from a program..109
Passing control statements... 109
Calling DFSORT from a COBOL program..109

Sorting records... 109
Merging records.. 111

Sorting with COBOL FASTSRT.. 112
Calling DFSORT from a PL/I program.. 113

Chapter 10. Overriding installation defaults ..115
Specifying PARM parameters on a JCL EXEC statement.. 115
Specifying an OPTION control statement in DFSPARM.. 116

Chapter 11. Using DFSORT efficiently...117
Be generous with main storage... 117
Allow memory object sorting, Hipersorting and dataspace sorting... 117
Use high–speed disks for work data sets..117
Eliminate unnecessary fields with INREC... 118
Eliminate unnecessary records with INCLUDE or OMIT... 118
Eliminate unnecessary records with STOPAFT and SKIPREC.. 118
Consolidate records with SUM...118
Create multiple output data sets with OUTFIL..119
Replace program logic with DFSORT control statements...119
Use FASTSRT with COBOL..119
Avoid options that might degrade performance... 119

 v

Part 3. Learning to use ICETOOL...121

Chapter 12. Using the ICETOOL utility..123
ICETOOL operators.. 123
Sample input data sets.. 124
Writing required JCL statements... 124
ICETOOL comment and blank statements.. 125
Printing statistics for numeric fields..126

Continuing an operator statement... 127
Statistics for VB data set record lengths..127

Creating identical sorted data sets..128
Creating different subsets of a sorted data set...130
Creating multiple unsorted data sets.. 133
Counting values in a range... 133
Printing simple reports...135
Printing tailored reports...136
Using formatting items...138

Edit masks...138
Number of digits... 140
Leading zeros.. 140
Edit patterns... 140
No statistics.. 141
Division..141
Leading, floating and trailing characters..142

Printing sectioned reports... 142
Printing how many times fields occur..144
Selecting records by field occurrences... 146
Joining fields from different data sets...150
Matching records from different data sets.. 152
Sorting records between headers and trailers..155
Keeping or removing headers, trailers and relative records... 156
Merging previously sorted data sets..157
Complete ICETOOL job and TOOLMSG output..157

Part 4. Learning to use symbols..163

Chapter 13. Defining and using symbols.. 165
Creating the SYMNAMES data set... 165
Defining symbols for fields...165
Using symbols for fields in DFSORT statements... 166
Using symbols for fields in ICETOOL operators.. 167
Defining and using symbols for constants...168

Appendix A. Creating the sample data sets...171

Appendix B. Descriptions of the sample data sets...173

Appendix C. Processing order of control statements... 177

Appendix D. Accessibility...179

Notices..181
Terms and conditions for product documentation... 182
IBM Online Privacy Statement.. 183
Policy for unsupported hardware..183

vi

Minimum supported hardware..183
Programming interface information..184
Trademarks.. 184

Index.. 185

 vii

viii

Figures

1. Comparison Operators.. 24

2. Sample COBOL Program with MERGE Commands...112

3. Sample PL/I Program with SORT Commands.. 114

4. Complete TOOLMSG Data Set. (Part 1 of 2)... 160

5. Complete TOOLMSG Data Set. (Part 2 of 2)... 161

6. Processing Order of Control Statements..177

 ix

x

Tables

1. Related documents... xvi

2. DFSORT Arranges Information in Ascending and Descending Order.. 4

3. Commonly Used Data Formats... 4

4. DFSORT Merges Two Data Sets into One Data Set... 5

5. Sample Bookstore Data Set Sorted by Course Department in Ascending Order.. 8

6. Steps to Create the SORT Statement to Sort by Department.. 11

7. Sample Bookstore Data Set Sorted by Course Department in Ascending Order...................................... 12

8. Sample Bookstore Data Set Sorted by Price in Descending Order.. 12

9. Sample Bookstore Data Set Sorted by Multiple Fields.. 14

10. Sample Bookstore Data Set Sorted by Course Department and Book Title..17

11. Five New Records Sorted by Course Department and Book Title... 17

12. Sample Bookstore Data Set Merged with Five New Records...18

13. Steps to Create the INCLUDE Statement for Books You Need to Order..24

14. Books for which Number Sold is greater than Number in Stock... 25

15. COR Books for which Number Sold is greater than Number in Stock... 25

16. Sorted Data Set without Books Not Required for Classes... 26

17. Allowable Field-to-Field Comparisons...27

18. Allowable Field-to-Constant Comparisons.. 27

19. Steps to Create the SUM Statement for Prices.. 33

20. Sum of Prices for English Department..34

21. Sum of Prices for English Department..34

22. Sum of Number in Stock and Number Sold for Each Publisher...35

23. List of Publishers, Deleting Duplicates...35

 xi

24. Steps to Create the OUTREC Statement for Reformatting Records.. 38

25. Writing Only Publisher, Number In Stock, and Number Sold Fields..38

26. Reordering the Fields..39

27. Inserting Binary Zeros.. 40

28. Output After Inserting Blanks...40

29. Output of a Report...43

30. Converting from BI to ZD.. 44

31. Converting from BI to FS...45

32. Input records with PD values..45

33. Edit Mask Patterns.. 46

34. Books with Course Department and Price Changes.. 58

35. New and Old Prices... 59

36. Proposed discounts for books.. 62

37. Using INREC to Write Only Publisher, Number in Stock, and Number Sold..65

38. Padding Summary Fields.. 66

39. Padding Summary Fields.. 67

40. Total book prices by course.. 67

41. Total Book Prices by Course with Sequence Numbers.. 68

42. Creating the OUTFIL Statement for the Multiple Output Data Set Job... 80

43. Relative Records Numbers for Copy...81

44. Relative Records Numbers for Sort.. 81

45. Output records in ENGLOUT data set... 82

46. Output records in HISTOUT data set..83

47. Output records in PSYCHOUT data set...83

48. Output records in RESTOUT data set... 83

xii

49. REGION.IN1 data set for JOINKEYS application... 101

50. REGION.IN2 data set for JOINKEYS application... 101

51. REGION.OUT data set for JOINKEYS application.. 101

52. REGION.OUT data set Sorted by Headquarters and Office... 103

53. CITIES.IN1 data set..103

54. CITIES.IN2 data set..104

55. CITIES.OUT data set... 104

56. Joined City records... 105

57. BOTH.OUT data set... 106

58. F1ONLY.OUT data set..107

59. F2ONLY.OUT data set..107

60. Control Statement and Corresponding Records with INREC.. 118

61. Steps to Create a Blank Statement and a Comment Statement... 125

62. Steps to Create the STATS Operator...126

63. Steps to Create the SORT Operator..128

64. Steps to Create JCL Statements for the SORT Operator... 129

65. Books from publishers VALD and WETH.. 130

66. Steps to Create the SORT Operator..131

67. Steps to Create JCL Statements for the SORT Operator... 131

68. Records for California Sorted by City..132

69. Records for Colorado Sorted by City.. 132

70. Edit Mask Patterns.. 138

71. Books from Publishers with More than Four Books in Use..148

72. REGION.IN1 data set for join... 150

73. REGION.IN2 data set for join... 150

 xiii

74. REGION.OUT data set for join...151

75. T1 data set fields from REGION.IN1.. 152

76. T1 data set fields from REGION.IN2.. 152

77. T1 data set fields from SORT.SAMPIN... 153

78. T1 data set fields from SORT.SAMPADD.. 153

79. COURSE.MATCH output.. 154

80. COURSE.INONLY output... 154

81. COURSE.ADDONLY output..154

82. Steps to Define Symbols for Fields...166

83. Steps to Define Symbols for Constants..169

84. SORT.SAMPIN and SORT.SAMPADD Field Descriptions.. 173

85. SORT.BRANCH Field Descriptions.. 173

xiv

About this document

z/OS DFSORT: Getting Started is a user’s guide and tutorial for DFSORT (Data Facility Sort). You should
read it if you are not familiar with DFSORT and would like to learn the many ways you can use DFSORT
and DFSORT's ICETOOL utility to process data sets. Both new and experienced DFSORT users can use this
document as a general guide to the many features available with DFSORT and ICETOOL. This document
introduces you to the JCL, control statements and features of DFSORT and ICETOOL with numerous
examples. z/OS DFSORT: Getting Started can help you get the most out of z/OS DFSORT Application
Programming Guide, which has the complete details on all of the topics introduced in this document.

The chapters in this document assume that you have used job control language (JCL) and understand how
to work with data sets. You should also know what data sets are available at your site.

How to use this document
This document gives you all of the information and instructions you need to build and submit DFSORT
jobs. You use DFSORT by writing JCL and DFSORT program control statements.

New users should work through z/OS DFSORT: Getting Started from cover to cover. Each task explained in
this document builds on knowledge gained in previous tasks. The Table of Contents lists the main tasks,
and summaries are included in the chapters. If you have previous experience with these tasks, you can
proceed from here directly to the tutorials that begin in Chapter 2, “Sorting, merging, and copying data
sets,” on page 11.

Chapter 1, “What is DFSORT?,” on page 3 is an overview of the basic principles of sorting, merging, and
copying, and explains how to create and use the sample data sets for the examples in this document.

Chapter 2, “Sorting, merging, and copying data sets,” on page 11 through Chapter 11, “Using DFSORT
efficiently,” on page 117 show you how to create and process DFSORT jobs by writing JCL and DFSORT
program control statements (for example, SORT, MERGE, OPTION, INCLUDE, OMIT, INREC, OUTREC,
SUM, OUTFIL, JOINKEYS, JOIN and REFORMAT) to create sorted, merged or copied output data sets
while performing various operations on records such as subsetting, reformatting, summing, reporting, and
joining.

Chapter 12, “Using the ICETOOL utility,” on page 123 shows you how to create and process ICETOOL
jobs by writing JCL and ICETOOL statements. ICETOOL is a multipurpose DFSORT utility that uses
the capabilities of DFSORT to perform multiple operations on one or more data sets in a single step.
ICETOOL's 17 operators (COPY, COUNT, DATASORT, DEFAULTS, DISPLAY, MERGE, MODE, OCCUR, RANGE,
RESIZE, SELECT, SORT, SPLICE, STATS, SUBSET, UNIQUE and VERIFY) expand DFSORT's capabilities
significantly.

Chapter 13, “Defining and using symbols,” on page 165 shows you how to define symbols for fields and
constants and use them in your DFSORT control statements and ICETOOL operators.

Several appendixes and an index follow the chapters.

Required product knowledge
To use this document effectively, you should be familiar with the following information:

• Job control language (JCL)
• Data management

You should also be familiar with the information presented in the following related documents:

© Copyright IBM Corp. 1983, 2024 xv

Table 1. Related documents

Document

z/OS DFSORT Application Programming Guide

z/OS MVS JCL Reference

z/OS MVS JCL User's Guide

z/OS DFSMS Using Data Sets

z/OS DFSORT: Getting Started is a part of a more extensive DFSORT library. These documents can help you
work with DFSORT more effectively.

These documents can help you work with DFSORT more effectively.

Task Publication Title

Application Programming z/OS DFSORT Application Programming Guide

Planning For and Customizing DFSORT z/OS DFSORT Installation and Customization

Diagnosing Failures and Interpreting Messages z/OS DFSORT Messages, Codes and Diagnosis Guide

Tuning DFSORT z/OS DFSORT Tuning Guide

xvi z/OS: z/OS DFSORT: Getting Started

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. For more information, see How to send feedback to IBM.

© Copyright IBM Corp. 1983, 2024 xvii

https://www.ibm.com/docs/zos/3.1.0?topic=how-send-feedback

xviii z/OS: z/OS DFSORT: Getting Started

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left
of the change.

Note: IBM z/OS policy for the integration of service information into the z/OS product documentation
library is documented on the z/OS Internet Library under IBM z/OS Product Documentation Update Policy
(www.ibm.com/docs/en/zos/latest?topic=zos-product-documentation-update-policy).

Summary of changes for z/OS 3.1
The following content is new, changed, or no longer included in z/OS 3.1.

New
The following content is new.
September 2023 release

• None.

Changed
The following content is changed.
September 2023 release

• None.

Deleted
The following content was deleted.
September 2023 release

• Removed all references to the DFSORT FTP site.

© Copyright IBM Corp. 1983, 2024 xix

https://www.ibm.com/docs/en/zos/latest?topic=zos-product-documentation-update-policy
https://www.ibm.com/docs/en/zos/latest?topic=zos-product-documentation-update-policy

xx z/OS: z/OS DFSORT: Getting Started

Part 1. Introduction

© Copyright IBM Corp. 1983, 2024 1

2 z/OS: z/OS DFSORT: Getting Started

Chapter 1. What is DFSORT?

DFSORT is IBM's high-performance sort, merge, copy, analysis, and reporting product for z/OS.

With DFSORT, you can sort, merge, and copy data sets. You can use DFSORT to do simple tasks such as
alphabetizing a list of names, or you can use it to aid complex tasks such as taking inventory or running a
billing system. DFSORT gives you versatile data handling capabilities at the record, field and bit level.

DFSORT on the World Wide Web
For articles, online documents, news, tips, techniques, examples, and more, visit the DFSORT Home Page
(www.ibm.com/storage/dfsort).

Data sets, records and fields
The information you manipulate with DFSORT is contained in data sets. The term data set refers to a file
that contains one or more records. Any named group of records is called a data set. The terms data set
and file are synonymous, and are used interchangeably in this document.

A data set contains the information that you want to sort, copy, or merge. For most of the processing
done by DFSORT, the whole data set is affected. However, some forms of DFSORT processing involve only
certain individual records in that data set.

Data sets can be cataloged, which permits the data set to be referred to by name without specifying
where the data set is stored. A cataloged data set should not be confused with a cataloged procedure. A
cataloged procedure is a named collection of JCL stored in a data set, and a cataloged data set is a data
set whose name is recorded by the system.

Throughout this document, the term record refers to a collection of related information used as a unit,
such as one item in a data base or personnel data about one member of a department. The term field
refers to a specific portion of a record used for a particular category of data, such as an employee's name
or department.

DFSORT can sort, copy or merge fixed-length or variable-length records. The type and length of a data
set is defined by its record format (RECFM) and logical record length (LRECL). Fixed-length data sets have
a RECFM of F, FB, FBS, and so on. Variable-length data sets have a RECFM of V, VB, VBS, and so on.
For simplicity in this document, the terms "FB data set" and "FB records" are used as short-hand for
fixed-length data sets and records, respectively, and the terms "VB data set" and "VB records" are used as
short-hand for variable-length record data sets and variable-length records, respectively.

A data set with RECFM=FB and LRECL=25 is a fixed-length (FB) data set with a record length of 25-bytes
(the B is for blocked). For an FB data set, the LRECL tells you the length of each record in the data set; all
of the records are the same length. The first data byte of an FB record is in position 1. A record in an FB
data set with LRECL=25 might look like this:

Positions 1-3: Country Code = 'USA'
Positions 4-5: State Code = 'CA'
Positions 6-25: City = 'San Jose' padded with 12 blanks on the right

A data set with RECFM=VB and LRECL=25 is a variable-length (VB) data set with a maximum record
length of 25-bytes. For a VB data set, different records can have different lengths. The first four bytes of
each record contain the Record Descriptor Word or RDW, and the first two bytes of the RDW contain the
length of that record (in binary). The first data byte of a VB record is in position 5, after the 4-byte RDW in
positions 1-4. A record in a VB data set with LRECL=25 might look like this:

Positions 1-2: Length in RDW = hex 000E = decimal 14
Positions 3-4: Zeros in RDW = hex 0000 = decimal 0
Positions 5-7: Country Code = 'USA'

What is DFSORT?

© Copyright IBM Corp. 1983, 2024 3

http://www.ibm.com/storage/dfsort
http://www.ibm.com/storage/dfsort

Positions 8-9: State Code = 'CA'
Positions 10-17: City = 'San Jose'

Unless otherwise noted, the examples in this document process FB data sets, which are easier to work
with and describe. However, special considerations for processing VB data sets are discussed throughout
this document whenever appropriate.

Sorting data sets
You can use DFSORT to rearrange the records in your data sets. Sorting is arranging records in either
ascending or descending order within a file. Table 2 on page 4 shows a sample data set of names, first
sorted in ascending order, then in descending order.

Table 2. DFSORT Arranges Information in Ascending and Descending Order

Unsorted
Data Set

Sorted
Ascending

Sorted
Descending

Andy
Edward
Carol
Dan
Betty

Andy
Betty
Carol
Dan
Edward

Edward
Dan
Carol
Betty
Andy

You can sort data in many different formats. Table 3 on page 4 shows the most commonly used
DFSORT data formats and the format identifiers you use to specify them.

Table 3. Commonly Used Data Formats

Data Format Format Identifier

EBCDIC (Character)
Binary (Unsigned Numeric)
Fixed-point (Signed Numeric)
Zoned Decimal (Signed Numeric)
Packed Decimal (Signed Numeric)
Floating Sign (Signed Numeric)
Free Form (Unsigned Numeric)
Free Form (Signed Numeric)

CH
BI
FI
ZD
PD
FS
UFF
SFF

Refer to z/OS DFSORT Application Programming Guide for complete details of the available formats.

Merging data sets
You can also use DFSORT to merge data sets. DFSORT merges data sets by combining two or more files of
sorted records to form a single data set of sorted records.

What is DFSORT?

4 z/OS: z/OS DFSORT: Getting Started

Table 4. DFSORT Merges Two Data Sets into One Data Set

Data Set 1 Data Set 2 Merged Data Set

Andy
Betty
Carol
Dan
Edward

Amy
Chris
Sue

Amy
Andy
Betty
Carol
Chris
Dan
Edward
Sue

The data sets you merge must be previously sorted into the same order (ascending or descending).

Copying data sets
DFSORT can also copy data sets without any sorting or merging taking place. You copy data sets in much
the same way that you sort or merge them.

Joining data sets
DFSORT can perform various "join" operations on two data sets by one or more keys. You can create
joined records in a variety of ways including inner join, full outer join, left outer join, right outer join and
unpaired combinations. The two input data sets can be of different types (fixed, variable, VSAM, and so
on) and have keys in different locations. The records from the two input files can be processed in a variety
of ways before and after they are joined.

What else can you do with DFSORT?
While sorting, merging, or copying data sets, you can also perform other tasks such as the following:

• Select a subset of records from an input data set. You can include or omit records that meet specified
criteria. For example, when sorting an input data set containing records of course documents from many
different school departments, you can sort the documents for only one department.

• Reformat records in a variety of ways. You can build your records one item at a time, only overlay
specific columns, or reformat different records in different ways. You can edit, change, add or delete
fields. You can convert date fields of one type to another type and perform date field arithmetic. You
can perform find and replace operations on your records. You can perform various operations on groups
of records. You can work with fixed position/length fields directly or convert variable position/length
fields (such as comma separated values) to fixed parsed fields for further processing. You can also
insert blanks, zeros, strings, current date, future date, past date, current time, sequence numbers,
decimal constants, and the results of arithmetic instructions before, between, and after input fields. For
example, you can create an output data set that contains character strings and only certain edited fields
from the input data set, arranged differently.

• Sum the values in selected records while sorting or merging (but not while copying). In the example of a
data set containing records of course books, you can use DFSORT to add up the dollar amounts of books
for one school department.

• Create multiple output data sets and simple or complex reports from a single pass over an input data
set. For example, you can create a different output data set for the records of each department.

• Convert VB data sets to FB data sets, or convert FB data sets to VB data sets.
• Sample or repeat records.
• Sort, merge, include or omit records according to the collating rules defined in a selected locale.
• Alter the collating sequence when sorting or merging records (but not while copying). For example, you

can have the lowercase letters collate after the uppercase letters.

What is DFSORT?

Chapter 1. What is DFSORT? 5

• Sort, merge, or copy Japanese data if the IBM Double Byte Character Set Ordering Support (DBCS
Ordering) (5665-360 Licensed Program, Release 2.0 or an equivalent product) is used with DFSORT to
process the records.

• Sort, merge of Unicode data format records according to the collating rules defined in a selected
collation version.

Creating and running DFSORT jobs
Processing data sets with DFSORT involves two steps:

1. Creating a DFSORT job
2. Running a DFSORT job

You can run a DFSORT job by invoking processing in a number of ways:

• With a JCL EXEC statement, using the name of the program or the name of the cataloged procedure
• Within programs written in COBOL, PL/I, or basic Assembler language

In this document, the phrases directly or JCL-invoked mean that the DFSORT program is initiated by a
JCL EXEC statement with PGM=SORT or PGM=ICEMAN. The phrases called by a program or dynamically
invoked mean that the DFSORT program is initiated from another program.

Writing jobs
You can use DFSORT by writing JCL and DFSORT control statements no matter how your site has installed
DFSORT. Part 1 contains instructions on writing JCL and DFSORT program control statements.

You must prepare JCL statements and DFSORT program control statements to invoke DFSORT processing.
JCL statements are processed by your operating system. They describe your data sets to the operating
system, and initiate DFSORT processing. DFSORT program control statements are processed by DFSORT.
They describe and initiate the processing you want to do.

Summary of DFSORT control statements
The functions of the most important DFSORT control statements can be summarized briefly as follows:
SORT

Describes the fields for a sort application, or requests a copy application.
MERGE

Describes the fields for a merge application, or requests a copy application.
OPTION

Overrides installation defaults, or requests optional features or a copy application.
INCLUDE

Describes the criteria to be used to include records before they are sorted, copied or merged.
OMIT

Describes the criteria to be used to omit records before they are sorted, copied or merged.
INREC

Describes how records are to be reformatted before they are sorted, copied or merged.
OUTREC

Describes how records are to be reformatted after they are sorted, copied or merged.
SUM

Describes how fields are to be summed after sorting or merging.
OUTFIL

Describes various types of processing to be performed for one or more output data sets after sorting,
copying or merging.

JOINKEYS, JOIN, REFORMAT
Describes a "joinkeys" application for joining two files on one or more keys.

What is DFSORT?

6 z/OS: z/OS DFSORT: Getting Started

The functions of the less important DFSORT control statements can be summarized briefly as follows:

ALTSEQ
Describes changes to the normal translation table.

MODS
Describes user exit routines.

RECORD
Supplies data set record type and length information when needed.

DEBUG
Requests diagnostic features.

END
Marks the end of the control statements.

Running jobs
You can run DFSORT jobs directly with a JCL EXEC statement that uses PGM=SORT or PGM=ICEMAN. Or,
you can call DFSORT dynamically from a COBOL, Assembler, PL/I, or other type of program.

Creating and using the sample data sets
Many of the examples in this document refer to the sample data sets SORT.SAMPIN, SORT.SAMPADD,
SORT.BRANCH and SORT.SAMPOUT. Appendix A, "Creating the Sample Data Sets" shows you how to
create your own copies of these data sets, using a program called ICESAMP shipped with DFSORT, if you
want to try the examples in this document that use them.

Note: Some of the examples use data sets other than SORT.SAMPIN, SORT.SAMPOUT, SORT.SAMPADD,
and SORT.BRANCH. You can either create data sets from scratch to match the ones used in the text, or
else perform a similar exercise on data sets you already have.

Before you begin, turn to Appendix B, “Descriptions of the sample data sets,” on page 173. Many of the
examples in this document refer to the sample bookstore data sets as the input data sets, so you should
become familiar with them. The input data sets contain the data that you want arranged or sorted. You
must specify an input data set for every DFSORT job you run. The sample bookstore data set is named
SORT.SAMPIN and the additional bookstore data set is named SORT.SAMPADD.

Each record in the bookstore data sets has 12 fields (book title, author’s last name, and so on). A record
can be represented by one horizontal row on the page. A field can be represented by one vertical column
on the page.

To sort a data set, you choose one or more fields that you want to use to order the records (arrange in
ascending or descending order). These fields are called control fields (or, in COBOL, keys).

As you work through the exercises on the following pages, remember that each entire record is sorted, not
just the control field. However, for the sake of simplicity, the figures in the text show only the control fields
being discussed. The sorted records actually contain all of the fields, but one page is not wide enough to
show them. Appendix B, “Descriptions of the sample data sets,” on page 173, shows all of the fields in
each record. It is also arranged with headings and numbers that show the byte positions of each field.
The numeric fields are in binary format (see Table 3 on page 4) and therefore will not appear on most
displays as they do in this document. Methods you can use to arrange and view the data are explained in
the chapters on DFSORT functions that follow.

Table 5 on page 8 shows an example of sorted fields. Notice the line of numbers above the sorted
fields. These numbers represent the byte positions of those fields. You use byte positions to identify fields
to DFSORT. The examples show the byte positions to help you while you are learning to use DFSORT. The
byte positions do not actually appear in any of your processed data sets.

In Table 5 on page 8, the first two records, which show nothing in the course department fields, are
general purpose books not required for a particular course. For this example, the control field is the
Course Department field.

What is DFSORT?

Chapter 1. What is DFSORT? 7

Table 5. Sample Bookstore Data Set Sorted by Course Department in Ascending Order

Book Title Course Department Price

1 75 110 114 170 173

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
SUPPLYING THE DEMAND
STRATEGIC MARKETING
COMPUTER LANGUAGES
VIDEO GAME DESIGN
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
EDITING SOFTWARE MANUALS
MODERN ANTHOLOGY OF WOMEN POETS
THE COMPLETE PROOFREADER
SHORT STORIES AND TALL TALES
THE INDUSTRIAL REVOLUTION
EIGHTEENTH CENTURY EUROPE
CRISIS OF THE MIDDLE AGES
INTRODUCTION TO PSYCHOLOGY
ADVANCED TOPICS IN PSYCHOANALYSIS

BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

 9900
 295
 2350
 1925
 2350
 2600
 2199
 1899
 360
 3195
 595
 1450
 450
 625
 1520
 795
 1790
 1200
 2200
 2600

Also notice that records in Table 5 on page 8 with equally collating control fields (in this case,the
same department) appear in their original order. For example, within the Computer Science department
(COMP), the title Video Game Design still appears before Computers: An Introduction.

You can control whether records with equally collating control fields appear in their original order or
whether DFSORT orders them randomly. The system programmer sets defaults at installation time that
you can change with some DFSORT options at run time. The examples in this document assume that the
default is for records with equally collating control fields to appear in their original order.

Summary

So far in Getting Started you covered the following concepts:

• You can sort, copy, or merge data sets using DFSORT.
• You can write JCL and DFSORT program control statements to create and process DFSORT jobs.
• You can run DFSORT jobs directly or call DFSORT from a program.

In addition, this chapter covered how to use and read the sample data sets provided with DFSORT. Now
continue with tutorials on how to write DFSORT control statements.

What is DFSORT?

8 z/OS: z/OS DFSORT: Getting Started

Part 2. Learning to write JCL and DFSORT control
statements

© Copyright IBM Corp. 1983, 2024 9

10 z/OS: z/OS DFSORT: Getting Started

Chapter 2. Sorting, merging, and copying data sets

This tutorial shows you how to sort, merge, and copy data sets by writing DFSORT program control
statements that are processed with JCL.

DFSORT program control statements are input in the JCL used to run DFSORT. To keep the instructions
simple, the program control statements are covered first and the related JCL statements are explained
afterward. For most of the tutorials you will concentrate on JCL-invoked DFSORT, that is, running DFSORT
with JCL. Information on calling DFSORT from a program (dynamic invocation) is presented in Chapter 9,
“Calling DFSORT from a program,” on page 109.

Sorting data sets
To use DFSORT directly (JCL-invoked), write a SORT control statement to describe the control fields,
and the order in which you want them sorted. The control statements you write are part of the SYSIN
data set in the JCL. The SYSIN data set is typically specified as //SYSIN DD * followed by "inline" control
statements (as shown in the examples in this document). However, a sequential data set, or a member of
a partitioned data set, with the control statements as records can also be used for the SYSIN data set.

You can use SORT with all of the other DFSORT control statements.

A SORT statement that sorts the bookstore records by the course
department field (as shown in Table 7 on page 12) looks like this:

Make sure that the statement is coded between columns 2 and 71.

Here are the steps for writing this SORT statement:

Table 6. Steps to Create the SORT Statement to Sort by Department

Step Action

1 Leave at least one blank, and type SORT

2 Leave at least one blank and type FIELDS=

3 Type, in parenthesis and separated by commas:

1. Where the course department field begins, relative to the beginning of the record in the bookstore
data set (the first position is byte 1). The course department field begins at byte 110.

2. The length of the department field in bytes. The department field is 5 bytes long.
3. A format identifier for the data format. The department field contains character data, which you

specify as CH. (Table 3 on page 4 shows the codes for the most commonly used data formats.)
4. The letter A, for ascending order.

© Copyright IBM Corp. 1983, 2024 11

Remember that although Table 7 on page 12 shows only certain fields, the displayed fields are not the
only ones in the output data set. Your output data set will more closely resemble the fold-out of the
sample bookstore data set.

Table 7. Sample Bookstore Data Set Sorted by Course Department in Ascending Order

Book Title Course Department

1 75 110 114

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
SUPPLYING THE DEMAND
STRATEGIC MARKETING
COMPUTER LANGUAGES
VIDEO GAME DESIGN
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
EDITING SOFTWARE MANUALS
MODERN ANTHOLOGY OF WOMEN POETS
THE COMPLETE PROOFREADER
SHORT STORIES AND TALL TALES
THE INDUSTRIAL REVOLUTION
EIGHTEENTH CENTURY EUROPE
CRISES OF THE MIDDLE AGES
INTRODUCTION TO PSYCHOLOGY
ADVANCED TOPICS IN PSYCHOANALYSIS

BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

To sort the records in descending order, specify D instead of A. For example, to sort the prices for each
book in descending order, type:

The sort order is bytes 170 through 173 as binary data in descending sequence. Table 8 on page 12
shows the results of the sort in descending order.

Table 8. Sample Bookstore Data Set Sorted by Price in Descending Order

Book Title Price

1 75 170 173

12 z/OS: z/OS DFSORT: Getting Started

Table 8. Sample Bookstore Data Set Sorted by Price in Descending Order (continued)

Book Title Price

LIVING WELL ON A SMALL BUDGET
SYSTEM PROGRAMMING
COMPUTER LANGUAGES
ADVANCED TOPICS IN PSYCHOANALYSIS
STRATEGIC MARKETING
INTRODUCTION TO BIOLOGY
INTRODUCTION TO PSYCHOLOGY
VIDEO GAME DESIGN
SUPPLYING THE DEMAND
COMPUTERS: AN INTRODUCTION
EIGHTEENTH CENTURY EUROPE
SHORT STORIES AND TALL TALES
EDITING SOFTWARE MANUALS
CRISES OF THE MIDDLE AGES
THE INDUSTRIAL REVOLUTION
THE COMPLETE PROOFREADER
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
NUMBERING SYSTEMS
PICK'S POCKET DICTIONARY

 9900
 3195
 2600
 2600
 2350
 2350
 2200
 2199
 1925
 1899
 1790
 1520
 1450
 1200
 795
 625
 595
 450
 360
 295

Sorting by multiple fields
You can further sort the records in the bookstore data set by specifying multiple control fields. When you
specify two or more control fields, you specify them in the order of greater to lesser priority. Note that
control fields might overlap or be contained within other control fields.

Table 9 on page 14 shows how the records would be sorted if you specified the following control fields in
the order they are listed:

1. Course department
2. Course number
3. Instructor's last name
4. Instructor's initials
5. Book title.

So, if two records have the same department, they are sorted by course number. If they also have the
same course number, they are sorted by instructor's last name. If they also have the same last name, they
are sorted by initials. Finally, if they also have the same initials, they are sorted by title.

Specify the location, length, data format, and order for each of the control fields, as follows:

Chapter 2. Sorting, merging, and copying data sets 13

The records are sorted as shown in Table 9 on page 14.

Table 9. Sample Bookstore Data Set Sorted by Multiple Fields

Book Title
Course
Department

Course
Number

Instructor's
Last Name

Instructor's
Initials

1 75 110 114 115 119 145 159 160 161

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
NUMBERING SYSTEMS
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
SYSTEM PROGRAMMING
VIDEO GAME DESIGN
SHORT STORIES AND TALL TALES
EDITING SOFTWARE MANUALS
THE COMPLETE PROOFREADER
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
THE INDUSTRIAL REVOLUTION
CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE
INTRODUCTION TO PSYCHOLOGY
ADVANCED TOPICS IN PSYCHOANALYSIS

BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

80521
70124
70251
00032
00032
00032
00103
00205
10054
10347
10347
10856
10856
50420
50521
50632
30016
30975

GREENBERG
LORCH
MAXWELL
CHATTERJEE
CHATTERJEE
CHATTERJEE
SMITH
NEUMANN
BUCK
MADRID
MADRID
FRIEDMAN
FRIEDMAN
GOODGOLD
WILLERTON
BISCARDI
ZABOSKI
NAKATSU

HC
HH
RF
AN
CL
CL
DC
LB
GR
MM
MM
KR
KR
ST
DW
HR
RL
FL

You can often shorten the length of control statements. You can specify fields together whenever they
are next to each other in the record and have the same data format and order. You can shorten this last
statement by specifying the department and course number together as one field, and the instructor's
last name and initials together as one field.

Also, if all of the control fields have the same data format, you can specify the data format just once, using
the FORMAT=f parameter. For example:

 SORT FORMAT=CH,FIELDS=(110,10,A,145,17,A,1,75,A)

If some of the control fields have the same data format, but others don't, you can specify the FORMAT=f
parameter along with the individual data formats. For example:

 SORT FORMAT=CH,FIELDS=(110,10,A,170,4,BI,D,145,17,A,1,75,A)

is equivalent to:

 SORT FIELDS=(110,10,CH,A,170,4,BI,D,145,17,CH,A,1,75,CH,A)

example : Sorting UTF16 data and Character data

14 z/OS: z/OS DFSORT: Getting Started

SORT FIELDS=(5,4,FI,A,345,400,UTF16,D,13,2,CH,A)

FIELDS
The first four values describe the major control field. It begins on byte 5 of each record, is 4 bytes long,
and contains fixed point data, and is to be sorted in ascending order.

The next four values describe the second control field. It begins on byte 345, is 400 bytes long, contains a
16-bit encoding Unicode Transformation Format (UTF16) data, and is to be sorted in descending order.

The third control field begins on byte 13, is 2 bytes long, and contains character (EBCDIC) data. It is to be
sorted in ascending order.

Example: Sorting Character data and ASCII Unsigned free format numeric
data

SORT FIELDS=(10,16,CH,A,40,8,AUF,D)

FIELDS
The first four values describe the major control field. It begins on byte 10 of each record, is 16 bytes
long, contains character (EBCDIC) data, and is to be sorted in ascending order.

The next four values describe the second control field. It begins on byte 40, is 8 bytes long, contains
an ASCII Unsigned free numeric format (AUF), and is to be sorted in descending order.

Example: Merging ASCII Signed free format numeric data
MERGE FIELDS=(31,24,A),FORMAT=ASF

FIELDS
The first three values describe the major control field. It begins on byte 31 of each record, is 24 bytes
long, and is to be merged in ascending order.

FORMAT
FORMAT=ASF is used to supply an ASCII signed free format numeric data format for the p,m,s fields
and is equivalent to specifying p,m,ASF,s for these fields.

Continuing a statement
If you cannot fit your SORT statement (or any other DFSORT control statement) between columns 2
through 71, you can continue it on the next line. If you end a line with a comma followed by a blank,
DFSORT treats the next line as a continuation. The continuation can begin anywhere between columns 2
through 71.

For example:

 SORT FORMAT=CH,FIELDS=(110,10,A,145,17,A,
 1,75,A)

Comment statements
You can mix comment statements with your control statements by starting them with an asterisk (*) in
column 1. DFSORT prints comment statements, but otherwise ignores them.

For example:

* Sort by department and course number
 SORT FIELDS=(110,10,CH,A)

Chapter 2. Sorting, merging, and copying data sets 15

JCL for sorting data sets directly
The job control language (JCL) you need to do a sort depends on whether you run DFSORT directly or
call DFSORT from a program. For now, concentrate on running DFSORT directly. Information on calling
DFSORT from a program is presented in Chapter 9, “Calling DFSORT from a program,” on page 109.

Your operating system uses the JCL you supply with your DFSORT program control statements to:

• Identify you as an authorized user
• Allocate the necessary resources to run your job
• Run your job
• Return information to you about the results
• Terminate your job

You must supply JCL with every DFSORT job you submit.

Required JCL includes a JOB statement, an EXEC statement, and several DD statements. The statements
you need and their exact form depend upon whether you:

• Invoke DFSORT with an EXEC statement in the input job stream, or with a system macro instruction
within another program

• Choose to use EXEC statement cataloged procedures to invoke DFSORT
• Choose to specify PARM options on the EXEC statement
• Choose to specify PARM options or control statements in a DFSPARM data set
• Choose to specify control statements in a SYSIN data set
• Want to use program exits to activate routines of your own

Information on when you would choose each of the previous options is explained in z/OS DFSORT
Application Programming Guide.

The JCL statements you need for most jobs are as follows.
//jobname JOB

Signals the beginning of a job. At your site, you might be required to specify information such as your
name and account number on the JOB statement.

//stepname EXEC
Signals the beginning of a job step and tells the operating system what program to run. To run
DFSORT, write the EXEC statement like this:

//stepname EXEC PGM=SORT

//STEPLIB DD
The DFSORT program would typically be in a library known to the system, so the //STEPLIB DD
statement would not be needed. However, if DFSORT is not in a library known to the system, the //
STEPLIB DD statement defines the library containing the DFSORT program

//SYSOUT DD
Defines the data set in which DFSORT messages and control statements are listed.

//SORTIN DD
Defines the input data set or concatenated input data sets.

//SORTWKdd DD
Defines a work data set for a sort. Typically not needed, because DFSORT can allocate work data sets
for a sort dynamically.

//SORTOUT DD
Defines the output data set.

//SYSIN DD
Precedes or contains the DFSORT program control statements.

16 z/OS: z/OS DFSORT: Getting Started

The following is a typical example of JCL to run DFSORT.

//EXAMP JOB A492,PROGRAMMER
//SORT EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=OLD
//SYSIN DD *
 SORT FORMAT=CH,
 FIELDS=(110,10,A,145,17,A,1,75,A)
/*

z/OS DFSORT Application Programming Guide contains additional information about running DFSORT
directly.

So far

So far in this chapter you covered how to write a SORT program control statement and how to run that
sort with JCL statements. The next tutorial explains how to use the MERGE program control statement
to merge two data sets.

Merging data sets
Generally, the reason for merging data sets is to add more records to a data set that is already sorted.

For example, assume that the bookstore data set is already sorted by course department and book title
(as shown in Table 10 on page 17), and you want to update it by merging it with a data set that contains
five new records, also sorted by course department and book title.

Table 10. Sample Bookstore Data Set Sorted by Course Department and Book Title

Book Title Course Department

1 75 110 114

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
VIDEO GAME DESIGN
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
SHORT STORIES AND TALL TALES
THE COMPLETE PROOFREADER
CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE
THE INDUSTRIAL REVOLUTION
ADVANCED TOPICS IN PSYCHOANALYSIS
INTRODUCTION TO PSYCHOLOGY

BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

For this example, use a new data set such as the one shown in Table 11 on page 17.

Table 11. Five New Records Sorted by Course Department and Book Title

Book Title Course Department

1 75 110 114

Chapter 2. Sorting, merging, and copying data sets 17

Table 11. Five New Records Sorted by Course Department and Book Title (continued)

Book Title Course Department

INTERNATIONAL COOKBOOK
WORLD JOURNEYS BY TRAIN
ARTS AND CRAFTS OF ASIA
BIOCHEMISTRY
BEHAVIORAL ANALYSIS

ART
BIOL
PSYCH

To merge data sets, you write a MERGE control statement and several JCL statements. Whenever you
merge data sets, you must make sure that their records have the same format and that they have been
previously sorted by the same control fields. You can merge up to 100 data sets at a time.

You can use MERGE with all of the other DFSORT control statements.

Writing the MERGE control statement
The format of the MERGE statement is the same as that of the SORT statement. To merge the bookstore
master data set with the data set containing the five new records, write:

Table 12 on page 18 shows the merged output.

Table 12. Sample Bookstore Data Set Merged with Five New Records

Book Title Course Department

1 75 110 114

18 z/OS: z/OS DFSORT: Getting Started

Table 12. Sample Bookstore Data Set Merged with Five New Records (continued)

Book Title Course Department

INTERNATIONAL COOKBOOK
LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
WORLD JOURNEYS BY TRAIN
ARTS AND CRAFTS OF ASIA
BIOCHEMISTRY
INTRODUCTION TO BIOLOGY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
VIDEO GAME DESIGN
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
SHORT STORIES AND TALL TALES
THE COMPLETE PROOFREADER
CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE
THE INDUSTRIAL REVOLUTION
ADVANCED TOPICS IN PSYCHOANALYSIS
BEHAVIORAL ANALYSIS
INTRODUCTION TO PSYCHOLOGY

ART
BIOL
BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH
PSYCH

JCL for merging data sets directly
As in a sort, the JCL you need depends on whether you run DFSORT directly or call it from a program. This
chapter only discusses running DFSORT directly.

The JCL needed for a merge is the same as that for a sort, with the following exceptions:

• You do not need dynamic allocation of work data sets or SORTWKdd DD statements.
• Instead of the SORTIN DD statement, you use SORTINnn DD statements to define the input data sets.

The SORTINnn DD statements name the input data sets, and tell how many data sets will be merged.
You need one SORTINnn DD statement for each data set being merged. nn in SORTINnn is a number
from 00 to 99. Thus, if you wanted to merge 5 data sets, you would typically use DD statements for
SORTIN01, SORTIN02, SORTIN03, SORTIN04 and SORTIN05.

To merge the pre-sorted bookstore data set and the data set containing the new records, code the
following JCL statements for this example. The new data set is called A123456.NEW and the sorted
version of the bookstore data set is called A123456.MASTER. For this example, it is assumed that the
input data sets are cataloged and that the output data set will be cataloged.

//EXAMP JOB A492,PROGRAMMER
//MERGE EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SORTIN01 DD DSN=A123456.MASTER,DISP=SHR
//SORTIN02 DD DSN=A123456.NEW,DISP=SHR
//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=OLD
//SYSIN DD *
 MERGE FIELDS=(110,5,CH,A,1,75,CH,A)
/*

example : Merging UTF16 data with format

MERGE FIELDS=(25,400,A,600,100,D),FORMAT=UTF16

Chapter 2. Sorting, merging, and copying data sets 19

FIELDS
The first three values describe the major control field. It begins on byte 25 of each record, is 400 bytes
long, and contains a 16 bit encoding Unicode Transformation Format (UTF16) data, and is to be merged in
ascending order.

The next three values describe the second control field. It begins on byte 600, is 100 bytes long, contains
a 16 bit encoding Unicode Transformation Format (UTF16) data, and is to be merged in descending order.

FORMAT
FORMAT=UTF16 is used to supply UTF16 format for the p,m,s fields and is equivalent to specifying
p,m,UTF16,s for these fields.

In Chapter 9, “Calling DFSORT from a program,” on page 109, you learn how to merge data sets when
calling DFSORT from a program.

So far

So far in this chapter you covered how to write both the SORT and MERGE program control statements
and how to process those control statements using JCL statements. Now you continue with the tutorial
on COPY.

VB data set considerations
A record in a VB data set looks like this:

A record in a VB data set looks like this:

VB data set
record

RDW Fixed data Variable data

The RDW (Record Descriptor Word) is a 4-byte binary field with the length of the record in the first two
bytes. Fixed data consists of data bytes that are present in every record. Variable data consists of one or
more data bytes that may or may not be present in every record, so different records can have different
lengths up to the maximum logical record length (LRECL) for the data set.

Starting positions
For FB data sets, the first data byte starts in position 1. However, for VB data sets, the RDW is in positions
1-4, so the first data byte starts in position 5. So when you code your control fields for sorting or merging
VB data sets, remember to add 4 to the starting position to account for the 4-byte RDW. For example, the
following SORT statement specifies a CH control field in the third through fifth data bytes of a VB record:

 SORT FIELDS=(7,3,CH,A)

Short control fields
Because VB records have a fixed part and a variable part, it is possible for part of a control field to be
missing. Consider this SORT statement:

 SORT FIELDS=(21,12,CH,A)

The control field is in positions 21-32. If your VB records have 25 fixed data bytes and LRECL=45, the
records can vary in length from 29 bytes (4-byte RDW, 25 bytes of fixed data, and 0 bytes of variable
data) to 45 bytes (4-byte RDW, 25 bytes of fixed data, and 16 bytes of variable data). Records 32 bytes
or longer include the entire control field. But records less than 32 bytes have "short" control fields, that

20 z/OS: z/OS DFSORT: Getting Started

is, they are missing some of the bytes at the end of the control field. You cannot validly sort or merge on
control fields with missing bytes because missing bytes have no values.

If you know you have VB records with short control fields, you can specify the VLSHRT option, if
appropriate, to prevent DFSORT from terminating. For example:

 OPTION VLSHRT
 SORT FIELDS=(21,12,CH,A)

VLSHRT tells DFSORT that you want to temporarily replace any missing control field bytes with binary
zeros (the zeros are not kept for the output record), thus allowing DFSORT to validly sort or merge on the
short control fields.

Attention: If NOVLSHRT is in effect, DFSORT terminates if it finds a short control field in any VB
record.

For more information on DFSORT's VLSHRT option, see z/OS DFSORT Application Programming Guide.

Copying data sets
With DFSORT you can copy data sets directly without performing a sort or merge.

You can use COPY with all of the other DFSORT control statements except SUM. DFSORT can select
and reformat the specific data sets you want to copy by using the control statements covered in later
chapters.

You write a copy statement by specifying COPY on the SORT, MERGE, or OPTION statement.

Specifying COPY on the SORT, MERGE, or OPTION statement
The SORT and MERGE statements change very little when you specify COPY. Just replace the information
you usually put in parentheses with the word COPY:

 SORT FIELDS=COPY
 MERGE FIELDS=COPY

You can also specify COPY on the OPTION statement:

 OPTION COPY

All three of these statements have identical results.

JCL for copying data sets directly
The JCL for a copy application is the same as for a sort, except that you do not need dynamic allocation of
work data sets or SORTWKdd DD statements.

This sample JCL will copy the SORT.SAMPIN data set to a temporary output data set using the OPTION
COPY statement:

//EXAMP JOB A492,PROGRAMMER
//COPY EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//SORTOUT DD DSN=&&TEMP,DISP=(,PASS),SPACE=(CYL,(5,5)),UNIT=SYSDA
//SYSIN DD *
 OPTION COPY
/*

You can use SORT FIELDS=COPY or MERGE FIELDS=COPY instead of OPTION COPY to produce the same
results.

Chapter 2. Sorting, merging, and copying data sets 21

Summary

In this chapter, you covered the following concepts:

• Writing the SORT, COPY, or MERGE program control statements
• Using JCL statements to process your sort, copy, or merge

As you continue with the tutorials, you will cover two methods of obtaining subsets of your input data
set for your output data set. Chapter 3, “Including or omitting records,” on page 23 covers allowable
comparison operators, various types of constants, substring search, and padding and truncation rules
for INCLUDE and OMIT.

22 z/OS: z/OS DFSORT: Getting Started

Chapter 3. Including or omitting records

Often, you need only a subset of the records in a data set for an application. This chapter explains how to
include or omit only specific records from the input data set for sorting, copying or merging to the output
data set.

By removing unneeded records with an INCLUDE or OMIT statement before sorting, copying or merging,
you can increase the speed of the sort, copy or merge. The fewer the records, the less time it takes to
process them.

You select a subset of the records in an input data set by:

• Using an INCLUDE control statement to collect wanted records
• Using an OMIT control statement to exclude unwanted records
• Using an INCLUDE or OMIT parameter on an OUTFIL statement to collect wanted records or exclude

unwanted records, respectively. Different INCLUDE and OMIT parameters can be used on different
OUTFIL statements.

Your choice of an INCLUDE or OMIT statement depends on which is easier and more efficient to write for a
given application. You cannot use both statements together.

The information presented in this chapter for the INCLUDE and OMIT statements also applies to the
INCLUDE and OMIT parameters of the OUTFIL statement, except that:

• OUTFIL is processed after sorting, copying or merging
• The FORMAT=f parameter cannot be used for OUTFIL

OUTFIL is discussed later in Chapter 7, “Creating multiple output data sets and reports,” on page 79.

You select the records you want included or omitted by either:

1. Comparing the contents of a field with one of the following:
Another field

For example, you can select records for which the author’s last name is the same as the
instructor’s last name.

A constant
The constant can be a character string, a decimal number, a hexadecimal string, or the current
date, a future date or a past date. For example, you can select records that have the character
string " HIST" in the department field.

2. Testing a field for "numerics", "alphanumerics", "non-numerics"or "non- alphanumerics". For example,
you can select records that have non-numerics in the Employees field or Revenue field, or you can
select records that have only uppercase (A-Z) and lowercase (a-z) characters in a specific field.

You can also combine two or more conditions with logical ANDs and ORs. For example, you can select
records that have either "HIST" or "PSYCH" in the department field.

INCLUDE and OMIT both offer powerful substring search capabilities.

In addition, INCLUDE and OMIT allow you to select records based on the results of bit logic tests and
two-digit year date comparisons. These two features are not discussed in this document, but details can
be found in z/OS DFSORT Application Programming Guide.

Writing the INCLUDE statement
Suppose it is the end of the year and you want to sort, by title, only the books that you need to reorder for
the coming year. If the number of copies sold this year for a particular book is greater than the number in
stock, you can assume you need to order more copies.

Including or Omitting Records

© Copyright IBM Corp. 1983, 2024 23

An INCLUDE statement that selects only the books you need to order looks like this:

Here are the steps for writing this INCLUDE statement:

Table 13. Steps to Create the INCLUDE Statement for Books You Need to Order

Step Action

1 Leave at least one blank and type INCLUDE

2 Leave at least one blank and type COND=

3 Type, in parentheses, and separated by commas:

1. The location, length, and data format of the number sold field
2. The comparison operator GT (comparison operators are shown in Figure 1 on page 24) for

greater than
3. The location, length, and data format of the number in stock field.

You can select from the following comparison operators:

Comparison Operator
Meaning

EQ
Equal to

NE
Not equal to

GT
Greater than

GE
Greater than or equal to

LT
Less than

LE
Less than or equal to

RE
Regular expressions

REH
Regular expressions with hexadecimal string

Figure 1. Comparison Operators

You can place the SORT statement either before or after the INCLUDE statement. Control statements do
not have to be in any specific order. However, it is good documentation practice to code them in the order

Including or Omitting Records

24 z/OS: z/OS DFSORT: Getting Started

in which they are processed. For a flowchart showing the order in which all the control statements are
processed, see Appendix C, “Processing order of control statements,” on page 177.

 INCLUDE COND=(166,4,BI,GT,162,4,BI)
 SORT FIELDS=(1,75,CH,A)

This sorts the selected subset of the input records by title in ascending order. Table 14 on page 25
shows the sorted data set.

Table 14. Books for which Number Sold is greater than Number in Stock

Book Title Number In Stock Number Sold

1 75 162 165 166 169

ADVANCED TOPICS IN PSYCHOANALYSIS
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
CRISES OF THE MIDDLE AGES
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
INTRODUCTION TO BIOLOGY
MODERN ANTHOLOGY OF WOMEN POETS
NUMBERING SYSTEMS
STRATEGIC MARKETING
SUPPLYING THE DEMAND
SYSTEM PROGRAMMING
THE COMPLETE PROOFREADER

 1
 5
 20
 14
 13
 2
 6
 1
 6
 3
 0
 4
 7

 12
 29
 26
 17
 32
 32
 11
 26
 27
 35
 32
 23
 19

Suppose you want to reduce the subset of input records even further, to sort only the books you need to
order from COR publishers. In this case, two conditions must be true:

• The number sold is greater than the number in stock.
• The book is published by COR.

To add the second condition, expand the INCLUDE statement by adding a logical AND, and compare the
contents of the publisher field to the character string " COR" (see “Writing constants” on page 28 for
details how to specify constants). Because the publisher field is 4 bytes long, "COR" will be padded on the
right with one blank.

 INCLUDE COND=(166,4,BI,GT,162,4,BI,AND,106,4,CH,EQ,C'COR')
 SORT FIELDS=(1,75,CH,A)

Table 15 on page 25 shows the result.

Table 15. COR Books for which Number Sold is greater than Number in Stock

Book Title Publisher Number In Stock Number Sold

1 75 106 109 162 165 166 169

CRISES OF THE MIDDLE AGES
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
SUPPLYING THE DEMAND

COR
COR
COR
COR

 14
 2
 1
 0

 17
 32
 26
 32

As another example, you might sort only the books for courses 00032 and 10347 by writing the INCLUDE
and SORT statements as follows:

 INCLUDE COND=(115,5,CH,EQ,C'00032',OR,115,5,CH,EQ,C'10347')
 SORT FIELDS=(115,5,CH,A)

Including or Omitting Records

Chapter 3. Including or omitting records 25

Note: In the previous example, you cannot substitute C'32' for C'00032', because character constants are
padded on the right with blanks. DFSORT uses the following rules for padding and truncation:
Padding

adds fillers in data, usually zeros or blanks
Truncation

deletes or omits a leading or trailing portion of a string

In comparisons, the following rules apply:

• In a field-to-field comparison, the shorter field is padded as appropriate (with blanks or zeros).
• In a field-to-constant comparison, the constant is padded or truncated to the length of the field.

Decimal constants are padded or truncated on the left. Character and hexadecimal constants are
padded or truncated on the right.

Writing the OMIT statement
Suppose that you want to sort, by title, all the books used for courses but not those for general reading.
In this case, you can use an OMIT statement that excludes records containing a blank in the course
department field.

The format of the OMIT statement is the same as that of the INCLUDE statement. To exclude the general
reading books, write:

 OMIT COND=(110,5,CH,EQ,C' ')
 SORT FIELDS=(1,75,CH,A)

Table 16 on page 26 shows the sorted data set.

Table 16. Sorted Data Set without Books Not Required for Classes

Book Title Course Department

1 75 110 114

ADVANCED TOPICS IN topCHOANALYSIS
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
CRISES OF THE MIDDLE AGES
EDITING SOFTWARE MANUALS
EIGHTEENTH CENTURY EUROPE
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
INTRODUCTION TO BIOLOGY
INTRODUCTION TO PSYCHOLOGY
MODERN ANTHOLOGY OF WOMEN POETS
NUMBERING SYSTEMS
SHORT STORIES AND TALL TALES
STRATEGIC MARKETING
SUPPLYING THE DEMAND
SYSTEM PROGRAMMING
THE COMPLETE PROOFREADER
THE INDUSTRIAL REVOLUTION
VIDEO GAME DESIGN

PSYCH
COMP
COMP
HIST
ENGL
HIST
ENGL
BIOL
PSYCH
ENGL
COMP
ENGL
BUSIN
BUSIN
COMP
ENGL
HIST
COMP

Allowable comparisons for INCLUDE and OMIT
Table 17 on page 27 and Table 18 on page 27 show the allowable field-to-field and field-to-constant
comparisons for the data formats most commonly used with INCLUDE and OMIT. Refer to z/OS DFSORT
Application Programming Guide for complete details of all of the data formats you can use with INCLUDE
and OMIT.

Including or Omitting Records

26 z/OS: z/OS DFSORT: Getting Started

Table 17. Allowable Field-to-Field Comparisons

Field
Format BI FI CH ZD PD FS UFF SFF AUF ASF

BI ✓ ✓

FI ✓

CH ✓ ✓

ZD ✓ ✓

PD ✓ ✓

FS ✓ ✓ ✓ ✓ ✓

UFF ✓ ✓ ✓ ✓ ✓

SFF ✓ ✓ ✓ ✓ ✓

AUF ✓ ✓ ✓ ✓ ✓

ASF ✓ ✓ ✓ ✓ ✓

Table 18. Allowable Field-to-Constant Comparisons

Field Format Character String Hexadecimal String Decimal Number

BI ✓ ✓ ✓

FI ✓

CH ✓ ✓

ZD ✓

PD ✓

FS ✓

UFF ✓

SFF ✓

For example, if you want to sort by author’s name and include only those books whose author’s last name
begins with “M,” you can compare the contents of byte 76 (the first byte of the author’s last name), which
is in character format, with either a character or hexadecimal string:

 INCLUDE COND=(76,1,CH,EQ,C'M')
 SORT FIELDS=(76,15,CH,A)

or

 INCLUDE COND=(76,1,CH,EQ,X'4D')
 SORT FIELDS=(76,15,CH,A)

Also, if you want to sort by number in stock only the books for which the number in stock is less than
10, you can compare the contents of the number in stock field, which is in binary format, to a decimal
constant or a hexadecimal string:

Including or Omitting Records

Chapter 3. Including or omitting records 27

 INCLUDE COND=(162,4,BI,LT,10)
 SORT FIELDS=(162,4,BI,A)

or

 INCLUDE COND=(162,4,BI,LT,X'0000000A')
 SORT FIELDS=(162,4,BI,A)

For the hexadecimal constant, remember the padding and truncation rules. If you specify X'0A', the string
is padded on the right instead of the left. For the decimal constant, you can use 10 or +10, and you do not
have to worry about padding or truncation.

Writing constants
The formats for writing character strings, hexadecimal strings, and decimal numbers are shown later in
this section.

Character strings
The format for writing a character string is:

C'x...x'

where x is an EBCDIC character. For example, C'FERN'.

If you want to include a single apostrophe in the string, you must specify it as two single apostrophes. For
example, O’NEILL must be specified as C'O''NEILL'.

You can use special keywords to specify a character string for the current date of the run in various forms,
as detailed in z/OS DFSORT Application Programming Guide. For example, if you want to select records in
which a 10-character date in the form C'yyyy/mm/dd' starting in position 42 equals today's date, write:

 INCLUDE COND=(42,10,CH,EQ,DATE1(/))

You can also use special keywords to specify a character string for a future or past date (relative to the
current date of the run) in various forms, as detailed in z/OS DFSORT Application Programming Guide. For
example, if you want to select records in which a 10-character date in the form C'yyyy/mm/dd' starting in
position 42 is between 30 days in the past and 30 days in the future, write:

 INCLUDE COND=(42,10,CH,GE,DATE1(/)-30,AND,42,10,CH,LE,DATE1(/)+30)

Hexadecimal strings
The format for writing a hexadecimal string is:

X'yy...yy'

where yy is a pair of hexadecimal digits. For example, X'7FB0'.

Decimal numbers
The format for writing a decimal number is:

n...n or ±n...n

where n is a decimal digit. Examples are 24, +24, and -24.

Decimal numbers must not contain commas or decimal points.

You can use special keywords to specify a decimal number for the current date of the run in various forms,
as detailed in z/OS DFSORT Application Programming Guide. For example, if you want to select records in

Including or Omitting Records

28 z/OS: z/OS DFSORT: Getting Started

which a 4-byte packed decimal date of P'yyyyddd' (hex yyyydddC) starting in position 28 equals today's
date, write:

 INCLUDE COND=(28,4,PD,EQ,DATE3P)

You can use special keywords to specify a decimal number for a future or past date (relative to the
current date of the run) in various forms, as detailed in z/OS DFSORT Application Programming Guide.
For example, if you want to select records in which a 4-byte packed decimal date of P'yyyyddd' (hex
yyyydddC) starting in position 28 is between 30 days in the past and 30 days in the future, write:

 INCLUDE COND=(28,4,PD,GE,DATE3P-30,AND,28,4,PD,LE,DATE3P+30)

Numeric tests for INCLUDE and OMIT
Suppose you think that some of the values in the Employees field might contain invalid numeric data, and
you want to select the records with those values, if any. Each byte of the 4-byte Employees field should
contain '0' through '9'; you would consider any other character, such as 'A' or '.' to be invalid. '1234' is a
valid numeric value; it contains all numerics. '12.3' is an invalid numeric value; it contains a non-numeric.
You can use one of the numeric test capabilities of the INCLUDE statement to collect the records you want
as follows:

 INCLUDE COND=(18,4,FS,NE,NUM)

If the value in the field (18,4,FS) is not equal (NE) to numerics (NUM), the record is included. The records
in the output data set will be those in which the field has non-numerics (a character other than '0'-'9'
appears somewhere in the field).

Use NUM to indicate a test for numerics or non-numerics.

Use EQ to test for numerics, or NE to test for non-numerics.

Use FS format for the field if you want to test for character numerics ('0'-'9' in every byte).

Use ZD format for the field if you want to test for zoned decimal numerics ('0'-'9' in all non-sign bytes;
X'F0'-X'F9', X'D0'-X'D9' or X'C0'-X'C9' in the sign byte).

Use PD format for the field if you want to test for packed decimal numerics (0-9 for all digits; F, D or C for
the sign).

Here's an INCLUDE statement that only includes records in which the Revenue field and Profit field have
packed decimal numerics (that is, there are no invalid packed decimal values in these fields).

 INCLUDE COND=(22,6,PD,EQ,NUM,AND,28,6,PD,EQ,NUM)

Alphanumeric Tests for INCLUDE and OMIT
Testing for alphanumerics or non-alphanumerics is similar to testing for numerics or non-numerics. Use
BI for the format. Use EQ to test for alphanumerics or NE to test for non-alphanumerics. Instead of NUM,
use one of the following corresponding to the set of alphanumeric characters you need:

• UC: Uppercase characters (A-Z)
• LC: Lowercase characters (a-z)
• MC: Mixed case characters (A-Z, a-z)
• UN: Uppercase and numeric characters (A-Z, 0-9)
• LN: Lowercase and numeric characters (a-z, 0-9)
• MN: Mixed case and numeric characters (A-Z, a-z, 0-9)

Here is an INCLUDE statement that only includes records which have uppercase or numeric characters in
positions 11 to 15:

Including or Omitting Records

Chapter 3. Including or omitting records 29

 INCLUDE COND=(11,5,BI,EQ,UN)

If every position from 11 to 15 in a record has A-Z or 0-9, that record is included. If any position from 11
to 15 in a record does not have A-Z or 0-9, that record is not included. So a record with 'B03RS' in 11 to
15 would be included, whereas records with 'B03rS' or 'B,ABC' would not be included.

Here's an INCLUDE statement that removes any record that has only A-Z or a-z in positions 1 to 8:

 INCLUDE COND=(1,8,BI,NE,MC)

So a record with 'RsTUVxyz' in 1-8 would not be included, whereas a record with 'Rs$UVxyz' in 1-8 would
be included.

Substring search for INCLUDE and OMIT
Suppose you want to select only the books for the Biology, History, Business and Psychology
departments. Based on what you learned earlier, you can select those books using this INCLUDE
statement:

 INCLUDE COND=(106,5,CH,EQ,C'BIOL',OR,
 106,5,CH,EQ,C'HIST',OR,
 106,5,CH,EQ,C'BUSIN',OR,
 106,5,CH,EQ,C'PSYCH')

But the more departments you want to include, the more typing you have to do. Instead, you can use one
of the substring search capabilities of INCLUDE and OMIT to write the statement in a simpler form as:

 INCLUDE COND=(106,5,SS,EQ,C'BIOL ,HIST ,BUSIN,PSYCH')

With substring search (SS format), you only write the field once and write the character constant so it
includes all of the strings you want to search for. If the value in the field matches any of the strings (for
example, "BUSIN"), the record is included. If the value in the field does not match any of the strings, the
record is omitted.

The length of each string must match the length of the field. Because the Department field is 5 characters,
you must add a blank at the end of "BIOL" and "HIST", which are each four characters, but not for
"BUSIN" and "PSYCH", which are each five characters.

The other way to use substring search is by searching for a constant within a field. For example, if
you wanted to select only the books with "INTRODUCTION" in their Title, you could use the following
INCLUDE statement:

 INCLUDE COND=(1,75,SS,EQ,C'INTRODUCTION')

The books selected for output would be:

COMPUTERS: AN INTRODUCTION
INTRODUCTION TO PSYCHOLOGY
INTRODUCTION TO BIOLOGY

Regular expressions
A Regular expression is a pattern which specifies a string of characters used to match certain strings.
By default, DFSORT treats regular expressions as case-insensitive. The input regular expression can be
in any case (lowercase, uppercase or mixed case) and output results are also case-insensitive. DFSORT
compares the NULL-terminated string specified by INCLUDE/OMIT field against the compiled regular
expression. For comparison DFSORT internally adds NULL byte to the specified Regular expression. The
specified Regular expression is then compiled and if an error is detected, DFSORT terminates with an
error message.

The following patterns are given as examples, along with descriptions of what they match:

Including or Omitting Records

30 z/OS: z/OS DFSORT: Getting Started

abc
Matches any record containing the three letters abc in that order.

a.c
Matches any string beginning with the letter a, followed by any character, followed by the letter c.

^.$
Matches any record containing exactly one character.

.*[a-z]+.*
Matches any record containing a word, consisting of lowercase/uppercase/mixed case alphabetic
characters, delimited by at least one space on each side.

Johny.*Johny
Matches any record containing at least two occurrences of the string Johny.

^ibm
Matches records beginning with "ibm".

ibm$
Matches records ending with "ibm".

^ibm$
Matches records exactly with "ibm".

Example 1: Include all records that contain string 'ER' (case-insensitive) followed by a numeric (0-9) using
Regular expressions

//STEP0100 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD *
MORGAN STANLEY
 ERIC
 HOLMER CA 90201
 WALTER ALBUQUERQUENEW MEXICO
TONY NY 10000
 JERRY 10029 NEW YORK
SHERLOCK
//SORTOUT DD SYSOUT=*
//SYSIN DD *
 OPTION COPY
 INCLUDE COND=(1,50,SS,RE,C'(ER).*[0-9]')
//*

This example illustrates how to include only records in which:

• ER (case-insensitive) is found somewhere within bytes 1 through 50 and have a number (0-9) following
the string ER.

The output from the above job is the following:

 HOLMER CA 90201
 JERRY 10029 NEW YORK

Unicode comparisons
Compare a field in Unicode format to another field in Unicode format. For example, you can include only
those records for which a UTF8 field is less than another UTF8 field. Or you can exclude those records for
which a UTF16 field is equal to another UTF16 field. Or you can include only those records for which a
UTF32 field is greater than another UTF32 field.

The following are examples of Unicode comparisons:

INCLUDE FORMAT=UTF8,COND=(5,4,LT,11,4)

Explanation: Include the records if UTF8 format data at position 5 for 4 characters is less than UTF8
format data at position 11 for 4 characters.

OMIT COND=(21,40,UTF16,EQ,151,40,UTF16)

Including or Omitting Records

Chapter 3. Including or omitting records 31

Explanation: Omit the records if UTF16 format data at position 21 for 40 characters is equal to UTF16
format data at 151 for 40 characters.

OUTFIL INCLUDE=(21,4,UTF32,NE,31,4,UTF32)

Explanation: Include the records if UTF32 format data at position 21 for 4 characters is not equal to
UTF32 format data at 31 for 4 characters.

VB data set considerations
The same VB data set considerations you learned about previously for the SORT and MERGE statements
also apply to the INCLUDE and OMIT statements.

Starting positions
When you code your compare fields for including or omitting VB records, remember to add 4 to the
starting position to account for the 4-byte RDW. For example, the following INCLUDE statement compares
a PD field in the third through fifth data bytes of a VB record to a PD field in the sixth through eighth bytes
of a VB record.

 INCLUDE COND=(7,3,PD,EQ,10,3,PD)

Short control fields
If you know you have VB records with short compare fields, you can specify the VLSCMP option, if
appropriate, to prevent DFSORT from terminating. For example:

 OPTION COPY,VLSCMP
 INCLUDE COND=(21,8,CH,EQ,C'Type 200')

VLSCMP tells DFSORT that you want to temporarily replace any missing compare field bytes with binary
zeros, thus allowing the short fields to be validly compared (the zeros are not kept for the output records).
In this example, records less than 28 bytes are not included because the binary zeros added for the
missing bytes in the field prevent it from being equal to 'Type 200'.

Another way you can prevent DFSORT from terminating for VB records with short compare fields, if
appropriate, is by specifying the VLSHRT option. For example:

 OPTION COPY,VLSHRT
 INCLUDE COND=(21,8,CH,EQ,C'Type 200')

VLSHRT tells DFSORT to treat any comparison involving a short field as false. In this example, any records
less than 28 bytes are not included.

Attention: If NOVLSCMP and NOVLSHRT are in effect, DFSORT terminates if it finds a short
compare field in any VB record.

For more information on DFSORT's VLSCMP and VLSHRT options, see z/OS DFSORT Application
Programming Guide.

Summary
This chapter covered three ways to select only a subset of the input records to make processing more
efficient. You wrote INCLUDE and OMIT statements and learned about allowable comparison operators,
various types of constants, numeric tests, and substring search.

Including or Omitting Records

32 z/OS: z/OS DFSORT: Getting Started

Chapter 4. Summing records

Suppose that the English department wants to know the total price of books for all its courses. You can
include just the records for the English department by using the INCLUDE statement, and add the book
prices together by using the SORT and SUM statements.

On the SUM control statement, you specify one or more numeric fields that are to be summed whenever
records have equally collating control fields (control fields are specified on the SORT statement). The
data formats you can specify on the SUM statement are binary (BI), fixed-point (FI), packed decimal (PD),
zoned decimal (ZD) and floating-point (FL).

To sum the prices for just the records for the English department, specify the price field on the SUM
statement and the department field on the SORT statement. The INCLUDE statement selects just the
records for the English department before SUM and SORT are processed, making the department field
equal for all of the included records, and allowing the prices to be summed. (For a flowchart showing
the order in which the INCLUDE, SUM, and SORT statements are processed, see Appendix C, “Processing
order of control statements,” on page 177.)

When you sum records, keep in mind that two types of fields are involved:
Control fields

specified on the SORT statement
Summary fields

specified on the SUM statement

The contents of the summary fields are summed for groups of records with the same control fields (often
called "duplicate" records).

Writing the SUM statement
A SUM statement that sums the prices would look like this:

Here are the steps for writing this SUM statement:

Table 19. Steps to Create the SUM Statement for Prices

Step Action

1 Leave at least one blank and type SUM

2 Leave at least one blank and type FIELDS=

3 Type, in parentheses and separated by commas, the location, length, and data format of the price
field.

The INCLUDE, SORT, and SUM statements are as follows:

 INCLUDE COND=(110,5,CH,EQ,C'ENGL')
 SORT FIELDS=(110,5,CH,A)
 SUM FIELDS=(170,4,BI)

Summing Records

© Copyright IBM Corp. 1983, 2024 33

When the prices are summed, the final sum appears in the price field of one record, and the other records
are deleted. Therefore, the result (shown in Table 20 on page 34) is only one record, containing the
sum. You can control which record appears if you specify that records keep their original order. For the
examples, the default is for records with equally collating control fields to appear in their original order
(EQUALS in effect). When summing records keeping the original order, DFSORT chooses the first record to
contain the sum.

Table 20. Sum of Prices for English Department

Book Title Course Department Price

1 75 110 114 170 173

INKLINGS: AN ANTHOLOGY OF YOUNG POETS1 ENGL2 46403

Note:
1 Some of the fields in your summation record might not be meaningful, such as the book title field in Table 20 on page 34.
In the next chapter, you will learn two ways to leave out fields that are not meaningful.
2 Specified as a control field.
3 Specified as a summary field.

Suppose now that the English department wants to know the total price of books for each of its courses.
In this case, you still select only the English department’s records using INCLUDE, and specify the price
field on the SUM statement, but you specify the course number on the SORT statement.

Table 21 on page 34 shows the result, one record per course.

Table 21. Sum of Prices for English Department

Book Title Course Number Price

1 75 115 119 170 173

SHORT STORIES AND TALL TALES
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS

 10054
 10347
 10856

 1520
 2075
 1045

For an example using two summary fields, assume that for inventory purposes you want to sum
separately the number of books in stock and the number sold for each of the publishers.

For this application, specify the publisher as the control field on the SORT statement and the number in
stock and number sold as summary fields on the SUM statement. You want to use all of the records in the
input data set this time, so you don't need to code an INCLUDE or OMIT statement. (SORT and SUM can
be used with or without an INCLUDE or OMIT statement.)

Summing Records

34 z/OS: z/OS DFSORT: Getting Started

Table 22 on page 35 shows the result, one record per publisher.

Table 22. Sum of Number in Stock and Number Sold for Each Publisher

Book Title Publisher Number In Stock Number Sold

 1 75 106 109 162 165 166 169

LIVING WELL ON A SMALL BUDGET
COMPUTER LANGUAGES
VIDEO GAME DESIGN
COMPUTERS: AN INTRODUCTION

COR
FERN
VALD
WETH

 103
 19
 42
 62

 161
 87
 97
 79

Suppressing records with duplicate control fields
Apart from summing values, you can also use SUM to delete records with duplicate control fields (often
called "duplicate records").

For example, you might want to list the publishers in ascending order, with each publisher appearing only
once. If you use only the SORT statement, COR appears seven times (because seven books in the file are
published by COR), FERN appears four times, VALD five times, and WETH four times.

By specifying FIELDS=NONE on the SUM statement, DFSORT writes only one record per publisher, as
follows:

 SORT FIELDS=(106,4,CH,A)
 SUM FIELDS=NONE

Table 23 on page 35 shows the result.

Table 23. List of Publishers, Deleting Duplicates

Book Title Publisher

 1 75 106 109

LIVING WELL ON A SMALL BUDGET
COMPUTER LANGUAGES
VIDEO GAME DESIGN
COMPUTERS: AN INTRODUCTION

COR
FERN
VALD
WETH

In Chapter 12, “Using the ICETOOL utility,” on page 123, you will learn how to use ICETOOL's powerful
SELECT, OCCUR and SPLICE operators to perform many more functions involving duplicate and non-
duplicate records.

Summing Records

Chapter 4. Summing records 35

Handling overflow
When a sum becomes larger than the space available for it, overflow occurs. For example, if a 2-byte
binary field (unsigned) contains X' FFFF' and you add X'0001' to it, overflow occurs, because the sum
requires more than two bytes.

 FFFF
 0001
 10000

If overflow occurs, the summary fields in the two records involved are not added together. That is, the
records are kept unchanged; neither record is deleted.

In some cases, you can correct overflow by padding the summary fields with zeros, using the INREC
control statement. “Preventing overflow when summing values” on page 66 shows you how to do this.

VB data set considerations
The same VB data set considerations you learned about previously for the SORT, MERGE, INCLUDE and
OMIT statements also apply to the SUM statement.

Starting positions
When you code your summary fields for VB records, remember to add 4 to the starting position to account
for the 4-byte RDW. For example, the following SUM statement specifies a PD summary field in the third
through fifth data bytes of a VB record:

 SUM FIELDS=(7,3,PD)

Short summary fields
If you know you have VB records with short summary fields, you can specify the VLSHRT option, if
appropriate, to prevent DFSORT from terminating. For example:

 OPTION VLSHRT
 SORT FIELDS=(6,2,CH,A)
 SUM FIELDS=(21,8,ZD)

VLSHRT tells DFSORT to leave records with short summary fields unsummed. That is, when one of the
two records involved in a summary operation has a short summary field, the records are kept unchanged;
neither record is deleted.

Attention: If NOVLSHRT is in effect, DFSORT terminates if it finds a short summary field in any VB
record.

For more information on DFSORT's VLSHRT option, see z/OS DFSORT Application Programming Guide.

Summary

This chapter covered summing records in your data set. It explained how to use the SUM statement to
sum records with equal control fields, and how to suppress any records with duplicate control fields.
Now, you continue with tutorials about using OUTREC and INREC to reformat your data sets.

Summing Records

36 z/OS: z/OS DFSORT: Getting Started

Chapter 5. Reformatting records with fixed fields

You can reformat records in your data sets by using the INREC, OUTREC, and OUTFIL control statements.
You can use these statements separately or together.

This chapter describes how you can reformat records with fixed fields, that is, fields that start in the
same position and have the same length in every record. The next chapter describes how you can
reformat records in similar ways with variable fields, that is, fields that have different starting positions
and lengths in different records, such as comma separated values (CSV).

With INREC, OUTREC, and OUTFIL, you can perform a wide variety of tasks while sorting, copying, or
merging, including the following:

• Delete fields.
• Reorder fields.
• Insert separators (blanks, zeros, strings, current date, future date, past date, and current time).
• Translate data from uppercase to lowercase, lowercase to uppercase, EBCDIC to ASCII and ASCII to

EBCDIC.
• Translate data to hexadecimal and bit representation.
• Convert numeric values to many different types of printable formats with or without thousands

separators, decimal point, leading or suppressed zeros, and signs.
• Convert numeric values from one format to another format.
• Perform arithmetic using numeric values and decimal constants.
• Convert date fields from one type to another type.
• Perform arithmetic using date fields.
• Change values using a lookup table.
• Replace or remove data using find and replace operations.
• Insert sequence numbers.
• Left-justify data, right-justify data, left-squeeze data, and right-squeeze data.
• Perform various operations on groups of records.

You can reformat records in one of the following three ways:

• BUILD: Reformat each record by specifying all of its items one by one. Build gives you complete control
over the items you want in your reformatted records and the order in which they appear. You can delete,
rearrange and insert fields and constants.

Note: For INREC and OUTREC, you can use either the BUILD parameter or the FIELDS parameter. For
OUTFIL, you can use either the BUILD parameter or the OUTREC parameter.

• OVERLAY: Reformat each record by specifying just the items that overlay specific columns. Overlay lets
you change specific existing columns without affecting the entire record.

• FINDREP: Reformat each record by doing various types of find and replace operations.
• IFTHEN clauses: Reformat different records in different ways by specifying how build, overlay, find/
replace, or group operation items are applied to records that meet given criteria. IFTHEN clauses let you
use sophisticated conditional logic to choose how different record types are reformatted.

The INREC, OUTREC, and OUTFIL statements can all perform the same functions. However:

• The INREC statement reformats records before they are sorted, copied or merged. See “Using
other statements with INREC” on page 65 for information about how INREC affects other control
statements.

• The OUTREC statement reformats records after they are sorted, copied or merged.

Reformatting Records

© Copyright IBM Corp. 1983, 2024 37

• The OUTFIL statement can reformat records for OUTFIL output data sets after they are sorted,
copied or merged. Different reformatting parameters can be used for different OUTFIL data sets. The
information presented in this Chapter for the INREC and OUTREC statements also applies to the OUTFIL
statement. OUTFIL is discussed later in Chapter 7, “Creating multiple output data sets and reports,” on
page 79.

Reformatting records after sorting with BUILD or FIELDS
In the last chapter, you used the SUM statement to sum the price of the books in stock and the books
sold for each publisher. Now, using the FIELDS or BUILD parameter of the OUTREC statement, you can
delete all the fields that are not needed for the application; in other words, fields whose contents are
not meaningful in a summation record. Only the publisher, number-in-stock, and number-sold fields are
written, reducing the output record length to 12 bytes.

The OUTREC statement looks like this:

Here are the steps for writing this OUTREC statement:

Table 24. Steps to Create the OUTREC Statement for Reformatting Records

Step Action

1 Leave at least one blank, and type OUTREC

2 Leave at least one blank, and type FIELDS= (or BUILD=)

3 Type, in parentheses, and separated by commas:

1. The location and length of the publisher field
2. The location and length of the number in stock field
3. The location and length of the number sold field.

The SORT, SUM and OUTREC statements are as follows:

 SORT FIELDS=(106,4,CH,A)
 SUM FIELDS=(162,4,BI,166,4,BI)
 OUTREC FIELDS=(106,4,162,4,166,4)

Table 25 on page 38 shows the output.

Table 25. Writing Only Publisher, Number In Stock, and Number Sold Fields

Publisher

Number
In Stock

Number
Sold

1 4 5 8 9 12

Reformatting Records

38 z/OS: z/OS DFSORT: Getting Started

Table 25. Writing Only Publisher, Number In Stock, and Number Sold Fields (continued)

Publisher

Number
In Stock

Number
Sold

COR
FERN
VALD
WETH

 103
 19
 42
 62

 161
 87
 97
 79

The number in stock and number sold fields are binary values which would actually be unreadable if you
printed or displayed the output records shown in Table 25 on page 38. Later in this chapter, you'll learn
how binary and other unreadable numeric values can be converted to various readable forms.

Suppose you use this SORTOUT DD statement for your output data set:

//SORTOUT DD DSN=MY.OUTPUT,DISP=(NEW,CATLG,DELETE),
// UNIT=SYSDA,SPACE=(CYL,(5,5))

DFSORT automatically sets the LRECL of your new output data set (MY.OUTPUT) to the reformatted
output record length, so LRECL=12 would be set in this case. You do not need to specify the LRECL on
your SORTOUT DD statement, because DFSORT will set it appropriately for you.

If your SORTOUT data set already has an LRECL value (OLD data set), or you choose to specify an
LRECL value on the SORTOUT DD statement, that value overrides the value DFSORT would set for the
LRECL. This can result, intentionally or unintentionally, in padding or truncating your output records if the
calculated length of the reformatted record does not match your specified LRECL.

In general, it is best to let DFSORT set the RECFM, LRECL and BLKSIZE for your NEW SORTOUT data sets,
unless you have a particular reason to override these values. For OLD SORTOUT data sets, ensure that the
existing RECFM, LRECL and BLKSIZE values are appropriate for the control statements you use.

Reordering fields to reserve space
The fields always appear in the order in which you specify them. Therefore, if you want the number sold
to appear before the number in stock, as shown in Table 26 on page 39, you reverse their order on the
OUTREC statement.

 SORT FIELDS=(106,4,CH,A)
 SUM FIELDS=(162,4,BI,166,4,BI)
 OUTREC FIELDS=(106,4,166,4,162,4)

Table 26. Reordering the Fields

Publisher Number Sold Number In Stock

1 4 5 8 9 12

COR
FERN
VALD
WETH

 161
 87
 97
 79

 103
 19
 42
 62

Inserting binary zeros
Building on the last example, assume you want to reformat the records to include a new 4-byte binary
field after the number in stock (beginning at byte 13). In this case, you can insert binary zeros as place
holders for the new field (to be filled in with data at a later date). You can use Z or 1Z to specify a single
binary zero. You can use nZ to specify n binary zeros.

Reformatting Records

Chapter 5. Reformatting records with fixed fields 39

To insert four binary zeros, write 4Z after the last field:

 SORT FIELDS=(106,4,CH,A)
 SUM FIELDS=(162,4,BI,166,4,BI)
 OUTREC FIELDS=(106,4,166,4,162,4,4Z)

Table 27 on page 40 shows the result.

Table 27. Inserting Binary Zeros

Publisher Number Sold Number In Stock X'0...0'

1 4 5 8 9 12 13 16

COR
FERN
VALD
WETH

 161
 87
 97
 79

 103
 19
 42
 62

 0...0
 0...0
 0...0
 0...0

Inserting blanks
If an output data set contains only character data, you can print it by writing the SORTOUT DD statement
as follows:

//SORTOUT DD SYSOUT=A

You can make the printout more readable by using the OUTREC statement to separate the fields with
blanks and to create margins. You can insert blanks before, between, or after fields. You can use X or 1X
to specify a single blank. You can use nX to specify n blanks.

For example, assume you want to print just the publisher and title fields, with the publisher field
appearing first. Because most of the publishers’ names fill up the entire 4-byte publisher field, the
publishers’ names will run into the titles if you do not separate the two fields with blanks. Also, without a
margin, the publishers’ names will begin at the edge of the paper.

The printout can be made more readable by creating a left margin of 20 blanks and by separating the
fields with 10 blanks.

To insert 20 blanks, write 20X before the first field. To insert 10 blanks, write 10X between the two fields.
The SORT statement sorts the records by title in ascending order (remember that SORT, COPY, or MERGE
is always required).

 SORT FIELDS=(1,75,CH,A)
 OUTREC BUILD=(20X,106,4,10X,1,75)

Table 28 on page 40 shows the result.

Table 28. Output After Inserting Blanks

 Publisher Book Title

1 20 21 24 25 34 35 190

Reformatting Records

40 z/OS: z/OS DFSORT: Getting Started

Table 28. Output After Inserting Blanks (continued)

 Publisher Book Title

(20 Blanks)
FERN
FERN
WETH
COR
VALD
WETH
COR
VALD
COR
COR
COR
FERN
COR
VALD
VALD
COR
WETH
FERN
WETH
VALD

(10 Blanks)
ADVANCED TOPICS IN PSYCHOANALYSIS
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
CRISES OF THE MIDDLE AGES
EDITING SOFTWARE MANUALS
EIGHTEENTH CENTURY EUROPE
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
INTRODUCTION TO BIOLOGY
INTRODUCTION TO PSYCHOLOGY
LIVING WELL ON A SMALL BUDGET
MODERN ANTHOLOGY OF WOMEN POETS
NUMBERING SYSTEMS
PICK’S POCKET DICTIONARY
SHORT STORIES AND TALL TALES
STRATEGIC MARKETING
SUPPLYING THE DEMAND
SYSTEM PROGRAMMING
THE COMPLETE PROOFREADER
THE INDUSTRIAL REVOLUTION
VIDEO GAME DESIGN

If you know the columns you want your fields to start in, you can specify them directly instead of figuring
out how many blanks to use. For example, if you want the publisher field to start in column 21 and the
title field to start in column 35, as shown previously, you can write the OUTREC statement as:

 OUTREC BUILD=(21:106,4,35:1,75)

c: causes DFSORT to fill in blanks from the last field with data (or column 1) up to the column before c. So
21: puts blanks in columns 1-20 and 35: puts blanks in column 25-34.

Specifying c:X as your last field is an easy way to increase the record length of your output records to c
bytes. For example, if you want to create 80-byte output records containing the first 30 bytes of your input
records padded with blanks, you can use this OUTREC statement:

 OUTREC BUILD=(1,30,80:X)

DFSORT automatically sets LRECL=80 for the SORTOUT data set if you do not override the LRECL.

Inserting strings
In addition to making the printout more readable, OUTREC can also be used to set up a very basic report
format by inserting strings. ICETOOL's DISPLAY operator or the OUTFIL control statement can be used to
create complex reports, as you will see later in this document. The formats for writing strings are shown in
the rest of this section.

Character strings
The format for repeating a character string is:

C'x...x'

where x is an EBCDIC character. For example, C'FERN'.

The format for repeating a character string is:

nC'x...x'

Reformatting Records

Chapter 5. Reformatting records with fixed fields 41

where n can be from 1 to 4095; n repetitions of the character string (C'x...x') are inserted into the
reformatted records. If n is omitted, 1 is used instead.

If you want to include a single apostrophe in the string, you must specify it as two single apostrophes. For
example, O’NEILL must be specified as C'O''NEILL'.

You can use special keywords to insert a character string or packed decimal constant for the current
date or time of the run in various forms, as detailed in z/OS DFSORT Application Programming Guide. For
example, suppose you want to insert the following at the end of each 80 byte record:

• the string 'Timestamp: '
• the date of the run in the form C'yyyy/mm/dd',
• a blank, and
• the time of the run in the form C'hh:mm'

Here's the OUTREC statement:

 OUTREC FIELDS=(1,80,C'Timestamp: ',DATE1(/),X,TIME2(:))

You can also use special keywords to specify a character string or packed decimal constant for a future or
past date (relative to the current date of the run) in various forms, as detailed in z/OS DFSORT Application
Programming Guide. For example, suppose you want to insert the following at the start of each 20-byte
record:

• the current date - 7 days in the form C'yyyyddd',
• a blank, and
• the current date + 14 days in the form C'yyyyddd'.

Here's the OUTREC statement:

 OUTREC FIELDS=(DATE3-7,X,DATE3+14,1,20)

Hexadecimal strings
The format for writing a hexadecimal string is:

X'yy...yy'

where yy is a pair of hexadecimal digits. For example, X'7FB0'.

The format for repeating a hexadecimal string is:

nX'yy...yy'

where n can be from 1 to 4095. n repetitions of the hexadecimal string (X'yy...yy') are inserted in the
reformatted records. If n is omitted, 1 is used.

Setting up a basic report
To produce a very basic report of the publisher’s names and author’s names from the bookstore data
set, you can use the following OUTREC statement to put in "Publisher is" and "Author is" as character
separators.

 OPTION COPY
 OUTREC FIELDS=(11:C'Publisher is ',106,4,
 31:C'Author is ',91,15,X,76,15)

The result is shown in Table 29 on page 43.

Reformatting Records

42 z/OS: z/OS DFSORT: Getting Started

Table 29. Output of a Report

 Publisher
Author's First
Name

Author's Last
Name

1 10 11 22 24 27 31 39 41 55 57 71

(10 blanks) Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is

FERN
COR
COR
VALD
COR
WETH
COR
VALD
FERN
VALD
WETH
COR
COR
FERN
WETH
VALD
VALD
FERN
WETH
COR

Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is

 ROBERT
 FRANK
 TOM
 LORI
 KAREN
 JOKHI
 CAROL
 VICTOR
 WILLIAM
 MARK
 DON
 PETER
 LINDA
 ANN
 RAUL
 LILIANA
 CHIEN
 DIANNE
 ALICE
 GREG

MURRAY
DEWAN
MILLER
RASMUSSEN
WILDE
DINSHAW
GUSTLIN
OJALVO
BAYLESS
YAEGER
GROSS
COWARD
DUZET
GREEN
CAUDILLO
AVRIL
WU
OSTOICH
MUNGER
BENDER

So far

So far this chapter has covered how the BUILD or FIELDS parameter of the OUTREC statement can
reformat the records of your output data set to contain only the fields and constants you specify. This
chapter also covered inserting binary zeros as place holders, and using blanks and strings to make a
printout of the output data set more readable. In the following sections, you will learn how to use other
reformatting features to change input fields in various ways for output.

Translating uppercase to lowercase, EBCDIC to ASCII, and more
You could use the following statements to show all of the authors for the books used in computer courses:

 INCLUDE COND=(110,5,CH,EQ,C'COMP')
 SORT FIELDS=(76,15,CH,A,91,15,CH,A)
 OUTREC FIELDS=(91,15,X,76,15)

The results produced for these statements are:

WILLIAM BAYLESS
RAUL CAUDILLO
JOKHI DINSHAW
ROBERT MURRAY
LORI RASMUSSEN

The author's first and last names are displayed as uppercase letters, because they are stored that way
in the bookstore data set. If you wanted to display these names with an initial uppercase letter and
subsequent lower case letters, you could use the following OUTREC statement:

 OUTREC FIELDS=(91,1,92,14,TRAN=UTOL,X,76,1,77,14,TRAN=UTOL)

The results produced for this OUTREC statement are:

William Bayless
Raul Caudillo
Jokhi Dinshaw

Reformatting Records

Chapter 5. Reformatting records with fixed fields 43

Robert Murray
Lori Rasmussen

p,m,TRAN=UTOL translates uppercase letter (A-Z) in the field to the equivalent lowercase letter (a-z). In
our example, p,m,TRAN=UTOL translates uppercase letters to lowercase letters starting with the second
letter of the author's first name and the second letter of the author's last name. The first letter of each
name is not included in the TRAN=UTOL field; these uppercase letters are moved to the output record
unchanged.

In addition to TRAN=UTOL, you can also use these other TRAN=keyword functions in a similar way:

• TRAN=LTOU translates lowercase letters (a-z) in a field to the equivalent uppercase letters (A-Z)
• TRAN=ETOA translates EBCDIC characters in a field to the equivalent ASCII characters.
• TRAN=ATOE translates ASCII characters in a field to the equivalent EBCDIC characters.
• TRAN=ALTSEQ translates characters in a field to other characters as specified by an ALTSEQ statement.

For example, "null" characters (hex 00) can be changed to blank characters (hex 40)
• TRAN=HEX translates binary values in a field to their equivalent EBCDIC hexadecimal values ('0'-'F'). 2

output characters are produced for each input byte.
• TRAN=BIT translates binary values in a field to their equivalent EBCDIC bit values ('0' or '1'). 8 output

characters are produced for each input byte.
• TRAN=UNHEX translates EBCDIC hexadecimal values ('0'-'F') in a field to their equivalent binary values.

An output byte is produced for each 2 input characters.
• TRAN=UNBIT translates EBCDIC bit values ('0' or '1') in a field to their equivalent binary values. An

output byte is produced for each 8 input characters.

For detailed information on all of the available TRAN=keyword functions, see z/OS DFSORT Application
Programming Guide.

Converting numeric fields to different formats
Suppose you want the summed binary values in Table 25 on page 38 be readable so you can print or
display them. You can use the following statements to convert the BI values to readable ZD values:

 OPTION COPY
 OUTREC FIELDS=(1,4,X,
 5,4,BI,TO=ZD,LENGTH=6,X,
 9,4,BI,TO=ZD,LENGTH=6)

p,m,BI,TO=ZD converts the BI values to ZD values. By default, a 4-byte BI value produces a 10-byte ZD
value, but LENGTH=6 overrides the default length to produce a 6-byte ZD value.

Table 30 on page 44 shows the output, which is readable:

Table 30. Converting from BI to ZD

Publisher Number In Stock Number Sold

1 4 6 11 13 18

COR
FERN
VALD
WETH

000103
000019
000042
000062

000161
000087
000097
000079

Alternatively, you can use the following OUTREC statement to convert the BI values to readable FS values:

 OUTREC FIELDS=(1,4,X,
 5,4,BI,TO=FS,LENGTH=6,X,
 9,4,BI,TO=FS,LENGTH=6)

Reformatting Records

44 z/OS: z/OS DFSORT: Getting Started

p,m,BI,TO=FS converts the BI values to FS values. By default, a 4-byte BI value produces an 11-byte FS
value, but LENGTH=6 overrides the default length to produce a 6-byte FS value.

Table 31 on page 45 shows the output, which is readable:

Table 31. Converting from BI to FS

Publisher Number In Stock Number Sold

1 4 6 11 13 18

COR
FERN
VALD
WETH

 103
 19
 42
 62

 161
 87
 97
 79

You can use p,m,f,TO=f or p,m,f,f to convert from various numeric formats to various other numeric
formats. You can use LENGTH=n to override the default output length.

For detailed information on DFSORT's numeric conversion parameters, see z/OS DFSORT Application
Programming Guide.

Editing numeric fields
Suppose you have input records with numeric values stored in PD format that you want to display or print
so they can be easily interpreted. PD values are stored as integers in a compressed internal format that is
actually unreadable if you print or display the values.

However, you know that:

• The first PD field represents a number with two decimal places.
• The second PD field represents a number with three decimal places.
• The third PD field represents a date in the form mmddyyyy.

You can use the edit features of the OUTREC statement to display the digits of the PD values as readable
characters. Furthermore, you can use the edit features to insert signs, commas, decimal points and
hyphens, as appropriate, to make the PD values easy to interpret.

Table 32 on page 45 shows the relevant input fields in the records. The PD fields are represented as
readable numbers in Table 32 on page 45, but they are really stored in an unreadable format.

Table 32. Input records with PD values

CH field First PD field Second PD field Third PD field

1 8 11 16 31 37 41 45

WEST
EAST
NORTH
SOUTH

+1524900810
-0065781053
+0000000000
-0000003562

+0000000020000
+0721500532006
-0000982630735
-0003826254999

+05122003
+11292003
+02152004
+12032003

You can use the following OUTREC statement to make the PD values meaningful:

 OUTREC FIELDS=(1,8,
 5X,
 11,6,PD,M4,
 5X,
 31,7,PD,EDIT=(SI,III,III,IIT.TTT),SIGNS=(,-),
 5X,
 41,5,PD,EDIT=(TT-TT-TTTT))

Reformatting Records

Chapter 5. Reformatting records with fixed fields 45

M4 is one of DFSORT's 27 pre-defined edit masks (see Table 33 on page 46). It edits a numeric field
according to the pattern SI,III,III,III,IIT.TT. EDIT=(SI,III,III,IIT.TTT) is a user-defined edit mask. It edits
a numeric field according to the pattern SI,III,III,IIT.TTT. EDIT=(TT-TT-TTTT) is another user-defined edit
mask. It edits a numeric field according to the pattern TT-TT-TTTT.

In the patterns:

• I indicates a leading insignificant digit to be displayed as 1-9, or as blank for a leading 0.
• T indicates a significant digit to be displayed as 0-9.
• S before the digits indicates a leading sign. S after the digits indicates a trailing sign. For M4,

the leading sign is to be displayed as + for a positive value or as - for a negative value. For
EDIT=(SI,III,III,IIT.TTT),SIGNS=(,-), the leading sign is to be displayed as blank for a positive value
or as - for a negative value.

• Any other character (for example, comma, decimal point or hyphen) is just displayed as appropriate.

The results produced for the OUTREC statement are:

WEST +15,249,008.10 20.000 05-12-2003
EAST -657,810.53 3,721,500,532.006 11-29-2003
NORTH +0.00 -982,630.735 02-15-2004
SOUTH -35.62 -3,826,254.999 12-03-2003

Pre-defined and user-defined edit masks give you a great deal of flexibility in how you format your
numeric fields for output. You can use p,m,f,Mnn or p,m,f,EDIT=(pattern) to edit various numeric fields
according to various output patterns. You can use SIGNS=(a,b,c,d) to override or set the output signs
(leading positive, leading negative, trailing positive and trailing negative). You can use LENGTH=n to
override or set the output length.

See z/OS DFSORT Application Programming Guide for complete details about DFSORT's numeric editing
parameters. For easy reference, Table 33 on page 46 shows the patterns for the 27 pre-defined edit
masks (M0-M26) as well as examples of the output for each mask.

Table 33. Edit Mask Patterns

Mask Pattern Examples

Value Result

M0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIITS +01234 1234

-00001 1-

M1 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTS -00123 00123-

+00123 00123

M2 II,III,III,III,III,III,III,III,III,IIT.TTS +123450 1,234.50

-000020 0.20-

M3 II,III,III,III,III,III,III,III,III,IIT.TTCR -001234 12.34CR

+123456 1,234.56

M4 SII,III,III,III,III,III,III,III,III,IIT.TT +0123456 +1,234.56

-1234567 -12,345.67

M5 SII,III,III,III,III,III,III,III,III,IIT.TTS -001234 (12.34)

+123450 1,234.50

M6 III-TTT-TTTT 00123456 012-3456

12345678 1-234-56788

M7 TTT-TT-TTTT 00123456 000-12-3456

12345678 012-34-5678

Reformatting Records

46 z/OS: z/OS DFSORT: Getting Started

Table 33. Edit Mask Patterns (continued)

Mask Pattern Examples

Value Result

M8 IT:TT:TT 030553 3:05:53

121736 12:17:36

M9 IT/TT/TT 123004 12/30/04

083104 8/31/04

M10 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIT 01234 1234

00000 0

M11 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 00010 00010

01234 01234

M12 SI,III,III,III,III,III,III,III,III,III,IIT +1234567 1,234,567

-0012345 -12,345

M13 SI.III.III.III.III.III.III.III.III.III.IIT +1234567 1.234.567

-0012345 -12.345

M14 SI III III III III III III III III III IITS +1234567 1 234 567

-0012345 (12 345)

M15 I III III III III III III III III III IITS +1234567 1 234 567

-0012345 12 345-

M16 SI III III III III III III III III III IIT +1234567 1 234 567

-0012345 -12 345

M17 SI'III'III'III'III'III'III'III'III'III'IIT +1234567 1'234'567

-0012345 -12'345

M18 SII,III,III,III,III,III,III,III,III,IIT.TT +0123456 1,234.56

-1234567 -12,345.67

M19 SII.III.III.III.III.III.III.III.III.IIT,TT +0123456 1.234,56

-1234567 -12.345,67

M20 SI III III III III III III III III IIT,TTS +0123456 1 234,56

-1234567 (12 345,67)

M21 II III III III III III III III III IIT,TTS +0123456 1 234,567

-1234567 12 345,67-

M22 SI III III III III IIII III III III IIT,TT +0123456 1 234,56

-1234567 -12 345,67

M23 SII'III'III'III'III'III'III'III'III'IIT.TT +0123456 1'234.56

-1234567 -12'345.67

M24 SII'III'III'III'III'III'III'III'III'IIT,TT +0123456 1'234,56

-1234567 -12'345,67

M25 SIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIT +01234 1234

-00001 -1

Reformatting Records

Chapter 5. Reformatting records with fixed fields 47

Table 33. Edit Mask Patterns (continued)

Mask Pattern Examples

Value Result

M26 STTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 1234 +01234

-1 -00001

Displaying data in hexadecimal
If you are curious about how the CH and PD values in Table 32 on page 45 are actually stored, you can use
this OUTREC statement to display hexadecimal representations of these fields:

 OUTREC FIELDS=(1,8,TRAN=HEX,
 2X,
 11,6,TRAN=HEX,
 2X,
 31,7,TRAN=HEX,
 2X,
 41,5,TRAN=HEX)

Note: p,m,TRAN=HEX and p,m,HEX are equivalent.

The results produced for this OUTREC statement are:

E6C5E2E340404040 01524900810C 0000000020000C 005122003C
C5C1E2E340404040 00065781053D 3721500532006C 011292003C
D5D6D9E3C8404040 00000000000C 0000982630735D 002152004C
E2D6E4E3C8404040 00000003562D 0003826254999D 012032003C

Displaying data as bits
You can also use OUTREC to display bit representations of data. For example, if you had the following five
input records:

A
Z
0
9
$

You could use this OUTREC statement to display the data in bit, hexadecimal and character form:

 OUTREC BUILD=(1,1,TRAN=BIT,X,1,1,TRAN=HEX,X,1,1)

The resulting output records would be:

11000001 C1 A
11101001 E9 Z
11110000 F0 0
11111001 F9 9
01011011 5B $

Performing arithmetic with numeric fields and constants
Suppose you want to display the results of subtracting the second PD field in Table 32 on page 45 from
the first PD field in Table 32 on page 45. As discussed previously, the PD fields are stored as integers, but
we know that:

• The first PD field is 6 bytes and represents a signed number with 11 digits including two decimal places.
• The second PD field is 7 bytes and represents a signed number with 13 digits including three decimal

places.

Reformatting Records

48 z/OS: z/OS DFSORT: Getting Started

In order to do arithmetic on these fields, you must ensure that the integer and decimal parts of
the numbers match up correctly. For example, in the first record, the first PD value is +1524900810
representing +15249008.10 and the second PD value is +20000 representing +20.000. In order to
subtract the second PD value from the first PD value, you need to put them in the following forms:

+15249008.100
+00000020.000

You could use the following OUTREC statement to handle the subtraction correctly:

 OUTREC FIELDS=(1,8,
 5X,
 ((11,6,PD,MUL,+10),SUB,31,7,PD),
 EDIT=(SI,III,III,IIT.TTT),SIGNS=(,-))

11,6,PD,MUL,+10 multiples the first PD field by 10 to match up the decimal places. SUB,31,7,PD
subtracts the second PD field from the results of the 11,6,PD,MUL,+10 operation.

EDIT and SIGNS are used to make the results more meaningful.

The results produced for this OUTREC statement are:

WEST 15,248,988.100
EAST -3,722,158,342.536
NORTH 982,630.735
SOUTH 3,826,219.379

You can do arithmetic with numeric fields and decimal constants (+n and -n) using the operators MIN
(minimum), MAX (maximum), DIV (division), MUL (multiplication), MOD (modulus), ADD (addition) and
SUB (subtraction). The order of evaluation precedence for the operators is as follows, but can be changed
by using parentheses:

1. MIN and MAX
2. MUL, DIV and MOD
3. ADD and SUB

You can use p,m,f, MIN, MAX, MUL, DIV, MOD, ADD, SUB, +n, -n and parentheses to do a wide variety
of arithmetic operations for various numeric formats. The result of an arithmetic operation is a 15-digit
ZD value that can be converted to a different numeric format, or edited using pre-defined edit masks
(M0-M26) or user-defined edit masks, as discussed earlier.

For complete details on arithmetic operations, see z/OS DFSORT Application Programming Guide.

Converting date fields
Suppose you had input records that looked like this:

03212009 Sacramento
05172008 Los Angeles
12302008 Morgan Hill
08132009 Palo Alto

The first field is a gregorian date in 'mmddccyy' form, but you'd actually like to reformat it into a julian
date in 'ccyy/ddd' form. You can use the following statements to convert the date field to the form you
want:

 OUTREC BUILD=(1,8,Y4W,TOJUL=Y4T(/),X,10,15)

The results produced for this OUTREC statement are:

2009/080 Sacramento
2008/138 Los Angeles
2008/365 Morgan Hill
2009/225 Palo Alto

Reformatting Records

Chapter 5. Reformatting records with fixed fields 49

Y4W and Y4T are two of DFSORT's 4-digit year date field formats. Y4W indicates a date value with the
year (ccyy) last such as 'mmddccyy' or 'dddccyy' whereas Y4T indicates a date value with the year first
such as 'ccyymmdd' or 'ccyyddd'. TOJUL is one of the conversion keywords that can be used with date
fields. You can use any of the following after p,m,Y4x or p,m,Y2x to convert a CH, ZD or PD 4-digit or
2-digit year date in one form to a corresponding CH, ZD or PD 4-digit or 2-digit year date in another form
or to a corresponding day of the week:

• TOJUL=Yaa - converts to a julian date without a separator (for example, P'2009007').
• TOJUL=Yaa(s) - converts to a julian date with a separator (for example, C'325-2008').
• TOGREG=Yaa - converts to a gregorian date without separators (for example, Z'091121').
• TOGREG=Yaa(s) - converts to a gregorian date with separators (for example, C'2009.09.21').
• WEEKDAY=CHAR3 - converts to a 3 character day of the week (for example, C'WED' for Wednesday).
• WEEKDAY=CHAR9 - converts to a 9 character day of the week (for example, C'THURSDAY ' for

Thursday).
• WEEKDAY=DIGIT1 - converts to a 1 digit indicator for the day of the week (for example, C'2' for

Monday).
• WEEKNUM=USA - converts to an integer in the range of 1 to 54 that represents the week of the year.
• WEEKNUM=ISO - converts to an integer in the range of 1 to 53 that represents the week of the year.
• Age=YMD – converts to a 8 byte integer which has duration in years (0-9999), months (00-12), and days

(00-31).
• Age=YM – converts to a 6 byte integer which has duration in years (0-9999), months (00-12).
• Age=YD – converts to a 7 integer which has duration in years (0-9999), days (00-366).

For complete details on converting from one type of date field to another, see z/OS DFSORT Application
Programming Guide.

Performing arithmetic with date fields
Suppose you had an input file with gregorian input dates in ccyymmdd form like this:

20070305
20071213
20080219
20080901
20091122
20090115
20100915
20100630

You can use these statements:

 OUTREC BUILD=(1,8,Y4T,ADDDAYS,+50,TOGREG=Y4T(/),2X,
 1,8,Y4T,SUBMONS,+7,TOGREG=Y4T(/),2X,
 1,8,Y4T,ADDYEARS,+2,TOGREG=Y4T(/))

to display the original date and perform arithmetic on these dates as follows:

• Add 50 days
• Subtract 7 months
• Add 2 years

The results produced for this OUTREC statement are:

2007/04/24 2006/08/05 2009/03/05
2008/02/01 2007/05/13 2009/12/13
2008/04/09 2007/07/19 2010/02/19
2008/10/21 2008/02/01 2010/09/01
2010/01/11 2009/04/22 2011/11/22
2009/03/06 2008/06/15 2011/01/15

Reformatting Records

50 z/OS: z/OS DFSORT: Getting Started

2010/11/04 2010/02/15 2012/09/15
2010/08/19 2009/11/30 2012/06/30

You can perform various types of arithmetic on date fields in either julian or gregorian form, with 2-digit
(Y2x) or 4-digit (Y4x) years, in CH, ZD or PD format. You can convert the result to the same form of date or
another form, with or without separators.

You can use the following date arithmetic functions:

• ADDDAYS, ADDMONS and ADDYEARS can be used to add days, months or years to a date field.
• SUBDAYS, SUBMONS and SUBYEARS can be used to subtract days, months or years from a date field.
• DATEDIFF can be used to calculate the number of days between two date fields.
• NEXTDday can be used to calculate the next specified day of the week for a date field (where day can be

SUN, MON, TUE, WED, THU, FRI or SAT).
• PREVDday can be used to calculate the previous specified day of the week for a date field (where day

can be SUN, MON, TUE, WED, THU, FRI or SAT).
• LASTDAYW, LASTDAYM, LASTDAYQ and LASTDAYY can be used to calculate the last day of the week,

month, quarter or year for a date field.

For complete details on using date field arithmetic functions, see z/OS DFSORT Application Programming
Guide.

Doing lookup and change
You can use the following statements to show all of the course departments and the publishers whose
books they use:

 SORT FIELDS=(110,5,CH,A,106,4,CH,A)
 SUM FIELDS=NONE
 OUTREC FIELDS=(110,5,X,106,4)

The results produced for these statements are:

 COR
BIOL VALD
BUSIN COR
BUSIN VALD
COMP FERN
COMP VALD
COMP WETH
ENGL COR
ENGL FERN
ENGL VALD
HIST COR
HIST WETH
PSYCH COR
PSYCH FERN

This list is rather cryptic as everything is abbreviated. You can use the following OUTREC statement to
make the list more meaningful by substituting descriptive words for the abbreviations.

 OUTREC FIELDS=(110,5,CHANGE=(16,
 C'HIST',C'History',
 C'BUSIN',C'Business',
 C'COMP',C'Computer Science',
 C'ENGL',C'English',
 C'BIOL',C'Biology',
 C'PSYCH',C'Psychology'),
 NOMATCH=(C'Unaffiliated'),
 C' | ',
 106,4,CHANGE=(20,
 C'FERN',C'Fernall Brothers',
 C'COR',C'Cornish Limited',
 C'VALD',C'Valdern and Co.',
 C'WETH',C'Wethman, Inc.'))

The results produced for this OUTREC statement are:

Reformatting Records

Chapter 5. Reformatting records with fixed fields 51

Unaffiliated | Cornish Limited
Biology | Valdern and Co.
Business | Cornish Limited
Business | Valdern and Co.
Computer Science | Fernall Brothers
Computer Science | Valdern and Co.
Computer Science | Wethman, Inc.
English | Cornish Limited
English | Fernall Brothers
English | Valdern and Co.
History | Cornish Limited
History | Wethman, Inc.
Psychology | Cornish Limited
Psychology | Fernall Brothers

Table lookup and change allows you to find an input field value in a table of character, hexadecimal or bit
constants, and set a corresponding character constant, hexadecimal constant, or input field in the output
record.

You use p, m,CHANGE=(v,find,set,...) to give the position and length of the input field, the length of the
output field, and the "table" consisting of pairs of find constants, and set constants or set fields. For
example, for the first field in the previous OUTREC statement:

• The input field starts in position 110.
• The length of the input field and find constants is 5.
• The length of the output field and set constants is 16.
• The first find constant is 'HIST' (padded with a blank at the end to 5 characters).
• The first set constant is 'History' (padded with blanks at the end to 16 characters).

Whenever the course department contains 'HIST', the output field is set to 'History'. Whenever the course
department contains 'BUSIN', the output field is set to 'Business', and so on.

You can use NOMATCH=(set) to set the output value when an input field value does not match any
of the find constants. NOMATCH=(C'string') sets a character string constant. NOMATCH=(X'string') sets
a hexadecimal string constant. NOMATCH=(q,n) sets an input field value. For example, in the previous
OUTREC statement, an input field value of blanks results in an output field value of 'Unaffiliated' (padded
with blanks at the end to 16 characters). If you do not specify NOMATCH=(set), DFSORT terminates with
an error message when an input field value does not match any of the find constants.

For complete details on lookup and change, see z/OS DFSORT Application Programming Guide.

Left-justifying and right-justifying data
Suppose you had input records that looked like this:

 History
 Psychology
 Business
 Biology
 Computer Science

Since this is rather messy looking, you can use the following statements to left-justify the data to make it
more presentable:

 OPTION COPY
 OUTREC FIELDS=(1,30,JFY=(SHIFT=LEFT))

SHIFT=LEFT indicates that you want to left-justify. The results produced for this OUTREC statement are:

History
Psychology
Business
Biology
Computer Science

Alternatively, you can use the following statements to right-justify the data:

Reformatting Records

52 z/OS: z/OS DFSORT: Getting Started

 OPTION COPY
 OUTREC FIELDS=(1,30,JFY=(SHIFT=RIGHT))

SHIFT=RIGHT indicates that you want to right-justify. The results produced for this OUTREC statement
are:

 History
 Psychology
 Business
 Biology
 Computer Science

DFSORT's justify feature also lets you add a leading string, a trailing string, or both, to the data. For
example, you can use the following statements to surround the left-justified data with '<' and '>':

 OPTION COPY
 OUTREC FIELDS=(1,30,JFY=(SHIFT=LEFT,LEAD=C'<',TRAIL=C'>'))

The results produced for this OUTREC statement are:

<History>
<Psychology>
<Business>
<Biology>
<Computer Science>

LEAD=string specifies the leading string as a character or hexadecimal constant (1 to 50 bytes).
TRAIL=string specifies the trailing string as a character or hexadecimal constant (1 to 50 bytes).

Notice that when you left-justify, the trailing string is placed directly to the right of the last non-blank
character in your data.

If you want to right-justify instead of left-justify, you can use the following statements:

 OPTION COPY
 OUTREC FIELDS=(1,30,JFY=(SHIFT=RIGHT,LEAD=C'<',TRAIL=C'>'))

The results produced for this OUTREC statement are:

 <History>
 <Psychology>
 <Business>
 <Biology>
 <Computer Science>

Notice that when you right-justify, the leading string is placed directly to the left of the first non-blank
character in your data.

If your leading or trailing string causes the output field to be longer than the input field, you will lose
characters. In order to avoid that, you can increase the length of the output field with the LENGTH
parameter. For example, suppose you had input records that looked like this:

 rats
 bats
 cats

and you added a leading string with these control statements:

 OPTION COPY
 OUTREC FIELDS=(1,7,JFY=(SHIFT=LEFT,LEAD=C'*I love ',TRAIL=C'*'))

Since your input field is 7 bytes, your output field is also 7 bytes by default, so your output fields are
truncated to:

*I love
*I love
*I love

Reformatting Records

Chapter 5. Reformatting records with fixed fields 53

To avoid truncation, you can use LENGTH=16 to increase the output field length by the 9 characters you
added for the leading and trailing strings:

 OPTION COPY
 OUTREC FIELDS=(1,7,JFY=(SHIFT=LEFT,LEAD=C'*I love ',TRAIL=C'*',
 LENGTH=16))

The larger output field can accommodate your leading and trailing strings so you can show your
appreciation for these wonderful creatures with the following output:

I love rats
I love bats
I love cats

The justify feature can also be used to remove leading and trailing characters other than blanks from your
data. Suppose you had input records that looked like this:

 (History)
 (Psychology)
 (Business)
 (Biology)
 (Computer Science)

You can use the following statements to remove the leading '(' character and the trailing ')' character
before you left-justify the data:

 OPTION COPY
 OUTREC FIELDS=(1,30,JFY=(SHIFT=LEFT,PREBLANK=C'()'))

PREBLANK=list specifies a list of characters you want to replace with blanks before DFSORT starts
to justify the data. You can specify the list as a character or hexadecimal constant (1 to 10 bytes).
Remember that each character in the list is independent of the other characters. For example,
PREBLANK=C'*/' replaces each leading or trailing '*' character and '/' character with a blank before
justify procssing begins (for example, leading and trailing character sequences of /*, //*, */, // and * are all
replaced with blanks).

The results produced for this OUTREC statement are:

History
Psychology
Business
Biology
Computer Science

You could use the following statements to right-justify the data and replace the leading '(' character and
trailing ')' character with a leading '<' character and a trailing '>' character:

 OPTION COPY
 OUTREC FIELDS=(1,30,JFY=(SHIFT=RIGHT,PREBLANK=C'()',
 LEAD=C'<',TRAIL=C'>'))

The results produced for this OUTREC statement are:

 <History>
 <Psychology>
 <Business>
 <Biology>
 <Computer Science>

For complete details on justify, see z/OS DFSORT Application Programming Guide.

Left-squeezing and right-squeezing data
Suppose you had input records that looked like this

<tag> History </tag>
 <tag> Psychology </tag>

Reformatting Records

54 z/OS: z/OS DFSORT: Getting Started

 <tag> Business </tag>
<tag>Biology</tag>
 <tag> Science </tag>

If you want to remove the white space (blanks), you can use the following statements to left-squeeze the
data:

 OPTION COPY
 OUTREC FIELDS=(1,40,SQZ=(SHIFT=LEFT))

SHIFT=LEFT indicates that you want to left-squeeze by removing all of the blanks, shifting the remaining
characters to the left and padding on the right with blanks if needed. The results produced for this
OUTREC statement are:

<tag>History</tag>
<tag>Psychology</tag>
<tag>Business</tag>
<tag>Biology</tag>
<tag>Science</tag>

Alternatively, you can use the following statements to right-squeeze the data:

 OPTION COPY
 OUTREC FIELDS=(1,40,SQZ=(SHIFT=RIGHT))

SHIFT=RIGHT indicates that you want to right-squeeze by removing all of the blanks, shifting the
remaining characters to the right and padding on the left with blanks if needed. The results produced
for this OUTREC statement are:

 <tag>History</tag>
 <tag>Psychology</tag>
 <tag>Business</tag>
 <tag>Biology</tag>
 <tag>Science</tag>

DFSORT's squeeze feature also lets you add a leading string, a trailing string, or both, to the data. For
example, you can use the following statements to surround the left-squeezed data with '<tag1>' and
'</tag1>':

 OPTION COPY
 OUTREC FIELDS=(1,40,SQZ=(SHIFT=LEFT,LEAD=C'<tag1>',
 TRAIL=C'</tag1>'))

The results produced for this OUTREC statement are:

<tag1><tag>History</tag></tag1>
<tag1><tag>Psychology</tag></tag1>
<tag1><tag>Business</tag></tag1>
<tag1><tag>Biology</tag></tag1>
<tag1><tag>Science</tag></tag1>

LEAD=string specifies the leading string as a character or hexadecimal constant (1 to 50 bytes).
TRAIL=string specifies the trailing string as a character or hexadecimal constant (1 to 50 bytes).

Notice that when you left-squeeze, the trailing string is placed directly to the right of the last non-blank
character in your data.

If you want to right-squeeze instead of left-squeeze, you can use the following statements:

 OPTION COPY
 OUTREC FIELDS=(1,40,SQZ=(SHIFT=RIGHT,LEAD=C'<tag1>',
 TRAIL=C'</tag1>'))

The results produced for this OUTREC statement are:

 <tag1><tag>History</tag></tag1>
 <tag1><tag>Psychology</tag></tag1>
 <tag1><tag>Business</tag></tag1>

Reformatting Records

Chapter 5. Reformatting records with fixed fields 55

 <tag1><tag>Biology</tag></tag1>
 <tag1><tag>Science</tag></tag1>

Notice that when you right-squeeze, the leading string is placed directly to the left of the first non-blank
character in your data.

If your leading or trailing string causes the output field to be longer than the input field, you will lose
characters. In order to avoid that, you can increase the length of the output field with the LENGTH
parameter as discussed previously under “Left-justifying and right-justifying data” on page 52.

The squeeze feature can also be used to remove characters other than blanks from your data. Suppose
you had input records that looked like this:

<tag> (History) </tag>
 <tag> (Psychology) </tag>
 <tag> (Business) </tag>
<tag>(Biology)</tag>
 <tag> (Science) </tag>

You can use the following statements to remove the '(' and ')' characters before you left-squeeze the data:

 OPTION COPY
 OUTREC FIELDS=(1,40,SQZ=(SHIFT=LEFT,PREBLANK=C'()'))

PREBLANK=list specifies a list of characters you want to replace with blanks before DFSORT starts
to squeeze the data. You can specify the list as a character or hexadecimal constant (1 to 10
bytes). Remember that each character in the list is independent of the other characters. For example,
PREBLANK=C'*/' replaces each '*' character and '/' character with a blank before squeeze procssing
begins (for example, character sequences of /*, //*, */, // and * are all replaced with blanks).

The results produced for this OUTREC statement are:

<tag>History</tag>
<tag>Psychology</tag>
<tag>Business</tag>
<tag>Biology</tag>
<tag>Science</tag>

You could use the following statements to right-squeeze the data and remove the '(' character and ')'
character:

 OPTION COPY
 OUTREC FIELDS=(1,40,SQZ=(SHIFT=RIGHT,PREBLANK=C'()'))

The results produced for this OUTREC statement are:

 <tag>History</tag>
 <tag>Psychology</tag>
 <tag>Business</tag>
 <tag>Biology</tag>
 <tag>Science</tag>

The squeeze feature can be used to replace groups of blanks between the first nonblank and last
nonblank with other characters. Suppose you had input records that looked like this:

 Manufacturing California +100000
 Research Arizona +50000
 Marketing Texas +75000

You could use the following statements to create comma separated variable records:

 OPTION COPY
 OUTREC FIELDS=(1,80,SQZ=(SHIFT=LEFT,MID=C','))

The results produced for this OUTREC statement are:

Reformatting Records

56 z/OS: z/OS DFSORT: Getting Started

Manufacturing,California,+100000
Research,Arizona,+50000
Marketing,Texas,+75000

MID=string specifies the string to replace removed blanks or PREBLANK characters as a character or
hexadecimal constant (1 to 10 bytes).

If you want DFSORT to "ignore" blanks and PREBLANK characters between pairs of quotes, you can use
PAIR=QUOTE with SQZ.

Suppose you had input records that looked like this:

 "Computer Science A+" +123
 "Ancient Civilization B-" +521
 "Sanskrit A-" -263

You could use the following statements to "protect" the blanks, + and - signs inside the paired quotes
while removing them outside the paired quotes, and leave only one blank between the two squeezed
fields:

 OPTION COPY
 OUTREC FIELDS=(1,80,SQZ=(SHIFT=LEFT,PAIR=QUOTE,
 PREBLANK=C'+-',MID=C' '))

The results produced for this OUTREC statement are:

"Computer Science A+" 123
"Ancient Civilization B-" 521
"Sanskrit A-" 263

If you want DFSORT to "ignore" blanks and PREBLANK characters between pairs of apostrophes, you can
use PAIR=APOST with SQZ.

Suppose you had input records that looked like this:

 'Computer Science A+' +123
 'Ancient Civilization B-' +521
 'Sanskrit A-' -263

You could use the following statements to "protect" the blanks, + and - signs inside the paired
apostrophes while removing them outside the paired apostrophes, and leave only one blank between
the two squeezed fields:

 OPTION COPY
 OUTREC FIELDS=(1,80,SQZ=(SHIFT=LEFT,PAIR=APOST,
 PREBLANK=C'+-',MID=C' '))

The results produced for this OUTREC statement are:

'Computer Science A+' 123
'Ancient Civilization B-' 521
'Sanskrit A-' 263

For complete details on squeeze, see z/OS DFSORT Application Programming Guide.

So far

Now you know how to use the many features available with the BUILD or FIELDS parameter of the
OUTREC statement to reformat your input records in many ways for output. Keep in mind that you can
use all of these reformatting features with the BUILD or FIELDS parameter of the INREC statement and
with the BUILD or OUTREC parameter of the OUTFIL statement, as well as with the OUTREC statement.
In fact, you can use all of these statements together, when appropriate. Next, you will learn how to use
the OVERLAY parameter of the OUTREC statement to change one or more fields without affecting the
rest of your record.

Reformatting Records

Chapter 5. Reformatting records with fixed fields 57

Reformatting records with OVERLAY
With the BUILD or FIELDS parameter of the OUTREC statement, you build your reformatted output record
one item at a time. You must specify each item (unedited, edited or converted input field, blanks, string,
and so on) you want in the output record in the order in which you want it to appear.

But if you only want to change one or a few items and keep the rest of the record in its original form,
there's an easier way: the OVERLAY parameter of the OUTREC statement. You can use the same items
with the OVERLAY parameter we discussed earlier for the BUILD or FIELDS parameter.

Suppose you want to change the course department to lowercase and discount the price of each book by
10%. You can use the following statements to create an output data set with the new price instead of the
old price in each output record:

 OPTION COPY
 OUTREC BUILD=(1,109,
 110:110,5,TRAN=UTOL,
 115:115,55,
 170:170,4,BI,SUB,(170,4,BI,DIV,+10),
 TO=BI,LENGTH=4)

The arithmetic expression in the OUTREC parameter gives you a new 4-byte BI price as follows:

new price = old price - (old price / 10)

With the BUILD parameter, you must build the entire record, so you must specify the following:

• 1,109 to keep the bytes before the course department
• 110,5,TRAN=UTOL to change the course department from uppercase to lowercase
• 115,55 to keep the bytes between the course department and the price
• 170:170,4,BI,SUB,(170,4,BI,DIV,+10),TO=BI,LENGTH=4 to replace price with price=price-(price/10)

But since you are not changing the bytes before the course department or between the course
department and the price, it's easier to use the OVERLAY parameter to just overlay the bytes you want to
change as follows:

 OPTION COPY
 OUTREC OVERLAY=(110:110,5,TRAN=UTOL,
 170:170,4,BI,SUB,(170,4,BI,DIV,+10),
 TO=BI,LENGTH=4)

Table 34 on page 58 shows the copied data set.

Table 34. Books with Course Department and Price Changes

Book Title Department Price

1 75 110 114 170 173

Reformatting Records

58 z/OS: z/OS DFSORT: Getting Started

Table 34. Books with Course Department and Price Changes (continued)

Book Title Department Price

COMPUTER LANGUAGES
LIVING WELL ON A SMALL BUDGET
SUPPLYING THE DEMAND
VIDEO GAME DESIGN
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
COMPUTERS: AN INTRODUCTION
PICK'S POCKET DICTIONARY
EDITING SOFTWARE MANUALS
NUMBERING SYSTEMS
STRATEGIC MARKETING
THE INDUSTRIAL REVOLUTION
MODERN ANTHOLOGY OF WOMEN POETS
INTRODUCTION TO PSYCHOLOGY
THE COMPLETE PROOFREADER
SYSTEM PROGRAMMING
SHORT STORIES AND TALL TALES
INTRODUCTION TO BIOLOGY
ADVANCED TOPICS IN PSYCHOANALYSIS
EIGHTEENTH CENTURY EUROPE
CRISES OF THE MIDDLE AGES

comp

busin
comp
engl
comp

engl
comp
busin
hist
engl
psych
engl
comp
engl
biol
psych
hist
hist

2340
8910
1733
1980
0536
1710
0266
1305
0324
2115
0716
0405
1980
0563
2876
1368
2115
2340
1611
1080

With the OVERLAY parameter, you don't have to figure out or specify 1,109 or 115,55. Instead you just
specify each output starting column (110: and 170:) and its replacement item. Any column you don't
overlay remains the same. In addition, in contrast to BUILD items, OVERLAY items can overlap each other
and can be specified in any order. In our case, the following OUTREC statement would give the same
results as the previous OUTREC statement:

 OPTION COPY
 OUTREC OVERLAY=(170:170,4,BI,SUB,(170,4,BI,DIV,+10),
 TO=BI,LENGTH=4,
 110:110,5,TRAN=UTOL)

Extending records with OVERLAY
You can also use the OVERLAY parameter to extend your output record without affecting the rest of the
record.

Suppose you want to replace the old price with a new price discounted by 10%, but also extend the
record with a new field containing the original price. You can use the following statements:

 OPTION COPY
 OUTREC OVERLAY=(174:170,4,
 170:170,4,BI,SUB,(170,4,BI,DIV,+10),
 TO=BI,LENGTH=4)

Table 35 on page 59 shows the copied data set.

Table 35. New and Old Prices

New Price Old Price

170 173 174 177

Reformatting Records

Chapter 5. Reformatting records with fixed fields 59

Table 35. New and Old Prices (continued)

New Price Old Price

2340
8910
1733
1980
0536
1710
0266
1305
0324
2115
0716
0405
1980
0563
2876
1368
2115
2340
1611
1080

2600
9900
1925
2199
0595
1899
0295
1450
0360
2350
0795
0450
2200
0625
3195
1520
2350
2600
1790
1200

Since you added a new field at positions 174-177, DFSORT automatically increases the record length
from 173 bytes to 177 bytes.

In this case, the order in which you specify the two overlay items is important because you are using the
old price for both items. So you must make the copy of the old price before you modify it. Thus, in the
previous OUTREC statement, the first overlay item copies the old price to the new field, and the second
overlay item replaces the old price with the new price. If you used this OUTREC statement:

 OUTREC OVERLAY=(170:170,4,BI,SUB,(170,4,BI,DIV,+10),
 TO=BI,LENGTH=4,
 174:170,4)

you would inadvertently replace the old price with the new price and then copy the new price to the
new field. Thus, you would have the new price in both fields instead of having the new price in one field
and the old price in the other field. Since OVERLAY allows overlapping items, you must be careful not to
destroy a field with an earlier overlay item that you want to use in a later overlay item.

So far

Now you know how to use the OVERLAY parameter of the OUTREC statement to overlay specified
columns with reformatting items, without affecting the rest of your reformatted record. Keep in mind
that you can use all of these reformatting features with the OVERLAY parameter of the INREC statement
and OUTFIL statement, as well as with the OUTREC statement. Next, you will learn how to use the
FINDREP parameter of the OUTREC statement to replace or remove data anywhere in your records.

Reformatting records with FINDREP
With the BUILD, FIELDS or OVERLAY parameter of the OUTREC statement, you reformat output records
by specifying items that start at a specific position. But if you want to replace or remove data anywhere in
your records, you would use the FINDREP parameter of the OUTREC statement instead.

Suppose you had input records that looked like this:

Reformatting Records

60 z/OS: z/OS DFSORT: Getting Started

"Goodbye John""Goodbye William"*"Goodbye Goodboy"*
"Goodbye Mike""Good Dog""Goodbye Goodbye"

You could use the following statements to replace all instances of 'Goodbye' anywhere in the input
records with 'Bye'.

 OPTION COPY
 OUTREC FINDREP=(IN=C'Goodbye',OUT=C'Bye')

FINDREP indicates that you want to do a find and replace operation. IN identifies the constant you
are looking for (the "find" constant) and OUT identifies the constant you want instead (the "replace"
constant).

The output records produced by this OUTREC statement are:

"Bye John""Bye William"*"Bye Goodboy"*
"Bye Mike""Good Dog""Bye Bye"

You can use OUT=C'' (null constant) to remove identified constants. For example, you could use the
following statements to remove 'bye' anywhere in the input records:

 OPTION COPY
 OUTREC FINDREP=(IN=C'bye',OUT=C'')

The results produced for this OUTREC statement using the input records shown previously are:

"Good John""Good William"*"Good Goodboy"*
"Good Mike""Good Dog""Good Good"

You could use the following statements to change 'William' to 'Bill', 'Mike' to 'Michael', 'Dog' to 'Beagle'
and '*' to '#' anywhere in the input records:

 OPTION COPY
 OUTREC FINDREP=(INOUT=(C'William',C'Bill',
 C'Mike',C'Michael',C'Dog',C'Beagle',C'*',C'#'))

INOUT identifies pairs of find and replace constants.

The results produced for this OUTREC statement using the input records shown previously are:

#"Goodbye John"#"Goodbye Bill"#"Goodbye Goodboy"#
"Goodbye Michael""Good Beagle""Goodbye Goodbye"

For complete details on find and replace, see z/OS DFSORT Application Programming Guide.

So far

Now you know how to use the FINDREP parameter of the OUTREC statement to replace or remove
data anywhere in your records. Keep in mind that you can use all of these reformatting features with
the FINDREP parameter of the INREC statement and OUTFIL statement, as well as with the OUTREC
statement. Next, you will learn how to use IFTHEN clauses with the OUTREC statement to reformat
different records in different ways.

Reformatting records with IFTHEN
The OVERLAY, FINDREP, and BUILD or FIELDS parameters discussed in previous sections let you use
the same reformatting items for every output record. IFTHEN clauses for the OUTREC statement let you
select subsets of the output records and apply different BUILD, FINDREP or OVERLAY items to them. So,
for example, you can apply a set of BUILD items to "type 1" records, a set of OVERLAY items to "type 2"
records, do find and replace operations on "type 3" records, and apply a different set of OVERLAY items
(or no items) to other types of records.

You can use five types of IFTHEN clauses as follows:

Reformatting Records

Chapter 5. Reformatting records with fixed fields 61

• WHEN=INIT: Use one or more WHEN=INIT clauses to apply BUILD, FINDREP or OVERLAY items to all
of your input records. WHEN=INIT clauses and WHEN=GROUP clauses are processed before any of the
other IFTHEN clauses.

• WHEN=GROUP: Use one or more WHEN=GROUP clauses to propagate fields, identifiers and sequence
numbers within groups of records. You define the records that belong to a group using an appropriate
combination of BEGIN=(logexp), END=(logexp), KEYBEGIN=(field) and RECORDS=n parameters.

You can use any logical expression for BEGIN=(logexp) and END=(logexp) that you can use for the
COND=(logexp) parameter of an INCLUDE statement as previously discussed in Chapter 3, “Including
or omitting records,” on page 23. A BEGIN=(logexp) or END=(logexp) parameter is satisfied when the
logical expression evaluates as true.

A KEYBEGIN=(field) parameter is satisfied when the field value changes.

You define how the records in a group are to be changed using the PUSH parameter. You use c: (output
column), p,m (field), ID=n (zoned decimal identifier of length n) and SEQ=n (zoned decimal sequence
number of length n) in the PUSH parameter to specify how the records in the group are to be changed.

WHEN=INIT clauses and WHEN=GROUP clauses are processed before any of the other IFTHEN clauses.
• WHEN=(logexp): Use one or more WHEN=(logexp) clauses to apply BUILD, FINDREP or OVERLAY

items to the subset of your records that satisfy a specified logical expression. You can use any logical
expression for WHEN=(logexp) that you can use for the COND=(logexp) parameter of an INCLUDE
statement as previously discussed in Chapter 3, “Including or omitting records,” on page 23. A
WHEN=(logexp) clause is satisfied when the logical expression evaluates as true.

• WHEN=ANY: Use a WHEN=ANY clause after multiple WHEN=(logexp) clauses to apply additional
BUILD, FINDREP or OVERLAY items to your records if they satisfied the criteria for any of the preceding
WHEN=(logexp) clauses.

• WHEN=NONE: Use one or more WHEN=NONE clauses to apply BUILD, FINDREP or OVERLAY items to
your records that did not meet the criteria for any of the WHEN=(logexp) clauses. WHEN=NONE clauses
are processed after any of the other IFTHEN clauses. If you do not specify a WHEN=NONE clause, only
the WHEN=INIT changes (if any) and WHEN=GROUP changes (if any) are applied to input records that
do not meet the criteria for any of the WHEN=(logexp) clauses.

Suppose you want to produce a report showing the title, publisher, edited price and % discount if you:

• discount the price of books from publisher COR that cost more than $20.00 by 20%
• discount the price of books from publisher COR that cost $20.00 or less by 10%
• discount the price of all books from publisher VALD by 25%
• discount the price of all books from the other publishers by 15%

You can use the following statements:

 OPTION COPY
 OUTREC IFTHEN=(WHEN=INIT,
 BUILD=(1:1,40,50:106,4,60:170,4,BI,EDIT=(TT.TT),70:170,4)),
 IFTHEN=(WHEN=(50,4,CH,EQ,C'COR',AND,70,4,BI,GT,+2000),
 OVERLAY=(70:C'20%',X)),
 IFTHEN=(WHEN=(50,4,CH,EQ,C'COR',AND,70,4,BI,LE,+2000),
 OVERLAY=(70:C'10%',X)),
 IFTHEN=(WHEN=(50,4,CH,EQ,C'VALD'),OVERLAY=(70:C'25%',X)),
 IFTHEN=(WHEN=NONE,OVERLAY=(70:C'15%',X))

Table 36 on page 62 shows the copied data set.

Table 36. Proposed discounts for books

Book Title Publisher Price Discount

1 40 50 53 60 64 70 73

Reformatting Records

62 z/OS: z/OS DFSORT: Getting Started

Table 36. Proposed discounts for books (continued)

Book Title Publisher Price Discount

COMPUTER LANGUAGES
LIVING WELL ON A SMALL BUDGET
SUPPLYING THE DEMAND
VIDEO GAME DESIGN
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
COMPUTERS: AN INTRODUCTION
PICK'S POCKET DICTIONARY
EDITING SOFTWARE MANUALS
NUMBERING SYSTEMS
STRATEGIC MARKETING
THE INDUSTRIAL REVOLUTION
MODERN ANTHOLOGY OF WOMEN POETS
INTRODUCTION TO PSYCHOLOGY
THE COMPLETE PROOFREADER
SYSTEM PROGRAMMING
SHORT STORIES AND TALL TALES
INTRODUCTION TO BIOLOGY
ADVANCED TOPICS IN PSYCHOANALYSIS
EIGHTEENTH CENTURY EUROPE
CRISES OF THE MIDDLE AGES

FERN
COR
COR
VALD
COR
WETH
COR
VALD
FERN
VALD
WETH
COR
COR
FERN
WETH
VALD
VALD
FERN
WETH
COR

26.00
99.00
19.25
21.99
05.95
18.99
02.95
14.50
03.60
23.50
07.95
04.50
22.00
06.25
31.95
15.20
23.50
26.00
17.90
12.00

15%
20%
10%
25%
10%
15%
10%
25%
15%
25%
15%
10%
20%
15%
15%
25%
25%
15%
15%
10%

The first IFTHEN clause is a WHEN=INIT clause that uses BUILD to initialize every record with the title,
publisher, edited price and a placeholder for the discount. Notice that the publisher field is copied to
positions 50-53 and the 4-byte BI price field is copied to positions 70-73. Subsequent IFTHEN clauses
are processed for all records and must refer to these fields at their new positions.

The second IFTHEN clause is a WHEN=(logexp) clause that uses OVERLAY to set the discount field to
'20%' for the subset of records with 'COR ' as the publisher and more than 2000 as the price. Subsequent
IFTHEN clauses are not processed for records that satisfy this logical expression. Subsequent IFTHEN
clauses are processed for records that do not satisfy this logical expression.

The third IFTHEN clause is a WHEN=(logexp) clause that uses OVERLAY to set the discount field to '10%'
for the subset of records with 'COR ' as the publisher and 2000 or less as the price. Subsequent IFTHEN
clauses are not processed for records that satisfy this logical expression. Subsequent IFTHEN clauses are
processed for records that do not satisfy this logical expression.

The fourth IFTHEN clause is a WHEN=(logexp) clause that uses OVERLAY to set the discount field to '25%'
for the subset of records with 'VALD' as the publisher. Subsequent IFTHEN clauses are not processed for
records that satisfy this logical expression. Subsequent IFTHEN clauses are processed for records that do
not satisfy this logical expression.

The fifth IFTHEN clause is a WHEN=NONE clause that uses OVERLAY to set the discount field to '15%' for
the subset of records that did not satisfy the logical expression for the second, third and fourth IFTHEN
clauses.

DFSORT determines an appropriate reformatted output record length from the IFTHEN clauses you
specify. However, you can use the IFOUTLEN=n parameter to tell DFSORT the length you want it to use
for the reformatted records. For example, suppose you had 80 byte input records, and this DFSORT
statement:

 OUTREC IFTHEN=(WHEN=INIT,OVERLAY=(81:SEQNUM,8,ZD)),
 IFTHEN=(WHEN=(81,8,ZD,EQ,+5),OVERLAY=(21:C'J82')),
 IFTHEN=(WHEN=(81,8,ZD,EQ,+10),OVERLAY=(21:C'M72'))

By default, DFSORT would set the reformatted output record length to 88 to accommodate the 8-byte
ZD sequence number you added. If you're only using the 8-byte sequence number for the WHEN
comparisons, and you don't want the sequence number as part of the reformatted output record, you

Reformatting Records

Chapter 5. Reformatting records with fixed fields 63

could use this statement instead to tell DFSORT to use 80 for the reformatted output record length
instead of 88:

 OUTREC IFTHEN=(WHEN=INIT,OVERLAY=(81:SEQNUM,8,ZD)),
 IFTHEN=(WHEN=(81,8,ZD,EQ,+5),OVERLAY=(21:C'J82')),
 IFTHEN=(WHEN=(81,8,ZD,EQ,+10),OVERLAY=(21:C'M72')),
 IFOUTLEN=80

Suppose you have the following 30-byte FB input records:

C33 Not in a group
HDR Start Group 1
A01 Group 1 record
B02 Group 1 record
C03 Group 1 record
TRL End Group 1
R24 Not in a group
T02 Not in a group
HDR Start Group 2
D04 Group 2 record
E05 Group 2 record
TRL End Group 2
F97 Not in a group

In the output data set we only want to include groups of records that start with 'HDR' and end with 'TRL'.
We write the following DFSORT control statements:

 OPTION COPY
 OUTREC IFTHEN=(WHEN=GROUP,BEGIN=(1,3,CH,EQ,C'HDR'),
 END=(1,3,CH,EQ,C'TRL'),PUSH=(31:ID=1))
 OUTFIL INCLUDE=(31,1,CH,NE,C' '),BUILD=(1,30)

We use an IFTHEN WHEN=GROUP clause to put a non-blank character in each record that is part of a
group. BEGIN indicates a group starts with a record that has 'HDR' in positions 1-3. END indicates a group
ends with a record that has 'TRL' in positions 1-3. PUSH overlays a 1-byte ID character at position 31
in each record of a group (after the end of the record). After the IFTHEN GROUP clause is executed, the
intermediate records look like this:

C33 Not in a group
HDR Start Group 1 1
A01 Group 1 record 1
B02 Group 1 record 1
C03 Group 1 record 1
TRL End Group 1 1
R24 Not in a group
T02 Not in a group
HDR Start Group 2 2
D04 Group 2 record 2
E05 Group 2 record 2
TRL End Group 2 2
F97 Not in a group

Note that the records within a group have a non-blank character in position 31 whereas the records
outside groups have a blank character in position 31. The ID starts at 1 for the first group and is
incremented by 1 for each subsequent group. Since we are only allowing one character for the ID, when
the ID counter gets to 10, a '0' will appear in position 31. That's fine since we are just looking for a
non-blank to indicate a record within a group, or a blank to indicate a record outside of a group.

We use an OUTFIL statement to only INCLUDE records with a non-blank in position 31, and to remove
the ID character so the included output records will be identical to the input records. After the OUTFIL
statement is executed, the final output records look like this:

HDR Start Group 1
A01 Group 1 record
B02 Group 1 record
C03 Group 1 record
TRL End Group 1
HDR Start Group 2
D04 Group 2 record
E05 Group 2 record
TRL End Group 2

Reformatting Records

64 z/OS: z/OS DFSORT: Getting Started

For detailed information on using IFTHEN clauses and IFOUTLEN, see z/OS DFSORT Application
Programming Guide.

So far

Now you know how to use IFTHEN clauses with the OUTREC statement to reformat different records in
different ways and to perform group operations. Keep in mind that you can use IFTHEN clauses with the
INREC statement and OUTFIL statement, as well as with the OUTREC statement. Next, you will learn
about some special considerations for using the INREC statement.

Reformatting records before sorting
The INREC statement has the same format as the OUTREC statement. Therefore, in the first example of
“Reformatting records after sorting with BUILD or FIELDS” on page 38, where you used OUTREC to write
only the publisher, number in stock, and number sold fields, you can use INREC instead.

Using other statements with INREC
Because INREC reformats the records before they are sorted, the SORT and SUM statements must refer to
the reformatted records as they will appear in the output data set.

Thus, after INREC, the input records for the control statement in the previous section are 12 bytes long
(see Table 25 on page 38 for an example).

You write the SORT and SUM statements to process the byte positions in the reformatted records:

* Move input positions 106-109 to reformatted record positions 1-4.
* Move input positions 162-169 to reformatted record positions 5-12.
 INREC FIELDS=(106,4,162,8)
* Sort reformatted record positions 1-4.
 SORT FIELDS=(1,4,CH,A)
* Sum reformatted record positions 5-8 and 9-12.
 SUM FIELDS=(5,4,BI,9,4,BI)

Table 37 on page 65 shows the result.

Table 37. Using INREC to Write Only Publisher, Number in Stock, and Number Sold

Publisher

Number
In Stock

Number
Sold

1 4 5 8 9 12

COR
FERN
VALD
WETH

 103
 19
 42
 62

 161
 87
 97
 79

Reformatting Records

Chapter 5. Reformatting records with fixed fields 65

As the flowchart in Appendix C, “Processing order of control statements,” on page 177 shows, DFSORT
processes the INREC statement before SORT, SUM, and OUTREC, but after INCLUDE and OMIT. Therefore,
when used with the INREC statement, SORT, SUM, and OUTREC must refer to the reformatted records,
and INCLUDE and OMIT must refer to the original records.

DFSORT processes the OUTFIL statements after the INREC and OUTREC statements. Therefore, OUTFIL
must refer to the reformatted records produced by OUTREC if specified, or to the reformatted records
produced by INREC if it is specified without OUTREC. You will learn about OUTFIL statements in Chapter
7, “Creating multiple output data sets and reports,” on page 79.

The following control statements illustrate how the INREC and OUTREC statements affect the positions
you specify for various other statements:

 INCLUDE COND=(110,5,CH,EQ,C'ENGL',OR,110,5,CH,EQ,C'PSYCH')
 INREC FIELDS=(1:1,75,76:170,4,80:110,5)
 SORT FIELDS=(76,4,BI,D)
 OUTREC FIELDS=(1:1,75,85:76,4,BI,EDIT=($IT.TT),95:80,5)
 OUTFIL FNAMES=ENGL,INCLUDE=(95,5,CH,EQ,C'ENGL')
 OUTFIL FNAMES=PSYCH,INCLUDE=(95,5,CH,EQ,C'PSYCH')

The INCLUDE and INREC statements refer to fields as they appear in the input records. The SORT
and OUTREC statements refer to fields as they appear in the reformatted INREC records. The OUTFIL
statements refer to fields as they appear in the reformatted OUTREC records.

Preventing overflow when summing values
In some cases, you can prevent overflow by using INREC to pad summary fields with zeros. However, this
method cannot be used for negative fixed-point binary data, because padding with zeros rather than with
ones would change the sign.

If the summary fields in Table 37 on page 65 were overflowing, you could pad each of them on the left
with 4 bytes (binary fields must be 2, 4, or 8 bytes long), as shown in Table 38 on page 66.

Table 38. Padding Summary Fields

Publisher X'0...0' Number In Stock X'0...0' Number Sold

1 4 5 8 9 12 13 16 17 20

COR
FERN
VALD
WETH

 103
 19
 42
 62

 161
 87
 97
 79

Table 39 on page 67 shows the output records, each 20 bytes long.

Reformatting Records

66 z/OS: z/OS DFSORT: Getting Started

Table 39. Padding Summary Fields

Publisher Number In Stock Number Sold

1 4 5 12 13 20

COR
FERN
VALD
WETH

 103
 19
 42
 62

 161
 87
 97
 79

Attention: You cannot use the OUTREC statement to prevent overflow, because it is processed
after summarization.

Inserting sequence numbers
Suppose you want to show the total price for all of the books associated with each course department,
but you need the list in its original course department order rather than sorted by course department.
In order to get the totals, you need to SORT by the department field, and SUM the price field, using the
following statements:

 INREC FIELDS=(110,5,170,4)
 SORT FIELDS=(1,5,CH,A)
 SUM FIELDS=(6,4,BI)

Table 40 on page 67 shows the result of these statements.

Table 40. Total book prices by course

Department Total Price

1 5 6 9

BIOL
BUSIN
COMP
ENGL
HIST
PSYCH

10195
 2350
 4275
10253
 4640
 3785
 4800

Because you had to SORT in order to SUM (remember that you cannot SUM with COPY), the list is in
sorted order by course department instead of the original order of COMP, blank, BUSIN, ENGL, HIST,
PSYCH, and BIOL you need. To get back the original order, you can add a sequence number to each record
before the records are sorted, and use a second step to sort the records back into their original order by
that sequence number. You can remove the sequence numbers at the end of the second step.

You can use the previous statements with a slightly modified INREC statement to add the sequence
number for the first step:

 INREC FIELDS=(110,5,170,4,SEQNUM,8,ZD)
 SORT FIELDS=(1,5,CH,A)
 SUM FIELDS=(6,4,BI)

The sequence numbers start at 00000001 for the first record and are incremented by 00000001 for
each subsequent record. This allows you to sort the summed records back into their original course
department order by the sequence number.

Table 41 on page 68 shows the result of this first step. The output records are stored in a temporary data
set.

Reformatting Records

Chapter 5. Reformatting records with fixed fields 67

Table 41. Total Book Prices by Course with Sequence Numbers

Department Total Price Sequence Number

1 5 6 9 10 17

BIOL
BUSIN
COMP
ENGL
HIST
PSYCH

10195
 2350
 4275
10253
 4640
 3785
 4800

00000002
00000017
00000003
00000001
00000005
00000011
00000013

You can use the following statements for the second step to sort by the sequence number, display the
data in a meaningful way, and remove the sequence numbers. The input for this second step is the
temporary data set you created in the first step.

 SORT FIELDS=(10,8,CH,A)
 OUTREC FIELDS=(1,5,CHANGE=(16,
 C'HIST',C'History',
 C'BUSIN',C'Business',
 C'COMP',C'Computer Science',
 C'ENGL',C'English',
 C'BIOL',C'Biology',
 C'PSYCH',C'Psychology'),
 NOMATCH=(C'Unaffiliated'),
 C' | ',
 6,4,BI,EDIT=($III,IIT.TT))

The output records from this second step are:

Computer Science | $102.53
Unaffiliated | $101.95
Business | $42.75
English | $46.40
History | $37.85
Psychology | $48.00
Biology | $23.50

You can use SEQNUM,m,f to create sequence numbers of various lengths in various formats. You can use
START=j to start the sequence numbers at j instead of 1. You can use INCR=i to increment each sequence
number by i instead of 1. You can use RESTART=(p,m) to start the sequence number at the starting value
again each time the value in a particular field changes.

Suppose you have the following input records:

New York Albany
California Morgan Hill
New York Buffalo
Arizona Tuscon
California San Jose
New York Poughkeepsie
Arizona Phoenix
California Davis
New York Armonk

If you wanted to sort the records by the State field in positions 1-15 and by the City field in positions
16-30, and add a third field with a sequence number starting from 1000 and incrementing by 10, you
could use START=1000 and INCR=10 as shown in the following statements:

 SORT FIELDS=(1,30,CH,A)
 OUTREC OVERLAY=(32:SEQNUM,5,ZD,START=1000,INCR=10)

The output records would look like this:

Arizona Phoenix 01000
Arizona Tuscon 01010

Reformatting Records

68 z/OS: z/OS DFSORT: Getting Started

California Davis 01020
California Morgan Hill 01030
California San Jose 01040
New York Albany 01050
New York Armonk 01060
New York Buffalo 01070
New York Poughkeepsie 01080

Note that each record has a different sequence number.

If you wanted to start the sequence number over at 1000 again each time the State changed, you could
add RESTART=(1,15) as shown in the following statements:

 SORT FIELDS=(1,30,CH,A)
 OUTREC OVERLAY=(32:SEQNUM,5,ZD,START=1000,INCR=10,
 RESTART=(1,15))

The output records would look like this:

Arizona Phoenix 01000
Arizona Tuscon 01010
California Davis 01000
California Morgan Hill 01010
California San Jose 01020
New York Albany 01000
New York Armonk 01010
New York Buffalo 01020
New York Poughkeepsie 01030

Note that the sequence number starts over at 1000 again each time the State changes.

If you specify an IFTHEN clause with a sequence number, the sequence number is only incremented
for the subset of records selected by that IFTHEN clause. For example, if you specified the following
statements for the input records shown previously:

 OPTION COPY
 OUTREC IFTHEN=(WHEN=(1,15,CH,EQ,C'Arizona'),
 OVERLAY=(32:SEQNUM,2,ZD)),
 IFTHEN=(WHEN=(1,15,CH,EQ,C'California'),
 OVERLAY=(32:SEQNUM,4,ZD)),
 IFTHEN=(WHEN=(1,15,CH,EQ,C'New York'),
 OVERLAY=(32:SEQNUM,3,ZD))

The output records would look like this:

New York Albany 001
California Morgan Hill 0001
New York Buffalo 002
Arizona Tuscon 01
California San Jose 0002
New York Poughkeepsie 003
Arizona Phoenix 02
California Davis 0003
New York Armonk 004

For complete details about creating sequence numbers with INREC, OUTREC and OUTFIL OUTREC, see
z/OS DFSORT Application Programming Guide.

VB data set considerations
Some of the same VB data set considerations you learned about previously for the SORT, MERGE,
INCLUDE, OMIT and SUM statements also apply to the INREC and OUTREC statements, but some
additional considerations apply as well

RDW
If you use the BUILD, FIELDS, or IFTHEN BUILD parameter, you must begin your INREC or OUTREC
statement fields by specifying 1,4 (starting position is 1 and length is 4) to represent the RDW in your VB
records. For example:

Reformatting Records

Chapter 5. Reformatting records with fixed fields 69

 INREC FIELDS=(1,4,8,25)

If you want your first field to include input data bytes immediately after the RDW (that is, starting with
position 5), you can use 1,n (starting position is 1 and length is n, with n greater than 4) instead of 1,4. For
example:

 OUTREC BUILD=(1,10,21,30)

If you want to display the record length (from positions 1-2 in the RDW), you can use 1,4 to represent the
RDW followed by 1,2 for the record length. For example:

 INREC FIELDS=(1,4,C'Record length is ',1,2,BI,M11)

If you use the OVERLAY, IFTHEN OVERLAY, or IFTHEN PUSH parameter of INREC or OUTREC, you must
not overlay the RDW in positions 1-4. So all of your items must start at or after position 5. For example:

 INREC OVERLAY=(5:5,3,TRAN=UTOL,21:18,2,11:C'***')

converts the input field at positions 5-7 to lowercase. If you forget to specify c: for the first item, c will
default to 1 which will result in an error message because you would be overlaying the RDW. For example:

 INREC OVERLAY=(5,3,TRAN=UTOL) Results in an error message

is interpreted as overlaying output positions 1-3 with the lowercase conversion of input positions 5-7.
Since you cannot overlay positions 1-4, you will get an error message .

Be careful not to use 1:, 2:, 3: or 4: for any OVERLAY, IFTHEN OVERLAY, or IFTHEN PUSH item. For
example, the following will also result in an error message, since the second item would overlay the RDW:

 OUTREC OVERLAY=(8:5,3,TRAN=UTOL, ok
 2:18,2) Results in an error message

Starting positions and columns
When you code your input fields for the BUILD, FIELDS, OVERLAY, IFTHEN BUILD, IFTHEN OVERLAY, or
IFTHEN PUSH parameters, remember to add 4 to the starting position to account for the 4-byte RDW.
Likewise, when you code your output columns. For example, the following OUTREC statement puts the
field in the first through sixth data byte of the VB input record into positions 21-26 of the VB output
record.

 OUTREC FIELDS=(1,4,21:5,6)

Variable data
If you want to include the variable data at the end of each VB input record in the VB output record with
the BUILD, FIELDS, or IFTHEN BUILD parameter, specify the starting position of the variable input data
without the length. For example:

 OUTREC FIELDS=(1,4,C'Fixed data ',5,10,C' Variable data ',15)

You can also use the following for the variable data at the end of each VB record:

p,TRAN=keyword

where keyword can be UTOL, LTOU, ETOA, ATOE, ALTSEQ, HEX, UNHEX, BIT or UNBIT.

For example, the following OUTREC statement translates all of the data bytes in each VB record from
EBCDIC to ASCII:

 OUTREC BUILD=(1,4,5,TRAN=ETOA)

Reformatting Records

70 z/OS: z/OS DFSORT: Getting Started

You must not specify a starting position without a length with the OVERLAY or IFTHEN parameters.
DFSORT will issue an error message if you specify any of the following with OVERLAY or IFTHEN
OVERLAY:

• p
• p,TRAN=keyword
• p,HEX

For example:

 INREC OVERLAY=(5:C'***',
 21:21,TRAN=BIT) Results in an error message

Summary
This chapter covered using the BUILD, FIELDS, OVERLAY, FINDREP, and IFTHEN parameters of the
OUTREC statement and INREC statement to reformat fixed position/length input records in a variety of
ways for output. It explained how you can delete fields, reorder fields, overlay fields, insert separators
and sequence numbers, convert character and numeric data to various forms, perform arithmetic
operations, and change different records in different ways, with the OUTREC and INREC statements,
as well as with the OUTFIL statement.

Reformatting Records

Chapter 5. Reformatting records with fixed fields 71

Reformatting Records

72 z/OS: z/OS DFSORT: Getting Started

Chapter 6. Reformatting records with variable fields

The previous chapter described how you can reformat records with fixed fields, that is, fields that start
in the same position and have the same length in every record. This chapter describes how you can
reformat records in similar ways with variable fields, that is, fields that have different starting positions
and lengths in different records, such as comma separated values (CSV).

Using %nnn, %nn and %n Parsed Fields with BUILD and OVERLAY
There are many types of variable position/length fields such as delimited fields, comma separated values
(CSV), tab separated values, blank separated values, keyword separated fields, and so on. For example,
you might have four records with comma separated values as follows:

Wayne,M,-53,-1732,Gotham
Summers,F,+7258,-273,Sunnydale
Kent,M,+213,-158,Metropolis
Prince,F,-164,+1289,Gateway

Note that each record has five variable fields separated by commas. The fields do not start and end in
the same position in every record and have different lengths in different records, so you could not just
specify the starting position and length (p,m) for any of these fields in a BUILD (or FIELDS or OUTREC) or
OVERLAY operand of the INREC, OUTREC or OUTFIL statement. But you can use the PARSE operand of
an INREC, OUTREC or OUTFIL statement to define rules that tell DFSORT how to extract the relevant data
from each variable input field into a fixed parsed field, and then use the fixed parsed fields in a BUILD or
OVERLAY operand as you would use fixed input fields.

You define a parsed field for converting a variable field to a fixed parsed field using a %nnn name where
nnn can be 000 to 999, a %nn name where nn can be 00 to 99, or a %n name where n can be 0 to 9.
You can define and use up to 1000 parsed fields (%0-%999) per run. Each %nnn, %nn or %n parsed
field must be defined only once. %n, %0n and %00n (for example, %1, %01 and %001) are treated as
the same parsed field. Likewise, %nn and %0nn (for example, %22 and %022) are treated as the same
parsed field. A %nnn, %nn or %n parsed field must be defined in a PARSE operand before it is used in a
BUILD or OVERLAY operand.

Suppose you wanted to reformat the CSV records to produce these output records:

Wayne -178.5 Gotham
Summers 698.5 Sunnydale
Kent 5.5 Metropolis
Prince 112.5 Gateway

You can use the following OUTREC statement to parse and reformat the variable fields:

 OUTREC PARSE=(%01=(ENDBEFR=C',',FIXLEN=8),
 %=(ENDBEFR=C','),
 %03=(ENDBEFR=C',',FIXLEN=5),
 %04=(ENDBEFR=C',',FIXLEN=5),
 %05=(FIXLEN=10)),
 BUILD=(%01,14:%03,SFF,ADD,%04,SFF,EDIT=(SIIT.T),SIGNS=(,-),
 25:%05)

The PARSE operand defines how each variable field is to be extracted to a fixed parsed field as follows:

• The %01 parsed field is used to extract the first variable field into an 8-byte fixed parsed field.
ENDBEFR=C',' tells DFSORT to stop extracting data at the byte before the next comma (the comma
after the first variable field). FIXLEN=8 tells DFSORT that the %01 parsed field is 8 bytes long. Thus,
for the first record, DFSORT extracts Wayne into the 8-byte %01 parsed field. Since Wayne is only 5
characters, but the %01 parsed field is 8 bytes long, DFSORT pads the %01 parsed field on the right
with 3 blanks. ENDBEFR=C',' also tells DFSORT to skip over the comma after the first variable field
before it parses the second variable field.

© Copyright IBM Corp. 1983, 2024 73

• The % parsed field is used to skip the second variable field without extracting anything for it. Since we
don't want this field in the output record, we can use % to ignore it. Thus, for the first record, we ignore
M. ENDBEFR=C',' tells DFSORT to skip over the comma after the second variable field before it parses
the third variable field.

• The %03 parsed field is used to extract the third variable field into a 5-byte fixed parsed field.
ENDBEFR=C',' tells DFSORT to stop extracting data before the next comma (the comma after the third
variable field). FIXLEN=5 tells DFSORT that the %03 parsed field is 5 bytes long. Thus, for the first
record, DFSORT extracts -53 into the 5-byte %03 parsed field. Since -53 is only 3 characters, but
the %03 parsed field is 5 bytes long, DFSORT pads the %03 parsed field on the right with 2 blanks.
ENDBEFR=C',' also tells DFSORT to skip over the comma after the third variable field before it parses the
fourth variable field.

• The %04 parsed field is used to extract the fourth variable field into a 5-byte fixed parsed field.
ENDBEFR=C',' tells DFSORT to stop extracting data before the next comma (the comma after the fourth
variable field). FIXLEN= 5 tells DFSORT that the %04 parsed field is 5 bytes long. Thus, for the first
record, DFSORT extracts -1732 into the 5-byte %04 parsed field. Since -1732 is 5 characters, it fills up
the 5-byte %05 parsed field and padding is not needed. ENDBEFR=C',' also tells DFSORT to skip over
the comma after the fourth variable field before it parses the fifth variable field.

• The %05 parsed field is used to extract the fifth variable field into a 10-byte fixed parsed field.
FIXLEN=10 tells DFSORT that the %05 parsed field is 10 bytes long. Thus, for the first record, DFSORT
extracts Gotham and 4 blanks into the 10-byte %01 parsed field.

The BUILD operand uses the previously extracted fixed parsed fields to build the output record as
follows:

• %01 copies the 8-byte fixed-length data extracted from the first variable field to positions 1-8 of the
output record. For the first record, positions 1-8 contain 'Wayne '.

• 14:%03,SFF,ADD,%04,SFF,EDIT=(SIIT.T),SIGNS=(,-) adds the 5-byte fixed-length data
extracted from the third variable field to the 5-byte fixed-length data extracted from the fourth variable
field and places the 6-byte edited result in positions 14-19 of the output record. For the first record,
positions 14-19 contain -178.5 (-53 + -1732 = -1785 edited to -178.5). Note that since the %03 and
%04 parsed fields may be padded on the right with blanks, we must use the SFF format to handle the
sign and digits correctly.

• 25:%05 copies the 10-byte fixed-length data extracted from the fifth variable field to positions 25-34 of
the output record. For the first record, positions 25-34 contain 'Gotham '.

Using %nnn, %nn and %n Parsed Fields with IFTHEN
If you have different variable position/length fields in different types of records, you can convert them to
%nnn, %nn or %n fixed parsed fields and use them in IFTHEN clauses. If you define a %nnn, %nn or %n
parsed field in a WHEN=INIT clause, you can use it in the IFTHEN BUILD or IFTHEN OVERLAY suboperand
of that clause as well as in any IFTHEN clause that follows. If you define a %nnn, %nn or %n parsed field
in a WHEN=(logexp), WHEN=ANY or WHEN=NONE clause, you can use it in the IFTHEN BUILD or IFTHEN
OVERLAY suboperand of that clause.

Suppose you have the following input records:

1/Sam/Charlie;27
2/Bill/48
1/Frank/Vicky;02
1/William/Dale;86
2/Helen/15

Note that the records that start with '1' have one fixed field ('1') and three variable fields, whereas the
records that start with '2' have one fixed field ('2') and two variable fields. The variable fields in each type
of record do not start and end in the same position in every record and have different lengths in different
records.

Suppose you wanted to reformat these input records to produce these output records:

74 z/OS: z/OS DFSORT: Getting Started

1 Sam Charlie 2.7
2 Bill 4.8
1 Frank Vicky 0.2
1 William Dale 8.6
2 Helen 1.5

You can use the following INREC statement to parse and reformat the fixed and variable fields:

 INREC IFOUTLEN=50,
 IFTHEN=(WHEN=INIT,
 PARSE=(%00=(ABSPOS=3,ENDBEFR=C'/',FIXLEN=8))),
 IFTHEN=(WHEN=(1,1,CH,EQ,C'1'),
 PARSE=(%01=(ABSPOS=3,STARTAFT=C'/',ENDBEFR=C';',
 FIXLEN=8),%02=(FIXLEN=2)),
 BUILD=(1,1,4:%00,18:%01,30:%02,ZD,EDIT=(T.T))),
 IFTHEN=(WHEN=(1,1,CH,EQ,C'2'),
 PARSE=(%03=(ABSPOS=3,STARTAFT=C'/',FIXLEN=2)),
 BUILD=(1,1,4:%00,30:%03,ZD,EDIT=(T.T)))

The PARSE suboperand of the WHEN=INIT clause uses the %00 parsed field to extract the first variable
field into an 8-byte fixed parsed field for every record. ABSPOS=3 tells DFSORT to start at position 3.
ENDBEFR=C'/' tells DFSORT to stop extracting data before the next slash (the slash after the first variable
field). FIXLEN=8 tells DFSORT that the %00 parsed field is 8 bytes long. Thus, for the first record, DFSORT
extracts Sam into the 8-byte %00 parsed field. Since Sam is only 3 characters, but the %00 parsed field
is 8 bytes long, DFSORT pads the %00 parsed field on the right with 5 blanks. The WHEN=INIT clause
defines %00 so it can be used for the clauses that follow. (%00 could be used in a BUILD or OVERLAY
suboperand for this WHEN=INIT clause, but in this case, it just defines %00 for the other clauses.)

The PARSE suboperand of the first WHEN=(logexp) clause uses the %01 parsed field to extract the
second variable field into an 8-byte fixed parsed field, and the %02 parsed field to extract the third
variable field into a 2-byte fixed parsed field, for the '1' records.

For %01, ABSPOS=3 tells DFSORT to start at position 3. STARTAFT=C'/' tells DFSORT to start extracting
data after the next slash (the slash after the first variable field). ENDBEFR=C';' tells DFSORT to stop
extracting data before the next semicolon (the semicolon after the second variable field). FIXLEN=8 tells
DFSORT that the %01 parsed field is 8 bytes long. Thus, for the first record, DFSORT extracts Charlie into
the 8-byte %01 parsed field. Since Charlie is only 7 characters, but the %01 parsed field is 8 bytes long,
DFSORT pads the %01 parsed field on the right with one blank.

For %02, FIXLEN=2 tells DFSORT that the %02 parsed field is 2 bytes long. Thus, for the first record,
DFSORT extracts 27 into the 2-byte %02 parsed field.

The BUILD suboperand of the first WHEN=(logexp) clause uses the %00 parsed field defined by the
WHEN=INIT clause and the %01 and %02 parsed fields defined by the first WHEN=(logexp) clause to
build each '1' output record.

The PARSE suboperand of the second WHEN=(logexp) clause uses the %03 parsed field to extract the
second variable field into a 2-byte fixed parsed field for the '2' records.

For %03, ABSPOS=3 tells DFSORT to start at position 3. STARTAFT=C'/' tells DFSORT to start extracting
data after the next slash (the slash after the first variable field). FIXLEN=2 tells DFSORT that the %03
parsed field is 2 bytes long. Thus, for the second record, DFSORT extracts 48 into the 2-byte %03 parsed
field.

The BUILD suboperand of the second WHEN=(logexp) clause uses the %00 parsed field defined by the
WHEN=INIT clause and the %03 parsed field defined by the second WHEN=(logexp) clause to build each
'2' output record.

Where You Can Use %nnn, %nn and %n Fields in BUILD and
OVERLAY

You can use a %nnn, %nn or %n parsed field in BUILD or OVERLAY in the same way you can use p,m. For
simplicity, we will use %nn to represent %nnn, %nn or %n. Here is a list of the items where you can use
%nn (see z/OS DFSORT Application Programming Guide for details):

Chapter 6. Reformatting records with variable fields 75

• %nn
• %nn,TRAN=keyword
• %nn,HEX
• %nn,f,edit
• %nn,f,to
• %nn,f in arexp,edit
• %nn,f in arexp,to
• %nn,Y2x
• %nn,Y4x
• %nn,Y2x,edit
• %nn,Y4x,edit
• %nn,Y2x,to
• %nn,Y4x,to
• %nn,Y2x,todate
• %nn,Y4x,todate
• %nn,Y2x on left side of date field arithmetic function
• %nn,Y4x on left side of date field arithmetic function
• %nn,Y2x(s)
• %nn,Y4x(s)
• %nn,Y2xP
• %nn,lookup
• %nn as set field in lookup
• %nn as set field in NOMATCH
• %nn,justify
• %nn,squeeze
• RESTART=(%nn) in SEQNUM

PARSE parameters
You can use the following parameters in PARSE to define the rules for extracting variable position/length
data to %nnn, %nn and %n fixed parsed fields:

• FIXLEN=m: Specifies the length (m) of the fixed area to contain the extracted variable data for this
%nnn, %nn or %n fixed parsed field.

• ABSPOS=p: Start extracting data at input position p.
• ADDPOS=x: Start extracting data at the current position + x.
• SUBPOS=y: Start extracting data at the current position - y.
• STARTAFT=string: Start extracting data at the byte after the end of the character or hexadecimal string.
• STARTAFT=an: Start extracting data at the byte after the first character found from a specified

alphanumeric set.
• STARTAFT=BLANKS: Start extracting data after the end of the next group of blanks.
• STARTAT=string: Start extracting data at the first byte of the character or hexadecimal string.
• STARTAT=an: Start extracting data from the first character found from a specified alphanumeric set.
• STARTAT=BLANKS: Start extracting data at the start of the first group of blanks.
• STARTAT=NONBLANK: Start extracting data at the next nonblank.

76 z/OS: z/OS DFSORT: Getting Started

• ENDBEFR=string: Stop extracting data at the byte before the start of the character or hexadecimal
string.

• ENDBEFR=an: Stop extracting data at the byte before the first character found from a specified
alphanumeric set.

• ENDBEFR=BLANKS: Stop extracting data at the byte before the next group of blanks.
• ENDAT=string: Stop extracting data at the last byte of the character or hexadecimal string.
• ENDAT=an: Stop extracting data at the first character found from a specified alphanumeric set.
• ENDAT=BLANKS: Stop extracting data at the end of the next group of blanks.
• PAIR=APOST: Do not search for strings or blanks between apostrophe (') pairs.
• PAIR=QUOTE: Do not search for strings or blanks between quote (") pairs.
• REPEAT=v: Repeat this parsed field v times.

See z/OS DFSORT Application Programming Guide for complete details about defining and using %nnn,
%nn and %n parsed fields, as well as more examples.

Summary

This chapter provided an overview of how you can use variable position/length fields as %nnn, %nn
and %n fixed parsed fields in the BUILD, OVERLAY and IFTHEN parameters of the INREC, OUTREC and
OUTFIL statements.

Chapter 6. Reformatting records with variable fields 77

78 z/OS: z/OS DFSORT: Getting Started

Chapter 7. Creating multiple output data sets and
reports

You can create one or more output data sets and reports from a single pass over sorted, merged, or
copied input using OUTFIL control statements. You can use different OUTFIL parameters on different
OUTFIL statements, so the output data sets you create in a single DFSORT application can be identical
or very different. You can perform a wide variety of tasks with each OUTFIL statement, including the
following:

• Select a sequential subset of records with the STARTREC and ENDREC parameters.
• Select a sample of records with the SAMPLE parameter.
• Select a subset of records with the INCLUDE and OMIT parameters. These parameters have all of the

capabilities of the INCLUDE and OMIT statements.
• Limit the number of records selected with the ACCEPT parameter.
• Select "discarded" records with the SAVE parameter. This parameter saves any records that are not

selected as a result of STARTREC, ENDREC, SAMPLE, INCLUDE, OMIT or ACCEPT parameters.
• Reformat records with fixed position/length fields or variable position/length fields using the PARSE,

BUILD, OUTREC, OVERLAY, or IFTHEN parameters. These parameters have all of the capabilities of the
PARSE, BUILD, FIELDS, OVERLAY, or IFTHEN parameters on the OUTREC statement, and also allow you
to create multiple output records and blank output records from each input record.

• Repeat records with the REPEAT parameter.
• Split records between output data sets using the SPLIT, SPLITBY, and SPLIT1R parameters.
• Create detailed reports with up to three levels (report, page, and section) using the BUILD, OUTREC,

OVERLAY, IFTHEN, HEADERn, TRAILERn, SECTIONS, LINES, NODETAIL, BLKCCH1, BLKCCH2, BLKCCT1,
and REMOVECC parameters. Your reports can contain elements such as headers, data, blank lines,
trailers, statistics, sections, timestamps, page numbers, and counts.

• Update count and total values in an existing trailer (last) record, based on the current data records, with
the IFTRAIL parameter.

• Convert FB records to VB records with the FTOV parameter, or convert VB records to FB records with the
VTOF parameter.

You can use OUTFIL statements with any of the other DFSORT statements (for example, INCLUDE, OMIT,
INREC, SORT, MERGE, OPTION, SUM and OUTREC). OUTFIL processing is performed last, after all of the
processing for the other statements, as shown in Appendix C, “Processing order of control statements,”
on page 177. Thus, the output records created by the processing for the other statements are the input
records for OUTFIL processing. For example, OUTFIL processes the sorted records if the SORT statement
is specified, or the copied records if the OPTION COPY statement is specified.

Combining the various DFSORT statements in different ways gives you a lot of flexibility. You can actually
use an INREC statement, an OUTREC statement, and an OUTFIL statement to reformat your input records
three times. You can also use an INCLUDE or OMIT statement to keep a subset of the input records, and
use OUTFIL statements with different INCLUDE or OMIT and OUTREC, OVERLAY, or IFTHEN parameters
to write different subsets of the remaining records into different OUTFIL data sets reformatted in different
ways

Creating multiple identical copies
Suppose you want to create backups for your data set; on disk for the local site and on tapes for
the remote sites. You can do this by using OUTFIL and the FNAMES parameter with an OPTION COPY
statement. The FNAMES parameter identifies the DD statements in your JCL for your output data sets by
their DD names. Sample JCL and DFSORT control statements are as follows.

Using OUTFIL

© Copyright IBM Corp. 1983, 2024 79

//COPY JOB A492,PROGRAMMER
//S1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//BACKUP DD DSN=A123456.BOOKS.BACKUP,DISP=OLD
//NEWYORK DD DSN=BOOKS,UNIT=3490,DISP=(,KEEP),VOL=SER=REMOT1,LABEL=(,SL)
//SANJOSE DD DSN=BOOKS,UNIT=3490,DISP=(,KEEP),VOL=SER=REMOT2,LABEL=(,SL)
//SYSIN DD *
 OPTION COPY
 OUTFIL FNAMES=(BACKUP,NEWYORK,SANJOSE)
/*

Note: The previous JCL includes two tape data sets. Substitute your own tape data set information if you
want to run this example.

Here are the steps for writing the OUTFIL statement:

Table 42. Creating the OUTFIL Statement for the Multiple Output Data Set Job

Step Action

1 Leave at least one blank and type OUTFIL

2 Leave at least one blank and type FNAMES=

3 Type, in parentheses and separated by commas, each output data set DD name. In this example, they
are BACKUP, NEWYORK, and SANJOSE.

This OUTFIL statement creates three backup copies of your data set: one on-site disk data set, and two
tapes that can be sent to remote sites.

You can also complete this task using the FILES parameter of OUTFIL. With FILES, you assign SORTOFd
or SORTOFdd DD statements instead of naming unique DD statements. Sample JCL and DFSORT control
statements using FILES are as follows.

//COPY JOB A492,PROGRAMMER
//S1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//SORTOF1 DD DSN=A123456.BOOKS.BACKUP,DISP=OLD
//SORTOF2 DD DSN=BOOKS,UNIT=3490,DISP=(,KEEP),VOL=SER=REMOT1
//SORTOF3 DD DSN=BOOKS,UNIT=3490,DISP=(,KEEP),VOL=SER=REMOT2
//SYSIN DD *
 OPTION COPY
 OUTFIL FILES=(1,2,3)
/*

Both FNAMES and FILES create the same output, but FNAMES lets you use descriptive names of up to
8 characters for your OUTFIL DD statements instead of one or two cryptic suffix characters. FNAMES is
recommended and is used in all of the multiple output examples in the rest of this chapter.

Note: If you do not specify a FNAMES or FILES parameter for an OUTFIL statement, the OUTFIL ddname
is SORTOUT by default.

Selecting and sampling by relative record number
When you copy, sort or merge input records, the resulting output records have implicit relative record
numbers starting from 1 for the first record and ending at n (the total number of copied, sorted or merged
records) for the last record.

Table 43 on page 81 shows the City field of the output records created by copying the SORT.BRANCH
data set, along with the relative record number (abbreviated RRN) for each record (the relative record
numbers do not actually appear in the output data set).

Using OUTFIL

80 z/OS: z/OS DFSORT: Getting Started

Table 43. Relative Records Numbers for Copy

City RRN

1 15

Los Angeles
San Francisco
Fort Collins
Sacramento
Sunnyvale
Denver
Boulder
Morgan Hill
Vail
San Jose
San Diego
Aspen

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

Table 44 on page 81 shows the City field of the output records created by sorting the SORT.BRANCH
data set on the City field, along with the RRN for each record. Note that the RRNs for the copied output
data set and the sorted output data set are different because the order of the output records is different
(for example, the record containing 'Denver' has a relative record number of 6 for the copied data set and
3 for the sorted data set).

Table 44. Relative Records Numbers for Sort

City RRN

1 15

Aspen
Boulder
Denver
Fort Collins
Los Angeles
Morgan Hill
Sacramento
San Diego
San Francisco
San Jose
Sunnyvale
Vail

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

You can use these relative record numbers to select groups of sequential records to be written to different
OUTFIL data sets. STARTREC=n tells DFSORT to start OUTFIL processing at relative record n. ENDREC=m
tells DFSORT to end OUTFIL processing at relative record m. The following statements show how this
works:

 SORT FIELDS=(1,15,CH,A)
 OUTFIL FNAMES=OUT1,ENDREC=4
 OUTFIL FNAMES=OUT2,STARTREC=2,ENDREC=6
 OUTFIL FNAMES=OUT3,STARTREC=7,ENDREC=9
 OUTFIL FNAMES=OUT4,STARTREC=10

Because STARTREC is not specified for OUT1, DFSORT starts at RRN 1 and ends at RRN 4. For OUT2,
DFSORT starts at RRN 2 and ends at RRN 6. (Note that RRNs 2, 3 and 4 are written to both OUT1 and
OUT2.) For OUT3, DFSORT starts at RRN 7 and ends at RRN 9. Because ENDREC is not specified for OUT4,
DFSORT starts at RRN 10 and ends at the last record (RRN 12). The RRNs in each OUTFIL data set are as
follows:

Using OUTFIL

Chapter 7. Creating multiple output data sets and reports 81

OUT1: 1, 2, 3, 4
OUT2: 2, 3, 4, 5, 6
OUT3: 7, 8, 9
OUT4: 10, 11, 12

You can also use relative record numbers to take a "sample" of your records. SAMPLE=n tells DFSORT
to process every nth record, starting at the record indicated by STARTREC=x and ending at or before
the record indicated by ENDREC=y. SAMPLE=(n,m) tells DFSORT to process m records every nth record,
starting at the record indicated by STARTEC=x and ending at or before the record indicated by ENDREC=y.
The following statements show how this works:

 OPTION COPY
 OUTFIL FNAMES=OUT1,SAMPLE=3
 OUTFIL FNAMES=OUT2,STARTREC=4,SAMPLE=2,ENDREC=10
 OUTFIL FNAMES=OUT3,STARTREC=2,SAMPLE=(5,3)

For OUT1, DFSORT starts at RRN 1 and writes every third record up to RRN 10 (RRN 13 would be the next
record, but there are only 12 records). For OUT2, DFSORT starts at RRN 4 and writes every other record
up to RRN 10. For OUT3, DFSORT writes 3 records starting at RRN 2, and writes three records starting at
every fifth record after record 2, up to RRN 12. The records in each OUTFIL data set are as follows:

 OUT1: 1, 4, 7, 10
 OUT2: 4, 6, 8, 10
 OUT3: 2, 3, 4, 7, 8, 9, 12

Including, omitting, and saving discards
In Chapter 3, “Including or omitting records,” on page 23, you learned how to use the INCLUDE and OMIT
statements to select only a subset of the input records for sorting, copying or merging. You can also select
subsets of records for your individual OUTFIL output data sets in the same way using the INCLUDE and
OMIT parameters. Different INCLUDE or OMIT parameters can be used for different OUTFIL statements.

All of the logical expressions that are valid for the COND parameter of the INCLUDE and OMIT statements
are also valid for the INCLUDE and OMIT parameters of OUTFIL. However, you cannot specify the FORMAT
parameter with the OUTFIL statement as you can with the INCLUDE and OMIT statements. VB data set
considerations for the INCLUDE and OMIT statements also apply to the INCLUDE and OMIT parameters.

Suppose you wanted to sort the bookstore data set by title, and create separate output data sets for the
English, History and Psychology departments. You could use the following OUTFIL statements to create
these three output data sets:

 SORT FIELDS=(1,75,CH,A)
 OUTFIL FNAMES=ENGLOUT,INCLUDE=(110,5,CH,EQ,C'ENGL')
 OUTFIL FNAMES=HISTOUT,INCLUDE=(110,5,CH,EQ,C'HIST')
 OUTFIL FNAMES=PSYCHOUT,INCLUDE=(110,5,CH,EQ,C'PSYCH')

The SORT statement sorts the input records by the title field.

The first OUTFIL statement writes the records for the English department to the ENGLOUT data set. The
result is shown in Table 45 on page 82.

Table 45. Output records in ENGLOUT data set

Book Title Course Department

1 75 110 114

EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
SHORT STORIES AND TALL TALES
THE COMPLETE PROOFREADER

ENGL
ENGL
ENGL
ENGL
ENGL

Using OUTFIL

82 z/OS: z/OS DFSORT: Getting Started

The second OUTFIL statement writes the records for the History department to the HISTOUT data set.
The result is shown in Table 46 on page 83.

Table 46. Output records in HISTOUT data set

Book Title Course Department

1 75 110 114

CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE
THE INDUSTRIAL REVOLUTION

HIST
HIST
HIST

The third OUTFIL statement writes the records for the Psychology department to the PYSCHOUT data set.
The result is shown in Table 47 on page 83.

Table 47. Output records in PSYCHOUT data set

Book Title Course Department

1 75 110 114

ADVANCED TOPICS IN PSYCHOANALYSIS
INTRODUCTION TO PSYCHOLOGY

PSYCH
PSYCH

The previous example creates output data sets for the English, History and Psychology department's
books. If you wanted to create an additional output data set (RESTOUT) containing the rest of the books,
you could use the following statements:

 SORT FIELDS=(1,75,CH,A)
 OUTFIL FNAMES=ENGLOUT,INCLUDE=(110,5,CH,EQ,C'ENGL')
 OUTFIL FNAMES=HISTOUT,INCLUDE=(110,5,CH,EQ,C'HIST')
 OUTFIL FNAMES=PSYCHOUT,INCLUDE=(110,5,CH,EQ,C'PSYCH')
 OUTFIL FNAMES=RESTOUT,
 INCLUDE=(110,5,CH,NE,C'ENGL',AND,
 110,5,CH,NE,C'HIST',AND,
 110,5,CH,NE,C'PSYCH')

This is not too bad for only three departments, but the INCLUDE statement for RESTOUT would get more
involved as the number of departments increased.

DFSORT's SAVE parameter gives you an easy way to keep the records discarded by a group of
OUTFIL statements. The SAVE parameter selects records for its OUTFIL data set that are not selected
for any other OUTFIL data set as a result of the INCLUDE, OMIT, ACCEPT, STARTREC, ENDREC or
SAMPLE parameters. So instead of the preceding statements, you could use the following statements
to accomplish the same thing

 SORT FIELDS=(1,75,CH,A)
 OUTFIL FNAMES=ENGLOUT,INCLUDE=(110,5,CH,EQ,C'ENGL')
 OUTFIL FNAMES=HISTOUT,INCLUDE=(110,5,CH,EQ,C'HIST')
 OUTFIL FNAMES=PSYCHOUT,INCLUDE=(110,5,CH,EQ,C'PSYCH')
 OUTFIL FNAMES=RESTOUT,SAVE

The fourth OUTFIL statement writes the records not used for English, History or Psychology to the
RESTOUT data set. The result is shown in Table 48 on page 83.

Table 48. Output records in RESTOUT data set

Book Title Course Department

1 75 110 114

Using OUTFIL

Chapter 7. Creating multiple output data sets and reports 83

Table 48. Output records in RESTOUT data set (continued)

Book Title Course Department

COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
INTRODUCTION TO BIOLOGY
LIVING WELL ON A SMALL BUDGET
NUMBERING SYSTEMS
PICK'S POCKET DICTIONARY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
SYSTEM PROGRAMMING
VIDEO GAME DESIGN

COMP
COMP
BIOL

COMP

BUSIN
BUSIN
COMP
COMP

So far

So far, you have learned how to create multiple identical copies of an input data set; select and sample
input records by relative record number for output; and include, omit or save selected input records for
output. Next, you will learn about reformatting, repeating, and splitting records with OUTFIL.

Reformatting
In Chapter 5, “Reformatting records with fixed fields,” on page 37 and Chapter 6, “Reformatting records
with variable fields,” on page 73, you learned how to use the INREC and OUTREC statements to reformat
your input records in various ways while sorting, copying, or merging. You can also reformat your OUTFIL
output records in the same ways using the PARSE, BUILD, OUTREC, OVERLAY, FINDREP, or IFTHEN
parameters. VB data set considerations for the INREC and OUTREC statements also apply to the PARSE,
BUILD, OUTREC, OVERLAY and IFTHEN parameters of OUTFIL statements.

Different PARSE, BUILD, OUTREC, OVERLAY or IFTHEN parameters can be used for different OUTFIL
statements. You can use these parameters to perform the same wide variety of tasks as for the INREC
and OUTREC statements, as described in Chapter 5, “Reformatting records with fixed fields,” on page 37
and Chapter 6, “Reformatting records with variable fields,” on page 73.

In addition, you can use the BUILD, OUTREC, or IFTHEN BUILD parameters to create one, two or more
output records from each input record, and insert blank lines before, between or after your records.

Suppose you wanted to create separate data sets for publishers FERN and WETH. For WETH, you want the
number of copies sold and the instructor's name on one line. For FERN, you want the course number on
one line and the price on another line. You also want two blank lines to separate the information for each
book. You can use the following statements to create these two output data sets:

 OPTION COPY
 OUTFIL FNAMES=WETHBKS,
 INCLUDE=(106,4,CH,EQ,C'WETH'),
 OUTREC=(C'Sold ',166,4,BI,EDIT=(IIT),
 C' copies of Wethman, Inc. book for instructor ',
 160,2,X,145,15)
 OUTFIL FNAMES=FERNBKS,
 INCLUDE=(106,4,CH,EQ,C'FERN'),
 OUTREC=(3:C'Fernall Brothers book #',SEQNUM,2,ZD,
 C' for course ',115,5,/,
 5:C'costs ',170,4,BI,EDIT=($IIT.TT),2/)

The first OUTFIL statement uses an INCLUDE parameter to select the books for publisher WETH, and an
OUTREC parameter to create the output records for each book with the needed information. The second
OUTFIL statement uses an INCLUDE parameter to select the books for publisher FERN, and a different
OUTREC parameter to create the output records for each book, with the needed information. Fields,
constants, sequence numbers, and numeric editing are used in the OUTREC parameters as previously
explained for the INREC and OUTREC statements.

Using OUTFIL

84 z/OS: z/OS DFSORT: Getting Started

/, n/ and /.../ can be used in the BUILD, OUTREC, or IFTHEN BUILD parameters of the OUTFIL statement,
but not in the OVERLAY or IFTHEN OVERLAY parameters of the OUTFIL statement, or in any parameters
of the INREC and OUTREC statements. If n/ is used at the start or end of the BUILD, OUTREC or IFTHEN
BUILD parameters, n blank lines are inserted. If n/ is used in the middle of the BUILD, OUTREC or IFTHEN
parameters, n-1 blanks lines are inserted.

Thus, in the OUTREC parameter for FERNBKS, the / (0 blank lines) in the middle after 115,5 is used to
create two output records from each FERN input record, and the 2/ (two blank lines) at the end is used to
insert two blank lines after the information for each FERN book.

The results produced for WETHBKS are:

Sold 26 copies of Wethman, Inc. book for instructor CL CHATTERJEE
Sold 9 copies of Wethman, Inc. book for instructor ST GOODGOLD
Sold 23 copies of Wethman, Inc. book for instructor DC SMITH
Sold 21 copies of Wethman, Inc. Book for instructor HR BISCARDI

The results produced for FERNBKS are:

 Fernall Brothers book #01 for course 00032
 costs $26.00

 Fernall Brothers book #02 for course 00032
 costs $3.60

 Fernall Brothers book #03 for course 10347
 costs $6.25

 Fernall Brothers book #04 for course 30975
 costs $26.00

DFSORT automatically sets the LRECL of each OUTFIL data set to the reformatted output record length. If
n/ is used to create multiple output records from each input record, the LRECL is set to the longest output
record.

For WETHBKS, the output record is 71 bytes long, so DFSORT sets the LRECL to 71. For FERNBKS, the
first output record is 44 bytes long and the second output record is 17 bytes long, so DFSORT sets
the LRECL to 44. If your reformatted length is shorter than you want for the LRECL, you can use c:X to
increase the LRECL to c. For example, if you want the LRECL for FERNBKS to be 80 instead of 44, you can
change the last line of the OUTREC parameter for FERNBKS to:

 5:C'costs ',170,4,BI,EDIT=($IIT.TT),80:X,2/)

Repeating
OUTFIL's REPEAT=n parameter lets you repeat each output record n times. If you specify the BUILD,
OUTREC, OVERLAY, or IFTHEN parameters with a sequence number, the sequence numbers are
incremented for each repeated record, but otherwise the repeated records are identical. For example,
you could use the following statements to create two output data sets with repeated records; one with
just the course name and the other with the course name and a sequence number.

 OPTION COPY
 INCLUDE COND=(110,5,CH,EQ,C'PSYCH')
 OUTFIL FNAMES=OUT1,
 REPEAT=3,
 BUILD=(120,25)
 OUTFIL FNAMES=OUT2,
 REPEAT=3,
 BUILD=(120,25,X,SEQNUM,4,ZD)

The results produced for OUT1 are:

PSYCHOLOGY I
PSYCHOLOGY I
PSYCHOLOGY I

Using OUTFIL

Chapter 7. Creating multiple output data sets and reports 85

PSYCHOANALYSIS
PSYCHOANALYSIS
PSYCHOANALYSIS

The results produced for OUT2 are:

PSYCHOLOGY I 0001
PSYCHOLOGY I 0002
PSYCHOLOGY I 0003
PSYCHOANALYSIS 0004
PSYCHOANALYSIS 0005
PSYCHOANALYSIS 0006

If you specify an IFTHEN clause with a sequence number, the sequence number is only incremented
for the subset of records selected by the IFTHEN clause. For example, if you specified the following
statements:

 OPTION COPY
 INCLUDE COND=(110,5,CH,EQ,C'PSYCH')
 OUTFIL REPEAT=3,
 IFTHEN=(WHEN=(120,7,CH,EQ,C'PSYCHOL'),
 BUILD=(120,25,X,SEQNUM,4,ZD)),
 IFTHEN=(WHEN=NONE,BUILD=(120,25,X,SEQNUM,2,ZD))

The results produced for SORTOUT are:

PSYCHOLOGY I 0001
PSYCHOLOGY I 0002
PSYCHOLOGY I 0003
PSYCHOANALYSIS 01
PSYCHOANALYSIS 02
PSYCHOANALYSIS 03

Splitting
Suppose you don't know how many records are in a data set, but you want to divide the records as equally
as possible between two output data sets. You can use OUTFIL's SPLIT parameter to put the first record
into OUTPUT1, the second record into OUTPUT2, the third record into OUTPUT1, the fourth record into
OUTPUT2, and so on until you run out of records. SPLIT splits the records one at a time among the data
sets specified by FNAMES. The following statements split the records between two OUTFIL data sets:

 OPTION COPY
 OUTFIL FNAMES=(OUTPUT1,OUTPUT2),SPLIT

With 17 input records, the results produced for OUTPUT1 are:

Record 01
Record 03
Record 05
Record 07
Record 09
Record 11
Record 13
Record 15
Record 17

The results produced for OUTPUT2 are:

Record 02
Record 04
Record 06
Record 08
Record 10
Record 12
Record 14
Record 16

Similarly, OUTFIL's SPLITBY=n parameter splits the records n at a time among the data sets specified by
FNAMES. The following statements split the records four at a time between three OUTFIL data sets:

Using OUTFIL

86 z/OS: z/OS DFSORT: Getting Started

 OPTION COPY
 OUTFIL FNAMES=(OUT1,OUT2,OUT3),SPLITBY=4

With 17 input records, the results produced for OUT1 are:

Record 01
Record 02
Record 03
Record 04
Record 13
Record 14
Record 15
Record 16

The results produced for OUT2 are:

Record 05
Record 06
Record 07
Record 08
Record 17

The results produced for OUT3 are:

Record 09
Record 10
Record 11
Record 12

SPLIT and SPLITBY=n both start over with the first ddname after writing records to the last ddname. This
can give you non-contiguous records in one or more of the OUTFIL data sets. For example, in the previous
example with SPLITBY=4, OUT1 has records 1-4 and 13-16. If instead, you only want contiguous records
in each OUTFIL data set, you can use OUTFIL's SPLIT1R=n parameter which writes n records to each
OUTFIL data set and then writes the remaining records to the last OUTFIL data set. Thus, whereas SPLIT
and SPLITBY=n rotate many times among the OUTFIL data sets, SPLIT1R=n only rotates once among the
OUTFIL data sets.

The following statements ensure that the records are split with only contiguous records in each OUTFIL
data set:

 OPTION COPY
 OUTFIL FNAMES=(OUTA,OUTB,OUTC),SPLIT1R=5

With 17 input records, the results produced for OUTA are:

Record 01
Record 02
Record 03
Record 04
Record 05

The results produced for OUTB are:

Record 06
Record 07
Record 08
Record 09
Record 10

The results produced for OUTC are:

Record 11
Record 12
Record 13
Record 14
Record 15
Record 16
Record 17

Using OUTFIL

Chapter 7. Creating multiple output data sets and reports 87

So far

So far, you have learned how to create multiple identical copies of an input data set; select and sample
input records by relative record number for output; include, omit or save selected input records for
output; and reformat, repeat and split input records for output. Next, you will learn about creating
various types of reports.

Creating reports: OUTFIL vs ICETOOL
Both the OUTFIL statement and ICETOOL's DISPLAY operator can be used to create reports. While each
performs some reporting functions that the other does not, in general the difference between them
is one of control and effort. With OUTFIL, you have more control over the appearance of reports, but
considerable effort may be required on your part to specify in detail where every piece of information
is to appear in the report and how it is to look. With ICETOOL, much of the work of determining where
information is to appear in the report and how it is to look is done for you, but you have somewhat less
control over the appearance of the reports.

ICETOOL should be your primary choice for creating reports, because it is easier to use than OUTFIL. But
remember that OUTFIL is available if you need any of its specific reporting features, or more control of the
appearance of reports than ICETOOL gives you. Next, you will learn about using OUTFIL to create reports.
See Chapter 12, “Using the ICETOOL utility,” on page 123 for tutorials on using ICETOOL's DISPLAY
operator to create reports.

Creating reports with OUTFIL
You can use OUTFIL to create one or more detailed reports using the OUTFIL parameters BUILD, OUTREC,
OVERLAY, FINDREP, IFTHEN, HEADERn, TRAILERn, SECTIONS, LINES, NODETAIL, BLKCCH1, BLKCCH2,
BLKCCT1, and REMOVECC. You can include any or all of these in your reports:

• A cover sheet (report header)
• A header at the top of each page (page header)
• A trailer at the bottom of each page (page trailer)
• A header at the start of each section (section header)
• A trailer at the end of each section (section trailer)
• A summary sheet (report trailer)

Your reports can contain a variety of elements you specify such as current date, current time, edited
or converted page numbers, character strings, and blank lines. Your reports can also contain a variety
of elements you derive from the input records such as character fields, unedited, edited, or converted
numeric input fields, edited or converted record counts, and edited or converted totals, maximums,
minimums, and averages for numeric input fields.

Data
The data for your report consists of the OUTFIL output records. You can use the INCLUDE, OMIT, INREC,
SUM and OUTREC statements, and the OUTFIL parameters STARTREC, SAMPLE, ENDREC, INCLUDE,
OMIT, ACCEPT, SAVE, PARSE, BUILD, OUTREC, OVERLAY, FINDREP, and IFTHEN to determine which data
records appear in your report and what they look like.

The following statements show the simplest possible type of OUTFIL report you can produce:

 OPTION COPY
 OUTFIL FNAMES=RPT1,LINES=10

LINES=10 indicates you want a report with 10 lines per page. These statements might produce the
following two page result for RPT1:

1Data line 01
 Data line 02

Using OUTFIL

88 z/OS: z/OS DFSORT: Getting Started

 Data line 03
 Data line 04
 Data line 05
 Data line 06
 Data line 07
 Data line 08
 Data line 09
 Data line 10
1Data line 11
 Data line 12
 Data line 13
 Data line 14
 Data line 15

Note: In some of the examples later in this section, small LINES values are used to illustrate a point.
However, the default for LINES is 60 and you would generally want to use either that value or one close to
it.

For reports, OUTFIL places an ANSI carriage control character in the first byte of each output line to tell a
printer what action to take for that line. The '1' for Data line 01 and Data line 11 tells the printer that these
lines each start on a new page. This is the way DFSORT translates LINES=10 into 10 lines per page for the
printer. Other ANSI carriage control characters that DFSORT uses for OUTFIL reports are: blank for single
space (no blank lines before the output line), '0' for double space (one blank line before the output line),
and '-' for triple space (two blank lines before the output line).

When you view a report on your display, the ANSI carriage control is not meaningful, and is usually not
displayed even though it's actually in the record. If you don't want ANSI carriage control characters in
your output records, you can use OUTFIL's REMOVECC parameter to remove them (more on this later).

In general, you will want to use the PARSE, BUILD, OUTREC, OVERLAY, FINDREP, or IFTHEN parameters
to reformat the data records for your report. Suppose you want to print a report from the SORT.BRANCH
data set showing each branch's revenue and profit or loss, with 9 lines per page. You can use the following
statements to show the branches in sorted order, along with their revenue and profit fields in readable
form:

 SORT FIELDS=(1,15,CH,A)
 OUTFIL FNAMES=RPT2,LINES=9,
 OUTREC=(1,15,X,
 22,6,PD,EDIT=(SIII,IIT),SIGNS=(,-),X,
 28,6,PD,EDIT=(SIII,IIT),SIGNS=(,-))

The two page result produced for RPT2 is the following:

1Aspen 25,800 5,200
 Boulder 33,866 7,351
 Denver 31,876 6,288
 Fort Collins 12,300 -2,863
 Los Angeles 22,530 -4,278
 Morgan Hill 18,200 3,271
 Sacramento 42,726 8,276
 San Diego 32,940 8,275
 San Francisco 42,820 6,832
1San Jose 27,225 8,264
 Sunnyvale 16,152 -978
 Vail 23,202 5,027

Headers
The preceding output for RPT2 does not look much like a report, but you can fix that by adding page
headings with OUTFIL's HEADER2 parameter. This parameter (as well as the HEADER1 and HEADER3
parameters discussed later), lets you specify multi-line headings with character strings, hexadecimal
strings, input fields, the current date, the current time, page numbers and blank lines.

The following statements create a report with page headings:

 SORT FIELDS=(1,15,CH,A)
 OUTFIL FNAMES=RPT3,LINES=15,
 HEADER2=(/,3:'Branch Revenue Report',
 30:'Page',PAGE,45:DATE=(MD4-),2/,
 3:'Branch ',25:' Revenue',50:' Profit',/,

Using OUTFIL

Chapter 7. Creating multiple output data sets and reports 89

 3:'---------------',25:'--------',50:'--------'),
 OUTREC=(3:1,15,X,
 25:22,6,PD,EDIT=(SIII,IIT),SIGNS=(,-),X,
 50:28,6,PD,EDIT=(SIII,IIT),SIGNS=(,-))

All of the elements in the HEADER2 parameter should be familiar from the previous discussions of the
OUTREC statement, except for the PAGE and DATE=(MD4-) parameters.

PAGE tells DFSORT to print a 6-character page number with leading blanks starting at 1 for the first
page and incrementing by 1 for each subsequent page. For page 3, PAGE would give you ' 3'. If you
wanted to print a 3-character page number with leading zeros, you could use PAGE=(EDIT=(TTT)) or
PAGE=(M11,LENGTH=3) or PAGE=(TO=ZD,LENGTH=3). For page 10, these would all give you '010'. See
“Converting numeric fields to different formats” on page 44 and “Editing numeric fields” on page 45, for
more information on conversion and editing.

DATE=(MD4-) tells DFSORT to print the date in the form mm-dd-yyyy. See z/OS DFSORT Application
Programming Guide for more information on the different forms of the date you can print in headers and
trailers.

You do not need to start character strings in headers (HEADERn parameters) or trailers (TRAILERn
parameters) with C as you do for the BUILD, OUTREC, OVERLAY, FINDREP, or IFTHEN parameters,
although you can if you want to.

If n/ is used at the start or end of a header or trailer, n blank lines are printed. If n/ is used in the middle of
a header or trailer, n-1 blanks lines are printed.

The following is a two-page result produced for RPT3:

1
 Branch Revenue Report Page 1 04-16-2005
0 Branch Revenue Profit
 --------------- -------- --------
 Aspen 25,800 5,200
 Boulder 33,866 7,351
 Denver 31,876 6,288
 Fort Collins 12,300 -2,863
 Los Angeles 22,530 -4,278
 Morgan Hill 18,200 3,271
 Sacramento 42,726 8,276
 San Diego 32,940 8,275
 San Francisco 42,820 6,832
 San Jose 27,225 8,264
1
 Branch Revenue Report Page 2 04-16-2005
0 Branch Revenue Profit
 --------------- -------- --------
 Sunnyvale 16,152 -978
 Vail 23,202 5,027

If you print this report, the ANSI carriage control characters tell the printer to eject a page when it sees
'1' in the first byte, and to insert a blank line before the lines with '0' in the first byte. So you get a blank
line between the 'Branch Revenue Report" line and the "Branch" line in your headers, corresponding to
the 2/ in your OUTREC parameter. However, if you view this report on a display, the ANSI carriage control
characters are ignored, so the '0' line does not have a blank line before it on the display. To force the
blank line to appear whether you print the report or view it on a display, you can change the second line of
HEADER2 to:

 30:'Page',PAGE,45:DATE=(MD4-),/,X,/,

This forces DFSORT to write an additional blank output line instead of using the '0' ANSI carriage control
character to insert a blank line for the printer. The blank line appears on the printer or display.

OUTFIL's HEADER1 parameter is very similar to the HEADER2 parameter, except that it produces a report
heading on a separate page before the first page of data. You can add the following HEADER1 parameter
to your OUTFIL statement:

 HEADER1=(20:'Cover sheet for Branch Revenue Report',3/,
 20:'Printed on ',DATE=(MD4/),' at ',TIME),

Using OUTFIL

90 z/OS: z/OS DFSORT: Getting Started

This separate page is printed at the beginning of the report for RPT3, before the other two pages shown
previously. Thus, the first two pages of the report would start like this:

1 Cover sheet for Branch Revenue Report
- Printed on 04/16/2005 at 16:42:20

1
 Branch Revenue Report Page 1 04-16-2005
 ...

Note that the report heading only has a few lines and then we eject to a new page for the first page
heading. If we wanted to start the page heading on the same page as the report heading, we could use
OUTFIL's BLKCCH2 parameter. This parameter tells DFSORT to replace the '1' in the first line of the first
page heading with a blank, thus avoiding the page eject. With BLKCCH2, the first page of the report would
start like this:

1 Cover sheet for Branch Revenue Report
- Printed on 04/16/2005 at 16:42:20

 Branch Revenue Report Page 1 04-16-2005
 ...

You can also use OUTFIL's BLKCCH1 parameter to tell DFSORT to replace the '1' in the first line of the
report heading with a blank, thus avoiding the page eject for the report heading.

Here are sample JCL statements and control statements for the report using HEADER1, HEADER2, and
BLKCCH2:

//HDRPT JOB A492,PROGRAMMER
//S1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.BRANCH,DISP=SHR
//RPT3 DD SYSOUT=A
//SYSIN DD *
 SORT FIELDS=(1,15,CH,A)
 OUTFIL FNAMES=RPT3,LINES=15,BLKCCH2,
 HEADER1=(20:'Cover sheet for Branch Revenue Report',3/,
 20:'Printed on ',DATE=(MD4/),' at ',TIME),
 HEADER2=(/,3:'Branch Revenue Report',
 30:'Page',PAGE,45:DATE=(MD4-),2/,
 3:'Branch ',25:' Revenue',50:' Profit',/,
 3:'---------------',25:'--------',50:'--------'),
 OUTREC=(3:1,15,X,
 25:22,6,PD,EDIT=(SIII,IIT),SIGNS=(,-),X,
 50:28,6,PD,EDIT=(SIII,IIT),SIGNS=(,-))
/*

Of course, you could use a temporary or permanent data set for RPT3 instead of SYSOUT=A. For example:

//RPT3 DD DSN=&&&MYRPT,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=SYSDA

Trailers and statistics
You can add trailers to your report with OUTFIL's TRAILER1 (report trailer) and TRAILER2 (page trailer)
parameters. You can use any combination of headers and trailers you need.

Like the HEADERn parameters, the TRAILER1 and TRAILER2 parameters (as well as the TRAILER3
parameter discussed later), let you specify multi-line headings with character strings, hexadecimal
strings, input fields, the current date, the current time, page numbers and blank lines. In addition, you
can include edited or converted record counts, and edited or converted totals, maximums, minimums, and
averages for numeric fields, in your trailers.

The following statements create a report with a separate report trailer page containing the overall record
count and various overall statistics for the revenue brought in by the branches.

 SORT FIELDS=(1,15,CH,A)
 OUTFIL FNAMES=RPT4,
 HEADER2=(1:'BRANCH',18:'REVENUE',28:'PROFIT'),
 OUTREC=(1,15,X,

Using OUTFIL

Chapter 7. Creating multiple output data sets and reports 91

 22,6,PD,EDIT=(SIII,IIT),SIGNS=(,-),X,
 28,6,PD,EDIT=(SIII,IIT),SIGNS=(,-),
 50:X),
 TRAILER1=(2/,
 3:'Overall results for branches on ',DATE=(MD4/),':',2/,
 3:COUNT=(EDIT=(IIT)),' branches are included',2/,
 5:'Total revenue = ',
 TOT=(22,6,PD,M12,LENGTH=10),/,
 5:'Average revenue = ',
 AVG=(22,6,PD,M12,LENGTH=10),/,
 5:'Lowest revenue = ',
 MIN=(22,6,PD,M12,LENGTH=10),/,
 5:'Highest revenue = ',
 MAX=(22,6,PD,M12,LENGTH=10))

For OUTFIL reports, DFSORT terminates if any header or trailer record is longer than the data records. In
this case, the TRAILER1 line with DATE=(MD4/) is 46 bytes long, so the data records must be at least 46
bytes long. To increase the data length set by the OUTREC parameter from 42 bytes to 50 bytes, you can
put 50:X at the end of the OUTREC parameter as shown.

COUNT=(EDIT=(IIT)) shows the count of data records as three digits with leading zeros suppressed.
TOT=(22,6,PD,M12,LENGTH=10) shows the total revenue as ten bytes of the M12 pattern (that is,
SI,III,IIT). Similarly, AVG, MIN and MAX show the average, minimum and maximum, respectively, as ten
bytes of the M12 pattern. See “Converting numeric fields to different formats” on page 44 and “Editing
numeric fields” on page 45, for more information on conversion and editing.

Because LINES=n is not specified, the default of 60 lines per page is used.

The two page result produced for RPT4 is:

1BRANCH REVENUE PROFIT
 Aspen 25,800 5,200
 Boulder 33,866 7,351
 Denver 31,876 6,288
 Fort Collins 12,300 -2,863
 Los Angeles 22,530 -4,278
 Morgan Hill 18,200 3,271
 Sacramento 42,726 8,276
 San Diego 32,940 8,275
 San Francisco 42,820 6,832
 San Jose 27,225 8,264
 Sunnyvale 16,152 -978
 Vail 23,202 5,027
1
0 Overall results for branches on 04/16/2005:
0 12 branches are included
0 Total revenue = 329,637
 Average revenue = 27,469
 Lowest revenue = 12,300
 Highest revenue = 42,820

The second page is the report trailer page produced for TRAILER1, which normally starts on a new page.
However, you can use OUTFIL's BLKCCT1 parameter to avoid forcing a new page for the report trailer. For
example, if you change the first line of the OUTFIL statement to:

 OUTFIL FNAMES=RPT4,BLKCCT1,

The one page result produced for RPT4 is:

1BRANCH REVENUE PROFIT
 Aspen 25,800 5,200
 Boulder 33,866 7,351
 Denver 31,876 6,288
 Fort Collins 12,300 -2,863
 Los Angeles 22,530 -4,278
 Morgan Hill 18,200 3,271
 Sacramento 42,726 8,276
 San Diego 32,940 8,275
 San Francisco 42,820 6,832
 San Jose 27,225 8,264
 Sunnyvale 16,152 -978
 Vail 23,202 5,027

0 Overall results for branches on 04/16/2005:

Using OUTFIL

92 z/OS: z/OS DFSORT: Getting Started

0 12 branches are included
0 Total revenue = 329,637
 Average revenue = 27,469
 Lowest revenue = 12,300
 Highest revenue = 42,820

No data or carriage control characters
If you want your report to contain the overall statistics page, but not the actual data lines, you can add
OUTFIL's NODETAIL parameter to your OUTFIL statement. NODETAIL tells DFSORT to process the data
records in the usual way, but not to write them to the report data set.

If you do not want the ANSI carriage control characters in your report, you can add OUTFIL's REMOVECC
parameter to your OUTFIL statement. REMOVECC tells DFSORT to remove the carriage control character
from the first byte of each record. As a result, the data starts in column 1 of the report rather than in
column 2.

Suppose you want to produce two output data sets. The first data set should have a single output record
with the total count of records in your input data set. The second data set should have a single output
record with today's date in the form ddmmyyyy. The following statements would produce these two
output data sets:

 OPTION COPY
 OUTFIL FNAMES=BRANCHCT,NODETAIL,REMOVECC,
 TRAILER1=(COUNT=(TO=ZD,LENGTH=10))
 OUTFIL FNAMES=CURDT,NODETAIL,REMOVECC,
 HEADER1=(DATENS=(DM4))

If the input data set has 12 records, the single record produced for BRANCHCT with the count in columns
1-10 is:

0000000012

If the job is run on July 15th, 2004, the single record produced for CURDT with the ddmmyyyy date in
columns 1-8 is:

15072004

VB data set considerations for headers and trailers
When you specify an output column in a HEADERn or TRAILERn parameter, you must not add 4 for the
RDW to the column, as you must for the BUILD, OUTREC, OVERLAY, IFTHEN OUTREC, IFTHEN BUILD,
IFTHEN OVERLAY or IFTHEN PUSH parameters. Consider this OUTFIL statement:

 OUTFIL REMOVECC,
 HEADER2=(1:C'PAGE HEADER'),
 OUTREC=(1,4,5:C'OUTREC FOR DATA')

Both the 'PAGE HEADER' string and the 'OUTREC FOR DATA' string start in position 5 of their respective
output records. For HEADER2, you use 1: because 4 must not be added to the output column for the RDW,
even though the RDW appears in the header record. For OUTREC, you use 5: because 4 must be added
to the output column for the RDW. Just be aware of this difference and specify your output columns
accordingly.

When you specify an input field in a HEADERn or TRAILERn parameter, you must add 4 for the RDW to
the starting position as you do for a BUILD, OUTREC, OVERLAY, IFTHEN BUILD, IFTHEN OUTREC, IFTHEN
OVERLAY or IFTHEN PUSH parameter. However, you cannot specify the variable part of the input record
(that is, position without length) in a HEADERn or TRAILERn parameter, as you can for a BUILD, OUTREC,
IFTHEN BUILD or IFTHEN OUTREC parameter.

Using OUTFIL

Chapter 7. Creating multiple output data sets and reports 93

Sections
Suppose you want to print one page with information about the Computer department's books, one page
with information about the English department's books, and one page about the History department's
books. For each department's books, you want to show their course numbers, number in stock, number
sold year to date, and price, as well as totals by department for each of the three numeric (BI) fields. The
following statements create a report with all of this information:

 INCLUDE COND=(110,4,SS,EQ,C'COMP,ENGL,HIST')
 INREC FIELDS=(1:110,4, Course Department
 CHANGE=(16,
 C'COMP',C'Computer Science',
 C'ENGL',C'English',
 C'HIST',C'History'),
 17:115,5, Course Number
 22:162,4, Number in Stock
 26:166,4, Number Sold Y-to-D
 30:170,4, Price
 50:X) Ensure data length greater than header/trailer length
 SORT FIELDS=(1,16,CH,A,17,5,CH,A)
 OUTFIL FNAMES=RPT5,
 SECTIONS=(1,16,SKIP=P,
 HEADER3=(3:X,/,
 3:'Department: ',1,16,/,X,/,
 3:'Number',12:'In Stock',23:'Sold YTD',34:' Price',/,
 3:'------',12:'--------',23:'--------',34:'-------'),
 TRAILER3=(3:'======',12:'========',23:'========',34:'=======',/,
 3:'Totals',
 15:TOT=(22,4,BI,EDIT=(IIIIT)),
 26:TOT=(26,4,BI,EDIT=(IIIIT)),
 34:TOT=(30,4,BI,EDIT=(IIIT.TT)))),
 OUTREC=(3:17,5,
 15:22,4,BI,EDIT=(IIIIT),
 26:26,4,BI,EDIT=(IIIIT),
 34:30,4,BI,EDIT=(IIIT.TT))

The INCLUDE statement and INREC statement remove the unneeded records and fields before sorting.
The INREC statement also changes department identifiers (COMP, ENGL, HIST) to more readable strings.
As you learned previously, the INREC statement changes the starting positions of various fields, so you
must use those new positions for the statements that are processed after INREC (SORT and OUTFIL in
this case).

OUTFIL's SECTION parameter is used to divide the report up into sections by the course department. 1,16
tells DFSORT to start a new section every time the department value in columns 1-16 changes. The SORT
statement sorts on the department field to bring all of the records for each department value together,
so only one section is produced for each department value. If your records are not already sorted by the
section field, use the SORT statement to sort them that way. You can sort by other fields as well, but the
first sort field must be the section field.

SKIP=P tells DFSORT to start each section on a new page. Alternatively, you can use SKIP=nL if you want
your sections to appear on the same page, when possible, with n lines between them.

HEADER3 creates section headers in the same way that HEADER1 and HEADER2 create report and page
headers, respectively. TRAILER3 creates section trailers in the same way that TRAILER 1 and TRAILER2
create report and page trailers, respectively.

OUTFIL's OUTREC parameter is used to reformat the data records for the report.

The three page result produced for RPT5 is:

1
 Department: Computer Science

 Number In Stock Sold YTD Price
 ------ -------- -------- -------
 00032 5 29 26.00
 00032 6 27 3.60
 00032 20 26 18.99
 00103 4 23 31.95
 00205 10 10 21.99
 ====== ======== ======== =======
 Totals 45 115 102.53

Using OUTFIL

94 z/OS: z/OS DFSORT: Getting Started

1
 Department: English

 Number In Stock Sold YTD Price
 ------ -------- -------- -------
 10054 10 9 15.20
 10347 7 19 6.25
 10347 13 32 14.50
 10856 1 26 4.50
 10856 2 32 5.95
 ====== ======== ======== =======
 Totals 33 118 46.40
1
 Department: History

 Number In Stock Sold YTD Price
 ------ -------- -------- -------
 50420 15 9 7.95
 50521 14 17 12.00
 50632 23 21 17.90
 ====== ======== ======== =======
 Totals 52 47 37.85

Suppose you want to create a second report showing the totals for each department, but not the
data lines. To accomplish this, you can use a second OUTFIL statement with the NODETAIL (no data),
HEADER2 (page headers), SECTIONS (sections) and TRAILER3 (section trailers) parameters. In this case,
because the data lines are not printed, you do not need to reformat them with the OUTREC parameter.
The JCL and control statements for the complete job to produce your two reports is:

//SCTNRPT JOB A492,PROGRAMMER
//S1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//RPT5 DD SYSOUT=A
//RPT6 DD SYSOUT=A
//SYSIN DD *
 INCLUDE COND=(110,4,SS,EQ,C'COMP,ENGL,HIST')
 INREC FIELDS=(1:110,4, Course Department
 CHANGE=(16,
 C'COMP',C'Computer Science',
 C'ENGL',C'English',
 C'HIST',C'History'),
 17:115,5, Course Number
 22:162,4, Number in Stock
 26:166,4, Number Sold Y-to-D
 30:170,4, Price
 50:X) Ensure data length greater than header/trailer length
 SORT FIELDS=(1,16,CH,A,17,5,CH,A)
 OUTFIL FNAMES=RPT5,
 SECTIONS=(1,16,SKIP=P,
 HEADER3=(3:X,/,
 3:'Department: ',1,16,/,X,/,
 3:'Number',12:'In Stock',23:'Sold YTD',34:' Price',/,
 3:'------',12:'--------',23:'--------',34:'-------'),
 TRAILER3=(3:'======',12:'========',23:'========',34:'=======',/,
 3:'Totals',
 15:TOT=(22,4,BI,EDIT=(IIIIT)),
 26:TOT=(26,4,BI,EDIT=(IIIIT)),
 34:TOT=(30,4,BI,EDIT=(IIIT.TT)))),
 OUTREC=(3:17,5,
 15:22,4,BI,EDIT=(IIIIT),
 26:26,4,BI,EDIT=(IIIIT),
 34:30,4,BI,EDIT=(IIIT.TT))
 OUTFIL FNAMES=RPT6,
 NODETAIL,
 HEADER2=(3:'Department ',22:'In Stock',
 31:'Sold YTD',42:' Price',/,
 3:'----------------',22:'--------',
 31:'--------',42:'-------'),
 SECTIONS=(1,16,SKIP=0L,
 TRAILER3=(3:1,16,
 25:TOT=(22,4,BI,EDIT=(IIIIT)),
 34:TOT=(26,4,BI,EDIT=(IIIIT)),
 42:TOT=(30,4,BI,EDIT=(IIIT.TT))))
/*

The three page report produced for RPT5 is the same as shown previously. The one page result produced
for RPT6 is:

Using OUTFIL

Chapter 7. Creating multiple output data sets and reports 95

1 Department In Stock Sold YTD Price
 ---------------- -------- -------- -------
 Computer Science 45 115 102.53
 English 33 118 46.40
 History 52 47 37.85

So far

So far, you have learned how to create multiple identical copies of an input data set; select and sample
input records by relative record number for output; include, omit or save selected input records for
output; reformat, repeat and split input records for output; and create various types of reports. Next, you
will learn how to update counts and totals in trailer records.

Updating counts and totals in trailer with OUTFIL
You can use OUTFIL's IFTRAIL parameter to update count and total values in an existing trailer (last)
record to reflect the actual data records in the OUTFIL data set.

Suppose another process deleted 3 records from a data set that originally contained 7 records, but did not
update the counts and totals in the trailer record. The modified data set looks like this:

1 SAN JOSE -1.23 +0.35
1 PALO ALTO +8.34 +1.23
1 DALLAS -0.03 -3.41
1 MORGAN HILL -15.25 +20.21
9 COUNT=0007,TOTAL1= -12.32,TOTAL2= +26.15

The data records are identified by a '1' and the trailer record is identified by a '9'. Note that the count of
data records is 7 even though there are now only 4 data records, and the totals are also incorrect.

You can use the following OUTFIL statement to update the trailer record with the correct count and totals:

 OUTFIL IFTRAIL=(TRLID=(1,1,CH,EQ,C'9'),
 TRLUPD=(9:COUNT=(EDIT=(TTTT)),
 21:TOT=(16,6,SFF,EDIT=(SIIT.TT),SIGNS=(+,-)),
 36:TOT=(26,6,SFF,EDIT=(SIIT.TT),SIGNS=(+,-))))

IFTRAIL tells DFSORT to update the trailer record.

TRLID=(logexp) identifies the trailer record using the same type of logical expression you can use for
INCLUDE. In this case, we identify the trailer record as having a '9' in position 1. The identified trailer
record is treated as the last record; it is not treated as a data record.

TRLUPD indicates the fields in the data records to be used to update counts and totals. c:, COUNT=,
COUNT+n=, COUNT-n=, TOT= and TOTAL= can be used in TRLUPD in the same way they are used in
TRAILER1.

The output data set will contain these data records and a trailer record updated with the correct count
and totals:

1 SAN JOSE -1.23 +0.35
1 PALO ALTO +8.34 +1.23
1 DALLAS -0.03 -3.41
1 MORGAN HILL -15.25 +20.21
9 COUNT=0004,TOTAL1= -8.17,TOTAL2= +18.38

You can also use IFTRAIL to update counts and totals as you modify a data set, such as when you use two
OUTFIL statements to split a data set.

Suppose your input data set has a header, data and trailer records like this:

H 2010/07/06
D key1 0100
D key2 0200
D key2 0118
D key1 0150
D key1 0025
D key2 1000

Using OUTFIL

96 z/OS: z/OS DFSORT: Getting Started

D key2 0310
T X 0007 QR 001903 D52-007-321-7526

The header record is identified by an 'H', the data records are identified by a 'D' and the trailer record
is identified by a 'T'. In the trailer record, positions 6-9 contain a count (0007) of the data records, and
positions 14-19 contain a total (001903) for the amount fields in the data records.

You can use the following OUTFIL statements to split the data records by key (key1 and key2) into two
output data sets each of which has the header and trailer with accurate count and total for the included
data records.

 OUTFIL FNAMES=OUT1,
 INCLUDE=(3,4,CH,EQ,C'key1'),
 IFTRAIL=(HD=YES,TRLID=(1,1,CH,EQ,C'T'),
 TRLUPD=(6:COUNT=(M11,LENGTH=4),
 14:TOT=(10,4,ZD,TO=ZD,LENGTH=6)))
 OUTFIL FNAMES=OUT2,
 INCLUDE=(3,4,CH,EQ,C'key2'),
 IFTRAIL=(HD=YES,TRLID=(1,1,CH,EQ,C'T'),
 TRLUPD=(6:COUNT=(M11,LENGTH=4),
 14:TOT=(10,4,ZD,TO=ZD,LENGTH=6)))

IFTRAIL tells DFSORT to update the trailer record.

INCLUDE includes the records with key1 (for OUT1) or key2 (for OUT2).

HD=YES indicates the first record is a header record. The header record will be output without change and
its fields will not be used for the count or total. If the input data set has a header, you must use HD=YES to
avoid treating the header record as a data record.

TRLID=(logexp) identifies the trailer record as having a 'T' in position 1. The identified trailer record is
treated as the last record; it is not treated as a data record.

TRLUPD indicates the counts and totals to be updated.

The results produced for OUT1 are:

H 2010/07/06
D key1 0100
D key1 0150
D key1 0025
T X 0003 QR 000275 D52-007-321-7526

The trailer record has a count (0003) and total (000275) for the three included data records.

The results produced for OUT2 are:

H 2010/07/06
D key2 0200
D key2 0118
D key2 1000
D key2 0310
T X 0004 QR 001628 D52-007-321-7526

The trailer record has a count (0004) and total (001628) for the four included data records.

For complete details on using IFTRAIL, see z/OS DFSORT Application Programming Guide.

So far

So far, you have learned how to create multiple identical copies of an input data set; select and sample
input records by relative record number for output; include, omit or save selected input records for
output; reformat, repeat and split input records for output; create various types of reports and update
counts and totals in trailer records. Next, you will learn about converting between fixed and variable
records.

Using OUTFIL

Chapter 7. Creating multiple output data sets and reports 97

Converting FB to VB
You can convert an FB data set to a VB data set with OUTFIL's FTOV parameter. Each VB output record has
a 4-byte RDW followed by the corresponding data from the FB input record, and the length in the RDW is
the length of the FB record plus 4.

The following JCL and DFSORT control statements convert the bookstore data set records from FB to VB.

//FBVB JOB A92,PROGRAMMER
//S1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//VBOUT DD DSN=A123456.SORT.VSAMP,DISP=(NEW,CATLG,DELETE),
// UNIT=3390,SPACE=(CYL,(5,5))
//SYSIN DD *
 OPTION COPY
 OUTFIL FNAMES=VBOUT,FTOV
/*

Because the LRECL of SORT.SAMPIN is 173 bytes, each VB record in SORT.VSAMP is 177 bytes (the FB
record length of 173 plus 4 for the RDW) and SORT.VSAMP is given an LRECL of 177.

You can also use PARSE, BUILD, OUTREC, OVERLAY, FINDREP, or IFTHEN parameters with FTOV on the
OUTFIL statement. All of the reformatting features are available (input fields, strings, editing, and so on).
With FTOV, you specify the input positions, and output columns as you would for an FB record (without
the RDW). DFSORT adds the RDW after the FB record is reformatted.

Here is an example of using FTOV with BUILD:

 OUTFIL FTOV,BUILD=(1:120,25,32:C'in ',110,5)

The VB output records look like this:

Positions 1-2: Length (in RDW) = hex 002B = 43
Positions 3-4: Zeros (in RDW) = hex 0000 = 0
Positions 5-29: Input positions 120-144
Positions 30-35: Blanks
Positions 36-38: 'in '
Positions 39-43: Input positions 110-114

Each VB output record is 43 bytes long and the output data set is given an LRECL of 43.

For the previous examples, the VB output records are all the same length. You can use OUTFIL'S VLTRIM
parameter to create VB output records of different lengths from FB input records. Suppose you have an
FB input data set with LRECL=20 and 20-byte records like this:

ABC
ABCDEF
AC
ABCDEFGHI

These statements change each 20-byte FB input record to a 24-byte VB output record and set LRECL=24
for the VB output data set:

 OPTION COPY
 OUTFIL FTOV

The VB output records look like this:

Length X'0000' Data

1 2 3 4 5 24

 24 0 ABC
 24 0 ABCDEF
 24 0 AC
 24 0 ABCDEFGHI

Using OUTFIL

98 z/OS: z/OS DFSORT: Getting Started

To remove the trailing blanks from the end of each VB output record, use VLTRIM=C' ' (or VLTRIM=X'40')
like this:

 OUTFIL FTOV,VLTRIM=C' '

LRECL=24 is still set for the resulting VB output data set, indicating that the maximum record length is 24,
but the VB output records are not padded on the right with blanks; they now have different record lengths
like this.

Length X'0000' Data

1 2 3 4 5 24

 7 0 ABC
 10 0 ABCDEF
 6 0 AC
 13 0 ABCDEFGHI

You can use any character or hexadecimal byte value for VLTRIM. For example, VLTRIM=C'*' removes
trailing asterisks, and VLTRIM=X'00' removes trailing binary zeros.

Converting VB to FB
You can convert a VB data set to an FB data set with OUTFIL's VTOF and BUILD or OUTREC parameters.
All of the PARSE, BUILD, or OUTREC features are available (input fields, strings, editing, and so on). For
VTOF, you specify the input positions of the VB input record (with the RDW), and the output columns of
the FB output record (without the RDW). DFSORT does not include the RDW in the FB output records.

Attention: You cannot specify OVERLAY, FINDREP, or IFTHEN with VTOF.

The following JCL and DFSORT control statements convert a VB data set with LRECL=104 to an FB data
set with LRECL=100:

//VBFB JOB A92,PROGRAMMER
//S1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=A123456.VBIN,DISP=SHR
//FBOUT DD DSN=A123456.FBOUT,DISP=(NEW,CATLG,DELETE),
// UNIT=3390,SPACE=(CYL,(5,5))
//SYSIN DD *
 OPTION COPY
 OUTFIL FNAMES=FBOUT,VTOF,OUTREC=(5,100)
/*

Up to 100 bytes of data starting at position 5 (after the RDW) of the VB input record appears in the FB
output record starting at position 1. The FB output records are all 100 bytes long. By default, if a VB input
record has less than 100 data bytes, DFSORT pads the output data with blanks on the right to 100 bytes.
However, you can change the padding character to anything you like with OUTFIL's VLFILL parameter. For
example, VLFILL=C'*' pads with asterisks and VLFILL=X'00' pads with binary zeros:

 SORT FIELDS=(25,10,CH,A)
* Pad short fields on the right with blanks (default is VLFILL=C' ')
 OUTFIL FNAMES=PADB,VTOF,
 OUTREC=(41,40,C'Blank padding',11,20)
* Pad short fields on the right with asterisks
 OUTFIL FNAMES=PADA,VTOF,
 OUTREC=(5,60,C'Asterisk padding',61,40),VLFILL=C'*'.
* Pad short fields on the right with binary zeros
 OUTFIL FNAMES=PADZ,VTOF,
 OUTREC=(21,60,C'Binary zero padding'),VLFILL=X'00'

LRECL=73 is set for the PADB output data set, which has 73 byte FB records.
Short input fields are padded with blanks on the right as needed.

LRECL=116 is set for the PADA output data set, which has 116 byte FB records.
Short input fields are padded with asterisks on the right as needed.

Using OUTFIL

Chapter 7. Creating multiple output data sets and reports 99

LRECL=79 is set for the PADZ output data set, which has 79 byte FB records.
Short input fields are padded with binary zeros on the right as needed.

Summary

This chapter covered the many ways you can use the OUTFIL statement and its various parameters to
create multiple output data sets and reports.

The next chapter will cover joining records from two data sets.

Using OUTFIL

100 z/OS: z/OS DFSORT: Getting Started

Chapter 8. Joining records

Often, you have two data sets with common key fields and different data fields, and you want to join their
records, that is, for records with matching keys, you want to create output records with some fields from
one data set and some fields from the other data set. You might want a one record to one record join,
a one record to many records join, a many records to one record join, or even a many records to many
records join.

A JOINKEYS application helps you to perform various "join" applications on two data sets by one or more
keys. You can do an inner join, full outer join, left outer join, right outer join and unpaired combinations.
The two data sets can be of different types (fixed, variable, VSAM, and so on) and lengths, and have keys
in different locations.

The records from the input data sets can be processed in a variety of ways before and after they are joined
using most of the DFSORT control statements you learned about previously including SORT or COPY,
INCLUDE or OMIT, INREC, OUTREC and OUTFIL.

Suppose you have two input data sets, REGION.IN1 and REGION.IN2 as shown in Table 49 on page 101
and Table 50 on page 101. REGION.IN1 has RECFM=FB and LRECL=35 and REGION.IN2 has RECFM=FB
and LRECL=27, so their LRECLs are different.

Table 49. REGION.IN1 data set for JOINKEYS application

Region Headquarters Regional Director

1 5 6 20 21 35

East
West
North
South

Philadelphia
San Jose
Boston
Charlotte

C. Kent
B. Wayne
P. Parker
D. Prince

Table 50. REGION.IN2 data set for JOINKEYS application

Office Region Employees Evaluation Established

 1 4 5 9 10 13 14 23 24 27

0001
0001
0002
0002
0001
0003
0002
0003
0001
0004

East
South
South
East
West
East
West
South
North
South

0050
0023
0068
0125
0052
0028
0105
0054
0200
0070

Fair
Good
Fair
Excellent
Good
Good
Excellent
Fair
Fair
Good

1983
1976
1978
1986
1995
1994
2001
1992
1991
2002

From these two input data sets, you want to create an output data set, REGION.OUT. For each record in
REGION.IN2, you want to look up the corresponding Region in REGION.IN1, and combine fields from the
two records into one output record in REGION.OUT, as shown in Table 51 on page 101.

Table 51. REGION.OUT data set for JOINKEYS application

Office Region Regional Director Employees Evaluation Headquarters

1 4 5 9 10 24 25 28 29 38 39 53

Joining Records

© Copyright IBM Corp. 1983, 2024 101

Table 51. REGION.OUT data set for JOINKEYS application (continued)

Office Region Regional Director Employees Evaluation Headquarters

0001
0002
0003
0001
0001
0002
0003
0004
0001
0002

East
East
East
North
South
South
South
South
West
West

C. Kent
C. Kent
C. Kent
P. Parker
D. Prince
D. Prince
D. Prince
D. Prince
B. Wayne
B. Wayne

0050
0125
0028
0200
0023
0068
0054
0070
0052
0105

Fair
Excellent
Good
Fair
Good
Fair
Fair
Good
Good
Excellent

Philadelphia
Philadelphia
Philadelphia
Boston
Charlotte
Charlotte
Charlotte
Charlotte
San Jose
San Jose

Write the following DFSORT JCL and control statements to use a JOINKEYS application to create
REGION.OUT from REGION.IN1 and REGION.IN2.

//JN1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//IN1 DD DSN=DSN=A123456.REGION.IN1,DISP=SHR
//IN2 DD DSN=DSN=A123456.REGION.IN2,DISP=SHR
//SORTOUT DD DSN=A123456.REGION.OUT,DISP=(NEW,CATLG,DELETE),UNIT=3390,
// SPACE=(CYL,(5,5))
//SYSIN DD *
 JOINKEYS F1=IN1,FIELDS=(1,5,A) F1 has ddname IN1 and key in 1-5
 JOINKEYS F2=IN2,FIELDS=(5,5,A) F2 has ddname IN2 and key in 5-9
 REFORMAT FIELDS=(F2:1,4, Office from F2
 F1:1,5,21,15, Region and Regional Director from F1
 F2:10,4,14,10, Employees and Evaluation from F2
 F1:6,15) Headquarters from F1
 OPTION COPY Copy joined records
/*

Two JOINKEYS statements are required: one for the F1 data set and another for the F2 data set. In this
case, the first JOINKEYS statement identifies IN1 as the ddname for the F1 data set and indicates an
ascending key (Region) in positions 1-5 of that data set. The second JOINKEYS statement identifies IN2
as the ddname for the F2 data set and indicates an ascending key (Region) is at positions 5-9 of that
data set. Each key in the F1 data set must be of the same length and order (ascending or descending)
as the corresponding key in the F2 data set, but does not have to be in the same location. The keys are
always treated as unsigned binary (INREC can be used to "normalize" the keys in each data set before the
records are joined, if necessary).

The F1 data set will be sorted by the key in positions 1-5. The F2 data set will be sorted by the key in
positions 5-9. If the records in a data set are already sorted by the key, you can specify SORTED on the
JOINKEYS statement to tell DFSORT to copy the records of that data set rather than sorting them.

Records with the same key in both data sets are joined and constructed as directed by the REFORMAT
statement using F1: for fields from the F1 record and F2: for fields from the F2 record. This REFORMAT
statement creates joined records from the following fields:

• Output positions 1-4: Office from F2
• Output positions 5-9: Region from F1
• Output positions 10-24: Regional Director from F1
• Output positions 25-28: Employees from F2
• Output positions 29-38: Evaluation from F2
• Output positions 39-53: Headquarters from F1

The resulting joined records are 53 bytes long and are copied to the SORTOUT data set (REGION.OUT).

If we wanted to sort the resulting joined records on the Headquarters and Office fields, we could replace
the OPTION COPY statement with the following SORT statement:

 SORT FIELDS=(39,15,CH,A,1,4,CH,A)

Joining Records

102 z/OS: z/OS DFSORT: Getting Started

The resulting sorted output records in REGION.OUT are shown in Table 52 on page 103.

Table 52. REGION.OUT data set Sorted by Headquarters and Office

Office Region Regional Director Employees Evaluation Headquarters

1 4 5 9 10 24 25 28 29 38 39 53

0001
0001
0002
0003
0004
0001
0002
0003
0001
0002

North
South
South
South
South
East
East
East
West
West

P. Parker
D. Prince
D. Prince
D. Prince
D. Prince
C. Kent
C. Kent
C. Kent
B. Wayne
B. Wayne

0200
0023
0068
0054
0070
0050
0125
0028
0052
0105

Fair
Good
Fair
Fair
Good
Fair
Excellent
Good
Good
Excellent

Boston
Charlotte
Charlotte
Charlotte
Charlotte
Philadelphia
Philadelphia
Philadelphia
San Jose
San Jose

You can also use a JOINKEYS application to match records from two different input data sets in various
ways. Suppose you have two input data sets, CITIES.IN1 and CITIES.IN2 as shown in Table 53 on page
103 and Table 54 on page 104.

Table 53. CITIES.IN1 data set

City State District

1 20 21 35 36 37

GILROY
GILROY
MORGAN HILL
PALO ALTO
PALO ALTO
PALO ALTO
SACRAMENTO
SAN JOSE
SAN JOSE
SAN MARTIN
AUSTIN
DALLAS
DALLAS
BARRE
BARRE
STOWE

CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
TEXAS
TEXAS
TEXAS
VERMONT
VERMONT
VERMONT

05
10
03
15
08
21
05
02
10
12
21
15
25
07
12
09

Joining Records

Chapter 8. Joining records 103

Table 54. CITIES.IN2 data set

State City

1 15 16 35

TEXAS
CALIFORNIA
CALIFORNIA
VERMONT
CALIFORNIA
TEXAS
VERMONT
CALIFORNIA
CALIFORNIA

AUSTIN
SACRAMENTO
GILROY
BURLINGTON
MODESTO
LAREDO
BARRE
LOS ANGELES
SAN JOSE

From these two data sets, you want to create a CITIES.OUT data set with the records for Cities that
appear in CITIES.IN1, but not in CITIES.IN2, as shown in Table 55 on page 104.

Table 55. CITIES.OUT data set

City State District

1 20 21 35 36 37

MORGAN HILL
PALO ALTO
PALO ALTO
PALO ALTO
SAN MARTIN
DALLAS
DALLAS
STOWE

CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
TEXAS
TEXAS
VERMONT

03
15
08
21
12
15
25
09

Write the following DFSORT JCL and control statements to use a JOINKEYS application to create
CITIES.OUT from CITIES.IN1 and CITIES.IN2.

//JN2 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTJNF1 DD DSN=DSN=A123456.CITIES.IN1,DISP=SHR
//SORTJNF2 DD DSN=DSN=A123456.CITIES.IN2,DISP=SHR
//SORTOUT DD DSN=A123456.CITIES.OUT,DISP=OLD
//SYSIN DD *
* F1 keys are State and City - F1 is already sorted
* by those keys.
 JOINKEYS FILE=F1,FIELDS=(21,15,A,1,20,A),SORTED
* F2 keys are State and City
 JOINKEYS FILE=F2,FIELDS=(1,15,A,16,20,A)
* Keep the records in F1 that do not have a match in F2
* for the State and City.
 JOIN UNPAIRED,F1,ONLY
 OPTION COPY
/*

The first JOINKEYS statement identifies SORTJNF1 as the ddname for the F1 data set and indicates
ascending keys (State and City) in positions 21-35 and 1-20 of that data set. Since the F1 records are
already in order by the State and City fields, SORTED is used to do a Copy of the F1 records rather than a
Sort.

The second JOINKEYS statement identifies SORTJNF2 as the ddname for the F2 data set and indicates
ascending keys (State and City) in positions 1-15 and 16-35 of that data set. Since the F2 records are
not already in order by the State and City fields, SORTED is not used and a Sort in performed for the F2
records on the indicated keys.

Joining Records

104 z/OS: z/OS DFSORT: Getting Started

JOIN UNPAIRED,F1,ONLY is used to restrict the output (SORTOUT) to the records in F1 that do not have
matching keys in F2. Since we want the entire F1 record, we do not need a REFORMAT statement.

Now suppose we want to use the CITIES.IN1 and CITIES.IN2 data sets again, but this time we want to
produce the following output from these two data sets:

• BOTH.OUT: CALIFORNIA and TEXAS cities that appear in both CITIES.IN1 and CITIES.IN2.
• F1ONLY.OUT: CALIFORNIA and TEXAS cities that appear in CITIES.IN1, but not in CITIES.IN2.
• F2ONLY.OUT: CALIFORNIA and TEXAS cities that appear in CITIES.IN2, but not in CITIES.IN1.

Write the following DFSORT JCL and control statements to use a JOINKEYS application to create
BOTH.OUT, F1ONLY.OUT and F2ONLY.OUT from CITIES.IN1 and CITIES.IN2.

//JN3 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//CITIES1 DD DSN=A123456.CITIES.IN1,DISP=SHR
//CITIES2 DD DSN=A123456.CITIES.IN2,DISP=SHR
//JNF1CNTL DD *
 OMIT COND=(21,15,CH,EQ,C'VERMONT')
//JNF2CNTL DD *
 OMIT COND=(1,15,CH,EQ,C'VERMONT')
//BOTH DD DSN=A123456.BOTH.OUT,DISP=OLD
//F1ONLY DD DSN=A123456.F1ONLY.OUT,DISP=OLD
//F2ONLY DD DSN=A123456.F2ONLY.OUT,DISP=OLD
//SYSIN DD *
 JOINKEYS F1=CITIES1,FIELDS=(21,15,A,1,20,A),SORTED
 JOINKEYS F2=CITIES2,FIELDS=(1,15,A,16,20,A)
 JOIN UNPAIRED,F1,F2
 REFORMAT FIELDS=(?,F1:1,37,F2:1,35)
 OPTION COPY
 OUTFIL FNAMES=BOTH,INCLUDE=(1,1,CH,EQ,C'B'),
 BUILD=(2,37)
 OUTFIL FNAMES=F1ONLY,INCLUDE=(1,1,CH,EQ,C'1'),
 BUILD=(2,37)
 OUTFIL FNAMES=F2ONLY,INCLUDE=(1,1,CH,EQ,C'2'),
 BUILD=(54,20,39,15)
/*

The first JOINKEYS statement identifies CITIES1 as the ddname for the F1 data set and indicates
ascending keys (State and City) in positions 21-35 and 1-20 of that data set. The JNF1CNTL data set
contains an OMIT statement to remove the VERMONT records from the F1 data set so they will not be
joined. Since the F1 records are already in order by the State and City fields, SORTED is used to do a Copy
rather than a Sort for the F1 data set.

The second JOINKEYS statement identifies CITIES2 as the ddname for the F2 data set and indicates
ascending keys (State and City) in positions 1-15 and 16-35 of that data set. The JNF2CNTL data set
contains an OMIT statement to remove the VERMONT records from the F2 data set so they will not be
joined. Since the F2 records are not already in order by the State and City fields, SORTED is not used and a
Sort in performed for the F2 data set.

Since we want to separate out the BOTH, F1ONLY and F2ONLY joined records, we use a JOIN statement
with UNPAIRED,F1,F2 to keep the unpaired joined records as well as the paired join records. In the
REFORMAT statement, we use ? as the first field to give us an indicator of whether each key was found in
both records ('B' indicator), only in F1 ('1' indicator) or only in F2 ('2' indicator). After the indicator, we put
positions 1-37 (City, State, District) from F1 and 1-35 (State, City) from F2. After the records are joined,
they will look as shown in Table 56 on page 105.

Table 56. Joined City records

Indicator F1 City F1 State F1 District F2 State F2 City

1 1 2 21 22 36 37 38 39 53 54 73

Joining Records

Chapter 8. Joining records 105

Table 56. Joined City records (continued)

Indicator F1 City F1 State F1 District F2 State F2 City

B
B
2
2
1
1
1
1
B
B
B
1
B
1
1
2

GILROY
GILROY

MORGAN HILL
PALO ALTO
PALO ALTO
PALO ALTO
SACRAMENTO
SAN JOSE
SAN JOSE
SAN MARTIN
AUSTIN
DALLAS
DALLAS

CALIFORNIA
CALIFORNIA

CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
TEXAS
TEXAS
TEXAS

05
10

03
15
08
21
05
02
10
12
21
15
25

CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA

CALIFORNIA
CALIFORNIA
CALIFORNIA

TEXAS

TEXAS

GILROY
GILROY
LOS ANGELES
MODESTO

SACRAMENTO
SAN JOSE
SAN JOSE

AUSTIN

LAREDO

Now we can use OUTFIL statements to create our three different output data sets. We write positions
2-38 (F1 City, F1 State, F1 District) of the joined records with an indicator of 'B' to positions 1-37 of the
BOTH.OUT data set. We write positions 2-38 (F1 City, F1 State, F1 District) of the joined records with
an indicator of '1' to positions 1-37 of the F1ONLY.OUT data set. We write positions 54-73 (F2 City) and
39-53 (F2 State) of the joined records with an indicator of '2' to positions 1-35 of the F2ONLY.OUT data
set. The resulting records are shown in Table 57 on page 106, Table 58 on page 107 and Table 59 on page
107.

Table 57. BOTH.OUT data set

City State District

1 20 21 35 36 37

GILROY
GILROY
SACRAMENTO
SAN JOSE
SAN JOSE
AUSTIN

CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
TEXAS

05
10
05
02
10
21

Joining Records

106 z/OS: z/OS DFSORT: Getting Started

Table 58. F1ONLY.OUT data set

City State District

1 20 21 35 36 37

MORGAN HILL
PALO ALTO
PALO ALTO
PALO ALTO
SAN MARTIN
DALLAS
DALLAS

CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
CALIFORNIA
TEXAS
TEXAS

03
15
08
21
12
15
25

Table 59. F2ONLY.OUT data set

City State

1 20 21 35

LOS ANGELES
MODESTO
LAREDO

CALIFORNIA
CALIFORNIA
TEXAS

These are just a few of the many types of join operations you can do with JOINKEYS. See z/OS DFSORT
Application Programming Guide for complete details of using the JOINKEYS, JOIN and REFORMAT
statements along with the other DFSORT statements to perform different JOINKEYS applications.

Summary

This chapter covered the use of JOINKEYS, JOIN and REFORMAT to join records from two data sets.

The next chapter will cover methods of calling DFSORT from a program.

Joining Records

Chapter 8. Joining records 107

Joining Records

108 z/OS: z/OS DFSORT: Getting Started

Chapter 9. Calling DFSORT from a program

This chapter contains Programming Interface information.

In addition to processing your DFSORT program control statements directly with PGM=SORT or
PGM=ICEMAN, you can call DFSORT from COBOL, PL/I, Assembler, or other programs. In this chapter,
you will concentrate on sorting and merging using COBOL and sorting using PL/I. The examples in this
chapter assume that the COBOL environment is available.

For information on restrictions when using these languages and on calling DFSORT from an assembler
program, see z/OS DFSORT Application Programming Guide.

Passing control statements
When you use COBOL or PL/I to call DFSORT, these program products create and pass a SORT or
MERGE control statement and a RECORD control statement for you. You can use other DFSORT control
statements, such as INCLUDE, OMIT, SUM, INREC, OUTREC and OUTFIL with your COBOL or PL/I
programs. Use a SORTCNTL or DFSPARM data set for these DFSORT statements in the same way you
would use a SYSIN data set. For example, you can use the SORTCNTL DD statement to pass the INCLUDE
control statement that selects only the English department books:

//EXAMP JOB A492,PROGRAMMER
 .
 .
 .
//SORTCNTL DD *
 INCLUDE COND=(110,5,CH,EQ,C'ENGL')
/*

Either a SYSIN data set or a DFSPARM data set, or both, can be used for DFSORT control statements
when DFSORT is invoked directly, that is, by PGM=SORT or PGM=ICEMAN. Either a SORTCNTL data set or
a DFSPARM data set, or both, can be used for DFSORT control statements when DFSORT is called from a
program.

If you use DFSORT with COBOL, you should be familiar with the SORT-CONTROL and SORT-RETURN
special registers. For complete details, see the COBOL Programmer's Guide that describes the compiler
version available at your site.

Calling DFSORT from a COBOL program
To call DFSORT from a COBOL program, use the COBOL statements SORT and MERGE. This section shows
sample programs that use the COBOL SORT and MERGE statements. For complete information, see the
COBOL Programmer's Guide describing the compiler version available at your site.

Sorting records
The sample COBOL program shown in this section calls DFSORT to sort the bookstore master file
(MASTER-FILE) by title in ascending order. The sorted master file is written to SORTED-MASTER-FILE.

Following is the JCL that calls the sample COBOL program:

//EXAMP JOB A492,PROGRAMMER
//BOOKS EXEC PGM=COBOLPGM
//STEPLIB DD DSN=USER.PGMLIB,DISP=SHR
//SYSOUT DD SYSOUT=A
//MASTIN DD DSN=A123456.MASTER,DISP=OLD
//MASTOUT DD DSN=A123456.OUTB,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(1,1)),UNIT=SYSDA
//PRINTFL DD SYSOUT=A

Calling DFSORT from a Program

© Copyright IBM Corp. 1983, 2024 109

In contrast to the JCL for executing DFSORT by using a JCL EXEC statement with PGM=SORT or
PGM=ICEMAN (see “JCL for sorting data sets directly” on page 16) the previous JCL has these
differences:

• The program name on the EXEC statement is that of the COBOL program.
• The STEPLIB DD statement defines the library containing the COBOL program.
• The name of the DD statement for the input file need not be SORTIN.
• The name of the DD statement for the output file need not be SORTOUT.

Notice that the control field and order for the sort are specified in the COBOL program itself rather than
with a SORT control statement. The following shows the sample COBOL program.

 IDENTIFICATION DIVISION.
 PROGRAM-ID.
 COBOLPGM.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT SD-FILE ASSIGN TO
 DUMMYNM.
 SELECT MASTER-FILE ASSIGN TO
 MASTIN.
 SELECT SORTED-MASTER-FILE ASSIGN TO
 MASTOUT.
 SELECT PRINT-FILE ASSIGN TO
 PRINTFL.
 DATA DIVISION.
 FILE SECTION.
 SD SD-FILE
 DATA RECORD IS SD-RECORD.
 01 SD-RECORD.
 05 TITLE-IN PICTURE X(75).
 05 AUTH-LN-IN PICTURE X(15).
 05 AUTH-FN-IN PICTURE X(15).
 05 PUB-IN PICTURE X(4).
 05 COUR-DEPT-IN PICTURE X(5).
 05 COUR-NO-IN PICTURE X(5).
 05 COUR-NAM-IN PICTURE X(25).
 05 INST-LN-IN PICTURE X(15).
 05 INST-INIT-IN PICTURE X(2).
 05 NO-STOCK-IN PICTURE 9(8) BINARY.
 05 NO-SOLD-IN PICTURE 9(8) BINARY.
 05 PRICE-IN PICTURE 9(8) BINARY.
 FD MASTER-FILE
 DATA RECORD IS MASTER-RECORD.
 01 MASTER-RECORD.
 05 FILLER PICTURE X(173).

 FD SORTED-MASTER-FILE
 DATA RECORD IS SORTED-MASTER-RECORD.
 01 SORTED-MASTER-RECORD.
 05 FILLER PICTURE X(173).

 FD PRINT-FILE
 DATA RECORD IS OUTPUT-REPORT-RECORD.
 01 OUTPUT-REPORT-RECORD.
 05 REPORT-OUT PICTURE X(120).
 .
 .
 .

 PROCEDURE DIVISION.
 .
 .
 .
 SORT-ROUTINE SECTION.
 SORT SD-FILE
 ASCENDING KEY TITLE-IN
 USING MASTER-FILE
 GIVING SORTED-MASTER-FILE.
 IF SORT-RETURN > 0
 DISPLAY "SORT FAILED".
 .
 .
 .
SORT-REPORT SECTION.
 print a report on PRINT-FILE using SORTED-MASTER-FILE.

Calling DFSORT from a Program

110 z/OS: z/OS DFSORT: Getting Started

 .
 .
 .
 STOP RUN.

Merging records
The sample COBOL program in Figure 2 on page 112 calls DFSORT to merge the presorted bookstore
master file (MASTER-FILE) with another presorted file (NEW-BOOKS-FILE) to create a new master file
(MERGED-FILE).

The JCL for the program is as follows:

//EXAMP JOB A492,PROGRAMMER
//BOOKS EXEC PGM=COBOLP
//STEPLIB DD DSN=USER.PGMLIB,DISP=SHR
//SYSOUT DD SYSOUT=A
//MASTERFL DD DSN=A123456.MASTER,DISP=OLD
//NEWBOOKS DD DSN=A123456.NEW,DISP=OLD
//MERGEDFL DD DSN=A123456.OUTC,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(1,1)),UNIT=SYSDA

Figure 2 on page 112 shows the sample COBOL program.

Calling DFSORT from a Program

Chapter 9. Calling DFSORT from a program 111

 IDENTIFICATION DIVISION.
 PROGRAM-ID.
 COBOLP.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT SD-FILE ASSIGN TO
 DUMMYNM.
 SELECT MASTER-FILE ASSIGN TO
 MASTERFL.
 SELECT NEW-BOOKS-FILE ASSIGN TO
 NEWBOOKS.
 SELECT MERGED-FILE ASSIGN TO
 MERGEDFL.
 DATA DIVISION.
 FILE SECTION.
 SD SD-FILE
 DATA RECORD IS SD-RECORD.
 01 SD-RECORD.
 05 TITLE-KEY PICTURE X(75).
 05 FILLER PICTURE X(98).

 FD MASTER-FILE
 DATA RECORD IS MASTER-RECORD.
 01 MASTER-RECORD.
 05 FILLER PICTURE X(173).

 FD NEW-BOOKS-FILE
 DATA RECORD IS NEW-BOOKS-RECORD.
 01 NEW-BOOKS-RECORD.
 05 FILLER PICTURE X(173).

 FD MERGED-FILE
 DATA RECORD IS MERGED-RECORD.
 01 MERGED-RECORD.
 05 FILLER PICTURE X(173).
 .
 .
 .

 PROCEDURE DIVISION.
 .
 .
 .

 MERGE-ROUTINE SECTION.
 MERGE SD-FILE
 ASCENDING KEY TITLE-KEY
 USING MASTER-FILE NEW-BOOKS-FILE
 GIVING MERGED-FILE.
 IF SORT-RETURN > 0
 DISPLAY "MERGE FAILED".
 STOP RUN.

Figure 2. Sample COBOL Program with MERGE Commands

Sorting with COBOL FASTSRT
With the COBOL program for sorting records in “Sorting records” on page 109, the input (from MASTER-
FILE) and the output (to SORTED-MASTER-FILE) qualify for the COBOL FASTSRT option. With this
compile-time FASTSRT option, your sort runs considerably faster, because DFSORT does the input
and output processing, rather than COBOL. For complete details on FASTSRT, refer to z/OS DFSORT
Application Programming Guide and the COBOL Programmer's Guide that describes the compiler version
available at your site.

Note: COBOL evaluates sort input and output independently to see if it qualifies for FASTSRT. If either the
input or the output of your sort does not qualify because of the presence of an input or output procedure,
you might be able to replace such a procedure and use DFSORT control statements to accomplish the

Calling DFSORT from a Program

112 z/OS: z/OS DFSORT: Getting Started

same thing. For example, you can use a control statement (OUTREC) to indicate how records will be
reformatted before being written to the output data set.

Calling DFSORT from a PL/I program
When calling DFSORT, a PL/I program must pass a SORT control statement, a RECORD control statement,
and the amount of main storage to be available to DFSORT. On the RECORD control statement, you specify
the record type and length for the input data set. Following the RECORD control statement, you specify
the main storage value for DFSORT either as MAX, or as a value in bytes. (DFSORT performs best when
MAX is specified as the main storage value.)

You can also specify DFSORT control statements in a SORTCNTL or DFSPARM data set.

This JCL is for the program shown in Figure 3 on page 114. A SORTCNTL data set is used to specify an
INCLUDE control statement that selects only the English department books.

//EXAMP JOB A492,PROGRAMMER
//BOOKS EXEC PGM=PLIPGM
//STEPLIB DD DSN=USER.PGMLIB,DISP=SHR
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=OLD
//SORTCNTL DD *
 INCLUDE COND=(110,5,CH,EQ,C'ENGL')
/*
//SYSPRINT DD SYSOUT=A

The sample PL/I program shown in Figure 3 on page 114 calls DFSORT to sort the bookstore file by title. It
specifies appropriate SORT and RECORD control statements, and a DFSORT main storage value of MAX.

Calling DFSORT from a Program

Chapter 9. Calling DFSORT from a program 113

PLIPGM: PROC OPTIONS(MAIN);

 DCL 1 MASTER_RECORD,
 5 TITLE_IN CHAR(75),
 5 AUTH_LN_IN CHAR(20),
 .
 .
 .
 5 PRICE_IN BIN FIXED(31);

 DCL RETURN_CODE FIXED BIN(31,0);
 DCL MAXSTOR FIXED BIN(31,0);
 UNSPEC(MAXSTOR)='00000000'B||UNSPEC('MAX');
 .
 .
 .
 CALL PLISRTA (' SORT FIELDS=(1,75,CH,A) ',
 ' RECORD TYPE=F,LENGTH=(173) ',
 MAXSTOR,
 RETURN_CODE);
 IF RETURN_CODE ¬= 0 THEN DO;
 PUT SKIP EDIT ('SORT FAILED')(A);
 CALL PLIRETC(RETURN_CODE);
 END;
 .
 .
 .
 CALL OUTPUT;
 .
 .
 .
 OUTPUT: PROCEDURE;
 .
 .
 .
 . Print a report from the sorted master file (SORTOUT)
 .
 .
 .
 END;
END PLIPGM;

Figure 3. Sample PL/I Program with SORT Commands

Sumary

This chapter covered methods of calling DFSORT from COBOL, and PL/I.

Calling DFSORT from a Program

114 z/OS: z/OS DFSORT: Getting Started

Chapter 10. Overriding installation defaults

IBM ships DFSORT with pre-set defaults. During installation, your system programmer can change these
defaults. For example, one IBM-supplied default is to list DFSORT control statements in the DFSORT
message data set. However, at your site, the default might be to not list DFSORT control statements.

Furthermore, your system programmer can establish separate defaults for jobs with DFSORT executed
directly and for jobs with DFSORT called from a program. So, when you execute DFSORT directly, the
default might be to list DFSORT control statements, and when you call DFSORT from a program, the
default might be to not list DFSORT control statements.

In many cases, if a particular installation default is not appropriate for your job, you can temporarily
override it in one of several ways:

• as a PARM parameter in a DFSPARM data set
• as an OPTION, ALTSEQ or DEBUG parameter in a DFSPARM data set
• as a PARM parameter on the JCL EXEC statement
• as an OPTION, ALTSEQ or DEBUG parameter in a SYSIN or SORTCNTL data set
• as an OPTION, ALTSEQ or DEBUG parameter in a parameter list passed from a calling program

OPTION, ALTSEQ and DEBUG parameters in a DFSPARM data set are a good way to override installation
defaults regardless of whether you execute DFSORT directly or call it from a program.

In this chapter, you will learn how to override some of the many available defaults, concentrating on
PARM parameters in the JCL EXEC statement, and the OPTION control statement in a DFSPARM data set.

You can list all of the installation defaults selected at your site using an ICETOOL DEFAULTS job like the
following:

//S1 EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//DFLTS DD SYSOUT=A
//TOOLIN DD *
 DEFAULTS LIST(DFLTS)
/*

You'll learn more about ICETOOL in Chapter 12, “Using the ICETOOL utility,” on page 123.

For detailed information on all of the parameters you can override and the various ways in which you
can override them, see z/OS DFSORT Application Programming Guide. In particular, see Appendix C,
"Specification/Override of DFSORT Options".

Specifying PARM parameters on a JCL EXEC statement
When you execute DFSORT directly, you can use the PARM parameter in the JCL EXEC statement to
override certain defaults for your job. For example, if the default at your site is to list DFSORT statements
(installation parameter LIST=YES), but you do not want them listed for your job, you can specify NOLIST in
the PARM field

//S1 EXEC PGM=SORT,PARM='NOLIST'

On the other hand, if the default is not to list the DFSORT statements (installation parameter LIST=NO),
but you do want them listed, you can specify LIST in the PARM field:

//S1 EXEC PGM=SORT,PARM='LIST'

Overriding Installation Defaults

© Copyright IBM Corp. 1983, 2024 115

You can also specify more than one PARM parameter. For example, if you want to list the DFSORT
statements, have DFSORT set a return code of 4 if SUM fields overflow, use six dynamically allocated
SYSDA work data sets, and have DFSORT ABEND if it detects an error, you can specify:

 //S1 EXEC PGM=SORT,PARM='LIST,OVFLO=RC4,DYNALLOC=(SYSDA,6),ABEND'

Specifying an OPTION control statement in DFSPARM
Whether you execute DFSORT directly or call it from a program, you can use an OPTION statement in a
DFSPARM data set to override certain defaults for your job. To do so, you can place the OPTION statement
after a //DFSPARM DD * statement, either by itself or with other DFSORT control statements.

A particular default that you may want to override with the OPTION statement is the EQUALS=NO
installation option that specifies whether equally collating records are to be written in their original order.

If your site has EQUALS=NO as the default (recommended) and you want to temporarily override it (so
that equally collating records are written in their original order for your job), you can specify EQUALS on
the OPTION statement:

//DFSPARM DD *
 OPTION EQUALS
/*

Or, if your site has established EQUALS=YES as the installation default and you want to temporarily
override it (so that equally collating records can be written in random order for your job), you can specify
NOEQUALS on the OPTION statement:

//DFSPARM DD *
 OPTION NOEQUALS
/*

You can also specify more than one parameter on the OPTION statement, as well as additional control
statements, in a DFSPARM data set. For example, if you want to list the DFSORT statements, have
DFSORT set a return code of 4 if SUM fields overflow, use six dynamically allocated SYSDA work data sets,
and have DFSORT ABEND if it detects an error, you can specify:

//DFSPARM DD *
 OPTION LIST,OVFLO=RC4,DYNALLOC=(SYSDA,6)
 DEBUG ABEND
/*

Summary

This chapter covered methods of overriding selected DFSORT installation defaults using PARM
parameters on the JCL EXEC statement, or an OPTION control statement.

Overriding Installation Defaults

116 z/OS: z/OS DFSORT: Getting Started

Chapter 11. Using DFSORT efficiently

You will get the best performance from DFSORT if you follow these guidelines:

• Be generous with main storage.
• Allow memory object sorting, hipersorting and dataspace sorting.
• Use high-speed disks for work space.
• Eliminate unnecessary fields with INREC.
• Eliminate unnecessary records with INCLUDE or OMIT.
• Eliminate unnecessary records with STOPAFT and SKIPREC.
• Consolidate records with SUM.
• Create multiple output data sets with OUTFIL
• Replace program logic with DFSORT control statements.
• Use FASTSRT with COBOL.
• Avoid options that might degrade performance.

Additional suggestions can be found in z/OS DFSORT Application Programming Guide and z/OS DFSORT
Tuning Guide.

Be generous with main storage
By default, DFSORT can use 6 megabytes of main memory for sort, merge and copy applications, or even
more when appropriate. If your site does not have an installation default of SIZE=MAX, we recommend
setting the MAINSIZE=MAX parameter for your job. As an example, you can set MAINSIZE=MAX like this:

//DFSPARM DD *
 OPTION MAINSIZE=MAX
/*

Alternatively, you can specify the MAINSIZE=nM parameter (n megabytes) to give DFSORT more or
less storage for your job, but we do not recommend this unless you have a specific reason for using
MAINSIZE=nM rather than MAINSIZE=MAX. As an example, you can set MAINSIZE=2M like this:

//DFSPARM DD *
 OPTION MAINSIZE=2M
/*

Allow memory object sorting, Hipersorting and dataspace sorting
By default, DFSORT can use memory objects, hiperspaces or data spaces, when appropriate, instead
of or along with disk work data sets, to improve the performance of sort applications. If your site
has an installation default of MOSIZE=0, HIPRMAX=0 or DSPSIZE=0, you might want to specify the
MOSIZE=MAX, HIPRMAX=OPTIMAL and DSPSIZE=MAX parameters when you sort large data sets. As an
example, you can set these parameters like this:

//DFSPARM DD *
 OPTION MOSIZE=MAX,HIPRMAX=OPTIMAL,DSPSIZE=MAX
/*

Use high–speed disks for work data sets
Using high-speed disks, such as IBM's Enterprise Storage Server subsystems, offers the best performance
for work data sets. Throughput can be further improved by leveraging high speed channels such as IBM's

Using DFSORT Efficiently

© Copyright IBM Corp. 1983, 2024 117

FICON connectivity solutions. DFSORT is optimized to leverage the high speed data transfer capabilities
offered by these technologies. You should avoid using tapes for work data sets whenever possible.

Eliminate unnecessary fields with INREC
If you need to reformat your records, using INREC to significantly shorten them can result in faster
processing.

Remember that INREC reformats records before they are processed, and OUTREC reformats them after
they are processed. Therefore, you should use INREC to shorten records and OUTREC to lengthen
records. For a summary of the control statements and the corresponding record positions to refer to
when using INREC, see Table 60 on page 118.

Table 60. Control Statement and Corresponding Records with INREC

Control Statement Original Records Reformatted Records

SORT ✓

MERGE ✓

SUM ✓

OUTREC ✓

OUTFIL ✓

INCLUDE ✓

OMIT ✓

For details on INREC, see Chapter 5, “Reformatting records with fixed fields,” on page 37.

Eliminate unnecessary records with INCLUDE or OMIT
Naturally, the number of input records affects the amount of time processing will take. The fewer the
records, the faster the DFSORT application. You can improve performance by using INCLUDE or OMIT
whenever possible to select only the records pertaining to your application.

For details on INCLUDE and OMIT, see Chapter 3, “Including or omitting records,” on page 23.

Eliminate unnecessary records with STOPAFT and SKIPREC
You can also use the STOPAFT and SKIPREC options to reduce the number of input records you process.

• Use STOPAFT to specify the maximum number of records to be accepted for sorting or copying.
• Use SKIPREC to specify the number of records to be skipped before sorting or copying begins.

For information on how to use these options, see z/OS DFSORT Application Programming Guide.

Consolidate records with SUM
You can improve performance for sorting or merging by using the SUM statement, if appropriate for your
job, to:

• add the contents of fields whenever two records with equal control fields are found. DFSORT places the
result in one record and deletes the other, reducing the number of output records, or

• delete records with duplicate control fields by specifying FIELDS=NONE.

For details on SUM, see Chapter 4, “Summing records,” on page 33.

Using DFSORT Efficiently

118 z/OS: z/OS DFSORT: Getting Started

Create multiple output data sets with OUTFIL
If you need to create multiple output data sets from the same input data set, you can use OUTFIL to
read the input data set only once, thus improving performance. OUTFIL can be used for sort, merge, and
copy applications to provide sophisticated filtering, editing, conversion, lookup and replace, and report
features.

For details on OUTFIL, see Chapter 7, “Creating multiple output data sets and reports,” on page 79.

Replace program logic with DFSORT control statements
As a rule, using appropriate DFSORT control statements is more efficient than program logic. Whenever
possible, use DFSORT control statements INCLUDE, OMIT, INREC, OUTREC, SUM and OUTFIL instead of
doing the same functions with program code.

Use FASTSRT with COBOL
With COBOL, you can enhance DFSORT performance by using the FASTSRT compile-time option. With
FASTSRT, DFSORT does the input and output processing, rather than COBOL. For more information on
the FASTSRT option, see the COBOL Programmer's Guide that describes the compiler version available at
your site.

Avoid options that might degrade performance
This chapter covered methods for improving DFSORT performance, including the effective use of various
control statements and parameters.

The following parameters and options might adversely affect DFSORT performance. Use them only when
necessary. For a complete description of what these parameters and options are and how they affect
performance, see z/OS DFSORT Application Programming Guide and z/OS DFSORT Tuning Guide.

• VERIFY parameter
• EQUALS parameter
• NOBLKSET parameter
• CKPT parameter
• EQUCOUNT parameter
• NOCINV parameter
• LOCALE parameter
• BSAM parameter
• NOASSIST parameter
• NOCFW parameter
• Tape work data sets
• User exit routines
• EFS program
• Dynamic link-edit of user exit routines
• Small values for the MOSIZE, HIPRMAX, DSPSIZE, or MAINSIZE parameters
• Processing Unicode data formats

Using DFSORT Efficiently

Chapter 11. Using DFSORT efficiently 119

Using DFSORT Efficiently

120 z/OS: z/OS DFSORT: Getting Started

Part 3. Learning to use ICETOOL

© Copyright IBM Corp. 1983, 2024 121

122 z/OS: z/OS DFSORT: Getting Started

Chapter 12. Using the ICETOOL utility

ICETOOL is a multipurpose DFSORT utility that uses the capabilities of DFSORT to perform multiple
operations on one or more data sets in a single step.

This chapter introduces you to ICETOOL's 17 "operators", which allow you to do a wide variety of tasks.
You will learn about ICETOOL's JCL and control statements while writing a large "main" ICETOOL job that
uses many of the ICETOOL operators, as well as several additional smaller ICETOOL jobs that illustrate
specific points. To fully use the capabilities of ICETOOL, you should become familiar with all of its
operators, operands, and methods of invocation, as described in z/OS DFSORT Application Programming
Guide.

Note: Most likely, you would do unrelated tasks in different ICETOOL jobs. But you can do unrelated
tasks in the same ICETOOL job. The ICETOOL jobs constructed in this chapter take both approaches as a
convenient way to illustrate the use of various ICETOOL operators.

ICETOOL operators
The following 17 ICETOOL operators can be used to perform a variety of functions. By using various
combinations of the 17 ICETOOL operators, you can easily create applications that perform many
complex tasks.
COPY

Copies a data set to one or more output data sets.
COUNT

Prints a message containing the count of records in a data set. COUNT can also be used to create
an output data set containing text and the count, or to set RC=12, RC=8, RC=4, or RC=0 based on
meeting criteria for the number of records in a data set (for example, empty, not empty, less than,
equal to, or greater than 5000 records, and so on).

DATASORT
Sorts data records between header and trailer records in a data set to an output data set.

DEFAULTS
Prints the DFSORT installation defaults in a separate list data set.

DISPLAY
Prints the values or characters of specified numeric or character fields in a separate list data set.
Simple, tailored, or sectioned reports can be produced. Maximums, minimums, totals, averages and
counts can be produced.

MERGE
Merges one or more data sets to one or more output data sets.

MODE
Three modes are available, which can be set or reset for groups of operators:

• STOP mode (the default) stops subsequent operations if an error is detected.
• CONTINUE mode continues with subsequent operations if an error is detected.
• SCAN mode allows ICETOOL statement checking without actually performing any operations.

OCCUR
Prints each unique value for specified numeric or character fields and how many times it occurs in a
separate list data set. Simple or tailored reports can be produced. The values printed can be limited
to those for which the value count meets specified criteria (for example, only duplicate values or only
non-duplicate values).

RANGE
Prints a message containing the count of values in a specified range for a specified numeric field in a
data set.

© Copyright IBM Corp. 1983, 2024 123

RESIZE
Creates a larger record from multiple shorter records, or creates multiple shorter records from a larger
record, that is, resizes fixed length records.

SELECT
Selects records from a data set for inclusion in an output data set based on meeting criteria for the
number of times specified numeric or character field values occur (for example, only duplicate values
or only non-duplicate values). Records that are not selected can be saved in a separate output data
set.

SORT
Sorts a data set to one or more output data sets.

SPLICE
Splices together specified fields from records that have the same specified numeric or character field
values (that is, duplicate values), but different information. Specified fields from two or more records
can be combined to create an output record. The fields to be spliced can originate from records in
different data sets, so you can use SPLICE to do various "join" and "match" operations.

STATS
Prints messages containing the minimum, maximum, average, and total for specified numeric fields in
a data set.

SUBSET
Selects records from a data set based on keeping or removing header records, relative records or
trailer records. Records that are not selected can be saved in a separate output data set.

UNIQUE
Prints a message containing the count of unique values for a specified numeric or character field.

VERIFY
Examines specified decimal fields in a data set and prints a message identifying each invalid value
found for each field.

Sample input data sets
Each ICETOOL operator (except DEFAULTS and MODE) requires an input data set. The input data set used
by one operator can be the same or different from the input data set used by another operator. Thus,
ICETOOL can process many data sets in a single step.

This chapter uses the branch data set SORT.BRANCH, the bookstore data set SORT.SAMPIN, and the
additional bookstore data set SORT.SAMPADD as input data sets. See Appendix A, “Creating the sample
data sets,” on page 171 and Appendix B, “Descriptions of the sample data sets,” on page 173 for
additional information about these sample data sets. Two temporary data sets created by ICETOOL from
SORT.BRANCH are also used as input.

Note: This chapter also uses data sets other than SORT.BRANCH, SORT.SAMPIN and SORT.SAMPADD. You
can either create data sets from scratch to match the ones used in the text, or else perform a similar
exercise on data sets you already have.

Writing required JCL statements
An ICETOOL job consists of:

1. The JCL statements that are required for every ICETOOL job.
2. The operator statements indicating the operations to be performed by the ICETOOL job.
3. The JCL statements that are required as a result of the specified operator statements.

The first step in creating any ICETOOL job is to write the JCL that is always required. Here is a skeleton of
the JCL for an ICETOOL job:

124 z/OS: z/OS DFSORT: Getting Started

//EXAMP JOB A492,PROGRAMMER
//TOOL EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//TOOLIN DD *
 <ICETOOL statements go here>
/*
<Additional JCL statements go here>

• The JOB statement signals the beginning of the job.
• The EXEC statement signals the beginning of the job step and tells the operating system to run the

ICETOOL program.
• The TOOLMSG statement defines the output data set for ICETOOL messages.
• The DFSMSG statement defines the output data set for DFSORT messages.
• The TOOLIN statement precedes the ICETOOL statements (comment, blank, and operator statements).

The ICETOOL statements you write must appear after TOOLIN. The additional JCL statements you write
can appear before the TOOLIN statement or after the ICETOOL statements. In the main ICETOOL job,
the additional JCL statements will be placed after the ICETOOL statements.

ICETOOL comment and blank statements
Comment statements and blank statements can be placed anywhere among the ICETOOL operator
statements.

• Comment statements start with an asterisk (*) in column 1 and are printed along with the ICETOOL
operator statements.

• Blank statements contain blanks in columns 1-72 and are ignored because ICETOOL prints blank lines
where appropriate.

A blank statement and a comment statement for our example looks like this:

* Statistics from all branches

Here are the steps for writing these statements:

Table 61. Steps to Create a Blank Statement and a Comment Statement

Step Action

1 After the TOOLIN DD statement, skip one line.

2 Type an asterisk (*) in column 1 followed by the comment.

When complete, the TOOLIN statements look like this:

//TOOLIN DD *

* Statistics from all branches
/*

For the main ICETOOL job, a comment statement will be placed before each operator to describe its
function. Although not required, this is a good practice to follow.

So far

So far, you have been introduced to the basics of the ICETOOL utility. Now, using the following tutorials,
you can learn about many of the ICETOOL operators. The following sections contain parts of the main
ICETOOL job, so that by the end of the chapter, you will have created the complete main ICETOOL job. At
the end of the chapter, there is a section that contains the complete main ICETOOL job and its resulting
messages.

Chapter 12. Using the ICETOOL utility 125

Printing statistics for numeric fields
When working with data sets containing numeric fields, you may want statistical information about one or
more of those fields. You can use the STATS operator to find the minimum, maximum, average, and total
values of up to 10 specific numeric fields.

A STATS operator that prints statistics for the employees, profit,
and revenue fields of the branch office data set looks like this:

Here are the steps for writing this STATS operator.

Table 62. Steps to Create the STATS Operator

Step Action

1 Type STATS after the comment statement (you can leave one or more blanks before STATS if you
like).

2 Leave at least one blank and type FROM(ALL)

FROM specifies the ddname (that is, the name of the DD statement) for the input data set from which
you want to print statistics. In this case ALL is the ddname chosen, but you can use any valid 1-8
character ddname you like.

3 Leave at least one blank and type ON

ON defines a field for which you want to print statistics.

4 Type in parentheses, and separated by commas:

1. Where the employees field begins relative to the beginning of the input record (the first position is
byte 1). The employees field begins at byte 18.

2. The length of the employees field in bytes. The employees field is 4 bytes long.
3. A code for the data format. The employees field contains zoned decimal data, which you specify

as ZD.

5 Leave at least one blank and type ON

ON defines another field for which you want to print statistics. You can print statistics for up to 10
fields with one STATS statement. Specify the ON fields in the same order in which you want their
statistics to be printed.

6 Type in parentheses, and separated by commas the location (28), length (6), and format (PD for
packed decimal) of the profit field.

7 Leave at least one blank and type ON. Type in parentheses and separated by commas, the location
(22), length (6), and format (PD) of the revenue field.

Make sure that the statement is coded between columns 1 and 72.

You must also write a DD statement for the A123456.SORT.BRANCH data set using the ddname ALL and
place it at the end of the job:

//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR

126 z/OS: z/OS DFSORT: Getting Started

When complete the TOOLIN statements and ALL statement look like this:

//TOOLIN DD *

* Statistics from all branches
STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)
/*
//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR

When this STATS operation is run, the results are placed in the TOOLMSG data set. If you ran the ICETOOL
job you created so far, the TOOLMSG output would look like this:

ICE600I 0 DFSORT ICETOOL UTILITY RUN STARTED

ICE650I 0 VISIT http://www.ibm.com/storage/dfsort FOR ICETOOL PAPERS, EXAMPLES AND MORE

ICE632I 0 SOURCE FOR ICETOOL STATEMENTS: TOOLIN

ICE630I 0 MODE IN EFFECT: STOP

 * Statistics from all branches
 STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)
ICE627I 0 DFSORT CALL 0001 FOR COPY FROM ALL TO E35 EXIT COMPLETED
ICE628I 0 RECORD COUNT: 000000000000012
ICE607I 0 STATISTICS FOR (18,4,ZD) :
ICE608I 0 MINIMUM: +000000000000015, MAXIMUM: +000000000000035
ICE609I 0 AVERAGE: +000000000000024, TOTAL : +000000000000298
ICE607I 0 STATISTICS FOR (28,6,PD) :
ICE608I 0 MINIMUM: -000000000004278, MAXIMUM: +000000000008276
ICE609I 0 AVERAGE: +000000000004222, TOTAL : +000000000050665
ICE607I 0 STATISTICS FOR (22,6,PD) :
ICE608I 0 MINIMUM: +000000000012300, MAXIMUM: +000000000042820
ICE609I 0 AVERAGE: +000000000027469, TOTAL : +000000000329637
ICE602I 0 OPERATION RETURN CODE: 00

ICE601I 0 DFSORT ICETOOL UTILITY RUN ENDED - RETURN CODE: 00

Looking at the output, you will notice that:

• Message ICE628I gives the count of records processed.
• Messages ICE607I, ICE608I, and ICE609I give the numerical statistics for each ON field specified in the

order in which they were specified.
• A return code for each operator is given in message ICE602I and the highest operator return code is

given in message ICE601I.

Continuing an operator statement
If you cannot fit your STATS statement (or any other ICETOOL operator statement) between columns 1
and 72 of a single line, you can continue it across multiple lines. If you end a line with a hyphen (-) after
the operator or any operand, the next line is treated as a continuation. Any characters specified after the
hyphen are ignored.

Note that the operator and each operand must be completely specified on one line (between columns 1
and 72).

For example:

STATS - this is the operator
 FROM(ALL) - ALL is the ddname for SORT.BRANCH
 ON(18,4,ZD)-
 ON(28,6,PD)-
 ON(22,6,PD)

Statistics for VB data set record lengths
When working with variable length record data sets, you can use the STATS operator to easily obtain the
following information:

• The shortest record in the data set (minimum)
• The longest record in the data set (maximum)

Chapter 12. Using the ICETOOL utility 127

• The average length of records in the data set (average)
• The total number of bytes in the data set (total)

ICETOOL provides the special ON(VLEN) field for printing these statistics. Specify ON(VLEN) as you would
any other ON field.

When you code ON(p,m,f) fields for VB records, remember to add 4 to the starting position to account for
the 4-byte RDW, in the same way discussed earlier for DFSORT control statement fields.

The following STATS operator reports the minimum, maximum, total and average values for the record
length and for a PD field in the first two data bytes:

STATS FROM(VBIN) ON(VLEN) ON(5,2,PD)

So far

Now you know how to use ICETOOL's STATS operator to print statistics for numeric fields and VB record
lengths. In the next section, you will learn how to use ICETOOL's SORT operator.

Creating identical sorted data sets
You can use ICETOOL's SORT operator to create sorted output data sets. A single SORT operator can
be used to create one output data set or up to 10 identical output data sets. Using INCLUDE or OMIT
statements, you can select a subset of the input records. Using INREC or OUTREC statements, you can
rearrange the fields of the input records. Using OUTFIL statements, you can create any number of output
data sets with different subsets of records or arrangements of fields.

For this example, we will use both the sample bookstore data set (SORT.SAMPIN) and the additional
bookstore data set (SORT.SAMPADD) as input.

A SORT operator that selects the books from publishers VALD and WETH, sorts them
by publisher and title, and writes them to disk and print data sets, looks like this:

Here are the steps for writing this SORT operator:

Table 63. Steps to Create the SORT Operator

Step Action

1 Write a comment statement (optional):

* Books from VALD and WETH

2 Type SORT after the comment statement

3 Leave at least one blank and type FROM(BKS)

BKS specifies the ddname for the input data sets you want to sort.

128 z/OS: z/OS DFSORT: Getting Started

Table 63. Steps to Create the SORT Operator (continued)

Step Action

4 Leave at least one blank and type TO(DAPUBS,PRPUBS)

TO specifies the ddnames for the output data sets to contain the sorted subset of records. You can
create up to 10 identical output data sets of any type that DFSORT allows (permanent, temporary,
disk, tape, print, etc).

In this case, DAPUBS is the ddname chosen for the temporary disk data set and PRPUBS is the
ddname chosen for the print data set. You can use any valid 1-8 character ddnames you like.

ICETOOL will automatically use OUTFIL to create both output data sets from a single pass over the
input data set.

5 Leave at least one blank and type USING(SPUB)

USING specifies the first four characters of the ddname for the data set containing the DFSORT
control statements. In this case, the four characters chosen are SPUB, but you can use any four
characters you like as long as they are valid for a ddname. The last four characters of the ddname are
always CNTL, so in this case the full ddname is SPUBCNTL.

For the SORT operator, you must specify a SORT control statement in the DFSORT control statement
data set (SPUBCNTL) in order to tell DFSORT how to sort the input data set. You can also specify
additional DFSORT control statements, like INCLUDE, OMIT, INREC, OUTREC and OUTFIL, as
appropriate.

To write the JCL statements that go with the SORT operator:

Table 64. Steps to Create JCL Statements for the SORT Operator

Step Action

1 Write DD statements for the input data sets and place them at the end of the job. In order to
"concatenate" the two input data sets together, you must leave the ddname field blank in the second
DD statement:

//BKS DD DSN=A123456.SORT.SAMPIN,DISP=SHR
// DD DSN=A123456.SORT.SAMPADD,DISP=SHR

2 Write DD statements for the disk and print output data sets and place them at the end of the job:

//DAPUBS DD DSN=&&DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=SYSDA
//PRPUBS DD SYSOUT=A

3 Write a DD statement for the DFSORT control statement data set and place it at the end of the job:

//SPUBCNTL DD *

4 Write the SORT control statement to sort the input data sets by publisher and title, and the
INCLUDE statement to select only the books by publishers VALD and WETH, and place them after
the SPUBCNTL statement:

 SORT FIELDS=(106,4,A,1,75,A),FORMAT=CH
 INCLUDE COND=(106,4,EQ,C'VALD',OR,106,4,EQ,C'WETH'),
 FORMAT=CH

When complete, the TOOLIN statements and DD statements for this SORT operator look like this:

Chapter 12. Using the ICETOOL utility 129

* Books from VALD and WETH
SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)
/*
//BKS DD DSN=A123456.SORT.SAMPIN,DISP=SHR
// DD DSN=A123456.SORT.SAMPADD,DISP=SHR
//DAPUBS DD DSN=&&DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=SYSDA
//PRPUBS DD SYSOUT=A
//SPUBCNTL DD *
 SORT FIELDS=(106,4,A,1,75,A),FORMAT=CH
 INCLUDE COND=(106,4,EQ,C'VALD',OR,106,4,EQ,C'WETH'),
 FORMAT=CH
/*

Tip: Instead of writing the previous INCLUDE statement using two conditions joined by OR, you could
write it with one condition using INCLUDE's substring search feature, as you learned in “Substring search
for INCLUDE and OMIT” on page 30, like this:

 INCLUDE COND=(106,4,SS,EQ,C'VALD,WETH')

Table 65 on page 130 shows the Book Title and Publisher fields for the records as they would appear in
the resulting output data sets. The actual records contain all of the fields.

Table 65. Books from publishers VALD and WETH

Book Title Publisher

1 75 106 109

CELLS AND HOW THEY WORK
COMPLETE SPANISH DICTIONARY
EDITING SOFTWARE MANUALS
FREUD'S THEORIES
INTRODUCTION TO BIOLOGY
NOVEL IDEAS
SHORT STORIES AND TALL TALES
STRATEGIC MARKETING
VIDEO GAME DESIGN
ZEN BUSINESS
ANTICIPATING THE MARKET
CIVILIZATION SINCE ROME FELL
COMPUTERS: AN INTRODUCTION
EIGHTEENTH CENTURY EUROPE
GUIDE TO COLLEGE LIFE
GUNTHER'S GERMAN DICTIONARY
REBIRTH FROM ITALY
SYSTEM PROGRAMMING
THE INDUSTRIAL REVOLUTION

VALD
VALD
VALD
VALD
VALD
VALD
VALD
VALD
VALD
VALD
WETH
WETH
WETH
WETH
WETH
WETH
WETH
WETH
WETH

Creating different subsets of a sorted data set
If you want to create subsets of records from the same input data set, you can use OUTFIL statements
with a SORT or COPY operator. The OUTFIL statements specify the ddnames of the output data sets, so
the TO operand is not needed. All of the features of OUTFIL are available through the SORT and COPY
operators.

130 z/OS: z/OS DFSORT: Getting Started

A SORT operator that creates separate disk and tape data sets for the branch
offices in California, and those in Colorado, sorted by city looks like this:

Here are the steps for writing this SORT operator:

Table 66. Steps to Create the SORT Operator

Step Action

1 Write a comment statement (optional):

* Separate output for California and Colorado branches

2 Type SORT after the comment statement

3 Leave at least one blank and type FROM(ALL)

ALL specifies the ddname for the input data set you want to sort. You can use the same ddname that
you used for A123456.SORT.BRANCH in the STATS operator.

4 Leave at least one blank and type USING(CACO)

The CACOCNTL data set contains the SORT and OUTFIL statements.

To write the JCL statements that go with the SORT operator follow these steps:

Table 67. Steps to Create JCL Statements for the SORT Operator

Step Action

1 Write a DD statement for the DFSORT control statement data set and place it at the end of the job:

//CACOCNTL DD *

2 Write the SORT control statement to sort the input data set by city, the OUTFIL statement to select
only the California branches, and the OUTFIL statement to select only the Colorado branches, and
place them after the CACOCNTL statement:

 SORT FIELDS=(1,15,CH,A)
 OUTFIL FNAMES=(CADASD,CATAPE),INCLUDE=(16,2,CH,EQ,C'CA')
 OUTFIL FNAMES=(CODASD,COTAPE),INCLUDE=(16,2,CH,EQ,C'CO')

3 Write DD statements for the disk and tape output data sets and place them at the end of the job:

//CADASD DD DSN=&&CA,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390
//CATAPE DD DSN=CA.BRANCH,UNIT=3480,VOL=SER=111111,
// DISP=(NEW,KEEP),LABEL=(,SL)
//CODASD DD DSN=&& CO,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390
//COTAPE DD DSN=CO.BRANCH,UNIT=3480,VOL=SER=222222,
// DISP=(NEW,KEEP),LABEL=(,SL)

When complete, the TOOLIN statements and DD statements for this SORT operator look like this:

Chapter 12. Using the ICETOOL utility 131

* Separate output for California and Colorado branches
SORT FROM(ALL) USING(CACO)
/*
//CACOCNTL DD *
 SORT FIELDS=(1,15,CH,A)
 OUTFIL FNAMES=(CADASD,CATAPE),INCLUDE=(16,2,CH,EQ,C'CA')
 OUTFIL FNAMES=(CODASD,COTAPE),INCLUDE=(16,2,CH,EQ,C'CO')
/*
//CADASD DD DSN=&&CA,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390
//CATAPE DD DSN=CA.BRANCH,UNIT=3480,VOL=SER=111111,
// DISP=(NEW,KEEP),LABEL=(,SL)
//CODASD DD DSN=&&CO,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390
//COTAPE DD DSN=CO.BRANCH,UNIT=3480,VOL=SER=222222,
// DISP=(NEW,KEEP),LABEL=(,SL)

Table 68 on page 132 shows the records as they would appear in the CADASD data set (&&CA) and the
CATAPE data set (CA.BRANCH) as a result of using the first OUTFIL statement.

Table 68. Records for California Sorted by City

City State Employees Revenue Profit

1 15 16 17 18 21 22 27 28 33

Los Angeles CA 32 22530 -4278

Morgan Hill CA 15 18200 3271

Sacramento CA 29 42726 8276

San Diego CA 22 32940 8275

San Francisco CA 35 42820 6832

San Jose CA 21 27225 8264

Sunnyvale CA 18 16152 -978

Table 69 on page 132 shows the records as they would appear in the CODASD data set (&&CO) and the
COTAPE data set (CO.BRANCH) as a result of using the second OUTFIL statement.

Table 69. Records for Colorado Sorted by City

City State Employees Revenue Profit

1 15 16 17 18 21 22 27 28 33

Aspen CO 20 25800 5200

Boulder CO 32 33866 7351

Denver CO 33 31876 6288

Fort Collins CO 22 12300 -2863

Vail CO 19 23202 5027

Figure 4 on page 160 shows the complete TOOLMSG output.

So far

So far in this tutorial, you have learned how to print statistics for numeric fields using ICETOOL's STATS
operator, and how to sort an input data set and create multiple output data sets using ICETOOL's SORT
operator. Next, you will learn about ICETOOL's COPY operator.

132 z/OS: z/OS DFSORT: Getting Started

Creating multiple unsorted data sets
If you want to create unsorted copies of an input data set, you can use ICETOOL's COPY operator. The
COPY operator does not require any DFSORT statements. However, you can supply DFSORT statements
(for example, INCLUDE, OMIT, INREC, OUTREC, or OUTFIL) if appropriate.

Here are a couple of examples of COPY operator statements with their accompanying JCL statements:

//TOOLIN DD *
 COPY FROM(ALL) TO(D1,D2,D3)
 COPY FROM(ALL) TO(P1) USING(COPY)
/*
//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR
//D1 DD DSN=A123456.SORT.COPY1,DISP=OLD
//D2 DD DSN=A123456.SORT.COPY2,DISP=OLD
//D3 DD DSN=A123456.SORT.COPY3,DISP=OLD
//P1 DD SYSOUT=*
//COPYCNTL DD *
 INCLUDE COND=(16,2,CH,EQ,C'CA')
/*

The first COPY operator creates identical copies of A123456.SORT.BRANCH in A123456.SORT.COPY1,
A123456.SORT.COPY2, and A123456.SORT.COPY3.

The second COPY operator prints the A123456.SORT.BRANCH records for the branches in California. Note
that only the character fields in the resulting printed output will be readable. You will learn how to display
numeric fields in readable format later in this chapter.

Because copying is more efficient than sorting, you should use the COPY operator rather than the SORT
operator when possible.

So far

So far in this chapter you have learned about STATS, SORT, and COPY, three important ICETOOL
operators. The next tutorial shows you how to use ICETOOL's RANGE operator.

Counting values in a range
You can use ICETOOL's RANGE operator to count the number of values for a particular numeric field that
fall within a range you define. The range can be defined with:
Operand

Comparison
EQUAL (u)

Equal to u
NOTEQUAL (v)

Not equal to v
LOWER (w)

Less than w
HIGHER (x)

Greater than x
HIGHER (x) and LOWER (w)

Greater than x, but less than w

Chapter 12. Using the ICETOOL utility 133

To print a count of the number of California branches with profit greater
than -1500, but less than +8000, write the following RANGE statement:

The input data set defined by CADASD is the same data set you created earlier (with the SORT operator)
for the California branches. HIGHER(-1500) indicates that you want to count values in the profit field
that are greater than -1500, while LOWER(+8000) indicates that you want to count values in the profit
field that are less than +8000. For a negative limit, you must specify a minus (-) sign before the number.
For a positive limit, you either specify a plus (+) sign before the number or leave it out, therefore,
HIGHER(8000) is the same as HIGHER(+8000).

To print a count of the number of branches (in California and
Colorado) with less than 32 employees, write the following RANGE statement:

Because CADASD and ALL were previously defined, you don't need to add any new JCL statements to the
ICETOOL job.

When these RANGE operators are run, the results are placed in the TOOLMSG data set. The TOOLMSG
output produced for these RANGE operators would look like this:

 * California branches profit analysis
 RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-1500) LOWER(+8000)
 ICE627I 0 DFSORT CALL 0004 FOR COPY FROM CADASD TO E35 EXIT COMPLETED
 ICE628I 0 RECORD COUNT: 000000000000007
 ICE631I 0 NUMBER OF VALUES IN RANGE FOR (28,6,PD) : 000000000000003
 ICE602I 0 OPERATION RETURN CODE: 00

 * Branches with less than 32 employees
 RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)
 ICE627I 0 DFSORT CALL 0005 FOR COPY FROM ALL TO E35 EXIT COMPLETED
 ICE628I 0 RECORD COUNT: 000000000000012
 ICE631I 0 NUMBER OF VALUES IN RANGE FOR (18,4,ZD) : 000000000000008
 ICE602I 0 OPERATION RETURN CODE: 00

Looking at the output, you will notice that:

• Message ICE628I gives the count of records processed.
• Message ICE631I gives the count of values in the specified range. There were 3 California branches with
profit greater than -1500, but less than +8000, and 8 branches in all with less than 32 employees.

• A return code for each operator is given in message ICE602I.

134 z/OS: z/OS DFSORT: Getting Started

So far

You have now learned how to count the number of values in a range for a particular field using
ICETOOL's RANGE operator. Next, you will learn about ICETOOL's DISPLAY operator.

Printing simple reports
Numeric fields are often in a format (binary, fixed-point, or decimal) that is not readable when printed.
You can use ICETOOL's DISPLAY operator to print simple reports showing up to 50 numeric and character
fields from an input data set in readable form. The specified fields are printed in a list data set that you
define. For numeric fields, appropriate plus (+) and minus (-) signs are printed along with the decimal
value of each number.

To print a list data set showing the profit, employees, and city
fields for the Colorado branches, write the following DISPLAY operator:

The input data set defined by CODASD is the same data set you created earlier (with the SORT operator)
for the Colorado branches. LIST specifies the ddname for the list data set you want the fields to be printed
in. In this case, OUT is the ddname chosen for the list data set, but you can use any valid 1-8 character
ddname you like. Specify the ON fields in the same order in which you want their values to be printed in
the list data set.

Because OUT has not been defined previously, you must add a JCL statement for it to the end of the job:

//OUT DD SYSOUT=A

When this DISPLAY operator is run, the OUT data set looks like this:

 (28,6,PD) (18,4,ZD) (1,15,CH)
 +000000000005200 +000000000000020 Aspen
 +000000000007351 +000000000000032 Boulder
 +000000000006288 +000000000000033 Denver
 -000000000002863 +000000000000022 Fort Collins
 +000000000005027 +000000000000019 Vail

Note: The output actually contains ANSI carriage control characters in the first byte of the report, as
explained previously in “Creating reports with OUTFIL” on page 88. However, ICETOOL always inserts
actual blank lines in your report rather than using the '0' and '-' ANSI carriage control characters to print
blank lines. So you do not have to do anything to force blank lines to be displayed when you view an
ICETOOL report, as you do for an OUTFIL report. The ANSI carriage control characters are not shown in
this section, although they are present in the reports.

If you don't want ANSI carriage control characters in your output records, you can use DISPLAY's NOCC
operand to suppress them.

The values for profit, employees, and city are printed in separate columns across the page with a header
for each column at the top. If more than one page is printed, DISPLAY puts the header at the top of each
page. If you do not want the header printed, you can use DISPLAY's NOHEADER operand to suppress it.

Chapter 12. Using the ICETOOL utility 135

DISPLAY also has two special ON fields you can use:

• ON(VLEN) can be used for variable length record data sets to print the length of each record.
• ON(NUM) can be used to print a relative record number for each record (starting with 1).

Use the ON(VLEN) or ON(NUM) field just as you would any other ON field.

Printing tailored reports
The previous tutorial showed you how to print a simple listing of numeric and character fields using
the DISPLAY operator. By using additional operands of DISPLAY, you can create list data sets showing
character and numeric fields in a variety of tailored report formats. You can specify:

• title strings in up to three title lines (TITLE operands), other title elements for the first title line (DATE,
PAGE, and TIME operands) spacing between title elements (TBETWEEN operand), left alignment of title
strings instead of center alignment (TLEFT operand) and title lines only on the first page instead of on
every page (TFIRST operand)

• one, two or three line field headings (HEADER operand)
• spacing for columns (INDENT, BETWEEN, and STATLEFT operands)
• field formatting (BLANK and PLUS operands), and formatting items for individual ON fields
• statistics (TOTAL, AVERAGE, MAXIMUM, MINIMUM, and COUNT operands)
• lines per page (LINES operand)
• suppression of ANSI carriage control characters (NOCC operand)

Refer to z/OS DFSORT Application Programming Guide for complete details on these and other operands
you can use with DISPLAY.

To print a report for the Colorado branches showing the city, profit and employee fields with a title line,
field headings, totals, averages, minimums, and counts, write the following DISPLAY operator:

136 z/OS: z/OS DFSORT: Getting Started

CODASD is the ddname for the previously created Colorado branches data set. RPT is the ddname for the
list data set in which you want the report to be printed.

DATE, TITLE and PAGE indicate the elements to be included in the title line and their placement. Specify
these operands in the same order in which you want them to be printed in the list data set.

Each HEADER indicates a heading to be used for the corresponding field. Specify the ON fields and their
corresponding HEADER strings in the same order in which you want their values to be printed in the list
data set.

BLANK specifies that numeric values are printed with blank for plus sign, - for minus sign and no leading
zeros. BETWEEN specifies the number of spaces between columns (overriding the default of 3). HEADER,
BLANK and BETWEEN change the justification and column width for the fields, and the spacing between
them, to produce a more report-like format.

TOTAL, AVERAGE, MINIMUM, and COUNT cause the indicated statistics to be produced at the end of the
report, identified by the specified strings.

Because RPT has not been defined previously, you must add a JCL statement for it at the end of the job:

//RPT DD SYSOUT=A

When this DISPLAY operator is run, the RPT data set that results looks like:

07/22/08 Colorado Branches Report - 1 -

City Profit Employees
--------------- ---------------- ----------------
Aspen 5200 20
Boulder 7351 32
Denver 6288 33
Fort Collins -2863 22
Vail 5027 19

Chapter 12. Using the ICETOOL utility 137

Total 21003 126

Average 4200 25

Lowest -2863 19

Number of cities 5

The title line and heading line are printed at the top of each page. The character data is left-justified and
the numeric data is right-justified with zeros suppressed. The statistics are printed after the columns of
data.

Using formatting items
The previous tutorial used the BLANK operand to change the way all numeric values in the report are
displayed. You can use formatting items to change the appearance of individual numeric fields and their
related statistics in the report, with respect to separators, number of digits, decimal point, decimal places,
signs, leading zeros, division, leading strings, floating strings, and trailing strings. Formatting items can
also be used to insert leading strings or trailing strings for character fields.

Formatting items are written as part of the ON operand, separated by commas, as follows:
ON(p,m,f,formatting), ON(VLEN,formatting) and ON(NUM,formatting). EDCOUNT(formatting) can be used
to specify formatting items for the count.

Edit masks
You can select from thirty-three pre-defined edit masks. The following table describes the available
masks and shows how the values 12345678 and -1234567 would be printed for each mask. In the
pattern:

• d is used to represent a decimal digit (0-9)
• w is used to represent a leading sign that will be blank for a positive value or - for a negative value
• x is used to represent a trailing sign that will be blank for a positive value or - for a negative value
• y is used to represent a leading sign that will be blank for a positive value or (for a negative value
• z is used to represent a trailing sign that will be blank for a positive value or) for a negative value

Table 70. Edit Mask Patterns

Mask Pattern 12345678 -1234567

A0 wddddddddddddddddddddddddddddddd 12345678 -1234567

A1 wd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd 12,345,678 -1,234,567

A2 wd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd 12.345.678 -1.234.567

A3 wd ddd ddd ddd ddd ddd ddd ddd ddd ddd ddd 12 345 678 -1 234 567

A4 wd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd 12'345'678 -1'234'567

A5 d ddd ddd ddd ddd ddd ddd ddd ddd ddd dddx 12 345 678 1 234 567-

B1 wddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd.d 1,234,567.8 -123,456.7

B2 wddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd,d 1.234.567,8 -123.456,7

B3 wddd ddd ddd ddd ddd ddd ddd ddd ddd ddd,d 1 234 567,8 -123 456,7

B4 wddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd.d 1'234'567.8 -123'456.7

B5 wddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd,d 1'234'567,8 -123'456,7

B6 ddd ddd ddd ddd ddd ddd ddd ddd ddd ddd,dx 1 234 567,8 123 456,7-

138 z/OS: z/OS DFSORT: Getting Started

Table 70. Edit Mask Patterns (continued)

Mask Pattern 12345678 -1234567

C1 wdd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd.dd 123,456.78 -12,345.67

C2 wdd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd,dd 123.456,78 -12.345,67

C3 wdd ddd ddd ddd ddd ddd ddd ddd ddd ddd,dd 123 456,78 -12 345,67

C4 wdd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd.dd 123'456.78 -12'345.67

C5 wdd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd,dd 123'456,78 -12'345,67

C6 dd ddd ddd ddd ddd d ddd ddd ddd ddd,ddx 123 456,78 12 345,67-

D1 wd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd.ddd 12,345.678 -1,234.567

D2 wd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd,ddd 12.345,678 -1.234,567

D3 wd ddd ddd ddd ddd ddd ddd ddd ddd ddd,ddd 12 345,678 -1 234,567

D4 wd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd.ddd 12'345.678 -1'234.567

D5 wd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd,ddd 12'345,678 -1'234,567

D6 d ddd ddd ddd ddd ddd ddd ddd ddd ddd,dddx 12 345,678 1 234,567-

E1 yd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,dddz 12,345,678 (1,234,567)

E2 yd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.dddz 12.345.678 (1.234.567)

E3 yd ddd ddd ddd ddd ddd ddd ddd ddd ddd dddz 12 345 678 (1 234 567)

E4 yd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'dddz 12'345'678 (1'234'567)

F1 ydd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd.ddz 123,456.78 (12,345.67)

F2 ydd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd,ddz 123.456,78 (12.345,67)

F3 ydd ddd ddd ddd ddd ddd ddd ddd ddd ddd,ddz 123 456,78 (12 345,67)

F4 ydd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd.ddz 123'456.78 (12'345.67)

F5 ydd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd,ddz 123'456,78 (12'345,67)

G1 wddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd,ddd.dddd 1,234.5678 -123.4567

G2 wddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd.ddd,dddd 1.234,5678 -123,4567

G3 wddd ddd ddd ddd ddd ddd ddd ddd ddd,dddd 1 234,5678 -123,4567

G4 wddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd.dddd 1'234.5678 -123.4567

G5 wddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd'ddd,dddd 1'234,5678 -123,4567

G6 ddd ddd ddd ddd ddd ddd ddd ddd ddd,ddddx 1 234,5678 123,4567-

To use the E1 edit mask for the Profit field in the previous report, just change ON(28,6,PD) to
ON(28,6,PD,E1). The RPT data set looks like this:

07/22/08 Colorado Branches Report - 1 -

City Profit Employees
--------------- --------------------- ----------------
Aspen 5,200 20
Boulder 7,351 32
Denver 6,288 33
Fort Collins (2,863) 22
Vail 5,027 19

Total 21,003 126

Chapter 12. Using the ICETOOL utility 139

Average 4,200 25

Lowest (2,863) 19

Number of cities 5

Number of digits
The default number of digits for a numeric field varies according to the type of field or statistic. You can
change the number of digits for a numeric field by adding Udd to your formatting items where dd is the
number of digits you want. To use 5 digits for the count value in the report, instead of the default of 15
digits, just add EDCOUNT(U05). The RPT data set looks like this:

07/22/08 Colorado Branches Report - 1 -

City Profit Employees
--------------- --------------------- ----------------
Aspen 5,200 20
Boulder 7,351 32
Denver 6,288 33
Fort Collins (2,863) 22
Vail 5,027 19

Total 21,003 126

Average 4,200 25

Lowest (2,863) 19

Number of cities 5

Leading zeros
By default, leading zeros are not displayed when you use an edit mask, but you can change that by adding
LZ to your formatting items as in the second ON field, as follows:

HEADER('No leading zeros','(without LZ)') ON(28,6,PD,E1) -
HEADER('Leading zeros','(with LZ)') ON(28,6,PD,E1,LZ)

The resulting report shows the difference in the way the Profit values from SORT.BRANCH are displayed
with the E1 edit mask and without and with LZ. Note the use of HEADER('string1','string2') to produce a
two line heading.

No leading zeros Leading zeros
 (without LZ) (with LZ)
---------------- ----------------
 (4,278) (00,000,004,278)
 6,832 00,000,006,832
 (2,863) (00,000,002,863)
 8,276 00,000,008,276
 (978) (00,000,000,978)
 6,288 00,000,006,288
 7,351 00,000,007,351
 3,271 00,000,003,271
 5,027 00,000,005,027
 8,264 00,000,008,264
 8,275 00,000,008,275
 5,200 00,000,005,200

Edit patterns
The edit masks are not particularly useful for unsigned numeric data such as telephone numbers, dates,
time-of-day, identification numbers, and so on. Instead, you can use edit patterns to change the way
these types of numeric values are displayed in your report. E'pattern' is used to specify an edit pattern.
You use a 9 in the pattern where you want a digit (0-9) from the numeric value to appear, and any other
characters anywhere you want them to appear.

140 z/OS: z/OS DFSORT: Getting Started

If you have an 8-byte ZD date in the form mmddyyyy in positions 21-28, you can display it as mm/dd/yyyy
using ON(21,8,ZD,E'99/99/9999'). An 8-byte value of 03122004 is displayed as 03/12/2004.

If you have a 10-byte ZD telephone number in the form aaapppnnnn in positions 31-40, you can display
it as (aaa)-ppp-nnnn using ON(31,10,ZD, E'(999)-999-9999'). A 10-byte value of 0123456789 is
displayed as (012)-345-6789.

No statistics
By default, any statistics you request using TOTAL, MAXIMUM, MINIMUM, and AVERAGE (as well as
BTOTAL, BMINIMUM, BMAXIMUM and BAVERAGE, which you will learn about later) are displayed for
every numeric ON field. You can use the NOST formatting item to suppress statistics for numeric fields,
such as telephone numbers, for which they are meaningless. The following DISPLAY operator prints a
report from the SORT.BRANCH data set with totals for the Revenue and Profit fields, but not for the
Employees field.

DISPLAY FROM(IN) LIST(RPT3) -
 HEADER('City') ON(1,15,CH) -
 HEADER('Employees') ON(18,4,ZD,NOST) -
 HEADER('Revenue') ON(22,6,PD) -
 HEADER('Profit') ON(28,6,PD) -
 TOTAL('Totals')

The RPT3 data set looks like this:

City Employees Revenue Profit
--------------- --------- ---------------- ----------------
Los Angeles 32 22530 -4278
San Francisco 35 42820 6832
Fort Collins 22 12300 -2863
Sacramento 29 42726 8276
Sunnyvale 18 16152 -978
Denver 33 31876 6288
Boulder 32 33866 7351
Morgan Hill 15 18200 3271
Vail 19 23202 5027
San Jose 21 27225 8264
San Diego 22 32940 8275
Aspen 20 25800 5200

Totals 329637 50665

Division
You can select from ten division items as follows:

• /D - divide by 10
• /C - divide by 100
• /K - divide by 1000
• /DK - divide by 10000 (10*1000)
• /CK - divide by 100000 (100*1000)
• /M - divide by 1000000 (1000*1000)
• /G - divide by 1000000000 (1000*1000*1000)
• /KB - divide by 1024
• /MB - divide by 1048576 (1024*1024)
• /GB - divide by 1073741824 (1024*1024*1024)

The Profit values from SORT.BRANCH look as follows with HEADER('Profit/(Loss) in K$') and
ON(28,6,PD,E1,/K):

Profit/(Loss) in K$

 (4)
 6

Chapter 12. Using the ICETOOL utility 141

 (2)
 8
 0
 6
 7
 3
 5
 8
 8
 5

Leading, floating and trailing characters
You can add floating characters to your numeric fields and add leading and trailing characters to your
numeric and character fields as follows:

• F'string' - a floating string to appear to the left of the first non-blank character of the formatted numeric
data.

• L'string' - a leading string to appear at the beginning of the character or numeric data column.
• T'string' - a trailing string to appear at the end of the character or numeric data column.

The Profit values from SORT.BRANCH look as follows with HEADER('Profit') and
ON(28,6,PD,A1,F'$',T'**'):

 Profit

 $-4,278**
 $6,832**
 $-2,863**
 $8,276**
 $-978**
 $6,288**
 $7,351**
 $3,271**
 $5,027**
 $8,264**
 $8,275**
 $5,200**

Printing sectioned reports
The previous tutorial showed you how to print tailored reports using the DISPLAY operator. By using the
BREAK operand of DISPLAY, you can create reports divided into sections by a character or numeric break
field on which you have previously sorted. You can use formatting items with BREAK(p,m,f,formatting) in
the same way you can use them with ON(p,m,f,formatting). You can also specify a string for the break title
(BTITLE operand) and statistics for the individual sections (BTOTAL, BAVERAGE, BMAXIMUM, BMINIMUM
and BCOUNT operands). EDBCOUNT(formatting) can be used to specify formatting items for BCOUNT.

For this example, we will use the data set with books from publishers VALD and WETH,
sorted by publisher and title, that we created previously. To print a report with sections by
publisher showing the title and price fields with a title line, field headings, break title, break

142 z/OS: z/OS DFSORT: Getting Started

averages and totals, and overall averages and totals, write the following DISPLAY operator:

DAPUBS is the ddname for the previously created VALD and WETH data set. SECTIONS is the ddname for
the list data set in which you want the report to be printed.

TITLE and PAGE indicate the elements to be included in the title line and their placement.

Each HEADER and ON pair indicate a field to be included in the report and the heading to be used for it.

BTITLE indicates a string to be used for the break title and its placement (before or after the break field).
BREAK indicates the break field to be used to create sections. BAVERAGE and BTOTAL indicate section
statistics to be produced at the end of each section.

Chapter 12. Using the ICETOOL utility 143

AVERAGE and TOTAL indicate overall statistics to be produced at the end of the report.

Because SECTIONS has not been defined previously, you must add a JCL statement for it at the end of the
job:

//SECTIONS DD SYSOUT=A

When this DISPLAY operator is run, it produces a three-page report for the SECTIONS data set that looks
like this:

BOOKS FOR INDIVIDUAL PUBLISHERS - 1 -

PUBLISHER: VALD

TITLE OF BOOK PRICE OF BOOK
----------------------------------- ----------------------
CELLS AND HOW THEY WORK $24.95
COMPLETE SPANISH DICTIONARY $6.50
EDITING SOFTWARE MANUALS $14.50
FREUD'S THEORIES $12.50
INTRODUCTION TO BIOLOGY $23.50
NOVEL IDEAS $24.50
SHORT STORIES AND TALL TALES $15.20
STRATEGIC MARKETING $23.50
VIDEO GAME DESIGN $21.99
ZEN BUSINESS $12.00

AVERAGE FOR THIS PUBLISHER $17.91

TOTAL FOR THIS PUBLISHER $179.14

BOOKS FOR INDIVIDUAL PUBLISHERS - 2 -

PUBLISHER: WETH

TITLE OF BOOK PRICE OF BOOK
----------------------------------- ----------------------
ANTICIPATING THE MARKET $20.00
CIVILIZATION SINCE ROME FELL $13.50
COMPUTERS: AN INTRODUCTION $18.99
EIGHTEENTH CENTURY EUROPE $17.90
GUIDE TO COLLEGE LIFE $20.00
GUNTHER'S GERMAN DICTIONARY $10.88
REBIRTH FROM ITALY $25.60
SYSTEM PROGRAMMING $31.95
THE INDUSTRIAL REVOLUTION $7.95

AVERAGE FOR THIS PUBLISHER $18.53

TOTAL FOR THIS PUBLISHER $166.77

BOOKS FOR INDIVIDUAL PUBLISHERS - 3 -

TITLE OF BOOK PRICE OF BOOK
----------------------------------- ----------------------

AVERAGE FOR ALL PUBLISHERS $18.20

TOTAL FOR ALL PUBLISHERS $345.91

So far

You have now learned how to print simple, tailored and sectioned reports using ICETOOL's DISPLAY
operator. Next, you will learn about ICETOOL's OCCUR operator.

Printing how many times fields occur
You can use ICETOOL's OCCUR operator to print a simple or tailored report showing how many times
different ON field values occur, sorted by those ON field values. Values that occur only once are called
"non-duplicate" values. Values that occur more than once are called "duplicate" values.

144 z/OS: z/OS DFSORT: Getting Started

You can list all of the values in the data set, or list different combinations of duplicate and non-duplicate
values, using the following operands:

• ALLDUPS - only list duplicate values
• NODUPS - only list non-duplicate values
• EQUAL(n) - only list values that occur n times
• HIGHER(n) - only list values that occur more than n times
• LOWER(n) - only list values that occur less than n times

Setting up an OCCUR report is similar to setting up a DISPLAY report. Specify ON fields for OCCUR in the
same order you want their values to be printed in the list data set. OCCUR also has two special ON fields
you can use:

• ON(VALCNT) can be used to print the number of times each field value occurs.
• ON(VLEN) can be used for the record length of variable length records.

You can use up to 10 ON fields; all of the ON field values, except ON(VALCNT) and ON(VLEN), are used
for sorting and counting occurrences. For example, if you use ON(1,4,CH), 'ABCD+01' and 'ABCD-01'
are sorted in that order (by 1,4,CH) and counted as two occurrences of 'ABCD'. However, if you use
ON(1,4,CH) and ON(5,3,FS), 'ABCD-01' is sorted before 'ABCD+01' (by 1,4,CH,A and 5,3,FS,A) and
counted as one occurrence of 'ABCD-01' and one occurrence of 'ABCD+01'.

You can use the following for an OCCUR report in the same way you use them for a DISPLAY report:

• title strings in up to three title lines (TITLE operands), other title elements for the first title line (DATE,
PAGE, and TIME operands), spacing between title elements (TBETWEEN operand), left alignment of title
strings instead of center alignment (TLEFT operand) and title lines only on the first page instead of on
every page (TFIRST operand).

• field headings (HEADER operand)
• spacing for columns (INDENT and BETWEEN operands)
• field formatting (BLANK and PLUS operands), and formatting items for individual ON fields as follows:

ON(p,m,f,formatting), ON(VALCNT,formatting) and ON(VLEN,formatting)
• lines per page (LINES operand)
• Suppression of ANSI carriage control characters (NOCC operand)

Refer to z/OS DFSORT Application Programming Guide for complete details about these and other
operands you can use with OCCUR.

For this example, we will use the sample bookstore data set as input. To print a report showing the
number of different books in use from each publisher, write the following OCCUR statement:

Chapter 12. Using the ICETOOL utility 145

BKIN is the ddname for the sample bookstore data set. PUBCT is the ddname for the list data set in which
you want the report to be printed. BLANK specifies the field format to be used.

TITLE indicates the title string to appear in the title line. DATE indicates the format in which the date is to
appear in the title line (dd.mm.yy where dd is the two-digit day, mm is the two- digit month and yy is the
last two digits of the year).

The HEADER strings correspond to the ON fields. ON(VALCNT,N05) is a special ON field used with OCCUR
to print the count of occurrences. N05 is a formatting item used to set the number of digits for the count
to 5, overriding the default of 15 digits for VALCNT.

Write DD statements for the A123456.SORT.SAMPIN and PUBCT data sets and place them at the end of
the job:

//BKIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//PUBCT DD SYSOUT=A

When this OCCUR operator is run, the PUBCT data set looks like this:

Books from Publishers 21.10.03

Publisher Books Used
--------- ----------
COR 7
FERN 4
VALD 5
WETH 4

The name of each publisher is printed along with the number of times that publisher appeared in the
sample bookstore data set, which is equivalent to the number of different books from that publisher.

So far

You have now learned how use ICETOOL's OCCUR operator to print a simple or tailored report showing
how many times different field values occur. Next, you will learn how to use ICETOOL's SELECT operator.

Selecting records by field occurrences
You can use ICETOOL's SELECT operator to create an output data set with records selected according
to how many times different ON field values occur, sorted by those ON field values. As with the OCCUR

146 z/OS: z/OS DFSORT: Getting Started

operator, values that occur only once are called non-duplicate values, and values that occur more than
once are called duplicate values.

You can use up to 10 ON fields; all of the ON field values are used for sorting and counting occurrences.
For example, if you use ON(1,4,CH), 'ABCD+01' and 'ABCD-01' are sorted in that order (by 1,4,CH,A)
and counted two occurrences of ('ABCD'). However, if you use ON(1,4,CH) and ON(5,3,FS), 'ABCD-01' is
sorted before 'ABCD+01' (by 1,4,CH,A and 5,3,FS,A) and counted as one occurrence of 'ABCD-01' and one
occurrence of 'ABCD+01'.

You can select different combinations of records with duplicate and non-duplicate values using the
following operands:

• FIRST - keep only the first record for each value (that is, records with non-duplicate values, and the first
record for duplicate values)

• FIRST(n) - keep only the first n records for each value (that is, records with non-duplicate values, and
the first n records for duplicate values)

• LAST - keep only the last record for each value (that is, records with non-duplicate values, and the last
record for duplicate values)

• FIRSTDUP - only keep the first record for duplicate values
• FIRSTDUP(n) - only keep the first n records for duplicate values
• LASTDUP - only keep the last record for duplicate values
• ALLDUPS - only keep records with duplicate values
• NODUPS - only keep records with non-duplicate values
• EQUAL(n) - only keep records with values that occur n times
• HIGHER(n) - only keep records with values that occur more than n times
• LOWER(n) - only keep records with values that occur less than n times

The selected records are written to the output data set identified by the TO operand. If appropriate, you
can use the DISCARD operand with any of the other operands shown previously to save the records that
are not selected in a separate output data set identified by the DISCARD operand. You can create just the
TO data set, just the DISCARD data set, or both.

You can use a USING data set to specify DFSORT INCLUDE, OMIT, INREC, and OUTFIL statements for
your SELECT operation. INCLUDE or OMIT and INREC statement processing is performed before SELECT
processing. OUTFIL statement processing is performed after SELECT processing.

To create an output data set containing records for publishers with more
than four different books in use, write the following SELECT statement:

BKIN is the ddname for the sample bookstore data set. BKOUT is the ddname of the output data set that
will contain the records for each publisher field value that occurs more than 4 times (all of the records for
COR and VALD in this case).

Chapter 12. Using the ICETOOL utility 147

Write a DD statement for the A123456.BOOKS1 data sets and place it at the end of the job:

//BKOUT DD DSN=A123456.BOOKS1,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(3,3)),UNIT=3390

Table 71 on page 148 shows the Book Title and Publisher fields for the records in the resulting output
data set. The actual records contain all of the fields.

Table 71. Books from Publishers with More than Four Books in Use

Book Title Publisher

1 75 106 109

LIVING WELL ON A SMALL BUDGET
SUPPLYING THE DEMAND
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
PICK'S POCKET DICTIONARY
MODERN ANTHOLOGY OF WOMEN POETS
INTRODUCTION TO PSYCHOLOGY
CRISES OF THE MIDDLE AGES
VIDEO GAME DESIGN
EDITING SOFTWARE MANUALS
STRATEGIC MARKETING
SHORT STORIES AND TALL TALES
INTRODUCTION TO BIOLOGY

COR
COR
COR
COR
COR
COR
COR
VALD
VALD
VALD
VALD
VALD

To create separate output data sets containing records with only the course
name and author's last name, both for courses that use more than one book,
and for courses that use only one book, write the following SELECT statement:

BKIN is the ddname for the sample bookstore data set. DUP is the ddname of the output data set to
contain the records for courses with more than one book. NODUP is the ddname of the output data set to
contain the records for courses with only one book.

Here is the complete JCL for the job, including control statements:

//SEL2 JOB A492,PROGRAMMER
//EXTRACT EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//BKIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//TOOLIN DD *
* Course name and author's last name for courses with more than one book
* and only one book
 SELECT FROM(BKIN) TO(DUP) DISCARD(NODUP) -

148 z/OS: z/OS DFSORT: Getting Started

 ON(120,25,CH) ALLDUPS USING(CTL1)
/*
//CTL1CNTL DD *
 OMIT COND=(120,25,CH,EQ,C' ')
 OUTFIL FNAMES=DUP,OUTREC=(120,25,2X,145,15)
 OUTFIL FNAMES=NODUP,OUTREC=(120,25,2X,145,15)
/*
//DUP DD SYSOUT=*
//NODUP DD SYSOUT=*

The OMIT statement removes records with a blank course name before SELECT processing. The OUTFIL
statement for DUP reformats the selected records for courses with more than one book to have just the
course name and author's last name. The OUTFIL statement for NODUP reformats the selected records
for courses with only one book to have just the course name and author's last name.

Here are the DUP records exactly as they would appear:

INTRO TO COMPUTERS CHATTERJEE
INTRO TO COMPUTERS CHATTERJEE
INTRO TO COMPUTERS CHATTERJEE
MODERN POETRY FRIEDMAN
MODERN POETRY FRIEDMAN
WORLD HISTORY GOODGOLD
WORLD HISTORY WILLERTON

Here are the NODUP records exactly as they would appear:

ADVANCED MARKETING LORCH
BIOLOGY I GREENBERG
DATA MANAGEMENT SMITH
EUROPEAN HISTORY BISCARDI
FICTION WRITING BUCK
MARKETING MAXWELL
PSYCHOANALYSIS NAKATSU
PSYCHOLOGY I ZABOSKI
TECHINCAL EDITING MADRID
TECHNICAL EDITING MADRID
VIDEO GAMES NEUMANN

Note that "TECHINCAL EDITING" and "TECHNICAL EDITING" are both included in the NODUP data set
because they are different ("TECHINCAL" is spelled incorrectly).

Suppose you want to use the SORT.BRANCH data set to display the three branches in each state with the
highest number of employees. Write the following ICETOOL statement:

SELECT FROM(BRANCH) TO(HIGH3) ON(16,2,CH) FIRST(3) USING(HIGH)

Include the following DFSORT statements in HIGHCNTL:

 SORT FIELDS=(16,2,CH,A,18,4,ZD,D)
 OUTFIL FNAMES=BRANCH,
 BUILD=(16,2,2X,18,4,ZD,EDIT=(IIT))

The SORT statement orders the records ascending by state and descending by number of employees.
This brings the records for each state with the highest number of employees to the top. The intermediate
result would be:

State Employees
CA 35
CA 32
CA 29
CA 22
CA 21
CA 18
CA 15
CO 33
CO 32
CO 22
CO 20
CO 19

Chapter 12. Using the ICETOOL utility 149

The FIRST(3) operand tells SELECT to keep the first 3 records for each ON field (the state). Finally, the
OUTFIL statement extracts the state and employees values from the selected records.

The output records would look like this:

CA 35
CA 32
CA 29
CO 33
CO 32
CO 22

So far

So far in this chapter you have learned how to print statistics for numeric fields, create sorted and
unsorted data sets, obtain a count of numeric fields in a range for a particular field, print fields from an
input data set, print reports, print a count of field occurrences and select output records based on field
occurrences. Next, you will learn how to use ICETOOL's SPLICE operator.

Joining fields from different data sets
You can use ICETOOL's SPLICE operator to create output records in a variety of ways by splicing together
up to 50 fields from records that have the same ON field values, but different information. The output
records are sorted by the ON field values. The records to be spliced can originate from different input data
sets, making it possible to perform various "join" and "match" operations.

You can use up to 10 ON fields; all of the ON field values are used for sorting and splicing. For example,
if you use ON(1,4,CH), 'ABCD+01' and 'ABCD-01' are sorted in that order (by 1,4,CH,A) and counted as
two occurrences of 'ABCD'. However, if you use ON(1,4,CH) and ON(5,3,FS), 'ABCD-01' is sorted before
'ABCD+01' (by 1,4,CH,A and 5,3,FS,A) and counted as one occurrence of 'ABCD-01' and one occurrence
of 'ABCD+01'.

To do a join or match operation on two input data sets, you need to have the fields aligned appropriately
for each pair of records to be spliced. Typically, you accomplish that by copying and reformatting one or
both input data sets to temporary data sets, so you can splice the temporary data sets together.

Suppose you have two input data sets, REGION.IN1 and REGION.IN2, as shown in Table 72 on page 150
and Table 73 on page 150.

Table 72. REGION.IN1 data set for join

Region Headquarters Regional Director

1 5 6 20 21 35

East
West
North
South

Philadelphia
San Jose
Boston
Charlotte

C. Kent
B. Wayne
P. Parker
D. Prince

Table 73. REGION.IN2 data set for join

Office Region Employees Evaluation Established

 1 4 5 9 10 13 14 23 24 27

150 z/OS: z/OS DFSORT: Getting Started

Table 73. REGION.IN2 data set for join (continued)

Office Region Employees Evaluation Established

0001
0001
0002
0002
0001
0003
0002
0003
0001
0004

East
South
South
East
West
East
West
South
North
South

0050
0023
0068
0125
0052
0028
0105
0054
0200
0070

Fair
Good
Fair
Excellent
Good
Good
Excellent
Fair
Fair
Good

1983
1976
1978
1986
1995
1994
2001
1992
1991
2002

From these two input data sets, you want to create an output data set, REGION.OUT. For each record in
REGION.IN2, you want to look up the corresponding Region in REGION.IN1, and combine fields from the
two records into one output record in REGION.OUT, as shown in Table 74 on page 151.

Table 74. REGION.OUT data set for join

Office Region Regional Director Employees Evaluation Headquarters

1 4 5 9 10 24 25 28 29 38 39 53

0001
0002
0003
0001
0001
0002
0003
0004
0001
0002

East
East
East
North
South
South
South
South
West
West

C. Kent
C. Kent
C. Kent
P. Parker
D. Prince
D. Prince
D. Prince
D. Prince
B. Wayne
B. Wayne

0050
0125
0028
0200
0023
0068
0054
0070
0052
0105

Fair
Excellent
Good
Fair
Good
Fair
Fair
Good
Good
Excellent

Philadelphia
Philadelphia
Philadelphia
Boston
Charlotte
Charlotte
Charlotte
Charlotte
San Jose
San Jose

Write the following ICETOOL statements and JCL statements to create REGION.OUT from REGION.IN1
and REGION.IN2:

* Reformat REGION.IN1 to T1 so it can be spliced
 COPY FROM(REGNIN1) TO(T1) USING(CTL1)
* Reformat REGION.IN2 to T1 so it can be spliced
 COPY FROM(REGNIN2) TO(T1) USING(CTL2)
* Splice records in T1 with matching ON fields
 SPLICE FROM(T1) WITHALL -
 ON(5,5,CH) - Region
 WITH(1,4) - Office
 WITH(25,4) - Employees
 WITH(29,10) - Evaluation
 TO(REGNOUT)
/*
//REGNIN1 DD DSN=A123456.REGION.IN1,DISP=SHR
//REGNIN2 DD DSN=A123456.REGION.IN2,DISP=SHR
//T1 DD DSN=&&&T1,UNIT=3390,SPACE=(CYL,(5,5)),DISP=(MOD,PASS)
//REGNOUT DD DSN=A123456.REGION.OUT,DISP=(NEW,CATLG,DELETE),UNIT=3390,
// SPACE=(CYL,(5,5))
//CTL1CNTL DD *
* Move REGION.IN1 fields to their locations for the
* output data set
 OUTREC FIELDS=(5:1,5, Region
 10:21,15, Regional Director
 39:6,15) Headquarters
/*
//CTL2CNTL DD *
* Move REGION.IN2 fields to their locations for the
* output data set
 OUTREC FIELDS=(1:1,4, Office
 5:5,5, Region
 25:10,4, Employees

Chapter 12. Using the ICETOOL utility 151

 29:14,10, Evaluation
 53:X)
/*

The first COPY operator writes records to temporary data set T1 with the fields from REGION.IN1 as
shown in Table 75 on page 152.

Table 75. T1 data set fields from REGION.IN1

Blanks Region Regional Director Blanks Blanks Headquarters

1 4 5 9 10 24 25 28 29 38 39 53

The second COPY operator writes records at the end (MOD) of temporary data set T1 with the fields from
REGION.IN2 as shown in Table 76 on page 152.

Table 76. T1 data set fields from REGION.IN2

Office Region Blanks Employees Evaluation Blanks

1 4 5 9 10 24 25 28 29 38 39 53

Because the Region field is the ON field you want SPLICE to use to match your records, you must move
it to the same location in both types of reformatted records (positions 5-9). You must move all of the
other fields that you want in your output records to the locations in which you want them to appear in the
combined record. Put blanks in each record for the corresponding fields in the other type of record. For
example, the Regional Director field appears in positions 10-24 of the reformatted REGION.IN1 records
while blanks appear in the corresponding positions 10-24 of the reformatted REGION.IN2 records, and
the Office field appears in positions 1-4 of the reformatted REGION.IN2 records, while blanks appear in
the corresponding positions 1-4 of the reformatted REGION.IN1 records.

The FROM(T1) operand tells DFSORT that the input for the SPLICE operation is the T1 data set, which
contains the reformatted REGION.IN1 and REGION.IN2 records, in that order. The order of the input
records is important, because the first record for each matching ON field acts as the base record on to
which the second or subsequent record is spliced.

In this case, all of the reformatted REGION.IN1 records come before all of the reformatted REGION.IN2
records, so the SPLICE operator splices the WITH fields from the reformatted REGION.IN2 records to the
reformatted REGION.IN1 record whenever their ON fields match. WITHALL tells SPLICE to splice the first
record with every other record for which the ON fields match. Without WITHALL, only the first and last
records are spliced.

This is just one example of the many types of join operations you can do with SPLICE, using some of its
available operands.

You can also use a USING data set to specify DFSORT INCLUDE, OMIT, INREC, and OUTFIL statements for
your SPLICE operation. INCLUDE or OMIT and INREC statement processing is performed before SPLICE
processing. OUTFIL statement processing is performed after SPLICE processing.

For complete details of all of the operands you can use with SPLICE, as well as many more examples of
join operations, see z/OS DFSORT Application Programming Guide.

Matching records from different data sets
SPLICE can be used for match operations as well as join operations. Suppose you want to look at the
courses in SORT.SAMPIN and SORT.SAMPADD and produce three output data sets as follows:

• COURSE.MATCH to show the courses that appear in both SORT.SAMPIN and SORT.SAMPADD
• COURSE.INONLY to show the courses that appear only in SORT.SAMPIN
• COURSE.ADDONLY to show the courses that appear only in SORT.SAMPADD

The following JCL and ICETOOL statements create these three data sets:

152 z/OS: z/OS DFSORT: Getting Started

//S1 EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//F1IN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//F2IN DD DSN=A123456.SORT.SAMPADD,DISP=SHR
//T1 DD DSN=&&&T1,DISP=(MOD,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE)
//MATCH DD DSN=COURSE.MATCH,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(5,5)),UNIT=3390
//F1ONLY DD DSN=COURSE.INONLY,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(5,5)),UNIT=3390
//F2ONLY DD DSN=COURSE.ADDONLY,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(5,5)),UNIT=3390
//TOOLIN DD *
* Copy needed File1 fields to T1 and add '11' id
 COPY FROM(F1IN) TO(T1) USING(MATA)
* Copy needed File2 fields to T1 and add '22' id
 COPY FROM(F2IN) TO(T1) USING(MATB)
* Splice second id character from overlay to base for
* matching course numbers. Use resulting spliced or
* unspliced id to write records to MATCH, F1ONLY
* or F2ONLY as appropriate.
 SPLICE FROM(T1) TO(MATCH) ON(1,5,CH) -
 WITH(32,1) KEEPNODUPS USING(MATC)
/*
//MATACNTL DD *
* Extract needed File1 fields and add '11' id
 OUTREC FIELDS=(1:115,5, Course number
 6:120,25, Course name
 31:C'11') '11' id for File1 records
/*
//MATBCNTL DD *
* Extract needed File2 fields and add '22' id
 OUTREC FIELDS=(1:115,5, Course number
 6:120,25, Course name
 31:C'22') '22' id for File2 records
/*
//MATCCNTL DD *
* A '12' id indicates a match between File1 and File2.
* Remove the '12' id and write the records to MATCH.
 OUTFIL FNAMES=MATCH,INCLUDE=(31,2,CH,EQ,C'12'),OUTREC=(1,30)
* A '11' id indicates a record in File1 only.
* Remove the '11' id and write the records to F1ONLY.
 OUTFIL FNAMES=F1ONLY,INCLUDE=(31,2,CH,EQ,C'11'),OUTREC=(1,30)
* A '22' id indicates a record in File2 only.
* Remove the '22' id and write the records to F2ONLY.
 OUTFIL FNAMES=F2ONLY,INCLUDE=(31,2,CH,EQ,C'22'),OUTREC=(1,30)
/*

The first COPY operator writes records to temporary data set T1 consisting of the course number and
course name fields from SORT.SAMPIN, and an id of '11', as shown in Table 77 on page 153.

Table 77. T1 data set fields from SORT.SAMPIN

Course Number Course Name '11'

1 5 6 30 31 32

The second COPY operator writes records at the end (MOD) of temporary data set T1 consisting of the
course number and course name fields from SORT.SAMPADD, and an id of '22', as shown in Table 78 on
page 153.

Table 78. T1 data set fields from SORT.SAMPADD

Course Number Course Name '22'

1 5 6 30 31 32

The SPLICE operator matches the course numbers (ON field). When a match is found, the second id
character is spliced into the base record. Because WITHALL is not specified, only the last record for each
match is spliced with the first record for each match. KEEPNODUPS tells DFSORT to keep records that are
not spliced. Without KEEPNODUPS, records for course numbers that appear once in one data set, but not
in the other data set, would be deleted instead of being written to COURSE.INONLY or COURSE.ADDONLY.

Chapter 12. Using the ICETOOL utility 153

Here's what happens for all of the possible types of matches and non-matches:

• For a course number that appears one or more times with id '11' and one or more times with id '22', the
second '2' from the last '22' record is spliced into the first '11' record to get an id of '12'. Thus, an id of
'12' represents a course number that appears in both SORT.SAMPIN and SORT.SAMPADD

• For a course number that appears only once with id '11' (and not with id '22') the id of '11' is not
changed. For a course number that appears more than once with id '11' (and not with id '22') the second
'1' from the last '11' record is spliced into the first '11' record to get an id of '11'. Thus, an id of '11'
represents a course number that only appears in SORTIN.SAMPIN.

• For a course number that appears only once with an id of '22' (and not with an id of '11') the id of '22'
is not changed. For a course number that appears more than once in with an id of '22' (and not with an
id of '11') the second '2' from the last '22' record is spliced into the first '22' record to get an id of '22'.
Thus, an id of '22' represents a course number that only appears in SORTIN.SAMPADD.

The output created for COURSE.MATCH containing the information for course numbers that appear in
both SORT.SAMPIN and SORT.SAMPADD is shown in Table 79 on page 154.

Table 79. COURSE.MATCH output

Course Number Course Name

1 5 6 30

00103
00205
10054
30016
30975
50420
50521
50632
70124
70251

DATA MANAGEMENT
VIDEO GAMES
FICTION WRITING
PSYCHOLOGY I
PSYCHOANALYSIS
WORLD HISTORY
WORLD HISTORY
EUROPEAN HISTORY
ADVANCED MARKETING
MARKETING

The output created for COURSE.INONLY containing the information for course numbers that appear only
in SORT.SAMPIN is shown in Table 80 on page 154.

Table 80. COURSE.INONLY output

Course Number Course Name

1 5 6 30

00032
10347
10856
80521

INTRO TO COMPUTERS
TECHNICAL EDITING
MODERN POETRY
BIOLOGY I

The output created for COURSE.ADDONLY containing the information for course numbers that appear only
in SORT.SAMPADD is shown in Table 81 on page 154.

Table 81. COURSE.ADDONLY output

Course Number Course Name

1 5 6 30

154 z/OS: z/OS DFSORT: Getting Started

Table 81. COURSE.ADDONLY output (continued)

Course Number Course Name

70255
80522
80523

BUSINESS THEORY
BIOLOGY II
INTRO TO GENETICS

Sorting records between headers and trailers
You can use ICETOOL's DATASORT operator to sort the data records in a data set without sorting the
header or trailer records. You use the following operands to tell DATASORT the number of header records,
trailer records, or header and trailer records in your data set:

• HEADER or FIRST - the first record is a header record
• HEADER(x) or FIRST(x) - the first x records are header records
• TRAILER or LAST - the last record is a trailer record
• TRAILER(y) or LAST(y) - the last y records are trailer records

DATASORT does not require an "identifier" in the header or trailer records; it can treat the first x records
as header records and the last y records as trailer records.

You must specify a USING data set to specify a DFSORT SORT statement that tells DATASORT the fields
you want to use to sort your data records. You can use various other DFSORT statements as well; see z/OS
DFSORT Application Programming Guide for details.

DATASORT sorts the data records between your header records (first x records of the data set) and trailer
records (last y records of the data set) while keeping the header and trailer records in place.

Suppose you have input records that look like this:

2008/04/23
Geometry
Algebra
Trigonometry
Calculus
0004
End of data set

The first record is a header record containing a date, the last two records are trailer records containing a
count and an end indicator, respectively, and the records between the header and trailer records are data
records containing Subject names. You want to create an output data set with the Subject names sorted
but the header and trailer records in their original places. Write the following ICETOOL statement:

DATASORT FROM(IN) TO(OUT) HEADER TRAILER(2) USING(CTL1)

Include the following DFSORT SORT statement in CTL1CNTL:

 SORT FIELDS=(1,16,CH,A)

The output records would look like this:

2008/04/23
Algebra
Calculus
Geometry
Trigonometry
0004
End of data set

For complete details of DATASORT, as well as more examples, see z/OS DFSORT Application Programming
Guide.

Chapter 12. Using the ICETOOL utility 155

Keeping or removing headers, trailers and relative records
You can use ICETOOL's SUBSET operator to create a subset of the input or output records with or without
specific header, trailer or relative records. You use the following operands to tell SUBSET which records
you want to keep or remove:

• KEEP - keep the specified records
• REMOVE - remove the specified records
• INPUT - keep or remove input records
• OUTPUT - keep or remove output records
• HEADER or FIRST - keep or remove the first record (header record)
• HEADER(x) or FIRST(x) - keep or remove the first x records (header records)
• RRN(u) - keep or remove relative record u
• RRN(u,v) - keep or remove relative records u through v
• RRN(u,*) - keep or remove relative records u through the last record
• TRAILER or LAST - keep or remove the last record (trailer record)
• TRAILER(y) or LAST(y) - keep or remove the last y records (trailer records)

The records that are selected (that is, kept or not removed) are written to the output data set identified
by the TO operand. If appropriate, you can use the DISCARD operand to save the records that are not
selected to a separate output data set identified by the DISCARD operand. You can create just the TO data
set, just the DISCARD data set, or both.

You can use a USING data set to specify various DFSORT statements with SUBSET; see z/OS DFSORT
Application Programming Guide for details.

Suppose you have input records that look like this:

MASTER03.IN
2008/04/23
Vicky
Frank
Regina
Viet
David
Dave
Carrie
Sam
Sri Hari
Martin
UPDATE03.OUT

You want to create an output data set with the the first two input records, the fifth through seventh input
records, the eleventh input record, and the last input record. Write the following ICETOOL statement:

SUBSET FROM(INPUT) TO(OUTPUT) KEEP INPUT-
 FIRST(2) RRN(5,7) RRN(11) LAST

The output records would look like this:

MASTER03.IN
2008/04/23
Regina
Viet
David
Sri Hari
UPDATE03.OUT

For complete details of SUBSET, as well as more examples, see z/OS DFSORT Application Programming
Guide.

156 z/OS: z/OS DFSORT: Getting Started

Merging previously sorted data sets
You can use DFSORT's MERGE operator to create merged output data sets. A single MERGE operator can
be used to merge up to 50 input data sets which were previously sorted by the same fields in the same
locations. MERGE can create one output data set or up to 10 identical output data sets. Using INCLUDE
or OMIT statements, you can select a subset of the input records. Using INREC or OUTREC statements,
you can rearrange the fields of the input records. Using OUTFIL statements, you can create any number of
output data sets with different subsets of records or arrangements of fields.

You can use up to 10 FROM operands to specify up to 50 input data sets. You must specify a USING
data set to specify a DFSORT MERGE statement that tells MERGE the fields your input data sets are
already sorted on. You can use various other DFSORT statements as well; see z/OS DFSORT Application
Programming Guide for details.

Suppose you have two input data sets previously sorted by Branch Number as follows:

Input file1

0003 Sacramento
0005 Palo Alto
0008 Morgan Hill

Input file2

0002 Los Angeles
0006 Modesto
0009 San Jose

The following JCL and ICETOOL statements would merge the two input data sets on the Branch Number:

//MRG EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//IN1 DD DSN=INPUT.FILE1,DISP=SHR
//IN2 DD DSN=INPUT.FILE2,DISP=SHR
//OUT DD DSN=OUTPUT.FILE,DISP=(NEW,CATLG,DELETE),
// UNIT=SYSDA,SPACE=(CYL,(5,5))
//TOOLIN DD *
 MERGE FROM(IN1,IN2) TO(OUT) USING(CTL1)
/*
//CTL1CNTL DD *
 MERGE FIELDS=(1,4,ZD,A)
/*

The output data set would have these merged records:

0002 Los Angeles
0003 Sacramento
0005 Palo Alto
0006 Modesto
0008 Morgan Hill
0009 San Jose

So far

So far in this chapter you have learned how to print statistics for numeric fields, create sorted and
unsorted data sets, obtain a count of numeric fields in a range for a particular field, print fields from
an input data set, print reports, print a count of field occurrences, select output records based on field
occurrences, join fields from different data sets, match records from different data sets, sort records
between headers and trailers, keep or remove headers, trailers or relative records, and merge previously
sorted data sets. The last part of this chapter shows the complete main ICETOOL job and its resulting
TOOLMSG output.

Complete ICETOOL job and TOOLMSG output
Here is the complete ICETOOL job you created in this chapter:

Chapter 12. Using the ICETOOL utility 157

//EXAMP JOB A492,PROGRAMMER
//TOOL EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//TOOLIN DD *

* Statistics from all branches
STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)
* Books from VALD and WETH
SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)
* Separate output for California and Colorado branches
SORT FROM(ALL) USING(CACO)
* California branches profit analysis
 RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-1500) LOWER(+8000)
* Branches with less than 32 employees
 RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)
* Print profit, employees, and city for each Colorado branch
DISPLAY FROM(CODASD) LIST(OUT) ON(28,6,PD) ON(18,4,ZD) ON(1,15,CH)
* Print a report for the Colorado branches
DISPLAY FROM(CODASD) LIST(RPT) -
 DATE TITLE('Colorado Branches Report') PAGE -
 HEADER('City') HEADER('Profit') HEADER('Employees') -
 ON(1,15,CH) ON(28,6,PD) ON(18,4,ZD) BLANK BETWEEN(5) -
 TOTAL('Total') AVERAGE('Average')-
 MINIMUM('Lowest') COUNT('Number of cities')
* Print a report of books for individual publishers
DISPLAY FROM(DAPUBS) LIST(SECTIONS) -
 TITLE('BOOKS FOR INDIVIDUAL PUBLISHERS') PAGE -
 HEADER('TITLE OF BOOK') ON(1,35,CH) -
 HEADER('PRICE OF BOOK') ON(170,4,BI,C1,F'$') -
 BTITLE('PUBLISHER:') BREAK(106,4,CH) -
 BAVERAGE('AVERAGE FOR THIS PUBLISHER') -
 BTOTAL('TOTAL FOR THIS PUBLISHER') -
 AVERAGE('AVERAGE FOR ALL PUBLISHERS') -
 TOTAL('TOTAL FOR ALL PUBLISHERS')
* Print the count of books in use from each publisher
OCCUR FROM(BKIN) LIST(PUBCT) BLANK -
 TITLE('Books from Publishers') DATE(DMY.) -
 HEADER('Publisher') HEADER('Books Used') -
 ON(106,4,CH) ON(VALCNT,N05)
* Separate output containing records for publishers
* with more than 4 books in use
SELECT FROM(BKIN) TO(BKOUT) ON(106,4,CH) HIGHER(4)
* Reformat REGION.IN1 to T1 so it can be spliced
 COPY FROM(REGNIN1) TO(T1) USING(CTL1)
* Reformat REGION.IN2 to T1 so it can be spliced
 COPY FROM(REGNIN2) TO(T1) USING(CTL2)
* Splice records in T1 with matching ON fields
 SPLICE FROM(T1) WITHALL -
 ON(5,5,CH) - Region
 WITH(1,4) - Office
 WITH(25,4) - Employees
 WITH(29,10) - Evaluation
 TO(REGNOUT)
/*
//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR
//BKS DD DSN=A123456.SORT.SAMPIN,DISP=SHR
// DD DSN=A123456.SORT.SAMPADD,DISP=SHR
//DAPUBS DD DSN=&&DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=SYSDA
//PRPUBS DD SYSOUT=A
//SPUBCNTL DD *
 SORT FIELDS=(106,4,A,1,75,A),FORMAT=CH
 INCLUDE COND=(106,4,EQ,C'VALD',OR,106,4,EQ,C'WETH'),
 FORMAT=CH
/*
//CACOCNTL DD *
 SORT FIELDS=(1,15,CH,A)
 OUTFIL FNAMES=(CADASD,CATAPE),INCLUDE=(16,2,CH,EQ,C'CA')
 OUTFIL FNAMES=(CODASD,COTAPE),INCLUDE=(16,2,CH,EQ,C'CO')
/*
//CADASD DD DSN=&&CA,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390
//CATAPE DD DSN=CA.BRANCH,UNIT=3480,VOL=SER=111111,
// DISP=(NEW,KEEP),LABEL=(,SL)
//CODASD DD DSN=&&CO,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=3390
//COTAPE DD DSN=CO.BRANCH,UNIT=3480,VOL=SER=222222,
// DISP=(NEW,KEEP),LABEL=(,SL)
//OUT DD SYSOUT=A
//RPT DD SYSOUT=A
//SECTIONS DD SYSOUT=A
//BKIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//PUBCT DD SYSOUT=A

158 z/OS: z/OS DFSORT: Getting Started

//BKOUT DD DSN=A123456.BOOKS1,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(3,3)),UNIT=3390
//REGNIN1 DD DSN=A123456.REGION.IN1,DISP=SHR
//REGNIN2 DD DSN=A123456.REGION.IN2,DISP=SHR
//T1 DD DSN=&&&T1,UNIT=3390,SPACE=(CYL,(5,5)),DISP=(MOD,PASS)
//REGNOUT DD DSN=A123456.REGION.OUT,DISP=(NEW,CATLG,DELETE),UNIT=3390,
// SPACE=(CYL,(5,5))
//CTL1CNTL DD *
* Move REGION.IN1 fields to their locations for the
* output data set
 OUTREC FIELDS=(5:1,5, Region
 10:21,15, Regional Director
 39:6,15) Headquarters
/*
//CTL2CNTL DD *
* Move REGION.IN2 fields to their locations for the
* output data set
 OUTREC FIELDS=(1:1,4, Office
 5:5,5, Region
 25:10,4, Employees
 29:14,10, Evaluation
 53:X)
/*

Here is the complete TOOLMSG data set produced by running this job:

Chapter 12. Using the ICETOOL utility 159

ICE600I 0 DFSORT ICETOOL UTILITY RUN STARTED

ICE650I 0 VISIT http://www.ibm.com/storage/dfsort FOR ICETOOL PAPERS, EXAMPLES AND MORE

ICE632I 0 SOURCE FOR ICETOOL STATEMENTS: TOOLIN

ICE630I 0 MODE IN EFFECT: STOP

 * Statistics from all branches
 STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)
ICE627I 0 DFSORT CALL 0001 FOR COPY FROM ALL TO E35 EXIT COMPLETED
ICE628I 0 RECORD COUNT: 000000000000012
ICE607I 0 STATISTICS FOR (18,4,ZD) :
ICE608I 0 MINIMUM: +000000000000015, MAXIMUM: +000000000000035
ICE609I 0 AVERAGE: +000000000000024, TOTAL : +000000000000298
ICE607I 0 STATISTICS FOR (28,6,PD) :
ICE608I 0 MINIMUM: -000000000004278, MAXIMUM: +000000000008276
ICE609I 0 AVERAGE: +000000000004222, TOTAL : +000000000050665
ICE607I 0 STATISTICS FOR (22,6,PD) :
ICE608I 0 MINIMUM: +000000000012300, MAXIMUM: +000000000042820
ICE609I 0 AVERAGE: +000000000027469, TOTAL : +000000000329637
ICE602I 0 OPERATION RETURN CODE: 00

 * Books from VALD and WETH
 SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)
ICE606I 0 DFSORT CALL 0002 FOR SORT FROM BKS TO OUTFIL USING SPUBCNTL COMPLETED
ICE602I 0 OPERATION RETURN CODE: 00

 * Separate output for California and Colorado branches
 SORT FROM(ALL) USING(CACO)
ICE606I 0 DFSORT CALL 0003 FOR SORT FROM ALL TO OUTFIL USING CACOCNTL COMPLETED
ICE602I 0 OPERATION RETURN CODE: 00

 * California branches profit analysis
 RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-1500) LOWER(+8000)
ICE627I 0 DFSORT CALL 0004 FOR COPY FROM CADASD TO E35 EXIT COMPLETED
ICE628I 0 RECORD COUNT: 000000000000007
ICE631I 0 NUMBER OF VALUES IN RANGE FOR (28,6,PD) : 000000000000003
ICE602I 0 OPERATION RETURN CODE: 00

 * Branches with less than 32 employees
 RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)
ICE627I 0 DFSORT CALL 0005 FOR COPY FROM ALL TO E35 EXIT COMPLETED
ICE628I 0 RECORD COUNT: 000000000000012
ICE631I 0 NUMBER OF VALUES IN RANGE FOR (18,4,ZD) : 000000000000008
ICE602I 0 OPERATION RETURN CODE: 00

* Print profit, employees, and city for each Colorado branch
 DISPLAY FROM(CODASD) LIST(OUT) ON(28,6,PD) ON(18,4,ZD) ON(1,15,CH)
ICE643I 0 WIDTH OF REPORT IS 0121 BYTES
ICE627I 0 DFSORT CALL 0006 FOR COPY FROM CODASD TO E35 EXIT COMPLETED
ICE603I 0 INFORMATION PRINTED IN OUT DATA SET
ICE628I 0 RECORD COUNT: 000000000000005
ICE602I 0 OPERATION RETURN CODE: 00

 * Print a report for the Colorado branches
 DISPLAY FROM(CODASD) LIST(RPT) -
 DATE TITLE('Colorado Branches Report') PAGE -
 HEADER('City') HEADER('Profit') HEADER('Employees') -
 ON(1,15,CH) ON(28,6,PD) ON(18,4,ZD) BLANK BETWEEN(5) -
 TOTAL('Total') AVERAGE('Average')-
 MINIMUM('Lowest') COUNT('Number of cities')
ICE643I 0 WIDTH OF REPORT IS 0121 BYTES
ICE627I 0 DFSORT CALL 0007 FOR COPY FROM CODASD TO E35 EXIT COMPLETED
ICE603I 0 INFORMATION PRINTED IN RPT DATA SET
ICE628I 0 RECORD COUNT: 000000000000005
ICE602I 0 OPERATION RETURN CODE: 00

Figure 4. Complete TOOLMSG Data Set. (Part 1 of 2)

160 z/OS: z/OS DFSORT: Getting Started

 * Print a report of books for individual publishers
 DISPLAY FROM(DAPUBS) LIST(SECTIONS) -
 TITLE('BOOKS FOR INDIVIDUAL PUBLISHERS') PAGE -
 HEADER('TITLE OF BOOK') ON(1,35,CH) -
 HEADER('PRICE OF BOOK') ON(170,4,BI,C1,F'$') -
 BTITLE('PUBLISHER:') BREAK(106,4,CH) -
 BAVERAGE('AVERAGE FOR THIS PUBLISHER') -
 BTOTAL('TOTAL FOR THIS PUBLISHER') -
 AVERAGE('AVERAGE FOR ALL PUBLISHERS') -
 TOTAL('TOTAL FOR ALL PUBLISHERS')
ICE643I 0 WIDTH OF REPORT IS 0121 BYTES
ICE627I 0 DFSORT CALL 0008 FOR COPY FROM DAPUBS TO E35 EXIT COMPLETED
ICE603I 0 INFORMATION PRINTED IN SECTIONS DATA SET
ICE628I 0 RECORD COUNT: 000000000000019
ICE602I 0 OPERATION RETURN CODE: 00

 * Print the count of books in use from each publisher
 OCCUR FROM(BKIN) LIST(PUBCT) BLANK -
 TITLE('Books from Publishers') DATE(DMY.) -
 HEADER('Publisher') HEADER('Books Used') -
 ON(106,4,CH) ON(VALCNT)
ICE643I 0 WIDTH OF REPORT IS 0121 BYTES
ICE627I 0 DFSORT CALL 0009 FOR SORT FROM BKIN TO E35 EXIT COMPLETED
ICE603I 0 INFORMATION PRINTED IN PUBCT DATA SET
ICE628I 0 RECORD COUNT: 000000000000020
ICE638I 0 NUMBER OF RECORDS RESULTING FROM CRITERIA: 000000000000004
ICE602I 0 OPERATION RETURN CODE: 00

 * Separate output containing records for publishers
 * with more than 4 books in use
 SELECT FROM(BKIN) TO(BKOUT) ON(106,4,CH) HIGHER(4)
ICE627I 0 DFSORT CALL 0010 FOR SORT FROM BKIN TO BKOUT COMPLETED
ICE628I 0 RECORD COUNT: 000000000000020
ICE638I 0 NUMBER OF RECORDS RESULTING FROM CRITERIA: 000000000000012
ICE602I 0 OPERATION RETURN CODE: 00

 * Reformat REGION.IN1 to T1 so it can be spliced
 COPY FROM(REGNIN1) TO(T1) USING(CTL1)
ICE606I 0 DFSORT CALL 0011 FOR COPY FROM REGNIN1 TO T1 USING CTL1CNTL COMPLETED
ICE602I 0 OPERATION RETURN CODE: 00

ICE601I 0 DFSORT ICETOOL UTILITY RUN ENDED - RETURN CODE: 00
 * Reformat REGION.IN2 to T1 so it can be spliced
 COPY FROM(REGNIN2) TO(T1) USING(CTL2)
ICE606I 0 DFSORT CALL 0012 FOR COPY FROM REGNIN2 TO T1 USING CTL2CNTL COMPLETED
ICE602I 0 OPERATION RETURN CODE: 00

 * Splice records in T1 with matching ON fields
 SPLICE FROM(T1) WITHALL -
 ON(5,5,CH) - Region
 WITH(1,4) - Office
 WITH(25,4) - Employees
 WITH(29,10) - Evaluation
 TO(REGNOUT)
ICE627I 0 DFSORT CALL 0013 FOR SORT FROM T1 TO REGNOUT COMPLETED
ICE628I 0 RECORD COUNT: 000000000000014
ICE638I 0 NUMBER OF RECORDS RESULTING FROM CRITERIA: 000000000000010
ICE602I 0 OPERATION RETURN CODE: 00

Figure 5. Complete TOOLMSG Data Set. (Part 2 of 2)

Summary

This chapter introduced the 17 ICETOOL operators, and showed some of the ways you can use them
to perform various tasks. For complete information on DFSORT's ICETOOL, refer to z/OS DFSORT
Application Programming Guide.

Chapter 12. Using the ICETOOL utility 161

162 z/OS: z/OS DFSORT: Getting Started

Part 4. Learning to use symbols

© Copyright IBM Corp. 1983, 2024 163

164 z/OS: z/OS DFSORT: Getting Started

Chapter 13. Defining and using symbols

A symbol is a name (preferably something meaningful) you can use to represent a field or a constant. Sets
of symbols, also called mappings, can be used to describe a group of related fields and constants such
as the information in a particular type of record. Such mappings allow you to refer to fields, constants,
and output columns by their symbols, freeing you from having to know the position, length and format of
fields, the values of constants or the position of the output column you want to use.

DFSORT's symbol processing feature allows you or your site to create symbols for the fields in your own
records and for constants associated with those fields. You can then use those symbols in DFSORT control
statements and ICETOOL operators.

In addition, you can obtain predefined sets of symbols to use for the records created by other products
such as RACF®, DCOLLECT and DFSMSrmm. Visit the DFSORT Home Page (www.ibm.com/storage/dfsort)
for information about obtaining DFSORT symbol mappings for records produced by other products, and
examples that use these symbols.

The chapter in this section explains how to define symbols for the bookstore data set and use them in
several DFSORT control statements and ICETOOL operators.

Although not described in this book, you can also use:

• System symbols (for example, &SYSPLEX. and &JOBNAME.) in your symbol constants. For a full
description of how symbols (including system symbols) can be used with DFSORT and ICETOOL, see
z/OS DFSORT Application Programming Guide.

• SET and PROC symbols included in the DFSORT and ICETOOL EXEC PARM string. For a full description
of how SET and PROC symbols can be used with DFSORT and ICETOOL, see z/OS DFSORT Application
Programming Guide.

Creating the SYMNAMES data set
DFSORT and ICETOOL obtain the symbols to be used from the data set specified in a SYMNAMES DD
statement. Create the SYMNAMES data set you want to use with RECFM=FB and LRECL=80 in the same
way you would create a data set containing DFSORT JCL and control statements. Then use an editor,
such as ISPF EDIT, to write the SYMNAMES statements defining your symbols, as described later in this
section.

After you create the SYMNAMES data set, you can use it in any DFSORT or ICETOOL application for which
you want to use the symbols you defined. You can add, delete and change SYMNAMES statements in the
SYMNAMES data set at any time using the editor.

For this chapter, we will assume you have created a data set called SORT.SYMBOLS to put your
SYMNAMES statements in.

Defining symbols for fields
Appendix B, “Descriptions of the sample data sets,” on page 173 shows the fields of the bookstore data
set. To define the symbols for these fields, write a SYMNAMES statement for each one in SORT.SYMBOLS.
The SYMNAMES statements for the symbols Title and Author_Last_Name look like this:

* Symbols for fields
Title,1,75,CH
Author_Last_Name,*,15,CH

To write these SYMNAMES statements that define the symbol Title for the Title field and the symbol
Author_Last_Name for the Author's Last Name field, follow these steps:

© Copyright IBM Corp. 1983, 2024 165

http://www.ibm.com/storage/dfsort

Table 82. Steps to Define Symbols for Fields

Step Action

1 Write a comment statement (optional):

* Symbols for fields

2 Type Title followed by a comma.

This is the symbol you will use for the Title field. A symbol can be 1 to 50 characters consisting of
uppercase letters (A-Z), lowercase letters (a-z), numbers (0-9), the number sign (#), the dollar sign
($), the commercial at sign (@), the underscore(_), and the hyphen (-). However, the first character
must not be a number. Title, TITLE, and title are three different symbols.

3 Type the position of the Title field followed by a comma.

The position of the Title field is 1.

4 Type the length of the Title field followed by a comma.

The length of the Title field is 75.

5 Type the format of the Title field followed by a blank.

The format of the Title field is CH.

6 Type Author_Last_Name followed by a comma.

This is the symbol you will use for the Author's Last Name field.

7 Type * for the position followed by a comma.

An asterisk (*) for the position shows that this field immediately follows the previous field. The * here
will automatically assign 76 as the position of the Author_Last_Name symbol. You could specify 76
instead of *, but * is preferable when fields are adjacent. * allows symbols for fields to be inserted
without changes to symbols for other fields.

8 Type the length of the Author's Last Name field followed by a comma.

The length of the Author's Last Name field is 15.

9 Type the format of the Author's Last Name field followed by a blank.

The format of the Author's Last Name field is CH.

The SYMNAMES statements to define the symbols for the other fields in the bookstore data set look like
this:

Author_First_Name,*,15,CH
Publisher,*,4,CH
Course_Department,*,5,CH
Course_Number,*,5,CH
Course_Name,*,25,CH
Instructor_Last_Name,*,15,CH
Instructor_Initials,*,2,CH
Number_in_Stock,*,4,BI
Number_Sold_YTD,*,4,BI
Price,*,4,BI

So far

So far, you have learned how to create a SYMNAMES data set and use it to define symbols for your fields.
Now you will learn how to use the symbols for the fields you defined.

Using symbols for fields in DFSORT statements
Now that you have your symbols for the bookstore data set defined in SORT.SYMBOLS, you can use those
symbols in DFSORT control statements wherever fields can appear.

166 z/OS: z/OS DFSORT: Getting Started

Here's an example of a DFSORT application that uses symbols. It selects the books for courses 00032
and 10347 from SORT.SAMPIN and sorts them by title, instructor and price:

//SYM1 JOB A492,PROGRAMMER
//SORTIT EXEC PGM=SORT
//SYSOUT DD SYSOUT=A
//SYMNAMES DD DSN=A123456.SORT.SYMBOLS,DISP=SHR
//SYMNOUT DD SYSOUT=*
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=SHR
//SYSIN DD *
 INCLUDE COND=(Course_Number,EQ,C'00032',OR,
 Course_Number,EQ,C'10347')
 SORT FIELDS=(Title,A,
 Instructor_Last_Name,A,Instructor_Initials,A,
 Price,A)
/*

The SYMNAMES DD statement specifies the SYMNAMES data set to be used for this application.

The SYMNOUT DD statement specifies a data set in which you want DFSORT to list your original
SYMNAMES statements and the symbol table constructed from them. You can omit the SYMNOUT data
set if you don't want to see that information. For this SYMNAMES data set, the SYMNOUT listing looks like
this:

------- ORIGINAL STATEMENTS FROM SYMNAMES -------
* Symbols for fields
Title,1,75,CH
Author_Last_Name,*,15,CH
Author_First_Name,*,15,CH
Publisher,*,4,CH
Course_Department,*,5,CH
Course_Number,*,5,CH
Course_Name,*,25,CH
Instructor_Last_Name,*,15,CH
Instructor_Initials,*,2,CH
Number_in_Stock,*,4,BI
Number_Sold_YTD,*,4,BI
Price,*,4,BI

------------------ SYMBOL TABLE -----------------
Title,1,75,CH
Author_Last_Name,76,15,CH
Author_First_Name,91,15,CH
Publisher,106,4,CH
Course_Department,110,5,CH
Course_Number,115,5,CH
Course_Name,120,25,CH
Instructor_Last_Name,145,15,CH
Instructor_Initials,160,2,CH
Number_in_Stock,162,4,BI
Number_Sold_YTD,166,4,BI
Price,170,4,BI

The INCLUDE and SORT statements use symbols for the fields instead of position, length and format.

You can define symbols for any %nnn, %nn or %n parsed fields you use. For example, you could specify
these SYMNAMES statements to define symbols for %01 and %02:

First_name,%01
Last_name,%02

and then use these symbols in the following OUTREC statement:

OUTREC PARSE=(First_name=(ABSPOS=9,FIXLEN=12,ENDBEFR=C','),
 Last_name=(FIXLEN=15,ENDBEFR=C',')),
 BUILD=(First_name,15:Last_name)

Using symbols for fields in ICETOOL operators
You can also use the symbols from SORT.SYMBOLS in ICETOOL operators and their associated DFSORT
control statements wherever fields can appear. Here's an example of an ICETOOL application that uses

Chapter 13. Defining and using symbols 167

symbols for fields. It does what the DFSORT example in “Using symbols for fields in DFSORT statements”
on page 166 does, but also shows the number of selected books priced below 7 dollars and the number
priced above 20 dollars:

//SYM2 JOB A492,PROGRAMMER
//TOOL EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//SYMNAMES DD DSN=A123456.SORT.SYMBOLS,DISP=SHR
//SYMNOUT DD SYSOUT=*
//IN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//OUT DD DSN=A123456.SORT.SAMPOUT,DISP=OLD
//TOOLIN DD *
 SORT FROM(IN) TO(OUT) USING(CTL1)
 RANGE FROM(OUT) ON(Price) LOWER(+700)
 RANGE FROM(OUT) ON(Price) HIGHER(+2000)
//CTL1CNTL DD *
 INCLUDE COND=(Course_Number,EQ,C'00032',OR,
 Course_Number,EQ,C'10347')
 SORT FIELDS=(Title,A,
 Instructor_Last_Name,A,Instructor_Initials,A,
 Price,A)
/*

The SYMNAMES DD statement specifies the SYMNAMES data set to be used for this application.

The SYMNOUT DD statement specifies a data set in which you want ICETOOL to list your original
SYMNAMES statements and the symbol table constructed from them. Because the SYMNAMES data set
is the same as for the DFSORT application shown in “Using symbols for fields in DFSORT statements” on
page 166, the SYMNOUT listing will be the same as well.

The RANGE operators and the INCLUDE and SORT statements use symbols for the fields instead of
position, length and format.

So far

You have now learned how to use symbols for fields in DFSORT control statements and ICETOOL
operators. Next, you will learn how to define and use symbols for your constants.

Defining and using symbols for constants
You can use symbols wherever decimal constants, character constants, hexadecimal constants or bit
constants can appear in DFSORT control statements and ICETOOL operators.

The ICETOOL example in “Using symbols for fields in ICETOOL operators” on page 167 uses the following
RANGE operators:

 RANGE FROM(OUT) ON(Price) LOWER(+700)
 RANGE FROM(OUT) ON(Price) HIGHER(+2000)

and the following INCLUDE statement:

 INCLUDE COND=(Course_Number,EQ,C'00032',OR,
 Course_Number,EQ,C'10347')

+700 and +2000 are decimal constants. C'00032' and C'10347' are character constants. You can use
symbols for these constants to make them more understandable in the ICETOOL operators and DFSORT
control statements you write. The SYMNAMES statements for these constants look like this:

* Symbols for constants
Discount,+700
Premium,+2000
Beginning_Economics,C'00032'
Advanced_Sociology,C'10347'

To add these symbols for the four constants to the SORT.SYMBOLS data set, follow these steps:

168 z/OS: z/OS DFSORT: Getting Started

Table 83. Steps to Define Symbols for Constants

Step Action

1 Write a comment statement (optional):

* Symbols for constants

2 Type Discount followed by a comma.

This is the symbol you will use for the decimal constant +700.

3 Type the constant followed by a blank.

The constant is +700. You can also use 700, but we recommend using a + sign for positive decimal
constants.

4 Type Premium followed by a comma.

This is the symbol you will use for the decimal constant +2000.

5 Type the constant followed by a blank.

The constant is +2000. You can also use 2000, but we recommend using a + sign for positive decimal
constants.

6 Type Beginning_Economics followed by a comma.

This is the symbol you will use for the character constant C'00032'.

7 Type the constant followed by a blank.

The constant is C'00032'. You can also use '00032' or c'00032'.

8 Type Advanced_Sociology followed by a comma.

This is the symbol you will use for the character constant C'10347'.

9 Type the constant followed by a blank.

The constant is C'10347'. You can also use '10347' or c'10347'.

The RANGE operators can now be written as:

 RANGE FROM(OUT) ON(Price) LOWER(Discount)
 RANGE FROM(OUT) ON(Price) HIGHER(Premium)

The INCLUDE statement can now be written as:

 INCLUDE COND=(Course_Number,EQ,Beginning_Economics,OR,
 Course_Number,EQ,Advanced_Sociology)

Summary

This chapter covered how to define and use symbols for fields and constants in DFSORT control
statements and ICETOOL operators. For more information on DFSORT symbols, see z/OS DFSORT
Application Programming Guide.

This completes the z/OS DFSORT: Getting Started tutorials. The appendixes that follow contain important
information about the Sample Data Sets and the order in which DFSORT processes its various control
statements.

Chapter 13. Defining and using symbols 169

170 z/OS: z/OS DFSORT: Getting Started

Appendix A. Creating the sample data sets

Many of the examples in this document use A123456.SORT.SAMPIN, A123456.SORT.SAMPADD, and
A123456.SORT.BRANCH as input data sets, and A123456.SORT.SAMPOUT as an output data set.
If you want to try the examples in this document that use these data sets, create your own
userid.SORT.SAMPIN, userid.SORT.SAMPADD, userid.SORT.BRANCH and userid.SORT.SAMPOUT data sets
with your own userid by running the ICEDCRE job that follows.

Substitute your own JOB statement for the ICEDCRE JOB statement. Substitute your own userid for
'userid' in the four DD statements.

If you use a JOBLIB or STEPLIB to run DFSORT jobs, add it to the ICEDCRE job. If you prefer a value
for UNIT other than SYSALLDA, change that parameter in the DD statements. Add a VOL=SER=vvvvvv
parameter to the DD statements, if appropriate.

//ICEDCRE JOB A492,PROGRAMMER
//SAMPCOPY EXEC PGM=ICESAMP,PARM=(BOOKS)
//SYSPRINT DD SYSOUT=*
//SAMPLE DD DSN=userid.SORT.SAMPIN,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1),RLSE),
// DCB=(RECFM=FB,LRECL=173,BLKSIZE=1730),
// UNIT=SYSALLDA
//*
//ADD DD DSN=userid.SORT.SAMPADD,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1),RLSE),
// DCB=(RECFM=FB,LRECL=173,BLKSIZE=1730),
// UNIT=SYSALLDA
//*
//OUTPUT DD DSN=userid.SORT.SAMPOUT,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1),RLSE),
// DCB=(RECFM=FB,LRECL=173,BLKSIZE=1730),
// UNIT=SYSALLDA
//*
//BRANCH DD DSN=userid.SORT.BRANCH,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1),RLSE),
// DCB=(RECFM=FB,LRECL=33,BLKSIZE=330),
// UNIT=SYSALLDA
//*
//SYSIN DD DUMMY

Once you run this job successfully, you can substitute your userid for A123456 in the data set names of
these four data sets. For example, if you see a DD statement like this:

//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR

you can use your own DD statement like this:

//SORTIN DD DSN=userid.SORT.SAMPIN,DISP=SHR

Note: Some of the examples use data sets other than A123456.SORT.SAMPIN,
A123456.SORT.SAMPOUT, A123456.SORT.SAMPADD, and A123456.SORT.BRANCH. You can either
create data sets from scratch to match the ones used in the text, or else perform a similar exercise
on data sets you already have.

Using Sample Data Sets

© Copyright IBM Corp. 1983, 2024 171

Using Sample Data Sets

172 z/OS: z/OS DFSORT: Getting Started

Appendix B. Descriptions of the sample data sets

The fields in the records of the sample data sets SORT.SAMPIN, SORT.SAMPADD and SORT.BRANCH are
described on this page, and the contents of the records are described on the following pages.

Table 84 on page 173 shows the length and data format of each field in the sample bookstore data set
SORT.SAMPIN, and in the additional bookstore data set SORT.SAMPADD. Both of these data sets have
fixed-length records (RECFM=FB) that are 173 bytes long (LRECL=173).

Table 84. SORT.SAMPIN and SORT.SAMPADD Field Descriptions

Field Length Data Format

Title 75 CH

Author's Last Name 15 CH

Author's First Name 15 CH

Publisher 4 CH

Course Department 5 CH

Course Number 5 CH

Course Name 25 CH

Instructor's Last Name 15 CH

Instructor's Initials 2 CH

Number In Stock 4 BI

Number Sold Y-to-D 4 BI

Price 4 BI

Table 85 on page 173 shows the length and data format of each field in the sample branch data set
SORT.BRANCH. This data set has fixed-length records (RECFM=FB) that are 33 bytes long (LRECL=33).

Table 85. SORT.BRANCH Field Descriptions

Field Length Data Format

City 15 CH

State 2 CH

Employees 4 ZD

Revenue 6 PD

Profit 6 PD

The contents of the records in the sample data sets are shown on the following pages. Each horizontal line
represents a record, and each column represents a field. Headings show the field names and the starting
and ending position of each field. Of course, these headings do not actually appear in the data sets.
Numeric fields (BI, ZD, PD) would not actually be readable if displayed, but are shown as their equivalent
readable values.

Sample Data Set - SORT.SAMPIN

Sample Bookstore Data Sets

© Copyright IBM Corp. 1983, 2024 173

Sample Data Set - SORT.SAMPIN

Book Title
Author's
Last Name

Author's
First Name Publisher

Course
Department

1 75 76 90 91 105 106 109 110 114

COMPUTER LANGUAGES
LIVING WELL ON A SMALL BUDGET
SUPPLYING THE DEMAND
VIDEO GAME DESIGN
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
COMPUTERS: AN INTRODUCTION
PICK'S POCKET DICTIONARY
EDITING SOFTWARE MANUALS
NUMBERING SYSTEMS
STRATEGIC MARKETING
THE INDUSTRIAL REVOLUTION
MODERN ANTHOLOGY OF WOMEN POETS
INTRODUCTION TO PSYCHOLOGY
THE COMPLETE PROOFREADER
SYSTEM PROGRAMMING
SHORT STORIES AND TALL TALES
INTRODUCTION TO BIOLOGY
ADVANCED TOPICS IN PSYCHOANALYSIS
EIGHTEENTH CENTURY EUROPE
CRISES OF THE MIDDLE AGES

MURRAY
DEWAN
MILLER
RASMUSSEN
WILDE
DINSHAW
GUSTLIN
OJALVO
BAYLESS
YAEGER
GROSS
COWARD
DUZET
GREEN
CAUDILLO
AVRIL
WU
OSTOICH
MUNGER
BENDER

ROBERT
FRANK
TOM
LORI
KAREN
JOKII
CAROL
VICTOR
WILLIAM
MARK
DON
PETER
LINDA
ANN
RAUL
LILIANA
CHIEN
DIANNE
ALICE
GREG

FERN
COR
COR
VALD
COR
WETH
COR
VALD
FERN
VALD
WETH
COR
COR
FERN
WETH
VALD
VALD
FERN
WETH
COR

COMP

BUSIN
COMP
ENGL
COMP

ENGL
COMP
BUSIN
HIST
ENGL
PSYCH
ENGL
COMP
ENGL
BIOL
PSYCH
HIST
HIST

Sample Data Set - SORT.SAMPADD

Sample Data Set - SORT.SAMPADD

Book Title
Author's
Last Name

Author's
First Name Publisher

Course
Department

1 75 76 90 91 105 106 109 110 114

GUNTHER'S GERMAN DICTIONARY
COMPLETE SPANISH DICTIONARY
ANOTHER ITALIAN DICTIONARY
FRENCH TO ENGLISH DICTIONARY
GUIDE TO COLLEGE LIFE
THE ANIMAL KINGDOM
A SMALLER WORLD: MICROBES
DNA: BLUEPRINT FOR YOU
CELLS AND HOW THEY WORK
KNOW YOUR CONSUMER
ANTICIPATING THE MARKET
ZEN BUSINESS
THE ART OF TAKEOVERS
THE TOY STORE TEST
NOVEL IDEAS
POLITICS AND HISTORY
CIVILIZATION SINCE ROME FELL
REBIRTH FROM ITALY
FREUD'S THEORIES
MAP OF THE HUMAN BRAIN
QUEUE THEORY
DESIGNING APPLICATIONS

WILLIS
ROBERTS
UNDER
JONES
LAMB
YOUNG
BEESLY
IAVERS
JETTS
ZANE
ALLEN
WILLIAMS
HUNT
LITTLE
PETERS
TOMPSOM
PIERCE
FISH
GOOLE
WINTER
FOX
STEVENS

GUNTER
ANGEL
JOAN
JACK
CHARLENE
KEVIN
GEORGE
ILSE
PETER
JENNIFER
CLYDE
KATIE
ROBERT
MARIE
SETH
KEN
NICOLE
JOHN
APRIL
POLLY
THAD
NOAH

WETH
VALD
COR
FERN
WETH
COR
FERN
FERN
VALD
COR
WETH
VALD
FERN
COR
VALD
FERN
WETH
WETH
VALD
COR
FERN
COR

BIOL
BIOL
BIOL
BIOL
BUSIN
BUSIN
BUSIN
BUSIN
COMP
ENGL
HIST
HIST
HIST
PSYCH
PSYCH
BUSIN
COMP

Sample Data Set - SORT.SAMPIN (continued)

Sample Data Set - SORT.SAMPIN (continued)

Course
Number

Course
Name

Instructor's
Last Name

Instructor's
Initials

Number
In Stock

Number Sold
Year-to-Date

Price

115 119 120 144 145 159 160 161 162 165 166 169 170 173

Sample Bookstore Data Sets

174 z/OS: z/OS DFSORT: Getting Started

Sample Data Set - SORT.SAMPIN (continued) (continued)

Course
Number

Course
Name

Instructor's
Last Name

Instructor's
Initials

Number
In Stock

Number Sold
Year-to-Date

Price

00032

70251
00205
10856
00032

10347
00032
70124
50420
10856
30016
10347
00103
10054
80521
30975
50632
50521

INTRO TO COMPUTERS

MARKETING
VIDEO GAMES
MODERN POETRY
INTRO TO COMPUTERS

TECHNICAL EDITING
INTRO TO COMPUTERS
ADVANCED MARKETING
WORLD HISTORY
MODERN POETRY
PSYCHOLOGY I
TECHINCAL EDITING
DATA MANAGEMENT
FICTION WRITING
BIOLOGY I
PSYCHOANALYSIS
EUROPEAN HISTORY
WORLD HISTORY

CHATTERJEE

MAXWELL
NEUMANN
FRIEDMAN
CHATTERJEE

MADRID
CHATTERJEE
LORCH
GOODGOLD
FRIEDMAN
ZABOSKI
MADRID
SMITH
BUCK
GREENBERG
NAKATSU
BISCARDI
WILLERTON

CL

RF
LB
KR
CL

MM
AN
MH
ST
KR
RL
MM
DC
GR
HC
FL
HR
DW

 5
14
 0
10
 2
20
46
13
 6
 3
15
 1
26
 7
 4
10
 6
 1
23
14

29
 1
32
10
32
26
38
32
27
35
 9
26
15
19
23
 9
11
12
21
17

2600
9900
1925
2199
 595
1899
 295
1450
 360
2350
 795
 450
2200
 625
3195
1520
2350
2800
1790
1200

Sample Data Set - SORT.SAMPADD (continued)

Sample Data Set - SORT.SAMPIN (continued)

Course
Number

Course
Name

Instructor's
Last Name

Instructor's
Initials

Number
In Stock

Number Sold
Year-to-Date

Price

115 119 120 144 145 159 160 161 162 165 166 169 170 173

80522
80522
80523
80523
70251
70124
70255
70255
00205
10054
50521
50420
50632
30975
30016
70255
00103

BIOLOGY II
BIOLOGY II
INTRO TO GENETICS
INTRO TO GENETICS
MARKETING
ADVANCED MARKETING
BUSINESS THEORY
BUSINESS THEORY
VIDEO GAMES
FICTION WRITING
WORLD HISTORY
WORLD HISTORY
EUROPEAN HISTORY
PSYCHOANALYSIS
PSYCHOLOGY I
BUSINESS THEORY
DATA MANAGEMENT

HAROLD
HAROLD
ABRAHAM
ABRAHAM
MAXWELL
LORCH
SCHOFFE
SCHOFFE
NEUMANN
BUCK
WILLERTON
GOODGOLD
BISCARDI
NAKATSU
ZABOSKI
SCHOFFE
SMITH

LM
LM
NG
NG
RF
MH
KN
KN
LB
GR
DW
ST
HR
FL
RL
KN
DC

 3
 8
26
 7
20
 2
 9
15
 8
16
20
12
17
15
11
 3
 6
10
12
 6
 2
 7

16
 4
 6
17
 1
30
20
21
46
 3
25
12
15
12
25
17
15
20
15
 9
20
15

1088
 650
 925
1100
2000
3000
1955
2195
2495
4500
2000
1200
 615
2600
2450
 995
1350
2560
1250
 895
1500
1435

Sample Data Set - SORT.BRANCH

Sample Data Set - SORT.BRANCH

City State Employees Revenue Profit

 1 15 16 17 18 21 22 27 28 33

Sample Bookstore Data Sets

Appendix B. Descriptions of the sample data sets 175

Sample Data Set - SORT.BRANCH (continued)

City State Employees Revenue Profit

Los Angeles
San Francisco
Fort Collins
Sacramento
Sunnyvale
Denver
Boulder
Morgan Hill
Vail
San Jose
San Diego
Aspen

CA
CA
CO
CA
CA
CO
CO
CA
CO
CA
CA
CO

32
35
22
29
18
33
32
15
19
21
22
20

22530
42820
12300
42726
16152
31876
33866
18200
23202
27225
32940
25800

-4278
 6832
-2863
 8276
 -978
 6288
 7351
 3271
 5027
 8264
 8275
 5200

Sample Bookstore Data Sets

176 z/OS: z/OS DFSORT: Getting Started

Appendix C. Processing order of control statements

The following flowchart shows the order in which control statements are processed. (SUM is processed at
the same time as SORT or MERGE. It is not used with COPY.)

Although you can write the statements in any order, DFSORT always processes the statements in the
following order.

Figure 6. Processing Order of Control Statements

Processing Order of Control Statements

© Copyright IBM Corp. 1983, 2024 177

Processing Order of Control Statements

178 z/OS: z/OS DFSORT: Getting Started

Appendix D. Accessibility

Accessible publications for this product are offered through IBM Documentation for z/OS (www.ibm.com/
docs/en/zos).

If you experience difficulty with the accessibility of any z/OS documentation see How to Send Feedback to
IBM to leave documentation feedback.

© Copyright IBM Corp. 1983, 2024 179

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos/latest?topic=how-send-feedback
https://www.ibm.com/docs/en/zos/latest?topic=how-send-feedback

180 z/OS: z/OS DFSORT: Getting Started

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in
only the HTML plug-in output for IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1983, 2024 181

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or

182 z/OS: z/OS DFSORT: Getting Started

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com®/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, and MVS™, contain code that supports specific hardware
servers or devices. In some cases, this device-related element support remains in the product even after
the hardware devices pass their announced End of Service date. z/OS may continue to service element
code; however, it will not provide service related to unsupported hardware devices. Software problems
related to these devices will not be accepted for service, and current service activity will cease if a
problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 183

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information
This publication primarily documents information that is NOT intended to be used as Programming
Interfaces of DFSORT.

This publication also documents intended Programming Interfaces that allow the customer to write
programs to obtain the services of DFSORT. This information is identified where it occurs, either by an
introductory statement to a chapter or section or by the following marking:

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries.
A current list of IBM trademarks is available on the Web at Copyright and Trademark information
(www.ibm.com/legal/copytrade.shtml).

184 z/OS: z/OS DFSORT: Getting Started

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Index

A
accessibility

contact IBM 179
allowable comparisons 26
Arithmetic 48
ascending order

example 4
sorting 11

ASCII data format code 4
assistive technologies 179

B
BI format 4
binary data 4
binary display 48
binary zeros 39
blanks 40

C
calling DFSORT

COBOL program 109
PL/I program 113

carriage control, ANSI 88, 89, 93
CH format 4
character data 4
character strings, format 41
COBOL

calling DFSORT 109
FASTSRT compile-time option 119
MERGE statement 109
passing DFSORT statements 109
sample program 110, 111
SORT statement 109

comparison
allowable 26
field-to-constant 23, 26
field-to-field 23, 26
numeric 29
operators 23

constant
comparisons 28
reformatting 41

contact
z/OS 179

continuing a statement
DFSORT 15
ICETOOL 127

control fields
combining 14
deleting duplicate records 35
duplicate 33
equally collating 8, 33
general information 7
multiple 13

control fields (continued)
overlapping 13
reordering 39
summing 33

control statements
DFSORT 6
ordering 24
processing order flowchart 177

converting numeric fields 44
COPY operator (ICETOOL) 133
COPY option 21
copying records 21
COUNT operator (ICETOOL) 123
creating a DFSORT job 6

D
data formats 4
data set

copying
definition 5
with DFSORT 21
with ICETOOL 133

joining
definition 5

making multiple copies 79, 80
merging

definition 4
with DFSORT 17

sorting
ascending order 11
by multiple control fields 13
definition 4
descending order 11
with DFSORT 11
with ICETOOL 128

DATASORT operator (ICETOOL) 123
dataspace sorting 117
defaults

order of equal records 8
overriding

using OPTION statement 116
using PARM parameter 115

DEFAULTS operator (ICETOOL) 123
deleting fields 38
deleting records 33
descending order

example 4
sorting 11

DFSORT web site 3
DFSPARM 16
discards, saving 82
DISPLAY operator (ICETOOL) 135
duplicate fields

OCCUR operator (ICETOOL) 144
SELECT operator (ICETOOL) 146
SPLICE operator (ICETOOL) 150

Index 185

duplicate fields (continued)
SUM statement 112
UNIQUE operator (ICETOOL) 124

E
EBCDIC data format code 4
edit masks

ICETOOL 138
OUTFIL 46–48

editing fields 37, 138
equal control fields 8
excluding records 26

F
FASTSRT

COBOL 112
compile-time option 119

FB to VB 98
FI format 5
field-to-constant comparison 23, 26
field-to-field comparison 23, 26
fields

character and numeric, printing 135
deleting unnecessary fields 38
editing 39, 138
printing statistics for numeric 126
reformatting 39

fixed fields 37
Fixed-point data 5
Floating sign data 5
format 20
formats 5
formats for writing constants 28
formatting fields 37, 138
FS format 5

H
headers

sorting records between 155
hexadecimal display 48
hexadecimal strings, format 41
high-speed disk 117
Hipersorting 117

I
ICETOOL

complete sample job 157
COPY operator 133
COUNT operator 123
creating a job 124
DATASORT operator 123
DEFAULTS operator 123
definition 123
DISPLAY operator 135
JCL statements 125
job

elements 124
sample 157

MERGE operator 123

ICETOOL (continued)
MODE operator 123
OCCUR operator 144
operator summary 123
RANGE operator 123, 133
requirements

input data sets 124
JCL 124

RESIZE operator 124
SELECT operator 146
SPLICE operator 150
statements

blank 125
comment 125
operator, continuing 127

STATS operator 126
SUBSET operator 124
symbols 167
TOOLMSG output, sample 157
UNIQUE operator 124
VERIFY operator 124

improving performance
allocating main storage 117
FASTSRT compile-time option 119
high-speed disk 117
Hiperspace 117
INCLUDE statement 118
INREC statement 118
JCL (job control language) 119
OMIT statement 118
options to avoid 119
SKIPREC option 118
STOPAFT option 118
SUM statement 118

INCLUDE statement 23
INREC statement 37
installation defaults, overriding 115

J
JCL (job control language)

calling DFSORT from a program 109, 111, 113
executing a copy 21
executing a merge 19
executing a sort 16
general information 16
ICETOOL 125
selecting input data sets 16
selecting output data sets 16
statements 16

JOB statement 16
joining 150
justifying data 52

K
keyboard

navigation 179
PF keys 179
shortcut keys 179

186 z/OS: z/OS DFSORT: Getting Started

L
lookup and change 51
lowercase to uppercase 43

M
main storage, allocating 117
making multiple data set copies 79
mapping

symbols 165
matching 152
memory object sorting 117
MERGE operator (ICETOOL) 123
MERGE statement 18
MERGE statement, COBOL 109
merging records 17
MODE operator (ICETOOL) 123
multiple control fields 13
multiple data sets 79

N
navigation

keyboard 179
non-duplicate fields

OCCUR operator (ICETOOL) 144
SELECT operator (ICETOOL) 146
SPLICE operator (ICETOOL) 150
SUM statement 112
UNIQUE operator (ICETOOL) 124

number of digits
ICETOOL 140

numeric tests 29

O
OCCUR operator (ICETOOL) 144
occurrences

OCCUR operator (ICETOOL) 144
SELECT operator (ICETOOL) 146
SPLICE operator (ICETOOL) 150

OMIT statement 23
OPTION COPY 21
OPTION statement 21, 116
order of control statements 24
ordering

ascending order 4
control statements 24
descending order 4
DFSORT defaults 8

OUTFIL
edit mask patterns 46–48

OUTFIL statement 79
output records, reformatting 37
OUTREC statement 37
overflow

explanation 36
preventing 66

overriding installation defaults 115

P
packed decimal data 4
PARM parameter 115
parsing records 73
passing DFSORT statements

from a COBOL program 109
from a PL/I program 109

PD format 4
PL/I

calling DFSORT 113
passing DFSORT statements 109
sample program 113

printing reports
DISPLAY operator (ICETOOL) 135
OUTFIL statement 88

processing order
differences between INREC and OUTREC 37
flowchart 177
special considerations for INREC 65, 66

R
RANGE operator (ICETOOL) 123, 133
record length, changing 38
RECORD statement 113
records

considerations when reordering with INREC and
OUTREC 65, 66
copying

definition 5
writing the COPY statement 21

joining
definition 5

merging
definition 4
using program control statements 17

reformatting with OUTREC 23
reordering and reformatting with OUTREC 39
reordering with OUTREC 23
selecting by occurrences 146
sorting

ascending order 11
between headers and trailers 155
by multiple control fields 13
definition 4
descending order 11
writing the SORT statement 11

summing 33
reformatting records 37, 73
regular expressions 30
reordering fields 39
repeating 85
reports

DISPLAY operator (ICETOOL) 135
OUTFIL statement 88

RESIZE operator (ICETOOL) 124
running a DFSORT job 6

S
sample data sets 7, 80, 124, 171, 173
sampling 80

Index 187

saving discards 82
search

substring 30
sections 94, 142
SELECT operator (ICETOOL) 146
selecting records 146
sequence numbers 67
SFF format 4
short fields 20, 32, 36
shortcut keys 179
SKIPREC option 118
SORT operator (ICETOOL) 128
SORT statement 11
SORT statement, COBOL 109
SORT-CONTROL special register (COBOL) 110
SORT-RETURN special register (COBOL) 110
sorting records

DFSORT 11
ICETOOL 128, 155

specifying COPY
COPY operator (ICETOOL) 133
MERGE statement 21
OPTION statement 21
SORT statement 21

SPLICE operator (ICETOOL) 150
splitting 86
squeezing data 54
statistics, printing for numeric fields 91, 126, 136
STATS operator (ICETOOL) 126
STOPAFT option 118
SUBSET operator (ICETOOL) 124
substring search 30
SUM statement 33
summary fields 33
summary of changes xix
symbols 165

T
trailers

sorting records between 155

U
UFF format 4
Unicode comparisons 31
UNIQUE operator (ICETOOL) 124
uppercase to lowercase 43
user interface

ISPF 179
TSO/E 179

V
variable fields 73
VB data sets 20, 32, 36, 69, 93, 98, 99, 127
VB to FB 99
VERIFY operator (ICETOOL) 124

W
web site 3
work storage data sets

work storage data sets (continued)
devices for efficient use 117
number needed 16

Z
ZD format 4
zeros 39
zoned decimal data 4

188 z/OS: z/OS DFSORT: Getting Started

IBM®

Product Number: 5655-ZOS

SC23-6880-60

	Contents
	Figures
	Tables
	About this document
	How to use this document
	Required product knowledge

	How to provide feedback to IBM
	Summary of changes
	Summary of changes for z/OS 3.1

	Part 1. Introduction
	Chapter 1. What is DFSORT?
	DFSORT on the World Wide Web
	Data sets, records and fields
	Sorting data sets
	Merging data sets
	Copying data sets
	Joining data sets
	What else can you do with DFSORT?
	Creating and running DFSORT jobs
	Writing jobs
	Summary of DFSORT control statements
	Running jobs

	Creating and using the sample data sets

	Part 2. Learning to write JCL and DFSORT control statements
	Chapter 2. Sorting, merging, and copying data sets
	Sorting data sets
	Sorting by multiple fields
	FIELDS
	Example: Sorting Character data and ASCII Unsigned free format numeric data
	Example: Merging ASCII Signed free format numeric data
	Continuing a statement
	Comment statements
	JCL for sorting data sets directly

	Merging data sets
	Writing the MERGE control statement
	JCL for merging data sets directly
	FIELDS
	FORMAT

	VB data set considerations
	Starting positions
	Short control fields

	Copying data sets
	Specifying COPY on the SORT, MERGE, or OPTION statement
	JCL for copying data sets directly

	Chapter 3. Including or omitting records
	Writing the INCLUDE statement
	Writing the OMIT statement
	Allowable comparisons for INCLUDE and OMIT
	Writing constants
	Character strings
	Hexadecimal strings
	Decimal numbers

	Numeric tests for INCLUDE and OMIT
	Alphanumeric Tests for INCLUDE and OMIT
	Substring search for INCLUDE and OMIT
	Regular expressions
	Unicode comparisons
	VB data set considerations
	Starting positions
	Short control fields

	Summary

	Chapter 4. Summing records
	Writing the SUM statement
	Suppressing records with duplicate control fields
	Handling overflow
	VB data set considerations
	Starting positions
	Short summary fields

	Chapter 5. Reformatting records with fixed fields
	Reformatting records after sorting with BUILD or FIELDS
	Reordering fields to reserve space
	Inserting binary zeros
	Inserting blanks
	Inserting strings
	Character strings
	Hexadecimal strings
	Setting up a basic report

	Translating uppercase to lowercase, EBCDIC to ASCII, and more
	Converting numeric fields to different formats
	Editing numeric fields
	Displaying data in hexadecimal
	Displaying data as bits
	Performing arithmetic with numeric fields and constants
	Converting date fields
	Performing arithmetic with date fields
	Doing lookup and change
	Left-justifying and right-justifying data
	Left-squeezing and right-squeezing data
	Reformatting records with OVERLAY
	Extending records with OVERLAY
	Reformatting records with FINDREP
	Reformatting records with IFTHEN
	Reformatting records before sorting
	Using other statements with INREC
	Preventing overflow when summing values
	Inserting sequence numbers
	VB data set considerations
	RDW
	Starting positions and columns
	Variable data

	Summary

	Chapter 6. Reformatting records with variable fields
	Using %nnn, %nn and %n Parsed Fields with BUILD and OVERLAY
	Using %nnn, %nn and %n Parsed Fields with IFTHEN
	Where You Can Use %nnn, %nn and %n Fields in BUILD and OVERLAY
	PARSE parameters

	Chapter 7. Creating multiple output data sets and reports
	Creating multiple identical copies
	Selecting and sampling by relative record number
	Including, omitting, and saving discards
	Reformatting
	Repeating
	Splitting
	Creating reports: OUTFIL vs ICETOOL
	Creating reports with OUTFIL
	Data
	Headers
	Trailers and statistics
	No data or carriage control characters
	VB data set considerations for headers and trailers
	Sections

	Updating counts and totals in trailer with OUTFIL
	Converting FB to VB
	Converting VB to FB

	Chapter 8. Joining records
	Chapter 9. Calling DFSORT from a program
	Passing control statements
	Calling DFSORT from a COBOL program
	Sorting records
	Merging records

	Sorting with COBOL FASTSRT
	Calling DFSORT from a PL/I program

	Chapter 10. Overriding installation defaults
	Specifying PARM parameters on a JCL EXEC statement
	Specifying an OPTION control statement in DFSPARM

	Chapter 11. Using DFSORT efficiently
	Be generous with main storage
	Allow memory object sorting, Hipersorting and dataspace sorting
	Use high–speed disks for work data sets
	Eliminate unnecessary fields with INREC
	Eliminate unnecessary records with INCLUDE or OMIT
	Eliminate unnecessary records with STOPAFT and SKIPREC
	Consolidate records with SUM
	Create multiple output data sets with OUTFIL
	Replace program logic with DFSORT control statements
	Use FASTSRT with COBOL
	Avoid options that might degrade performance

	Part 3. Learning to use ICETOOL
	Chapter 12. Using the ICETOOL utility
	ICETOOL operators
	Sample input data sets
	Writing required JCL statements
	ICETOOL comment and blank statements
	Printing statistics for numeric fields
	Continuing an operator statement
	Statistics for VB data set record lengths

	Creating identical sorted data sets
	Creating different subsets of a sorted data set
	Creating multiple unsorted data sets
	Counting values in a range
	Printing simple reports
	Printing tailored reports
	Using formatting items
	Edit masks
	Number of digits
	Leading zeros
	Edit patterns
	No statistics
	Division
	Leading, floating and trailing characters

	Printing sectioned reports
	Printing how many times fields occur
	Selecting records by field occurrences
	Joining fields from different data sets
	Matching records from different data sets
	Sorting records between headers and trailers
	Keeping or removing headers, trailers and relative records
	Merging previously sorted data sets
	Complete ICETOOL job and TOOLMSG output

	Part 4. Learning to use symbols
	Chapter 13. Defining and using symbols
	Creating the SYMNAMES data set
	Defining symbols for fields
	Using symbols for fields in DFSORT statements
	Using symbols for fields in ICETOOL operators
	Defining and using symbols for constants

	Appendix A. Creating the sample data sets
	Appendix B. Descriptions of the sample data sets
	Appendix C. Processing order of control statements
	Appendix D. Accessibility
	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

